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Zusammenfassung in deutscher Sprache

In dieser Arbeit betrachten wir die Potenzen T n eines linearen, beschränkten Operators

T und stark stetige Operatorhalbgruppen (T (t))t≥0 auf einem Banachraum X. Dafür

suchen wir nach Bedingungen, die “Stabilität” garantieren, d.h.

lim
n→∞

T n = 0 bzw. lim
t→∞

T (t) = 0

bezüglich einer der natürlichen Topologie. Dazu gehen wir wie folgt vor.

In Kapitel 1 stellen wir die (nichttrivialen) funktionalanalytischen Methoden zusam-

men, wie z.B. das Jacobs–Glicksberg–de Leeuw Zerlegungstheorem, spektrale Abbildungs-

sätze und eine inverse Laplacetransformation.

In Kapitel 2 diskutieren wir den “zeitdiskreten” Fall und beschreiben zuerst polyno-

miale Beschränktheit und Potenzbeschränkheit eines Operators T . In Abschnitt 2 wird

die Stabilität bezüglich der starken Operatortopologie behandelt. Schwache und fast

schwache Stabilität wird in den Abschnitten 3, 4 und 5 untersucht und durch abstrakte

Charakterisierungen und konkrete Beispiele erläutet. Wir zeigen insbesondere, dass eine

“typische” Kontraktion sowie ein “typischer” unitärer oder isometrischer Operator auf

einem unendlich-dimensionalen separablen Hilbertraum fast schwach aber nicht schwach

stabil ist.

Analog gehen wir in Kapitel 3 für eine C0-Halbgruppe (T (t))t≥0 vor. Zunächst wird

Beschränktheit bzw. polynomiale Beschränktheit über die Resolvente des Generators

oder den Kogenerator charakterisiert. Ein kurzes Resumé über gleichmäßige Stabilität

folgt in Abschnitt 2. Für stark stabile Halbgruppen werden die klassischen Sätze von

Foiaş–Sz.-Nagy and Arendt–Batty–Lyubich–Vũ zitiert und ergänzt. In den Abschnitten

4 bis 6 behandeln wir schwach stabile und fast schwach stabile Halbgruppen. Neben

unterschiedlichen Charakterisierungen geben wir neue konkrete und abstrakte Beispiele

(in Form von Kategoriensätzen) an.
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Introduction

The real understanding involves, I believe, a synthesis of the discrete and continuous ...

L. Lovász, Discrete and Continuous: two sides of the same?

Systems evolving in time (”dynamical systems” for short) can be modeled using a

discrete or a continuous time scale. The discrete model leads to a map ϕ and its powers

ϕn on the state space Ω, while the continuous model is given by a (semi)flow (ϕt)t≥0 on Ω.

In the first situation, at least in finite dimensions, methods from discrete mathematics are

used, while the second essentially needs analytic tools, e.g., from differential equations.

This has the effect that frequently the common structure of the results gets out of sight.

In this respect we want to quote L. Lovasz:

“There is a deep division (or at least so it appears) between the Continuous and Dis-

crete Mathematics. ... How much we could lose if we let this chasm grow wider, and how

much we can gain by building bridges over it.” László Lovász, One Mathematics (1998)

In this thesis we study both discrete and continuous linear dynamical systems in

Banach spaces and concentrate on “stability” of these systems. More presicely, we call a

bounded linear operator or a C0-semigroup (T (t))t≥0 “stable”, if

lim
n→∞

T n = 0 or lim
t→∞

T (t) = 0, respectively

in some appropriate sense. This property is fundamental for most qualitative theories of

linear and nonlinear dynamical systems. Although we treat the discrete (Chapter 2) and

the continuous case (Chapter 3) separately, we emphasise the common structure of the

results and ideas dispite the often different methods needed for their proofs. We try to

give a reasonably complete picture of the situation by mentioning (most of) the relevant

results. This helped, by the way, to identify a number of natural open problems. This

thesis and future work on these problems can hopefully help to bridge the gap between

the discrete and continuous situation, thus presenting two sides of the same reality.

In the following we summarise the content of this thesis.

In Chapter 1 we give an overview on some functional analytic tools needed later.

Besides the classical decomposition theorems of Jacobs–Glicksberg–de Leeuw for compact

semigroups we discuss several variants of the spectral mapping theorem. We then recall

the powerful concept of the cogenerator of a C0-semigroup. We give an elementary proof

of the famous characterisation of Sz.-Nagy and Foiaş (see Theorem 0.39) of operators

5



6 INTRODUCTION

being cogenerators (see also Katz [70]). Finally, we present one of our main tools for

the investigation of stability of C0-semigroups. This is the Laplace inversion formula

which can also be considered as an extension of the Dunford functional calculus for the

exponential function. The version given in Theorem 0.42 appeared first in Eisner [24].

In Chapter 2 we investigate the powers of a bounded linear operator on a Banach

space. As a first step, we characterise power boundedness on Hilbert spaces. Theorem

1.9 is a discrete version of the corresponding characterisation of bounded C0-semigroups

due to Gomilko, Shi and Feng (see Theorem 1.11 in Chapter 3). While the proof is

more direct than its countinuous counterpart, the result seems to be new. Furthermore,

we describe the possible growth of the powers of an operator T with spectral radius 1

(see Example 1.12). Surprisingly, polynomially bounded operators, i.e., operators whose

powers T n grow not faster than some polynomial in n, admit a simple characterisation in

terms of the resolvent behaviour near the unit circle (Theorem 1.13).

Stability, i.e., limT n = 0 in some sense, is the theme in the rest of this chapter. After

some classical results, we discuss strong stability in terms of the resolvent (Theorem 2.13).

The condition uses the L2-norm of the resolvent on circles with radius greater than 1 and

its growth if these circles converge to the unit circle. On Hilbert spaces this condition is

necessary and sufficient for strong stability. We then give an analogous, but only sufficient

condition for weak stability of operators (Theorem 3.12). Again this is a discrete version of

the corresponding sufficient condition found by Chill and Tomilov [15] for C0-semigroups.

It is an open question whether the condition is also sufficient at least for Hilbert spaces.

We then introduce the concept of almost weak stability (see Definition 4.3) and give

various equivalent conditions being partially classical and partially new, see Theorem

4.1. By this theorem we see that almost weak stability of operators is much easier to

characterise than weak stability. In particular, if the operator has relatively compact

orbits, almost weak stability is equivalent to “no point spectrum on the unit circle”. We

also present a concrete example of an almost weakly but not weakly stable operator (see

Example 4.8).

Although the notion of almost weak stability seems to be very close to weak stability,

it turns out to be very different as we see in Section 5. We relate our stability concepts

to weakly and strongly mixing flows in ergodic theory and (via the spectral theorem) to

Rajchman and non Rajchman measures in harmonic analysis. This leads to classes of

almost weakly but not weakly stable operators. We then prove category theorems for

almost weakly and weakly stable operators stating that a “typical” (in the sense of Baire)

unitary operator, a “typical” isometry, and a “typical” contraction on a separable Hilbert

space is almost weakly but not weakly stable (see Theorems 5.7, 5.12 and 5.15, respec-

tively). These results give an operator theoretic counterpart to the classical theorems of

Halmos [51] and Rohlin [109] for weakly and strongly mixing flows on a measure space.

In Chapter 3 we turn our attention to the time continuous case and consider C0-

semigroups (T (t))t≥0 on Banach spaces. As in the previous chapter we discuss bounded-

ness and stability of a semigroup and try to characterise these properties by the generator,
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its resolvent, and/or the cogenerator, respectively. We visualise the situation by the fol-

lowing diagram. We start with boundedness of C0-semigroups. In particular, we discuss

R(λ,A)λ∈ρ(A)

resolvent

(T (t))t≥0

semigroup

(A,D(A))
generator

V
cogenerator

the quite recent characterisation of generators of a bounded C0-semigroup on a Hilbert

space by Gomilko [45] and Shi, Feng [115]. Their integrability condition on the resolvent

on vertical lines (Theorem 1.11) is the key to the resovent type approach for bounded-

ness and stability of discrete and continuous semigroups. We also discuss the connection

between power boundedness of the cogenerator and boundedness of the semigroup. Note

that it is still open whether these two concepts are equivalent for C0-semigroups on Ba-

nach spaces. We then characterise generators of polynomially bounded semigroups on

Hilbert spaces (see Theorem 1.16) in terms of an integral resolvent condition. This is

analogous to the result Gomilko, Shi and Feng and generalises their theorem as well as a

result of Malejki [87] on polynomially bounded C0-groups. We further give a characteri-

sation of polynomial bounded semigroups in terms of a simple resolvent condition similar

to the famous Kreiss condition (Theorem 1.18). This result is analogous to Theorem 1.13

in Chapter 2, however the proof needs more technics. Moreover, we again describe the

possible growth of a C0-semigroup with ω0 = 0 (see Example 1.15).

We then discuss uniform exponential stability of C0-semigroups, a notion which is

more difficult to characterise than its discrete analogue. Besides the classical results such

as Gearhart’s generalisation to Hilbert spaces of Liapunov’s stability theorem and the

Datko–Pazy theorem, we generalise Gearhart’s theorem to Banach spaces (see Theorem

2.8) using the Laplace inversion formula. This result seems to be new, but we mention

that there are other variants of this theorem, e.g., the one of Kaashoek and Verduyn Lunel

[67] using a resolvent condition similar to the one appearing in Theorem 2.8.

Strong stability is the subject of the next section. Besides some classical results due

to Sz.-Nagy and Foiaş, Lax and Phillips and the more recent theorem of Arendt, Batty

[3], Lyubich and Vũ [85] we discuss the resolvent approach to strong stability developed

by Tomilov [124]. This leads to a characterisation of strong stability on Hilbert spaces.

However, it is not clear whether this characterisaion holds for semigroups on Banach

spaces.
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We further consider weak stability and its characterisations, partly classical by Foguel

[34] and Sz.-Nagy, Foiaş [119, 120] and partly quite recent (see Theorem 4.14 due to Chill

Tomilov [15] and Eisner, Farkas, Nagel, Sereny [25]). We emphasise that weak stability

is much less understood than the strong and uniform analogue with still many open

questions. For example, it is unknown for which classes of C0-semigroups the resolvent

condition in Theorem 4.14 is necessary and for which it is not. More generally, it is not

clear how to characterise weak stability in terms of the resolvent of the generator. Another

open question is to find a connection between weak stability of a C0-semigroup and weak

stability of its cogenerator.

We finally introduce the concept of almost weak stability (see Definition 5.3) closely

related to weak stability, but occuring in many more situations. We give various equivalent

conditions, being partly classical and partly new (see Theorem 5.1). This theorem is

analogous to Theorem 4.1 in Chapter 2. We then give a concrete example of a C0-

semigroup coming from an ordinary differential equation which is almost weakly but not

weakly stable.

In the last section we first discuss abstract examples of C0-semigroups arising naturally

in ergodic and measure theory. We finally present category theorems analogous to the

discrete ones stating that a “typical” (in the sense of Baire) unitary C0-group as well

as a “typical” isometric C0-semigroup on a separable infinite-dimensional Hilbert space

is almost weakly but not weakly stable (see Theorems 6.7 and 6.11, respectively). The

question whether such a category result also holds for contraction semigroups is still open.
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CHAPTER 1

Functional analytic tools

It this chapter we give an overview of some functional analytic tools needed later.

0.1. Preliminaries. We first recall some facts from functional analysis concern-

ing the weak topology and weak compactness in Banach spaces. We refer to Dunford,

Schwartz [23, Sections V.4-6] and Schaefer [113, Section IV.11].

We begin with the Eberlein–Šmulian theorem characterising weak compactness in

Banach spaces.

Theorem 0.1. (Eberlein–Šmulian) For subsets of a Banach space weak compactness

and weak sequential compactness coincide.

Next, we recall the following version of the classical Banach–Alaoglu theorem.

Theorem 0.2. A Banach space is reflexive if and only if its closed unit ball is weakly

compact.

In particular, every bounded set of a Banach space is relatively weakly compact if and

only if the Banach space is reflexive.

Another important property of weakly compact sets is expressed in the Krěın–Šmulian

theorem.

Theorem 0.3. (Krěın–Šmulian) The closed convex hull of a weakly compact subset of

a Banach space is weakly compact.

The following theorem characterises metrisability of the weak topology.

Theorem 0.4. The weak topology on the closed unit ball of a Banach space X is

metrisable if and only if the dual space X ′ is separable.

We recall that the separability of X ′ implies the separability of X, while the converse

does not always hold. However, for separable Banach spaces relatively weakly compact

sets are metrisable by the following theorem.

Theorem 0.5. The weak topology on a weakly compact subset of a separable Banach

space is metrisable.

We now introduce basic notations which we will use in the following.

For a bounded linear operator T we denote by σ(T ), Pσ(T ), Rσ(T ), r(T ), ρ(T ) and

R(λ, T ) its spectrum, point and residual spectrum, spectral radius, resolvent set and

resolvent operator at the point λ ∈ ρ(T ), respectively.

9



10 1. FUNCTIONAL ANALYTIC TOOLS

For a C0-semigroup (T (t))t≥0 we will often use the simplified notation T (·). The

growth bound of T (·) is denoted by ω0(T ).

For an (in general unbounded) operator A we denote by s(A) its spectral bound and

by

s0(A) := inf{a ∈ R : R(λ,A) is bounded on {λ : Reλ > a}}

its pseudo-spectral bound (also called abscissa of the uniform boundedness of the resolvent).

Recall that for a C0-semigroup T (·) with the generator A the relation

s(A) ≤ s0(A) ≤ ω0(T )

holds, but both inequalities can be strict, see Engel, Nagel [31, Example IV.3.4] and van

Neerven [99, Example 4.2.9], respectively.

0.2. Relatively compact sets in Lσ(X). In this subsection we characterise rela-

tively weakly compact sets of operators and give some important examples. In the fol-

lowing we denote the space of all bounded linear operators on a Banach space X endowed

with the weak operator topology by Lσ(X).

Lemma 0.6. [see Engel, Nagel [31], Lemma V.2.7] For a set of operators T ⊂ L(X),

X a Banach space, the following assertions are equivalent.

(a) T is relatively compact in Lσ(X).

(b) {Tx : T ∈ T } is relatively weakly compact in X for all x ∈ X.

(c) T is bounded, and {Tx : T ∈ T } is relatively weakly compact in X for all x in some

dense subset of X.

Proof. We follow Derndinger, Nagel, Palm [21, p. 191] and Engel, Nagel [31, pp.

512–514].

The implication (a) ⇒ (b) follows directly from the continuity of the mapping T 7→ Tx

for every x ∈ X, while for the proof of the converse implication (b) ⇒ (a) based on

Tychonoff’s theorem we refer to Dugundji [22].

The implication (b) ⇒ (c) follows immediately from the uniform boundedness princi-

ple.

(c) ⇒ (b): Take x ∈ X and {xn}∞n=1 ⊂ D converging to x, where D denotes the dense

subset of X from (c). By the Eberlein–Šmulian theorem (Theorem 0.1), it is enough to

show that every sequence {Tnx}∞n=1 ⊂ T x has a weakly convergent subsequence.

Take a sequence {Tnx}∞n=1 ⊂ T x. For x1 ∈ D, there exists a subsequence {nk,1}∞k=1

and a vector z1 ∈ X such that Tnk,1
x → z1 weakly as k → ∞. Analogously, for x2 ∈ D

there exists a subsequence {nk,2}∞k=1 and a vector z2 ∈ X such that Tnk,2
x → z2 weakly

as k →∞, and so on.

By the standard diagonal procedure there is a subsequence {nk}∞k=1 such that Tnk
xm →

zm weakly as k →∞ for every m ∈ N.
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We have

‖zn − zm‖ = sup{〈zn − zm, y〉 : y ∈ X ′, ‖y‖ = 1}

= sup{ lim
k→∞

〈Tnk
xn − Tnk

xm, y〉 : y ∈ X ′, ‖y‖ = 1} ≤ C‖xn − xm‖,

where C = sup{‖T‖ : T ∈ T } for every n,m ∈ N. So {zn}∞n=1 is a Cauchy sequence and

therefore converges to some z ∈ X. By the standard 3ε–argument Tnk
x → z weakly as

k →∞. �

We now give some examples of relatively weakly compact subsets of operators.

Example 0.7.

(a) On a reflexive Banach space X any norm bounded family T ⊆ L(X) is relatively

weakly compact by the Banach-Alaoglu theorem.

(b) Let T ⊆ L(L1(µ)) be a norm bounded subset of positive operators on the Banach

lattice L1(µ), and suppose that Tu ≤ u for some µ-almost everywhere positive u ∈
L1(µ) and every T ∈ T . Then T is relatively weakly compact since the order interval

[−u, u] is weakly compact, T -invariant and generates a dense subset (see Schaefer

[114, Thm. II.5.10 (f) and Prop. II.8.3]).

(c) Let S be a semitopological semigroup, i.e., a (multiplicative) semigroup S which is

a topological space such that the multiplication is separately continuous (see Engel,

Nagel [31, Section V.2]). Consider the space C(S) of bounded, continuous (real-

or complex-valued) functions over S. For s ∈ S define the corresponding rotation

operator (Lsf)(t) := f(s · t). A function f ∈ C(S) is said to be weakly almost periodic

if the set {Lsf : s ∈ S} is relatively weakly compact in C(S), see Berglund, Junghenn,

Milnes [9, Def. 4.2.1]. The set of weakly almost periodic functions is denoted by

WAP (S). If S is a compact semitopological semigroup, then C(S) = WAP (S) holds,

see [9, Cor. 4.2.9]. This means that for a compact semitopological semigroup S the

set {Ls : s ∈ S} is always relatively weakly compact in L(C(S)). We come back to

this example later in the proof of Theorem 4.1 and Example 4.8 (Chapter 2) as well

as in the proof of Theorem 5.1 and Example 5.8 (Chapter 3).

0.3. Semitopological semigroups and the abstract Jacobs–Glicksberg–de

Leeuw decomposition. In this subsection we present a general approach being fun-

damental in our study of asymptotics using the theory of compact semigroups. We follow

the abstract setting given in Engel, Nagel [31, Section V.2].

We will call a pair (S, ·) for a set S with an associative multiplication · an abstract

semigroup. In the following we will often write only S and st instead of s · t.

Definition 0.8. An abstract semigroup S is called a semitopological semigroup if S
is a topological space such that the multiplication is separately continuous, i.e., such that

the maps s 7→ st and s 7→ ts are continuous for every t ∈ S. If S is in addition compact,

then we call S a compact (semitopological) semigroup.
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The following classical theorem describes the structure of compact commutative semi-

groups.

Theorem 0.9. (Abstract Jacobs–Glicksberg–de Leeuw decomposition) Let S be a com-

pact commutative semitopological semigroup. Then the following assertions hold.

(a) S contains a unique minimal ideal K with idempotent q and K = qS.

(b) The minimal ideal K is a compact topological group. In particular, the multiplication

and the inverse map are continuous.

We now consider the case where S is a subsemigroup of L(X) (X a Banach space)

considered with the usual multiplication. The typical examples for topologies which are

considered on S which make it a semitopological semigroup are the weak, strong and

norm operator topologies.

If S is compact with respect to one of these topologies, the idempotent element q from

Theorem 0.9 is a projection, X = ker(q) ⊕ rg(q) and both subspaces are S-invariant. If

we now restrict S to ker(q), then the minimal ideal of the restricted semigroup consists

of the zero operator and hence

0 ∈ S|ker(q).

This will be the basic property for the study of stability of operators and C0-semigroups.

0.4. Operators having relatively weakly compact orbits. We now present the

mean ergodic theorem and apply the abstract setting above to discrete semigroups.

Definition 0.10. An operator T on a Banach space X has relatively weakly compact

orbits if the set T := {T n : n ∈ N} satisfies one of the equivalent conditions in Lemma

0.6.

A first asymptotic property of operators having relatively weakly compact orbits is

the classical mean ergodic theorem.

Theorem 0.11. (Mean ergodic theorem, see, e.g., Yosida [137, Theorem VIII.3.2],

Nagel [94])

Let T be a bounded operator on a Banach space X with relatively weakly compact

orbits. Then T is mean ergodic, i.e., we have strong convergence of the Cesàro means

(1) lim
n→∞

1

n+ 1

n∑
k=0

T kx = Px for all x ∈ X,

where P ∈ L(X) is a projection onto Fix(T ) := ker(I − T ).

The projection P is called the associated mean ergodic projection.

For mean ergodic operators (in particular, for operators with relatively weakly compact

orbits) one has the following decomposition of the space X, see Yosida [137, Section

VIII.3].
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Proposition 0.12. Let T be a mean ergodic operator on a Banach space X with mean

ergodic projection P satisfying supn∈N ‖T‖ <∞. Then kerP = rg(I − T ) and therefore

X = Fix(T )⊕ rg(I − T )

holds. Moreover, the projection P can be also described as

Px = lim
r→1+

(r − 1)R(r, T )x for all x ∈ X.

Note that the last formula follows from the Neumann series representation for the resol-

vent, formula (1) and the equivalence of the Abel and Cesàro means (see, e.g., Hardy

[57], p. 136).

Remark 0.13. There are many criteria to check mean ergodicity. For example, by

Nagel [93] a power bounded operator is mean ergodic if and only if

Fix(T ) separates Fix(T ′).

In particular, a power bounded operator T is mean ergodic with the mean ergodic pro-

jection zero if and only if Fix(T ′) = {0}.

We now present a consequence of the abstract decomposition presented in Subsection

0.3 being one of the basic results in the theory of operators having relatively weakly

compact orbits.

Theorem 0.14. (Jacobs–Glicksberg–de Leeuw decomposition) Let X be a Banach space

and let T ∈ L(X) have relatively weakly compact orbits. Then X = Xr ⊕Xs, where

Xr := lin
{
x ∈ X : Tx = γx for some γ ∈ Γ

}
Xs :=

{
x ∈ X : 0 is a weak accumulation point of {T nx : n = 0, 1, 2, . . .}

}
.

Remark 0.15. : If Pσ(T ) ∩ Γ ⊂ {1}, where Γ denotes the unit circle, then the mean

ergodic projection coincides with the projection from the Jacobs–Glicksberg–de Leeuw

decomposition.

Finally, we state the decomposition theorem of Jacobs–Glicksberg–de Leeuw for the

strong operator topology.

Theorem 0.16. Let X be a Banach space and T ∈ L(X) such that for every x ∈ X

the orbit {T nx : n = 0, 1, 2 . . .} is relatively compact in X. Then X = Xr ⊕Xs for

Xr := lin{x ∈ X : Tx = γx for some γ ∈ Γ},

Xs := {x ∈ X : ‖T nx‖ → 0 as n→∞}.

The proof follows directly from Theorem 0.14, the fact that for compact sets weak con-

vergence implies convergence and Lemma 2.4 (Chapter 2).

Remark 0.17. Note that the relative compactness of every orbit is also a necessary

condition for the decomposition given in Theorem 0.16 for power bounded operators by

Lemma 0.6.
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0.5. Jacobs–Glicksberg–de Leeuw decomposition for C0-semigroups. Anal-

ogously to the previous subsection we apply the abstract setting of Section 0.3 to C0-

semigroups and present the continuous version of the mean ergodic theorem. Note that

the results of this section are completely analogous to the discrete case considered in

Section 0.4.

Definition 0.18. A C0-semigroup T (·) on a Banach space X is called relatively weakly

compact if the set T := {T (t) : t ≥ 0} ⊂ L(X) satisfies one of the equivalent conditions

in Lemma 0.6.

The classical mean ergodic theorem gives information about the asymptotic behaviour

of relatively weakly compact C0-semigroups. We refer to Engel, Nagel [31, Section V.4] or

Arendt, Batty, Hieber, Neubrander [4] for the proofs and a more detailed study of mean

ergodic C0-semigroup.

Theorem 0.19. (Mean ergodic theorem for C0-semigroups)

Let T (·) be a relatively weakly compact semigroup a Banach space X. Then T (·) is

mean ergodic, i.e., we have strong convergence of the Cesàro means

(2) lim
t→∞

1

t

∫ t

0

T (s)x ds = Px for all x ∈ X,

where P ∈ L(X) is a projection onto Fix(T (·)) := ∩t≥0 Fix(T (t)).

Remark 0.20. Relatively weakly compact C0-semigroups are even totally ergodic, i.e.,

one has strong convergence of the Cesàro means

lim
t→∞

1

t

∫ t

0

eisτT (τ)x dτ = Psx for all x ∈ X,

for every s ∈ R. This follows from the fact that the semigroup (eistT (t))t≥0 is relatively

weakly compact as well for every s ∈ R.

The projection P is called the mean ergodic projection associated with T (·). As a

consequence of mean ergodicity, one can prove the following decomposition of X.

Proposition 0.21. Let T (·) be a mean ergodic C0-semigroup on a Banach space X

with generator A satisfying limt→∞
‖T (t)‖

t
= 0. Then kerP = rg(A) and therefore the

decomposition

X = ker(A)⊕ rg(A)

holds. Moreover, the projection P can also be obtained as

Px = lim
a→0+

aR(a,A)x for all x ∈ X.

Remark 0.22. Note that one can verify the mean ergodicity of a bounded semigroup

quite easily. Indeed, a bounded C0-semigroup on a Banach space with generator A is

mean ergodic if and only if

ker(A) = Fix(T (·)) separates ker(A′) = Fix(T ′(·)).
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For the proof see Engel, Nagel [31, Thm. V.4.5]. Note further that for the generator A

of a bounded C0-semigroup

Pσ(A) ∩ iR ⊂ Pσ(A′) ∩ iR

holds (see Engel, Nagel [31, Lemma V.2.20]). In particular, a bounded C0-semigroup is

mean ergodic with the mean ergodic projection zero if and only if its generator A satisfies

the spectral condition 0 /∈ Pσ(A′).

The following theorem being a special case of the abstract Jacobs–Glicksberg–de Leeuw

decomposition is one of the basic results in the stability theory of (relatively weakly

compact) C0-semigroups.

Theorem 0.23. (Jacobs–Glicksberg–de Leeuw decomposition for C0-semigroups, see

Engel, Nagel [31], Thm. V.2.8) Let X be a Banach space and T (·) be a relatively weakly

compact C0-semigroup on X. Then X = Xr ⊕Xs, where

Xr := lin
{
x ∈ X : T (t)x = eiαtx for some α ∈ R and all t ≥ 0

}
Xs :=

{
x ∈ X : 0 is a weak accumulation point of {T (t)x : t ≥ 0}

}
.

We refer to Arendt, Batty, Hieber, Neubrander [4, Theorem 5.4.11] for an individual

version of the above theorem.

Remark 0.24. If Pσ(A) ∩ iR = {0}, then the mean ergodic projection coincides with

the projection from the Glicksberg–Jacobs–de Leeuw decomposition.

We now state the decomposition theorem of Jacobs–Glicksberg–de Leeuw for C0-

semigroups with respect to the strong operator topology.

Theorem 0.25. Let X be a Banach space and T (·) be relatively compact in the strong

operator topology, i.e., for every x ∈ X the orbit {T (t)x, t ≥ 0} is relatively compact in

X. Then X = Xr ⊕Xs for

Xr := lin{x ∈ X : T (t)x = eiαtx for some α ∈ R and all t ≥ 0},

Xs := {x ∈ X : ‖T (t)x‖ → 0 as t→∞}.

The proof follows as in the discrete case directly from Theorem 0.23, the fact that for

compact sets weak convergence implies convergence, and Lemma 2.4 (Chapter 2).

For an individual version of Theorem 0.25 see Arendt, Batty, Hieber, Neubrander [4,

Theorem 5.4.6].

Remark 0.26. Note that relative compactness of every orbit is also a necessary con-

dition for the decomposition given in Theorem 0.25 by Lemma 0.6 assuming boundedness

of the semigroup.

