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Figure 1. Plastic deformation of a toy. On the second model the plastic strain is visualised. The two
models on the right show the approximation with the quadratic finite elements.

Abstract

We present an alternative approach to standard geometric shape editing using physically-based simulation. With
our technique, the user can deform complex objects in real-time. The enabling technology of this approach is a fast
and accurate finite element implementation of an elasto-plastic material model, specifically designed for interactive
shape manipulation. Using quadratic shape functions, we avoid the inherent drawback of volume locking exhibited by
methods based on linear finite elements. The physical simulation uses a tetrahedral mesh, which is constructed from
a coarser approximation of the detailed surface. Having computed a deformed state of the tetrahedral mesh, the
deformation is transferred back to the high detail surface. This can be accomplished in an accurate and efficient way
using the quadratic shape functions. In order to guarantee stability and real-time frame rates during the simulation,
we cast the elasto-plastic problem into a linear formulation. For this purpose, we present a corotational formulation
for quadratic finite elements. We demonstrate the versatility of our approach in interactive manipulation sessions
and show that our animation system can be coupled with further physics-based animations like, e.g. fluids and
cloth, in a bi-directional way.

CR Categories: 1.3.5 [Computer Graphics]: Physically based modeling

Keywords: Mesh deformation, quadratic finite elements, plasticity



1 Introduction

With the advent of 3D data acquisition devices such
as structured light scanners, highly detailed geomet-
ric surface models are now easily available. The last
ten years have seen many approaches for editing such
surfaces, all of which somehow strive to achieve glob-
ally smooth deformation while preserving surface de-
tails and shape volume. It is however remarkable that
all of the recent methods depart from a purely geomet-
ric view of this problem leading to approaches which
are rather detached from the actual problem. Instead
of taking such a circuitous route, we propose to con-
sider this problem as one of elasto-plastic modelling,
which means resorting to physically-based simulation -
a simple and direct approach.

The reason why this way of editing highly detailed
surfaces has not been considered before is probably
due to a common misconception. For physical sim-
ulation, mass-spring systems remain the most widely
used technique in the computer graphics community.
Although they allow for efficient implementations, it
is a well known fact that they are inherently unable
to reproduce even simple isotropic materials correctly
and fail to preserve volume. In contrast, (higher order)
finite elements excel at these challenges. However, it
is commonly believed that finite elements interchange-
ably stand for high computation times. In this work,
we show that even a highly accurate non-linear ap-
proach can run at interactive rates, thus overcoming
any justification for unwieldy mass-spring models.

Our approach originates from the theory of elasto-
plasticity and is thus completely based on physical de-
formation, allowing for the most intuitive interaction.
The plasticity model accounts for permanent deforma-
tions, which we think approximates the real problem of
shape manipulation best. We allow the user to interac-
tively assign different elastic and plastic properties as
well as constraints to selected regions of the object. In
this way, material resilience and reversibility of defor-
mations can be adapted to the current editing objec-
tives. We emphasise that no artificial enforcing of vol-
ume preservation is needed since this property directly
follows from the physical approach. Additionally, there
is no need for explicitly distributing deformations in-
duced by handles. Deformation automatically propa-
gates through the body according to the forces applied
by the user through different interaction tools. Due to
the physical nature of our approach, the integration of
shape manipulation within complex animations comes
at no extra cost. As we show in our examples, the
soft body simulation and manipulation can directly be
combined with fluid or cloth simulation.

The work presented in this paper is not the first
to address interactive physically-based simulation. For
the sake of computational efficiency, existing FE-based
approaches rely on linear finite elements, which suffer
from volume locking. This greatly reduces their appli-
cability in the context of shape editing, where volume
preservation is highly important. In contrast, our ap-
proach uses quadratic finite elements, which excel at
preserving volume and offer good accuracy even with
a smaller number of elements. To guarantee stability
and real-time frame rates during simulation, a linear
problem formulation is indispensable (see Sec. 5).

