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Abstract 

 
Purpose: To determine age-dependent normative differential threshold values 

for the Octopus 101-instrument and to create a smooth mathematical model 

characterizing the age-dependency and the asymmetry of the hill of vision. 

Methods: Static automated perimetry within the central 30° visual field was 

conducted with the Octopus 101-instrument in 81 eyes of 81 ophthalmologically 

healthy subjects (11 – 12 per decade of age) from 10 to 79 years. To obtain 

threshold values a 4-2-2 stair-casing strategy with 3 reversals was run. The test 

point grid consisted of 68 concentrically arranged points with test point 

condensation towards the visual field centre, representing the approximately 

rotation symmetric 30°-hill of vision. Background luminance was kept constant 

at 10 cd/m2. Thresholds of differential luminance sensitivity (DLS) were 

estimated by the maximum-likelihood method. A smooth mathematical model 

was fitted to the normative data. 

Results: The model fit was satisfactory (R2= 0.74). Co-variables defining the 

model were: age, eccentricity, angle and subject. Total random standard 

deviation was 1.75 dB. The residual standard deviation exceeded 1.75 dB in the 

border region of the 30° visual field, was 1.5 dB within the centre and fell below 

1.25 dB in a ring around the centre. Average thresholds of the visual field varied 

with age like: 2ageageDLS ×−×=
2decade

dB112.0

decade

dB495.0
, which is close to constant 

from 10 to 40 years and declines ever steeper thereafter. The effect of age on 

the DLS in the visual field increased with eccentricity. The greatest drop was in 

the peripheral superior hemifield: At an eccentricity of 25° the superior DLS was 

estimated to be 5.5 dB higher in 10 year olds than in 75 year olds.  

Conclusions: This new smooth model allows to predict age-related normal 

threshold values for any stimulus location within the 30° visual field and thus to 

compute global and local measures of defect like mean defect or p-values for 

any kind of stimulus arrangements. 

Key words: automated static perimetry, visual field, normative values, 

mathematical model. 
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Introduction 

 
The exact knowledge of age-related normative values of differential luminance 

sensitivity (DLS) is an essential prerequisite for any kind of threshold-related 

visual field testing. In order to maximize the diagnostic information benefit, 

optimal test conditions are desired: optimized test point density, spatial 

distribution and number of test point locations. Approaches like fine grid 

perimetry or the interlocking grids like the 30-1 and 30-2 test of Humphrey 

perimeters or the 31 and the 32 programs of the Octopus instrument indeed 

show a high spatial resolution, but do have the considerable disadvantage of an 

expenditure of time [23,66,67]. The rectangular test point arrangements of the 

classic grids, which are predominantly used so far, only inadequately consider 

the pattern of the retinal receptor and ganglion cell distribution [62,77]. 

Furthermore, the visual field centre, representing the foveola with the maximum 

DLS and thus very important diagnostic details are ignored in this type of grid. 

For the detection and follow-up of glaucomatous visual field damages a detailed 

test point arrangement in suspected scotoma regions is desirable. Based on the 

determination of the most frequently affected areas in glaucomatous visual field 

loss, some demands for the most suitable test point arrangement were 

established: test point condensation towards the centre with involvement of 

macula [23,77] test location distribution in the periphery between 20° and 30° of 

eccentricity [68,80] and sufficient test locations in the nasal, superior paracentral 

(Bjerrum ) and blind spot area [25,55,80].  

Perimetric grids with individually condensed stimulus locations in “regions of 

interest” (i.e. at the scotomas borders) are a promising option for an efficient 

delineation and follow-up of glaucomatous visual field loss [59]. An optimized 

grid was initially developed [59-62] on a prototype campimeter (Tübingen 

Computer Campimeter [74]). This test point arrangement was an approach to 

reflect the physiological visual field characteristics (like distribution of 

photoreceptors) as well as to take into account the above-mentioned knowledge 

of glaucomatous visual fields. Due to previous results the included test location 

number of 68 points should be sufficient enough to reach a high precision 
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(sensitivity and specificity) [28]. The great capabilities of TCC, being able to 

offer any stimulus arrangement within the central 30° of the visual field and to 

adapt test point grids to the individual pathology, have been transferred recently 

to the commercially available Octopus 101-perimeter (Haag-Streit Inc., Koeniz, 

Switzerland) [33], requiring a new normative age-dependent data set [41].  

