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Zusammenfassung

Eine der Griunde fur den Erfolg der Mathematik ist die Tatsactass es ihr immer
wieder gelingt scheinbar unzusammenhangende Teilgebittgmander zu verknipfen.
Diese Verbindungen erlauben es Methoden und Einsichtefiidein Gebiet gefunden
wurden, auf das andere anzuwenden und die wechselseitigecBeing fuhrt oft
zu neuen Erkenntnissen. Diese Dissertation befindet sielmatisch im Bereich
der formalen Sprachen, in dem Halbgruppentheorie, Logik Komplexitatstheorie
zusammenti@en.

Endliche Halbgruppen haben als Transformationshalbgmipme enge Beziehun-
gen zu endlichen Automaten, die zum Erkennen von formaleacBpn verwendet
werden. Mit der Logik der ersten und zweiten Stufen kdnnaméde Sprachen
durch logische Formeln beschrieben werden. Schaltkreis&anstanter Tiefe und
polynomieller Gréf3e bilden die Briicke zu der Komplexitiaesirie.

Das Ziel ist dabei Komplexitatsklassen voneinander zunien wobei tGber die
formalen Sprachen die Beschreibungen der Komplexitésklain der Logik oder
durch Halbgruppen untersucht werden. Durch diese Verligdyibt es hier in der
Komplexitatstheorie, wenn auch nur wenige, so doch nigfdte Trennungsresultate.

In dieser Dissertation werden die Beziehungen, die bistnefitin regulare Sprachen
bekannt waren, auf beliebige Sprachklassen erweitert. a@G®ngesagt wird das
Varietatentheorem von Eilenberg Giber die Korrespondemzchen Varietaten von reg-
ularen Sprachen und Varietaten von endlichen Halbgrupgpgeine Korrespondenz
zwischen beliebigen Varietdten von Sprachen und sogesagetypten Halbgruppen
erweitert.

Dann wird diese Beziehung verwendet, um Logikklassen, thkeb nicht alge-
braisch betrachtet werden konnten, zu analysieren. Weti@sgen uns mit Majority
Logik und analyiseren die reguléaren Sprachen, die sich aigiity Formeln mit zwei
Variablen schreiben lassen. Auf3erdem wird ein Trennuggbeis von Logikklassen
gezeigt, das auch eine Trennung von Schaltkreisklassénsnat zieht.

Im folgenden werden die Ergebnisse der Dissertation gendargestellt. Mit
der Definition dergetypten Halbgruppemird die Grenze von reguldren Sprachen
und endlichen Halbgruppen uUberschritten. Es wird gezeiglass die getypten



Halbgruppen auf natirliche Weise eine Kategorie bildeml das Varietatentheorem
von Eilenberg von Eilenberg fiir die Kategorie erweitertdvir

Um besser auf einige Details von getypten Halbgruppen aemgeu kdnnen,
wird die Ubliche Situation beim Erkennen von Sprachen panblmorphismus genau
aufgezeigt: SeL eine formale Sprache tUber dem Alphabaind S die syntaktische
Halbgruppe. Folglich gibt es einen syntaktischen Morphisimvon X* nachS und
eine Teilmeng@ C S, so dass sich die Sprache als Urbild von dieser Menge sehmreib
lakt: L = h™'(A). Es gibt also neben der syntaktischen Halbgruppe noctereeit
algebraische Objekte,die die Sprache beschreiben: deromonphismus und die
akzeptierende MengR. Diese beide Objekte werden in die Definition von getypten
Halbgruppen einfliel3en.

Eine getypte Halbgruppe besteht aus einem Tripel: einebddappe, einer
Booleschen Algebra tiber der Halbgruppe, und einer Mengé&udmeiten. Die Typen
sind die Elemente der Boolesche Algebra und werden vervwemaledie akzeptieren-
den Teilmengen einzuschrénken, wahrend die Menge der iEgnhesrwendet wird,
um einen Langenbedfiauf den getypten Halbgruppen zu erhalten.

Um eine strukturelle Beziehung zwischen Logik und den getypHalbgrup-
pen herzustellen, wird das Block Produkt fiir getypte Halpgen verallgemein-
ert. Dadurch kann fur jede Logik, die durch eine Menge von r@ou@n und
eine Menge von Pradikaten definiert ist, eine algebraisdmerdkterisierung durch
getypte Halbgruppen angeben werden. Dazu wird das Bloc#uRtdPrinzip, das
im endlichen Fall fur Logik mit zwei Variablen verwendet wler; auf unendliche
Halbgruppen erweitert und erstmalig auch konsequent fiirF@d von unbeschrankt
vielen Variablen verwendet.

Fur Schaltkreisklassen wird ein gleichartiges Resultaier Jede Schaltkreis-
klasse, die durch ihre BasisGattertypen) und ihre Uniformitat festgelegt ist, kann
durch eine Klasse von getypten Halbgruppen charakterisenden. Um verbesserte
Resultate zu erhalten, wird eine eigene Definition der Uniftatssprache, die naher
an der Logik orientiert ist, verwendet.

Diese neue algebraische Kategorie wird verwendet um Ergsbriir Majority
Logik und Threshold Schaltkreise herzuleiten. Es stetlh dieraus, dass Majority
Logik in einem direkten Zusammenhang zu Block Produktergdezen Zahlen steht.
Im Fall, dass die Logik auf zwei Variablen beschrankt idktlgich das Block Produkt
in Z Module zerlegen.

Diese lassen sich leicht in die Euklidische Geometrie dtebe Mit Hilfe dieser
Interpretation kdnnen Majority Formeln mit nur einem Quardls einen Halbraum
aufgefassen werden, und so Formeln der Tiefe eins als MemgerHalbrdumen
beschrieben werden. Dies ermdglicht es induktiv fur eingokity Formel, die nur
zwel Variablen besitzt, Paare von Worter zu konstruierea,stch von der Formel



nicht unterscheiden lassen. Da geometrische Beweise mtwativ zu verstehen sind,
aber nicht leicht zu verifizieren, werden sie algebraischiésen.

Diese geometrische Alassung erlaubt es eine obere und untere Schranke fur die
Menge der regularen Sprachen anzugeben.

Diese Logik wird schlie3lich noch um alle regularen und endpPredikate, sowie
Modulo Quantoren erweitert, und an Hand der algebraischenakterisierung wird
gezeigt, dass auch in dieser Erweiterung noch nicht alleldegn Sprachen erkannt
werden konnen. Dies fiuhrt auf der Schaltkreisseite zu éiremnnung von konstant
tiefen und linear grof3en Threshold Schaltkreisen, die be&timmte Uniformitat
haben, von linear grof3en und logarithmisch Tiefen Scheikkn.
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Chapter 1

Introduction

If a new result has value it is when, by binding together longvin
elements, until now scattered and appearing unrelated th esther, it
suddenly brings order where there reigned apparent disorde

Henri Poincaré

Mathematics often plays a unifying role, tying togethemsewgly different areas
of science and allowing results from one area to be carriest tivthe other. It is
precisely the connection between algebra, logic and cotitpléheory that motivates
the fascination with our subject of study, the mathematloabry of formal languages.

One of the first discoveries of concern to us is Kleene’'s t@orthat builds
bridges between formal languages and algebra by way of aomellaetween regular
languages and finite automata. Equally seen as a bridge @etvggular languages
and transformation semigroups, this relation led to Eigggls in-depth study [Eil46]
of the correspondence between varieties of regular lareguagd varieties of finite
semigroups.

Buchi [BUc60] then brought together logic and formal langes proving that the
languages that could be described by monadic second ogiemiah order are exactly
the regular languages. McNaughton and Papperf [MP71] cefinis with a proof
that the languages describable by first order logic with 0&de exactly the starfree
languages.

It is not obvious how to tell whether a language is starfreequrivalently whether
it is describable by a first-order formula with order. Fodtely, Schitzenberger
[Sch6%] had shown that the starfree languages correspdhd &periodic semigroups.
Since aperiodic semigroups are exactly those semigrowgisctintain no groups, a
simple algorithm can tell whether an appropriately presgisemigroup is aperiodic.
The results of[[Sch65] an@ [MPI71] thus allow carrying thigaalthm over to formal
languages and logic, yielding decidability results there.

These early results triggered extensive research thatvered a broad entan-
glement between extensions of first order logic and clas$esemigroups. The
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2 Chapter 1. Introduction

block product defined by Rhodes and Tilsdn [RIT89], used as sic Hauilding
block in semigroup theory, arose as a fundamental tool tegtbhese connections
[Stro4,[STT95[ CPS06]. From a more general perspectivaulimg exposed a meta-
explanation for this phenomendn [Str02].

Temporal logic is another area that became integrated medramework. Al-
though the quantifiers used in linear temporal logic areeqgditferent from first
order logic quantifiers, Kamg_[Kamb8] showed that the lamgsadescribable by
linear temporal logic are exactly the starfree languagesmRhe study of restricted
temporal logic emerged a tight link between this logic andtfarder logic with
only two variables[[CPP93, EVWOF, TWO8, ST03]. This alsoeyawre weight to
results within first-order logic [PW97]. Research on exiens of first order logic
restricted to two variables brought to light some new fulifonnections with algebra
[EVW97, [TW98,[STOB], suggesting that natural restrictiondogic have natural
counterparts in algebra.

Complexity theory finally entered the scene when constapiidercuits of poly-
nomial size were connected to first-order logic with arbytraumerical predicates.
This was first discovered by [GLB#, Imm87] who noticed thatstant depth circuit
families with AND and OR gates recognize exactly the langsagdgscribable by first-
order logic with arbitrary numerical predicates. Emergmugn the study of branching
programs, the computational model of a program over a fimteigroup was then
defined and shown closely tied to circuifs [B188].

As could be expected, programs over various classes of sempigwere found to
have as natural counterparts circuit families with varigate types. Ample results
regarding diferent sets of gate types confirmed the robustness of the ctiome
[Sir94, [LMSVO1, [StroR [ RS04, KLPT06]. Also, the previoustxamined logic
restriction involving two variables was shown to have, ascunterpart, linear size
circuits [KLPT06 [KPTO5, TT05].

An important issue when comparing circuit complexity cksssvith the logic
classes and semigroups described above is uniformityui@rare highly nonuniform,
i.e. for each input length there is a separate structureggrezimg the set of words of
that length in the language, whereas logic and algebra afi@omn the sense that the
same formula or semigroup is used for all input lengths. Gthe wide uniformity gap
between the two models, there are two possibilities to set mganingful framework
common to circuit families on the one hand and to logic anélaig on the other.

One is to weaken the uniformity of logic and algebra, whiclagsomplished in
logic by using numerical predicates that depend on thelheoighe input and programs
on the algebraic side. The other possibility is to limit theustural change of the
circuits for one input length to another. Barrington, Imman and Straubing [BIS90]
used the notion of a uniformity language, to show connestlmtween DLOGTIME-
uniform circuits and logic classes with addition and mdidtigtion, and by a result of
Behle and Lange this connection was extended to more undoouits corresponding
to logic with other sets of predicatés [BLO06].



Uniformity can also be enforced indirectly, for instanceestricting the languages
in such a way that the length of a word contains only limitéddimation. Demanding a
neutral letter can be viewed as such a restriction. Thai#d Crane Beach conjecture
postulated that a neutral letter would impose the same ¢éwaliformity as the tightest
uniformity reasonably imposed on circuits. Unfortunatéiys intuition failed and
the conjecture was proven falge [BIS]. Performing the outright intersection of a
uniform class with the class of interest can also be viewddhassing uniformity on
the latter [MTV08].

One of the circuits that are rather disparate are threshotdits as introduced
in [HMP*87, [HMP93]. Unlike previous circuits they can recognize nonregula
languages by the very character of their gates even in vefgronsettings. Though a
counting or majority quantifier creates a logical charaz&ion of threshold circuits,
this link is not as pleasant as for the other gate types. brigkample necessary to
differentiate between majority quantifiers over single vaesbihd those over tuples as
examined in[[BIS90]. On the other hand majority formulastaaring only the order
predicate can already simulate addition as presented bye dan04].

Since the nature of a threshold gate is non-regular, colomscto algebra seem to
have no counterparts as programs or even morphisms over sennigroups. Despite
that, or actually because of it, a characterization by itdirstructures was given
in [KCROY/] providing a basis to view the languages in thiscait class as inverse
morphic images of this infinite structure. This link works ¥@rious predicate sets, and
also the restriction in logic to two variables has the dekalgebraic correspondence
[BRMO7].

On the algebraic side, separating classes of semigrougaisely easy, compared
to separating complexity classes. Since the latter taskrig mtricate, there are only
few separation results known. The sparse results are thusysd even more, starting
with the result of Sipsel JESSB1] presenting a combinaltgriaof that AC cannot
compute parity, thus AC = ACCP. Improving this Yao and Hastad showed that
this requires even exponential circuits [Yab85, H&s87]rthar, Razborov showed
in [Raz87] that ACC[2] circuits cannot compute modulo 3, which was enhanced by
Smolensky showing that ACQp] for a prime p cannot compute modulpunlessq is
a power ofp. The results of [BSTY0] leading to a separation o’ @ and ACC[p]
showed that AND cannot be computed by 30} for a primep.

For TC there are some results suggesting a separation from N@jnal et. al.
[HMP*87,[HMP 93] gave combinatorial proof separating *r@rcuits of depth two
from depth three by an explicit regular language. A quitéedent result of Ruhl
[Ruh99] and Lautemann, McKenzie, Schwentick, Vollner [LWH]] asserted that
multiplication is not computable by MA4] +] formulas, which separates MAJ[+]
from NC* by means of uniformity.

The current frontier on splitting complexity classes, ef@rthe ones considered,
is disappointing, so we prefer to summarize the open questioNeither of the
complexity classes C{y], ACC°[q] for g not a prime power, e.g. 6, is separated



4 Chapter 1. Introduction

from NP yet, though it is conjectured they fail to compuig in the first case, and
Lmop, in both cases unlegs dividesq. Both are contained in T¢ implicating that
there is no known upper bound farCO below NP, but again there are reasons to
believe that not all regular languages are in°’T@s a consequence df [Bai89], the
only candidates are the group languages for non-solvablggr and moreover either
all regular languages are in ¥@r none of the non-solvable group languages.

Results of this thesis

In this thesis we will go beyond regular languages and fiteigroups. We extend the
theory of Eilenberg providing a correspondence betweenlae¢ganguages and finite
semigroups, to a correspondence between arbitrary laeguagtyped semigroups
Previous definitions of categories of infinite obje¢ts [SikYave the basic drawback,
that they have no structural correspondence to logic ouititbeory. We avoid these
problems in our category of typed semigroups.

Before giving more details on the typed semigroups, we lobkra arbitrary
languagd. € X* and its syntactic semigroup. The syntactic morphism : ¥* — S
guarantees there is a $&ic S such thal. = h™1(A). So besides the semigroGwe
have a morphisrh and an accepting sét, describing the language. We will use this
to define our new algebraic structure, the typed semigr&@,(€), consisting of a
triple: a semigrous, a Boolean algebr& over this semigroup, and a set of elements
of the semigrouE. The elements of the Boolean algeb¥aare sets ofS and will
be the only sets allowed as accepting sets. In the case thaethigroup$, S, €) is
not free the set will allow us to define a notion of length preserving morphjdm
the requirement thdt maps single letters t6. Together with the notion of a typed
morphism the typed semigroups form a category.

We can embed the category of finite semigroups into the typedgsoups, which
shows that the regular languages are just a special case afabses of languages
captured in our theory. Using typed semigroups we can progerems even in the
finite case that cannot be stated only in the terms of sempgreuthout types and
units. We can, for example, give an algebraic counterpatigdogic class FO[mod],
since typed semigroups enable us tfietentiate between the modulo predicates and
the modulo quantifiers. This extends the result of Eilenbgegding a correspondence
between any class of languages and a class of typed semsg@iumg a much finer
structure previously known only for varieties of regulandaages.

In order to describe the typed semigroups corresponding@dgd Iclasses we
introduce a block product in a similar way {0 [KLR07], beingra involved than in
the finite case. Using this definition we show that for anydagass given by a set of
guantifiers and a set of predicates, there is a class of tygradysoups that recognizes
exactly the set of languages recognized by the logic clagspMWe this by adopting
the block product principle[[Str94, TWD4] to typed semigoewand free variables,
where the latter allows to use the block product principteaio unbounded number of
variables. So given any set of quantifiers, any set of prégs¢ca fixed or unbounded



number of variables, a fixed way the quantifiers are nestetbdrary nesting, we get
an algebraic characterization using the block producttfisrdlass of languages.

We obtain a similar result for circuit classes where we cad &ndirect corre-
spondence to classes of typed semigroups. For this purpes@tvoduce a new
form of the uniformity language, giving tighter connectsobetween logic, circuits
and algebra. The results can also be modified for previousbyvk versions of the
uniformity language. Again this results, for any set of gafges, uniformity and
linear or polynomial size, in an algebraic characterizatbthe languages recognized
by these circuit families.

Having established this algebraic theory we apply it to mgjéogic and threshold
circuits. The algebraic characterization of MAd], i.e. MAJ[<] with only two
variables, results in the smallest variety closed undekwé&zck products with powers
of Z. We can embed the powers @f nicely in the Euclidean space. Using this
embedding we can interpret majority formulas of depth onéas planes. Given
a fixed formula with this intuition one can construct a paimairds that cannot be
separated by the formula.

Proofs relying to much on geometric intuition tend to be iog@r. To avoid this
caveat we go the elaborate way of transforming the proofdgebaa, where all the
intuitive steps can be computed, and hence be checked.e&ilygiven any fixed
language or variety described by equations with the teclesgleveloped it is an easy
task to see whether a language belongs to MAW|ith two variables or not.

Using the characterization of a variety by equations we hte @ give an upper
bound. As a formal tool we use prefix andfisumappings or later restrictions that
perform a similar task as in the proof of [ES$81] by fixing aértpositions of the
input.

We also extend the logic class from MAd] to (FO+ MOD+MKJ)2[reg arb— un]
and show that this logic still cannot recognize any non-algk semigroup language,
hence separating this class from N@ompared to the master goal to separatd TC
from NC! this may be considered only a small step, buf €Guals MAJgrb] and we
argue that being interested only in regular languages thdgaveen these two logic
classes is not big. Our separation result may therefore tem@ad to a separation of
TCP from NC* in future work.

Structure of the thesis

The thesis is structured in the following way. We begin wilte tpreliminaries
reviewing the basics that are commonly used in logic, algelmd circuit theory. We
move on to the chapter about typed semigroups, where we ceitennotion of the
syntactic semigroup in a way useful to the non-regular ca$ped semigroups are
then used to characterize varieties of (non-regular) laggs by morphisms. This
allows us to expose connections between algebra, logic iatwits in the following
chapter, where we use typed semigroups instead of finitegseups.
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Thereupon we examine majority logic forfidirent quantifiers and predicate sets
and explore how to find a simpler algebraic characterizatian the characterization
by the previous constructions. We also show some finer coiomscbetween logic
and algebra in the case of threshold quantifiers.

Having laid out the needed tools we apply them in chaRiegular languages in
MAJ,[<], to find an upper and lower bound for the power of majorityitogghen
recognizing regular languages. Finally we show that eveexbynding majority logic
by the first-oder and modulo quantifiers and the regular pegels are still not able to
recognize non-solvable group, thus separating this ctass NC'.

Since this thesis lays out a complete framework for an algelwounterpart for
logic and circuits and then applies it to prove a non-trivigper bound, some chapters
might be skipped. We give an overview in the following graphi
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Chapter

Preliminaries

In this chapter we present the necessary definitions andg éachmonly used in the
areas of logic, algebra and circuits, and give a short rewaéthis topic. We will
not give a complete survey of the topic since this would goobelythe scope of this
thesis; for a complete treatment we recommend Straubingk (Str94]). For a brief
introduction the survey article of Tesson and Theri€n_([4]) @n logic and algebra
covers everything needed here.