The rest of this paper is organised as follows. The
next section reviews previous work from related fields.
Sec. 3 provides the mathematical and physical back-
ground for this work, while the fourth section ex-
plains our novel finite element approach. The sub-
sequent section presents our implicit integration of
elasto-plasticity. Results are presented in Sec. 7 and
the paper concludes with a discussion and an outlook
on future work.

2 Related Work

Geometric Mesh Editing The problem of mesh
editing can most simply be formulated as finding ways
to create globally smooth and visually pleasing defor-
mations while preserving surface details. Disturbing
artefacts like surface distortion or significant change in
volume have to be avoided. As a further requirement,
a practically useful shape deformation algorithm has
to be fast enough to deliver real-time frame rates and
must offer intuitive interaction facilities [BKO04].

The first approaches relied on multi-resolution rep-
resentations, decomposing a model into low frequency
components and detail displacements [ZSS97, KCVS98,
BKO03]. A global deformation technique like free form
deformation [SP86] is first applied to the coarse repre-
sentation and the geometric detail is then transferred
back to the deformed mesh. Because this manipula-
tion technique is inherently local, artefacts are likely
to occur in highly deformed regions.

A more recent approach to preserving surface details
under global deformations is based on differential co-
ordinates [Ale03]. In this context, detail preservation
can be formulated as the minimization of an energy
functional which is related to the change in differential
coordinates after deformation [SLCOT04, LSCO104,
YZX104]. The deformation (i.e. the editing objective)
itself is incorporated as a set of positional constraints
on the solution of the linear system arising from the
minimization problem. Unfortunately, differential co-



ordinates are not rotation-invariant, which means that
large rotational deformations lead to disturbing surface
distortions. In the case of shape blending these rota-
tions can be factored out locally [ACOL00]. However,
for general shape editing the problem is significantly
harder since the final state is not known in advance.
In this context, pyramid coordinates [SK04] offer in-
variance under rigid body transformations but lead to
a non-linear equation system with the associated com-
putational and stability related problems. As an alter-
native, the rotation-invariant differential coordinates
proposed by Lipman et al.[LSLCOO05] only require the
successive solution of two linear systems. However, sur-
face and volume distortion still occurred for large defor-
mations - a problem which was resolved in [LCOGLO7]
using a quasi-linear approach.

Another important deformation constraint is the
preservation of volume [RSB96]. Combining differ-
ential coordinates with an approach for explicit vol-
ume preservation, Zhou et al. [ZHS'05] minimise
both the change in surface details and shape vol-
ume. The latter was further improved in [HSLT06]
by allowing for general non-linear constraints within a
quasilinear approach. Lastly, the skeleton constraint
[WG97, HSLT06] is also of interest when manipulating
articulated shapes.

Real-time Physically-based Simulation Phys-
ically-based simulation of deformable objects in real-
time has first been investigated in the context of gen-
eral animation [JP99]. As another important applica-
tion, virtual surgery simulation poses most stringent
requirements on both speed and accuracy. The lat-
ter requirement has spurred the development of ap-
proaches based on continuum mechanics [PDA00] and
finite elements [MDM ™02, HGS03]. In order to reduce
the computational complexity the problem is usually
recast into a linear formulation using linear finite ele-
ments and a small strain measure coupled with meth-
ods for extracting rotations [MDM™02, HS04]. Unfor-
tunately, linear finite elements are very susceptible to
locking (see Fig. 2), which degrades accuracy substan-
tially and lets soft objects appear overly rigid. This
problem can be greatly alleviated using higher order
basis functions as demonstrated in [MS06]. The lat-
ter approach, however, uses Newton iterations to han-
dle geometric non-linearities and can therefore fail in
finding a solution within a given period of time. An-
other problem that can be encountered during simu-
lation is the inversion of tetrahedra due to excessive
forces. A way to deal with this issue has been pro-
posed in [ITF04].

Figure 2. Visualisation of pressure in a soft
toy exposed to gravity with 1200 linear (a)
and 234 quadratic tetrahedra (b). Both sim-
ulations are real-time, but the linear model
suffers from significant locking.

