Aus der Universitätsklinik für Zahn-, Mund- und Kieferheilkunde Tübingen Abteilung Poliklinik für Kieferorthopädie Ärztlicher Direktor: Professor Dr. Dr. G. Göz

Darstellung und Normwertdefinition der zeitlichen Abfolge von Zungenbewegungen während des Schluckens durch die Elektromagnetische Artikulographie

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Zahnheilkunde

der Medizinischen Fakultät der Eberhard Karls Universität zu Tübingen

vorgelegt von

Maria Beate Zenk

aus Kronach

Dekan: Professor Dr. I. B. Autenrieth

1. Berichterstatter: Professor Dr. Dr. G. Göz

2. Berichterstatter: Privatdozent Dr. M. Groten

Inhaltsverzeichnis

1 Einleitung	1
1.1 Die Rolle der Zunge während des Schluckvorga	angs1
1.2 Dyskinesien der Zunge und ihre Folgen	3
1.3 Messmethoden für Zungenbewegungen	4
1.4 Gegenstand der Dissertation	6
1.5 Langfristige Ziele der EMA	
2 Material und Methoden	8
2.1 Studienpopulation	8
2.2 Beschreibung des Messsystems	10
2.2.1 Hardware	
2.2.2 Software	13
2.2.3 Messgenauigkeit	14
2.3 Messung	15
2.3.1 Vorbereitungen	
2.3.1.1 Dokumentation	
2.3.1.2 Schablonenherstellung zur Kauebenenregi	strierung15
2.3.1.3 Messystemkalibrierung	
2.3.1.4 Artikulograph	
2.3.1.5 Probanden	
2.3.2 Aufzeichnungsphase	
2.3.2.1 Referenz Gaumenkontur	
2.3.2.2 Referenz Kauebene	
2.3.2.3 Auswertungsdaten	
2.3.2.3.1 Sprachsequenzen	
2.3.2.3.2 Schlucksequenzen	
2.3.3 Nachbereitungen	
2.4 Auswertung	
2.4.1 Bearbeitung der Messdaten	
2.4.1.1 Ausrichtung nach Referenzpunkten	
2.4.1.2 Filtern der Kinematikdateien	
2.4.2 Schlucksequenzen	27
2.4.2.1 Erstellen eines "Schluckschemas"	
2.4.2.2 Erproben des "Schluckschemas"	
2.4.2.3 Definition der zeitlichen Variablen	
2.4.3 Statistik	
2.4.3.1 Messfehleranalyse	
2.4.3.2 Messwertanalyse2.4.3.3 Normwertdefinition	34 25
2.7.0.0 NOTHINGIAGIIIIIIUUI	

Inhaltsverzeichnis

3	Ergebnisse	36
3.1	Messfehleranalyse	36
3.2	Messwertanalyse	
3.2.	1 Einfluss der Körperhaltung	46
3.2.	2 Einfluss des Geschlechts	47
3.3	Normwerttabelle	56
4	Diskussion	58
4.1	Diskussion der Methode	58
4.2	Diskussion der Ergebnisse	
	1 Messfehleranalyse	
	2 Messwertanalyse	
	2.1 Einfluss der Körperhaltung2.2 Einfluss des Geschlechts	62
	3 Normwerttabelle	63
4.3	Schlussfolgerung	
5	Zusammenfassung	67
6	Abbildungsverzeichnis	69
7	Tabellenverzeichnis	70
8	Literaturverzeichnis	71
9		
	Anhang	76
9.1	Anamnese- und Untersuchungsbogen	
9.1 9.2	•	76
	Anamnese- und Untersuchungsbogen Probandeninformation	76 81
9.2 9.3 9.4	Anamnese- und Untersuchungsbogen Probandeninformation Einverständniserklärung Messwertanalysen	818283
9.2 9.3 9.4 9.4.	Anamnese- und Untersuchungsbogen Probandeninformation Einverständniserklärung Messwertanalysen	
9.2 9.3 9.4 9.4. 9.4.	Anamnese- und Untersuchungsbogen Probandeninformation Einverständniserklärung Messwertanalysen	
9.2 9.3 9.4 9.4.	Anamnese- und Untersuchungsbogen Probandeninformation Einverständniserklärung Messwertanalysen	
9.2 9.3 9.4 9.4. 9.4. 9.5	Anamnese- und Untersuchungsbogen Probandeninformation Einverständniserklärung Messwertanalysen	76818283113

1 Einleitung

Das Schlucken ist ein komplexer Vorgang, der Nahrungsmittel und Flüssigkeiten von der Mundhöhle in den Magen transportiert. Für den gesamten Magen-Darm-Trakt stellt der Schluckakt die Grundlage und Voraussetzung dar und ist somit lebensnotwendig. Bereits ab der zwölften Lebenswoche nimmt der Mensch als Fötus in der Gebärmutter Fruchtwasser auf. Die Anzahl der Schluckzyklen ist unzureichend untersucht. Die Angaben in der Literatur reichen bis zu 2000 mal pro Tag³ unter der Annahme, tagsüber zweimal und nachts einmal in der Minute zu schlucken¹⁶.

Der Schluckvorgang wird als dreiteilig beschrieben: orale, pharyngeale und ösophageale Phase^{16,23,46,66}. Dem oralen Abschnitt kann eine orale Vorbereitungsphase bzw. eine Kauphase vorangestellt werden^{5,16,46,57}. Diese genannten Phasen unterscheiden sich in ihrer willentlichen Beeinflussbarkeit. So lassen sich die beiden ersten Abschnitte, Kauphase und orale Phase bewusst steuern, die beiden folgenden, die pharyngeale und ösophageale Phase, laufen über Reflexbögen und sind willentlich nicht beeinflussbar^{23,66}. In der vorliegenden Dissertation wird die räumliche Bewegung der Zunge beim Schlucken analysiert werden.

1.1 Die Rolle der Zunge während des Schluckvorgangs

Bereits bei der oralen Vorbereitungsphase kommt der Zunge eine wichtige Aufgabe zu. Diese besteht darin, die Speisen zwischen die Zahnreihen zu schieben und sie dort zu zerkleinern. Am Ende dieser Phase liegt der schluckfertige Bissen, Speisebolus, zwischen dem harten Gaumen und der Zunge, die eine Schüsselform bildet. Die Zungenspitze liegt dabei direkt hinter den vorderen Schneidezähnen am harten Gaumen an^{46,57}. Auch wenn bei Flüssigkeiten das Kauen entfällt, wird sie am Ende der oralen Vorbereitungsphase ebenfalls in der "Zungenschüssel" positioniert⁴⁶. Die Dauer der oralen Vorbereitungsphase ist individuell sehr unterschiedlich, hängt von der Viskosität der Nahrung ab und ist bei Flüssigkeiten aufgrund der wegfallenden Zerkleinerungsphase am kürzesten.⁵

Die zentrale Aufgabe kommt der Zunge jedoch während der oralen Phase zu. Dabei stellt sie Kontakt mit dem harten Gaumen her und schiebt den Bolus in Richtung Oropharynx, indem sie sich in einer fortlaufenden, an der Zungenspitze beginnenden Wellenbewegung nach kranioventral bewegt⁴⁶. Dies wird neben der Muskulatur der Zunge auch durch die des Mundbodens, M. mylohyoideus und M. stylohyoideus, gewährleistet. Diese Muskeln ziehen dabei das Os hyoideum nach ventral und kranial⁴³. Währenddessen befinden sich die Zahnreihen durch die Aktivierung der Kaumuskulatur, insbesondere durch den M. masseter, in Schlussbissstellung⁵⁸. Die Lippen bleiben ohne Anspannung ihrer Muskulatur geschlossen⁵⁸. Der Tonus der Wangenmuskulatur hingegen erhöht sich während dieser Phase, wodurch ein zusätzlich negativer Sog in der Mundhöhle entsteht und den Speisebrei bzw. die Flüssigkeit nach dorsal befördert⁴⁶. Sobald der Bolus die vorderen Gaumenbögen passiert hat und die Pharynxhinterwand erreicht, setzt der Schluckreflex ein^{46,57}. Damit ist zum einen der willkürlich beeinflussbare Anteil des Schluckaktes und zum anderen die orale Phase beendet. Dieser Teil dauert laut Böhme⁵ maximal 1,5 Sekunden. Anschließend beginnt die unwillkürlich ablaufende pharyngeale Phase, die maximal nur eine Sekunde umfasst⁵. In diesem Zeitraum ist aufgrund der Überkreuzung des Luft- und Schluckweges im Pharynx keine Atmung möglich^{56,57}. Der Abschluss des Oropharynx vom Nasopharynx wird erreicht mit einem Anheben des Velums durch die Kontraktion des M. tensor veli palatini und des M. levator veli palatini und mit der Ausbildung des "Passavant-Ringwulstes" durch den M. constrictor pharyngis superior. Damit der Speisebrei nicht in die Trachea gelangt, wird der Larynx durch den M. thyrohyoideus an das Os hyoideum gezogen. In der Folge weicht das Corpus adiposum praeepiglotticum nach dorsal aus und drückt die Epiglottis auf den Aditus laryngis. Zusätzlich schließt sich die Stimmritze^{38,43}. Um den Bolus vom Oropharynx in den Hypopharynx und in den Ösophagus zu befördern, wird die Zunge durch den M. styloglossus und M. hyoglossus nach dorsal gezogen. Zusätzlich zu diesem Druckaufbau kontrahiert sich die pharyngeale Muskulatur (Mm. constriktor pharyngis superior, medius und inferior) peristaltisch von kranial nach kaudal. Durch die bereits vorangegangene Hyoid-Larynx-Elevation ist der "Ösophagusmund" geöffnet und der Speisebolus gelangt in den Ösophagus ^{5,38,43,46}.

In der finalen ösophagealen Phase des physiologischen Schluckens wird innerhalb von acht bis zwanzig Sekunden die Nahrung durch peristaltische Wellen der Ösophagusmuskulatur durch den Hiatus ösophagus in den Magen transportiert. Durch die gleichzeitige Senkung des Os hyoideum und des Larynx und die damit verbundene Aufrichtung der Epiglottis ist die Atmung wieder möglich und der Schluckzyklus beendet⁵. Die Zunge befindet sich wieder in ihrer entspannten Ausgangssituation.

Neben dieser Transportfunktion kontrolliert die Zunge auch als genaues Tastund Geschmacksorgan, ob die Nahrung zum Verzehr geeignet ist³⁸. Über sensible und sensorische Afferenzen des N. trigeminus (V), fazialis (VII), glossopharyngeus (IX) und vagus (X) wird im Schluckzentrum in der Medulla oblongata der Schluckreflex ausgelöst und über motorische Efferenzen umgesetzt. Dabei spielen neben den genannten Hirnnerven auch der N. accessorius (XI), hypoglossus (XII) und der Plexus cervicalis eine wichtige Rolle^{38,66}.

1.2 Dyskinesien der Zunge und ihre Folgen

Das physiologische Schlucken eines Erwachsenen wird als somatisches Schluckmuster bezeichnet. Das kleinkindliche Schlucken, auch infantiles oder viszerales Schluckmuster genannt, unterscheidet sich physiologisch bis zum zweiten oder dritten Lebensjahr vom Schluckverhalten eines Erwachsenen. Auf Grund der notwendigen Abdichtung, vor allem beim Saugen von Muttermilch an der Brust, bleibt die Zunge während des Schluckzyklus nicht im Cavum oris proprium, sondern stößt nach ventral zwischen die durchbrechenden Frontzähne und lagert sich zwischen Ober- und Unterkiefer ein^{23,58}. Die mimische Muskulatur, Mm. mentalis und orbicularis oris, wird im Gegensatz zum M. masseter kontrahiert, um die Speisen nach dorsal zu drängen⁵⁸.

Wenn sich dieses Bewegungsmuster nicht mit zunehmender Bezahnung umstellt, wird es ab dem vierten Lebensjahr, im Sinne einer motorischen Funktionsstörung, als Dyskinesie bewertet. Der Zungenstoß nach ventral kann die Enstehung eines anterior offenen Bisses fördern oder einen bereits bestehen-

den hindern, sich zu schließen¹⁰. Außerdem fehlen das Anlagern und der Druck der Zunge gegen den Gaumen während des Schluckens als Impuls für die Oberkieferentwicklung und das Mittelgesichtswachstum. Dies kann die Entstehung oder Progression einer Pseudoprogenie fördern. Es wird ersichtlich, dass Dyskinesien, wie das persistierende infantile Schluckmuster, eine Ursache für Zahn- und Kieferfehlstellungen, skelettale Entwicklungsstörungen sowie Artikulationsstörungen darstellen²⁰. Allgemein wird dies als Wechselwirkung zwischen Funktion und Form beschrieben, wobei nicht nur die Funktion die Form beeinflusst, sondern auch umgekehrt²³. Ein physiologisches Funktionsmuster spielt deshalb nicht nur bei der Prophylaxe von Dysgnathien, sondern auch bei Therapieerfolg und der Rezidiv-Vermeidung einer kieferorthopädischen oder logopädischen Behandlung eine wichtige Rolle²⁰. Hinsichtlich dieser Folgen ist es wichtig, das physiologische Funktions- und Bewegungsmuster der Zunge genau zu kennen und zu analysieren, um Dysgnathien zu vermeiden oder diese adäquat zu behandeln. Grundlage für die Analyse ist ein präzises und zuverlässiges Messsystem.

1.3 Messmethoden für Zungenbewegungen

Bei der klinischen Untersuchung von extraoral lässt sich ein somatisches Schluckmuster lediglich durch bestimmte Indizien, wie die Kontraktion der Mm. masseter und eine entspannte mimische Muskulatur vermuten. Um genauere Bewegungen der Zunge beim Schlucken intraoral zu beobachten,werden die Lippen etwas auseinander gespreizt. Eine direkte Sicht auf die Zunge verhindern jedoch die Zahnreihen. Lediglich durch Zahnlücken oder offene Bisse hindurch kann die Zunge beurteilt werden. Zudem stellt das Offenhalten der Lippen, um die Sicht nach intraoral zu gewähren, eine Manipulation während des Schluckvorgangs dar.

Bei der Diagnostik von Dysphagien wird ein Schluckkontrollgriff angewandt. Dabei legt der Untersucher während des Schluckaktes den Zeigefinger extraoral an den Mundboden, den Mittelfinger ans Os hyoideum und den Ringfinger an die Cartilago thyroidea des Patienten. Mit dem Finger am Mundboden können lediglich Informationen über die Dauer der oralen Phase und somit über die

Zungenbewegung gewonnen werden. An der Elevation des Os hyoideum lässt sich der Beginn der pharyngealen Phase erkennen³.

Als bildgebende Untersuchungsmethoden der Bewegungsabläufe der Zunge beim Schlucken eignen sich die Sonographie^{8,17,29,33,42,47,49-52,60,67,68}, radiologische Verfahren^{18,19,21,31-33,64,65}, palatographische Methoden^{7,8,55} und die Elektromagnetische Artikulographie (EMA)^{1,14,25,36,44,45,48,53,54,59,61,62}.

Die Sonographie stellt eine kostengünstige und nicht invasive Methode dar, die sich eignet, Weichgewebe während der Bewegung sichtbar zu machen. Auch bedarf es keinerlei Messinstrumente intraoral, die Bewegungsabläufe verfälschen könnten. Schwerwiegende Einschränkungen ergeben sich durch Schalltransmissionshindernisse in Form von knöchernen Strukturen, wie Maxilla, Mandibula, Os hyoideum und Larynx. Die sonografischen Aufnahmen stellen im Gegensatz zur Elektromagnetischen Artikulographie keine direkte Abbildung der Zunge in ihrer Bewegung dar. Dies stellt einen entscheidenden Nachteil dieser Methode dar und hat zur Folge, dass große Erfahrung notwendig ist, die Bilder richtig und objektiv zu interpretieren. Um die Subjektivität zu verbessern, wurde die "Cushion Scanning Technique" entwickelt⁴⁹⁻⁵²,bei der der Kopf des Patienten anhand einer Stirnstütze und eines Kinnkissens in eine für die Messungen reproduzierbare Position gebracht wird.

Radiologische Untersuchungsverfahren sind die klassischen Methoden, Dysphagien zu diagnostizieren 18,19,21,31-33,64,65. Aufgrund der biologisch potentiell schädlich wirkenden Röntgenstrahlung sind wissenschaftliche Untersuchungen mit diesen Methoden ethisch bedenklich und auch für Screeninguntersuchungen oder Verlaufskontrollen einer kieferorthopädischen Behandlung nicht geeignet. Der Schwerpunkt dieser diagnostischen Verfahren liegt außerdem auf Schluckbeschwerden im pharyngealen und ösophagealen Anteil des Schluckaktes und nicht auf der genauen Analyse der Zungenbewegungen während der oralen Phase.

Bei der Palatographie⁵⁵, sowie bei der daraus weiterentwickelten Elektropalatographie^{7,8}, werden lediglich die Kontaktstellen zwischen Gaumen und Zunge aufgezeichnet, nicht aber die Bewegung der Zunge dargestellt.

Die Elektromagnetische Artikulographie stellt die Methode der Untersuchungen dieser Arbeit dar. Da der Proband lediglich eine Messhelmapparatur trägt und Messspulen reversibel an die Haut bzw. Schleimhaut geklebt werden, ist die Methode als noninvasiv zu bewerten. Das Magnetfeld, das durch die Messapparatur erzeugt wird, stellt für den Probanden keine Gefährdung dar³⁷. Im Computerprogramm Artikulograph sind die Messpunkte der Zunge räumlich dargestellt und der Ablauf der Bewegung zeitlich erfasst.

1.4 Gegenstand der Dissertation

Diese Dissertation untersucht die physiologischen Bewegungen der Zunge während des Schluckens in Bezug auf die zeitliche Komponente mittels der Elektromagnetischen Artikulographie.

Es werden folgende Kernfragen gestellt:

- 1. Welche Zuverlässigkeit besitzen die Messwerte (Validität und Reliabilität)?
- 2. Welchen Einfluss hat die Körperhaltung auf den Messwert?
- 3. Welche Einwirkung hat das Geschlecht auf den Messwert?

Abschließend wird eine Normwerttabelle für Zeitspannen während der Zungenbewegung beim Schlucken unter Berücksichtigung der oben genannten Einflussfaktoren, Geschlecht und Körperhaltung, erstellt. Der Inhalt der vorliegenden Dissertation ist Teil der Forschungsgruppe "Elektromagnetische Artikulographie" der kieferorthopädischen Abteilung der Universität Tübingen.

1.5 Langfristige Ziele der EMA

Für die Zukunft lassen sich verschiedene Ziele formulieren. Zum einen sollen frühzeitig funktionelle Störungen der Zunge gemessen und erkannt werden. Dadurch lassen sich präventiv die Entstehung und Progression von Dysgnathien durch Zungenfehlfunktionen günstig beeinflussen. Eine zweite Einsatzmöglichkeit ergibt sich bei der Therapie von myofunktionellen Störungen. Dabei ist es mit der EMA zu jedem Zeitpunkt der Behandlung möglich, ein präzises Funktionsmuster der Zunge abzubilden. Somit kann diese Methode aus logopädischer, pädiatrischer und kieferorthopädischer Sicht helfen, die richtigen Maßnahmen einzuleiten. Außerdem kann mit dieser Methode aus forensischer Perspektive der Verlauf einer Behandlung dokumentiert werden.

2 Material und Methoden

2.1 Studienpopulation

Die Studienpopulation bestand aus 25 Probanden, davon waren 11 männlich und 14 weiblich. Der Median des Durchschnittsalters lag bei 26 Jahren, der Interquartilsabstand betrug ein Jahr. Der älteste Teilnehmer war 29 und der jüngste 23 Jahre alt. Alle Probanden erwiesen sich als gesund, funktionell sowie kieferorthopädisch und zahnärztlich unauffällig und zeigten eine Neutralbisslage beidseits. Der Overjet lag bei 21 Testpersonen im Normbereich⁹, wich bei zwei Versuchsteilnehmern um +0,5 mm und bei zwei Probanden um +1 mm vom Normbereich ab.

Bei der Auswahl der Testpersonen wurden mögliche pathologische Einflüsse im orofazialen Bereich berücksichtigt und ausgeschlossen. Um dies zu erreichen, wurden die Versuchsteilnehmer vor Aufnahme in die Studie nach einem einheitlichen Anamnese- und Untersuchungsbogen (Anhang 9.1) befragt und untersucht. Vor Beginn der Aufzeichnungen waren die Probanden schriftlich über die Studie aufgeklärt (Anhang 9.2). Alle unterzeichneten eine Einverständniserklärung (Anhang 9.3). Keine Testperson hatte eine motorische, zentralnervöse oder psychische Grunderkrankung. Auch schwere Wirbelsäulendeformität, akute Rückenbeschwerden, Bandscheibenprolaps oder ähnliche Krankheitsbilder wies kein Versuchsteilnehmer auf. Acht von ihnen gaben einen leichten Haltungsschaden in Form eines Hohlkreuzes oder einer leichten Skoliose an.

Während der Studie hatten die Testpersonen keine Erkältungskrankheiten. Somit war die Nasenatmung nicht eingeschränkt.

Bei der intraoralen Untersuchung lag bei allen Probanden eine Neutralbisslage beidseitig vor. Kontakt bestand bei allen Versuchsteilnehmern in der Frontzahnregion. Geringfügiger Engstand in der Front war kein Ausschlusskriterium für die Studie. Die Probanden wiesen weder einen Kreuzbiss oder Nonokklussion, noch einen seitlichen oder frontalen offenen Biss auf. Die prothetische Versorgung bestand maximal aus suffizienten Einzelzahnkronen im Seitenzahnbereich mit korrekter anatomischer Form und Kauflächengestaltung. Auch alle bestehenden Füllungen erfüllten diese Anforderungen.

Keine der Testpersonen zeigte Anzeichen für eine akute Craniomandibuläre Dysfunktion. Zwölf von ihnen wiesen leichte Druckdolenzen während der Muskelpalpation, meist nur im Bereich des M. masseter auf.

Zum Zeitpunkt der Untersuchung trug kein Versuchsteilnehmer festsitzende kieferorthopädische Retentions- oder sonstige Behandlungsapparaturen. In der Vergangenheit wurden jedoch 19 Personen der Studienpopulation kieferorthopädisch behandelt, zehn von ihnen mit festsitzenden und neun mit herausnehmbaren Apparaturen. Vier Teilnehmer wurden funktionskieferorthopädisch behandelt. Eine systematische Reihenextraktion nach Hotz wurde bei zwei Probanden durchgeführt.

Funktionell zeigten alle Teilnehmer der Studie bei der klinischen Untersuchung ein physiologisches somatisches Schluckmuster. Der Verlauf des Schluckens war unangestrengt und unverkrampft. Kein Proband schnitt dabei Grimassen, niemand ließ unübliche Geräusche hören und nie trat Speichel aus.

Bei zwei Probanden wurde ein leichtes Ankyloglosson festgestellt, welches die Beweglichkeit der Zunge jedoch nicht einschränkte.

Die Aussprache der Worte und Texte während der Studie erfolgte korrekt und hochdeutsch. Keiner der Probanden hatte einen Sigmatismus. In der Vergangenheit wurden vier Versuchsteilnehmer logopädisch behandelt: Zwei davon auf Grund einer kindlichen Sprachentwicklungsstörung, einer wegen Legasthenie und ein weiterer zur Ergänzung einer gesanglichen Ausbildung.

Vor den Aufzeichnungen wurden intra- und periorale Piercings entfernt. Außerdem wurde darauf geachtet, dass kein Teilnehmer während des Versuchs unter dem Einfluss von Alkohol oder zentral wirksamer Medikamente stand.

2.2 Beschreibung des Messsystems

2.2.1 Hardware

Die Zungenbewegungen wurden mit dem Artikulographen der Abteilung für Kieferorthopädie des Zentrums für Zahn-, Mund-, und Kieferheilkunde der Universität Tübingen gemessen²⁶. Dieser stellte eine Neuentwicklung nach dem Vorbild des Messsystems der Firma Carstens Medizinelektronik GmbH dar⁶. Der Artikulograph besteht aus einem Messhelm mit drei Senderspulen, zehn Empfängerspulen und einer Verstärker- und Rechnereinheit. Das Gerät wurde vom TÜV Stuttgart gemäß der MedGv und dem MPG geprüft und abgenommen.

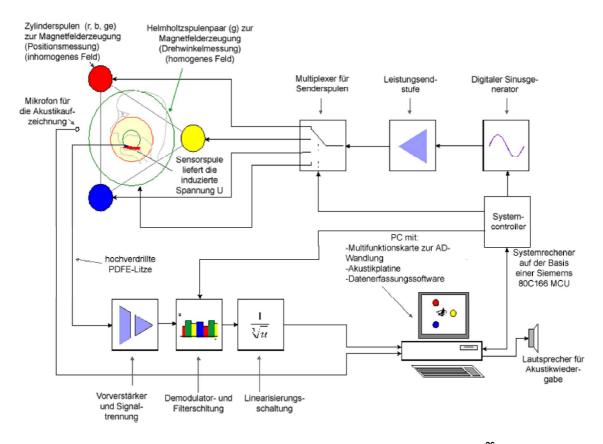


Abbildung 1: Skizze des artikulographischen Messsystems²⁶

Der Messhelm basiert auf einem Fahrradsturzhelm Typ Giro (CE Kennzeichnung (CE96)) dar. Der Styroporhelm gewährleistet durch Klettverschlusspolster und eine verstellbare Nasenstütze einen sicheren und komfortablen Halt. Am Helm ist ein Carbongestänge in Form eines gleichseitigen Dreiecks der Kantenlänge von 40 cm in der Mediansagittalebene angebracht. An den Ecken des Dreiecks, die sich im Bereich des Kinns, der Stirn und des Nackens befinden, sind drei Senderspulen befestigt, an denen eine Wechselspannung der Frequenz von 25,22 kHz angeschlossen ist.

Abbildung 2: Proband mit Messhelm einschließlich Carbongestänge und Senderspulen

Durch diese Spannung entsteht ein inhomogenes radialsymmetrisches Magnetfeld, dessen Flussdichte B nach dem Gesetz von Biot-Savart⁴¹ mit zunehmendem Abstand r vom Sender um die dritte Potenz abnimmt (B $\sim 1/r^3$).

In diesem Feld mit einer magnetischen Flussdichte von maximal 0,4 mT befinden sich die Empfängerspulen bzw. Sensoren, die an verschieden Punkten der Mediansagittalebene intra- und extraoral mit Gewebekleber (Histoacryl, Braun Melsungen, Deutschland) befestigt sind.

An den Spulen wird durch Induktivität eine Spannung U_x erzeugt. Dabei bedeutet x = 1 Sender am Kinn, x = 2 Sender an der Stirn und x = 3 Sender im Nacken. Die Induktionsspannung U_x nimmt wie die magnetische Flussdichte B mit der dritten Potenz des Abstandes r zu den Senderspulen ab:

$$U_x = \frac{k}{r_x^3}$$
 oder $r_x = \sqrt[3]{\frac{k}{U_x}}$,mit der Proportionalitätskonstante k, die durch die Arti-

kulographenkalibrierung ermittelt wird.

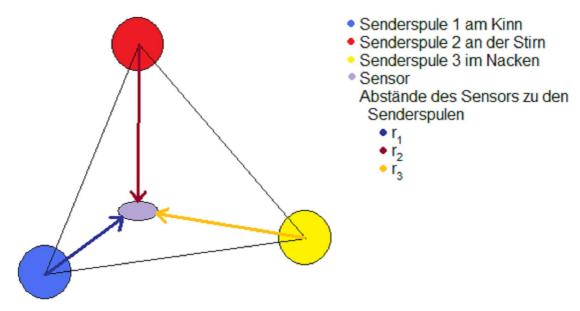


Abbildung 3: Schema der Lage eines Sensors innerhalb des Magnetfeldes der Senderspulen

Somit ist die induzierte Spannung U_x charakteristisch für die Position der Empfängerspule innerhalb des Magnetfeldes der Senderspulen x. Da jedoch kein linearer Zusammenhang zwischen U_x und r_x besteht, muss eine Linearisierungseinheit vor den Computer geschaltet werden.

Beim verwendeten Zeitmultiplexverfahren sendet zu jedem Zeitpunkt der Messung nur eine Spule. So wird unterschieden, welcher Sender x die Spannung auslöst. Von vier Zeitabschnitten werden auf Grund der drei Senderspulen ebensoviele, also drei Abschnitte, zur Positionsmessung der Sensoren verwendet.

Desweiteren verringert sich die Induktionsspannung U_x um den Faktor $\cos \alpha$, wenn Empfänger- und Senderspulen gegeneinander um den Winkel α verdreht sind. Um das auszugleichen, befindet sich im Carbongestänge ein Helmholtzspulenpaar, welches ein zusätzliches homogenes Magnetfeld schafft. Es erfasst in einer separaten Drehwinkelmessung während des vierten Zeitabschnittes den Winkel α und kann ihn direkt korrigieren, damit keine weitere Messungenauigkeit entsteht.

Die Spannungswerte der einzelnen Empfängerspulen werden über Kabel zu einem PC geleitet.

Zusätzlich zu den kinematischen Aufzeichnungen wurde bei den VCV- und CVC-Sequenzen zur Analyse der Sprachsequenzen^{34,35} Tonaufnahmen mit zwei statischen Mikrofonen angefertigt.

2.2.2 Software

Die Software AGMDE.EXE (Scholl, Th., KFO, Universität Tübingen) kalibrierte, maß, verarbeitete, sichtete und exportierte die Daten des Messsystems. Vom Programm Artikulograph (Scholl, Th., Schaupp, E., Koos, B., Horn, H., Universität Tübingen) konnten die Bewegungsbahnen der Empfängerspulen grafisch dargestellt und ausgewertet werden. Durch das Statistikmodul im CAD-Programm Igor-Pro 6.01 (wavemetrics) wurden die ausgewerteten Daten in eine Form konvertiert, die das Statistikprogramm JMP IN, Release 7.0.1. (SAS Institute Inc., Cary, USA) verarbeiten konnte.

2.2.3 Messgenauigkeit

Die Messgenauigkeit des Artikulographen der Poliklinik für Kieferorthopädie des Zentrums für Zahn-, Mund-, und Kieferheilkunde der Universität Tübingen ist abhängig von der Seitabweichung z aus der Mediansagittalebene heraus 27 . Im Gegensatz dazu wirkt sich eine Spulenverdrehung um den Winkel Φ auf Grund der Korrektur durch das Helmholtzspulenpaar am Messfehler nur minimal aus.