The purpose of this study was to determine age-specific normative values of 

differential luminance sensitivity (DLS) for the Octopus 101-perimeter and to 

describe these by a smooth mathematical model, considering the age-

dependency and quantifying the asymmetry of the hill of vision.  
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Subjects and Methods 

 

Participants 

We examined 81 eyes of 81 ophthalmologically healthy subjects (41 females, 

40 males, ages from 10 to 79 years) with 11-12 individuals per decade. The 

participants were recruited from the general public from the Tuebingen region of 

Germany. They were members of church parishes, senior citizens from 

retirement homes, passers-by in Tuebingen`s pedestrian zone and friends or 

relatives of the employees. They were selected to represent as broad a cross 

section as possible of all social levels. Written informed consent of each 

volunteer was obtained. Each subject underwent an ophthalmic examination 

and had to meet the following inclusion criteria: maximum distance spherical 

ametropia ± 6.00 Dsph, maximum cylindrical ametropia ± 2.00 Dcyl, best 

corrected distance and near visual acuities (Birkhaeuser reading test, 

Birkhaeuser Verlag, Basel) ≥ 1.0 (20/20) for the age group < 60 years, ≥ 0.8 

(16/20) for those aged between 61 to 70 years, and ≥ 0.63 (12/20) for the age 

group > 70 years. All subjects manifested normal LANG(I) stereo test (Lang, 

Forch, Switzerland), equal pupil diameter (isocoria), normal ocular motility (no 

double vision), normal anterior segments (no relevant opacities of central 

refractive media), normal fundus (examination with undilated pupils, after 

perimetry), intraocular pressure (IOP) ≤ 22 mm Hg (air pulse tonometry, 

performed after perimetry), no intraocular trauma or inflammation, no eye 

surgery (except intraocular lens implantation without any known complication), 

no squint, amblyopia, patching, penalization, nystagmus, no hint of visual 

pathway lesions, no manifest strabismus, no relative afferent pupillary defect. 

Exclusion criteria were diabetes mellitus, current arterial hypertension (RR > 

180/90 mmHg) or other systemic diseases, hint of intracerebral pathology, 

drugs potentially affecting reaction time, alcohol, nicotine or caffeine less than 2 

hours before perimetric examination. Leading and non-leading eyes were 

determined with Rosenbach`s fixation test [57], 39 right and 42 left eyes were 

entered into the study. All subjects had a rested, relaxed condition. 



 10 

Approximately 60 % of the participants concluded 1-2 prior perimetric normative 

value testings, before being examined in this study. The other subjects never 

had any perimetric examinations before. All procedures, including the protection 

of the subjects` privacy were in compliance with the Declaration of Helsinki and 

were approved by the local Independent Ethics Committee.  

Persons exceeding an incorrect response rate of 20 % of the false-positive or 

false negative catch trials were excluded from the study.  

 

Technical data and examination procedure 

The Octopus 101-perimeter [33] uses a conventional projection system, the 

cupula radius is 45 cm, background luminance was set to 10 cd/m². White 

stimuli with the standard size of Goldmann III (26`) were used and presented in 

randomised order, stimulus duration was fixed at 100 ms. The interval between 

the stimuli presentations (inter–stimulus interval) was set to 1500 ms. Before 

starting the examination, a short training program containing 10 different target 

locations was presented. To minimize the influence of participants´ fatigue, the 

examination was interrupted every 4 minutes for 2 minutes. The test point grid 

(68 stimulus locations) within the central 30° is shown in Fig.1: Stimuli were 

arranged in a circular, approximately rotation symmetrical order with a test point 

condensation towards the centre. A 4-2-2 dB staircase strategy with 3 reversals 

was run. Regarding quality control, 5% of all stimuli were presented as false-

positive, and 5% as false-negative catch trials [73]. An integrated infrared 

camera was used for fixation control, recording the patient’s eye’s movements 

and blinking. The Octopus 101-perimeter interrupted automatically, if the pupil 

moved outside the predetermined position. When blinking occurred during a 

stimulus presentation, the stimulus was repeated automatically. The examiner 

observed the position of the subject’s eye and fixation behavior and alerted the 

subjects in case of suspected reduced vigilance.  