Plasticity The existing literature on mathematical
and numerical plasticity is abundant and we refer the
interested reader to [ZT00] and the references therein.
In computer graphics, Terzopoulos et al. [TF88] were
the first to incorporate plasticity and fracture effects
into deformable object simulation. A simple linear elas-
tic material with kinematic hardening was mapped to
their computational framework combining viscoelastic
spring-dashpot units and plastic slip units. O’Brien et
al. [OBHO2] resorted to the more accurate continuum-
mechanics setting, using the von-Mises yield criterion
with linear plasticity and a second elastic regime which
limits the plastic strain. They used an explicit integra-
tion scheme, which greatly simplifies implementation
but leads to high computation times and only con-
ditional stability. In [MGO04] Miiller et al. extended
their approach based on stiffness-warping to account
for plasticity effects using a model similar to [OBH02].
However, since only finite tetrahedra with linear shape
functions are used, curved surfaces are coarsely approx-
imated, and nearly incompressible materials are likely
to suffer from locking. For the plasticity model, we
basically draw on the same idea and combine it with
kinematic hardening and a prediction step for the elas-
tic strain.

3 Background of Physical Soft Body
Simulation

In this section we will briefly outline some mathe-
matical and physical notions underlying our soft body
simulator. We start with a short account of continuum
mechanics.



3.1 Continuum Mechanics

In the most abstract view of continuum mechanics,
there are three important concepts: the strain €, which
is a dimensionless deformation measure, the stress o,
which is a force per unit area, and a material law re-
lating the two to each other as ¢ = C(g) , where C is
the elasticity tensor. For the simplest case of linear
isotropic elasticity, this tensor has only two indepen-
dent entries which are related to the well known Lamé
constants A\ and p. Quantities in relation to the de-
formed state of the body (e.g. strain) are commonly
expressed in terms of a fixed reference configuration
2 C R. The configuration mapping ¢@ : Q x [0,T]
transforming material particles from their reference po-
sitions x° to current positions x can be written as

x(t) = @(x°,t) = id +u(x%,1) ,

where u is a displacement field from the initial con-
figuration. For later use, we define the deformation
gradient as

_ O

- ox0

The strain energy of a deformed configuration is de-
fined as

Ve

W = /Qs(u) co(u) d

and the kinetic energy T is a function of the velocity
of the object,

7~ [ dfallp o,
Q

where p is the mass density. Including viscous stress
contributions @, the total energy II(u) follows as

(u) = /Q{-:(u) to(u) +é(1) : oy () dQ + 303 |p dQ2 .

Carrying out a variation of the above expression and
taking into account external forces acting on the body,
a partial differential equation (PDE) is obtained, which
is the starting point for numerical discretisation.

3.2 Finite Element Discretisation

In order to approximate the solution of the afore-
mentioned PDE, a subspace of finite dimension has to
be defined. We employ isoparametric finite elements
that discretise the problem in 3D space using the Ritz-
Galerkin method, which is the favoured technique in
structural mechanics.

The discretisation arises from a continuous parti-
tioning of the domain into tetrahedra with locally de-
fined basis functions N that interpolate the vertices P
and their displacements U, e.g.

N-—1
o(x) = 3 PNi(x) (1)
=0

with
N-1

> N =1, Ny(P;)=3d;

and

Ve(x) = Vu(x)+I=U VN(x)+I, I=diag(1l)sxs .

This gives the ODE
F(U) + F,(U) + MU = Ft (2)

with elastic forces F (Sec. 4.3), viscous forces F, (U),
dead external forces F**' and the mass matrix

M:/pNNTdV. (3)
14

The accuracy of this approximation strongly depends
on the choice of the shape functions N and the size h of
the elements. In engineering applications it is usually
avoided to use linear basis functions as they achieve
a convergence which is only linear in 1/h. This weak
convergence is caused by V¢ being constant and con-
sequently also F being constant on the whole element.

Especially in the case of almost incompressible ma-
terials the linear elements suffer from numerical locking
effects, i.e. solving (2) results in significantly smaller
displacements than expected (Fig. 2). Moreover, many
small elements have to be placed at the object bound-
aries in order to approximate irregular shapes. The
approach presented in the following exploits the bene-
fits of quadratic basis functions regarding the demands
of interactive shape deformation, namely good approx-
imation of shape and fast convergence in the presence
of plastic, nearly incompressible materials.

