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Zusammenfassung in deutscher Sprache

In dieser Arbeit werden integrale n Varifaltigkeiten in Rn+m betrachtet, wel-
che eine Bedingung an die verallgemeinerte mittlere Krümmung in Lp-Räumen
erfüllen. Genauer wird der Zusammenhang von Größen, welche den klassischen
Tilt- und Height-Excess umfassen und verallgemeinern, untersucht, insbesonde-
re im Hinblick auf die Frage möglicher C2-Rektifizierbarkeit solcher Varifaltigkei-
ten. Das Hauptresultat besagt, daß die Abweichung der integralen Varifaltigkeit
von einer eventuell mehrwertigen Ebene (Height-Excess) durch die Abweichung
der approximativen Tangentialräume der integralen Varifaltigkeit von besagter
Ebene (Tilt-Excess) und die mittlere Krümmung kontrolliert werden kann.

Introduction

This work is concerned with C2 rectifiability of integral n varifolds in Rn+m,
m,n ∈ N which are of locally bounded first variation. More precisely, given
assumptions on the mean curvature, the relationship between C2 rectifiability
and decay of height or tilt quantities is examined.

First, some definitions will be recalled. Suppose throughout the introduction
that m, n are as above and U is a nonempty, open subset of Rn+m. Using [Sim83,
Theorem 11.8] as a definition, µ is a rectifiable [an integral] n varifold in U if
and only if µ is a Radon measure on U and for µ almost all x ∈ U there exists an
approximate tangent plane Txµ ∈ G(n+m,n) with multiplicity θn(µ, x) of µ at
x [and θn(µ, x) ∈ N], G(n+m,n) denoting the set of n dimensional, unoriented
planes in Rn+m. The distributional first variation of mass of µ equals

(δµ)(η) =
∫

divµ η dµ whenever η ∈ C1
c (U,Rn+m)

where divµ η(x) is the trace of Dη(x) with respect to Txµ. ‖δµ‖ denotes the
total variation measure associated to δµ and µ is said to be of locally bounded
first variation if and only if ‖δµ‖ is a Radon measure. The tilt-excess and the
height-excess of µ are defined by

tiltexµ(x, %, T ) := %−n
∫
B%(x)

|Tξµ− T |2 dµ(ξ),

heightexµ(x, %, T ) := %−n−2
∫
B%(x)

dist(ξ − x, T )2 dµ(ξ)

whenever x ∈ Rn+m, 0 < % < ∞, B%(x) ⊂ U , T ∈ G(n+m,n); here S ∈
G(n+m,n) is identified with the orthogonal projection of Rn+m onto S and | · |
denotes the norm induced by the usual inner product on Hom(Rn+m,Rn+m).
From the above definition of a rectifiable n varifold µ one obtains that µ almost
all of U is covered by a countable collection of n dimensional submanifolds of
Rn+m of class C1. This concept is extended to higher orders of differentiability
by adapting a definition of Anzellotti and Serapioni in [AS94] as follows: A
rectifiable n varifold µ in U is called countably rectifiable of class Ck,α [Ck],
k ∈ N, 0 < α ≤ 1, if and only if there exists a countable collection of n
dimensional submanifolds of Rn+m of class Ck,α [Ck] covering µ almost all of U .
Throughout the introduction this will be abbreviated to Ck,α [Ck] rectifiability.
Note that Ck,1 rectifiability and Ck+1 rectifiability agree by [Fed69, 3.1.15].

Decays of tilt-excess or height-excess have been successfully used in [All72,
Bra78, Sch04a, Sch04b]. The link to C2 rectifiability is provided in [Sch04b], see

1



below. In order to explain some of these results, a mean curvature condition is
introduced. An integral n varifold in U is said to satisfy (Hp), 1 ≤ p ≤ ∞, if and
only if either p > 1 and for some ~Hµ ∈ Lploc(µ,Rn+m), called the generalised
mean curvature of µ,

(δµ)(η) = −
∫
~Hµ • η dµ whenever η ∈ C1

c (U,Rn+m) (Hp)

or p = 1 and

µ is of locally bounded first variation; (H1)

here • denotes the usual inner product on Rn+m. Brakke has shown in [Bra78,
5.7] that

tiltexµ(x, %, Txµ) = ox(%), heightexµ(x, %, Txµ) = ox(%) as % ↓ 0

for µ almost every x ∈ U provided µ satisfies (H1) and

tiltexµ(x, %, Txµ) = ox(%2−ε), heightexµ(x, %, Tx) = ox(%2−ε) as % ↓ 0

for every ε > 0 for µ almost every x ∈ U provided µ satisfies (H2). In case
of codimension 1 and p > n Schätzle has proved the following result yielding
optimal decay rates.

Theorem 5.1 in [Sch04a]. If m = 1, p > n, p ≥ 2, and µ is an integral n
varifold in U satisfying (Hp), then

tiltexµ(x, %, Txµ) = Ox(%2), heightexµ(x, %, Txµ) = Ox(%2) as % ↓ 0

for µ almost all x ∈ U .

The importance of the improvement from 2− ε to 2 stems mainly from the
fact that the quadratic decay of tilt-excess can be used to compute the mean
curvature vector ~Hµ in terms of the local geometry of µ which had already been
noted in [Sch01, Lemma 6.3]. In [Sch04b] Schätzle provides the above mentioned
link to C2 rectifiability as follows:

Theorem 3.1 in [Sch04b]. If µ is an integral n varifold in U satisfying (H2)
then the following two statements are equivalent:

(1) µ is C2 rectifiable.

(2) For µ almost every x ∈ U there holds

tiltexµ(x, %, Txµ) = Ox(%2), heightexµ(x, %, Txµ) = Ox(%2) as % ↓ 0.

The quadratic decay of heightexµ implies C2 rectifiability without the con-
dition (H2) as may be seen from the proof in [Sch04b]. However, (1) would not
imply (2) if µ were merely required to satisfy (Hp) for some p with 1 ≤ p < 2n

n+2 ,
an example will be provided in C.5. On the other hand, it is evident from the
Caccioppoli type inequality relating tiltexµ to heightexµ and mean curvature,
see e.g. [Bra78, 5.5], that quadratic decay of heightexµ implies quadratic decay
for tiltexµ under the condition (H2). This leads to the following question:
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Problem. Does quadratic decay of tiltexµ imply quadratic decay of heightexµ
under the condition (H2)?

More generally, suppose that µ is an integral n varifold in U satisfying (Hp),
1 ≤ p ≤ ∞, and 0 < α ≤ 1, 1 ≤ q <∞. Does

lim sup
r↓0

r−α−n/q
(∫
Br(x)

|Tξµ− Txµ|q dµ(ξ)
)1/q

<∞

for µ almost all x ∈ U imply

lim sup
r↓0

r−1−α−n/q(∫
Br(x)

dist(ξ − x, Txµ)q dµ(ξ)
)1/q

<∞

for µ almost all x ∈ U?

The answer to the second question will be shown in 2.8–2.10 to be in the
affirmative if and only if either p ≥ n or p < n and αq ≤ np

n−p , yielding in
particular a positive answer to the first question. The main task is to prove the
following theorem which in fact provides a quantitative estimate together with
the usual embedding in Lq spaces.
Theorem 2.8. Suppose Q ∈ N, 0 < α ≤ 1, 1 ≤ p ≤ n, and µ is an integral n
varifold in U satisfying (Hp).

Then the following two statements hold:

(1) If p < n, 1 ≤ q1 < n, 1 ≤ q2 ≤ min{ nq1
n−q1 ,

1
α ·

np
n−p}, then for µ almost all

a ∈ U with θn(µ, a) = Q there holds

lim sup
r↓0

r−α−1−n/q2‖dist(· − a, Taµ)‖Lq2 (µ xBr(a))

≤ Γ(1) lim sup
r↓0

r−α−n/q1‖Tµ − Taµ‖Lq1 (µ xBr(a))

where Γ(1) is a positive, finite number depending only on m, n, Q, q1, and
q2.

(2) If p = n, n < q ≤ ∞, then for µ almost all a ∈ U with θn(µ, a) = Q there
holds

lim sup
r↓0

r−α−1‖dist(· − a, Taµ)‖L∞(µ xBr(a))

≤ Γ(2) lim sup
r↓0

r−α−n/q‖Tµ − Taµ‖Lq(µ xBr(a))

where Γ(2) is a positive, finite number depending only on m, n, Q, and q.

Here Tµ denotes the function mapping x to Txµ whenever the latter exists.
The connection to higher order rectifiability is provided by the following simple
adaption of [Sch04b, Appendix A].
Lemma 3.1. Suppose 0 < α ≤ 1, µ is a rectifiable n varifold in U , and A
denotes the set of all x ∈ U such that Txµ exists and

lim sup
%↓0

%−n−1−α∫
B%(x)

dist(ξ − x, Txµ) dµ(ξ) <∞.

Then µ xA is C1,α rectifiable.
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The analog of Theorem 2.8 in the case of weakly differentiable functions can
be proved simply by using the Sobolev Poincaré inequality in conjunction with
an iteration procedure. In the present case, however, the curvature condition is
needed to exclude a behaviour like the one shown by the function f : R → R
defined by

f(x) =
∞∑
i=0

(2−i)χ[2−i−1,2−i[(x) whenever x ∈ R

at 0; in fact an example of this behaviour occurring on a set of positive L1

measure is provided by f1/2 ◦ g where g is the distance function from a compact
set C such that L1(C) > 0 and for some 0 < λ < 1

lim inf
r↓0

r−3/2L1([x+ λr, x+ r[∼C) > 0 whenever x ∈ C.

Therefore the strategy to prove Theorem 2.8 is to provide a special Sobolev
Poincaré type inequality for integral varifolds involving curvature, see 2.4. In
the construction weakly differentiable functions are replaced by Lipschitzian Q
valued functions, a Q valued function being a function with values in QQ(Rm) ∼=
(Rm)Q

/
∼ where ∼ is induced by the action of the group of permutations of

{1, . . . , Q} on (Rm)Q.
Roughly speaking, the construction performed in a ball Br(a) ⊂ U proceeds

as follows. Firstly, a graphical part G of µ in Br(a) is singled out. The com-
plement of G can be controlled in mass by the curvature, whereas its geometry
cannot be controlled in a suitable way as may be seen from the example in C.2
used to demonstrate the sharpness of the curvature condition. On the graphical
part G the varifold µ might not quite correspond to the graph of a Q valued
function but still have “holes” or “missing layers”. Nevertheless, it will be shown
that µ behaves just enough like a Q valued function to make it possible to re-
duce the problem to this case. Finally, for Q valued functions Almgren’s bi
Lipschitzian equivalence of QQ(Rm) to a subset of RmP for some P ∈ N which
is a Lipschitz retract of the whole space directly yields a Poincaré inequality.
More details about the technical difficulties occurring in the construction and
how they are solved will be given at the beginning of Section 1.

To conclude the introduction, it will be indicated why tilt quantities with
exponent different from 2 may become relevant. The above mentioned decay
rates for tilt-excess (or height-excess) shown by Brakke in case the integral
varifold µ satisfies (H1) imply that µ is C1,1/2 rectifiable but for every 1/2 <
α ≤ 1 there is no example known to the author of such a µ which is not C1,α

rectifiable. In contrast, for any 1/2 + 1
2(n−1) < α ≤ 1, n > 1, there exists an

example, see C.4, showing that tilt-excess and height-excess do not decay with
power 2α, i.e. the power corresponding to C1,α rectifiability via Theorem 2.8
and Lemma 3.1. The 1 tilt does behave better in this respect. In fact, it will
be shown that decay of the 1 tilt implies C2 rectifiability and locality of mean
curvature:
Lemma 3.2. Suppose µ is an integral n varifold in U satisfying (H1) and A
denotes the set of all x ∈ U such that Txµ exists and

lim sup
%↓0

%−1−n∫
B%(x)

|Tξµ− Txµ|dµ(ξ) <∞.
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Then µ xA is C2 rectifiable and for every n dimensional submanifold M of
Rn+m of class C2 there holds

~Hµ(x) = ~HM (x) for µ almost every x ∈ A ∩M

where ~HM denotes the mean curvature of M and −~Hµ corresponds to the ab-
solutely continuous part of δµ with respect to µ.

The first part of the lemma is a direct consequence of Theorem 2.8 and
Lemma 3.1 whereas the second part is an adaption of [Sch01, Lemma 6.3] with
the help of the differentiation theorem provided in B.1.

The work is organised as follows. In Section 1 the approximation of µ by a Q
valued function is constructed. In Section 2 the approximation is used to prove
the Sobolev Poincaré type inequality 2.6 and Theorem 2.8. Section 3 provides
Lemmas 3.1 and 3.2. The Appendices A and B provide more basic properties of
rectifiable varifolds which are needed to prove the various results contained in
the body of the text in a precise fashion which then allows the example given in
Appendix C to demonstrate the sharpness of these results. Finally, Appendix
D collects for the convenience of the reader the results needed from Almgren’s
Big Regularity Paper [Alm00].

The notation follows [Sim83]. Additionally to the symbols already defined,
im f and dmn f denote the image and the domain of a function f respectively,
T⊥ is the orthogonal complement of T for T ∈ G(n+m,n), γn denotes the best
constant in the Isoperimetric Inequality as defined in A.3, and f(φ) denotes the
ordinary push forward of a measure φ by a function f , i.e. f(φ)(A) := φ(f−1(A))
whenever A ⊂ Y , if φ is a measure onX and f : X → Y . Definitions are denoted
by ‘=’ or, if clarity makes it desirable, by ‘:=’. To simplify verification, in case a
statement asserts the existence of a constant, small (ε) or large (Γ), depending
on certain parameters this number will be referred to by using the number of
the statement as index and what is supposed to replace the parameters in the
order of their appearance given in brackets, for example εA.10(m,n, 1− δ3/2).

Acknowledgements. The author offers his thanks to Professor Reiner Schätz-
le for guiding him during the preparation of this dissertation as well as inter-
esting discussions about various mathematical topics. The author would also
like to thank Professor Tom Ilmanen for his invitation to the ETH in Zürich
in 2006, and for several interesting discussions concerning considerable parts of
this work.

1 Approximation of integral varifolds

In this section an approximation procedure for integral n varifolds µ in Rn+m

by Q valued functions is carried out. Similar constructions occur in [Alm00,
Chapter 3] and [Bra78, Chapter 5]. Basically, a part of µ which is suitably
close to a Q valued plane is approximated “above” a subset Y of Rn by a
Lipschitzian Q valued function. The sets where this approximation fails are
estimated in terms of µ and Ln measure.

In order to obtain an approximation useful for proving the main lemma 2.4
for the Sobolev Poincaré type inequalities 2.6 and 2.8 in the next section, the
following three problems had to be solved.
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Firstly, in the above mentioned estimate one can only allow for tilt and mean
curvature terms and not for a height term as it is present in [Bra78, 5.4]. This
is done using a new version of Brakke’s multilayer monotonicity which allows
for variable offsets, see 1.8.

Secondly, the seemingly most natural way to estimate the height of µ above
the complement of Y , namely measure times maximal height h, would not pro-
duce sharp enough an estimate. In order to circumvent this difficulty, a “graph-
ical part” G of µ defined mainly in terms of mean curvature is used which is
larger than the part where µ equals the “graph” of the Q valued function. Points
in G still satisfy a one sided Lipschitz condition with respect to points above Y ,
see 1.10 and 1.14 (4). Using this fact in conjunction with a covering argument,
the actual error in estimating the q height in a ball B̄t(ζ) where Ln(B̄t(ζ) ∩ Y )
and Ln(B̄t(ζ)∼Y ) are comparable, can be estimated by Ln(B̄t(ζ)∼Y )1/q · t
instead of Ln(B̄t(ζ)∼Y )1/q · h; the replacement of h by t being the decisive
improvement which allows to estimate the q∗ height (q∗ = nq

n−q , 1 ≤ q < n)
instead of the q height in 2.4.

Thirdly, to obtain a sharp result with respect to the assumptions on the
mean curvature, all curvature conditions are phrased in terms of isoperimet-
ric ratios. Therefore, it seems to be impossible to derive lower bounds for the
density and monotonicity results for the density ratios by integration from the
monotonicity formula, see e.g. [Sim83, (17.3)], as in [Sim83, Theorems 17.6,
17.7]. Instead, lower bounds are obtained via slicing from the Isoperimetric
Inequality of Michael and Simon, see Appendix A, and it is shown that noninte-
gral bounds for density ratios are preserved provided the varifold is additionally
close to a Q valued plane, see 1.4. Both results appear to be generally useful in
deriving sharp estimates involving mean curvature.

1.1. If m,n ∈ N, a ∈ Rn+m, 0 < r <∞, T ∈ G(n+m,n), and µ is a stationary,
integral n varifold in Br(a) with Txµ = T for µ almost all x ∈ Br(a), then
T⊥(sptµ) is discrete and closed in T⊥(Br(a)) and for every x ∈ sptµ

y ∈ Br(a), y − x ∈ T implies θn(µ, y) = θn(µ, x) ∈ N;

hence with Sx = {y ∈ Br(a) : y − x ∈ T}

µ xSx = θn(µ, x)Hn xSx whenever x ∈ Br(a).

A similar assertion may be found in [Alm00, 3.6] and is used in [Bra78, 5.3 (16)].

1.2 Lemma. Suppose 0 < M < ∞, M /∈ N, 0 < λ1 < λ2 < 1, m,n ∈ N, T ∈
G(n+m,n), F is the family of all stationary, integral n varifolds in Bn+m

1 (0)
such that

Txµ = T for µ almost all x ∈ Bn+m
1 (0), µ(Bn+m

1 (0)) ≤Mωn,

and N is the supremum of all numbers

(ωnrn)−1µ(B̄n+m
r (0))

corresponding to all µ ∈ F and λ1 ≤ r ≤ λ2.
Then for some µ ∈ F and some λ1 ≤ r ≤ λ2

N = (ωnrn)−1µ(B̄n+m
r (0)) < M.
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Proof. The proof uses the structure of the elements of F described in 1.1. Since

(ωnrn)−1µ(B̄n+m
r (0))

depends continuously on (µ, r) ∈ F × [λ1, λ2], the first part of the conclusion is
a consequence of the fact that F is compact with respect to the weak topology
(cf. [All72, 6.4]). To prove the second part, one notes

(r2 − %2)n/2 < (1− %2)n/2rn whenever 0 < % ≤ r < 1

and computes

µ(B̄n+m
r (0)) =

∑
x∈B̄n+m

r (0)∩T⊥(sptµ)

θn(µ, x)ωn(r2 − |T⊥(x)|2)n/2

≤
( ∑
x∈B̄n+m

r (0)∩T⊥(sptµ)

θn(µ, x)ωn(1− |T⊥(x)|2)n/2
)
rn

≤ µ(Bn+m
1 (0))rn ≤Mωnr

n.