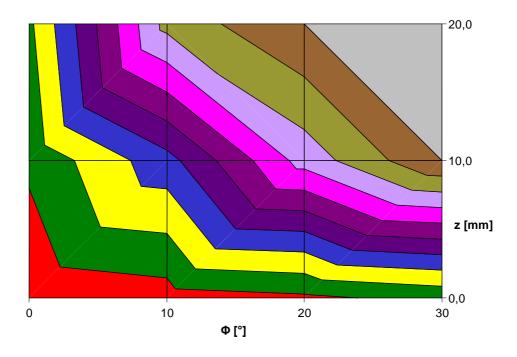


Abbildung 4: Messgenauigkeit des Artikulographen²⁷

 $M80 = f(z,\Phi)$ (M80(\blacksquare) = 4,50 bis 5,00; M80(\blacksquare) = 4,00 bis 4,50; M80(\blacksquare) = 3,50 bis 4,00; M80(\blacksquare) = 3,00 bis 3,50; M80(\blacksquare) = 2,50 bis 3,00; M80(\blacksquare) = 2,00 bis 2,50; M80(\blacksquare) = 1,50 bis 2,00; M80(\blacksquare) = 1,00 bis 1,50; M80(\blacksquare) = 0,50 bis 1,00; M80(\blacksquare) = 0,00 bis 0,50) in Abhängigkeit von der Seitabweichung z und der Spulenverdrehung Φ

Das Messrauschen bzw. die Standardabweichung war immer kleiner als 0,2 mm. Im optimalen und gleichzeitig klinisch relevanten Messbereich des Artikulographen mit einem Durchmesser von 12 cm betrug der Messfehler 0,12 mm. Das Messsystem kann die Bewegungen der Empfängerspulen in der Mediansagittalebene mit einer Frequenz von 1 kHz abtasten.

2.3 Messung

2.3.1 Vorbereitungen

2.3.1.1 Dokumentation

Zur Dokumentation der intraoralen Situation der Probanden zum Zeitpunkt der Studie wurden Alginatabformungen von beiden Kiefern genommen, um Studienmodelle aus Superhartgips herzustellen.

2.3.1.2 Schablonenherstellung zur Kauebenenregistrierung

Zur Kauebenenregistrierung wurden auf den Oberkiefer der Studienmodelle passende starre Kunststoffplatten gefräst. Deren Ausdehnung erstreckte sich lateral und frontal auf den äußeren Umfang des Zahnbogens und dorsal bis zum Ende des harten Gaumens. Für die Verschlüsselung zwischen der Kunststoffplatte und dem Oberkiefermodell wurden okklusale Einbisse aus Futar® D (Kettenbach GmbH & Co. KG, Eschenburg, Deutschland) im Frontzahn- und jeweiligen Molarenbereich auf den Schablonen angebracht. Der korrekte Sitz der Kunststoffschiene wurde im Mund der Versuchsteilnehmer überprüft. Dann erfolgte die Übertragung der Oberkiefermitte von den Modellen auf die Schablone. Anschließend wurden auf der Mittellinie in zwei Retentionsmulden, eine hinter den Frontzähnen und eine an der dorsalen Begrenzung des harten Gaumens, die Empfängerspulen 9 und 10 (zweite Aufnahme) mit Sekundenkleber angebracht. Diese dienten zur Kauebenenregistrierung.

2.3.1.3 Messystemkalibrierung

Um der jeweiligen Induktionsspannung U_x die richtige Position im Magnetfeld r_x zuzuordnen, wurde die Proportionalitätskonstante k durch eine Systemkalibrierung bestimmt. Diese musste, um eine hohe Messgenauigkeit zu erreichen, vor jeder Messreihe geschehen. Zuerst wurde eine Kalibrierplatte zum Zentrum des Systems mit gleichem Abstand zu allen drei Senderspulen ausgerichtet. Dort erreichte die induzierte Spannung der Empfängerspulen ihren maximalen Wert. Nun wurden auf der Kalibrierplatte Sensoren an sieben Messpunkten positioniert, deren Abstand zu den Sendern r_x bekannt war. Aus der so gemessenen Spannung U_x konnte mit $U_x = \frac{k}{r_x^3}$ die Proportionalitätskonstante k berechnet werden.

2.3.1.4 Artikulograph

Um eine gleichmäßige Betriebstemperatur zu gewährleisten, musste der Artikulograph mindestens zwei Stunden vor Messbeginn eingeschaltet werden. Die Desinfektion der Kabel und Empfängerspulen wurde mit Meliseptol[®] HBV Tücher (B. Braun Melsungen AG, Melsungen, Deutschland) durchgeführt. Zudem wurden vor Beginn der Messungen die Empfängerspulen ca. 0,5 mm-dünn mit Silasoft[®] Normal (DETAX GmbH & Co. KG, Ettlingen, Deutschland) überzogen, um einen Schutz gegen physikalische und chemische Einflüsse wie Scherkräfte, Speichelfeuchtigkeit und Gewebekleber aufzuweisen.

2.3.1.5 Probanden

Den Versuchsteilnehmern wurde der Messhelm mit Carbongestänge angepasst. Dabei konnte er durch ein Band um den Nacken, eine verstellbare Nasenstütze und Polster im Inneren individuell befestigt werden. Durch das Basismaterials Styropor war der Helm, im Gegensatz zum Vorgängermodell der Firma Carstens, nur 1300g leicht und dadurch angenehmer über längere Zeit zu tragen. Das Carbongestänge musste genügend Abstand zu den Schultern aufweisen. Außerdem wurde es so ausgerichtet, dass sich die Mundhöhle im optimalen Messbereich, also der Mitte des gleichseitigen Gestängedreiecks befand.

Die Sensoren 1 bis 10 wurden nach folgendem Schema verwendet:

Empfängerspule	Messpunkte in der Mediansagittalebene	
1	Zungenspitze	
2	Zungenmitte, 2 cm posterior der 1. Empfängerspule	
3	Zungengrund, 4 cm posterior der 1. Empfängerspule	
4	Befestigte Gingiva des Oberkiefers (OK), kranial der labialen Interdentalpapille zwischen Zahn 11 und 21	
5	Befestigte Gingiva des Unterkiefers (UK), kaudal der labialen Interdentalpapille zwischen Zahn 31 und 41	
6	Oberlippenkante, Grenze zwischen Lippenweiß und Lippenrot (am tiefsten Punkt des Cupidobogens)	
7	Unterlippenkante, Grenze zwischen Lippenweiß und Lippenrot	
8	Nasion	
9	Anteriorer Messpunkt der Kauebene auf der Schablone	
	1. Aufnahme: Gaumenkontur	
10	Aufnahme: Posteriorer Messpunkt der Kauebene auf der Schablone	

Tabelle 1: Verwendungsplan der Sensoren

Die Empfängerspulen 1 bis 8 wurden mit einem medizinischem Histoacrylgewebekleber (Braun, Aesculap, Tuttlingen, Deutschland, CE0123 (93/42/EWG)) an den Probanden befestigt.

Für das Ankleben der Sensoren 1 bis 3 zur Messung der Zungenbewegungen wurde der Sulcus medianus linguae nach relativer Trockenlegung markiert, um so die Mediansagittalebene zu kennzeichnen. Alle drei Empfängerspulen waren senkrecht zur Zungenmittelline ausgerichtet. Da die Zunge rein muskulär strukturiert ist, war die Spulenbefestigung relativ schwierig.

Als Referenzpunkt des Oberkiefers diente die Spule 4. Dafür war die befestigte Gingiva als Messort auf Grund der geringen Resilienz sehr gut geeignet. Dieser Referenzort wurde bereits bei anderen EMA-Studien angewandt^{36,39,44,61,62}.

Der fünfte Sensor erfasste die Unterkieferbewegungen. Auch hier war die Resilienz sehr gering und somit der Messort ein relativ fixer Punkt.

Um wie in bestehenden Studien^{54,61,62} die Lippenbewegungen aufzuzeichnen, wurden die Spulen 6 und 7 genutzt.

Die achte Empfängerspule stellte auf dem Nasenrücken einen Referenzpunkt dar. Die Hautpartie am Nasion ist jedoch wegen der mimischen Muskulatur in craniokaudaler Richtung relativ beweglich.

Die Sensoren 9 und 10 (Zweite Aufnahme) wurden mit Sekundenkleber in den Retentionsmulden der Kauebenenschablone fixiert. Sie dienten damit zur Bestimmung der Kauebene. Diese stellte eine wichtige Referenz dar.

Für die erste Aufnahme mit Spule 10 wurde der Sensor mit Histoacrylkleber an den Zeigefinger eines Untersuchungshandschuhes befestigt.

Die Ableitungskabel der Empfängerspulen erhielten mit Klettverschluss eine Befestigung am Carbongestänge, so dass sie den Probanden während des Versuchs nicht in seiner Bewegungsfreiheit einschränkten.

2.3.2 Aufzeichnungsphase

Die Messungen wurden durch das Software Programm AGMDE.EXE gestartet und auch von diesem als Rohdaten gespeichert. Die Aufzeichnung erfolgte bei jedem Versuchsteilnehmer nach der gleichen Reihenfolge.

Die aufgenommenen Rohdaten wurden in ein Dateiformat konvertiert, das für das Auswertungsprogramm Igor Pro (Version 6.01) lesbar war. Die kinematischen Dateien lagen in der Form "*.Kxx" vor und die akustischen als "*.Axx", wobei "*" dem Probandennamen und "xx" der zweistelligen Nummer der Messung entsprach.

2.3.2.1 Referenz Gaumenkontur

Zunächst wurde die Gaumenkontur als Referenzlinie aufgezeichnet. Während die Spule 10 am Handschuh des Untersuchers befestigt war, wurde der Oberkiefer von dorsal nach ventral in der Mediansagittalebene vom Gaumen über die oberen Incisiven bis in die Umschlagfalte hin abgefahren. Es war darauf zu achten, dass über den gesamten Zeitraum der Gaumenkonturmessung Schleimhautkontakt bestand. Dieser Vorgang fand viermalige Wiederholung. Währenddessen wurde außer dem zehnten Sensor ("Gaumenkontur") die Spulen 4 ("Gingiva OK") und 8 ("Nasion") als Referenzen aufgenommen. Die vier Aufzeichnungen wurden separat als Messung Nr. 01 bis 04 in der Form *.K01 bis *.K04 abgespeichert. Die präziseste Messung wurde später als Referenz verwendet.

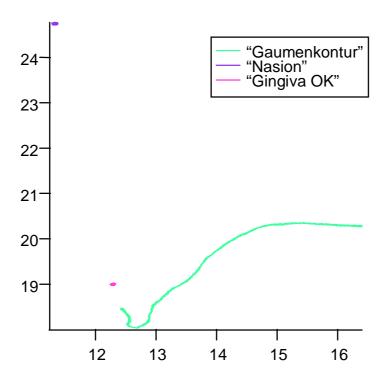


Abbildung 5: X/Y-Darstellung der Gaumenkontur in cm

2.3.2.2 Referenz Kauebene

Um diese Referenzebene zu bestimmen, wurde die angefertigte Kunststoffschablone mit den Spulen 9 ("ant. Kauebene") und 10 ("post. Kauebene") vom Untersucher korrekt im Mund des Patienten repositioniert und während der drei Messungen festgehalten. Nach der graphischen Verbindung dieser beiden aufgezeichneten Punkte ist die Kauebene darstellbar. Außerdem erzeugten die Spulen 4 ("Gingiva OK") und 8 ("Nasion") zusätzliche Aufzeichnungen als Referenzen. Sie wurden unterteilt als Messung Nr. 05 bis 07 in der Form *.K05 bis *.K07 abgespeichert.

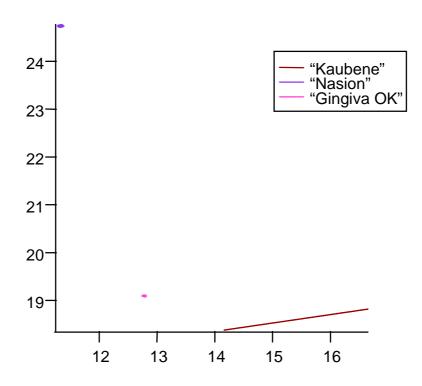


Abbildung 6: X/Y-Darstellung der Kauebene in cm

2.3.2.3 Auswertungsdaten

Die Aufzeichnungen der Sprach- und Schlucksequenzen erfolgten am sitzenden Probanden. Es wurde zuerst ein vollständiger Messdurchlauf in aufrechter und anschließend ein zweiter in entspannter Körperhaltung durchgeführt. Die aufrechte Haltung war definiert durch hüftbreite Fußstellung, rechtwinklig ge-

beugte Knie, horizontal verlaufende Oberschenkel und geraden Rücken. Diese Körperposition wurde vom Probanden während des gesamten Messungszeitraums eingehalten und vom Versuchsleiter überprüft. Bei der entspannten Körperhaltung konnten die Testpersonen eine für sie bequeme Position selbst bestimmen.

Während der Messungen der Sprach- und Schlucksequenzen wurden die Spulen 1 bis 8 ("Zungenspitze", "Zungenmitte", "Zungengrund", "Gingiva OK", "Gingiva UK", "Oberlippe", "Unterlippe" und "Nasion") aufgenommen.

2.3.2.3.1 Sprachsequenzen

Für die Vergleichbarkeit der Sprachaufnahmen waren verschiedene Vorkehrungen zu treffen. Zum einen wurde den Probanden eine zuvor aufgenomme Sprechprobe zur Vereinheitlichung von Lautstärke, Tonhöhe und Sprechgeschwindigkeit vorgespielt. Zum anderen erschienen während des Versuchs die Sprachsequenzen auf einem Monitor, von dem die Versuchsteilnehmer ablasen. Dies sicherte ebenfalls ein angeglichenes Sprachtempo unter den Probanden. Vor Versuchsbeginn lasen die Teilnehmer zur Eingewöhnung die Sprachsequenzen Probe.

Die während der Sprachsequenzmessung in aufrechter Körperhaltung aufgezeichneten Kinematikdateien wurden in der Form *.K08 bis *.K20 abgespeichert und die entsprechenden Akustikdateien als *.A08 bis *.A20 gesichert. Die Daten während der entspannten Körperhaltung hielt man in der Form *.K42 bis *.K54 und *.A42 bis *.A54 fest.

VCV-Sequenzen

Für die Analyse der VCV-Sequenzen wurden die Kernsilben "ta-x-at" gesprochen und aufgenommen. Wobei x durch die Konsonanten "s", "t", "l", "n", "k", "sch" und "f" ersetzt und die Kernsequenz an Stelle von y in den Satz "Ich habe me-y-e gesagt" eingebaut wurde. Diese Aussage wurde für jeden substituierten Konsonanten zehn Mal aufgenommen und pro ersetzten Mitlaut war eine Datei anzulegen.

CVC-Sequenzen

Die Kernsilbe bestanden hier aus "p-x-p", wobei x durch die Vokale "a", "e", "i", "o" und "u" substituiert wurde. Diese Kernsequenz war ebenfalls an Stelle von y in den Satz "Ich habe me-y-e gesagt" einzufügen. Dieser Satz wurde für jeden ersetzten Vokal zehn Mal aufgenommen und pro substituierten Selbstlaut war eine Datei anzulegen.

Text

Am Ende der Sprachsequenzaufzeichnungen wurde folgender Text vorgelesen:

" Der Nordwind und die Sonne

Einst stritten sich Nordwind und Sonne, wer von ihnen beiden wohl der stärkere wäre, als ein Wanderer, der in einen warmen Mantel gehüllt war, des Weges kam. Sie wurden einig, dass derjenige für den Stärkeren gelten sollte, der den Wanderer zwingen würde, seinen Mantel abzunehmen. Der Nordwind blies mit aller Macht, aber je mehr er blies, desto fester hüllte sich der Wanderer in seinen Mantel ein. Endlich gab der Nordwind den Kampf auf. Nun erwärmte die Sonne die Luft mit ihren freundlichen Strahlen und schon nach wenigen Augenblicken zog der Wanderer seinen Mantel aus. Da musste der Nordwind zugeben, dass die Sonne von ihnen beiden der Stärkere war."

Hierbei handelt es sich um einen Mustertext, in dem das vollständige phonetische Alphabet vorhanden ist³⁰.

2.3.2.3.2 Schlucksequenzen

Schlucken nach Aufforderung

Die Probanden schluckten bei dieser Messung alternierend einen Wasserbolus von 10 ml ("Wasserschlucken") und die im Mund befindliche Speichelmenge ohne zusätzlichen Wasserbolus ("Leerschlucken") nach Aufforderung. Damit die Schleimhaut der Testperson nicht austrocknete, wurde "Wasserschlucken" und "Leerschlucken" abwechselnd durchgeführt. In aufrechter und entspannter Körperposition entstanden dabei je 20 Aufzeichnungen. Sie wurden in der Form

*.K21 bis *.K40 und *.K55 bis *.K74 gespeichert. Die Analyse der Daten des "Wasserschluckens" stellt den Inhalt dieser Dissertation dar. Die Daten hierfür finden sich in den Dateien mit den ungeraden Messungsnummern (*.K 21, *.K23, *.K25... und *.K55, *.K57, *.K59...).

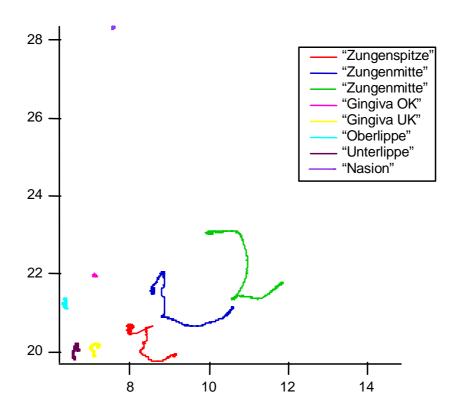


Abbildung 7: X/Y-Darstellung einer Kinematikdatei "Wasserschlucken" in cm

Unbewusstes Schlucken

Zudem wurden unbewusste Schluckvorgänge während einer zehnminütigen Ruhephase aufgezeichnet. Dabei hörten die Probanden leise Musik zur Entspannung. Die Daten liegen als *.K41 und *.K75 vor.

Nach der vollständigen Aufzeichnungsphase ergaben sich folgende Kinematikdateien für jeden Probanden:

Datei	Messung	
*.K01 bis *.K04	1. bis 4. Aufzeichnung der Gaumenkontur	
*.K05 bis *.K07	1. bis 3. Aufzeichnung der Kauebene	
In aufrechter Körperhaltung:		
*.K08 bis *.K20	Sprachsequenzen	
*.K21 bis *.K40	Schlucken nach Aufforderung	
*.K 41	Unbewusstes Schlucken bzw. Ruhephase	
In entspannter Körperhaltung:		
*.K42 bis *.K54	Sprachsequenzen	
*.K55 bis *.K74	Schlucken nach Aufforderung	
*.K75	Unbewusstes Schlucken bzw. Ruhephase	

Tabelle 2: Kinematikdateien der Aufzeichnungen

* = Name des Probanden

Bei der zweidimensionalen Darstellung im Programm Igor Pro stellt der Ursprung des Koordinatensystems die Position der Senderspule 1 im Kinnbereich dar. Auf der Abszisse entspricht links der fazialen und rechts der occipitalen Richtung während der Aufzeichung. Auf der Ordinate entspricht oben rostral und unten kaudal. Die Einheit entspricht einem Zentimeter.

2.3.3 Nachbereitungen

Nach Beendigung der Aufzeichnungen konnten die Sensoren durch leichtes Drehen intra- und extraoral schmerzfrei abgenommen werden. Nach der Desinfektion der Kabel und Spulen wurde die Silasoftschicht um die Sensoren entfernt und der Artikulograph in einer speziellen Vorrichtung abgestellt.

2.4 Auswertung

2.4.1 Bearbeitung der Messdaten

2.4.1.1 Ausrichtung nach Referenzpunkten

Um die Aufzeichnungen von jedem Probanden und von jeder Messung vergleichbar zu machen und dadurch die Daten interindividuell statistisch zu beurteilen, wurden die auszuwertenden Daten in Relation zu fixen Referenzpunkten gesetzt.

Die Bezugsebene für alle Aufzeichnungen stellte die Kauebene dar. Dazu war primär aus den Kinematikdateien "*.K05" bis "*.K07" die deutlichste und beste Darstellung der Kauebene auszuwählen. Die Referenzebene musste im Programm Igor Pro so rotiert werden, dass sie parallel zur Abszisse zu liegen kam. Die mitaufgezeichneten Referenzpunkte "Gingiva OK" und "Nasion" behielten ihre Relation zur Kauebene und wurden mitverlagert.

Auf die neuen Referenzpunkte "Gingiva OK" und "Nasion" mussten nun alle Aufzeichnungen ausgerichtet werden.

In der X/Y-Darstellung des Igor-Pro-Programmmes war zusätzlich zur nivellierten Kauebenendarstellung eine der vier Aufzeichnungen der Gaumenkontur zu öffnen (*.K01, *.K02, *.K03 oder *.K04). Dann wurden die Spulen 4 ("Gingiva OK") und 8 ("Nasion") dieser Datei auf die entsprechenden Referenzpunkte der Kauebendendarstellung verschoben. Dabei war zuerst mit der Igor-Funktion "Move" der Punkt "Gingiva OK" mit einer Translationsbewegung zu übertragen und dann durch die Funktion "Rotate" die beiden "Nasion"-Punkte mit "Gingiva OK" als Rotationsachse deckungsgleich zu rotieren. Die Gaumenkonturlinie wurde dabei mitverschoben und konnte somit als Referenzlinie verwendet werden.

Zur Ausrichtung der Auswertungsdaten an die Referenzpunkte wurde in gleicher Weise verfahren.

Nach der vollständigen Ausrichtung waren die Aufzeichnungen der Auswertungsdaten zusammen mit den Referenzen von Kauebene und Gaumenkontur in einer X/Y-Darstellung des Igor-Pro-Programms sichtbar und auf Grund der

Nivellierung der Referenzen mit den Messungsdarstellungen anderer Probanden vergleichbar.

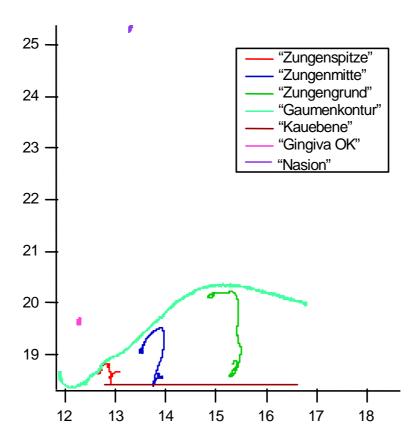


Abbildung 8: X/Y-Darstellung einer nach den Referenzen ausgerichteten Kinematikdatei "Wasserschlucken" in cm

2.4.1.2 Filtern der Kinematikdateien

Neben den Akustikdateien wiesen auch die Kinematikdateien ein Grundrauschen auf. Dies entstand durch die Messumgebung. Um die Fehleranfälligkeit bei der Auswertung zu verringern, wurden die Dateien mit einem "Lowpass"-Filter von 15 Hz bereinigt.

2.4.2 Schlucksequenzen

2.4.2.1 Erstellen eines "Schluckschemas"

Für die Auswertung der Zungenbewegungen beim Schlucken mussten eindeutige und reproduzierbare Messpunkte gefunden werden, damit die einzelnen Aufzeichnungen verglichen und statistisch auswertet werden konnten.

Es wurde ein Schema entwickelt (siehe Abbildung 9 und Tabelle 3 der Seite 29), das verschiedene Maxima und Minima enthielt. Diese Extrempunkte konnten innerhalb der zweidimensionalen Darstellung der Kinematikdateien in Bezug auf die Kauebene ermittelt werden, da diese die nivellierte Referenzlinie für alle Aufzeichnungen war. Ein Markierungspunkt des Sensors, der einen maximalen Abstand zur Abszisse hatte, stellte ein Maximum in y-Richtung ("Max y") dar, ein Punkt mit dem geringsten Abstand zur Kauebene ein Minimum in y-Richtung ("Min y"). Analog dazu wurden in Bezug auf die Ordinate auch Maxima in x-Richtung ("Max x") und Minima in x-Richtung ("Min x") bestimmt.

Da die Aufzeichnungen der Gaumenkontur auf Grund der Markierungsweise zu unpräzise waren, konnten sie nicht für die statistische Auswertung herangezogen werden. Sie dienten lediglich zur besseren räumlichen Vorstellung der Spulenaufzeichnungen der Zungenbewegungen.

Da die dritte Empfängerspule ("Zungengrund") in der graphischen Darstellung der Kinematikdateien die deutlichste Aufzeichnung mit den größten Streckendistanzen lieferte, wurde das Konzept anhand dieser Spule erstellt.

Die Hauptbewegungsbahn der Zunge während der oralen Phase des Schluckens ist die Bewegung nach rostral, um Kontakt mit dem Gaumen herzustellen. Diese Aufwärtsbahn wurde mehrfach beschrieben^{8,33,46,49-52,61,65}. Im erstellten Schema wurde der Startpunkt dieser Bewegung als "Position 3", ein Minimum in y-Richtung ("1. Min y") und der Endpunkt als "Position 6", ein Maximum in y-Richtung ("2. Max y") bestimmt. Bei Durchsicht der Kinematikdateien zeigte sich, dass insbesondere die dritte Empfängerspule ("Zungengrund") während der Aufwärtsbewegung einen s-förmigen Weg beschrieb. Dies war auch bei Abbildungen einer Untersuchung von Chi-Fishman⁸ sichtbar. Als "Position 4" wurde somit ein Minimum in x-Richtung ("1. Min x") und als "Position 5" ein Ma-

ximum in x-Richtung ("2. Max x") bestimmt. Des Weiteren fiel auf, dass die Zunge häufig, bevor sie zum "1. Min y" ("Position 3") gelangt, von dorsal und rostral startet. Deshalb wurde als "Position 1" ein Maximum in y-Richtung ("1. Max y") und als "Position 2" ein Maximum in x-Richtung ("1. Max x") in das Schema aufgenommen.

In mehreren Untersuchungen wurde nachgewiesen, dass die Zunge in rostraler Stellung mit Kontakt zum Gaumen eine bestimmte Zeit verweilt^{8,33,49,50,52,61,63}. Während dieser Kontaktphase war zudem bei Durchsicht der Daten eine Bewegung der Zunge nach anterior festzustellen. Dies hat auch Steele⁶¹ beschrieben. Die "Position 7" wurde somit als ein am Gaumen gelegenes Minimum in x-Richtung ("2. Min x") festgelegt.

Wie bei den meisten Autoren schloss sich nun ein Ablösen der Zunge vom Gaumen an^{8,33,49,50,52,63}. Die folgende Abwärtsbewegung endete in einem Minimum in y-Richtung ("2. Min y") und wurde im Schema als "Position 8" definiert. Bei einigen Autoren endete die Schluckbewegung mit der Rückstellung der Zunge in ihre Ruheposition^{8,33}. Im Unterschied hierzu fügte Peng^{49,50,52} der Abwärtsspur eine Aufwärtsbewegung an, wenn der Untersuchte eine hochgestellte Ruheposition der Zunge aufwies. Nach Sichtung unserer Daten wurden solche Aufwärtsspuren ebenfalls erkannt. Sie waren jedoch teilweise ausgeprägter, sodass sie den Gaumen erreichen konnten. Der Endpunkt dieser Bahn, "Position 9", wurde als Maximum in y-Richtung ("3. Max y") bestimmt.

Zusätzlich fiel bei der Durchsicht der Daten auf, dass die Zunge am Ende der Aufzeichnungen im Anschluss an die "Position 9" eine Bewegung nach dorsal durchführte. Dies kann eine Schubkraft für den Speisebolus in Richtung Ösophagus bewirken⁴⁶. Das Ende der Rückbewegung der Zunge, "Position 10", stellt ein Maximum in x-Richtung ("3. Max x") dar. Danach schloss sich eine Zungenbewegung nach anterior an, deren Schlusspunkt als "Position 11", einem Minimum in x-Richtung ("3. Min x"), definiert wurde.

Aus den insgesamt elf bestimmten Extrempunkten ergab sich das "Schluckschema", welches auf alle drei Sensoren der Zunge ("Zungenspitze, -mitte und grund") angewandt wurde.

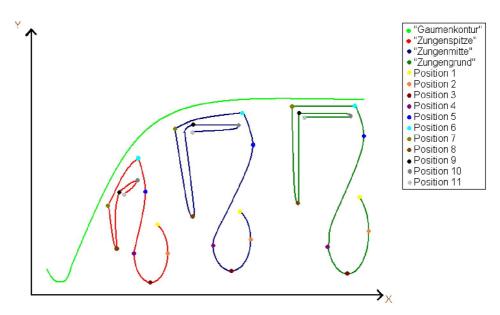


Abbildung 9: Schluckablauf in schematische Darstellung

Position	Art des Extremum	Beschreibung
1	1. Max y	Maximal rostraler Startpunkt der Zungenbewegung
2	1. Max x	Maximal dorsaler Startpunkt der Zungenbewegung
3	1. Min y	Startpunkt der ersten Aufwärtsbewegung
4	1. Min x	Maximal ventraler Punkt während der s-förmigen Aufwärtsbewegung
5	2. Max x	Maximal dorsaler Punkt während der s-förmigen Aufwärtsbewegung
6	2. Max y	Endpunkt der ersten Aufwärtsbewegung am Gaumen
7	2. Min x	Endpunkt der ersten Ventralbewegung am Gaumen
8	2. Min y	Kaudalster Punkt nach der Ablösung der Zunge vom Gaumen
9	3. Max y	Endpunkt der zweiten Aufwärtsbewegung
10	3. Max x	Endpunkt der Dorsalbewegung am Gaumen
11	3. Min x	Endpunkt der zweiten Ventralbewegung am Gaumen

Tabelle 3: Schema der Bewegungsbahnen der Zungensensoren

2.4.2.2 Erproben des "Schluckschemas"

Um dieses Schema zu erproben, wurde es auf 196 Kinematikdateien, Aufzeichnungen des "Wasserschluckens" in aufrechter Körperhaltung, angewandt. Dabei konnte geprüft werden, ob der entsprechende Extrempunkt vorhanden war. Die Ergebnisse sind in Tabelle 4 zusammengefasst.