2.1 Basics

We denote byZ the set of the integer, by." the positive integers and ¥, the
negative integers and zero. The set of natural numbers ®el@ibyN and the set of
the square numbers I8y

Given two setsS andT we denote by 2the power set 08, and byTS a|S|-tuple
with values inT, which is equivalent to a functio8 — T. We will switch between
these interpretations when one notion seems to be more miemeGiven a function
f .S — T we write f(s) for the value off at s or simply fs. For every sef the
identity map is denoted bis or simply1.

A binary relation< on a sefS is a preorder if it is reflexive, i.es < sforall se S,
and transitive, i.es < t andt < uimpliess < ufor all s;t,u € S. If the preorder is
antisymmetric, i.es <t andt < simpliess=tforall s;t € S thenitis a partial order.

A Boolean algebras over a sefS is a subset of the power set §fthat is closed
under union, intersection and complement, 3.7 € S impliesSUT,SNT,S\S8 e T.
The join Vv of two Boolean algebra® v T is the smallest Boolean algebra containing
S andZ. A Boolean algebré& is coarser tha@ if S C T. If we have two subsets, T
of the power set 06 than we says is coarser thaX, if this is true for the smallest
Boolean algebras that contathand<.

We will work with alphabet< that are always finite. BE* (X*) we denote all
words (except the empty wokg. Given a wordw € X*, we denote byw| the length of
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8 Chapter 2. Preliminaries

w, and by #(w) the number of occurrences afin w. Also we let #{v) be the Parikh
vector of the word, that is the tuple {fiv)),.z. Sometimes we write #(), which
denotes ther component of the tuple, hencewj = #,(w).

Givenawordv = w; ... W, and an integeir= 1, ..., n, we denote byv_; the prefix
Wi ... W_1, byw, the prefixw; ... w;, by w.; the sufix wi,; ... w, and byw; the sufix
W ... Wh.
In what follows languagek are always subsets &f, that isL € X*, though there
is no reason why the thesis could not have been written fguages irt*. The results
are all the same; in some cases however it is algebraicalgre® ignore the empty
word. We call the languages and0 the trivial languages.

2.2 Logic over words

We use the usual notion for first order logical formulas, vl addition of generalized
quantifiers. We omit a formal definition and just focus on el quantifiers, which
are similar to monoidal quantifiers used N [BI$90]. FurtMestructures as defined in
the book of Straubing are utilized, though we usually detindeset of variables b}.

The atomic formulas consist of the query prediaa(e) and numerical predicates
p(Xq, ..., X). These formulas can be combined by the usual Boolean opesats well
as by extended quantifier application as follows: Given idagg, .. ., ¢k, a variable
x and a quantifieQ®, thenQ® x (¢, ..., ¢ is a formula. We call a quantifier a
normal quantifier ik = 1 and an extended quantifier flor- 1. If there is no confusion
possible we drop the indek)(from the quantifier to ease notation. Given a quantifier
Q xgwe callQ x g andQ™Y x ¢ the relative quantifiers corresponding@owhere
Wy—j E Q¥ xgiff w.j E Q xgandwy_; E Q7Y xgiff w,j E Q x¢.

The semantics of the query predicatgx), the numerical predicates and the
Boolean closure is defined as usual. For a quanti®&t we have a function
kow © (27 — S, whereS is a semigroup such that £ Q¥ x (p,..., ¢4 iff
k({] | Weer E @} .. 4] | Ween E ¢j}) € Afor a setA € S. We call quantifiers that
guantify over more than one formula extended quantifiers.

By Q[¥] we denote all first order formulas with quantifiers@and predicates
in B, by Q,[¥] the formulas with 2 variables only and [&3x[%] the formulas with 1
variables only or equivalently the formulas of depth 1.

Definition 2.1. Let X be an alphabet and be a set of variables angbe a formula,
where all free variables af are inX.

We defineLy ™= {(Wy,—i, _weic | W€ =%, Wiy x—iy E ¢}, We simply writeL, and
omit X, X if the alphabet and the set of variables is clear from theednor a set of
sentence®, we letL* (@)= (L3’ | ¢ € @} be a set of languages afd®)= s L*(D).

For a set of formula® with all free variables irk, we letP>*(®)= {Lf;X | ¢ € D}
be a set of languages afd®)= |y x P>*(®). Finally we denote the set of languages
with one free variable b1 (®)= s jx-1 P>*(®).
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The following concept was first explicitly stated in [TWO4jut originates from
[Str94]. It was mainly used for two variable sentences, eiit the definition
mentioned it handles only one free variables bound by thekbpwoduct principle.
We define this concept in a way such that all formulas can berdposed by the
substitution principle.

Definition 2.2 (Substitution) Let £ be an alphabet = {¢1,..., ¢ a set formulas
overX and X a set of variables with one distinguished variakleA ®-substitution
6 with the variablex is a function mapping any sentengeover the alphabet®2
to a formulaéd(y) over the alphabek with free variablesX \ {x} by replacing
each occurrence of the predicatdy) with the formula\/s s ¢s(X = y). Also we
define anadjoint operation? to be a map fronE* ® X \ {x} to 2® ® X \ {x} by

PW - - - Wa)xg=in,.xemi) = (Ut - - Un)xg =iy, oxemie WIth Ui = {0 | Weei = @)
Lemma 2.3. Let 6 be a®-substitution and? be the adjoint operation, then for any
formulay we have w= 0(y) iff H(w) E .

Proof. The proof in [TWO04], can be adopted to arbitrary quantifierd aredicates,
this being straightforward we omit it here. O

Definition 2.4 (I' o A). LetI', A be two classes of formulas, thého A are theA-
substitutions of .

Let Q[*] be a class of formulas. We show that we can decompose thesals
by substitutions into formulas of,[B]. If the formula has depth 1 this is clear.
Assume the formulg has higher depth, and Idt be all subformulas o of lower
depth, theny is a ® substitution of a formula of depth one. By induction we can
decompose all formulas from the outside to the inside intmtdas of depth one, i.e.
Q[B] = Q1[B] o (Qu[P] o (Qu[B] ©....)). Please note that this decomposition depends
heavily on the fact that substitution is also defined for folas with free variables.

Also if ¢ is a formula with only two variables, than all innermost faras of
depth one have only one free variable. debe the set of all formulas of depth one
of ¢, theny is a Q;[B]-substitution of a formula of lower depth. By induction we
conclude all formulas with 2 variables can be decomposen fitee inside out, i.e.
Qo[ B] = ((- - - o Qu[B]) o Q1[P]) o Qu[*¥].

For the decomposition from inside out it is important tha¢ formulas with 2
variables have subformulas with only one free variable ualty we could decompose
arbitrary formulas depending on the nesting of the varmbled obtain a much finer
relation between the bracketing structure of the subgiittand the nesting depth of
the usage of variables.

2.3 Algebra

The tools here used from semigroup theory are rather basicefer to the books on
semigroup theonf[How95] and TAIm95], or for an introducticelated more strongly
to formal languages t@ [Eil76] and [P1086].
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A semigroupS is a nonempty set with an associative binary operation aalle
multiplication. If the multiplication has an identity elemt 15, the semigroup is called
a monoid. Also, if in a monoid for any elemesnte S there is an inverse element
sle S, i.e.ss! = sls= 15, then the monoid is a group.

The smallest semigroup consists only of one element andllisdcthe trivial
semigroup denoted by A generator set of a semigrois a subset o8 such that
every element 0% can be written as a product of elements fr8mf the generator set
is fixed we call the elements of the generator set the gensradcsemigroup that has
a finite generator set if called finitely generated.

If a semigroup has a generator set such that element haswgeurpyesentation as a
product of elements of the generator set then the semigsoeadled a free semigroup.
We denote byFy the free semigroup witk generators.

For two semigroup$, T, a morphisma : S — T is a map fromS to T such
thata(s;:S) = a(sy)a(sy); a monoid morphism additionally maps fo 1;. We denote
by 1 the identity morphism which is equal to the identity map. AsetS’ C S is
a subsemigroup if it is closed under multiplication, a suboid for a monoidS if
1s € S/, and a subgroup &' is a group.

For two morphismsr : S — T4, 8 : S — T, we say thatr factors througig if
for any pairs;, s, € S, B(s1) = B(S) impliesa(s;) = a(sy). In this situation we know
there is a morphism such that the following diagram commutes.

S—Q>Tl

T

Given a morphismy : S — T we can define an equivalence relatispon S by
S = S & a(s) = a(sy). This relation is compatible with multiplication @, i.e.
if s; =, s, ands; =, s, thens; s, =, $5,. Conversely, given an equivalence relation
= on S compatible with multiplication we get a factor semigro8p =, consisting
of the equivalence classes with the inherited multiplaratiAn equivalence relation
compatible with the multiplication of the semigroup is knoas a congruence relation.

We also have a notion for division of semigroups; we Saglivides T, written
S < T, if Sis a morphism image of a subsemigroupTaf We define division for
monoids equivalently.

Now we will briefly define the Green'’s relations in the way negthere. For more
details we refer to the book of John Howie [How95]. For a semi@S, two elements
S, S € S are in the samé-class if there are elemenis, yi, X, ¥, € S such that
X1S1y1 = S and xSy, = . Intuitively we reach one element from the other by
multiplying elements to the left or to the right. Thé-classes are a finer relation, two
elementss;, s, € S belong to the sam&(-class {f there are elements, y;, Xo,y> € S
such thatgs;, = s, andsyy; = S, andxs, = s andsy, = s;. So here can choose
multiplying an element to the left or to the right to reach ehement from the other.

For formal language theory semigroups play an importarg, respecially in
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[El[76] the connection between the transformation semigrof a finite state automa-
ton and the language recognized by the automaton is madenghadgel. C X* is
recognized by a semigroup iff there exists a morphisim: £+ — S, and a subset
A C S suchthalL = h™}(A).

Definition 2.5. Let X be an alphabet and be a set of variables ar&lbe a semigroup.
We let L*(S)= {L | L cX*isrecognized by} and L(S)= UsL*(S). We let
PEX(S)= {L | L € £* ® X is recognized by} and P(S)= Us.x P>*(S). Finally we
denote the set of languages with one free variabl@{$)= (s x-1 P**(S).

For a set of semigrougsbe definel(S), P(S), P1(S) equivalently.

The syntactic semigroup is defined as follows: Define theofalhg relation=_
onX* byu = viff for all wordsw,w € * we havewuw € L < wvw € L.
This relation is a congruence relation Bh called the syntactic congruence, and the
syntactic semigroup syh) isX*/ =, . Please note that the syntactic semigroup lsyn(
of a languaged. is the smallest semigroup that recognizesn the sense that i
recognized., then syn) < S. For any subsei € X* be writeM/ =, for the set of
all equivalence classes Bf / =, that contain elements .

2.3.1 Varieties

Given a language one might asked what are the other languegegnized by the
syntactic semigroup of the first language, in other wordstughténe relation between
L and £(syn(L))? Obtaining a dterent language thah by syn(), we have two
possibilities: change the morphism or change the accepéhg

Given any morphisni’ : ¥’ — syn(L) such thatl.’ = h'~1(A), we know, sincén is
surjective, thaty factors thougth.

Y 4h,> syn(L)
)

.';{

X

SoL’ is an inverse morphic image &f On the other hand since the application
of two morphisms is a morphism any inverse morphic imagé @ recognized by
syn().

If we change the accepting set things are more complicatatiiffof the accepting
set, i.e.A” = stAt™L, leads to the languagelLv?t, whereu € h™(s), andv € h™i(t)
can be chosen arbitrarily. Conversely we can recognizehdtes languages of by
syn(L).

But for different choices oA’ that are not shifts, one may need direct Boolean com-
binations ofL to describd.’. For example leL. = (aad*, thenL’ = (aagd* U a(aad”
is recognized by the same semigrdziy and we can describe it & = L U (aa) L.

We will not further immerse into this topic but it should nove bvious if
one characterizes sets of languages by sets of semigrd\grs, dre certain closure



12 Chapter 2. Preliminaries

properties necessary. These observations as in the boadlenbErg [EIl[76] led to the
following concepts and results.

Definition 2.6 (Variety of Languages)A varietyV of languagess a set of languages
that is closed under the following operations:

o L;,L,CX": Ly, Ly e VimpliesX* \ Ly, Ly N L, € V (Boolean operations).
e LCXM uvel LeVimpliesulLv?! eV (CutgShifting).
e LCXIH h:X* = " LeVimpliesh (L) € V (Inverse morphisms).

Definition 2.7 (Variety of Semigroups)A variety V of semigroupss a set of semi-
groups that is closed under division and direct products.

For each variety of languagéwe can associate the smallest variety of semigroups
V that contains all syntactic semigroups of the languageetsarand we see that
LNV)="V.

Theorem 2.8(Correspondencé [EllT6, Theorem 3.4s¥prieties of semigroups and
varieties of regular languages are in a one to one corresenoe:

e Let V a variety of languages an¥ the smallest variety of semigroups that
recognizes all languages W, thenL(V) = V.

e Let V be a variety of finite semigroups aif be the smallest variety that
recognizes all languages éf(V), thenV = W.

We define some common varieties of semigroups considered I&in is the
variety of all finite semigroup# the variety of all aperiodic semigrougs,the variety
of all groups. The varietyA contains the varietypA of all semigroups whos&®-
classes are aperiodic. The vari€ycontains the variety of all solvable grou@g,
and all Abelian group&b. The semigroups which contains only solvable subgroups
are called solvable and are denoted@y,, the semigroups where all subgroups are
Abelian are denoted bgb. Further we look at the varietS of semigroups, where
all D-classes are are semigroups, &, where allD-classes are orthogonal. Also
to complete the list we denote IBA o G the variety spanned by the block product of
DA with G (please refer to the next section for the definition of theklproduct).

Everything of this chapter is also considered for the mowraigk in[[EI[/6], but we
restrict here to semigroups since the monoid case is eguival

2.3.2 Block Product

The block product was introduced in_[RT89] to decompose traigroups in their
basic building blocks. We will give here a short definitiontbé block product and
avoid to introduction notations that are not necessaryhisrthesis. The basic idea is
to introduce an equivalent product for semigroups as thathmeroduct for groups.
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H
o Rk
o O|Oo

Figure 2.1: The semigroup Y

The semigrouB™T consists of all functions : T x T — S, and the pointwise
multiplication, which we usual denote kyalthough it might be noncommutative. On
this set we have a left and right action®f lett;,t, € T, thent, = f is defined by
(ty = F)(my, mp) = f(Muty, mp), and f = t, by (f = tp)(Mmy, mp) = f(my, tony) for all
m,meT.

Definition 2.9 (Block Producto ). We define the block produ&o T as the semigroup
on the seB8™T x T equipped with the multiplicationf(, t,)(f,, t;) = (fisto+tyx o, t1ty).

We letl = {1} be the smallest semigroup with the multiplicationll= 1. The
semigroupJ; consists of two elements D and the product is O except for 1 = 1.

Theorem 2.10(Decomposition Theorem)Every finite semigroup S divides a block
product So(S,o(...(Sk.10Sk)...)), where $ = U; or S is a simple group for all
iel,...k. If S isagroup then it gfices to use factors;$hat are simple groups, and
if S is aperiodic than all factors San be chosen to be,U

The block producV oW of two varietiesV andW is the smallest variety that
contains all semigroupg o W whereV € V andW € W. There is a close connection
between the block product of two semigroup varieties andsthtestitution of the
corresponding classes of formulas, as states in [ITTO5].

Theorem 2.11 (Block Product Principle) Let I' be a class of(FO + MOD),[<]
sentences and a class of(FO + MOD),[<] formulas with one free variable. If
V,W are semigroup varieties such that(I') = £(V) and P1(A) = P1(W), then
Lo A)=L(VOW).

2.4 Circuits

A circuit is a directed acyclic graph, the nodes with fan-@énazare called input nodes
and the other nodes are called gates. There is a distingugste called the output
gate. Since we want to recognize a langubge& X", we allow as input nodes either
nodes labeled true or false, or nodes labeled o, wherei = 1,...,nando € X.
We call a family ofr-ary binary functions for eache N a gate type. The gates of the
circuit with fan-inr are labeled by-ary binary functions from a gate type. Common
examples for gate types are AND, OR or MQD
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Given a wordw € X", the truth value of the gates is computed in the obvious way,
and the truth value of the circuit is that of the output gatéve@ for eachn € N a
circuit C, that accepts a word of lengthas input, where the binary functions of the
gates are only chosen from a finite set of gate types, therathéyf(C,,)«n accepts a
languagd. € X*, wherew € L if Cy, is true for the inputv.

Definition 2.12. Let X be an alphabet an¥d be a set of variables an€{).n be a
family of circuits. We letL*((Cy)nen)= {L | L € Z* is recognized byQ,)nen} and

L((Cn)neN): UZ LZ((Cn)neN)-
For a set of circuit familie€ be definel(C) equivalently.

The depth of a circuiC, is the length of the longest directed path in it. A family
of circuitsC = (Cp)nen has constant depth if there is a constdusuch that the depth
of each circuit is bound by, and the size of a circuit is the number of gates. In this
thesis we are mainly interested in circuits of constantlilegadd polynomial or linear
size.

The circuitC,, in a family of circuits has in general no relation to any otbiecuit
in the same family. In order to capture the complexity in thféedence of the circuits
we will introduce a uniformity language in Chapkér 4, thigidigon is quite diferent
from the usual definition of the uniformity languages as[iig®], but quite close
to newer definitions that allow finer uniformity [BLD6]. We Miefer to these papers
when we define uniformity later, so the reader can comparadtiens of uniformity.

We use the normal definition for programs over finite semigsoas in [BT8B,
Bar89]. Later we will give a definition over typed semigrouypse Definitio”4.118)
that also covers the finite case. L\étbe a class of semigroups, then we denote by
n —V, the set of languages recognized by the programs over sempgofV, also
called the program variety of.

If we look at the previously know connections we see thatglaee many gaps and
the connections work only for certain quantifiers (see Fegif?2 an@213). But still a
general connection between all three classes was misdimge Ibok at the bounded

Circuits Logic Algebra
ACY FO[arb] m—A | [GL84,Imm87[BT88]
ACC® FO+ MOD[arb] 7 — Ggoy
NC! FO + G[arb] n-S
FO[<]-uniform AC® FO[<] A [Sch65 [ MP 71 BLO6]

FO[<]-uniform ACC°®  FO+ MODJ[<] Gsov | [STT95,BLOG]
FO+ MAJ[<] T. [KLRO7]

FO[<]-uniform TC®  FO+MAJ[<,+,%]  T.sq | [BLOG,[KLRO7]

FO+ G[<] S

Figure 2.2: Relation between circuits and logic and algebra
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Circuits Logic
DLOGTIME-uniform AC° FO[<, +, %] [BIS9Q]
DLOGTIME-uniform ACC’ FO+ MOD[<, +, #] | [BIS9Q]
DLOGTIME-uniform NC'  FO+ G[<,+,+] | [BIS90]

Figure 2.3: Relation between circuits and logic

variable cases there were even less results, which gavetthan that linear circuits
correspond to 2 variables in logi¢ {[KLPT06]) again cor@sging to the weak block
product in algebra[([TW98, STDZ, ST103]), see Fiduré 2.4.

It is known by Barrington[[Bar89] that polynomial length grams over the group
As characterize the languages in NGn fact any non-solvable group could be used
instead ofAs. On the other hand any semigroup not containing only soévglbups,
i.e. Ggo, is in ACC and hence in TE Therefore in order to separate the circuit
complexity classes TCand NC by a regular language, the only possibility is to find
a nonsolvable group that cannot be recognized b¥, There the choice of group
negligible.