The above decomposition holds, for instance, for bounded C0-semigroups with gener-

ator having compact resolvent or for eventually compact C0-semigroups, see Engel, Nagel

[31, Corollary V.2.15].
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0.6. Spectral mapping theorems. For the study of stability of C0-semigroups it

is very important to find a useful characterisation of the growth bound of a C0-semigroup

in terms of the generator. In particular, the equality

s(A) = ω0(T )

is of special interest. Since it does not hold in general, one looks for sufficient conditions

implying the equality. A class of such conditions is given by so called spectral mapping

theorems which are the subject of this subsection.

We begin with the classical spectral mapping theorem, the most natural one coming

from the philosophy that a C0-semigroup is an exponential function of its generator.

Definition 0.27. Let T (·) be a C0-semigroup on a Banach space X with generator

A. We will say that the semigroups satisfies the spectral mapping theorem (or the spectral

mapping property) if

σ(T (t)) \ {0} = etσ(A) for every t > 0.

The spectral mapping theorem always holds for the point and residual spectrum, see

Engel, Nagel [31, Theorem IV.3.7]:

Proposition 0.28. For a C0-semigroup T (·) on a Banach space X and its generator

A the identities

Pσ(T (t)) \ {0} = etPσ(A),

Rσ(T (t)) \ {0} = etRσ(A)

hold for every t ≥ 0.

The next theorem shows that the spectral mapping theorem holds for several important

classes of C0-semigroups.

Theorem 0.29. (see Engel, Nagel [31, Cor. IV.3.12]) The spectral mapping theorem

holds for all eventually norm continuous C0-semigroups, in particular for the following

classes of semigroups:

(i) uniformly continuous semigroups (or, equivalently, for semigroups with bounded gen-

erators),

(ii) eventually compact semigroups,

(iii) analytic semigroups,

(iv) eventually differentiable semigroups.

However, already for multiplication semigroups the spectral mapping theorem can fail.

Example 0.30. Let T (·) be the multiplication semigroup on l2, i.e.,

T (x1, x2, . . .) = (etq1x1, e
tq2x2, . . .)

for the sequence (qn)∞n=1 given by qn := 1
n

+ in. Then

1 ∈ σ(T (2π)) = {e2π/n : n ∈ N},
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while

1 /∈ {e2π/n : n ∈ N} = etσ(A).

So the spectral mapping theorem does not hold.

In the following, we mention some weaker forms of a spectral mapping theorem.

Definition 0.31. Let T (·) be a C0-semigroup on a Banach space X with generator

A. We say that the semigroups satisfies the weak spectral mapping theorem (or the weak

spectral mapping property) if

σ(T (t)) \ {0} = etσ(A) \ {0} for every t > 0.

Every multiplication semigroup on the spaces C0(Ω) and Lp(Ω, µ) satisfies the weak

spectral mapping theorem, see Engel, Nagel [31, Prop. IV.3.13]. Consequently, we obtain

(by the spectral theorem) that every semigroup of normal operators on a Hilbert space

has the weak spectral mapping property.

Moreover, the weak spectral mapping theorem holds for every bounded C0-group on

a Banach space X, see Engel, Nagel [31, Prop. IV.3.13], and, more generally, for every

C0-group with so-called non-quasianalytic growth, see Huang [61] and Huang, Nagel [96]

for details.

Definition 0.32. Let T (·) be a C0-semigroup on a Banach space X with generator

A. We say that the semigroup satisfies the weak circular spectral mapping theorem (or the

weak circular spectral mapping property) if

Γ · σ(T (t)) \ {0} = Γ · etσ(A) \ {0} = etσ(A)+iR \ {0} for every t > 0.

Concrete examples of C0-semigroups satisfying the weak circular spectral mapping theo-

rem arise, e.g., from neutral differential equations, flows on networks and delay equations.

We refer to Greiner, Schwarz [48], Kramar, Sikolya [74] and Bátkai, Eisner, Latushkin

[6], respectively.

Even the weak circular spectral mapping theorem allows characterisations of stability

properties of C0-semigroups in terms of the spectrum of its generator.

Theorem 0.33. For a C0-semigroup T (·) on a Banach space X with generator A

satisfying the weak circular spectral mapping theorem the equality

ω0(T ) = s(A)

holds. Moreover, if (a + iR) ∩ σ(A) = ∅ for some a ∈ R, then there exist M, ε > 0 such

that X = X1 ⊕X2 and

(1) ‖T (t)x‖ ≤Me(a−ε)t for every x ∈ X1 and t ≥ 0,

(2) ‖T (t)x‖ ≥ 1
M
e(a+ε)t for every x ∈ X2 and t ≥ 0.

The first assertion follows directly from the weak circular spectral mapping theorem and

the formula r(T (t)) = etω0(T ). For an elegant proof of the second part using spectral

projection technique see Engel, Nagel [31, Prop. V.1.15].
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The following theorem gives an exact characterisation of the spectrum of a C0-semigroup

in terms of the generator, see Nagel (ed.) [95, Theorems A-III.7.8 and 7.10].

Theorem 0.34. (Greiner’s Spectral Mapping Theorem) Let T (·) be a C0-semigroup

on a Banach space X with generator A, λ ∈ C and t > 0. Then the following assertions

are equivalent.

(i) etλ ∈ ρ(T (t)).

(ii) Λ := {λ+ 2πk
t

: k ∈ Z} ⊂ ρ(A) and the resolvent of A is Cesáro bounded on Λ, i.e.,

sup
N∈N

1

2N + 1

∥∥∥∥∥
N∑

k=−N

R

(
λ+

2πk

t
, A

)∥∥∥∥∥ <∞.

In addition, if X is a Hilbert space, then the conditions above are equivalent to

(ii*) Λ := {λ+ 2πk
t

: k ∈ Z} ⊂ ρ(A) and the resolvent of A is bounded on Λ, i.e.,

sup
k∈N

∥∥∥∥R(λ+
2πk

t
, A

)∥∥∥∥ <∞.

0.7. Cogenerator. A powerful tool for the investigation of a C0-semigroup is its

cogenerator. The cogenerator can be obtained easily from the generator (see formula (3)

below), it is a bounded operator, and, as we will see later, it reflects many properties of

the semigroup.

It is defined as follows.

Definition 0.35. Let A generate a C0-semigroup T (·) on a Banach space X satisfying

1 ∈ ρ(A). The operator V defined by

V := (A+ I)(A− I)−1 ∈ L(X)

is called the cogenerator of T (·).

Remark 0.36. The identity

(3) V = 1− 2R(1, A)

implies that V − I has a densely defined inverse (V − I)−1 = 1
2
(A− I). In particular,

A = (V + I)(V − I)−1 = 1 + 2(V − I)−1

holds, i.e., the generator is also the (negative) Cayley transform of the cogenerator.

Note that the cogenerator determines the generator, and therefore the semigroup,

uniquely. As a further consequence of (3) one has the following characterisation of the

spectrum of V using the spectral mapping theorem for the resolvent, see Engel, Nagel

[31, Theorem IV.1.13].

Proposition 0.37. The spectrum of the cogenerator V is

σ(V ) \ {1} =

{
λ+ 1

λ− 1
: λ ∈ σ(A)

}
.

The same relation holds for the point spectrum, residual point spectrum and approximative

point spectrum, respectively.
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On Hilbert spaces there are many parallels between the properties of a C0-semigroup

and of its cogenerator. We begin with an easy proposition, see Foiaş, Sz.-Nagy [120, p.

141]. The complete equivalence is in Theorem 0.39 below.

Proposition 0.38. Let T (·) be a contractive C0-semigroup on a Hilbert space H.

Then its cogenerator is a contraction.

Proof. Denote by A the generator of T (·) and by V its cogenerator. By the Lumer–

Phillips Theorem (see, e.g., Engel, Nagel [31, Theorem II.3.15]) A is dissipative and hence

‖(A+ I)x‖2 − ‖(A− I)x‖2 = 4Re 〈Ax, x〉 ≤ 0 ∀x ∈ D(A).

Therefore ‖V x‖ = ‖(A+I)(A−I)−1x‖ ≤ ‖(A−I)(A−I)−1x‖ = ‖x‖ for every x ∈ H. �

It is remarkable that for operators on Hilbert spaces there is a very simple characteri-

sation of operators being the cogenerator of a contraction semigroup. This is the following

theorem due to Foiaş, Sz.-Nagy [120, Theorem III.8.1]. Our proof (see also Katz [70]) is

much simpler than the original one which uses a special functional calculus to construct

the semigroup.

Theorem 0.39. Let V be a contraction on a Hilbert space H. Then V is a cogenerator

of a contractive C0-semigroup if and only if 1 /∈ Pσ(V ).

Proof. Since, by assumption, the operator I − V is injective, we can define

A := −(I + V )(I − V )−1 with D(A) := rg(I − V ).

Note that A = I − 2(I − V )−1 holds.

We show first that Re 〈Ax, x〉 ≤ 0 for every x ∈ D(A). Indeed, for x ∈ D(A) and

y := (V − I)−1x we have

〈Ax, x〉 = 〈(I + V )(V − I)−1x, x〉 = 〈(I + V )y, (V − I)y〉

= ‖V y‖2 − ‖y‖2 + 2i · Im 〈y, V y〉

and therefore Re 〈Ax, x〉 ≤ 0.

We observe further that (I − A)−1 = 1
2
(I − V ) and therefore 1 ∈ ρ(A). Moreover,

since V is mean ergodic, we have by Proposition 0.12 rg(I − V ) = H, so the operator A

is densely defined.

The assertion follows now directly from the Lumer–Phillips Theorem (see, e.g., Engel,

Nagel [31, Theorem II.3.15]). �

Further, many properties of a contractive semigroup on a Hilbert space can be seen

from its cogenerator. The following is again due to Foiaş, Sz.-Nagy, see [120, Sections

III.8–9].

Theorem 0.40. Let T (·) be a contractive C0-semigroup on a Hilbert space with co-

generator V . Then T (·) is normal, self-adjoint, isometric or unitary if and only if V is

normal, self-adjoint, isometric or unitary, respectively.
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Note that the equivalence of all except the isometry property follows from the spectral

theorem in its multiplicator form.

The cogenerator approach allows to transfer many properties of single operators to

C0-semigroups in a short and elegant way. However, it is not yet clear how this approach

extends to C0-semigroups on general Banach spaces.

0.8. Inverse Laplace transform formula for C0-semigroups. Our main tool

for the resolvent approach to stability of C0-semigroups is an inverse Laplace transform

formula for the semigroup.

Theorem 0.41. (see Kaashoek, Verduyn Lunel [67], van Neerven [99, Thm.1.3.3])

Let T (·) be a C0-semigroup on a Banach space X with generator A. Then

T (t)x = lim
N→∞

1

2πN

∫ N

−N

e(a+is)tR(a+ is, A)xds

= lim
N→∞

1

2πNt

∫ N

−N

e(a+is)tR2(a+ is, A)xds

holds for all a > s0(A), t > 0 and x ∈ X.

We now consider a linear densely defined operator A satisfying s0(A) <∞ for which

it is not known whether it is a generator or not.

The basis of our approach is the following condition

(4) 〈R(a+ i·, A)2x, y〉 ∈ L1(R) for all x ∈ X, y ∈ X ′,

where a > s0(A). Indeed, this property allows us to construct the inverse Laplace trans-

form of the resolvent of the operator A which actually yields a semigroup. Note that

this semigroup need not be strongly continuous. (See also Kaiser, Weis [68] for a related

result.)

Theorem 0.42. (Laplace inversion formula, see Eisner [24]) Let A be a densely de-

fined linear operator on a Banach space X satisfying s0(A) < ∞ and assume that the

condition (4) holds for all a > s0(A). Then the bounded linear operators defined by

T (0) = I and

T (t)x :=
1

2π

∫ ∞

−∞
e(a+is)tR(a+ is, A)xds(5)

=
1

2πt

∫ ∞

−∞
e(a+is)tR(a+ is, A)2xds for t > 0,(6)

where the improper integrals converge in norm, are independent of a > s0(A). In addition,

the family (T (t))t≥0 is a semigroup which is strongly continuous on (0,∞) and satisfies

(7) lim
t→0+

T (t)x = x for all x ∈ D(A2).

Finally, we have

(8) R(z, A)x =

∫ ∞

0

e−ztT (t)x ds for all x ∈ D(A), Re z > s0(A).
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Proof. We first prove that for a densely defined operator A with s0(A) <∞

(9) ‖R(z, A)x‖ → 0 as |z| → ∞, Re z ≥ a,

holds for every a > s0(A) and x ∈ X. Indeed, take a > s0(A). Then there exists a

constant M > 0 such that ‖R(z, A)‖ ≤ M for all z ∈ C with Re z ≥ a. Take now

x ∈ D(A) and z with Re z ≥ a. Then

‖R(z, A)x‖ =
1

|z|
‖x+R(z, A)Ax‖ ≤ 1

|z|
(‖x‖+M‖Ax‖),

and therefore we have

‖R(z, A)x‖ → 0, |z| → ∞, Re z ≥ a

for all x ∈ D(A). Since D(A) is dense in X and the resolvent of A is uniformly bounded

on {z : Re z ≥ a}, this is true for all x ∈ X and property (9) is proved.

Let us define now T (0) := I and

(10) T (t)x :=
1

2π

∫ ∞

−∞
e(a+is)tR(a+ is, A)xds

(the inverse Laplace transform of the resolvent) for all x ∈ X, t > 0 and some a > 0.

We prove that the integral on the right hand side of (10) converges for all a > 0 and all

x ∈ X and does not depend on a > 0. For a fixed t > 0 using d
dz
R(z, A) = −R(z, A)2, we

obtain for any r > 0

it

∫ r

−r

e(a+is)tR(a+ is, A)xds = e(a+ir)tR(a+ ir, A)x− e(a−ir)tR(a− ir, A)x

+ i

∫ r

−r

e(a+is)tR(a+ is, A)2xds.

By (9), the first two summands converge to zero if r → +∞. Therefore

(11) t

∫ ∞

−∞
e(a+is)tR(a+ is, A)xds =

∫ ∞

−∞
e(a+is)tR(a+ is, A)2xds,

and by condition (4) the integral on the right hand side converges. Indeed, for all r, R ∈ R,

all x ∈ X and for B∗ = {y ∈ X∗ : ‖y‖ = 1} we have, by the uniform boundedness

principle, that∥∥∥∥∫ R

r

eistR(a+ is, A)2xds

∥∥∥∥ = sup
y∈B∗

∫ R

r

〈eistR(a+ is, A)2x, y〉ds

≤ sup
y∈B∗

‖〈R(a+ i·, A)2x, y〉‖1 ≤ L1(a)‖x‖

holds for some constant L1(a) independend on x. This implies the convergence of the

integral on the right hand side of (11).

Therefore the integral on the right hand side of (10) converges and

(12) T (t)x =
1

2πt

∫ ∞

−∞
e(a+is)tR(a+ is, A)2xds
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for every x ∈ X and t > 0. We show next that T (t) does not depend on a > 0. Indeed,

by Cauchy’s theorem we obtain∫ r

−r

e(a+is)tR(a+ is, A)2xds−
∫ r

−r

e(b+is)tR(b+ is, A)2xds

= −
∫ b

a

eτ+irR(τ + ir, A)2xdτ +

∫ b

a

eτ−irR(τ − ir, A)2xdτ

for all a, b > s0(A). By (9) and by a, b > s0(A) the right hand side converges to zero if

r → +∞. So we have proved that T (t) does not depend on a > 0 and formula (12) holds.

From (12) we obtain

(13) |〈T (t)x, y〉| ≤ eat

2πt
‖〈R(a+ i·, A)2x, y〉‖1

and, by the uniform boundedness principle, each T (t) is a bounded linear operator satis-

fying

(14) ‖T (t)‖ ≤ Ceat

t
, t > 0,

for some constant C depending on a > s0(A).

As in Kaiser, Weis [68, Lemma 4.2] we obtain that T (t + s)x = T (t)T (s)x for all

x ∈ D(A4). Since D(A4) is dense (see, e.g., Engel, Nagel [31, pp. 53–54]), the semigroup

law holds for all x ∈ X. Let us prove that (8) holds for all x ∈ D(A). Take x ∈ D(A),

Re z > s0(A) and a ∈ (s0(A),Re z). Then, by Fubini’s Theorem and Cauchy’s Integral

Theorem for bounded analytic functions on a right half-plane, we have∫ ∞

0

e−ztT (t)xdt

=
1

2π

∫ ∞

0

e−zt

∫ ∞

−∞
e(a+is)tR(a+ is, A)xdsdt

=
1

2π

∫ ∞

−∞

{∫ ∞

0

e(a+is−z)tdt

}
R(a+ is, A)Ax+ x

a+ is
ds

=
1

2π

∫ ∞

−∞

R(a+ is, A)Ax+ x

(a+ is)(z − a− is)
ds =

R(z, A)Ax+ x

z
= R(z, A)x,

and equality (8) is proved.

Finally, we show strong continuity of our semigroup on (0,∞). Since by (14) the

semigroup is uniformly bounded on all compact intervals in (0,∞), it is enough to show

that (7) holds for all x ∈ D(A2). So take x ∈ D(A2) and a > 0. By Kaiser, Weis [68,

Lemma 4.1 and 4.2] we have

T (t)x− x =
1

2π

∫ ∞

−∞
e(a+is)tR(a+ is, A)Ax

a+ is
ds

and ‖R(a+ is, A)Ax‖ ≤ c‖A2x‖
1+|a+is| for some constant c. Therefore, by Lebesgue’s theorem,

(15) lim
t→0+

(T (t)x− x) =
1

2π

∫ ∞

−∞

R(a+ is, A)Ax

a+ is
ds

and the integral on the right hand side converges absolutely.
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We now show that

(16)

∫ ∞

−∞

R(a+ is, A)Ax

a+ is
ds = 0.

Again by Cauchy’s Theorem and (9) we have∥∥∥∥∫ r

−r

R(a+ is, A)Ax

a+ is
ds

∥∥∥∥ =

∥∥∥∥∥
∫ π/2

−π/2

ireiφ

a+ reiφ
R(a+ reiφ, A)Ax dφ

∥∥∥∥∥
≤
∫ π/2

−π/2

‖R(a+ reiφ, A)Ax‖dφ→ 0, r →∞.

So equality (16) is proved, and (15) implies (7) and the strong continuity of our semigroup

on (0,∞). �





CHAPTER 2

Stability of linear operators

1. Power boundedness

In this section we investigate operators on power boundedness and on the related

property of polynomial boundedness.

1.1. Preliminaries. We first introduce power bounded operators and show some

easy properties.

Definition 1.1. A linear operator T on a Banach space X is called power bounded if

supn∈N ‖T n‖ <∞.

An immediate necessary spectral condition for power bounded operators is the follow-

ing.

Remark 1.2. The spectral radius r(T ) of a power bounded operator T on a Banach

space X satisfies

r(T ) = inf
n∈N

(‖T n‖)
1
n ≤ 1,

and hence σ(T ) ⊂ {z : |z| ≤ 1}.

Note that r(T ) ≤ 1 does not imply power boundedness as can be seen from T =(
1 1

0 1

)
on C2. Moreover, we refer to Subsection 1.3 for more sophisticated examples and

a quite complete description of the possible growth of the powers of an operator satisfying

r(T ) ≤ 1, see Example 1.12. However, the case r(T ) < 1 automatically implies a much

stronger assertion.

Proposition 1.3. Let X be a Banach space and T ∈ L(X). The following assertions

are equivalent.

(a) r(T ) < 1.

(b) ‖T n‖ −→
n→∞

0.

(c) T is uniformly exponentially stable, i.e., there exist constants M ≥ 0, ε > 0 such

that ‖T n‖ ≤Me−εn for all n ∈ N.

The proof follows from the formula r(T ) = limn∈N(‖T n‖) 1
n .

Remark 1.4. It is interesting that for power bounded operators on separable Banach

spaces some more information on the spectrum is known. For example, Jamison proved

that for every power bounded operator T on a separable Banach space X the boundary

25
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point spectrum σP (T ) ∩ Γ is countable, see Jamison [64]. For more information on this

phenomena, see e.g. Ransford [107].

We will see later that countability of the entire spectrum on the unit circle plays an

important role for strong stability of the operator (see Subsection 2.3).

The following easy lemma is useful to understand power boundedness.

Lemma 1.5. Let T be power bounded on a Banach space X. Then there exists an

equivalent norm on X such that T becomes a contraction.

Proof. Take ‖x‖1 := supn∈N∪{0} ‖T nx‖ for every x ∈ X. �

Remark 1.6. It is a difficult problem in operator theory to characterise those power

bounded operators on Hilbert spaces which are similar to a contraction for a Hilbert space

norm. Foguel [35] showed that this is not always true (see also Halmos [55]).

1.2. Characterisation via resolvent. We discuss in this subsection the connection

between power boundedness and behaviour of the resolvent near the unit circle.

We begin with the following propostion which is analogous to one implication in the

famous Hille–Yosida theorem for C0-semigroups.

Proposition 1.7. Let T be a power bounded operator on a Banach space X. Then

T satisfies the strong Kreiss resolvent condition (also called iterated resolvent condition),

i.e., there exists a constant M such that

(17) ‖Rn(λ, T )‖ ≤ M

(|λ| − 1)n
for all n ∈ N and λ with |λ| > 1.

It is surprising that the converse implication in Proposition 1.7 is not true, i.e., the

discrete analogue of the Hille-Yosida theorem does not hold. For a counterexample with

the maximal possible growth of ‖T n‖ being equal to
√
n, see Lubich, Nevanlinna [81].

For a systematic discussion of the strong Kreiss condition and the related uniform Kreiss

condition we refer the reader to Gomilko, Zemánek [46], Montes-Rodŕıguez, Sánchez-

Álvarez and Zemánek [88], see also Nagy, Zemánek [97] and Nevanlinna [101].

Note that the question whether the strong Kreiss resolvent condition implies power

boundedness for operators on Hilbert spaces is still open.

Recall that condition (17) for n = 1 is called the Kreiss resolvent condition and plays

an important role in numerical analysis. By the celebrated Kreiss matrix theorem, it is

equivalent to power boundedness for operators acting on finite-dimensional spaces. On

infinite-dimensional spaces this is no longer true, see Subsection 1.3 for details. We also

mention here the Ritt resolvent condition (also called Tadmor–Ritt resolvent condition)

‖R(λ, T )‖ ≤ const

|λ− 1|
for all λ with |λ| > 1

which implies power boundedness, see Nagy, Zemánek [97]. However, this condition also

implies σ(T ) ∩ Γ ⊂ {1} and hence is far from being necessary for power boundedness of

general operators. We refer to Shields [116], Lubich, Nevanlinna [81], Nagy, Zemánek
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[97], Borovykh, Drissi, Spijker [10], Nevanlinna [101], Spijker, Tracogna, Welfert [117],

Tsedenbayar, Zemánek [122] and Vitse [125]–[127] for systematic studies of operators

satisfying Kreiss and Ritt resolvent conditions.

In the following we consider conditions not involving all powers of the resolvent and

characterising power boundedness at least on Hilbert spaces.

We first state an easy but very useful lemma.

Lemma 1.8. Let X be a Banach space and T ∈ L(X). Then

(18) T n =
rn+1

2π

∫ 2π

0

eiϕ(n+1)R(reiϕ, T )dϕ =
rn+2

2π(n+ 1)

∫ 2π

0

eiϕ(n+1)R2(reiϕ, T )dϕ

for every n ∈ N and r > r(T ).

Proof. The first part of (18) follows directly from the Dunford functional calculus

and the second by integration by parts. �

The main result of this subsection is the following theorem which is a discrete analogue

of a characterisation of bounded C0-semigroups due to Gomilko [45] and Shi, Feng [115].

Theorem 1.9. Let X be Banach space and T ∈ L(X) with r(T ) ≤ 1. Consider the

following assertions.

(a) lim supr→1+(r − 1)
∫ 2π

0
‖R(reiϕ, T )x‖2dϕ <∞ for all x ∈ X,

lim supr→1+(r − 1)
∫ 2π

0
‖R(reiϕ, T ′)y‖2dϕ <∞ for all y ∈ X ′;

(b) lim supr→1+(r − 1)
∫ 2π

0
|〈R2(reiϕ, T )x, y〉|dϕ <∞ for all x ∈ X, y ∈ X ′;

(c) T is power bounded.

Then (a)⇒(b)⇒(c). Moreover, if X is a Hilbert space, then (a)⇔(b)⇔(c).

Proof. By the Cauchy-Schwarz inequality we have∫ 2π

0

|〈R2(reiϕ, T )x, y〉|dϕ =

∫ 2π

0

|〈R(reiϕ, T )x,R(reiϕ, T ′)y〉|dϕ

≤
(∫ 2π

0

‖R(reiϕ, T )x‖2dϕ

) 1
2
(∫ 2π

0

‖R(reiϕ, T ′)y‖2dϕ

) 1
2

for all x ∈ X, y ∈ X ′ and r > r(T ). This proves the implication (a)⇒(b).

For the implication (b)⇒(c) take n ∈ N and r > 1. By Lemma 1.8 we have

|〈T nx, y〉| ≤ rn+2

2π(n+ 1)

∫ 2π

0

|〈R2(reiϕ)x, y〉|dϕ

for every x ∈ X and y ∈ X ′. By (b) and the uniform boundedness principle there exists

a constant M > 0 such that

(r − 1)

∫ 2π

0

|〈R2(reiϕ, T )x, y〉|dϕ ≤M‖x‖‖y‖ for every x ∈ X, y ∈ X ′ and r > 1.

Therefore we obtain

(19) |〈T nx, y〉| ≤ Mrn+2

2π(n+ 1)(r − 1)
‖x‖‖y‖.
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Take now r := 1 + 1
n+1

. Then rn+2

(n+1)(r−1)
=
(
1 + 1

n+1

)n+2 → e as n→∞ and we obtain by

(19) that supn∈N ‖T n‖ <∞.

For the second part of the theorem assume that X is a Hilbert space and T is power

bounded. Then, by Lemma 1.8 and Parseval’s equality,

(20) (r − 1)

∫ 2π

0

‖R(reiϕ, T )x‖2dϕ =
r − 1

r

∞∑
n=0

‖T nx‖
rn

= (1− s)
∞∑

n=0

sn‖T nx‖

for s := 1
r
< 1. Note that the left hand side of (20) is the Abel mean of the sequence

{‖T nx‖}∞n=0, so it is bounded by power boundedness of T . This proves the first part of

(a).

Analogously we obtain the second part of (a) using the power boundedness of T ′. �

Remarks 1.10. 1.) As can be seen from the proof, Theorem 1.9 can be also formulated

for a single weak orbit {〈T nx, y〉 : n ∈ N}. More precisely, for a fixed pair x ∈ X and

y ∈ X ′ condition (a) implies (b) and (b) implies boundedness of the corresponding weak

orbit and the converse implications hold for Hilbert spaces.

2.) Moreover, one can replace condition (a) by

lim sup
r→1+

(r − 1)

∫ 2π

0

‖R(reiϕ, T )x‖pdϕ <∞,

lim sup
r→1+

(r − 1)

∫ 2π

0

‖R(reiϕ, T ′)y‖qdϕ <∞

for some p, q > 1 (depending on x and y) with 1
p

+ 1
q

= 1.

The important question to find a useful characterisation of power boundedness on

Banach spaces remains open.

1.3. Polynomial boundedness. In this subsection we discuss the related notion of

polynomial boundedness which surprisingly is much easier to characterise.

Definition 1.11. A bounded linear operator T on a Banach space X is called poly-

nomially bounded if ‖T n‖ ≤ p(n) for some polynomial p and all n ∈ N.

Without loss of generality we will assume the polynomial to be of the form p(t) = Ctd.

Note that a polynomially bounded operator T again satisfies r(T ) ≤ 1. The following

example shows that the converse implication is far from being true.