 

Analyses 

The stimulus within the blind spot was excluded from the evaluation. The 

coordinates of the left eyes were mirrored at the vertical meridian. The two 
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points above and below the blind spot were inside the blind spot in some 

patients. They were excluded, if their DLS was 2 dB less than the DLS of the 

contiguous peripheral points.  

A smooth mathematical model was estimated [46,63] to describe the normative 

threshold values, which allows to predict DLS at any location of the “hill of 

vision”. Modeling the hill of vision was performed, based on the following 

assumptions (see Schwabe [63]): 

“1. The pupil, retina and fovea are round (oval) with a common center. 2. Radial 

cross-sections reveal that the steepest ascent of differential luminance 

sensitivity occurs near the edge of the 30° visual field. 3. On central cross-

sections, the fovea is represented by a sharp peak of different luminance 

sensitivity. 4. The isopters of DLS are more extended in the temporal than in the 

nasal hemisphere, in the inferior than in the superior hemisphere, in the nasal 

than in the inferior hemisphere. 5. Elderly persons show a somewhat reduced 

visual performance. 6. The aging process affects the center and periphery 

differently. 7. Elderly persons suffer relative visual constriction, which results in 

a steeper descent of DLS towards the periphery.” 

Four variables (age, eccentricity, angle and subject) were entered into the 

model. The interaction terms were checked for reasonable magnitude of effect 

via the analysis of variance table (JMP software, version 5.1, SAS Institute Inc., 

Cary NC 2003). This was realized by regarding the sums of squares and the 

significance (inclusion if p < 0.05) of an interaction term and the adjusted R² 

(coefficient of determination, indicating the percentage of the variance of the 

measured values that can be explained by the model). Only those interaction 

terms were included in the model, which increased the adjusted R². If one 

interaction term containing the sine of the angle increased R², the 

corresponding term with the cosine was included, too, and vice versa [46,63]. If 

an interaction of higher order improved the quality of the model, interactions of 

lower orders were incorporated also. 
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The most salient features of the model were captured with fewer parameters to 

develop a further parsimonious model. Occam´s razor was applied by 

elimination of all terms with sums of squares smaller than 15.  
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Results 

 

Participants / Analyses 

Nine of the initially enrolled subjects had to be excluded afterwards due to > 20 

% of false positive catch trials. One of the contiguous blind spot points was 

excluded in 43 subjects as described above.  

 

Estimation of the model 

This model is based on two mathematical methods: Interpolation between the 

test points and approximation of expected values. A detailed description is 

given in the Appendix.  

Model fit can be ruled as satisfactory (R² = 0.74), indicating that the variance of 

predicted values accounts for 74 % of the variance of the measured values. As 

the adjusted R² is equal to R², it can be assumed that no meaningless factors 

were included. RMSE (= Root Mean Square Error), estimating the standard 

deviation (SD), i.e. the intra-individual variation, was 1.426 dB. As local 

threshold was evaluated in 1 dB steps, this standard deviation (SD) is 

acceptable being in the same order of magnitude. The variance components 

were analysed as: 

Variance = (Standard Deviation total)² = (SD total)² = (SD intra)² + (SD inter)² or  

(1.75 dB)² = (1.43 dB)² + (1.01 dB)². 

Total random variance (SD total)² is (1.75 dB)². (SD intra)² is the variance of the 

residual, which is attributable to measurement error and is (1.43 dB)². (SD inter)² 

is the variance attributable to the individual (subject) and is (1.01 dB)². (The 

fractions of the total standard deviation were approximated to the second 

decimal place). The variance of the measurement is approximately twice the 

intra-individual variance. 

The simpler model had R² and adjusted R² = 0.736 each, residual SD = 1.44, 

detailed description is given in the Appendix too. 

 



 14 

Varying precision in the visual field and across ages 

Figure 2 presents the residual standard deviation across the visual field. The 

residual standard deviation is highest in the border region of the 30° visual field 

(residual SD ≥ 1.75 dB), intermediate in the centre (residual SD ≈ 1.5 dB) and 

smallest in a ring around the centre (residual SD ≤ 1.25 dB). In the nasal part of 

the visual field there is a smaller residual standard deviation than in the 

temporal one. In the superior rim region of the visual field, where the position of 

the upper eye lid is becoming relevant, the residual standard deviation comes 

close to 2 dB. The dependence of the residual threshold standard deviation on 

age can be described by the quadratic function:  

SD residual threshold (age) = 1.27665 dB - 
year

dB00314.0
 × age + 

2year

dB00011.0
× age². 