Circuits Logic Algebra
LC’ FO,[arb]
FO,[<] DA [TW98,ST02]
LCC® (FO+ MOD),[arb] [KLPTO6]
(FO + MOD)2[<] DA D GsoIv M]

Figure 2.4: Relation between linear circuits, logic with two variabl@sd algebra

2.5 Summary

In this chapter we introduced the basic terms used in lotgebsa and circuit theory.

We recalled the definition of first order formulas with gemieead quantifiers,
similar to the notion of the monoidal quantifier, we allowtthajuantifier has multiple
subformulas. Please note that we did not restrict the diefinsitto the finitgregular
case and allow infinite monoidal quantifiers and arbitragdprate sets.

For a set of quantifiers and a set of predicates we denot&[B] the class
of formulas built from quantifiers of2 and predicates if8. Further we consider
subclasses where we limit the number of variables to oneNoy), twritten asQ;[}3]
(QB]).

The usual notations from the algebraic treatment of langsiagainly from semi-
group theory were given. We recapitulated the block prodametl its connection to
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logic by the substitutiofiblock product principle, but we postponed a proof to the next
chapter where we present a more general statement.

Given a logic, algebraic or circuit cla¥%we denote byl (V) the languages over
an alphabek* recognized by the clads, and byP(V) the pointed languages Et @ X
recognized by. Please note that recognizing of a pointed language>* ® X is
easier than recognizing of a langudge (T U 2%)*.



Chapter

Typed Semigroups

An algebraic framework that captures the expressiveneagbdfary classes of logic,
like MAJ[<], by morphisms cannot be based on finite structures, sineeldsses
might recognize nonregular languages. Therefore the €lityped (semi)groups
introduced in [[KLRO5] cannot be finite but are infinite (segngups with additional
structure. Here we use an extended version, having closerections to logic and
circuit complexity.

First we give the basic definitions for typed semigroups drahsthat they form
a category. Then we proceed to prove a theorem stating thet th a one to one
correspondence between varieties of languages and earietityped semigroups,
equivalent to the correspondence theorem of Eilenbergeinggular case. Since we
intended to construct an algebraic characterization ofahguages for a given class
of logic, we devote our attention to the block product of tyjgemigroups.

3.1 Basics

We motivate the technical details of the typed semigroupguiting it in the context
of languages recognition.
When we look at the syntactic semigro&pof a languagd., we also have the
syntactic morphism
n:X"—S,

such that. = n7%(A) for some sefA ¢ S. So we have more algebraic structure than
the semigrou® alone. We will define the typed semigroups such that the mébion
about the accepting sét= n(L) and the generatorgX) are also represented.

Definition 3.1 (Typed Semigroup)A typed semigroups a triple §, S, £), whereS
is a finitely generated semigrou@, a finite Boolean algebra ov& and a finite set
€ C S. The elements o are calledypesand the elements df are calledunits We
call (S, S, &) atyped monoidff S is a monoid.

17
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In this definition& will limit the accepting sets, in order to explain this exgete
need the notion of a morphism, so we delay this for a moment.

Since we are later interested in classes closed under enNength preserving
morphisms, but not inverse morphism, we need to formalineesotion of length. In
the free semigroup™, the elementsv € X* have a notion of lengtiw|, where length
is the numben of generatorav,, ..., w, € X such thatw; ...w, = w. For arbitrary
semigroups there no equivalent definition of length, siterd is no natural set of
generators. We will use the units of typed semigroups fordaiced concept. Here
we forgo to define a length for all elements®fbut define only a set of units, which
should be thought as the elements of length one. Even if dleisis to be dissatisfying
it allows to define notions of length preserving morphisnstigh a requirement that
units are mapped to units.

Finite case: Clearly the finite semigroups embed in the typed semi-
groups. Given a semigroup, we equip it with the discrete typeset and
let all elements of be units, i.e. §, 25, S).

Throughout this chapter we will reveal links to categoryattye only to justify
some of the definitions in this chapter, but not to gain resufor an introduction to
category theory we refer to the bodk [Mat98], although nowadge is required in
this area. With the following definition of a morphism the &gposemigroups form a
category:

Definition 3.2 (Typed Morphism) Let (S, S, ) and &', €, £’) be two typed semi-
groups, then a morphisin: (S, G, ) — (S, &, &) is a triple fs, hs, he), such that:

e hs : S — S’ is a morphism of semigroups,

e h: : © — & is a morphism of Boolean algebras,
e he: & - & isamapping of sets,

e V8 € S hs(8) = hs(8) N hs(S),

e Yue & hg(u) = he(u).

Because of the compatibility clauses of this definition wea ocait the indices of
the morphism. A morphism of typed monoids is defined in theesaray with the
additional requirement tha; is a morphism of monoids.

Finite case: This is also consistent in the finite case, since any semigrou
morphismS — T induces a typed morphisn$(25,S) — (T,27,T). So
the finite semigroups are a subcategory of the typed senpgrou

We define when a language is recognized by a typed semigraagpdicg to the
previous considerations, compatible with the embeddirtg®finite case.
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Definition 3.3. We say that a typed semigroup, (S, £) recognizes a language ¢ ~*
iff there is a morphisth : = — Swith h(X) ¢ € and ase$ € S, suchthat. = h™1(8).
Similar (S, S, ) recognizes a pointed languaged X* ® X iff there is a morphism
h: (ZxX)" - Swithh(Zx0) c £ and aseb € S, if forawordw € £* ® X we have
wel < h(w)eS.

LetX be an alphabet and be a set of variables an8,(S, £) be a typed semigroup.
We let LX((S,S,8))= {L | LcX*isrecognized by, S, &)} and L((S, S, €)=
Us LX((S, G, €)). We letP>*((S, S, €)= {L | L € =* ® X is recognized by3, S, €)}
andP((S, G, &))= Usx P=X((S, G, &)). Finally we denote the set of languages with
one free variable bP1((S, S, €))= Us -1 P=*((S. &, &)).

For a set of typed semigroufbe definel(S), P(S), P1(S) equivalently.

The above definition uses the types to limit the acceptingiseth(L) € S if
the morphismh maps to the typed semigro® (S, €). If we look at the semigroup
(F,, {0,{1},FF, \ {1}, F>},G), whereG is a minimal generator set df,. Then this
contains the free grouB, and hence we can map invectively tolF,. So if we would
allow arbitrary accepting sets, then the free griyould recognize every language.
Through the restrictions with the types the power is retgd@retty much to recognize
the Dyck languages or inverse morphism images of them. Usimgnimal generator
set for the units reduces the power even to the Dyck langudfe2vgenerators, and
not arbitrary generators as without units.

In the following we will ease notation by allowing to specify only by its
generators. We write for exampl&4 1,G) in the example above and as another
example Z, 0, +1) for (Z, {{0},Z \ {0}, Z, 0}, +1). Please note since we chose to pick
a Boolean algebra for the types, they are always closed wmien, intersection and
negation, hence the finest language sets that we can chiamadty typed semigroups
have similar closure properties.

In the following we assign to a languagec ~*, the typed semigrougx(, L, X) and
show that the recognition of the langudgéy (S, S, €) is equivalent to the existence
of a morphism fromX{*,L, %) to (S, G, &).

Lemma 3.4. For any language LC ¥, the triple(X*, L, X) is a typed semigroup and
L is recognized bysS, S, &) iff there is a morphism fron®*, L, X) to (S, S, £). Also
for any language LC X* ® X, the triple((Z x X)*, L, £ x 0) is a typed semigroup and L
is recognized bysS, S, €) iff there is a morphism frorf(Z x X)*,L,X x 0) to (S, S, €).

Proof. This follows directly from the definition of recognizabili{Definition[33). O

For example the typed semigroug,Z.*, +1) can recognize the languafevhere
each word contains mois thanb'’s by h(a) = +1, h(b) = -1, L = h™}(z"), but for
example not the language with an equal number®andb’s. Using a direct product
(z,7+,£1)x (7,7, +1) with h(a) = (+1, —-1) andh(b) = (-1, +1), we can recognize
the language with the same numbeasfandb’s with the typez,; x Z,;.

Please note that we only consider languagE‘iftere, and not irx*. In the finite
case if a languagk C X* is recognized by a monoid (or even semigro8pjhen we
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Bl a b ab ba 0
al0 ab 0 a O
b|lba 0 b 0 O
abla O ab 0 O
0
0

ba| 0O b 0 ba
0O0/0 O O O

Figure 3.1: The semigroup B

can add a neutral letter to the language without changingyth&actic morphism. On

the other hand there is no morphism fr@&honto a semigroup, unless it is a monoid,
hence the study of languagesh leads to coarser classes of languages that can be
examined.

In the category of typed semigroups the situation fedent: a typed morphism
h:(Z5LX) — (S G, E) can exist, but we cannot add a neutral letter to the language
This is possible, sincb(¢) might not be a unit, so we cannot add a letter and map it
to h(e) since all letters are units and thus need to be mapped ts. Udihce there is
not even a subtile ¢lierence in the theory of language ©f andX* in our algebraic
theory, we decided to state everything only for languages jrsince this is closer to
the intuition from the finite case.

Finite case: In the finite case the semigrouB, (see Figurd_3]1)
recognizes the languades, < {a b}* with Lg, = (ab)* that does
not posses a neutral letter. The same language as a subgebpf
needs the monoid} to be recognized, but there we have a morphism
h : {abe — B} with h(e) = 1, wheree is a neutral letter. If
we view this in the typed semigroup sense, we have a typed msonp
h: ({a, b}*, Lg,, {a, b}) — (By, {ab}, {a, b}), that recognizes the language.
If we embed the language int@, b}* we get the modified morphism
h({a, b}*, Lg,, {a,b}) — (BL,{ab}, {a,b}). Here we cannot simply add the
lettere to the alphabet and map it to€l B} since 1 is not a unit.

We proceed now with the definitions known for (finite) semigye adopted to
typed semigroups, with a special attention to divisiont Wil lead to the an extension
of a well known result in the regular case, that the syntasmigroup is the smallest
semigroup under division recognizing the language.

Definition 3.5 (Injective, Surjective, Bijective Typed Morphisms, Typgdbsemigroup
and Division) Let (S, S, €), (S, &, £) be two typed semigroups.

e A morphismh : (§5,&,€) — (S,&,¢&) with h = (hs,hg, he) is injec-
tive/surjectivgbijectiveiff hs, hs, andhg are injectivgsurjectivebijective.
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e (S,&,¢&) is atyped subsemigroupf (S, S, £), denoted by the order symbol
(8,,8)<(S,6,8),Iiff S is a subset 06 and there is an injective morphism
from (S, &,&)to (S, G, &).

e A typed semigroup &', &', £’) dividesa typed semigroupS; S, £) denotes
by (§,&,&) < (S G¢) iff (§,&,E&") is the morphic image of a typed
subsemigroup ofy, S, €).

We will show that the definitions are sound with the abstrattgorical definitions.
Lemma 3.6. Let (S, G, &), (S, &, &), (T, T, F) be typed semigroups.
1. For every typed group the identity mapping is a bijectiggwhism.

2. The application of two (injectiygrjectivebijective) is again a
(injective,surjective,bijective) morphism.

3. a:(58,¢,8) - (T,T,9) is an injective morphismffif = 8 < aff = of’
for all morphism3,8" : (S, S, &) — (8, &, &).

4. a: (T,T,F) - (S, S, &) is a surjective morphisnffis = 8/ < pa = B« for
all morphisms, B : (S, S, &) — (S, &, &).

5. : (56,8 — (8,¢,¢&) is a bijective morphismffi there is a morphism
@ (8,8,8) = (56 E)withae = Lse e ande’a = Lg e ¢).

Proof. 1. Thisis clear.
2. Thisis also clear.

3. Leta be an injective morphism, afid# ', then there is & € S with 3(s) # 5/(9)
and by injectivity ofa, we haveaB(s) # aB’(s). Assumea is not injective,
then there ares # s € (S,G,E) with a(s) = a(s). We let §, S, E) be
the subsemigroup ofY(, &', £’) generated byg ), we define two morphism
B((s, ) = sandp'((s,5)) = S. ThenaB = ap’ butp # . Note that we can
choose types and units in such a way that the morphisms azd typrphisms.

4. This is similar to the previous case.

5. Leta = (as,as,a¢) be a bijective morphism, then we need to show that
(ash @t at) is also a typed morphism. But sinceis surjective for every
types’ € &, there is a typed € S with as(8) = as(8) = 8’ and by injectivity
we haverg!(8’) = aZ1(8’). For the same reasar* coincides witheg!.

The reverse direction follows from (3) and (4).
O

The notion of division allows us to compare two semigroupthafinite case. we
show that we can also compare typed semigroups.
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Lemma 3.7. Division is a preorder on the class of typed semigroups.

Proof. It is clear that division is reflexive, hence we need to shoat this transi-
tive, i.e. for three typed semigroupS, (S, €),(T, T, F),(U, U, 9): if (U, 21, §) divides
(T,T,F)and [T, T, F) divides §, S, £), then U, U1, §) divides §, S, £). We are in the
following situation:

(S, S, 8) (T,T,9) U, 2, 9)
@ B
(8..8)  (T.T.9)
-~ R
_.__..---"Y'I'(é.’.’,e”,e”)
(SI/, 6//’ 8//)

In the diagram above we le8(, 7, £”) = o }((T’, ¥, F’)), thenBa maps §”, ", £")
subjectively on 21, G) and is a subgroup of§( S, ), hence (,11,G) divides
(S, G, 8). O

Finite case: In the finite case division is of course a partial order sitice i
S dividesT, then|S| < |T|, and if|S| = |T| division implies isomorphism.

But please note that division in general is not a partial grds in the finite
semigroup case. For examplB,(1g,, 0) divides (s, 1k,, 0) and (Fs, 1g,, 0) divides
(Fy, 1g,, 0), since as monoids; is a submonoid oF3 and alsdF; is a submonoid of
IF,, by the same morphisms they are typed submonoids, but teayoadisomorphic.

Lemma 3.8. Let (S, S, €), (S, &, &) be typed semigroups. If there is a surjective
morphismg : (S, G, &) — (S, &, &), then every morphism from the free semigroup
(T,T,9) to (S, <&, &) factors thoughB. That is for every morphism, there is a
morphisme’ such that the following diagram commutes.

(T.2.9)

’

a . a

B

(S, 3,€) (S, e, e
Proof. For every generatarof (T, T, ), we definex’'(t) = s, wheres is any preimage
of a(t) underp. Since T, T, J) is free, we can extend this to a morphism and by

definitiona(t) = B(a’(t)), hencex = Bo o’. |

Two typed semigroups that divides each other do not need tsdmeorphic but
they recognize the same languages, which we will prove viighhelp of the typed
syntactic semigroup in the next lemma.

Definition 3.9 (Typed Syntactic Semigrouplet L < X* be a language, then
(Z*/ ~L, L/ ~, X/ ~) is thetyped syntactic semigrougd L.
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For example lel. C {a,b}* be the language with the same numberatsf and
b's. Thenw ~_ w iff #,(W) — #(W) = #(W) — #(W). We havex*/ ~ is the
set of equivalence classes that is isomorphic to the integer; : ~* — Z by
W #,(W) —#,(w). This implies that./ ~_ is just one equivalence class af(d) = O,
and the equivalence classes that contaare mapped by to +1 and-1. Hence we
get syn() = (Z,{0}, {1, -1}).

It is easy to see that the units are always a generator set ygeal tsyntactic
semigroup, i.e. ff (S, S, €) is a typed syntactic semigroup thén= £*. We will
continue to show that the typed syntactic semigroup is theuenminimal semigroup
that recognizes.

Finite case: Since division is a partial order in the finite case it is easy t
show that the syntactic semigroup is the minimal semigropplitision
that recognize the languages.

Lemma 3.10.Let(S, S, €) be a typed semigroup, thersin(L) divides(S, S, €), then
(S, S, &) recognizes L.

Proof. By definition there is a subsemigroup’(<’, £’) of (S, S, €), such that there
is a surjective morphisma from (S’, &, €’) to synL). By definition of the syntactic
semigroup, there is a morphism (£*, L, X) — syn(), then by Lemm&3318 there is a
morphisma’ : (Z*,L,X) — (S/,&,&),withao o’ =n. So §, &, &) recognized
andso§, G, ¢€). |

Although we do not have a partial order the syntactic semuigiaf L is the unique
minimal typed semigroup up to isomorphism that recognizes

Lemma 3.11.The typed syntactic semigroup of a language L is the minieralgroup
under division that recognizes L.

Proof. Let L be a language recognized by a typed semigr&®(E€) with a mor-
phismh, and let §’, &, £’) be the image of¥*, L, X). We show there is a surjective
morphisma from (S, &, £) to the typed syntactic semigrou$,(, S, £.), and hence
(SL, S, €L) divides §, S, €).

(£, L.5) — (S, &, &)—(S.&,8)

(SL, G, €1)
So we need to show thai(s) = n(h~%(s)) is well defined. But assume that there
arew;, W, with h(w;) = h(w,) andn(w;) # n(w,), then there are,v € £* with
umv € L < uwyv ¢ L, buth(uwv) = h(uwv) hencel is not recognized by
S.
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In order to show that isS,, S, £,) is the unique minimal typed semigroup we
assume §, S, €) divides S, S, E.). Then there is a submonoid®|, S|, &;) of
(SL, G, EL).

L3 —"s (S, S, 8)— (S, 3, 8)

b

(SL, G, &) g

(SL. S €D

SinceX generate¥* andh is surjective, we know tha€’|,|€,| < oo, &’ generates
S’, alsoS, is generated by,. Also we know|E'| < €] < [E]] < €] < [€], sO
1€ =€l =1E I =|EL. We get 6L, S, EL) = (S, S{, €]), andB mapsS| to the span
of &, hencet generate$§, which again implies$, S, &) = (S/, &, &').

Now we have a surjective morphism frog, (S, &) to (S., S, £,) and converse,
but this does not imply that there is an isomorphism. But itlesar thateg is a
permutation ofé, hence there is a power of3 that is the identity or€. But then
this power is also an identity oi5(S, £) and we haveg,, S, &) = (S, S, €). O

Contrary to the finite case bilateral division does not impbmorphy between two
typed semigroups, but we can prove a weaker result:

Lemma 3.12.1If (S, S, €) and (T, T, F) are two typed semigroups that divide each
other, therP((S, S, €)) = P((T, T, F)).

Proof. The lemma is equivalent to statement: the syntactic semgod language
divides 5, G, &) iff it divides (T, T, ). This is true since division is a preorder. O

Finite case: The previous lemma is again trivial for finite semigroups
since division is a partial order there.

Finally we define the direct product as the last basic opmrati

Definition 3.13 (Direct Product) The direct productof two semigroups, S, €),
(8',&,¢&), denoted by $, S, &) x (S, &, &), isdefined asg x S', S x &, & x &).

The direct product in the abstract categorical sense isatefs in the following
lemma, where we show that the two definitions coincide.

Lemma 3.14. The direct product of two semigrougs, <, ) and (S’, &, &’), is
the smallest typed semigroup such that for every typed seopudT, T, F) and all
morphismsy, 3, there is a morphisny such that the following diagram commutes.

(S5,3,E)x(8,€,8)

T 2

Y

888w (T s .e.e)
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Proof. It is clear that for the direct product we can fet= a x g and the diagram
commutes. Assume tha§,(S, &) x (S, &, &’) does not divide the direct product
U, 2, 9), thenwe letT,T,F) = (5, 6,€) x (§,,€&), anda = m,8 = mp. SO
the morphismy cannot be injective, hence there are two elemesiss|), (s, S,)
that map to the same element id, {I, §). But then both elements are mapped to
the same elements undeyy andn.y, this impliess; = s, ands; = s,, and hence
(s1,S) = (%2, S,) a contradictiory . m|

Finally we show how the direct product can be used to disalsteethe Boolean
algebra of a typed semigroups:

Lemma 3.15.Let(S, S, ) and(S, &', €) be two typed semigroups, thEh SV &, €)
divides(S, S, &) x (S, &, &).