Position	Spule 1	Spule 2	Spule 3 ("Zungengrund")
1	103**	124**	147***
2	145***	158***	140***
3	169***	187***	192***
4	85*	96*	162***
5	53	71*	165***
6	187***	191***	194***
7	120**	134***	172***
8	145***	157***	137***
9	107**	129**	117**
10	97*	92*	123**
11	81*	80*	94*

Tabelle 4: Auswertung von 196 Kinematikdateien "Wasserschlucken" in aufrechter Körperhaltung;

*** = Position bei mehr als 2/3 der Dateien vorhanden (mindestens 131); ** = Position bei mehr als der Hälfte der Dateien vorhanden (mindestens 98); * = Position bei mehr als 1/3 der Dateien vorhanden (mindestens 65)

Es war ersichtlich, dass die Positionen 2, 3, 6, 7 und 8 bei allen drei Spulen eine hohe Reliabilität aufwiesen. Als bemerkenswert erschien das häufige Vorkommen der Positionen 4 und 5 der Spule 3. Auch wenn die Positionen 10 und

11 relativ selten nachzuweisen waren, wurde das aufgestellte "Schluckschema" in dieser Form beibehalten.

2.4.2.3 Definition der zeitlichen Variablen

Aus den elf Extrempunkten des "Schluckschemas" ergaben sich für jede der drei Spulen ("Zungenspitze, -mitte und -grund") elf Positionsvariablen. Diesen Messpunkten konnten je Spule elf Zeitpunkte cxtn zugeordnet werden, wobei cx die Spulenzahl und tn die Position angibt.

Es ergeben sich somit 33 Zeitpunkte cxtn:

Aus den Intervallen bestimmter Zeitpunkte ergeben sich 45 Zeitspannen T, die zeitlichen Variablen:

Variablen der "Zungenspitzenspule" c1:

T01 = c1t02 - c1t01	T02 = c1t03 - c1t02	T03 = c1t04 - c1t03
T04 = c1t05 - c1t04	T05 = c1t06 - c1t05	T06 = c1t07 - c1t06
T07 = c1t08 - c1t07	T08 = c1t09 - c1t08	T09 = c1t10 - c1t09
T10 = c1t11 - c1t10	T11 = c1t03 - c1t01	T12 = c1t06 - c1t03
T13 = c1t06 - c1t01	T14 = c1t08 - c1t01	T15 = c1t11 - c1t01

Variablen der "Zungenmittespule" c2:

T16 = c2t02 - c2t01	T17 = c2t03 - c2t02	T18 = c2t04 - c2t03
T19 = c2t05 - c2t04	T20 = c2t06 - c2t05	T21 = c2t07 - c2t06
T22 = c2t08 - c2t07	T23 = c2t09 - c2t08	T24 = c2t10 - c2t09
T25 = c2t11 - c2t10	T26 = c2t03 - c2t01	T27 = c2t06 - c2t03
T28 = c2t06 - c2t01	T29 = c2t08 - c2t01	T30 = c2t11 - c2t01

Variablen der "Zungengrundspule" c3:

T31 = c3t02 - c3t01	T32 = c3t03 - c3t02	T33 = c3t04 - c3t03
T34 = c3t05 - c3t04	T35 = c3t06 - c3t05	T36 = c3t07 - c3t06
T37 = c3t08 - c3t07	T38 = c3t09 - c3t08	T39 = c3t10 - c3t09
T40 = c3t11 - c3t10	T41 = c3t03 - c3t01	T42 = c3t06 - c3t03
T43 = c3t06 - c3t01	T44 = c3t08 - c3t01	T45 = c3t11 - c3t01

2.4.3 Statistik

Zur statistischen Auswertung der Daten wurde das Programm JMP IN, Release 7.0.1 (SAS Institute Inc., Cary, USA) genutzt.

2.4.3.1 Messfehleranalyse

Es existiert ein wahrer Wert zu jeder bestimmten Variablen in einer bestimmten Körperhaltung. Diesem Wert kann sich ein Messwert lediglich annähern, ihn jedoch nie exakt darstellen. Die wiederholten Messungen liegen im Umkreis dieses wahren Wertes, da sie einen Messfehler aufweisen. Dieser ergibt sich durch die natürliche Variationsbreite beim Schlucken sowie durch das Messsystem⁴.

Aus den zehn Messungen pro Proband in vorgegebener Körperhaltung wurde deshalb der intraindividuelle arithmetische Mittelwert \bar{x} für jede einzelne Variable errechnet ($\bar{x} = \frac{x_1 + x_2 + \ldots + x_{10}}{10}$). Des Weiteren wurde der interindividuelle arithmetischer Mittelwert \bar{x} der Messgröße für jede Variable jeweils für den männlichen und weiblichen Anteil der Probanden und in aufrechter und entspannter Körperhaltung bestimmt ($\bar{x} = \frac{\bar{x_1} + \bar{x_2} + \ldots + \bar{x_n}}{n}$, wobei n die Anzahl der männlichen bzw. weiblichen Probanden war). Als Streuungsmaße konnte für jeden Probanden pro Variable und Körperhaltung eine individuelle Varianz

$$(\text{Var x} = \frac{\sum_{i=1}^{10} \left(x_i - \overline{x}\right)^2}{10}) \text{ und eine Standardabweichung } (\sigma = \sqrt{\text{Var x}}) \text{ berechnet werden}^{22,24,69,70}.$$

Die bisher errechenbaren Werte ließen Rückschlüsse auf die Güte der Messung eines Probanden je Variable je Körperhaltung zu. Um den Messfehler einer bestimmten Variable von allen Männern bzw. Frauen in einer bestimmten Körperhaltung zu beschreiben, war der Mittelwert der einzelnen Varianzen, die mittlere Varianz ($\overline{\text{Var x}} = \frac{\text{Var}_1 x + \text{Var}_2 x + \ldots + \text{Var}_n x}{n}$, wobei n die Anzahl der männlichen bzw. weiblichen Probanden war) zu bilden⁴. Die mittlere Standard-

abweichung bzw. der so genannte Messfehler $\overset{-}{\sigma}$ wurde folgendermaßen definiert⁴: $\overset{-}{\sigma} = \sqrt{\overline{Var}\ x}$.

Von Bland und Altman wurde publiziert, dass der Unterschied zwischen einem Messwert eines Probanden und dem wahren Messwert geringer als der 1,96-fache Messfehler σ in 95 % der Untersuchungen ist. Außerdem soll der Unterschied zwischen zwei Messungen der gleichen Variablen eines Probanden geringer als der 2,77-fache Messfehler σ sein. Dies wird als Wiederholbarkeit bezeichnet⁴.

Da der 1,96-fache Messfehler der Messwerte auf Grund der deutlich abweichenden Zeitspannen nicht mit der Kategorisierung der Sprachsequenzauswertung^{34,35} eingestuft werden konnte, war eine neue Einteilung zu entwerfen. Es wurden keine absoluten Grenzen mehr festgelegt, sondern eine Messfehlerkategorisierung in Relation zum interindividuellen arithmetischen Mittelwert x der Messgrößen eingeführt.

1,96-fache Messfehler der	Messfehlerkategorie
Zeitspannen $\overset{-}{\sigma}$	in Relation zum Mittelwert x
$1,96 \cdot \overset{-}{\sigma} \leq x \cdot 0,4$	1 = ***
=	2 = **
=	3 = *
$\begin{array}{ccc} - & = & \\ 1,96 \cdot \sigma &> x \cdot 1,2 \end{array}$	Kategorie 0

Tabelle 5: Messfehlerkategorien der Zeitspannen

Außerdem wurde analog der Dissertationen von Koos und Klink^{34,35} für die Messfehlerkategorien ein Bewertungsquotient Q definiert:

$$Q = \frac{n_1 \cdot 3 + n_2 \cdot 2 + n_3 \cdot 1 + n_4 \cdot 0}{n} \Rightarrow Q = \frac{n_1 \cdot 3 + n_2 \cdot 2 + n_3 \cdot 1}{n},$$

wobei $n = n_1 + n_2 + n_3 + n_4$,

 n_1 = Anzahl der Variablen der Kategorie 1,

n₂ = Anzahl der Variablen der Kategorie 2,

n₃ = Anzahl der Variablen der Kategorie 3 und

n₄ = Anzahl der Variablen der Kategorie 0

Dieser Bewertungsquotient konnte einen Wert zwischen 0 und 3 annehmen, wobei ein hoher Wert einen geringen Messfehler und ein geringer Wert einen großen Messfehler widerspiegelte.

2.4.3.2 Messwertanalyse

Die Analyse der Messwerte erfolgte durch eine einfaktorielle Analyse. Diese hatte zum Ziel zu prüfen, ob die unterschiedliche Körperhaltung bzw. das Geschlecht eine Auswirkung auf die Größe des Messwertes hatte. Dazu wurde für jede Variable ein Box-Whisker-Plot^{2,24,69} pro Einflussfaktor erstellt. In diesen Diagrammen waren neben den einzelnen mittleren Messwerten der Interquartilsabstand vom ersten zum dritten Quartil, der Median, der arithmethische Mittelwert, die Standardabweichung der mittleren Messwerte sowie der Standardfehler des Mittelwertes enthalten. Außerdem wurde noch der gemeinsame Mittelwert beider Gruppen, aufrecht und entspannt bzw. männlich und weiblich, eingezeichnet.

Eine numerische Erläuterung der Diagramme sowie weitere die Stichprobe beschreibende Angaben finden sich tabellarisch unter "Quantile" und "Mittelwerte und Standardabweichungen".

Desweiteren wurde der nichtparametrische Wilcoxon-Test^{2,28,69} durchgeführt. Dazu waren alle Messfehler der Größe nach auf Rangplätzen anzuordnen. Die Rangsumme ("Score-Summe") ergibt sich aus der Addition der entsprechenden

Ränge der einzelnen Gruppe. Die mittlere Ranghöhe ("Score-Mittelwert" bzw. "Mittelwert") einer Gruppe errechnet sich dann folgendermaßen:

$$Score - Mittelwert = Mittelwert = \frac{Score - Summe}{H\ddot{a}ufigkeiten}$$

wobei "Häufigkeiten" die Anzahl der Messwerte der Gruppe sind.

Außerdem wurde ein standardisierter "Score" aus dem Term "Mittelwert - Mittelwert 0" errechnet, während "Mittelwert 0" den "Score-Std.0

Mittelwert" und "Std.0" die Standardabweichung unter der Annahme der Nullhypothese darstellten. Diese besagten, dass die Mittelwerte der beiden Gruppen gleich waren.

Letztlich wurde mit der χ^2 -Verteilung ("Chi-Quadrat-Approximation") anhand des Einfaktoriellen Tests χ^2 ("Chi²") bestimmt. Die Freiheitsgrade ergaben sich dabei aus der Anzahl der Einflussfaktoren abzüglich 1. Bei einem Signifikanzniveau von 5% wurde die Nullhypothese, dass die Mittelwerte der beiden Gruppen gleich sind, dann abgelehnt, wenn der errechnete Wahrscheinlichkeitswert ("Wahrsch. > Chi²") $\leq 0,05$ war. In diesem Fall war anzunehmen, dass der Einflussfaktor, Körperhaltung oder Geschlecht, einen signifikanten Einfluss auf den mittleren Messwert ausübte.

2.4.3.3 Normwertdefinition

Unter Berücksichtigung der statistischen Ergebnisse wurde eine Normwerttabelle erstellt. Dabei waren die statistisch unsicheren Variablen mit Messfehler der Kategorie 4 nicht aufgeführt. Für jede Variable wurden je Geschlecht der Mittelwert $\overset{=}{x}$, der dann als Normwert bezeichnet werden kann, der 1,96-fache Messfehler σ sowie die sich daraus ergebende Messfehlerkategorie angegeben. Die aufgelisteten Werte können künftig für diagnostische Messungen herangezogen werden.

3 Ergebnisse

3.1 Messfehleranalyse

Mit den in Kapitel 2.4.3.1 beschriebenen Gleichungen wurden aus den Messwerten jeder Kombination aus Variable, Geschlecht und Körperhaltung für die folgende Tabelle das arithmetische Mittel der Messwerte $\overset{=}{x}$ der Wiederholungsmessungen bzw. der mittlere Messwert, der einfache, der 1,96-fache und der 2,77-fache Messfehler $\overset{=}{\sigma}$ berechnet. Aus der Höhe der 1,96-fachen Standardabweichung war in Relation zum Mittelwert $\overset{=}{x}$ die Messfehlerkategorie der entsprechenden Variable je Geschlecht und Körperhaltung anhand der Tabelle 5 der Seite 33 bestimmbar.

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert in s	Messfehler in s	1,96 *Messfehler in s	2,77*Messfehler in s	Messfehler- kategorie
	männlich	aufrecht	0,089	0,090	0,176	0,249	
T01		entspannt	0,081	0,086	0,169	0,238	
	weiblich	aufrecht	0,057	0,057	0,112	0,158	
	WOIDIIOIT	entspannt	0,073	0,066	0,128	0,182	
	männlich	aufrecht	0,112	0,120	0,236	0,333	
T02	Inaminon	entspannt	0,079	0,087	0,171	0,242	
102	weiblich	aufrecht	0,101	0,125	0,246	0,347	0
	Weiblich	entspannt	0,094	0,094	0,184	0,259	
	männlich	aufrecht	0,193	0,192	0,376	0,531	
T03	Illamillich	entspannt	0,165	0,158	0,310	0,438	
103	weiblich	aufrecht	0,217	0,185	0,362	0,511	•
	MEIDIICIT	entspannt	0,187	0,187	0,366	0,517	
T04	männlich	aufrecht	0,114	0,090	0,176	0,249	
104	mannon	entspannt	0,124	0,107	0,210	0,297	

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert in s	Messfehler in s	1,96 *Messfehler in s	2,77*Messfehler in s	Messfehler- kategorie
T04	weiblich	aufrecht	0,128	0,141	0,277	0,392	
		entspannt	0,146	0,138	0,271	0,383	
	männlich	aufrecht	0,151	0,151	0,296	0,418	
T05		entspannt	0,146	0,117	0,230	0,325	
	weiblich	aufrecht	0,167	0,161	0,315	0,446	
	WOIDIIOIT	entspannt	0,166	0,151	0,296	0,418	
	männlich	aufrecht	0,277	0,176	0,344	0,487	
T06	marimon	entspannt	0,197	0,135	0,265	0,374	
100	weiblich	aufrecht	0,228	0,200	0,393	0,555	
	weiblich	entspannt	0,238	0,218	0,427	0,603	
	männlich	aufrecht	0,159	0,138	0,270	0,382	
T07	mannich	entspannt	0,284	0,260	0,510	0,721	
T07	weiblich	aufrecht	0,297	0,252	0,495	0,699	0
	weiblich	entspannt	0,229	0,200	0,392	0,554	0
	männlich	aufrecht	0,227	0,175	0,344	0,486	
TOO	manniich	entspannt	0,292	0,265	0,519	0,734	
T08	weiblieb	aufrecht	0,285	0,214	0,420	0,593	
	weiblich	entspannt	0,271	0,248	0,486	0,687	
	ماه نام م ق مم	aufrecht	0,197	0,211	0,413	0,583	
T00	männlich	entspannt	0,164	0,169	0,331	0,468	
T09	weiblich	aufrecht	0,224	0,239	0,469	0,663	
		entspannt	0,156	0,176	0,344	0,486	
	männlich	aufrecht	0,249	0,229	0,449	0,635	
T10	männlich	entspannt	0,214 ^B	0,212	0,415	0,587	
T10	woibliab	aufrecht	0,201	0,207	0,405	0,572	
	weiblich	entspannt	0,197	0,318	0,623	0,880	

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert in s	Messfehler in s	1,96 *Messfehler in s	2,77*Messfehler in s	Messfehler- kategorie
	männlich	aufrecht	0,200	0,154	0,302	0,427	
T11	marimorr	entspannt	0,161	0,140	0,274	0,388	0
	weiblich	aufrecht	0,158	0,153	0,300	0,424	
	WOIDHOIT	entspannt	0,167	0,111	0,218	0,309	
	männlich	aufrecht	0,458	0,225	0,441	0,623	
T12	manimon	entspannt	0,435	0,232	0,455	0,643	*
112	weiblich	aufrecht	0,512	0,259	0,507	0,716	
	WCIDIICIT	entspannt	0,499	0,286	0,56	0,791	
	männlich	aufrecht	0,658	0,246	0,481	0,68	**
T13	mannlich	entspannt	0,598	0,237	0,464	0,655	
113	weiblich	aufrecht	0,670	0,303	0,595	0,84	*
	WOIDHOIT	entspannt	0,666	0,283	0,555	0,785	
	männlich	aufrecht	1,094	0,252	0,494	0,699	
T14	manimon	entspannt	1,080	0,290	0,569	0,804	
114	weiblich	aufrecht	1,196	0,358	0,703	0,993	
	Weiblich	entspannt	1,132	0,336	0,659	0,931	**
	männlich	aufrecht	1,767	0,364	0,714	1,009	
T15	mannich	entspannt	1,744	0,423	0,829	1,172	
113	weiblich	aufrecht	1,905	0,399	0,781	1,104	
	Weiblich	entspannt	1,756	0,426	0,834	1,179	
	männlich	aufrecht	0,068	0,049	0,097	0,137	
T16	weiblich	entspannt	0,025 ^A	0,326	0,639	0,903	1
		aufrecht	0,082	0,073	0,142	0,201	0
		entspannt	0,075	0,071	0,138	0,196	
T17	männlich	aufrecht	0,136	0,108	0,211	0,299	
	mannich	entspannt	0,106	0,111	0,217	0,307	

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert in s	Messfehler in s	1,96 *Messfehler in s	2,77*Messfehler in s	Messfehler- kategorie
T17	weiblich	aufrecht	0,133	0,136	0,267	0,378	
,	WOIDIIOIT	entspannt	0,136	0,126	0,247	0,349	
	männlich	aufrecht	0,265	0,196	0,384	0,543	
T18	Inaminon	entspannt	0,200	0,156	0,306	0,432	
110	weiblich	aufrecht	0,212 ^B	0,158	0,310	0,439	
	WCIDIICI	entspannt	0,219	0,188	0,369	0,522	
	männlich	aufrecht	0,080	0,059	0,115	0,163	0
T19	Inaminon	entspannt	0,108	0,08	0,157	0,221	
113	weiblich	aufrecht	0,154	0,136	0,267	0,378	
	weiblich	entspannt	0,159	0,143	0,281	0,397	1
	männlich	aufrecht	0,144	0,119	0,234	0,330	
T20	Inaminon	entspannt	0,192	0,164	0,321	0,453	
120	weiblich	aufrecht	0,161	0,164	0,321	0,453	
	Weiblich	entspannt	0,192	0,176	0,345	0,488	
	männlich	aufrecht	0,271	0,164	0,321	0,453	*
T21	Inaminon	entspannt	0,249	0,155	0,303	0,429	
121	weiblich	aufrecht	0,297	0,223	0,437	0,617	
	Weiblich	entspannt	0,214	0,217	0,426	0,602	
	männlich	aufrecht	0,170	0,175	0,343	0,484	
T22		entspannt	0,208	0,246	0,481	0,680	
122	weiblich	aufrecht	0,234	0,181	0,355	0,502	0
		entspannt	0,209	0,214	0,420	0,593	
	männlich	aufrecht	0,233	0,143	0,281	0,397	
T23	mannillen	entspannt	0,280	0,217	0,426	0,602	
123	weiblich	aufrecht	0,321	0,219	0,430	0,608	
	WEIDIICH	entspannt	0,301	0,245	0,481	0,679	

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert in s	Messfehler in s	1,96 *Messfehler in s	2,77*Messfehler in s	Messfehler- kategorie
	männlich	aufrecht	0,225	0,253	0,496	0,701	
T24	Inaminon	entspannt	0,196	0,193	0,379	0,535	
124	weiblich	aufrecht	0,202	0,200	0,393	0,555	
	WCIDIICI	entspannt	0,159	0,160	0,314	0,444	0
	männlich	aufrecht	0,193	0,176	0,344	0,486	
T25	Inaminen	entspannt	0,182	0,169	0,330	0,467	
123	weiblich	aufrecht	0,175	0,233	0,456	0,644	-
	Weiblich	entspannt	0,122	0,271	0,531	0,751	
	männlich	aufrecht	0,204	0,118	0,232	0,327	*
T26	Inammen	entspannt	0,131	0,364	0,713	1,008	
120	weiblich	aufrecht	0,215	0,165	0,323	0,456	0
	Weiblich	entspannt	0,210	0,153	0,301	0,425	-
	männlich	aufrecht	0,490	0,187	0,367	0,519	**
T27	Inaminon	entspannt	0,500	0,224	0,438	0,620	
121	weiblich	aufrecht	0,527	0,235	0,46	0,650	*
	Weiblich	entspannt	0,571	0,263	0,515	0,727	-
	männlich	aufrecht	0,694	0,180	0,352	0,498	**
T28	Inaminici	entspannt	0,631	0,411	0,806	1,139	0
120	weiblich	aufrecht	0,742	0,263	0,515	0,727	
	Weiblich	entspannt	0,781	0,295	0,579	0,818	**
	männlich	aufrecht	1,135	0,269	0,528	0,746	-
T29	männlich	entspannt	1,089	0,510	0,999	1,412	*
123	weiblich	aufrecht	1,273	0,375	0,735	1,038	
	weiblich	entspannt	1,204	0,368	0,721	1,020	**
T30	männlich	aufrecht	1,786	0,405	0,794	1,123	1
130	IIIaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	entspannt	1,747	0,546	1,071	1,513	1

T30 weiblich aufrecht 1,971 0,428 0,839 1,186	**
entspannt 1,786 0,469 0,919 1,299	
männlich aufrecht 0,101 0,086 0,169 0,239	
T31 entspannt 0,069 0,176 0,345 0,487	
weiblich aufrecht 0,098 0,081 0,159 0,225	
entspannt 0,117 0,105 0,206 0,290	
männlich aufrecht 0,172 0,120 0,236 0,334	
T32 entspannt 0,184 0,144 0,282 0,398	0
weiblich aufrecht 0,210 0,160 0,314 0,444	
entspannt 0,191 0,190 0,371 0,525	1
männlich aufrecht 0,203 0,192 0,376 0,531	_
T33 entspannt 0,194 0,178 0,348 0,492	
weiblich aufrecht 0,211 0,199 0,391 0,552	
entspannt 0,217 0,212 0,416 0,588	
aufrecht 0,117 0,065 0,128 0,181	*
männlich entspannt 0,162 0,119 0,232 0,328	
T34 aufrecht 0,183 0,115 0,226 0,320	-
weiblich	
aufrecht 0,156 0,144 0,281 0,398	- 0
männlich entspannt 0,146 0,112 0,219 0,309	
T35 aufrecht 0,260 0,182 0,357 0,504	
weiblich	*
männlich aufrecht 0,293 0,102 0,201 0,284	**
entspannt 0.291 0.162 0.317 0.448	*
T36 aufrecht 0,228 0,191 0,374 0,528	
weiblich	_ 0

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert in s	Messfehler in s	1,96 *Messfehler in s	2,77*Messfehler in s	Messfehler- kategorie
	männlich	aufrecht	0,130	0,178	0,348	0,492	
T37		entspannt	0,164	0,211	0,414	0,585	
107	weiblich	aufrecht	0,144	0,157	0,307	0,434	
	Workington	entspannt	0,191	0,205	0,402	0,569	
	männlich	aufrecht	0,226	0,158	0,309	0,437	
T38	marimon	entspannt	0,196	0,168	0,329	0,464	
1.00	weiblich	aufrecht	0,292	0,226	0,442	0,625	
	Wolblion	entspannt	0,250	0,223	0,438	0,619	0
	männlich	aufrecht	0,172	0,166	0,326	0,461	
T39	mannich	entspannt	0,137	0,153	0,301	0,425	
100	weiblich	aufrecht	0,163	0,162	0,317	0,449	-
	Wolblion	entspannt	0,146	0,168	0,330	0,466]
	männlich	aufrecht	0,240	0,213	0,417	0,590	-
T40	manimon	entspannt	0,263	0,23	0,451	0,637	-
140	weiblich	aufrecht	0,187	0,213	0,418	0,591	
	Weiblich	entspannt	0,103	0,139	0,273	0,385	
	männlich	aufrecht	0,273	0,137	0,268	0,378	*
T41	manimon	entspannt	0,253	0,229	0,448	0,634	0
1 - 1	weiblich	aufrecht	0,309	0,186	0,364	0,514	*
	Weiblich	entspannt	0,309	0,216	0,424	0,599	0
	männlich	aufrecht	0,476	0,194	0,38	0,537	**
T42	manniich	entspannt	0,503	0,236	0,463	0,655	
174	weiblich	aufrecht	0,653	0,285	0,559	0,79	*
	VVCIDIICIT	entspannt	0,649	0,281	0,551	0,779]
T43	männlich	aufrecht	0,749	0,172	0,337	0,476	**
140	IIIaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	entspannt	0,756	0,294	0,577	0,815	1

Variable	Geschlecht	Körperhaltung	Mittlerer Messwert in s	Messfehler in s	1,96 *Messfehler in s	2,77*Messfehler in s	Messfehler- kategorie
T43	weiblich	aufrecht	0,962	0,301	0,591	0,835	
		entspannt	0,958	0,292	0,572	0,808	
	männlich	aufrecht	1,172	0,287	0,563	0,795	**
T44		entspannt	1,211	0,374	0,734	1,037	
	weiblich	aufrecht	1,334	0,363	0,711	1,006	
		entspannt	1,333	0,36	0,705	0,997	
	männlich	aufrecht	1,809	0,329	0,645	0,911	***
T45	THAT I I III OT	entspannt	1,806	0,429	0,842	1,189	**
1 30	weiblich	aufrecht	1,976 ^C	0,398	0,781	1,104	***
		entspannt	1,842	0,390	0,765	1,081	**

Tabelle 6: Messfehlerkategorisierung

A = geringster mittlerer Messwert, B = der Mittelwert dieser beiden Messwerte entspricht dem Median der mittleren Messwerte, C = größter mittlerer Messwert

Außerdem wurde der Bewertungsquotient Q (siehe Kapitel 2.4.3.1, Seite 34) und dessen Kategorie pro Variable bestimmt.

Variable	Vari je	nzahl o iablen weilige ategor	der en	Bewertungsquotient Q	Kategorie des Bewertungs- quotienten Q
	n ₃	n ₂	n ₁		х ш о
T45	0	2	2	2,50	***
T14	0	4	0	2,00	
T15	0	4	0	2,00	
T30	0	4	0	2,00	•
T43	0	4	0	2,00	**
T44	0	4	0	2,00	
T29	1	3	0	1,75	
T13	2	2	0	1,50	
T28	0	3	0	1,50	
T27	3	1	0	1,25	
T42	3	1	0	1,25	
T12	4	0	0	1,00	*
T36	1	1	0	0,75	
T41	2	0	0	0,50	
T21	1	0	0	0,25	
T26	1	0	0	0,25	
T34	1	0	0	0,25	0
T35	1	0	0	0,25	
T01-T11,T16-T20,T22- T25,T31-T33,T37-T40	0	0	0	0	
Alle Variablen aufrecht	10	18	2	0,58	*
Alle Variablen entspannt	10	15	0	0,44	0
Alle Variablen	20	33	2	0,51	*

Tabelle 7: Bewertungsquotienten der Variablen

Q \geq 2,5: ***-Kategorie; 1,5 \leq Q < 2,5: **-Kategorie; 0,5 \leq Q < 1,5: *-Kategorie; Q < 0,5: Kategorie 0

3.2 Messwertanalyse

Die Tabellen 8 und 9 zeigen für jede Variable die zugehörigen Wahrscheinlichkeitswerte ("Wahrsch. > Chi²"). Diese waren in den einzelnen Einfaktoriellen Analysen jeder Variable zu berechnen.

Bei den Variablen mit einem Wahrscheinlichkeitswert von maximal 0,05 hatte die Körperhaltung bzw. das Geschlecht einen statistisch signifikanten Einfluss auf den mittleren Messwert auf einem 5%-Niveau. Diese interessanten Variablen sind im Folgenden mit ihrer gesamten Einfaktorielle Analyse abgebildet, die restlichen befinden sich im Anhang (Kapitel 9.4).

Wie im Kapitel 2.4.3.2. beschrieben, wurde für jede Variable ein Box-Whisker-Plot^{2,24,69} pro Einflussfaktor, bestimmte Körperhaltung oder bestimmtes Geschlecht, erstellt. Die "Box", im Folgenden rot gefärbt, wird durch das 1. und 3. Quartil festgelegt. Sie stellt den Interquartilsabstand dar. Der Median der Mittelwerte wird innerhalb dieser "Box" als rote waagrechte Linie sichtbar. Der arithmetische Mittelwert ist die grüne Horizontale. Die roten "Whisker" zeigen den größten bzw. kleinsten mittleren Messwert an, sind jedoch maximal 1,5-mal so groß wie der Interquartilsabstand. Die einzelnen mittleren Messwerte sind als schwarze Punkte in das Diagramm eingetragen. Der gemeinsame Mittelwert beider Einflussfaktoren ist als blaue horizontale Linie sichtbar. Die Standardabweichung und der Standardfehler des Mittelwertes sind als kleine blaue Linien im Diagramm der Einfaktoriellen Analyse eingezeichnet.