The residual standard deviation of 10 years olds is 1.26 dB and of 79 years olds 

is 1.72 dB. 

 

Ageing 

From the analysis of the recorded threshold data it can be derived that the DLS 

decreases with age in a non-linear way (Fig.3). Average DLS varies with age 

like 2ageageDLS ×−×=
2decade

dB112.0

decade

dB495.0
, which is close to constant from 10 to 

40 years and declines ever steeper thereafter. In order to estimate the DLS 

decrease with age, we computed the derivative of the quadratic function of age 

in the centre. Threshold values of the third decade of life are higher than those 

of first and second decade, especially towards the periphery. Analyzing the 

aging process as a function of location, we find a larger and more rapid pace of 

ageing peripherally (Fig.3/4). 

 

Asymmetry 

Considering the vertical profile section (90°-270°) of the hill of vision (Fig.5), in 

the entire 30° visual field the inferior DLS is higher than in the superior one. 

Asymmetry is increasing towards the periphery (10°: 0.5 dB; 20°: 1.0 dB; 25°: 
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1.3 dB). In the horizontal profile section (0°-180°) of the hill of vision (Fig.5) up 

to an eccentricity of about 20° the DLS is slightly higher in the nasal hemisphere 

than in the temporal one. When exceeding an eccentricity of approximately 20°, 

the situation is reversed. The greatest naso-temporal asymmetry (2 dB) occurs 

at an eccentricity of 30°. The age effect on the DLS asymmetry in the visual 

field increases with eccentricity (Fig.6). The greatest DLS decrease occurs at 

the border of the superior hemifield (25°). DLS is estimated to be 5.5 dB higher 

in 10 year olds than in 75 year olds. At the horizontal meridian our results show 

only slight difference in the effect of aging on DLS between the nasal and the 

temporal hemispheres (Fig.6).  
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Discussion 

 
In the vast majority of previous normative studies, two different approaches 

were undertaken in order to assess normative threshold values: a) an attempt to 

appraise the hill of vision at each test location of the stimulus grid individually 

[4,24,34,40,63,81], disregarding the correlation between neighbouring points 

[41,63] or b) visual field indices were introduced for averaging of threshold 

values over certain visual field areas [27,37,42,63,82], but missing local 

characteristics of the visual field. In this study a mathematical model was used 

[46,63] for describing all tested points of all examined subjects. This was done 

to overcome the above-mentioned deficits by interpolating between test point 

locations [41,63]. Thus normative values for locations, which are not included in 

the grid [62] can be mathematically derived and local asymmetries can be taken 

into account.  

 

Model 

Comparing our results with similar modeling approaches of Schwabe [63] and 

Lorch [46], we could achieve the greatest model fit. The main reason for the 

high adjusted R² can be attributed to the additional introduction of the factor 

“subject”. In this way a random effect of subjects is taken into account. When 

setting this factor aside, we obtain an adjusted R², which is somewhat lower 

than in Schwabe´s - and higher than in Lorch´s study. A possible explanation for 

the rather greater uncertainty in Lorch`s model is the high variability of the data, 

attributed to the use of the 4-2 strategy [46]. DLS, which is obtained with a more 

detailed staircase strategy (4-2-2 in our study or 4-2-1 in Schwabe´s study [63]) 

and calculated on the basis of the maximum-likelihood method, shows a smaller 

variability, resulting in an increasing R². In contrast to Schwabe`s model, we 

include a further interaction between eccentricity, the cosine and sine of two 

times the angle and age, which describe an ellipse, flatting the isopters 

horizontally, depending on age. Further attempts to model the hill of vision could 

not be found in the literature. 
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Parsimonious model 

The model could be reduced to ten systematic effects (including individual 

coefficient). All physiological characteristics of the hill of vision are still realized 

in this model. Due to the simplicity of the model there is some loss of quality. R² 

declined by 0.004 and residual SD increased by 1%. 

We applied the more complex model, as it was constructed to respect 

commonly accepted statistical practice: significance, adjusted R², inclusion of 

main effects, when interactions are included, for agreement with specifications 

set up in previous research. It presents a higher precision (although slight) and 

a higher flexibility to detect deviations, when applied to other populations. For 

practical purposes the parsimonious model will suffice and prove more robust in 

small samples.  