Example 1.12. (Operators satisfying r(T ) ≤ 1 with non-polynomial growth.) Con-

sider the Hilbert space

H := l2a =

{
{xn}∞n=1 ⊂ C :

∞∑
n=1

|xn|2a2
n <∞

}
for a positive sequence {an}∞n=1 satisfying

(21) an+m ≤ anam for all n,m ∈ N
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with the natural scalar product. On H take the right shift operator T (x1, x2, x3, . . .) :=

(0, x1, x2, . . .). Then for x = (x1, x2, . . .) ∈ X we have by (21)

‖T kx‖2 = ‖(0, . . . , 0, x1, x2, . . .)‖2 =
∞∑

n=1

a2
n+k|xn|2 ≤ a2

k

∞∑
n=1

a2
n|xn|2 = a2

k‖x‖2

for every k ∈ N. Moreover, ‖T ke1‖ = ‖ek‖ = ak+1 = ak+1

a1
‖e1‖, where ek denotes a

sequence having the k-th component equal to 1 and others equal to zero. Therefore we

have the norm estimate
ak+1

a1

≤ ‖T k‖ ≤ ak,

which implies that the powers of T have the same growth as the sequence {an}∞n=1. Now

every sequence having the natural property (21) and growing faster than every polyno-

mial but slower than any exponential function with positive exponent yields an operator

growing non-polynomially and satisfying r(T ) ≤ 1.

As a concrete example of such sequence consider

an := (n+ 5)ln(n+5) = eln
2(n+5).

The assertion about the growth is clear and we only need to check condition (21). For

n,m ≥ 6 we have to prove that ln2(n+m) ≤ ln2 n+ln2m. This follows from the following

two properties of the function x 7→ ln2 x:

f(2x) ≤ 2f(x),(22)

f ′′(x) < 0,(23)

satisfied for x ≥ 6. Indeed, from the conditions above we see that the inequality

f(x+ y)− f(x) ≤ f(y)

holds for x = y and for a fixed y the derivative of the left hand side is negative, so the

inequality holds for all x, y ≥ 6. To finish this example we mention that for the function

f : x 7→ ln2 x condition (23) is immediate and condition (22) follows from the fact that

the inequality ln2(2x) ≤ 2 ln2(x) is equivalent to 2x ≤ x
√

2 which is satisfied for x ≥ 6. So

we constructed an operator whose powers grow as nln n.

Analogously one can construct an operator with powers growing as nlnα n for any α ≥ 1.

Note further that one can also use the idea of Zabczyk (in the continuous case) using

matrices with increasing dimensions (see, e.g., Engel, Nagel [31, Counterexample IV.3.4]

or the original paper of Zabczyk [138]) to construct an operator with spectral radius 1

having non-polynomially growing powers. Note that with this construction one does not

have information about the actual growth of the powers. We do not go into the details.

The following characterisation of polynomial boundedness uses the resolvent of T in

a neighbourhood of the unit circle, see Eisner, Zwart [29]. See also Lubich, Nevanlinna

[81] for a related result concerning all powers of the resolvent.
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Theorem 1.13. Let T be a bounded operator on a Banach space X with r(T ) ≤ 1. If

(24) lim sup
|z|→1+

(|z| − 1)d‖R(z, T )‖ <∞ for some d ≥ 0,

then

(25) ‖T n‖ ≤ Cnd for some C > 0 and all n ∈ N.

Moreover, if (25) holds for d = k, then (24) holds with d = k + 1.

Proof. Assume that condition (24) holds and take n ∈ N and r > 1. By Lemma 1.8

and (24) we have

‖T n‖ ≤ rn+1

2π

∫ 2π

0

‖R(reiϕ)‖dϕ ≤ Mrn+1

(r − 1)k

for M := lim sup|z|→1+(|z| − 1)d‖R(z, T )‖. Taking r := 1 + 1
n

we obtain ‖T n‖ ≤ 2Menk

and the first part of the theorem is proved.

For the second part we assume that condition (25) holds for d = k. Take n ∈ N, r > 1,

ϕ ∈ [0, 2π), and q := 1
r
< 1. Then

‖R(reiϕ, T )‖ ≤
∞∑

n=0

‖T n‖
rn+1

≤ Cq
∞∑

n=0

nkqn ≤ C
k−1∑
n=0

nk + C
∞∑

n=k

nkqn

≤ C
k−1∑
n=0

nk + CC̃qk d
k

dqk

∞∑
n=0

qn ≤ C
k−1∑
n=0

nk +
CC̃k!

(1− q)k+1
,

where C̃ is such that nk ≤ C̃ ·n(n− 1) . . . (n− k+ 1) for all n ≥ k. For k = 0 we suppose

the first sum on the right hand side to be equal to zero. Substituting q by 1
r

we obtain

condition (24) for d = k + 1. �

Remark 1.14. Notice that condition (24) for 0 ≤ d < 1 already implies r(T ) < 1

and hence uniform exponential stability by the inequality ‖R(λ, T )‖ ≥ 1
dist(λ,σ(T ))

. So

for 0 ≤ d < 1 Theorem 1.13 does not give the best information about the growth of

the semigroup. Nevertheless, for d = 1, i.e., for the above mentioned Kreiss resolvent

condition, the growth stated in Theorem 1.13 is the best possible and the exponent d in

(25) cannot be decreased in general, see Shields [116]. For d > 1 it is not clear whether

Theorem 1.13 gives the best possible growth exponent.
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2. Strong stability

In this section we consider a weaker stability concept than the norm stability discussed

in Proposition 1.3 and replace uniform by pointwise convergence.

2.1. Preliminaries. We now introduce strongly stable operators and present some

fundamental properties of them.

Definition 2.1. An operator T on a Banach space X is called strongly stable if

‖T nx‖ −→
n→∞

0 for every x ∈ X.

Our aim is to investigate and characterise this property. In particular, one looks for

characterisations not involving all powers of the operator.

The following example is, in a certain sense, typical for Hilbert spaces as we will see

in Theorem 2.7.

Example 2.2. Consider H := l2(N, H0) for a Hilbert space H0 and T ∈ L(H) defined

by

(26) T (x1, x2, x3, . . .) := (x2, x3, . . .).

The operator T is called the left shift on H. It is evident that T is strongly stable.

Analogously, the operator defined by formula (26) is also strongly stable on the spaces

c0(N, X), lp(N, X) for a Banach space X and 1 ≤ p <∞, but not on l∞(N, X).

The following property of strongly stable operators is an easy consequence of the

uniform boundedness principle.

Remark 2.3. Every strongly stable operator T on a Banach spaceX is power bounded

which in particular implies σ(T ) ⊂ {z : |z| ≤ 1}. Moreover, the property Pσ(T ) ∩ Γ = ∅
is necessary for strong stability.

We now present an elementary property which is very helpful to show strong stability.

Lemma 2.4. Let X be a Banach space, T ∈ L(X) be power bounded and x ∈ X.

(a) If there exists a subsequence {nk}∞k=1 ⊂ N such that ‖T nkx‖ → 0, then ‖T nx‖ → 0.

(b) If T is a contraction, then there exists limn→∞ ‖T nx‖.

Proof. The second assertion follows from the fact that for a contraction the sequence

{‖T nx‖}∞n=1 is non-increasing. For the first one take ε > 0, M := supn∈N ‖T n‖ and k ∈ N
such that ‖T nkx‖ ≤ ε. Then we have

‖T nx‖ ≤ ‖T n−nk‖‖T nkx‖ ≤Mε

for every n ≥ nk, and (a) proved. �
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Remark 2.5. Assertion (b) in the above lemma is no longer true for power bounded

operators. This can be easily seen from the following example. Consider the Hilbert space

of all l2-sequences endowed with the norm

‖x‖ :=

(
∞∑

n=1

[
|x2n−1|2 +

1

4
|x2n|2

]) 1
2

.

On this space consider the right shift operator which is obviously power bounded. We see

that for the vector e1 = (1, 0, 0, . . .) we have ‖T 2n−1e1‖ = 1 and ‖T 2ne1‖ = 1
2

for every

n ∈ N which implies

1

2
= lim inf

n→∞
‖T ne1‖ 6= lim sup

n→∞
‖T ne1‖ = 1.

Finally, we state a surprising and nontrivial result of Müller [89] on the asymptotic

behaviour of operators which are not uniformly exponentially stable.

Theorem 2.6. [V. Müller] Let T be a bounded linear operator on a Banach space X

with r(T ) ≥ 1. For every ε ∈ (0, 1) and {αn}∞n=1 ⊂ [0, 1] converging monotonically to 0

there exists x ∈ X with ‖x‖ = 1 such that

‖T nx‖ ≥ (1− ε)αn for every n ∈ N.

In other words, the orbits of a strongly but not uniformly exponentially stable operator

decrease arbitrary slowly. We refer to Müller [89] and [90] for more phenomena.

2.2. Hilbert spaces. The following classical result of Foiaş [33] and de Branges–

Rovnyak [11] (see also Sz.-Nagy, Foiaş [120, p. 95]) shows that for contractions on Hilbert

spaces Example 2.2 represents the general situation

Theorem 2.7. Let T be a strongly stable contraction on a Hilbert space H with r(T ) =

1. Then T is unitarily isomorphic to a left shift, i.e., there is a Hilbert space H0 and a

unitary operator U : H → H1 for some closed subspace H1 ⊂ l2(N, H0) such that UTU−1

is the left shift on l2(N, H0).

We note that for contractions on Hilbert spaces Theorem 2.6 follows from the above

theorem since the assertion of Theorem 2.6 obviously holds for a left shift.

An important question is to find necessary and sufficient conditions for strong stability

of C0-semigroups on Banach spaces. Up to now, there is no complete answer to this

question. Only on Hilbert spaces there is a resolvent condition for strong stability which

we will discuss in Subsection 2.4.

2.3. Sufficient spectral conditions. In this subsection we present sufficient condi-

tions for strong stability in terms of the spectrum of the operator on the unit circle.

The following theorem is the basis for a spectral characterisation of strong stability,

see Katznelson, Tzafriri [71].

Theorem 2.8. (Katznelson-Tzafriri, 1986) Let T be power bounded operator on a

Banach space X. Then ‖T n+1 − T n‖ → 0 as n→∞ if and only if σ(T ) ∩ Γ ⊂ {1}.
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For a short and elegant proof of this theorem see Vũ [128].

An immediate corollary concerning strong stability is the following.

Corollary 2.9. Let T be power bounded operator on a Banach space X with σ(T )∩
Γ ⊂ {1}. Then ‖T nx‖ → 0 as n→∞ for every x ∈ rg(I − T ).

On the basis of the Katznelson–Tzafriri theorem, Arendt, Batty [3] (in the continuous

case) and independently Lyubich, Vũ [85] proved the following beautiful result. We

remark that the authors used completely different methods.

Theorem 2.10. (Arendt–Batty–Lyubich–Vũ, 1988) Let T be power bounded on a Ba-

nach space X. Assume that

(i) Pσ(T ′) ∩ Γ = ∅;
(ii) σ(T ) ∩ Γ is countable.

Then T is strongly stable.

Note that for operators with relatively weakly compact orbits (in particular, for power

bounded operators on reflexive Banach spaces) condition (i) is equivalent to Pσ(T )∩Γ = ∅.

Remark 2.11. As one of many possible applications of the above theorem we present

the following stability result for positive operators: Let T be a positive power bounded

operator on a Banach lattice. Then T is strongly stable if Pσ(T ′)∩Γ = ∅ and σ(T )∩Γ 6= Γ.

Note that in this case the boundary spectrum σ(T )∩Γ is necessarily a finite union of roots

of unity. The proof follows from the Perron–Frobenius theory stating that the boundary

spectrum of a positive operator is multiplicatively cyclic (see Schaefer [114, Section V.4])

and Theorem 2.10.

The following result is a generalisation of the Arendt–Batty–Lyubich–Vũ theorem for

completely non-unitary contractions on Hilbert spaces (for the definition of completely

non-unitary operators see Remark 3.9).

Theorem 2.12. (Foiaş and Sz.-Nagy, see [120, Prop. II.6.7]) Let T be a completely

non-unitary contraction on a Hilbert space H. If

σ(T ) ∩ Γ has Lebesgue measure 0,

then T and T ∗ are both strongly stable.

See also Kérchy, van Neerven [72] for related results.

2.4. Characterisation via resolvent. In this subsection we pursue a resolvent ap-

proach to stability of operators introduced by Tomilov [124].

Our main result is the following being a discrete analogue to the spectral characteri-

sation given by Tomilov. For related results and discussion we refer to Tomilov [124].

Theorem 2.13. Let X be Banach space and T ∈ L(X) with r(T ) ≤ 1 and x ∈ X.

Consider the following assertions.
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(a) limr→1+(r − 1)
∫ 2π

0
‖R(reiϕ, T )x‖2dϕ = 0 and

lim supr→1+(r − 1)
∫ 2π

0
‖R(reiϕ, T ′)y‖2dϕ <∞ for all y ∈ X ′;

(b) ‖T nx‖ −→
n→∞

0.

Then (a) implies (b). Moreover, if X is a Hilbert space, then (a)⇔(b).

In particular, condition (a) for all x ∈ X implies strong stability of T and, in the case

of Hilbert space, is equivalent to it.

Proof. To prove the first part of the theorem we take x ∈ X, n ∈ N and r > 1. By

Lemma 1.8 and the Cauchy-Schwarz inequality we have

|〈T nx, y〉| ≤ rn+2

2π(n+ 1)

∫ 2π

0

|〈R2(reiϕ)x, y〉|dϕ

≤ rn+2

2π(n+ 1)

(∫ 2π

0

‖R(reiϕ, T )x‖2dϕ

) 1
2
(∫ 2π

0

‖R(reiϕ, T ′)y‖2dϕ

) 1
2

for every y ∈ X ′. By (a) and the uniform boundedness principle there exists a constant

M > 0 such that

(r − 1)

∫ 2π

0

‖R(reiϕ, T ′)y‖2dϕ ≤M‖y‖2 for every y ∈ X ′ and r > 0.

Therefore, we obtain

(27) ‖T nx‖ ≤ Mrn+2

2π(n+ 1)(r − 1)

(
(r − 1)

∫ 2π

0

‖R(reiϕ, T )x‖2dϕ

) 1
2

.

For r := 1+ 1
n+1

, we obtain rn+2

(n+1)(r−1)
=
(
1 + 1

n+1

)n+2 → e as n→∞, hence limn→∞ ‖T nx‖ =

0 by (27).

Assume now that X is a Hilbert space and T is strongly stable. Then by Lemma 1.8

and Parseval’s equality

(r − 1)

∫ 2π

0

‖R(reiϕ, T )x‖2dϕ = (r − 1)
∞∑

n=0

‖T nx‖
rn+1

= (1− s)
∞∑

n=0

sn‖T nx‖

for s := 1
r
< 1. The left hand side is the Abel mean of {‖T nx‖}. Therefore it converges

to zero as s→ 1 by the strong stability of T . This proves the first part of (a).

The second part of (a) follows from Theorem 1.9. �

By Theorem 1.9 we obtain immediately the following characterisation of strongly

stable operators on Hilbert spaces.

Corollary 2.14. Let T be a power bounded operator on a Hilbert space H and x ∈ X.

Then ‖T nx‖ → 0 if and only if

(28) lim
r→1+

(r − 1)

∫ 2π

0

‖R(reiϕ, T )x‖2dϕ = 0.

In particular, T is strongly stable if and only if (28) holds for every x ∈ H or for every x

in a dense set of H.
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It is an open question whether the converse direction in Theorem 2.13 and the assertion

of Corollary 2.14 hold for arbitrary Banach spaces. More generally, it is not clear what

kind of resolvent conditions characterise strong stability of operators on Banach spaces.
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3. Weak stability

We now consider stability of operators in the weak operator topology. Surprisingly,

this property is much more difficult to characterise than strong and uniform stability.

3.1. Preliminaries. We begin with the definition and some properties of weakly

stable operators.

Definition 3.1. Let X be a Banach space. An operator T ∈ L(X) is called weakly

stable if 〈T nx, y〉 −→
n→∞

0 for every x ∈ X and y ∈ X ′.

Note that by the uniform boundedness principle every weakly stable operator T on a

Banach space is power bounded and hence σ(T ) ⊂ {z : |z| ≤ 1}. Moreover, the spectral

conditions Pσ(T )∩Γ = ∅ and Rσ(T )∩Γ = Pσ(T ′)∩Γ = ∅ are necessary for weak stability.

Example 3.2. (a) The left and right shifts are weakly stable on the spaces c0(Z, X)

and lp(Z, X) for any Banach space X and 1 ≤ p <∞. Note that these operators are

isometries and therefore not strongly stable.

(b) Consider H := l2 and the multiplication operator T given by

T (xn)∞n=1 := (anxn)∞n=1

for some bounded sequence (an)∞n=1. Then T is weakly stable if and only if |an| < 1

for every n ∈ N. However, in this case T is automatically strongly stable.

(c) The situation becomes different for a multiplication operator on L2(R) with respect to

the Lebesgue measure µ. Let T be defined as (Tf)(s) := a(s)f(s) for some bounded

measurable function a : R → X. Then T is strongly stable if and only if |a(s)| < 1 for

almost all s, while weak stability is more involved. Indeed, the operator T is weakly

stable if and only if |a(s)| ≤ 1 for almost all s and
∫ d

c
an(s)ds → 0 as n → ∞ for

every interval [a, b] ⊂ R (consider the dense set of linear combinations of characteristic

functions). This is, e.g., the case for a(s) = eiαsγ
, 0 6= α, γ ∈ R.

For more examples see Section 5.

We now present a simple condition implying weak stability and begin with the follow-

ing definition.

Definition 3.3. A subsequence {nj}∞j=1 of N is called relatively dense if there exists

a number ` > 0 such that for every n ∈ N the set {n, n+ 1, . . . , n+ `} intersects {nj}∞j=1

(see Bart, Goldberg [5] for the terminology).

For example, kN + m for natural numbers k and m is a relatively dense subsequence of

N.

Theorem 3.4. Let X be a Banach space and T ∈ L(X). Suppose that T nj → 0 weakly

as j →∞ for some relatively dense subsequence {nj}∞j=1. Then T is weakly stable.
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Proof. Define ` := supn∈N(nj+1 − nj) which is finite by assumption and fix x ∈ X

and y ∈ X ′. For n ∈ {nj, . . . , nj+`} we have

(29) 〈T nx, y〉 = 〈T n−njx, T ′njy〉.

Note that T n−njx belongs to the finite set {x, Tx, . . . , T `x}. By assumption (T ′)njy → 0

as j →∞ in the weak*-topology and (29) implies 〈T nx, y〉 → 0. �

Remark 3.5. We will see later that one cannot drop the relative density in Theorem

3.4 or even replace it by the assumption of density 1, see Section 4.

We now present the following characterisation of weak convergence in terms of (strong)

convergence of the Cesàro means of subsequences.

Theorem 3.6. Let X be a Banach space and T ∈ L(X). Consider the following

assertions.

(i) T nx converges weakly as n→∞ for every x ∈ X;

(ii) For every x ∈ X and every increasing sequence {nk}∞k=1 ⊂ N with positive lower

density, the limit

(30) lim
N→∞

1

N

N∑
k=1

T nkx exists in norm for every x ∈ X;

(iii) Property (30) holds for every x ∈ X and every increasing sequence {nk}∞k=1 ⊂ N.

Then (i) ⇔ (ii) ⇐ (iii), and they all are equivalent provided X is a Hilbert space and T

is a contraction.

Assertion (iii) in Theorem 3.6 is called the Blum-Hanson property and arises in ergodic

theory. For an overview on this property and some recent results and applications to some

classical problems in operator theory (e.g., to the quasisimilarity problem) see Müller,

Tomilov [92].

We now present a result of Müller [90] on possible decay of weak orbits.

Theorem 3.7. (Müller) Let T be an operator on a Banach space X with r(T ) ≥ 1

and {an}∞n=1 be a positive sequence satisfying an → 0. Then there exist x ∈ X, y ∈ X ′

such that

(31) Re 〈T njx, y〉 ≥ aj ∀j ∈ N

holds for some increasing sequence {nj}∞j=1 ⊂ N.

Surprisingly, the inequality (31) does not hold for all n ∈ N in general, i.e., the weak

version of Theorem 2.6 is not true. For an example and other phenomena see Müller [90].
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3.2. Contractions on Hilbert spaces. In this subsection we present classical de-

composition theorems for contractions on Hilbert spaces having direct connection to weak

stability.

The first theorem is due to Sz.-Nagy, Foiaş [119], see also [120].

Theorem 3.8. (Sz.-Nagy, Foiaş, 1960) Let T be a contraction on a Hilbert space H.

Then H is the orthogonal sum of two T - and T ∗-invariant subspaces H1 and H2 such that

(a) H1 is the maximal subspace on which the restriction T1 of T is unitary;

(b) the restrictions of T and T ∗ to H2 are weakly stable.

We present the proof given by Foguel, see [34].

Proof. Define

H1 := {x ∈ H : ‖T nx‖ = ‖T ∗nx‖ = ‖x‖ for all n ∈ N}.

We first prove that for every x ∈ H1 and n ∈ N one has T ∗nT nx = T nT ∗nx = x. If x ∈
H1, then ‖x‖2 = 〈T nx, T nx〉 = 〈T ∗nT nx, x〉 ≤ ‖T ∗nT nx‖‖x‖ ≤ ‖x‖2 holds. Therefore, by

the equality in the Cauchy-Schwarz inequality and positivity of ‖x‖2 we have T ∗nT nx = x.

Analogously one shows T nT ∗nx = x. On the other hand, every x with these two properties

belongs to H1. So we proved that

(32) H1 = {x ∈ H : T ∗nT nx = T nT ∗nx = x for all n ∈ N}

is the maximal (closed) subspace on which T is unitary. The T - and T ∗-invariance of H1

follows from the definition of H1 and the fact that T ∗T = TT ∗ on H1.

For (b) take x ∈ H2 := H⊥
1 . Note that H2 is T - and T ∗-invariant since H1 is. Suppose

that T nx does not converge to zero as n→∞. This means that there exists ε > 0 and a

subsequence {nj}∞j=1 such that |〈T njx, y〉| ≥ ε for every j ∈ N.

Since every bounded set in a reflexive Banach space is relatively weakly compact by

the Banach-Alaoglu theorem, and since weak compactness on Banach spaces coincides

with weak sequential compactness by the Eberlein-Šmulian theorem (Theorem 0.1 in

Chapter 1) there exists a weakly converging subsequence of {T njx}∞j=1. We will denote

this subsequence again by {nj}∞j=1 and its limit by x0. To achieve a contradiction we will

show below that actually x0 = 0. Since H2 is T -invariant and closed, x0 belongs to H2.

For a fixed k ∈ N we have

‖T ∗kT kT nx− T nx‖2 = ‖T ∗kT k+nx‖2 − 2〈T ∗kT k+nx, T nx〉+ ‖T nx‖2

≤ ‖T k+nx‖2 − 2‖T k+nx‖2 + ‖T nx‖2 = ‖T nx‖2 − ‖T k+nx‖2.

The right hand side converges to zero as n → ∞ since the sequence {‖T nx‖}∞n=1 is

monotone decreasing and therefore convergent. So ‖T ∗kT kT nx− T nx‖ → 0 as n→∞.

We return now to the above subsequence {T njx}∞j=1 converging weakly to x0. Then

T ∗kT kT njx → T ∗kT kx0 weakly. On the other hand, by the considerations above

T ∗kT kT njx → x0 weakly and therefore T ∗kT kx0 = x0. Analogously one shows that
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T kT ∗kx0 = x0 and hence x0 ∈ H1. Since H1 ∩ H2 = {0}, we obtain x0 = 0, the desired

contradiction.

Analogously, the powers of the restriction of T ∗ on H2 converge weakly to zero. �

Remark 3.9. The restriction of T to the subspace H2 in Theorem 3.8 is completely

non-unitary (c.n.u. for short), i.e., there is no nontrivial subspace of H2 on which the

restriction of T becomes unitary. In other words, Theorem 3.8 states that every Hilbert

space contraction can be decomposed into unitary and c.n.u. part and the c.n.u. part is

weakly stable.

For a systematic study of completely non-unitary operators as well as an alternative

proof of Theorem 3.8 using unitary dilation theory see the monograph of Sz.-Nagy and

Foiaş [120].

On the other hand, we have the following decomposition into the weakly stable and

the weakly unstable part due to Foguel [34]. We present a simplified proof of it.

Theorem 3.10. (Foguel, 1963) Let T be a contraction on a Hilbert space H. Define

W := {x ∈ H : lim
n→0

〈T nx, x〉 = 0}.

Then

W = {x ∈ H : lim
n→0

T nx = 0 weakly } = {x ∈ H : lim
n→0

T ∗nx = 0 weakly }

is a closed T - and T ∗-invariant subspace of H and the restriction of T to W⊥ is unitary.

Proof. We first take x ∈ W and show that T nx → 0 weakly. By Theorem 3.8 we

may assume that x ∈ H1. If we take S := lin{T nx : n = 0, 1, 2 . . .}, then it is enough to

show that 〈T nx, y〉 → 0 as n → ∞ for all y ∈ S, since for all y ∈ S⊥ we automatically

have 〈T nx, y〉 = 0. For y := T kx we obtain

〈T nx, y〉 = 〈T ∗kT nx, x〉 = 〈T n−kx, y〉 → 0 for k ≤ n→∞,

where we used that the restriction of T to H1 is unitary. From the density of {T nx :

n = 0, 1, 2, . . .} in S, it follows that 〈T nx, y〉 → 0 for every y ∈ S and therefore T nx→ 0

weakly. Analogously, one shows that T ∗nx → 0 weakly. The converse implication, the

closedness and the invariance of W are evident.

The last assertion of the theorem follows directly from Theorem 3.8. �

Combining Theorem 3.8 and Theorem 3.10 we obtain the following decomposition.

Theorem 3.11. Let T be a contraction on a Hilbert space H. Then H is the orthogonal

sum of three closed T - and T ∗-invariant subspaces H1, H2 and H3 such that the restrictions

T1, T2 and T3 satisfy

(1) T1 is unitary and has no weakly stable orbit;

(2) T2 is unitary and weakly stable;

(3) T3 is weakly stable and completely non-unitary.
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We see from the above theorem that a characterisation of weak stability for unitary

operators is of special importance. For an abstract approach using the spectral theorem

see Subsection 5.2. A direct characterisation, not involving the spectral theorem, is still

unknown.

3.3. Characterisation via resolvent. In this subsection we present a resolvent

approach to weak stability being a discrete analogue of the resolvent approach for C0-

semigroups due to Chill, Tomilov [15].

Theorem 3.12. Let T be a bounded operator on a Banach space X with r(T ) ≤ 1.

Assume that

(33) (r − 1)

∫ 2π

0

|〈R2(reiϕ, T )x, y〉|dϕ −→
r→1+

0

holds for some x ∈ X and y ∈ X ′. Then 〈T nx, y〉 → 0.

In particular, if condition (33) holds for all x ∈ X and y ∈ X ′, then T is weakly stable.

Proof. Let x ∈ X and y ∈ X ′ satisfy (33). By formula (18) we have

〈T nx, y〉 ≤ rn+2

2π(r − 1)(n+ 1)
(r − 1)

∫ 2π

0

|〈R2(reiϕ, T )x, y〉|dϕ

for all n ∈ N and r > 1. Taking r := 1 + 1
n+1

we obtain by (33) that 〈T nx, y〉 → 0 as

n→∞. �

Remark 3.13. A (simple) necessary and sufficient resolvent condition for weak sta-

bility is still unknown. In particular, even for unitary operators on Hilbert spaces it is

not clear whether condition (33) is necessary.



4. ALMOST WEAK STABILITY 41

4. Almost weak stability

In this section we consider a stability concept which is analogous to weak mixing in

ergodic theory (see Halmos [53]). This notion of stability is weaker and is much easier to

investigate than the weak stability. In fact, a full characterisation is available as we will

see below. In large parts we modify and extend the treatment in Eisner, Farkas, Nagel,

Sereny [25].

4.1. Characterisation. The main result of this section is the following.

Theorem 4.1. Let T be an operator on a Banach space X such that {T n : n ∈ N} is

relatively weakly compact in L(X). Then the following assertions are equivalent.