4 Real-time Soft Body Simulation

We propose two major improvements to current
techniques for achieving both the objective of real-time
simulation and the robust handling of substantial de-
formations, which are inherent to soft bodies:

e First, real-time is realised by a guaranteed upper
bound on the computational costs per frame, while
the number of elements is reduced to a minimum.



e Second, large deformations are managed using
non-linear shape functions, and taking non-linear
strain into account.

Implicit time integration with arbitrarily large step
sizes (Sec. 5.2) and a linear system of equations to be
solved at each time step serve for both objectives.

4.1 Quadratic Shape Functions

Representing the N shape functions in the general
form

N—

,_\

E 1 6 2 63
] J J
g X3

i=0
i =0..N—1,

7

<.

4<N<10,

with quadratic exponents e;, = 0..2, the conditions (1)
define a linear system with N? equations that is solved
for the shape coefficients «. This is performed once for
the (unstressed) reference state of the object, storing
the shape coefficients for later use.

Figure 3. Curved quadratic 10-node tetrahe-
dron with curvilinear coordinates.

The number of nodes and shape functions respec-
tively can be chosen arbitrarily from four up to ten.
For any N > 4 additional nodes are placed on the edges
of the (linear) standard tetrahedron (Fig. 3). We con-
struct the nodal positions P? of the reference state as
depicted later in Sec. 6.

4.2 Volume Integration

Choosing N = 10, the N; are complete quadratic
polynomials and the error of this Galerkin approxi-
mation is bounded to O(h%) [ZT00]. It is crucial to
preserve this quadratic convergence by accurately in-
tegrating the matrices of (2) over the volume of the

tetrahedron. This is achieved by a four point Gauss-
Legendre cubature at the curvilinear coordinates

T S T T
<1: r 7(2: r a<3: S 7(4: r
T T T S

with r:l—% 5 and s=

3 1+3v5 [SuTl].

Thus e.g. the consistent mass matrix (3) of a tetrahe-
dron with vertices P? is precomputed using
(1-€1) (1-€1—¢2)

M /1 / / det(P® VIN) p NNT dgsde,de,
0

1

24

0

22

Z 1P VN) p N(¢:) N(¢)" (4)

Here the shape functions N interpolate the unit tetra-
hedron with volume 1/e.

4.3 Corotated Quadratic Tetrahedra

The elastic forces F(U) generally depend non-
linearly on U due to the geometric non-linearity of the
strain tensor even if C is linear. Simply using the linear
Cauchy strain tensor

C=1(ve+Vvel) -1 (5)

does not produce satisfying results as soon as signif-
icant deformations occur. A corotational formulation
[Fel00, HS04] linearises (2) by first applying element-
wise rotations R to the displacement vector and then
solving the linear system

F(RU)RT + F,(U) + MU = F=t |

Unfortunately, a single rotation matrix R is not enough
to rotate a quadratic tetrahedron into a configuration
that leaves a rotation-free deformation gradient RVe.
Hence, we apply a separate polar factorization of Ve
at each cubature point to obtain the corotated strain
tensor

eR=1(RVe + Ve R") -1 (6)

and the rotation-invariant stress tensor oC® =

C(e®®RT. The linear elastic forces at the cubature
points simply become

F(RU) RT = VN ¢}

and are calculated efficiently with precomputed VIN.
Furthermore, because of the constant gradient QSR the
element stiffness matrix

OF
EU:ﬁ:REICJRT,



depends only on the current rotation R and a constant
matrix FS

For the viscous forces no corotation is applied. In-
stead, simple linear damping is achieved with the time-
derivative of the Cauchy strain tensor using

F,(U) = VN DE®) ,

which is sufficient for shape editing purposes.

4.4 Lazy Corotation

A significant speed-up in the solution of the ODE (2)
is achieved by a ”lazy” update of the rotation matrices.
It is motivated by the observation that small changes
of the stiffness matrix lead to imperceptible changes of
the static equilibrium and that slightly deferred reval-
uations of the stiffness matrix are not noticeable at all
in a dynamic simulation.