 

Varying precision in the visual field and across ages 

As shown in Fig.2 we found an increasing residual standard deviation towards 

the periphery and a decreasing residual standard deviation towards the centre. 

An increasing inter- and intra-individual variability with increasing eccentricity 

has been described before [26,30,37,44,53,78]. The increment of variability with 

eccentricity within one subject and thus the increase of the residual standard 

deviation may be ascribed to anatomical circumstances (see below) and to the 

physiological decrement of photoreceptors towards the periphery and the 

depression in neuroretinal sensitivity there. The variability between individuals 

can be explained by the different slopes in their hills of vision. Within the central 

5° we found a higher residual standard deviation than in the pericentral area. 

Due to the steep slope of the hill of vision in this area, even minor deviations of 

fixation result in a significant increase of variability, and consequently a higher 

residual standard deviation. The greatest residual standard deviation is 

localized in the superior hemifield. This is in a good agreement with previously 

published results, showing greatest variability in the superior visual field [37,38]. 

This fact is explained by the variability of upper eye lid position [37]. The inter-

individual variability might be due to the different eye lid and orbit rim 
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configuration among subjects, whereas the intra-individual variability might be 

explained by the different eye lid positions of one subject during the test. In the 

intermediate nasal part of visual field we observe less residual standard 

deviation and therefore less variability as in the temporal half. The reason for 

this conclusion may be the small number of measurements in the temporal field, 

as the blind spot area was excluded. The increase of variability in the lower 

nasal sector of the 30° visual field is most probably related to anatomical 

variability. We find that age increases the residual standard deviation. This 

confirms the result of the increasing variability with age in previous literature 

[38,49]. Except the blind spot, the model fit is of the same quality in all locations 

of the visual field. The minimum and maximum residual threshold standard 

deviation in the visual field differs by less than 38%. The width between the 

reference limits should vary accordingly. This is of clinical relevance, as a 

constant width results in too many flagged points peripherally and too few at 

intermediate eccentricities. 

 

Ageing 

Up to now the aging process is not completely understood. There are several 

factors which can account for the age-related visual field sensitivity loss. 

Findings of previous studies disagree in this concern. Some of the investigators 

attributed the normal age-related sensitivity decline to the age-related changes 

in the preretinal structures [19,27,42]. Changes in the transmission properties of 

the ocular media [7,10,50,54,58,64,71,79] as well as age-related reductions in 

pupil size might be responsible for threshold depression with age [16,76]. 

However some of the researchers emphasized the importance of the age-

related neural losses. Johnson [36], who minimized the influence of lenticular 

transmission losses and pupil size in his study by screening the subjects 

carefully in regard to refractive opacities, found that normal age-related visual 

field sensitivity change are primarily due to neural cell losses rather than to 

preretinal factors. Weale [75], who originally ascribed the major portion of the 

age-related visual field DLS losses to preretinal factors suggested later that the 

cell loss within the central optic pathway is the major factor in the explanation of 
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the sensitivity decline with age [76]. Many histological studies have shown that 

age-related reductions in photoreceptors density [9,15,21,22,48], photopigment 

density [39,70], the number and morphology of the optic nerve axons 

[2,14,56,65] and population density of neurons in the visual cortex [12] do exist. 

Both, preretinal and neural age-related degenerations have an effect on the 

age-related visual field sensitivity loss. However it is still impossible to 

determine the relative contribution of these factors in the aging visual system. 

Further controversy exists in the understanding of the DLS decline with age: 

Diverse studies assumed a linear decrease of threshold values with age 

[4,16,17,19,20,27,29,30,35,40,51,81], whereas many authors found a change 

point, demonstrating an increasing loss of sensitivity at a specific age 

[11,34,42,43,46,63,72]. To explain the discrepancy of a continuous loss of 

sensitivity and an accelerated loss at older ages, Lachenmayr [42] scrutinized 

the inclusion criteria for visual acuity in previous normative studies. He noticed, 

that studies reporting an accelerated loss at an older age [34,42] used a stricter 

acuity criterion. However Okuyama [51], who included only subjects with a 

vision of 20/20, claimed a linear loss of sensitivity. It is conspicuous, that 

studies, which found a linear sensitivity decrease, show some shortcomings in 

the study design. For instance, Jaffe [35] reported on a total sample size of only 

25 participants. Haas [27] enrolled 153 volunteers (203 eyes), with a 

disproportionate number of young subjects. Brenton [4] chose subjects who 

were older than 20 years, recruiting also department employees. Another 

plausible explanation might be found in the applied analytical methods by Iwase 

[34]. He pointed out that evaluations, based on a linear regression, ignore the 

non-linear decay of DLS, supporting the theory that the visual field remains 

stable up to a certain age and then deteriorates.  