Proof. We defineh : (S,&x &, &) — (S, S, E)X(S, &, &), with h(s) = (s, s), note that
(s,9)isaunit. ThenfoB € S, h(8) = SxSNN(S), and fors’ € &', h(8") = Sx8'Nh(S),
henceh is a typed morphism, and is clearly injective. O

3.2 Weakly closed classes

We will now impose certain closure properties on typed seouigs similar as [EIl76],
to get a one-to-one relation to varieties of languages. Asmtrmediate step we
show a weaker relation for classes and weakly closed clagdasguages and typed
semigroups.

It is possible that the Boolean algebra chosen is to coarsealee use of the
semigroup. For example if we look at a typed semigroup with ttivial Boolean
algebra §, {S, 0}), then we can recognize only the trivial languages indepehdfS.
But still this typed semigroup is not the trivial typed senoigp (I, I, T) unlessS is the
trivial semigroupl, so we introduce a concept that avoids this problem.

Definition 3.16 (Reduced Semigroviprivial Extension) Let (S, S, ) be a typed
semigroup such that there is a congruercef S and & is coarser than-. Then
we call(Sf@,JE) =(S/ ~, &/ ~, &/ ~) thereduced semigroyand €, S, &) atrivial
extensiorof (S/ ~, &/ ~, &/ ~).

Finite case: There is no counterpart for the concept above in finite
semigroups, since every semigroup except the trivial ohews us to
recognize non-trivial languages. But in the case of typedigeups any
semigroud with a trivial typeset, i.e. onl§, S, can only recognize trivial
languages.

Some examples of trivial extensions are: Gebe any group an®l be a normal
subgroup, then@, N) is a trivial extension of G/N, 1). Another example iS4, 27))
which is a trivial extension of4,, 0). Also for each languagde, the typed semigroup
(=%, L,X) is atrivial extension of the syntactic semigroupLof
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Lemma 3.17.1f (S,8,€) = (S.,¢), thenP((S.&,£)) = P((S.&.¢). Also
(S, S, &) dividesX s.< (S, S, €).

Proof. Let L C X* be a language i?P((S, S, €)), then there is a typed morphism
h: (Ex2%*" - (S,3, &) such thath(Z x 0) ¢ € andL = h™(8) foran§ € S. We
know there is a morphisiy : (S, S, €) — (S, €, &) hencel'h is a morphism that
recognized. with the typeh’(8). It follows P((S, S, &)) = P((S’, &, £’)), since the
other direction is trivial.

Again we know there is a morphishy : (S,8,&) — (S,8,€), and a morphism
h: (S, G &) - (S S, e&). We define a typed morphish: (S, S, &) —» X (S, S, €),
by h(s) = ((hs(8))sez)-

(S,&,8)

(S, S, ¢€)

We need to show thdt factors through, so we have a morphisim Assume
thath'(s;)) = h'(s), then for all element$,r € S and all typesS € © we have
Is;ir e § <= Isyr € 8. But if for a fixed typeS we have for alll,r € S that
Isir € 8 < lIsor € 8, thenhi(s;) = hy(sy). It follows thath'(s;) = W (sy) implies
thath(s,) = h(s;), and so there is a morphism O

Lemma 3.18. A typed semigroup is the syntactic semigroup of a langugge is
reduced, generated by its units and has 4 or 2 types.

Proof. For the one direction it is clear that by minimality of the &gtic semigroup it
is reduced, generated by its units and has 4 types, or ifrivialt2 types.

Assume a reduced semigroup has 2 types, then it is the smalgroup and hence
the syntactic semigroup &f* and@ iff it has a unit.

Assume a reduced semigro) G, £) has 4 types and is generated by its units. We
leth : & — S be the natural morphism, and= h=1(8) where$ € & is a nontrivial
type. Then syr() = (S, S, &), by the definition of the syntactic semigroup. m|

Finite case: While itis hard to decide if a finite semigroup is the syntacti
semigroup of language, it is easy here since a typed syots@tnigroup
can have only a minimal typeset and for a fixed type it is easjetnde

if a semigroup is a syntactic semigroup. This compares tptbelem in
the finite case: given a semigroup and an accepting set, iacitepting
set is disjunctive.

Definition 3.19 ((Weakly Closed) Class)A classof typed semigroups is a non-empty
set of typed semigroups, that is closed under division amltextensions. A class
of typed semigroups that is closed under direct productslied aweakly closed
class If S is a set of typed semigroups then 8g(s the smallest weakly closed class
containingS.
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Lemma 3.20. LetV be a typed semigroup class, th@t,L,X) € V ifsynlL) € V.

Proof. This is clear sinceX*, L, %) is a trivial extension of sym() by definition and
syn(L) divides £+, L, %) by Lemme3.I1. O

Definition 3.21 ((Weakly Closed) Class of Languagesket V be a (weakly closed)
class of semigroups, then we c¥ll= £L(V) a(weakly closed) class of languages

We begin to show that the languages recognized by a (wealdgd) class of typed
semigroups have certain closure properties.

Proposition 3.22.1f V is a (weakly closed) class of typed semigroups, thenL (V)
is closed under inverse length preserving morphisms (aralddo combinations).

Proof. If L, € V then there is a morphism : X3 — syn(), that recognizes.,.
Assume there is a length preserving morphfsoz; — X7 with h(L;) = L,, thengh
recognized,;.

Also for a weakly closed class, lif;, L, € V then syn[,), syn(.,) € V, and hence
syn(L;) x syn(L,) € V which can recognizé; N L, andL, U L,. O

Finite case: The previous proposition has no correspondence in the finite
semigroup world; since the accepting set is ignored, thguages are
always closed under quotients. Finite semigroups do ngb keek of

the units, hence to characterize a closure under invergghligmeserving
morphisms but not under inverse morphisms is not possibid, the
weakly closed class of languages recognized by a weakledlotass

of semigroups is already a variety. This makes it even imptesso
characterize the weakly closed class of languages reced)foz example

by FO[<, mod], which we can describe by finite typed semigroups.

Proposition 3.23. For two classe¥ € W andV = L(V),W = L(W) we haveV C 'W.
Proof. This is clear since for everly € V we have syri() e V € W soL € W. m|

The next proposition is extremely important since it ensubat every (weakly
closed) class of languages can be characterized by a (weladgd) class of typed
semigroups.

Proposition 3.24.1f V is a set of languages closed under inverse length preserving
morphisms (and Boolean combination), then there is a (weelklsed) class of typed
semigroupd/ with L(V) = V.

Proof. We only prove this proposition for weakly closed classesamiguages, the
other proof is equivalent. Le¥ be the smallest weakly closed class that contains
all syntactic semigroups 6f. Then by definitionV is a subset of the corresponding
language variety t¥'.
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Assumel has a syntactic semigrou,(©, ) = synlL) in V. Then §, G, €)
divides X(S;, G, &), where §;, G, &) = syn(,;) for some languagé; € V. So the
semigroupX;(S;, G, &;) recognizes,, i.e. there is amorphisim: X+ — X;(S;, G, &)).
Also since the syntactic morphism &f are surjective we can choose a tuple)(
of words withw; € X such thath(s) = n((w)). But then we have a morphism
b : " — XZ' such thahl recognized., and sinceril'(L) = L; the languagé is
the inverse image dfj; L and soL € V. m|

3.3 Varieties

While the one-to-one relation fails for weakly closed cesssve now proceed to define
the notion of a variety to get the one-to-one correspondewe need more than
closure under direct product and division, like for the dé&bn of a variety of regular
languages, we have additional closure properties.

Let A € S be a subset of the semigroup, then for 1,0 € S, we let
1Mot = s | 1s0 € A}. This definition is consistent so far thaf il and o
have inverse elements, then this notion coincides with thienal definition, i.e.
A A0-1= {110t | se Al

Definition 3.25(Shifting). Let (S, S, €) be a typed semigroup tha8,(’, €) is ashift
of (S, G, &), iff there arel,p € Swith & = {1718071 | § € &}.

The units help to preserve the length in the mappings, whichat desired
in some cases hence we define a way to “ignore” the units. Wdedeanits to
characterize (weakly closed) classes of languages algallya since varieties of
languages are closed under inverse morphisms, the unitetaneeded in the algebraic
characterization of varieties of languages.

Definition 3.26 (Unit Relaxation) Let (S, S, €) be a typed semigroup theB,(S, £’)
for any finite se€’ C S is aunit relaxationof (S, G, &).

Definition 3.27 (Variety). A variety of weakly closed class of typed semigroups that
is closed under shifting and unit relaxation.

In the later chapters we will mostly use varieties, hencetyped semigroups are
closed under unit relaxation. Because of this we wiSgX) for a typed semigroup
(S, S, &) where the unit set is an arbitrary finite subsegof

Finite case: A variety of finite semigroups is automatically closed under
shifting and unit relaxation; since we embed a finite semigr8 into
the typed semigroups a$,@2%,S), the semigrous already posses alll
possible types and units.

Proposition 3.28.1f V is a variety of typed semigroups, th¥n= L(V) is a variety of
languages.
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Proof. If L;,L, € V then synl,),syn(;) € V, and hence syh{) x syn(L,) € V
which can recognizé; N L, andL, U L,. Also if L, € V then there is a morphism
n . X3 — syn(.,), that recognizet,. Assume there is a (length preserving) morphism
h: X — X% with h(L;) = L, thennh recognized.;. In the case that is not length
preserving we need to replace sys)(by an appropriate unit relaxation, otherwise we
would map unit elements to non-unit elements. Finally & V then so arer'L and
Lot since the types of the semigroup variety is closed undetirstif |

Proposition 3.29. For two varietiesV € W we haveV ¢ 'W, where equality occurs
onlyifV =W.

Proof. It is clear thatV ¢ ‘W, so we need to show that equivalence statement for
varieties.

Let (S, S, ) be a semigroup iW and assum& = W. We let{S;}i = S, then
(S, 8)) is a typed semigroup for each typee S. It follows (S, S, €) dividesX;(S, §;)
and also(S, S, &) divides X; (S,3;), but for each(S, S;) there is language it with
syn(i) = (5,3;). The same languages areVirand hencdS, 3;) is also inV, and by
the closure property al§®, S, €) and with a trivial extension als&( S, €) and hence
V=W. O

Proposition 3.30. For every variety of language® there is a corresponding variety
of typed semigroupg, such thaty = L(V).

Proof. LetV be the smallest variety that contains all syntactic senigsafV. Then
by definitionV is a subset of the corresponding language variej.to

Assumel has a syntactic semigrous,(©,€£) = synlL) in V, we need to
show thatL € V. Then §, G, €) divides a trivial extension o¥X;(S;, &), where
(Si, G, &) = syn() for some languagé; € V. So the semigroupX(Si, <))
recognized,, i.e. there is a morphisin : T+ — X;(S;, ;). Also since the syntactic
morphism ofL; are surjective we can choose a tuphg), of words withw; € X such
thath(s) = n((wi);). But then we have a morphishi : £* — XX such thathl
recognized., and sincer;h’(L) = L; the languagé is the inverse image df}; L; and
soL e V. O

Now we can state an extension of the Eilenberg Theorem ttrampivarieties of
languages. So we get the same result as in the finite casehmiettions.

Theorem 3.31. Varieties of typed semigroups and varieties of languagesraa one
to one correspondence:

e LetV avariety of languages and the smallest variety of typed semigroups that
recognizes all languages W, thenL(V) = V.

e LetV be a variety of typed semigroups akd be the smallest variety that
recognizes all languages 6f(V), thenV = W.
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Proof. By Proposition[3.28 the correspondence of a semigroup tyaxieand the
languaged<.(V) is a relation between varieties. Then by Proposifionlh9rhapping
from the semigroup varieties to the language varietiesjextive, and by Proposition
also surjective. m|

Since we are most of the time only interested in an algebtaacacterization of
some language class, we are mainly interested in the firgtitoom of the previous
theorem, that we have an algebraic characterization ofiatyasf languages.

Finite case: Please note that the Eilenberg Theorem in the finite case fol-
lows directly from this theorem, since we showed that thedisemigroup
can be embedded in the typed semigroups.

3.4 Block product

In the regular case the block product was defined with muadfye, here we need to
make some restrictions, as already pointed outin [KIRO05].

The block product is used to model algebraically the nesifrguantifiers in logi-
cal formulas. The substitution as defined in the prelimesmallows us to decompose
formulas. We will use this decomposition in the reverse wakpuild complex typed
semigroups from simple ones. First we will define an algebesjuivalent of the
substitution, and show that we can compute this substitutip the block product
as defined below.

We define transductions for typed semigroups, compatibile thie definition for

finite semigroups as in [TW04].

Definition 3.32((S, S, £)-Transduction)Leth: (£ x X)*,L,Zx0) — (S, S, &) be a
morphism andC C S a finite set and’ an alphabet. A%, S, £)-transductions a map
7:X"®X - (X)"® X, where

In this map thew/ depend orw; and on the type of(w; ... W_1CW,; ... W,) for all
ceC,i.e. thereisamap x ¢ — ¥’'. We letr,, be the corresponding morphidmio
the transduction.

Finite case: In the finite there exists also the notion oSaransduction.
There itis convenientto usg = SxXxSand letw = (h(w.;), wi, h(w.;)).
But in our case this is not possible sirfeés not finite and the construction
would be too powerful.

We will now define the block product of5( S, €) with (S’, &, £’) such that this
captures the languages recognized 8y, €) after applying a%’, &, £’) transduc-
tion. We need more restrictions in the definition than in tihédicase (see Chapter
[Z3:2), otherwise the block product would be too powerful.
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Definition 3.33(Block Productz). Let (S, S, €), (S/, &€, £’) be two typed semigroups
andC c S’ be afinite set, then tH#ock productS, S, &) (S, &, &)= (T, I, F)isa
typed semigroup, wherE is the finitely generated subsemigroupsafi S’, generated
by the elementsf(s), wheref : S’ x S'* —» € ands € & UC. We require that
f(by, by) = f(by, 1) if for all ce C and all§” € S we have

bich, € § — Dbich, € §'.

The typest are{(f,s) | f(e e) € S} for all § € S. The unitsF are the elements
(f,s), wheref is a generator functions, henéamaps only to units of$, S, £), ands
is a unit.

Note that€, C and &’ are finite and hence there are only finitely many elements
(f, s) generating the subsemigroup. We cannot simplCléte &', &', £’) since the
block product is not finitely generated. But since any fingeGwill do we will skip
to specifyC in the future and assume the corr€cis picked.

Remark3.34 The definition of the block product is chosen in such a way iffhisto
elements have the same first component, they are in the sqmae We could have
defined this similar to the direct product and have allowedlBan combinations of
types on the first and second component, but this would bédudpart from the
logic. Algebraically this is only a tiny dierence since one can simulate the second
component by a direct product, i.éA @ B) x B captures this power.

Finite case: In the finite case we can allow all functions in the block
product and need no restriction, but in the infinite caseAneZ. already
contains the free semigroup with two generators. So we cgatdan
injective mapping of the alphabet inlBoZ and if we have no types
recognize all languages. Even with types, if we allow alldtions
(z,0,+1)o(Z, 0, +1) contains the free semigroup with two generators and
(z,0,+1)o((Z,0,+1)o(Z,0,+1)) could recognize all languages. The
reason is that if we allow all functions, we could choose tharacteristic
function of the language in the left block product.

Now we show how the type of a word is computed in a block pradulcet
(T,T,9) = (56,8 m (8,¢,¢&) be a typed semigroup with a tyge € T, then
an element is in T iff m(t)(e €) is in some types of (S, S, £). We call this typer; T
that corresponds 0, i.e.s€ T < mi1(9)(e €) € m7T.

Lemma3.35.Leth: X" - (T,T,F) =(S5,S,€) @ (§,E, &), theniw) e T e T iff

2, mahw)(IT ma(h(w)). [T ma(n(w)) € mT & &

j<i j>i
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Proof. We do this by computatiorh(w) € T iff 71(h(w)) € 71 T. We leth(w)) = (g;, )
whereg; : S’ xS’ — S, andz € S’. We compute
h(w) = (f1, 91)(f2,82) - - - (T, On) =
= (f102 + 01 12)(f3,93) . .. (fn, On) =
= (f10203 + 911205 + 91092 f3)(fa, 94) . . . (fn, On) =

= (g« (ToyicT1a +-+ (TTa)t fla) =

j<i j>i
=(> (menf(ren. M)
o I« j>i i=1
Since ¢, fg/)(e e) = f(g, gr) the result follows. O

We list some facts about block products of typed semigrothag, were similar
listed in [TW04] for the case of finite monoids.

Lemma 3.36. Let (S, S, €), (§,€,¢&), (T,T,9), (T,7,5) (U,U,9) be typed
semigroups.

1. If (S, &, &) and(S, &, &) are typed monoids, thgls, S, &) m (S,&,¢&) isa
typed monoid.

2. If(S,&,&) and (S, @, &) are typed groups, the(s, S, &) o (§,&,¢&) is a
typed group.

3.((S,.8,8) m (9,,&)< (S, 8k m (S,&, &)

4. If(S, G, &) isatyped monoid and divid€s, T, F), and(S’, &', &) < (T", T, F"),
then(S, S, &) m (8,,&) < (T,T,9) v (T',T,F).

5. Let 1 denote the trivial typed monoid. Th&h S, &) m 1 = (S, S, E), and
1a (S, S, E)is atrivial extension of 1.

6. (S5G,8)=<(56,&8)m(8,¢,8).
7. ((S,5,8)a(T,T.9)a U9 < (S, ) a((T,T,F)m (U, 3)x(U,,9)).
Proof. 1. (es,es)isthe oneelemento S, €&) o (S, ).
2. Let(f,9) € (S,6,¢8) m (S,¢,E&), then
(st g (f,9) = (8l ls + g7, §719) =
= (s 1+9 M, e5) =
= ($7(f+ f).es) =
= (S7'es, e5) =
= (es, €9)
and also {, s)(s1f1st s71) = (es, 65).
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3. Let ((fi, ))icrni € ((S, S, €) m (S, &, &), where
fi D (8,e,8) x (8,¢,8) —» (§56,¢) fori € {1,....,kl. We let
(S, &, &N % (S, &,E)) = (S, 3, &) by f(tl,tz) = fi(m (tl) ﬂ,(tz)) Then
((f).,(q)) € (S, G, &) m (S, e, &) and the map [, ) — ((f)i, (S)) is an
injective morphism.

4. If S’ < SandT’ < T then (f’,t") — (f,t") wheref is the extension oif x T
by the neutral element & is an injective morphism. Hence we can assume that
thatS’ is a morphic image o% andT’ of T.

In the special cas€ = T’, we define a mapf(t) maps to €', t), wheref’(ty, to)
is the morphic image of (3, t,). It is clear that this is a surjective morphism.

Now we assume that # T’, then we take the subsemigroMpf T x T — S,
where the functions are constant on the congruence clastesmapT — T'.
It is clear that there is a morphism frorh, ) for f € V to (f’,t’) sinceV is has
constant functions on a congruence.

5. The morphisns — (s, €) and its inverse are bijections, sinses a function
1x1—- (S, S E)=(S, S, E). Also the typed semigroup &b (S, S, €) has only
one type, hence is a trivial extension of 1.

6. The morphisns — (s, €) is injective.

7. Weshow (§, <, &) m (T,3,5)) @ (U, U, 9) is a typed subsemigroup dd(S, &)
B ((T,T,9) o (U,2,9) x (U,U,5)). We need the extra typed semigroup
(U, 21, 9) only to get the correct types, not for the computation. Hewe will
first show that$oT)oU is a subsemigroup @& o (T o U) and even that this
map works for the restricted block product version.

First we describe the elements in the semigroup®fT)oU, by a triple
((f,9),2), wheref : U2 - (T2 - S),g: U2 - T andu € U. Since the
tuple (f,g) describes a map)? — SoU it is clear that the triple describes
exactly the elements oSO T)o U.