3.2.1 Einfluss der Körperhaltung

Variable	Wahrsch. >	Variable	Wahrsch. >	Variable	Wahrsch. >
T04		T40		T04	
T01	0,6221	T16	0,6221	T31	0,6056
T02	0,3724	T17	0,6727	T32	0,9252
T03	0,3359	T18	0,5573	T33	0,7963
T04	0,2313	T19	0,3242	T34	0,4668
T05	0,5893	T20	0,2599	T35	0,6556
T06	0,2135	T21	0,1004	T36	0,4113
T07	0,3017	T22	0,8327	T37	0,2599
T08	0,7072	T23	0,9439	T38	0,5110
T09	0,1004	T24	0,3724	T39	0,4113
T10	0,8695	T25	0,2313	T40	0,0783
T11	0,5262	T26	0,2135	T41	0,7782
T12	0,8695	T27	0,4386	T42	0,8510
T13	0,6556	T28	1,0000	T43	0,9813
T14	0,5893	T29	0,2699	T44	0,9439
T15	0,3600	T30	0,1522	T45	0,3981

Tabelle 8: Wahrscheinlichkeitswerte der Einfaktoriellen Analyse nach unterschiedlicher Körperhaltung

Da alle Wahrscheinlichkeiten einen Wert größer als 0,05 annahmen, hatte bei allen Variablen die Körperhaltung keinen statistisch signifikanten Einfluss auf den Messwert. Die ausführlichen Einfaktoriellen Analysen der einzelnen Variablen befinden sich im Anhang (9.4.1)

3.2.2 Einfluss des Geschlechts

Variable	Wahrsch. > Chi ²	Variable	Wahrsch. > Chi ²	Variable	Wahrsch. > Chi ²
T01	0,0897	T16	0,3222	T31	0,3108
T02	0,7954	T17	0,6374	T32	0,4650
T03	0,5716	T18	0,5245	T33	0,6374
T04	0,6041	T19	0,0237	T34	0,1573
T05	0,7593	T20	0,5716	T35	0,0063
T06	0,9062	T21	0,8875	T36	0,0109
T07	0,1198	T22	0,4094	T37	0,4094
T08	0,4229	T23	0,2888	T38	0,2203
T09	0,6041	T24	0,5400	T39	0,7414
T10	0,7773	T25	0,2481	T40	0,0117
T11	0,3580	T26	0,2386	T41	0,2888
T12	0,4507	T27	0,2997	T42	0,0359
T13	0,6543	T28	0,1198	T43	0,0013
T14	0,2203	T29	0,0267	T44	0,0184
T15	0,5245	T30	0,2679	T45	0,2997

Tabelle 9: Wahrscheinlichkeitswerte der Einfaktoriellen Analyse nach unterschiedlichem Geschlecht

• = Variablen mit Wahrscheinlichkeitswerten kleiner als 0,05

Es folgen die Einfaktoriellen Analysen (Abbildung 10 bis 17) der acht auffälligen Variablen mit einem Wahrscheinlichkeitswert kleiner als 0,05, bei denen das Geschlecht einen statistisch signifikanten Einfluss auf den Messwert hatte. Alle übrigen Analysen befinden sich im Anhang (9.4.2).

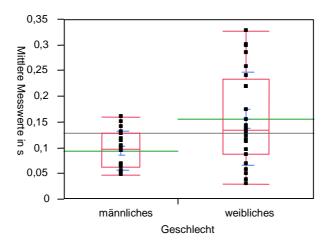


Abbildung 10: Einfaktorielle Analyse von T19 nach Geschlecht

Quantile Stufe männlich weiblich	Minimum 0,045732 0,030066	10 9 0,04875 0,04272	5 0,062439	0,09	edian 16339 13555	75% 0,127572 0,233769	0,148104	Maximum 0,160024 0,32755
Mittelwerte	und Stand	ardabwei	chungen					
Stufe	Anzahl	Mittelwert	Standardabwei	_			95% KI unten	95% KI oben
				C	les Mitt	telwertes		
männlich	20	0,094302	0,0	36987		0,00827	0,07699	0,11161
weiblich	24	0,156483	0,0	90013		0,01837	0,11847	0,19449
Wilcoxon/K	ruskal-Wa	llis-Tests	(Rangsumme	en)				
Kategorie		äufigkeiten		·Summe	Scor	e-Mittelwert	(Mittelwe	rt-Mittelwert0)
	•••		000.0	•			(/Std.0
männlich		20		354,000		17,7000		-2,251
		_						•
weiblich		24		636,000		26,5000		2,251
Einfaktoriel	ler Test, C	hi-Quadra	ıt-Approxima	tion				
Cł	ni²	Freiheitsgra	de Wal	hrsch.>C	:hi²			
5,120			1	0,02				

Das Geschlecht hatte einen statistisch signifikanten Einfluss auf die Variable T19. Der Mittelwert und der Median lag beim weiblichen Anteil der Versuchsteilnehmer über denen der männlichen Probanden.

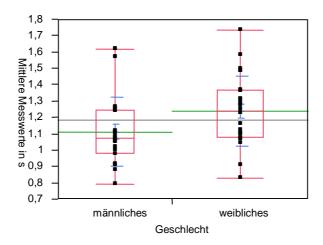


Abbildung 11: Einfaktorielle Analyse von T29 nach Geschlecht

Quantile Stufe männlich weiblich	Minimum 0,79018 0,827679	10 9 0,88181 0,97577	5 0,978906	1,07	edian 74221 37125	75% 1,242178 1,366097	1,539155	Maximum 1,618877 1,729945
Mittelwerte	und Stand	lardabwei	chungen					
Stufe	Anzahl	Mittelwert	Standardabwei	_		dardfehler	95% KI unten	95% KI oben
männlich	20	1 11105	0.0		aes IVIII	ttelwertes	1.0120	1 2100
		1,11195	-,	09513		0,04685	1,0139	1,2100
weiblich	24	1,23818	0,2	15321		0,04395	1,1473	1,3291
Wilcoxon/K	ruskal-Wa	llis-Tests	(Rangsumme	en)				
Kategorie	H	äufigkeiten	Score-	Summe	Scor	re-Mittelwert	(Mittelwe	rt-Mittelwert0)
								/Std.0
männlich		20		356,000		17,8000		-2,204
weiblich		24		634.000		26.4167		2,204
				,		-,		, -
Einfaktoriel	ler Test, C	hi-Quadra	t-Approxima	tion				
Cł	•	Freiheitsgra		hrsch.>C	Chi²			
4.908			1	0,0				
.,				-,	-			

Das Geschlecht hatte einen statistisch signifikanten Einfluss auf die Variable T29. Der Mittelwert und der Median lag beim weiblichen Anteil der Versuchsteilnehmer über denen der männlichen Probanden.

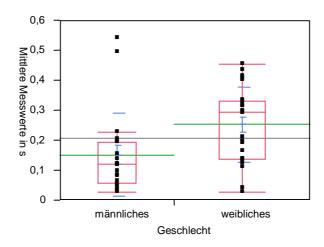


Abbildung 12: Einfaktorielle Analyse von T35 nach Geschlecht

Quantile Stufe männlich weiblich	Minimum 0,02805 0,027336	10 9 0,03312 0,07566	1 0,056873	0,11	edian 8682 3979	75% 0,19267 0,331179		Maximum 0,53982 0,454352
Mittelwerte	und Stand	dardabwei	chungen					
Stufe	Anzahl	Mittelwert	Standardabweig	_	Standard		95% KI unten	95% KI oben
				d	es Mittel	wertes		
männlich	20	0,151235	0,13	38528	0	,03098	0,08640	0,21607
weiblich	24	0,252322	0,12	25845	0	,02569	0,19918	0,30546
Wilcoxon/K	Kruskal-Wa	llis-Tests	(Rangsumme	en)				
Kategorie		läufigkeiten	`	Summe	Score-	Mittelwert	(Mittelwe	rt-Mittelwert0)
3-11-1	-	J					(/Std.0
männlich		20		334,000		16,7000		-2,722
weiblich		24		656.000		27.3333		2,722
WEIDIICH		24		030,000		21,3333		2,122
Einfaktorie	ller Test. C	hi-Quadra	ıt-Approxima	tion				
	•	Freiheitsgra	• •	rsch.>C	hi2			
_		riemensyra	ue Wai					
7,47	96		Т	0,00	103			

Das Geschlecht hatte einen statistisch signifikanten Einfluss auf die Variable T35. Der Mittelwert und der Median lag beim weiblichen Anteil der Versuchsteilnehmer über denen der männlichen Probanden.

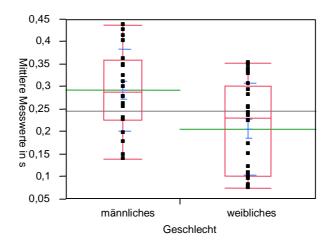


Abbildung 13: Einfaktorielle Analyse von T36 nach Geschlecht

Quantile Stufe männlich weiblich	Minimum 0,13879 0,075144	10 % 0,14982 0,07650	9 0,22606	Mec 0,288 0,229	055 0,358009	0,424275	Maximum 0,436724 0,352701
Mittelwerte	und Stand	lardabweid	chungen				
Stufe	Anzahl	Mittelwert	Standardabweic	•	Standardfehler	95% KI unten	95% KI oben
				de	s Mittelwertes		
männlich	20	0,292080	0,09	0400	0,02021	0,24977	0,33439
weiblich	24	0,206243	0,10	2547	0,02093	0,16294	0,24954
Wilcoxon/K	ruskal-Wa	llis-Tests	(Rangsumme	n)			
Kategorie	н	läufigkeiten	Score-	Summe	Score-Mittelwert	(Mittelwe	rt-Mittelwert0)
							/Std.0
männlich		20	:	558,000	27,9000		2,534
weiblich		24	•	432,000	18,0000	1	-2,534
Einfaktoriel	ler Test. C	hi-Quadra	t-Approximat	ion			
	•	Freiheitsgra	• •	rsch.>Ch	ni ²		
6,48		i remenagra	1	0,010			

Das Geschlecht hatte einen statistisch signifikanten Einfluss auf die Variable T36. Der Mittelwert und der Median lag beim männlichen Anteil der Versuchsteilnehmer über denen der weiblichen Probanden.

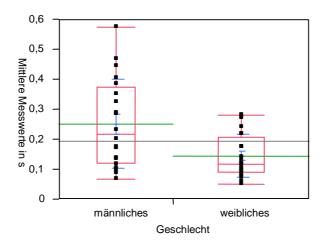


Abbildung 14: Einfaktorielle Analyse von T40 nach Geschlecht

Quantile Stufe männlich weiblich	Minimum 0,065011 0,05091	0,08690	1 0,120427	0,21	edian 5595 7673	75% 0,374019 0,206388	0,464266	Maximum 0,574606 0,28121
Mittelwerte	und Stand	dardabweid	hungen					
Stufe	Anzahl	Mittelwert	Standardabweid	_			95% KI unten	95% KI oben
männlich	20	0.251231	0.1	47550	ies ivitt	0.03299	0.18218	0,32029
weiblich	24	0.145000	,	70610		0.01441	0,11518	0,17482
WCIDIIOTT	27	0,140000	0,0	70010		0,01441	0,11010	0,17402
Wilcoxon/k	(ruskal-Wa	ıllis-Tests (Rangsumme	en)				
Kategorie	H	läufigkeiten	Score-	-Summe	Scor	e-Mittelwert	(Mittelwe	rt-Mittelwert0)
						07.0500		/Std.0
männlich		20		557,000		27,8500		2,510
weiblich		24		433,000		18,0417		-2,510
Einfaktorie	ller Test. C	hi-Quadra	t-Approxima	tion				
	hi²	Freiheitsgrad	• •	hrsch.>C	chi²			
6,36	806		1	0,0				

Das Geschlecht hatte einen statistisch signifikanten Einfluss auf die Variable T40. Der Mittelwert und der Median lag beim männlichen Anteil der Versuchsteilnehmer über denen der weiblichen Probanden.

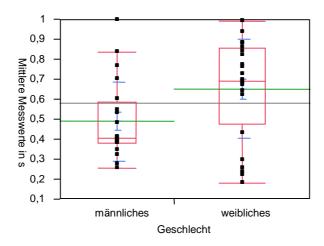


Abbildung 15: Einfaktorielle Analyse von T42 nach Geschlecht

Quantile Stufe männlich weiblich	Minimum 0,257472 0,182299	0,27832	3 0,377926	0,403	- ,	75% 5168 6239	90% 0,829848 0,908815	Maximum 0,995345 0,989275
Mittelwerte	und Stand	dardabwei	chungen					
Stufe	Anzahl	Mittelwert	Standardabweic		Standardfehle		5% KI unten	95% KI oben
	00	0.400407	0.40		es Mittelwerte	-	0.00747	0.50400
männlich	20	0,489487	,	7252	0,0441		0,39717	0,58180
weiblich	24	0,651232	0,24	17143	0,0504	.5	0,54687	0,75559
Wilcoxon/k	(ruskal-Wa	Illis-Tests	(Rangsumme	n)				
Kategorie	F	läufigkeiten	Score-	Summe	Score-Mittel	wert	(Mittelwe	rt-Mittelwert0)
								/Std.0
männlich		20	;	361,000	18,0	0500		-2,086
weiblich		24	(629,000	26,2	2083		2,086
Einfaktorie	ller Test. C	hi-Quadra	ıt-Approximat	ion				
	hi²	Freiheitsgra	• •	rsch.>C	ni ²			
-		i remensyra	4 Wall					
4,40	000		ı	0,03	บษ			

Das Geschlecht hatte einen statistisch signifikanten Einfluss auf die Variable T42. Der Mittelwert und der Median lag beim weiblichen Anteil der Versuchsteilnehmer über denen der männlichen Probanden.

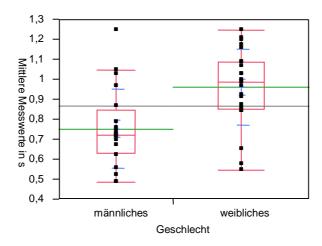


Abbildung 16: Einfaktorielle Analyse von T43 nach Geschlecht

Minimum	100	⁄. 25 º/.	Ma	adian	75%	90%	Maximum
-,	-,	-,					1,243271
0,543319	0,61341	7 0,848871	0,98	6028	1,085485	1,19948	1,245694
und Stand	lardabweid	hungen					
Anzahl	Mittelwert	Standardabwei	chung	Stand	ardfehler	95% KI unten	95% KI oben
				les Mit	telwertes		
20	0,752455	0,1	95873		0,04380	0,66078	0,8441
24	0,959951	0,1	88133		0,03840	0,88051	1,0394
ruskal-Wa	llis-Tests (Rangsumme	en)				
Н	äufigkeiten	Score	-Summe	Scor	e-Mittelwert	(Mittelwe	rt-Mittelwert0)
	Ū					•	/Std.0
	20		314.000		15.7000		-3,194
	24		676,000		,		3,194
			,		-,		-, -
ller Test, C	hi-Quadra	t-Approxima	tion				
•				:hi²			
		1					
	Anzahl 20 24 ruskal-Wa H	0,485112 0,488614 0,543319 0,613413 und Standardabweid Anzahl Mittelwert 20 0,752455 24 0,959951 iruskal-Wallis-Tests (Häufigkeiten 20 24 ler Test, Chi-Quadra ni2 Freiheitsgrad	0,485112 0,488614 0,632318 0,543319 0,613417 0,848871 und Standardabweichungen Anzahl Mittelwert Standardabwei 20 0,752455 0,1 24 0,959951 0,1 truskal-Wallis-Tests (Rangsummer Baufigkeiten Score) 20 24 Iler Test, Chi-Quadrat-Approximantal Yea Freiheitsgrade Wa	0,485112 0,488614 0,632318 0,71 0,543319 0,613417 0,848871 0,98 und Standardabweichungen Anzahl Mittelwert Standardabweichung 20 0,752455 0,195873 24 0,959951 0,188133 (ruskal-Wallis-Tests (Rangsummen) Häufigkeiten Score-Summe 20 314,000 24 676,000 Iler Test, Chi-Quadrat-Approximation hi² Freiheitsgrade Wahrsch.>C	0,485112 0,488614 0,632318 0,719194 0,543319 0,613417 0,848871 0,986028 und Standardabweichungen Anzahl Mittelwert Standardabweichung des Mi	0,485112 0,488614 0,632318 0,719194 0,845109 0,543319 0,613417 0,848871 0,986028 1,085485 und Standardabweichungen Anzahl Mittelwert Standardabweichung des Mittelwertes 20 0,752455 0,195873 0,04380 24 0,959951 0,188133 0,03840 truskal-Wallis-Tests (Rangsummen) Häufigkeiten Score-Summe Score-Mittelwert 20 314,000 15,7000 24 676,000 28,1667 Ier Test, Chi-Quadrat-Approximation ni² Freiheitsgrade Wahrsch.>Chi²	0,485112 0,488614 0,632318 0,719194 0,845109 1,042354 0,543319 0,613417 0,848871 0,986028 1,085485 1,19948 und Standardabweichungen Anzahl Mittelwert Standardabweichung Ges Mittelwertes 95% Kl unten Ges Mittelwertes 20 0,752455 0,195873 0,04380 0,66078 24 0,959951 0,188133 0,03840 0,88051 Iruskal-Wallis-Tests (Rangsummen) Häufigkeiten Score-Summe Score-Mittelwert (Mittelwe 20 314,000 15,7000 28,1667 Iler Test, Chi-Quadrat-Approximation ni² Freiheitsgrade Wahrsch.>Chi²

Das Geschlecht hatte einen statistisch signifikanten Einfluss auf die Variable T43. Der Mittelwert und der Median lag beim weiblichen Anteil der Versuchsteilnehmer über denen der männlichen Probanden.

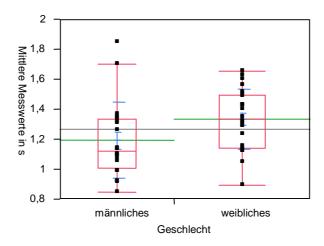


Abbildung 17: Einfaktorielle Analyse von T44 nach Geschlecht

Quantile								
Stufe	Minimum	10%	6 25%	Me	dian	75%	90%	Maximum
männlich	0,848864	0,912638	3 1,00367	1,117	7169	1,333344	1,668954	1,847031
weiblich	0,890012	1,08410	1 1,142244	1,33	1563	1,494596	1,61345	1,654796
Mittelwerte	e und Stand	dardabweid	hungen					
Stufe	Anzahl	Mittelwert	Standardabweicl	hung	Standar	dfehler	95% KI unten	95% KI oben
				C	es Mitte	lwertes		
männlich	20	1,19147	0,25	3582	(0,05670	1,0728	1,3101
weiblich	24	1,33385	0,19	9909	(0,04081	1,2494	1,4183
Wilcoxon/	Kruskal-Wa	llis-Tests (Rangsumme	n)				
Kategorie	н	läufigkeiten	Score-S	Summe	Score-	Mittelwert	(Mittelwe	rt-Mittelwert0)
								/Std.0
männlich		20	3	350,000		17,5000		-2,345
weiblich		24	6	640,000		26,6667		2,345
Einfaktorie	eller Test, C	hi-Quadra	t-Approximati	ion				
(Chi² Ć	Freiheitsgrad	de Wahi	rsch.>C	hi²			
-	556		1	0,01				

Das Geschlecht hatte einen statistisch signifikanten Einfluss auf die Variable T44. Der Mittelwert und der Median lag beim weiblichen Anteil der Versuchsteilnehmer über denen der männlichen Probanden.

3.3 Normwerttabelle

Die Normwerte, bei denen bereits ein mittlerer Messwert einer Variable in der Messfehleranalyse keiner *-Kategorie zugeordnet werden konnte, befinden sich im Anhang (9.5). So werden die bei der Messfehleranalyse kategorisierten Variablen T36 und T41 nicht in die folgende Tabelle aufgenommen, in der sich alle übrigen Variablen mit *-Einteilung befinden.

Da bei der Messwertanalyse kein signifikanter Unterschied zwischen aufrechter und entspannter Körperhaltung festgestellt werden konnte, wird in der folgenden Tabelle nicht mehr zwischen den beiden Positionen unterschieden. Der mittlere Messwert, der nun als Normwert bezeichnet werden kann, der 1,96-fache Messfehler und die daraus folgende *-Kategorie des Messfehlers in Tabelle 10 der Seite 57 sind somit das arithmetische Mittel der jeweiligen Werte für aufrechte und entspannte Körperhaltung.

Empfängerspule	Variable	Geschlecht	Normwert in s	1,96*Messfehler in s	Messfehler- kategorie
	T12	männlich	0,4465	0,448	*
<u>"</u>		weiblich	0,5055	0,5335	
ndsı	T13	männlich	0,628	0,4725	**
tzer	1.10	weiblich	0,668	0,575	*
nspi	T14	männlich	1,087	0,5315	
"Zungenspitzenspule"		weiblich	1,164	0,681	**
nZ"	T15	männlich	1,7555	0,7715	
	110	weiblich	1,8305	0,8075	
	T27	männlich	0,495	0,4025	
30	121	weiblich	0,549	0,4875	*
epule	T28	männlich	0,6625	0,579	
ittes	120	weiblich	0,7615	0,547	
"Zungenmittespule"	T29	männlich	1,112	0,7635	
gun	125	weiblich	1,2385	0,728	**
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T30	männlich	1,7665	0,9325	
	100	weiblich	1,8785	0,879	
	T42	männlich	0,4895	0,4215	**
, G	1 72	weiblich	0,651	0,555	*
lnds	T43	männlich	0,7525	0,457	
ğun	140	weiblich	0,960	0,5815	
"Zungengrundspule"	T44	männlich	1,1915	0,6485	**
nnge	177	weiblich	1,3335	0,708	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	T45	männlich	1,8075	0,7435	
	. 10	weiblich	1,909	0,773	

Tabelle 10: Normwerttabelle

4 Diskussion

4.1 Diskussion der Methode

Bereits durch die anfangs genannten Sprachsequenzanalysen^{34,35} wurde gezeigt, dass die Elektromagnetische Artikulographie eine, wenn auch zeitaufwändige, jedoch präzise Methode darstellte, die Zungen- und Lippenbewegungen aufzunehmen und zu analysieren. Mit einer Messgenauigkeit²⁵ von etwa 0,1 mm im klinisch relevanten Messbereich waren kleinste Bewegungen der Zunge messbar. Generell gilt, dass die EMA nicht invasiv ist und die elektromagnetischen Felder, denen der Versuchsteilnehmer ausgesetzt ist, biologisch unbedenklich^{37,59,61} im Gegensatz zu radiologischen Verfahren bleiben. Diese können die Zungenbewegungen in ähnlicher Messgenauigkeit zweidimensional abbilden, sind jedoch auf Grund der hohen Strahlenbelastung des Probanden kaum für diagnostische Zwecke geeignet 18,19,31-33,40. Obwohl sonografische Methoden^{8,17,29,33,42,47,49-52,60,67,68} zur Analyse der Schluckbewegungen der Zunge relativ unkompliziert, kostengünstig und wie die Elektromagnetische Artikulographie non invasiv sind, lässt sich mit Ultraschallverfahren bislang kein zweidimensionales Bild der Zunge in ihrer Bewegung aufzeichnen, wie es durch die EMA möglich war. Bei palatographischen Verfahren^{7,8,55} wird lediglich die Kontaktfläche zwischen Zunge und Gaumen dokumentiert und nicht ein detaillierter Ablauf der Zungenbewegung dargestellt.

Der Artikulograph, der für die vorliegende Studie genutzt wurde, stellte eine Neuentwicklung gegenüber dem Artikulographen^{25,59} der Firma Carstens Medizinelektronik dar. Die Messgenauigkeit im zentralen Messbereich wurde von ca. 0,5 auf 0,1 mm gesteigert. Der Messhelm ließ sich aus einem leichten Fahrradhelm konzipieren, der die Bewegungen der Probanden kaum einschränkte. Außerdem stand noch ein kleinerer Helm für Kinder zur Verfügung.

Während der Messungen wurde generell darauf geachtet, äußere Einflüsse und damit Fehlerquellen auf die Messungen möglichst gering zu halten, um die Messungen vergleichen zu können.

Primär wurden die Vorbereitungs- und Kalibrierungsvorgänge nach einem einheitlichen Schema vollzogen, da sich Fehler in dieser Phase auf die gesamte

Messung auswirken. So konnte ein unzureichend aufgewärmter Artikulograph zu einem veränderten Verhalten der Bauelemente und somit zu Messfehlern führen. Auch bei der Umgebungstemperatur musste darauf geachtet werden, dass keine zu starken Unterschiede vorkamen. So wurden geöffnete Fenster und direkte Sonneneinstrahlung vermieden.

Im Messverfahren war entscheidend, dass der Messhelm fest saß, nicht verrutschte und das Carbongestänge nicht an die Schultern des Probanden stieß. Es war noch nicht möglich, den Artikulographen in liegender Position anzuwenden. Um dies zu verwirklichen, müsste der Aufbau des Carbongestänges samt den Senderspulen verändert werden.

Eine mögliche Fehlerursache waren die Verbindungsdrähte der Empfängerspulen. Wenn sie zu kurz oder zu unbeweglich waren, konnten sie die Zunge an ihrer freien Beweglichkeit hindern oder zu deren Ablösung führen. Letzteres konnte auch durch eine unsaubere Klebeweise verursacht werden. Die exakte Klebeposition der Empfängerspulen war wichtig, da Abweichungen zur Seite und Rotationen zu Messfehlern führen. Auf Grund der hohen Messgenauigkeit war außerdem eine Reposition nach unabsichtlicher Ablösung nicht realistisch.

Eine wichtige Fehlerquelle stellte die Manipulation der physiologischen Bewegungsabläufe dar. So konnten vor allem der getragene Messhelm und die aufgeklebten Spulen mit ihren Verbindungskabeln die normalen Bewegungsmuster beeinflussen.

Da die Grundlage des Messsystems auf elektromagnetischen Feldern beruhte, konnten ebensolche von außen einwirkenden Felder die Messungen stören. Hier waren Mobiltelefone und schnurlose Telefone zu nennen.

Schließlich konnte der Versuchsteilnehmer selbst als Fehlerursache in Frage kommen. Trotz enger Auswahlkriterien für die Studienpopulation war der Einfluss auf die orofazialen Bewegungsabläufe etwa durch Müdigkeit oder Unkonzentriertheit nicht gänzlich zu verhindern.

Die Spannungen, die durch die Hardware des Artikulographen gewonnen wurden, wandelte das Softwareprogramm des Artikulographen in zweidimensionale Grafiken um. Diese Darstellung der einzelnen Empfängerspulen erwies sich als komfortable und übersichtliche Methode zur Auswertung der Daten. Neben der

Einblendung der Gaumenkontur, der Kauebene, den beiden Referenzpunkten ("Nasion" und "Gingiva OK") und den drei "Zungenspulen" war es möglich, zu jedem Zeitpunkt der Messung die Zunge als Verbindungslinie der drei "Zungenspulen" aufzuzeigen. Der Bewegungsablauf der Zunge war somit als fortlaufender Film darstellbar. Außerdem konnten die einzelnen X/Y-Werte auch gegen eine Zeitachse aufgetragen werden. Um einen statistisch auswertbaren Datensatz zu erhalten, wurden nach dem entworfenen "Schluckschema" manuell Peaks gesetzt.

Damit wir die interindividuellen Messwerte der unterschiedlichen Probanden statistisch vergleichen konnten, war es wichtig, eine Nivellierung anhand der Kauebenen durchzuführen. Ohne diese Standardisierung wären nur intraindividuelle Messwerte statistisch vergleichbar gewesen und beschreibende Aussagen zwischen den einzelnen Probanden möglich. Mit Hilfe der Nivellierung war nun die Erstellung einer Normwerttabelle möglich, im Gegensatz zu bisherigen Studien^{11,25,36,44,59} der Elektromagnetischen Artikulographie.

4.2 Diskussion der Ergebnisse

4.2.1 Messfehleranalyse

Um die Güte der Messwerte zu bestimmen, wurde der 1,96-fache Messfehler σ errechnet. Da mit der Kategorisierung analog der Auswertung der Sprachsequenzen^{34,35} der 1,96-fache Messfehler nicht eingeteilt werden konnte, war eine angepasste Einteilung vorzunehmen. Diese kategorisierte den 1,96-fachen Messfehler in Relation zum dazugehörigen mittleren Messwert $\overset{=}{x}$ mit Werten zwischen 0,025 s und 1,976 s. Der Median der mittleren Messwerte $\overset{=}{x}$ entsprach 0,213 s. Wurde von diesem Median ausgegangen, war eine Kategorisierung zu erhalten, die um den Faktor 3,4 ungenauer war als die der Sprachsequenzanalysen.

Gründe für die größere Messwertstreuung der Schlucksequenzauswertung lagen vermutlich in der höheren Variabilität von Zungenbewegungen beim Schlucken im Gegensatz zu Artikulationsbewegungen und in der unterschiedlichen Art der Aufzeichnungsweise der Daten. So wurde zur Vereinheitlichung des Sprechtempos den Probanden eine Beispielsprachsequenz vorgespielt und die Versuchsteilnehmer lasen die Textphrasen während der artikulographischen Aufzeichnungen von einem Monitor ab. Bei der Schlucksequenzaufzeichnung hingegen wurde den Probanden kein Anhalt einer bestimmten Schluckgeschwindigkeit bzw. Startpunkt der Schluckbewegung vorgegeben, obwohl die orale Phase des Schluckens nicht reflektorisch abläuft^{23,66}, sondern bewusst eingeleitet und gesteuert werden kann. Des Weiteren war der Ausgangspunkt der Schluckbewegung bei den verschiedenen Probanden als variabel einzuschätzen, da die "untätige" Zunge diverse Ruhelagen einnehmen konnte. So benötigte eine Zunge mit einer weit kaudalen Ruhelage vermutlich eine längere Zeitspanne, um Kontakt mit dem Gaumen herzustellen, als eine Zunge, deren Ruhelage rostraler gelegen war. Hingegen war der Ausgangspunkt bei den Sprachsequenzanalysen insofern vorgegeben, dass die Kernsequenz in einen ganzen Satz eingebaut wurde. Als dritte Erklärung des größeren Messfehlers bei der Schlucksequenzauswertung muss die unterschiedliche Menge an Positionsvariablen genannt werden. Für die Analyse der Schlucksequenzen wurde ein relativ ausführliches Schluckschema mit elf Positionen entwickelt, das auch kleinste Bewegungen der Zunge berücksichtigen sollte. Im Gegensatz dazu enthielten die Schemata der Sprachsequenzanalysen nur fünf Positionen. Je größer jedoch ein Grundmuster ist, desto leichter können Peaks irrtümlicherweise an falsche Positionen gesetzt werden.

Der Bewertungsquotient (siehe Tabelle 7 der Seite 44) aller Variablen wies einen Wert von 0,51 und befand sich somit gerade so in der drittbesten Kategorie (*). Nur die Variable T45 bewegte sich mit einem Bewertungsquotienten von 2,50 in der ***-Kategorie. Acht Variablen (T13 bis T15, T28 bis T30, T43 und T44) gehörten der **-Kategorie und fünf (T12, T27, T36, T41 und T42) der *-Kategorie an. Alle übrigen 31 Variablen konnten nicht kategorisiert werden. sie fielen somit in die Kategorie Bewertungsquotienten aller Variablen aufrecht lag bei 0,58 (*-Kategorie) im Gegensatz zum Bewertungsquotient aller Variablen entspannt bei 0,44 (Kategorie 0). Der gering höhere Wert für die aufrechte Körperhaltung wies darauf hin, dass diese Position zu einer gering höheren Güte der Messwerte führte.