If sptµ 6⊂ T , then the first inequality in the computation is strict. Otherwise,
the last inequality is strict because M /∈ N.

1.3 Remark. Any µ ∈ F satisfies

(ωnrn)−1µ(B̄n+m
r (0)) → ω−1

n µ(Bn+m
1 (0)) as r ↑ 1,

and this number may equal M . Therefore the conclusion N < M would fail if
λ2 = 1. However, the supremum in the definition of N can be extended over all
0 < r ≤ λ2r with N < M still being valid as will be shown in 1.4.

1.4 Lemma (Quasi monotonicity). Suppose 0 < M < ∞, M /∈ N, 0 < λ < 1,
and m,n ∈ N.

Then there exists a positive, finite number ε with the following property.
If a ∈ Rn+m, 0 < r < ∞, µ is an integral n varifold in Br(a) with locally

bounded first variation,

µ(Br(a)) ≤Mωnr
n,

and whenever 0 < % < r

‖δµ‖(B̄%(a)) ≤ ε µ(B̄%(a))
1−1/n,∫

B̄%(a)
|Txµ− T |dµ(x) ≤ ε µ(B̄%(a)) for some T ∈ G(n+m,n),

(here 00 := 1), then

µ(B̄%(a)) ≤Mωn%
n whenever 0 < % ≤ λr.

Proof. Using induction, one verifies that it is enough to prove the statement
with λ2r ≤ % ≤ λr replacing 0 < % ≤ λr in the last line which is readily
accomplished by a contradiction argument using 1.2 and Allard’s compactness
theorem for integral varifolds [All72, 6.4].
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1.5 Remark. Clearly,

(ωn%n)−1µ(B̄%(a)) ≤Mλ−n whenever 0 < % < r.

1.6. Suppose −∞ < a < b < ∞, I = [a, b], f : I → R is nondecreasing and
continuous from the left, g : I → R is continuous, and f(a) ≥ g(a), f(b) < g(b).

Then there exists ξ with a ≤ ξ < b such that

f(ξ) = g(ξ), and f(t) ≥ g(t) whenever ξ ≥ t ∈ I;

in fact one may take ξ = inf({t ∈ I : f(t) < g(t)}).

1.7 Lemma (Multilayer monotonicity). Suppose m,n,Q ∈ N, 0 < δ ≤ 1, and
0 ≤ s < 1.

Then there exists a positive, finite number ε with the following property.
If X ⊂ Rn+m, T ∈ G(n+m,n), 0 < r <∞,

|T (y − x)| ≤ s|y − x| whenever x, y ∈ X,

µ is an integral n varifold in
⋃
x∈XBr(x) with locally bounded first variation,∑

x∈Xθ
n
∗ (µ, x) ≥ Q− 1 + δ,

and whenever 0 < % < r, x ∈ X ∩ sptµ

‖δµ‖(B̄%(x)) ≤ ε µ(B̄%(x))
1−1/n,

∫
B̄%(x)

|Tξµ− T |dµ(ξ) ≤ ε µ(B̄%(x)),

then

µ
(⋃

x∈XB%(x)
)
≥ (Q− δ)ωn%n whenever 0 < % ≤ r.

Proof. If the lemma were false for some m,n,Q ∈ N, 0 < δ < 1/2, and 0 < s < 1,
there would exist a sequence εi with εi ↓ 0 as i → ∞ and sequences Xi, Ti, ri,
and µi showing that εi does not satisfy the conclusion of the lemma.

Clearly, one could assume for some T ∈ G(n+m,n)

Ti = T for i ∈ N,

Xi ⊂ sptµi for i ∈ N, and in view of A.10 also

#Xi ≤ Q for i ∈ N.

One would observe that 1.6 could be used to deduce the existence of a sequence
0 < %i < ri such that

µi
(⋃

x∈Xi
B%i

(x)
)
≤ (Q− δ)ωn(%i)n,

µi
(⋃

x∈Xi
B%(x)

)
≥ (Q− 1 + δ/2)ωn%n whenever 0 < % ≤ %i.

There would hold for x ∈ Xi, i ∈ N

‖δµi‖(B%i
(x)) ≤ εi(Qωn)1−1/n(%i)n−1,∫

B%i
(x)
|Tξµi − T |dµi(ξ) ≤ εiQωn(%i)n.
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Rescaling, one would infer the existence of sequences of integral n varifolds
νi in Rn+m, Xi ⊂ spt νi, and εi with εi ↓ 0 as i → ∞ such that for some
T ∈ G(n+m,n), 0 < M <∞, Q ∈ N, 0 < δ < 1/2, and 0 < s < 1

#Xi ≤ Q, s−1|T (y − x)| ≤ |y − x| for x, y ∈ Xi,

‖δνi‖(B1(x)) ≤ εiM,
∫
B1(x)

|Tξνi − T |dνi(ξ) ≤ εiM for x ∈ Xi,

νi
(⋃

x∈Xi
B1(x)

)
≤ (Q− δ)ωn,

νi
(⋃

x∈Xi
B%(x)

)
≥ (Q− 1 + δ/2)ωn%n whenever 0 < % ≤ 1.

The proof will be concluded by showing that objects with the properties
described in the preceding paragraph do not exist. If they existed, one could
assume first

Xi ⊂ B̄n+m
M (0) for i ∈ N

by moving pieces of νi by translations (here ν is a piece of νi if and only if
ν = νi xZ for some connected component Z of

⋃
x∈Xi

B1(x)) and then, since
Xi 6= ∅ for i ∈ N, passing to a subsequence,

Xi → X in Hausdorff distance as i→∞, #X ≤ Q

for some nonempty, closed subset X of B̄n+m
M (0) (cf. [Fed69, 2.10.21]). Noting

that given 0 < %1 < %2 < 1⋃
x∈XB%1(x) ⊂

⋃
x∈Xi

B%2(x),
⋃
x∈XB%2(x) ⊃

⋃
x∈Xi

B%1(x)

for large i, one could assume, possibly passing to another subsequence (cf.
[All72, 6.4]), that for some stationary, integral n varifold ν in

U :=
⋃
x∈XB1(x)

satisfying

Txν = T for ν almost all x ∈ U

there would hold∫
ϕ dνi →

∫
ϕ dν as i→∞ for ϕ ∈ C0

c (Rn+m) with sptϕ ⊂ U.

The inclusions previously noted, would show

ν(U) ≤ (Q− δ)ωn,

ν
(⋃

x∈XB%(x)
)
≥ (Q− 1 + δ/2)ωn%n for 0 < % ≤ 1.

Since for y, z ∈ X

s−1|T (y − x)| ≤ |y − x|,
{x ∈ Rn+m : y − x ∈ T} ∩ {x ∈ Rn+m : z − x ∈ T} = ∅ if y 6= z,

these inequalities would imply by 1.1

Q− 1 + δ/2 ≤ lim inf
%↓0

ν
(⋃

x∈XB%(x)
)
/(ωn%n)

=
∑
x∈Xθ

n(ν, x) ≤ ν(U)/ωn ≤ Q− δ;

a contradiction to
∑
x∈X θ

n(ν, x) ∈ N.
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1.8 Lemma (Multilayer monotonicity with variable offset). Suppose m,n,Q ∈
N, 0 ≤M <∞, δ > 0, and 0 ≤ s < 1.

Then there exists a positive, finite number ε with the following property.
If X ⊂ Rn+m, T ∈ G(n+m,n), 0 ≤ d < ∞, 0 < r < ∞, 0 < t < ∞,

f : X → Rn+m,

|T (y − x)| ≤ s|y − x|, |T (f(y)− f(x))| ≤ s|f(y)− f(x)|,
f(x)− x ∈ B̄n+m

d (0) ∩ T, d ≤Mt, d+ t ≤ r

for x, y ∈ X, µ is an integral n varifold in
⋃
x∈XBr(x) with locally bounded first

variation,∑
x∈Xθ

n
∗ (µ, x) ≥ Q− 1 + δ, µ(Br(x)) ≤Mωnr

n for x ∈ X ∩ sptµ,

and whenever 0 < % < r, x ∈ X ∩ sptµ

‖δµ‖(B̄%(x)) ≤ ε µ(B̄%(x))
1−1/n,

∫
B̄%(x)

|Tξµ− T |dµ(ξ) ≤ ε µ(B̄%(x)),

then

µ
(⋃

x∈X{y ∈ Bt(f(x)) : |T (y − x)| > s|y − x|}
)
≥ (Q− δ)ωntn.

Proof. The proof skips some arguments already presented in 1.7.
If the lemma were false for some m,n,Q ∈ N, 0 ≤ M < ∞, 0 < δ < 1, and

0 < s < 1, there would exist a sequence εi with εi ↓ 0 as i→∞ and sequences
Xi, Ti, di, ri, ti, fi, and µi showing that εi does not satisfy the conclusion of
the lemma.

In view of 1.4, 1.5 one could assume di + ti = ri for i ∈ N by replacing
M by 2M . Using isometries and homotheties one could also assume for some
T ∈ G(n+m,n)

Ti = T, ri = 1

for i ∈ N. Finally, one could assume as in 1.7, possibly replacing M by a larger
number,

Xi ⊂ sptµi, #Xi ≤ Q, Xi ⊂ B̄n+m
M (0)

for i ∈ N.
Therefore passing to a subsequence (cf. [Fed69, 2.10.21]), there would exist

a nonempty, closed subset X of B̄n+m
M (0), 0 ≤ d < ∞, 0 ≤ t < ∞, and a

nonempty, closed subset f of Rn+m × Rn+m such that #X ≤ Q,

di → d and ti → t as i→∞,

Xi → X and fi → f in Hausdorff distance as i→∞.

There would hold

s−1|T (y − x)| ≤ |y − x| for x, y ∈ X, d ≤Mt, d+ t = 1, t > 0.

Moreover, since

(1− s2)1/2|yi − xi| ≤
∣∣T⊥(yi − xi)

∣∣
=

∣∣T⊥(fi(yi)− fi(xi))
∣∣ ≤ |fi(yi)− fi(xi)|
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for xi, yi ∈ Xi, and i ∈ N, f were a function and one could readily verify
dmn f = X, and

f(x)− x ∈ B̄n+m
d (0) ∩ T for x ∈ X,

s−1|T (f(y)− f(x))| ≤ |f(y)− f(x)| for x, y ∈ X.

Possibly passing to another subsequence, one could construct (cf. [All72,
6.4]) a stationary, integral n varifold µ in U :=

⋃
x∈XB1(x) with

Txµ = T for µ almost all x ∈ U

such that∫
ϕ dµi →

∫
ϕ dµ as i→∞ for ϕ ∈ C0

c (Rn+m) with sptϕ ⊂ U.

According to 1.7 one would estimate for large i

µi
(⋃

x∈Xi
B%(x)

)
≥ (Q− δ)ωn%n whenever 0 < % ≤ 1,

hence

µ
(⋃

x∈XB%(x)
)
≥ (Q− δ)ωn%n whenever 0 < % ≤ 1.

Therefore, passing to the limit % ↓ 0, one would infer the lower bound (noting
1.1) ∑

x∈Xθ
n(µ, x) ≥ Q− δ.

For y, z ∈ Rn+m, 0 < % < ∞ define V (y, z, %) to be the set of all x ∈ B%(z)
such that

s−1|T (y − x)| > |y − x|,

and note that every compact subset K of
⋃
x∈XV (x, f(x), t) would satisfy

K ⊂
⋃
x∈Xi

V (x, fi(x), ti) for large i;

hence

µ
(⋃

x∈XV (x, f(x), t)
)
≤ lim inf

i→∞
µi

(⋃
x∈Xi

V (x, fi(x), ti)
)
≤ (Q− δ)ωntn.

On the other hand 1.1 would imply in conjunction with the fact

{x ∈ Rn+m :x− y ∈ T} ∩ {x ∈ Rn+m :x− z ∈ T} = ∅

for y, z ∈ X with y 6= z and the lower bound previously derived

µ
(⋃

x∈XV (x, f(x), t)
)
≥

(∑
x∈Xθ

n(µ, x)
)
ωnt

n ≥ (Q− δ)ωntn,

hence
∑
x∈X θ

n(µ, x) = Q− δ which is incompatible with Q− δ /∈ N.
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1.9 Lemma. Suppose m,n ∈ N, 0 < δ < 1, 0 ≤ s < 1, and 0 ≤M <∞.
Then there exists a positive, finite number ε with the following property.
If a ∈ Rn+m, 0 < r < ∞, T ∈ G(n+m,n), 0 ≤ d < ∞, 0 < t < ∞,

ζ ∈ Rn+m,

max{d, r} ≤Mt, ζ ∈ B̄n+m
d (0) ∩ T, d+ t ≤ r,

µ is an integral n varifold in Br(a) with locally bounded first variation, a ∈ sptµ,

‖δµ‖(Br(a)) ≤ ε µ(Br(a))
1−1/n, µ(Br(a)) ≤Mωnr

n,∫
Br(a)

|Tξµ− T |dµ(ξ) ≤ ε µ(Br(a))

and for 0 < % < r

‖δµ‖(B̄%(a)) ≤ (2γn)−1µ(B̄%(a))
1−1/n

(see A.3), then

µ({x ∈ Bt(a+ ζ) : |T (x− a)| > s|x− a|}) ≥ (1− δ)ωntn.

Proof. A contradiction argument using A.8, 1.1, and [All72, 6.4] yields the re-
sult.

1.10 Lemma. Suppose m,n,Q ∈ N, 0 < δ1 ≤ 1, 0 < δ2 ≤ 1, 0 ≤ s < 1,
0 ≤ s0 < 1, 0 ≤M <∞, and 0 < λ < 1 is uniquely defined by the requirement

(1− λ2)n/2 = (1− δ2) +
( (s0)2

1− (s0)2
)n/2

λn.

Then there exists a positive, finite number ε with the following property.
If X ⊂ Rn+m, T ∈ G(n+m,n), 0 ≤ d < ∞, 0 < r < ∞, 0 < t < ∞,

ζ ∈ Rn+m,

#T (X) = 1, ζ ∈ B̄n+m
d (0) ∩ T, d ≤Mt, d+ t ≤ r,

µ is an integral n varifold in
⋃
x∈XBr(x) with locally bounded first variation,

θn(µ, x) ∈ N for x ∈ X,∑
x∈Xθ

n(µ, x) = Q, µ(Br(x)) ≤Mωnr
n for x ∈ X,

and whenever 0 < % < r, x ∈ X

‖δµ‖(B̄%(x)) ≤ ε µ(B̄%(x))
1−1/n,

∫
B̄%(x)

|Tξµ− T |dµ(ξ) ≤ ε µ(B̄%(x))

satisfying

µ
(⋃

x∈X{y ∈ Bt(x + ζ) : |T (y − x)| > s0|y − x|}
)
≤ (Q + 1 − δ2)ωntn,

then the following two statements hold:

(1) If 0 < τ ≤ λt, then

µ
(⋃

x∈XB̄τ (x)
)
≤ (Q+ δ1)ωnτn.
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(2) If y ∈ sptµ with dist(y,X) ≤ λt/2 and

‖δµ‖(B̄%(y)) ≤ (2γn)−1µ(B̄%(y))
1−1/n for 0 < % < δ1 dist(y,X),

then for some x ∈ X

|T (y − x)| ≥ s|y − x|.

Proof of (1). One may first assume max{δ1, δ2} ≤ 1/2 and then λ2 ≤ τ/t ≤ λ
by iteration of the result observing that the remaining assertion implies induc-
tively

µ
(⋃

x∈XB̄λ−iτ (x)
)
≤ (Q+ δ1)ωn(λ−iτ)n

whenever i ∈ N, λ−iτ ≤ λt. Moreover, in view of 1.4, 1.5, only the case r = d+t
needs to be considered.

The remaining assertion will be proved by contradiction. If it were false for
some m,n,Q ∈ N, 0 < δ1 ≤ 1/2, 0 < δ2 ≤ 1/2, 0 < s0 < 1, and 0 ≤ M < ∞,
there would exist a sequence εi with εi ↓ 0 as i → ∞ and sequences Xi, Ti, di,
ri, ti ζi, µi, and τi with i ∈ N showing that εi does not satisfy the assertion.

The argument follows the pattern of 1.8. First, one could assume for some
T ∈ G(n+m,n)

Ti = T, ri = 1

for i ∈ N and then noting #Xi ≤ Q that Xi ⊂ B̄n+m
M (0) and hence, possibly

passing to a subsequence, the existence of real numbers d, t, τ , of a nonempty,
closed subset X of B̄n+m

M (0), of ζ,∈ Rn+m, and of a stationary, integral n
varifold µ in U :=

⋃
x∈XB1(x) such that #X ≤ Q, and, as i→∞,

di → d, ti → t, τi → τ, ζi → ζ,

Xi → X in Hausdorff distance,∫
ϕ dµi →

∫
ϕ dµ for ϕ ∈ C0

c (Rn+m) with sptϕ ⊂ U,

and additionally

Txµ = T for µ almost all x ∈ U.

Clearly,

d ≤Mt, d+ t = 1, t > 0, λ2 ≤ τ/t ≤ λ,

#T (X) = 1, ζ ∈ B̄n+m
d (0) ∩ T,

and one would readily verify

µ
(⋃

x∈X{y ∈ Bt(x+ ζ) : |T (y − x)| > s0|y − x|}
)
≤ (Q+ 1− δ2)ωntn,

µ
(⋃

x∈XB̄τ (x)
)
≥ (Q+ δ1)ωnτn.

