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Abstract
Frontotemporal Dementia (FTD) is a devastating neurodegenerative disorder that typi-
cally manifests before the age of 65 and is characterized by progressive degeneration of
frontal and temporal lobes as well as behavioural changes and problems with speech.
Although great advancements in our understanding of FTD have been made during the
last decades, there still does not exist a treatment that halts the progression of this dis-
ease. It is therefore necessary to further advance our understanding of the molecular
mechanisms that cause FTD and that drive disease progression forward. In this thesis, I
have contributed to the field of FTD research through the development of computational
methods and the analysis of multi-omics datasets in order the develop new hypotheses
for disease mechanisms in FTD.

Studying complex tissues such as the human brain requires to carefully consider the
contributions of diverse components of such systems. A major factor in transcriptomic
experiments is cell type composition, as every cell has a unique transcriptional profile.
In chapter 2, we have developed a deep learning-based cell type deconvolution algorithm
that outperforms other methods and, importantly, also works well on post-mortem human
brain tissue. The algorithm was rigorously tested and made available to the community
as an open source, accessible python package and as web application.

In chapter 3, we have analysed multi-omics datasets from post-mortem human brain
tissue of FTD patients with mutations in the genes GRN, MAPT and C9orf72. Using an
integrative data analysis approach, we could identify common and distinct affected path-
ways in these three genetic FTD subtypes. We leveraged the rich multi-omics datasets
to identify new aspects of the disease, such as vulnerable neurons and increasing blood
vessel percentages. In-depth analysis could highlight several regulator molecules, such
as micro RNAs and transcription factors, that are likely to play important roles in FTD
and therefore depict promising subjects for future studies.

In chapter 4, we have performed co-expression module analysis of transcriptional data
from seven different brain regions of patients with genetic subtypes of FTD. Using this
comprehensive dataset, we have highlighted regions that are transcriptionally affected in
different FTD subtypes and regions that seem not to suffer from the disease. We further-
more highlighted region- and disease-specific co-expression modules and pinpointed hub
genes of potentially important function for these modules. Our analysis is the first that
evaluates transcriptional deregulation at such diversity in FTD, and therefore provides

ix



Abstract

valuable novel insights for the field of FTD.
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Kurzfassung
Die Frontotemporale Demenz (FTD) ist eine verheerende neurodegenerative Erkran-
kung, die sich typischerweise vor dem 65. Lebensjahr manifestiert und durch eine fort-
schreitende Degeneration der Stirn- und Schläfenlappen sowie durch Verhaltensänderungen
und Sprachprobleme gekennzeichnet ist. Obwohl in den letzten Jahrzehnten große Fort-
schritte in unserem Verständnis von FTD gemacht wurden, gibt es immer noch keine Be-
handlung, die das Fortschreiten dieser Krankheit aufhält. Es ist daher notwendig, unser
Verständnis der molekularen Mechanismen, die FTD verursachen und das Fortschreiten
der Krankheit vorantreiben, weiter zu vertiefen. In dieser Arbeit habe ich durch Metho-
denentwicklung and Datenanalyse neue Hypothesen für potenzielle Krankheismechanis-
men bei FTD aufgestellt, und so zur FTD Forschung beigetragen.

Die Untersuchung komplexer Gewebe wie des menschlichen Gehirns erfordert eine sorgfältige
Abwägung der Beiträge der verschiedenen Komponenten solcher Systeme. Ein wichti-
ger Faktor bei transkriptomischen Experimenten ist die Zusammensetzung des Gewebes
aus verschiedenen Zelltypen, da jeder Zelltyp ein einzigartiges Transkriptionsprofil auf-
weist. In Kapitel 2 haben wir einen auf maschinellem Lernen basierenden Algorithmus
entwickelt, welcher die Zelltypenzusammensetzung eines Gewebes anhand transkripto-
mischer Daten vorhersagt. Unser Algorithmus übertrifft andere, moderne Algorithmen
und liefert insbesondere auch bei postmortalem menschlichem Hirngewebe gute Ergeb-
nisse. Der Algorithmus wurde rigoros getestet und als open-source Software anderen
Forschern zur Verfügung gestellt.

In Kapitel 3 haben wir multimodale Datensätze aus postmortalem Humanen Hirngewebe
von FTD-Patienten mit Mutationen in den Genen GRN, MAPT und C9orf72 analysiert.
Mit einem integrativen Ansatz der Datenanalyse konnten wir Gemeinsamkeiten und Un-
terschiede der verschiedenen genetischen FTD-subtypen identifizieren. So konnten wir
zum Beispiel besonders anfällige Neuronenarten identifizieren und einen generellen An-
stieg der Blutgefäßdichte ausmachen. Außerdem konnten Gene und Moleküle identifi-
ziert werden, welche mit hoher Wahrscheinlichkeit eine regulatorische Rolle im Verlauf
der Krankheit spielen und daher von großem Interesse für zukünftige FTD Studien sein
könnten.

Im vierten Kapitel haben wir mithilfe von Genexpressionsdaten aus sieben verschiedenen
Hinregiongen von Patienten mit genetischen FTD Subtypen eine Ko-expressionsanalyse
durchgeführt und konnten so neue Erkenntnisse über die Anfälligkeit verschiedener Ge-
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hirnregionen gewinnen. So konnten wir Gehirnregionen identifizieren, welche bei be-
stimmten Subgruppen besonders betroffen sind, sowie Regionen, welche scheinbar von
FTD verschont bleiben. Durch tiefergehende Analysen konnten wir Gen-Module und po-
tentiell wichtige Gene mit zentralen, regulatorischen Funktionen identifizieren. Unsere
Studie ist die erste Analyse, welche FTD in solch großer Diversität, mit sieben Gehirn-
regionen und drei verschiedenen FTD-Subtypen, untersucht und liefert daher wichtige
neue Erkenntnisse für das Feld der FTD Forschung.

xii
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Chapter 1

Introduction
In this introduction, I will give a detailed presentations of several topics that are of rele-
vance to this thesis. In section 1.1 I will give an introduction to frontotemporal dementia
and its clinical and pathological symptoms, and furthermore discuss our current knowl-
edge about the underlying genetics and molecular disease mechanisms. In section 1.2 I
will review the biology of the transcriptome and cover experimental and computational
methods for the analysis of it. Lastly, I will cover the topic of machine learning and deep
neural networks, as these are central topics for chapter 2. I will conclude this introduction
by outlining the aims of the thesis.

1.1 Frontotemporal Dementia
Frontotemporal Dementia (FTD) is a neurodegenerative disorder that is characterized by
progressive deterioration of the frontal and temporal lobes [19]. It is a pre-senile demen-
tia, meaning it typically manifests before the age of 65. Among pre-senile dementias,
FTD is the second most common form after Alzheimer’s disease (AD). Arnold Pick was
the first to describe a patient with FTD in 1892, leading to “Pick’s disease” as the ini-
tial term for the FTD disease spectrum. Both clinically and pathologically, FTD is a
heterogeneous disorder.

1.1.1 Clinical Features
Depending on the clinical features, FTD can be divided into three subtypes. The most
common form is behavioural variant FTD (bvFTD). Patients with bvFTD are mainly
characterized by changes in their behaviour. Striking features are social disinhibition
with inappropriate and compulsive behaviours [154]. Apathy and diminished empa-
thy are additional symptoms and patients often exhibit hyperorality behaviours such
as binge-eating or drinking. The memory is relatively unaffected in early bvFTD, but
deficits in executive functions are often present. The other two clinical variants of FTD
are primary progressive aphasias (PPAs), which are characterized by language impair-
ments. Non-fluent variant PPA (nfvPPA) or agrammatic variant PPA leads to impairment
in speech generation. Patients have grammatic errors in their language and problems in
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Chapter 1 Introduction

the comprehension of long sentences. The speech is slow and halting with sound er-
rors [67]. Finally, patients with semantic variant PPA (svPPA) have usually no problems
with speech production and grammar, but they lose the semantic meaning and compre-
hension of words. Impaired object knowledge, dyslexia and dysgraphia are additional
features that characterize svPPA [67]. Additional to the three main clinical manifesta-
tions of FTD, a significant number of patients develop symptoms of motor neuron dis-
ease (MND). In fact, over recent years, compelling evidence has accumulated that led
to the classification of FTD and MNDs such as amyotrophic lateral sclerosis (ALS) as
two extreme ends of a disease spectrum [36]. At the one extreme, patients present only
with cognitive symptoms (FTD) and at the other end only motoric deficits are observed
(MND/ALS). Motor syndromes with FTD are categorized as progressive supranuclear
palsy (PSP), corticobasal syndrome (CBS) or ALS [143].

1.1.2 Neuropathology
Like the clinical symptoms, the neuropathology of FTD is highly heterogeneous. The
major pathological hallmark is frontotemporal lobar degeneration (FTLD), which is de-
fined by neuronal loss, atrophy and gliosis [88]. FTLD is the common underlying cause
of all variants of FTD. On the cellular level, FTLD is characterized by pathologic inclu-
sions of protein accumulates. Today, three specific subtypes of FTLD have been iden-
tified which are defined by the primarily accumulating proteins: microtubule-associated
protein tau (MAPT), TAR DNA binding protein 43 (TDP-43) and fused in sarcoma
(FUS). The corresponding pathologies are termed FTLD-tau, FTLD-TDP and FTLD-
FET, respectively (Fig.1.1). FTLD-tau and FTLD-TDP make up most cases (90-95%)
[57], with FTLD-tau accounting for approximately 40% of cases and FTLD-TDP for
50%.

Abnormal accumulation of the tau protein is not an exclusive feature of FTLD-tau, but
also occurs in several other neurodegenerative diseases, most prominently in AD [206].
The gene microtubule associated protein tau (MAPT) consists of multiple isoforms that
give rise to proteins with different chemical properties. Most relevant for FTD is the
alternative splicing of exon 10, which leads to two tau variants with either three or
four microtubule-binding repeat domains, referred to as 3R and 4R tau. Pathologically,
FTLD-tau can be further divided into four molecular subtypes: Pick’s disease (PiD),
PSP, corticobasal degeneration (CBD), globular glial tauopathy (GGT) and argyrophilic
grain disease (AGD) [122]. PiD is characterized by neuronal loss and swollen neurons,
as well as neuronal cytoplasmic inclusions called Pick bodies. PiD typically presents
without MND, in contrast to PSP which is primarily a movement disorder. In PSP, neu-
rodegeneration affects several subcortical brain regions apart from frontal and temporal
lobes. Both PSP and CBD manifest with glial tau inclusions, which is less frequently
observed in PiD. GGT, as the name suggests, manifests with globular, widespread tau
pathology with inclusions in astrocytes and oligodendrocytes [5]. Finally, AGD is a
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1.1 Frontotemporal Dementia

Figure 1.1: Subtypes of FTLD and FTD. The table presents an overview of pathological
subtypes and associated genes as well as clinical FTD variants. From Panza et al. [143]
with permission from Springer Nature

late onset tauopathy that is characterized by argyrophilic grains, oligodendrocytic coiled
bodies and neuronal pretangles [161]. All the above discussed pathologies contain tau
inclusions that are composed mainly of 4R tau.

FTLD-TDP is characterized by pathological inclusions of the TAR DNA-binding pro-
tein 43 (TDP-43), which has numerous molecular functions in RNA processing [121].
As with tau aggregates, TDP-43 inclusions are not an FTD-exclusive pathology, but are
also the major pathology in ALS [138, 10]. Hyperphosphorylation, ubiquitination and
N-terminal truncation are pathological features of accumulating TDP-43 protein [137].
FTLD-TDP is characterized in subtypes A, B, C and D, depending on the precise neu-
ropathological features such as the distribution of cellular inclusions.

Finally, FTLD-FET is characterized by pathological inclusions of the protein encoded by
the gene fused-in-sarcoma (FUS), which co-aggregates with the two FET-family mem-
ber proteins Ewings’s sarcoma (EWS) and TATA-binding protein-associated factor 15
(TAF15), hence the terminology [122, 137]. FTLD-FET is further characterized in the
pathological subtypes atypical FTLD-U, neuronal intermediate filament inclusion dis-
ease (NIFID) and basophilic inclusion body disease (BIBD).

3



Chapter 1 Introduction

1.1.3 Genetics of FTD

FTD has a large genetic component, with estimates of up to 43% of cases having a posi-
tive family history and 10-17% being caused by an autosomal dominant mutation [151].
During the past decades, mutations in several genes have been identified as causes for
FTD. In 1998, Hutton and colleagues identified missense and 5’-splice-site mutations in
the MAPT gene as causes for FTD [84]. The tau protein encoded by MAPT interacts
with microtubules and is important for their stabilization and organization [206]. Many
pathogenic MAPT mutations lead to a decreased ability of tau to interact with micro-
tubules, which leads to their destabilization and an excess of unbound tau protein in the
cell, possibly leading to an increased accumulation potential. FTD caused by MAPT mu-
tations is characterized by neuronal and microglial inclusions of tau (FTLD-tau). Intronic
MAPT mutations lead to a ratio change of isoforms with either three or four microtubule-
binding repeats (3R and 4R, respectively). Mutations in coding regions are also mostly
found in these repeat regions and often lead to a reduced microtubule-binding ability of
the resulting protein [185].

Loss of function (LOF) mutations in the granulin (GRN) gene were identified as another
cause for FTD in 2006 [18, 45]. Mutations in GRN lead to a 50% reduction in GRN
protein product and thus cause FTD by haploinsufficiency. FTD caused by mutations in
GRN is characterized by ubiquitin-positive inclusions which are mainly composed of the
TDP-43 protein (FTLD-TDP). GRN is expressed in neurons and microglia, where it is
involved in the inflammatory response and many other cellular processes [97]. The exact
mechanisms that lead from GRN haploinsufficiency to TDP-43 aggregates and neurode-
generation are not well understood.

In 2011, two independent research groups identified an expansion of the hexanucleotide
repeat of sequence GGGGCC in the first intron of the C9orf72 gene as a cause for both
FTD and ALS [158, 48]. Now, this mutation is the most common known monogenetic
cause for FTD and ALS [196]. How the same mutation leads to two clinically quite
different diseases is not entirely clear, but it demonstrates that ALS and FTD are part of
a heterogeneous disease spectrum. Repeat expansions in C9orf72 lead to pathological
inclusions of TDP-43, which is also the most prominent pathology in ALS [115]. Like
GRN mutations, it is not known how the C9orf72 mutation leads to TDP-43 accumu-
lation. Another pathological feature of the hexanucleotide repeat expansions (HRE) is
the unconventional non-ATG translation of the repeat, which leads to dipeptide repeats
(DPRs) that form insoluble inclusions [13]. The non-translated repeat RNA molecules
can furthermore form toxic RNA foci, which represent another potentially important
pathogenic mechanism of the C9orf72 mutation [200]. Finally, the repeat expansion
leads to a reduced expression of the C9orf72 protein product, which can at least partly
be attributed to hypermethylation at the C9orf72 locus [23].
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1.1 Frontotemporal Dementia

While mutations in MAPT, GRN and C9orf72 account for most familial cases, other
causal mutations have been identified that are observed much less frequently. A muta-
tion in the Charged multivesicular body protein 2B (CHMP2B), which is an important
component of the endosomal ESCRT-III complex, was identified as causal for FTD in
2005 [180]. Other rare causes of FTD are mutations in the genes vasolin-containing
protein (VCP), sequestome 1 (SQSTM1), TANK binding kinase 1 (TBK1), optineurin
(OPTN), TDP-43, FUS and CHCHD10 [151].

1.1.4 Disease Mechanisms
Ultimately, to develop treatments for FTD, it is important to have a precise understanding
of the molecular mechanisms that are underlying disease development and progression.
The identification of several causal mutations for FTD depicted important starting points
for the determination of causal mechanisms, leading to great advances in our under-
standing of the molecular biology of FTD. Nevertheless, it is still unclear how precisely
mutations in very different genes lead to a seemingly similar disease and what the under-
lying pathways of this process are. In the following, I will give an introduction into what
is currently known about molecular pathways involved in the disease.

The tau protein, encoded by the gene MAPT, is involved in many neurodegenerative dis-
eases, termed tauopathies. In physiological conditions, it binds to microtubules, where
it has a stabilizing role. As mentioned earlier, some FTD-causing MAPT mutations lead
to different isoform ratios of 4R and 3R tau. These two tau isoforms have different
chemical properties, such as microtubule binding affinity. FTLD-tau subtypes often have
accumulations of only a specific tau isoform, or sometimes both [51]. It has been shown
that overexpression of one tau isoform can lead to a dysfunction in axonal transport, by
reducing the localization of microtubules to axons and impairing their transport mech-
anisms [184]. Another suggested mechanism is the binding of 3R and 4R isoforms to
specific sites at microtubule. Overexpression of one isoform could then lead to increased
amounts of unbound tau protein due to saturation of binding sites [185]. Changes in
ratio of 3R and 4R tau are usually caused by intronic or splice site mutations. However,
missense mutations in coding regions have also been shown to decrease the microtubule
binding activity of tau, consequently leading to diminished microtubule assembly [47].
Furthermore, multiple studies have shown that many pathogenic MAPT mutations lead
to an increased seeding and aggregation capability of tau, making it more likely to form
pathological inclusions [169]. Hyperphosphorylation of the tau protein is another mech-
anism observed in tauopathies like AD and FTLD-tau that can lead to impaired binding
of tau to microtubules and the formation of neurofibrillary tangles (NFTs) [29] (Fig.
1.2). It is unclear which mechanism - impaired microtubule function or increased tau
aggregation - is the main cause of neurodegeneration. Most likely, both play a role in
pathogenesis [185].
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Figure 1.2: Destabilization of microtubules. Impaired binding of tau to microtubules
leads to microtubule destabilization. Unbound, hyperphosphorylated tau builds neurofib-
rillary tangles. (Created with BioRender.com)

Because mutations in MAPT lead to aggregation of the protein encoded by the gene
itself, the causal reason for tau aggregation can be assigned to the initial mutation. How-
ever, for FTLD-TDP pathology, it is much more difficult to determine how mutations in
GRN or C9orf72, two genes seemingly unrelated to TDP-43, lead to aggregation of the
latter. As most pathogenic GRN mutations lead to haploinsufficiency, loss-of-function is
the most likely disease mechanism for GRN. The suggested roles of GRN in the brain
are diverse, ranging from neurite outgrowth, neuron survival and differentiation to anti-
inflammatory effects [43, 197]. In the brain, GRN is mainly expressed in microglia, and
studies have shown that GRN deficiency can lead to stronger activation of microglia after
injury, suggesting that GRN keeps the inflammatory response under control [189]. An-
other study in mice has shown that GRN-deficiency leads to age-dependent up-regulation
of lysosomal and innate immunity genes in microglia, as well as enhanced synaptic prun-
ing [120]. Therefore, the authors of the study suggest, immune system activation and
synaptic pruning are likely drivers rather than consequences of neurodegeneration in
FTD caused by GRN mutations. Interestingly, homozygous GRN mutations cause neu-
ronal ceroid lipofuscinosis (NCL) instead of FTD. NCL is a lysosomal storage disorder,
supporting the involvement of GRN in lysosome biology [181]. Indeed, several studies
have associated abnormalities in lysosomes with GRN deficiency, such as enlarged lyso-
somes in GRN-deficient mice or in induced pluripotent stem cell (iPSC) neurons from
FTD patients with GRN mutations [148].
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As described in the previous section, pathological effects from HREs in the C9orf72
gene are caused by diverse mechanisms: down-regulation of C9orf72, DPRs and RNA
foci. Possible toxicity has been shown for all of these effects, however it remains to
be determined to which extent these effects are involved in neurodegeneration [190].
Studies in model systems and mice suggest that reduced expression of the C9orf72 gene
is not sufficient to induce severe neurodegeneration [35]. However, recent studies sug-
gest that reduced levels of C9orf72 can work synergistically with other gain-of-function
effects of the mutation, thereby exacerbating their pathogenicity [228]. The protein en-
coded by C9orf72 has been shown to be structurally similar to Rab guanine nucleotide
exchange factors (RabGEFs), which are proteins that are involved in cellular trafficking
and autophagy pathways [113]. Building on this finding, multiple studies have provided
evidence that C9orf72 plays important roles in autophagy pathways. Interestingly, Sellier
and colleagues could show in neurons that loss of C9orf72 impairs autophagy and leads
to protein aggregates of TDP-43 and the p62 protein, given a modifying mutation in the
Ataxin-2 gene is present as well [173]. Apart from autophagy, it was also confirmed that
C9orf72 is involved in cellular trafficking pathways [9].
It is debated to which extent DPRs play a role as a gain-of-function mechanism in
FTD pathogenesis. In post-mortem human brain tissue, DPRs have been found in var-
ious brain regions, but their localization does not correlate with FTLD-TDP pathology
[71, 66]. However, a recent study found that the poly-GR subtype of DPRs does correlate
with neurodegeneration and co-localizes with TDP-43 in dendrites [166]. Nevertheless,
more research is needed to more deeply investigate the role of DPRs in FTD caused by
C9orf72 mutations.
Finally, the bidirectional transcription of the C9orf72 HRE leads to RNA molecules that
form aggregates, or RNA foci, with potentially pathological functions [48]. These foci
have been observed in the nuclei of multiple cell types in post-mortem brains from pa-
tients with FTD as well as in iPSC-derived neurons [71]. Nevertheless, it remains unclear
if and how RNA foci have pathological effects. For instance, Mizielinska and colleagues
found that RNA foci are abundant in FTD patients with C9orf72, being found in 51% of
frontal neurons, although they did not correlate with TDP-43 or p62 inclusions. While
this indicates that they are not necessary for the major pathological hallmark of FTD to
evolve, it does not rule out pathological functions [129].

Above, I have described the initial insults caused by mutations in MAPT, GRN and
C9orf72 that ultimately lead to FTD. As the disease develops and progresses, many more
molecular pathways are affected, that are to some extent common to patients with mu-
tations in all three genes and also to other neurodegenerative disorders (see Fig. 1.3).
These pathways lay downstream of the causal mutations and it might be their dysfunc-
tion that ultimately leads to neurodegeneration.

Cellular trafficking pathways are affected in several neurodegenerative disorders [65],
such as endo-lysosomal trafficking pathways [203], which are important for functional
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autophagy. As discussed earlier, both GRN and C9orf72 likely play vital roles in lyso-
somal and autophagy related biology, similar to other genes with causal FTD mutations
such as CHMP2B. Furthermore, microtubules are important for the formation of au-
tophagosomes, thereby providing a potential link between MAPT and autophagy as well
[100]. Autophagy and lysosomes are important mechanisms that enable cells to dispose
of dysfunctional organelles or proteins. If non-functional, proteins or organelles that
would ideally be removed can accumulate in the cell and subsequently build aggregates.
For instance, a recent study indicates that lysosome-deficiency or defective vesicular
transport might be the mechanisms that lead to a failure in clearance of tau proteins,
while dysfunctional lysosomes might be the cause of aggregating TDP-43 in GRN mu-
tation carriers [17].

Another common feature of genetic FTD subtypes are stress granules (SGs). SGs are
membraneless organelles that are formed through liquid-liquid phase separation by ri-
bonucleoproteins (RNPs) and can contain several RNA and protein species. They dy-
namically form during stress and quickly disassemble afterwards [211]. It has been
proposed by Wolozin and Ivanov that SGs could serve as the initial location for protein
aggregation, as they harbor proteins in greatly increased concentrations and TDP-43 has
been shown to colocalize to SGs [211]. According to their hypothesis, SGs could form
as a response to stresses that are mediated by the initial insults from disease-causing
mutations, e.g. down-regulation of GRN or hyperphosphorylation of tau. Dysfunctions
in trafficking and autophagy pathways, as discussed above, could impair the cellular ca-
pabilites of removing excess SGs, leading to their accumulation and thereby providing
optimal seeding environments for pathological protein inclusions. While the different
steps in this hypothesis need to be experimentally validated, SGs very likely play impor-
tant roles in FTD pathogenesis.

During recent years, researchers of neurodegenerative diseases have increasingly focused
on neuroinflammatory processes, which are now believed to play key roles in many dis-
eases, including FTD [65]. Increased microglial activation in frontotemporal regions
in FTD has already been identified in 2004 [37]. Recent studies found inflammation-
associated co-expression modules of genes up-regulated in FTD and partly correlating
with TDP-43 pathology [193, 186]. Increased levels of tumor necrosis factor (TNF), a
major driver of inflammation, have furthermore been found in patients with FTLD-TDP
caused by GRN mutations [127]. The gene GRN itself has important functions in the
immune system, and has been shown to regulate microglia and the immune response in
several studies [32]. Recently, a study of C9orf72 knockout mice has shown that C9orf72
loss-of-function leads to an increased interferon response [124]. The authors found that
impaired autophagy leads to decreased degradation of the stimulator of interferon genes
(STING) protein, thus provoking an increased interferon response. This goes in line
with previous findings which have shown that C9orf72 is required for microglial func-
tion [141]. As with other pathological mechanisms in FTD, their precise role needs to be
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further examined. However, there is compelling evidence showing that neuroinflamma-
tion is an important component of at least some FTD subtypes.

As a last example of a major molecular pathway that is involved in many neurodegen-
erative diseases and that might also play important roles in FTD, I want to discuss the
dysfunction of mitochondria. Mitochondria generate the energy necessary for cellular
functions, and are thus crucial for cell survival. Neurons are large cells with high energy
demands that are dependent on functional mitochondria and their transport to all parts
of the cell, making them especially vulnerable to mitochondrial dysfunction [65]. In a
properly functioning cell, malfunctioning mitochondria are removed through a process
called mitophagy, which is a specialized form of autophagy. Hence, impaired autophagy
can lead to suboptimal mitochondrial quality control, ultimately leading to an impaired
energy production. Interestingly, missense mutations in the gene CHCHD10 have been
identified to be a likely cause for FTD-ALS [20]. While the exact function of CHCHD10
is still unknown, it is a mitochondrial protein, thus suggesting a mitochondrial origin of
FTD. Furthermore, Choi and colleagues recently generated mouse models for C9orf72
FTD/ALS with inducible DPRs. They found that DPRs led to mitochondrial dysfunction
and proposed that this might be an early event in the disease [44].

9



Chapter 1 Introduction

Figure 1.3: Commonly affected pathways in neurodegenerative diseases include protein
quality control (I), autophagy and lysosomal pathways (II), mitochondrial homeosta-
sis (III), protein seeding and aggregation (IV), the formation of stress granules (V) and
mechanisms leading to synaptic toxicity (VI). Figure taken from Gan et al. [65] with
permission from Springer Nature.

With the advancement of our understanding of the molecular disease mechanisms un-
derlying FTD, potential treatment strategies can emerge which can be tested and might
ultimately lead to a drug that halts the progression of FTD. Treatment strategies that
are currently investigated focus mainly on inhibition and clearance of tau and TDP-
43 aggregates [143]. Further strategies include microtubule stabilization, inhibition of
tau phosphorylation, modulating GRN and C9orf72 expression and modulation of au-
tophagy [143]. A more detailed understanding of FTD molecular biology is necessary
to determine which strategies are the most promising ones without leading to undesired
side-effects.

1.2 Transcriptomics
The transcriptome comprises all RNA molecules in a cell that are transcribed from the
DNA. It is central to all cellular functions, as it is the basis for all proteins as well as
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non-coding RNA molecules such as micro RNAs (miRNAs) or long non-coding RNAs
(lncRNAs) in the cell. Given its key role for cellular biology, it is not surprising that the
transcriptome is subject to pathological changes in many diseases, leading to dysfunc-
tion in sometimes essential molecular pathways. It is because of this vital importance
that transcriptomic profiling has become one of the most important methods in molecu-
lar cell biology that helped scientists to unravel the mechanisms behind many complex
diseases. Here, I want to outline the technologies and computational algorithms used for
transcriptomic profiling as well as the different molecules and regulatory mechanisms
that are part of or affect the transcriptome.

1.2.1 Molecular Biology
The transcriptome encompasses a diverse set of molecules, not all of which are fully
understood in their functions. Messenger RNA (mRNA) is the most important RNA
molecule, as it is translated into proteins, which are the central molecular machines of
every cell. An eukaryotic protein coding gene consists of non-coding (introns) and cod-
ing (exons) regions. After transcription, intronic regions are spliced out of the immature
mRNA molecule to yield a mature mRNA which only consists of exons. Only this mature
mRNA is then translated into a functional protein. Through different combinations of ex-
ons or the usage of alternative splice sites that define different intron-exon boundaries,
many genes can be transcribed into multiple variants, or isoforms, with unique biological
functions. This process is called alternative splicing, and is an important mechanism in
development and other molecular pathways [21, 144].

MiRNAs are small RNA molecules of 21-22 nucleotides length that play important roles
in transcriptional and translational regulation. They bind to the 3’-untranslated regions
(3’-UTR) of mRNAs through a complex mechanism that is facilitated mainly through
a short, 7-8 basepair (bp) complementary sequence in their 5’-region, called the seed
sequence [74]. Because of this short complementary sequence, every miRNA has the
potential to target several genes, sometimes hundreds or thousands. Binding to the 3’-
end of a target gene leads to translational repression and increased mRNA degradation.
The latter is caused by destabilization of the mRNA, and evidence suggests that this is
the major mechanisms of action for miRNAs [82]. Regulation by miRNAs is an impor-
tant mechanisms, whose dysfunction has been implicated in a variety of diseases [147].

In eukaryotes, transcription of RNA from DNA is carried out by RNA polymerase en-
zymes. There are three specific polymerases: Polymerase (Pol) I, Pol II and Pol III. Each
of these polymerases is responsible for transcribing a specific set of RNA molecules.
Protein-coding mRNA is transcribed by Pol II, for example [167]. Polymerases bind
to accessible gene promoters to initiate transcription. This binding to promoters is
facilitated by transcription factors (TFs), which depict the most important regulatory
molecules in the transcriptome (Fig. 1.4). TFs bind to specific DNA elements that con-
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sist of a sequence motif for which the respective TF has a much higher binding affinity
compared to other DNA sequences [107]. DNA elements that are bound by TFs are also
referred to as transcription factor binding sites (TFBS). The selective binding of TFs to
certain DNA elements enables them to initiate the transcription of a specific set of genes.
Apart from TFBSs in promoter regions, TFs can also bind to other regulatory elements
such as enhancers [183]. Binding to enhancer elements activates gene expression of
genes that can be located either upstream or downstream of the enhancer at a significant
distance from the gene promoter. The prominent role of TFs in transcriptomic regulation
makes them interesting targets to study and for therapeutic intervention.