Auf eine Kovarianz- und Einfaktorielle Analyse des Messfehlers wurde im Gegensatz zur Sprachsequenzauswertung verzichtet. Zum einen haben bereits Koos³⁵ und Klink³⁴ gezeigt, dass die Körperhaltung bzw. das Geschlecht keinen signifikanten Einfluss auf den Messfehler haben, zum anderen fiel bei der Analyse der Schlucksequenzen die Unterscheidung in die einzelnen "Sweeps", also verschiedenen Vokalen bei den CVC-Sequenzen bzw. Konsonanten bei den VCV-Sequenzen, weg.

4.2.2 Messwertanalyse

4.2.2.1 Einfluss der Körperhaltung

Als ein Charakteristikum einer idealen Variable galt, wenn ihr Messwert unabhängig von der Körperhaltung war, da bei der Messung von pathologischen Befunden nicht davon ausgegangen werden konnte, dass der Proband in einer bestimmten Körperhaltung die gesamte Messung über verharren konnte.

Bei der Einfaktoriellen Analyse waren die Wahrscheinlichkeitswerte jeder Variable größer als 0,05. Somit konnte auf dem 5%-Niveau kein statistisch signifikanter Einfluss der Körperhaltung auf den mittleren Messwert festgestellt werden. Alle Variablen waren demnach in dieser Hinsicht als ideal anzusehen.

4.2.2.2 Einfluss des Geschlechts

Bei der Einfaktoriellen Analyse des mittleren Messwertes im Hinblick auf das unterschiedliche Geschlecht bestand bei acht Variablen ein statistisch signifikanter Einfluss auf dem 5%-Niveau. Es handelte sich dabei um Variablen der "Zungengrund- und Zungenmittespule": T19, T29, T35, T36, T40 und T42 bis T44. Bei den Variablen T29 und T42 bis T44, die auf Grund ihrer Messfehlerkategorisierung in die Normwerttabelle aufgenommen wurden, war der mittlere Messwert der weiblichen Probanden größer als der der männlichen Versuchsteilnehmer. In diesem Zusammenhang fiel bei der Durchsicht der mittleren Messwerte in der Normwerttabelle auf, dass hier auch bei den restlichen Vari-

ablen die Werte der weiblichen Probanden die der männlichen überstiegen, was jedoch statistisch nicht signifikant nachgewiesen werden konnte.

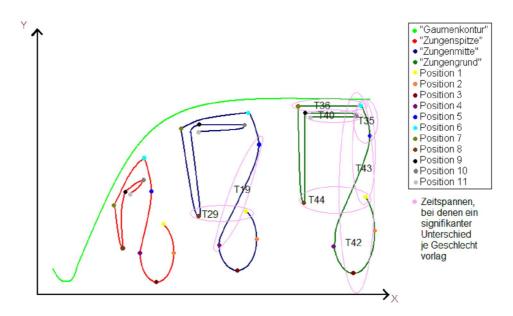


Abbildung 18: Variablen mit signifikantem Unterschied je Geschlecht

4.2.3 Normwerttabelle

Da bei der Messwertanalyse keine Variable einen signifikanten Unterschied zwischen aufrechter und entspannter Körperhaltung aufwies, war bei der Erstellung der Normwerttabelle (Tabelle 10, Seite 57) keine Unterscheidung nach unterschiedlichen Körperhaltungen mehr vorzunehmen

Außerdem wurden nur die Variablen aufgenommen, die kategorisiert werden konnten. Lediglich 24 von 90 Normwerten gingen in die Tabelle ein. So wurden 73 % der Normwerte ausgeschlossen und 27 % übernommen. Es handelte sich dabei um die Variablen T12 bis T15 der "Zungenspitzenspule", T27 bis T30 der "Zungenmittespule" und T42 bis T45 der "Zungengrundspule". Betrachtete man die Definition dieser Variablen, so fiel auf, dass es sich je Spule um die gleichen Zeitintervalle handelte. So stellten T12, T27 und T42 die Zeitspannen der ersten Aufwärtsbewegung dar. T13, T28 und T43 entsprachen der ersten Hälfte des Schluckaktes. T14, T29 und T44 dokumentierten die Schluckbewegung der

Zunge bis zur Position 8 und T15, T30 und T45 die Zeitspannen des gesamten Schluckablaufs.

				Var	iable	n de	r Nor	mwertta	belle
					"Zu	nger	spitze	enspule":	
				T12	2	Т	13	T14	T15
		bun	"Zungenmittespule":						-1
<u>_</u>	un.	Beschreibung	T27			T	28	T29	T30
Position	Art des Extremum	schi			"Zı	unge	ngrun	dspule":	
Po	Art	Be		T42		Т	43	T44	T45
	1.	Maximal rostraler				-		8	
1	Max y	Startpunkt der				hluc		ition	
		Zungenbewegung				Erste Hälfte der Zungenschluck-		Pos	
	1.	Startpunkt		g		nnge	ng	zur	
3	Min y	der ersten		agur	Φ	er Z	bewegung	bis	bun
	y	Aufwärtsbewegung	Erste	ewe	der Zunge	e de	bev	ıge	weg
	2.	Ende der ersten	Ers	irtsb	er Z	Hälft		Zur	kbe
6	Max y	Aufwärtsbewegung		Aufwärtsbewegung	Ō	ste l		der	hluc
	IVIOX y	am Gaumen		Ą		Ш		Schluckbewegung der Zunge bis zur Position	Gesamte Zungenschluckbewegung
		kaudalster Punkt						weg	nge
8	2.	nach der Ablösung						kbe	e Zu
	Min y	der Zunge vom						hluc	amt
		Gaumen						Scl	Ges
		Endpunkt der							
11	3.	zweiten Ventral-							
	Min x	bewegung am							
		Gaumen							

Tabelle 11: Variablen der Normwerttabelle

Daraus ergab sich für kommende Untersuchungen ein neues verkleinertes Schluckschema, welches sich zur zeitlichen Analyse der Schluckbewegungen der Zunge auf lediglich fünf Positionen beschränken sollte. Wie oben erwähnt, wurde dadurch sogleich die Peaksetzung vereinfacht.

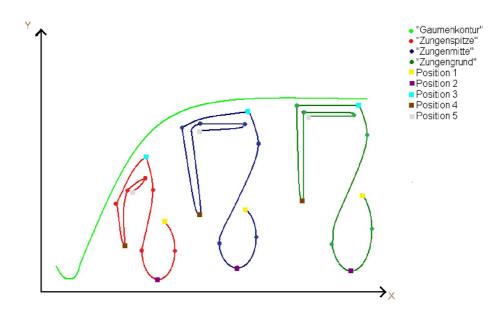


Abbildung 19: "Schluckschema" der Normwerttabelle

Position	Art des Extremum	Beschreibung
1	1. Max y	Maximal rostraler Startpunkt der Zungenbewegung
2	1. Min y	Startpunkt der ersten Aufwärtsbewegung
3	2. Max y	Ende der ersten Aufwärtsbewegung am Gaumen
4	2. Min y	kaudalster Punkt nach der Ablösung der Zunge vom Gaumen
5	1. Min x	Endpunkt einer zweiten Ventralbewegung am Gaumen

Tabelle 12: Schema der Zungenbewegungsbahnen der Normwerttabelle

4.3 Schlussfolgerung

Mit Hilfe der Elektromagnetischen Artikulographie konnten Schluckbewegungen der Zunge zuverlässig und genau analysiert werden, jedoch weniger präzise als Lippen- und Zungenbewegungen der Sprachsequenzanalysen^{34,35}. Die Gründe hierfür lagen in der schwierigeren Messung intraoral im Gegensatz zu den VCV-Sequenzen, der fehlenden Schluckgeschwindigkeitsvorgabe, dem nicht vorhandenen Startzeitpunkt des Schluckvorgangs, der unterschiedlichen Zungeruhelagen und der generell größeren Variabilität der Schluckbewegungen der Zunge im Vergleich zu deren Artikulationsbewegungen.

So wurde zur Einordnung des 1,96-fachen Messfehlers eine Einteilung verwendet, die etwa um den Faktor 3,4 ungenauer war als die Kategorisierung der Sprachsequenzanalysen. Mit dieser angepassten Aufschlüsselung wurden nur 27% der Variablen der *- bzw. **-Kategorie zugeordnet.

Des Weiteren war kein statistisch signifikanter Einfluss der Körperhaltung auf den Messwert nachweisbar. Es musste somit in der Normwerttabelle keine Rücksicht auf die Einhaltung einer bestimmten Körperposition genommen werden. Gleiches gilt für weitere Messungen in der Zukunft. Dies stellte einen großen Unterschied zur Analyse der VCV-Sequenzen dar, in der die Messwerte von fünf Variablen signifikant von der Körperhaltung beeinflusst wurden³⁴.

Wie bei der Analyse der Sprachsequenzen zeigte sich auch bei der Schlucksequenzauswertung bei einigen Variablen ein signifikanter Einfluss des Geschlechts auf den mittleren Messwert. Bei der Erstellung der Normwerttabelle wurde somit auch eine Unterscheidung der beiden Geschlechter notwendig. Obwohl bei lediglich vier Variablen ein statistisch signifikanter Unterschied je Geschlecht nachgewiesen wurde, ist es erwähnenswert, dass alle Mittelwerte der weiblichen Population die der männlichen übersteigen.

Da es sich bei den Variablen der Normwerttabelle um genau die vier Zeitintervalle handelte, die sich durch das reduzierte Schema (Abbildung 19 und Tabelle 12 der Seite 65) ergaben, sollte bei weiteren Untersuchungen dieses verkleinerte Schluckschema mit nur noch fünf Positionen verwendet werden.

5 Zusammenfassung

Die Analyse der Zungenbewegung beim Schlucken wurde bislang hauptsächlich mit Hilfe sonographischer, radiologischer und palatographischer Methoden untersucht. Mit diesen Verfahren lassen sich jedoch die Zungenbewegungen nicht ohne Strahlenbelastung und nicht in einer direkten zweidimensionalen Darstellung abhängig von der Zeit abbilden. Mit der Elektromagnetischen Artikulogaphie hingegen, die als biologisch unbedenklich und vollständig noninvasiv gilt^{37,59}, ist dies möglich, wie durch die vorliegende Dissertation beschrieben.

Als Studienpopulation wurden Probanden ausgewählt, bei denen anamnestisch und auf Grund der klinischen Untersuchung von einer physiologischen Schluckbewegung der Zunge ausgegangen werden konnte. Die Daten der Studie konnten somit zur Normwertdefinition herangezogen werden. Die Studienpopulation bestand aus 25 Personen, von denen 11 männlichen und 14 weiblichen Geschlechts waren. Der Median des Durchschnittsalter lag bei 26 Jahren und der Interquartilsabstand betrug ein Jahr. Der älteste Teilnehmer der Studie war 29 und der jüngste 23 Jahre alt.

Für die Messungen wurde der Artikulograph der Abteilung für Kieferorthopädie des Zentrums für Zahn-, Mund-, und Kieferheilkunde der Universität Tübingen verwendet. Er stellte eine Neuentwicklung bisher verwendeter Artikulographen dar 12,13,15,36,44,59. Die Messgenauigkeit konnte auf 0,1 mm verringert werden. Der Tragekomfort wurde durch die leichtere Bauweise des Helms erheblich verbessert und somit die Beeinflussung des Probanden in seinen physiologischen Bewegungen vermindert. Die kompakte Bauweise des Artikulographen ermöglichte auch Messungen an verschiedenen Standpunkten. Zusätzlich stand ein kleinerer Helm für Kinder zur Verfügung.

Mit dem beschriebenen Artikulographen wurden neben den Sprachsequenzen^{34,35} Schluckbewegungen der Zunge in aufrechter und entspannter Körperhaltung aufgezeichnet. Die Versuchsteilnehmer mussten innerhalb der Studie in zehnmaliger Wiederholung einen Wasserbolus von 10 ml nach Aufforderung schlucken. Die davon erhaltenen Datensätze dienten zur zeitlichen Analyse der Zungenschluckbewegungen. Auf Grund der parallelen Aufzeichnung der Refe-

renzen, "Kauebene", "Gingiva OK" und "Nasion", konnten die Werte der einzelnen Probanden nicht mehr nur rein deskriptiv^{12,13,15,59}, sondern auch statistisch interindividuell ausgewertet werden. Erst diese Normierung ließ die Bildung einer Normwerttabelle zu.

Zusammenfassend hat sich gezeigt, dass die Elektromagnetische Artikulographie zur zeitlichen Analyse der Schluckbewegungen der Zunge weniger gut geeignet war als zur Untersuchung von Sprachsequenzen. Somit konnten lediglich 27% der Messwerte anhand ihres 1,96-fachen Messfehlers kategorisiert und in die Normwerttabelle aufgenommen werden. Das angewandte Schluckschema vereinfachte sich dadurch auf fünf Positionen. Bei den Messwertanalysen wurde klar, dass die Körperhaltung keinen signifikanten Einfluss auf den Messwert hat im Unterschied zum Geschlecht der Probanden. Deshalb musste bei der Definition der Normwerte nach männlich und weiblich unterschieden werden, nicht jedoch nach der Körperhaltung.

Langfristig ist die Elektromagnetische Artikulographie zur zeitlichen Analyse der Schluckbewegungen kritischer zu betrachten als zur Untersuchung von Sprachsequenzen. So sollte gerade zur Untersuchung von pathologischen Störungen des Schluckablaufs darauf geachtet werden, dass es zur Anwendung eines aus der Normwerttabelle entwickelten vereinfachten "Schluckschemas", zur Vereinheitlichung der Schluckgeschwindigkeit und des Startpunkts der Schluckbewegung und zur Definition der Zungenruhelage kommt. Unter diesen Voraussetzungen wird in der Zukunft die Elektromagnetische Artikulographie in den Bereichen der Pädiatrie, Logopädie und nicht zuletzt Kieferorthopädie ein modernes Hilfsinstrument darstellen, das in der Diagnostik, der Therapiekontrolle und der Verlaufsdokumentation einer unphysiologischen Schluckbewegung der Zunge eingesetzt werden kann.

6 Abbildungsverzeichnis

Abbildung 1: Skizze des artikulographischen Messsystems ²⁶	10
Abbildung 2: Proband mit Messhelm	11
Abbildung 3: Schema der Lage eines Sensors innerhalb des Magnetfeldes	12
Abbildung 4: Messgenauigkeit des Artikulographen ²⁷	14
Abbildung 5: X/Y-Darstellung der Gaumenkontur in cm	19
Abbildung 6: X/Y-Darstellung der Kauebene in cm	20
Abbildung 7: X/Y-Darstellung einer Kinematikdatei "Wasserschlucken" in cm.	23
Abbildung 8: X/Y-Darstellung einer nach den Referenzen	26
Abbildung 9: Schluckablauf in schematische Darstellung	29
Abbildung 10: Einfaktorielle Analyse von T19 nach Geschlecht	48
Abbildung 11: Einfaktorielle Analyse von T29 nach Geschlecht	49
Abbildung 12: Einfaktorielle Analyse von T35 nach Geschlecht	50
Abbildung 13: Einfaktorielle Analyse von T36 nach Geschlecht	51
Abbildung 14: Einfaktorielle Analyse von T40 nach Geschlecht	52
Abbildung 15: Einfaktorielle Analyse von T42 nach Geschlecht	53
Abbildung 16: Einfaktorielle Analyse von T43 nach Geschlecht	54
Abbildung 17: Einfaktorielle Analyse von T44 nach Geschlecht	55
Abbildung 18: Variablen mit signifikantem Unterschied je Geschlecht	63
Abbildung 19: "Schluckschema" der Normwerttabelle	65
Abbildung 20 bis 64: Einfaktorielle Analysen von T01 bis T45 nach	
Körperhaltung	83
Abbildung 65 bis 101: Einfaktorielle Analysen von T01 bis T18, T20 bis T28,	
T30 bis T34, T37 bis T39, T41 und T45 nach Geschlecht	13

Tabellenverzeichnis

7 Tabellenverzeichnis

Tabelle 1: Verwendungsplan der Sensoren	17
Tabelle 2: Kinematikdateien der Aufzeichnungen	24
Tabelle 3: Schema der Bewegungsbahnen der Zungensensoren	29
Tabelle 4: Auswertung von 196 Kinematikdateien "Wasserschlucken" in	
aufrechter Körperhaltung;	30
Tabelle 5: Messfehlerkategorien der Zeitspannen	33
Tabelle 6: Messfehlerkategorisierung	43
Tabelle 7: Bewertungsquotienten der Variablen	44
Tabelle 8: Wahrscheinlichkeitswerte der Einfaktoriellen Analyse nach	
unterschiedlicher Körperhaltung	46
Tabelle 9: Wahrscheinlichkeitswerte der Einfaktoriellen Analyse nach	
unterschiedlichem Geschlecht	47
Tabelle 10: Normwerttabelle	57
Tabelle 11: Variablen der Normwerttabelle	64
Tabelle 12: Schema der Zungenbewegungsbahnen der Normwerttabelle	65
Tabelle 13: Normwerte ohne Kategorisierung	140

8 Literaturverzeichnis

- Ackermann H., Gröne B. F., Hoch G., Schönle P. W. Speech freezing in Parkinson's disease: a kinematic analysis of orofacial movements by means of electromagnetic articulography. Folia Phoniatr. 1993;45:84-89.
- 2. Altmann D. G. Practical Statistics for Medical Research. 1 ed. London Weinheim New York Tokyo Melbourne Madras: Chapman & Hall 1991:19-47, 179-228.
- 3. Bartolome G. Klinische Eingangsuntersuchungen bei Schluckstörungen. In: Bartolome, G. e.a., *Schluckstörungen Diagnostik und Rehabilitation*. 2 ed. München Jena: Urban & Fischer; 1999:141-155.
- 4. Bland J. M., Altman D. G. Statistics Notes: Measurement error. *British Medical Journal*. 1996;312 1654.
- 5. Böhme G. Dysphagie. In: Böhme, G., *Sprach-, Sprech-, Stimm- und Schluckstörungen*. Vol 1: Klinik. 4 ed. München Jena: Urban & Fischer; 2003:403-447.
- 6. Carstens B. Artikulograph AG 100, Elektromagnetisches Artikulations-Messsystem; 1989.
- 7. Cayley A. S., Tindall A. P., Sampson W. J., Butcher A. R. Elektropalatographic and cephalometric assessment of tongue funktion in open bite and non-open bite subjects. *European Journal of Orthodontics*. 2000;22:463-474.
- 8. Chi-Fishman G., Stone M., McCall G. N. Lingual action in normal sequential swallowing. *Journal of Speech, Language and Hearing Research*. 1998;41:771-785.
- 9. Drescher D. Fernröntgenanalyse. In: Diedrich, P., *Praxis der Zahnheilkunde, Kieferorthopädie I.* Vol 11/I. 4 ed. München Jena: Urban & Fischer 2000:261-292.
- 10. Ehmer U. Ätiologie und Pathogenese von Dysgnathien. In: Diedrich, P., *Praxis der Zahnheilkunde, Kieferorthopädie I.* Vol 11/I. 4 ed. München Jena: Urban & Fischer; 2000:73-106.
- 11. Engelke W., Bruns T., Striebeck M., Hoch G. Midsagittal velar kinematics during production of VCV sequences. *Cleft palat.Craniofac.* 1996;33:236-244.
- 12. Engelke W., Hoch G. Simultane elektromagnetische Artikulographie und Videoendoskopie. *Fortschr.Kieferorthop.* 1994;55:297-303.
- Engelke W., Hoch G., Bruns T., Striebeck M. Simultane Untersuchung artikulatorischer velopharyngealer Funktionen unter verschiedenen dynamischen Bedingungen mit EMA and Videoendoskopie. Folia Phoniatrica et Logopaedica. 1996;48:65-77.
- 14. Engelke W., Müller C., Petersen C. Elektromagnetische Untersuchungen zur Physiologie oropharyngealer Schluckbewegungen. Sprache- Stimme- Gehör. 1995:19:105 113.

- 15. Engelke W., Schönle P. W. Elektromagnetische Artikulographie: Eine neue Methode zur Untersuchung von Bewegungsfunktionen des Gaumensegels. *Folia Phoniatr.* 1991;43:147-152.
- Fischer-Voosholz M., Spenthof U. Orofaziale Muskelfunktionsstörungen. In: Thiel, M., Praxiswissen Logopädie. Vol 2. 1 ed. Berlin Heidelberg New York Springer-Verlag; 2002:1-13, 85-156.
- 17. Fuhrmann R., Diedrich P. Videogestützte dynamische B-Mode-Sonographie der Zungenfunktion während des Schluckens. *Fortschr. Kieferorthop.* 1993:17-26.
- 18. Fujiki T., Takano-Yamamoto T., Noguchi H., Yamashiro T., Guan G., Tanimoto K. A Cineradiographic Study of Deglutitive Tongue Movement and Nasopharyngeal Closure in Patients with Anterior Open Bite. *Angle Orthodontist.* 2000;70:284-289.
- 19. Green J. R., Wang Y.-T. Tongue-surface movements pattern during speech and swallowing. *J. Acoust. Soc. Am.* 2003;113:2820-2832.
- 20. Hahn V. Prävention und Frühbehandlung orofazialen Dyskinesien. Spitta Verlag GmbH & Co.KG. 2004.
- 21. Hannig C., Wuttge-Hannig A. Radiologische Diagnostik der Schluckfunktion. In: Bartolome, G. e.a., *Schluckstörungen Diagnostik und Rehabilitation*. 2 ed. München Jena: Urban & Fischer; 1999:65-110
- 22. Harms V. Biomathematik, Statistik und Dokumentation. 6 ed. Kiel: Harms Verlag; 1992:14-51.
- 23. Harzer W. Lehrbuch der Kieferorthopädie. 1 ed. München Wien: Carl Hanser Verlag 1999:61-125.
- 24. Hilgers R.-D., Bauer P., Scheiber V. Einführung in die Medizinische Statistik. 2 ed. Berlin Heidelberg: Springer-Verlag; 2007:3-25.
- 25. Horn H., Göz G., Bacher M., Müllauer M., Kretschmer I., Axmann-Krcmar D. Reliability of electromagnetic articulography recording during speaking sequenzes. *European Journal of Orthodontics*. 1997;19:647-655.
- 26. Horn H., Scholl T. Meßsystem zur Registrierung von Lippen- und Zungenbewegungen, Hardware und Softwaremanual. 1999:1-36.
- 27. Horn H., Scholl T., Berndt R., Hertrich I., Ackermann H., Göz G. Improvement of an elektromagnetic articulograph for registering tongue and lip movements. *Biomed Tech.* 1997;42:321-322.
- 28. Hüsler J., Zimmermann H. Statistische Prinzipien für medizinische Projekte. 4 ed. Bern: Verlag Hans Huber, Hogrefe AG; 2006:111-124, 151-166
- 29. Imai A., Tanaka M., Tatsuta T., Kawazoe T. Ultrasonographic Images of Tongue Movement during Mastication. *J Osaka Dent Univ.* 1995;29:61-69.
- 30. International Phonetic Association. Handbook of the International Phonetic Association: Cambridge University Press; 1999.

- 31. Ishii T. A study of the movement of the articulatory organs in Japanese geminate production ANX-ray microbeam analysis. *Nippon Jibiinkoka Gakkai Kaiho*. 1999;102:622-634.
- 32. Johnsson F., Shaw D., Gabb M., Dent J., Cook I. Influence of gravity and body position on normal oropharyngeal swallowing. *the American Physiological Society*. 1995:G653-G658.
- 33. Kawashima S., Takahashi Y., Niikuni N., et al. Development of X-ray TV m-mode and reconstructed ultrasound m-mode methods for investigating tongue movement during swallowing in humans. *Journal of oral science*. 1999;41:1-3.
- 34. Klink A. Räumliche Darstellung von Zungenbewegungen bei Sprachsequenzen mittels elektromagnetischer Artikulographie. *Med. Dissertation , Universität Tübingen.* 2007:1-201.
- 35. Koos B. Darstellung und Normwertdefinition der räumlichen und zeitlichen Abfolge von Lippenbewegungen bei Sprachsequenzen durch die elektromagnetische Artikulographie. *Med. Dissertation , Universität Tübingen.* 2008:1-239.
- 36. Kretschmer I. M. Untersuchungen zur Analyse von Sprech- und Schluckbewegungen mit Hilfe der elektromagnetischen Artikulographie. *Med.Dissertation*, *Universität Tübingen*. 1996.
- 37. Leitgeb N. Analyse epidemiologischer Studien über magnetfeldbedingte Krebsrisiken. *Biomed Tech.* 1993;38:111-116.
- 38. Lippert H. Kopf II und Hals *Lehrbuch der Anatomie*. 7 ed. München Jena: Urban & Fischer; 2006:601-708.
- 39. Luther C. J. Funktionelle Besonderheiten beim unreifen Schluckakt. *Dissertation*. 1999.
- 40. Martin-Harris B., Brodsky M. B., Michel Y., et al. MBS Measurement Tool for Swallow Impairment MBSImp: Establishing a Standard. *Dysphagia*. 2008;23:392-405.
- 41. Meschede D. Gerthsen Physik 22 ed. Berlin Heidelberg New York: Springer Verlag; 2004:364-377.
- 42. Miller J. L., Watkin K. L. Lateral pharyngeal wall motion during swallowing using real time ultrasound. *Dysphagia*. 1997;12:125-132.
- 43. Moll K. J., Moll M. Anatomie. 18 ed. München Jena: Urban & Fischer; 2006:289-388.
- 44. Müllauer M. O. F. Untersuchungen zur Reproduzierbarkeit von Sprechbewegungen mit Hilfe der elektromagnetischen Artikulographie. *Med.Dissertation*, *Universität Tübingen*. 1996.
- 45. Murdoch B. E., Goozee J. V. EMA analysis of tongue function in children with dysarthria following traumatic brain injury. *Brain Injury*. 2003;17:79-93.

- 46. Neumann S. Physiologie des Schluckvorgangs. In: Bartolome, G.e.a., *Schluckstörungen Diagnostik und Rehabilitation*. 2 ed. München Jena: Urban & Fischer; 1999:12-26.
- 47. Neuschaefer- Rube C., Wein B. B., Angerstein W., Klajman jr. S., Fischer-Wein G. Sektorbezogene Grauwertanalyse videosonographisch aufgezeichneter Zungenbewegungen beim Schlucken. *HNO*. 1997:556-562.
- 48. Nguyen N., Marchal A. Assessment of an elektromagnetic system for investigation of articulatory movements in speech production. *J. Acoust. Soc. Am.* 1993;94:1152 -1155.
- 49. Peng C. L., Jost-Brinkmann P. G., Miethke R. R., Lin C. T. Ultrasonographic Measurements of Tongue Movements During Swallowing. *Journal of ultrasound in medicine*. 2000;19:15-20.
- 50. Peng C. L., Jost-Brinkmann P. G., Yoshida N., Chou H. H., Lin C. T. Comparison of tongue funktions between mature and tongue-thrust swallowing--an ultrasound investigation. *American Journal of Orthodontics and Dentofacial Orthopedics*. 2004;125:562-570.
- 51. Peng C. L., Jost-Brinkmann P. G., Yoshida N., Miethke R. R., Lin C. T. Differential diagnosis between infantile and mature swallowing with ultrasonography. *European Journal of Orthodontics*. 2003;25:451-456.
- 52. Peng C. L., Miethke R. R., Pong S. J., Lin C. T. Investigation of Tongue Movements during Swallowing with M-Mode Ultrasonography. *J Orofac Orthop.* 2007;68:17-25.
- 53. Perkell J. S., Cohen M. H., Svirsky M. A., Matthies M. L., Garabieta I., Jackson M. T. T. Elektromagnetic midsaggital articulometer systems for transducing speech articulatory movements. *J. Acoust. Soc. Am.* 1992;92:3078-3095.
- 54. Recasens D. An EMA study of VCV coarticulatory directions. *The Journal of the Acoustical Society of America*. 2002;111 (6) 2828-2841.
- 55. Reinicke C., Obijou N., Tränkmann J. Die palatinale Gestaltung von Oberkieferplattenapparaturen. *Fortschritte der Kieferorthopädie.* 1998:202-207.
- 56. Roubeau B., Moriniere S., Perie S., Martineau A., Falieres J., Lacau St Guily J. Use of Reaction Time in the Temporal Analysis of Normal Swallowing. *Dysphagia*. 2008;23:102-109.
- 57. Schalch F. Schluckstörungen und Gesichtslähmung. 4 ed. Stuttgart Jena New York: Gustav Fischer Verlag; 1994:19-31.
- 58. Schopf P. Anamnese und klinische Untersuchung. In: Diedrich, P., *Praxis der Zahnheilkunde, Kieferorthopädie I.* Vol 11/I. München Jena: Urban & Fischer; 2000:123-167.
- 59. Schwestka-Polly R., Engelke W., Engelke D. Bedeutung der elektromagnetischen Artikulographie bei der Untersuchung der motorischen Zungenfunktion im Rahmen kieferorthopödischer Diagnostik. *Fortschr. Kieferorthop.* 1992;53:3-10.

- 60. Söder N., Miller N. Using ultrasound to investigate intrapersonal variability in durational aspects of tongue movement during swallowing. *Dysphagia*. 2002;17 (4)
- 61. Steele C. M., Lieshout P. H. Use of electromagnetic midsagittal articulography in the study of swallowing. *Journal of Speech, Language, and Hearing Research.* 2004;47:342-352.
- 62. Steele C. M., Van Lieshout P. H. Influence of bolus consistency on lingual behaviors in sequential swallowing. *Dysphagia*. 2004;19:192-206.
- 63. Takahiro O., Kazuhiro H., Takahashi N. Pattern of Tongue Pressure on Hard Palate During Swallonwing. *Dysphagia*. 2004;19:259-264.
- 64. Tanimoto K., Henningsson G., Isberg A., Ren Y. F. Comparison of tongue position during speech before and after pharyngeal flap surgery in hyponasal speakers. *Cleft palat.Craniofac.* 1994.
- 65. Tasko S. M., Kent R. D., Westbury J. R. Variability in tongue movement kinematics during normal liquid swallowing. *Dysphagia*. 2002;17 (2):126-138.
- 66. Vaupel P. Funktionen des Magen-Darm-Trakts. In: Schmidt, R.F., Lang, F., *Physiologie des Menschen mit Pathophysiologie*. 30 ed. Heidelberg: Springer Verlag; 2007:859-905.
- 67. Wein B., Angerstein W., Klajman S., Zimmermann R., Skopnik H. Zungensonographie und Druckmessungen beim Säuglingssaugen. *Klin. Pädiatr.* 1993;205:103-106.
- 68. Wein B., Angsteiner W., Klajmann S. Suchbewegungen der Zunge bei einer Sprachapraxie: Darstellung mittels Ultraschall und Pseudo 3-D- Abbildung. *Der Nervenarzt*. 1993:143-145.
- 69. Weiß C. Basiswissen Medizinische Statistik. 1 ed. Berlin Heidelberg: Springer-Verlag; 1999:30-65, 201-258.
- 70. Werner J. Biomathematik und Medizinische Statistik. 2 ed. Wien München Baltimore: Urban & Schwarzenberg; 1992:23-60.