(i) 0 ∈ {T nx : n ∈ N}
σ

for every x ∈ X;

(i’) 0 ∈ {T n : n ∈ N}
Lσ

;

(ii) For every x ∈ X there exists a subsequence {nj}∞j=1 ⊂ N such that T njx → 0

weakly;

(iii) For every x ∈ X there exists a subsequence {nj}∞j=1 ⊂ N with density 1 such that

T njx→ 0 weakly;

(iv) 1
n+1

∑n
k=0 |〈T kx, y〉| −→

n→∞
0 for all x ∈ X and y ∈ X ′;

(v) limr→1+(r − 1)
∫ 2π

0
|〈R(reiϕ, T )x, y〉|2dϕ = 0 for all x ∈ X and y ∈ X ′;

(vi) limr→1+(r − 1)R(reiϕ, T )x = 0 for all x ∈ X and 0 ≤ ϕ < 2π;

(vii) Pσ(T ) ∩ Γ = ∅, i.e., T has no eigenvalues on the unit circle.

In addition, if X ′ is separable, then the following conditions are equivalent to the condi-

tions above.

(ii*) There exists a subsequence {nj}∞j=1 ⊂ N such that T nj → 0 weakly;

(iii*) There exists a subsequence {nj}∞j=1 ⊂ N with density 1 such that T nj → 0 weakly.

We recall that the density of a sequence {nj}∞j=1 ⊂ N is

d := lim
n→∞

#{j : nj ≤ n}
n

if the limit exists. (Note that 1 is the greatest possible number here.)

The following elementary lemma (see Petersen [105, p. 65]) will be needed in the proof

of Theorem 4.1.

Lemma 4.2. (Koopman–von Neumann, 1932) For a bounded sequence {an}∞n=1 ⊂
[0,∞) the following assertions are equivalent.

(a) 1
n

∑n
k=1 ak → 0 as n→∞;

(b) There exists a subsequence {nj}∞j=1 of N with density 1 such that ank
→ 0 as k →∞.

Proof. (Theorem 4.1).

The implications (i’)⇒(i) and (ii)⇒(vii) are trivial.

(i)⇒(ii) follows from the equivalence of weak compactness and weak sequential com-

pactness in Banach spaces (see Theorem 0.1 in Chapter 1).
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The implication (vii)⇒(i’) is a consequence of Theorem 0.14 in Chapter 1 and the

construction in its proof.

Therefore, the equivalences (i)⇔(i’)⇔(ii)⇔(vii) are proved.

(vi)⇒(vii): Assume that there exists 0 6= x ∈ X and ϕ ∈ [0, 2π) such that Tx = eiϕx.

Then we have ‖R(reiϕ)x‖ = (r − 1)−1‖x‖ and (vi) does not hold.

The converse implication follows from Proposition 0.12 and the fact that for every

0 ≤ ϕ < 2π the operator eiϕT has weakly relatively compact orbits as well. So (vi)⇔(vii).

(i’)⇒(iii): Take S := {T nx : n ≥ 0}
Lσ(X)

⊂ L(X) with the usual multiplication and

the weak operator topology. It becomes a compact semi-topological semigroup (for the

definition and basic properties of compact semi-topological semigroups see Subsection 0.3

in Chapter 1). By (i’) we have 0 ∈ S. Define the operator T̃ : C(S) → C(S) by

(T̃ f)(R) := f(TR), f ∈ C(S), R ∈ S.

Note that T̃ is a contraction on C(S).

By Example 0.7 (c) the set {f(T (t) ·) : t ≥ 0} is relatively weakly compact in C(S)

for every f ∈ C(S). It means that every set {T̃ nf : n ≥ 0} is relatively weakly compact,

i.e., T̃ has relatively weakly compact orbits.

Denote by P̃ the mean ergodic projection of T̃ . We have Fix(T̃ ) = 〈1〉. Indeed, for

f ∈ Fix(T̃ ) one has f(T nI) = f(I) for all n ≥ 0 and therefore f must be constant. Hence

P̃ f is constant for every f ∈ C(S). By definition of the ergodic projection

(34) (P̃ f)(0) = lim
n→∞

1

n+ 1

n∑
k=0

(T̃ kf)(0) = f(0).

Thus we have

(35) (P̃ f)(R) = f(0) · 1, f ∈ C(S), R ∈ S.

Take now x ∈ X. By Theorem 0.5 in Chapter 1 and its proof (see Dunford, Schwartz

[23], p. 434), the weak topology on the orbit {T nx : n ≥ 0} is metrisable and coincides

with the topology induced by some sequence {yn}∞n=1 ⊂ X ′ \ {0}. Consider fx ∈ C(S)

defined by

fx(R) :=
∑
n∈N

1

2n

∣∣∣〈Rx, yn

‖yn‖

〉∣∣∣ , R ∈ S.

By (35) we obtain

0 = lim
n→∞

1

n+ 1

n∑
k=0

(T̃ kfx)(I) = lim
n→∞

1

n+ 1

n∑
k=0

fx(T
k).

Lemma 4.2 applied to the sequence {fx(T
nI)}∞n=0 ⊂ R+ yields a subsequence (nj)

∞
j=1 of

N with density 1 such that

fx(T
nj) → 0 as j →∞.

By definition of fx and by the fact that the weak topology on the orbit is induced by

{yn}∞n=1 we have that

T njx
σ→ 0 as j →∞,
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and (iii) is proved.

(iii)⇒(iv) follows directly from Lemma 4.2.

(iv)⇒(vii) is clear.

(iv)⇔(v): We note first that the set {T n : n ≥ 0} is bounded in L(X). Take x ∈ X,

y ∈ X ′ and let r > 1. By (18) and the Parseval’s equality we have∫ 2π

0

|〈R(reiϕ, T )x, y〉|2 dϕ = 2π
∞∑

n=0

|〈T nx, y〉|2

rn+1
.

We obtain, by the equivalence of Abel and Cesàro limits (see, e.g., Hardy [57, p. 136] or

van Casteren [12]), that

lim
r→1+

(r − 1)

∫ 2π

0

|〈R(reiϕ, T )x, y〉|2 dϕ = 2π lim
s→1−

(1− s)
∞∑

n=0

sn|〈T nx, y〉|2

= π lim
n→∞

1

n+ 1

n∑
k=0

|〈T kx, y〉|2.(36)

Note that for a bounded sequence {an}∞n=1 ⊂ R+ with C := supn∈N an we have(
1

C(n+ 1)

n∑
k=0

a2
k

)2

≤
(

1

n+ 1

n∑
k=0

ak

)2

≤ 1

n+ 1

n∑
k=0

a2
k

for every n ∈ N, where for the second part we used the Cauchy-Schwarz inequality. This

together with (36) gives the equivalence of (iv) and (v).

For the additional part of the theorem suppose X ′ to be separable. Then so is X, and

we can take dense subsets {xn 6= 0 : n ∈ N} ⊆ X and {ym 6= 0 : m ∈ N} ⊆ X ′. Consider

the functions

fn,m : S → R, fn,m(R) :=
∣∣〈R xn

‖xn‖ ,
ym

‖ym‖

〉∣∣, n,m ∈ N,

which are continuous and uniformly bounded in n,m ∈ N. Define the function

f : S → R, f(R) :=
∑

n,m∈N

1

2n+m
fn,m(R).

Then clearly f ∈ C(S). Thus, as in the proof of the implication (i’)⇒(iii), i.e., using (34)

we obtain
1

n+ 1

n∑
k=0

f(T nI) −→
n→∞

0.

Hence, applying Lemma 4.2 to the bounded sequence {f(T n)}∞n=0 ⊂ R+ gives the exis-

tence of a subsequence {nj}∞j=1 of N with density 1 such that f(T nj) → 0 as j → ∞. In

particular, |〈T njxn, ym〉| → 0 for all n,m ∈ N as j →∞, which, together with the bound-

edness of {T n}∞n=1, proves the implication (i’)⇒(iii∗). The implications (iii∗)⇒(ii∗)⇒(ii’)

are straightforward, hence the proof is complete. �

The above theorem shows that the property

“no eigenvalues of T on the unit circle”
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implies properties like (iii) on the asymptotic behaviour of the orbits of T . Motivated by

this we introduce the following terminology.

Definition 4.3. We will call an operator on a Banach space with relatively weakly

compact orbits almost weakly stable if it satisfies condition (iii) in Theorem 4.1.

Historical remark 4.4. Theorem 4.1 and especially the implication (vii)⇒(iii) has

a long history. It goes back to ergodic theory and von Neumann’s spectral mixing theorem

for flows, see Halmos [53], Mixing Theorem, p. 39. This has been generalised to operators

on Banach spaces by many authors, see, e.g., Nagel [94], Jones, Lin [65, 66] and Krengel

[75], pp. 108–110. Note that the equivalence (vii)⇔(iv) for contractions on Hilbert spaces

follows from the so-called generalised Wiener theorem, see Goldstein [43].

For a continuous analogue of the above characterisation see Theorem 5.1 in Chapter 3.

Remark 4.5. We emphasise that the conditions appearing in Theorem 4.1 are of quite

different nature. Conditions (i)–(iv), (ii∗) and (iii∗) describe the behaviour of the powers

of T , while conditions (v)–(vii) consider the resolvent of T in a neigbourhood of the unit

circle. Among them condition (vii) apparently is the simplest to verify.

Remark 4.6. Surprisingly, the equivalence (i’)⇔(v) in Theorem 4.1 is a weak analogue

of the characterisation of strong stability given in Corollary 2.14.

One also can formulate Theorem 4.1 for single orbits. This is the following result

partially due to Jan van Neerven (oral communication).

Corollary 4.7. Let T be an operator on a Banach space X and x ∈ X. Assume that

the orbit {T nx : n = 0, 1, 2, . . .} is relatively weakly compact in X and the restriction of T

to lin{T nx : n = 0, 1, 2, . . .}is power bounded. Then there is a holomorphic continuation

of the function R(·, T )x to {λ : |λ| > 1} denoted by Rx(·) and the following assertions are

equivalent.

(i) 0 ∈ {T nx : n ∈ N}
σ
;

(ii) There exists subsequence {nj}∞j=1 ⊂ N such that T njx→ 0 weakly;

(iii) There exists a subsequence {nj}∞j=1 ⊂ N with density 1 such that T njx → 0

weakly;

(iv) 1
n+1

∑n
k=0 |〈T kx, y〉| −→

n→∞
0 for all y ∈ X ′;

(v) limr→1+(r − 1)
∫ 2π

0
|〈Rx(re

iϕ), y〉|2dϕ = 0 for all y ∈ X ′;

(vi) limr→1+(r − 1)Rx(re
iϕ) = 0 for all 0 ≤ ϕ < 2π;

(vii) The restriction of T on lin{T nx : n ∈ N ∪ {0}} has no unimodular eigenvalue.

Proof. For the first part of the theorem we just define

Rx(λ) :=
∞∑

n=0

T nx

λn+1
whenever |λ| > 1.

This implies the representation

T nx =
rn+1

2π

∫ 2π

0

e(n+1)iϕRx(re
iϕ)dϕ for all n ∈ N.
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Denote now by Z the closed linear span of the orbit {T nx : n = 0, 1, 2, . . .}. Then Z

is a T -invariant closed subspace of X and we can restrict T to it. The restriction, which

we will denote by TZ , has relatively weakly compact orbits by Lemma 0.6 in Chapter 1.

The equivalence of the assertions follows from the canonical decomposition X ′ = Z ′⊕Z0

with Z0 := {y ∈ X ′ : 〈z, y〉 = 0 for all z ∈ Z} and Theorem 4.1 applied to the restricted

operator. �

4.2. A concrete example. As we will see from the abstract examples in the next

section, almost weak stability does not imply weak stability. In this subsection we present

a concrete example of a (positive) operator being almost weakly but not weakly stable.

(For definitions and basic theory of positive operators we refer to the monograph of

Schaefer [114].)

Example 4.8. Consider the operator T0(1) from Example 5.8 in Chapter 3 being

a positive operator on the Banach lattice C(Ω) for some Ω ⊂ C. The relative weak

compactness of the orbits follows from the relative weak compactness of the semigroup

T0(·). The almost weak stability of T0(1) is a consequence of Pσ(T0(1)) ∩ Γ = ∅ and

Theorem 4.1. Further, the facts that the semigroup T0(·) is not weakly stable and that

N is relatively dense set in R+ together with Theorem 4.4 in Chapter 3 imply that the

operator T0(1) is not weakly stable.

So we proved the following result answering in negative a question of Emelyanov [30].

Theorem 4.9. There is a locally compact space Ω and a positive contraction T on

C0(Ω) which is almost weakly but not weakly stable.
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5. Abstract examples

In this section we present abstract examples arising in ergodic and measure theory

which show that weak stability is not equivalent to almost weak stability. Moreover,

we will show that a “typical” (in the sense of Baire) contraction as well as a “typical”

isometric or unitary operator on a separable Hilbert space is almost weakly but not weakly

stable.

5.1. Ergodic theory. We discuss the analogues between weak and almost weak

stability and the concepts of strongly and weakly mixing in ergodic theory. We begin

with some definitions.

A measurable measure-preserving transformation ϕ on a probability space (Ω,M, µ)

is called strongly mixing if

lim
n→∞

µ(ϕ−n(A) ∩B) = µ(A)µ(B)

for any two measurable sets A,B ∈ M. The transformation ϕ is called weakly mixing if

for all A,B ∈M we have

lim
N→∞

1

N + 1

N∑
n=0

|µ(ϕ−n(A) ∩B)− µ(A)µ(B)| = 0.

These concepts play an essential role in ergodic theory, and we refer to the monographs

Cornfeld, Fomin, Sinai [18], Krengel [75], Petersen [105], or Halmos [53] for further

information. Strong mixing implies weak mixing, but the converse implication does not

hold in general. We note that examples of weakly but not strongly mixing transformations

are not easy to construct; for some years an available construction was even an open

question. See Lind [80] for an example and Petersen [105, p. 209] for a method of

constructing such transformations.

It is a classical procedure to define, for the transformation ϕ on (Ω,M, µ), an isometry

T on each of the Banach spaces X = Lp(Ω, µ) (1 ≤ p <∞) by the formula

(Tf)(ω) := f(ϕ(ω)), ω ∈ Ω, f ∈ Lp(Ω, µ).

The operator T has relatively weakly compact orbits by the theorem of Banach-Alaoglu

for p > 1 and by Example 0.7 (b) with u = 1 for p = 1. Furthermore, it is well-known

(see, e.g., Halmos [53], pp. 37–38) that

ϕ is strongly mixing ⇐⇒ lim
n→∞

〈T nf, g〉 = 〈Pf, g〉 for all f ∈ X, g ∈ X ′,

and

ϕ is weakly mixing ⇐⇒ lim
N→∞

1

N + 1

N∑
n=0

|〈T nf, g〉 − 〈Pf, g〉| = 0 for all f ∈ X, g ∈ X ′,

where P is the projection onto FixT given by Pf :=
∫

Ω
f dµ · 1 for all f ∈ X. Note that

in both cases FixT = 〈1〉 holds.
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We now consider any transformation ϕ being weakly but not strongly mixing and the

corresponding operator T . Then X = X0 ⊕ 〈1〉 with

X0 :=

{
f ∈ X :

∫
Ω

f dµ = 0

}
a closed and T -invariant subspace. The restriction T0 of T to X0 also has relatively weakly

compact orbits. Hence, by Pσ(T0) ∩ Γ = ∅, the operator T0 is almost weakly stable. On

the other hand, T0 is not weakly stable since ϕ is not strongly mixing.

So we saw that every weakly but not strongly mixing flow induces an almost weakly

but not weakly stable operator.

5.2. Rajchman measures. In this subsection we discuss parallels between operator

theory and measure theory based on the spectral theorem (see, e.g., Halmos [54]). We

first consider an example which will help us to understand the general situation.

Example 5.1. Let µ be some finite measure on the unit circle Γ and define the

multiplication operator T on the space H := L2(Γ, µ) by

(Tf)(z) := zf(z), z ∈ Γ.

Then T is unitary on X and hence not strongly stable. We are interested in weak stability

of T .

We see that z ∈ Pσ(T ) if and only if µ({z}) > 0, and hence, by the Jacobs–Glicksberg–

de Leeuw decomposition (Theorem 0.14 in Chapter 1),

T is almost weakly stable ⇐⇒ µ is continuous.

To characterise weak stability of T , we first observe that

〈T nf, f〉 =

∫ 2π

0

einϕ|f(eiϕ)|2dµ(ϕ)

holds for every f ∈ H. In particular, if T is weakly stable, then

(37) an(µ) :=

∫ 2π

0

einϕdµ(ϕ) → 0 as n→∞,

where an are the Fourier coefficients of µ.

Conversely, if condition (37) holds, then 〈T nf, f〉 → 0 as n→∞ for every function f

having constant absolute value. Since the linear span of {z 7→ zn, n ∈ Z} is dense in H

and T is contractive, we obtain that 〈T nf, f〉 → 0 as n → ∞ for every f ∈ H. So T is

weakly stable by Theorem 3.10.

Note that a unitary operator is weakly stable if and only if its inverse is, hence in

condition (37) n→∞ can be replaced by n→ −∞.

This proves the following proposition (see Lyons [83] for the first equivalence).

Proposition 5.2. T is weakly stable ⇐⇒ an(µ) −→
n→∞

0 ⇐⇒ an(µ) −→
|n|→∞

0 .

Measures with this property have their own name.
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Definition 5.3. A measure on Γ is called Rajchman if its Fourier coefficients converge

to zero.

Proposition 5.2 states that the operator T is weakly stable if and only if the measure

µ is Rajchman.

For an overview on Rajchman measures we refer to Lyons [83, 84]. We only remark

that every absolutely continuous measure is Rajchman by the Riemann-Lebesgue lemma

and every Rajchman measure is continuous by Wiener’s theorem. Furthermore, there

are continuous measures which are not Rajchman and Rajchman measures which are not

absolutely continuous, see Lyons [83]. By our considerations above, each continuous non-

Rajchman measure induces an almost weakly but not weakly stable unitary operator. For

a specific example of a unitary group with non-Rajchman spectral measures we refer to

Engel, Nagel [31, p. 316]. Taking T := T (1) in this example we obtain an example of an

almost weakly but not weakly stable unitary operator.

By the spectral theorem, one can reduce the general situation to the previous example.

Indeed, consider a Hilbert space H and a contraction T on it. By Theorem 3.8 the

restriction T1 of T to the subspace H1 := {x : ‖T nx‖ = ‖T ∗nx‖ = ‖x‖ ∀n ∈ N} is unitary

and the restriction to H⊥
1 is weakly stable. So T is weakly stable if and only if T1 is

weakly stable.

We now apply the spectral theorem to T1. This gives for each x ∈ H1 a measure µx

on Γ such that the restriction of T to lin{T nx : n = 0, 1, 2, . . .} acts as the multiplication

operator Mzf(z) := zf(z) on L2(Γ, µx) and we are in the context of Example 5.1. So

we see that the orbit {T nx : n ∈ N} converges to zero if and only if the measure µx is

Rajchman.

This gives a measure theoretic approach to weak stability. However, since the result

is based on the spectral theorem, it is very difficult to apply in concrete situations.

5.3. Category theorems. In this subsection we will show that for a separable

infinite-dimensional Hilbert space H a “typical” (in the Baire category sense) unitary

operator, a “typical” isometry and a “typical” contraction on H is almost weakly but

not weakly stable. This gives an operator–theoretic analogue to the classical theorems of

Halmos and Rohlin from ergodic theory stating that a “typical” flow is weakly but not

strongly mixing, see Halmos [53, pp. 77–80] or the original papers by Halmos [51] and

Rohlin [109].

We follow in this section Eisner, Sereny [26] and assume the underlying Hilbert space

H to be separable and infinite-dimensional.

5.3.1. Unitary operators. Denote the set of all unitary operators on H by U . The

following density result for periodic operators is a first step in our construction.

Proposition 5.4. For every n ∈ N the set of all periodic unitary operators with period

greater than n is dense in U endowed with the norm topology.
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Proof. Take U ∈ U , N ∈ N and ε > 0. By the spectral theorem H is isomorphic

to L2(Ω, µ) for some locally compact space Ω and finite measure µ and U is unitarily

equivalent to a multiplication operator Ũ with

(Ũf)(ω) = ϕ(ω)f(ω) for almost all ω ∈ Ω,

for some measurable ϕ : Ω → Γ := {z ∈ C : |z| = 1}.
We approximate the operator Ũ as follows. Consider the set

ΓN := {e2πi· p
q : p, q ∈ N relatively prime , q > N}

which is dense in Γ. Take a finite set {αj}n
j=1 ⊂ ΓN such that arg(αj−1) < arg(αj) and

|αj − αj−1| < ε hold for all 2 ≤ j ≤ n. Define

ψ(ω) := αj−1, ∀ω ∈ ϕ−1({z ∈ Γ : arg(αj−1) ≤ arg(z) ≤ arg(αj)}),

and denote by P̃ the multiplication operator with ψ. The operator P̃ is periodic with

period greater than N and satisfies

‖Ũ − P̃‖ = sup
ω∈Ω

|ϕ(ω)− ψ(ω)| ≤ ε,

hence the proposition is proved. �

For the second step we need the following lemma.

Lemma 5.5. Let H be a separable infinite-dimensional Hilbert space. Then there exists

a sequence {Tn}∞n=1 of almost weakly stable unitary operators satisfying ‖Tn − I‖ → 0 as

n→∞.

Proof. By the isomorphy of all separable infinite-dimensional Hilbert spaces there

exists a unitary operator U : H → L2(R), where L2(R) is taken with the Lebesgue

measure.

Take n ∈ N and define T̃n on L2(R) by

(T̃nf)(s) := e
iq(s)

n f(s), s ∈ R, f ∈ L2(R),

where q : R → [0, 1] is strictly monotone. Then all T̃n are almost weakly stable by the

theorem of Jacobs–Glicksberg–de Leeuw and we have

‖T̃n − I‖ = sup
s∈R

|e
iq(s)

n − 1| ≤ |e
i
n − 1| → 0, n→∞.

To finish the proof we only need to define Tn := U∗T̃nU on H. �

We now introduce the appropriate topology. We say that a sequence {Tn} ⊂ L(H)

converges to T ∈ L(H) in the strong*-topology if Tn → T and T ∗
n → T ∗ strongly (for

details see, e.g., Takesaki [121, p. 68]). Further we consider the space U of all unitary

operators on H endowed with this topology. Note that U is a complete metric space with

respect to the metric given by

d(U, V ) :=
∞∑

j=1

‖Uxj − V xj‖+ ‖U∗xj − V ∗xj‖
2j‖xj‖

for U, V ∈ U ,
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and {xj}∞j=1 some dense subset of H. Further we denote by SU the set of all weakly stable

unitary operators on H and by WU the set all almost weakly stable unitary operators on

H.

We now show the following density property for WU .

Proposition 5.6. The set WU of all almost weakly stable unitary operators is dense

in U .

Proof. By Proposition 5.4 it is enough to approximate periodic unitary operators

by almost weakly stable unitary operators. Let U be a periodic unitary operator and let

N be its period. Take ε > 0, n ∈ N and x1, . . . , xn ∈ H \ {0}. We have to find an almost

weakly stable unitary operator T with ‖Uxj − Txj‖ ≤ ε and ‖U∗xj − T ∗xj‖ ≤ ε for all

j = 1, . . . , n.

By UN = I and the spectral theorem, σ(U) ⊂
{

1, e
2πi
N , . . . , e

2π(N−1)i
N

}
and

(38) H = Fix(U)⊕ Fix(e
−2πi

N U)⊕ . . .⊕ Fix(e
−2π(N−1)i

N U)

holds. So we can assume without loss of generality that xj are orthogonal eigenvectors of

U .

We first construct a periodic unitary operator S satisfying Uxj = Sxj for all j =

1, . . . , n and having infinite-dimensional eigenspaces only. For this purpose define the

n-dimensional U - and U∗-invariant subspace H0 := lin{xj}n
j=1 and the operator S on H0

as the restriction of U on H0. Further we consider an orthogonal decomposition

H =
∞⊕

k=0

Hk, dim(Hk) = n for all k ∈ N.

Fix k and denote by {yj}n
j=1 an orthonormal basis of Hk. Define Syj :=

Sxj

‖xj‖ and extend

S linearly to Hk.

This operator S is unitary and periodic with period being a divisor of N . So a

decomposition analogous to (38) is valid for S. Moreover, Uxj = Sxj and U∗xj = S∗xj

hold for all j = 1, . . . , n and all eigenspaces of S are infinite dimensional. Therefore by

Lemma 5.5 for every j = 1, . . . , N there exists a weakly stable unitary operator Tj on

Fj := Fix(e
−2πji

N S) satisfying ‖Tj−S|Fj
‖ = ‖Tj−e

2πij
N I‖ < ε. Finally we define the desired

operator T := Tj on Fj for every j = 1 . . . , n and the proposition is proved. �

We can now prove the following category theorem for weakly and almost weakly stable

unitary operators. To do so we extend the argument used in the proof of the corresponding

category theorems for flows in ergodic theory (see Halmos [53, pp. 77–80]).

Theorem 5.7. The set SU of weakly stable operators is of first category and the set

WU of almost weakly stable operators is residual in U with the *-strong topology.

Proof. We first prove that S is of first category in U . Fix x ∈ H with ‖x‖ = 1 and

consider the closed sets
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Mk :=

{
U ∈ U : |〈Ukx, x〉| ≤ 1

2

}
.

Let U ∈ U be weakly stable. Then there exists n ∈ N such that U ∈Mk for all k ≥ n,

i.e., U ∈ ∩k≥nMk. So we obtain

(39) SU ⊂
∞⋃

n=1

Nn,

where Nn := ∩k≥nMk. Since the sets Nn are closed, it remains to show that U \ Nn is

dense for every n.

Fix n ∈ N and let U be a periodic unitary operator. Then U /∈ Mk for some k ≥ n

and therefore U /∈ Nn. Since by Proposition 5.4 the periodic unitary operators are dense

in U , S is of first category.

To show that WU is residual we take a dense subspace D = {xj}∞j=1 of H and define

the open sets

Wjkn :=

{
U ∈ U : | 〈Unxj, xj〉 | <

1

k

}
.

Then the sets Wjk := ∪∞n=1Wjkn are also open.

We show that

(40) WU =
∞⋂

j,k=1

Wjk

holds.

The inclusion “⊂” follows from the definition of almost weak stability. To prove the

converse inclusion we take U /∈ WU and n ∈ N. Then there exists x ∈ H with ‖x‖ = 1 and

ϕ ∈ R such that Ux = eiϕx and therefore | 〈Unx, x〉 | = 1. Take xj ∈ D with ‖xj−x‖ ≤ 1
4
.

Then

| 〈Unxj, xj〉 | = | 〈Un(x− xj), x− xj〉+ 〈Unx, x〉 − 〈Unx, x− xj〉 − 〈Un(x− xj), x〉 |

≥ 1− ‖x− xj‖2 − 2‖x− xj‖ >
1

3
.

So U /∈ Wj3 which implies U /∈ ∩∞j,k=1Wjk. Therefore (40) holds and WU is residual as a

countable intersection of open dense sets. �

5.3.2. Isometries. We now consider the space I of all isometries on H endowed with

the strong topology and prove analogous category results as above. We again assume H

to be separable and infinite-dimensional. Note that I is a complete metric space with

respect to the metric given by the formula

d(T, S) :=
∞∑

j=1

‖Txj − Sxj‖
2j‖xj‖

for T, S ∈ I,

where {xj}∞j=1 is a fixed dense subset of H.

Further we denote by SI the set of all weakly stable isometries on H and by WI the

set all almost weakly stable isometries on H.
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The basis of our results in this section is the following classical theorem on isometries

on Hilbert spaces.