Figure 1.4: (Adapted from Regulation of Transcription in Eukary-
otic Cells, by B. Atanasovska, BioRender.com (2020), Retrieved from
https://app.biorender.com/biorender-templates )

Apart from regulation by TFs, epigenetics, or the heritable modification of DNA, is
another important regulatory mechanism of gene expression. A prominent example for
DNA modifications is the addition of methyl groups. The most generic form of this
modification is the methylation of cytosine residues, which usually occurs when preced-
ing a guanine residue (CpG dinucleotide) [68]. CpG dinucleotides are largely depleted
from the genome, except for so-called CpG islands which usually occur in promoter
regions [85] (Fig. 1.4). Methylation of cytosine residues in CpG island of promoters
can result in decreased promoter activity and hence gene expression by impairing the

12



1.2 Transcriptomics

possibility of TFs to bind the promoter [68]. CpG methylation can also activate gene
expression through different mechanisms. The possibilities of influence on gene expres-
sion by DNA methylation are diverse and complex and remain a field of active research.
It is, however, well established that DNA methylation plays a crucial role during devel-
opment and in many diseases. Several technologies have been developed for the study
of DNA methylation. Some are based on DNA sequencing technology, while others are
based on microarrays. For the latter, the most common platform is the Infinium assay
from Illumina. Based on this assay, the MethylationEPIC BeadChip can be used to ex-
amine 850,000 CpG sites for methylation. All methylation data used in this thesis was
generated using the MethylationEPIC BeadChip.

1.2.2 Sequencing Technology

Technological advancements have paved the way for large-scale studies by making tran-
scriptome profiling relatively cheap. The first technology that allowed for high-throughput
transcriptional profiling were microarrays – small chips with attached and predefined
oligonucleotides. To measure RNA quantities, the RNA is extracted from a sample,
reverse-transcribed into complementary DNA (cDNA), labelled with a fluorescent dye
and then hybridized to the microarray chip. Gene expression can then be measured
through the strength of the fluorescent signal of each probe. Nowadays, the most com-
monly used technique to measure gene expression is RNA-sequencing (RNA-seq), whose
success is based on the rapid development and decrease in cost of DNA sequencing tech-
nology. The most common platform for sequencing technology in general comes from
Illumina. For RNA-seq, RNA from each sample is extracted from a sample and reverse-
transcribed to cDNA. For gene expression measurements, DNA fragment lengths be-
tween 50 and 200 bp are typical. The cDNA libraries are then ligated to sequencing
adapters on a flowcell and amplified via polymerase chain reaction (PCR). Finally, the
amplified cDNA fragments are sequenced. In the case of Illumina sequencing, this is
done by a so-called sequencing-by-synthesis process (Fig. 1.5). First, the complemen-
tary reverse strands are removed from the cDNA on the flow cell and a primer is attached
to the now single-stranded sequence. Fluorescently labelled nucleotides are then incor-
porated by a DNA polymerase one at a time. After each sequencing round, the incorpo-
rated nucleotide is determined using the fluorescent signal, which is different for each of
the four nucleotides. Thus, the sequence of the DNA fragment can be determined with
high precision. In the case of paired-end sequencing, the DNA fragment is additionally
sequenced in the reverse direction from the opposing end, yielding two reads (forward
and reverse reads). The availability of forward and reverse reads has advantages for data
analysis steps like sequence alignment or genome assembly.
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Figure 1.5: Illustration of Illumina Next Generation Sequencing. 1 DNA is cut into
smaller fragments and ligated with sequencing adapters to yield a sequencing library for
each sample. 2 The libraries are hybridized to the flow cell and amplified in clusters
using bridge amplification. 3 Fluorescently labeled nucleotides are added to the flow cell
to synthesize the complementary DNA strands. The fluorescent signal is captured during
every cycle. 4 Sequencing data can be aligned to a reference genome, for example, in
the final data analysis step. (Adapted from Next Generation Sequencing (Illumina), by
BioRender.com (2020), Retrieved from https://app.biorender.com/biorender-templates)

Cap analysis of gene expression sequencing (CAGE-seq) is another sequencing-based
technology that uses the 5’-cap of RNA molecules to extract their 5’-end sequence [177].
The very beginning of the 5’-end corresponds to the transcription start site (TSS), hence
CAGE-seq can be used to accurately determine and quantify TSSs of all genes in the
transcriptome. The position and distribution of CAGE-seq TSS tags enables the identi-
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fication and characterization of gene promoters. Quantification of tags adds information
about the promoter activity.

Technologies like RNA-seq and CAGE-seq are typically used to study the gene expres-
sion of a tissue sample that consists of a mixture of different cell types or of a homoge-
neous sample of cells that consists of thousands of cells. In recent years, however, it has
become quite common to study gene expression in individual, single cells using single
cell RNA-seq (scRNA-seq) technology. While scRNA-seq is still relatively expensive
compared to bulk RNA-seq, rapid technological advancements have helped to decrease
the cost, which has led to a strong increase in the number of studies that use scRNA-seq
and to a vast improvement of our understanding of single cell biology. The first step in a
scRNA-seq protocol is to isolate single cells and to bring them in solution. Once in solu-
tion, one of a variety of different scRNA-seq technologies can be used. One of the most
common technologies comes from 10X Genomics. For example, the 10X Genomics
Chromium system mixes the cell solution with enzymes, partitioning oil and gel beads,
which contains barcodes and unique molecular identifier (UMI) adapters. The Chromium
system creates pairs of single cells and beads that are encapsulated in an emulsion, so
called Gel Bead-in-emulsions (GEMs). In each GEM, the RNA is reverse transcribed
into DNA and labelled with the bead-specific barcode and UMIs. Finally, sequencing
adapters are attached, resulting in a sequencing library that can be sequenced using stan-
dard short-read sequencing technology as described above. Because every GEM contains
a unique barcode, it is possible to assign reads to their cells of origin, enabling the study
of gene expression at single cell resolution. A disadvantage of scRNA-seq is that because
of the low amount of RNA that can be obtained from a single cell, the number of genes
that can be quantified is much lower compared to bulk RNA-seq. These low expression
measurements lead to stochastically missing genes (zero counts), so-called dropouts.

1.2.3 Algorithms for transcriptome analysis
RNA-seq experiments can generate large amounts of data in the form of millions of se-
quencing reads that require further computational processing in order to extract meaning-
ful biological insights. A typical workflow for the analysis of RNA-seq data starts by as-
sessing the quality of the reads from the experiment, demultiplexing pooled samples and,
when necessary, the trimming of remaining adapters or low-quality bases. The cleaned
reads then need to be aligned to a reference genome to determine their genes of origin.
The first efficient algorithm for the alignment of two biological sequences was proposed
by Needleman and Wunsch in 1970 [136]. The Needleman-Wunsch algorithm is based
on dynamic programming and can generate a global sequence alignment in O(n2) time,
where n is the length of both sequences (if they are of the same length). In 1981, the first
algorithm for local sequence alignment was proposed as a variation of the Needleman-
Wunsch algorithm by Smith and Waterman, which has the same time complexity as the
Needleman-Wunsch algorithm [182]. These algorithms represented hallmarks of bioin-
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formatics but are not useful in their original form for the large amounts of data generated
to date. Thus, in the last decades, numerous algorithms for the efficient and precise
alignment of sequences have been proposed that can tackle the challenge to accurately
align millions of reads against large reference genomes in reasonable time, using limited
computational resources. Modern alignment algorithms need to be extremely efficient,
and thus usually use a seed-matching scheme to avoid unnecessary alignment – a con-
cept initially introduced by Altschul et al. with the BLAST algorithm [7]. By efficiently
searching for exact seed matches between a read and the reference genome, the number
of sequence alignments to be calculated can be dramatically reduced. Apart from be-
ing efficient, RNA-seq alignment algorithms should be able to deal with unknown splice
junctions, which was first addressed by the TopHat algorithm in 2009 [192]. Nowadays
many efficient and precise algorithms for sequence alignment or genome mapping exist,
two popular examples are STAR [52] and HISAT2 [94].

Once the genomic origins of sequencing reads have been determined by sequence align-
ment, the next step is to count reads that stem from a specific gene to get gene expression
values. Numerous specialized tools have been developed for this task as well, with HT-
Seq and featureCounts as two popular examples [8, 114]. Alignment-free algorithms like
kallisto [31] or Salmon [146] allow to directly quantify gene counts without the align-
ment step, which is extremely efficient and enables users to quantify transcript abun-
dances on a normal desktop computer in a matter of minutes.

Finally, in order to compare RNA abundance estimates across different samples, the
gene counts need to be normalized for library size (number of sequencing reads of a li-
brary, i.e. sample) and, if desired, for gene length. This step is usually included in the
algorithms used for gene abundance estimation or in the tools used for differential gene
expression (DGE) analysis, which is the most common downstream analysis for RNA-
seq data. DGE analysis determines whether the difference in gene expression between
two groups is statistically significant. Popular tools that can be used for DGE analysis
and that have been specifically developed to consider the intricacies of RNA-seq data are
DESeq2 and edgeR [119, 41].

1.2.4 Cell Type Deconvolution
While it is nowadays possible to study gene expression on the single-cell level using
scRNA-seq technology, the vast majority of data that has been generated and is still
being generated stems from so called ‘bulk’ RNA-seq, which effectively measures the
gene expression of a tissue, comprised of a mixture of different cell types. In recent
years, countless scRNA-seq studies have shown that gene expression profiles diverge
significantly between different cell types. It is thus abundantly clear that bulk RNA-seq
is measuring a mixture of different expression profiles, which is greatly dependent on the
cell type composition of the sample under investigation. It can therefore be problematic
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to compare gene expression between two different sample groups with systematic dif-
ferences in cell type composition. For instance, one cell type could be depleted in one
group, leading to seemingly lower expression of genes specific to this cell type. While
this issue has been overlooked in many RNA-seq studies, scientists have developed many
methods to identify or address this problem.

The most prominent group of algorithms for this problem have been termed as cell type
deconvolution algorithms. The goal of cell type deconvolution, from here on simply re-
ferred to as deconvolution, is to estimate the fractions of different cell types in a tissue
sample from its gene expression profile. Deconvolution is based on the assumption that a
bulk RNA-seq expression profile is the weighted sum of its constituting cell type-specific
expression profiles. It can thus be defined as in equation (1.1):

M = G×F (1.1)

Where M is a g× n expression matrix, with g number of genes and n samples. The
matrix G represents a g× c expression matrix, where c defines the number of different
cell types in the mixture. The matrix F is a c×n matrix that defines the relative propor-
tion of the different cell types in the samples.

Provided that the cell type specific gene expression profile matrix (GEP) is known and
the number of samples exceeds the number of cell types, it is possible to estimate F by
formulating the problem as a minimization problem with some objective loss function
that measures the distance between F and G×F . In theory, this problem can be solved
by simple linear regression (see section 1.3.1). In practice, however, certain constraints
must be taken into consideration. The first is a non-negativity constraint, as cell type
fractions cannot be negative. The second constraint must enforce that cell type fractions
from all cell types sum up to 1, as they together represent 100% of the tissue.

One of the first methods for cell type deconvolution was proposed by Abbas et al. in
2009 [4]. The authors used simple least squares regression to estimate the cell composi-
tion of immune cells in microarray blood data from patients with Systemic Lupus Ery-
thematosus (SLE). The non-negativity constraint was addressed with an iterative scheme,
in which the authors set negative coefficients to zero and repeated the procedure until all
coefficients are positive. Numerous other methods have subsequently been proposed
which use different optimization procedures and regression algorithms and add different
regularization methods to the objective function.

What all deconvolution algorithms of the above described form have in common is that
they are strongly dependent on a suitable GEP matrix. Only when the GEP matrix G
resembles the true cell type expression profiles in the tissue under investigation, can the
deconvolution yield good results. It is therefore crucial that the data used to generate
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the GEP matrix is of good quality. The data used typically stems from expression pro-
filing (either microarray or RNA-seq) of manually filtered cells or, more recently, from
scRNA-seq studies. Furthermore, not all genes convey information that is useful for
cell deconvolution, as many essential genes adhere to similar expression patterns across
most cell types. Many algorithms thus also try to subset the GEP matrix to the set of
genes that is most suitable for deconvolution. For instance, the popular deconvolution
algorithm CIBERSORT infers genes that are differentially expressed in each cell type
compared to the remaining cell types and then uses a specific number of genes with the
highest fold-changes from each cell type for the GEP matrix. The authors chose the num-
ber of genes per cell type that yields the GEP matrix with the lowest condition number
[139].

As scRNA-seq datasets for many tissues have become increasingly abundant, new decon-
volution algorithms have been developed that are specifically designed to use scRNA-seq
data for GEP construction. For instance, the Bseq-SC algorithm introduced a procedure
to generate GEP matrices from scRNA-seq data that can be used with CIBERSORT [22].
Briefly, Bseq-SC rescales expression values to account for the variability in total RNA
content of different cell types and then uses the average of normalized expression val-
ues across cells of the same type. Marker genes are selected based on high expression,
high variation and cell type restriction. Another method that incorporates a framework
both for GEP creation and deconvolution is MuSiC (Multi-Subject Single Cell Decon-
volution) [205]. Instead of pre-selecting marker genes, MuSiC assigns weights to each
gene which are based on the concept of marker gene consistency. To assure that markers
are not specific to a certain subject, but consistent across subjects, MuSiC down-weighs
genes with high cross-subject variance and up-weighs genes with low cross-subject vari-
ance. Additionally, MuSiC includes gene- and subject-specific intercepts in formulation
of the optimization problem to adjust for protocol biases between bulk- and scRNA-seq
data. In another recent work, Frishberg and colleagues proposed the method of Cell
Population Mapping (CPM), which goes beyond cell types and uses the distinct cellular
states of cells within a cell type to infer cell composition [62]. Instead of creating a single
GEP matrix, CPM repeatedly samples cells from the input scRNA-seq dataset as GEP
matrix and performs deconvolution via support vector regression (SVR). This procedure
is repeated a defined number of steps and the estimated cell composition outputs are then
averaged. CPM then uses dimensionality reduction algorithms to infer the abundance
of cells in specific cellular states. As this is not part of the classical deconvolution al-
gorithm, I will not further discuss this here. In 2019, the authors of the CIBERSORT
algorithm introduced a new version, termed CIBERSORTx, which builds upon the orig-
inal CIBERSORT algorithm and was specifically designed to use scRNA-seq data as
reference [140]. For GEP creation, CIBERSORTx generates five reference samples by
sampling 50% of cells from a specific cell type and then averaging the expression pro-
files. These samples are then used to generate a GEP matrix using the same procedure
as CIBERSORT. Additional features of CIBERSORTx are two batch correction methods
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that were developed to account for systematic differences between different platforms,
such as bulk RNA-seq and scRNA-seq. Moreover, Newman and colleagues introduced
another feature with CIBERSORTx, that allows to not only estimate cell compositions,
but group-wise cellular expression profiles. For this, first the matrix of cellular fractions,
F , is estimated, and then a new optimization problem is formulated as

Hi×F = Mi (1.2)

Where Hi is the i-th row of an expression matrix of g× c dimensions and Mi is the i-th
row of the mixture matrix M, corresponding to the i-th gene. As F has been previously
estimated using G, it can now be used to solve for Hi, which represents the cell type
level expressions of the gene i across all samples. CIBERSORTx solves this problem
via non-negative least squares (NNLS). When subsetting M and F for sufficiently large
sample groups, group- and cell type-specific expression profiles can be estimated.

The field of cell type deconvolution is very active and numerous other algorithms have
been suggested over the recent years. It is has now also become more common to apply
deconvolution algorithms to bulk RNA-seq datasets in order to adjust for biases and to
uncover new insights.

1.3 Machine Learning and Deep Neural Networks

The field of machine learning (ML) is concerned with the development of mathematical
models that learn to solve defined tasks from data. It is often divided into the cate-
gories of supervised and unsupervised learning. Supervised learning algorithms learn
from datasets that consist of input training data and corresponding output target values.
Their purpose is to learn a function that maps input samples to their corresponding target
values. Such a function can then be used to predict unknown target values from new
input data. Unsupervised learning algorithms only require input data without target val-
ues. They are developed for various purposes, such as to identify meaningful patterns in
the data that allow it to be represented in fewer dimensions. In this section, I will give
an introduction to supervised machine learning algorithms in general and deep neural
networks (DNNs) in particular, as these are relevant for chapter 2 of this thesis.

1.3.1 Linear Regression

Consider a dataset of N data points or observations xn which are associated with corre-
sponding target values yn, where n= 1, ...,N. The goal of a supervised learning algorithm
is to predict y given x for unseen values of x. Here, as an introductory example for a su-
pervised learning algorithm, I will briefly discuss linear regression, which is one of the
simplest ML algorithms. A linear regression model has the following form:
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ŷi = w0 +w1x1
i + ...+wDxD

i (1.3)

Where D is the dimension of the input feature vector xi and xd
i is the d-th element of

xi. The target variable ŷi is the predicted output of the linear model, and w is the vector
of weights or parameters of size D+1. The goal of linear regression is to learn a vector
w that yields a predicted target value ŷi that is as close as possible to the true target value
yi. As can be seen from (1.3), the output of the model is a linear combination of the input
features, weighted according to the vector w. The additional element w0 of the weight
vector is also referred to as bias or intercept. Because x and w are vectors, equation (1.3)
can also be written as:

ŷi = xT
i w+ ε = y(xi,w)+ ε (1.4)

Where w is the vector (w0, ...,wD) and xT
i is the transpose of the vector (x0

i , ...,x
D
i ). To

make the simpler vector form possible, we have added the additional element x0
i = 1 to

xi. Notice further that equation (1.4) now contains the error term ε , which is a Gaussian
distributed variable that models the noise.

In order to find the optimal weight vector we have to minimize a cost or loss function L
that defines how well our linear model y(xi,w) predicts the target value yi. In the case of
linear regression, a common and simple loss function is the squared error:

L(ŷi,yi) =
1
N

N

∑
n=1

(yi− ŷi)
2 (1.5)

An analytical solution of w that minimizes L(ŷi,yi) can be found using the method of
ordinary least squares (OLS). This can be seen when formulating the whole training set
as a matrix X of dimensions N×D, hence every row contains an observation and the
different columns correspond to different features of the training data. When using y to
denote the target values of all observations, we can formulate the linear model as

Xw = y (1.6)

Using OLS, the optimal weight vector can now be calculated using the following equa-
tion:

w = (XT X)−1XT y (1.7)

Here, I will not go into the details on how to arrive at the solution (1.7). Instead, in the
next section, I will introduce an alternative way of arriving at an optimal weight vector,
which is more relevant to the topic of deep neural networks.
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1.3.2 Gradient Descent
Using OLS, we can calculate the optimal solution to suitable optimization problems ana-
lytically. However, for large and complex datasets, OLS can be inefficient because it in-
volves the inversion of the matrix XT X . As X becomes large, this can imply a significant
computational burden. OLS is also not applicable to all ML algorithms and problems.
For these reasons, many modern machine learning algorithms are usually trained using
some variation of the gradient descent algorithm, which was first proposed by Cauchy in
1847.

Figure 1.6: Illustration of gradient descent. The image shows a loss function where the
two horizontal axes represent parameters of a ML model and the vertical axis as well as
the color, represents the loss. Gradient descent seeks to reach the points of minimal loss
using the curvature of the loss function. Source: A.Amini, D.Rus, Massachusets Institute
of Technology, adapted by M.Atarod/Science [83]

The idea behind gradient descent is that it is possible to iteratively minimize an ob-
jective function by calculating the partial derivatives of the loss function with respect to
every parameter of the model. The partial derivative, or gradient, defines the slope of
the loss function with respect to a parameter. Hence, to decrease the loss function, we
have to move into the direction of the negative gradient. Consider the loss function as a
function of the model parameters L(w), then one step of gradient descent is defined as:

wi+1 = wi−α∇L(wi) (1.8)
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Where wi is the weights vector at step i, ∇L(wi) is the gradient of L(w) at the point
wi and α is an empirically chosen step size or learning rate. If α is sufficiently small, a
gradient descent step guarantees that F(w) decreases with each step.

F(wi)≥ F(wi+1) (1.9)

If the learning rate is chosen too large, the parameter update can even lead to an in-
crease of the loss function because the local or global minimum is ”overstepped”. Gra-
dient descent is a powerful method that allows to minimize (or maximize) any defined
and differentiable loss function. At each step, gradient descent can be applied to the
complete dataset, or to a subset of samples. The latter is referred to as stochastic gradient
descent (SGD). Compared to OLS, gradient descent is not guaranteed to find the opti-
mum, but rather finds a statistical approximation. In practise, this is sufficient. During
the last decade, several optimized versions of gradient descent (GD) have been devel-
oped, that improve certain aspects of the original algorithm. Examples are AdaGrad
[54], RMSProb (by Tieleman Hinton) and Adam [96], which builds on the other two
algorithms. Briefly, improvements on GD are mainly based on an adaptive learning rate
and momentum. Intuition for the latter can be gained by considering the meaning of mo-
mentum in physics. Here, the direction of the gradient update is not only dependant on
the current step, but also takes into account the directions of previous steps, which can
lead to better optimization performance. Similarly, Adam uses adaptive learning rates for
each parameter, instead of a fixed, single learning rate for all. These modifications have
led to significant performance improvements and make Adam one of the most popular
optimization algorithms today.

1.3.3 Deep Neural Networks

Deep neural networks (DNNs) are driving today’s most advanced machine learning sys-
tems [110]. Because of their success, research on DNNs and their applications has mas-
sively increased during the last decade. This led to major breakthroughs in complex
problems like natural language processing and computer vision. However, DNNs are
not a recent invention. The foundations for DNNs were laid over 60 years ago by Frank
Rosenblatt, who described the perceptron algorithm, which is a binary classification al-
gorithm. A perceptron calculates a weighted sum of an input vector and then applies an
activation function to it, which either outputs 0 or 1. This algorithm can, however, only
learn to classify linearly separable problems. In the following decade, multilayer pere-
ceptrons (MLPs) were developed, which are constructed from multiple perceptrons and
essentially represent feed forward neural networks (FFNNs), which are the most basic
version of DNNs. The terms deep learning and artificial neural networks were introduced
later, but essentially refer to MLPs as well. The reason why the field of deep learning
has only now begun to produce such impressive results is usually attributed to the vast
increase in computational power and the increasing availability of large and high quality
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datasets.

Figure 1.7: Graphical illustration of a deep neural network with two hidden layers. The
input layer (blue) consists of n features x1 . . .xn. Each node is connected to all nodes in
the following layer via the weights w. Here, w1

nm signifies the weight between the node
xn of the input layer and the node m− th node of the first hidden layer, z1

m. The nodes in
the hidden layers (green) are connected in the same way. Finally, the last hidden layer,
z2, is connected to the output layer y (orange). Not all nodes and weights are shown, but
indicated dots. Adapted from [27] (Created with BioRender.com)

A DNN consists of several units or neurons which are organized in multiple layers.
An example is shown in Fig.1.7. Each neuron takes as input the weighted outputs of all
neurons from the previous layer. The neuron then calculates the sum of these (weighted)
inputs and applies an activation function to produce its output. The input data to a DNN
is called the input layer and the last layer is called the output layer. For instance, the
value z1

j of the j-th neuron of the first hidden layer can be calculated as in (1.10).

z1
j = ∑

i
wi jxi (1.10)

Where the variable wi j depicts the value of the weight between the input feature xi and
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the hidden unit z1
j . The value of z1

j is then calculated by an activation function f (.):

z1
j = f (z1

j) (1.11)

This process is then repeated across all the DNN layers up to the output layer. One im-
portant feature of DNNs is that the activation function f (.) must be a non-linear function,
for instance a sigmoid function like the logistic function:

f (z) =
1

1+ exp−z (1.12)

Today, the most popular activation function is the rectified linear unit (ReLU) [135]:

f (z) = max(0,z) (1.13)

Depending on the optimization problem, a different or no activation function might
be used for the output layer. For instance, a sigmoid function can be used in the case of
a binary classification problem. For regression problems, usually no activation function
is used for the output layer. For classification problems with more than two classes, the
softmax function can be used, which enforces that all output values add up to 1, thus
representing a normalized probability distribution:

f (zi) =
expzi

∑
C
j=1 expz j

(1.14)

Where C is the number of classes and zi depicts the value of the i-th unit of the output
layer.

1.3.4 Backpropagation

Through their complex structure of interconnected neurons, DNNs can approximate
complex functions. In fact, a sufficiently large DNN can approximate any function [110].
Similar to linear regression, we have to adjust the weights of a DNN in order for it to
learn a classification or regression problem such that it minimizes a loss function. To
train a DNN using GD or variations of it, we have to calculate all partial derivatives of
the loss function with respect to every weight. These derivatives can be efficiently calcu-
lated using the backpropagation algorithm, wich was proposed independently by several
reasearch groups in the 1970ies. The algorithm and its potential for neural network
training was popularized by a paper 1986 paper from Rumelhart, Hinton and Williams
[165]. Backpropagation works by first calculating the partial derivatives of the loss func-
tion with respect to each node in the output layer. Then, the chain rule of derivatives
is applied to backpropagate this error through the network and to calculate the partial
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derivatives of the loss function with respect to every weight in the network. Because of
its similarity to the forward pass, which calculates the activations of the neurons, back-
propagation is also referred to as the backward pass. A drawback of DNN optimization
using GD and backpropagation is that the optimization problem is non-convex, hence
it contains multiple local minima in which the learning algorithm could potentially get
stuck. However, because of the high-dimensionility of DNNs, most local minima are
so-called saddle points of the loss function, which can be escaped. In practise, GD and
backpropagation yield very good optimization results for DNNs and are the standard
method for optimization today.

1.3.5 Regularization

One of the most important characteristics that any ML algorithm should have, is the abil-
ity to generalize to unseen data. When training a supervised learning algorithm, it is
usually the goal to apply the trained algorithm to new data with unknown target values.
For instance, one could train a classification algorithm on a dataset to predict whether a
patient has a disease or whether they are healthy. The data from new patients might be
generated slightly differently, e.g. at a different hospital or with a different machine. In
this case, the distribution of the training data could be different from the distribution of
the target data, leading to decreased prediction performance because the weights of the
algorithm are trimmed to the training data distribution. Even when training and predic-
tion data are from exactly the same distribution, the prediction performance can decrease
on the prediction or test data. This effect is called overfitting, and methods that try to
alleviate it are referred to as regularization.

According to the general understanding, strong overfitting occurs when the capacity of a
ML model is too high for the task or training data. Here, the concept of capacity defines
the ability of the model to approximate complex functions. A model with high capacity
can learn many and very complex functions, while low-capacity models might only be
able to learn simple functions. When trained on a simple task, a high capacity model can
be overfitting by learning features that are specific to samples in the training data. This
is visualized in Fig. 1.8.
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Figure 1.8: Exemplary illustration of model overfitting. Shown is a simple task of pre-
dicting a target value (y, vertical axis) given only a single feature (x, horizontal axis) A
A simple linear model cannot fit the data because it there is a non-linear dependency
between x and y. The model is underfitting. B An ideal model captures the non-linear
structure and is able to nicely fit the data. This model would perform best on new data. C
A model with too high capacity can overfit the data. This model will have better perfor-
mance on the training data, but worse performance on new, unseen data. (Created with
BioRender.com)

Whereas too complex models can be overfitting, models that are too simple can also
underfit, meaning they do not achieve optimal performance even on the training data.
This can be seen in Fig. 1.8A. For a given task, a ML practitioner therefore needs to find
the optimal model, which neither under- nor overfits. The balance between underfitting
and overfitting is also often called the bias-variance-trade-off. Underfitting models have
too much bias and overfitting models have too much variance. Trying to reduce one of
them usually means increasing the other, hence the trade-off.

Because of its centrality to ML, numerous methods for regularization have been de-
veloped. One way of regularizing a ML model is to add certain regularization terms to
the loss function. Consider a squared error loss function of the form

L(y,x) =
N

∑
i=n

(yi−hw(xi))
2 (1.15)

Here I have used hw(.) to denote the ML model with parameters w, for example a linear
regression model. Given a set of input features xi, this function tries to approximate the
true output values yi. N is the number of samples in the training dataset. One way of
regularizing such a model is to penalize very large weights by adjusting the loss in (1.15):

L(y,x) =
N

∑
i=n

(yi−hw(xi))
2 +λ

N

∑
n=1
|wi| (1.16)

Where λ is a regularization parameter that controls the strength of the regularization.

26



1.3 Machine Learning and Deep Neural Networks

For any λ > 0, large values for w will increase the loss function and are thus less favor-
able when the objective is to minimize the loss function. This is called L1 regularization.
Linear regression with L1 regularization is also called LASSO regression. The intu-
ition behind L1 regularization is that complex models have larger weights, and therefore
penalizing large weights will lead to more simple models with better generalization capa-
bilities. A similar regularization method is L2 regularization, for which the loss function
is modified as follows:

L(y,x) =
N

∑
i=n

(yi−hw(xi))
2 +λ

N

∑
n=1

w2
i (1.17)

The only difference to L1 regularization is that the squared weight vector is used in
the added regularization term.

While L1 and L2 regularization work great for many models, other techniques are more
common for the regularization of DNNs. One of the most important and most frequently
used methods is dropout regularization [79]. Dropout regularization works by randomly
removing a specified fraction of neurons from each layer during every training step. Usu-
ally, input and output layers are held fixed. The intuition behind dropout is to prevent
the DNN from relying strongly on specific neurons, because they might be unavailable
during training when dropped out. It also prevents co-adaption of neurons, which is the
strong dependence of neurons in a layer on specific neurons in a previous layer. By
forcing the DNN not to rely on few single neurons, it learns internal feature representa-
tions that are generally useful to solving the problem. Dropout is nowadays widely used
in many large deep learning models, which often have thousands of neurons in each layer.