Now the elements in the strong block product ar&m (T o U) also by triples
(f,(8,2), wheref : (TOU)2 > S, §: U2 - T andZe U. Here ¢, 2) describes
an elements of oU. Already by the functions of these two triples one gets an
idea how to map the last to components, but for the first thashi tricky.

Let ((f,g),2) € (SoT)oU. We definef, : (ToU)2 > S by

f,((01, 1), (G2, 22)) = F(21, 2)(01(€ 22), 02212 €)).

Then we have amap: (SoT)oU — Sa(ToU) by ((f,9),2) — (f (g, 2)).
We need to show this map is a morphism. Before this we definedtien
of a left and right action of g : U2 - Tonf : U2 - (T? —» S), where
g acts pointwise onf, by the left and right action o on T? — S, i.e.
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(f = 9)(z1, ) (b1, b2) = (f(z, 2)9(z1, 2)) (b1, b2) = f(z1, 2) (b1, 9(z, 22)b2) and
(9 = F)(z1, ) (b1, b2) = (9(z. 22) f(z1, 22)) (b1, b)) = f(z1, 2)(b19(21, 22), b2). So
we compute the products:

((f,9). 9((f".9), ) = ((fZ) = (z9) + (92) = ('), 9Z + zd, z2).

(f2 (@ 2)(f2. (9. 2)) = (f)(@. 2) + (9. (f}). (9Z + 2d, 22)).

If we show (f,)(q', Z) = ((fz’TRzg))ZZ we are done by symmetry.

We compute

(£)(0. Z)((01, 22). (2. 22))
= (fz)((gl, 7),(9.2)(% 2))
= ()91 22). (922 + Z02. 722))
= f(z, Z2)(0u(e 222), (922 + ZQ2)(z1Z €))
= (2, 72)(0u(e, 272), 9 (212, 22) + Qa(2122, €))

We compute

((f2) * (29)),, (91 22). (92 22))
= ((fZ) = @)z, 2)(9u(e, 2Z2,), 92(2222, €))
= (2, Z2)(9u(e 222), (zd)(21, 22) + Q(212Z, €))
= (2, Z2)(9:(e 222), 9 (212 22) + Qo(212Z, €))

Hence the mapping is a morphism, and it is clearly injective.

Finally we need to show that this maps generating functidnfie restricted
block product to generator functions. So febe a generator functions. We have
(91, 21), (02, 22)) = VIiff f(z, )(0:(e 22), g2(z22, €)) = v, which depends on
a finite collection of clauses of the formz;cz € U since this is a projection of
generator function of the outer block product &fcf T) o U and of clauses of
the form @.1(e, zz)ba(z1z €)) € T sincef maps to generator functions 8 T.
The last condition can be rewritten tg(z;)(b, 2)(92, ) in a type ofT o U. But

f, is not a generator function since we cannot test the first ofpmnditions.
Hence we need the extrd,(1, 9), the ((f, g), 2) is mapped to fz ((9,2),2), and
now we can defind, equivalently as above and here it is a generator function.

Please not that since the types are only defined on the firspa@oemt this
map gives rise to an embedding o5(E,€) = (T,T,F)) = (U2, 9) into
(53,8 m (T,T,9) 3 (U,U,9) xU1,9).

O

The block product of two weakly closed classes is the wedklged class spanned

by the block product of their elements. We get the followgact
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Lemma 3.37.LetU, V, W be weakly closed classes of typed semigroups.
e IfV,WCG,thenV o W cCG.
o Vkm WKk=(V m W)
e UnV)mWcUaor (Ve W)xW).
Proof. All these results are directly obtained from the previousrie. O

Lemma 3.38. Let (S, S, €),(S,&,E") be two typed semigroups, then for every
language L: Le P((S, 3, €) m (§,&,E&)) iff there is an(S’, &, £’)-transduction
7 such thatr(L) € P((S, G, €)).

Proof. Let L be recognized by into (T,T,3) = (S,S,€) m (S/,&,€&’). Then by
Lemma33b, we hawe € L iff

D ()T ma(h(w)), [T 7a(hw))) € w7
i=1

j<i j>i
We can rewrite this a¥,., v; € T, wherey; € (S, S, €), and
Vi = Jrl(h(W))(jHi ma(h(w)), ,H. ma(h(w))).

But since the seV of all possibley, is finite we let¥’ = X x V, and the map
Wi... Wy = (W, V)... (W, Vy)isa @, &, &)-transduction. Also the product of the
is computed in$, S, ), hencer(L) € P((S, S, £)).

If 7(L) € P((S, S, £)) whereh, is the morphism corresponding tpthen there is
a morphismhy’ to (S, S, €) that recognizes(L). Also forwy,w, € ¥, o € Z, we let
(Wi, 0, Wo) = (W10 W)y 1. W let f,(t1, 1) = N (r(h2(ty), o, ho(ty))), by definition
of r this is well defined. Novinto (S, S, &) @ (S/, &', £) by o — (T, h,(07)) recognizes
L. This can be seen by a small computation: Since

D FIThw), TThe(w)) € =T

S j>i

is equal to
n
D (W) € mT
i=1

by definition ofh. |

In the following lemma we will show that foF-substitution the is an equivalent
V-transduction ifP(I") = P(V). We will not have the same map in both cases since the
adjoint map of th@™-substitution maps to a fiierent alphabet than thé-transduction.
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Lemma 3.39. LetI" be a set of formulas an®l be a weakly closed class of typed
semigroups, wittP(I') = P(V). Then for any-substitutiory there is av-transduction

7 such that} = hr, where h is a length preserving morphism of the resultinhahets.
Also for anyV-transductionr there is al'-substitutiond such thatr = h, where h is

a length preserving morphism of the resulting alphabets.

Proof. Let oo be anI'-substitution then there are formulds = {¢1,...,¢ Cc T
such thato- is a @ substitution. SinceP(I)) = P(V) for eachy; there is a typed
semigroup §;, S;, &) in V such thatlL, is recognized by, into (S;, S;, &;) by the
types;. We define & = X¥ h,, into XX (Si, S, &) transductiorr with the constants

C = (h((c, X)) ses
Thend(w; ...wy) = w,...w, andw € 2% is the set

{6 [Wiei E @i} = {gi | Wi € Ly} =
= {pi | h, (W) € 8} =
= {gi [ mi(h(w)) € 8} =
={gi I h(w) € 8;} =
={pi [ T(W)i € 8}

We leth: 8T — 2% by h(8) = {¢; | § C 8;}, then? = hr.
The reverse direction is proven equivalent. O

Now we come to the main theorem that allows us to construadygemigroup
classes with the block product that correspond to logicselas

Theorem 3.40(Block Product Principle)Let I, A be two classes of formulas and
V,W be two classes of semigroups, such théf) = P(V) and P(A) = P(W),
thenP(IT" o A) = P(V @ W). Also if L) = L(V) and Py(A) = P1(W), then
L(ToA)=L(( 3 W).

Proof. By LemmalZB we know. € P(I' o A) iff there is aA-substitutiond and
?(L) € P(I') = P(V). Butby Lemmd&3.39 this is equivalent to there Watransduction
7 with 7(L) = 9(L). And by Lemmd3.:38 this is equivalentltoc P(V @ W). O

Definition 3.41 (sbpc,wbpc) We write sbpcy) for the smallest weakly closed class
closed under block products from the left, and whf)dor the smallest weakly closed
class closed under block product from the right.

Proposition 3.42.1f V is a weakly closed class of semigroups, then
sbpcy) 2 wbpc(V).

Proof. This is a consequence of Lemia3.Bb (7) did (3). |
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Since we often consider the predicate we introduce a new version of the block
product that is closer to the block product in the finite cdsaer we will see that in
the present of the order predicate in the logic class thiskypwoduct yields a simpler
algebraic equivalence.

Definition 3.43 (Block Productm). Let (S, S, €),(S,&,¢&’) be LetC C S be
a finite set, then thélock product(S, G, &) ® (S,&, &)= (T,T,F) is a typed
semigroup, wher@ is the finitely generated subsemigroup 8f €, £) 0 S’, generated
by the elementsf(s), wheref : S’ x S'' —» € ands € & UC. We require that
f(by, by) = f(by, 1) if for all c € C and all§” € & we have

bich, € & & bich, e 8’ Abiced « bice§ Ach eSS — cb,es.

The typest are{(f,s) | f(e,e) € S} for all § € S. The unitsF are the elements
(f, s), wheref is a generator functions, henéanaps only to units of$, S, €), ands
is a unit.

Finite case: This block product is actually closer to the finite case. Even
in the finite case this gives the problem that the block prodan be
used only for logic classes that contain the order prediaztesrwise it

is already there to strong. The advantage in the finite cabaisvith this
definition all functions are possible, and hence the algebeasier.

The diference in the definition ofs and = is that we allow more generator
functions. The following lemmas have essentially the samefg as above.

Lemma 3.44. Let (S, S, €), (§,€,¢&), (T,T,9), (T,T,5) (U,U,9) be typed
semigroups.

1. If (S, &, &) and(S, &, &) are typed monoids, thgls, S, &) = (S, &, &) isa
typed monoid.

2. If(S,&,&) and (S, @, &) are typed groups, the(s, S, &) ® (S,&,¢&) is a
typed group.

3.((S.6,8) » (§,,8)< (5,68 rm (S, &, &)

4. If(S, G, &) isatyped monoid and divid€s, T, F), and(S’, &', &) < (T", T, F"),
then(S, G, &) = (8,&,&8) < (T,T,.F) = (T, T,F).

5. Let 1 denote the trivial typed monoid. Th&a S, ) ®x 1 = (S, S, E), and
1® (S, G, ¢)is atrivial extension of 1.

6.(S,3,8)<(S6,8) r (S,¢,8).
7. ((S,6,8)r(T,T,F)= (U,2,9) < (S,3, &)= ((T, T, ) = (U, 0, 9))x(U, 11, 9)).
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Proof. The proof of this lemma is essentially the same as Lefnma 3.36. O
Lemma 3.45.LetU, V, W be weakly closed classes of typed semigroups.

e IfV,WCG,thenV & W C G.

o VK m WK=(V & W)

e (UrRV)RWCUR (Ve W)XW).
Proof. This follows again directly from the previous lemma. O

Definition 3.46 (sbpc,wbpc). We write sbpc(V) for the smallest weakly closed
class closed under block products from the left, and wpPprfor the smallest weakly
closed class closed under block product from the right.

Proposition 3.47.1f V is a weakly closed class of semigroups, then
sbpc (V) 2 wbpc (V).
Proof. This is a consequence of Lemia3.d4 (7) did (3). O

It is also possible to define a block product principle as abtven we would see
that this is equivalent to a substitution where we allow folas on the prefix and fix
¢=*, @™ additionally.

3.5 Summary

In this chapter we gave the definition of the algebraic stngcbf a typed semigroup
(Definition[3) and of morphisms between typed semigrolpefifition [3:2) and
attained a typed syntactic semigroup (Definifiod 3.9) samib the regular case. This
allows us to hold on to the usual diagram where a typed semgf®, S, £) recog-
nizes a language with syntactic semigroupS;, S, £.), since the typed syntactic
semigroup is the smallest semigroup recognizing the laggua

LI — (S, S, &)

ln /
(SL, G, EL)

We assume here tha,(S, €) is the image oh

Analogous to the Correspondence Theorem of Eilenberg Bitbpo[3.24 states
that for every class of languages there is a correspondass df typed semigroups,
even for non-regular languages; for varieties there evamrse-to-one connection, see
Theoreni3.31. This showed that the structure of a typed senpgfices to describe
any language class.
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The definition of the block product (Definitidn_3133) allowssdescribe quantifier
nesting if we know the typed semigroup corresponding to thentfier. The proof
of this will be given in a new way using the block product pipie (Theoreni-3.40)
even in the case of unbounded variables. Our goal for theahayiter is therefore to
describe the semigroups corresponding to quantifiers asuigates.

3.6 Further Research

In the definitions of this chapter we made some technicalsttets on how to define
the category of typed semigroups. These decisions werelymaigde with the goal
of establishing close relation to logic and circuit theorliile keeping the algebra
simple enough for using it concrete calculations, as we sak in the proceeding
chapters. Since there might be other needs for typed seapgnoe will not conceal
some alternative definitions that might suit other needebet

The first striking restriction is looking only at finitely gerated semigroups. The
reason is easy to see: Since our alphabet is always finiteralgsoups ever considered
for recognizing languages are finitely generated, so evemeifallowed infinitely
generated semigroups we would only examine subsemigréwgpsate finitely gen-
erated. For a more general theory it might be interestingdtbiafinitely generated
semigroups. To arrive at a one to one correspondence as ordrhEB.3lL, one needs
a closure property stating that: if all finite subsemigroops$S, S, £) are inV then
(S, S, ) isin V. But this would mean no modification of the rest of the thedrge
guestion still remains whether this is of any use or just segaization that obscuring
proofs by introducing more technical details instead ofrgjwdeeper insight into the
kernel of the theory.

Loosening the restriction of a finite Boolean algebra fortipe set and allowing
infinite type sets on a semigroup would require a similarweproperty as above for
one to one correspondence, but otherwise the theory wonldireunchanged. Similar
considerations could be made allowing infinite direct padibut then we would need
to pay close attention to the allowed types on such produgitseit an extension as
such is only useful if it helps giving results or deeper ihsigto the theory.

Another possible extensions would be to separate the typesrats into positive
and negative sets, with the goal to describe language sléisgeare not closed under
complement, similar to the positive varieties introducgdPin [PIn98]. One would
have an obvious definition for recognition and with a few techl restriction gain a
block product in these settings.
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Chapter

Connections between Algebra,
Logic and Circuits

In this chapter we will exhibit the three-way connectionvibetn algebra, logic and
circuits. For the finite case the importance of this conactriginates from the fact
that we do not only have a correspondence between the laaguagognized by the
classes of all of the three systems, but also a linkage bettveestructure, i.e. the
basic building blocks and the operations used to build moneptex classes.

SISISES)
quantifier nestin
S SRS
quantifier predicate
Logic

Formal Languages

SISISES SISISIS
block product wires
= _ ASES S Soo
w%%dm?g%rbtgler prgg'g‘;" e gate uniformity
Algebra Circuits

In logic we have quantifiers and predicates, which corredgorgates and uni-
formity in circuit families. For algebra the flierences between quantifigyates and
predicatesiniformity are not obvious; using the usual constructiomsoltain typed
semigroups where the set of units is unimportant and sempgravith only one unit.

41
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So the “atomic” algebraic objects correspond more closethé¢ formulas or circuits
of depth one than to either quantifiers or predicates.

A connection of this kind for two variables and majority logivas shown in
[BKMO7] and is extended here to an unbounded number of Vi@sadnd arbitrary
quantifiers.

4.1 Logic

In this section we present connections between the syatstcticture of logical for-
mulas and a construction of typed semigroups. We start byidgfa correspondence
between quantifiers and algebra, where we prove connedbagebra for formulas
with the equality predicate only. Then we link predicatealtgebra and gain a results
for formulas with larger predicate sets.

4.1.1 Quantifiers

It is quite natural to describe the computational power ofiangifier by a semigroup.
We can also view this as a quantifier that captures the cormguodh power of a
semigroup. An example of this are monoidal quantifiers [BE&Twhere we have
correspondence betwedny andU; or Mod, andZ,,.

We extend this correspondence to typed semigroups: Givertanded quantifier
Q X {¢1,...,¢k as defined in Sectidn 2.2, we will define a semigroup corresipgn
to this quantifier. Throughout of this section we will usesthuantifier semigroujm
the block product to obtain a correspondence between logi@akebra.

Definition 4.1 (Typed Quantifier Semigroup)-or a quantifieQ® we letZq = {0, 1} .

Then we define theyped quantifier semigrou{®o, Sq, o) to be the syntactic semi-
group ofLq < ({0, 1}°)*, where

Lo = (W|wE Qx(i(X), G(X)..... 1(),
wherecd! (x) checks if thej-th entry of the letter axis a 1, i.e.
Wi () & mj(w) = L.
We denote by the syntactic morphism and 8y, the accepting séio(Lo).

In order to justify the naming we will examine the languagesognized by the
guantifier semigroup in this proposition.

Proposition 4.2. Let Q be a quantifier andSq, Sq, £q) be the typed quantifier
semigroup of Q, thef(Q1) = L(wc((Sq, Sq, £q))).
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Proof. LetL € X* be a language ifi(Q1). We lethg : £ — Sqg be the morphism as
in the definition of the typed quantifier semigroup. The laagel can be described
by a Boolean combination of formulas or the fofnx (¢, ..., ¢k), where they; are
Boolean combinations of the (x) predicates. Since the subformulasdepend only
on the letter at the position of we have a tuple,, = {0, 1}* = X, for eacho € %,
such that\,,) = 1iff oxe1 E ¢. We leth : X% — (Sq, g, q) : 0 = ho(V,), then
h(w) € 8q iff W Q X {¢1,...,¢k). For the Boolean combinations of the quantifiers
we can use direct product db§, Sq, £q).

For the other direction assume there is a morphismX* — (S, S, &), where
(S, S,8) € we((Sq, S, €g)). We can assume tha§,(S, €) is a direct product of
(So, S0, £0). Assume for a moment thab(S, €) = (Sq, Sq, £0g).

Sinceh(T) ¢ €q, we can choose for each € T an letterv, € g = {0, 1}* such
thath(o) = ho(Vv,;). Then we build formulagx, ... ., ¢k that are Boolean combinations
of ¢,(X) predicates, such that,-; ¢ iff (v,), = 1.

If (S,S,E) is a power of §q, Sq, £g), We use Boolean combinations of the
formulas constructed for each factor as above. For any $/ge S, this yields a
depth on formula such thaiv | ¢ < h(w) € 8. m|

We just constructed for a given quantifier a typed semigroughsthat they
recognize the same languages. The reverse, i.e. given @ $gpeigroup construct a
guantifier, is also possible which leads to the definition tyjeed semigroup quantifier
as in the next definition.

Definition 4.3 (Typed Semigroup Quantifierfsiven a typed semigrous( S, €), then
for any mapf : {0, 1}k — (S, S, ) and any types € S, we letQ"S x (¢1, ..., ) be a
typed semigroup quantifierf (S, S, €), also called a$, S, £)-quantifier For ak-tuple
of formulases, . . ., gk, we letw | Q" x giff [T, f(V") € 8, wherev® is ak-tuple
such thav(") = 1 if wy.; = ¢ andv = 0 otherwise.

Since the algebra has no clear disjunction between “quarstifand “predicates”,
the typed semigroup quantifier is only a useful counterpartcertain typed semi-
groups. We will state a property that ensure a close cororetietween the typed
semigroup quantifier and its typed semigroup. Please natemé show equivalence
for the typed semigroups which is stronger than the equizaéor the languages they
recognize.

Lemma 4.4. Let (S, S, £) be a typed semigroup, with S £*. We letQ be the set
of all (S, S, €)-quantifiers andQ be the weakly closed class of all typed quantifier
semigroups of, thenQ = wc((S, G, &)).

Proof. We letk = [log|€[] and fix any surjective map : {0, 1} — &, then the set
of quantifiersQ"® for § € S corresponds to the quantifier semigro®§, €). By
Lemmd3.Ib the typed semigroup, &, €) < Xsc:(S, 8, €).

The other direction is trivial. |
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When we lift the correspondence between logic and algebiarmoulas of depth
greater than one, the block product is involved on the akjelside. As we have seen
in the previous chapter the languages classes charactdryzyped semigroups are
always closed under inverse length preserving morphismgp@ition[32R). Since
we will additionally need pointed languages in the induasidelow, we extend the
definition of length preserving morphisms to pointed largps

Definition 4.5 (Nearly Length Preserving Morphismi morphismZ* @ X — ¥+ @ X
is nearly length preserving h((X x 0)) € X’ x 0.