We roughly estimate the change of the corotation
R of an element between the last evaluation at time
t1 and the current time ¢ by means of the maximum
absolute row sum norm

d(t) = [[Ve(t) = Vet

with respect to the difference of the two deformation
gradients. This expression can be evaluated efficiently,
and the polar factorization is not necessary in order to
determine whether the rotation changed significantly.
Empirically, the stiffness matrix should be recomputed
if d(t) exceeds a tolerance value of 0.1 in at least one
cubature point.

4.5 Guaranteed Framerate

Obviously, any jerking of the application is annoying
in interactive physically-based modelling. Jerky frame
rates are produced by explicit time integration with
adaptive time stepping when the step-size has to be
decreased due to increasing forces. In contrast, with
implicit time integration the step-size for any damped
problem can be kept constant while the solution stays
stable.

In order to safely limit the computation time of an
arbitrarily large time step, we solve the corotated prob-
lem with a direct linear solver. In the worst case,
the simulation will require recomputing the corota-
tions, refactoring the system matrix and solving the
linear system. With our implementation, current CPU
cores perform this task within 40 milliseconds for more
than 1500 linear tetrahedra or more than 300 quadratic
tetrahedra, allowing a frame rate of 25Hz. The lazy

corotation further serves for reducing the CPU load,
but of course does not increase the lower bound of the
frame rate.

5 Implicit Time Integration of Elasto-
Plastic Material

The constitutive law addressed in the previous sec-
tions leads to material behaviour independent of the
deformation history (also called a hyperelastic mate-
rial). Once the loading is removed the deformation will
(possibly delayed by viscous effects) recover a state of
zero deformation. This assumption of ideal elasticity is
only a rough approximation and real world materials
do not obey this model. In fact, every solid material
will fail, i.e. undergo irreversible deformation or even
fracture, if the applied loading exceeds a certain thresh-
old. The effect of irreversible deformation actually is
the most general definition of plasticity, which we will
use as the basic mechanism for conveying permanent
shape deformation in the following.

5.1 Plasticity and Hardening

In order to extend the elastic model to account for
plasticity effects we first introduce the decomposition
of the total strain et as

Etot — 8el +Epl )

The total strain can be interpreted as the true geomet-
ric strain, which is readily evaluated using the finite
element approximation (see Eq. (6)). As a result, the
elastic stress can always be expressed as

o=C:e"=C: (e —¢P) . (7)

We will generally assume that the material behaves
ideally elastic up to a certain point of stress where the
plastic deformation regime begins. Using a yield func-
tion F, this criterion can be expressed as F(o) = 0
which, depending on the current state of stress, indi-
cates whether plastic deformation occurs or not. Sim-
ilar to [OBHO02] we will restrict our considerations to
an isotropic von-Mises yielding model, which is partic-
ularly simple. In this case F' does not depend on the
hydrostatic (i.e. volumetric) part of the stress tensor
and, hence, plastic deformation does not affect the vol-
ume. As a consequence, e.g. twisting of a mesh will
not result in unrealistic loss of volume - an important
aspect which is hard to achieve with previous surface
based shape editing methods.



Figure 4. With kinematic hardening the yield
surface F'is allowed to translate by the back-
stress « (a). In the exemplary uni-axial load-
ing cycle (b) the sense of traversal is indi-
cated by arrows. Unloading is always elastic
and reveals the stored plastic strain when the
stress vanishes.

The condition F' = 0 can best be pictured as an im-
plicit (yield) surface in stress space (circles in Fig. 4a),
where the radius of the surface is a material property.
Inside the yield surface the material behaves entirely
elastic. Once the elastic stress reaches the yield surface,
it cannot further increase and any additional deforma-
tion will result in plastic deformation. In the simplest
model, the location of the surface (i.e. the centre and
radius) stays fixed and as a consequence the plastic
strain will increase while the elastic stress stays con-
stant. Because this is impractical for our application,
we include the effect of kinematic hardening. Here, the
centre of the yield surface is allowed to move along the
direction of the deviatoric strain.