Another form of regularization, that is especially used in computer vision models, is
data augmentation. The term basically refers to manipulating the training dataset in such
a way as to introduce slight variations, thereby artificially increasing the training data
size. This works because it is generally known that large datasets improve generalization
capabilities as they make it harder for a model to overfit. To augment data, one can inject,
for instance, random gaussian noise to the input data, or change the orientation of input
images. However, data augmentation must be done with care, as it is not always obvious
which data manipulations help with generalization while not changing the input data too
much.

Finally, when using some variant of SGD to train a large DNN, one can stop the training
process before converging on the minimal loss value. By stopping the training process
early, a sub-optimal performance on the training dataset is achieve. However, this can
effectively prevent overfitting. Intuitively, in the early training process, a DNN learns
general features that allow the loss function to decrease rapidly. Later in the training pro-
cess, weight adjustments only lead to smaller decreases of the loss and these adjustments
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can often be data- or even sample-specific. Early stopping is commonly used nowadays.
To determine the optimal point of stopping, typically the data is split in training, valida-
tion and test dataset. The validation dataset is not used for training, but for evaluation of
model generalization throughout the training process. Once the loss only decreases for
the training dataset but not for the validation dataset, training should be stopped. The test
dataset is only used once for the final method .

1.3.6 Deep Learning in Biology

Driven by the successes of deep learning-based systems in computer vision and natu-
ral language processing and by the rapidly growing amount of data in biology, many
researchers have applied deep learning to biological problems [58]. For example, Kel-
ley and colleagues trained a deep learning system on large amounts of sequence data to
predict chromatin accessibility which surpassed the state-of-the-art (SOTA) [91]. Simi-
lar models have been used to predict enhancers [116] or to predict the effect of genetic
variants on expression and disease risk [226]. Even the effects of variants in noncoding
sequences can be predicted with such models [227]. Poplin and colleagues have intro-
duced an algorithm for single nucleotide polymorphism (SNP) calling that is based on
DNNs [150]. In their study, the authors show that their method exceeds the performance
of other SOTA tools. Another area where deep learning methods have been used is the
prediction of miRNA targets based on sequence and other informative features [42]. Raw
data from Oxford Nanopore sequencing machines - a specialized sequencing technology
for long reads - has been transformed to DNA sequence using Hidden Markov Models
(HMMs) for some time. Nowadays, DNN-based methods have greatly surpassed the
accuracy of HMMs, thereby improving the quality of the sequencing data [209]. Fi-
nally, numerous algorithms have been developed for scRNA-seq data, which is ideally
suited for ML algorithms because of the high sample numbers generated for single ex-
periments. Marouf and colleagues have used DNN-based generative models to generate
realistic data when trained on scRNA-seq datasets [123] and Lotfollahi and colleagues
have used generative deep learning models to predict the results of single-cell perturba-
tions [118].
This list is by no means extensive and countless other methods have been developed
which I am not mentioning here. With the mentioned examples I merely want to demon-
strate that deep learning, besides leading to groundbreaking advances in computer vision
and natural language processing, has also started to transform and improve algorithms in
computational biology.
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1.4 Aims of the thesis
As I have described in some detail in this chapter, great advances have been made in
our understanding of FTD pathology, genetics and disease mechanisms during recent
decades. Nevertheless, there does not exist a viable treatment option to this date. In
order to develop remedies, it is required to further advance and deepen our knowledge
of diesase mechanisms and pathways, and to identify new potential drug targets that can
be tested. The goal of this thesis was to integrate and analyse multi-omics FTD-related
datasets and contribute to FTD research.

The majority of the data analysed in this thesis was generated from post-mortem hu-
man brain tissue, which depicts a complex mixture of cell types. Differences in cell type
compositions are therefore a major potential bias in the data that has to be corrected for.
In chapter 2, I have addressed this issue by developing a novel, deep learning-based algo-
rithm for cell type deconvolution which I have tested on post-mortem human brain tissue
data. In chapters 3 and 4, I have used this algorithm and various other computational
methods to extract meaningful insights from diverse genomics datasets related to FTD.
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Chapter 2

Deep learning-based cell composition
analysis from tissue expression profiles

Disclaimer

This chapter was published in similar form in Science Advances at 22.07.2020 under
the title ”Deep learning-based cell composition analysis from tissue expression pro-
files” [126]. I initiated the project together with Peter Heutink and Stefan Bonn, who
also helped in algorithm design and general project design as well as manuscript writ-
ing. Mohamed Marouf and Sergio Oller helped with model selection and creating the
python package. Anupriya Dalmia helped with data processing. Katrin Kloiber and Pe-
ter Heutink helped with manuscript writing. Daniel Sumner Magruder and Sergio Oller
designed the web application.

2.1 Abstract

Cell type deconvolution of tissue expression profiles is an important tool of modern
transcriptomics. However, current deconvolution algorithms are not designed to take
full advantage of the diverse range of scRNA-seq datasets available today. To address
this problem, we have developed a single cell-assisted deconvolutional neuronal net-
work (Scaden), that uses gene expression information from multiple sources to infer
the cellular composition of tissues. Scaden is trained on scRNA-seq data to engineer
discriminative features that confer robustness to bias and noise, making complex data
preprocessing and feature selection unnecessary. We show that Scaden outperforms cur-
rent state-of-the-art algorithms on multiple datasets, stemming from various tissues and
experimental methods. Scaden leverages training data from multiple datasets to build
robustness against dataset-specific bias. Scaden is published as a fully open source soft-
ware package and as a web application, making it accessible to scientists from diverse
backgrounds.
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2.2 Introduction

The analysis of tissue-specific gene expression using next-generation sequencing tech-
nologies like RNA-seq is a centerpiece of the molecular characterization of biological
and medical processes [80]. A well-known limitation of tissue-based RNA-seq is that it
typically measures average gene expression across many molecularly diverse cell types
that can have distinct cellular states [55]. A change in gene expression between two con-
ditions can therefore be attributed to a change in the cellular composition of the tissue
or a change in gene expression in a specific cell population, or a mixture of the two.
To deconvolve the cell type composition from a change in gene expression is especially
important in systems with cellular proliferation (e.g., cancer) or cellular death (e.g., neu-
ronal loss in neurodegenerative diseases) due to systematic cell population differences
between experimental groups [105].

To account for this problem, several computational cell deconvolution methods have
been proposed during the last years [15, 130]. These algorithms use gene expression
profiles (GEPs) of cell type–specifically expressed genes to estimate cellular fractions
using linear regression to detect, interpret, and possibly correct for systematic differ-
ences in cellular abundance between samples [15]. While the best-performing linear
regression algorithms for deconvolution seem to be variations of support vector regres-
sion [139, 132, 140, 205, 62], the selection of an optimal GEP is a field of active research
[132]. It has been recently shown that the design of the GEP is the most important factor
in most deconvolution methods, as results from different algorithms strongly correlate
given the same GEP [195].

In theory, an optimal GEP should contain a set of genes that are predominantly expressed
within each cell population of a complex sample [202]. They should be stably expressed
across experimental conditions, for example, across health and disease, and resilient to
experimental noise and bias. However, bias is typically inherent to biomedical data and
is imparted, for instance, by intersubject variability, variations across species, different
data acquisition methods, different experimenters, or different data types. The negative
impact of bias on deconvolution performance can be partly improved by using large, het-
erogeneous GEP matrices [195]. It is therefore not surprising that recent advancements
in cell deconvolution relied almost exclusively on sophisticated algorithms to normalize
the data and engineer optimal GEPs [132].

While GEP-based approaches lay the foundational basis of modern cell deconvolution
algorithms, we hypothesize that deep neural networks (DNNs) could create optimal fea-
tures for cell deconvolution, without relying on the complex generation of GEPs. DNNs
such as multilayer perceptrons are universal function approximators that achieve state-
of-the-art performance on classification and regression tasks. Whereas this feature is of
little importance for strictly linear input data, it makes DNNs superior to linear regres-
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sion algorithms as soon as data deviate from ideal linearity. This means, for instance, that
as soon as data are noisy or biased and classical linear regression algorithms may falter,
the hidden layer nodes of the DNN learn to represent higher-order latent representations
of cell types that do not depend on input noise and bias. We theorize, therefore, that
by using gene expression information as network input, hidden layer nodes of the DNN
would represent higher-order latent representations of cell types that are robust to input
noise and technical bias.

An obvious limitation of DNNs is the requirement for large training data to avoid overfit-
ting of the machine learning model. While ground-truth information on tissue RNA-seq
cell composition is scarce, one can use single-cell RNA-seq (scRNA-seq) data to obtain
large numbers of in silico tissue datasets of predefined cell composition [176, 92]. We
do this by subsampling and subsequently merging cells from scRNA-seq datasets, this
approach being limited only by the availability of tissue-specific scRNA-seq data. It is
to be noted that scRNA-seq data suffer from biases, such as dropout, to which RNA-seq
data are not subject to [78]. While this complicates the use of scRNA-seq data for GEP
design [205], we surmise that latent network nodes could represent features that are ro-
bust to these biases.

On the basis of these assumptions, we developed a single cell–assisted deconvolutional
DNN (Scaden) that uses simulated bulk RNA-seq samples for training and predicts cell
type proportions for input expression samples of cell mixtures. Scaden is available as
downloadable software package and web application (https://scaden.ims.bio). Scaden is
trained on publicly available scRNA-seq and RNA-seq data, does not rely on specific
GEP matrices, and automatically infers informative features. Last, we show that Scaden
deconvolves expression data into cell types with higher precision and robustness than
existing methods that rely on GEP matrices.

2.3 Results

2.3.1 Scaden overview, model selection and training

In this part, we focus on the design and optimization of Scaden by training, validation,
and testing on in silico data. Note that the generation of in silico data is a strictly linear
mathematical operation. Our aim in this context, to corroborate Scaden’s basic function-
ality, is to show that Scaden’s performance compares with (but not necessarily exceeds)
that of state-of-the-art algorithms.

The basic architecture of Scaden is a DNN that takes gene counts of RNA-seq data
as input and outputs predicted cell fractions (Fig. 2.1). To optimize the performance
of the DNN, it is trained on data that contain both the gene expression and the real cell
type fraction information (Fig. 2.1a). The network then adjusts its weights to minimize
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Figure 2.1: Overview of Scaden algorithm. a Data from scRNA-seq experiments is an-
alyzed, normalized and labeled per cell type. Expression profiles of cells are then sub-
sampled to yield artificial bulk gene expression samples of known cell composition. b
A Scaden ensemble model is trained using the generated labeled training data. c Model
architecture of Scaden. Scaden consists of three separate DNNs with four hidden layers
each, of varying layer sizes and dropout rates. The final predictions are the average of
all three models. d A trained Scaden model can then be used to estimate the unknown
cellular composition of a bulk tissue expression sample.
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the error between the predicted cell fractions and the real cell fractions (Fig.2.1b-d). We
restricted feature selection to the removal of “uninformative” genes that have either zero
expression or an expression variance below 0.1, leaving 10,000 genes for training. In
our hands, this feature selection step decreases training time and memory usage.

For the model selection and training, we made use of the large numbers of artificial
bulk RNA-seq datasets with defined composition that can be generated in silico from
published scRNA-seq and RNA-seq datasets (simulated tissues; Fig. 2.1A and tables 2.1
and 2.2). The only constraint is that the scRNA-seq and RNA-seq data must come from
the same tissue as the bulk data subject to deconvolution.

To find the optimal DNN architecture for cell deconvolution, we generated bulk periph-
eral blood mononuclear cell (PBMC) RNA-seq data from four publicly available scRNA-
seq datasets (tables 2.1 and 2.3). We performed leave-one-dataset-out cross-validation,
training Scaden on mixtures of synthetic datasets from three scRNA-seq datasets and
evaluating the performance on simulated tissue from a fourth scRNA-seq dataset.

We used the root mean square error (RMSE), Pearson’s correlation coefficient (r), the
slope and intercept of the regression fitted for ground-truth and predicted cell fractions,
and Lin’s concordance correlation coefficient (CCC) (17) to assess algorithmic perfor-
mance. The CCC is a measure sensitive not only to scatter but also to deviations from
linearity (slope and intercept). Within the main text, we report on CCC and RMSE val-
ues only; other metrics can be found in the Supplementary Materials.

The final Scaden model is an ensemble of the three best-performing models (table 2.4),
and the final cell type composition estimates are the averaged predictions of all three
ensemble models (Fig. 2.1). Using an ensemble of models increased the deconvolution
performance as compared to single best models (table 2.6). Details of the model and
hyperparameters are given in table 2.5. We also evaluated the effect of the size of the
training dataset on Scaden deconvolution performance, repeating leave-one-dataset-out
cross-validation on PBMC data with training dataset sizes from 150 up to 15,000 sam-
ples (Fig. 2.2B). The increase in CCC value starts to level off from about 1500 simulated
samples for this dataset but continues to increase slowly with sample size. We specif-
ically addressed the question to what degree the DNN, trained on simulated samples,
tends to overfit, failing to generalize to real bulk RNA-seq data. To understand after how
many steps a model trained on in silico data overfits on real RNA-seq data, we trained
Scaden on simulated data from an ascites scRNA-seq dataset (table 2.1; 6000 samples)
and evaluated the loss function on a corresponding annotated RNA-seq dataset (18) (table
2.2; three samples) as a function of the number of steps (Fig. 2.2). All models converged
after approximately 5000 steps and slightly overfit when trained for longer. On the basis
of this result, we opted for an early-stop approach after 5000 steps for evaluation on real
bulk RNA-seq data.
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Figure 2.2: Effect of long trainnig and dataset size on Scaden performance. A Loss
(mean absolute error, y-axis) of different Scaden models with respect to training steps
(x-axis) for a mini-batch size of 32. B Performance of Scaden ensemble (CCC, y-axis)
for increasing training dataset sizes (x-axis). Performance was measured using leave-
one-dataset-out cross validation: Scaden was trained on three datasets and tested on the
left-out dataset.

2.3.2 Comparison of deconvolution algorithms on simulated data

We then compared Scaden to four state-of-the-art GEP-based cell deconvolution algo-
rithms, CIBERSORT (CS) (6), CIBERSORTx (CSx) (7), Multi-subject Single Cell de-
convolution (MuSiC) (8), and Cell Population Mapping (CPM) (9). While CS relies on
hand-curated GEP matrices, CSx, MuSiC, and CPM can generate GEPs using scRNA-
seq data as input.

To get an initial estimate of Scaden’s deconvolution fidelity, we trained the model on
24,000 simulated PBMC RNA-seq samples from three datasets and tested its perfor-
mance in comparison to CS, CSx, MuSiC, and CPM on a fourth dataset of 500 samples
each (e.g., training on data6k, data8k, and donorA and evaluation on donorC). We used
corresponding scRNA-seq datasets for the construction of GEPs as input for CSx and
MuSiC, and CPM. For CS, we used the PBMC-optimized LM22 GEP matrix (6), which
was developed by the CS authors for the deconvolution of human PBMC data.

For two of four test datasets (donorA and donorC), Scaden obtained the highest CCC
and lowest RMSE, followed by CSx, MuSiC, CS, and CPM (fig. 2.3 and table 2.7).
CSx and MuSiC obtained the highest CCC values for the data8k and data6k datasets,
respectively. Scaden obtained the highest average CCC and lowest RMSE (0.88 and
0.08, respectively), followed by MuSiC (0.85 and 0.10), CSx (0.83 and 0.11), CS (0.63
and 0.15), and CPM (0 and 0.20). As expected, all algorithms that use scRNA-seq data
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Figure 2.3: A Boxplots of the cell type prediction CCC and RMSE for four simulated
PBMC datasets. Tables S14 and S16 contain information on the five (six for CS) cell
types used. B Scatterplots for four pancreas cell types of ground-truth (x axis) and pre-
dicted values (y axis) for Scaden, CSx, and MuSiC on artificial pancreas data (20). Num-
bers inside the plotting area and in parenthesis signify CCC values.
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as reference performed well, with the notable exception of CPM. We want to mention
that CPM focuses on the reconstruction of continuous spectra of cellular states, while
it incorporates cell deconvolution as an additional feature. We therefore report CPM’s
deconvolution performance in the Supplementary Materials from here on. On average,
Scaden also obtained the highest correlation and the best intercept and slope values on
simulated PBMC data (table 2.7). A closer inspection on a per–cell type basis (Fig.
2.3A) revealed that Scaden yields consistently higher CCC values and lower RMSEs
when compared to the other algorithms.

A specific feature of the MuSiC algorithm is that it preferentially weighs genes accord-
ing to low intersubject and intracell cluster variability for its GEP, which increases de-
convolution robustness when high-expression heterogeneity is observed between human
participants, for example (8). To understand whether Scaden can use multisubject infor-
mation to increase its deconvolution performance, we trained Scaden, CSx, and MuSiC
on scRNA-seq pancreas data from several participants (19) and assessed the performance
on a separate simulated pancreas RNA-seq dataset (20). To allow for direct comparison,
we chose the same pancreas training and test datasets that were used in the original
MuSiC publication (table 2.1). To enable Scaden to leverage the heterogeneity of multi-
subject data, training data were generated separately for every participant in the dataset
(see Methods). CSx cannot profit from multisubject data but performed well on the ar-
tificial PBMC datasets and was therefore included in the comparison. The best average
performance (across cell types) is achieved by Scaden (CCC = 0.98), closely followed by
MuSiC (CCC = 0.93), while CSx does not perform as well (CCC = 0.75; Fig. 2.3B and
table 2.8). On a per–cell type basis, Scaden’s predictions are clearly superior to the other
two algorithms for all cell types. This provides strong evidence that Scaden, by separat-
ing training data generation for each participant, can learn intersubject heterogeneity and
outperform specialized multisubject algorithms such as MuSiC on the cell type decon-
volution task.

In addition, we wanted to test how the best-performing deconvolution algorithms Sca-
den, MuSiC, and CSx behave when unknown cell content is part of the mixture. To test
this, all cells falling into the “Unknown” category were removed from the training or
reference PBMC datasets but added to the simulated mixture samples at fixed percent-
ages (5, 10, 20, and 30%; see Methods). Scaden obtains the highest CCC for all tested
percentages of unknown cell content (fig. 2.5 and table 2.9). The general deconvolu-
tion performance declines linearly with increasing percentage of unknown content for
all tested algorithms, indicating that Scaden, MuSiC, and CSx have a similar robustness
against unknown mixture content.

We next compared the runtime and memory footprint of Scaden and MuSiC on an Intel
Xeon six-core central processing unit (CPU) to the runtime of the CSx web application.
Scaden is the only algorithm that requires the generation of in silico training data, which
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takes 13 min for 2000 samples with a peak memory usage of 8 GB. Similar values were
obtained for the human brain data. Next, we used the PBMC data to benchmark the
runtime and memory consumption of the deconvolution task. For Scaden, model train-
ing took 11 min and cell fraction prediction 8 s for 500 samples, using less than 1-GB
memory. We used the web application of CSx with batch correction to deconvolve the
500 PBMC samples in 35 min. MuSiC took only 2 min and 15 s to deconvolve all 500
samples, with the memory usage peaking at 4.5 GB. As Scaden can take advantage of a
graphics processing unit (GPU), we additionally compared training duration on an AMD
Ryzen 5 2600 CPU and GeForce RTX 2600 GPU on the same machine. Training on the
CPU took 9 min and 39 s, while it took only 3 min and 2 s on the GPU, corresponding
to a roughly three times shorter runtime for Scaden if a GPU is available.

2.3.3 Robust deconvolution of bulk expression data
The true use case of cell deconvolution algorithms is the cell fraction estimation of tissue
RNA-seq data. In particular for noisy and biased bulk RNA-seq data, we hypothesize
that Scaden’s latent feature representations might help it to more robustly predict cell
fractions as compared to GEP-based algorithms.

We therefore assessed the performance of Scaden, CS, CSx, and MuSiC to deconvolve
two publicly available human PBMC bulk RNA-seq datasets, for which curated GEP
matrices and RNA-seq data with associated ground-truth cell type compositions from
flow cytometry are available (see the “Data availability” section). We will refer to these
datasets that consists of 12 samples each as PBMC1 (21) and PBMC2 (10) (table 2.2).
Both datasets have similar cell type compositions across samples, with CD4 and CD8
T cells making up the biggest fractions. Deconvolution for all methods was performed
as described in the previous section, with the difference that data from all four PBMC
scRNA-seq datasets were now deployed for Scaden training. Results are given in Fig.
2.4 (A to C) and tables 2.10 and 2.11.

On the PBMC1 dataset and using all cell types, Scaden obtained the highest CCC and
lowest RMSE (0.56 and 0.13), while CSx (0.55 and 0.16) and CS (0.43 and 0.15) per-
formed well yet notably worse than Scaden (Fig. 2.4A and tables 2.10 and 2.11). CPM
(0 and 0.18) and MuSiC (0.19 and 0.32) both failed to deconvolve the cell fractions of
the PBMC1 data. Scaden also obtained the best CCC and RMSE (0.68 and 0.08) on the
PBMC2 dataset, while CS (0.58 and 0.10) and CSx (0.42 and 0.13) obtained good decon-
volution results. Similar to the PBMC1 data deconvolution results, CPM (0.16 and 0.11)
and MuSiC (0.13 and 0.30) did not perform well on the PBMC2 deconvolution task. In
addition to CCC and RMSE metrics, Scaden achieves the best correlation, intercept, and
slope on both PBMC datasets.
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Figure 2.4: A Per–cell type scatterplots of ground-truth (x axis) and predicted values
(y axis) for Scaden, CS, CSx, and MuSiC on real PBMC1 and PBMC2 cell fractions.
Numbers inside the plotting area signify CCC values. For Scaden, the CCC using only
scRNA-seq training data is shown in parenthesis, and the CCC using mixed scRNA-seq
and RNA-seq training data is shown without parentheses. B Boxplots of RMSE values
for real PBMC1 and PBMC2 data. C CCC values for real PBMC1 and PBMC2 data.
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In particular, Scaden outperforms classical algorithms on a per–cell type basis (Fig. 2.4,
B and C). These results show weaker correlations and a strong dependence on the cell
type. A closer examination of the metrics in table 2.11 shows that the largest variations
are found in the slope and intercept.

We further evaluated how good the Scaden ensemble performs compared to the best sin-
gle DNN model (M512, 512 nodes input layer). While the M512 model shows good de-
convolution performance on the PBMC1 (CCC, 0.57) and PBMC2 (CCC, 0.68) datasets,
the ensemble model achieves the best average cross-validation performance (table 2.6).
We therefore opted to use the ensemble method to reduce interdataset performance vari-
ation observed with M512 and other single models.

An additional algorithmic feature of Scaden is that it seamlessly integrates increasing
amounts of training data, which can be of different types, such as a combination of sim-
ulated tissue and real tissue data with cell fraction information. In theory, even limited
real tissue training data could make Scaden robust to data type bias and consequently
improve Scaden’s deconvolution performance on real tissue data. We therefore trained
Scaden on a mix of simulated PBMC and real PBMC2 (12 samples) data and evaluated
its performance on real PBMC1 data (Fig. 2.4, A and B and tables 2.10 and 2.11). While
the training contained very little ( 2%) real data, Scaden’s CCC increased from 0.56 to
0.72, and the RMSE decreased from 0.13 to 0.10. We observed similar performance
increases when Scaden was trained on simulated PBMC and real PBMC1 data and eval-
uated on real PBMC2 data (Fig. 2.4, A and B, tables 2.10 and 2.11). Next, we wanted to
investigate how a Scaden model trained on only few real samples compares to the models
trained on simulated or simulated and real data. While a Scaden model trained on only
bulk PBMC1 samples (n = 12) deconvolves PBMC2 data with a CCC of 0.62, it does not
reach the CCC of models trained on simulated data (CCC of 0.68) or on simulated and
bulk data (CCC of 0.86). We would also not advise training models on so few training
samples, as these models are usually overfit.

This further validates that Scaden reliably deconvolves tissue RNA-seq data into the
constituent cell fractions and that very accurate deconvolution results can be obtained if
reference and target datasets are from the same experiment.

We next wanted to test how the algorithm performs on postmortem human brain tis-
sue of a subsample from the Religious Orders Study and Memory and Aging Project
(ROSMAP) study [3], for which ground-truth cell composition information was recently
measured by immunohistochemistry (41 samples with all cell types given) [145]. The
data provided by this study consist of bulk RNA-seq data from the dorsolateral prefrontal
cortex and pose a special challenge due to the complexity of its cell type composition,
which is further complicated by the fact that the data originate from brains of healthy in-
dividuals as well as patients with Alzheimer’s disease (AD) at various stages of neuronal
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Figure 2.5: A Prediction of human brain cell fractions of the ROSMAP dataset using
the Darmanis dataset as a reference: scatterplots of ground-truth (x axis) and predicted
values (y axis) for Scaden, CSx, and MuSiC of data. CCC values are shown as inserts.
B Per–cell type CCC values for ROSMAP using the Darmanis data as a reference. C
Neuronal content determined by Scaden trained on mouse brain data and evaluated on
the Braak stage of the ROSMAP study.

loss. As reference datasets, we used the scRNA-seq dataset provided by Darmanis et al.
[46] from the anterior temporal lobe of living patients and the Lake dataset that isolates
nuclei of neurons from two (visual and frontal) cortical regions from a postmortem brain
and subjects them to RNA-seq [106]. From these, we generated 2000 training samples
(Darmanis) and 4000 samples (two regions from the Lake dataset).

Figure 2.5 A shows the deconvolution results for all three algorithms with the Darmanis
(scRNA-seq) reference dataset. Scaden achieves the highest CCC value (0.92) followed
by MuSiC (0.87) and CSx (0.81; table 2.12). Compared to Scaden, MuSiC and CSx
overestimate neural percentages, leading to higher RMSE values of 0.09 and 0.12, re-
spectively (Scaden, 0.06). Notably, all methods showed a lower CCC on the per–cell
type level (Fig. 2.4 B), demonstrating that some per–cell type correlations are poor, ei-
ther in slope, intercept, variance, or a combination of them. This emphasizes the need for
a cell type–specific inspection of results and highlights that, depending on the dataset,
cell type–specific deconvolution results can be far from perfect.

In addition to comparing the predictive power of Scaden, CSx, and MuSiC on human
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brain tissue with different reference datasets, we also tested how the choice of reference
datasets affected Scaden’s deconvolution results. Notably, all methods substantially drop
in performance when the Lake single-nucleus RNA-seq dataset is used as a reference as
we had presumed (fig. 2.6 A). We want to emphasize that Scaden, in contrast to CSx and
MuSiC, has the possibility to simultaneously use both datasets as reference, whereas for
CSx and MuSiC, the user has to choose one of the two, unaware of which will give the
correct results.

Figure 2.6: Deconvolution performance comparison on post-mortem human brain
data from ROSMAP study. A)CCC valuesfor prediction of post-mortemhuman brain
(ROSMAP) cell fractions for Scaden , CSx, and MuSiC on the reference data sets Dar-
manis (lightblue, leftmost bars) and Lake (medium-shaded blue), as well as both (for
Scaden only, dark blue).Interestingly, addition of the Lake dataset into training data af-
fected Scaden performance only slightly. B)Per sample results for prediction of post-
morten human brain (ROSMAP) cell fractions on the Darmanis reference datasets using
Scaden, CSx, and MuSiC

We found that the performance of Scaden was almost unaffected when the Lake dataset
was added to the Darmanis training samples (CCC = 0.90, RMSE = 0.06; fig. 2.6A and
table 2.12). These results show that cell deconvolution with Scaden is robust to training
data bias (Darmanis single-cell versus Lake single-nucleus data). An added benefit of
Scaden is that it allows for the inclusion and mixing of different scRNA-seq experiments
in the training dataset, further increasing its robustness (fig. 2.6A). Last, when calcu-
lating the CCC values on a per-sample basis, Scaden achieves the best scores for most
samples (fig. 2.6B).
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In a next step, we wanted to assess whether Scaden’s deconvolution performance was ro-
bust across species by trying to predict the cell fractions of the ROSMAP study [3] with
a Scaden model trained on in silico data from five mouse brain scRNA-seq datasets (ta-
ble 2.1). Intriguingly, Scaden was able to achieve a CCC value of 0.83 and an RMSE of
0.079, showing that Scaden can reliably deconvolve RNA-seq data across related species.

The ROSMAP study also contains information on the Braak stages [30] corresponding
to 390 human postmortem prefrontal cortex samples, which correlate with the severity
and progression stage of AD and the degree of neuronal loss. We used the Scaden model
trained on artificial data generated from five mouse brain scRNA-seq datasets to predict
neuronal cell fractions of this larger human dataset. Overall, Scaden’s cell fraction pre-
dictions capture the increased neuronal loss with increasing Braak stage (Fig. 2.5 C).
The largest drop in neural percentage is observed at stage 5, when the neurodegeneration
typically reaches the prefrontal cortex of the brain.

Given the robustness with which Scaden predicts tissue RNA-seq cell fractions using
scRNA-seq training data, even across species, we next wanted to investigate whether an
scRNA-seq–trained Scaden model can also deconvolve other data types. To this end,
we measured the deconvolution performance on a bulk PBMC microarray dataset (20
samples) [139] of a Scaden model trained on scRNA-seq and RNA-seq PBMC data (see
above). We compared Scaden to CS using the microarray-derived LM22 matrix. CS
achieved a slightly higher CCC and slightly lower total RMSE (0.72 and 0.11) than Sca-
den (0.71 and 0.13), while Scaden obtained the highest average CCC (0.50) compared
to CS (0.39; table 2.13). Notably, in this scenario, Scaden was trained entirely on sim-
ulated scRNA-seq and RNA-seq data, while CS’s LM22 GEP was optimized on PBMC
microarray data.

Overall, we provide strong evidence that Scaden robustly deconvolves tissue data across
tissues, species, and even data types.