Moreover, 1.7 would imply with Sx := {z ∈ Rn+m :T⊥(z − x) = 0} for
x ∈ Rn+m

µ
(⋃

x∈XB%(x)
)
≥ (Q− δ1)ωn%n for 0 < % ≤ 1,∑
x∈Xθ

n(µ, x) ≥ Q,∑
x∈Xθ

n(µ, x)
(
Hn xSx

)
(A) ≤ µ(A) for A ⊂ U.
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Therefore if x ∈ X, y ∈ sptµ, T⊥(y) /∈ T⊥(X), 0 < |T⊥(y − x)| = h < t, then
one would find

{z ∈ Sy : |T (z − x)| ≤ s0|z − x|} = Sy ∩ B̄(s−2
0 −1)−1/2h

(x+ T⊥(y − x)),(
(1− (h/t)2)n/2 − (s−2

0 − 1)−n/2(h/t)n
)
ωnt

n

=
(
Hn xSy

)
(Bt(x+ ζ))−

(
Hn xSy

)
({z ∈ Rn+m : |T (z − x)| ≤ s0|z − x|})

≤
(
Hn xSy

)
({z ∈ Bt(x+ ζ) : |T (z − x)| > s0|z − x|})

≤ (1− δ2)ωntn,

hence h ≥ λt, in particular, since λt ≥ τ and #T (X) = 1,

(sptµ) ∩
⋃
x∈XBτ (x) =

⋃
x∈XSx ∩Bτ (x),

µ
(⋃

x∈XB̄τ (x)
)

= Qωnτ
n

contradicting the previously derived lower bound because τ > 0.

Proof of (2). On may first assume max{δ1, δ2} ≤ 1/2, then

λ2/2 ≤ dist(y,X)/t ≤ λ/2

by part (1), and 1 ≤ r/t ≤M + 1 by 1.4, 1.5.
The remaining assertion will be proved by contradiction. If it were false for

some m,n,Q ∈ N, 0 < δ1 ≤ 1/2, 0 < δ2 ≤ 1/2, 0 ≤ s0 < 1, 0 ≤ s < 1, and
0 ≤M <∞, there would exist a sequence εi with εi ↓ 0 as i→∞ and sequences
Xi, Ti, di, ri, ti ζi, µi, and yi with i ∈ N showing that εi does not satisfy the
assertion.

The argument follows the pattern of part (1). First, one could assume for
some T ∈ G(n+m,n)

Ti = T, ri = 1

for i ∈ N and then noting #Xi ≤ Q that Xi ⊂ B̄n+m
M (0) and hence, possibly

passing to a subsequence, the existence of real numbers d, t, of a nonempty,
closed subset X of B̄n+m

M (0), of ζ ∈ Rn+m, and of a stationary, integral n
varifold µ in U :=

⋃
x∈XB1(x) such that #X ≤ Q, and, as i→∞,

di → d, ti → t, ζi → ζ,

Xi → X in Hausdorff distance,∫
ϕ dµi →

∫
ϕ dµ for ϕ ∈ C0

c (Rn+m) with sptϕ ⊂ U,

and additionally

Txµ = T for µ almost all x ∈ U.

Clearly,

d ≤Mt, d+ t ≤ 1, 0 < t ≤ 1, #T (X) = 1, ζ ∈ B̄n+m
d (0) ∩ T,

and one would readily verify

µ
(⋃

x∈X{y ∈ Bt(x + ζ) : |T (y − x)| > s0|y − x|}
)
≤ (Q + 1 − δ2)ωntn.
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It would hold y ∈ sptµ by A.8 and

0 < dist(y,X)/t ≤ λ/2,

|T (y − x)| ≤ s|y − x| for x ∈ X, T⊥(y) /∈ T⊥(X),

hence there would exist x ∈ X with |y−x| ≤ λt/2 implying 0 < |T⊥(y−x)| < t.
Finally, one would obtain as in the last paragraph of the proof of part (1) that

λt ≤
∣∣T⊥(y − x)

∣∣
which is incompatible with∣∣T⊥(y − x)

∣∣ ≤ |y − x| ≤ λt/2

because λt > 0.

1.11 Remark. Combining A.15 and 1.10 (2), one obtains the following proposi-
tion about tangent planes:

Suppose m, n, p, U , and µ are as in A.1 with p < n and µ integral. Then
for every 0 < s < 1

lim
r↓0

µ
(
{y ∈ U : s−1 dist(y − x, (Txµ)⊥) < |y − x| < r}

)/
rn

2/(n−p) = 0

for µ almost every x ∈ U .
The exponent n2/(n−p) cannot be replaced by any larger number as C.2 (4)

shows.

1.12 Definition. Suppose m,n,Q ∈ N, and T ∈ G(n+m,n).
Then P is called a Q valued plane parallel to T if and only if for some

S ∈ QQ(T⊥) (see D.1)

P =
(
θ0(‖S‖, ·) ◦ T⊥

)
Hn.

S is uniquely determined by P . For any two Q valued planes P1 and P2 parallel
to T associated to S1, S2 ∈ QQ(T⊥) one defines (see D.1)

G(P1, P2) := G(S1, S2).

In case S =
∑Q
i=1[[zi]] for some z1, . . . , zQ ∈ T⊥, then

‖S‖ =
Q∑
i=1

δzi , P =
Q∑
i=1

Hn x{x ∈ Rn+m :T⊥(x) = zi}

where δx denotes the Dirac measure at the point x.

1.13. In studying approximations of integral varifolds the following notation
will be convenient. Suppose m,n ∈ N, and T ∈ G(n+m,n). Then there exist
orthogonal projections π : Rn+m → Rn, σ : Rn+m → Rm such that T = imπ∗

and π ◦ σ∗ = 0, hence

T = π∗ ◦ π, T⊥ = σ∗ ◦ σ, 1Rn+m = π∗ ◦ π + σ∗ ◦ σ.
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Whenever a ∈ Rn+m, 0 < r <∞, 0 < h ≤ ∞ the closed cylinder C(T, a, r, h) is
defined by

C(T, a, r, h) = {x ∈ Rn+m : |T (x− a)| ≤ r and |T⊥(x− a)| ≤ h}
= {x ∈ Rn+m : |π(x− a)| ≤ r and |σ(x− a)| ≤ h}.

This definition extends Allard’s definition in [All72, 8.10] where h = ∞.

1.14 Lemma (Approximation by Q valued functions). Suppose m,n,Q ∈ N,
0 < L <∞, 1 ≤M <∞, and 0 < δi ≤ 1 for i ∈ {1, 2, 3, 4}.

Then there exists a positive, finite number ε with the following property.
If a, r, h, T , π, and σ are as in 1.13, h > 2δ4r,

U = {x ∈ Rn+m : dist(x,C(T, a, r, h)) < 2r},

µ is an integral n varifold in U with locally bounded first variation,

(Q− 1 + δ1)ωnrn ≤ µ(C(T, a, r, h)) ≤ (Q+ 1− δ2)ωnrn,
µ(C(T, a, r, h+ δ4r)∼C(T, a, r, h− 2δ4r)) ≤ (1− δ3)ωnrn,

µ(U) ≤Mωnr
n,

0 < ε1 ≤ ε, B denotes the set of all x ∈ C(T, a, r, h) with θ∗n(µ, x) > 0 such
that

either ‖δµ‖(B̄%(x)) > ε1 µ(B̄%(x))
1−1/n for some 0 < % < 2r,

or
∫
B̄%(x)

|Tξµ− T |dµ(ξ) > ε1 µ(B̄%(x)) for some 0 < % < 2r,

and G denotes the set of all x ∈ C(T, a, r, h) ∩ sptµ such that

‖δµ‖(B2r(x)) ≤ ε µ(B2r(x))
1−1/n,∫

B2r(x)
|Tξµ− T |dµ(ξ) ≤ ε µ(B2r(x)),

‖δµ‖(B̄%(x)) ≤ (2γn)−1µ(B̄%(x))
1−1/n for 0 < % < 2r,

then there exist an Ln measurable subset Y of Rn and a function f : Y →
QQ(Rm) with the following seven properties:

(1) Y ⊂ B̄r(π(a)) and f is Lipschitzian with Lip f ≤ L.

(2) Defining A = C(T, a, r, h)∼B and A(y) = {x ∈ A :π(x) = y} for y ∈ Rn,
the sets A and B are Borel sets and there holds (see D.1)

σ(A ∩ sptµ) ⊂ B̄h−δ4r(σ(a)), spt f(y) ⊂ σ(A(y)),

‖f(y)‖ = σ
(
θn(µ, ·)H0 xA(y)

)
whenever y ∈ Y .

(3) Defining the sets

C = B̄r(π(a))∼(Y ∼π(B)), D = C(T, a, r, h) ∩ π−1(C),

there holds

Ln(C) + µ(D) ≤ Γ(3) µ(B).

with Γ(3) = max{3 + 2Q+ (12Q+ 6)5n, 4(Q+ 2)/δ1}.

16



(4) If x1 ∈ G, then

|σ(x1 − a)| ≤ h− δ4r

and for y ∈ Y ∩ B̄λ(4)
(π(x1)) there exists x2 ∈ A(y) with θn(µ, x2) ∈ N

and ∣∣T⊥(x2 − x1)
∣∣ ≤ L |T (x2 − x1)|,

where 0 < λ(4) < 1 depends only on n, δ2, and δ4. Moreover, G ⊃ A∩sptµ
and (see D.1, D.4)

(π on σ)
(
G ∩ π−1(Y )

)
= graphQ f.

(5) Y ∼Y has measure 0 with respect to Ln and π(µ xG).

(6) If Ln(B̄r(π(a))∼Y ) ≤ 1
2ωn(λ(4)r/6)n, 1 ≤ q < ∞, S ∈ QQ(Rm), P =

(θ0(‖S‖, ·)◦σ)Hn is the Q valued plane associated to S via σ, and g : Y →
R is defined by g(y) = G(f(y), S) for y ∈ Y , then

‖dist(·, sptP )‖Lq(µ xG)

≤ (12)n+1Q
(
‖g‖Lq(Ln xY ) + Γ(6)Ln(B̄r(π(a))∼Y )1/q+1/n

)
,

where Γ(6) is a positive, finite number depending only on q, and n, and

sup{dist(x, sptP ) :x ∈ G}

≤ ‖g‖L∞(Ln xY ) + 2
(
Ln(B̄r(π(a))∼Y )/ωn

)1/n
.

(7) For Ln almost all y ∈ Y the following is true:

(a) f is approximately strongly affinely approximable at y.

(b) Whenever x ∈ G with π(x) = y

(π on σ)(Txµ) = Tan
(
graphQ apAf(y), (y, σ(x))

)
where Tan(S, a) denotes the classical tangent cone of S at a in the
sense of [Fed69, 3.1.21].

(c) ‖Txµ− T‖ ≤ ‖ apAf(y)‖ for x ∈ G with π(x) = y.

(d) ‖ apAf(y)‖2 ≤ Q(1 + (Lip f)2) max{‖Txµ− T‖2 :x ∈ π−1({y}) ∩G}.

Choice of constants. One can assume 3L ≤ δ4.
Choose 0 < s0 < 1 close to 1 such that 2(s−2

0 − 1)1/2 ≤ δ4, define λ =
λ1.10(n, δ2, s0)/4, choose s0 ≤ s < 1 close to 1 satisfying

(s−2 − 1)1/2 ≤ λ/4, Q1/2(s−2 − 1)1/2 ≤ L,

and define ε > 0 so small that

ε ≤ (2γn)−1, Q− 1 + δ1/2 ≤ (1− nε2)(Q− 1 + δ1),

Q− 1/2 ≤ (1− nε2)(Q− 1/4), 1− nε2 ≥ 1/2,
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and not larger than the minimum of the following seven numbers

εA.10(m,n, 1− δ3/2), ε1.8(m,n, 1,M, δ3/2, s),
ε1.8(m,n,Q+ 1,M, δ2/2, s), ε1.8(m,n,Q,M, 1/4, s),

ε1.9(m,n,min{δ2/3, δ3/2}, s,max{M, 2}), ε1.8(m,n,Q,M, δ2/3, s),
ε1.10(m,n,Q, 1, δ2, s, s0,M).

Clearly, ε1 satisfies the same inequalities as ε and one can assume a = 0,
and r = 1.

Proof of (1) and (2). Since θ∗n(µ, ·) is a Borel function, one may verify that A
and B are Borel sets (cp. [Fed69, 2.9.14]).

First, the following basic properties of A are proved: For x ∈ A ∩ sptµ

θn∗ (µ, x) ≥ δ3/2,

{ξ ∈ π−1(B̄n1 (0)) : |T (ξ − x)| > s|ξ − x|} ⊂ σ−1(B̄min{λ/2,δ4}(σ(x))),

σ(A ∩ sptµ) ⊂ B̄mh−δ4(0).

The first is implied by A.10. The second is a consequence of the fact that for
ξ ∈ π−1(B̄n1 (0)) with |T (ξ − x)| > s|ξ − x|

|σ(ξ)− σ(x)| < (s−2 − 1)1/2|π(ξ)− π(x)| ≤ 2(s−2 − 1)1/2 ≤ min{λ/2, δ4}.

To prove the third, note that 1.8 applied with

Q, δ, X, d, r, t, and f replaced by

1, δ3/2, {x}, 1, 2, 1, and T⊥|{x}

yields

µ
(
π−1(B̄n1 (0)) ∩ σ−1(B̄δ4(σ(x)))

)
≥ (1− δ3/2)ωn,

so that h− δ4 < |σ(x)| ≤ h would be incompatible with

µ(C(T, 0, 1, h+ δ4)∼C(T, 0, 1, h− 2δ4)) ≤ (1− δ3)ωn.

Next, it will be shown if X ⊂ A ∩ sptµ, θn(µ, x) ∈ N0 for x ∈ X,

s−1|T (x2 − x1)| ≤ |x2 − x1| whenever x1, x2 ∈ X,

then
∑
x∈X θ

n(µ, x) ≤ Q. Using the basic properties of A to verify

{ξ ∈ B1(T
⊥(x)) : |T (ξ − x)| > s|ξ − x|} ⊂ π−1(B̄n1 (0)) ∩ σ−1(B̄δ4(σ(x)))

⊂ C(T, 0, 1, h)

there holds

µ
(⋃

x∈X{ξ ∈ B1(T
⊥(x)) : |T (ξ − x)| > s|ξ − x|}

)
≤ µ(C(T, 0, 1, h))
≤ (Q+ 1− δ2)ωn
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and 1.8 applied with

Q, δ, d, r, t, and f replaced by

Q+ 1, δ2/2, 1, 2, 1, and T⊥|X

yields ∑
x∈Xθ

n(µ, x) < Q+ δ2/2 < Q+ 1,

hence
∑
x∈X θ

n(µ, x) ≤ Q. In particular,
∑
x∈A(y) θ

n(µ, x) ≤ Q whenever y ∈
B̄n1 (0) and θn(µ, x) ∈ N0 for each x ∈ A(y).

Let Y be the set of all y ∈ B̄n1 (0) such that∑
x∈A(y)θ

n(µ, x) = Q and θn(µ, x) ∈ N0 for x ∈ A(y),

Z be the set of all z ∈ B̄n1 (0) such that∑
x∈A(z)θ

n(µ, x) ≤ Q− 1 and θn(µ, x) ∈ N0 for x ∈ A(z),

and N = B̄n1 (0)∼(Y ∪ Z). Clearly, Y ∩ Z = ∅. Note by the concluding remark
of the preceding paragraph Ln(N) = 0 because θn(µ, x) ∈ N0 for Hn almost all
x ∈ U . Since θn(µ, ·) is a Borel function whose domain is a Borel set and A is
a Borel set, Y and Z are Ln measurable by [Fed69, 3.2.22 (3)]. Let f : Y →
QQ(Rm) be defined by

f(y) = σ#

(∑
x∈A(y)θ

n(µ, x)[[x]]
)

whenever y ∈ Y .

One infers from the assertion of the preceding paragraph and D.12

G(f(y2), f(y1)) ≤ Q1/2(s−2 − 1)1/2|y2 − y1| for y1, y2 ∈ Y .

(1) and (2) are now evident.

Proof of (3). For the estimate some preparations are needed. Let ν denote the
Radon measure defined by the requirement

ν(X) =
∫
X
JµT dµ for every Borel subset X of U

where Jµ denotes the Jacobian with respect µ. Note

|Txµ− T | ≤ ε for µ almost all x ∈ A,

hence 1− JµT (x) ≤ 1− (JµT )(x)2 ≤ nε2. Therefore

(1− nε2)µ xA ≤ ν xA.

This implies the coarea estimate

(1− nε2)µ
(
C(T, 0, 1, h) ∩ π−1(W )

)
≤ µ

(
B ∩ π−1(W )

)
+QLn(Y ∩W ) + (Q− 1)Ln(Z ∩W )

for every subset W of Rn; in fact the estimate holds for every Borel set by
[Fed69, 3.2.22 (3)] and π(µ xB) is a Radon measure by [Fed69, 2.2.17]. Also
note that in view of the choice of Γ(3) one can assume

µ(B) ≤ (δ1/4)ωn,
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which implies Ln(Y ) > 0 because it follows from the coarea estimate applied
with W = B̄n1 (0)

(Q− 1 + δ1/2)ωn ≤ (1− nε2)µ(C(T, 0, 1, h))

≤ µ(B) +QLn(Y ) + (Q− 1)Ln(Z)
≤ (δ1/4)ωn + (Q− 1 + δ1/4)ωn + Ln(Y )− (δ1/4)Ln(Z),

hence Ln(Z) ≤ (4/δ1)Ln(Y ).
In order to derive an upper bound for the Ln measure of Z, the following

assertion will be proved. If z ∈ Z with θn(Ln x Rn∼Z, a) = 0, then there exist
ζ ∈ Rn and 0 < t <∞ with

z ∈ B̄t(ζ) ⊂ B̄n1 (0), Ln(B̄5t(ζ)) ≤ 6 · 5n µ
(
B ∩ π−1(B̄t(ζ))

)
.

Since Ln(Y ) > 0, some element B̄t(ζ) of the family of balls

{B̄θ((1− θ)z) : 0 < θ ≤ 1}

will satisfy

z ∈ B̄t(ζ) ⊂ B̄n1 (0), 0 < Ln(Y ∩ B̄t(ζ)) ≤ 1
2L

n(Z ∩ B̄t(ζ)).