Theorem 5.8. (Wold decomposition, see [120, Theorem 1.1].) Let V be an isometry

on a Hilbert space H. Then H can be decomposed into an orthogonal sum H = H0⊕H1 of

V -invariant subspaces such that the restriction of V on H0 is unitary and the restriction

of V on H1 is a unilateral shift, i.e., there exists a subspace Y ⊂ H1 with V nY ⊥ V mY

for all n 6= m, n,m ∈ N, such that H1 = ⊕∞
n=1V

nY holds.

As a first application of this decomposition and the following easy lemma, see also

Peller [104], we obtain the density of periodic operators in I. (Note that periodic isome-

tries are unitary.)

Lemma 5.9. Let Y be a Hilbert space and let R be the right shift on H := l2(N, Y ).

Then there exists a sequence {Tn}∞n=1 of periodic unitary operators on H converging

strongly to R.

Proof. We define the operators Tn by

Tn(x1, x2, . . . , xn, . . .) := (xn, x1, x2, . . . , xn−1, xn+1, . . .).

Every Tn is unitary and has period n. Moreover, for an arbitrary x = (x1, x2, . . .) ∈ H we

have

‖Tnx−Rx‖2 = ‖xn‖2 +
∞∑

k=n

‖xk+1 − xk‖2 −→
n→∞

0,

and the lemma is proved. �

Proposition 5.10. The set of all periodic operators is dense in I.

Proof. Let V be an isometry on H. Then by Theorem 5.8 the orthogonal decom-

position H = H0 ⊕H1 holds, where the restriction V0 on H0 is unitary and the space H1

is unitarily equivalent to l2(N, Y ). The restriction V1 of V on H1 corresponds (by this

equivalence) to the right shift operator on l2(N, Y ). By Proposition 5.4 and Lemma 5.9

we can approximate both operators V0 and V1 by unitary periodic ones and the assertion

follows. �

As a further consequence of the Wold decomposition we obtain the density of almost

weakly stable operators in I.

Proposition 5.11. The set WI of almost weakly stable isometries is dense in I.

Proof. Let V be an isometry onH and let V0 and V1 be the corresponding restrictions

of V to the orthogonal subspaces H0 and H1 from Theorem 5.8. By Lemma 5.9 the

operator V1 can be approximated by unitary operators on H1. The assertion now follows

from Proposition 5.6. �

Using the same idea as in the proof of Theorem 5.7 one obtains with the help of

Propositions 5.10 and 5.11 the following category result for weakly and almost weakly

stable isometries.
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Theorem 5.12. The set SI of all weakly stable isometries is of first category and the

set WI of all almost weakly stable isometries is residual in I.

5.3.3. Contractions. We now extend the above category results to the case of con-

tractive operators.

Let the Hilbert space H be as before and denote by C the set of all contractions on H

endowed with the weak operator topology. Note that C is a complete metric space with

respect to the metric given by the formula

d(T, S) :=
∞∑

i,j=1

| 〈Txi, xj〉 − 〈Sxi, xj〉 |
2i+j‖xi‖‖xj‖

for T, S ∈ C,

where {xj}∞j=1 is a fixed dense subset of H with each xj 6= 0.

By Takesaki [121, p. 99], the set of all unitary operators is dense in C (see also Peller

[104] for a much stronger assertion). Combining this with Propositions 5.4 and 5.6 we

have the following fact.

Proposition 5.13. The set of all periodic unitary operators and the set of all almost

weakly stable unitary operators are both dense in C.

The following well-known property is a key for the further results (cf. Halmos [56, p.

14]).

Lemma 5.14. Let {Tn}∞n=1 be a sequence of contractions on a Hilbert space H converg-

ing weakly to an isometry S. Then Tn → S strongly.

Proof. For each x ∈ H we have

‖Tnx− Sx‖2 = 〈Tnx− Sx, Tnx− Sx〉 = ‖Sx‖2 + ‖Tnx‖2 − 2Re 〈Tnx, Sx〉

≤ 2 〈Sx, Sx〉 − 2Re 〈Tnx, Sx〉 = 2Re 〈(S − Tn)x, Sx〉 −→
n→∞

0,

and the lemma is proved. �

We now state the category result for contractions, but note that its proof differs from

the corresponding proofs in the previous sections.

Theorem 5.15. The set SC of all weakly stable contractions is of first category and

the set WC of all almost weakly stable contractions is residual in C.

Proof. To prove the first statement we fix x ∈ X, ‖x‖ = 1, and define as before the

sets

Nn :=

{
T ∈ C : |〈T kx, x〉| ≤ 1

2
for all k ≥ n

}
.

Let T ∈ C be weakly stable. Then there exists n ∈ N such that T ∈ Nn, and we obtain

(41) SC ⊂
∞⋃

n=1

Nn.
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It remains to show that the sets Nn are nowhere dense. Fix n ∈ N and let U be a periodic

unitary operator. We show that U does not belong to the closure of Nn. Assume the

opposite, i.e., that there exists a sequence {Tk}k∈N ⊂ Nn satisfying Tk → U weakly. Then,

by Lemma 5.14, Tk → U strongly and therefore U ∈ Nn by the definition of Nn. This

contradicts the periodicity of U . By the density of the set of unitary periodic operators

in C we obtain that Nn is nowhere dense and therefore SC is of first category.

To show the residuality of W we again take a dense subset D = {xj}∞j=1 of H and

define

Wjk :=

{
T ∈ C : |〈T nxj, xj〉| <

1

k
for some n ∈ N

}
.

As in the proof of Theorem 5.7 the equality

(42) WC =
∞⋂

j,k=1

Wjk

holds.

Fix j, k ∈ N. We have to show that the complement W c
jk of Wjk is nowhere dense. We

note that

W c
jk =

{
T ∈ C : | 〈T nxj, xj〉 | ≥

1

k
for all n ∈ N

}
.

Let U be a unitary almost weakly stable operator. Assume that there exists a sequence

{Tm}∞m=1 ⊂ W c
ijk satisfying Tm → U weakly. Then, by Lemma 5.14, Tm → U strongly

and therefore U ∈ W c
jk. This contradicts the almost weak stability of U . Therefore the

set of all unitary almost weakly stable operators does not intersect the closure of W c
jk. By

Proposition 5.13 all sets W c
jk are nowhere dense and therefore WC is residual. �

Remark 5.16. As a consequence of Theorem 5.15 we see that the set of all strongly

stable operators as well as the set of all operators T satisfying r(T ) < 1 are also of first

category in C.

Open question 5.17. Do the above category theorems for weakly and almost weakly

stable isometries and contractions hold on reflexive Banach spaces?

We note that on non-reflexive Banach spaces these results do not need to be true.

Indeed, every almost weakly stable contraction on the space l1 is authomatically weakly

and even strongly stable by Schur’s lemma, see, e.g., Conway [17, Prop. V.5.2], and

Lemma 2.4.



CHAPTER 3

Stability of C0-semigroups

1. Boundedness

In this section we consider boundedness and the related notion of polynomial bound-

edness for C0-semigroups.

1.1. Preliminaries. We start with the definition of bounded C0-semigroups and

their elementary properties.

Definition 1.1. A C0-semigroup T (·) on a Banach space X is called bounded if

supt≥0 ‖T (t)‖ <∞.

Remark 1.2. Every bounded semigroup T (·) satisfies ω0(T ) ≤ 0 and hence σ(A) ⊂
{z : Re (z) ≤ 0}. However, the spectral condition σ(A) ⊂ {z : Re (z) ≤ 0} does not imply

boundedness of the semigroup, which can be seen from the matrix semigroup T (·) given

by T (t) =

(
1 t

0 1

)
on C2. Moreover, we refer to Subsection 1.3 for more sophisticated

examples and a general description of possible growth.

Remark 1.3. It is interesting that, analogous to power bounded operators (see Sub-

section 1.1), some more information on the spectrum of the generator of a bounded

C0-semigroup is known if X is separable. For example, Jamison [64] proved that if a

C0-semigroup on a separable Banach space is bounded, then the point spectrum of its

generator on the imaginary axis has to be countable. For more results in this direction,

see e.g. Ransford [107].

We will see later that countability of the whole spectrum of the generator on the

imaginary axis plays an important role for strong stability of the semigroup, see Subsection

3.3.

The following simple lemma is useful to understand boundedness.

Lemma 1.4. Let T (·) be a bounded semigroup on a Banach space X. Then there exists

an equivalent norm on X such that T (·) becomes a contraction semigroup.

Proof. Take ‖x‖1 := supt≥0 ‖T (t)x‖ for every x ∈ X. �

Remark 1.5. Packel [102] showed that not all bounded C0-semigroups on Hilbert

spaces are similar to a contraction semigroup for a Hilbert space norm. His example

was a modification of the corresponding examples of Foguel [35] and Halmos [55] for the

discrete case.

55
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However, Sz.-Nagy [118] proved that every bounded C0-group is similar to a unitary

one, see also van Casteren [12]. We also mention here Vũ and Yao [131] who proved that

every bounded uniformly continuous quasi-compact C0-semigroup on a Hilbert space is

similar to a contraction semigroup.

We now present an interesting result due to Guo and Zwart showing that boundedness

of a C0-semigroup is equivalent to absolute Cesàro-boundedness of the semigroup and its

adjoint. This is the following theorem, see Zwart [139] and Guo, Zwart [50, Thm. 8.2]

for the case p = q = 2. See also van Casteren [12] for the case of bounded C0-groups on

Hilbert spaces.

Theorem 1.6. For a C0-semigroup T (·) on a Banach space X the following assertions

are equivalent.

(a) T (·) is bounded;

(b) For all x ∈ X and y ∈ X ′

sup
t≥0

1

t

∫ t

0

‖T (s)x‖2ds <∞,

sup
t≥0

1

t

∫ t

0

‖T ′(s)y‖2ds <∞

hold.

Remark 1.7. The second part of condition (b) in the above theorem cannot be omit-

ted, i.e., absolute Cesàro-boundedness of is not equivalent to boundedness. Van Casteren

[12] gave an examlpe of an unbounded C0-group on a Hilbert space satisfying the first

part of condition (b).

We note that Theorem 1.6 can be also formulated for single orbits as follows.

Proposition 1.8. For a C0-semigroup T (·) on a Banach space X, x ∈ X and y ∈ X ′

the weak orbit {〈T (t)x, y〉 : t ≥ 0} is bounded if and only if there exist p, q > 1 with
1
p

+ 1
q

= 1 such that

sup
t≥0

1

t

∫ t

0

‖T (s)x‖pds <∞,

sup
t≥0

1

t

∫ t

0

‖T ′(s)y‖qds <∞.

Since the semigroup is, in most cases, not known explicitly, one looks for other char-

acterisations. This is the aim of the rest of the section.

1.2. Characterisation via cogenerator in Hilbert spaces. In this subsection we

discuss the connection between boundedness of a C0-semigroup and power boundedness

of its cogenerator. This yields a bridge between continuous and discrete semigroups. We

recall that the cogenerator can be easily obtained from the resolvent of the generator and

hence does not involve any explicit knowledge of the semigroup.



1. BOUNDEDNESS 57

As we saw in Subsection 0.7, a C0-semigroup on a Hilbert space is contractive if and

only if its cogenerator is contractive. Guo, Zwart gave an analogous characterisation for

boundedness which however needs more assumptions.

Theorem 1.9. Let A generate a bounded C0-semigroup T (·) on a Hilbert space H.

Assume further that A−1 generates a bounded C0-semigroup as well. Then the cogenerator

of T (·) is power bounded.

Another result of Guo, Zwart shows the equivalence of boundedness of an analytic

C0-semigroup to power boundedness of its generator.

Theorem 1.10. Let T (·) be an analytic C0-semigroup on a Hilbert space H with

cogenerator V . Then T (·) is bounded on R+ if and only if V is power bounded.

We refer to Guo, Zwart [50] for the proofs and further results.

It is naturally to ask whether there is an analogue of the above theorems for semigroups

on Banach spaces. As far as we know, there is still no satisfactory answer to this question.

1.3. Characterisation via resolvent. In this subsection we discuss a resolvent type

characterisation of boundedness for C0-semigroups involving only the first and the second

power of its generator.

The main result of this subsection is the following generation theorem.

Theorem 1.11. (Gomilko [45], Shi and Feng [115]) Let A be a densely defined oper-

ator on a Banach space X satisfying s0(A) ≤ 0. Consider the following assertions.

(a) For every x ∈ X and y ∈ X ′

sup
a>0

a

∫ ∞

−∞
‖R(a+ is, A)x‖2ds <∞,

sup
a>0

a

∫ ∞

−∞
‖R(a+ is, A′)y‖2ds <∞;

(b) sup
a>0

a

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉|ds <∞ for all x ∈ X, y ∈ X ′;

(c) A generates a bounded C0-semigroup on X.

Then (a)⇒(b)⇒(c). Moreover, if X is a Hilbert space, then (a)⇔(b)⇔(c).

Gomilko first proved the non-trivial direction (b)⇒(c) using the Hille–Yosida theorem.

Then Shi and Feng presented an alternative proof using an explicit construction of the

semigroup by formula (6) in Subsection 0.8. The direction (c)⇒(a) for Hilbert spaces

follows easily from the Plancherel Theorem.

Note that van Casteren [12] presented an analogous characterisation for bounded C0-

groups on Hilbert spaces much earlier. He also showed that the second part of condition

(a) cannot be omitted.

Remark 1.12. One can replace the L2-norms in condition (a) by the Lp-norm in the

first inequality and Lq-norm in the second one for some p, q > 1 with 1
p

+ 1
q

= 1, possibly
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depending on x and y. However, for the converse implication, if X is a Hilbert space, one

needs p = q = 2.

A direct consequence of the construction given in the proof of Theorem 1.11 by Shi

and Feng is the following result for single orbits.

Proposition 1.13. Let X be Banach space and A generate a C0-semigroup T (·) with

s0(A) ≤ 0, x ∈ X and y ∈ X ′. Consider the following assertions.

(a) For some p, q > 1 with 1
p

+ 1
q

= 1

lim sup
a→0+

a

∫ ∞

−∞
‖R(a+ is, A)x‖pds <∞,

lim sup
a→0+

a

∫ ∞

−∞
‖R(a+ is, A′)y‖qds <∞;

(b) lim sup
a→0+

a

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉|ds <∞ for all x ∈ X, y ∈ X ′;

(c) {〈T (t)x, y〉 : t ≥ 0} is bounded.

Then (a)⇒(b)⇒(c). Moreover, if X is a Hilbert space, then (a)⇔(b)⇔(c) for p = q = 2.

In particular, conditions (a) and (b) holding for all x ∈ X and y ∈ X ′ both imply

boundedness of T (·) and are equivalent to it in the case when X is a Hilbert space for

p = q = 2.

Note that conditions (a) and (b) in Theorem 1.11 are both not necessary for bounded-

ness by Corollary 2.11.

The question to find analogous necessary and sufficient resolvent conditions for C0-

semigroups on Banach spaces is still open.

1.4. Polynomial boundedness. In this subsection we introduce and discuss poly-

nomial boundedness of C0-semigroups being related to boundedness. Surprisingly, this

notion can be characterised much easier.

Definition 1.14. A semigroup T (·) on a Banach space X is called polynomially

bounded if ‖T (t)‖ ≤ p(t) for some polynomial p and all t ≥ 0.

In the following we will assume ‖T (t)‖ ≤ K(1 + td) for some constants d ≥ 0 (being not

necessary integer), K ≥ 1 and all t ≥ 0.

Note that every polynomially bounded semigroup T (·) again satisfies ω0(T ) ≤ 0. The

following example shows that the converse implication does not hold.

Example 1.15. (C0-semigroups satisfying ω0(T ) ≤ 0 with non-polynomial growth)

We present a construction of a C0-semigroup with a given growth analogous to Example

1.12 in the discrete case.

Consider the Hilbert space

H := L2
a2 = {f : R+ → C measurable :

∫ ∞

0

|f(s)|2a2(s)ds <∞}
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for some positive continuous function a satisfying a(0) ≥ 1 and

(43) a(t+ s) ≤ a(t)a(s) for all t, s ∈ R+

with the natural scalar product. On H take the right shift semigroup T (·).
We first check strong continuity of T (·). For the characteristic function f on an interval

[a, b] and t < b− a one has

‖T (t)f − f‖ =

∫ a+t

a

a2(s)ds+

∫ b+t

b

a2(s)ds −→
t→0+

0.

Further, for f ∈ X we have by (43)

‖T (t)f‖2 =

∫ ∞

t

|f(s− t)|2a2(s)ds =

∫ ∞

0

|f(s)|2a2(s+ t)ds

≤ a2(t)

∫ ∞

0

|f(s)|2a2(s)ds = a2(t)‖f‖2

for every t ≥ 0 and therefore ‖T (t)‖ ≤ a(t). By a density argument the semigroup T (·)
is strongly continuous.

Moreover, for the characteristic functions fn of the intervals [0, 1/n] we have

‖T (t)fn‖2 =

∫ t+ 1
n

t

a2(s)ds =

∫ t+ 1
n

t
a2(s)ds∫ 1

n

0
a2(s)ds

‖fn‖2

and hence

‖T (t)‖2 ≥
1
n

∫ t+ 1
n

t
a2(s)ds

1
n

∫ 1
n

0
a2(s)ds

−→
n→∞

a2(t)

a2(0)

So we obtain the following norm estimate

a(t)

a(0)
≤ ‖T (t)‖ ≤ a(t)

and hence the semigroup T (·) has the same growth as the function a. Note that if a(0) = 1,

then ‖T (t)‖ = a(t) for all t ≥ 0. Now every function a satisfying (43) which grows faster

than every polynomial but slower than any exponential function with positive exponent

gives an example of a non-polynomially growing C0-semigroup T (·) satisfying ω0(T ) ≤ 0.

As a concrete example of such a function consider again

a(t) := (t+ 6)ln(t+6) = eln
2(t+6).

We saw in Example 1.12 that this function satisfies condition (43). Hence we constructed

a C0-semigroup on a Hilbert space which grows like tln t.

Analogously, using this method one can construct a C0-semigroup growing as tln
α t for

any α ≥ 1.

The idea to use the natural condition (43) is due to Sen-Zhong Huang.

Finally, we mention that one can also use the idea of Zabczyk taking matrices with

increasing dimensions (see, e.g., Engel, Nagel [31, Counterexample IV.3.4] or the original
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paper of Zabczyk [138]) to construct a C0-semigroup with growth bound zero having non-

polynomial growth. However, one does not have information about the actual growth with

this construction. We do not go into the details.

The following theorem gives a characterisation of operators which generate a polynomi-

ally bounded C0-semigroup, see Eisner [24]. This generalises Theorem 1.11 for bounded

C0-semigroups and theorems of Malejki [87] (see also Kiselev [73]) for the case of C0-

groups. The proof is based on an explicit construction of the semigroup given by Shi,

Feng [115] for the bounded case, see Theorem 1.11.

Theorem 1.16. (Eisner [24]) Let X be a Banach space and A be a densely defined

operator on X with s(A) ≤ 0 and d ≥ 0. If the condition

(44)

∫ ∞

−∞
|〈R(a+ is, A)2x, y〉|ds ≤ M

a
(1 + a−d)‖x‖‖y‖ ∀x ∈ X, ∀y ∈ X ′

holds for all a > 0, then A is the generator of a C0-semigroup (T (t))t≥0 which does not

grow faster than td, i.e.,

(45) ‖T (t)‖ ≤ K(1 + td)

for some constant K and all t > 0. Conversely, if X is a Hilbert space, then growth

condition (45) implies (44) for the parameter d1 := 2d.

Proof. We will contruct the semigroup explicitly.

Let us first prove that by condition (44) we have s0(A) ≤ 0. Since d
dz
R(z, A) =

−R2(z, A) we have for all a > 0, x ∈ X and y ∈ X∗,

(46) 〈R(a+ is, A)x, y〉 = 〈R(a,A)x, y〉 − i

∫ s

0

〈R(a+ iτ, A)2x, y〉dτ.

By the absolute convergence of the integral on the right hand side we obtain that 〈R(a+

is, A)x, y〉 → 0 if s→∞. From (46) and condition (44) it follows that

‖R(a+ is, A)‖ ≤ M

a
(1 + a−d),

hence s0(A) ≤ 0 holds.

Define now

T (t)x =
1

2πt

∫ ∞

−∞
e(a+is)tR(a+ is, A)2xds

for all x ∈ X. By the assumption the operators T (·) are well-defined and form a semigroup

by by Lemma 0.42. Let us estimate the norm of T (t). From representation (6) and

condition (44) we have

|〈T (t)x, y〉| ≤ eat

2πt

∫ ∞

−∞
|〈R(a+ is, A)2x, y〉|ds

≤ Meat

2πta
(1 + a−d)‖x‖‖y‖.
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Taking a := t−1 we obtain for K := Me
2π

the desired estimate

(47) ‖T (t)‖ ≤ K(1 + td).

This and Lemma 0.42 imply the strong continuity of T (·).
For the converse implication, let T (·) be a C0-semigroup on a Hilbert space H with

generator A satisfying ‖T (t)‖ ≤ K(1 + td). By Parseval’s inequality and integration by

parts we have∫ ∞

−∞
‖R(a+ is, A)x‖2ds =

∫ ∞

0

e−2at‖T (t)x‖2dx

≤ K2

∫ ∞

0

e−2at(1 + td)2‖x‖2dt ≤ M

a
(1 + a−d)‖x‖2

and analogously ∫ ∞

−∞
‖R(a+ is, A′)y‖2ds ≤ M

a
(1 + a−d)‖y‖2

for some constant M > 0 and every x, y ∈ H. Now, by the Cauchy–Schwarz inequality,

we obtain∫ ∞

−∞
|〈R(a+ is, A)x, y〉|ds ≤

(∫ ∞

−∞
‖R(a+ is, A)x‖2ds

) 1
2
(∫ ∞

−∞
‖R(a+ is, A′)y‖2ds

) 1
2

≤ M

a
(1 + a−d)‖x‖‖y‖, ∀x, y ∈ H,

and the theorem is proved. �

Remark 1.17. Kiselev [73] showed that the exponent 2d in the implication (45)⇒
(44) is sharp for the case of C0-groups.

If it is already known that A generates a C0-semigroup, then it becomes much easier to

check whether the semigroup is polynomially bounded at least for a large set of semigroups.

Following Eisner, Zwart [29], we define that an operator A has a p-integrable resolvent

if for some/all a, b > s0(A) the following conditions hold∫ ∞

−∞
‖R(a+ is, A)x‖pds <∞ ∀x ∈ X,(48) ∫ ∞

−∞
‖R(b+ is, A′)y‖qds <∞ ∀x ∈ X ′,(49)

where 1 < p, q <∞ with 1
p
+ 1

q
= 1. Note that in particular condition (4) from Subsection

0.8 is satisfied for such semigroups by the Cauchy–Schwarz inequality.

Plancherel’s theorem applied to the functions t 7→ e−atT (t)x and t 7→ e−atT ∗(t)y for

sufficiently large a > 0 implies that every generator of a C0-semigroup on a Hilbert space

has 2-integrable resolvent. Moreover, for generators on a Banach space with Fourier type

p > 1 condition (48) is satisfied automatically. Finally, every generator of an analytic

semigroup (in particular, every bounded operator) on an arbitrary Banach space has

p-integrable resolvent for every p > 1. Intuitively, the property of having p-integrable

resolvent for some p means good properties of the generator A or/and good properties of

the space X.
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Theorem 1.18. (Eisner, Zwart [29]) Let A be the generator of a C0-semigroup (T (t))t≥0

having p-integrable resolvent for some p > 1. Assume that C+
0 = {λ : Reλ > 0} is con-

tained in the resolvent set of A and there exist a0 > 0 and M > 0 such that the following

conditions hold.

(a) ‖R(λ,A)‖ ≤ M
(Reλ)d for all λ with 0 < Reλ < a0 and for some d ≥ 0;

(b) ‖R(λ,A)‖ ≤M for all λ with Reλ ≥ a0.

Then ‖T (t)‖ ≤ K(1 + t2d−1) holds for some constant K > 0 and all t ≥ 0.

Conversely, if (T (t))t≥0 is a C0-semigroup on a Banach space with

‖T (t)‖ ≤ K(1 + tγ)

for some constants γ ≥ 0, K > 0 and all t ≥ 0, then for every a0 > 0 there exists a

constant M > 0 such that the resolvent of the generator satisfies conditions (a) and (b)

above for d = γ + 1.

Proof. The second part of the theorem follows easily from the representation

R(λ,A)x =

∫ ∞

0

e−λtT (t)xdt.

The idea of the proof of the first part is based on the inverse Laplace transform represen-

tation of the semigroup presented in Subsection 0.8 and the technique from Zwart [140],

and Eisner, Zwart [28].

We first note that by conditions (a) and (b) we obtain s0(A) ≤ 0.

Next, since the function ω 7→ R(a + iω, A)x is an element of Lp(R, X) for all x ∈ X,

we conclude by the uniform boundedness theorem that there exists a constant M0 > 0

such that

(50) ‖R(a+ i·, A))x‖Lp(R,X) ≤M0‖x‖

for all x ∈ X. Similarly, one obtains the dual result, i.e.,

(51) ‖R(b+ i·, A′)y‖Lq(R,X′) ≤ M̃0‖y‖

for all y ∈ X ′.

Take now 0 < r < a0. By the resolvent equality we have

R(r + iω), A)x = [I + (a− r)R(r + iω, A)]R(a+ iω, A)x.

Hence

‖R(r + iω, A)x‖ ≤ [1 + |a− r|‖(R(r + iω, A)‖] ‖R(a+ iω, A)x‖

≤
[
1 + |a− r|M

rd

]
‖R(a+ iω, A)x‖,

where we have used (a). Combining this with the estimate (50), we find that

‖R(r + i·, A)x‖Lp(R,X) ≤
[
1 + |a− r|M

rd

]
M0‖x‖

≤ M1

[
1 +

1

rd

]
‖x‖.(52)
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Similarly, we find that

(53) ‖R(r + i·, A′)y‖Lq(R,X′) ≤ M̃1

[
1 +

1

rd

]
‖y‖.

From estimates (52) and (53) we obtain∫ ∞

−∞
|〈R(r + iω, A)2x, y〉|dω

=

∫ ∞

−∞
|〈R(r + iω, A)x,R(r + iω, A)′y〉|dω

≤ ‖R(r + i·, A)x‖Lp(R,X)‖R(r + i·, A′)y‖Lq(R,X′)

≤ M1M̃1‖x‖‖y‖
[
1 +

1

rd

]2

.(54)

Convergence of the integral on the right hand side of (54) implies that the inverse formula

for the semigroup

T (t)x =
1

2πt

∫ ∞

−∞
e(r+is)tR(r + is, A)2xds

holds for all x ∈ X by Theorem 0.42. Notice that the condition r > s0(A) is essential.

Combining this formula with (54) we obtain

|〈T (t)x, y〉| ≤ 1

2πt

∫ ∞

−∞
ert|〈R(r + iω, A)2x, y〉|dω

≤ 1

2πt
ertM1M̃1‖x‖‖y‖

[
1 +

1

rd

]2

.(55)

Since this holds for all 0 < r < a0, we may choose r := 1
t

for t large enough, which gives

(56) |〈T (t)x, y〉| ≤ 1

2πt
eM1M̃1‖x‖‖y‖

[
1 + td

]2
.

So for large t the norm of the semigroup is bounded by Ct2d−1 for some constant

C. Since any C0-semigroup is uniformly bounded on compact time intervals, the result

follows. �

As mentioned above, every generator on a Hilbert space has 2-integrable resolvent,

hence we have the following immediate corollary.

Corollary 1.19. Let A generate a C0-semigroup (T (t))t≥0 on the Hilbert space H.

If A satisfies conditions (a) and (b) of Theorem 1.18 for some d ≥ 0 and a0 > 0, then

there exists K > 0 such that ‖T (t)‖ ≤ K[1 + t2d−1] for all t ≥ 0.