2.4 Discussion
Scaden is a novel deep learning–based cell deconvolution algorithm that, in many in-
stances, compares favorably in both prediction robustness and accuracy to existing de-
convolution algorithms that rely on GEP design and linear regression. We believe that
Scaden’s performance relies to a large degree on the inherent feature engineering of the
DNN. The network does not only select features (genes) for regression but also creates
new features that are optimal for the regression task in the nodes of the hidden layers.
These hidden features are nonlinear combinations of the input features (gene expression),
which makes it notoriously difficult to explain how a DNN works [220]. It is important
to highlight that this feature creation is fundamentally different from all other existing
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cell deconvolution algorithms, which rely on heuristics that select a defined subset of
genes as features for linear regression.

Another advantage of this inherent feature engineering is that Scaden can be trained to be
robust to input noise and bias (e.g., batch effects). Noise and bias are all prevalent in ex-
perimental data, because of different sample quality, sample processing, experimenters,
and instrumentation, for example. If the network is trained on different datasets of the
same tissue, however, then it learns to create hidden features that are robust to noise and
bias, such as batch effects. This robustness is pivotal in real-world cell deconvolution
use cases, where the bulk RNA data for deconvolution and the training data (and there-
fore the network and GEP) contain different noise and biases. In this study, we tested
Scaden with training data from scRNA-seq datasets generated with a variety of different
protocols and could not identify a specific protocol that is not suitable. While especially
recent cell deconvolution algorithms include batch correction heuristics before GEP con-
struction, Scaden optimizes its hidden features automatically when trained on data from
various batches. Potential protocol-specific biases can therefore be alleviated when em-
ploying training data from multiple protocols.

The robustness to noise and bias, which might be due to hidden feature generation, is
especially evident in Scaden’s ability to deconvolve across data types. A network trained
on in silico bulk RNA-seq data can seamlessly deconvolve microarray data of the same
tissue. This is quite noteworthy, as microarray data are known to have a reduced dy-
namic range and several hybridization-based biases compared to RNA-seq data. In other
words, Scaden can deconvolve bulk data of types that it has never been trained on, even
in the face of strong data type bias. This raises the possibility that Scaden trained on
scRNA-seq data might reliably deconvolve other bulk omics data as well, such as pro-
teomic and metabolomic data. This assumption is strengthened by the fact that Scaden,
trained on scRNA-seq data, attains state-of-the-art performance on the deconvolution of
bulk RNA-seq data, two data types with very distinct biases [78].

As highlighted in the introduction, a drawback for many DNNs is the large amount of
training data required to obtain robust performance. Here, we used scRNA-seq data to
create in silico bulk RNA-seq data of predefined type (target tissue) with known com-
position, across datasets. This immediately highlights Scaden’s biggest limitation, the
dependency on scRNA-seq data of the target tissue. In this study, we have shown that
Scaden, trained solely on simulated data from scRNA-seq datasets, can outperform GEP-
based deconvolution algorithms. We did observe, however, that the addition of labeled
RNA-seq samples to the training data did substantially improve deconvolution perfor-
mance in the case of PBMC data. We therefore believe that efforts to increase the simi-
larity between simulated training data and the target bulk RNA-seq data could increase
Scaden’s performance further. Mixtures of in silico bulk RNA-seq data and publically
available RNA-seq data, of purified cell types, for example, could further increase the
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deconvolution performance of Scaden. Furthermore, domain adaptation methods can be
used to improve performance of models that are trained on data (here, scRNA-seq data)
that are similar to the target data (here, RNA-seq data) [14]. In future versions, Scaden’s
simple multilayer perceptron architecture could leverage domain adaptation to further
stabilize and improve its cell deconvolution performance.

Scaden uses an ensemble approach by averaging the predictions of three different models
to increase performance and improve generalization. Increasing the number of models
per ensemble would allow for the estimation of the prediction uncertainty. While not
implemented in this study, this could be an interesting extension to Scaden’s ensemble
architecture.

Recent cell deconvolution algorithms have used cell fraction estimates to infer cell type–specific
gene expression from bulk RNA-seq data. It is straightforward to use Scaden’s cell frac-
tion estimates to infer per-group [105] and per-sample [140] cell type–specific gene ex-
pression using simple regression or non-negative matrix factorization, respectively. We
would like to add a note of caution, however, as the error of cell fraction estimates, which
can be quite large, is propagated into the gene expression calculations and will affect any
downstream statistical analysis.

While Scaden achieves good performance on the samples and tissues used in this study,
it is important to keep in mind that cell type similarity, sample heterogeneity, and com-
plexity, as well as experimental noise and bias, can severely limit deconvolution accu-
racy. Furthermore, Scaden is currently not attempting to model cell size differences in its
algorithm, which might be useful to consider for the interpretation of prediction results.

In summary, the deconvolution performance, robustness to noise and bias, and the flex-
ibility to learn from large numbers of in silico datasets, across data types (scRNA-seq
and RNA-seq mixtures) and potentially even tissues, make us believe that DNN-based
architectures will become an algorithmic mainstay of cell type deconvolution.

2.5 Methods

2.5.1 Datasets and preprocessing

scRNA-seq datasets. The following human PBMC scRNA-seq datasets were down-
loaded from the 10X Genomics data download page: 6k PBMCs from a Healthy Donor,
8k PBMCs from a Healthy Donor, Frozen PBMCs (Donor A), and Frozen PBMCs
(Donor C). Throughout this paper, these datasets are referred to with the handles data6k,
data8k, donorA, and donorC, respectively. It was not intended to incorporate as many
datasets as possible. Instead, these four datasets were chosen with the goal to dispose
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of a set of samples with consistent cell types and gene expression. This limited our
choice to datasets that displayed clearly identifiable cell types for the majority of cells.
The Ascites scRNA-seq dataset was downloaded from https://figshare.com as provided
by Schelker et al. [171]. Pancreas and mouse brain datasets were downloaded from the
scRNA-seq dataset collection of the Hemberg laboratory [76]. The human brain datasets
from Darmanis et al. [46] and Lake et al. [106] where downloaded from Gene Expres-
sion Omnibus (GEO) with accession numbers GSE67835 and GSE97930, respectively.
A table listing all datasets including references to the original publications can be found
in table S1.

scRNA-seq preprocessing and analysis. All datasets were processed using the Python
package Scanpy (v. 1.2.2) [210] following the Scanpy’s reimplementation of the popular
Seurat’s clustering workflow. First, the corresponding cell-gene matrices were filtered
for cells with less than 500 detected genes and genes expressed in less than five cells.
The resulting count matrix for each dataset was filtered for outliers with high or low
numbers of counts. Gene expression was normalized to library size using the Scanpy
function “normalize per cell.” The normalized matrix of all filtered cells and genes was
saved for the subsequent data generation step.

The following processing and analysis steps had the sole purpose of assigning cell type
labels to every cell. All cells were clustered using the louvain clustering implementation
of the Scanpy package. The louvain clustering resolution was chosen for each dataset,
using the lowest possible resolution value (low-resolution values lead to less clusters)
for which the calculated clusters appropriately separated the cell types. The top 1000
highly variable genes were used for clustering, which were calculated using Scanpy’s
“filter genes dispersion” function with parameters min mean = 0.0125, max mean = 3,
and min disp = 0.5. Principal components analysis was used for dimensionality reduc-
tion.

To identify cell types, marker genes were investigated for all cell types in question. For
PBMC datasets, useful marker genes were adopted from public resources such as the
Seurat tutorial for 2700 PBMCs [170]. Briefly, interleukin-7 receptor (IL7R) was taken
as marker for CD4 T cells, LYZ for monocytes, MS4A1 for B cells, GNLY for natural
killer cells, FCER1A for dendritic cells, and CD8A and CCL5 as markers for CD8 T
cells. For all other scRNA-seq datasets, marker genes and expected cell types were in-
ferred from the original publication of the dataset. For instance, to annotate cell types of
the mouse brain dataset from Zeisel et al. [225], we used the same marker genes as Zeisel
and colleagues. We did not use the same cell type labels from the original publications
because a main objective was to assure that cell type labeling is consistent between all
datasets of a certain tissue.

Cell type annotation was performed manually across all the clusters for each dataset,

47



Chapter 2 Deep learning-based cell composition analysis from tissue expression profiles

such that all cells belonging to the same cluster were labeled with the same cell type.
The cell type identity of each cluster was chosen by crossing the cluster’s highly differ-
entially expressed genes with the curated cell type’s marker genes. Clusters that could
not be clearly identified with a cell type were grouped into the “Unknown” category.

Tissue datasets for benchmarking. To assess the deconvolution performance on real tis-
sue expression data, we used datasets for which the corresponding cell fractions were
measured and published. The first dataset is the PBMC1 dataset, which was obtained
from Zimmermann et al. [229]. The second dataset, PBMC2, was downloaded from
GEO with accession code GSE107011 [132]. This dataset contains both RNA-seq pro-
files of immune cells (S4 cohort) and from bulk individuals (S13 cohort). As we were
interested in the bulk profiles, we only used 12 samples from the S13 cohort from these
data. Flow cytometry fractions were collected from the Monaco et al. publication [132].

In addition to the above mentioned two PBMC datasets, we used Ascites RNA-seq data.
This dataset was provided by the authors, and cell type fractions for this dataset were
taken from the supplementary materials of the publication [171].

For the evaluation on pancreas data, artificial bulk RNA-seq samples created from the
scRNA-seq dataset of Xin et al. [215] were used. This dataset was downloaded from the
resources of the MuSiC publication [205]. The artificial bulk RNA-seq samples used for
evaluation were then created using the “bulk construct” function of the MuSiC tool.

To assess how Scaden and the GEP algorithms deal with the presence of unknown cell
types, we generated PBMC bulk RNA samples from the four scRNA-seq datasets (6000
each). The undefined amount of unknown cells that was generated by this approach was
removed to be replaced by defined amounts of 5, 10, 20, and 30% of unknown cells,
respectively. Cell fractions of all four samples were predicted with Scaden trained on the
other three.

Performance on these samples was then assessed to test robustness against unseen cell
types in the bulk mixture. Scaden was trained on samples from all datasets but the test
dataset, while CSx and MuSiC used data8k as a reference.

The microarray dataset GSE65133 was downloaded from GEO, and cell type fractions
were taken from the original CS publication [139].

Last, we wanted to get insights into neurodegenerative cell fraction changes in the brain.
While it is known that neurodegenerative diseases like AD are accompanied by a gradual
loss of brain neurons, stage-specific cell type shifts are still hard to come by. Here, we
use the ROSMAP study cortical RNA-seq dataset along with the corresponding clinical
metadata, to infer cell type composition over six clinically relevant stages of neurode-
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generation [3]. Furthermore, to assess deconvolution accuracy on postmortem human
brain tissue, we used 41 samples from the ROSMAP, for which cell composition infor-
mation from immunohistochemistry [145] was recently released and for which fractions
for all cell types were reported. The ROSMAP RNA-seq data were downloaded from
www.synapse.org/. The cell composition values were provided by the authors of the
study [145].

RNA-seq preprocessing and analysis. For the RNA-seq datasets analyzed in this study,
we did not apply any additional processing steps but used the obtained count or expres-
sion tables directly as downloaded for all datasets except the ROSMAP dataset. For the
latter, we generated count tables from raw FastQ files using Salmon (33) and the GRCh38
reference genome. FastQ files from the ROSMAP study were downloaded from Synapse
(www.synapse.org).

2.5.2 Simulation of bulk RNA-seq samples from scRNA-seq data
Scaden’s DNN requires large amounts of training RNA-seq samples with known cell
fractions. This explains why the generation of artificial bulk RNA-seq data is one of the
key elements of the Scaden workflow.

To generate the training data, preprocessed scRNA-seq datasets were used (see the “Datasets
and preprocessing” section), comprising the gene expression matrix and the cell type la-
bels. Artificial RNA-seq samples were simulated by subsampling cells from individual
scRNA-seq datasets; cells from different datasets were not merged into samples to pre-
serve within-subject relationships. Datasets generated from multiple participants were
split according to participant, and each subsampling was constrained to cells from one
participant to capture the cross-subject heterogeneity and keep subject-specific gene de-
pendencies.

The exact subsampling procedure is described in the following. First, for every simulated
sample, random fractions were created for all different cell types within each scRNA-seq
dataset using the random module of the Python package NumPy. Briefly, a random num-
ber was chosen from a uniform distribution between 0 and 1 using the NumPy function
“random.rand()” for each cell type, and then this number was divided by the sum of all
random numbers created to ensure the constraint of all fractions adding up to 1

fc =
rc

∑Call
rc

(2.1)

where rc is the random number created for cell type c and Call is the set of all cell
types. Here, fc is the calculated random fraction for cell type c. Then, each fraction was
multiplied with the total number of cells selected for each sample, yielding the number
of cells to choose for a specific cell type
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Nc = fc ∗Ntotal (2.2)

where Nc is the number of cells to select for the cell type c, and Ntotal is the total num-
ber of cells contributing to one simulated RNA-seq sample (500, in this study). Next, Nc
cells were randomly sampled from the scRNA-seq gene expression matrix for each cell
type c. Afterward, the randomly selected single-cell expression profiles for every cell
type are then aggregated by summing their expression values, to yield the artificial bulk
expression profile for this sample.

Using the above-described approach, cell compositions that are strongly biased toward a
certain cell type or are missing specific cell types are rare among the generated training
samples. To account for this and to simulate cell compositions with a heavy bias to and
the absence of certain cell types, a variation of the subsampling procedure was used to
generate samples with sparse compositions, which we refer to as sparse samples. Before
generating the random fractions for all cell types, a random number of cell types was
selected to be absent from the sample, with the requirement of at least one cell type con-
stituting the sample. After these leave-out cell types were chosen, random fractions were
created and samples generated as described above. The average cell type proportions of
the training dataset generated as described above are equal for all cell types. This allows
for unbiased deconvolution as the true cell composition of a given tissue is not known
beforehand. Using different sampling distributions (e.g., Gaussian and Uniform) or ex-
cluding sparse samples did not change Scaden’s deconvolution performance notably on
the simulated PBMC datasets. This shows that Scaden is relatively robust to training data
generated by different sampling procedures.

Using this procedure, we generated 32,000 samples for the human PBMC training dataset,
14,000 samples for the human pancreas training dataset, 6000 samples for human brain,
and 30,000 samples for the mouse brain training dataset (table 2.3).

Artificial bulk RNA-seq datasets were stored in “h5ad” format using the Anndata pack-
age [210], which allows to store the samples together with their corresponding cell type
ratios while also keeping information about the scRNA-seq dataset of origin for each
sample. This allowed to access samples from specific datasets, which is useful for cross-
validation.

2.5.3 Scaden overview

The following section contains an overview of the input data preprocessing, the Scaden
model, model selection, and how Scaden predictions are generated.

Input data preprocessing. The data preprocessing step is aimed to make the input data
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more suitable for machine learning algorithms. To achieve this, an optimal preprocessing
procedure should transform any input data from the simulated samples or from the bulk
RNA-seq to the same feature scale. Before any scaling procedure can be applied, it must
be ensured that both the training data and the bulk RNA-seq data subject to prediction
share the same features. Therefore, before scaling, both datasets are limited to contain
features (genes) that are available in both datasets. In addition, uninformative genes that
have either zero expression or an expression variance below 0.1 were removed, leaving
10,000 genes for model training and inference. The two-step processing procedure used
for Scaden is described in the following:

First, to account for heteroscedasticity, a feature inherent to RNA-seq data, the data
were transformed into logarithmic space by adding a pseudocount of 1 and then taking
the Logarithm (base 2).

Second, every sample was scaled to the range [0,1] using the MinMaxScaler() class from
the Sklearn preprocessing module. Per-sample scaling, unlike per-feature scaling that
is more common in machine learning, assures that intergene relative expression patterns
in every sample are preserved. This is important, as our hypothesis was that a neural
network could learn the deconvolution from these intergene expression patterns

xscaled,i =
xi−min(Xi)

max(Xi)−min(Xi)
(2.3)

where xscaled,i is the log2 expression value of gene x in sample i, Xi is the vector of
log2 expression values for all genes of sample i, min(Xi) is the minimum gene expression
of vector Xi, and max(Xi) is the maximum gene expression of vector Xi.

Note that all training datasets are stored as expression values and are only processed
as described above. In the deployment use case, the simulated training data should con-
tain the same features as in the bulk RNA-seq sample that shall be deconvolved.

Model selection. The goal of model selection was to find an architecture and hyper-
parameters that robustly deconvolve simulated tissue RNA-seq data and, more impor-
tantly, real bulk RNA-seq data. Because of the very limited availability of bulk RNA-
seq datasets with known cell fractions, model selection was mainly optimized on the
simulated PBMC datasets. To capture interexperimental variation, we used leave-one-
dataset-out cross-validation for model optimization: A model was trained on simulated
data from all but one dataset, and performance was tested on simulated samples from
the left-out dataset. This allows to simulate batch effects between datasets and helps to
test the generalizability of the model. In the process of model selection and (hyper-) pa-
rameter optimization, performed on PBMC and Ascites datasets, we found three models
with different architectures and dropout rates but comparable performance. To address
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overfitting in individual models, we decided to use a combination of models, expecting
this to serve as another means of regularization. We did not test multiple combinations
but rather used an informed choice with varying layer sizes and dropout regularization,
with the goal to increase model diversity. We observed that the average of an ensemble
of models generalized better to the test sets than individual models. Model training and
prediction is done separately for each model, with the prediction averaging step combin-
ing all model predictions (tables 2.4 and 2.6). We provide a list of all tested parameters
in the Supplementary Materials (table 2.5).

Final Scaden model. The Scaden model learns cell type deconvolution through super-
vised training on datasets of simulated bulk RNA-seq samples simulated with scRNA-seq
data. To account for model biases and to improve performance, Scaden consists of an
ensemble of three DNNs with varying architectures and degrees of dropout regulariza-
tion. All models of the ensemble use four layers of varying sizes between 32 and 1024
nodes, with dropout regularization implemented in two of the three ensemble models.
The exact layer sizes and dropout rates are listed in table 2.4. The rectified linear unit is
used as activation function in every internal layer. We used a Softmax function to predict
cell fractions, as we did not see any improvements in using a linear output function with
consecutive non-negativity correction and sum-to-one scaling. Python (v. 3.6.6) and the
TensorFlow library (v. 1.10.0) were used for implementation of Scaden. A complete list
of all software used for the implementation of Scaden is provided in table S15.

Training and prediction. After the preprocessing of the data, a Scaden ensemble can
be trained on simulated tissue RNA-seq data or mixtures of simulated and real tissue
RNA-seq data. Parameters are optimized using Adam with a learning rate of 0.0001 and
a batch size of 128. We used an L1 loss as optimization objective

L1(yi, ŷi) = |yi− ŷi| (2.4)

where yi is the vector of ground-truth fractions of sample i and ŷi is the vector of pre-
dicted fractions of sample i. Each of the three ensemble models is trained independently
for 5000 steps. This “early stopping” serves to avoid domain overfitting on the simulated
tissue data, which would decrease the model performance on the real tissue RNA-seq
data. We observed that training for more steps lead to an average performance decrease
on real tissue RNA-seq data. To perform deconvolution with Scaden, a bulk RNA-seq
sample is fed into a trained Scaden ensemble, and three independent predictions for the
cell type fractions of this sample are generated by the trained DNNs. These three predic-
tions are then averaged per cell type to yield the final cell type composition for the input
bulk RNA-seq sample

ŷc =
ŷ1

c + ŷ2
c + ŷ3

c
3

(2.5)
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where ŷc is the final predicted fraction for cell type c and ŷi
c is the predicted fraction

for cell type c of model i.

Scaden requirements. Currently, a disadvantage of the Scaden algorithm is the neces-
sity to train a new model for deconvolution if no perfect overlap in the feature space
exists. This constraint limits the usefulness of pretrained models. Once trained, how-
ever, the prediction runtime scales linearly with sample numbers and is usually in the
order of seconds, making Scaden a useful tool if deconvolution is to be performed on
very large datasets. While the requirements are dataset dependent, the Scaden demo was
profiled to require a peak of 3.2 GB of random-access memory (RAM) during the DNN
training process, so a computer with 8 GB of RAM should be able to run it smoothly.
In our tests with an Intel(R) Xeon(R) CPU E5-1630 workstation, the demo could run
in 22 min, spending most of the CPU time in the DNN training process. The most
prominent and obvious issue of Scaden is the difference between simulated scRNA-seq
data used for training and the bulk RNA-seq data subject to inference. While Scaden
is able to transfer the learned deconvolution between the two data types and achieves
state-of-the-art performance, we hypothesize that efforts to improve this translatability
could improve Scaden’s prediction accuracy even further. Algorithmic improvements are
therefore likely to address this issue and are planned for future releases.

2.5.4 Algorithm comparison

We used several performance measures to compare Scaden to four existing cell decon-
volution algorithms, CS with LM22 GEP, CSx, MuSiC, and CPM. To compare the per-
formance of the five deconvolution algorithms, we measured the RMSE, Lin’s CCC,
Pearson product moment correlation coefficient r, and R2 values, comparing real and
predicted cell fractions estimates. In addition, to identify systematic prediction errors
and biases, slope and intercept for the regression lines were calculated. These metrics
are defined as follows

RMSE(y, ŷ) = avg(
√
(y− ŷ)2 (2.6)

r(y, ŷ) =
cov(y, ŷ)

σyσŷ
(2.7)

R2(y, ŷ) = r(y, ŷ)2 (2.8)

slope(y, ŷ) =
∆y
∆ŷ

(2.9)
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CCC(y, ŷ) =
2rσyσŷ

σ2
y +σ2

ŷ +(µy−µŷ)
(2.10)

where y are the ground-truth fractions, ŷ are the prediction fractions, σx is the SD of
x, cov(y, ŷ) is the covariance of y and ŷ, and µy, µŷ are the mean of the predicted and
ground-truth fractions, respectively.

All metrics were calculated for all data points of a dataset and separately for all data
points of a specific cell type. For the latter approach, we then averaged the resulting
values to recover single values. While the metrics calculated on all data points might be
sufficient, we deem that the cell type–specific deconvolution might, in many instances,
be of even greater interest. It is noteworthy in this context that cell type–specific decon-
volution performance can be quite weak, depending on the dataset. This is true for all
tested deconvolution algorithms, while Scaden achieves best performance.

CIBERSORT. CS is a cell convolution algorithm based on specialized GEPs and sup-
port vector regression. Cell composition estimations were obtained using the CS web
application (https://cibersort.stanford.edu/). For all deconvolutions with CS, we used the
LM22 GEP, which was generated by the CS authors from 22 leukocyte subsets profiled
on the HGU133A microarray platform.

Because the LM22 GEP matrix contains cell types at a finer granularity than what was
used for this study, predicted fractions of subcell types were added together. For cell
grouping, we used the mapping of subcell types to broader types given by figure 6 from
Monaco et al. [132]. We provide a table with the exact mappings used here in the Sup-
plementary Materials (table 2.13). The deconvolution was performed using 500 permu-
tations with quantile normalization disabled for all datasets but GSE65133 (Microarray),
as is recommended for RNA-seq data. We used default settings for all other CS parame-
ters.

CIBERSORTx. CSx is a recent variant of CS that can generate GEP matrices from
scRNA-seq data and use these for deconvolution. For additional deconvolution robust-
ness, it applies batch normalization to the data. All signature matrices were created
by uploading the labeled scRNA-seq expression matrices and using the default options.
Quantile normalization was disabled. For deconvolution on simulated data, no batch
normalization was used. For all bulk RNA-seq datasets, the S-Mode batch normalization
was chosen. All PBMC datasets were deconvolved using a GEP matrix generated from
the data6k dataset (for simulated samples from data6k, a donorA GEP matrix was cho-
sen).

MuSiC. MuSiC is a deconvolution algorithm that uses multisubject scRNA-seq datasets
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as GEP matrices in an attempt to include heterogeneity in the matrices to improve gen-
eralization. While MuSiC tries to address similar issues of previous deconvolution al-
gorithms by using scRNA-seq data, the approach is very different. For deconvolution,
MuSiC applies a sophisticated GEP-based deconvolution algorithm that uses weighted
non-negative least-squares regression with an iterative estimation procedure that imposes
more weight on informative genes and less weight on noninformative genes.

The MuSiC R package contains functionality to generate the necessary GEP matrix given
an scRNA-seq dataset and cell type labels. To generate MuSiC deconvolution predictions
on PBMC datasets, we used the data8k scRNA-seq dataset as reference data for MuSiC
and follow the tutorial provided by the authors to perform the deconvolution. For de-
convolution of artificial samples generated from the data8k dataset, we provided MuSiC
with the data6k dataset as a reference instead.

MuSiC was developed with a focus on multisubject scRNA-seq datasets, in which the
algorithm tries to take advantage from the added heterogeneity that these datasets con-
tain, by calculating a measure of cross-subject consistency for marker genes. To as-
sess how Scaden performs on multisubject datasets compared to MuSiC, we evaluated
both methods on artificial bulk RNA-seq samples from human pancreas. We used the
bulk construct function from MuSiC to combine the cells from all 18 participants con-
tained in the scRNA-seq dataset from Xin et al. [215] to generate artificial bulk samples
for evaluation. Next, as a multisubject reference dataset, we used the pancreas scRNA-
seq dataset from Segerstolpe et al. [172], which contains single-cell expression data from
10 different participants, 4 of which with type 2 diabetes. For Scaden, the Segerstolpe
scRNA-seq dataset was split by participants, and training datasets were generated for
each participant, yielding in total 10,000 samples. For MuSiC, a processed version of
this dataset was downloaded from the resources provided by the MuSiC authors [205]
and used as an input reference dataset for the MuSiC deconvolution. Deconvolution was
then performed according to the MuSiC tutorial, and performance was compared accord-
ing to the above-defined metrics.

Cell Population Mapping. CPM is a deconvolution algorithm that uses single-cell ex-
pression profiles to identify a so-called “cell population map” from bulk RNA-seq data
[62]. In CPM, the cell population map is defined as composition of cells over a cell-state
space, where a cell state is defined as a current phenotype of a single cell. Contrary to
other deconvolution methods, CPM tries to estimate the abundance of all cell states and
types for a given bulk mixture, instead of only deconvolving the cell types. As input,
CPM requires an scRNA-seq dataset and a low-dimensional embedding of all cells in
this dataset, which represents the cell-state map. As CPM estimates abundances of both
cell states and types, it can be used for cell type deconvolution by summing up all esti-
mated fractions for all cell states of a given cell type, a method that is implemented in
the scBio R package, which contains the CPM method. To perform deconvolution with
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CPM, we used the data6k PBMC scRNA-seq dataset as an input reference for all PBMC
samples. For samples simulated from the data6k dataset, we used the data8k dataset as
a reference. According to the CPM paper, a dimension reduction method can be used
to obtain the cell-state space. We therefore used Uniform Manifold Approximation and
Projection (UMAP), a dimension reduction method widely used for scRNA-seq data, to
generate the cell-state space mapping for the input scRNA-seq data. Deconvolution was
then performed using the CPM function of the scBio package with an scRNA-seq dataset
and accompanying UMAP embedding as input.

2.6 Supplementary Data

Tissue Name cells Subjects Source
PBMC data6k 5,419 1 10X Genomics
PBMC data8k 8,381 1 10X Genomics
PBMC donorA 2,900 1 10X Genomics
PBMC donorC 9,519 1 10X Genomics
Mouse Brain Tasic 1,679 1 [191]
Mouse Brain Zeisel 3,005 1 [225]
Mouse Brain Romanov 2,881 1 [162]
Mouse Brain Campbell 21,086 1 [38]
Mouse Brain Chen 14,437 1 [40]
Pancreas Segerstolpe 3,514 10 [172]
Pancreas Baron 8,569 4 [22]
Ascites Ascites 3,114 3 [171]
Human Brain Darmanis 465 1 [46]
Human Brain Lake 27,416 1 [106]

Table 2.1: scRNA-seq datasets used for the generation of simulated tissues for Scaden
training.

Tissue Name Samples Reference
PBMC PBMC1 12 [229]
PBMC PBMC2 12 [132]
Pancreas Xin 18 [215]
Human Brain ROSMAP 390 [3]
Ascites Ascites 3 [171]

Table 2.2: Bulk tissue RNA-seq datasets used for performance evaluation.
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Tissue Samples Datasets Size
PBMC 32,000 4 1.5 GB
Pancreas 14,000 2 0.6 GB
Human Brain 6,000 2 0.32 GB
Ascites 6,000 1 0.38 GB
Mouse Brain 30,000 5 1.5 GB

Table 2.3: Number of samples, datasets and size of the simulated training data.

Model Layers Layer sizes Dropout rates
M256 4 256, 128, 64, 32 0, 0, 0, 0
M512 4 512, 256, 128, 64 0, 0.3, 0.2, 0.1
M1024 4 1024, 512, 256, 128 0, 0.6, 0.3, 0.1

Table 2.4: Architectures of deep neural network models used in Scaden ensemble. All
models use an L1 as a loss function, ReLU activation for all layers but the last, and
softmax activation for the last layer.