Hence there exists y ∈ Y ∩ Bt(ζ). Noting for ξ ∈ A(y) with θn(µ, ξ) > 0, and
η ∈ Rn+m with |η−π∗(ζ−y),1(ξ)− η| < t,1

t ≤ 1, π(ξ) = y,

|π(η)− ζ| = |π(ξ + π∗(ζ − y)− η)| ≤ |η−π∗(ζ−y),1(ξ)− η| < t,

Bt(η−π∗(ζ−y),1(ξ)) ⊂ π−1(B̄t(ζ)),

and, recalling the basic properties of A,

{κ ∈ Bt(η−π∗(ζ−y),1(ξ)) : |T (κ− ξ)| > s|κ− ξ|} ⊂ C(T, 0, 1, h) ∩ π−1(B̄t(ζ)),

one can apply 1.8 with

δ, X, d, r, and f replaced by
1/4, {ξ ∈ A(y) : θn(µ, ξ) > 0}, t, 2, and
η−π∗(ζ−y),1|{ξ ∈ A(y) : θn(µ, ξ) > 0}

to obtain

(Q− 1/4)ωntn ≤ µ
(
C(T, 0, 1, h) ∩ π−1(B̄t(ζ))

)
.

The coarea estimate with W = B̄t(ζ) now implies

(Q− 1/2)ωntn

≤µ
(
B ∩ π−1(B̄t(ζ))

)
+QLn(Y ∩ B̄t(ζ)) + (Q− 1)Ln(Z ∩ B̄t(ζ))

=µ
(
B ∩ π−1(B̄t(ζ))

)
+ (Q− 1/2)ωntn

+ 1
2L

n(Y ∩ B̄t(ζ))− 1
2L

n(Z ∩ B̄t(ζ)),
1Recall from [Sim83] that the functions ηa,r : Rn+m → Rn+m are given by ηa,r(x) =

r−1(x− a) for a, x ∈ Rn+m, 0 < r <∞.
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hence

2
3L

n(B̄t(ζ)) ≤ Ln(Z ∩ B̄t(ζ)) ≤ 4µ
(
B ∩ π−1(B̄t(ζ))

)
and the assertion follows.

Ln almost all z ∈ Z satisfy the assumptions of the last assertion (cf. [Fed69,
2.9.11]) and Vitali’s covering theorem (cf. [Fed69, 2.8.5]) implies

Ln(Z) ≤ 6 · 5n µ(B).

Clearly,

Ln(π(B)) ≤ Hn(B) ≤ µ(B).

Since C ∼N ⊂ Z ∪ π(B), it follows

Ln(C) ≤ (1 + 6 · 5n)µ(B).

Finally, applying the coarea estimate with W = C yields

(1− nε2)µ(D) ≤ µ(B) +QLn(C) ≤ (1 +Q+ 6Q · 5n)µ(B).

Proof of (4). Assuming now that x1 and y satisfy the conditions of (4), it will
be shown that one can take λ(4) = λ. Verifying

{ξ ∈ π−1(B̄n1 (0)) : |T (ξ − x1)| > s|ξ − x1|} ⊂ σ−1(B̄min{λ/2,δ4}(σ(x1))),

defining δ5 = min{δ2/3, δ3/2} and applying 1.9 with

δ, M , a, r, d, t, and ζ replaced by
δ5, max{M, 2}, x1, 2, 1, 1, and −T (x1)

yields

µ
(
π−1(B̄n1 (0)) ∩ σ−1(B̄min{λ/2,δ4}(σ(x1)))

)
≥ (1− δ5)ωn

so that h− δ4 < |σ(x1)| ≤ h would be incompatible with

µ
(
C(T, 0, 1, h+ δ4)∼C(T, 0, 1, h− 2δ4)

)
≤ (1− δ3)ωn

and the first part of (4) follows.
To prove the second part, one defines X = {ξ ∈ A(y) : θn(µ, ξ) ∈ N} and

first observes that 1.8 applied with

δ, d, r, t, and f replaced by,
δ2/3, 1, 2, 1, and ηπ∗(y),1|X

yields

µ
(⋃

x∈X{ξ ∈ B1(x− π∗(y)) : |T (ξ − x)| > s|ξ − x|}
)
≥

(
Q− δ2

3

)
ωn.

On the other hand

µ(C(T, 0, 1, h)) ≤ (Q+ 1− δ2)ωn.
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Therefore, using the basic properties of A, for some x ∈ X

C(T, 0, 1, h) ∩ σ−1(B̄λ/2(σ(x1))) ∩ σ−1(B̄λ/2(σ(x))) 6= ∅,

hence |σ(x1 − x)| ≤ λ and

dist(x1, X) ≤ |π(x1 − x)|+ |σ(x1 − x)| ≤ 2λ = λ1.10(n, δ2, s0)/2 ≤ 1.

Finally, the point x2 ∈ X may be constructed by applying 1.10 (2) with

δ1, λ, d, r, t, ζ, and y replaced by
1, λ1.10(n, δ2, s0), 1, 2, 1, −π∗(y), and x1

noting

{ξ ∈ B1(x− π∗(y)) : |T (ξ − x)| > s0|ξ − x|} ⊂ C(T, 0, 1, h)

for x ∈ X.
The postscript follows readily from the second part and ε1 ≤ ε ≤ (2γn)−1.

Proof of (5). Recalling (µ xA)/2 ≤ ν xA and Ln(N) = 0, it is enough to prove

Y ⊂ N ∪ Y, π−1(Y ) ∩G ⊂ A ∩ sptµ

in view of the coarea formula [Fed69, 3.2.22 (3)].
Suppose for this purpose y ∈ Y . Since f is Lipschitzian, there exists a unique

S ∈ QQ(Rm) such that

(y, S) ∈ graph f.

Let R = π−1({y}) ∩ σ−1(sptS). Since A ∩ sptµ is closed (cp. [Fed69, 2.9.14]),

R ⊂ A ∩ sptµ

and (4) implies G ∩ π−1({y}) ⊂ R, the second inclusion follows.
Choose a sequence yi ∈ Y with yi → y as i→∞ and abbreviate Xi = {ξ ∈

A(yi) : θn(µ, ξ) ∈ N} for i ∈ N. 1.8 applied with

δ, X, d, r, and f replaced by
1/4, Xi, 0, 2, and 1Xi

yields for i ∈ N

µ
(⋃

x∈Xi
B̄t(x)

)
≥ (Q− 1/4)ωntn whenever 0 < t < 2.

Since f(yi) → S in Hausdorff distance as i → ∞ the same estimate holds with
Xi replaced by R and

Q− 1/4 ≤ lim sup
t↓0

µ
(⋃

x∈RB̄t(x)
)

ωntn
≤

∑
x∈R

θ∗n(µ, x)

implies y /∈ Z, hence the first inclusion.
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Proof of (6). Let ψ := µ xG. Using (π(ψ)) xY ≤ 2(π(ν xG)) xY ≤ 2QLn xY ,

{x ∈ G ∩ π−1(Y ) : dist(x, sptP ) > γ} ⊂ G ∩ π−1({y ∈ Y : g(y) > γ})

for 0 < γ <∞, one infers

‖dist(·, sptP )‖Lq(µ xG∩π−1(Y )) ≤ 2Q‖g‖Lq(Ln xY ).

Hence only ‖dist(·, sptP )‖Lq(µ xG∼π−1(Y )) needs to be estimated in the first
part of (6).

Whenever z ∈ B̄n1 (0)∼Y there exist ζ ∈ Rn and 0 < t ≤ λ/6 such that

z ∈ B̄t(ζ) ⊂ B̄n1 (0), Ln(B̄t(ζ) ∩ Y ) = Ln(B̄t(ζ)∼Y )

as may be verified by consideration of the family of closed balls

{B̄θ((1− θ)z) : 0 < θ ≤ λ}.

Therefore [Fed69, 2.8.5] yields a countable set I and ζi ∈ Rn, 0 < ti ≤ λ/6 and
yi ∈ Y ∩ B̄ti(ζi) for each i ∈ I such that

B̄ti(ζi) ⊂ B̄n1 (0), Ln(B̄ti(ζi) ∩ Y ) = Ln(B̄ti(ζi)∼Y ),
B̄ti(ζi) ∩ B̄tj (ζj) = ∅ whenever i, j ∈ I with i 6= j,

B̄n1 (0)∼Y ⊂
⋃
i∈IEi ⊂ B̄n1 (0)

where Ei = B̄5ti(ζi) ∩ B̄
n
1 (0) for i ∈ I. Let

hi := G(f(yi), S), Xi := {ξ ∈ A(yi) : θn(µ, ξ) ∈ N}

for i ∈ I, J := {i ∈ I :hi ≥ 18ti}, and K := I ∼J .
In view of (5) there holds

‖d‖Lq(µ xG∼π−1(Y )) ≤ ‖d‖Lq(ψ xπ−1(
S

j∈J Ej)) + ‖d‖Lq(ψ xπ−1(
S

i∈K Ei))

for every ψ measurable function d : Rn+m → [0,∞[. In order to estimate the
terms on the right hand side for d = dist(·, sptP ), two observations will be
useful. If i ∈ I, x1 ∈ G ∩ π−1(Ei), then

dist(x1, sptP ) ≤ 6ti + hi;

in fact |π(x1)− yi| ≤ 6ti ≤ λ and (4) yields a point x2 ∈ Xi and∣∣T⊥(x2 − x1)
∣∣ ≤ L |T (x2 − x1)| = L |π(x1)− yi| ≤ 6ti,

implying

dist(x1, sptP ) ≤
∣∣T⊥(x2 − x1)

∣∣ + dist(x2, sptP ) ≤ 6ti + hi.

Moreover,

|x2 − x1| ≤ |T (x2 − x1)|+
∣∣T⊥(x2 − x1)

∣∣ ≤ 12ti, x1 ∈ B̄12ti(x2),

hence

G ∩ π−1(Ei) ⊂
⋃
x∈Xi

B̄12ti(x)
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and 1.10 (1) applied with

δ1, s, λ, X, d, r, t, ζ, and τ replaced by
1, 0, λ1.10(n, δ2, s0), Xi, 1, 2, 1, −π∗(yi), and 12ti

yields

ψ
(
π−1(Ei)

)
≤ (Q+ 1)ωn(12ti)n whenever i ∈ I.

Now, the first term will be estimated. Note, if j ∈ J , then

dist(x, sptP ) ≤ 4
3hj whenever x ∈ G ∩ π−1(Ej),

4
3hj ≤ 2G(f(y), S) whenever y ∈ Y ∩ B̄tj (ζj),

because

G(f(y), S) ≥ G(f(yj), S)− L|y − yj | ≥ hj − 2Ltj ≥ 2
3hj .

Using this fact and the preceding observations, one estimates with J(γ) := {j ∈
J : 4

3hj > γ} for 0 < γ <∞

ψ
(
π−1(

⋃
j∈JEj) ∩ {x ∈ Rn+m : dist(x, sptP ) > γ}

)
≤

∑
j∈J(γ)ψ

(
π−1(Ej)

)
≤

∑
j∈J(γ)(Q+ 1)ωn(12tj)n ≤ (Q+ 1)(12)nLn

(⋃
j∈J(γ)B̄tj (ζj)

)
≤ 2(Q+ 1)(12)nLn

(⋃
j∈J(γ)B̄tj (ζj) ∩ Y

)
≤ 2(Q+ 1)(12)n Ln({y ∈ Y :G(f(y), S) > γ/2}),

hence

‖dist(·, sptP )‖Lq(ψ xπ−1(
S

j∈J Ej)) ≤ (2(Q+ 1)(12)n)2 ‖g‖Lq(Ln xY ).

To estimate the second term, one notes, if i ∈ K, x ∈ G ∩ π−1(Ei), then

dist(x, sptP ) < 24ti.

Therefore one estimates with K(γ) := {i ∈ K : 24ti > γ} for 0 < γ < ∞ and
u : Rn → R defined by u =

∑
i∈I 2ti χB̄ti

(ζi)

ψ
(
π−1(

⋃
i∈KEi) ∩ {x ∈ Rn+m : dist(x, sptP ) > γ}

)
≤

∑
i∈K(γ)ψ

(
π−1(Ei)

)
≤

∑
i∈K(γ)(Q+ 1)ωn(12ti)n ≤ (Q+ 1)(12)nLn

(⋃
i∈K(γ)B̄ti(ζi)

)
≤ (Q+ 1)(12)nLn

(
{y ∈ Rn :u(y) > γ/(12)}

)
,

hence

‖dist(·, sptP )‖Lq(ψ xπ−1(
S

i∈K Ei)) ≤ (Q+ 1)(12)n+1‖u‖Lq(Ln).

Combining these two estimates and

Ln
(⋃

i∈IB̄ti(ζi)
)
≤ 2Ln(B̄n1 (0)∼Y ),∫

|u|q dLn =
∑
i∈I(2ti)

qωn(ti)n ≤ 2qω−q/nn

(∑
i∈IL

n(B̄ti(ζi))
)1+q/n

≤ 2q+1+q/nω−q/nn

(
Ln(B̄n1 (0)∼Y )

)1+q/n
,
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one obtains the first part of the conclusion of (6).
To prove the second part, suppose x1 ∈ G. Since

B̄θ((1− θ)π(x1)) ⊂ B̄n1 (0), Ln(B̄θ((1− θ)π(x1)) ∩ Y ) > 0

for (Ln(B̄n1 (0)∼Y )/ωn)1/n < θ < 1, there exists for any δ > 0 a y ∈ Y with

G(f(y), S) ≤ ‖g‖L∞(Ln xY ),

|π(x1)− y| ≤ 2
(
Ln(B̄n1 (0)∼Y )/ωn

)1/n + δ,

in particular |π(x1) − y| ≤ λ for small δ. Therefore (4) may be applied to
construct a point x2 ∈ A(y) with θn(µ, x2) ∈ N and∣∣T⊥(x2 − x1)

∣∣ ≤ L |T (x2 − x1)| ≤ |π(x1)− y|.

Finally,

dist(x1, sptP ) ≤ dist(x2, sptP ) +
∣∣T⊥(x2 − x1)

∣∣
≤ G(f(y), S) + 2

(
Ln(B̄n1 (0)∼Y )/ωn

)1/n + δ

and δ can be chosen arbitrarily small.

Proof of (7). Combine (1), (4), D.2, D.11, and estimates for orthogonal projec-
tions, see e.g. [All72, 8.9 (5)].

1.15 Remark. The idea to prove (4) was taken from [Alm00, 3.8 (4)].

2 A Sobolev Poincaré type inequality for inte-
gral varifolds

In this section the two main theorems, 2.6 and 2.8, are proved, the first being a
Sobolev Poincaré type inequality at some fixed scale r but involving of necessity
mean curvature, the second considering the limit r tends to 0. For this purpose
the distance of an integral n varifold from a Q valued plane is introduced. One
cannot use ordinary planes in 2.6 (without additional assumptions) as may be
seen from the fact that any Q valued plane is stationary with vanishing tilt. In
2.8–2.10 an answer to the Problem posed in the introduction is provided.

2.1 Definition. Suppose m,n,Q ∈ N, 1 ≤ q ≤ ∞, a ∈ Rn+m, 0 < r < ∞,
0 < h ≤ ∞, T ∈ G(n+m,n), P is a Q valued plane parallel to T (see 1.12), µ is
an integral n varifold in an open superset of C(T, a, r, h), A is the Hn measurable
set of all x ∈ T ∩ B̄r(T (a)) such that for some R(x), S(x) ∈ QQ(Rn+m)

‖R(x)‖ = θn(P xC(T, a, r, h), ·)H0 xT−1({x}),
‖S(x)‖ = θn(µ xC(T, a, r, h), ·)H0 xT−1({x})

and g : A→ R is the Hn measurable function defined by g(x) = G(R(x), S(x))
for x ∈ A.2

2The asserted measurabilities may be shown by use of the coarea formula (cf. [Fed69,
3.2.22 (3)]).
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Then the q height of µ with respect to P in C(T, a, r, h), denoted by

Hq(µ, a, r, h, P ),

is defined to be the sum of

r−1−n/q‖dist(·, sptP )‖Lq(µ xC(T,a,r,h))

and the infimum of the numbers

r−1−n/q‖g‖Lq(Hn xY ) + r−1−n/qHn(T ∩ B̄r(T (a))∼Y )1/q+1/n

corresponding to all Hn measurable subsets Y of A. The q tilt of µ with respect
to T in C(T, a, r, h) is defined by

Tq(µ, a, r, h, T ) = r−n/q‖Tµ − T‖Lq(µ xC(T,a,r,h)).

Moreover,

Hq(µ, a, r, h,Q, T )

is defined to be the infimum of all numbers Hq(µ, a, r, h, P ) corresponding to all
Q valued planes P parallel to T .

2.2 Remark. Tq(µ, a, r, h, T ) generalises tiltexµ in an obvious way.
Hq(µ, a, r, h, P ) measures the distance of µ in C(T, a, r, h) from the Q valued

plane P . To obtain a reasonable definition of distance, neither the first nor the
second summand would be sufficient. The first summand is 0 if µ = P xB for
someHn measurable set B. The second summand is 0 if µ = P+Hn xB for some
Hn measurable subset B of C(T, a, r, h) with Hn(B) < ∞ and Hn(T (B)) = 0.
From a more technical point of view, the second summand is added because
it is useful in the iteration procedure occurring in 2.8 where the distance of Q
valued planes corresponding to different radii r has to be estimated.

2.3 Remark. One readily checks that Hq(µ, a, r, h, P ) = 0 implies

µ xC(T, a, r, h) = P xC(T, a, r, h)

and Hq(µ, a, r, h,Q, T ) = 0, h < ∞ implies Hq(µ, a, r, h, P ) = 0 for some Q
valued plane P parallel to T .

More generally, the infima occurring in the definition of Hq(µ, a, r, h, P ) and
Hq(µ, a, r, h,Q, T ) are attained. However, this latter fact will neither be used
nor proved in this work.

2.4 Lemma. Suppose m,n,Q ∈ N, 1 ≤M <∞, and 0 < δ ≤ 1.
Then there exists a positive, finite number ε with the following property.
If a ∈ Rn+m, 0 < r < ∞, 0 < h ≤ ∞, T ∈ G(n+m,n), δr < h, µ is an

integral n varifold in an open superset of C(T, a, 3r, h+ 2r) with locally bounded
first variation satisfying

(Q− 1 + δ)ωnrn ≤ µ(C(T, a, r, h)) ≤ (Q+ 1− δ)ωnrn,
µ(C(T, a, r, h+ δr)∼C(T, a, r, h− δr)) ≤ (1− δ)ωnrn,

µ(C(T, a, 3r, h+ 2r)) ≤Mωnr
n,

‖δµ‖(C(T, a, 3r, h+ 2r)) ≤ εrn−1, T1(µ, a, 3r, h+ 2r, T ) ≤ ε,
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G is the set of all x ∈ C(T, a, r, h) ∩ sptµ such that

‖δµ‖(B̄%(x)) ≤ (2γn)−1 µ(B̄%(x))
1−1/n whenever 0 < % < 2r,

and A is the set defined as G with ε replacing (2γn)−1, then the following two
statements hold:

(1) If 1 ≤ q < n, q∗ = nq
n−q , then

Hq∗(µ xG, a, r, h,Q, T )

≤ Γ(1)

(
Tq(µ, a, 3r, h+ 2r, T ) + (r−nµ(C(T, a, r, h)∼A))1/q

)
where Γ(1) is a positive, finite number depending only on m, n, Q, M , δ,
and q.