If X = 0, then a nearly length preserving morphism is a length pvesgr
morphism.

The following proposition is the extension of the PropasitiZ2 to pointed
languages for certain sets of quantifiers. We will use thigppsition as the induction
step in a theorem relating formulas with depth greater thanto block products of
typed semigroups.

Proposition 4.6. Let Q be a set of quantifiers such th&(Q,[=]) is closed under
inverse nearly length preserving morphisms. Qebe the weakly closed class of all
typed quantifier semigroups correspondingdpthen

P(Qul=]) = P(Q)).

Proof. Let L € P(Q[=]), with L € X* ® X. There are multiple possible languages
L' c (Ex29*withL = L’ nX* ® X, but in general’ ¢ £(Q;). Since we do not
have any predicates except equality, we can replace théitgquradicate by the query
predicate and obtain a languages £(Q;) such thal = L’ N X* ® X. By Proposition
B2 we have.’ € £(Q) and hencd € P(Q).

For the other direction we cannot argue in the same way. Bedathere is a type
morphism recognizind. as pointed languade: ((Z x 2°)*,L,Xx 0) — (S, &, &) for
(S, G, &) € Q, then there is no reason tHH(Z x 2X)) C &, so we cannot use the same
morphism to recognize a languageby this morphism.

We choose a map : T x 2X — &* with h((o- 0)) = h((c,0)) and otherwise
h((c, X)) = wwith [T; wi = h((c, X)). We extenchto a morphism fromx, x 2X)" to E*.
Thenh s nearly length preserving so itfices to show = h(L) is in P(Qi[=]). Also
note that we have a natural morphism (£*,L, &) — (S, S, &) by Y (w) = []; w;. But
now we can apply Lemnia2.2 and see that £(Q,). But this impliesL € P(Qi[=]).

O

In the next theorem we use the fact that all formulas can betossted from
formulas of depth one by the substitution principle (DefamfZ.2), and that the typed
semigroups we consider can be constructed from the typewtiaasemigroup by
the block product (Definition=3.33). Please note that we gtbis theorem for pointed
languages which is a stronger statement than for languaifesut/free variables.
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Theorem 4.7.Let Q be a set of quantifiers such tH&{Q;[=]) is closed under inverse
nearly length preserving morphisms. We@be the weakly closed class of all typed
guantifier semigroups corresponding® then

1. P(sbpcQ)) = P(Q[=]),

2. P(wbpcQ)) = P(Q[=]).

Proof. “2” Let ¢ be a formula inQ[=]. If ¢ has depth 1, the inclusion follows in
both cases from Propositi@n #.6. 4fhas depth more than one, we look at the cases
of unbounded number of variables first. Using substitutidafihition[Z2) we can
decomposeyr as a®-substitution ofy’, wherey is of depth 1 and all formulas of
® have lower depth thap. By induction the formulas ofd are recognized by a
typed semigroupg, S, £) € sbpcQ), andy’ is recognized by Propositidn 4.6 by a
semigroup of). Hence by the block product principle (Lemfna3.4Q)s recognized
by (So, Sa,€0) B (S, S, &) € sbpcQ).

In the case of two variables we know by decomposition pramwsip is a ®-
substitution ofy’, wherey is of lower depth and all formulas @ have depth 1. By
induction the formulay’ is recognized by a typed semigroup & €, €) € wbpc@Q)
and the formula® are recognized by Propositibn¥.6 by a semigroufpohence by
the block product principle is recognized by$, S, £) @ Q € wbpc@Q).

“C” For the other direction assume a language is recognizedshg, ). We
are done in both cases i5(S, £) divides a semigroup of) by Proposition[4]6.
Otherwise in the case of an unbounded number of variablesameassume that
(56,8 = Q @ (8,%,€&). By induction we knowP((S’, &, &) € P(Q[=]) so
we can apply Theoreli3K0 and dB{(S, <, &)) € P(u[=] o Q[=]) = P(Q[=)).

In the case of two variables we can assume tBag(&) = (S, &, &) @ Q. By
induction we knowP((S’, &, £’)) € P(Q2[=]) so we can apply Theore 3140 and get
P((S, &, 8)) € P(Qaf=] 0 Qu[=]) = P(Q[=]).

O

4.1.2 Numerical Predicates

We turn our attention to the sets of numerical predicated bgehe logic classes and
define an algebraic counterpart. We will use this correspooé to prove theorems as
in the previous section but for logic classes with largedpmrate sets.

Each predicatep(xy, ..., X<) has a natural connection to its pointed language
L, € {a}*®{xy, ..., %}. Thislanguage can be understood as a Iangﬁage({a}xzxf
such thaf_p N{a}* @ {xs,..., X} = L, The choice of the IanguagAg is not unique.

When we have a typed semigrou, G, £) that recognized ,, then there is a
morphismh : (Z x 2X)* — (S, S, &) and a typeS € & such that, = h™1(8) n {a} ® X.
Here I:p = h™}(8) is a language inY x 2X)*. This diference will be important in the
considerations of this section.



46 Chapter 4. Connections between Algebra, Logic and Circui ts

P. | (1,1 @0 (f,1) (f,0) 0| Sample for aword
11| @11 @o (f,1) (f,0) 0 £
1,00 (10 @O0 oO 0O O Wy

0

0

0

.1 | (£.1) (f.0) (f.1) (f,0) W,
(f.0)| (f.0) (.00 0 0 Wiy With i < |
0 0 0 0 0 Wy=iy=j withi > j

Figure 4.1: A sample for a typed predicate semigroup for the order pgeic

For any predicate we call a typed semigrouf®( S, €) that recognizek, C {a}*®X
a typed predicate semigroup fpr We will examine the order predicate and construct
an explicit typed predicate semigroup for order and evethéurcharacterize all
predicate classes for the order predicate later in thissectNow we look at the
order predicate.

We can give a concrete typed semigroup that is a predicatéggsaup for the
order predicate. Lef : U; x U; — U; be a function withf(s,s;) = 0iff s = 0
and f(s;, ) = 1 otherwise. We leP. = {(1,1),(1,0),(f,1),(f,0),(0,0)}, then
(P, (0,0),(1,1)) is an order predicate monoid (see Fiduré 4.1).

We will continue to characterize sets of predicates.

Definition 4.8 (Predicate Class Of Typed Semigroupsgt 3 be a set of predicates. A
predicate clas$or ¥ is a class of typed semigrodpsuch that: For a predicatec B,
the languagé., € P(P) iff p € P.

This definition does not assure that there is any set of paegbcsuch that a
predicate class exists. The following proposition fillssthap, showing that for most
predicate sets usually considered such a predicate cless.ex

Proposition 4.9. If B is a set of predicates, such th&{*3) is closed under inverse
nearly length preserving inverse morphisms, then therepiedicate class foi.

Proof. Let P € p. We letLp C {a}* ® X C ({a} x 2X)* be the language corresponding
to the predicatd®, and Sp, Gp, £p) = (({a} x 2¥)*, Lp, {a}). We need to show that if
for a predicatd” the languagé.p is recognized byS$p, Sp, Ep), thenlLp is a nearly
length preserving inverse morphismlagf, but sincelp is recognized byS$p, Sp, Ep)
we have a morphism{@ x 2X), L, {a} x 0) — (Sp, Sp, £p) = (({a} x 2¥)*, Lp, (@),
and hencéd” € B, since®’ is closed under nearly length preserving morphisms o

We will now characterize all typed predicate semigroupstifier order predicate.
The following lemma states that any monoid where the onesigtity unit can express
at most order.

Lemma 4.10.Let (S, S, £) be a typed monoid anél = {1}, then
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Proof. Let Lp be recognized by a morphisimto (S, S, ) where& = {1}, then:
h(wx) = h(w,) if the order or all free variables is the same, since the imism
maps to the neutral element at all other positions. HencerdicateP is a Boolean
combination of the order predicate and can be recognizedrbgrahism to a direct
product of an order monoid. |

Definition 4.11 (Order Predicate Monoid)Any typed non-commutative monoid
(S, S, &) where % is the only unit, i.e.& = {1s}, is anorder predicate monoidIn
the following we letP. be set of allorder predicate monoids

We begin to show the correspondence between logic and algédmting with the
formulas of depth one.

Lemma 4.12. Let P be a set of predicates, such tha{l}) is closed under inverse
nearly length preserving morphisn3 be the corresponding predicate classbe a
set of quantifiers an@ the set of typed quantifier semigroups forthen

L(Ru[B]) = L(Q o P).

Proof. It is easy to see that &;[¥] formula is a PB-substitution of aQ, for-
mula. Sincel(Q;) = L((Sq, Sq,€q)) and P(B) = P((Sp, Sp, £p)), We have
L(Qu[PB]) = L((Sq, Sq.Eq) T (Sp, Gp, £p)) by the block product principle (Lemma
3.20). O

Again we need pointed languages in the inductive step laiewe prove the
following lemma for formulas of depth one and pointed largpsa

Lemma 4.13. Let P be a set of predicates, such tha{}l}) is closed under inverse
nearly length preserving morphismB,be the corresponding predicate class,be

a set of quantifiers, such th&(Q) is closed under inverse nearly length preserving
morphism, and the set of typed quantifier semigroups forthen

P(Qu[P]) =P(Q o P).

Proof. Again aQ;[¥] formula is a®B-substitution of aQ; formula. SinceP(Q,) =
P(Q) andP(P) = P(P), we haveP(Q4[%]) = P(Q = P) by the block product principle
(Lemmd3.4D). O

We will proceed to use the block product principle (LenimaBas in the previous
chapter to show the correspondence for arbitrary logicselas

Theorem 4.14.Let B be a set of predicates, such tHBtB) is closed under inverse
nearly length preserving morphismB,be the corresponding predicate class,be

a set of quantifiers, such th&(Q) is closed under inverse nearly length preserving
morphism, and the set of typed quantifier semigroups forthen

e P(sbpcQ U P)) = P(Q[¥]),
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Psuwee | (f,1)  (1,0) (f.,0) (f.,0) (f..,0) 0| Sample for a word
(1) | (1) (£.00 (f..,0) (£,0) (f.,0) O (a0)*
(1,0) | (.00 (@LO) (f.0) 0 0 0 (& x)*
(f.,0) | (f,0) 0 0 0 0 0 @0)@x’
(f.,0) | (f~,0) (£.0) (f.,0) O 0 0] @&x (a0
(f-.0) | (f.,0) O 0 0 0 0] (@0)(ax(an)”
0 0 0 0 0 0 0| (ax)*(a,0)"(a,x)*

Figure 4.2: A sample for a typed predicate semigroup for suecpredicate

e P(wbpc@Q @ P)) = P(Q[F]).

Proof. “2” Let ¢ be aformulainQ[]. If ¢ has depth 1, the result follows in both cases
from Propositiofi4.13. Ip has depth more than one, we look at the cases of unbounded
number of variables first. By the decomposition propositals a ®-substitution of
¢’, whereg is of depth 1 and all formulas @b have lower depth. By induction the
formulas of® are recognized by a typed semigroip) €, ) € sbpcQ U P), and
¢’ is recognized by Propositidn 4113 by a semigroup®@fd P). Hence by the block
product principle (LemmBR33Q is recognized byQ = P) & (S, &, €), which divides
Qm((Pm(SGE))eshbpcQUP).

In the case of two variables we know by decomposition pramrsip is a ®-
substitution ofy’, where ¢ is of lower depth and all formulas o have depth
1. By induction the formula’ is recognized by a typed semigroup &, G, €) €
wbpc@ @ P) and the formulas are recognized by Propositi@n4l13 by a power of
Q = P, hence by the block product principtes recognized by

(S,3,8) m (Q m P)ewbpcQ @ P).

“C” For the other direction assume a language is recognizedSpg, ). We
are done in both cases iI5(S, €) divides a semigroup o @ P by Proposition
H.T3. Otherwise in the case of an unbounded number of vasat can assume that
(S,3,8)=(QmP)a (8, &,¢&). By induction we knowP((S’, &, £)) € P(Q[B])
so we can apply Theorel1 3140 and G§(S, S, €)) € P(Qu[B] o QIP]) = P(Q[L]).

In the case of two variables we can assume 8ag(€) = (S, &', &) @ (Q @ P). By
induction we knowP((S’, €, £’)) € P(Q2[¥]) so we can apply Theorem 3140 and get
P((S, S, €)) € P(QaAP] 0 Qu[P]) = P(QA[P)). O

We end this section by examining the closure properties ®@lahguages recog-
nized by logic classes depending on the predicates usedh&danguages (Q[V])
we can determine certain closure properties dependingasui@ properties of the
predicates. For this reason we give a definition for the sovedipate.

Definition 4.15(Successor Predicate Monaid)et Pg..be the submonoid dfi, o U,
generated byf(, 1),(1, 0), wheref : U; x Uy —» U with f(s, ) =0if s =5 =0
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and f(s;, s;) = 1 otherwise. Then thigyped successor monoisl (Psyco (1, 0), (f, 1)),
we let Py, be the smallest weakly closed class of typed semigroup trams this
monoid. We letP. qycc = P< X Psyce

Psucc COMputes the the predicate that is trtighe distance betweenandy is 1,
i.e.x =y+1vy = x+1. Please note that (1) of the previous definition is idempotent.
The following remark is inspired by t6 [Str02, theorem 3].

Remark4.16 If Q is a set of quantifiers, such th&(Q;) is closed under inverse
morphisms, anéB is a set of predicates, then

o If for each predicate i} there is a predicate semigroup such that the unit is the
identity, then the language clag$Q[%¥}]) is closed under erasing morphisms.

e If for each predicate inp there is a predicate semigroup where the unit is
an idempotent, then the language clagf[%}}]) is closed under non-erasing
morphisms.

e If for each predicate i} the predicate semigroup is a group and closed
under shifting, then the language cld9€Q[*}¥]) is closed under length multiple
morphisms.

Note that in the previous remark that the predicate sempgavhere the unit is
the identity correspond to the predicates that are Booleambmations of the order
predicate (LemmBZ4.10), and by definitionRy,.. the identity of the typed successor
semigroup is an idempotent. For the third case of the previemark we have the set
of modulo predicates that fulfill the conditions.

4.2 Circuits

We will progress in a similar with circuits as in the logic #en. A logical formula

and constant depth circuits are highly equivalent as espcei [BLO6] or for linear

size circuits in[BKMOT]. We will use this similarity to stature the proofs in a similar
fashion.

4.2.1 Gates

Usually circuits are studied only for AND, OR and MOD gatedgp\We will examine
here arbitrary gate types as defined in Secfioh 2.4. In owlefléw arbitrary gate
types we need a way to describe the function they computdovidaly the algebraic
approach we use typed semigroups for this purpose. We Vifielen a natural way a
language that characterizes the gate type.

Definition 4.17 (Typed Gate Semigrouplet G be a gate type, i.e. a family of
functions f{ : {0,1)" — (0,1} forr € N. We letfg : {0,1}* — {0,1) be a
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function so thatfg(w) = 1 if the value of a gate of typ& with |w| inputs that are
assigned the truth values,, ..., w, is true, i.e. foW) = fOwy,...,w). We let
Le = {w e {0,1}" | fg(w) = 1}, then &g, Sg, Ec) = syn(c) is thetyped gate
semigroumndhg the syntactic morphism.

Since the input size of a gate is not fixed to the input lengtih tae wiring can
be non-uniform we cannot expect to have a correspondeneebetthe languages
recognized by a circuit family with a single gate and the laages recognized by its
typed gate semigroup via morphisms. We introduce prograrastgped semigroups
to close the gap.

Definition 4.18 (Program) Let L C X* be a language andS(S, £) be a typed

semigroup. Aninstructionis a pair {, f), wherei is a natural number antl is map
from X to &, where there are;, s, € € ando”’ € X such that

s ifo=0,
f(o) = :
s, otherwise.

A program R, over S, G, €) is a sequence of instructionis,(f,) ... (i), f}), where
the indices; < n. ThenP, defines a maw — P,(w) by Py(w) = 1‘['1-=l fj(wi,;). The
languagd. is recognized by a family of programBy{)n if there is a typed € S such
thatw € L with |w| = niff Py(w) € S.

For a setS of semigroups we denote /(r — S) the set of languages recognized
by programs over a semigroup 8f

Please note that if we would not restrict the instructiornrstfi@ programs of all
lengths to map to a finite set, there underlying semigroupldvbiave few infor-
mation of the complexity of the recognized language. Fomgda the semigroup
(z,7") v (Z,2") would already recognize all language by programs of liheagth.

Lemma 4.19.A language L is recognized by a depth one circuit with liigallynomial
wires and the gate type GfiL is recognized by a linegyolynomial length family of
programs over the typed gate semigrd®g, Sg, c) of G.

Proof. Let L be recognized by a circuit of depth one, then the circuit e®f one
gate. We letig, 01), ..., (i;, o) be the wiring of the circuit for a word of length i.e.
the j — thinput of the gate queries if thg-th letter iso;.

So we can define a program,(fi), ..., (i, fi) by fj(c) = hs(1) iff o = o and
fi(o) = hs(0) otherwise. By definition of the gate semigroup this fanaif program
recognizeg..

The other direction is equivalent. m|

In the following theorem we extend the previous lemma to tamtdepth circuits.
Compared to the logic case it emerges that we need only th& bleak product
closure in the following theorem. The reason for this is dine fact that the
programs can have polynomial size, and hence we multiplylyynpamial number of
elements, so compared to the length of the program the thasilinear size.
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Theorem 4.20.Let G be a gate type where the gate semign&) Sg, Eg) IS a group.
The following three statements are equivalent:

e A language L is recognized by a constant depth circuit of paryial size and
polynomial wires with G gates.

e A language L is recognized by a polynomial length programr aveyped
semigroup ofvbpc(Se, Se, Ea))-

e A language L is recognized by a polynomial length programr aveyped
semigroup osbpc(Sg, Sa, £a))-

Proof. We will only show that the first statement implies the secdByg.Proposition
B42 the second statement implies the third. The construaif a circuit for the
program of the third statement is a straight-forward inaurctiue to Lemm&4.19.

Let d be the depth of the circuit, than we can assume that there adyagmial
p(n) and for each word length, the circuit is a completp(n)-tree. So all gates except
the gates at the lowest level, i.e. the gates that accessybg form a circuit over the
output of the bottom level gates. We do induction on the depthe circuit.

If the circuit has depth one we can apply Lemma#.19, otherwis know by
induction that the language computed by the gates whichaeattom level gates can
also be computed by a programo a semigroup ofg, S, £) € wbpc(Se, Sa, £a))-

In the programr a command is of the form,(f), wherei is the number of the
bottom level gate andl : {0,1} — (S, G, ) is a map.

Let (S, &,¢&) =(S,G,E) o (Se, Se, €c) and letr] be a program toSg, Sg, £g)
that computes the bottom level gateve can natural change this into a program to
(S, &, &) by the embeddingSg, Sg, €c) — (S, G, €) & (Se, Sa, €c) : g+~ (1s,0).

We create a program by replacing every commant) of = by a sequence of com-
mandsr, '/t wheref’ = (f”, 1s;) andf” : (Sg, g, €c) % (S, Sa, &) — (S, &, &)
with f”(my, mp) = (1) iff ym, € A for the typeA corresponding to the program
andf”(my, my) = f(0) otherwise.

Please note that f’z/~* multiplies out to (1), 1s,) if the i-th bottom gate is true
and (f (0), 1s.) otherwise. Hence the new program computes the correctiéayey O

For majority logic and threshold circuits we get:

Corollary 4.21. A language L is recognized by a DCircuit family iff it recognized
by a program ovewbpc(@Z, Z*, £1)).

4.2.2 Uniformity

In the previous section we used programs to describe theiém®s recognized by
circuit families. In order to overcome this limitation anthtain a description by
morphisms, we introduce a uniformity language. All cireuitonsidered in the
following will have a uniformity languages, which does naigly that the circuit
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cannot be highly non-uniform unless we have a uniform dpson of the uniformity
language.