Parameter Values tested
Batch size 32, 64, 128, 256, 512
Layers 2, 3, 4

Layer sizes 2048, 1024, 512, 256, 128, 64, 32, 16
Dropout rate
0 - 0.8heightLoss function L1, L2

Table 2.5: Hyperparameters used for model optimization

Scaden Ensemble M256 M512 M1024
CCC 0.914 0.898 0.909 0.907

Table 2.6: Comparison of Scaden models and the Scaden ensemble on four PBMC
scRNA-seq datasets. Concordance correlation coefficient was calculated on all datasets
separately and then averaged.
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Method DS RMSE Slope Correlation Intercept CCC
CPM data6k 0.192 0.03 0.082 0.162 0.053
CPM data8k 0.185 0.048 0.263 0.159 0.093
CPM donorA 0.239 -0.081 -0.259 0.18 -0.147
CPM donorC 0.189 0.038 0.102 0.16 0.066
CS data6k 0.163 0.508 0.57 0.082 0.566
CS data8k 0.136 0.551 0.708 0.075 0.687
CS donorA 0.137 0.605 0.767 0.066 0.746
CS donorC 0.168 0.45 0.522 0.092 0.517
CSx data6k 0.106 0.756 0.824 0.041 0.821
CSx data8k 0.097 0.744 0.863 0.043 0.854
CSx donorA 0.125 0.696 0.81 0.051 0.801
CSx donorC 0.094 0.829 0.865 0.029 0.864
MuSiC data6k 0.086 0.848 0.887 0.025 0.886
MuSiC data8k 0.136 0.663 0.728 0.056 0.725
MuSiC donorA 0.1 0.811 0.883 0.031 0.88
MuSiC donorC 0.084 0.897 0.896 0.017 0.896
Scaden data6k 0.104 0.747 0.83 0.042 0.825
Scaden data8k 0.133 0.625 0.73 0.063 0.722
Scaden donorA 0.035 0.92 0.988 0.013 0.985
Scaden donorC 0.046 0.849 0.973 0.025 0.964

Table 2.7: Deconvolution evaluation on simulated PBMC data.
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Method Celltype RMSE Correlation Slope Intercept CCC
CSx ALPHA 0.282 0.816 0.691 0.431 0.375
CSx Average 0.171 0.845 0.891 0.1 0.499
CSx BETA 0.309 0.833 0.175 -0.017 0.078
CSx DELTA 0.04 0.812 1.567 -0.013 0.647
CSx GAMMA 0.052 0.921 1.131 0.0 0.897
CSx Total 0.212 0.79 1.113 -0.028 0.746
MuSiC ALPHA 0.11 0.887 1.108 -0.042 0.863
MuSiC Average 0.087 0.835 0.861 -0.008 0.744
MuSiC BETA 0.148 0.752 1.067 0.017 0.694
MuSiC DELTA 0.023 0.817 0.716 -0.003 0.707
MuSiC GAMMA 0.068 0.881 0.552 -0.003 0.711
MuSiC Total 0.099 0.938 1.078 -0.019 0.929
Scaden ALPHA 0.067 0.949 1.071 -0.034 0.942
Scaden Average 0.051 0.902 1.031 -0.02 0.881
Scaden BETA 0.07 0.936 1.152 -0.045 0.916
Scaden DELTA 0.024 0.807 1.012 0.008 0.764
Scaden GAMMA 0.045 0.914 0.89 -0.008 0.901
Scaden Total 0.055 0.978 1.033 -0.008 0.976

Table 2.8: Deconvolution performance on simulated pancreas data from Xin et al. on a
per cell-type level.
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Method Content CCC RMSE Correlation Intercept Slope
CSx 0.02 0.731 0.097 0.738 0.032 0.841
CSx 0.05 0.751 0.092 0.754 0.035 0.823
CSx 0.1 0.715 0.092 0.719 0.041 0.797
CSx 0.2 0.694 0.091 0.703 0.039 0.807
CSx 0.3 0.632 0.099 0.637 0.057 0.714
MuSiC 0.02 0.793 0.084 0.803 0.016 0.921
MuSiC 0.05 0.799 0.083 0.805 0.018 0.908
MuSiC 0.1 0.739 0.089 0.745 0.032 0.841
MuSiC 0.2 0.669 0.095 0.679 0.04 0.8
MuSiC 0.3 0.665 0.101 0.687 0.028 0.861
Scaden 0.02 0.934 0.041 0.944 0.033 0.837
Scaden 0.05 0.925 0.044 0.936 0.035 0.825
Scaden 0.1 0.902 0.046 0.915 0.042 0.792
Scaden 0.2 0.846 0.054 0.859 0.051 0.747
Scaden 0.3 0.798 0.063 0.816 0.063 0.686

Table 2.9: Deconvolution performance on datasets with added unknown mixture con-
tents.

Method Dataset RMSE Correlation Slope Intercept CCC
CPM PBMC1 0.18 -0.003 -0.003 0.167 -0.003
CPM PBMC2 0.114 -0.203 -0.094 0.182 -0.155
CS PBMC1 0.147 0.437 0.491 0.085 0.434
CS PBMC2 0.101 0.594 0.754 0.041 0.577
CSx PBMC1 0.16 0.603 0.925 0.012 0.552
CSx PBMC2 0.13 0.456 0.67 0.055 0.424
MuSiC PBMC1 0.316 -0.235 -0.468 0.245 -0.189
MuSiC PBMC2 0.299 -0.197 -0.542 0.257 -0.127
Scaden PBMC1 0.104 0.722 0.805 0.032 0.717
Scaden PBMC2 0.052 0.855 0.848 0.025 0.855

Table 2.10: Deconvolution performance on real PBMC RNA-seqdatasets PBMC1 and
PBMC2. Scaden was trained on a mixture of in silico and real bulk RNA-seq data, the
remaining tools used either scRNA-seq datasets as reference (CPM, MuSiC, CSx) or a
in-built reference (CS).
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Method Dataset Celltype RMSE Corr. Slope Intercept CCC
Scaden SC PBMC1 Total 0.131 0.564 0.644 0.059 0.559
Scaden SC PBMC2 Total 0.077 0.684 0.689 0.052 0.684
Scaden all PBMC1 Total 0.104 0.722 0.805 0.032 0.717
Scaden all PBMC2 Total 0.052 0.855 0.848 0.025 0.855
Scaden SC PBMC1 Bcells 0.033 0.648 0.172 0.006 0.083
Scaden SC PBMC1 CD4Tcells 0.228 0.633 0.492 -0.055 0.149
Scaden SC PBMC1 CD8Tcells 0.101 0.603 0.761 0.108 0.562
Scaden SC PBMC1 Monocytes 0.178 0.556 0.885 0.173 0.186
Scaden SC PBMC1 NK 0.087 0.81 0.531 0.137 0.312
Scaden SC PBMC1 Unknown 0.029 0.577 0.361 0.009 0.287
Scaden SC PBMC2 Bcells 0.012 0.936 0.977 0.002 0.935
Scaden SC PBMC2 CD4Tcells 0.145 0.767 0.682 -0.057 0.119
Scaden SC PBMC2 CD8Tcells 0.049 0.67 0.403 0.129 0.587
Scaden SC PBMC2 Monocytes 0.078 0.865 0.994 0.071 0.558
Scaden SC PBMC2 NK 0.071 0.629 0.314 0.14 0.276
Scaden SC PBMC2 Unknown 0.025 0.247 0.217 0.044 0.209
Scaden all PBMC1 Bcells 0.031 0.668 0.188 0.007 0.1
Scaden all PBMC1 CD4Tcells 0.151 0.638 0.652 -0.017 0.345
Scaden all PBMC1 CD8Tcells 0.096 0.6 0.704 0.123 0.569
Scaden all PBMC1 Monocytes 0.172 0.518 0.777 0.184 0.177
Scaden all PBMC1 NK 0.036 0.804 0.488 0.058 0.71
Scaden all PBMC1 Unknown 0.026 0.64 0.41 0.01 0.365
Scaden all PBMC2 Bcells 0.013 0.936 0.94 0.0 0.917
Scaden all PBMC2 CD4Tcells 0.074 0.772 0.769 -0.005 0.373
Scaden all PBMC2 CD8Tcells 0.051 0.672 0.398 0.106 0.562
Scaden all PBMC2 Monocytes 0.072 0.895 1.058 0.049 0.614
Scaden all PBMC2 NK 0.045 0.69 0.301 0.103 0.467
Scaden all PBMC2 Unknown 0.023 0.241 0.178 0.043 0.203

Table 2.11: Deconvolution performance on real PBMC RNA-seq data for Scaden models
trained only on scRNA-seq simulated tissues (Scaden SC) or on a mix of simulated and
real tissue (Scaden all).
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Method Reference CCC RMSE Correlation Slope Intercept
Scaden Darmanis 0.922 0.056 0.924 0.992 0.028
Scaden Lake 0.76 0.144 0.918 1.730 0.103
Scaden Darmanis& Lake 0.898 0.064 0.899 0.948 0.029
MuSiC Darmanis 0.873 0.089 0.951 1.445 0.075
MuSiC Lake 0.65 0.119 0.652 0.696 0.078
CSx Darmanis 0.805 0.123 0.94 1.663 0.094
CSx Lake 0.706 0.183 0.95 2.130 0.115

Table 2.12: Deconvolution performance on bulk RNA-seq data from post-mortem human
brain tissue (ROSMAP). Metrics are reported for deconvolution with different reference
datasets (Darmanis and Lake) and additionally with both reference datasets for Scaden
(Darmanisand Lake).

Method Celltype CCC Correlation Intercept R2 RMSE Slope
CIBERSORT Average 0.391 0.612 0.087 0.396 0.103 0.516
CIBERSORT Bcells 0.122 0.33 0.029 0.109 0.068 0.109
CIBERSORT CD4Tcells 0.629 0.658 0.199 0.433 0.095 0.537
CIBERSORT CD8Tcells 0.285 0.635 0.018 0.404 0.12 0.375
CIBERSORT Monocytes 0.295 0.741 0.19 0.548 0.17 0.779
CIBERSORT NK 0.623 0.698 -0.003 0.487 0.059 0.78
CIBERSORT Total 0.717 0.728 0.026 0.53 0.11 0.869
Scaden Average 0.498 0.726 -0.032 0.536 0.115 1.006
Scaden Bcells 0.431 0.728 0.012 0.53 0.055 0.388
Scaden CD4Tcells 0.64 0.778 -0.195 0.606 0.153 1.474
Scaden CD8Tcells 0.474 0.543 0.02 0.294 0.104 0.635
Scaden Monocytes 0.43 0.838 0.033 0.702 0.191 1.764
Scaden NK 0.516 0.741 -0.029 0.549 0.074 0.77
Scaden Total 0.705 0.749 -0.015 0.561 0.126 1.067

Table 2.13: Deconvolution performance comparison of CS (LM22) and Scaden on the
GSE65133 Microarray dataset. Pleasenote that the LM22 GEP used for CS was created
using PBMC microarray data, while Scaden was trained on simulated scRNA-seq PBMC
datasets.
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Chapter 3

Integrative analysis of Multi-Omics
FTD Data

Disclaimer

A manuscript describing the content of this chapter is in preparation. All data anal-
ysis leading to the results presented here was carried out by me. Tenzin Nyima and
Margheritta Francescatto helped with processing of the CAGE-seq data. Experiments
for generation of the different datasets analysed in this chapter were designed and per-
formed by Ashutosh Dhingra, Melissa Castillo Lizardo, Noémia Rita Fernandes, Eldem
Sadikoglou, Salvador Rodriguez Nieto and Patrizia Rizzu. Pathology scoring was done
by Manuela Neumann. Part of the small RNA-seq experiments was performed by the
group of André Fischer at the DZNE Göttingen, by Cemil Kerimoglu and Lalit Kaurani.
Peter Heutink designed, initiated and organized the RiMod-FTD project.

3.1 Abstract

To develop treatments for the neurodegenerative disorder FTD a better understanding of
the underlying molecular disease mechanisms is needed. The goal of RiMod-FTD is to
create a multi-omics and multi-model resource of datasets relevant for different disease
subtypes. Here, we present an integrative analysis of multi-omics datasets from phase
1 of the RiMod-FTD project. Using RNA-seq, smRNA-seq, methylation and CAGE-
seq data, we have identified a selective vulnerability of excitatory neurons in FTD and
an enrichment of endothelial cells in all disease groups. We have furthermore detected
potential disease mechanisms that drive neuroinflammation in FTD-GRN and identified
several miRNAs that inhibit FTD-relevant cellular processes. This first integrative anal-
ysis of the RiMod-FTD resource provides valuable new insights and shows how this
resource will be able to help advance the field of FTD research in the future.
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3.2 Introduction

FTD is a devastating form of dementia that typically manifests before the age of 65.
The underlying pathology behind FTD is frontotemporal lobar degeneration (FTLD),
which is characterized by a progressive deterioration of frontal and temporal lobes. For a
detailed introduction to current knowledge about genetics, pathology and disease mech-
anisms in FTD I would like to refer the reader to section 1.1. Briefly, FTD symptoms
include behavioural changes and deterioration of language production and understand-
ing. Depending on the clinical symptoms, FTD is divided into the behavioural variant
FTD subtype (bvFTD) or the language subtypes primary progressive aphasia (PPA) and
non-fluent variant FTD (nfvFTD).

With up to 43% of familial cases, FTD has a large genetic component. During the recent
decades, mutations in several genes have been identified as causes for FTD. Approxi-
mately half of all familial cases are caused by mutations in one of the genes MAPT, GRN
or C9orf72. While mutations in MAPT lead to pathological aggregations of the tau pro-
tein, mutations in GRN and C9orf72 lead to aggregations of TDP-43. C9orf72 mutations
furthermore lead to RNA foci and dipeptide repeats (DPRs) as additional pathological
features (see section 1.1.2). Significant advances have been made recently with regards
to understanding the molecular mechanisms that underlie FTD (see section 1.1.4). How-
ever, as of today, no treatment that can halt or slow the progression of FTD exists. Fur-
ther research is therefore necessary to increase our knowledge about causal mechanisms
in order to develop remedies. Given that FTD is a heterogeneous disease with differ-
ing underlying pathology, caused by genes with very different functions, it is of crucial
importance to expand our knowledge about commonalities and differences between the
different disease subtypes. This will help us to determine whether treatments for FTD in
general can be developed, or whether treatments for different subtypes are needed.

The Risk and Modifying factors in Frontotemporal Dementia (RiMod-FTD) project is
funded by the EU Joint Programme - Neurodegenerative Disease (JPND) research to
address the above mentioned challenges. The project is a consortium effort by 10 dif-
ferent groups throughout Europe. The goal of RiMod-FTD is to identify common and
distinct disease mechanisms in different FTD subtypes. To achieve this, a multi-omics
and multi-model approach is used. Post-mortem brain tissue from FTD patients with
mutations in MAPT, GRN or C9orf72 and healthy controls were collected. The tissue
samples were profiled using multiple ’omics’ technologies: RNA-seq, CAGE-seq, small
RNA-sequencing (smRNA-seq) and proteomics. The multi-omics approach allows to
examine the molecular mechanisms in end-stage FTD with high precision, as various
different regulatory mechanisms and disease aspects can be studied and compared be-
tween patient groups. Different brain regions are studied to identify potential regional
differences. Furthermore, mouse models for the different mutations in MAPT, GRN and
C9orf72 are generated which allow to study the temporal progression of the disease and
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the effects of the mutations in a controlled environment. As post-mortem human brain
data only represents the end stage of the disease, the longitudinal data that can be gen-
erated with mouse models is an important addition. Finally, induced pluripotent stem
cell (iPSC) models of specific cell types were derived from patient cells. The cellular
models depict valuable systems that can be used to test hypotheses derived from human
and mouse data.

In this chapter, we have intensively analysed and integrated the multi-omics data from
post-mortem human brain tissue. Specifically, RNA-seq, CAGE-seq, smRNA-seq and
methylation data from the frontal lobe were analysed. We have identified pathways that
are dysregulated in all investigated FTD genetic subtypes and pathways that are dis-
tinctly affected in FTD subtypes. Using the multi-omics data, we have examined regu-
latory mechanisms and identified several potential key regulators and pathways, which
constitute new avenues to pursue for FTD research.

3.3 Results

3.3.1 Multi-omics Data Resource for Frontotemporal Dementia

As part of RiMod-FTD, data from seven different brain regions (frontal, temporal and oc-
cipital lobes, hippocampus, caudate, putamen, cerebellum) was collected and processed.
In this chapter, I present the results from the analysis of the data from the frontal lobe,
which is the most comprehensively studied brain region. The datasets consist of 47 to 49
samples for RNA-seq, CAGE-seq, smRNA-seq and Illumina InfiniumEPIC methylation
profiling (see Table 3.2). Additionally, CAGE-seq data from mouse models of MAPT
and GRN mutations and RNA-seq data from iPSC-derived neurons generated from FTD
patients with mutations in GRN, MAPT or C9orf72, was analysed. Apart from unravel-
ing new disease mechanism, an important objective of the RiMod-FTD consortium was
to create a public data resource for FTD. The value of a high-quality, central resource for
a specific research question, such as understanding a disease, has been proven by other
projects such as ROSMAP [2] and promises to advance and accelerate the FTD research
field as well.

Dataset samples FTD-GRN FTD-MAPT FTD-C9orf72 controls
RNA-seq 47 7 11 13 16
CAGE-seq 49 8 12 13 16
smRNA-seq 47 8 13 13 13
Methylation 48 7 13 14 14

Table 3.1: Post-mortem human brain datasets analysed in this chapter with repsective
number of total samples and samples per group.
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Age PMI pH RIN M / F
FTD-MAPT 60.7 (7.9) 389.8 (120.9) 6.4 (0.2) 7.1 (0.9) 7 / 5
FTD-GRN 63.0 (8.3) 284.2 (54.3) 6.4 (0.2) 6.7 (0.7) 2 / 6
FTD-C9orf72 63.8 (8.2) 366.1 (131.9) 6.4 (0.3) 6.2 (0.8) 5 / 8
Control 79.7 (11.5) 370.2 (62.5) 6.6 (0.3) 7.5 (1.0) 6 / 10

Table 3.2: Average characteristics of samples from GFM. The average metrics for each
sample group are shown with the standard deviation in bracketes. PMI corresponds to
time after death until samples collection in minutes. The other metrics are age at death,
pH-value, RNA integrity number (RIN) and the number of males (M) and females (F) in
the respective group.
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Figure 3.1: The RiMod-FTD project. A Data from three different sources is sampled:
Human post-mortem brain tissue of FTD patients with mutations in GRN, MAPT or
C9orf72 and healthy controls, brain tissue of mouse models for the genetic FTD sub-
types and iPSC-derived neurons, generated from cells of FTD patients with known mu-
tations. All samples are then profiled using a multi-omics approach. Finally, the data
will be uploaded to yield a multi-omics FTD data resource and analyzed to generate new
hypotheses for FTD disease mechanisms. B The multi-omics approachs allows to ex-
amine several mechanisms that are important for gene expression and function, such as
regulation at the promoter and enhancer, DNA methylation or regulation by miRNAs.

3.3.2 Affected Genes, Pathways and Cell types in FTD

To identify generally dysregulated pathways in the frontal lobe of FTD brains, we anal-
ysed the RNA-seq and smRNA-seq data for differential expression and sample hetero-
geneity. Principal component analysis (PCA) revealed high sample heterogeneity (Fig.
3.2A) in the RNA-seq gene expression data. However, visual inspection of the first two
principal components also indicates a difference between control and FTD samples. We
observed the largest number of differentially expressed genes (DEGs) for FTD-GRN,
followed by FTD-MAPT and FTD-C9orf72 (Fig. 3.2B, adj. P-value < 0.05). Because
we detected only relatively few DEGs for FTD-C9orf72 (148), we have focused on the
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comparison and analysis of FTD-GRN and FTD-MAPT. DE analysis of miRNAs using
the smRNA-seq data yielded 88, 42 and 36 differentially expressed miRNAs in FTD-
MAPT, FTD-GRN and FTD-C9orf72, respectively (adj. P-value < 0.05, absolute log
fold-change > 0.6, Fig. 3.2C). We generated putative miRNA-target pairings by corre-
lating the expression of DE miRNAs with their predicted targets (see Methods) using
matching RNA-seq and smRNA-seq samples. We retained only predicted targets with a
negative correlation of at least -0.4 with their respective miRNA.

Due to the neurodegenerative nature of FTD, it is likely that there exists a systematic
difference in cell composition between cases and controls which can affect differential
gene expression analysis due to differences in gene expression between cell types. To
account for this common problem, we applied a conservative approach by removing all
DEGs with a high likelihood of being false-positives from the analysis. Briefly, we per-
formed cell type deconvolution analysis to estimate cell type fractions for each sample
using our recently developed deconvolution method Scaden [126] (Fig. 3.10A). Then,
we selected DEGs with high cell type specificity and correlated their expression with the
fractions of the major expressing cell type (see Methods). False positive DEGs that are
caused by systematic increase or decrease of a specific cell type will show high correla-
tion with the cell type fractions and can thus be identified and removed from the analysis.
All further analyses were based on the filtered set of DEGs, unless otherwise specified.
Note that this method could only be applied to the total RNA-seq dataset because similar
cell type specificity data was not available for other data types.

Next, we performed pathway enrichment analyses of up- and down-regulated DEGs us-
ing the go:Profiler tool [155]. Both for FTD-MAPT and FTD-GRN, mitochondrial path-
ways are the most significantly down-regulated pathways (Fig. 3.2D, Fig. 3.9). Other
down-regulated pathways in FTD-GRN include cellular localization, protein ubiquitina-
tion and the synaptic vesicle cycle. Among up-regulated pathways, FTD-GRN and FTD-
MAPT share extracellular matrix organization and circulatory system development. In
FTD-GRN, cell surface receptor signaling pathways and immune system pathways are
furthermore enriched. In FTD-MAPT, we detect various developmental pathways en-
riched among up-regulated genes.
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Figure 3.2: Gene- and Pathway-level transcriptional changes in FTD. A Principal com-
ponent analysis of variance stabilized RNA-seq expression values, colored by group. B
Overlap between RNA-seq DEGs from different disease groups. C Overlap between
smRNA-seq DEGs from different disease groups. D Enriched Reactome pathways in
RNA-seq up- and down-regulated DEGs. Shown are the then most significant pathways
per group; the x-axis signifies the negative log10 P-value. Color corresponds to adjusted
P-value and node size corresponds to the number of genes in a pathway. E, F Best candi-
dates for active and inactiveTFs in FTD-GRN and FTD-MAPT, respectively. The x-axis
signifies the negative log10 P-value. G Overlap of DMPs in different disease groups.
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Next, to better understand relevant regulatory mechanisms, we generated a set of
candidate driver transcription factors (TFs) using the frontal lobe CAGE-seq data. As
CAGE-seq provides accurate maps of transcription start sites (TSSs) of genes, it can be
used to locate promoter regions, which are usually in close proximity to the TSS. We
expanded the regions around differentially expressed CAGE tag clusters and performed
transcription factor binding site (TFBS) enrichment analysis in these expanded regions
using the Homer software [75] and motifs from the JASPAR database [207](see Methods
for details, similar to [11]). We selected all TFs with significant enrichment (P-value ≤
0.001) for either up-regulated or down-regulated CAGE clusters as candidate regulators.
We considered genes as potential targets of a TF if a TFBS could be found in their pro-
moter region. While TF expression is not necessarily a good measure for activity, we
selected only TFs with some evidence for differential expression in the RNA-seq data
(adj. P-value < 0.05, not filtered for cell composition) to focus on the TFs with the most
evidence of up- or down-regulated activity. TEAD2 is the only predicted active TF com-
mon to FTD-GRN and FTD-MAPT (Fig. 3.2E), while there is greater overlap among
inactive TFs (here: inactive TF = has down-regulated targets, Fig. 3.2F).

DNA methylation is another important regulatory mechanism that can affect gene ex-
pression. We used the methylation data from the frontal lobe to examine epigenetic
changes in FTD using the Illumina Infinium EPIC array, which measures over 850,000
CpG sites. We considered only the most variable CpG sites (28,173) and corrected for
confounding variables using surrogate variable analysis to perform differential methyla-
tion analysis (see Methods). We detected 18,126, 9,478 and 5,282 significantly differ-
entially methylated positions (DMPs) for FTD-MAPT, FTD-GRN, and FTD-C9orf72,
respectively (Fig. 3.2G). The largest epigenetic aberrations appear to occur in FTD-
MAPT. The C9orf72 repeat expansion is known to be associated with hypermethylation,
[214] which we wanted to confirm in our data. Indeed, a CpG site located at the 5’-end
of the C9orf72 gene, only 14 bp away from the repeat expansion, is hypermethylated,
(Fig. 3.3A). Due to a low variance, this CpG site does not survive our variance filtering
approach. Pathway enrichment analysis of genes in proximity to DMPs yielded enrich-
ment of genes involved in nervous system development for hypermethylated CpG sites
and genes involved in system development for hypomethylated CpG sites (Fig. 3.3C).
As hypermethylation at CpG sites at promoter regions is associated with decreased ex-
pression, these results are in agreement with the findings from the RNA-seq pathway
enrichment analysis. In part, the strong enrichment for nervous system development
might also be caused by remnants of cell composition bias that could not be corrected
entirely by surrogate variable analysis. We then performed biological age prediction
with the methylation data to detect signs of accelerated aging in FTD using the Wenda
algorithm [73]. Wenda underestimates the predicted age for all groups, albeit to a lesser
extent for FTD groups (Fig. 3.3B). These results could therefore indeed be interpreted
as signs for accelerated aging in FTD.
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Figure 3.3: Differential methylation in FTD. A Methylation beta values of different dis-
ease groups at a CpG locus proximal to the 5’-end of the C9orf72 gene. B Actual and
predicted age using the Wenda algorithm, colored by different disease groups. C Top 10
pathway enrichment results for gene in proximity to hyper- and hypo-methylated CpG
sites in all three disease groups.
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3.3.3 Loss of excitatory neurons and enrichment of endothelial cells
in FTD

We then inspected cell composition changes in FTD genetic subtypes using the results
from the RNA-seq deconvolution analysis (Methods). Owing to the prominent decrease
of neuronal fractions (Fig. 3.10A), virtually all other cell types show increasing per-
centages. We therefore calculated the percentage difference of average fractions for all
cell types between FTD groups and controls. This allows to compare the increase of
fractions between different cell types. Strongest neuronal loss was observed for FTD-
GRN, followed by FTD-MAPT and FTD-C9orf72 (Fig. 3.4A). This is in accordance
with studies which have shown that the frontal lobe is most strongly affected in FTD-
GRN [28, 222, 39]. According to our analysis, neuronal loss can be primarily attributed
to loss of excitatory neurons, while fractions of inhibitory neurons stay relatively stable.
This is in agreement with recent studies that found excitatory neurons to be especially
vulnerable to tau pathology [64] and detected an important role of glutamatergic neuro-
transmission in FTD [142, 134]. Excitatory glutamatergic neurons might therefore be
especially vulnerable in this disease. Closer examination of the KEGG pathway ‘glu-
tamatergic synapse’ suggests that AMPA receptors are mainly affected, while we could
not see signs of dysregulation for NMDA receptors (Fig. 3.12).

To validate the results from the computational deconvolution, we correlated fractions
of excitatory neurons with manually determined pathology scores (Fig. 3.4B). Loss of
excitatory neurons shows strong negative correlation with pathology scores (Pearson’s
correlation coefficient = -0.78, P-value = 2.8e-07). Deconvolution results therefore agree
very well with experimental findings, as neuronal loss is expected to correlate with more
severe pathology.
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Figure 3.4: Cellular composition changes and matrix metalloproteinases in FTD. A De-
picted is the difference between average fractions of a certain groups compared to the
average of controls. The difference is calculated as percentages. Hence a value of 1.0
indicates a 100% increase compared to the controls. B Linear regression of excitatory
neuron fractions against pathology scores given by a pathologist. C Normalized expres-
sion values for selected matrix metalloproteinase genes in different FTD diseas groups.

The strongest growth in percentage compared to the baseline is observed for endothe-
lial cells in most disease groups, with the notable exception of FTD-GRN, where mi-
croglial cells show the strongest increase. When regressing neuronal fractions against
other cell type fractions, endothelial cells have the worst fit (R2 = 0.42), hence their
fractions are less well explained by neural loss. Circulatory system development is an
enriched biological process in all three disease groups, hence suggesting a potential in-
volvement of angiogenic pathways in the disease. The role of the vasculature in FTD
is relatively unexplored, however, Bennet et al. recently found increased vasculature
growth in mouse models of FTD-MAPT with P301L mutation [25]. The investigated
mice showed increased vessel growth, albeit vessels were of smaller diameter and often
blocked. Interestingly, endothelial enrichment in FTD-MAPT is particularly strong in
patients with P301L mutation (Fig. 3.4B). Another recent study observed a particular
microvascular structure with increased frequency in brains of patients with frontotempo-
ral lobar degeneration (FTLD) [56]. The authors hypothesized that these structures might
be caused by increased angiogenesis. Many genes involved in circulatory system devel-
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opment are up-regulated in FTD-GRN and FTD-MAPT. The cell deconvolution therefore
points towards a novel involvement of the vascular system in FTD, which should be fur-
ther investigated.

The prominent increase of microglial fractions in FTD-GRN highlights the strong im-
mune system component of this disease subtype. GRN is highly expressed in microglia
and well-known for having important functions in the immune response [120]. The here
observed strong enrichment of microglia points toward increased microglia activity in
FTD-GRN, which is not observed in similar strength for any of the other FTD genetic
subtypes.

3.3.4 Matrix Metalloproteinases are up-regulated in FTD
Next, we examined the DEGs with the largest fold-changes, as these depict good candi-
dates for genes that drive pathologic mechanisms. In both FTD-GRN and FTD-MAPT,
the genes with the largest absolute log fold changes are down-regulated. In FTD-MAPT,
the gene UTP14C has a log-fold change of - 21.9. UTP14C is thought to be important for
spermatogenesis - its contribution to FTD pathology is unclear. In FTD-GRN, the three
genes with the largest absolute fold changes are TBC1D3 (-30.0), TBC1D3F (-29.9) and
KRT17P7 (-29.7). The latter is a pseudogene, while the two former genes are GTPase
activating proteins for the gene RAB5 and involved in vesicle-mediated transport, mak-
ing them interesting candidates for further investigation given the known importance of
transport in FTD.