(2) If n < q ≤ ∞, then

H∞(µ xG, a, r, h,Q, T )

≤ Γ(2)

(
Tq(µ, a, 3r, h+ 2r, T ) + (r−nµ(C(T, a, r, h)∼A))1/q

)
.

where Γ(2) is a positive, finite number depending only on m, n, Q, M , δ,
and q.

Proof. Let

Γ0 := ΓD.15(m,Q), Γ1 := Γ1.14(3)(Q,n, δ/2), L := 1,
ε0 := ε1.14(m,n,Q, 1,M, δ/2, δ/2, δ/2, δ/2),

ε1 := ε0, λ := λ1.14(4)(n, δ/2, δ/2)

and choose 0 < ε ≤ ε0 such that

ε ≤ ε0(nγn)1−n, 3nε ≤ ε0(nγn)−n,

Γ1N(n+m)3nε ≤ 1
2ω1(λ/6) if n = 1,

Γ1N(n+m)
(
3nε+ εn/(n−1)

)
≤ 1

2ωn(λ/6)n if n > 1;

recall that N(n+m) denotes the best constant in Besicovitch’s covering theo-
rem in Rn+m, see [Sim83, Lemma 4.6].

Assume a = 0 and r = 1. Choose orthogonal projections π : Rn+m → Rn,
σ : Rn+m → Rm with π ◦ σ∗ = 0 and imπ∗ = T . Applying 1.14, one obtains
sets Y , B and a Lipschitzian function f : Y → QQ(Rm) with the properties
listed there. Using 1.14 (1) (2) and D.15 and noting the existence of a retraction
of Rm to B̄mh (0) with Lipschitz constant 1 (cf. [Fed69, 4.1.16]), one constructs
an extension g : B̄n1 (0) → QQ(Rm) of f with Lip g ≤ Γ0 and spt g(x) ⊂ B̄mh (0)
for x ∈ B̄n1 (0).

Next, it will be verified that the set G agrees with the set G defined in 1.14;
in fact for x ∈ G using A.8 yields

‖δµ‖(B2(x)) ≤ ‖δµ‖(C(T, 0, 3, h+ 2)) ≤ ε ≤ ε0 µ(B2(x))
1−1/n,∫

B2(x)
|Tξµ− T |dµ(ξ) ≤

∫
C(T,0,3,h+2)

|Tξµ− T |dµ(ξ) ≤ 3nε ≤ ε0 µ(B2(x)).
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In order to be able to apply 1.14 (6), it will be shown

Ln(B̄n1 (0)∼Y ) ≤ 1
2ωn(λ/6)n.

Let B1 be the set of all x ∈ B such that

‖δµ‖(B̄%(x)) > ε0 µ(B̄%(x))
1−1/n for some 0 < % < 2,

and let B2 be the set of all x ∈ B such that∫
B̄%(x)

|Tξµ− T |dµ(ξ) > ε0 µ(B̄%(x)) for some 0 < % < 2.

Clearly, Besicovitch’s covering theorem implies

µ(B2) ≤ N(n+m)3nT1(µ, 0, 3, h+ 2, T ) ≤ N(n+m)3nε.

Moreover, B1 = ∅ if n = 1, and Besicovitch’s covering theorem implies in case
n > 1

µ(B1) ≤ N(n+m) ‖δµ‖(C(T, 0, 3, h+ 2))n/(n−1) ≤ N(n+m)εn/(n−1).

Therefore the desired estimate is implied by 1.14 (3) and the choice of ε.
To prove part (1), let 1 ≤ q < n, q∗ = nq

n−q , define

Γ2 = 1 + (12)n+1Qmax{1,Γ1.14(6)(q∗, n)},
Γ3 = 2ΓD.14(1)(m,n,Q, q), Γ4 = N(n+m)1/qε−13n/q,

Γ5 = 21/2Qm1/2, Γ6 = Γ0m
1/2Q1/2,

choose S ∈ QQ(Rm) such that (see D.13)

hq∗(g, S) ≤ Γ3 tq(g), sptS ⊂ B̄mh (0)

with the help of D.14 (1) noting again [Fed69, 4.1.16] and denote by P :=
(θ0(‖S‖, ·) ◦ σ)Hn the Q valued plane associated to S via σ. The estimate for
Hq∗(µ xG, 0, 1, h, P ) is obtained by combining the following six inequalities:

Hq∗(µ xG, 0, 1, h, P ) ≤ Γ2

(
hq∗(g, S) + Ln(B̄n1 (0)∼Y )1/q

)
, (I)

hq∗(g, S) ≤ Γ3 tq(g), (II)

Ln(B̄n1 (0)∼Y )1/q ≤ (Γ1)1/q µ(B)1/q, (III)

µ(B ∩A)1/q ≤ Γ4 Tq(µ, 0, 3, h+ 2, T ), (IV)
tq(g|Y ) ≤ Γ5 Tq(µ, 0, 1, h, T ), (V)

tq(g|B̄n1 (0)∼Y ) ≤ Γ6 Ln(B̄n1 (0)∼Y )1/q. (VI)

(I) is implied by 1.14 (2) (4) (6) and sptS ⊂ B̄mh (0), (II) is implied by the choice
of S, (III) is implied by 1.14 (3), (VI) is elementary (cf. D.2). To prove (IV),
note that for every x ∈ B ∩A there exists 0 < % < 2 such that

ε0 µ(B̄%(x)) <
∫
B̄%(x)

|Tξµ− T |dµ(ξ),

hence by Hölder’s inequality

(ε0)q µ(B̄%(x)) <
∫
B̄%(x)

|Tξµ− T |q dµ(ξ)
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and Besicovitch’s covering theorem implies (IV). Observing that

{y ∈ Y : | apAg(y)| > γ}∼π
(
{ξ ∈ G ∩ π−1(Y ) : |Tξµ− T | > γ/Γ5}

)
has Ln measure 0 by 1.14 (7d) and D.2, inequality (V) is a consequence of

Ln({y ∈ Y : | apAg(y)| > γ})
≤ Hn({ξ ∈ G ∩ π−1(Y ) : |Tξµ− T | > γ/Γ5})
≤ µ({ξ ∈ G ∩ π−1(Y ) : |Tξµ− T | > γ/Γ5}).

The proof of part (2) exactly parallels the proof of part (1) with ∞, q, and
D.14 (2) replacing q∗, q, and D.14 (1).

2.5 Remark. Part (2) can be sharpened using Lorentz spaces to

H∞(µ xG, a, r, h,Q, T )

≤ Γ
(
Tn,1(µ, a, 3r, h+ 2r, T ) + (r−nµ(C(T, a, r, h)∼A))1/n

)
with a positive, finite number Γ depending only on m, n, Q, M , and δ. Here
Tn,1 is the obvious generalisation of Tq to Lorenz spaces.

A similar improvement is possible for part (1) using Peetre’s theorem.

2.6 Theorem. Suppose m,n,Q ∈ N, 1 ≤ M < ∞, 0 < δ ≤ 1, a ∈ Rn+m,
0 < r <∞, T ∈ G(n+m,n), 1 ≤ p ≤ n, µ is an integral n varifold in an open
superset of C(T, a, 3r, 3r) satisfying (Hp) and

ψ = ‖δµ‖ if p = 1, ψ = |~Hµ|pµ if p > 1,
(Q− 1 + δ)ωnrn ≤ µ(C(T, a, r, r)) ≤ (Q+ 1− δ)ωnrn,

µ(C(T, a, r, (1 + δ)r)∼C(T, a, r, (1− δ)r)) ≤ (1− δ)ωnrn,
µ(C(T, a, 3r, 3r)) ≤Mωnr

n.

Then the following two statements hold:

(1) If p < n, 1 ≤ q < n, then

H nq
n−q

(µ, a, r, r,Q, T )

≤ Γ(1)

(
Tq(µ, a, 3r, 3r, T ) + (rp−nψ(C(T, a, 3r, 3r)))

n−q
q(n−p)

)
where Γ(1) is a positive, finite number depending only on m, n, Q, M , δ,
p, and q.

(2) If p = n and ψ(C(T, a, 3r, 3r)) ≤ ε(2) where ε(2) is a positive, finite number
depending only on m, n, Q, M , and δ, then

(a) H nq
n−q

(µ, a, r, r,Q, T ) ≤ Γ(2a) Tq(µ, a, 3r, 3r, T ) whenever 1 ≤ q < n,

(b) H∞(µ, a, r, r,Q, T ) ≤ Γ(2b) Tq(µ, a, 3r, 3r, T ) whenever n < q ≤ ∞

where Γ(2a), Γ(2b) are positive, finite numbers depending only on m, n, Q,
M , δ, and q.
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Proof. To prove part (1), assume a = 0, r = 1, define q∗ = nq
n−q , and suppose

that ε, A, and G are as in 2.4. Observing

Hq∗(µ, 0, 1, 1, Q, T )−Hq∗(µ xG, 0, 1, 1, Q, T ) ≤ 2µ(C(T, 0, 1, 1)∼G)1/q
∗

+Hn(T ({ξ ∈ C(T, 0, 1, 1) : θ∗n(µ, ξ) > 0}∼G))1/q

≤ (2 + ω1/n
n )µ(C(T, 0, 1, 1)∼G)1/q

∗
,

µ(C(T, 0, 1, 1)∼G) ≤ N(n+m)(2γn)
np

n−pψ(C(T, 0, 3, 3))
n

n−p ,

µ(C(T, 0, 1, 1)∼A) ≤ N(n+m)ε−
np

n−pψ(C(T, 0, 3, 3))
n

n−p ,

‖δµ‖(C(T, 0, 3, 3)) ≤ µ(C(T, 0, 3, 3))1−1/pψ(C(T, 0, 3, 3))1/p

≤ (Mωn)1−1/pψ(C(T, 0, 3, 3))1/p,

T1(µ, 0, 3, 3, T ) ≤ 3−n+n/q(Mωn)1−1/qTq(µ, 0, 3, 3, T ),

Hq∗(µ, 0, 1, 1, Q, T ) ≤ µ(C(T, 0, 1, 1))1/q
∗

+ ω1/q
n ≤M1/q∗ω1/q∗

n + ω1/q
n ,

a suitable number Γ(1) is readily constructed using 2.4 (1).
Part (2) is proved similarly using 2.4 (2).

2.7 Remark. In case µ additionally satisfies

µ({x ∈ C(T, a, r, r) : θn(µ, x) = Q}) ≥ δωnr
n,

there exists z ∈ T⊥ such that for P := QHm x{x ∈ Rn+m :T⊥(x) = z}

H nq
n−q

(µ, a, r, r, P ) ≤ Γ
(
Tq(µ, a, 3r, 3r, T ) + (rp−nψ(C(T, a, 3r, 3r)))

n−q
q(n−p)

)
provided p < n, 1 ≤ q < n where Γ is a positive, finite number depending only
on m, n, Q, M , δ, p, and q.

In fact from 1.14 (2) (3) and the coarea formula [Fed69, 3.2.22 (3)] one obtains
for the set Y0 of all y ∈ T ∩Br(T (a)) such that for some x0 ∈ C(T, a, r, r) with
T (x0) = y

θn(µ, x0) = Q, θn(µ, x) = 0 for x ∈ T−1({y}) ∩ C(T, a, r, r)∼{x0}

the estimate

L1(Y0) ≥ (2δ/3)ωnrn

provided the right hand side of the inequality in question is suitably small
(depending only on m, n, Q, M , δ, p, and q), hence for any Q valued plane P ′

parallel to T such that

(2H nq
n−q

(µ, a, r, r, P ′))q ≤ (δ/3)ωn

there holds

((δ/3)ωn)1/q−1/n diamT⊥(sptP ′)
2r

≤ 2H nq
n−q

(µ, a, r, r, P ′)

and suitable z and Γ are readily constructed.
A similar remark holds for the second part.
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2.8 Theorem. Suppose m,n,Q ∈ N, 0 < α ≤ 1, 1 ≤ p ≤ n, U is an open
subset of Rn+m, and µ is an integral n varifold in U satisfying (Hp).

Then the following two statements hold:

(1) If p < n, 1 ≤ q1 < n, 1 ≤ q2 ≤ min{ nq1
n−q1 ,

1
α ·

np
n−p}, then for µ almost all

a ∈ U with θn(µ, a) = Q there holds

lim sup
r↓0

r−α−1−n/q2‖dist(· − a, Taµ)‖Lq2 (µ xBr(a))

≤ Γ(1) lim sup
r↓0

r−α−n/q1‖Tµ − Taµ‖Lq1 (µ xBr(a))

where Γ(1) is a positive, finite number depending only on m, n, Q, q1, and
q2.

(2) If p = n, n < q ≤ ∞, then for µ almost all a ∈ U with θn(µ, a) = Q there
holds

lim sup
r↓0

r−α−1‖dist(· − a, Taµ)‖L∞(µ xBr(a))

≤ Γ(2) lim sup
r↓0

r−α−n/q‖Tµ − Taµ‖Lq(µ xBr(a))

where Γ(2) is a positive, finite number depending only on m, n, Q, and q.

Proof. For a ∈ Rn+m, 0 < r < ∞ such that B7r(a) ⊂ U denote by Gr(a) the
set of all x ∈ B̄5r(a) ∩ sptµ satisfying

‖δµ‖(B̄%(x)) ≤ (2γn)−1µ(B̄%(x))
1−1/n whenever 0 < % < 2r.

To prove (1), one may assume first that q2 ≥ n
n−1 possibly replacing q2 by

a larger number since min{ nq1
n−q1 ,

1
α ·

np
n−p} ≥

n
n−1 , and thus also that q2 = nq1

n−q1
possibly replacing q1 by a smaller number. Define M = 6nQ, δ = 1/2, q = q1,
q∗ = q2,

ε = min{ε2.4(m,n,Q,M, δ), (2γn)−1}, Γ = Γ2.4(1)(m,n,Q,M, δ, q).

Denote by Ci for i ∈ N the set of all x ∈ sptµ such that B1/i(x) ⊂ U and

‖δµ‖(B̄%(x)) ≤ ε µ(B̄%(x))
1−1/n whenever 0 < % < 1/i.

The conclusion will be shown for a ∈ dmnTµ such that

θn(µ, a) = Q, θn−1(‖δµ‖, a) = 0,

lim
r↓0

r−n
2/(n−p)µ(B̄r(x)∼Ci) = 0 for some i ∈ N.

Note that according to [Fed69, 2.9.5] and A.12 (1) (4) (5) with s replaced by n
this is true for µ almost all a ∈ U with θn(µ, a) = Q, fix such a, i, and abbreviate
T := Taµ.

For a there holds

lim
r↓0

µ(C(T, a, r, r))
ωnrn

= Q,

lim
r↓0

µ(C(T, a, r, 3r/2)∼C(T, a, r, r/2))
ωnrn

= 0
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and one can assume for some 0 < γ <∞

lim sup
r↓0

r−αTq(µ, a, r, r, T ) < γ.

Choose 0 < s < min{(2i)−1,dist(a,Rn+m∼U)/7} so small that for 0 < % < s

(Q− 1/2)ωn%n ≤ µ(C(T, a, %, %)) ≤ (Q+ 1/2)ωn%n,
µ(C(T, a, %, 3%/2)∼C(T, a, %, %/2)) ≤ (1/2)ωn%n,
µ(C(T, a, 3%, 3%)) ≤ µ(B̄5%(a)) ≤ ωn6nQ%n,

‖δµ‖(C(T, a, 3%, 3%)) ≤ ε%n−1, T1(µ, a, 3%, 3%, T ) ≤ ε,

Tq(µ, a, 3%, 3%, T ) + (%−nµ(C(T, a, %, %)∼Ci))1/q ≤ 4γ%α;

in particular 2.4 (1) can be applied to any such % with (r, h) replaced by (%, %).
For each 0 < % < s use 2.3 to choose Q valued planes P% parallel to T such that

Hq∗(µ xG%(a), a, %, %, P%) ≤ 2Hq∗(µ xG%(a), a, %, %,Q, T ),

denote by A% the Hn measurable sets of all x ∈ T ∩B̄%(T (a)) such that for some
R%(x), S%(x) ∈ QQ(Rn+m)

‖R%(x)‖ = θn(P% xC(T, a, %, %), ·)H0 xT−1({x}),
‖S%(x)‖ = θn(µ xG%(a) ∩ C(T, a, %, %), ·)H0 xT−1({x}),

and by g% : A% → R the Hn measurable functions defined by

g%(x) = G(R%(x), S%(x)) for x ∈ A%.

By 2.3 there exist Hn measurable subset Y% of A% such that

2Hq∗(µ xG%(a), a, %, %, P%) ≥ %−n/q‖dist(·, sptP%)‖Lq∗ (µ xG%(a)∩C(T,a,%,%))

+%−n/q‖g%‖Lq∗ (Hn xY%) + %−n/qHn(T ∩ B̄%(T (a))∼Y%)1/q.

Possibly replacing s by a smaller number, one may assume for 0 < % < s
that

(2Hq∗(µ xG%(a), a, %, %, P%))q ≤ 2−n−2ωn

by 2.4 (1) and also that

µ(C(T, a, %, %)∼Ci) ≤ 2−n−2ωn%
n.