Remark 1.20. Notice that conditions (a) and (b) for 0 ≤ d < 1 already imply s0(A) <

0 (use the power series expansion for the resolvent). On the other hand, for generators with

p-integrable resolvent the equality ω0(T ) = s0(A) holds by Corollary 2.11. Combining

these facts we obtain that in this case the semigroup is even uniformly exponentially

stable. On the other hand, the exponential stability follows from the Theorem 1.18 only

for d < 1
2
. So for 1

2
≤ d < 1 Theorem 1.18 does not give the best information about the
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growth of the semigroup. Nevertheless, for d = 1 the growth stated in Theorem 1.18 is

best possible, i.e., the exponent 2d− 1 cannot be decreased in general (see Eisner, Zwart

[28]). For d > 1 it is not clear whether Theorem 1.18 gives the best possible constant γ.

Note that the parameter d = γ + 1 in the converse implication of Theorem 1.18 is

optimal for γ ∈ N. Indeed, for X := Cn and

A :=


0 1 0 ... 0

0 0 1 ... 0

...

0 0 0 ... 0


conditions (a) and (b) in Theorem 1.18 are fulfilled for d = n and the semigroup generated

by A grows exactly as tn−1.

By Corollary 1.19 we see that the class of generators of polynomially bounded semi-

groups on a Hilbert space coincides with the class of generators of C0-semigroups satisfying

the resolvent conditions (a) and (b). For semigroups on Banach spaces this is not true

since there exist C0-semigroups with w0(T ) > s0(A) (see Engel, Nagel [31, Examples

IV.3.2 and IV.3.3]).

As a corollary of Theorem 1.18 we have the following characterisation of polynomially

bounded C0-groups in terms of the resolvent of the generator.

Theorem 1.21. Let A be the generator of a C0-group (T (t))t∈R. Assume that A has

p-integrable resolvent for some p > 1. Then the group (T (t))t∈R is polynomially bounded

if and only if the following conditions on the operator A are satisfied.

(a) σ(A) ⊂ iR;

(b) There exist a0 > 0 and d ≥ 0 such that ‖R(λ,A)‖ ≤ M
|Reλ|d for some constant M

and all λ with 0 < |Reλ| < a0;

(c) R(λ,A) is uniformly bounded on {λ : |Reλ| ≥ a0}.

Proof. It is enough to show that the operator −A also has p-integrable resolvent

whenever A satisfies (a)–(c). Take any a > 0. Then by (b) or (c), respectively, R(λ,A) is

bounded on the vertical line −a+ iR. By the resolvent equation we obtain

‖R(−a+ is, A)x‖ ≤ [1 + 2a‖R(−a+ is, A)‖]‖R(a+ is, A)x‖,

and therefore the function s 7→ ‖R(−a+ is, A)x‖ also belongs to Lp(R). The rest follows

immediately from Theorem 1.18. �

Again, this yields a characterisation of polynomially bounded C0-groups on Hilbert

spaces. Note that the relation between the growth of the group and the growth of the

resolvent appearing in (b) of Theorem 1.21 is the same as in Theorem 1.18.
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2. Uniform exponential stability

In this section we consider the concept of uniform exponential stability of C0-semigroups

which turns out to be more complex and much more difficult to characterise in terms of

the generator than the corresponding notion for operators (compare Proposition 1.3).

Uniform exponential stability is defined as follows.

Definition 2.1. A C0-semigroup T (·) is called uniformly exponentially stable if there

exist M ≥ 1 and ε > 0

‖T (t)‖ ≤Me−εt for all t ≥ 0

or, equivalently, ω0(T ) < 0.

For C0-semigroups on finite-dimensional Banach spaces there is a simple characterisa-

tion in terms of the spectrum of the generator given by the classical Lyapunov theorem.

The aim of this section is to characterise uniformly exponentially stable C0-semigroups

on infinite-dimensional Banach and Hilbert spaces. We will see that many different results

are known, but only in Hilbert spaces a simple spectral theoretic characterisation holds.

2.1. Spectral characterisation. An elementary description of uniformly exponen-

tially stable C0-semigroups is the following theorem which is the basis for many further

results in this section.

Theorem 2.2. (see Engel, Nagel [31, Prop. V.1.7]) For a C0-semigroup T (·) on a

Banach space X the following assertions are equivalent.

(i) r(T (t0)) < 1 for some t0 > 0;

(ii) ‖T (t0)‖ < 1 for some t0 > 0;

(iii) ‖T (t)‖ −→
t→∞

0;

(iv) T (·) is uniformly exponentially stable.

The proof of the nontrivial implication (i) ⇒ (iv) is based on the formula r(T (t)) = etω0(T ).

The theorem above shows that, in particular, stability in the norm operator topology

already implies uniform exponential stability.

Moreover, as a consequence of (i), we obtain the following characterisation of uniform

exponential stability in terms of the generator, provided some spectral mapping theorem

holds. We recall that the weak circular spectral mapping theorem is the condition

Γσ(T (t)) = Γetσ(A) = et(σ(A)+iR) for some/all t > 0.

For details on spectral mapping theorems see Subsection 0.6.

Corollary 2.3. Let A generate a C0-semigroup T (·) on a Banach space X satisfying

the weak circular spectral mapping theorem. Then s(A) = ω0(T ). In particular, T (·) is

uniform exponential stable if and only if s(A) < 0, i.e., the spectrum of the generator is

contained in a halfplane {z : Re(z) ≤ −a} for some a > 0.
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2.2. Theorem of Datko–Pazy. The main result of this subsection is the classical

theorem characterising uniform exponential stability of a C0-semigroup in terms of the

integrability of its orbits.

Theorem 2.4. (Datko–Pazy) Let T (·) be a C0-semigroup on a Banach space X. Then

T (·) is uniformly exponentially stable if and only if for some p ≥ 1∫ ∞

0

‖T (t)x‖pdt <∞ for all x ∈ X.

Datko [19] proved this theorem for p = 2 and Pazy [103, Theorem 4.4.1] extended it to

the case p ≥ 1.

There are various generalisations of the Datko–Pazy theorem. As an example we

present two theorems due to van Neerven and Rolewicz.

Theorem 2.5. (van Neerven [99, Cor. 3.1.6]) Let T (·) be a C0-semigroup on a Banach

space X, p ≥ 1 and β ∈ L1
loc(R+) a positive function satisfying∫ ∞

0

β(t)dt = ∞.

If ∫ ∞

0

β(t)‖T (t)x‖pdt <∞ for all x ∈ X,

then T (·) is uniformly exponentially stable.

Theorem 2.6. (Rolewicz, see van Neerven [99, Theorem 3.2.2]) Let T (·) be a C0-

semigroup on a Banach space X. If there exists a strictly positive increasing function φ

on R+ such that ∫ ∞

0

φ(‖T (t)x‖)dt <∞ for all x ∈ X, ‖x‖ ≤ 1,

then T (·) is uniformly exponentially stable.

For further discussion of the above result we refer to van Neerven [99, pp. 110–111].

The following theorem is a weak version of the Datko–Pazy theorem due to Weiss

[132].

Theorem 2.7. (Weiss) Let T (·) be a C0-semigroup on a Banach space X. If for some

p ≥ 1 ∫ ∞

0

|〈T (t)x, y〉|pdt <∞ for all x ∈ X and y ∈ X ′,

then T (·) is uniformly exponentially stable.

For a generalisation of this result see Tomilov [123]. Moreover, we refer to Weiss [133]

for a discrete version.

For further generalisations of the Datko–Pazy theorem see e.g. Vũ [130], van Neerven

[99, Sections 3.3-4].
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2.3. Theorem of Gearhart. For C0-semigroups on Hilbert spaces there is a simple

characterisation of uniform exponential stability in terms of the generator’s resolvent on

the right half plane. This is the classical theorem of Gearhart [37] (see also Prüss [106],

Huang [60] and Greiner’s theorems in Nagel (ed.) [95, A-III.7.8 and 7.10]) which can be

considered as a generalisation of the Lyapunov theorem to the infinite dimensional case.

To this theorem and its generalisations we dedicate this subsection.

We begin with the following result on uniform exponential stability using the inverse

Laplace transform method presented in Subsection 0.8.

Theorem 2.8. Let A generate a C0-semigroup T (·) on a Banach space X such that

the resolvent of A is bounded on the right half plane {z : Re z > 0}. Assume further that

(57)

∫ ∞

−∞
|〈R2(is, A)x, y〉|ds <∞ for all x ∈ X and y ∈ X ′.

Then T (·) is uniformly exponentially stable.

Proof. We first observe that, since the resolvent is bounded on the right half plane,

then it is also bounded on a half plane {z : Re z > −δ} for some δ > 0 by the power

series expansion of the resolvent and hence s0(A) < 0. Therefore, by condition (57) and

Theorem 0.41 we have

〈T (t)x, y〉 =
2π

t

∫ ∞

−∞
eist〈R2(is, A)x, y〉ds for all x ∈ X, y ∈ X ′.

Therefore, by the uniform boundedness principle

|〈T (t)x, y〉| ≤ 2π

t

∫ ∞

−∞
|〈R2(is, A)x, y〉|ds ≤ 2π

t
M‖x‖‖y‖

for some constant M and all x ∈ X, y ∈ X ′. This implies ‖T (t)‖ ≤ 2πM
t

−→ 0 as

t→∞. �

Note that this result generalises a result of Xu and Feng [136].

We now present the Gearhart theorem. The proof we give here is based on the theorem

above, i.e., on the properties of the inverse Laplace transform. Note that the idea of this

proof seems to be due to W. Arendt, see also Engel, Nagel [31, Theorem V.1.11].

Theorem 2.9. (Gearhart) Let A generate a C0-semigroup T (·) on a Hilbert space H.

Then T (·) is uniformly exponentially stable if and only if there exists a constant M > 0

such that

‖R(λ,A)‖ < M for all λ with Re(λ) > 0.

Proof. As in the proof of Theorem 2.8 we see that by the power series expansion for

the resolvent s0(A) < 0 holds. By Theorem 2.8 it suffices to check condition (57).

Take a > maxω0(T ) and x, y ∈ H. By the Plancherel theorem applied to the function

t 7→ e−atT (t)x we obtain∫ ∞

−∞
‖R(a+ is, A)x‖2ds =

∫ ∞

0

e−2at‖T (t)x‖2dt <∞.
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Further, by the inequality s0(A) < 0 and the resolvent identity

‖R(is, A)x‖ = ‖[I + aR(is, A)]R(a+ is, A)x‖ ≤ [1 + aM ]‖R(a+ is, A)x‖

holds for every s ∈ R and hence∫ ∞

−∞
‖R(is, A)x‖2ds <∞.

Applying the same arguments to the operator A and the function t 7→ T ∗(t)y as well as

the Cauchy–Schwarz inequality we finally obtain∫ ∞

−∞
|〈R2(is, A)x, y〉|ds =

∫ ∞

−∞
|〈R(a+ is, A)x,R(a− is, A∗)y〉|ds

≤
(∫ ∞

−∞
‖R(is, A)x‖2ds

) 1
2
(∫ ∞

−∞
‖R(is, A∗)y‖2ds

) 1
2

<∞,

and the theorem is proved. �

Remark 2.10. The assumption that the resolvent is bounded on the left half plane

cannot be replaced by the existence of the resolvent only on the left half plane. For an

example of a semigroup on a Hilbert space satisfying s(A) < s0(A) see e.g. Engel, Nagel

[31, Counterexample IV.3.4].

By the rescaling procedure one obtains the following corollary, see also Kaashoek and

Verduyn Lunel [67] for a similar assertion (but a different method of proof).

Corollary 2.11. Let A generate a C0-semigroup (T (t))t≥0 on a Banach space X. If

for some δ > 0 the integrability condition∫ ∞

−∞
|〈R2(a+ is, A)x, y〉|ds <∞ for all x, y ∈ H

holds for all s0(A) < a < s0(A) + δ, then s0(A) = ω0(T ).

In particular, we see that for C0-semigroups on Hilbert spaces the equality

s0(A) = ω0(T )

holds. This is not true for C0-semigroups on Banach spaces. For an example of a C0-

semigroup on a Banach space satisfying s0(A) < ω0(T ) see van Neerven [99, Ex. 4.2.9].

So the integrability assumption on the resolvent on vertical lines cannot be omitted. It

would be interesting to know whether this condition can be weakened or what kind of

other additional assumptions on the resolvent imply the property s0(A) = ω0(T ).

Remark 2.12. As an application of Gearhart’s theorem we present the following

property of positive C0-semigroups on Hilbert lattices: A positive C0-semigroup with

generator A on a Hilbert lattice is uniformly exponentially stable if and only if [0,∞) ⊂
ρ(A). This follows immediately from Gearhart’s theorem and the fact that

‖R(a+ is, A)‖ ≤ ‖R(a,A)‖ for all s ∈ R

holds for every a > s(A), see e.g. Engel, Nagel [31, p.355]. For basic definitions and

properties of positive semigroups we refer to Nagel (ed.) [95].
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For further generalisations of Gearhart’s theorem see e.g. Herbst [58], Huang [62],

Weis, Wrobel [135].

At the end of this subsection we present an easy characterisation of a hyperbolic type

decomposition for semigroups on Hilbert spaces based on Gearhart’s theorem.

Corollary 2.13. (Kaashoek, Verduyn Lunel [67]) Let T (·) be a C0-semigroup on a

Hilbert space H and a ∈ R. Then there exists a decomposition X = X0 ⊕X1 such that

(1) ‖T (t)x‖ ≤Me(a−ε)t for every x ∈ X1,

(2) ‖T (t)x‖ ≥ 1
M
e(a+ε)t for every x ∈ X2

if and only if the vertical line a+ iR ⊂ ρ(A) and the resolvent of A is bounded on a+ iR.

Note that one of the subspaces X1 and X2 may be zero. Note further that one can

obtain an analogous characterisation for semigroups on Banach spaces replacing bound-

edness by Cesàro boundedness of the resolvent.
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3. Strong stability

We now consider a weaker concept than the uniform exponential stability which is

strong stability.

3.1. Preliminaries. We start by introducing strongly stable C0-semigroups and then

present some fundamental properties.

Definition 3.1. A C0-semigroup T (·) on a Banach space X is called strongly stable

if ‖T (t)x‖ −→
t→∞

0 for every x ∈ X.

The following example (a) is, in a certain sense, typical on Hilbert spaces, see Theorem

3.8 below.

Example 3.2. (a) (Shift semigroup) Consider H := L2(R+, H0) for a Hilbert space

H0 and T (·) defined by

(58) T (t)f(s) := f(s+ t), f ∈ H, t, s ≥ 0.

The semigroup T (·) is called the left shift semigroup on H and is strongly stable. Note

that the spectrum of its generator is the whole left halfplane.

The same semigroup on the spaces C0(R+, X) and Lp(R+, X), X a Banach space, is

also strongly stable for 1 ≤ p <∞, but not for p = ∞.

(b) (Multiplication semigroup, see Engel, Nagel [31, p. 323]) Consider X := C0(Ω)

for a locally compact space Ω and the operator A given by

Af(s) := q(s)f(s), f ∈ X, s ∈ Ω

with the maximal domain D(A) = {f ∈ X : qf ∈ X}, where q is a continuous function

on Ω. The operator A generates the C0-semigroup given by

T (t)f(s) = etq(s)f(s), f ∈ X, s ∈ Ω,

if and only if Re (q) is bounded from above. The semigroup is bounded if Re (q(s)) ≤ 0

for every s ≥ 0. Moreover, the semigroup is strongly stable if and only if Re (q(s)) < 0

for every s ∈ Ω. Indeed, if Re (q(s)) < 0, then

‖T (t)f‖ ≤ sup
s∈K

etRe (q(s))‖f‖ −→
t→∞

0

for every function f with compact support K. By the density of these functions T (·) is

strongly stable. Conversely, if q(s0) ∈ iR, then ‖T (t)f‖ ≥ |f(s0)| for every f ∈ X and

hence T (·) is not strongly stable.

Note that σ(A) = q(Ω) and therefore every closed set contained in the closed left

halfplane is possible for the spectrum of a strongly stable C0-semigroup.

The following property of strongly stable semigroups follows directly from the uniform

boundedness principle.
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Remark 3.3. Every strongly stable C0-semigroup T (·) is bounded, hence σ(A) ⊂
{z : Re z ≤ 0} holds for the generator A. Note that condition Pσ(A) ∩ iR = ∅ is also

necessary for strong stability by the spectral mapping theorem for the point spectrum,

see Proposition 0.28.

We now state an elementary but useful property to show strong stability.

Lemma 3.4. Let T (·) be a bounded C0-semigroup on a Banach space X and let x ∈ X.

(a) If there exists an unbounded sequence {tn}∞n=1 ⊂ R+ such that ‖T (tn)x‖ → 0, then

‖T (t)x‖ → 0.

(b) If T (·) is a contraction semigroup, then lim
t→∞

‖T (t)x‖ exists.

Proof. The second part follows from the fact that for contraction semigroups the

function t 7→ ‖T (t)x‖ is non-increasing. To verify the first one assume that ‖T (tn)x‖ → 0.

Take ε > 0, n ∈ N such that ‖T (tn)x‖ < ε and M := supt≥0 ‖T (t)‖. We obtain

‖T (t)x‖ ≤ ‖T (t− tn)‖‖T (tn)x‖ < Mε

for every t ≥ tn, and (a) is proved. �

An immediate corollary is the the following.

Corollary 3.5. Let T (·) be a bounded C0-semigroup on a Banach space X and

x ∈ X. Then the following assertions are equivalent.

(a) ‖T (t)x‖ −→
t→∞

0;

(b)
1

t

∫ t

0

‖T (s)x‖pds −→
t→∞

0 for some/all p ≥ 1.

In particular, T (·) is strongly stable if and only if (b) holds for every x ∈ X.

The following theorem, similar to Corollary 3.5, gives an equivalent description of

strong stability without assuming boundedness, see Zwart [139] and Guo, Zwart [50].

Theorem 3.6. For a C0-semigroup T (·) on a Banach space X and x ∈ X the following

assertions are equivalent.

(a) T (t)x −→
t→∞

0;

(b) For some/all p, q > 1 with 1
p

+ 1
q

= 1

1

t

∫ t

0

‖T (s)x‖pds −→
t→∞

0,

sup
t≥0

1

t

∫ t

0

‖T ′(s)y‖qds <∞ for all y ∈ X ′.

In particular, T (·) is strongly stable if and only if (b) holds for all x ∈ X.

Note that for bounded C0-semigroups the second part of condition (b) holds automatically.

We now state a continuous analogue of the result of Müller (Theorem 2.6 in Chapter 2)

on the asymptotic behaviour of semigroups which are not uniformly exponentially stable,

see van Neerven [99, Lemma 3.1.7].
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Theorem 3.7. [van Neerven] Let T (·) be a C0-semigroup on a Banach space X with

ω0(T ) ≥ 0. Then for every ε ∈ (0, 1) and every function α : R+ → [0, 1] converging

monotonically to 0 there exists x ∈ X with ‖x‖ = 1 such that

‖T (t)x‖ ≥ (1− ε)α(t) for every t ≥ 0.

Theorem 3.7 means that strongly stable semigroups which are not exponentially stable

possess arbitrary slowly decreasing orbits.

3.2. Strong stability on Hilbert spaces. By the following classical result of Lax

and Phillips being analogous to Theorem 2.7 (Chapter 2), Example 3.2 (a) represents the

general situation for contractive strongly stable C0-semigroups on Hilbert spaces.

Theorem 3.8. (Lax, Phillips [79, p. 67], see also Lax [78, pp. 450–451]) Let T (·) be

a strongly stable contraction semigroup on a Hilbert space H with ω0(T ) = 0. Then T is

unitarily isomorphic to a left shift, i.e., there is a Hilbert space H0 and a unitary operator

U : H → H1 for some closed subspace H1 ⊂ L2(R+, H0) such that UT (·)U−1 is the left

shift on L2(R+, H0).

Notice that for contraction semigroups on Hilbert spaces Theorem 3.7 follows from

the above theorem since the assertion of Theorem 3.7 obviously holds for a left shift

semigroup.

By the following cogenerator approach we build a bridge between strong stability of C0-

semigroups and operators. We begin with the classical theorem on contraction semigroups

on Hilbert spaces based on the dilation theory developed by Foiaş and Sz.-Nagy, see their

monograph [120].

Theorem 3.9. (Foiaş, Sz.-Nagy [120, Prop. III.9.1]) Let T (·) be a contraction semi-

group on a Hilbert space H with cogenerator V . Then

lim
t→∞

‖T (t)x‖ = lim
n→∞

‖V nx‖

holds for every x ∈ H. In particular, T (·) is strongly stable if and only if its cogenerator

V is strongly stable.

For further parallels between a contraction C0-semigroup on a Hilbert space and its co-

generator see Foiaş, Sz.-Nagy [120, Sections III.8-9].

Theorem 3.9 was partially generalised by Guo and Zwart to bounded C0-semigroups.

Theorem 3.10. (Guo, Zwart, [50]) Let T (·) be a bounded semigroup on a Hilbert

space H with power bounded cogenerator V . If T (·) is strongly stable, then so is V .

Note that power boundedness of V in the above theorem is satisfied if A−1 exists and

generates a bounded C0-semigroup as well, see Guo, Zwart [50].

For a necessary and sufficient condition for strong stability on Hilbert spaces using

the resolvent of the generator we refer to Subsection 3.4.
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3.3. Spectral conditions. In this subsection we present spectral conditions on the

generator implying strong stability of the semigroup.

We begin with the following theorem based on a theorem of Ingham for the Laplace

transform, for a short and elegant proof see Chill, Tomilov [16].

Theorem 3.11. Let T (·) be a bounded C0-semigroup with generator A. If iR ⊂ ρ(A),

then T (·) is strongly stable.

This result is surprising in view of the fact that the equality s(A) = ω0(T ) fails in general,

see, e.g., Engel, Nagel [31, Counterexample IV.2.7].

The converse implication in the above theorem is not true. Moreover, as we saw

in Example 3.2 (b), the boundary spectrum of the generator of a strongly stable C0-

semigroup can be an arbitrary closed subset of iR.

We now present the famous stability theorem for C0-semigroups proved by Arendt,

Batty [3] and Lyubich, Vũ [85] independently. The proof of Arendt and Batty is based on

the Laplace transform method while the proof on Lyubich and Vũ uses so-called isometric

limit semigroups (see also Engel, Nagel [31, Theorem V.2.21]). We saw the discrete version

of this result in Subsection 2.3 (Chapter 2).

Theorem 3.12. (Arendt–Batty–Lyubich–Vũ) Let T (·) be a bounded semigroup on a

Banach space X with generator A. Assume that

(i) Pσ(A′) ∩ iR = ∅;
(ii) σ(A) ∩ iR is countable.

Then T (·) is strongly stable.

The following example shows the power of the above theorem.

Example 3.13. Let A generate a bounded eventually norm continuous positive semi-

group T (·) on a Banach lattice X. Then T (·) is strongly stable if and only if 0 /∈ Pσ(A′).

The proof follows from several facts. First, the Perron–Frobenius theory implies that

the spectrum of the generator A of a positive bounded semigroup on the imaginary axis

is additively cyclic, i.e., iα ∈ σ(A) implies iαZ ∈ σ(A) for real α (see Nagel (ed.) [95,

Theorem C-III.2.10 and Proposition C-III.2.9]). Moreover, the spectrum of the generator

of an eventually norm continuous semigroup is bounded on every vertical line (see Engel,

Nagel [31, Theorem II.4.18]). The combination of this two facts leads σ(A) ∩ iR ⊂ {0}.
The theorem of Arendt–Batty–Lyubich–Vũ finishes the argument.

We note that in the above result the condition 0 /∈ Pσ(A′) cannot be replaced by

0 /∈ Pσ(A). This can be easily seen for A := Tl− I on l1, where Tl is the left shift operator

on l1. However, for relatively weakly compact C0-semigroups these conditions are indeed

equivalent by the mean ergodic theorem, see Subsection 0.5 (Chapter 1).

As in the discrete case, the theorem of Arendt–Batty–Lyubich–Vu can be generalised

for completely non-unitary contraction semigroups on Hilbert spaces.
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Theorem 3.14. (see Foiaş and Sz.-Nagy [120, II.6.7] and Kérchy, van Neerven, see

[72]) Let T (·) be a completely non-unitary contractive C0-semigroup on a Hilbert space

with generator A. If

σ(A) ∩ iR has Lebesgue measure 0,

then T (·) and T ∗(·) are both strongly stable.

See also Kérchy, van Neerven, see [72] for related results.

3.4. Characterisation via resolvent. We now present a powerful resolvent ap-

proach for strong stability introduced by Tomilov [124]. Opposite to the spectral approach

discussed in the previous subsection, resolvent conditions are necessary and sufficient at

least for C0-semigroups on Hilbert spaces.

Theorem 3.15. (Tomilov [124]) Let A generate a C0-semigroup T (·) on a Banach

space X satisfying s0(A) ≤ 0 and x ∈ X. Consider the following assertions:

(a) lima→0+ a
∫∞
−∞ ‖R(a+ is, A)x‖2ds = 0,

lim supa→0+ a
∫∞
−∞ ‖R(a+ is, A′)y‖2ds <∞ for all y ∈ X ′;

(b) ‖T (t)x‖ −→
t→∞

0.

Then (a) implies (b). Moreover, if X is a Hilbert space, then (a)⇔(b).

In particular, condition (a) for all x ∈ X implies strong stability of T and, in the case

of Hilbert space, is equivalent to it.

Proof. We first prove the first part of the theorem. By Theorem 0.42 and the

Cauchy-Schwarz inequality we have

|〈T (t)x, y〉| ≤ eat

2πt

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉|ds

≤ eat

2πt

(∫ ∞

−∞
‖R(a+ is, A)x‖2ds

) 1
2
(∫ ∞

−∞
‖R(a+ is, A′)y‖2ds

) 1
2

for every t > 0, a > 0 and y ∈ X ′. By (a) and the uniform boundedness principle there

exists a constant M > 0 such that

a

∫ ∞

−∞
‖R(a+ is, A′)y‖2ds ≤M‖y‖2 for every y ∈ X ′ and a > 0.

Therefore, we have

(59) ‖T (t)x‖ ≤ Meat

2πta

(
a

∫ ∞

−∞
‖R(a+ is, A)x‖2ds

) 1
2

.

By choosing a := 1
t
, we obtain by (59) limt→∞ ‖T (t)x‖ = 0.

Assume now that T (·) is strongly stable on a Hilbert space X. By Parseval’s equality

a

∫ ∞

−∞
‖R(a+ is, A)x‖2ds = a

∫ ∞

0

e−2at‖T (t)x‖2dt

and left hand side is the Abel mean of the function t 7→ ‖T (t)x‖. Therefore it converges

to zero as a→ 0+ by the strong stability of T . This proves the first part of (a).

The second part of (a) follows from Theorem 1.11. �
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By Theorem 1.11 and the above result one immediately obtains the following charac-

terisation of bounded C0-semigroups on Hilbert spaces.

Corollary 3.16. Let A generate a bounded semigroup T (·) on a Hilbert space H and

x ∈ X. Then ‖T (t)x‖ → 0 if and only if

(60) lim
a→0+

a

∫ ∞

−∞
‖R(a+ is, T )x‖2dϕ = 0.

In particular, T (·) is strongly stable if and only if (60) holds for every x in a dense set of

H.

It is still an open question whether the above characterisation holds for C0-semigroups

on Banach spaces.
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4. Weak stability

In this section we consider stability of C0-semigroups in the weak operator topolo-

gy. Surprisingly, this turns out to be much more difficult than the strong and uniform

analogues.

4.1. Preliminaries. We begin with the definition and some examples of weakly sta-

ble semigroups.

Definition 4.1. A C0-semigroup T (·) on a Banach space X is called weakly stable if

〈T (t)x, y〉 −→
t→∞

0 for every x ∈ X and y ∈ X ′.

Note that by the uniform boundedness principle every weakly stable semigroup T (·) on

a Banach space is bounded, hence ω0(T ) ≤ 0 by Remark 1.2. In particular, the spectrum

of the generator A belongs to the closed left half plane. Moreover, the spectral conditions

Pσ(A) ∩ iR = ∅ and Rσ(A) ∩ iR = Pσ(A′) ∩ iR = ∅ are necessary for weak stability.