This concept is in good agreement with corresponding previous reports on 

normal age-related preretinal and neural changes. Said [58] and Tan [69] 

showed that hardly any changes in the transmission properties of the ocular 

media occur between 5 and 30 years of age. After 30 years of age a process of 

yellowing of the crystalline lens starts. From the Duane`s [18] accommodation 

amplitude curve it can be concluded that the accommodation capability 
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deteriorates up to the age of 50 and 60 years. Thenceforth the accommodation 

capability keeps approximately stable. Marshall [48] demonstrated a change 

with aging in human photoreceptors, starting at the age of 40 years. Gartner 

[22] found an displacement of the nuclei of photoreceptors from the outer 

nuclear layer both into the outer plexiform layer (increasing after age 30, and 

most pronounced after age 50), and into the layer of rods and cones (after age 

40 years, most common after age 50 years). Van Norren [70], who investigated 

the density of human cone pigments as a function of age, could not find any 

significant change in density up to 50 years. However he assumed a cone 

pigment density loss beyond 50 years. Gao [21] assessed an age-related rod 

and ganglion cell layer loss, being most pronounced between the second and 

the forth decade. Dolman [14] reported on a loss of axons with increasing age, 

particularly marked from 60 years. Devaney [12] ascertained that the population 

density of neurons in the visual cortex falls mainly between the third and the 

sixth decade.  

Our results support a non-linear aging process. The DLS was nearly constant 

irrespective of age until the age of 30 to 40 years and then declined in an 

accelerated manner with age. A slight increase during adolescence could be 

explained by better cooperation. We must emphasize that these results are 

derived from a cross-sectional study. To be able to understand the aging 

process better and to avoid bias effects longitudinal studies are needed 

certainly, which could demonstrate the physiological decrease of the DLS over 

years [6]. 

 

Asymmetry 

 
Superior-inferior asymmetry 
In previous investigations [3,4,5,13,16,30,37,46,81] sensitivity is reported to be 

lower in the superior hemifield than in the inferior one. Our results confirm this 

for all decades, showing that the inferior-superior asymmetry increases almost 

linearly towards the periphery (Fig.5). We are in agreement with Katz [37], who 

observed that the slope of the hill of vision with increasing eccentricity is 

greatest in the superior area. Some investigators reported on a higher DLS 
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decrease with age in the upper hemifield [5,13,27,37,63]. Dietrich [1,13] and Ata 

[1,13], using a linear regression for the evaluation, found a higher sensitivity of 

about 0.3 dB in the lower half of the visual field already in ten-years old, the 

difference increasing by 0.14 dB per decade.  

Our data agree with these findings: DLS depression with age is more 

pronounced in the superior visual field than in the inferior one. Especially in the 

periphery (25°) a greater aging effect was observed (Fig.6). Up to now the 

reason for the asymmetric depression in the superior half of the visual field is 

not completely understood. Physiological phenomena may be one reason for 

this observation. Curcio [8], who investigated the topography of ganglion cells in 

the human retina, found a higher ganglion cell density in the superior part of the 

retina than in the inferior one. Another explanation could also be the greater 

luminance of the sky above the horizon, causing greater adaption in the upper 

visual field, corresponding to the lower hemiretina. Moreover eye lid artifacts in 

this area are known and cause a shadowing of the superior visual field [13,37], 

especially with increasing age. Katz [37,38] attributed the lower DLS in the 

superior hemifield to blinking. 