Both for FTD-GRN and FTD-MAPT, matrix metalloproteinase enzymes (MMPs) are
among the DEGs with the largest fold-changes (Fig. 3.4C, Fig. 3.10B). Specifically,
MMP10 is among the top 20 DEGs for FTD-GRN and MMP9 for FTD-MAPT. MMP14
is differentially expressed in all groups, MMP9 and MMP25 are DE in FTD-GRN and
FTD-MAPT (Fig. 3.4C). While not DE in every group, MMP10 has positive fold-
changes in all groups and is barely detectable in control samples, which is consistent with
current knowledge as MMPs are only expressed at basal levels in the adult brain [33].
We therefore looked for signs of MMP deregulation in our neural cell models and found
MMP15 and tissue inhibitor of metalloproteinases 2 (TIMP2) to be significantly down-
regulated in FTD-GRN neurons (Fig. 3.11). In FTD-MAPT neurons we find elevated
levels of MMP2, albeit only in the group with IVS10+16 mutation, which, however, is
different from the mutations in the post-mortem brain data.This confirms what was found
by Biswas and colleagues for this mutation [28]. The authors could show that inhibition
of MMP2 and MMP9 protected neurons from stress-induced cell death. Finally, the met-
alloproteinase Mmp12 is up-regulated in 21 month old GRN knockout mice, confirming
that insufficient GRN levels can lead to increased MMP expression. Elevated RNA levels
of MMP genes have been reported for many neurodegenerative diseases, indicating their
importance in neurodegenerative mechanisms [164, 95].
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This prominent enrichment of extracellular matrix associated pathways among up-regulated
genes might be a cause or consequence of the here observed strong up-regulation of
MMPs which can degrade ECM components. MMPs are furthermore tightly involved
in the inflammatory response, and can activate the tumor necrosis factor (TNF) gene,
for instance [199]. Several studies have shown promising effects of MMP inhibition in
model systems [60].Inflammatory cytokines, reactive oxygen species (ROS) or hypoxia
can lead to the activation of MMPs, among others [157, 33], which depicts a potential
connection to the prominent down-regulation of mitochondrial pathways. Dysfunctional
mitochondria are a primary source of ROS and might therefore lead to the activation of
MMPs [90]. Moreover, MMPs can digest the extracellular matrix (ECM) and stimu-
late increased production of growth factors, thereby promoting growth of blood vessels
[157]. Increased MMP expression might therefore be a cause of the observed blood ves-
sel development and enrichment of endothelial cells.

The precise role of MMPs in FTD remains relatively unexplored but the frequent ob-
servation of MMP up-regulation in neurodegenerative disorders and their tight involve-
ment in crucial processes such as neuroinflammation, highlights MMPs as interesting
candidates for potential drug targets.

3.3.5 Co-expression Module Analysis
To better understand transcriptional changes and regulatory mechanisms, it is often help-
ful to cluster genes into modules with similar expression or function. Therefore, we
performed tissue-specific functional module detection with HumanBase [104]. The Hu-
manBase platform uses community detection algorithms to find gene clusters given a list
of genes by using tissue-specific gene-gene associations that have been compiled using
massive public datasets, which allows to link both genes with and without annotation
to functional pathways. We divided DEGs into up- and down-regulated genes as we
were looking for active and repressed modules in FTD. Resulting modules are tested
for enrichment of biological process terms. The module enrichment results agreed with
the DEG-based enrichment analysis (Tables 3.3, 3.4, 3.5, 3.6), as up- and down-regulated
modules were enriched for similar pathways compared to up- and down-regulated DEGs.
Then, to determine in which cell types the detected modules are of most importance, we
performed expression weighted cell type enrichment (EWCE) analysis [179]. EWCE de-
termines significant enrichment of cell type specific genes in a given geneset (see Meth-
ods). Both for FTD-MAPT and FTD-GRN, most modules show specificity for a few cell
types (Fig. 3.5 C and D). Up-regulated modules in both groups are significantly enriched
for endothelial genes (P-value < 0.1). Genes within these modules have been associated
with blood vessel development (FTD-MAPT M6-up) and endothelial cell growth (FTD-
GRN M4-up) by HumanBase (Fig. 3.5 A and B).
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Figure 3.5: Cell type specificity of modules and circulatory system development related
modules. A, B PPI networks of genes up-regulated in FTD-MAPT and FTD-GRN (log-
fold-change ¿ 1), respectively. Genes involved in the biological process “circulatory sys-
tem development” are highlighted. C, D EWCE analysis results for HumanBase modules
of FTD-GRN and FTD-MAPT, respectively.

3.3.6 Increased inflammatory response in FTD-GRN
Given the prominent increase in microglial cell fractions in FTD-GRN and the strong en-
richment of immune system pathways among up-regulated genes, we wanted to further
investigate neuroinflammation in FTD-GRN. First, we examined FTD-GRN modules for
enrichment of immune system-related terms. Indeed, several up-regulated modules are
enriched for genes related to the immune system, whereas we could not find enrichment
among down-regulated modules. The module FTD-GRN M1-up contains genes impor-
tant for neutrophil migration and response to interleukines (Fig. 3.6 A, D). Both modules
M3-up and M4-up contain genes relevant to NF-kappa-B (NFkB) signaling, as well as
genes involved in tumor necrosis factor (TNF) production (Fig. 3.6 B and C, respec-
tively). Finally, the module M6-up is enriched for genes involved in T cell activation.
Modules M3-up, M4-up and M6-up are furthermore enriched for microglial-specific
genes (Fig. 3.6 D). Interestingly, several necroptosis-related genes are up-regulated (M1-
up: TLR3, TLR8, RIPK3; M4-up: RIPK2), suggesting this pathway as a potential driver
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of neuronal death. The necroptosis cell death pathway is deregulated in several neurode-
generative disorders [224], and a recent study has shown that TBK1, a genetic cause of
ALS and FTD (here down-regulated in FTD-GRN), is an endogenous inhibitor of RIPK1,
an upstream regulator of RIPK3 [216]. The authors showed that embryonic lethality
of TBK1-knockout mice is dependent on RIPK1 activity. RIPK1-dependent apoptosis
therefore likely plays a pivotal role in FTD/ALS caused by TBK1 mutations. It will
be important to further determine whether GRN mutations lead to alternative routes of
necroptosis (e.g. via RIPK3). In a recent review, Molnár and colleagues have discussed
several available drugs that could potentially regulate necroptosis [131], highlighting the
potential of this pathway as a drug target.
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Figure 3.6: Neuroinflammation in FTD-GRN. A Up-regulated HumanBase modules in
FTD-GRN with most significant terms. B Protein-protein interaction network (PPI, from
STRING-DB) of FTD-GRN M1-up module. Genes involved in necroptosis, interleukin
response and neutrophil migration are indicated. C PPI network of FTD-GRN M4-up
module. Genes involved in NFkB signaling are indicated. D PPI network of FTD-GRN
M3-up module. Genes involved in NFkB signaling and CEPBD are indicated. E, F
KEGG pathway enrichment of predicted targets of TFs NFKB2 and RELA, respectively.
G, H GO:BP pathway enrichment of predicted targets of TFs KLF3 and SP1, respec-
tively.

To identify potential regulatory drivers behind the active immune response in FTD-
GRN, we inspected predicted active TFs in FTD-GRN derived from the CAGE-seq data
(Fig.3.2E). Interestingly, the TFs Nuclear Factor Kappa B Subunit 2 (NFKB2) and RELA
(previously NFKB3) are predicted as active TFs in FTD-GRN. NFKB2 and RELA to-
gether form the NFkB transcription factor complex. RELA is a member of the M3-up
module. Enrichment analysis of predicted NFKB2 and RELA targets in FTD-GRN us-
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ing go:Profiler revealed TNF signaling and NFkB signaling as the most significantly en-
riched KEGG pathways (3.6E), suggesting NFKB2 and RELA as potential driver genes
of increased TNF signaling. Furthermore, enrichment analysis indicated targets of the
TFs SP1 and KLF3 as highly enriched among genes in the FTD-GRN M3-up module.
Both TFs are also predicted as active in our analysis. Predicted KLF3 targets are enriched
for genes involved in myeloid cell activation(3.6G) . SP1 target genes do not show a
strong enrichment, but have roles in actin cytoskeleton organization and endothelial cell
differentiation, among others (3.6H). The TF CCAAT Enhancer Binding Protein Delta
(CEPBD) is another predicted active TF in FTD-GRN and member of the M3-up module.
Enrichment analysis of CEPBD targets did not reveal any significant enrichment, how-
ever CEPBD is known to be an important regulator of inflammation, and has been impli-
cated in neuroinflammation, for instance in Alzheimer’s disease (AD)[98, 99]. Studies
have shown that CEPBD can increase oxidative stress through reactive oxygen species
(ROS) production [204]. Moreover, CEPBD can potentially activate MMPs [152].

To closer examine which parts of the NFkB and TNF signaling pathways are affected
in FTD-GRN and in FTD in general, we inspected the fold-changes of genes of the cor-
responding KEGG pathways. Interestingly, the pro-inflammatory cytokine Interleukin
1 Beta (IL1B) is down-regulated in all disease groups, although only significantly in
FTD-MAPT (Fig. 3.13A). Typically, IL1B expression is reported to be increased in
neurodegenerative diseases [174]. Similarly, the inflammatory cytokine Interleukin 6
(IL6) has negative fold-changes in all disease groups. Downstream effector genes with
positive fold-changes include multiple chemokines, Interleukin 18 Receptor 1 (IL18R1)
and several metalloproteinases. Up-regulation of NFkB- and TNF-signaling genes is
stronger in FTD-GRN (Fig. 3.13B). The TNF Receptor Associated Factor 3 (TRAF3)
gene has negative fold-changes in all disease groups, although only reaching significance
in FTD-GRN. The Dynamin-like protein 1 (DRP1), a downstream effector gene of the
necroptosis pathway has negative fold-changes in all disease groups, suggesting necrop-
tosis to either not be the primary cell death pathway, or necroptosis-induced cell death in
a DRP1-independent manner [133].

We furthermore investigated predicted targets of down-regulated miRNAs for functions
in immune system pathways. However, we could not detect any significant enrichment in
relevant pathways, which indicates that neuroinflammation in FTD-GRN is not regulated
by miRNAs. Similarly, genes proximal to hypomethylated CpG sites are not enriched for
immune system related pathways, excluding epigenetic alterations as a major driver for
neuroinflammation. While we did not detect prominent signals for neuroinflammation in
FTD-MAPT, the FTD-MAPT module M3-up contains several genes involved in T cell
and TNF signaling (EZR, RAB29, CARD8, HIPK1). However, the data suggests that
neuroinflammation in FTD-MAPT and FTD-C9orf72 is much less prominent compared
to FTD-GRN.
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3.3.7 Energy Metabolism is impaired in FTD

Among the most significantly down-regulated pathways in FTD-GRN and FTD-MAPT
are several pathways involved in energy metabolism and oxidative phosphorylation (Fig.
3.2D). We therefore hypothesize that dysfunctional mitochondria are common features
of genetic subgroups in end-stage FTD. The modules FTD-GRN M1-down and FTD-
MAPT M1-down are both most significantly associated with the term NADH dehydro-
genase complex assembly (Tables 3.3, 3.4). Notably, the FTD-GRN M1-down module
furthermore contains the mitochondrial gene CHCHD10 which is a genetic cause of FTD
[20]. While not part of the corresponding FTD-MAPT module, CHCHD10 is also sig-
nificantly down-regulated in FTD-MAPT (adj. P-value: 0.027, log fold-change: -0.56).
This adds further evidence to the importance of CHCHD10 and moreover mitochondrial
function in FTD pathogenesis.

Further inspection of the FTD-MAPT and FTD-GRN M1-up modules revealed that they
contain several NADH:Ubiquinone Oxidoreductase Subunit genes (Fig. 3.7 B and C),
which are necessary for functional oxidative phosphorylation and hence energy produc-
tion. Interestingly, both down-regulated modules are significantly enriched for genes
involved in intracellular transport, the FTD-GRN module is furthermore enriched for
autophagy-related genes (Fig. 3.7). Impaired transport of mitochondria is a well-known
feature of neurodegenerative diseases [61]. Especially large neurons are vulnerable to
both mitochondrial dysfunction and impaired cellular transport, as they need to transport
mitochondria to the ends of their lengthy axons [63]. The M1-down modules provide a
potential link between mitochondrial dysfunction and impaired energy production.

Further evidence for the importance of the M1-down modules in FTD pathogenesis
and neurodegeneration in general comes from several genes of the FTD-GRN M1-down
module that are known to play important roles in neurodegeneration. Apart from CHCHD10,
the module also harbours the genes Superoxide Dismutase 1 (SOD1), Dynactin Subunit
1 (DCTN1), PTEN Induced Kinase 1 (PINK1) and Huntingtin (HTT). All of these genes
show lower expression values in all genetic subgroups, albeit they do not reach signifi-
cant levels in every group (Fig. 3.7A). SOD1 encodes an enzyme that protects against
superoxide radicals and mutations in SOD1 have long been known to cause Amyotrophic
lateral sclerosis and TDP-43 inclusions [163]. Mutations in DCTN1 also lead to TDP-43
pathology and to a neurodegenerative disease called Perry syndrome (PS) [102]. DCTN1
is involved in axonal transport and can also cause FTD-like symptoms in some patients.
PINK1 is a mitochondrial kinase that protects cells from dysfunctional mitochondria, and
mutations in PINK1 are a well-known cause of Parkinson’s disease (PD) [194]. Finally,
poly-Q repeat expansions in the gene HTT cause Huntington’s disease (HD), another
neurodegenerative disorder. Evidence suggests that HTT is important for many mito-
chondrial functions, hence dysfunction of this gene leads to mitochondrial deficits [217].
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Figure 3.7: Impaired oxidative phosphorylation and cellular trafficking in FTD. A Ex-
pression levels (variance stabilized with DESeq2) of the genes CHCHD10, PINK1 and
HTT in different groups. B STRING-DB PPI of FTD-MAPT M1-down module. Genes
involved in oxidative phosphorylation are indicated. C PPI of FTD-GRN M1-down mod-
ule. Genes involved in NADH dehydrogenase complex assembly and mitophagy are
indicated, as well as CHCHD10.
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3.3.8 Cellular trafficking pathways are inhibited by miRNAs

Cellular transport is thought to play a key role in FTD pathogenesis. Impaired traffick-
ing can affect protein and mitochondria homeostasis. Here, we have shown that mito-
chondria function is strongly impaired in end-stage FTD and that transport pathways are
tightly connected to this pathology. Next, we wanted to identify potential regulatory
molecules that might be responsible for the observed changes. Based on literature re-
search, we could not detect an obvious link between our set of predicted active TFs and
cellular transport pathways, suggesting that TF regulation is not a primary driver of dys-
functional cellular transport. Pathway enrichment analysis of genes proximal to hyper-
methylated CpG-sites revealed strong enrichment for neuronal system related pathways
(Fig. 3.3C) in FTD-MAPT and FTD-GRN, yet no enrichment for cellular trafficking
pathways. We then performed pathway enrichment analysis with predicted targets of
up-regulated miRNAs in all disease groups. Interestingly, for all groups, the most sig-
nificantly enriched biological process (GO:BP) is cellular localization and the most sig-
nificant Reactome pathway is membrane trafficking (Fig. 3.7F). Up-regulated miRNAs
in FTD therefore seem to primarily target cellular transport pathways, and might play
important roles in dysfunctional transportation.

To detect modules and genes predominantly targeted by up-regulated miRNAs, we cal-
culated the intersection-over-union (IoU) of up-regulated miRNA targets with down-
regulated modules for FTD-GRN and FTD-MAPT (Fig. 3.7 G and H). In both groups,
the miRNA hsa-miR-150-5p has large IoU values with several modules, specifically with
the FTD-GRN modules M2-down and M3-down, and the FTD-MAPT modules M1-
down and M5-down. In FTD-GRN, the M3-down module is most strongly targeted by
miRNAs, while in FTD-MAPT, several modules have large IoU values. We selected the
FTD-GRN M3-down module for further inspection, as it is heavily targeted by miRNAs
and contains genes involved in metabolic processes and cellular localization (Fig. 3.7I,
Table 3.5). Five miRNAs have putative target genes in this module: hsa-miR-150-5p,
hsa-miR-142-3p, hsa-miR-193a-3p, hsa-miR-148a-3p and hsa-miR-363-3p. All of these
miRNAs are also significantly up-regulated in FTD-MAPT, although hsa-miR-363-3p
does not survive the LFC cutoff we have used to define DE miRNAs (see Methods).
We generated networks of the above mentioned candidate miRNAs combined with a
PPI network of the FTD-GRN M3-down module (Fig. 3.7J) and a PPI network of all
predicted targets in FTD-MAPT (Fig. 3.7K), as we could not detect a similar module in
FTD-MAPT. In total, we observed 31 common putative miRNA targets in both networks.
Among them are the genes CHM and RAB2A, which are involved in RAB GTPase sig-
naling, an important pathway for cellular trafficking.

Next, we selected three miRNAs for further characterization in our cellular model sys-
tems: hsa-miR-193a-3p, hsa-miR-150-5p and hsa-miR-19b-3p (Fig. 3.8A). The former
two miRNAs are DE in all three disease groups and have many targets among module

82



3.3 Results

genes (Fig. 3.7 J K). The miRNA hsa-miR-19b-3p is up-regulated in all disease groups,
although it does not reach significance after (FTD-MAPT and FTD-C9orf72) or before
(FTD-GRN) multiple testing correction. Nevertheless, down-regulated genes were pre-
dicted to be enriched for targets of hsa-miR-19b-3p by g:Profiler, the miRNA is known
to inhibit autophagy [230] and it is highly expressed in neurons. We performed RNA-
seq experiments on iPSC-derived neurons and microglia (Methods) that were transfected
with miRNA mimics and inhibitors for the three selected miRNAs. Inhibition of miR-
150-5p in neurons had no detectable effect (2 DEGs). The miR-150-5p mimic resulted
in 32 significantly down-regulated genes without relevant pathway enrichment (GO:BP
‘involuntary skeletal muscle contraction, P-value 1.214×10-2). In microglia, however,
the miR-150-5p mimic had strong effects, leading to 237 down-regulated and 236 up-
regulated DEGs. Up-regulated DEGs are involved in cellular transport and myeloid ac-
tivation (Fig. 3.8B). Up-regulation of miR-150-5p can thus lead to microglia activation.
Down-regulated genes are enriched for morphogenesis and nervous system development
pathways. Inhibition of miR-150-5p had even stronger effects (3221 DEGs), indicating
an important function of this miRNA in microglia.
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Figure 3.8: Effects of miRNA mimic and inhibitor experiments in iPSC-derived mi-
croglia. A Boxplots of normalized expression values for the selected miRNAs. B, C, D
The top ten most significantly enriched biological processes of up- and down-regulated
genes after transfection with mimics for miR-150-5p, miR-193a-3p and miR-19b-3p, re-
spectively. Node size corresponds to the number of genes in the biological process term
and node color corresponds to the P-value adjusted for multiple testing.

Transfection of miR-193a-3p mimic and inhibitor was only successful in microglia,
where the mimic had strong effects with 1756 down-regulated and 1474 up-regulated
genes. Up-regulated genes were enriched of mitochondrial functions like oxidative phos-
phorylation, while down-regulated genes were enriched for localization and vesicle-
mediated transport pathways (Fig. 3.8C).

In neurons, the miR-19b-3p mimic resulted in 89 down- and 137 up-regulated DEGs
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(inhibitor: 8 down-regulated, 31 up-regulated). Genes down-regulated by the mimic
and up-regulated in the inhibitor experiment are involved in neuronal system pathways,
enriched for miR-19b-3p targets according to g:Profiler and share 17 common genes,
providing strong evidence for these genes to be regulated by miR-19b-3p. In microglia,
stronger effects of the miR-19b-3p mimic compared to the inhibitor were observed (1518
compared to 608 DEGs), suggesting that this miRNA plays a minor role in microglia.
Genes down-regulated by the miR-19b-3p mimic were enriched for catabolic processes,
autophagy and also vesicle-mediated transport, up-regulated genes were enriched for cell
cycle and immune system related genes (Fig. 3.8D). These results provide strong evi-
dence that some of the up-regulated miRNAs in FTD brains target genes involved in
cellular trafficking and autophagy pathways. Up-regulation of the microglial miRNA
miR-150-5p can moreover potentially activate microglia and might therefore contribute
to neuroinflammation.

3.4 Discussion
Here, we present the data from phase 1 of the RiMod-FTD project, a multi-omics, multi-
model data resource for FTD research. Generated by the RiMod-FTD consortium during
several years, the resource depicts a valuable tool for FTD researchers that will help to
accelerate scientific progress towards a better understanding of relevant disease mech-
anisms in FTD. Additional multi-omics data from cell lines, mouse models and other
brain regions will be added in future phases.

In this study, we have systematically analysed RNA-seq, CAGE-seq, smRNA-seq and
methylation datasets from the GFM of patients with mutations in GRN, MAPT or C9orf72
and healthy controls. From all three genetic disease groups, we detected the largest tran-
scriptional dysregulation for the FTD-GRN group, and only relatively small changes in
FTD-C9orf72. In line with these findings, deconvolution analysis revealed that patients
with GRN mutations are subject to the greatest neuronal loss from all groups. These
results indicate either a potential selective vulnerability of frontal lobe cells to GRN mu-
tations or more destructive neurodegeneration in FTD-GRN in general. Indeed, it has
been previously observed that frontal lobe atrophy is more pronounced in FTD-GRN
compared to FTD-MAPT and FTD-C9orf72 [208, 221].

Our deconvolution analysis furthermore indicates that excitatory neurons are affected
the strongest in all genetic disease groups of FTD, which was confirmed in the RiMod-
FTD proteomics data (Mediema et al., 2020) as well. Recently, evidence from multiple
studies has accumulated pointing toward strong involvement of glutamatergic synapses
in FTD [26]. While it has been previously reported that densities of both ionotropic glu-
tamate receptors, AMPA and NMDA receptors, are reduced in post-mortem brain tissue
of FTD patients [134], we see evidence for AMPA receptors to be particularly affected.
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In brains of GRN mutation carriers, we have found increased microglial cell numbers
and strong signals of neuroinflammation. These findings agree with recent studies which
have shown that microglial burden is considerably stronger in FTD-GRN compared to the
other genetic subtypes [168, 212]. Woolacott et al. furthermore observed that FTD-GRN
cases had severe to very severe microglial dystrophy and an abundance of phagocytic and
antigen presenting microglia. Microglial activation was also observed in FTD-C9orf72
and FTD-MAPT, albeit less prominent. Closer examination of neuroinflammation in
FTD-GRN highlights the TFs NFKB2, RELA, KLF3 and SP1 as potential key inflam-
matory regulators, leading to activation of the NFkB- and TNF-signaling pathways. Our
data further indicates that a potential downstream effect of the neuroinflammation is the
activation of the necroptosis pathway. Negative fold-changes of the necroptosis-pathway
gene DRP1 implies a DRP1-independent path to cell death. The necroptosis cell death
pathway is deregulated in several neurodegenerative disorders [224], and a recent study
has shown that TBK1, a genetic cause of ALS and FTD (here down-regulated in FTD-
GRN), is an endogenous inhibitor of RIPK1, an upstream regulator of RIPK3 [216]. The
authors showed that embryonic lethality of TBK1-knockout mice is dependent on RIPK1
activity, suggesting that the necroptosis pathway is indeed an important part of FTD
pathogenesis. In a recent review, Molnár and colleagues have discussed several avail-
able drugs that could potentially regulate necroptosis [131], highlighting the potential of
this pathway as a drug target. The particularly strong neuroinflammation in FTD-GRN
compared to other genetic subgroups implies that anti-inflammatory treatments might be
more effective and helpful in this subgroup. We have furthermore highlighted several
genes and pathways that depict promising starting points for further investigation of neu-
roinflammation in FTD-GRN.

Pathway enrichment and deconvolution analyses have pointed toward increased blood
vessel abundance and growth in FTD brains compared to controls. Enrichment for blood
vessel associated proteins was also found in the RiMod-FTD proteomics data (Mediema
et al., 2020). It is generally not known how and if the vasculature system is involved
in FTD pathogenesis, although recent studies have observed abnormalities in a mouse
model of tau pathology and post-mortem human brains [25, 56]. To our knowledge,
angiogenesis as a pathological feature in several genetic FTD subtypes has not been re-
ported before and therefore depicts an important subject to study for future FTD research.

In all three disease groups, we have observed prominent up-regulation of ECM path-
ways and MMP enzymes. While it has been increasingly recognized that MMPs are
important regulators in many neurodegenerative diseases [33, 160], the role of MMPs
in FTD pathogenesis has been of minor interest to most researchers in the field. Ob-
serving MMPs as strongly up-regulated in all genetic disease groups, however, suggests
that they might be important regulators in end-stage FTD biology. In mouse models of
ALS, inhibition of the MMPs MMP2 and MMP9 could indeed prolong survival and re-
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duce symptoms [93, 201, 117]. Moreover, TIMP3, which is up-regulated in our data,
was found to be partly responsible for neuronal apoptosis in a ALS model [111], which
points towards TIMP3 as a potential apoptosis mechanism in FTD. Given their impor-
tant biological functions and their involvement in all genetic FTD subgroups, we think
it will be fruitful and important to further investigate how MMPs contribute to FTD and
whether they can be exploited as drug targets.

We have observed strong enrichment for genes involved in oxidative phosphorylation
and other mitochondrial pathways in FTD-MAPT and FTD-GRN among down-regulated
genes. This implies that the energy metabolism is greatly affected at least in the end-stage
of FTD. Given that mutations in genes important for mitochondria, such as SOD1 and
CHCHD10, can lead to ALS or FTD, the involvement of energy metabolism pathways
in the disease is highly likely.

Impaired cellular trafficking mechanisms is very likely a key feature of FTD pathogen-
esis and it has been shown multiple times that FTD-causal mutations lead to trafficking
deficits [9, 213, 219]. However, it is not always clear which mechanisms continue to dys-
functional transport mechanisms. Here, using a multi-omics approach, we have found
evidence that elevated expression of several miRNAs might contribute to the inhibition
of genes important for cellular transport. For three selected miRNAs, we could exper-
imentally validate that up-regulation leads to impaired cellular transport, autophagy or
immune system pathways. Up-regulation of these miRNAs has thus clearly pathogenic
potential and could contribute to disease progression. To our knowledge, we are the
first to link up-regulated miRNAs with inhibited cellular transport pathways in FTD.
Additional studies are necessary to further validate this hypothesis, which, if replicated,
highlights the reported miRNAs as promising drug targets.

Using data from the multi-omics RiMod-FTD resource, we have identified several regu-
lator candidates of potential importance in FTD pathogenesis. Data from future RiMod-
FTD phases will help to further verify and refine those hypotheses and will thus help to
advance the field of FTD research.

3.5 Methods

3.5.1 Donor samples employed in this study
Post mortem human brains

Tissues were obtained under a Material Transfer Agreement from the Netherlands Brain
Bank, and additional samples were provided by the Queen Square Brain Bank of Neuro-
logical Disorders and MRC, King College London. Demographic details about human
brain samples are summarized in Table 1. GFM and GTM tissue from each subject was
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divided into three pieces for transcriptomic, proteomic and epigenetic experiments in a
dry-ice bath using precooled scalpels and plasticware.

hIPS-derived NGN2 neurons and miRNA mimics and inhibitors transfection

smNPC were derived from hiPSc cells (Cell line id: GM23280 obtained from the Coriell
Institute) using the protocol described in P Reinhardt et al. [156]. The differentiation
protocol from smNPC to neurons involves over-expression of Neurogenin-2 (NGN2)
using a modified version of the NGN2 lentiviral inducible vector system (single vector
pLV TRET hNgn2 UBC BSD T2A rtTA3). The detailed description about protocol,
reagents and media composition is available in Dhingra et al. [50].

Briefly, stable NGN2 smNPC are grown for six days in expansion medium N2B27
supplemented with CHIR99021 (CHIR) 3 µM, Purmorphamine (PMA) 0.5 µM and L-
ascorbic acid 2-phosphate magnesium (AA) 64 mg/l. For differentiation, cells are plated
(80,000 cells/cm2) onto Poly L-orithine and laminin coated plates in N2B27 medium
supplemented with doxycycline (dox) at 2.5 µg/mL, and 2 µM DAPT. On day 4 of
differentiation, transfection was performed in n=3 replicate plates using lipofectamine
RNAiMax (ThermoFisher Scientific) with a final concentration of miRNA mimic and
inhibitors (miR-19b-3p and miR-1505p mimics and inhibitors from Qiagen and miR-
193a-3p mimic and inhibitor from ThermoFisher Scientific) in the range of 5 to 10 nM
as per the manufactures’ guidelines along with their corresponding controls. Next day
(day 5 of differentiation), the complete media was changed with N2B27 media sup-
plemented with dox, 10 ng/mL brain-derived neurotrophic factor (BDNF), 10 ng/mL
glial cell-derived neurotrophic factor (GDNF), 10 ng/mL neurotrophic factor 3 (NT-3),
1 µg/mL Laminin, and 10 µM DAPT. Thereafter, half media was changed on day 8 of
differentiation. On day 11, cells were gently washed with PBS and processed for RNA
isolation .

hIPS-derived microglia and miRNA mimics and inhibitors transfection

hiPSCs were differentiated as previously described (van Wilgenburg et al, 2013 [198]).
In brief, 3 x 106̂ iPSCs were seeded into an Aggrewell 800 well (STEMCELL Tech-
nologies) to form embryoid bodies (EBs), in mTeSR1 and fed daily with medium plus
50ng/ml BMP4 (Miltenyi Biotec), 50ng/ml VEGF (Miltenyi Biotec), and 20ng/ml SCF
(RD Systems). Four-day EBs were then differentiated in 6-well plates (15 EBs/well)
in X-VIVO15 (Lonza) supplemented with 100ng/ml M-CSF (Miltenyi Biotec), 25ng/ml
IL-3 (Miltenyi Biotec), 2mM Glutamax (Invitrogen Life Technologies), and 0.055mM
beta-mercaptoethanol (Thermo Fisher Scientific), with fresh medium added weekly. Mi-
croglial precursors emerging in the supernatant after approximately 1 month were col-
lected and isolated through a 40um cell strainer and plated in N2B27 media supple-
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mented with 100 ng/ml M-CSF, 25 ng/ml interleukin 34 (IL-34) for differentiation.
Thereafter, the media is reshred every 2 days supplemented with 100 ng/ml M-CSF, and
25 ng/ml IL-34. The cells were cultured for additional 6 days with media refresh every
2 days. On day 7 of maturation, transfection was performed in n=3 replicate plates us-
ing lipofectamine RNAiMax with a final concentration of miRNA mimics and inhibitors
in the range of 5 to 10 nM as per the manufactures’ guidelines along with their corre-
sponding controls (miR-19b-3p and miR-1505p mimics and inhibitors from Qiagen and
miR-193a-3p mimic and inhibitor from ThermoFisher Scientific). Next day complete
media was refreshed. On day 11, cells were gently washed with PBS and processed for
RNA isolation.