We will define the uniformity language as a pointed langudbes, has the ad-
vantage that we do not need to worry about the encoding oélaripositions, but
have a clean way to describe the circuits. Uniformity lamgsathat encode the
variable positions always get afiirence between the uniformity of the circuit and
the complexity of the uniformity language, depending ongheoding. So the results
in the following are basically the same for any definition afraformity language, but
there might be a slight variation in the exact complexity.

Definition 4.22 (Uniformity Language) Assume we have a circuit withinputs. We
label the gates by tuples of the numbers htevhere the first entry is bounded by a
constant. We assume that the input lengths always greater or equal toThe gate
numbersk,i,1,...,1, 1) fork=1,...,]Z,i =1,...,nare reserved as the input gates
that query if there is a lettery at positioni, and the gate label,(, ..., n) is reserved
for the output gate.

We let Conng,y) be a predicate, such that it is true if the g&tbas the gatg
input. The order of the inputs is given by the following order

LL...,1,21...,1),.. 011,12 1) n.. 1), (.. ).

If the label of a gate isxXy, xo, .. ., X), thenx; determines the gate type, i.e. there is a
map from{l,...,l} to the gate types including the input gate types and the vggde
type.

The uniformity language is the predicate langulgg. A circuit family is Conn-
uniform if Conn describes the uniformity language. Also amn@-uniform circuit
family is X-uniform if X recognized.conn, WhereX is a class of formulas or a class of
typed semigroups.

We always assume that the input lengtls greater than the largest constant used
in the first component of the tuples used for the labeling.

Again for induction purposes we need to define when a ciregitgnizes a pointed
language. In logic this is handled by free variables, heheddrmula has no need to
use the query predicateo find the position of the extra information in the input. For
circuits we do not have free variables, but we can descrioaits with multiple output
gates.

Definition 4.23. A family of circuits (C,), recognizes a languadec * ® X if there
is a vectore such that the gate labeled {) outputs 1 for inputv iff w,_-e L.

Definition 4.24. Let X be an alphabet and be a set of variables an€{),.n be a
family of circuits. We letP*>*((C)nen)= {L | L € =+ ® X is recognized byQ,)nen}
andP((Cp)nen)= Us.x P=*((Cn)nen). Finally we denote the set of languages with one
free variable byP1((Cn)nen)= Us, xi=1 P=*((Cn)nen)-
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Definition 4.25. For a set of predicate8 and a set of gate types, we denote by
B-uniform QC° for the class of all families of3-uniform circuits withQ gates, with
polynomial size and constant depth. If we restrict the fanfieach gate to linear size
we writeB-uniform QC{_ . If we further restrict the size of the circuit to linear size
write B-uniform LQCP for the corresponding class.

For a set of circuit familie€ be defineP(C), P1(C) equivalently.

Please note that a circuit with a single non-commutative gt has all positions
as input, cannot be realized by a uniformity language inldéptas the order of the
inputs is determined by the labels of the gates. So in this oas would add an extra
layer of gatesK+ 1,1),...,(k+ 1,n) such thatk + 1,i) is connected to (h—i + 1)
and the gates with labek ¢ 1, -) compute the identity, then we can connect the single
non-commutative gate to the gatésH1,1),...,(k+ 1,n).

So in this section when we talk about depth, it is the deptthefuniform circuit
even if the uniformity language is highly non-uniform.

Lemma 4.26. Let P be a set of predicates, such tha{l) is closed under inverse
nearly length preserving morphisn3 be the corresponding predicate classbe a
set of quantifiers, an@ the set of typed quantifier semigroups farwhereQ is closed
under unit relaxation, then

L(P-uniformQC? of depth onp= L(Q = P).

lin
Proof. Since this circuit has only one gate and this is labelgah,(..,n), we let
C()) = C(n,n,...,n),(l,j,1,...,1)). Itis clear that eackl, can be recognized by
a morphisrrhq to (Sp, Sp, Ep). The circuit itself can have at mo&t - n wires, since
there are not other possible connections. We can take teetgiroduct p, Sp, £p)*
can get a morphisihc: and a typeS; such thah(wy;) € 8, iff wy_j = C/(y).

LetX = {o,...,0m} Inthe same way as the letters are numbered by the uniformity

language. We will construct functions that add a true inputhe gateff there is a
connection from the output gate to the input gate at posiiguerying the lettet.
We let fo]: . (Sp, Sp, (c:p)Z X (Sp, Sp, (c:p)Z - (SG, Sg, 8@) by foj_'(p]_, pz) = hG(l) iff
pihe ((a %)) p2 € Sc; and f1(p1, p2) = 1 otherwise. Note that 1 exists sinég = E.
Similar we letf! : (Sp, Sp, Ep)*X(Sp, Sp, Ep)* — (S, Sa. £c) by f1(p1, p2) = hs(0)
iff pihe ((a, %)) p2 € 8c; and f7(py, p2) = 1 otherwise.

Now at each position there is at most one letter sowe Jet [T,77 0 £ [17,,, f2.
Also we leth(oy) = (f,,, hc(a)), then this morphism simulates with each letter the
wires from this position to the output gate and add the cormmember of true and false
inputs. Hence there is a ty@éesuch thatl. = h™1(7). O

Lemma 4.27.Let B be a set of predicates, such tHA()) is closed under inverse
nearly length preserving morphisnt3 be the corresponding predicate classbe a
set of quantifiers, an@ the set of typed quantifier semigroups forwhereQ is closed
under unit relaxation, then

P(P-uniform QCY. of depth ong= P(Q @ P).

lin
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Proof. Given a circuitC in X, that recognizes a languagec X* ® {X, ..., X}, then
C consists of¥ gates, the output gates, each has at most linear fan-oc, tiare are
only |Z| - n possible predecessors. The construction of the previousi&eworks.

For the other direction ldt : Z* ® {X4, ..., X} — (Sg, Sg, £c) @ (Sp, Sp, Ep), that
recognizes a languade We leth((c, X)) = (f,.x, Px), then by Lemm&=3.35 we know
h(w,_;) € 8, iff

| ] fur Grahwai)), ma(h(wcs))).
i=1

So we connect theth input of the gate so that to the input gates such that utifip
to the gate. O

Definition 4.28 (Input Gate Substitution)Let (C,)), and C;), be a circuit families,
where the gateJ,) are labeled (1X) to (k, X) and C;), are labeled (1X) to (k', X).

If the input gates of @), have values 1 ton, then we relabel the gates @), by

(i,X) — (K —m+1,X). Then C, U C)) is theinput gate substitutioof (Cy), by (C;)n.

We write Cq)n © (C))n for the resulting circuit.

Any polynomial size circuit with linear fan-in gates can balth by input gate
substitution of depth one circuits, if we start with the autgate and successifly add
the predecessor gates. If we have a linear size circuit wenzhretively build the
circuit bottom up.

Lemma 4.29.Let XY be a classes of circuits, and W be classes of typed semi-
groups. IfP(X) = P(V) andP(Y) = P(W) thenP(X oY) = P(V @ W).

Proof. This is equivalent to the proof of Theordm 3.40. O

Theorem 4.30.Let B be a set of predicates, such tHBtB) is closed under inverse
nearly length preserving morphisn be the corresponding predicate classbe a
set of quantifiers, an@ the set of typed quantifier semigroups farwhereQ is closed
under unit relaxation, then

e P(sbpcQ U P)) = P(B — uniformQC} ),
e P(Wwbpc@ = P)) = P(P — uniform LQCY).

Proof. This proof is very similar to Theorein4114. We do this by intilue on the
depth of the circuit. For depth one circuit this is proven eanmimd 4.27.

For the first equation, if the depth is greater than one, thancircuit is a gate
substitution of a depth one circuit by a circuit of smalleptie The depth one circuit
can be recognized b @ P by Lemmd4.2l7, and the circuit of smaller depth by a
typed semigroup of sbpQ(U P), hence the circuit can be recognized by skpc(P).

For the other direction we letS(S,E) € sbpc@Q U P). Then we can as-
sume §,5,8) < (Q m P) m (§,¢,¢&), where §,&,&") € sbpcQ U P).

By Lemmal[Z2F we knowP(Q @ P) < P(B - uniform QC]. of depth one) and
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by induction alsoP((S’, &, &%) < P($ — uniformQCP ) so by LemmdZ29 we
haveP((S, S, €)) € P(P — uniformQC of depthone o P — uniform QCY ) =
P(P — uniform QCP).

Forthe second equation, if the depth is greater than one,ttteacircuit is a gate
substitution of a smaller depth circuit by a circuit of deptie. The depth one circuit
can be recognized b @ P by Lemmd4.2l7, and the circuit of smaller depth by a
typed semigroup of wbp€ U P), hence the circuit can be recognized by wispc(P).

For the other direction we letS(S,€) € wbpc@Q U P). Then we can as-
sume §,G,€) < (Q m P) m (8,¢,¢&), where §,&",&") € sbpcQ U P). By
LemmalZ2l we knowP(Q @ P) < P(B — uniform LQC® of depth one) and by
induction alsoP((S’, ', &) € P(B — uniform LQC®) so by Lemmd 429 we have
P((S, S,€) € P(B — uniformLQC® o B — uniform LQC® of depth one) =
P(B — uniform LQCP).

O

4.3 Logic-Algebra-Circuits
Now we can state a threeway connection between logic algetat&ircuits.

Theorem 4.31.Let B be a set of predicates, such tHBtB) is closed under inverse
nearly length preserving morphisnt3 be the corresponding predicate classbe a
set of quantifiers, an@ the set of typed quantifier semigroups farwhereQ is closed
under unit relaxation, then

1. L e P-uniformQCP

lin?
2. Le L(Q[P)),
3. Le L(sbpcQ U P)).

Remark4.32 The previous theorem could also be stated starting fromgebedh: if
we start with a weakly closed class of typed semigrdepand a weakly closed class
of typed semigroup® closed under unit relaxation, and #Btbe the set of predicates
recognizable by, and Q the set of typed semigroup quantifiers fQr the previous
theorem holds.

Similar starting from circuit theory: if we left be a set of predicates, such
that P() is closed under inverse nearly length preserving morp$igmbe the
corresponding predicate classpe a set of gate types, a@the corresponding set of
typed semigroups, whef@ is closed under unit relaxation, then the previous theorem
holds.

For a bounded number of variables we get:

Theorem 4.33.Let B be a set of predicates, such tHB{B) is closed under inverse
nearly length preserving morphisnt3 be the corresponding predicate classbe a
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set of quantifiers, an@ the set of typed quantifier semigroups farwhereQ is closed
under unit relaxation, then

1. L e P-uniform LQCC,
2. Le L(QB)]),
3. Le L(wbpc@Q = P)).

Remarkd4.34 The statement of the previous Remrk™®.32 also holds fothike@rem.

Since these theorems are stated in a very general way theyreaw implications.
For the consequences in the usual logic and circuit classesdered see FigurEsh.3
and4.% for the polynomial and linear case.

Circuits Logic Algebra (via morphism)
CCq] (MODy)[arb] SbpCq U Parp-un)
ACO FO[arb] prC(Jl U Parb—un)
ACC[q] (FO+MODg)[arb] sbpcU; U Zq U Pa_un)
TC® MAJ[arb] sbpc(Z, Z*) U Pap_un)
NC? FO + G[arb] SbpcEin U Pap_un)
FO[<]-uniform CC’[q]  (MOD)[<] sbpcZq U P<)=sbpc (Z,)
FO[<]-uniform AC° FO[<] sbpcU; U P.)=sbpg (Uy)
FO[<]-uniform ACC°[q] (FO+ MOD,)[<] sbpcU,UZ,UP,) =

= sbpc (U1 U Z)
FO[<]-uniform TC® MAJ[<] sbpc(Z,7*) U P.) = sbpc (Z)

Figure 4.3: Relations between circuits, logic and typed semigroupb/(fmial case)

Circuits Logic Algebra (via morphism)
lin-CC[q] (MODy)[arb] wbpcZy @ WC(Parb-un))
LC® FO[arb] wbpcU: @ WC(Parb-un))
LCC[q] (FO+MODy)[arb] wbpc(Us X Zq) & WC(Parb_un))
LTCO MAJ[arb] wbpc(Z, Z+) @ WC(Parb-un))
FO[<]-uniform lin-CC°[q] (MODg),[<] wbpc(Zq & wc(P<)) =wbpc_(Z,)
FO[<]-uniform LC° FO,[<] wbpcU; @ wc(P<))=wbpc (U,)
FO[<]-uniform LCC[q] (FO+MODg)2[<]  wbpc(U; x Zg) @ we(Ps)) =

= wbpc. (Us x Z)
FO[<]-uniform LTC® MKJ2[<] wbpc(Z,7*) @ wc(P.))

Figure 4.4: Relations between circuits, logic and typed semigroupedli case)
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4.4 Summary

In this chapter we consistently used the block product plaqTheorenl-3.40) to
prove one of our main results: a tight connection betweeit)@igebra and circuits
(Theorem$§ 431, Z4.B3).

For this purpose we needed to define the basic building bldé&slogic we de-
fined a typed quantifier semigroup (Definitlanl4.1) for eacargifier, and conversely a
typed semigroup quantifier (Definiti@n#.3) for each typeahiggoup (where the units
generate the typed semigroup). For the predicates usedjimito Definition[438 we
defined an algebraic equivalent and showed that for any gatdlset with minimal
closure properties, there is an algebraic equivalent.

For circuits we proceeded in a similar way and defined a tysd gemigroup
(Definition[41Y) showing that circuits are equivalent togmams over weakly blocked
typed gate semigroups. Striving to characterize the ¢sdoy morphisms into the
typed semigroups and not by programs we introduced an wnifptanguage (Defini-
tion[£.22). We then used the block product principle adapitiio circuits (Theorem
. 29) and gave a morphic characterization of circuit fagsili

4.5 Further Research

Here we will survey some other natural restrictions for éogind observe theirfiect
on the algebraic correspondence. One obvious restricsitmounding the quantifier
depth to some constadt Since by Lemm&4.13 we have a correspondence to depth
one formulas this results in a typed semigroup class stawith the building blocks
(So, S0, €0) B (Sp, Sp, Ep) and limiting the block depth td.

Another restriction already studied is restricting the iemof variables to some
constant. While the classes of logic FQ], FO + MOD[<] containing only regular
languages are known to have a bound of three variables,Her otasses of logic it is
still unknown if there is a bound for the variables neededeavken considering only
regular languages.

We will show that MAJ[<] "NREG ¢ MAJ3[<] NREG, and we know that MAJ<]
contains all languages in HFEMOD[<]. The question is thus whether M{X] "NREG
is a proper subset af MAJ4[<] N REG or whether they are equal, and analogously
MAJ.[<] N REG ¢ MAJs[<] N REG, the latter already implying that P& NC!. So
proving the number of variables in majority logic to be a thigrarchy can be expected
to be a profound task.

An algebraic characterization of logic bounded teariables could also be useful.
A restriction in logic tor variables translates to block products &o(Sq, Eg) 1
(Sp, Gp, Ep), Where the constants of the block product have the property that
m,(c) = 1. Itis easy to see that this is equivalent to restrictingniaias such that
every bound variable occurs ony- 1 quantifiers inside the quantifier that it is bound
by, which is equivalent to the power ofvariables. Observe that for= 1 the block
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product can be replaced by the direct product and fer2 the block product can be
transformed to its weak version (Proposition8.42).

This algebraic characterization on the other hand corregpdto circuit families
with at mosin'~! gates, and regular language always have circuits oféizgCEL85].
This construction however requires adequate predicateth@rside of logic, and
therefore does not answer any of the hierarchy questiongioned above. The
eligibility of such a characterization of course dependsiterfuture usefulness in
helping to find proofs.



Chapter

Majority Logic

In this chapter we take a close look at majority logic. It i®km the majority quantifier
can simulate the counting quantifier [Lain04] and the cogngmantifier can simulate
the majority quantifier. There are many other quantifiershise similar properties in
this chapter. We considerftiérent quantifiers and predicates and compare their power
in recognizing languages. Since the cases of an unboundebanwof variables and
two variables have to be fiierentiated we examine the two cases separately. For the
two variable case we will see that the majority quantifieras &s robust as desired.
We therefore introduce the extended majority quantifier.

As it turns out the majority quantifier with an arbitrary sépoedicates including
the order predicate is a variety. For the two variables caseshow the extended
majority quantifier with the order predicate is also a varidfloreover we present a
very basic algebraic characterization for these varieties

5.1 Several Counting Quantifiers

We will now recall the definition of some counting quantifieréccording to the
definition in the preliminaries we call a quantifier a normaaqtifier if it quantifies
over one subformula and an extended quantifier if it quangifeer more than one
formula. We will examined the normal and the extended versiothese quantifiers
separately, where the extended quantifier have not beerbesa in most cases.

First we define the finite counting quantifidr® x ¢ for a constant € N by
wE I xpiff |{i | wei E ¢} = ¢ Itis known that this quantifier has not much
extended power over the existential quantifier. We have al8weshold version of
this quantifierd”¢ x ¢ requires that there are more thapositionsi for x, such that
Wy-i | ¢. The extended versions of these quantifiers coincide wtliiual quantifiers
because we are always closed under Boolean combinations.

Similar we can replace the constanby a functionf : N — N, such that the
value depends on the length of the input word. This yieldsjtrantifiers3=" and3>".

59
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I7¢ x ¢ | constant counting quantifier ~ exactiypositions
I°¢ x ¢ | constant threshold quantifier more thapositions
3=7 x ¢ | threshold counting quantifier exactfy|w|) positions

F ' x ¢ | threshold quantifief (n) more thanf (jw]) positions
Maj X ¢ | majority quantifier more than half positions
37 x ¢ | counting quantifier exactly positions

FY x ¢ | threshold quantifier more tharpositions

3°S x ¢ | The number of positions is in the SBtc N
350 x ¢ | The number of positions is in the &t € N

Figure 5.1: List of several counting quantifiers

Sincef is not bounded these quantifiers do not coincide in genetaltve extended
guantifiers, hence we defiis’ and3>" as the corresponding logic classes with the
extended versions of these quantifiers. The majority gfieniaj x ¢ is a special
case of this forf (n) = [n/2]. We define the logic classes MAJ andWifor the normal
and extended version of this quantifier.

Instead of counting up to a number we can count the numbersfipos and ask
whether they are in a given st C IN or not. These quantifiers correspond to the
natural numbers in algebra and have the quantifier semigisug, {0, 1}); a typical
example of such a quantifier is the square quantifier3.is.the set of squares We
get a quantified*S x ¢, defined byw £ 3%° x ¢ iff [{i | Wi E ¢}| € S. For the
extended version we 1615 X (¢, ..., @) be defined byw £ 35 X (¢, ..., @0 iff
(G0, | Wi E @1}] € S. This defines the logic classass and3<S.

The quantifier above can also be defined for a set that deperttie anput length
of w. With an equivalent definition we get the logic clas3é% and3>-.

The counting quantified™ X ¢, defined byw,-; E 37 X @ iff |{i | Wy=iy=j E @} = ],
counts if there are exactly the valueyfany positions fox wherey is true. Since
this quantifier requires a variabyghat is not bound by the quantifier itself, we always
add the regular existential quantifi#and obtain the logic clas$+ 37Y. The extended
version of this quantifier allows multiple subformulas ..., ¢ 37 X (@1, ..., @K,
defined byw,_; = 37 X (¢1,..., @) iff {(i,]) | Wysiy=j E @}l = J. This quantifier
together with the existential quantifier forms the logicssla + 3. Also because of
the quantifier make use of two variables this quantifier woll e useful if the number
of variables if bound to two.

Similar we have a threshold quantifigty x ¢, equivalent to the quantifier above
that requires more than the value wfpositions forx such thaty is true. The
corresponding logic class 5+ 7Y and with the extended quantifidr+ .