 

Naso-temporal asymmetry 
Concerning the naso-temporal asymmetry in the visual field our findings are 

consistent with the results of Lorch [46] and Schwabe [63]: Up to the 

eccentricity of 20° the nasal DLS is higher than the temporal one. From 20° the 

situation reverses (Fig.5). These findings are concordant with Curcio`s [8], 

showing in the peripheral nasal part of the retina a higher ganglion cell density 

than in the temporal retina. In the past, some investigators could observe a 

greater influence of age on the temporal hemifield [13,19,45,46]. Dietrich [13] 

showed a reversal of the naso-temporal asymmetry at the age of 40 years 

benefiting the nasal hemifield. Lewis [45] reported on a higher sensitivity of the 

temporal part of the visual field in children. As explanation Dietrich [13] 

discussed the anatomical conditions in the periorbital region: The greater 

exposure of the nasal retina to light causes an earlier retinal maturation and 

may also result in a greater aging effect in this area. However the method, 

which Dietrich [13] used in his analysis is problematic. Lorch [46] advised 
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against Dietrich`s “mean value method”, averaging over the entire visual field. 

Using the mathematical model we could not find any greater differences in the 

effect of aging between the nasal and temporal hemifield. The greatest 

difference between the DLS decrease with age in the nasal and the temporal 

hemifield was 0.64 dB, benefiting the temporal quadrant. This is below the 

measuring accuracy of 1 dB and therefore negligible. In this point we conform to 

Katz [37], who also could not detect any statistically significant hemifield-related 

differences in the influence of age. 

 

Generalisability 

In our randomized, balanced and stratified study we enrolled a fairly large, 

representative sample of ophthalmologically healthy subjects. About two thirds 

of our participants concluded maximum two perimetric testings before being 

examined in our study. The remaining subjects did not have any contact to 

perimetry before. In previous literature it was found, that the majority of subjects 

shows reliable results already in their first perimetric session [31,47]. However, 

there is also an important minority among normal and pathological eyes, 

presenting a dramatic DLS increment with perimetric training, especially in the 

first tests [52]. Heijl [31] admonishes of a very wide normative values range, if 

reference limits were estimated from inexperienced volunteers, producing low 

DLS peripherally and concentric constriction. He postulates, that initial fields, 

being contradictory with clinical findings, should be retested. A potential bias of 

conceivable learning effects in our study was taken into account by a 

proportionate distribution of perimetrically “experienced” individuals. In order to 

minimize the existing difference between the non-learners and learners, the 

participants were subjected to a short training program. Largely the perimetric 

experience of our subjects is representative of a population in a normal clinical 

setting. The interaction of the learning and fatigue effect is still not completely 

understood [32]. In order to reduce the influence of the fatigue effect, which may 

decrease sensitivity during an examination [32], after 4 minutes testing time, 

rest periods of 2 minutes were inserted. Furthermore the total examination 

duration (including breaks) was on average 21 minutes and not longer than 26 



 23 

minutes. Concerning the external validity of the applied model, of course serial 

measurements and larger sample of subjects are needed to prove it. However, 

considering studies with similar study design and application of similar models 

[46,63], we must point out, that the reported results on model fit, DLS 

asymmetries in the visual field and the aging process are comparable with our 

findings. Consequently we assume, that our model as well as our trial findings 

are generalisable and applicable for clinical purposes. 
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Conclusion 

The development of a smooth mathematical model based on an optimized 

examination grid allows for prediction of age-corrected normal DLS values at 

any given stimulus location within the central 30° visual field. 
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Figures and Legends 

 

 

Fig.1: Optimized 30°- test location pattern (right eye). Test points are located approximately 

rotation symmetrically, in a circular order with para-axial locations (2.5°distance from the main 

axis) and a stimulus condensation towards the center. 

 

 

 

Fig.2: Residual standard deviation (right eye): It is highest in the periphery, average in the 

centre and smallest in a ring around the centre.  
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Fig.3: Age effect on the hill of vision in the horizontal profile cut (0°-180°, left) and in the vertical 

profile cut (90°-270°, right). 

 

 

 

 

 

 

 

Fig.4: Ageing by visual field location. Aging is more pronounced in the periphery. 
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Fig.5: Asymmetries of the hill of vision in the 40 year-olds. Left:  Superior and inferior profile cut 

(90°-270°), right: Temporal and nasal profile cut (0°-180°). 