Example 4.2. (a) The left and right shift semigroups are weakly stable isometries

(and hence not strongly stable) on the spaces C0(R, X) and Lp(R, X) for a Banach

space X and 1 < p <∞.

(b) The right shift semigroup on Lp(R+, X) for a Banach space X defined by

(T (t)f)(s) =

f(s− t), s ≥ t,

0, s < t

is also an isometric semigroup (hence not strongly stable) which is weakly stable for

1 < p < ∞. When p = 2 and X is a Hilbert space, this semigroup is called the

(continuous) unilateral shift, see, e.g., Sz.-Nagy and Foiaş [120, p. 150]. Note that

the adjoint semigroup of an unilateral shift is the left shift on the same space and

hence is strongly stable. Therefore, there is no subspace on which the restriction

of an unilateral shift becomes unitary. We will see in Subsection 4.2 that unilateral

shifts represent the general situation of isometric completely non-unitary weakly stable

semigroups on Hilbert spaces.

(c) Consider H := L2(R) and the multiplication semigroup T (·) given by

T (t)f(s) := etq(s)f(s)

for some bounded measurable function q. Then T (·) is strongly stable if and only

if Re (q(s)) < 0 a.e. The characterisation of weak stability is as in the discrete case

more technical. Indeed, a bounded semigroup T (·) (i.e., Re (q(s)) ≤ 0 a.e.) is weakly

stable if and only if
∫ b

a
etq(s)ds→ 0 as t→∞ for every [a, b] ⊂ R. This is the case for

e.g. q(s) = iαsβ for any α, β ∈ R \ {0}.
For more examples see Section 6.

We now present a simple condition implying weak stability of C0-semigroups using the

following concept.
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Definition 4.3. A sequence {tn}∞n=1 is called relatively dense in R+ if there exists a

number ` > 0 such that every sub-interval of R+ of length ` intersects {tn : n ∈ N} (see

Bart, Goldberg [5] for the terminology).

It turns out that weak convergence to zero for such a sequence already implies weak

stability.

Theorem 4.4. Let T (·) be a C0-semigroup and suppose that T (tn) → 0 weakly as

n→∞ for some relatively dense sequence {tn}∞j=1. Then T (·) is weakly stable.

Proof. Without loss of generality, by passing to a subsequence if necessary, we as-

sume that {tn}∞n=1 is monotone increasing and set ` := supn∈N(tn+1 − tn), which is finite

by assumption. Since every C0-semigroup is bounded on compact time intervals and

(T (tn))n∈N is weakly converging, hence bounded, we obtain that the semigroup (T (t))t≥0

is bounded.

Fix x ∈ X, y ∈ X ′. For t ∈ [tn, tn+1] we have

〈T (t)x, y〉 = 〈T (t− tn)x, T ′(tn)y〉,

where (T ′(t))t≥0 is the adjoint semigroup. We note that by assumption T ′(tn)y → 0 in

the weak*-topology.

Further, the set Kx := {T (s)x : 0 ≤ s ≤ `} is compact in X and T (t − tn)x ∈ Kx

for every n ∈ N. Since pointwise convergence is equivalent to the uniform convergence on

compact sets (see, e.g., Engel, Nagel [31, Prop. A.3]), we see that 〈T (t)x, y〉 → 0. �

Remark 4.5. Taking tn = n in the above theorem, we see that a C0-semigroup T (·)
is weakly stable if and only if the operator T (1) is weakly stable. This builds a bridge

between weak stability of discrete and continuous semigroups.

Remark 4.6. We will see later that one cannot drop the relative density assumption

in Theorem 4.4 or even replace it by the assumption of density 1, see Section 5.

We finally present very recent results of Vladimı́r Müller (oral communication) con-

cerning possible decay of weak orbits.

Theorem 4.7. (Müller) Let T (·) be a weakly stable C0-semigroup on a Banach space

X with ω0(T ) ≥ 0 and a : R+ → R+ decreasing to zero. Then there exist x ∈ X, y ∈ X ′

such that

|〈T (t)x, y〉| ≥ a(t) for all t ≥ 0.

In other words, the orbits of a weakly stable C0-semigroup decrease arbitrary slowly.

V. Müller also proved that the weak stability assumption cannot be replaced by the

almost weak stability in the above theorem. This is very surprising in view of Theorem

3.7. However, for every C0-semigroup T (·) with ω0(T ) ≥ 0 there exist x ∈ X, y ∈ X ′ and

an increasing sequence {tj}∞j=1 such that |〈T (tj)x, y〉| ≥ a(tj) for all j ∈ N by Theorem

3.7 in Chapter 2.



78 3. STABILITY OF C0-SEMIGROUPS

4.2. Contraction semigroups on Hilbert spaces. In this subsection we present

some classical theorems on the decomposition of contractive C0-semigroups on Hilbert

spaces with respect to different qualitative behaviour.

We begin with a decomposition into unitary and completely non-unitary parts due to

Foiaş and Sz.-Nagy [119].

Theorem 4.8. (Foiaş, Sz.-Nagy) Let T (·) be a contraction semigroup on a Hilbert

space H. Then H is the orthogonal sum of two T (·)- and T ∗(·)-invariant subspaces H1

and H2 such that

(a) H1 is the maximal subspace on which the restriction T1(·) of T (·) is unitary;

(b) the restrictions of T (·) and T ∗(·) to H2 are weakly stable.

We present the proof of Foguel given in [34] being analogous to the proof of the discrete

version of this result (Theorem 3.8, Chapter 2).

Proof. Define

H1 := {x ∈ H : ‖T (t)x‖ = ‖T ∗(t)x‖ = ‖x‖ for all t ≥ 0}.

Observe that for every 0 6= x ∈ H1 and t ≥ 0

‖x‖2 = 〈T (t)x, T (t)x〉 = 〈T ∗(t)T (t)x, x〉 ≤ ‖T ∗(t)T (t)x‖‖x‖ ≤ ‖x‖2.

Therefore, by the equality in the Cauchy-Schwarz inequality and the positivity of ‖x‖2,

we obtain T ∗(t)T (t)x = x. Analogously, T (t)T ∗(t)x = x. On the other hand, every x

with these two properties belongs to H1. So we proved the equality

(61) H1 = {x ∈ H : T ∗(t)T (t)x = T (t)T ∗(t)x = x for all t ≥ 0}

which shows, in particular, that H1 is the maximal (closed) subspace on which T (·) is

unitary. The T (t)- and T ∗(t)-invariance of H1 follows from the definition of H1 and the

equality T ∗(t)T (t) = T (t)T ∗(t) on H1.

To show (b) take x ∈ H2 := H⊥
1 . We first note that H2 is T (t)- and T ∗(t)-invariant

since H1 is so. Suppose now that T (t)x does not converge weakly to zero as t → ∞,

or, equivalently, that there exists y ∈ H, ε > 0 and a sequence {tn}∞n=1 such that

|〈T (tn)x, y〉| ≥ ε for every n ∈ N.

Observe that, since every bounded set in a reflexive Banach space is relatively weakly

compact by the Banach-Alaoglu theorem and since weak compactness on Banach spaces

coincides with weak sequential compactness by the Eberlein-Šmulian theorem (see The-

orem 0.1, Chapter 1), there exists a weakly converging subsequence of {T (tn)x}∞n=1. For

convenience we denote the subsequence again by {tn}∞n=1 and its limit by x0. The closed-

ness and T (t)-invariance of H2 imply that x0 ∈ H2.

For a fixed t0 ≥ 0 we obtain

‖T ∗(t0)T (t0)T (t)x− T (t)x‖2 = ‖T ∗(t0)T (t+ t0)x‖2 − 2〈T ∗(t0)T (t+ t0)x, T (t)x〉

+‖T (t)x‖2 ≤ ‖T (t+ t0)x‖2 − 2‖T (t+ t0)x‖2 + ‖T (t)x‖2

= ‖T (t)x‖2 − ‖T (t+ t0)x‖2.
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The right hand side converges to zero as t → ∞ since the function t 7→ ‖T (t)x‖ is

monotone decreasing on R+. Therefore we obtain ‖T ∗(t0)T (t0)T (t)x − T (t)x‖ → 0 as

t→∞.

We now remember that T (tn)x → x0 weakly as n → ∞. This implies immediately

that T ∗(t0)T (t0)T (tn)x → T ∗(t0)T (t0)x0 weakly. By the considerations above, we have

on the other hand that T ∗(t0)T (t0)T (tn)x→ x0 weakly and therefore T ∗(t0)T (t0)x0 = x0.

One shows analogously that T (t0)T
∗(t0)x0 = x0 and x0 ∈ H1. By H1 ∪ H2 = {0} this

implies x0 = 0, which is a contradiction.

Analogously one shows that the restriction of T ∗(·) to H2 converge weakly to zero as

well. �

Remark 4.9. The restriction of T (·) to the subspace H2 in Theorem 4.8 is completely

non-unitary (c.n.u. for short), i.e., there is no subspace of H2 on which the restriction

of T (·) becomes unitary. In other words, Theorem 4.8 states that every Hilbert space

contraction can be decomposed into unitary and c.n.u. part and the c.n.u. part is weakly

stable.

For a systematic study of completely non-unitary semigroups as well as an alternative

proof of Theorem 4.8 using unitary dilation theory see the monograph of Sz.-Nagy and

Foiaş [120].

On the other hand, the following theorem gives a decomposition into weakly stable

and weakly unstable part due to Foguel [34]. We now present a simplified proof of it.

Theorem 4.10. (Foguel) Let T (·) be a contraction semigroup on a Hilbert space H.

Define

W := {x ∈ H : lim
t→0
〈T (t)x, x〉 = 0}.

Then

W = {x ∈ H : lim
t→0

T (t)x = 0 weakly} = {x ∈ H : lim
t→0

T ∗(t)x = 0 weakly},

W is a closed T (·)- and T ∗(·)-invariant subspace of H and the restriction of T (·) to W⊥

is unitary.

Proof. We first show that T (t)x→ 0 weakly for a fixed x ∈ W . By Theorem 4.8 we

may assume that x ∈ H1. If we take S := lin{T (t)x : t ≥ 0}, then by the decomposition

H = S ⊕ S⊥ it is enough to show that 〈T (t)x, y〉 → 0 for all y ∈ S. For y := T (t0)x we

obtain

〈T (t)x, y〉 = 〈T ∗(t0)T (t)x, x〉 = 〈T (t− t0)x, y〉 → 0 for t0 ≤ t→∞,

since the restriction of T (·) to H1 is unitary. By the density of lin{T (t)x : t ≥ 0} in S we

obtain that 〈T (t)x, y〉 → 0 for every y ∈ S and therefore T (t)x→ 0 weakly. Analogously,

T ∗(t)x→ 0 weakly. The converse implication, the closedness and the invariance of W are

evident.

The last assertsion of the theorem follows directly from Theorem 4.8. �
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Combining Theorem 4.8 and Theorem 4.10 we obtain the following decomposition into

three orthogonal subspaces.

Theorem 4.11. Let T (·) be a contraction semigroup on a Hilbert space H. Then H

is the orthogonal sum of three closed T (·)- and T ∗(·)-invariant subspaces H1, H2 and H3

such that the restrictions T1(·), T2(·) and T3(·) satisfy the following.

(1) T1(·) is unitary and has no weakly stable orbit;

(2) T2(·) is unitary and weakly stable;

(3) T3(·) is weakly stable and completely non-unitary.

As in the discrete case (see Subsection 3.2 in Chapter 2), we see from the above

theorem that a characterisation of weak stability for contraction semigroups on Hilbert

spaces is of special importance. In Subsection 6.2 we will obtain an abstract answer using

the spectral theorem. However, it is an open question to find a direct characterisation

not involving the spectral theorem.

At the end of this subsection we present the following classical result describing de-

scription of the part T3(·) in the above theorem if the semigroup consists of isometries.

Theorem 4.12. (Wold decomposition, see Foiaş, Sz.-Nagy [120, Theorem III.9.3]) Let

T (·) be an isometric C0-semigroup on a Hilbert space H. Then H can be decomposed into

an orthogonal sum H = H0 ⊕H1 of T (·)-invariant subspaces such that the restriction of

T (·) on H0 is a unitary semigroup and the restriction of T (·) on H1 is unitarily equivalent

to the unilateral shift on L2(R+, H0) for a Hilbert space H0. In addition, dimH0 =

dim(rg V )⊥ where V is the cogenerator of T (·).

Open questions 4.13. 1) It would be interesting to know whether there is a “general”

form for weakly stable contraction semigroups, i.e., a weak analogue of Theorem 3.8.

2) No relation between weak stability of a contractive C0-semigroup and weak stability

of its cogenerator seems to be known.

4.3. Characterisation via resolvent. In this subsection we present a resolvent

approach originally presented by Chill, Tomilov [15], see also Eisner, Farkas, Nagel, Sereny

[25].

The main result gives some sufficient conditions for weak stability.

Theorem 4.14. (Chill, Tomilov [15] and Eisner, Farkas, Nagel, Sereny [25]) Let

T (·) be a C0-semigroup on a Banach space X with generator A satisfying s0(A) ≤ 0. For

x ∈ X and y ∈ X ′ fixed, consider the following assertions.

(a)

∫ 1

0

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds da <∞.

(b) lim
a→0+

a

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds = 0.

(c) lim
t→∞

〈T (t)x, y〉 = 0

Then (a) ⇒ (b) ⇒ (c). In particular, if T (·) is bounded and (a) or (b) holds for all x from

a dense subset of X and all y from a dense subset of X ′, then (T (t))t≥0 is weakly stable.
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Proof. First we show that (a) implies (b).

From the theory of Hardy spaces we know that the function

f : (0, 1) 7→ R+ defined by

f(a) :=

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds

is monotone decreasing for a > 0 (see Rosenblum, Rovnyak [111] for the theory of Hardy

spaces). Assume now that (b) is not true. Then there exists a monotone decreasing null

sequence {an}∞n=1 such that

(62) anf(an) ≥ c

holds for some c > 0 and all n ∈ N .

Take now any n,m ∈ N such that an ≤ am

2
. By (62) and monotonicity of f we have∫ am

an

f(a)da ≥
m−1∑
k=n

(ak − ak+1)f(ak) ≥
c

an

(am − an) = c

(
am

an

− 1

)
≥ c

holds. This contradicts (a) and the implication (a) ⇒ (b) is proved.

It remains to show that (b) implies (c).

By (b) we have for every a > 0∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds <∞.

Moreover, condition s0(A) ≤ 0 implies that the function λ 7→ 〈R2(λ,A)x, y〉 is bounded

on every half-plane {λ : Re λ ≥ a}. Therefore, it belongs to the Hardy space H1({λ :

Reλ > a}) and ∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds <∞

holds for all a > 0. This allows us to represent the semigroup as the inverse Laplace

transform for all a > max{0, ω0(T )}, where ω0(T ) is the growth bound of (T (t))t≥0.

Indeed, from e.g. Kaashoek, Verduyn Lunel [67] or Kaiser, Weis [68] it follows that

(63) 〈T (t)x, y〉 =
1

2πt

∫ ∞

−∞
e(a+is)t〈R2(a+ is, A)x, y〉 ds.

A standard application of Cauchy’s theorem extends the validity of (63) to all a > 0. We

now take t = 1
a

to obtain

|〈T (t)x, y〉| ≤ a

∫ ∞

−∞
|〈R2(a+ is, A)x, y〉| ds→ 0

as a→ 0+, so t = 1
a
→∞.

The last part of the theorem follows from the fact that pointwise convergence of a an

operator sequence is equivalent to the boundedness of the sequence and convergence on

a dense subset of the Banach space. �

Remark 4.15. Convergence of the integrals in (b) and hence in (a) in Theorem 4.14

for all x ∈ X and y ∈ X ′ would imply s0(A) = ω0(T ) by Corollary 2.11, and therefore is

not necessary for weak stability of C0-semigroups on Banach spaces.
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A useful necessary and sufficient resolvent condition for weak stability is still unknown.

In particular, it is not clear whether condition (b) in Theorem 4.14 holds for all x and

y from dense subsets for weakly stable C0-semigroups on Banach spaces (and even for

unitary groups on Hilbert spaces).
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5. Almost weak stability

In this section we consider a weaker concept than weak stability which is much easier

to characterise and occurs under very general conditions. We will follow Eisner, Farkas,

Nagel, Sereny [25].

5.1. Characterisation. In the following we will concentrate only on relatively weakly

compact semigroups on Banach spaces. Since every weakly stable semigroup has this

property, this is not a too strong restriction with respect to our aims.

We begin with a characterisation which motivates the definition of almost weakly

stable C0-semigroups.

Theorem 5.1. Let (T (t))t≥0 be a relatively weakly compact C0-semigroup on a Banach

space X with generator A. The following assertions are equivalent.

(i) 0 ∈ {T (t)x : t ≥ 0}
σ

for every x ∈ X;

(i’) 0 ∈ {T (t) : t ≥ 0}
Lσ

;

(ii) For every x ∈ X there exists a sequence {tn}∞n=1 with tn →∞ such that T (tn)x
σ→ 0;

(iii) For every x ∈ X there exists a set M ⊂ R+ with density 1 such that T (t)x
σ→ 0, as

t ∈M, t→∞;

(iv) 1
t

t

∫
0
|〈T (s)x, y〉| ds −→

t→∞
0 for all x ∈ X, y ∈ X ′;

(v) lim
a→0+

a
∞
∫
−∞

|〈R(a+ is, A)x, y〉|2 ds = 0 for all x ∈ X, y ∈ X ′;

(vi) lim
a→0+

aR(a+ is, A)x = 0 for all x ∈ X and s ∈ R;

(vii) Pσ(A) ∩ iR = ∅, i.e., A has no purely imaginary eigenvalues.

If, in addition, X ′ is separable, then the conditions above are also equivalent to

(ii∗) There exists a sequence {tn}∞n=1 with tn →∞ such that T (tn)
σ→ 0;

(iii∗) There exists a set M ⊂ R+ with density 1 such that T (t)
σ→ 0, t ∈M and t→∞.

Recall that the (asymptotic) density of a measurable set M ⊂ R+ is

d(M) := lim
t→∞

1

t
λ([0, t] ∩M),

whenever the limit exists (here λ is the Lebesgue measure on R). Note that 1 is the

greatest possible density.

We will use the following elementary lemma (the proof is analogous to the discrete

case, see Petersen [105, p. 65]).

Lemma 5.2. (Koopman–von Neumann, 1932) Let f : R+ → R+ be continuous and

bounded. The following assertions are equivalent.

(a) 1
t

t

∫
0
f(s) ds→ 0 as t→∞;

(b) There exists a set M ⊂ R+ with density 1 such that f(t) → 0, t→∞ and t ∈M .

Proof. (Theorem 5.1). The proof of the implication (i’) ⇒ (i) is trivial. The im-

plication (i) ⇒ (ii) holds since in Banach spaces weak compactness and weak sequential

compactness coincide by the Eberlein–Šmulian theorem (Theorem 0.1 in Chapter 1).
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If (vii) does not hold, then (ii) cannot be true by the spectral mapping theorem for the

point spectrum (see Proposition 0.28 in Chapter 1), hence (ii) ⇒ (vii).

The implication (vii) ⇒ (i’) is the main consequence of the Jacobs–Glicksberg–de Leeuw

decomposition (Theorem 0.23 in Chapter 1) and follows from the construction in its proof,

see Engel, Nagel [31], p. 313.

This proves the equivalences (i) ⇔ (i’) ⇔ (ii) ⇔ (vii).

(vi) ⇔ (vii): Since the semigroup (T (t))t≥0 is bounded and mean ergodic by the mean

ergodic theorem (Theorem 0.19 in Chapter 1), we have by Proposition 0.21 in Chapter 1

that the decomposition X = kerA⊕ rgA holds and the limit

Px := lim
a→0+

aR(a,A)x

exists for all x ∈ X with a projection P onto kerA. Therefore, 0 /∈ Pσ(A) if and only if

P = 0. Take now s ∈ R. The semigroup (eistT (t))t≥0 is also relatively weakly compact

and hence mean ergodic. Repeating the argument for this semigroup we obtain (vi) ⇔
(vii).

(i’) ⇒ (iii): Let S := {T (t) : t ≥ 0}
Lσ ⊆ L(X) which is a compact semi-topological

semigroup if considered with the usual multiplication and the weak operator topology.

By (i) we have 0 ∈ S. Define the operators T̃ (t) : C(S) → C(S) by

(T̃ (t)f)(R) := f(T (t)R), f ∈ C(S), R ∈ S.

By Nagel (ed.) [95], Lemma B-II.3.2, (T̃ (t))t≥0 is a C0-semigroup on C(S).

By Example 0.7 (c) in Chapter 1 the set {f(T (t) ·) : t ≥ 0} is relatively weakly

compact in C(S) for every f ∈ C(S). It means that every orbit {T̃ (t)f : t ≥ 0} is

relatively weakly compact, and, by Lemma 0.6 in Chapter 1, (T̃ (t))t≥0 is a relatively

weakly compact semigroup.

Denote by P̃ the mean ergodic projection of (T̃ (t))t≥0. We have Fix(T̃ ) =
⋂

t≥0 Fix(T̃ (t)) =

〈1〉. Indeed, for f ∈ Fix(T̃ ) one has f(T (t)I) = f(I) for all t ≥ 0 and therefore f must

be constant. Hence P̃ f is constant for every f ∈ C(S). By definition of the ergodic

projection

(64) (P̃ f)(0) = lim
t→∞

1

t

∫ t

0

T̃ (s)f(0) ds = f(0).

Thus we have

(65) (P̃ f)(R) = f(0) · 1, f ∈ C(S), R ∈ S.

Take now x ∈ X. By Theorem 0.5 in Chapter 1 and its proof (see Dunford, Schwartz

[23, p. 434]), the weak topology on the orbit {T (t)x : t ≥ 0} is metrisable and coincides

with the topology induced by some sequence {yn}∞n=1 ⊂ X ′ \ {0}. Consider fx,n ∈ C(S)

defined by

fx,n(R) := |〈Rx, yn

‖yn‖〉|, R ∈ S,
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and fx ∈ C(S) defined by

fx(R) :=
∑
n∈N

1

2n
fx,n(R), R ∈ S.

By (65) we obtain

0 = lim
t→∞

1

t

∫ t

0

T̃ (s)fx,y(I) ds = lim
t→∞

1

t

∫ t

0

fx(T (s)) ds.

Lemma 5.2 applied to the continuous and bounded function R+ 3 t 7→ f(T (t)I) yields a

set M ⊂ R with density 1 such that

fx(T (t)) → 0 as t→∞, t ∈M.

By definition of fx and by the fact that the weak topology on the orbit is induced by

{yn}∞n=1 we have in particular that

T (t)x
σ→ 0 as t→∞, t ∈M.

This proves (iii).

(iii) ⇒ (iv) follows directly from Lemma 5.2.

(iv)⇒ (vii) holds by the spectral mapping theorem for the point spectrum, see Proposition

0.28 in Chapter 1.

(iv) ⇔ (v): Clearly, the semigroup (T (t))t≥0 is bounded. Take x ∈ X, y ∈ X ′ and let

a > 0. By the Plancherel theorem applied to the function t 7→ e−at〈T (t)x, y〉 we have∫ ∞

−∞
|〈R(a+ is, A)x, y〉|2 ds = 2π

∫ ∞

0

e−2at|〈T (t)x, y〉|2 dt.

We obtain by the equivalence of Abel and Cesàro limits (see, e.g., Hardy [57], p. 136)

lim
a→0+

a

∫ ∞

−∞
|〈R(a+ is, A)x, y〉|2 ds = 2π lim

a→0+
a

∫ ∞

0

e−2at|〈T (s)x, y〉|2 ds

= π lim
t→∞

1

t

∫ t

0

|〈T (s)x, y〉|2 ds.(66)

Note that for a bounded continuous function f : R+ → R+ with C := sup f(R+) we have(
1

Ct

∫ t

0

f 2(s) ds

)2

≤
(

1

t

∫ t

0

f(s) ds

)2

≤ 1

t

∫ t

0

f 2(s) ds,

which together with (66) gives the equivalence of (iv) and (v).

For the additional part of the theorem suppose X ′ to be separable. Then so is X, and

we can take dense subsets {xn 6= 0 : n ∈ N} ⊆ X and {ym 6= 0 : m ∈ N} ⊆ X ′. Consider

the functions

fn,m : S → R, fn,m(R) :=
∣∣〈R xn

‖xn‖ ,
ym

‖ym‖

〉∣∣, n,m ∈ N,

which are continuous and uniformly bounded in n,m ∈ N. Define the function

f : S → R, f(R) :=
∑

n,m∈N

1

2n+m
fn,m(R).
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Then clearly f ∈ C(S). Thus, as in the proof of the implication (i’) ⇒ (iii), i.e., using

(64) we obtain

1

t

∫ t

0

f(T (s)I) ds −→
t→∞

0.

Hence, applying Lemma 5.2 to the continuous and bounded function R+ 3 t 7→ f(T (t)I),

we obtain the existence of a set M with density 1 such that f(T (t)) → 0 as t→∞, t ∈M .

In particular, |〈T (t)xn, ym〉| → 0 for all n,m ∈ N as t→∞, t ∈M , which, together with

the boundedness of (T (t))t≥0, proves the implication (i’) ⇒ (iii∗). The implications (iii∗)

⇒ (ii∗) ⇒ (ii’) are straightforward, hence the proof is complete. �

The above theorem shows that starting from

“no purely imaginary eigenvalues of the generator”,

one arrives at properties like (iii) on the asymptotic behaviour of the orbits of the semi-

group. This justifies the following name for this property.

Definition 5.3. We call a relatively weakly compact C0-semigroup almost weakly

stable if it satisfies condition (iii) in Theorem 5.1.

Historical remark 5.4. Theorem 5.1 and especially the implication (vii) ⇒ (iii)

were first proved for discrete semigroups and has a long history, see Remark 4.4 in Chapter

2. The conditions (i), (iii) and (iv) were studied by Hiai [59] also for strongly measurable

semigroups. He related it to the discrete case as well. See also Kühne [76, 77]. The

implication (vii)⇒(i) appears also in Ruess, Summers [112] in a more abstract context.

Note that the equivalence (vii)⇔(iv) for contraction semigroups on Hilbert spaces is a

consequence of the Wiener theorem, see Goldstein [42].

Remark 5.5. The conditions in Theorem 5.1 are of quite different natures. Conditions

(i)–(iv) as well as (ii∗) and (iii∗) give information on the behaviour of the semigroup,

while conditions (v)–(vii) deal with the resolvent of the generator near the imaginary

axis. Among them condition (vii) apparently is the simplest to verify.

Remark 5.6. It is surprising that the equivalence (i’) ⇔ (v) in Theorem 5.1 is a weak

analogue to the Tomilov’s characterisation of strong stability given in Corollary 3.16.

One can also formulate Theorem 5.1 for single orbits. This is the following result

partially due to Jan van Neerven (private communication).

Corollary 5.7. Let A generate a C0-semigroup T (·) on a Banach space X and

x ∈ X. Assume that the orbit {T (t)x : t ≥ 0} is relatively weakly compact in X and

that the restriction of T (·) to lin{T (t)x : t ≥ 0} is bounded. Then there is a holomorphic

continuation of the resolvent function R(·, T )x to {λ : Re(λ) > 0} denoted by Rx(·) and

the following assertions are equivalent.

(i) 0 ∈ {T (t)x : t ≥ 0}
σ
;

(ii) There exists a sequence {tn}∞n=1 converging to ∞ such that T (tn)x→ 0 weakly;
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(iii) There exists a set M ⊂ R+ with density 1 such that T (t)x→ 0 weakly as t→∞,

t ∈M ;

(iv) 1
t

∫ t

0
|〈T (s)x, y〉| −→

t→∞
0 for all y ∈ X ′;

(v) lima→0+ a
∫∞
−∞ |〈Rx(a+ is), y〉|2ds = 0 for all y ∈ X ′;

(vi) lima→0+ aRx(a+ is) = 0 for all s ∈ R;

(vii) The restriction of A to lin{T (t)x : t ≥ 0} has no purely imaginary eigenvalue.