Noting Ci ∩ C(T, a, %/2, %) ⊂ G%(a) ∩ G%/2(a), one obtains directly from the
additional assumptions on s that

Hn(T ∩ B̄%(T (a))∼Y%) ≤ 2−n−2ωn%
n,

Hn(T ∩ B̄%/2(T (a))∼Y%/2)} ≤ 2−n−2ωn%
n,

Hn({x ∈ Y%/2 ∩ Y% :S%(x) 6= S%/2(x)})
≤ Hn

(
T ({x ∈ C(T, a, %/2, %) : θ∗n(µ, x) ≥ 1}∼Ci)

)
≤ µ(C(T, a, %, %)∼Ci) ≤ 2−n−2ωn%

n,
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hence for B% := Y% ∩ Y%/2 ∩ {x :S%(x) = S%/2(x)}

Hn(B%) ≥ 1
4ωn(%/2)n for 0 < % < s,

in particular

dmnR% = A% ⊃ Y% ⊃ B% 6= ∅, G(P%, QHn xT ) ≤ Q1/2%.

By integration over the set B% one obtains

( 1
4ωn(%/2)n)1/q−1/nG(P%, P%/2)

≤ ‖g%‖Lq∗ (Hn xY%) + ‖g%/2‖Lq∗ (Hn xY%/2)

≤ %n/q4
(
Hq∗(µ xG%(a), a, %, %,Q, T ) +Hq∗(µ xG%/2(a), %/2, %/2, Q, T )

)
for 0 < % < s. Therefore 2.4 (1) implies

G(P%, P%/2) ≤ Γ1γ%
1+α

where Γ1 = 23+n/q+2/q−2/nω
1/n−1/q
n Γ, hence

G(QHn xT, P%) ≤
∑∞
i=0G(P2−i%, P2−i−1%) ≤ 2Γ1γ%

1+α

because G(P%, QHn xT ) → 0 as % ↓ 0. From the definition of the q∗ height of µ
in C(T, a, %, %) one obtains

Hq∗(µ xG%(a), a, %, %,QHn xT )−Hq∗(µ xG%(a), a, %, %, P%)

≤ %−n/q
(
µ(C(T, a, %, %))1/q

∗
+Hn(Y%)1/q

∗)
G(QHn xT, P%) ≤ Γ2γ%

α

for 0 < % < s where Γ2 = ω
1/q∗

n 2(Q+ 1)1/q
∗
2Γ1, hence

lim sup
%↓0

%−αHq∗(µ xG%(a), a, %, %,QHn xT )

≤ (8Γ + Γ2) lim sup
%↓0

%−αTq(µ, a, %, %, T )

by 2.4 (1). Combining this with the fact that

lim
%↓0

%−α−1−n/q∗‖dist(· − a, Taµ)‖Lq∗ (µ xB%(a)∼G%(a)) = 0,

the conclusion follows.
(2) may be proved by a similar argument using 2.4 (2) and A.9 instead of

2.4 (1) and A.12 (1).

2.9 Remark. As in 2.5, in (2) the Lq norm can be replaced by Ln,1, in particular
n = q = 1 is admissible. The latter fact can be derived without the use of
Lorentz spaces, of course.

2.10 Remark. If 1 ≤ p < n, 1 ≤ q1 ≤ q2 <∞, 1
α ·

np
n−p < q2, then the conclusion

of (1) fails for some µ; in fact one can assume q1 = q2 possibly enlarging q1 and
then take α2 = α and α1 slightly larger than α2 in C.2. Clearly, also in (2) the
assumption p = n cannot be weakened.
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3 About the significance of the 1 tilt

The purpose of this section is to show the significance of the 1 tilt introduced
in the preceding section for C2 rectifiability and locality of mean curvature of
integral varifolds. Firstly, decay of the 1 tilt implies by 2.8 decay of the 1 height
– the leading integral quantity for C2 rectifiability. Secondly, concerning locality
of mean curvature, using the differentiation theorem B.1 an adaption of [Sch01,
Lemma 6.3] (or [Sch04a, Prop. 6.1] or [Sch04b, Theorem 4.1]) yields the desired
result.

3.1 Lemma. Suppose m,n ∈ N, 0 < α ≤ 1, U is an open subset of Rn+m, µ is
a rectifiable n varifold in U , and A denotes the set of all x ∈ U such that Txµ
exists and

lim sup
%↓0

%−n−1−α∫
B%(x)

dist(ξ − x, Txµ) dµ(ξ) <∞.

Then µ xA is countably rectifiable of class C1,α.

Proof. The proof mainly requires an extension of the results in [Sch04b, Ap-
pendix A] to the case α < 1 which may be accomplished using [Ste70, VI.2.2.2,
VI.2.3.1–3].

3.2 Lemma. Suppose m,n ∈ N, U is an open subset of Rn+m, µ is an integral
n varifold in U of locally bounded first variation, and A denotes the set of all
x ∈ U such that Txµ exists and

lim sup
%↓0

%−1−n∫
B%(x)

|Tξµ− Txµ|dµ(ξ) <∞.

Then µ xA is countably rectifiable of class C2 and for every n dimensional
submanifold M of Rn+m of class C2 there holds

~Hµ(x) = ~HM (x) for µ almost every x ∈ A ∩M

where ~HM denotes the mean curvature of M and −~Hµ corresponds to the ab-
solutely continuous part of δµ with respect to µ.

Proof. The first part follows from 2.8 and 3.1.
Suppose now M is a n dimensional submanifold of Rn+m of class C2. Since

the conclusion is local, one may assume the existence of an orthogonal frame
adapted to M in U , i.e. of τi : U → Rn+m, νj : U → Rn+m, i ∈ {1, . . . , n},
j ∈ {1, . . . ,m} of class C1 such that τ1(x), . . . , τn(x), ν1(x), . . . , νm(x) form an
orthonormal base of Rn+m whenever x ∈ U and such that τ1(x), . . . , τn(x)
form an orthonormal base of TxM whenever x ∈ U ∩ M . Define S : U →
Hom(Rn+m,Rn+m), H : U → Rn+m by

S(x)(v) =
n∑
i=1

(τi(x) • v)τi(x) for x ∈ U , v ∈ Rn+m,

H(x) = −
n∑
i=1

m∑
j=1

∂τi(x)νj(x) • τi(x)νj(x) for x ∈ U ;
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here ∂vf(x) denotes the directional derivative of f at x with direction v. Clearly,
Txµ = S(x) for µ almost every x ∈ A ∩M . Hence, since S is of class C1,

lim sup
%↓0

%−n−1
∫
B̄%(x)

|Tξµ− S(ξ)|dµ(ξ) <∞ for µ almost every x ∈ A ∩M.

By B.1 applied with ν = |Tµ − S|µ x(A ∩M), this implies

lim
%↓0

%−n−1
∫
B̄%(x)

|Tξµ− S(ξ)|dµ(ξ) = 0 for µ almost every x ∈ A ∩M.

The conclusion will be shown for a point x ∈ A∩M which additionally satisfies

Txµ = S(x), θ∗n(‖δµ‖, x) <∞, ~Hµ(x) ∈ (Txµ)⊥,

lim
%↓0

%−n
∫
η(%−1(y − x)) dδµ(y) → −θn(µ, x)

(∫
η dHn xTxµ

)
• ~Hµ(x)

as % ↓ 0 whenever η ∈ C0
c (Rn+m,Rn+m), as µ almost all do according to [Fed69,

2.9.5, 2.9.9, 2.9.10] and [Bra78, Theorem 5.8].
Let v ∈ (Txµ)⊥, ϕ ∈ C1

c (Rn+m) such that
∫
ϕ dHn xTxµ 6= 0, and define

η% : Rn+m → Rn+m

η%(y) = ϕ(%−1(y − x))(v − S0(y)(v)) for y ∈ Rn+m, 0 < % <∞

where S0 : Rn+m → Hom(Rn+m,Rn+m) is a function of class C1 agreeing with
S in an open neighbourhood V of x. One computes, noting S(x)(v) = 0,

lim
%↓0

%−n(δµ)(η%) = lim
%↓0

∫
ϕ(%−1(y − x))v dδµ(y)

= −θn(µ, x)
(∫
ϕ dHn xTxµ

)
v • ~Hµ(x),

(δµ)(η%) =
∫
Tµ •Dη% dµ for 0 < % <∞,

lim
%↓0

%−n
∫

(Tµ − S0) •Dη% dµ = 0,

as well as

S(x) •Dη%(x) =
n∑
i=1

m∑
j=1

∂τi(x)(νj • η%νj)(x) • τi(x)

=
n∑
i=1

m∑
j=1

(νj • η%)(x)∂τi(x)νj(x) • τi(x) = −H(x) • η%(x)

whenever x ∈ V , 0 < % <∞,

%−n
∫
S0 •Dη% dµ = −%−n

∫
H • η% dµ→ −θn(µ, x)

(∫
ϕ dHn xTxµ

)
v • ~HM (x)

as % ↓ 0. Recalling ~HM (x), ~Hµ(x) ∈ (Txµ)⊥ = (TxM)⊥, one finally obtains

~HM (x) = ~Hµ(x)

as claimed.

3.3 Remark. The method of [Sch01, Lemma 6.3] (or [Sch04a, Prop. 6.1] or
[Sch04b, Theorem 4.1]) suffices to prove the locality of mean curvature in case
the 1 tilt is replaced by the q tilt for some 1 < q < ∞. The differentiation
theorem B.1 is used to extend this method to the case q = 1.
3.4 Remark. It is not known to the author if µ(U ∼A) > 0 for some µ.
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A The Isoperimetric Inequality and its applica-
tions

In this appendix the connections between smallness assumptions on the mean
curvature and lower bounds for density ratios are investigated by use of the
Isoperimetric Inequality of Michael and Simon, see e.g. [Sim83, Theorem 18.6].
Despite the fact that it is well known how to derive such lower bounds by use
of an isoperimetric inequality (see [Fed69, 5.1.6] for currents and [All72, 8.3]
for varifolds), this method appears to be only rarely used in literature in the
present case. Since the sharpness of the results in this work depends crucially on
a seemingly slight weakening (see A.8) of the assumptions used in [All72, 8.3],
the author felt obliged to briefly document the deduction of the lower density
bound, see A.6–A.8. The main theorem concerning the size of various sets where
the mean curvature is large is then derived in A.12.

A.1. In this appendix the following situation will be studied:
m,n ∈ N, 1 ≤ p ≤ n, U is an open subset of Rn+m, µ is a rectifiable n

varifold in U of locally bounded first variation, θn(µ, x) ≥ 1 for µ almost all
x ∈ U , and, in case p > 1,

(δµ)(η) = −
∫
~Hµ • η dµ whenever η ∈ C1

c (U,Rn+m)

for some ~Hµ ∈ Lploc(µ,Rn+m).
In doing so, the following abbreviation will be used:

ψ = ‖δµ‖ if p = 1, ψ = |~Hµ|pµ else.

A.2 Theorem. Suppose m ∈ N0, n ∈ N, µ is a rectifiable n varifold in Rn+m

such that µ(Rn+m) <∞ and ‖δµ‖(Rn+m) <∞.
Then for some positive, finite number γ depending only on n

µ
({
x ∈ Rn+m : θn(µ, x) ≥ 1

})
≤ γ µ(Rn+m)1/n‖δµ‖(Rn+m).

Proof. This follows from [All72, Theorem 7.1] with a constant γ depending
on n+m (what would be sufficient for the purpose of this work). A slight
modification of [Sim83, Lemma 18.7, Theorem 18.6] yields the stated result.

A.3 Definition. For n ∈ N let γn denote the best constant γ in A.2.

A.4 Remark. Taking m = 0, µ = Ln x B̄n1 (0) yields

γn ≥ ω−1/n
n /n.

Does equality hold?

A.5 Definition. Suppose k,m, n ∈ N, k ≤ n, U is an open subset of Rn+m,
and f : U → Rk is a Lipschitzian function.

Then for x ∈ Rk the Radon measure 〈µ, f, x〉 is defined by

〈µ, f, x〉 (ϕ) := lim
%↓0

ω−1
k %−k

∫
f−1(B̄%(x))

(Jµf)ϕ dµ for ϕ ∈ C0
c (U)

whenever this limit exists for all ϕ ∈ C0
c (U); here Jµ denotes the Jacobian with

respect to µ.
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A.6 Lemma. Suppose k,m, n ∈ N, k ≤ n, U is an open subset of Rn+m, µ is
a rectifiable n varifold in U with µ(U) < ∞, and f : U → Rk is a Lipschitzian
function.

Then the following three statements hold:

(1) For Lk almost all x ∈ Rk the slice 〈µ, f, x〉 exists and satisfies

〈µ, f, x〉 = θn(µ, ·)Hn−k x f−1({x}).

(2) Whenever k = 1, −∞ < a < b <∞∫ b
a
〈µ, f, t〉 (U) dL1t ≤ (Lip f)µ({x ∈ U : a < f(x) < b}).

(3) If k = 1 and µ is of locally bounded first variation, then there holds for L1

almost all t ∈ R

δ(µ xAt)(η) = ((δµ) xAt)(η) +
∫
η • ∇µf

|∇µf |
d 〈µ, f, t〉

whenever η ∈ C1
c (U,Rn+m) where At = {x ∈ U : f(x) < t} and ∇µ denotes

the gradient with respect to µ.

Proof. Similar results valid for general varifolds and smooth f which are readily
modified to treat the present case can be found in [All72, 4.10].

A.7 Lemma. Suppose m, n, p, U , and µ are as in A.1, p = 1, a ∈ sptµ,
I =]0,dist(a,Rn+m∼U)[, and u : I → R, v : I → R are defined by

u(t) = µ(B̄t(a)), v(t) = ‖δµ‖(B̄t(a))

whenever t ∈ I.
Then for L1 almost all t ∈ I

γ−1
n ≤ u(t)1/n−1v(t) + u(t)1/n−1u′(t).

Proof. Let 0 < t < ∞, 0 < h < ∞ with B̄t+h(a) ⊂ U , and d : U → R defined
by d(x) := |x− a| whenever x ∈ U . Since∫ t+h

t
〈µ, d, r〉 (U) dL1r ≤ µ(Bt+h(a)∼ B̄t(a)),

there exists t < % < t+ h with

〈µ, d, %〉 (U) ≤ h−1µ(Bt+h(a)∼ B̄t(a)),
‖δ(µ x B̄%(a))‖ ≤ ‖δµ‖ x B̄%(a) + 〈µ, d, %〉

by A.6, hence

u(t) ≤ (µ x B̄%(a))(U) ≤ u(t+ h), (‖δµ‖ x B̄%(a))(U) ≤ v(t+ h).

Therefore A.2 implies

γ−1
n ≤ u(t)1/n−1v(t+ h) + u(t)1/n−1(u(t+ h)− u(t))/h

and the conclusion follows by taking the limit h ↓ 0, see [Fed69, 2.9.19].
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A.8 Remark. A basic consequence of A.7 is the following: If 0 < r < ∞,
B̄r(a) ⊂ U ,

‖δµ‖(B̄%(a)) ≤ (2γn)−1µ(B̄%(a))
1−1/n whenever 0 < % < r,

then
µ(B̄%(a)) ≥ (2nγn)−n%n whenever 0 < % < r;

in fact one observes

(2γn)−1 ≤ u(%)1/n−1u′(%), (2nγn)−1 ≤ (u1/n)′(%)

for L1 almost all 0 < % < r and integration with the help of [Fed69, 2.9.19]
yields the asserted inequality. Moreover, if 0 < r < ∞, ai ∈ Rn+m for i ∈ N,
µi is a sequence of rectifiable n varifolds with locally bounded first variation in
Rn+m and θn(µi, x) ≥ 1 for µi almost all x ∈ Rn+m,

‖δµi‖(B̄%(ai)) ≤ (2γn)−1µi(B̄%(ai))
1−1/n whenever 0 < % < r, i ∈ N,

ai → a as i → ∞ for some a ∈ Rn+m,
∫
f dµi →

∫
f dµ for f ∈ C0

c (Rn+m) as
i→∞ for some Radon measure µ, then a ∈ sptµ.

The first consequence is also derived in [All72, 8.3] from a condition implying

‖δµ‖(V ) ≤ (2γn)−1µ(V )1−1/n

for any open subset V of Br(a) (here 00 = 1) what is, of course, stronger than
the assumption above in case n > 1.

A.9 Remark. Clearly, the conditions of the preceding remark can be deduced
by means of Hölder’s inequality from similar conditions involving the measure
ψ defined in A.1. In particular, if p = n and ψ({a}) < (2γn)−n, then

‖δµ‖(B̄%(x)) ≤ (2γn)−1µ(B̄%(x))
1−1/n whenever 0 < % < r, x ∈ sptµ ∩ B̄r(a)

is satisfied for all sufficiently small positive radii r (here 00 = 1).

A.10 Lemma. Suppose m,n ∈ N, and δ > 0.
Then there exists a positive number ε with the following property.
If a ∈ Rn+m, 0 < r < ∞, m, n, p, U , and µ are related as in A.1 with

U = Br(a), p = 1, a ∈ sptµ, and

‖δµ‖(B̄%(a)) ≤ (2γn)−1µ(B̄%(a))
1−1/n for 0 < % < r,

‖δµ‖(Br(a)) ≤ ε µ(Br(a))
1−1/n,

then

µ(Br(a)) ≥ (1− δ)ωnrn.

Proof. If the lemma were false for some m,n ∈ N, and δ > 0, there would exist
a sequence εi with εi ↓ 0 as i → ∞ and sequences ai, ri, and µi showing that
ε = εi does not satisfy the conclusion of the lemma.

One could assume ai = 0, ri = 1 for i ∈ N and it would hold

‖δµi‖(Bn+m
1 (0)) ≤ 1

iµ(Bn+m
1 (0))1−1/n ≤ ((1− δ)ωn)1−1/n/i
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for i ∈ N. By A.8 one could construct (as the limit of a subsequence of µi) a
stationary, rectifiable n varifold µ in Bn+m

1 (0) with

θn(µ, x) ≥ 1 whenever x ∈ sptµ, 0 ∈ sptµ, µ(Bn+m
1 (0)) ≤ (1− δ)ωn,

see [Sim83, Corollary 17.8, Theorem 42.7]. But the monotonicity formula for µ
would imply, see [Sim83, (17.5)],

1 ≤ θn(µ, 0) ≤ µ(Bn+m
1 (0))
ωn

≤ 1− δ,

a contradiction.

A.11 Remark. A.9 and A.10 imply the following proposition.
If m, n, p, U , µ and ψ are as in A.1, p = n, then

θn∗ (µ, a) ≥ 1 whenever a ∈ sptµ and ψ({a}) = 0.

Clearly, the condition ψ({a}) = 0 is redundant in case ‖δµ‖ is absolutely
continuous with respect to µ (i.e. δµ has no singular part with respect to µ).