Tissue was homogenized in chilled hypotonic buffer (Tris- HCL 50mM pH 7.5, KCl
100mM, MgCl2 12mM, Nonidet-P40 1%, DTT 1mM (ThermoFischer), RNAse Out
200U (ThermoFischer), Protease Inhibitor (Roche) with a dounce tissue grinder in ice.
After 5 minutes centrifugation at 1000g at 4°C supernatant was used for transcriptomic
and proteomic experiments, while the pellet containing nuclei was reserved for epige-
nomics analysis.

3.5.2 Genetic analysis

Genomic DNA was isolated from 50 mg of GFM frozen brain tissue by using the Qiamp
DNA mini kit (Qiagen) following the manufacturer protocol. DNA concentration and
purity were assessed by nanodrop measurement. DNA integrity was evaluated by loading
100 nanogram per sample on a 0,8% agarose gel and comparing size distribution to a
size standard. Presence of C9orf72-HRE in postmortem brain tissues and hIPS cells was
confirmed by primed repeat PCR according to established protocols. Reported mutations
for MAPT and GRN were verified by sanger sequencing.

3.5.3 Transcriptomic procedures

RNA isolation from human brain tissue

Total RNA for CAGE-seq and RNAseq was isolated from ±100mg of frozen brain tis-
sue with TRIzol reagent (Thermo Fischer Scientific) according to the manufacturer rec-
ommendation, followed by purification with the RNeasy mini columns (Qiagen) after
DNAse treatment.

Total RNA for smallRNA-seq was isolated from frozen tissue using the TRIzol reagent
(ThermoFischer Scientific). After isopropanol precipitation and 80% ethanol rinsing
RNA pellet was resuspended in RNAse free water and up to 10 micrograms of RNA
was incubated with 2U of Ambion DNAse I (ThermoFischer) at 37°C for 20 minutes.
DNA-free RNA samples were then further purified by phenol-chloroform-isoamyl-alchol
extraction followed by ethanol precipitation.
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RNA isolation from hIPS-derived NGN2 neurons

At day 11 of NGN2 driven differentiation hIPS-neurons were carefully rinsed with PBS
and lysed in TRIzol LS reagent (ThermoFischer Scientific) according to the manufac-
turer recommendation. Further DNAse treatment and purification were carried out as
described for the total RNA purification for smallRNAseq

RNA QC

For each RNA sample, RNA concentration (A260) and purity (A260/280 and A260/230)
was determined by Nanodrop measurement and RNA integrity (RIN) was assessed on a
Bioanalyser 2100 system and/or Tape station 41200 (Agilent Technologies Inc.)

CAGE-seq libraries

CAGE-seq libraries were prepared from 5 micrograms of RNA from frozen brain tissues
according to a published protocol [188]. Libraries were sequenced on a HiSeq 2000
and/or HiSeq2500 on a 1x50 bp single read flow cell (Illumina) at an average of 20M
reads/sample (I need to double check this value..)

RNAseq libraries

RNAseq libraries were prepared from 1 microgram of total RNA from frozen brain tissue
and IPS-derived neurons using the TruSeq Stranded Total RNA with Ribo-Zero Gold kit
(Illumina) according to the protocol specifications. RNAseq libraries from brain tissue
were sequenced on a Hiseq2500 and HISeq4000 on a 2x100 bp paired end (PE) flow
cell (Illumina) at an average of 100M PE/sample. RNA seq libraries from IPS-derived
neurons were sequenced on a 300 cycles flow cell on a NextSeq550 sequencer (Illumina)
at an average of 50M PE reads/sample

smallRNAseq libraries

Small RNA-sequencing was divided into two different parts for technical reasons, pro-
cessed at the DZNE in Tübingen and Göttingen. For the Tübingen part, smallRNAseq
libraries from frozen tissue and IPS-derived neurons were prepared starting from 2 mi-
crograms of total RNA using the Nextflex Small RNA-seq kit v3 (Bioo Scientific). Li-
braries were sequenced on a NextSeq550 on a 75 cycles flow cell. The data generated
in Göttingen was produced using the NEBNext Small RNA Library Prep Set from New
England Biolabs Inc.
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Methylation assay

To assess the methylation status of over 850000 CpG sites in promoter, gene body and
enhancer regions we have used the MethylationEPIC bead chip arrays (Illumina). Bisul-
fite conversion of genomic DNA, genome amplification, hybridization to the beadchips,
washing, staining and scanning procedure was performed by Atlas Biolabs (Atlas Bio-
labs, Berlin, Germany). Cases and controls DNAs were distributed randomly across each
array.

HumanBase Module Analysis

Functional gene modules were generated using the HumanBase tool at: https://hb.flatironinstitute.org/.
We split DEGs into up- and down-regulated genes and generated modules for the sepa-
rated list with HumanBase. Modules were then downloaded for further analyses.

RNA-seq processing and analysis

Raw FastQ files were processed using the RNA-seq pipeline from nf-core (nf-core/rnaseq
v1.3) [59], with trimming enabled. Gene quantification was subsequently done using
Salmon (v0.14.1) [146] on the trimmed FastQ files. Alignment and mapping were per-
formed against the human genome hg38. DESeq2 (v.1.26.0) [119] was used to perform
differential expression analysis. We corrected for the covariates gender and PH-value.
Genes were considered differentially expressed when having a Benjamini-Hochberg cor-
rected P-value below 0.05.

Cell type deconvolution and filtering

We performed cell type deconvolution on the RNA-seq data using Scaden [125]. For
training we used the human brain training dataset used in the Scaden publication. Each
ensembl model was trained for 5000 steps. To filter differentially expressed genes for
false positives caused by cell composition bias, we first calculated the correlation of
gene expression with cell type fraction.Then, we calculated a cell type specificity score
as defined in Skene et al. [178] for each gene available in the scRNA-seq dataset from
Darmanis et al. [46]. We filtered out all genes that had a specificity score of at least 0.5
and a positive correlation of at least 0.4 with the cell type fractions of the most specific
cell type. Relative changes in cell type composition were quantified by first calculating
the average fractions of a cell type for all groups and then calculating the procentual
change of cell fractions compared to the average control fractions. Functional module
detection was done by dividing DEGs into up- and down-regulated genes and supplying
these separately to HumanBase [69]. We selected ‘nervous system’ as tissue.
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Cell type enrichment analysis

We performed cell type enrichment analysis for several genesets using the EWCE R
package [179]. Cell type specificity of genes was calculated from the single-cell RNA-
seq cortex dataset of Darmanis and colleagues [46]. EWCE analysis was done following
instructions from https://github.com/NathanSkene/EWCE.

CAGE-seq processing and analysis

Sequencing adapters and barcodes in CAGE-seq FastQ files were trimmed using Skewer
(v.0.1.126) [87]. Sequencing artefacts were removed using TagDust (v1.0) [109]. Pro-
cessed reads were then aligned against the human genome hg38 using STAR (v.2.4.1)
[52]. CAGE detected TSS (CTSS) files were created using CAGEr (v1.10.0) [70]. With
CAGEr, we removed the first G nucleotide if it was a mismatch. CTSS were clustered
using the ‘distclu’ method with a maximum distance of 20 bp. For exact commands used
we refer to the reader to the scripts used in this pipeline: https://github.com/dznetubingen/cageseq-
pipeline-mf.

Transcription factor activity analysis

To identify candidate regulatory transcription factors, we first performed differential ex-
pression analysis with all CAGE-seq clusters (see RNA-seq analysis). Then, we ex-
tracted the sequence 600 bp up-stream and 300 bp downstream around all detected
clusters. We used Homer [75] to look for significant TFBS enrichment in the regions
around up- and down-regulated clusters. When calculating enrichment, we considered
all extracted regions that are not part of the set of interest as background. The complete
pipeline can be found at https://github.com/KevinMenden/tf-activity.

smRNA-seq processing and analysis

After removing sequencing adapters, all FastQ files were uploaded to OASIS2 [153]
for analysis. Subsequent differential expression analysis was performed on the counts
yielded from OASIS2, using DESeq2 and correcting for gender and PH-value, as was
done for the RNA-seq data. Additionally, we added a batch variable to the design matrix
to correct for the two different batches of this dataset. For the target prediction analysis,
we first downloaded all targets from mirBase [103]. Then, we correlated the expression
of miRNAs with their predicted targets using matching samples from the RNA-seq data.
We removed all predicted targets with a correlation above -0.4, thus only considering
miRNA-target pairings with high negative correlation.
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Methylation data processing and analysis

The Infinium MethylationEPIC BeadChip data was analyzed using the minfi R package
[12]. We removed all sites with a detection P-value above 0.01, on sex chromosomes
and with single nucleotide polymorphisms (SNPs). Data normalization was done using
stratified quantile normalization. Sites with a standard deviation below 0.1 were con-
sidered uninformative and filtered out, to increase detection power. Surrogate variable
analysis [112] was performed to determine confounding factors. Differential methyla-
tion analysis was done using the limma package [159] and controlling for the detected
surrogate variables. Sites with a Benjamini-Hochberg [24] adjusted P-value below 0.05
were considered differentially methylated.

Age prediction

We predicted the biological age of donors using the methylation data and the Wenda al-
gorithm [73]. Training data was kindly provided by the authors of Wenda. We subsetted
the data for CpG sites found in our data (11,729) sites and performed the prediction as
described at https://github.com/PfeiferLabTue/wenda.

Analysis of mRNA-seq data from cellular models

This section describes the analysis of mRNA-seq data generated for the miRNA mimic
and inhibitor experiments and the iPSC-derived neurons from patients with mutations
in MAPT, GRN or C9orf72. FastQ files were mapped and gene counts quantified us-
ing Salmon and differential expression analysis was performed with DESeq2 (see post-
mortem brain RNA-seq analysis). DEGs were examined for pathway enrichment using
go:Profiler. For iPSC-derived neurons from patients with mutations in GRN, DEGs were
additionally submitted to HumanBase to identify deregulated functional modules.

Assessment of degeneration

For assessment of neurodegeneration, HE stained paraffin sections of the frontal and
temporal cortex were graded as absent (0), mild (1), moderate (2) and severe (3) based
on the presence of spongiosis, neuronal loss and gliosis.
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3.6 Supplementary Material

Figure 3.9: Pathway enrichment analysis of up- and down-regulated genes in FTD-
MAPT and FTF-GRN. Shown are the 50 most significantly enriched gene ontology bio-
logical processes. Node size corresponds to genes in the respective pathway, node color
corresponds to the multiple-testing adjusted P-value.
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Figure 3.10: Cell composition and top differentially expressed genes in FTD. A Cell
composition of individual samples as predicted by Scaden divided by disease group.
Cell types are depcited in different colors. B The DEGs with the highest fold-changes
are shown for FTD-C9orf72, FTD-GRN and FTD-MAPT (RNA-seq data).

Figure 3.11: Expression values of selected genes in iPSC-derived neurons from FTD
patientes carrying mutations in GRN, MAPT or C9orf72.
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Figure 3.12: The glutamatergic synapse pathway in FTD (KEGG). A, B, C Shown are
the average log fold-changes of genes corresponding to nodes in the KEGG pathway
for FTD-GRN, FTD-MAPT and FTD-C9orf72, respectively. Genes were not filtered for
significant differential expression.
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Figure 3.13: Fold-changes of genes in immune system pathways. A Fold-changes of
genes of the NF-kappa B signaling pathways. B Fold-changes of genes of the TNF-
signaling pathway.
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Module Top terms (max 5) Genes Terms

M1

mitochondrion organization,
NADH dehydrogenase complex assembly,
mitochondrial respiratory chain complex I assembly,
mitochondrial respiratory chain complex assembly,
generation of precursor metabolites and energy

538 201

M2

monovalent inorganic cation transport,
potassium ion transmembrane transport,
regulation of cation transmembrane transport,
cellular potassium ion transport,
potassium ion transport

577 85

M3

protein polyubiquitination, dephosphorylation,
protein modification by small protein removal,
peptidyl-serine modification,
regulation of proteasomal protein catabolic process

791 151

M4

respiratory chain complex IV assembly,
cytochrome complex assembly,
cellular respiration, energy derivation by
oxidation of organic compounds,
mitochondrion organization

28 15

M5

epithelial cilium movement involved in determination of
left/right asymmetry, epithelial cilium movement,
striated muscle contraction, motile cilium assembly,
inner dynein arm assembly

287 8

M6 epithelial cell migration, tissue migration, epithelium migration,
ameboidal-type cell migration, epithelium development 3 5

M7 mitochondrion organization 21 1
Table 3.3: HumanBase FTD-GRN down-regulated modules and associated biological
processes.
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Module Top terms (max 5) Genes Terms

M1

NADH dehydrogenase complex assembly,
mitochondrial respiratory chain complex I assembly,
mitochondrial respiratory chain complex assembly,
cellular respiration, mitochondrion organization

49 49

M2 protein stabilization, regulation of protein stability 2 2

M3
regulation of RNA splicing,
nucleocytoplasmic transport,
nuclear transport, RNA splicing

3 4

M4

positive regulation of heterotypic cell-cell adhesion,
negative regulation of lipid catabolic process,
negative regulation of catabolic process,
regulation of heterotypic cell-cell adhesion,
regulation of lipid catabolic process

53 50

M5

carboxylic acid transport,
organic acid transport,
microtubule organizing center organization,
establishment of organelle localization,
organic anion transport

13 10

Table 3.4: HumanBase FTD-MAPT down-regulated modules and associated biological
processes.
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Module Top terms (max 5) Genes Terms

M1

neutrophil migration,
neutrophil chemotaxis,
granulocyte migration,
granulocyte chemotaxis,
leukocyte migration

293 135

M2

response to hormone,
response to prostaglandin D,
cellular response to prostaglandin D stimulus,
endocytosis,
canonical Wnt signaling pathway

250 334

M3

symbiont process, viral process,
regulation of symbiosis, encompassing mutualism
through parasitism,
positive regulation of I-kappaB kinase/NF-kappaB
signaling, regulation of viral process

308 360

M4

endothelial cell differentiation,
I-kappaB kinase/NF-kappaB signaling,
endothelium development,
cellular response to tumor necrosis factor,
regulation of endothelial cell differentiation

276 170

M5

endocrine system development,
adrenal gland development,
urogenital system development,
renal system development,
epithelium development

197 246

M6

T cell activation via T cell receptor contact with antigen
bound to MHC molecule on antigen presenting cell,
T cell activation involved in immune response,
leukocyte cell-cell adhesion,
lymphocyte activation involved in immune response,
lymphocyte activation

19 30

M7

bicellular tight junction assembly,
apical junction assembly, cell-cell junction assembly,
cell junction assembly,
cell-cell junction organization

8 11

Table 3.5: HumanBase FTD-GRN up-regulated modules and associated biological pro-
cesses.
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Module Top terms (max 5) Genes Terms

M1

pantothenate metabolic process,
Fc receptor signaling pathway,
vitamin metabolic process,
cilium organization, cilium assembly

139 59

M2

positive regulation of cell migration,
positive regulation of cellular component movement,
positive regulation of cell motility,
transmembrane receptor protein tyrosine kinase
signaling pathway,
positive regulation of protein kinase B signaling

52 124

M3

epithelial cell differentiation,
endothelial cell differentiation,
endothelium development, epithelium development,
regulation of T cell receptor signaling pathway

48 77

M4

positive regulation of ERK1 and ERK2 cascade,
collagen metabolic process,
regulation of ERK1 and ERK2 cascade,
ERK1 and ERK2 cascade,
formation of primary germ layer

24 68

M5 hormone metabolic process,
regulation of hormone levels 9 2

M6

transmembrane receptor protein tyrosine kinase
signaling pathway, regulation of cell morphogenesis,
vascular endothelial growth factor receptor signaling
pathway, regulation of blood pressure,
cellular response to vascular endothelial growth factor
stimulus

52 50

M7

response to insulin,
odontogenesis of dentin-containing tooth,
smoothened signaling pathway,
response to glucocorticoid,
response to corticosteroid

61 43

M8
endocytosis, import into cell,
response to organonitrogen compound,
response to lipid

7 4

Table 3.6: HumanBase FTD-MAPT up-regulated modules and associated biological pro-
cesses.
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Chapter 4

Regional transcriptional patterns in
FTD

Disclaimer

This contents of this chapter are not published, a manuscript is under preparation. The
idea for this chapter came from Peter Heutink and me. All analyses in this chapter have
been done by me.

4.1 Abstract

Most studies on FTD focus on the frontal and temporal lobes, which are the most af-
fected brain regions in this disease. Studying other brain regions, even if seemingly not
affected, can yield valuable additional information. Here, we have analysed CAGE-seq
data from seven different brain regions of FTD patients with mutations in GRN, MAPT,
or C9orf72 and healthy controls. Using our transcriptomic data, we identified the cau-
date and putamen as regions with high transcriptional aberrations, additional to frontal
and temporal lobes and the cerebellum as being most affected in FTD-C9orf72. Using
gene co-expression analysis, we have identified region- and cell type-specific modules
that are correlated with FTD or subtypes of it. Among them, we identified a microglia-
specific inflammatory module that is highly associated with FTD-GRN and likely drives
the neuroinflammation that is specific for this FTD subtype. We furthermore identified
an FTD-MAPT associated module that is involved in microtubule function and might
therefore be unique to FTD-MAPT. Examination of blood vessel-associated modules re-
vealed up-regulation of endothelial cell specific genes in almost every region and disease
subtype and identified LAMB2 as hub gene with potentially important function for this
module. To our knowledge, our studies depicts the first transcriptional study of seven
different brain regions and three different disease subtypes in FTD. Our results there-
fore provide novel insights into regional vulnerability in FTD and furthermore highlights
several potential disease mechanisms.
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4.2 Introduction

As outlined in the previous sections, the precise molecular mechanisms underlying FTD
is a matter of active research. Apart from mechanisms at the cell level, it remains un-
clear why the frontal and temporal lobes are especially vulnerable to FTD. Indeed, the
selective vulnerability of specific brain regions and cell types in many neurodegenerative
disorders is actively researched and not fully understood [63]. Moreover, because most
studies in neurodegenerative disease research are restricted to post-mortem human brain
tissue or animal models, we lack knowledge about disease development and progression
over time, starting from earliest stages. Recent studies have shown that atrophy in FTD
spreads via neuronal connections to other brain regions, starting from epicenters [34].
Given the connectivity of the brain, it can therefore be assumed that many brain regions
in FTD are indeed affected, albeit not as strong as the frontal and temporal lobes. To
advance our understanding of FTD, it is therefore necessary to expand research activities
beyond frontal and temporal lobes, and determine why other brain regions are less or not
at all affected by neurodegeneration.

Here, we started to address these questions with the help of Cap Analysis of Gene Ex-
pression sequencing (CAGE-seq) data from the RiMod-FTD project of seven different
brain regions (frontal, temporal and occipital lobes, hippocampus, putamen, cerebellum,
caudate). The data stems from post-mortem human brain tissue samples collected from
FTD patients with mutations in MAPT, GRN and C9orf72 and healthy controls. CAGE-
seq can be used to study transcription start sites (TSSs), enhancers and gene expression.
As frontal and temporal lobes suffer from major neurodegeneration in end-stage FTD,
we reasoned that other brain regions could be used as proxies to earlier disease stages
and help to advance our understanding of regional expression differences in FTD sub-
types. Furthermore, region-specific gene expression can be measured and examined for
disease-relevance. Finally, due to the increased sample size and heterogeneity of this
dataset, we reasoned that it can be ideally used to apply weighted gene correlation net-
works analysis (WGCNA) [108]. Using WGCNA we have generated region and disease
specific transcriptional modules in FTD with evidence from multiple brain regions. We
have investigated these modules for their cellular functions and specificity to different
regions, cell types and disease subtypes. Using these methods, we have identified sev-
eral genes, modules and pathways that are of particular interest in FTD and promising
subjects for further experimental studies.
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4.3 Results

4.3.1 Transcriptional dysregulation is not restricted to frontal and
temporal lobes in FTD

We performed CAGE-seq on samples from seven different brain regions: frontal, tempo-
ral and occipital lobes, hippocampus, caudate, putamen and cerebellum. Because frontal
and temporal lobes are most affected in FTD, data collection was focused on these re-
gions, resulting in the highest sample numbers (58 and 64, respectively, Fig. 4.1A). For
all other regions between 21 and 28 samples were processed. All data was processed and
mapped to the human genome (Methods), with subsequent identification of CAGE-seq
tag clusters. Analysis of the genomic origins of tag clusters revealed that over 60% of
clusters are located in the promoter region of genes, 7.4% at the 5’-UTR, 10.1% in exons
and the remaining peaks at introns, the 3’-UTR or intergenic regions (Fig. 4.1B). As
the prime interest of our study was in gene expression, we translated CAGE-seq clus-
ter counts to gene expression by assigning counts to the closest annotated gene with the
maximal distance of 3kb (Methods). To get an initial overview of transcriptomic diver-
sity across regions and groups, we performed principal component analysis (PCA) after
normalization and variance stabilization with DESeq2 [119]. Using all samples and col-
oring by region it becomes apparent that the cerebellum is highly different compared to
the other brain regions (Fig. 4.1C). When performing PCA separately for each region,
controls seem to cluster together in most regions except the occipital lobe, indicating
transcriptomic aberrations in FTD across many regions (Fig. 4.1D). The cerebellum re-
gional PCA contains two clusters that cannot be resolved by disease groups.

We next performed differential expression analysis, comparing FTD disease groups against
controls for every region separately. As a word of caution we want to highlight that, ow-
ing to diverging and partly limited sample numbers for different regions, a direct compar-
ison of transcriptomic changes between regions has to be considered carefully. For FTD-
MAPT and FTD-GRN we detected the highest numbers of differentially expressed genes
(DEGs) in the frontal and temporal regions (Fig. 4.1E). Interestingly, the largest number
of DEGs for FTD-C9orf72 was detected in the caudate, followed by the cerebellum. The
temporal lobe contains more DEGs (3378) than the frontal lobe (2828) in FTD-MAPT,
which is in accordance with current knowledge, as this region is typically stronger af-
fected in FTD-MAPT. The highest number of DEGs overall are observed for FTD-GRN.
In all groups, we observed high numbers of DEGs in the putamen, indicating vulnerabil-
ity of this region in FTD. While the hippocampus contains the highest number of DEGs
in FTD-MAPT, the caudate is stronger affected in FTD-GRN and FTD-C9orf72, sug-
gesting potential selective regional vulnerability of these regions to Tau-pathology and
TDP-43-pathology, respectively.
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Figure 4.1: Principal component and differential gene expression analysis from CAGE-
seq gene expression data. A Number of samples for each disease group and brain region.
B Annotated features near CAGE-seq peaks. C PCA plot of all regions. D Region-wise
PCA plots colored by disease group. E Number of differentially expressed genes in each
disease group and region.

We then performed pathway enrichment analysis using go:Profiler [155] to identify
cellular functions that are distinctly affected in specific regions, disease groups, or both.
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Due to the large number of different comparisons, we can only highlight selected en-
richment results here. For conciseness, we will furthermore only discuss gene ontology
biological processes (GO:BP) here. In frontal and temporal lobes, we observe strong dys-
regulation of neural system related pathways in FTD-MAPT and FTD-GRN, as well as
cellular transport, extracellular matrix and metabolic processes, while we only detected
dysregulation of collagen metabolic processes in FTD-C9orf72 for these regions. The
large numbers of DEGs and strong apparent dysregulation of neuronal system pathways
is likely caused in part due to the prominent neuronal loss in frontal and temporal lobes.
In the caudate, autophagy and metabolic processes are dysregulated in FTD-C9orf72 and
neuronal system pathways in FTD-GRN, while we could not find a significant GO:BP
term for FTD-MAPT. FTD-C9orf72 is the only group with enriched terms in the cerebel-
lum (metabolic processes). Metabolic and autophagy processes are dysregulated in the
hippocampus of FTD-GRN patients, and cellular component organization and cilium as-
sembly in FTD-MAPT patients. We detected enrichment of localization for FTD-GRN
as the only enriched term in the occipital lobe. Synaptic signaling pathways are dys-
regulated in the putamen of FTD-GRN patients, while cellular component organization
pathways are dysregulated in FTD-MAPT patients.

Clearly, transcriptomic aberrations in FTD are not merely limited to the frontal and tem-
poral lobes, which are mainly affected by neurodegeneration. Considerable numbers of
DEGs could be detected in several regions and FTD subtypes. This suggests that, at
least in the disease end-stage, changes in transcriptional regulation are abundant across
the whole brain in FTD. Interestingly, especially autophagy pathways seem to be dys-
regulated in several brain regions. Autophagy is known to play important roles in many
neurodegenerative diseases and also in FTD [49]. It is therefore tempting to speculate
that dysfunctional autophagy could be an early event in disease progression, as observed
here in many seemingly un- or weakly-affected brain regions.

4.3.2 Regional and disease specific co-expression modules in FTD
To better understand regional differences and to find key genes involved in determining
FTD-subtype specific regional vulnerability, we performed weighted gene correlation
network analysis (WGCNA) using all 239 CAGE-seq samples. After merging highly
correlated modules (see Methods) we detected 23 co-expression modules across all sam-
ples and regions (Fig. 4.2A). We could find modules significantly associated with every
region and disease phenotype (Fig. 4.2B). The strongest positive association was de-
tected for the cerebellum-specific module greenyellow, which most likely represents the
distinct transcriptional programs in this brain region. Several modules are significantly
associated with FTD and FTD subtypes. For instance, the lightcyan module is associ-
ated with FTD-MAPT, the brown module with FTD-GRN and the brown4 module with
FTD-GRN and FTD-C9orf72.
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Figure 4.2: WGCNA of 239 CAGE-seq expression samples across different brain re-
gions. A Gene-dendrogram generating by WGCNA including module colors before
and after merging. B Module-trait association matrix. Non-significant associations are
marked in grey, significant associations are colored from dark (negative association) to
light (positive association). C Pathway enrichment of modules, with the negative log-
arithmized adj. P-value on the x-axis and the 3 most significantly enriched biological
processes (BPs) for each module on the y-axis. Circles are sized according to number of
BP member genes and colored according to different modules for easier visual inspec-
tion. D EWCE cell type enrichment analysis of modules.

The lightsteelblue1 (LS1) module is positively associated with frontal and temporal
lobes and negatively with FTD, which suggests that it might reflect neurodegeneration
in these regions. This was supported by pathway enrichment analysis, which revealed
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neuronal system related biological processes (BPs) as highly enriched in this module
(Fig. 4.2C). Other significant pathway enrichments include extracellular matrix organi-
zation and blood vessel development for darkgrey (DG) and paleturquoise (PT) modules,
which are both positively associated with FTD and the temporal lobe. The FTD-GRN
specific mediumpurple3 (MP3) module is highly enriched for immune system pathways,
highlighting the strong immune system component in FTD-GRN. Intriguingly, the causal
gene GRN is a member of this module, supporting the idea that the initial mutation in
GRN is driving the observed dysregulation. The darkolivegreen (DOG) module, which
is associated with FTD-MAPT, is highly enriched for cilium organization and assembly,
which are microtubule-associated processes and might therefore indicate a connection
to the causal MAPT mutation, as MAPT mutations can lead to destabilization of micro-
tubules. Another FTD-MAPT associated module, lightcyan, is enriched for processes
that are involved in protein transport. Other detected significant enrichments include cel-
lular respiration (darkturquoise), metabolic processes (gray), cell-cell signaling (pink),
cellular response to stress (royalblue), myelination (yellow) and RNA processing (yel-
lowgreen). The causal genes MAPT and C9orf72 are members of the LS1 and greenyel-
low modules, respectively, which are both not exclusively associated with these disease
subgroups. As mutations in MAPT and C9orf72 act via complex mechanisms, and not
solely by aberrant expression levels, it is reasonable to assume that co-expression anal-
ysis will not necessarily associate these genes with the disease-driving modules. FTD-
causing GRN mutations, on the other hand, directly act on expression levels, making
the FTD-GRN associated MP3 module an interesting target for studying causal disease
mechanisms in FTD-GRN.

Co-expression modules detected by WGCNA can be cell type-specific, as cell com-
position changes across samples introduce correlation trends among cell type-specific
genes. WGCNA modules can therefore not only be interpreted as functionally connected
gene networks, but cell type-specific gene modules. We performed expression weighted
celltype enrichment (EWCE) [179] analysis to identify enrichment of cell type-specific
genes in modules (Fig. 4.2D). As expected, most modules show significant enrichment
for a certain cell type. The LS1 module is significantly enriched for neuronal specific
genes, which supports the hypothesis that its negative correlation with FTD reflects neu-
rodegeneration. The FTD-GRN specific MP3 module is exclusively enriched for mi-
croglial genes, and to a lesser extend endothelial genes, suggesting that the strong im-
mune component in FTD-GRN is driven by microglia, which are also the cell type with
the strongest expression of GRN. The blood vessel development-associated PT module
is enriched for endothelial cells, astrocytes and oligodendrocyte precursor cells (OPCs).
The lightcyan module, which is mainly specific to FTD-MAPT, is exclusively enriched
for endothelial-specific genes.

109



Chapter 4 Regional transcriptional patterns in FTD

4.3.3 Regional module activity is partly subtype specific

We next wanted to examine how the activity of modules changes across different brain
regions and disease subtypes compared to healthy individuals. While frontal and tem-
poral lobes are mainly affected in FTD, we hypothesized that other regions could be
affected by neurodegeneration to a lesser extent, possibly serving as approximations to
an earlier state of the disease. This idea was built mainly on recent studies, which have
shown that neurodegenerative diseases spread from epicenters to affect other areas of the
brain (3). To compare module activity across brain regions, we calculated the average
module-wise gene expression and used the average across samples for visual inspection
(Fig. 4.3A). While average expression profiles cannot capture the complicated intrica-
cies of intra-modular transcriptomes, they can be easily interpreted and allow for direct
comparison between groups.