With the linear kinematic hardening, a resilient
plastic strain can be cancelled by a corresponding de-
formation in the opposite direction, leading to the
stress-strain relationship depicted in Fig. 4b. The slope
in the plastic phase is subject to

k= HéP!

with the kinematic hardening factor H. However, it
would still be possible to achieve arbitrarily large plas-
tic deformation which turned out to be inconvenient for
the user. For this reason we limit the range of plastic
deformation by another, user-defined threshold, pro-
ducing the rightmost branch of the curve. Beyond,
purely elastic behaviour is regained. The curve corre-
sponds to a rate independent material, i.e. effects due
to viscosity are not considered. Taking into account
viscous stress contributions (4.3) the sharp transitions
are actually smoothed according to the strain rate °.

5.2 Time Integration

With an explicit integration scheme, the time step-
ping of Eq. (7) is straightforward, since it requires only
quantities from the current state, which are trivially
known. Using implicit integration is more involved be-
cause the unknown strains e'°* (¢t + At) and eP!(t + At)
are required.

We deal with this issue using a return map algorithm
similar to [AdV03]. Assuming that the time step will be
entirely elastic, we predict the total strain £*°t(¢ + At)
in an explicit manner using the current strain rate as

g ="M (t) + At e*(t) , (8)

where the tilde denotes trial quantities. The predicted
elastic strain is computed as

gel _ gtot _ Epl(t) ,

and the deviatoric strain follows as

édev _ éel

—ttr(@)I.
If we further assume that the plastic strain eP' remains
constant we can evaluate the yield function,

F(C: &%) = ||2p 8" — k(1) 0¥ =0,
where oY is the yield stress (cf. Fig. 4). If the yield
function signals that in the next step there will be no
transition to the plastic range, the assumption holds
and we can safely use the standard implicit formulation
to integrate the elastic forces. Otherwise, the plastic
strain for the end of the time step is computed as

2u &9V — k(1)

eP\(t + At) = e (1) + Ao
120 &% — w(t)]]

The consistency parameter A\ ensures that the yield
condition is met after the time step and reads

L2 e — ()] = o
2M§dev —|—H

To limit the norm of the plastic stress components by
o?, the plastic strain is clamped to ”/2u (cf. O’Brien
et al. [OBHO02]). Finally, we have to compute the new
backstress using

K(t+ At) = H - (P (t + At) —eP' (1)) .

Clearly, the method described above is only an ap-
proximation which would not be of sufficient accuracy
for engineering applications. However, it is more than
sufficient for computer graphics purposes and leads
to considerable computational advantages. Similar to



Miiller et al. [MGO04] we obtain a linear system of equa-
tions which, for the sake of simplicity, we abbreviate as

(M-RVFR")Y =F°

where the state vector Y is the concatenation of nodal
positions and velocities. Because of the prediction step
(8) the plastic strain does not depend on Y and can be
considered as a dead load during the time step. Hence,
we are able to keep the stiffness matrix VJF constant
over time. Note that in contrast to explicit time inte-
gration schemes the mass matrix M does not have to
be inverted and we can use the non-diagonal consistent
mass matrix (4) without computational drawbacks.

5.3 Annealing

In the course of repeated deformation and sculpting
by the user, substantial plastic strains can accumulate.
While the simulation always remains stable, very large
deformations are likely to degrade computational effi-
ciency and accuracy. This problem can be avoided by
annealing the solid from time to time. When the user
stops deforming the object for a moment, its rest state
is recomputed from the current deformation and the
geometric as well as the plastic strains are reset. This
procedure can be carried out as a background opera-
tion without the user taking notice of it, or, as shown in
the accompanying video, by manually clicking a button
to "commit” the current plastic state and to continue
with further manipulations.