9.1 Anamnese- und Untersuchungsbogen

Datum:			
Name:			
Vorname:			
Straße:			
PLZ:			
Ort:			
Geb.:			
Telefonnr.:			
1. Anamnese:			
Prä-, peri-, postnatale Auffälligkeiten:	nein		
	ja	<u> </u>	welche:
Stillen:	nein		
	ja	<u> </u>	wie lange:
Flasche, welcher Sauger:			
	nein		
	ja	<u> </u>	wie lange:
Schnuller, welcher:			
	nein		
	ja		wie lange:
Feste Nahrung, ab wann:			
Essstörungen:	nein		ja 🗌
Schluck-, Verdauungsprobleme:	nein		ja 🗌
Entwicklungsstörung der Motorik:	nein		ja 🗌
(Verzögerung beim Laufen lern	en,	.)	
Entwicklungsstörung des Sprechens:	nein		ja 🗌
Lutschgewohnheiten, Habits:	nein		
	ia	\Box .	welche:

Auffälligkeiten in der Familie/Geschwister:	: nein ☐ ja ☐, welche:
1.1 Allgemeinerkrankungen:	
Stoffwechselerkrankungen:	nein 🗌
	ja, welche:
Verdauungsprobleme:	nein 🗌
	ja, welche:
Adipositas:	nein 🗌 ja 🔲
Größe:	
Gewicht:	
Allergien:	nein 🗌
	ja □, welche:
Asthma:	nein 🗌 ja 🔲
HNO: häufige Erkrankungen:	
Tonsillenerkr., Adenoide:	nein 🗌 ja 🔲
Septumabweichung:	nein 🗌 ja 🔲
Nebenhöhlenerkr.:	nein 🗌 ja 🔲
Luftschlucken, Globusgefühl:	nein 🗌 ja 🔲
Muskeltonus Körperhaltung:	
Traumen:	nein 🗌
	ja, welche:
Operationen:	nein 🗌
	ja □, welche:
Neurologische Befunde:	nein 🗌
	ja □, welche:
Verhalten, Psyche (Erkrank.):	nein 🗌
	ja
2. Befunde:	
2.1 Zahnmedizin:	

Pflegezustand, Mundhygier	ne:			
Okklusion:				
Klasse:				
Offener Biss:		nein 🗌	ja	
Kreuzbiss:		nein 🗌	ja	
Schneidezahnstufe (mm):		vertikal:		
		saggital:		
Diastema:		nein 🗌	ja	
Protrusion, OK,UK:		nein 🗌	ja	
Zungenband (eingeschränk	te Beweglichk.):nein	ja	
Lippenband (hoch ansetzer	nd,):	nein 🗌	ja	
LKG- Spalte:		nein 🗌	ja	
Kiefergelenk (Auffälligkeiter	n):	nein 🗌	ja	
SKD:				
Mundöffnung:				
bogenförmig:				
s- förmig:				
termin. Abweichung:				
Knirschen:		nein 🗌	ja	
Pressen:		nein 🗌	ja	
Orofazialer Schmerz:		nein 🗌	ja	
Kopfschmerz:		nein 🗌	ja	
Sonstiger Schmerz:		nein 🗌	ja	
KFO- Behandlung:		nein 🗌	ja	
von:	ois: (LJ.)			
Apparatur:				
Rezidive:		nein 🗌		
		ja □, v	velch	e:
Kieferchirurgische Eingriffe	· ·	nein 🗌		
		ja □, v	velch	e:
Parodontologie (Auffälligke	iten):	nein 🗌		
		ja □, v	velch	e:

2.2 Lo	ogopädie, Sprachthe	rapie:					
Sigma	atismus:		nein 🗌	ja	a		
Scheti	ismus lat.:		nein 🗌	ja	ì		
Multip	le Dyslalie:		nein 🗌	ja	ì		
Multip	le Interdentalität:		nein 🗌	ja	ì		
Ander	e Sprechstörungen:		nein 🗌				
			ja 🔲	, wel	Iche) :	
Sprac	hstörungen:		nein 🗌				
			ја 🔲	, wel	Iche) :	
Stimm	nstörungen:		nein 🗌				
			ја 🔲	, wel	Iche) :	
Logop	oädische Behandlung	g:	nein 🗌	ja	ì		
٧	von:	bis:					
2.3 Or	rofaziale Funktion:						
Lipper	n: Morphologie:						
7	Tonus, Beweglichkei	it:					
L	Lippenschluss:						
L	Lippensaugen, -beis	sen:	nein 🗌	ja	ì		
E	Einlagern:		nein 🗌	ja	ì		
5	Speichel/Risse in Mu	undwinkeln:	nein 🗌	ja	ì		
L	Lippenlecken:		nein 🗌	ja	ì		
L	Lippendruck:		normal			erhöht	
			vermind	lert[
Zunge) :						
	Morphologie:						
٦	Tonus:						
	mpressionen:		nein 🗌	ja	ì		
	Asymmetrien:		nein 🗌	ja	ì		
A	Ankyloglossie:		nein 🗌	ja	ì		
N	Makroglossie:		nein 🗌	ja	ì		

Ruhelage:				
Motilität:				
Kiefer:	normale Bi	reite		
	zu geringe	tran	sversale Breite	
Frontaler Engstand: OK:	nein 🗌	ja		
UK:	nein 🗌	ja		
Wangentonus.				
Impressionen:	nein 🗌	ja		
Muskelbefunde (Druckdolenzen, Myogelo	sen, Hypert	rophi	ien,):	
	nein 🗌	ja		
m.masseter:	rechts		links 🗌	
m.mentalis:	rechts		links 🗌	
Gaumen:				
Form:	normal	☐ h	och/spitz	
Schluckmuster (angestrengt, verkrampft):	nein 🗌	ja		
Grimasse, Synergismen:	nein 🗌	ja		
Geräusche:	nein 🗌	ja		
Speichelaustritt:	nein 🗌	ja		
Zunge:	addental		interdental	
sichtbar:				
Zahnreihe:	geschlosse	en	offen	
m.orbicularis oris:	normal		hyperaktiv 🗌	
	inaktiv			
Ernährung:	ausgewoge	en	einseitig	
Atmung:	Mund			
	Nase⊡ M	lischa	atmung 🗌	
Nasenlochtest (Spiegel):	positiv		negativ	
Beim Schlafen:				
Besonderheiten:				

Zahnwechsel:	normal	verzögert verzögert	
Sonstiges:			

9.2 Probandeninformation

zur Analyse von Lippen- und Zungenbewegungen mittels elektromagnetischer Artikulographie

Ziel der durchzuführenden Untersuchung ist die Analyse von Lippen- und Zungenbewegungenbei Sprech- und Schluckbewegungen zur Untersuchung des Einflusses von muskulären Fehlfunktionen, Kieferfehlstellungen und deren Korrekturen auf die Lippen- und Zungenmotorik.

Aus der Studie werden neue Erkenntnisse über den Einfluss kieferorthopädischer, kieferchirurgischer und funktionsverbessernder Maßnahmen auf die Muskulatur im Lippen-, Zungen- und Kieferbereich erwartet, um die Stabilität kieferorthopädischer Behandlungsergebnisse zu verbessern.

Die Analyse der Bewegungen erfolgt mit der so genannten elektromagnetischen Artikulographie. Dabei werden zunächst auf die zu untersuchenden Stellen (Lippen, Zunge, Kiefer) kleine Empfängerspulen (Durchmesser: 3 x 2 x 1,5 mm) geklebt, an denen jeweils ein dünnes Kabel befestigt ist. Die Kabel der Empfängerspulenwerden am Messgerät angeschlossen. Ein Ablösen der Empfängerspulen während der Untersuchung kann es erforderlich machen, diese zu unterbrechen und die Spulen erneut wieder zu befestigen.

Anschließend wird auf den Kopf des Probanden ein Messhelm mit drei Senderspulen, welche elektromagnetische Felder ausstrahlen, aufgesetzt. Die dabei ausgestrahlten Felder bedeuten keinerlei Risiko für die zu untersuchende Person. Ein Verschlucken der Empfängerspulen ist durch die daran befestigten Kabel praktisch ausgeschlossen.

Während der Untersuchung werden bestimmte Sprech- und Schluckbewegungen aufgezeichnet. Die Untersuchungsdauer beträgt ca. 30 min.

Am Untersuchungsende werden die Empfängerspulen wieder vorsichtig abgelöst, ohne dass dabei die Haut oder Schleimhaut verletzt wird. Möglicherweise

kann durch verbliebene Klebereste die Tastempfindung an der Zunge bis zu 30min. beeinträchtigt sein.

Bei der Studie handelt es sich um eine so genannte offene Studie, bei der die Probanden nach bestimmten Krankheitskriterien bzw. als Kontrollgruppe gesunde Probanden ausgewählt werden.

Die Teilnahme an der Studie hat keinerlei Auswirkung auf die Art der durchgeführten therapeutischen Maßnahmen und ist für die zu untersuchende Person freiwillig. Der Proband hat das Recht, jederzeit und ohne Angabe von Gründen und ohne Benachteiligung bei der weiteren Behandlung aus der Studie auszuscheiden. Es wird darauf hingewiesen, dass das Arztgeheimnis gewahrt bleibt und Daten nur in anonymer Form weitergegeben bzw. veröffentlicht werden. Der Proband kann selbst erwägen, ob er für die oben genannten Ziele die auf-

9.3 Einverständniserklärung

geführten Risiken auf sich nehmen will.

Mit der Unterschrift erklärt sich der Unterzeichnende bereit, dass er über die Ziele der Studie, die Untersuchungsmethoden und deren Risiken, über die Freiwilligkeit der Teilnahme sowie die Möglichkeit, jederzeit und ohne Angabe von Gründen und ohne Benachteiligung bei der weiteren Behandlung aus der Studie ausscheiden zu können, ausreichend informiert, ausreichend informiert worden ist und keine weiteren Fragen mehr hat.

Datum, Unterschrift (Proband):
Datum, Unterschrift (Untersucher):

9.4 Messwertanalysen

9.4.1 Einfluss der Körperhaltung

Variable T01

Quantile

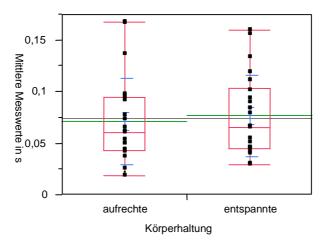


Abbildung 20: Einfaktorielle Analyse von T01 nach Körperhaltung

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,018889	0,022246	0,042506	,060597	0,094455	0,157088	0,166998
entspannt	0,028783	0,033264	0,045024	,065454	0,103441	0,149064	0,159021
Mittelwerte	und Standa	ardabweichu	ngen				
Stufe	Anzahl	Mittelwert Sta	ındardabweichun	•	ardfehler telwertes	95% KI unten	95% KI oben
aufrecht	22	0.071188	0.042042		0.00896	0.05255	0,08983
entspannt	22	0,076429	0,039389	9	0,00840	0,05897	0,09389
Wilcoxon/k	(ruskal-Wall	lis-Tests (Ra	ngsummen)				
Kategorie		ufigkeiten	Score-Sumr	ne Score	e-Mittelwert	(Mittelwe	rt-Mittelwert0) /Std.0
aufrecht		22	474,0	00	21,5455		-0,481
			,		,		0.481

Einfaktorieller Test, Chi-Quadrat-Approximation						
Chi ²	Freiheitsgrade	Wahrsch.>Chi ²				
0,2430	1	0,6221				



Abbildung 21: Einfaktorielle Analyse von T02 nach Körperhaltung

	ar		

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,03752	0,047075	0,070399	0,090033	0,144493	0,181878	0,225322
entspannt	0,040853	0,043978	0,064195	0,081899	0,107665	0,138715	0,15728

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert St	tandardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,105811	0,050046	0,01067	0,08362	0,12800
entspannt	22	0.087559	0.031723	0.00676	0.07349	0.10162

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten `	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	533,000	24,2273	0,880
entspannt	22	457 000	20 7727	-0.880

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.7956	1	0.3724

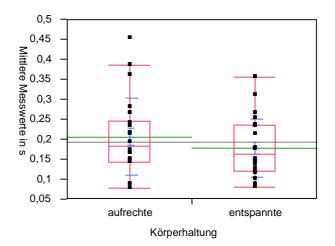


Abbildung 22: Einfaktorielle Analyse von T03 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,078171	0,086757	0,143576	0,183205	0,245581	0,378069	0,452293
entspannt	0,080307	0,091669	0,118882	0,162396	0,233854	0,297099	0,353938

Stufe	Anzahl	Mittelwert S	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,206139	0,096406	0,02055	0,16339	0,24888
entspannt	22	0.176939	0.072737	0.01551	0.14469	0.20919

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	536,000	24,3636	0,951
entspannt	22	454,000	20,6364	-0,951

Einfaktorieller Test, Chi-Quadrat-Approximation

Wahrsch.>Chi2	Freiheitsgrade	Chi ²
0,3359	1	0.9262

Variable T04

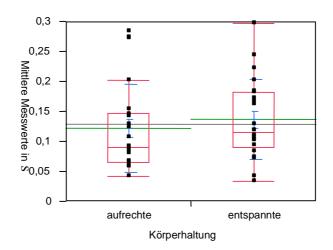


Abbildung 23: Einfaktorielle Analyse von T04 nach Körperhaltung

_				
O	เเล	nt	il	e

a ddi itiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,041933	0,058464	0,064941	0,090813	0,146734	0,272606	0,283609
entspannt	0,03254	0,051081	0,090514	0,114599	0,182429	0,237278	0,296696

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,121650	0,073736	0,01572	0,08896	0,15434
entspannt	22	0,136321	0,066780	0,01424	0,10671	0,16593

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu) /Std.0
aufrecht	22	444,000	20,1818	-1,185
entspannt	22	546,000	24,8182	1,185

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,4331	1	0,2313

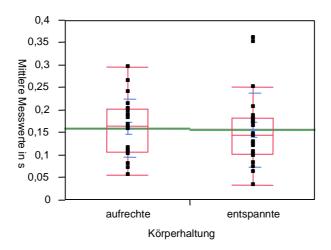


Abbildung 24: Einfaktorielle Analyse von T05 nach Körperhaltung

	ar		

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,055521	0,073693	0,106636	0,164332	0,201343	0,257413	0,295416
entspannt	0,033009	0,065691	0,101627	0,143698	0,181468	0,321279	0,360223

Mittelwerte und Standardabweichungen

Stute	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	0,159623	0,064393	0,01373	0,13107	0,18817
entspannt	22	0,156579	0,082287	0,01754	0,12009	0,19306

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	518,000	23,5455	0,528
entspannt	22	472,000	21,4545	-0,528

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0,2915	1	0,5893

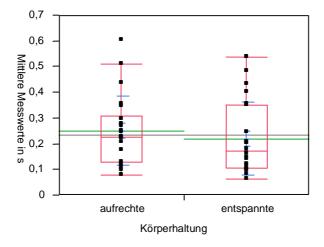


Abbildung 25: Einfaktorielle Analyse von T06 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,079361	0,100506	0,12639	0,226581	0,308878	0,487485	0,603294
entspannt	0,06155	0,086733	0,105655	0,172146	0,349109	0,468383	0,537755

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,250561	0,134849	0,02875	0,19077	0,31035
entspannt	22	0,219131	0,141847	0,03024	0,15624	0,28202

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	548,000	24,9091	1,232
entspannt	22	442,000	20,0909	-1,232

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
1,5477	1	0,2135

Variable T07

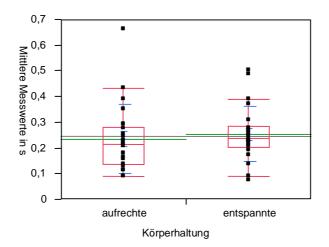


Abbildung 26: Einfaktorielle Analyse von T07 nach Körperhaltung

_						
റ		ıa	n	4	:1	^
u	ш	-		ш		-

~ aaiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,08764	0,09546	0,134758	0,214575	0,280037	0,419468	0,661451
entspannt	0,073093	0,102601	0,201856	0,236465	0,283348	0,456737	0,500157

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,234482	0,133190	0,02840	0,17543	0,29354
entspannt	22	0,253624	0,107563	0,02293	0,20593	0,30131

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Nategorie	naungkeiten	Score-Summe	Score-witterwert	(writterwert-writterwertu)
				/Std.0
aufrecht	22	451,000	20,5000	-1,021
entspannt	22	539,000	24,5000	1,021

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,0667	1	0,3017

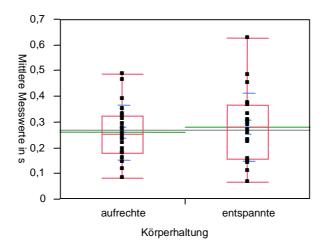


Abbildung 27: Einfaktorielle Analyse von T08 nach Körperhaltung

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,080737	0,125792	0,180195	0,252037	0,32421	0,44194	0,487366
entspannt	0,0672	0,118296	0,153986	0,278325	0,367251	0,472765	0,626446

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert Stand	dardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	0,258715	0,105482	0,02249	0,21195	0,30548
entspannt	22	0.280209	0.133205	0.02840	0.22115	0.33927

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten [`]	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
_	_			/Std.0
aufrecht	22	479,000	21,7727	-0,364
entsnannt	22	511 000	23 2273	0.364

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.1410	1	0.7072

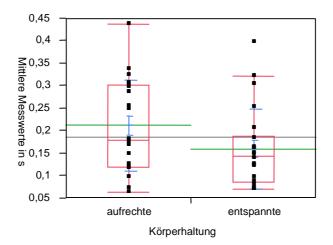


Abbildung 28: Einfaktorielle Analyse von T09 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,064228	0,079381	0,119569	0,179838	0,30088	0,33314	0,43599
entspannt	0,070121	0,070247	0,08589	0,14388	0,187931	0,316006	0,39765

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,211583	0,101592	0,02166	0,16654	0,25663
entspannt	22	0,159357	0,088777	0,01893	0,12000	0,19872

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	565,000	25,6818	1,631
entspannt	22	425,000	19,3182	-1,631

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
2,6997	1	0,1004

Variable T10

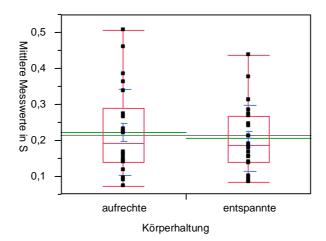


Abbildung 29: Einfaktorielle Analyse von T10 nach Körperhaltung

Quantile

~ aaiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,07208	0,091239	0,139403	0,192735	0,288649	0,435197	0,505966
entspannt	0,084202	0,088981	0,138935	0,185055	0,267401	0,355126	0,436211

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,222597	0,119961	0,02558	0,16941	0,27578
entspannt	22	0,205133	0,092371	0,01969	0,16418	0,24609

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu) /Std.0
aufrecht	22	502,000	22,8182	0,153
entspannt	22	488,000	22,1818	-0,153

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0270	1	0,8695

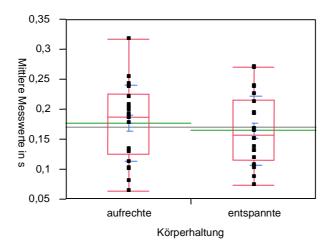


Abbildung 30: Einfaktorielle Analyse von T11 nach Körperhaltung

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,063243	0,086094	0,124843	0,18709	0,224302	0,24951	0,317099
entspannt	0,073366	0,090838	0,114961	0,156817	0,214742	0,25918	0,269341

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert S	tandardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,176999	0,063833	0,01361	0,14870	0,20530
entspannt	22	0.164439	0.058060	0.01238	0.13870	0.19018

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
_	_			/Std.0
aufrecht	22	522,000	23,7273	0,622
entspannt	22	468,000	21,2727	-0,622

Einfaktorieller Test, Chi-Quadrat-Approximation

Wahrsch.>Chi2	Freiheitsgrade	Chi ²
0.5262	1	0.4017

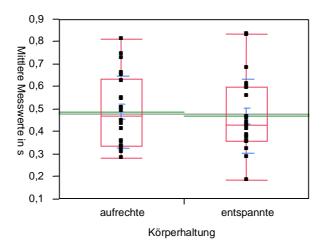


Abbildung 31: Einfaktorielle Analyse von T12 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,282066	0,311008	0,336132	0,470303	0,63137	0,738552	0,811381
entspannt	0,185882	0,296805	0,357597	0,427273	0,596027	0,784172	0,833861

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,487412	0,158910	0,03388	0,41695	0,55787
entspannt	22	0,469838	0,165225	0,03523	0,39658	0,54309

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	502,000	22,8182	0,153
entspannt	22	488,000	22,1818	-0,153

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.0270	1	0,8695

Variable T13

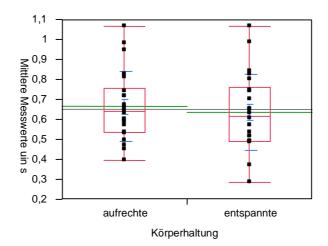


Abbildung 32: Einfaktorielle Analyse von T13 nach Körperhaltung

_				
nı	12	nt	il	Δ

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,39423	0,455646	0,532854	0,638838	0,756809	0,969138	1,064276
entspannt	0,287096	0,405117	0,489151	0,616347	0,758094	0.939544	1,064415

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,664411	0,174854	0,03728	0,58688	0,74194
entspannt	22	0,635101	0,190114	0,04053	0,55081	0,71939

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu)
				/Std.0
aufrecht	22	514,000	23,3636	0,434
entspannt	22	476,000	21,6364	-0,434

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.1989	1	0.6556

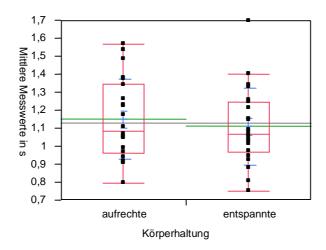


Abbildung 33: Einfaktorielle Analyse von T14 nach Körperhaltung

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,797008	0,90628	0,95835	1,085854	1,345237	1,518854	1,565474
entspannt	0,752455	0,826456	0,965179	1,069429	1,245317	1,380997	1,696964

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert Star	ndardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	1,14945	0,221435	0,04721	1,0513	1,2476
entspannt	22	1.10836	0.214454	0.04572	1.0133	1.2034

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	518,000	23,5455	0,528
entsnannt	22	472 000	21 4545	-0.528

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,2915	1	0,5893

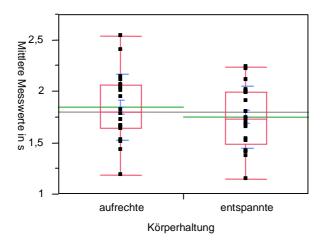


Abbildung 34: Einfaktorielle Analyse von T15 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	1,186191	1,45243	1,64283	1,798555	2,059243	2,320592	2,536904
entspannt	1,141219	1,383141	1,488321	1,732685	1,995029	2,187395	2,236584

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	1,84235	0,321539	0,06855	1,6998	1,9849
entspannt	22	1,75069	0,300567	0.06408	1,6174	1,8840

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	534,000	24,2727	0,904
entspannt	22	456,000	20,7273	-0,904

Einfaktorieller Test, Chi-Quadrat-Approximation

Wahrsch.>Chi2	Freiheitsgrade	Chi ²
0,3600	1	0.8380

Variable T16

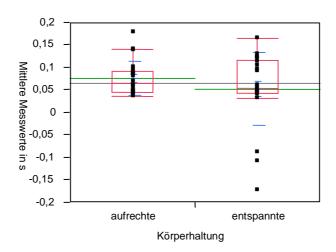


Abbildung 35: Einfaktorielle Analyse von T16 nach Körperhaltung

_						
റ		ıa	n	4	:1	^
u	ш	-		ш		-

~ u.uu							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,035164	0,041188	0,044948	0,064437	0,090916	0,13959	0,177174
entspannt	-0,17371	-0,10296	0.041232	0.053756	0,114857	0,126258	0,163737

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,075446	0,037395	0,00797	0,05887	0,09203
entspannt	22	0,052160	0,081743	0,01743	0,01592	0,08840

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Nategorie	naungkeiten	Score-Summe	Score-witterwert	(writterwert-writterwertu)
				/Std.0
aufrecht	22	516,000	23,4545	0,481
entspannt	22	474,000	21,5455	-0,481

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.2430	1	0.6221

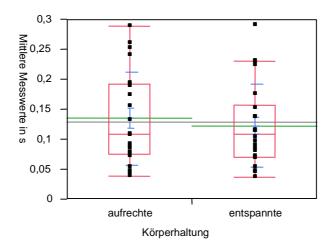


Abbildung 36: Einfaktorielle Analyse von T17 nach Körperhaltung

		le

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,038663	0,044203	0,075238	0,107553	0,19136	0,257987	0,289164
entspannt	0,036313	0,045314	0,070326	0,107938	0,157331	0,230189	0,290582

Mittelwerte und Standardabweichungen

Stute	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	0,134584	0,077488	0,01652	0,10023	0,16894
entspannt	22	0,122275	0,069237	0,01476	0,09158	0,15297

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
_	_			/Std.0
aufrecht	22	513,000	23,3182	0,411
entsnannt	22	477 000	21 6818	-0 411

Einfaktorieller Test, Chi-Quadrat-Approximation

١.	Freiheitsgrade	Chi ²	
	1	0,1785	

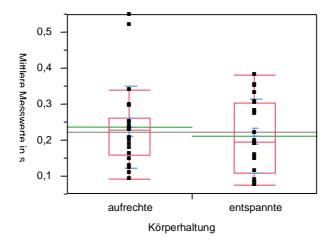


Abbildung 37: Einfaktorielle Analyse von T18 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,092524	0,113039	0,158295	0,228816	0,261504	0,465508	0,547518
entspannt	0,074678	0,077995	0,108333	0,194117	0,303927	0,353025	0,381348

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,236240	0,114951	0,02451	0,18527	0,28721
entspannt	22	0,210491	0,102212	0,02179	0,16517	0,25581

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	520,000	23,6364	0,575
entspannt	22	470,000	21,3636	-0,575

Einfaktorieller Test, Chi-Quadrat-Approximation

Wahrsch.>Chi2	Freiheitsgrade	Chi ²
0,5573	1	0,3444

Variable T19

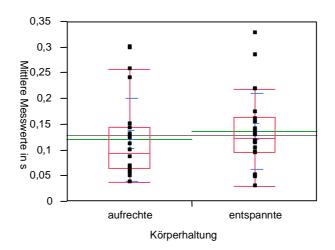


Abbildung 38: Einfaktorielle Analyse von T19 nach Körperhaltung

_						
റ		ıa	n	4	:1	^
u	ш	-		ш		-

~ u.uu							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,037361	0,050267	0,063578	0,092643	0,143482	0,284582	0,29856
entspannt	0.030066	0.04644	0.09514	0,12276	0,163101	0,26397	0,32755

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
and the sale t	00	0.400.400	0.000700	des Mittelwertes	0.00450	0.45000
aufrecht	22	0,120403	0,080799	0,01723	0,08458	0,15623
entspannt	22	0,136035	0,073918	0,01576	0,10326	0,16881

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Nategorie	naungkeiten	Score-Summe	Score-witterwert	(writterwert-writterwertu)
				/Std.0
aufrecht	22	453,000	20,5909	-0,974
entspannt	22	537,000	24,4091	0,974

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,9719	1	0,3242

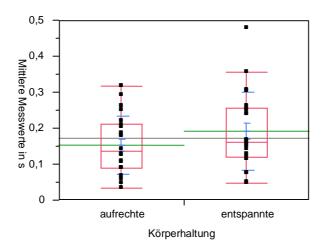


Abbildung 39: Einfaktorielle Analyse von T20 nach Körperhaltung

	aı		

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,034254	0,050665	0,089066	0,13503	0,21048	0,281982	0,315466
entspannt	0,0484	0,057493	0,120146	0,160329	0,254743	0,339656	0,479028

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert St	tandardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,153263	0,081127	0,01730	0,11729	0,18923
entspannt	22	0.192042	0.107458	0.02291	0.14440	0.23969

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
aufrecht	22	447,000	20,3182	-1,115
entsnannt	22	543,000	24 6818	1 115

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,2694	1	0,2599

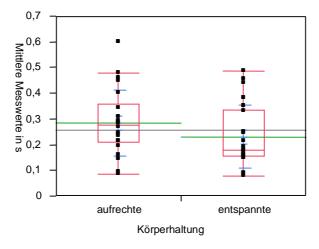


Abbildung 40: Einfaktorielle Analyse von T21 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,085748	0,108401	0,20909	0,275863	0,357666	0,472453	0,599613
entspannt	0,07715	0,087533	0,153825	0,179452	0,335239	0,449083	0,485094

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,285105	0,128531	0,02740	0,22812	0,34209
entspannt	22	0,229912	0,122433	0,02610	0,17563	0,28420

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	565,000	25,6818	1,631
entspannt	22	425,000	19,3182	-1,631

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
2,6997	1	0,1004

Variable T22

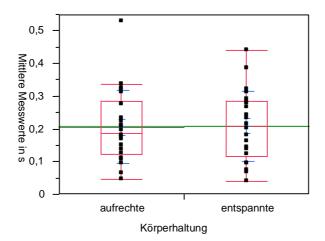


Abbildung 41: Einfaktorielle Analyse von T22 nach Körperhaltung

_						
റ		ıa	n	4	:1	^
u	ш	-		ш		-

a aan an							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,04452	0,072899	0,120852	0,187808	0,283028	0,332035	0,527567
entspannt	0,041129	0,069819	0,115249	0,208859	0,283626	0,366075	0,438804