A.12 Theorem. Suppose m, n, p, U , µ, and ψ are as in A.1, p < n, 0 ≤ s <
∞, 0 < ε ≤ (2γn)−p/(n−p), 4γnn < Γ <∞,

A =
{
x ∈ U : θ∗n−p(ψ, x) < (ε/Γ)n−p/ωn−p

}
,

denote by Bi for i ∈ N the set of all x ∈ U such that either B̄1/i(x) 6⊂ U or

ψ(B̄%(x)) > εn−p µ(B̄%(x))
1−p/n for some 0 < % < 1/i,

and denote by Xi for i ∈ N the set of all a ∈ U such hat

lim
r↓0

µ
(
Bi ∩ B̄r(a)

)/
rsn/(n−p) = 0.

Then the following five conclusions hold:

(1) The sets Xi are Borel sets and

Hs
(
A∼

⋃
i∈NXi

)
= 0.

(2) For Hs almost all a ∈ A ∩
⋂
i∈NBi

lim
r↓0

µ(B̄r(a))
/
rsn/(n−p) = 0.

(3) If a ∈ (sptµ)∼Bi, then B̄1/i(a) ⊂ U and

(2nγn)−n%n ≤ µ(B̄%(a)) for 0 < % < 1/i.

(4) If ‖δµ‖ is absolutely continuous with respect to µ, then

Hn−p(U ∼A) = 0.
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(5) If p = 1, then

Hn−1(X ∼A) ≤ (Γ/ε)n−1ωn−1‖δµ‖(X ∼A) for X ⊂ U.

Proof. Clearly, Bi+1 ⊂ Bi, Xi ⊂ Xi+1 for i ∈ N. (1) implies (2) because the
sets {x ∈ Bi : B̄1/i(x) ⊂ U} are open (cp. [Fed69, 2.9.14]). (3) is a consequence
of A.8, A.9. (4) and (5) follow from [Fed69, 2.10.6, 2.10.19 (3)]. Therefore only
(1) remains to be proved.

Xi are Borel sets.
Define for i ∈ N the set Ai of all x ∈ U such that B1/i(x) ⊂ U and

ψ(B̄%(x)) ≤ (ε/Γ)n−p%n−p whenever 0 < % < 1/i.

The sets Ai are closed (cp. [Fed69, 2.9.14]) and satisfy A ⊂
⋃
i∈NAi. Let C

denote the set of all x ∈ sptµ such that

lim sup
%↓0

ψ(B̄%(x))
µ(B̄%(x))1−p/n

< εn−p

and note µ(U ∼C) = 0 by [Fed69, 2.9.5]. By [Fed69, 2.10.6, 2.10.19 (4)] it is
enough to prove a ∈ X2i for a point a ∈ Ai with θs(ψ xU ∼Ai, a) = 0.

For this purpose the following assertion will be proved. For each x ∈ B2i ∩
B1/(2i)(a) ∩ C there exists 0 < % <∞ with

B̄%(x) ⊂ B2|x−a|(a)∼Ai, µ(B̄%(x)) < ε−nψ(B̄%(x))
n/(n−p).

Choose y ∈ Ai with |y−x| = dist(x,Ai) and let J be the set of all 0 < % < 1/(2i)
with

µ(B̄%(x)) < ε−nψ(B̄%(x))
n/(n−p).

Then J 6= ∅, because x ∈ B2i, B̄1/(2i)(x) ⊂ B1/i(a) ⊂ U , and, since x ∈ C,
inf J > 0. Therefore t := inf J satisfies

0 < t < 1/(2i), µ(B̄t(x)) ≤ ε−nψ(B̄t(x))
n/(n−p),

µ(B̄%(x)) ≥ ε−nψ(B̄%(x))
n/(n−p) for 0 < % < t.

Noting

|y − x| = dist(x,Ai) ≤ |x− a| ≤ 1/(2i), t+ |y − x| < 1/i,
B̄t(x) ⊂ B̄t+|y−x|(y) ⊂ B1/i(y) ⊂ U,

one estimates

ψ(B̄t(x))
n/(n−p) ≤ ψ(B̄t+|y−x|(y))

n/(n−p)

≤ (ε/Γ)n(t+ |y − x|)n < εn2−n(1 + |y − x|/t)n(2nγn)−ntn

and, using the inequalities derived from the definition of t and A.8, A.9,

µ(B̄t(x)) ≤ ε−nψ(B̄t(x))
n/(n−p) < 2−n(1 + |y − x|/t)nµ(B̄t(x)),
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hence

(1 + |y − x|/t)n > 2n, |y − x| > t

and the assertion follows by taking % ∈ J slightly larger than t.
Let 0 < r < 1/(2i). Then the preceding assertion in conjunction with Besi-

covitch’s covering theorem implies the existence of countable, pairwise disjoint
collections of closed balls F1, . . . , FN(n+m) satisfying

B2i ∩ B̄r(a) ∩ C ⊂
⋃N(n+m)
j=1

⋃
S∈Fj

S ⊂ B2r(a)∼Ai,

µ(S) < ε−nψ(S)n/(n−p) for S ∈
⋃N(n+m)
j=1 Fj ;

recall that N(n+m) denotes the best constant in Besicovitch’s covering theo-
rem in Rn+m, see [Sim83, Lemma 4.6]. Hence

µ(B2i ∩ B̄r(a)) = µ(B2i ∩ B̄r(a) ∩ C)

≤
∑N(n+m)
j=1

∑
S∈Fj

µ(S) ≤ ε−n
∑N(n+m)
j=1

∑
S∈Fj

ψ(S)n/(n−p)

≤ ε−n
∑N(n+m)
j=1

(∑
S∈Fj

ψ(S)
)n/(n−p) ≤ ε−nN(n+m)ψ(B2r(a)∼Ai)n/(n−p)

and (1) follows by taking the limit r ↓ 0.

A.13 Remark. It can happen that Hn
(
A ∩ (sptµ) ∩

⋂
i∈NBi

)
> 0. An example

is given in C.2. In fact taking µ x Rn+1∼T one sees from (3) and C.2 (4) that
T ⊂

⋂
i∈NBi.

A.14 Remark. A.12 implies in particular that Hn almost all x ∈ U satisfy

either θn∗ (µ, x) ≥ (2nγn)−n/ωn or θn
2/(n−p)(µ, x) = 0

and, in case ‖δµ‖ is absolutely continuous with respect to µ, that Hn−p almost
all x ∈ U satisfy

either θn∗ (µ, x) ≥ (2nγn)−n/ωn or θn(µ, x) = 0.

Moreover, the exponent n2/(n− p) cannot be replaced by any larger number as
may be seen by taking µ x Rn+1∼T with µ as in C.2. Hence, the same holds
for the exponent sn/(n− p) in (2) if s = n.

A.15 Corollary. Suppose m, n, p, U , and µ are as in A.1, p < n, ε > 0,
0 < λ < ∞, and for a ∈ U let Ba denote the set of all x ∈ U such that
B̄λ|x−a|(x) ⊂ U and

‖δµ‖(B̄%(x)) > εµ(B̄%(x))
1−1/n for some 0 < % < λ|x− a|.

Then Hn almost all a ∈ U satisfy

lim
r↓0

µ(Ba ∩ B̄r(a))
/
rn

2/(n−p) = 0.

Proof. Take s = n in A.12 (1) and note A.12 (5) as well as the fact that for each
i ∈ N and a ∈ A

Ba ∩ B̄r(a) ⊂ Bi for small r

if ε in the definition of the sets Bi is replaced by min{ε, (2γn)−1}p/(n−p).

A.16 Remark. n2/(n − p) cannot be replaced by any larger number because
otherwise the proposition derived in 1.11 would hold for that number.
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B A differentiation theorem

Here, a theorem concerning the differentiation of functions or measures with
respect to rectifiable varifolds satisfying a lower density bound and curvature
conditions is proved. It is for use in 3.2 but might be of independent interest.

B.1 Theorem. Suppose m, n, p, U , and µ are as in A.1, ν measures U with
ν(U ∼ sptµ) = 0, A is µ measurable with ν(A) = 0, and 1 ≤ q < ∞. In case
p < n additionally suppose for some 1 ≤ r ≤ ∞ and some nonnegative function
f ∈ Lrloc(µ) that

ν = fµ and q ≤ 1 + (1− 1/r)
p

n− p
.

Then for Hn almost all a ∈ A

lim sup
s↓0

ν(B̄s(a))
/
snq equals either 0 or ∞.

Proof. For i ∈ N let Bi denote the set of all x ∈ U such that either B̄1/i(x) 6⊂ U
or

‖δµ‖(B̄%(x)) > (2γn)−1µ(B̄%(x))
1−1/n for some 0 < % < 1/i.

First, the case A ⊂ {x ∈ U : θ∗n(µ, x) > 0} will be treated. In this case A
is measurable and σ finite with respect to Hn by [Fed69, 2.10.19 (1) (3)]. Hence
one may assume A to be compact. Define

Ai = {a ∈ A : ν(B̄s(a))/ ≤ i snq for 0 < s < 1/i}

whenever i ∈ N, 1/i < dist(A,Rn+m∼U). The sets Ai are compact (cp. [Fed69,
2.9.14]) and their union equals{

a ∈ A : lim sup
s↓0

ν(B̄s(a))/s
nq <∞

}
.

It therefore suffices to show for each i ∈ N with 1/i < dist(A,Rn+m∼U)

lim
s↓0

ν(B̄s(a))
/
snq = 0 for Hn almost all a ∈ Ai.

In fact, this equality will be proved for all a ∈ Ai satisfying

‖δµ‖({a}) = 0, θn(µ xU ∼Ai, a) = 0, θn(frµ, a) = 0 if r <∞,

lim sup
s↓0

µ(Bj ∩ B̄s(a))
/
sn

2/(n−p) = 0 for some j ∈ N, j ≥ 2i, if p < n

as Hn almost all a ∈ Ai do according to [Fed69, 2.10.19 (3) (4)] and A.12.
In case p = n one chooses j ∈ N, j ≥ 2i, using A.9 such that

Bj ∩ B̄1/j(a) = ∅.

Let 0 < s < 1/j. For x ∈ B̄s(a) ∩ (sptµ)∼(Bj ∪ Ai) there exists y ∈ Ai with
|x− y| = dist(x,Ai), hence

t := |x− y| ≤ |x− a| ≤ s < 1/j ≤ 1/(2i),
B̄|x−y|/2(x) ⊂ B̄3|x−y|/2(y) ∩ B̄2s(a)∼Ai,

ν(B̄t/2(x)) ≤ ν(B̄3t/2(y)) ≤ i3nq(t/2)nq ≤ c µ(B̄t/2(x))
q
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where c = i3nq(2γnn)nq. Therefore one infers from Besicovitch’s covering theo-
rem the existence of countable, pairwise disjoint collections F1, . . . , FN(n+m) of
closed balls such that

B̄s(a) ∩ (sptµ)∼(Bj ∪Ai) ⊂
⋃N(n+m)
k=1

⋃
S∈Fk

S ⊂ B̄2s(a)∼Ai,

ν(S) ≤ c µ(S)q whenever S ∈
⋃N(n+m)
k=1 Fk,

hence

ν(B̄s(a)∼Bj) = ν(B̄s(a) ∩ (sptµ)∼(Bj ∪Ai)) ≤ cN(n+m)µ(B̄2s(a)∼Ai)q,
lim
s↓0

ν(B̄s(a)∼Bj)
/
snq = 0.

To conclude the proof of the first case, one observes

ν(Bj ∩ B̄s(a)) = 0 if p = n,

ν(Bj ∩ B̄s(a)) ≤ µ(Bj ∩ B̄s(a))1−1/r‖f‖Lr(µ x B̄s(a)) if p < n

implying

lim
s↓0

ν(Bj ∩ B̄s(a))
/
snq = 0

because (1− 1/r) n
n−p + 1/r ≥ q in case p < n.

It remains to treat the case A ⊂ {x ∈ U : θn(µ, x) = 0}. Using A.9 and A.14
one obtains

A ∩ sptµ is countable if p = n,

θn
2/(n−p)(µ, a) = 0 for Hn almost all a ∈ A if p < n

and the claim follows by using Hölder’s inequality as in the preceding paragraph
noting by [Fed69, 2.10.19 (4)]

θn(frµ, a) = 0 for Hn almost all a ∈ A if r <∞.

B.2 Remark. This theorem generalises [Fed69, 2.9.17] and [CZ61, Theorem
10 (ii)]. The case treated by Federer roughly corresponds to the case p = n,
q = 1 with µ satisfying a doubling condition. The case treated by Calderón and
Zygmund corresponds to p = n, m = 0, µ = Ln+m and ν absolutely continuous
with respect to µ. The method of proof is based on Federer’s proof and A.12 is
used because of the absence of a doubling condition.

One can easily deduce from B.1 a Rademacher type theorem for first order
differentiability of functions in Lq spaces with respect to µ similar to [Zie89,
Theorem 3.8.1] (see also [CZ61, Theorem 5]). In the present case such a theorem
would involve bounds on the exponent of the Lq spaces as may be seen from
C.2 (5).

B.3 Remark. If q = 1, the condition ν(U ∼ sptµ) = 0 cannot be omitted as may
be seen from [Fed69, 2.9.18 (2)].

B.4 Remark. If p < n the condition q ≤ 1+(1−1/r)p/(n−p) cannot be omitted
as can be shown using C.2. In fact given µ and T as in C.2 a counterexample
is provided by ν := µ x Rn+1∼T in case r = ∞ and if 1 < r < ∞ applying
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C.2 (5) with s = nq and α1q1 = α2q2 slightly larger than np
n−p yields a function

f such that ν := fµ does not satisfy the conclusion of B.1. Finally, if r = 1 the
condition is also violated for a slightly larger r, hence reducing this case to the
previous one.

B.5 Remark. Note that the preceding two remarks remain valid if Hn is replaced
by µ in the conclusion of B.1.

C An example concerning tilt and height decays
of integral varifolds

This appendix provides the example which was used throughout the text to
demonstrate the sharpness of various results obtained.

C.1 Definition. Suppose x ∈ Rn+m and 0 < % <∞.
Then Q%(x) := {y ∈ Rn+m : |yi − xi| ≤ % for i = 1, . . . , n+m}. To avoid

ambiguity, Qn+m
% (0) will be written instead of Q%(0).

C.2 Example. Suppose n ∈ N, 1 ≤ p < n, 0 < αi ≤ 1, 1 ≤ qi <∞ for i ∈ {1, 2},
such that

α2q2 ≤ α1q1,
1
p
> 1 +

α2q2
α1q1

( 1
n

+
1

α2q2
− 1

)
In case α1q1 = α2q2 the last condition reads α2q2 >

np
n−p .

Then there exists a rectifiable n varifold µ in Rn+1, T ∈ G(n + 1, n) and
0 < Γ <∞ with the following properties:

(1) T ⊂ sptµ and (sptµ)∼T is an n dimensional manifold of class C∞.

(2) θn(µ, x) = 1 for x ∈ sptµ and Txµ = T for x ∈ T .

(3) For some ~Hµ ∈ Lploc(µ,Rn+1) there holds (δµ)(η) = −
∫
~Hµ • η dµ when-

ever η ∈ C1
c (Rn+1,Rn+1).

(4) Whenever x ∈ T and 0 < % ≤ 1

Γ−1%α2q2 ≤ %−nµ({ξ ∈ B̄%(x) : dist(ξ − x, T ) ≥ %/Γ}),
%−nµ(B̄%(x)∼T ) ≤ Γ%α2q2 ,

%−1−n/q2
(∫
B̄%(x)

dist(ξ − x, Txµ)q2 dµ(ξ)
)1/q2 ≈ %α2 ,

%−n/q1
(∫
B̄%(x)

|Tξµ− Txµ|q1 dµ(ξ)
)1/q1 ≈ %α1 ,

here a ≈ b means that a ≤ Γ1b and b ≤ Γ1a for some positive, finite
number Γ1 depending only on n, and αi, qi for i ∈ {1, 2}.

(5) Whenever 1 < r < ∞, n + (1 − 1/r)α2q2 < s < ∞ there exists a nonneg-
ative function f ∈ Lrloc(µ) such that f(x) = 0 for x ∈ T , and

%s ≈
∫
B̄%(x)

f dµ whenever x ∈ T , 0 < % ≤ 1,

here a ≈ b means a ≤ Γ2b and b ≤ Γ2a for some positive, finite number
Γ2 depending only on n and s.
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Construction of example. Let a := α2q2/n + 1, b := (α1q1 − α2q2)/a + 1 ≥ 1.
Define for i ∈ N0

Wi :=
{
Q2−i−2(x) : 2i+1x ∈ Zn

}
.

Clearly,
⋃
Q∈Wi

Q = Rn and Wi is pairwise disjoint. Let

Fi :=
{
]2−i−1, 2−i[×W :W ∈Wi

}
for i ∈ N0, F :=

⋃
i∈N0

Fi.

Clearly,
⋃
S∈FS =]0, 1]× Rn and F is pairwise disjoint. Let T := {0} × Rn.

Next, it will be indicated how to construct for every 0 < σ ≤ % < ∞ a
compact n dimensional submanifold M of Rn+1 of class C∞ such that

M ⊂ Qn+1
% (0), (Γ0)−1%n ≤ Hn(M) ≤ Γ0%

n, |~HM | ≤ Γ0σ
−1,

Hn({x ∈M : |TxM − T | ≥ 1}) ≥ (Γ0)−1σ%n−1,

Hn({x ∈M : ~HM (x) 6= 0 or TxM 6= T}) ≤ Γ0σ%
n−1

where Γ0 is a positive, finite number depending only on n. To construct M ,
one may assume % = 1. Choose a concave function f : [−1/2, 1/2] → [0, 1] and
0 < Γ1 <∞ such that

f(−1/2) = σ/4 = f(1/2),
f(s) = σ/2 whenever s ∈ [−1/2 + σ/4, 1/2− σ/4]

and such that

N := {(s, t) ∈ [−1/2, 1/2]× R : |t| = f(s)} ∪ ({−1/2, 1/2} × [−σ/4, σ/4])

is a 1 dimensional submanifold of class C∞ with |~HN | ≤ Γ1σ
−1. Noting

H1(graph f |[−1/2,−1/2 + σ/4] ∩ [1/2− σ/4, 1/2]) ≤ σ,

one can take

M := {(y, z) ∈ R× Rn :(|z|, y) ∈ N}.