6 Geometric Model Reduction and De-
tail Preservation

In order to provide the user with as much freedom
as possible we do not make specific assumptions on
the size and resolution of the input model. We do,
however, assume a closed manifold surface mesh of the
object to be deformed. Such meshes can be obtained,
e.g. using a geometry acquisition device like a struc-
tured light scanner and a subsequent post-processing
step (i.e. reconstruction and triangulation). The res-
olution of meshes obtained in this way is usually very
high. Since globally smooth deformations can be cap-
tured on a much coarser level it is common practice to
treat high frequency surface details apart from possibly
large low frequency deformations.

6.1 Geometric Model Reduction

We adopt this strategy and combine geometric
model reduction techniques with an elegant detail

(c)

Figure 5. Automatic generation of quadratic
tetrahedral meshes in two resolutions (b, c)
from a detailed triangle mesh (a). The top row
shows the result of the surface mesh simpli-
fication, the bottom row the boundary of the
conformed quadratic FE meshes.

preservation algorithm which arises in a natural way
from our finite element approach. Low resolution tetra-
hedral meshes like the ones in Fig. 5 are created follow-
ing a three-step algorithm:

Coarse Surface Generation For the initial mesh
simplification we employ standard triangle mesh re-
duction techniques available for polygonal modelling
software, producing approximate Delaunay triangula-
tions. The user defines by vertex painting which re-
gions should keep higher resolutions, e.g. ears and tail
of the armadillo.

Linear Tetrahedral Meshing The Delaunay prop-
erty alleviates the subsequent generation of tetrahedral
volume meshes, which is achieved using standard mesh
generators. In our experience they often fail in generat-
ing coarse quadratic meshes for a given smooth surface.
For this reason, a standard meshing first produces an
FE model with linear 4-node tetrahedra.

Quadratic Surface Conforming Afterwards each
tetrahedron of the coarse tetrahedral mesh is com-
pleted by the missing nodes on the six edges. Now
the surface nodes are adjusted to lie on the initial high
resolution surface (Fig. 6a). For this purpose, the clos-
est surface face in the normal direction is found. If its
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Figure 6. In the conforming step the surface
nodes of the quadratic tetrahedral mesh are
adjusted to lie on the detailed surface. (Sim-
plified 2D drawing.)

distance exceeds a specific limit or if the surfaces turn
out to be too spiky to determine a consistent normal
direction, the surrounding area is searched for a closer
face (Fig. 6b). Care is taken not to invert surface ele-
ments if the detailed surface lies inwards (Fig. 6¢). In
such rare cases the node must not be moved and it
is advisable to increase the FE mesh resolution in the
critical region.

While the whole reduction algorithm is rather sim-
ple, it turned out to be extremely effective and does not
demand any FE modelling knowledge from the user.
Curved element edges are preliminarily created at the
FE mesh boundaries, but do of course also emerge in
the inside during deformations. Hence, the full degrees
of freedom of the quadratic tetrahedra are exploited by
the simulation.

6.2 Detail Preservation

Since the plastic deformations are computed on the
coarse FE mesh, the simulation does affect surface de-
tails. Instead, by interpolating the detailed surface
with the isoparametric shape functions of the associ-
ated tetrahedron, the surface deforms realistically and
the details inherit the affine invariance of the FE ap-
proach. That is, at any time ¢ by

ZPt

the interpolated detailed surface point St is calculated
from the initial position S of the vertex. Cracks at
the transitions from one quadratic tetrahedron to the
next are automatically avoided because the FE surface
nodes lie on the detailed surface, which is further in-
terpolated smoothly by the curved edges. During an-
nealing the rest positions S° are reset to the current
coordinates.

The colours ¢(x,t) for stress visualisations on the
detailed surface first are linearly extrapolated from the

St = @(S°%,1)

cubature points to the nodes P? of the reference state.
Afterwards the colours ¢(S?,t) for the detailed surface
are interpolated likewise by the shape functions using

N-1
c(P N;(S9) .
=0

This is an intuitive and computationally efficient way
of stress visualisation, which, to our knowledge, was
not addressed in literature so far.

7 Results

The described techniques were applied successfully
to perform several shape editing tasks on a Dual Xeon
5140, where only one core was used by our implemen-
tation. An implicit second order BDF (backward dif-
ferentiation formula) solver ensured stable time inte-
gration. The linear system was solved with a direct
sparse solver, which performed better than the con-
jugate gradient method due to the comparably small
system matrices.