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,205168	0,111156	0,02370	0,15588	0,25445
entspannt	22	0,208482	0,107301	0,02288	0,16091	0,25606

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu)
				/Std.0
aufrecht	22	486,000	22,0909	-0,200
entspannt	22	504,000	22,9091	0,200

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0446	1	0,8327

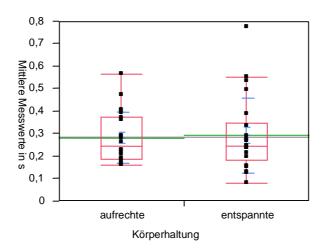


Abbildung 42: Einfaktorielle Analyse von T23 nach Körperhaltung

ua	uant	uantil

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,161276	0,163291	0,185233	0,245409	0,37444	0,450212	0,563518
entspannt	0,079769	0,125653	0,184103	0,245538	0,346408	0,546231	0,772362

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert S	tandardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	0,280681	0,112705	0,02403	0,23071	0,33065
entspannt	22	0,291589	0,165808	0,03535	0,21807	0,36510

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
aufrecht	22	498,000	22,6364	0,059
entspannt	22	492,000	22,3636	-0,059

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0050	1	0,9439

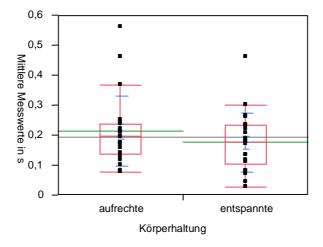


Abbildung 43: Einfaktorielle Analyse von T24 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,0763	0,087479	0,13743	0,196336	0,237148	0,433052	0,559408
entspannt	0,027359	0,05118	0,101965	0,178311	0,231775	0,290239	0,458821

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,212566	0,116998	0,02494	0,16069	0,26444
entspannt	22	0,175707	0.097793	0,02085	0,13235	0,21907

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	533,000	24,2273	0,880
entspannt	22	457,000	20,7727	-0,880

Einfaktorieller Test, Chi-Quadrat-Approximation

Wahrsch.>Chi2	Freiheitsgrade	Chi ²
0,3724	1	0.7956

Variable T25

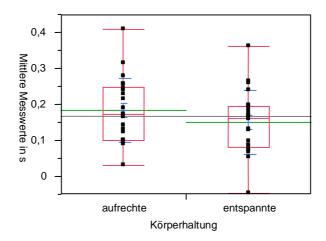


Abbildung 44: Einfaktorielle Analyse von T25 nach Körperhaltung

_						
റ		ıa	n	4	:1	^
u	ш	-		ш		-

a aan an							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,03092	0,089782	0,101114	0,171443	0,246961	0,303465	0,407917
entspannt	-0,04783	0,057086	0,080959	0,162246	0,195285	0,261841	0,361611

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,183497	0,089239	0,01903	0,14393	0,22306
entspannt	22	0,149592	0,088453	0,01886	0,11037	0,18881

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Nategorie	naungkeiten	Score-Summe	Score-witterwert	(writterwert-writterwertu)
				/Std.0
aufrecht	22	546,000	24,8182	1,185
entspannt	22	444,000	20,1818	-1,185

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,4331	1	0,2313

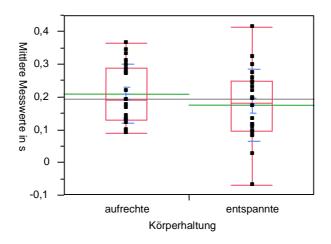


Abbildung 45: Einfaktorielle Analyse von T26 nach Körperhaltung

Quanti	le
--------	----

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,089631	0,096794	0,129362	0,189729	0,288215	0,339965	0,364828
entspannt	-0,07061	0,041301	0,095796	0,182422	0,246929	0,314819	0,413205

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert Sta	andardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,210030	0,089322	0,01904	0,17043	0,24963
entspannt	22	0.174435	0.109478	0.02334	0.12590	0.22297

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
_	_			/Std.0
aufrecht	22	548,000	24,9091	1,232
entsnannt	22	442 000	20 0909	-1 232

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1.5477	⁻ 1	0.2135

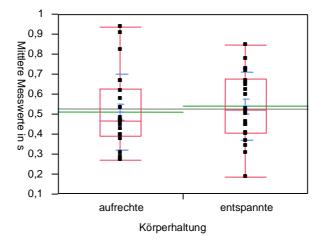


Abbildung 46: Einfaktorielle Analyse von T27 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,269486	0,277212	0,390521	0,465876	0,625466	0,88071	0,934336
entspannt	0,185695	0,315128	0,404434	0,519302	0,676543	0,759754	0,844145

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,509907	0,191429	0,04081	0,42503	0,59478
entspannt	22	0,538567	0,170735	0,03640	0,46287	0,61427

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	462,000	21,0000	-0,763
entspannt	22	528,000	24,0000	0,763

Einfaktorieller Test, Chi-Quadrat-Approximation

Wahrsch.>Chi	Freiheitsgrade	Chi ²
0,4386	1	0,6000

Variable T28

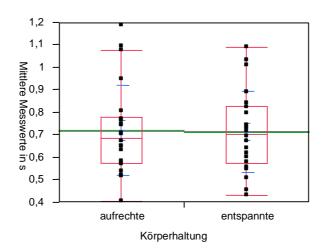


Abbildung 47: Einfaktorielle Analyse von T28 nach Körperhaltung

_				
O	เเล	nt	il	e

~ aaiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,40314	0,516727	0,573219	0,685896	0,778137	1,089102	1,186638
entspannt	0,432552	0,47038	0,572125	0,703151	0,825451	1,025098	1,087346

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
	00	0.740007	0.004050	des Mittelwertes	0.00070	0.00000
aufrecht	22	0,719937	0,201059	0,04287	0,63079	0,80908
entspannt	22	0,713002	0,180552	0,03849	0,63295	0,79305

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Nategorie	naungkeiten	Score-Summe	Score-witterwert	(writterwert-writterwertu)
				/Std.0
aufrecht	22	495,000	22,5000	0,000
entspannt	22	495,000	22,5000	0,000

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0000	1	1,0000

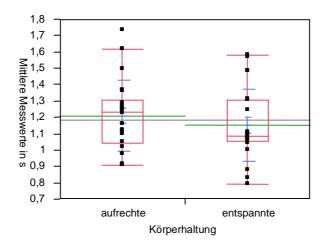


Abbildung 48: Einfaktorielle Analyse von T29 nach Körperhaltung

	a			

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,906964	0,911261	1,039295	1,230749	1,305298	1,580963	1,729945
entspannt	0,79018	0,842959	1,053365	1,08265	1,307409	1,54405	1,578983

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert Sta	ındardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	1,21021	0,218661	0,04662	1,1133	1,3072
entspannt	22	1,15140	0,221693	0,04727	1,0531	1,2497

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
aufrecht	22	542,000	24,6364	1,091
entspannt	22	448,000	20,3636	-1,091

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1.2171	_ 1	0.2699

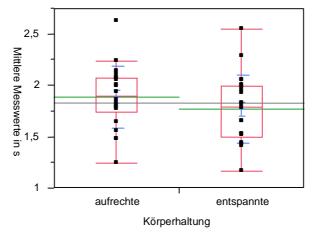


Abbildung 49: Einfaktorielle Analyse von T30 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	1,246814	1,477669	1,7386	1,893175	2,071457	2,204744	2,627065
entspannt	1,16362	1,415831	1,497348	1,789655	1,990437	2,212606	2,54107

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	1,88695	0,300204	0,06400	1,7538	2,0201
entspannt	22	1,76828	0,329162	0,07018	1,6223	1,9142

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	556,000	25,2727	1,420
entspannt	22	434,000	19,7273	-1,420

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0501	1	0,1522

Variable T31

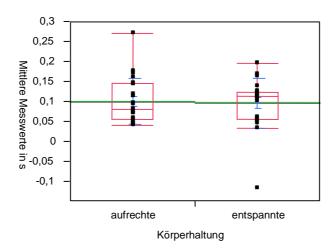


Abbildung 50: Einfaktorielle Analyse von T31 nach Körperhaltung

_				
ດ	แล	nt	ile	

a ddi itiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,039317	0,042484	0,054657	0,079513	0,143786	0,173401	0,270311
entspannt	-0,11689	0,035441	0,056143	0,11222	0,122166	0,165563	0,194723

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,099292	0,057907	0,01235	0,07362	0,12497
entspannt	22	0,095355	0,063276	0,01349	0,06730	0,12341

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu) /Std.0
aufrecht	22	473,000	21,5000	-0,505
entspannt	22	517,000	23,5000	0,505

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.2667	1	0.6056

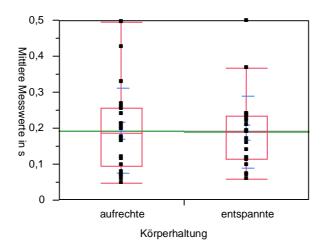


Abbildung 51: Einfaktorielle Analyse von T32 nach Körperhaltung

Quai	ntile
------	-------

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,046409	0,061347	0,093211	0,185355	0,254965	0,396748	0,495775
entspannt	0,059422	0,069255	0,114321	0,190005	0,233117	0,329482	0,49671

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert S	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,193030	0,116756	0,02489	0,14126	0,24480
entspannt	22	0,188168	0,100611	0,02145	0,14356	0,23278

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	499,000	22,6818	0,082
entenannt	22	491 000	22 3182	-0.082

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.0088	1	0,9252

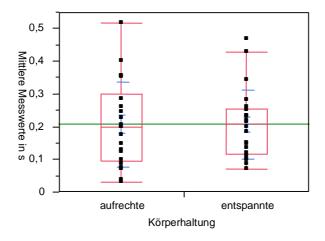


Abbildung 52: Einfaktorielle Analyse von T33 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,029249	0,047312	0,094633	0,197953	0,299845	0,386038	0,516623
entspannt	0,07084	0,08881	0,115857	0,20687	0,252283	0,402056	0,466057

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,207012	0,129110	0,02753	0,14977	0,26426
entspannt	22	0,206557	0,105159	0,02242	0,15993	0,25318

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	484,000	22,0000	-0,246
entspannt	22	506,000	23,0000	0,246

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0,0667	1	0,7963

Variable T34

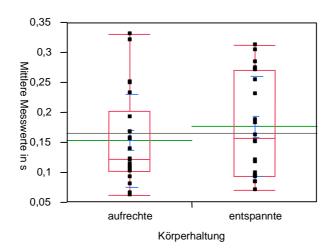


Abbildung 53: Einfaktorielle Analyse von T34 nach Körperhaltung

_				
O	เเล	nt	il	e

~~~							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,061891	0,069441	0,102216	0,120857	0,201719	0,299125	0,329574
entspannt	0.069947	0.082965	0.093861	0,156363	0,269916	0,297192	0,310918

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,153031	0,077420	0,01651	0,11870	0,18736
entspannt	22	0,176078	0,083314	0,01776	0,13914	0,21302

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Hautigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu) /Std.0
aufrecht	22	464,000	21,0909	-0,716
entspannt	22	526,000	23,9091	0,716

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,5295	1	0,4668

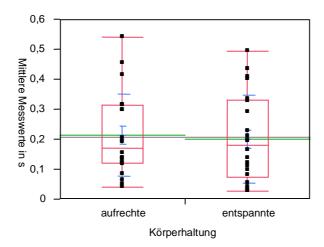



Abbildung 54: Einfaktorielle Analyse von T35 nach Körperhaltung

	ar		

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,039605	0,05444	0,119134	0,171504	0,312307	0,442265	0,53982
entspannt	0,027336	0,029355	0,073955	0,178574	0,328802	0,425395	0,493036

#### Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert S	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	0,212836	0,137087	0,02923	0,15206	0,27362
entspannt	22	0,199909	0,145382	0,03100	0,13545	0,26437

#### Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-
				Mittelwert0)/Std.0
aufrecht	22	514,000	23,3636	0,434
entspannt	22	476,000	21,6364	-0,434

# **Einfaktorieller Test, Chi-Quadrat-Approximation**

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,1989	1	0,6556

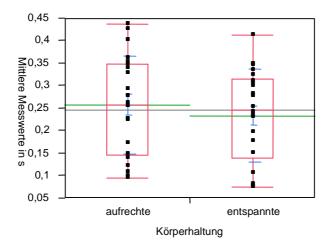



Abbildung 55: Einfaktorielle Analyse von T36 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,095099	0,102018	0,144918	0,257636	0,348509	0,418208	0,436724
entspannt	0,075144	0,0763	0,138582	0,246589	0,313453	0,346374	0,411722

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,257424	0,109102	0,02326	0,20905	0,30580
entspannt	22	0,233095	0,102594	0,02187	0,18761	0,27858

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	530,000	24,0909	0,810
entspannt	22	460,000	20,9091	-0,810

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,6749	1	0,4113

#### Variable T37

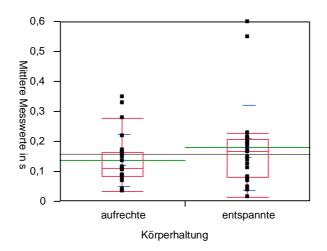



Abbildung 56: Einfaktorielle Analyse von T37 nach Körperhaltung

$\smallfrown$		_	-	4	:1	_
w	u		п	т	ш	e

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,03368	0,036118	0,082516	0,110513	0,164792	0,31215	0,345024
entspannt	0.014882	0.038757	0.079249	0,16634	0,207624	0.450771	0,596861

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert S	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	0,137884	0,087063	0,01856	0,09928	0,17648
entspannt	22	0,178586	0,142341	0,03035	0,11548	0,24170

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu) /Std.0
aufrecht	22	447,000	20,3182	-1,115
entspannt	22	543,000	24,6818	1,115

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,2694	1	0,2599

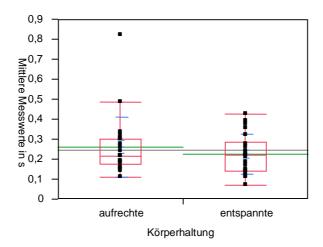



Abbildung 57: Einfaktorielle Analyse von T38 nach Körperhaltung

		le

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,112062	0,144309	0,175304	0,216146	0,301729	0,440754	0,820473
entspannt	0,070277	0,112435	0,142356	0,22026	0,286691	0,385664	0,425778

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert Sta	andardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,261662	0,150712	0,03213	0,19484	0,32848
entspannt	22	0.225486	0.098304	0.02096	0.18190	0.26907

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
_	_			/Std.0
aufrecht	22	523,000	23,7727	0,645
entenannt	22	467 000	21 2273	-0.645

**Einfaktorieller Test, Chi-Quadrat-Approximation** 

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.5110	1	0.4320

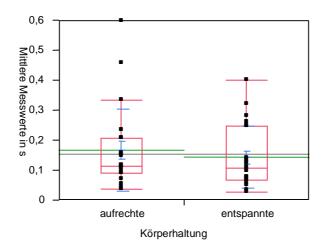



Abbildung 58: Einfaktorielle Analyse von T39 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,035384	0,045392	0,089845	0,114394	0,205693	0,420406	0,59569
entspannt	0,027416	0,039159	0,06722	0,106856	0,248193	0,307591	0,4013

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert S	tandardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,167166	0,136500	0,02910	0,10664	0,22769
entspannt	22	0.141924	0.103344	0.02203	0.09610	0.18774

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	530,000	24,0909	0,810
entspannt	22	460,000	20,9091	-0,810

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Wahrsch.>Chi2	Freiheitsgrade	Chi ²
0,4113	1	0.6749

#### Variable T40

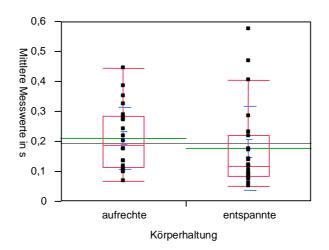



Abbildung 59: Einfaktorielle Analyse von T40 nach Körperhaltung

_				
O	เเล	nt	il	e

a ddi itiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,065011	0,09908	0,114874	0,18809	0,282675	0,372309	0,44206
entspannt	0,05091	0,065519	0,084308	0,117673	0,22014	0,447913	0,574606

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	0,210993	0,103914	0,02215	0,16492	0,25707
entspannt	22	0,175581	0,139878	0,02982	0,11356	0,23760

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Nategorie	naungkeiten	Score-Summe	Score-writterwert	(writterwert-writterwertu)
				/Std.0
aufrecht	22	570,000	25,9091	1,749
entspannt	22	420,000	19,0909	-1,749

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
3.0992	1	0,0783

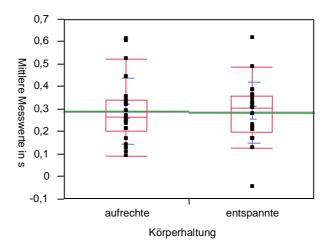



Abbildung 60: Einfaktorielle Analyse von T41 nach Körperhaltung

Q				

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,091743	0,113663	0,200073	0,264725	0,339377	0,577948	0,61311
entspannt	-0,04568	0,139677	0,196205	0,303819	0,357376	0,456775	0,613408

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert S	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	0,292323	0,145723	0,03107	0,22771	0,35693
entspannt	22	0,283524	0,134898	0,02876	0,22371	0,34333

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	483,000	21,9545	-0,270
entspannt	22	507,000	23,0455	0,270

**Einfaktorieller Test, Chi-Quadrat-Approximation** 

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.7782	1	0.0793

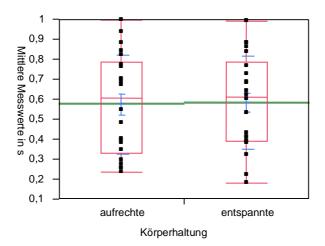



Abbildung 61: Einfaktorielle Analyse von T42 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,237499	0,256426	0,331673	0,60622	0,782564	0,919392	0,995345
entspannt	0,182299	0,250753	0,389608	0,610257	0,784475	0,880084	0,989275

Stufe	Anzahl	Mittelwert S	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	0,572879	0,249095	0,05311	0,46244	0,68332
entspannt	22	0,582544	0,231501	0,04936	0,47990	0,68519

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	487,000	22,1364	-0,176
entspannt	22	503,000	22,8636	0,176

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Freiheitsgrade	Wahrsch.>Chi2
1	0,8510

#### Variable T43

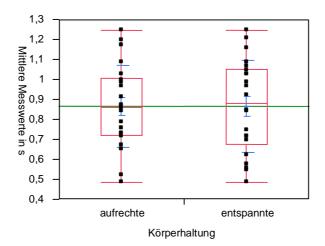



Abbildung 62: Einfaktorielle Analyse von T43 nach Körperhaltung

_				
nı	12	nt	il	Δ

~ a.a							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,485168	0,558596	0,721134	0,859636	1,004343	1,186385	1,243271
entspannt	0,485112	0.546369	0,676644	0,882371	1,050048	1,190164	1,245694

#### Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
aufrecht	22	0.865201	0.206055	des Mittelwertes 0.04393	0.77384	0.95656
	22	-,	-,	-,	-,	-,
entspannt	22	0,866068	0,231050	0,04926	0,76363	0,96851

#### Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu)
				/Std.0
aufrecht	22	496,000	22,5455	0,012
entspannt	22	494,000	22,4545	-0,012

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0006	1	0,9813

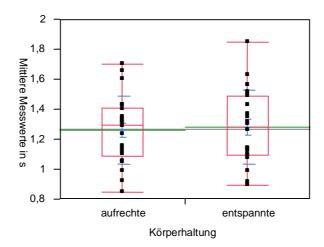



Abbildung 63: Einfaktorielle Analyse von T44 nach Körperhaltung

ıar	

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	0,848864	0,940557	1,088347	1,296	1,404036	1,637957	1,702621
entspannt	0,890012	0,933884	1,093111	1,281173	1,488544	1,607066	1,847031

#### Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert Sta	andardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
aufrecht	22	1,26051	0,227026	0,04840	1,1599	1,3612
entspannt	22	1,27775	0,246544	0,05256	1,1684	1,3871

#### Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
aufrecht	22	492,000	22,3636	-0,059
entspannt	22	498,000	22,6364	0,059

# Einfaktorieller Test, Chi-Quadrat-Approximation

Wahrsch.>Chi2	Freiheitsgrade	Chi ²
0.9439	⁻ 1	0.0050

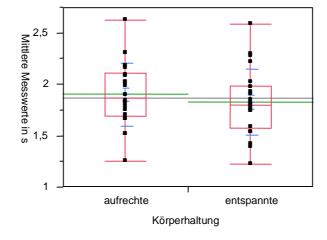



Abbildung 64: Einfaktorielle Analyse von T45 nach Körperhaltung

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
aufrecht	1,256213	1,51174	1,688243	1,866005	2,106953	2,261392	2,626666
entspannt	1,222644	1,39991	1,572206	1,797629	1,983174	2,282847	2,583601

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
aufrecht	22	1,90033	0,303532	0,06471	1,7658	2,0349
entspannt	22	1,82592	0,321707	0,06859	1,6833	1,9686

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
aufrecht	22	531,000	24,1364	0,833
entspannt	22	459,000	20,8636	-0,833

#### Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,7140	1	0,3981

# 9.4.2 Einfluss des Geschlechts

#### Variable T01

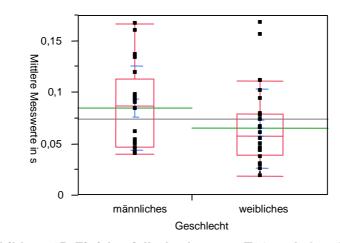



Abbildung 65: Einfaktorielle Analyse von T01 nach Geschlecht

Quantile	ļ
----------	---

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,039977	0,04179	0,046661	0,086543	0,112845	0,156711	0,166157
weiblich	0,018889	0,023088	0,038576	0,057601	0,078406	0,133306	0,166998

### Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,084630	0,040664	0,00909	0,06560	0,10366
weiblich	24	0.064790	0,038612	0.00788	0.04849	0,08109

# Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	522,000	26,1000	1,685
weiblich	24	468,000	19,5000	-1,685

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
2.8800	1	0.0897

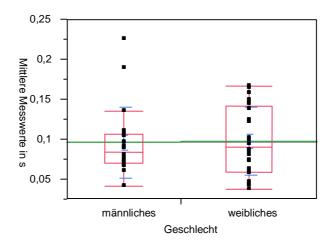



Abbildung 66: Einfaktorielle Analyse von T02 nach Geschlecht

Quantile	
----------	--

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,040853	0,060336	0,070369	0,084077	0,106164	0,183283	0,225322
weiblich	0,03752	0,04262	0,059358	0,089586	0,141672	0,16027	0,166193

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,095639	0,043820	0,00980	0,07513	0,11615
weiblich	24	0.097557	0,042154	0.00860	0.07976	0,11536

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
männlich	20	439,000	21,9500	-0,247
weiblich	24	551,000	22,9583	0,247

Einfaktorieller Test, Chi-Quadrat-Approximation

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.7954	1	0.0672

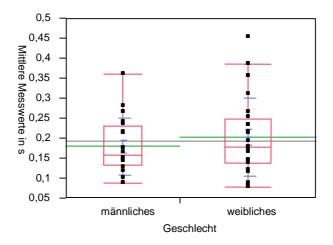
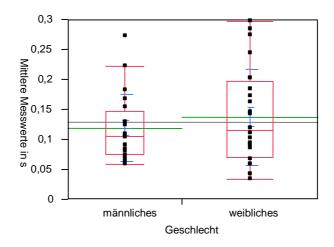



Abbildung 67: Einfaktorielle Analyse von T03 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,087028	0,089109	0,131592	0,157515	0,230909	0,277804	0,360841
weiblich	0,078171	0,083474	0,138607	0,177014	0,247059	0,369695	0,452293

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,179008	0,070498	0,01576	0,14601	0,21200
weiblich	24	0,201981	0,096791	0,01976	0,16111	0,24285


Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	426,000	21,3000	-0,554
weiblich	24	564,000	23,5000	0,554

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0,3200	1	0,5716

#### Variable T04



# Abbildung 68: Einfaktorielle Analyse von T04 nach Geschlecht

_				
nı	12	nt	il	Δ

~ aaiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,058451	0,06211	0,074853	0,105179	0,146665	0,217852	0,271487
weiblich	0,03254	0,04206	0,070674	0,114599	0,196762	0,278347	0,296696

#### Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
männlich	20	0,119163	0,056061	0,01254	0,09293	0,14540
weiblich	24	0,137170	0,079931	0,01632	0,10342	0,17092

#### Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	428,000	21,4000	-0,507
weiblich	24	562,000	23.4167	0.507

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,2689	1	0,6041

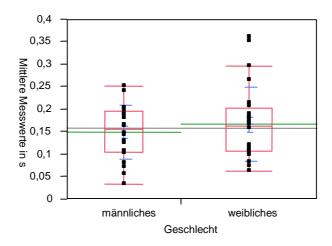



Abbildung 69: Einfaktorielle Analyse von T05 nach Geschlecht

Quanti	le
--------	----

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,033009	0,05706	0,104033	0,15448	0,194794	0,236969	0,251059
weiblich	0,062543	0,078129	0,106511	0,16129	0,202085	0,323395	0,360223

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert Standard	dabweichung S	Standardfehler	95% KI unten	95% KI oben
			de	s Mittelwertes		
männlich	20	0,148158	0,060272	0,01348	0,11995	0,17637
weiblich	24	0,166387	0,082548	0,01685	0,13153	0,20124

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	437,000	21,8500	-0,295
weiblich	24	553,000	23,0417	0,295

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.0939	1	0,7593

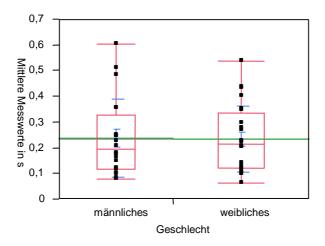
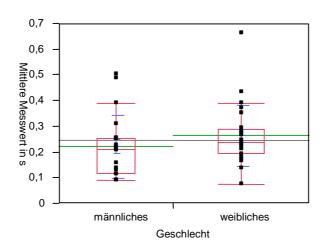



Abbildung 70: Einfaktorielle Analyse von T06 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,079361	0,084238	0,116499	0,193416	0,326532	0,507453	0,603294
weiblich	0,06155	0,097329	0,118737	0,213116	0,332845	0,433215	0,537755

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,237058	0,151039	0,03377	0,16637	0,30775
weiblich	24	0,233002	0,128815	0,02629	0,17861	0,28740


Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	445,000	22,2500	-0,106
weiblich	24	545,000	22,7083	0,106

#### Einfaktorieller Test, Chi-Quadrat-Approximation

İ	Chi ²	Freiheitsgrade	Wahrsch.>Chi2
	0.0139	1	0,9062

#### Variable T07



# Abbildung 71: Einfaktorielle Analyse von T07 nach Geschlecht

_						
റ		ıa	n	4	:1	^
u	ш	-		ш	•	-

a a a i i i i i							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,08764	0,087794	0,117493	0,211215	0,253144	0,475673	0,500157
weiblich	0,073093	0,149792	0,194099	0,236465	0,287059	0,410737	0,661451

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,221235	0,122141	0,02731	0,16407	0,27840
weiblich	24	0,263068	0,117397	0,02396	0,21350	0,31264

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	384,000	19,2000	-1,544
weiblich	24	606,000	25.2500	1.544

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
2,4200	1	0,1198

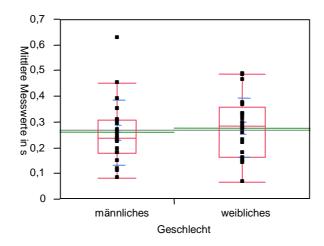



Abbildung 72: Einfaktorielle Analyse von T08 nach Geschlecht

Quanti	le
--------	----

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,080737	0,10969	0,180356	0,238948	0,305354	0,445708	0,626446
weiblich	0,0672	0,141708	0,163887	0,283774	0,356889	0,473032	0,487366

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
männlich	20	0,259278	0,127523	0,02852	0,19960	0,31896
weiblich	24	0.277948	0.113936	0.02326	0.22984	0.32606

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	416,000	20,8000	-0,790
weiblich	24	574,000	23,9167	0,790

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.6422	_ 1	0.4229

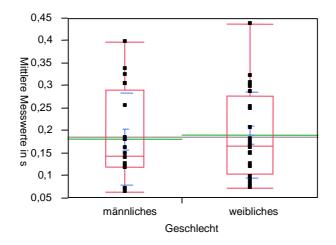



Abbildung 73: Einfaktorielle Analyse von T09 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,064228	0,070129	0,118088	0,143059	0,290281	0,336136	0,39765
weiblich	0,071864	0,07788	0,102794	0,166476	0,276948	0,313897	0,43599

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,180396	0,102202	0,02285	0,13256	0,22823
weiblich	24	0,189698	0,096199	0,01964	0,14908	0,23032

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert- Mittelwert0)/Std.0
männlich	20	428,000	21,4000	-0,507
weiblich	24	562,000	23,4167	0,507

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0,2689	1	0,6041

#### Variable T10

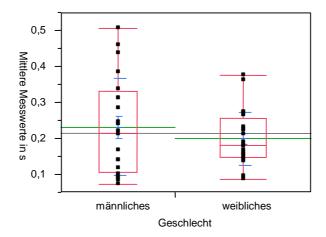



Abbildung 74: Einfaktorielle Analyse von T10 nach Geschlecht

_				
nı	12	nt	il	Δ

~ aaiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,07208	0,084754	0,105459	0,214473	0,329328	0,45574	0,505966
weiblich	0,086633	0,115592	0,147568	0,180049	0,25479	0,316604	0,37378

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,231535	0,135513	0,03030	0,16811	0,29496
weiblich	24	0,199139	0,073538	0,01501	0,16809	0,23019

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	462,000	23,1000	0,271
weiblich	24	528.000	22 0000	-0 271

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,0800	1	0,7773

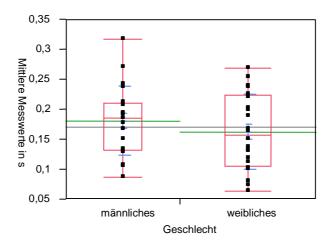



Abbildung 75: Einfaktorielle Analyse von T11 nach Geschlecht

Quan	ti	le
------	----	----

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,086392	0,105541	0,131359	0,185573	0,210162	0,266568	0,317099
weiblich	0,063243	0,076815	0,10447	0,156721	0,223503	0,245923	0,268104

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
männlich	20	0,180765	0,058074	0,01299	0,15359	0,20794
weiblich	24	0.162347	0.062664	0.01279	0.13589	0.18881

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
-	_			/Std.0
männlich	20	489,000	24,4500	0,907
weiblich	24	501,000	20,8750	-0,907

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0,8450	1	0,3580

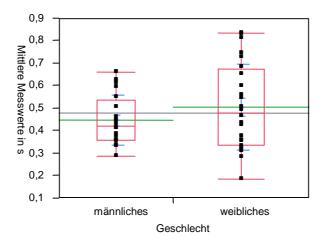
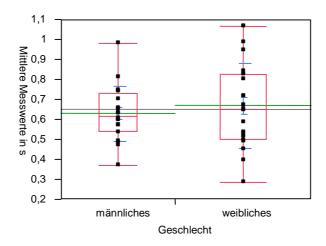



Abbildung 76: Einfaktorielle Analyse von T12 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,285445	0,331792	0,356831	0,420621	0,536711	0,622925	0,661542
weiblich	0,185882	0,295315	0,336875	0,478708	0,673868	0,81989	0,833861

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,446329	0,109408	0,02446	0,39512	0,49753
weiblich	24	0,505538	0,191256	0,03904	0,42478	0,58630


Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	418,000	20,9000	-0,742
weiblich	24	572,000	23,8333	0,742

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0,5689	1	0,4507

#### Variable T13



# Abbildung 77: Einfaktorielle Analyse von T13 nach Geschlecht

റ	 _	-	4	: 1	_
IJ	 и	п	т		e

<del>Q</del> uuiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,371836	0,472005	0,542423	0,616347	0,728808	0,80321	0,978641
weiblich	0,287096	0,421689	0,501069	0,648282	0,82543	1,023743	1,064415

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,628001	0,135738	0,03035	0,56447	0,69153
weiblich	24	0,667885	0,212959	0,04347	0,57796	0,75781

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	431,000	21,5500	-0,436
weiblich	24	559,000	23 2917	0.436

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,2006	1	0,6543

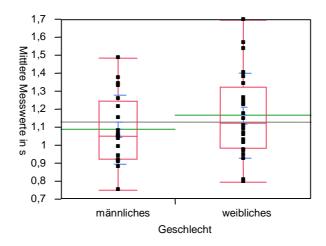



Abbildung 78: Einfaktorielle Analyse von T14 nach Geschlecht

Qι	ıan	til	е
----	-----	-----	---

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,752455	0,882492	0,921242	1,050505	1,243441	1,367047	1,481761
weiblich	0,797008	0,862258	0,982359	1,124678	1,319987	1,550112	1,696964

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert Sta	ndardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	1,08684	0,190799	0,04266	0,9975	1,1761
weiblich	24	1.16396	0.233828	0.04773	1.0652	1.2627

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
männlich	20	398,000	19,9000	-1,214
weiblich	24	592,000	24,6667	1,214

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
5022	_ 1	0.2203

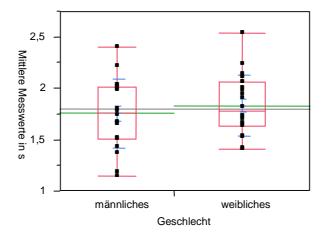
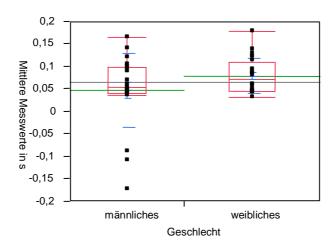



Abbildung 79: Einfaktorielle Analyse von T15 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	1,141219	1,204977	1,508479	1,757222	2,011967	2,201093	2,397817
weiblich	1,404359	1,410026	1,633668	1,774018	2,060498	2,188492	2,536904

Stufe	Anzahl	Mittelwert S	tandardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	1,75546	0,333904	0,07466	1,5992	1,9117
weiblich	24	1,83074	0,293444	0,05990	1,7068	1,9547


Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	423,000	21,1500	-0,625
weiblich	24	567,000	23,6250	0,625

#### Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0.4050	1	0,5245

#### Variable T16



# Abbildung 80: Einfaktorielle Analyse von T16 nach Geschlecht

റ	 _	-	4	: 1	_
IJ	 и	п	т		e