For each i ∈ N0 and Q ∈ Fi choose a n dimensional submanifold MQ of the
type just constructed corresponding to %i := 2−ia−2, σi := 2−iba−2 contained in
Q and let M be the union those submanifolds. Take µ := Hn x(T ∪M). (1) is
now evident.

To prove the estimates, fix x ∈ T and define for i, j ∈ N0

bi,j := #
{
Q ∈ Fj :Q ∩Q2−i(x) 6= ∅

}
, ci,j := #

{
Q ∈ Fj :Q ⊂ Q2−i(x)

}
.

Clearly, bi,j = ci,j = 0 if j < i. If j ≥ i, one estimates

bi,j ≤
(
2j−i+2 + 1

)n ≤ (
5 · 2j−i

)n
, ci,j ≥

(
2j−i+2 − 1)n ≥

(
3 · 2j−i

)n
.
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One calculates

µ(Q2−i(x)∼T ) ≤
∞∑
j=0

bi,jΓ0(%j)n ≤ (5/4)nΓ0(2−i)an(1− 2n(1−a))−1,

n− ba(1− p) + (1− n)a = −α1q1 + p(α1q1 − α2q2 + α2q2/n+ 1) < 0,∫
Q

2−i (x)∼T
|~HM |p dµ ≤

∞∑
j=0

bi,j(Γ0)p+1(σj)1−p(%j)n−1

≤ 5n(Γ0)n+1(2−i)ba(1−p)+n−1(1− 2n−ba(1−p)+(1−n)a)−1 <∞,∫
Q

2−i (x)
dist(ξ − x, T )q2 dµ(ξ) ≤ 2−iq2µ(Q2−i(x)∼T ),

∫
Q

2−i (x)
|Tξµ− T |q1 dµ(ξ) ≤ (2n)q1

∞∑
j=0

bi,jΓ0σj(%j)n−1

≤ (2n)q1(5/4)nΓ0(2−i)ba+a(n−1)(1− 2n−ba−a(n−1))−1,

2(i+1)q2
∫
Q

2−i (x)
dist(ξ − x, T )q2 dµ(ξ)

≥ µ({ξ ∈ Q2−i(x) : dist(ξ − x, T ) ≥ 2−i−1}) ≥ (Γ0)−1(%i)n = (4nΓ0)−12−ian,∫
Q

2−i (x)
|Tξµ− T |q1µ(ξ) ≥ (Γ0)−1σi(%i)n−1 = (4nΓ0)−1(2−i)ab+a(n−1).

Therefore (3) and (4) are proved and the first estimate of (4) implies (2).
To prove (5), define f by f(y) := 2(na−s)i if y ∈

⋃
S∈Fi

S for some i ∈ N0

and f(y) = 0 else. Then for i ∈ N0

∫
Q

2−i (x)
|f |dµ ≤

∞∑
j=0

bi,j2(na−s)jΓ0(%j)n ≤ (5/4)nΓ0(2−i)s(1− 2n−s)−1,

∫
Q

2−i (x)
|f |r dµ ≤

∞∑
j=0

bi,j2(na−s)rjΓ0(%j)n

≤ (5/4)nΓ0(2−i)(s−na)r+na(1− 2n+(na−s)r−na)−1 <∞

because

n+ (na− s)r − an = α2q2(r − 1) + r(n− s) < 0.

The estimate from below is similar to the one from above.

C.3 Remark. The integral n varifold µ constructed depends only on n and the
products αiqi for i ∈ {1, 2}. Moreover, the assumption αi ≤ 1 for i ∈ {1, 2}
could be replaced by αi <∞ for i ∈ {1, 2}.
C.4 Remark. Taking p = 1, α1 = α2, and q1 = q2 = 2 in the last two estimates
of (4) shows that for every n ∈ N, n > 1, 1/2 + (2(n − 1))−1 < α ≤ 1, there
exists an integral n varifold µ of Rn+1 of locally bounded first variation such
that for some A with µ(A) > 0

lim
%↓0

%−2α heightexµ(x, %, Txµ) = ∞, lim
%↓0

%−2α tiltexµ(x, %, Txµ) = ∞

for x ∈ A. In [Bra78, 5.7] Brakke showed in arbitrary codimension that the
above limits equal 0 almost everywhere with respect to µ if α = 1/2.

46



C.5 Remark. Similarly to the preceding remark, taking α1 = α2 = 1, q1 = q2 = q
and noting (1), one obtains for every p∗ = np

n−p < q <∞ an integral n varifold
µ satisfying (Hp) which is countably rectifiable of class C2 such that for some
A with µ(A) > 0

lim
%↓0

%−2−n/q(∫
B%(x)

dist(ξ − x, Txµ)q dµ(ξ)
)1/q = ∞,

lim
%↓0

%−1−n/q(∫
B%(x)

|Tξµ− Txµ|q dµ(ξ)
)1/q = ∞

for x ∈ A. In particular, if p < 2n
n+2 then countable rectifiability of class C2 does

not imply quadratic decay of neither tiltexµ nor heightexµ. If p = 2, countable
rectifiability of class C2 is equivalent to quadratic decay of both quantities, see
[Sch04b, Theorem 3.1].

D Elementary properties of Q valued functions

The purpose of this appendix is to collect for the convenience of the reader
Almgren’s definitions and results concerning Q valued functions (cf. [Alm00])
needed to prove the Poincaré inequality for integral varifolds. There is also
included an elementary but useful decomposition of a Lipschitzian Q valued
function into a countable collection of ordinary Lipschitzian functions. This
decomposition directly entails the rectifiability of the Q valued graph which had
been proved by Almgren using the compactness theorem for integral currents
and also a simple proof of the Rademacher theorem for Q valued functions.
Another proof of the Rademacher theorem avoiding Almgren’s bi Lipschitzian
embedding of QQ(Rn+m) into a Euclidean space based on continuous selection
results can be found in [Gob06].

D.1 (cf. [Alm00, 1.1 (1)]). Suppose Q ∈ N and V is a finite dimensional Eu-
clidean vector space.

QQ(V ) is defined to be the set of all 0 dimensional integral currents R such
that R =

∑Q
i=1 [[xi]] for some x1, . . . , xQ ∈ V . A metric G on QQ(V ) is defined

such that

G
(∑Q

i=1[[xi]],
∑Q
i=1[[yi]]

)
= min

{(∑Q
i=1|xi − yπ(i)|2

)1/2 :π ∈ S(Q)
}

whenever x1, . . . , xQ, y1, . . . , yQ ∈ V where S(Q) denotes the set of permutations
of {1, . . . , Q}. The function mapping (x, T ) ∈ V ×QQ(V ) to θ0(‖T‖, x) is upper
semicontinuous. Note that in case T =

∑Q
i=1 [[xi]] for some x1, . . . , xQ ∈ V

θ0(‖T‖, x) = #{i :xi = x} whenever x ∈ V .

Whenever f : X → QQ(V ) the Q valued image of f and Q valued graph of
f are defined by

imQ f = {v ∈ V : v ∈ spt f(x) for some x ∈ X},
graphQ f = {(x, v) ∈ X × V : v ∈ spt f(x)}.

In case X is a topological space and f is continuous, the function mapping
(x, v) ∈ X × V to θ0(‖f(x)‖, v) is upper semicontinuous. In particular,

graphQ f = {(x, v) ∈ X × V : θ0(‖f(x)‖, v) ≥ 1}
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is closed in X × V .

D.2 (cf. [Alm00, 1.1 (9)–(11)]). Suppose m,n,Q ∈ N.
A function f : Rn → QQ(Rm) is called affine if and only if there exist affine

functions fi : Rn → Rm, i = 1, . . . , Q such that

f(x) =
∑Q
i=1[[fi(x)]] whenever x ∈ Rn.

f1, . . . , fQ are uniquely determined up to order. One defines semi norms such
that

|f | =
(∑Q

i=1|Dfi(a)|
2
)1/2

, ‖f‖ = lim sup
x→a

G(f(x), f(a))/|x− a|

whenever a ∈ Rn. Among their basic properties are the following inequalities:

max{‖Dfi(a)‖ : i = 1, . . . , Q} ≤ ‖f‖ ≤ Q1/2 max{‖Dfi(a)‖ : i = 1, . . . , Q},
|f | ≤ m1/2Q1/2‖f‖, Lip f = ‖f‖ ≤ |f |.

Let a ∈ A ⊂ Rn, f : A→ QQ(Rm). f is called affinely approximable at a if
and only if A contains a neighbourhood of a and there exists an affine function
g : Rn → QQ(Rm) such that

lim
x→a

G(f(x), g(x))/|x− a| = 0.

f is called approximately affinely approximable at a if and only if there exists
an affine function g : Rn → QQ(Rm) such that (see [Fed69, 2.9.12, 3.1.2])

ap lim
x→a

G(f(x), g(x))/|x− a| = 0.

The function g is unique in both cases and denoted by Af(a) and apAf(a)
respectively. f is called strongly affinely approximable at a if and only if Af(a)
has the following property: If Af(a)(x) =

∑Q
i=1 [[gi(x)]] whenever x ∈ Rn for

some affine functions gi : Rn → Rm and gi(a) = gj(a) for some i and j, then
Dgi(a) = Dgj(a). Similarly, one defines approximately strongly affinely approx-
imable at a.

If f is affinely approximable [approximately affinely approximable] at a, then

‖Af(a)‖ ≤ Lip f [‖ apAf(a)‖ ≤ Lip f ].

D.3. Recall from [Fed69, 3.3.1] that for m,n,Q ∈ N, a ∈ Rn+m, 0 ≤ r < ∞,
V ∈ G(n+m,m), 0 < s < 1, π : Rn+m → Rn an orthogonal projection

X(a, r, V, s) := {x ∈ Rn+m : s−1 dist(x− a, V ) < |x− a| < r},
X(a, r, ker p, s) = {x ∈ Rn+m : s−1|p(x− a)| < |x− a| < r}

where ker p denotes the kernel of p.

D.4 Definition (cf. [Alm00, T.1 (23)]). Whenever f : X → Y , g : X → Z the
join f on g : X → Y × Z is defined by

(f on g)(x) = (f(x), g(x)) whenever x ∈ X.
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D.5 Theorem. Suppose m,n,Q ∈ N, B is a Borel subset of Rn, and f : B →
QQ(Rm) is a Lipschitzian function.

Then graphQ f is a Borel set and there exists a sequence f1, f2, f3, . . . of Borel
subsets of graphQ f such that each fi is a Borel function with Lip fi ≤ Lip f
and

#{i :(x, y) ∈ fi} = θ0(‖f(x)‖, y) whenever (x, y) ∈ B × Rm.

In particular, graphQ f and imQ f are countably n rectifiable (in the sense of
[Fed69, 3.2.14 (2)]).

Proof. Assume Lip f > 0 and let E = graphQ f , s = (1 + (Lip f)2)−1/2, and
p : Rn × Rm → Rn, q : Rn × Rm → Rm the projections.

If a ∈ E, 0 < 2r ≤ dist(q(a), (spt f(p(a)))∼{q(a)}), z ∈ E ∩Br(a), then

q(a) ∈ spt f(p(a)), q(z) ∈ spt f(p(z)),
|q(z)− q(a)| ≤ |z − a| < r, |q(z)− q(a)| = dist(q(z), spt f(p(a))),

|q(z)− q(a)| ≤ G(f(p(z)), f(p(a))) ≤ (Lip f)|p(z)− p(a)|,
|z − a| ≤ s−1|p(z)− p(a)|, z /∈ X(a, r, ker p, s).

Therefore E is the union of

Ei := {a ∈ E :E ∩X(a, 1/i, ker p, s) = ∅}

corresponding to i ∈ N.
It is now elementary to verify (cp. [Fed69, 3.3.5]) that each subset of Ei

with diameter less that 1/i is a Lipschitzian function with Lipschitz constant
at most (s−2 − 1)1/2 = Lip f . Noting the fact that if g = graph g ⊂ Rn × Rm
is a Lipschitzian function so is g = graph g and Lip g = Lip g, one uses D.1 to
construct f1, f2, f3, . . . with the required properties. Since fi ⊂ im(1dmn fi on fi)
for each i and imQ f = q(graphQ f), the postscript follows.

D.6 Remark. Concerning the assertion of the theorem, recall the following re-
lation between Borel functions and functions which are Borel sets from [Fed69,
2.2.10, 2.2.14].

Suppose A is a Borel subset of Rn, p : Rn ×Rm → Rn is the projection and
f ⊂ Rn × Rm with p(f) = A. Then f is a Borel function if and only if f is a
Borel set and p|f is univalent. Moreover, if B is a Borel subset of Rn × Rn+m

with p|B univalent, then p(B) is a Borel set. Hence the assumption on A is not
needed in the second part of the equivalence.

D.7 Remark. If the last condition on the sequence fi is dropped, one can require
the fi to form a Borel partition of graphQ f .

D.8 Remark. Almgren proved in [Alm00, 1.5 (8)] that graphQ f is countably
(Hn, n) rectifiable in the sense of [Fed69, 3.2.14 (3)] using the compactness the-
orem for integral currents [Fed69, 4.2.17 (2)].

D.9 Remark. In [Gob06, Section 5] an example with n = 2, m = 2 and B the
unit sphere is given such that no continuous function g : B → Rm satisfies
g(x) ∈ spt f(x) whenever x ∈ B. Hence, in general the domain of the functions
fi will not equal B.
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D.10 Theorem. Suppose m,n,Q ∈ N, A ⊂ B ⊂ Rn, B is open, Q ∈ N,
f : B → QQ(Rm), and

lim sup
x→a

G(f(x), f(a))/|x− a| <∞ whenever a ∈ A.

Then f is strongly affinely approximable at Ln almost all points of A.

Proof. As in [Fed69, 3.1.5, 3.1.9] one proves that A ⊂ C, where C is the union
of a countable family of closed sets such that f restricted to each member is
Lipschitzian and that it is enough to show that f is approximately strongly
affinely approximable at Ln almost all points of C.

Using D.5, one now constructs a countable Borel covering f1, f2, f3, . . . of
graphQ f |C consisting of Lipschitzian Borel functions such that

#{i :(x, y) ∈ fi} = θ0(‖f(x)‖, y) whenever (x, y) ∈ C × Rm.

Define I(x) = {i ∈ N :x ∈ dmn fi} for x ∈ C and note #I(x) = Q and

f(y) =
∑
i∈I(x)

[[fi(y)]] whenever y ∈
⋂

i∈I(x)

dmn fi.

According to [Fed69, 2.9.11, 3.1.2, 3.1.7] Ln almost all x ∈ C satisfy:

i ∈ I(x) implies fi is approximately differentiable at x,
i, j ∈ I(x), fi(x) = fj(x) implies apDfi(x) = apDfj(x).

At such a point x there holds θn
(
Ln x Rn∼

⋂
i∈I(x) dmn fi, x

)
= 0, and f is

therefore approximately strongly affinely approximable with

apAf(x)(v) =
∑
i∈I(x)

[[fi(x) + 〈v, apDfi(x) 〉]] for v ∈ Rn.

D.11 Remark. Similarly, one proves the following proposition:
If A is Ln measurable, f : A→ QQ(Rm) is Lipschitzian, I is countable, and

to each i ∈ I there corresponds a function fi ⊂ graphQ f with Ln measurable
domain and Lip fi ≤ Lip f such that

#{i :(x, y) ∈ fi} = θ0(‖f(x)‖, y) whenever (x, y) ∈ A× Rm,

then f is approximately strongly affinely approximable with

apAf(a)(v) =
∑
i∈I(a)[[fi(x) + 〈v, apDfi(x)〉 ]] whenever v ∈ Rn

at Ln almost all a ∈ A where I(a) = {i ∈ I : a ∈ dmn fi}.
The existence of such functions fi is a consequence of D.5 applied to graph f

replacing f .

D.12. If 0 < d <∞, m ∈ N, S, T ∈ QQ(Rm), and for each subset X of sptS∑
x∈Xθ

0(‖S‖, x) +
∑
y∈Y θ

0(‖T‖, y) ≤ Q

where Y = (sptS)∼
⋃
x∈XBd(x), then

G(S, T ) < Q1/2d;
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in fact if S =
∑Q
i=1 [[xi]], T =

∑Q
i=1 [[yi]] for some x1, . . . , xQ, y1, . . . , yQ ∈ Rm one

may verify the existence of a permutation σ of {1, . . . , Q} such that |xi−yσ(i)| <
d for i ∈ {1, . . . , Q} by Hall’s theorem on perfect matches (cf. [LP86, Theorem
1.1.3]).

D.13 Definition. Suppose m,n,Q ∈ N, S ∈ QQ(Rm), 1 ≤ q ≤ ∞, A is Ln
measurable, and f : A→ QQ(Rm) is an Ln xA measurable function.

Then the q height of f with respect to S is defined to be the Lq(Ln xA) (semi)
norm of the function mapping x ∈ A to G(f(x), S), denoted by hq(f, S), and, if
f is additionally Lipschitzian, then the q tilt of f is defined to be the Lq(Ln xA)
(semi) norm of the function mapping x ∈ A to | apAf(x)|, denoted by tq(f).
Moreover, the q height of f is defined to be the infimum of the numbers hq(f, S)
corresponding to all S ∈ QQ(Rm) and denoted by hq(f).

D.14 Theorem. Suppose m,n,Q ∈ N, f : B̄n1 (0) → QQ(Rm), and Lip f <∞.
Then the following two statements hold:

(1) If 1 ≤ q < n, q∗ = qn
n−q , then there exists a positive, finite number Γ(1)

depending only on m, n, Q, and q such that

hq∗(f) ≤ Γ(1) tq(f).

(2) If q < n ≤ ∞, then there exists a positive, finite number Γ(2) depending
only on m, n, Q, and q such that

h∞(f) ≤ Γ(2) tq(f).

Proof. Using Almgren’s functions ξ and ρ [Alm00, 1.2 (3), 1.3 (1), 1.4 (3) (5)],
the assertion is readily deduced from classical embedding results.

D.15 Theorem ([Alm00, 1.3 (2)]). Suppose m,n,Q ∈ N, A ⊂ Rn, and f : A→
QQ(Rm).

Then there exists g : Rn → QQ(Rm) such that

g|A = f, Lip g ≤ Γ Lip f

where Γ is a positive, finite number depending only on m and Q.
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