 

 

 

 

Fig.6: Predicted DLS and indicated eccentricities by age: Left: vertical meridian (90°-270°), 

superior (solid lines) and inferior (dotted lines) hemifield. Right: horizontal meridian (0°-180°), 

temporal (solid lines) and nasal (dotted lines) hemifield. The double-headed arrow indicates the 

predicted inferior-superior DLS and tempo-nasal asymmetry at an eccentricity of 25° for a 70 

year old subject.  
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Appendix  

 

Model 

Four variables: age, eccentricity, angle and subject and their interactions define 

the model. The location in the visual field is given in polar coordinates, i.e, 

eccentricity and angle of the radial ray. 

Model estimation: Differential luminance sensitivity (DLS) = 11.744986  
+ 0.0495042 × age  
– 0.001119 × age²  
– 0.545229 × ecc  

– 0.005236 × ecc × sin(ang)  
– 0.085799 × ecc × cos(ang)  
+ 0.0045401 × ecc × sin(2 ang)  
+ 0.0233836 × ecc × cos(2 ang)  
+ 0.0234734 × ecc²  
– 0.000393 × ecc³  
– 0.00405 × age × ecc 

– 0.000375 × ecc × sin(ang) × age  
+ 0.0001756 × ecc × cos(ang) × age  
– 0.000288 × ecc × sin(2 ang) × age  
+ 0.0001482 × ecc × cos(2 ang) × age  
– 0.000262 × ecc²× sin(ang)  
+ 0.0037536 × ecc² × cos(ang)  
– 0.000026 × ecc² × age  
+ subject 
 

age = age of the subjects [years]; ecc = eccentricity [degrees]; ang = angle 
[degrees]; subject = individual coefficient 

 

Meaning of the interactions: 

- age, age²: describe the aging process as a parabola 
- ecc, ecc × sin(ang), ecc × cos(ang), ecc × sin(2 ang), ecc × cos(2 ang): 

characterise the dependence of differential luminance sensitivity on ecc 
and angle. The interaction of ecc and angle reproduce the shape of 
isopters (contours of the same sensitivity), formed by the anatomical and 
physiological conditions. The apex of the hill of vision is set to the 
foveola. 
 a) ecc × sin(ang) and ecc × cos(ang) result in an elliptic isopters,  
           ecc × sin(2ang) and ecc × cos(2ang) deform those ellipses. 



 29 

b) ecc × cosine causes a temporal/ nasal deferment of the 
isopters. 
c) ecc × sine accounts for a vertical shift of the isopters.  
d) ecc, ecc², ecc³ constitute a third order polynomial, which is 
rotated, representing half the profile of the hill of vision with its 
steep outer slopes and central peak. 
e) age × ecc, age × ecc² include the interaction of age and 
eccentricity, i.e. differential aging.  
f) ecc × sin(ang) × age, ecc × cos(ang) × age, ecc × sin(2 ang) × 
age and ecc × cos(2 ang) × age describe a threefold interaction of 
age and shape of the hill of vision. 
g) ecc² × sin(ang), ecc² × cos(ang): these terms are considered as 
higher form parameter, describing curvature and asymmetry of the 
hill of vision. 
h) subject: with this individual factor a random effect of subjects is 
included. 

 

Parsimonious model 

Differential luminance sensitivity (DLS) = 13.0593537 
– 0.5638668 × ecc  

+ 0.0223391 × ecc²  
– 0.0003937 × ecc³ 
– 0.0781065 × ecc × cos(ang) 
+ 0.0299404 × ecc × cos(2 ang) 
+ 0.0037572 × ecc² × cos(ang) 
– 0.0007396 × age²  
– 0.0005740 × ecc × sin(ang) × age  

– 0.00020589 × ecc × sin(2 ang) × age  
+ subject 
 
age = age of the subjects [years]; ecc = eccentricity [degrees]; ang = angle 
[degrees]; subject = individual coefficient; 

 

The rotating cubic polynomial is modified in the directions of the main and the 

oblique meridians only. The elliptical part of the isopters is widest strictly 

horizontally. (The main axis is not rotated against the horizon.) The quadratic 

part of the polynomial is modified only horizontally to form the steep slope 

nasally and the plateau around the blind spot. In this model fit the aging process 

was simplified to a parabola, which is not tilted, as it is in the previous model. All 

of the differential aging is described by two three-way interactions without most 

of the corresponding two-way interactions. Only sine of an angle interacts with 
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age, showing that the aging process affects the superior and inferior visual field 

differently. 
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