For many modules, substantial differences of FTD groups to the baseline (controls) are
observable, indicating a systematic change in module activity. For instance, the LS1
module, which we have identified to be associated with neurons and possibly neurode-
generation, has notably smaller activity scores in frontal and temporal lobes for all dis-
ease groups, and to a lesser extent in other brain regions. This indicates that neuronal
pathways are affected across the whole brain in FTD patients, albeit to a substantially
diverging degree. Expression trends of the microglia and FTD-GRN associated MP3
module show strongly increased activity compared to the baseline in temporal and frontal
lobes, slightly increased activity in caudate and occipital lobes, but no increase in other
regions. Interestingly, FTD-MAPT has the highest activity scores for this module in the
hippocampus, and FTD-C9orf72 in caudate and putamen, indicating altered microglial
activity for these FTD subgroups as well, albeit not in the frontal and temporal lobes.
We also observed an increased activity score of the PT module for almost all regions and
FTD subtypes. This module is enriched for genes involved in blood vessel development
and positively associated with FTD, especially with the temporal lobe, pointing towards
an increased activity of angiogenesis-related pathways, similar to what has been recently
observed in an FTD mouse model [25].

For most modules, there is strong correlation between disease groups across different re-
gions (Fig. 4.3B). This shows that regional variability is, for many modules, the biggest
driver of transcriptional differences. However there are also several modules with neg-
ative or weak correlation between groups, which indicates disease group-specific tran-
scriptional trends that are larger than regional differences. One example is the ivory
module, whose activity increases greatly in caudate, putamen and occipital lobe for
FTD-MAPT and FTD-GRN compared to both FTD-C9orf72 and controls (Fig. 4.3B).
The ivory module contains genes involved in apoptosis regulation. Correlation between
module activities reveals some blocks of highly correlated modules (Fig. 4.3C). For
instance, the modules MP3, PT, darkgrey, DOG and darkslateblue are positively corre-
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lated. Another block of high positive correlation is made up by the floralwhite, blue
and darkturquoise modules. Interestingly, the MP3, PT and yellow modules are strongly
negatively correlated with the mentioned modules. The strong positive and negative
between-module correlation can be explained by either overlap in transcriptional regula-
tion, or underlying, latent mechanisms that lead to similar transcriptional patterns. It is
quite likely that abundant neurodegeneration will affect several modules in similar fash-
ion, for example. Similarly, negative correlation between modules might be explained
reciprocal relationships between cellular pathways that are represented by modules.
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Figure 4.3: Module activity trends across regions measured by average module expres-
sion. A Raw module activity scores, colored and divided by groups and smoothed
across samples. B Per-module Pearsons correlation disease group average module ac-
tivity across regions. C Heatmap of Pearson correlation between module activity scores.

4.3.4 TNF up-regulation is specific to frontal and temporal lobes
The MP3 module is strongly and specifically associated with FTD-GRN, enriched for
microglial genes and has the causal gene GRN as member. These aspects highlight the
potential of MP3 to harbour genes and pathways of high relevance to FTD-GRN disease
pathogenesis. Therefore, we determined which genes are driving the high activity in
frontal and temporal lobes and to what extend MP3 activity is increased in other brain
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regions. Module activity of MP3 is highly increased in the frontal and temporal lobes
of FTD-GRN patients and only slightly increased in the caudate and the occipital lobe
(Fig. 4.4A). For the other brain regions, no increase in module activity is detected. Next,
we evaluated module membership and trait significance measurements of genes to detect
potential module hub genes. Candidate genes with high values in both of these metrics
include IL13RA1 and IL10RB, which encode interleukin receptors important for im-
mune system functions, as well as RIPK3, a central protein for the necroptosis cell death
pathway (Fig. 4.4B). The high potential of RIPK3 for being a hub gene indicates its
importance to the module. The necroptosis pathway might therefore be either a driver,
or a highly correlated downstream effect of increased module activity.
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Figure 4.4: Driver genes in the MP3 module. A Module activity of MP3 in FTD-GRN
and controls for all seven brain regions. B Module membership and correlation with the
FTD-GRN trait for genes in MP3. C PPI network of MP3. Node sizes are dependent on
betweeness centrality values. Labels of the genes with the highest BC values are shown,
as well as GRN and its direct neighbors. D PPI network of MP3. Node colors correspond
to log fold-changes in the depicted regions. E Log fold-changes values for selected genes
of MP3 in FTD-GRN. Colors depict different brain regions.

We generated a protein-protein interaction (PPI) network using STRING-DB (Meth-
ods) to identify the most central genes in MP3 from a network perspective. Using the
betweeness centrality (BC) as metric reveals several highly central genes to MP3 (Fig.
4.4C). The gene with the highest BC value is Tumor necrosis factor (TNF), which en-
codes a cytokine with multiple important roles for the immune system. This importance
is captured by the high BC value. Other genes with high BC values include Matrix
metalloproteinase 9 (MMP9), Interleukin 1 beta (IL1B), TYRO Protein Tyrosine Kinase
Binding Protein (TYROBP), among others. Interestingly, while being central to MP3
function, IL1B has negative fold-changes in all brain regions for FTD-GRN, and it is the
most strongly down-regulated gene in MP3 in the frontal and temporal lobes (Fig. 4.4
D E). IL1B is a pro-inflammatory cytokine, of which elevated levels have been reported
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in other neurodegenerative diseases such as Alzheimer’s disease (AD) [77, 174]. It is
therefore surprising to see decreased levels of IL1B in all brain regions of FTD-GRN
patients, especially as FTD-GRN is characterized by increased neuroinflammation (see
also Chapter 3) and all other central genes of the MP3 module are up-regulated. The
decrease of IL1B is particularly strong in regions other than frontal and temporal lobes,
with log fold-changes as low as -4 (hippocampus). In frontal and temporal lobes, the
decrease is less prominent.

The largest up-regulation of MP3 hub genes is observed for frontal and temporal lobes,
followed by the caudate region for several genes (Fig. 4.4E), indicating increased in-
flammation in this region, as well. This fits with the finding of strong transcriptomic
aberrations in this region in FTD-GRN, as we have observed earlier (Fig. 4.1E). Further
confirmation for the hypothesis of vulnerability of the caudate in FTD comes studies
that found atrophy in the caudate and putamen in FTD, with especially high severity in
FTLD-TDP [72].
TNF, however, is only up-regulated in frontal and temporal lobes, and has close to zero
or negative LFCs for all other brain regions (Fig. 4.4E). Given the central role of TNF
in inflammation and cell death, the increased production of TNF in frontal and temporal
lobes might be what causes the strong neurodegeneration in these regions. Other regions,
while also affected by atrophy and partly inflammation, might be protected due to lower
TNF levels. TNF, as a central regulator of neuroinflammation in frontal and temporal
lobes in FTD-GRN, therefore depicts an interesting target for further investigation and
potentially for therapeutic interventions.

4.3.5 DNALI1 is a hub gene of cilium-assembly module DOG in
FTD-MAPT

The DOG module is significantly associated with FTD-MAPT and the hippocampus, and
it is enriched for genes involved in cilium assembly, which is directly linked to micro-
tubules and therefore MAPT. For these reasons, we decided to more closely examine this
module. We used the module membership (MM) and trait correlation (TC, with FTD-
MAPT) metrics computed by WGCNA to identify potential driver genes of the DOG
module. We detected several candidate genes that have high MM values and show sig-
nificant correlation with the FTD-MAPT trait (Fig. 4.5B). We additionally generated a
PPI network using the STRING database [187] (Fig. 4.5C). We removed nodes not di-
rectly connected to the core network and calculated the BC values of all remaining nodes.
Dynein Axonemal Light Intermediate Chain 1 (DNALI1) has the largest BC value and
is among the genes with the highest MM and TC metrics in this module. We therefore
considered this gene to be the best candidate for a module driver- or hub-gene.

As the DOG module is a potentially important module for FTD-MAPT pathogenesis,
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we wanted to assess how module gene expression behaves in regions other than frontal
and temporal lobes. We therefore calculated the log-fold change (LFC) of genes in FTD-
MAPT compared to controls for every region and colored PPI nodes according to LFC
(Fig. 4.5D). The cerebellum network, an apparently unaffected region, shows even dis-
tribution of positive and negative LFC values, and hence no up- or down-regulation.
In all other regions, DNALI1 has a positive LFC, with the highest values in the hip-
pocampus, putamen, frontal and temporal lobes. While there is no strong up-regulation
observable in putamen, caudate and occipital lobe, there are more genes with positive
LFCs compared to negative LFCs, indicating slight up-regulation of module genes. In
hippocampus, temporal and frontal lobes, most genes show highly positive LFC values,
as the DOG module is highly active compared to controls in these regions.

Figure 4.5: A Averaged activity values of DOG across brain regions. B Correlation with
FTD-MAPT trait(y-axis) plotted against module membership for genes of the DOG mod-
ule. C PPI network colored according to LFC of DOG module. Node size corresponds
to betweenness centrality. D PPI networks similar to D, for all different brain regions.

DNALI1 was found to be up-regulated in post-mortem brain tissue from patients with
frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) [128]. An-
other recent study investigated gene expression in the middle temporal gyrus in Alzheimer’s
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disease (AD) [149]. The authors found DNALI1 to be one of 13 genes that are signif-
icantly associated with neurofibrillary tangle (NFT) density. Moreover, DNALI1 was
among the top four genes significantly associated with Braak stage. These studies pro-
vide additional evidence for a potential role of DNALI1 as driver gene in tau pathology.
Further experiments will be necessary to precisely allocate the role of DNALI1 in tau
pathology, and whether DNALI1 should be investigated as a potential drug target.

4.3.6 Blood vessel-associated gene expression is increased in multiple
regions in FTD brains

Next, we dissected the paleturquoise (PT) module, which encompasses 1229 genes and
is enriched for genes involved in blood vessel development (Fig. 4.6C). Genes specific to
astrocytes and endothelial cells are significantly enriched in this module. Interestingly,
average gene expression of the PT module is increased compared to controls in almost
all regions and FTD subgroups (Fig. 4.6A). Solely in the cerebellum and occipital lobe
of FTD-C9orf72 samples we did not detect an increase in expression. In FTD-MAPT
the strongest increase in module activity was observed in putamen and temporal lobe,
followed by hippocampus, frontal lobe and caudate (Fig. 4.6B). The frontal lobe is the
region with the strongest increase in PT module activity in FTD-GRN, followed by the
putamen, occipital and temporal lobes. We observed less strong increases in PT ac-
tivation in FTD-C9orf72, where putamen, caudate, frontal and temporal lobes are the
regions with strongest increase in activity. Notably, the increase in expression of PT
module genes is not restricted to regions with excessive neurodegeneration, as is evi-
dent from the strong increase in the caudate (FTD-MAPT) or putamen (FTD-C9orf72),
for example. Activity of the LS1 module is negatively correlated with activity of the
PT module (FTD-MAPT: r=-0.47, FTD-GRN: r=-0.76, FTD-C9orf72: r=-0.66), albeit
only significantly in FTD-GRN. It is therefore tempting to speculate that increased blood
vessel development is an early feature of FTD, which might precede neurodegeneration
and brain atrophy, as it is observed in regions relatively unaffected by these pathological
hallmarks.

To further characterize the PT module, we generated a PPI network using STRING and
evaluated module genes according to module membership and correlation with FTD. It
becomes evident from the PPI network that the gene epidermal growth factor receptor
(EGFR) is the most central node of the network according to the betweenness centrality
measure (Fig. 4.6C). The EGFR gene has several functions, most importantly it is asso-
ciated with inducing cellular proliferation, making it a prominent drug target in several
cancers [218]. Gene module membership of the PT module is strongly correlated with
FTD trait association (Fig. 4.6D). According to these metrics, EGFR is not among the
top hub genes, indicating it might not function as a module driver gene in FTD, but is
simply very central to module function. Laminin subunit beta 2 (LAMB2) is the gene
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with the highest MM and trait correlation metrics. Average expression values of LAMB2
are increased in every brain region and every FTD subtype compared to levels in controls
(Fig. 4.6E), with statistically significant increases in the majority of comparisons. Typi-
cally, LAMB2 is expressed at very basal levels in the brain compared to almost all other
tissues of the human body, according to expression values from GTEx [1] (Fig. 4.6F).
Elevated LAMB2 expression levels might therefore indeed be a pathological feature of
FTD disease, that is not restrained to the majorly affected frontal and temporal lobes.

Vascular dysfunction is usually not considered as a prominent feature of FTD pathol-
ogy. However, a recent study has identified blood vessel abnormalities in P301L trans-
genic mice, which is a causal FTD mutation [25]. More precisely, the authors found
an increased number of blood vessels in brains of P301L transgenic mice, albeit with
smaller diameter and often with obstructed capillary flow. A different study tried to iden-
tify the causes of regional vulnerability in FTD, and correlated regional gene expression
from the Allen Brain Atlas with brain atrophy in brains from patients with FTD-MAPT,
FTD-GRN and FTD-C9orf72 [6]. Interestingly, the authors found that genes expressed
in endothelial cells, astrocytes and involved in circulatory system development are posi-
tively correlated with atrophy severity. It was previously shown that several brain regions
are hypoperfused in FTD [81, 53]. It is therefore tempting to speculate that vasculature
changes might be directly involved in FTD pathogenesis, opening up a new avenue for
potential remedies.
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Figure 4.6: Expression of blood vessel-associated module PT in different brain regions.
A Module activity changes over baseline in different brain regions for FTD subgroups.
B Protein interaction network of PT module, coloured by LFC in FTD-MAPT. Node size
corresponds to betweenness centrality. C Line Plot of module activity in different brain
regions. D Module membership (x-axis) plotted against correlation with FTD (y-axis) for
the paleturquoise module. E Log2 fold changes of LAMB2 in different brain regions and
disease groups compared to control. Light blue indicates significant deregulation (adj.
P-value < 0.05) F LAMB2 expression (TPM) across multiple tissues (GTEx). Violin
plots corresponding to brain tissue are marked.
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4.4 Discussion

Here, we have analyzed multi-regional human post-mortem brain data from FTD patients
with causal mutations in GRN, MAPT and C9orf72. To our knowledge, this is the first
transcriptomic experiment covering as many regions and different FTD subtypes. The
experiment therefore provides valuable new information about transcriptomic states in
regions other than the frontal and temporal lobes, which are commonly of interest due to
their prime roles in FTD. DE analysis has confirmed that the largest transcriptomic aber-
rations can be observed in frontal and temporal lobes for FTD-GRN and FTD-MAPT.
However, in FTD-C9orf72 the caudate appears to be stronger affected on the transcrip-
tomic level, where we also observed a large number of DEGs for FTD-GRN. Further-
more, the putamen appears to be highly affected in FTD-GRN and FTD-MAPT. These
two regions are anatomically close to each other and to the frontal and temporal lobes. It
is therefore possible that FTD pathology primarily spreads to these regions once frontal
and temporal lobes are affected strong enough. The hippocampus, which is also in close
proximity to caudate and putamen, shows signs of transcriptomic aberrations as well. In
contrary, the occipital lobe and the cerebellum, which are located on opposite sides of the
brain, show almost no signs of transcriptomic aberrations. Our data therefore provides
evidence that FTD pathology spreads to regions close to frontal and temporal lobes and
that caudate and putamen are affected by the disease in end-stage FTD.

Using WGCNA, we have furthermore identified disease- and region-specific co-expression
modules. Strong association of the immune system/microglia module MP3 with FTD-
GRN confirms the increased neuroinflammation in this FTD subtype. Expression of
the necroptosis mediator gene RIPK3 is highly correlated with the MP3 module, which
suggests the necroptosis as a primary or at least important part of apoptosis in FTD-
GRN. Furthermore, while many regions show signs of increased inflammation, the cen-
tral inflammatory gene TNF is only up-regulated in frontal and temporal lobes. It is
therefore tempting to speculate that TNF up-regulation might be the primary driver of
neuroinflammation in frontal and temporal lobes, suggesting this pathways as a promis-
ing target for potential treatments. Unexpectedly, we observed down-regulation of the
pro-inflammatory cytokine IL1B in all brain regions, which is generally known to be
up-regulated in other forms of dementia. It would therefore be interesting to follow up
on IL1B expression and function in FTD.

We have furthermore identified the DOG module as potentially specific to FTD-MAPT
and tauopathy. The module is involved in cilium assembly, thereby linking it to micro-
tubules and MAPT. DNALI1, the hub gene we have identified for this module, has been
significantly associated with NFT density and Braak stage in AD. This link to tau pathol-
ogy provides further evidence for the importance of DNALI1 and the DOG module in
FTD-MAPT. Better characterization of the DOG module and its molecular functions as
well as response to tau pathology are promising avenues to pursue to better understand
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how FTD-MAPT progresses and to find fruitful drug targets.

Finally, we have identified modules involved in blood vessel development that are highly
up-regulated in almost all brain regions in FTD. These findings confirm results from
Chapter 3, where we have also identified evidence of increased blood vessel growth. Us-
ing network analysis, we have identified EGFR and LAMB2 as central genes for the PT
module. Especially LAMB2, which is very lowly expressed in the healthy brain, depicts
a novel candidate gene that might drive FTD pathogenesis. Given evidence from recent
and older studies, we think the involvement of the vasculature system in FTD pathogen-
esis should be explored more deeply. As of yet, there exist very little studies that try
to determine the precise roles of the vasculature in FTD. While it is possible that the
activation of blood vessel-associated genes as observed here is a mere side effect in FTD
pathogenesis, it is important to experimentally verify this.

The biggest limitation of this study is the low number of samples for FTD subgroups
in regions other than the frontal and temporal lobes. Given the high heterogeneity of
the data, the results therefore have to be considered with caution. Nevertheless, our
study provides an important starting point for further experiments that examine interest-
ing brain regions such as the caudate and putamen in more depth. Moreover, we have
identified several interesting co-expression modules and genes that might be of interest
for FTD pathogenesis, and thus provide promising starting points for future studies.

4.5 Methods

4.5.1 CAGE-sequencing and data processing

CAGE-seq libraries were prepared from 5 micrograms of RNA from frozen brain tissues
according to a published protocol [188]. Libraries were sequenced on a HiSeq 2000
and/or HiSeq2500 on a 1x50 bp single read flow cell (Illumina) at an average of 20M
reads/sample.

Sequencing adapters and barcodes in CAGE-seq FastQ files were trimmed using Skewer
(v.0.1.126) [87]. Sequencing artefacts were removed using TagDust (v1.0) [109]. Pro-
cessed reads were then aligned against the human genome hg38 using STAR (v.2.4.1)
[52]. CAGE detected TSS (CTSS) files were created using CAGEr (v1.10.0) [70]. With
CAGEr, we removed the first G nucleotide if it was a mismatch. CTSS were clustered
using the ‘distclu’ method with a maximum distance of 20 bp. Exact commands used
can be obtained from https://github.com/dznetubingen/cageseq-pipeline-mf.

CTSS count tables were then transformed into gene-wise count tables using ChIPseeker
(v.1.20.0) [223]. Peaks were first transformed into BED file format, loaded with ChIPseeker
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as peak file and transformed to a GenomicRanges object. Next, the annotatePeak() func-
tion was used to annotate the peaks, using up- and downstream TSS ranges of 3000
basepairs (bp). The annotated peaks were then transformed to a count table. Thus, every
peak within a distance of 3000 bp up- or downstream of the promoter region of a gene,
was assigned to this gene. The closest gene was used in case of collision. The resulting
gene ×samplecounttablewasused f oralldownstreamanalyses.

4.5.2 Differential gene expression and enrichment analysis.

Differential expression (DE) analysis was performed using DESeq2 [119]. Based on
initial PCA analysis, we removed 5 samples that appeared as outliers. DE analysis was
performed for each region separately, comparing the disease groups to the control group
while controlling for gender.

Pathway enrichment analysis was performed using the R package gprofiler2 (v0.1.9)
[155]. For every DE analysis comparison, we considered genes with Benjamini-Hochberg-
adjusted P-value below 0.05 as significant and tested them for enrichment using the
gostres() function with domain scope ’annotated’. Terms and pathways with a P-valule
below 0.05 were considered as significantly enriched. We specifically considered terms
from the databases GO:BP (Biological Process), KEGG [89] and Reactome [86].

4.5.3 WGCNA analysis

We performed WGCNA analysis using he R package of version v1.69 [108]. As ex-
pression data, the count values were used after transformation with the DESeq2 function
varianceStabilizingTransformation(). This transformation performs normalization of li-
brary sizes and yields approximately homoskedastic data. Next we calculated the gene-
wise variance and removed genes with a variance below 0.1, as we considered them
uninformative. This step removed 874 genes from the analysis. After visual inspection,
we chose a soft threshold power of 10 to calculate the adjacency matrix. After calcula-
tion of the topological overlap matrix and hirerarchical clustering, dynamic tree cutting
was performed using a minimum cluster size of 30. Then, close modules were merged
using a module eigengene dissimilarity threshold of 0.3, which resulted in the final set of
WGCNA modules. Module trait association heatmaps were created using the pheatmap
package. Enrichment analysis was performed as described above using the gprofiler2
package.

Visualization of module expression in brain regions

We used the cerebroViz R package (v1.0) [16] for visualization of module expression in
different brain regions. The average expression value was used to show the general trend
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of module expression. Correlation of modules and activity of modules in heatmaps was
visualized with help of the pheatmap R package (v1.0.12) [101].

4.5.4 Protein interaction network analysis
PPI networks for modules were created using the STRING database [187]. We retained
only interactions with high score (combined score > 0.7) and removed genes discon-
nected from the main network component. Network plots were created and betweeness
centrality calculated using Cytoscape [175].
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Conclusions

The study of neurodegenerative diseases is inherently difficult due to their progressive
development and the brain as affected tissue. To develop treatments for neurodegenera-
tive diseases, we have to develop a precise understanding of the molecular mechanisms
that lead to disease progression and outbreak over long periods of time and that affect
only specific brain regions or neurons. A major hindrance toward this goal is that we can-
not take samples from the brain, such as is possible from cancer tissue, for instance. It
has therefore been extremely difficult to distinguish causes, consequences and bystander
effects. Nevertheless, we have made great progresses in our understanding of increas-
ingly prevalent diseases such as AD and FTD. To a large extent, these progresses can be
attributed to new genomics technologies that enabled researchers to study genomic and
transcriptomic variations and aberrations at high throughput and to acceptable prices,
and to the development of sophisticated computational algorithms that extract knowl-
edge from the generated data. In this thesis, I contributed to the genomics field and the
field of neurodegenerative disease research by developing a novel algorithm for cell type
deconvolution and by analysing FTD-related genomics data to create new hypotheses for
disease mechanisms.

In chapter 2, I have presented a novel algorithm for cell type deconvolution that uses
deep learning and scRNA-seq data to estimate cell type compositions from tissue ex-
pression profiles. While other algorithms for this task existed before, we have developed
a completely different approach to cell type deconvolution, that performs better than
conventional deconvolution algorithms in a variety of scenarios. While regression- and
reference profile-based deconvolution algorithms have been developed almost to their
fullest extent, with little improvements to be hoped for, we have developed an entirely
different approach to the same problem. Our deep learning-based approach, while al-
ready performing equally or better compared to the best deconvolution algorithms, can
likely be improved in further studies. For instance, as we have pointed out in the discus-
sion of chapter 2, domain adaptation methods are likely to increase the performance of
algorithms similar to Scaden. With the rapid progression of the deep learning field it is
furthermore to be expected that new techniques for these algorithms will be developed
that could be leveraged for future deconvolution algorithms. I therefore believe that our
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contribution to the deconvolution field with Scaden is not only the algorithm itself, but
the general idea of it, which I hope will spark new developments in this field that could
lead to even better performance.

In chapter 3 and 4, I have extensively analysed multi-omics data from the frontal lobe
and other brain regions of patients with FTD caused by mutations in GRN, MAPT and
C9orf72. Apart from the concrete analysis results, we have presented the data from
phase 1 of the RiMod-FTD resource, which aims to build a multi-omics resource of data
from post-mortem human brain tissue, longitudinal mouse models and iPSC-derived cel-
lular models. Disease-specific data resources can be extremely valuable assets for the
research community, as has been proven by the ROSMAP project [3], for instance. The
RiMod-FTD resource depicts the first such resource for the field of FTD and will be
extended with additional datasets in the future. We believe that RiMod-FTD will help
many researchers to develop new hypotheses in FTD research and therefore greatly help
to advance the field.

With our integrative analysis of the RiMod-FTD datasets, we could highlight several
molecular pathways and mechanisms of importance to disease subtypes and to FTD in
general. For instance, using the deconvolution algorithm developed in chapter 2 and the
RNA-seq dataset from RiMod-FTD, we could show that excitatory neurons seem to be
primarily affected in FTD. Using the results from the deconvolution analysis, we could
furthermore show striking enrichment of endothelial cells in all FTD subtypes and strong
increase of microglial cell fractions in FTD-GRN. While it is known that microglia play
a more important role in FTD-GRN, we are the first to show evidence for increased cell
fractions using only transcriptomic data. To this day, it is furthermore very unclear what
role the vascular system plays in FTD. Additional to the cell type enrichment from the
deconvolution analysis, we could show in chapters 3 and 4 that pathways involved in
blood vessel development are up-regulated in the frontal lobe and also in most other
brain regions. These results therefore strongly indicate changes of the vascular system
in FTD, and it will be important for future studies to determine whether these are by-
standers of the disease or whether they are involved in the pathogenic process.
Apart from these high-level effects in FTD, we could highlight several TFs and miRNAs
which are likely to play important regulator roles in FTD. We have specifically deter-
mined several TFs that might drive the neuroinflammation in FTD-GRN and therefore
represent potential drug targets. Moreover, we have identified several miRNAs that target
cellular trafficking pathways which we have experimentally verified in cellular models.
By inhibiting important cellular transport mechanisms, these miRNAs likely contribute
to FTD pathogenesis and should therefore be further verified and examined.

In conclusion, with this thesis, I have contributed a new computational algorithm to
the field of bioinformatics and several new hypotheses and insights to the field of FTD
research. I believe that these results will help other scientists to test their own hypotheses
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or to select new research paths to pursue in order to advance our understanding of FTD.
The biology of neurodegenerative diseases is incredibly complex, and it will require nu-
merous other works such as this to completely understand it. However, the increasingly
fast pace in the field of biology, and the astonishing progress made in the last decades and
years, makes me hopeful that effective treatments for FTD and other neurodegenerative
disease are achievable in the near future.
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Abbreviations

AD Alzheimer’s Disease
AGD Argyrophylic grain disease
ALS Amyotrophic lateral sclerosis
ATAC-seq Assay for Transposase-Accessible Chromatin sequencing
CBD Corticcobasal degeneration
CBS Corticobasal syndrome
CCC Concordance correlation coefficient
CPU Central processing unit X
DE Differentially expressed
DEG Differentially expressed gene
DL Deep learning
DMP Differentially methylated position
DNA Deoxyribonucleic acid
DNN Deep Neural Network
EWCE Expression weighted celltype enrichment X
FFNN Feed forward neural network
FTD Frontotemporal dementia
FTLD Frontotemporal lobar degeneration
GEP Gene expression profile
GGT Globular glial tauophathy
GPU Graphics processing unit
ML Machine learning
MLP Multilayer perceptron
MMP Matrix metalloproteinase
MND Motorneuron disease
NCL Neuronal ceroid lipofuscinosis
OLS Ordinary least squares
PBMC Perhipheral blood mononuclear cells
PPA Primary progressive aphasia
PSP Progressive supranuclear palsy
PiD Pick’s disease
RIN RNA integrity value
RMSE Root mean squared error
RNA Ribonucleic acid

129



Abbreviations

RNA-seq RNA-sequencing
SG Stress ganule
SNP Single nucleotide polymorphism
TF Transcription factor
TFBS Transcription factor binding site
WGCNA Weighted gene correlation network analysis
bvFTD behavioural variant FTD
lncRNA long-noncoding RNA
mRNA messenger RNA
miRNA micro RNA
nfvPPA non-fluent variant PPA
scRNA-seq single-cell RNA-sequencing
smRNA-seq small RNA-sequencing
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S. Chen, D. Lall, M. Jin, A. K. M. G. Muhammad, S. Bell, J. Landeros, V. Valen-
cia, M. Harms, M. Arditi, C. Jefferies, and R. H. Baloh. C9orf72 in myeloid cells
suppresses STING-induced inflammation. Nature, pages 1–6, 8 2020.

[125] K. Menden, M. Marouf, A. Dalmia, P. Heutink, and S. Bonn. Deep-learning-based
cell composition analysis from tissue expression profiles. bioRxiv, page 659227,
11 2019.

[126] K. Menden, M. Marouf, S. Oller, A. Dalmia, D. S. Magruder, K. Kloiber,
P. Heutink, and S. Bonn. Deep learning–based cell composition analysis from
tissue expression profiles. Science Advances, 6(30):eaba2619, 7 2020.

[127] Z. A. Miller, K. P. Rankin, N. R. Graff-Radford, L. T. Takada, V. E. Sturm,
C. M. Cleveland, L. A. Criswell, P. A. Jaeger, T. Stan, K. A. Heggeli, S. C. Hsu,
A. Karydas, B. K. Khan, L. T. Grinberg, M. L. Gorno-Tempini, A. L. Boxer, H. J.
Rosen, J. H. Kramer, G. Coppola, D. H. Geschwind, R. Rademakers, W. W. See-
ley, T. Wyss-Coray, and B. L. Miller. TDP-43 frontotemporal lobar degeneration
and autoimmune disease. Journal of Neurology, Neurosurgery and Psychiatry,
84(9):956–962, 9 2013.

143



Bibliography

[128] M. Mishra, T. Paunesku, G. E. Woloschak, T. Siddique, L. Zhu, S. Lin, K. Greco,
and E. H. Bigio. Gene expression analysis of frontotemporal lobar degeneration
of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropatho-
logica, 114(1):81–94, 7 2007.

[129] S. Mizielinska, T. Lashley, F. E. Norona, E. L. Clayton, C. E. Ridler, P. Fratta,
and A. M. Isaacs. C9orf72 frontotemporal lobar degeneration is characterised
by frequent neuronal sense and antisense RNA foci. Acta Neuropathologica,
126(6):845–857, 10 2013.

[130] S. Mohammadi, N. Zuckerman, A. Goldsmith, and A. Grama. A Critical Survey
of Deconvolution Methods for Separating cell-types in Complex Tissues. arXiv,
10 2015.
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[225] A. Zeisel, A. B. Muñoz-Manchado, S. Codeluppi, P. Lönnerberg, G. La Manno,
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