7.1 Examples

All examples were created in interactive sessions
with a time step size of 40 milliseconds. The ability
of the simulation to preserve volume and to correctly
handle situations of extremely large deformations can
be observed in Figs. 7 and 8. The surface meshes are
coloured based on the norm of the plastic strain, red
denoting that the plastic stress component is close to
the limit o*. To the right hand side the surface of the
tetrahedral meshes is visualised. In Fig. 1 it becomes
evident that a complex surface (60.000 vertices) with
rich features is interpolated smoothly by the quadratic
basis functions, even when a low-resolution FE mesh
(229 tetrahedra) is used. Fig. 11 proves that the vol-
ume is preserved even when large deformations are ap-
plied to a very detailed model.

A bi-directional integration with other physics based
animation techniques, namely a grid-based fluid simu-
lation and a cloth simulation based on finite elements
(Fig. 9), is possible in a straightforward manner. This
provides the animator with the opportunity to model
complex environments which would be impossible to
animate in the traditional way. Furthermore, the ac-
companying video shows interactive changes to elastic
and plastic parameters to support a variety of shape
manipulation tasks ranging from large-scale deforma-
tions to tweaks of fine features.



Surface Tetra- Tmat Tfac Tsolve Tdef Ttot
mesh hedra

Arm 20k 146 10.1 3.9 2.5 1.9 | 184
Arm 60k 7 ? 7 ” 5.3 | 21.8
Arm 20k 229 16.6 6.1 3.5 1.7 | 27.9
Arm 60k ? ? ” ” 5.6 | 31.8
Dragon 173 126 3.3 2.7 1.9 | 20.6
20k

Dragon 7 ? 7 7 44 | 23.0
50k

Dragon ” 7 7 7 8.7 | 274
100k

Table 1. Computation times in milliseconds
for the armadillo and the dragon model in
different resolutions up to 100.000 vertices.
Between 30 and 50 frames per second are
achieved.

7.2 Benchmarks

Table 1 shows the computation times for two exem-
plary deformation tasks: repeatedly dragging one arm
of the armadillo (Fig. 1) up and down, and stretch-
ing and bending the upper part of the dragon model
(Fig. 10). For the armadillo model, surface meshes
with 20.000 and 60.000 vertices, and volume meshes
with 146 and 229 quadratic tetrahedra were used. The
dragon model is discretised with 173 quadratic tetra-
hedra and consists of up to 100.000 vertices. Computa-
tion times per frame (not considering lazy corotation)
are separated into corotation with stiffness matrix up-
date (Tiat), matrix re-factorisation (7. ), solution of
the linear system (Zyo1ve) and update time of the inter-
polated surface mesh (Tget). From the total time (Tior)
it is evident that time-step sizes from 32ms down to
19ms could be used and still real-time simulation would
be achieved. Additionally, in more than half of the
frames lazy corotation was active, leaving only Toive
and Tyer for the respective frames, and therefore sig-
nificantly reducing the average computation time per
frame. Actually in our experiments the frame rate was
limited mostly by the rendering system, which acted as
a bottleneck when huge surface meshes were used.

7.3 Future Work

Although our approach does not directly support
skeleton driven deformations, similar effects can be
achieved by simply changing local material properties
in an appropriate way: assigning a stiff material to the
limbs and a comparably soft one to the joints yields the
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desired behaviour. However, in future work we hope to
extend our system to account for totally rigid regions
and with a more convenient user interface for specifying
skeleton constraints like in the work of [ZHST05].
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Figure 9. Armadillo: 16608 surface vertices, 146 quadratic tetrahedra. Interaction with wind (top),
draped with an FE simulated piece of cloth (bottom).
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Figure 10. Dragon: 100.000 surface vertices, 173 quadratic tetrahedra. The surface colours visualise
the mapping to the boundary tetrahedra.

Figure 11. High quality rendering of the dragon with 250.000 vertices and large deformation.
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