Proof. For the first part of the theorem we just define

Rx(λ) :=

∫ ∞

0

e−λtT (t)xdt whenever Re(λ) > 1.

Denote now by Z the closed linear span of the orbit {T (t)x : t ≥ 0}. Then Z is a

T (·)-invariant closed subspace of X and we can restrict T (·) to it. The restriction, which

we will denote by TZ(·), is by Lemma 0.6 relatively weakly compact as well. By the

uniqueness of the Laplace transform we obtain that R(AZ , λ)x = Rx(λ) for every λ with

Re(λ) > 0, where AZ denotes the generator of TZ(·).
The rest follows from the canonical decomposition X ′ = Z ′⊕Z0 with Z0 := {y ∈ X ′ :

〈z, y〉 = 0 for all z ∈ Z} and Theorem 5.1. �

5.2. Example. In the next section we will see different classes of examples showing

that almost weak stability does not imply weak stability. First we present a concrete

example of a (positive) C0-semigroup which is almost weakly but not weakly stable. We

again follow Eisner, Farkas, Nagel, Sereny [25].

Example 5.8. As in Nagel (ed.) [95], p. 206, we start from a flow on C\{0} with the

following properties:

1) The orbits starting in z with |z| 6= 1 spiral towards the unit circle Γ;

2) 1 is the fixed point of ϕ and Γ\{1} is a homoclinic orbit, i.e., lim
t→−∞

ϕt(z) = lim
t→∞

ϕt(z) =

1 for every z ∈ Γ.

A concrete example comes from the differential equation in polar coordinates (r, ω) =

(r(t), ω(t)): {
ṙ = 1− r,

ω̇ = 1 + (r2 − 2r cosω),

see the following picture.
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Take x0 ∈ C with 0 < |x0| < 1 and denote by Sx0 := {ϕt(x0) : t ≥ 0} the orbit

starting from x0. Then S := Sx0 ∪ Γ is compact for the usual topology of C.

We define a multiplication on S as follows. For x = ϕt(x0) and y = ϕs(x0) we put

xy := ϕt+s(x0).

For x ∈ Γ, x = limn→∞ xn, xn = ϕtn(x0) ∈ Sx0 and y = ϕs(x0) ∈ Sx0 , we define

xy = yx := limn→∞ xny. Note that by |xny−ϕs(x)| = |ϕs(xn)−ϕs(x)| ≤ C|xn−x| −→
n→∞

0

the definition is correct and satisfies

xy = ϕs(x).

For x, y ∈ Γ we define xy := 1. This multiplication on S is separately continuous and

makes S a semi-topological semigroup (see Engel, Nagel [31], Sec. V.2).

Consider now the Banach space X := C(S). By Example 0.7 (c) the set

{f(s ·) : s ∈ S} ⊂ C(S)

is relatively weakly compact for every f ∈ C(S). By definition of the multiplication on S

this implies that

{f(ϕt(·)) : t ≥ 0}

is relatively weakly compact in C(S). Consider the semigroup induced by the flow, i.e.,

(T (t)f)(x) := f(ϕt(x)), f ∈ C(S), x ∈ S.

By the above, each orbit {T (t)f : t ≥ 0} is relatively weakly compact in C(S) and hence,

by Lemma 0.6, (T (t))t≥0 is weakly compact. Note that the strong continuity of (T (t))t≥0

follows, as shown in Nagel (ed.) [95], Lemma B-II.3.2, from the separate continuity of

the flow.

Next, we take X0 := {f ∈ C(S) : f(1) = 0} and identify it with the Banach lattice

C0(S \ {1}). Then both subspaces in the decomposition C(S) = X0 ⊕ 〈1〉 are invariant

under (T (t))t≥0. Denote by (T0(t))t≥0 the semigroup restricted to X0 and by A0 its

generator. The semigroup (T0(t))t≥0 is still relatively weakly compact.

Since Fix(T0) :=
⋂

t≥0 Fix(T0(t)) = {0}, we have that 0 /∈ Pσ(A0). Moreover,

Pσ(A0) ∩ iR = ∅ holds, which implies by the Jacobs-Glicksberg-de Leeuw theorem that

(T0(t))t≥0 is almost weakly stable.

To see that (T0(t))t≥0 is not weakly stable it is enough to consider δx0 ∈ X ′
0. Since

〈T0(t)f, δx0〉 = f(ϕ(t, x0)), f ∈ X0,

f(Γ) always belongs to the closure of {〈T0(t)f, δx0〉 : t ≥ 0} and hence the semigroup

(T0(t))t≥0 can not be weakly stable.

We summarise the above as follows.

Theorem 5.9. There exist a locally compact space Ω and a positive, relatively weakly

compact C0-semigroup on C0(Ω) which is almost weakly but not weakly stable.
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The above theorem becomes particularly interesting in view of the following results;

for details and discussion see Chill, Tomilov [16].

Theorem 5.10 (Groh, Neubrander [49, Theorem. 3.2]; Chill, Tomilov [16, Theo-

rem. 7.7]). For a bounded, positive, mean ergodic C0-semigroup (T (t))t≥0 on a Banach

lattice X with generator (A,D(A)), the following assertions hold.

(i) If X ∼= L1(Ω, µ), then Pσ(A′) ∩ iR = ∅ is equivalent to the strong stability of

(T (t))t≥0.

(ii) If X ∼= C(K), K compact, then Pσ(A′) ∩ iR = ∅ is equivalent to the uniform

exponential stability of (T (t))t≥0.

Example 5.8 above shows that (ii) does not hold in spaces C0(Ω), Ω locally compact.
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6. Abstract examples

In this section we still compare weak and almost weak stability. We first discuss

abstract examples arising from ergodic and measure theory showing that almost weak

stability does not imply weak stability. Finally, we present category theorems analogous

to the classical discrete results of Halmos and Rohlin in the ergodic theory and show that

a “typical” unitary C0-group as well as a “typical” isometric C0-semigroup on a separable

Hilbert space is almost weakly but not weakly stable.

6.1. Ergodic theory. There is a close connection between the notions of weak and

strong mixing for flows in the ergodic theory and almost weak and weak stability for

C0-semigroups. In order to explain it, we follow Eisner, Farkas, Nagel, Sereny [25] and

begin with some definitions.

A measurable measure-preserving semiflow (ϕt)t≥0 on a probability space

(Ω,M, µ) is called strongly mixing if lim
t→∞

µ(ϕ−1
t (A) ∩ B) = µ(A)µ(B) for any two mea-

surable sets A,B ∈ M. The semiflow (ϕt)t≥0 is called weakly mixing if for all A,B ∈ M
we have

lim
t→∞

1

t

∫ t

0

|µ(ϕ−1
s (A) ∩B)− µ(A)µ(B)| ds = 0.

These concepts play an essential role in ergodic theory, and we refer to the monographs

Cornfeld, Fomin, Sinai [18], Krengel [75], Petersen [105], or Halmos [53] for further

information. Clearly, strong mixing implies weak mixing, but the converse implication

does not hold in general. However, examples of weakly but not strongly mixing semiflows

are not easy to construct; see Lind [80] for an example and Petersen [105], p. 209 for a

method of constructing such semiflows.

The semiflow (ϕt)t≥0 on (Ω,M, µ) induces a semigroup of isometries (T (t))t≥0 on each

of the Banach spaces X = Lp(Ω, µ) (1 ≤ p <∞) by defining

(T (t)f)(ω) := f(ϕt(ω)), ω ∈ Ω, f ∈ Lp(Ω, µ).

This semigroup is strongly continuous (see Krengel [75], §1.6, Thm. 6.13) and relatively

weakly compact (use Example 0.7 (b) with u = 1 for p = 1). It is well-known (see, e.g.,

Halmos [53], pp. 37–38) that

(ϕt)t≥0 is strongly mixing ⇐⇒ lim
t→∞

〈T (t)f, g〉 = 〈Pf, g〉 for all f ∈ X, g ∈ X ′,

and

(ϕt)t≥0 is weakly mixing ⇐⇒ lim
t→∞

1

t

∫ t

0

|〈T (s)f, g〉−〈Pf, g〉| ds = 0 for all f ∈ X, g ∈ X ′,

where P is the projection onto Fix(T ) given by Pf :=
∫

Ω
f dµ ·1 for all f ∈ X. Note that

in both cases Fix(T ) = 〈1〉 holds.

Take now any semiflow (ϕt)t≥0 which is weakly but not strongly mixing. Observe that

X = X0 ⊕ 〈1〉, where

X0 :=

{
f ∈ X :

∫
Ω

f dµ = 0

}
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is closed and (T (t))t≥0-invariant. We denote the restriction of (T (t))t≥0 to X0 by (T0(t))t≥0

and its generator by A0. The semigroup (T0(t))t≥0 is still relatively weakly compact and,

since Pσ(A) ∩ iR = ∅, it is almost weakly stable. On the other hand, (T0(t))t≥0 is not

weakly stable since (ϕt)t≥0 is not strongly mixing.

Analogously, each strongly mixing flow induces a weakly stable C0-semigroup on X0.

6.2. Rajchman measures. In this subsection we investigate weak stability for con-

traction C0-semigroups on Hilbert spaces with help of the spectral theorem and spectral

measures.

We consider first an example which, as we will see later, is important for understanding

the general situation.

Example 6.1. Let µ be some finite measure on R and define on the space H :=

L2(R, µ) the multiplication operator A by

(Af)(s) := isf(s) on R

with the maximal domain D(A) := {f ∈ H : g ∈ H for g(s) := isf(s)}. The C0-group

T (·) generated by A is given by

(T (t)f)(s) := eistf(s) s, t ∈ R, f ∈ H.

It is unitary and hence not strongly stable. We are interested in weak stability of T (·).
Note that is ∈ Pσ(A) for a real s if and only if µ{s} > 0. Therefore we obtain by the

Jacobs–Glicksberg–de Leeuw decomposition (Theorem 0.23 in Chapter 1) that

T (·) is almost weakly stable ⇐⇒ µ is continuous.

On the other hand, we see that

〈T (t)f, f〉 =

∫ ∞

−∞
eist|f(s)|2dµ(s)

holds for every f ∈ H. In particular, if T (·) is weakly stable, then

(67) Fµ(t) :=

∫ ∞

−∞
eistdµ(s) → 0 as t→∞,

where Fµ denotes the Fourier transform of µ.

Conversely, if (67) holds, then 〈T (t)f, f〉 → 0 as t → ∞ for every function f having

constant absolute value. Since the linear span of {eit·}∞n=−∞ is dense in H and T (·) is

contractive, 〈T (t)f, f〉 → 0 as t→∞ for every f ∈ H, so by Theorem 4.10 T (·) is weakly

stable. Note further that a unitary group is weakly stable for t→ +∞ if and only if it is

weakly stable for t→ −∞.

This proves the following proposition (see Lyons [83]).

Proposition 6.2. T (·) is weakly stable ⇐⇒ Fµ(t) −→
t→∞

0 ⇐⇒ Fµ(t) −→
|t|→∞

0.
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In harmonic analysis, this property of the measure µ got its own name. Indeed, a

measure on R is called Rajchman if its Fourier transform converges to zero at infinity.

For a brief historical overview on Rajchman measures and their properties we again re-

fer to Lyons [83, 84] and Goldstein [39, 40] (the second author uses the term “Riemann-

Lebesgue measures”), but mention the following. Absolutely continuous measures are

always Rajchman by the Riemann-Lebesgue lemma and all Rajchman measures are con-

tinuous. However, there are continuous measures which are not Rajchman and Rajchman

measures which are not absolutely continuous (see Lyons [84] and Goldstein [40]).

It is now a consequence of the considerations above that each continuous non-Rajchman

measure gives rise to an almost weakly but not weakly stable unitary C0-group. In Engel,

Nagel [31, p. 316] a concrete example is given of a unitary group, even with bounded

generator, for which the corresponding spectral measures are not Rajchman.

To connect Rajchman measures on R to Rajchman measures on Γ considered in Ex-

ample 5.1 in Chapter 2 we note that by the considerations above for every Rajchman

measure µ on R the image of µ under the map s 7→ eis is a Rajchman measure on Γ.

Using the spectral theorem for unitary operators on Hilbert spaces, the general ques-

tion concerning weak (and almost weak) stability can be reduced to the previous example.

Indeed, consider an arbitrary contraction semigroup T (·) on a Hilbert space H. By

Theorem 4.8 the restriction T1(·) of T (·) to the subspace W := {x : ‖T (t)x‖ = ‖T ∗(t)x‖ =

‖x‖ ∀t ≥ 0} is unitary and the restriction to W⊥ is weakly stable. Therefore it remains

to investigate the unitary (semi)group T1(·) on weak stability.

Applying the spectral theorem (see, e.g., Halmos [54]) to A1 we obtain for each x ∈ H1

a measure µx on R such that the restriction of A1 to lin{T (t)x : n = 0, 1, 2, . . .} acts as

the multiplication operator Misf(s) := isf(s) on L2(R, µx). Now, applying Example 6.1,

we see that

T (t)x −→
t→∞

0 weakly ⇐⇒ µx is Rajchman.

Note further that by Theorem 5.1 T (·) is almost weakly stable if and only if µx is contin-

uous for every x.

This gives a measure theoretic approach to weak stability. However, the construction

uses the spectral theorem and therefore is very difficult to apply in concrete situations.

6.3. Category theorems. In this section we show that a “typical” (in the Baire

category sense) unitary group as well as a “typical” isometric C0-semigroup on a Hilbert

space is almost weakly but not weakly stable. This gives an analogue to the famous

category theorems of Rohlin and Halmos for “typical” discrete flows in ergodic theory,

see Halmos [53, pp. 77–80] or the original papers by Halmos [51] and Rohlin [109].

We follow here Eisner, Sereny [27]. We also remark that the results and most proofs

are analogous to the discrete ones presented in Subsection 5.3.1 in Chapter 2.

Throughout this section we assume the underlying Hilbert space to be separable and

infinite-dimensional.
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6.3.1. Unitary case. We begin with unitary groups on a (separable infinite-dimensional)

Hilbert space H. The set of all unitary C0-groups on H will be denoted by U .

A first step in our construction is the following density result.

Proposition 6.3. For every n ∈ N the set of all periodic unitary C0-groups with

period greater than n is dense in U endowed with the norm topology uniform on compact

time intervals.

Proof. Take U(·) ∈ U and n ∈ N. By the spectral theorem H is isomorphic to

L2(Ω, µ) for some locally compact space Ω and finite measure µ and U(·) is unitary

equivalent to a multiplication semigroup Ũ(·) with

(Ũ(t)f)(ω) = eitq(ω)f(ω), ∀ω ∈ Ω, t ≥ 0, f ∈ L2(Ω, µ)

for some measurable q : Ω → R.

We approximate the semigroup Ũ(·) as follows. For k > n define

qk(ω) :=
2πj

k
, ∀ω ∈ q−1

([
2πj

k
,
2π(j + 1)

k

])
, j ∈ Z.

The multiplication operator with eitqk(·), t ∈ R, is denoted by Ṽk(t). The unitary group

Ṽk(·) is periodic with period greater than or equal to k and therefore n. Moreover,

‖Ũ(t)f − Ṽk(t)f‖ =

∫
Ω

|eitq(ω) − eitqk(ω)|2‖f(ω)‖2dω

≤ 2|t| sup
ω
|q(ω)− qk(ω)| · ‖f‖2 =

4π|t|
k

‖f‖2

holds. So ‖Ũ(t) − Ṽk(t)‖ → 0 as k → ∞ uniformly in t on compact intervals and the

proposition is proved. �

Remark 6.4. By a modification of the proof of Proposition 6.3 one can show that

for every n ∈ N the set of all periodic unitary groups with period greater than n with

bounded generators is dense in U endowed with the strong topology uniform on compact

time intervals.

For the second step we need the following lemma.

Lemma 6.5. Let H be a separable infinite-dimensional Hilbert space. Then there exists

a sequence {(Un(t))t∈R}∞n=1 of almost weakly stable unitary groups with bounded generator

satisfying ‖Un(t)− I‖ → 0 as n→∞ uniformly in t in compact intervals.

Proof. By isomorphy of all separable infinite-dimensional Hilbert spaces we can as-

sume without loss of generality that H = L2(R) with respect to the Lebesgue measure.

Take n ∈ N and define Un(·) on L2(R) by

(Un(t)f)(s) := e
itq(s)

n f(s), s ∈ R, f ∈ L2(R),

where q : R → [0, 1] is a strictly monotone increasing function.
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Then all Un(·) are almost weakly stable by Theorem 5.1 and we have

‖Un(t)− I‖ = sup
s∈R

|e
itq(s)

n − 1| ≤ [for t ≤ πn] ≤ |e
it
n − 1| ≤ 2t

n
→ 0, n→∞,

uniformly in t in compact intervals. �

The topology we use on the space U is the topology coming from the metric

d(U(·), V (·)) :=
∞∑

n,j=1

supt∈[−n,n] ‖U(t)xj − V (t)xj‖
2j‖xj‖

for U, V ∈ U ,

where {xj}∞j=1 is some fixed dense subset of H. Note that this topology corresponds to the

strong convergence uniform on compact time intervals in R and is a continuous analogue

of the so-called strong*-topology for operators, see, e.g., Takesaki [121, p. 68]).

We further denote by SU the set of all weakly stable unitary groups on H and by WU

the set all almost weakly stable unitary groups on H.

The following result shows density of WU in U .

Proposition 6.6. The set WU of all almost weakly stable unitary groups with bounded

generator is dense in U .

Proof. By Proposition 6.3 it is enough to approximate periodic unitary groups by

almost weakly unitary groups. Let U(·) be a periodic unitary group with period τ . Take

ε > 0, n ∈ N, x1, . . . , xn ∈ H \ {0} and t0 > 0. We have to find an almost weakly stable

unitary group V (·) with ‖U(t)xj − V (t)xj‖ ≤ ε for all j = 1, . . . , n and all t with |t| ≤ t0.

By Engel, Nagel [31, Theorem IV.2.26] we have

H = ⊕⊥
k∈Z ker

(
A− 2πik

τ

)
,

where A denotes the generator of U(·). So we can assume without loss of generality that

{xj}n
j=1 is an orthonormal system of eigenvalues of A.

Define now the T (·)-invariant subspace H0 := lin{x1, . . . , xn} and B := A on H0.

Further, since H is separable, the decomposition

H = ⊕⊥
k∈NHk

holds, where dimHk = dimH0 for every k ∈ N. For a fixed orthonormal basis {ek
j}n

j=1 of

each Hk we define Bek
j := Bxj and extend B to a bounded linear operator on H.

From the construction follows that

H = ker

(
B − 2πiλ1

τ

)
⊕⊥ . . .⊕⊥ ker

(
B − 2πiλn

τ

)
,

where
2πiλj

τ
is the eigenvalue of A (and therefore of B) corresponding to the eigenvector

xj.

Denote Xj := ker
(
B − 2πiλ1

τ

)
for every j = 1, . . . , n. On every Xj the operator B

is equal to
2πiλj

τ
I. Note further that all Xj are infinite-dimensional. By Lemma 6.5

for every j there exists an almost weakly stable unitary group Tj(·) on Xj such that

‖Tj(t) − e
2πtiλj

τ I‖ < ε for every t with |t| ≤ t0. Denote now by T (·) the orthogonal sum
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of Tj(·) which is a weakly stable unitary group with bounded generator. Moreover, we

obtain that

‖T (t)xj − U(t)xj‖ = ‖T (t)xj − e
2πitλj

τ xj‖ ≤ ε

for every t with |t| ≤ t0 and the proposition is proved. �

We now prove a category theorem for weakly and almost weakly stable unitary groups

being analogous to its discrete version given in Subsection 5.3.1 in Chapter 2.

Theorem 6.7. The set SU of weakly stable unitary groups is of first category and the

set WU of almost weakly stable unitary groups is residual in U .

Proof. We first prove that S is of first category in U . Fix x ∈ H with ‖x‖ = 1 and

consider

Mt :=

{
U(·) ∈ U : |〈U(t)x, x〉| ≤ 1

2

}
.

Note that all sets Mt are closed.

For every weakly stable U(·) ∈ U there exists t > 0 such that U ∈ Ms for all s ≥ t,

i.e., U(·) ∈ Nt := ∩s≥tMt. So we obtain

(68) SU ⊂
⋃
t>0

Nt.

Since all Nt are closed, it remains to show that U \Nt is dense for every t.

Fix t > 0 and let U(·) be a periodic unitary group. Then U(·) /∈ Ms for some s ≥ t

and therefore U(·) /∈ Nt. Since by Proposition 6.3 periodic unitary groups are dense in

U , the set S is of first category.

To show that WU is residual we take a dense subspace D = {xj}∞j=1 of H and define

Wjkt :=

{
U(·) ∈ U : | 〈U(t)xj, xj〉 | <

1

k

}
.

All these sets are open, and therefore the sets Wjk := ∪t>0Wjkt are also open.

We now show the equality

(69) WU =
∞⋂

j,k=1

Wjk.

The inclusion “⊂” follows from the definition of almost weak stability. To prove the

converse inclusion we take U(·) /∈ WU and t > 0. Then there exists x ∈ H with ‖x‖ = 1

and ϕ ∈ R such that U(t)x = eitϕx for all t > 0, what implies | 〈U(t)x, x〉 | = 1. Take

xj ∈ D with ‖xj − x‖ ≤ 1
4
. Then we have

| 〈U(t)xj, xj〉 | = | 〈U(t)(x− xj), x− xj〉+ 〈U(t)x, x〉 − 〈U(t)x, x− xj〉 − 〈U(t)(x− xj), x〉 |

≥ 1− ‖x− xj‖2 − 2‖x− xj‖ >
1

3
.

So U(·) /∈ Wj3 which implies U(·) /∈ ∩∞j,k=1Wjk, and equality (69) holds. Therefore WU is

residual as a dense countable intersection of open sets. �
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6.3.2. Isometric case. In this subsection we consider the space I of all isometric

C0-semigroups on H endowed with the strong topology uniform on compact time intervals

and prove analogous category results as in the previous subsection. We again assume H

to be separable and infinite-dimensional. Note that I is a complete metric space with

respect to the metric given by the formula

d(T (·), S(·)) :=
∞∑

n,j=1

supt∈[0,n] ‖T (t)xj − S(t)xj‖
2j‖xj‖

for T (·), S(·) ∈ I,

where {xj}∞j=1 is a fixed dense subset of H.

We further denote by SI the set of all weakly stable and by WI the set all almost

weakly stable isometric C0-semigroups on H.

The main tool for our results in this subsection is the classical Wold decomposition,

compare Theorem 4.12. As a first application of Wold’s decomposition and the following

easy lemma, see also Peller [104], we obtain a density result for periodic C0-semigroups

in I. (Note that every isometric C0-semigroup being periodic is authomatically unitary.)

Lemma 6.8. Let Y be a Hilbert space and let R(·) be the right shift semigroup on

H := l2(N, Y ). Then there exists a sequence {Un(·)}∞n=1 of periodic unitary operators on

H converging strongly to R(·) uniformly on compact time intervals.

Proof. For every n ∈ N we define Un(·) by

(Un(t)f)(s) :=

f(s), s ≥ n;

Rn(t)f(s), s ∈ [0, n],

where Rn(·) denotes the n-periodic right shift on the space L2([0, n], Y ). Then every Un(·)
is a C0-semigroup on L2(R+, Y ) which is isometric and n-periodic, and therefore unitary.

Fix f ∈ L2(R+, Y ) and T > 0. Then for t ≤ T and n > T we have

‖Un(t)f −R(t)f‖2 =

∫ ∞

n

‖f(s)− f(s+ n− t)‖2ds+

∫ t

0

‖f(s+ n− t)‖2ds

≤
∫ ∞

n

‖f(s)‖2ds+

∫ ∞

n−t

‖f(s)‖2ds+

∫ n

n−t

‖f(s)‖2ds

= 2

∫ ∞

n−t

‖f(s)‖2ds ≤ 2

∫ ∞

n−T

‖f(s)‖2ds −→
n→∞

0

uniformly on t ∈ [0, T ] and the lemma is proved. �

As a further consequence of the Wold decomposition and results in the previous sub-

section we obtain the following density results for periodic C0-semigroups in I.

Proposition 6.9. The set of all periodic unitary C0-groups is dense in I.

Proof. Let V (·) be an isometric semigroup on H. Then by Theorem 4.12 the or-

thogonal decomposition H = H0 ⊕H1 holds, where the restriction V0(·) of V (·) to H0 is

unitary, H1 is unitarily equivalent to L2(R+, Y ) for some Y and the restriction V1(·) of
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V (·) on H1 corresponds by this equivalence to the right shift semigroup on L2(R+, Y ).

By Proposition 6.3 and Lemma 6.8 we can approximate both semigroups V0(·) and V1(·)
by unitary periodic ones and the assertion follows. �

Also the following density result for almost weakly stable semigroups is a consequence

of Wold’s decomposition and the results of the previous subsection.

Proposition 6.10. The set WI of almost weakly stable isometries is dense in I.

Proof. Let V be an isometry on H, H0, H1 the orthogonal subspaces from Theorem

4.12 and V0 and V1 the corresponding restrictions of V . By Lemma 6.8 the operator V1 can

be approximated by unitary operators on H1. The assertion now follows from Proposition

6.6. �

We now obtain, using the same idea as in the proof of Theorem 6.7 as well as Propo-

sitions 6.9 and 6.10, the following category theorem for weakly and almost weakly stable

isometric C0-semigroups.

Theorem 6.11. The set SI of all weakly stable isometric C0-semigroups is of first

category and the set WI of all almost weakly stable isometric C0-semigroups is residual

in I.

Remarks 6.12. 1) It is not clear whether the same category phenomenon also holds

for weakly and almost weakly stable contractive C0-semigroups. However, we strongly

conjecture that it is true, i.e., that the continuous analogue of Theorem 5.7 in Chapter 2

holds.

2) It is also very interesting to know whether there are some category theorems for

Rajchman and non-Rajchman measures.
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[26] T. Eisner and A. Serény, Category theorems for stable operators on Hilbert spaces, submitted, 2006.
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Nachrichten 4 (1951), 258–281.
[101] O. Nevanlinna, Resolvent conditions and powers of operators, Studia Math. 145 (2001), 113–134.



BIBLIOGRAPHY 103

[102] E. W. Packel, A semigroup analogue of Foguel’s counterexample, Proc. Amer. Math. Soc. 21 (1969),
240–244.

[103] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer–Verlag, 1983.

[104] V. V. Peller, Estimates of operator polynomials in the space Lp with respect to the multiplicative
norm, J. Math. Sciences 16 (1981), 1139–1149.

[105] K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, Cambridge University
Press, 1983.

[106] J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc. 284 (1984), 847–857.
[107] T. Ransford, Eigenvalues and power growth, Israel J. Math. 146 (2005), 93–110.
[108] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co., 1955.
[109] V. A. Rohlin, A “general” measure-preserving transformation is not mixing, Doklady Akad. Nauk

SSSR 60 (1948), 349–351.
[110] S. Rolewicz, On uniform N–equistability, J. Math. Anal. Appl. 115 (1986), 434–441.
[111] M. Rosenblum and J. Rovnyak, Topics in Hardy Classes and Univalent Functions, Birkhäuser,
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[128] Q. Ph. Vũ, A short proof of the Y. Katznelson’s and L. Tzafriri’s theorem, Proc. Amer. Math. Soc.

115 (1992), 1023–1024.



104 BIBLIOGRAPHY
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11/2004 Diplom in Mathematik mit Nebenfach Physik

Betreuer: Prof. Rainer Nagel

Diplomarbeit “Polynomially bounded C0-semigroups”

2003–2006 Wissenschaftliche Hilfskraft am Mathematischen Institut

der Universität Tübingen
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