~~~							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	-0,17371	-0,1071	0,039548	0,052633	0,098568	0,138333	0,163737
weiblich	0.030557	0,042179	0.044097	0.070136	0.108235	0,132887	0,177174

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert S	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,046447	0,082858	0,01853	0,00767	0,08523
weiblich	24	0,078266	0,038540	0,00787	0,06199	0,09454

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Nategorie	naurigkeiten	Score-Summe	Score-witterwert	(writterwert-writterwertu)
				/Std.0
männlich	20	408,000	20,4000	-0,978
weiblich	24	582,000	24,2500	0,978

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²	
0.9800	1	0.3222	

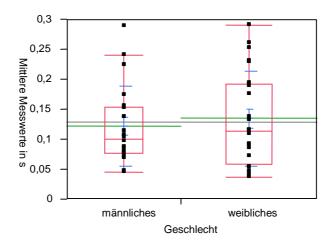


Abbildung 81: Einfaktorielle Analyse von T17 nach Geschlecht

Q	ua	nt	ile
---	----	----	-----

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,044799	0,048675	0,077085	0,099961	0,153506	0,23862	0,289164
weiblich	0,036313	0,040817	0,058241	0,114082	0,192122	0,256117	0,290582

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,121337	0,066317	0,01483	0,09030	0,15237
weiblich	24	0.134340	0.078857	0.01610	0.10104	0.16764

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	430,000	21,5000	-0,460
weiblich	24	560,000	23,3333	0,460

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0.2222	1	0.6374

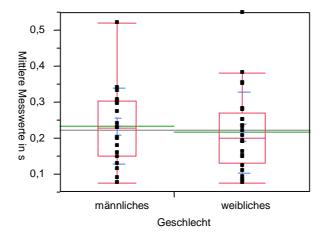


Abbildung 82: Einfaktorielle Analyse von T18 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,076317	0,09107	0,150427	0,228816	0,301432	0,338174	0,519732
weiblich	0,074678	0,083264	0,129516	0,198687	0,270575	0,367708	0,547518

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,232534	0,105384	0,02356	0,18321	0,28185
weiblich	24	0,215725	0,112305	0,02292	0,16830	0,26315

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	477,000	23,8500	0,625
weiblich	24	513,000	21,3750	-0,625

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi²FreiheitsgradeWahrsch.>Chi²0,405010,5245

Variable 20

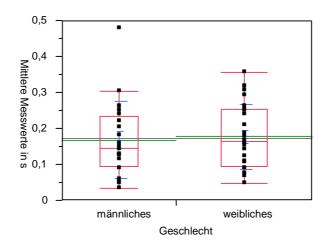


Abbildung 83: Einfaktorielle Analyse von T20 nach Geschlecht

_				
nı	12	nt	il	Δ

Q uuiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,034254	0,048614	0,09542	0,145823	0,234317	0,299469	0,479028
weiblich	0,047192	0,069839	0,093898	0,16456	0,252227	0,310359	0,3544

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,168004	0,105733	0,02364	0,11852	0,21749
weiblich	24	0,176527	0,089453	0,01826	0,13875	0,21430

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu)
				/Std.0
männlich	20	426,000	21,3000	-0,554
weiblich	24	564,000	23,5000	0,554

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,3200	1	0,5716

Variable 21

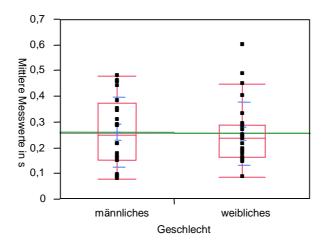


Abbildung 84: Einfaktorielle Analyse von T21 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,07715	0,086058	0,150977	0,249456	0,374542	0,456832	0,478989
weiblich	0.086968	0 146191	0.162	0 235573	0.288562	0.466245	0.500613

Mittelwert	Mittelwerte und Standardabweichungen										
Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben					
				des Mittelwertes							
männlich	20	0,260180	0,136555	0,03053	0,19627	0,32409					

Kategorie		-läufiakeiten	Score-Summe	Score-Mittelwert	(Mittelwert-	Mittalwart()
Wilcoxon/Kr	uskal-Wa	allis-Tests (Ra	ngsummen)			
weiblich	24	0,255281	0,121702	0,02484	0,20389	0,30667
manniich	20	0,260180	0,136555	0,03053	0,19627	0,32409

				/Std.0
männlich	20	456,000	22,8000	0,130
weiblich	24	534,000	22,2500	-0,130

Einfaktorieller Tes	roximation	
Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0.0200	1	0.8875

Variable 22

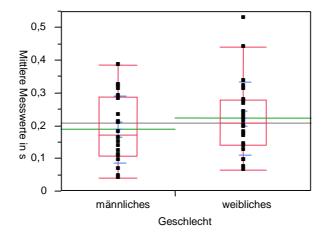


Abbildung 85: Einfaktorielle Analyse von T22 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,041129	0,046941	0,108292	0,170801	0,288075	0,323779	0,385039
weiblich	0,063585	0,083115	0,139167	0,208859	0,277087	0,387142	0,527567

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,189142	0,102451	0,02291	0,14119	0,23709
weiblich	24	0,221561	0,112382	0,02294	0,17411	0,26902

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	415,000	20,7500	-0,813
weiblich	24	575,000	23,9583	0,813

Einfaktorieller Test, Chi-Quadrat-Approximation

 Chi²
 Freiheitsgrade
 Wahrsch.>Chi²

 0,6806
 1
 0,4094

Variable 23

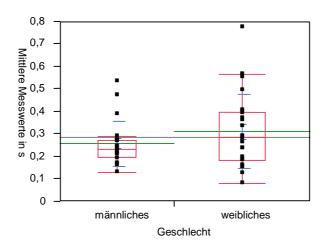


Abbildung 86: Einfaktorielle Analyse von T23 nach Geschlecht

റ	 _	-	4	: 1	_
IJ	 и	п	т		e

~~~							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,127927	0,161929	0,195533	0,23216	0,271835	0,461611	0,53448
weiblich	0.079769	0,13688	0,184172	0,28489	0,397351	0.557392	0,772362

#### Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,256327	0,101195	0,02263	0,20897	0,30369
weiblich	24	0,310975	0,163953	0,03347	0,24174	0,38021

#### Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Nategorie	naungkeiten	Score-Summe	Score-witterwert	(writterwert-writterwertu)
				/Std.0
männlich	20	405,000	20,2500	-1,049
weiblich	24	585,000	24,3750	1,049

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,1250	1	0,2888

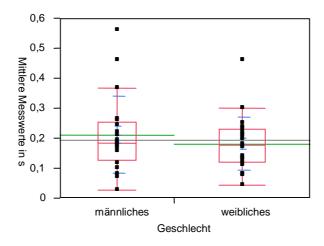



Abbildung 87: Einfaktorielle Analyse von T24 nach Geschlecht

Quanti	le
--------	----

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,027359	0,069704	0,127723	0,184493	0,254408	0,449569	0,559408
weiblich	0,04381	0,077724	0,11958	0,17699	0,228382	0,276152	0,46166

Mittelwerte und Standardabweichungen

Stufe	Anzahl	Mittelwert Stand	ardabweichung	Standardfehler	95% KI unten	95% KI oben
			_	des Mittelwertes		
männlich	20	0,210675	0,128495	0,02873	0,15054	0,27081
weiblich	24	0,180355	0,088342	0,01803	0,14305	0,21766

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
männlich	20	476,000	23,8000	0,601
weiblich	24	514 000	21 4167	-0.601

**Einfaktorieller Test, Chi-Quadrat-Approximation** 

Wahrsch.>Chi2	Freiheitsgrade	Chi ²
0,5400	1	0.3756

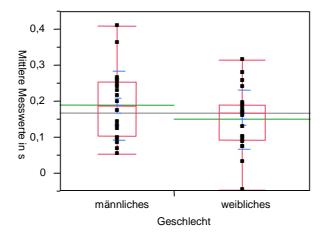
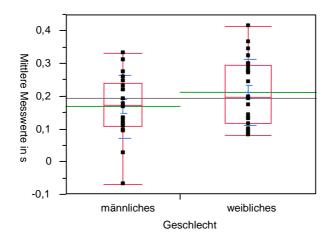



Abbildung 88: Einfaktorielle Analyse von T25 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,05243	0,069541	0,10242	0,184761	0,25196	0,351843	0,407917
weiblich	-0,04783	0,051204	0,090878	0,165725	0,190017	0,26574	0,31482

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,187805	0,096300	0,02153	0,14274	0,23288
weiblich	24	0,148827	0,081136	0,01656	0,11457	0,18309


Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	499,000	24,9500	1,143
weiblich	24	491,000	20,4583	-1,143

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
1,3339	1	0,2481

#### Variable T26



# Abbildung 89: Einfaktorielle Analyse von T26 nach Geschlecht

_				
O	เเล	nt	il	e

~ aaiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	-0,07061	0,031606	0,108943	0,171047	0,240646	0,305212	0,329898
weiblich	0,080069	0,086906	0,118179	0,194965	0,293947	0,354554	0,413205

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
männlich	20	0,167784	0,097289	0,02175	0,12225	0,21332
weiblich	24	0,212606	0,100309	0,02048	0,17025	0,25496

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	400,000	20,0000	-1,167
weiblich	24	590,000	24 5833	1 167

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,3889	1	0,2386

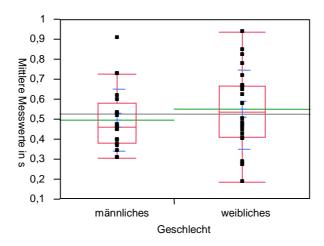



Abbildung 90: Einfaktorielle Analyse von T27 nach Geschlecht

Q				

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,302923	0,308404	0,378579	0,460882	0,57861	0,727014	0,905954
weiblich	0,185695	0,272064	0,411117	0,535737	0,665912	0,832978	0,934336

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
männlich	20	0,494839	0,155169	0,03470	0,42222	0,56746
weiblich	24	0.548735	0.197988	0.04041	0.46513	0.63234

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
männlich	20	406,000	20,3000	-1,025
weiblich	24	584 000	24 3333	1 025

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,0756	1	0.2997

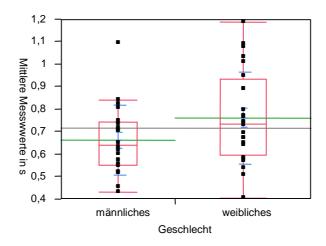
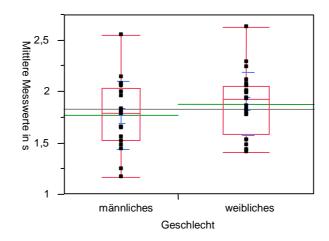



Abbildung 91: Einfaktorielle Analyse von T28 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,432552	0,460294	0,549955	0,63845	0,741763	0,839258	1,095368
weiblich	0,40314	0,523723	0,595223	0,733622	0,933699	1,080913	1,186638

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,662623	0,155629	0,03480	0,58979	0,73546
weiblich	24	0,761341	0,205101	0,04187	0,67473	0,84795


Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	384,000	19,2000	-1,544
weiblich	24	606,000	25,2500	1,544

#### Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
2,4200	1	0,1198

#### Variable T30



# Abbildung 92: Einfaktorielle Analyse von T30 nach Geschlecht

റ	 _	-	4	: 1	_
IJ	 и	п	т		e

~~~							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	1,16362	1,265551	1,526876	1,785116	2,030975	2,131103	2,54107
weiblich	1,409596	1,430714	1,583753	1,928129	2,047916	2,258263	2,627065

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	1,76675	0,329512	0,07368	1,6125	1,9210
weiblich	24	1,87834	0,303885	0,06203	1,7500	2,0067

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu) /Std.0
männlich	20	403,000	20,1500	-1,096
weiblich	24	587,000	24,4583	1,096

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,2272	1	0,2679

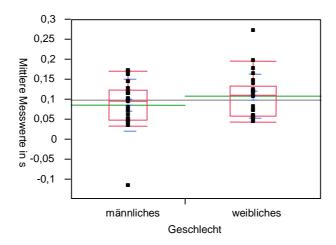


Abbildung 93: Einfaktorielle Analyse von T31 nach Geschlecht

Quai	าtile
------	-------

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	-0,11689	0,032076	0,04638	0,0944	0,12254	0,165814	0,169178
weiblich	0,041514	0,048135	0,056572	0,111019	0,133034	0,184967	0,270311

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert Standar	dabweichung S	tandardfehler	95% KI unten	95% KI oben
			des	Mittelwertes		
männlich	20	0,084823	0,064269	0,01437	0,05474	0,11490
weiblich	24	0,107741	0,055349	0,01130	0,08437	0,13111

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
männlich	20	407,000	20,3500	-1,002
weiblich	24	583,000	24,2917	1,002

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,0272	1	0,3108

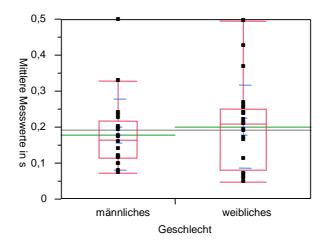


Abbildung 94: Einfaktorielle Analyse von T32 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,071215	0,080633	0,114969	0,164771	0,217925	0,31997	0,49671
weiblich	0,046409	0,059157	0,080044	0,209035	0,250261	0,3969	0,495775

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,178146	0,098819	0,02210	0,13190	0,22439
weiblich	24	0.200977	0.115699	0.02362	0.15212	0.24983

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	419,000	20,9500	-0,719
weiblich	24	571,000	23,7917	0,719

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0,5339	1	0,4650

Variable T33

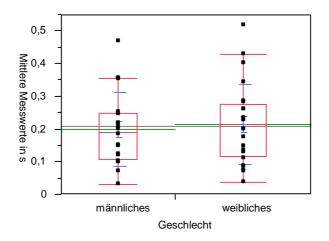


Abbildung 95: Einfaktorielle Analyse von T33 nach Geschlecht

_						
റ		ıa	n	4	:1	^
u	ш	-		ш	•	-

Q uuiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,029249	0,073384	0,105577	0,189888	0,248635	0,354883	0,466057
weiblich	0,037318	0,071419	0,115099	0,213542	0,275603	0,413645	0,516623

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
männlich	20	0,198470	0,112558	0,02517	0,14579	0,25115
weiblich	24	0,213713	0,121411	0,02478	0,16245	0,26498

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwertu)
				/Std.0
männlich	20	430,000	21,5000	-0,460
weiblich	24	560,000	23,3333	0,460

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²	
0,2222	1	0,6374	

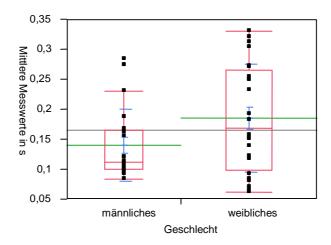


Abbildung 96: Einfaktorielle Analyse von T34 nach Geschlecht

	aı		

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,082809	0,091819	0,099546	0,111337	0,164937	0,268632	0,2838
weiblich	0,061891	0,067412	0,097787	0,168563	0,265618	0,315603	0,329574

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,139782	0,060291	0,01348	0,11156	0,16800
weiblich	24	0.185198	0.089906	0.01835	0.14723	0.22316

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
männlich	20	390,000	19,5000	-1,402
weiblich	24	600,000	25,0000	1,402

Einfaktorieller Test, Chi-Quadrat-Approximation

Wahrsch.>Chi ²	Freiheitsgrade	Chi ²
0.1573	1	2.0000

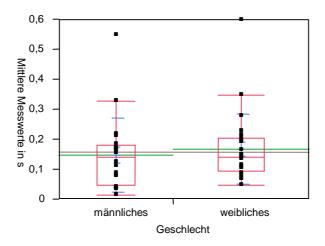
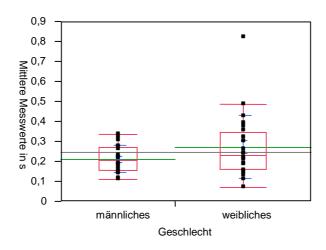


Abbildung 97: Einfaktorielle Analyse von T37 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,014882	0,033809	0,048008	0,139592	0,17952	0,315772	0,54744
weiblich	0,0475	0,066273	0,091708	0,14094	0,204603	0,311444	0,596861

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,146932	0,122736	0,02744	0,08949	0,20437
weiblich	24	0,167654	0,116465	0,02377	0,11848	0,21683


Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	415,000	20,7500	-0,813
weiblich	24	575,000	23,9583	0,813

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi2
0,6806	1	0,4094

Variable T38

Abbildung 98: Einfaktorielle Analyse von T38 nach Geschlecht

റ	 _	-	4	: 1	_
IJ	 и	п	т		e

~~~							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,112013	0,116271	0,153709	0,203522	0,271658	0,32051	0,33728
weiblich	0,070277	0,121211	0,160736	0,230337	0,346013	0.455439	0,820473

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,210753	0,067763	0,01515	0,17904	0,24247
weiblich	24	0,270925	0,157091	0,03207	0,20459	0,33726

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	398,000	19,9000	-1,214
weiblich	24	592,000	24 6667	1 214

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,5022	1	0,2203

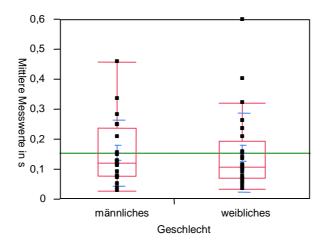



Abbildung 99: Einfaktorielle Analyse von T39 nach Geschlecht

Quanti	le
--------	----

Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	0,027416	0,036863	0,075095	0,120692	0,23738	0,327762	0,457789
weiblich	0,03444	0,04752	0,069712	0,10816	0,194965	0,360572	0,59569

Mittelwerte und Std.-Abweichungen

Stute	Anzahi	Mittelwert Stan	dardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
männlich	20	0,154285	0,110346	0,02467	0,10264	0,20593
weiblich	24	0,154761	0,130420	0,02662	0,09969	0,20983

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0)
				/Std.0
männlich	20	464,000	23,2000	0,318
weiblich	24	526,000	21,9167	-0,318

Einfaktorieller Test, Chi-Quadrat-Approximation

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
0,1089	1	0,7414

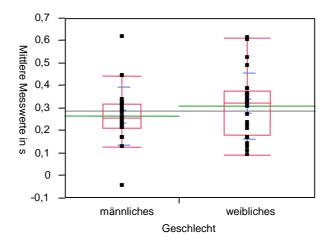
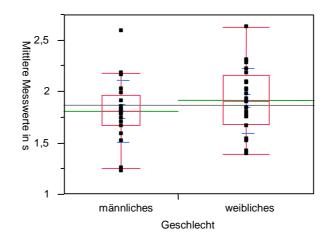



Abbildung 100: Einfaktorielle Analyse von T41 nach Geschlecht

Quantile							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	-0,04568	0,132516	0,211108	0,255044	0,317371	0,430937	0,613408
weiblich	0,091743	0,117044	0,177956	0,320576	0,377684	0,562567	0,61311

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler des Mittelwertes	95% KI unten	95% KI oben
männlich	20	0,262969	0,128479	0,02873	0,20284	0,32310
weiblich	24	0.308719	0.146328	0.02987	0.24693	0.37051


Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Häufigkeiten	Score-Summe	Score-Mittelwert	(Mittelwert-Mittelwert0) /Std.0
männlich	20	405,000	20,2500	-1,049
weiblich	24	585,000	24,3750	1,049

#### **Einfaktorieller Test, Chi-Quadrat-Approximation**

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,1250	1	0,2888

#### Variable T45



#### Abbildung 101: Einfaktorielle Analyse von T45 nach Geschlecht

_				
nı	12	nt	il	Δ

<del>Q</del> uuiitiio							
Stufe	Minimum	10%	25%	Median	75%	90%	Maximum
männlich	1,222644	1,281687	1,671253	1,803793	1,95916	2,172469	2,583601
weiblich	1,392851	1,464979	1,681657	1,908121	2,152462	2,293795	2,626666

Mittelwerte und Std.-Abweichungen

Stufe	Anzahl	Mittelwert	Standardabweichung	Standardfehler	95% KI unten	95% KI oben
				des Mittelwertes		
männlich	20	1,80774	0,305235	0,06825	1,6649	1,9506
weiblich	24	1,90928	0,315291	0,06436	1,7761	2,0424

Wilcoxon/Kruskal-Wallis-Tests (Rangsummen)

Kategorie	Haufigkeiten	Score-Summe	Score-Wittelwert	(Mittelwert-Mittelwertu)
				/Std.0
männlich	20	406,000	20,3000	-1,025
weiblich	24	584,000	24,3333	1,025

Chi ²	Freiheitsgrade	Wahrsch.>Chi ²
1,0756	1	0,2997

# 9.5 Normwerte ohne Kategorisierung

Variable	Geschlecht	Normwert in s	1,96*Messfehler in s	Kategorie
T01	männlich	0,085	0,1725	
	weiblich	0,065	0,120	
T02	männlich	0,0955	0,2035	
	weiblich	0,0975	0,215	
T03	männlich	0,179	0,343	
	weiblich	0,202	0,364	
T04	männlich	0,119	0,193	
101	weiblich	0,137	0,274	
T05	männlich	0,1485	0,263	
100	weiblich	0,1665	0,3055	
T06	männlich	0,237	0,3045	
100	weiblich	0,233	0,410	0
T07	männlich	0,2215	0,390	
	weiblich	0,263	0,4435	
T08	männlich	0,2595	0,4315	
100	weiblich	0,278	0,453	
T09	männlich	0,1805	0,372	
100	weiblich	0,190	0,4065	
T10	männlich	0,2315	0,432	
	weiblich	0,199	0,514	
T11	männlich	0,1805	0,288	
	weiblich	0,1625	0,259	
T16	männlich	0,0465	0,368	
	weiblich	0,0785	0,140	

Variable	Geschlecht	Normwert in s	1,96*Messfehler in s	Kategorie
T17	männlich	0,121	0,214	
	weiblich	0,1345	0,257	
T18	männlich	0,2325	0,345	
	weiblich	0,2155	0,3395	0
T19	männlich	0,094	0,136	
	weiblich	0,1565	0,274	
T20	männlich	0,168	0,2775	
. = 0	weiblich	0,1765	0,333	
T21	männlich	0,260	0,312	*
121	weiblich	0,2555	0,4315	
T22	männlich	0,189	0,412	
	weiblich	0,2215	0,3875	
T23	männlich	0,2565	0,3535	
. 20	weiblich	0,311	0,555	
T24	männlich	0,2105	0,4375	
.2.	weiblich	0,1805	0,3535	
T25	männlich	0,1875	0,337	
123	weiblich	0,1485	0,4935	0
T26	männlich	0,1675	0,4725	
	weiblich	0,2125	0,312	
T31	männlich	0,085	0,257	
	weiblich	0,1075	0,1825	
T32	männlich	0,178	0,259	
	weiblich	0,2005	0,3425	
T33	männlich	0,1985	0,362	
100	weiblich	0,214	0,4035	

Variable	Geschlecht	Normwert in s	1,96*Messfehler in s	Kategorie
T34	männlich	0,1395	0,177	
	weiblich	0,1855	0,250	0
T35	männlich	0,151	0,250	
100	weiblich	0,2525	0,316	
T36	männlich	0,292	0,259	**
100	weiblich	0,206	0,327	
T37	männlich	0,147	0,381	
107	weiblich	0,1675	0,3545	
T38	männlich	0,211	0,319	
130	weiblich	0,271	0,440	
T39	männlich	0,1545	0,3135	0
	weiblich	0,1545	0,3235	
T40	männlich	0,2515	0,434	
	weiblich	0,145	0,3455	
T41	männlich	0,263	0,358	
	weiblich	0,309	0,394	

**Tabelle 13: Normwerte ohne Kategorisierung** 

# 10 Danksagung

Mein Dank gilt Herrn Prof. Dr. Dr. G. Göz für die Ermöglichung der interessanten Themenstellung und seine Unterstützung während der Promotionsphase.

In diesem Dank möchte ich besonders hervorheben Herrn Dr. Bernd Koos für die Betreuung meiner Dissertation über die gesamte Dauer hinweg, für die vielen fachlichen Hilfestellungen in organisatorischer, informativer, statistischer, zahnärztlicher und kieferorthopädischer Hinsicht.

Großer Dank gilt Herrn Dipl.-Phys. E. Schaupp für die Unterstützung während der Messungen und die Programmierung der Software.

Bedanken möchte ich mich bei Herrn Dr. H. Horn für die Betreuung vor allem in der Planungsphase meiner Dissertation.

Meiner Kollegin und Freundin Cornelia Grau bin ich besonders dadurch verbunden, dass wir uns während und nach dem Studium gegenseitig eine große Hilfe sein konnten.

Ohne Herrn Dr. H. Horn, Herrn Dr. Bernd Koos, Frau Dr. Andrea Klink und Frau Evelyn Viehweger wäre die Studie nicht durchzuführen gewesen.

Auch den Probanden der Studie habe ich zu danken, dass sie ihre Freizeit unentgeltlich für die zeitaufwendigen Messungen geopfert haben.

Dr. Isabell Küfner, die Gefährtin aller meiner Tübinger Studienjahre, hat mich immer freundschaftlich unterstützt.

Nicht zuletzt meinem Freund Dr. Martin Lang und meinen Eltern gilt Dank für die beständige Unterstützung und den jederzeit großen Rückhalt während der gesamten Dauer meiner Dissertation.

Maria Zenk

#### 11 Lebenslauf

Maria Beate Zenk

Geburtsdatum: 2. Nov. 1982

Geburtsort: Kronach

Schulbildung:

Sept. 1989 Grundschule Weißenbrunn

bis Juli 1993

Sept. 1993 Kaspar-Zeuß-Gymnasium Kronach

bis Juni 2002 Abschluss: Allgemeine Hochschulreife

Studium:

Okt. 2002 Studium der Zahnmedizin an der

bis Febr. 2008 Eberhard Karls Universität Tübingen

Okt. 2002 Vorklinischer Abschnitt

bis Febr. 2005

23. März 2005 Zahnärztliche Vorprüfung

April 2005 Klinischer Abschnitt

bis Febr. 2008

28. Mai 2008 Zahnärztliche Prüfung

2. Juni 2008 Approbation als Zahnärztin

seit Juni 2008 Doktorandin in der Abteilung Poliklinik für Kieferor-

thopädie der Universitätsklinik für Zahn-, Mund- und

Kieferheilkunde in Tübingen

Berufliche Tätigkeit:

seit Jan. 2009 Vorbereitungsassistentin in einer allgemeinzahnärzt-

lichen Praxis in Künzelsau