We defined quite a lot counting quantifiers, so we list thenmenfollowing Figure
B.
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5.1.1 Unbounded number of variables

We now compare the power of the previous introduced quaniifiehe presence of
different predicate sets. In the case of using the equalityqatdsolely, we have only
trivial inclusions.

Proposition 5.1. For the predicate sgt=} and an unbounded number of variables, the
following inclusions hold, where A» B means that A can be simulated by B:

3= 3= o
EN 3+ 3
3¢s MAJ
gl / 3+
3€5n

The extended quantifiers can simular the normal quantifiexs the same relations
among themselves as in the normal case. Additionally th@najquantifier can
simulate the existential quantifier.

Proof. We show only one inclusion, the others are trivial or similar
I X p(X) = T xp(X) A =T X @(X).
O

If we allow the order predicate the picture becomes more lemje can split
the set of quantifiers in uniform quantifiers which are eitfiest order or counting
guantifiers and the non-uniform quantifiers which split irethclasses.

Proposition 5.2. For the predicate s} and an unbounded number of variables, the
following inclusions hold, where A> B means that A can be simulated by B:

3=3°=F°

3<S MAJ =3+ 3Y =3+ 3FY
3=f — 3>f

s, /



62 Chapter 5. Majority Logic

The extended version and the normal version of the quantfieralways equally
powerful.

Proof.
T xp(x) = FLy (F x x<yA (X)) A (T x x< y A @(X).

By [Lan0Z4, Corollary 3.3] we knowd can be simulated by MA4], as well as
counting. On the other hand there is a formp(&) in 9 + 3*Y that is true ifi = [n/2],
wherei is the value oi. O

If we also use the unary arbitrary predicates the non-umifquantifiers can be
simulated by the uniform quantifiers, which gives a cleatypie.

Proposition 5.3. For the predicate set<,un — arb} and an unbounded number of
variables, the following inclusions hold, where-A B means that A can be simulated
by B:

3=3°=3°

J

368

l

MAJ=TF"=F"T=3+3Y=3+FY =3

The extended version and the normal version of the quantfieralways equally
powerful.

Proof. We choose a unary predicatehat is true for values i, then

3 x(x) =y p(y) A T X p(X).

5.1.2 Two variable case

We continue to examine the case of two variables again fiberént predicate sets.
Naturally, it turns out that there are less equivalences thahe unbounded number
of variables case.

Proposition 5.4. For the predicate set=} and two variables, where A> B means
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that A can be simulated by B:

| B
I =pc I =p°
3 3+ 37 En 3+ 3V
3¢S MAJ E MAJ
3> / J4+ >f / A+ FY
EleSn 3€Sn
Proof. O

Taking a look at the order predicate we obtaiffetient pictures in the case of the
normal and the extended quantifiers, in the extended casedjwity quantifier can
simulate most other quantifiers.

Proposition 5.5. For the predicate set<} and two variables, where A> B means
that A can be simulated by B:

1 q
J= = ¢ J= = JC

3f 3+ 3V /3f E=

EGS MAJ 3JeS MAJ
\

Ff / q+ Y \3” / I+

3eSn Jesn
Proof. O

As we see in the last diagram, if we are interested in the tmifquantifiers,
the extended majority quantifier can simulate all other amif quantifiers. In the
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following we always include the order predicate when we hemajority quantifier
in the unbounded case and the extended majority quantifibeitwo variables case,
which seems to be the most interesting case.

5.2 Several Predicate Sets

In this section we examine the power of the majority quamtiiie terms of the
numerical predicates that can be simulated.

Lemma 5.6. The following equalities hold:
e MAJ[<] = MAJ[<, +]
e MAJ[<, squarel= MAJ[<, +, %]
Proof. This is proven in[[Lan04, Theorem 4.1]. ]
On the other hand we have some nonexpressibility results.
Lemma 5.7. We have the following inequalities in majority logic:
o MAJ[+] # MAJ[<, +]
e MAJ[<, +] # MAJ[<, +, %]

Proof. The first inequality is proven i JLanD4], and the second imasequence of

[Ruh99] and independently df [LMSVD1]. O

5.3 Varieties

In this section we show that for all sets of predicafethe languages expressed by the
majority logic MAJ[<, B] form a variety.

This is very diterent compared to less powerful logic classes that cannwittcBor
example the modulo predicates are closed under inversehisarp, but the languages
recognized by formulas of FQ[ mod] are not closed under inverse morphisms. We
can for example recognize the langudgef all words of even length ira, b}* by
a formula of FOk, mod]. The morphisnh : {a,b}* — {a b}* that mapsa — a
andb — bb, can be used to defing = h™i(L). ThenL’ is the language of an even
number ofa’s, that is not recognized by FQ]mod]. So FOk, mod] is not closed
under inverse morphisms and hence not a variety.

For logic classes that can count the situation fedént as seen in the following
theorem:

Theorem 5.8. For every set of predicate® closed under inverse morphisms and
containing order the clas§ (MAJ[*B]) is a variety of languages.
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Proof. Please note that(MAJ[¥]) = L(MKJ[‘B]) since the predicates contain order.
Hence we may use the extended majority quantifier in our proof
We need to show the following closure properties:

1. The languages in MAJ] are closed under Boolean operations.

2.1fL € MAJ[¥], L ¢ X andh : ()" — ZX* is a morphism then

L’ = (L) € (¥)* is in MAJ[].
3. IfL e MAJ[®], L € =* thenulLvt € MAJ[®], whereu'Lv! = {w | uwve L}.

(1) Let Ly, L, € L(MAJ[%]), then there are formulagy, ¢, € MAJ[¥] such that
L,, = Ly andL,, = L,. Itis easy to see thdt N L, = Ly, L1 UL, = L,y and
L= L_,,, hencel(MAJ[F]) is closed under Boolean operations.
(2) LetL e L(MAJ[®]), then there is a formulg such thatL, = L. Given a
morphismh : ¥+ — X*, we need to show thdt’ = h™'(L) is in L(MAJ[}]). Let
c = max, s |n(c”)| be maximal length a letter is mapped to.
We will use induction over the subformulasfo proof this. Since the subformu-
las contain free variables we extend the morphism in a sp&apto free variables:
Given a wordv\/xlz. e Xt ®{Xy,..., %), and a vectov € {0, ...,c— 1} we
let

hv(Wociy..xmid = DOW )=t lva...oic=nw

..... i
So we map the variabbg pointing to the lettew; to the position under the morphism,
wherey; is the dfset sinceh(V\/ij) might be a word (not only a single letter). Please note
that this construction maps a sentence to a sentence (nbbbssmtences).

We callv the dfset vector. It is easy to see that there are forméjas MAJ[*B],
such thatv, _, . .. F 6y if vj <Ih(ij)l for all j. We call an déiset vectow valid for
W 1FW, L 0.

We will define recursively a map that maps any formulavith free variables
X1, ..., X to a set of formulag/, with v € {0,...,c - 1}¥, such that for each word

Wy, x € 2" ®{Xy,..., X} and valid dfset vectow:

N+vic

iff

(i) Assumey = ¢;(x1). We lety|, = V ez o)y, =0 o (Xa)-

(i) Assumey = p(Xy, ..., X). Sincep € ¥ andB are closed under inverse morphisms
there are predicateg, for v € {0,...,c - 1}¥ such thatp), (Y1, ..., Y) is true if
p(y1-C+Vy,...,y1-C+ V) istrue. We cannot usg directly, so we let

vy=\/3vi 3

Vi C+ Vi = [N(Woy )+ Vi A - - Ak C+ Vi = [h(Way )| + Vi
AP (Y1, - -+ i)
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Itis easy to see that the arithmetic operations can be peeiby an extended majority
guantifier using the order predicate.

(iii) Assumey = Maj x (42, ..., y™. Since the majority quantifier bounds a variable,
we need to ensure that only validfeet vectors are considered when evaluating the
subformulagy;. Please note that thefeet vector is valid depending on the position of
X.

We define Mdj x (y') to equal Majx (" Ay, ¥’ v =6,). Then if for the position
of x the dfset vector is invaligy; A 6, evaluates to true ang v -6, evaluated to false,
hence this position is ignored by the majority quantifier.the case that thefkset
vector is valid both terms evaluatey.

Now we can defing;. We lety, = Maj® X ('yp, . ... ¥ Jp)bo...c-1-

(3) This construction is similar to the construction of (Bje use an vector e {0, 1, 2},
depending wether we are at the first, a middle or at the lastigosind construct to
each formulay three versiongg, v/, v,. O

The proof is also valid for two variables, if we have no predis:
Theorem 5.9. The clasi(MKJ2[<]) is a variety.

Actually the results follows for any logic class that can cbwhere the quantifiers
and predicates are closed under inverse morphism. It is reaster to check if a
qguantifier or a predicate is closed under inverse morphis@ans to check this for the
whole class of logic formulas.

Remark5.10 The languages in the logic class MAJQ[3] form a variety, if the
inverse morphic closure of the quantifieksand the predicatey is in MAJ + Q[B].

Also we get a consequence that somehow reduces hopes to @rane Beach
results for majority logic.

Corollary 5.11. L € MAJ[*B] then L with a neutral letter is also in MA$].
Proof. This follows from the proof of Theoref3.8. O

This gives an alternative proof of theorem 6.3(b).in [BOS].

5.4 Algebraic Characterization

With the relative block product we can give a cleaner charagition for majority
logic.

Theorem 5.12.The following are equations are true:
e sbpc((Z,7")) = MAJ[<],
e sbpc((Z.{Z",$})) = MAJ[<, +, ]
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Proof. It clear that theC relation is true in both cases since the relative majority
guantifier can be simulated by the majority quantifier ([L&NOFor the other direction
we need to show that we can expres®y Lemmd 410 any non-commutative monoid
sufices, henc& = Z, recognizes the order predicate and by Thedrem 4.14 we have
sbpc((Z,7")) 2 MAJ[<].

For the second equation we need to show that we can expresguare predicate.
But it is easy to see tha”?(Z") = (Z,S) can recognize this predicate and again by
TheorenTZ14 we have shi{¢Z, Z*, S)) 2 MAJ[<, +, #] O

This gives us the following result in circuit theory. Pleasate that we use
morphism into semigroups here to describe the languagegmeable by circuit
family and not programs as usual.

Corollary 5.13. DLOGTIME - TC® = MAJ[<, +, ¥] = sbpg (Z,{Z", 8}, Z).

5.5 Summary

We gave an overview of majority logic with a strong focus ompressiveness and
algebra. Starting with severalftBrent quantifiers (see Figureb.1) of similar expressive
power, we presented their relative power in the presencéfefrdnt predicate sets.

We discovered that for an unbound number of variables theniajquantifier
in the presence of the order predicate is as strong as anfofmfilinear counting
guantifier, and in the presence of arbitrary predicates #sistrong as any of the
linear counting quantifier examined here. In the case of tarables there seem to
be diferences for the normal quantifiers, even in the presencéeitifay predicates.
Together with the order predicate the extended majorityntiier has an excelling
power relative to all “uniform” quantifiers.

We therefore concluded we can concentrate our attentidretmijority quantifier
for the case of an unbounded number of variables, and to tten@xd majority
guantifier for the case of two variables. For these two caseexamined which
predicates can be simulated by others and which cannot.

We then showed that contrary to other classes of logic, therhaquantifier with
most of the commonly considered predicate sets forms atyaaed that this also
holds for the extended majority quantifier with the orderducate in the two variables
case. This finally led to a very basic algebraic characteor®f these varieties, which
is interesting in its own right.

5.6 Further Research

In this chapter many questions remain open. We left unsitti@ny questions of the
inequalities of majority logic with the dierent predicate sets considered. Using typed
semigroups we can construct an algebraic characteriziti@ach of these classes of



68 Chapter 5. Majority Logic

logic and in this way try to give an algebraic proof for someha inequalities. Also,
we touch on the Crane Beach conjecture or on its generaliztite Uniformity Duality
Property of [MTV08], the latter conjecturing MAJ[arbCFL = MAJ[<]NCFL, which
implies MAJ[arb]n REG = MAJ[<] N REG. If this conjecture proves correct it might
be the reason for it being hard to show that is in MAJ[<] or the contrary.



Chapter 6

Regular languages in M A 5[]

The goal of this chapter is finding an upper and a lower bounthifinite syntactic
semigroups of the regular languages iMB4[<]. In order to achieve this aim we use
typed semigroups and the characterization &M<] of the previous chapter.

We devote the first section to a geometric interpretation 8fJpf] formulas to
gain insight into the algebraic proof techniques used irfahewing section. We then
apply these proof techniques to find an upper bound. The Ibavend is proven by a
construction of MAJ,[<] formulas for the finite semigroups contained in this bound.

6.1 Geometry

In what follows we consider the infinite grid graph dhx N as in Figurd €ll. The
vertices of the graph are all pointslé x IN and there is an edge between two points
(X1, Y1) and o, y») iff their distance is one, i.8x; — Xo| + |y1 — Y2| = 1. There is one
distinguished vertex (@) that we call the origin of the graph. For two points we write
(X1, Y1) < (X2, ¥2) if X S X2 Ay < Yo,

We call a path (o, Yo), - - ., (X0, Yn)) in this graph positiveff (X_1,Vi-1) < (%, Vi)

A S

0,0 a

Figure 6.1: The path for the word aabbababaabaabbaaa

69



70 Chapter 6. Regular languages in M K32[<]

foralli = 1,...,n. There is an obvious correspondence between all (non ljrivia
positive paths starting in the origin and the words{@b}*, defined by the fol-
lowing correspondencews; ...w, corresponds to the pathx{(vo), ..., (%n, Yn)) iff

W =a < X—-X.1=21andw, =b < vy -V, = 1. Informally speaking
the path makes a step to the right for eachnd a step upwards for eabhsee Figure
for an example.

The observation above is only essential because we limiatiantion to words
with a fixed Parikh vector #) = (ng,ny) € N x N. Then the wordsw with
#(W) = (ny, Np) correspond to the positive paths between the origin and/énex
(na, Np). So we can focus to the subgraph of all poikts/] < (na, Ny).

For the set of words with fixed Parikh vector we will now shovatttMAJ;[<]
formulas with one free variable can be interpreted as haliigd when we embed the
graph in the Euclidean plarie x R. Similar to the correspondence above a wayd
corresponds to the path efwith a marker on the pointx{, y;). Below we will show
that all information about a wordy-; inferable from a majority formula depends on
the point §;, y;), or more specifically it depends on in which set of the hadinels the
point is for a fixed set of half planes.

We will demonstrate the geometric interpretation on an etam Let ¢ be
the formula Maj x ((ca(X) A X < ¥) V (p(X) A X > y)), thenw,_; E ¢ iff

Ha(Wej) + #p(Wsj) > #a(W, ) + #(W<j)). This can be reformulated as

Ha(Wej) + H#o(Ws j) — #Ha(Ws ) — #p(Wsj) > 0
= #aWe)) — (N — Ha(We))) + (M — #o(Wsj)) — Ho(We)) > 0 =
— 2#(Wej) — 2% (W) —Na+np >0
The last equation describes a half plane. Given a woahd considering the path

(X0, Y0)s - - -» (%, Yn) corresponding tav, thenw,_; E ¢ iff (X;,Yy;) is part of the half
plane corresponding t. This is illustrated by an example in Figurel6.2.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6.2: The path for the word aabbababbaabbaaa, wherea marks the
position of the free variable y and half plane correspondirig the formula
¢ =Maj x ((ca(X) A X< Y) V (p(X) A X>Y)).

Below we will show that for each formula of TA(IJ1[<] we can find a set of
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corresponding half planes corresponding to them. To thisgee we need to analyze
all formulas of depth one.

Let ¢ be a formula Majx (1, ..., %) with one free variablg. The subformulas
Y are Boolean combinations af< y, x =y, X > y andc,(X), cp(X), ca(y), eu(y). We let
cap(X) = ca(X) V p(X) andcy(X) = L, and letB be the set0, {a}, {b}, {a, b}}. Then every
subformulay, can be written in the form:

ea(y) A ((x <YAc)VIX=YA )V (X> YA cBg>>))v
Ven(y) A ((x <YAG)V(X=YA )V (X>YA g )),

where BY_, BY., BY.,BY ,BY’ B’ e B. Please note that for every woml.;.;

exactly one of the cIause@y A CB<'> is true.
Given a fixed wordw, thenwy i Eiff

n k
D M Waciyey E gl > K2 = > i | Wiy b i)l > k2
i=1 =1

Let #s (W) = X pep #o(W) for B” € B, then for a fixed the size offi | Wy-iy-j E ¥},
equals

B(" (W<])+# o (WJ)+#3(,'V> (wsj) =

=# W_ +# wi) +n — #, W) — # wW;) =
g (We) +#gp (W) + gy — g (Wej) = #0 (W)
= (#B\(/ll)j,<(w<j)_#B\(I!I)j,>(W<j)) ( Bl . (WJ)+nB(|) #B$},>(Wi))

The inequality above can now be reformulated as:

k k

Z (# 0) (W<J) #E\(/L),>(W<j)) + Z( B\(Ilv) (WJ) + nB(l) #E\(/L)j,>(wj)) > kn/2

The idea is to create two half planes, one for the egse a and one for the case
w; = b. We already fixed the Parikh vector of the word,; if the letters also fixed the
term on the right is constant, and the sum on the left is adioeabination of #(w.;)
and #(w.;). Hence we obtain two half planes, one fgr= a and one fow; = b, such
that if for two wordswy_; andw[_;, with #(w) = #(W) = (na, ny) andw; = w;, and the
marker on the path ofi-; being contained in the same set of half planes as the marker
of the path ofv\/ thenwy_ Fo &= W_, Fo i.e. ¢ cannot distinguish between
Wy=j andw,_;

Since every formula of depth one is a Boolean combinationmwhtilas of the form
of ¢, if we pick any formula of depth one we can use this method tageet of half
planes with the above properties. It is important to noteé i@ exact paths ok and
w have no influence, only the position of the marker has.
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Thus every formula corresponds to a constant number of haifeg for every
Parikh vector i, ny), but the rectangle grows witim{, n,). We show that for a fixed
number of half planes, for an arbitrarily large rectanglabeut by these half planes
there is always an arbitrarily large rectangle inside witipaints contained in exactly
the same set of half planes.

Lemma 6.1. Given numbers,a,, n;, and an rectangle of size at leg&f - n,, 2°- ny),
for every set of ¢ half planes we can find a rectangle insidezef(s;, n;) where all
points of this rectangle are contained in exactly the samefdealf planes.

Proof. We split the interval into four quadrants, each of siZe!(&,, 2°*n;), and pick
a half plane. Since a line can only intersect three quadr@ntsost, there is one
quadrant that is either completely contained in the hali@lar completely outside.
By induction over the number of half planes we get the result. m|

The basic idea to characterize the langua@d AJ,[<]) is the following: Given
a formulag’ recognizing a languade we proceed as above and find for every Parikh
vector f,, ny) a rectangle uncut by the half planes corresponding to théosmulas
¢1,. ..,k Of depth one iny’. We can assume that the formulas have a free variable
namedy. So for each Parikh vectony, ny) we have two word®,, n,) andsp, n,) Such
thatp,, n,) corresponds to a path from the origin to the lower left vedithe rectangle
and sy, n,) corresponds to a path from the top right vertex to the vemgxng).See
Figure[&3B for an example.

S(na,1)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(O!O) a

—

Figure 6.3: Here we choose the rectangle as drawn in the top left corrtes. prefix we choose
is abbb and the gfix is aaaaaaba. The formula= Maj X ((ca(X) A X < Y) V (cp(X) A X > VY))
has no word y.; as model if abbb is a prefix of w and aaaaaba is giswand y points the
a letter between the prefix and theffsy i.e. 4 < j < 10. Hencey is constant on the inner
rectangle. Please not that we have some freedom in chodséngréfix and sfiix for the same
rectangle.

If we now choose two words/, w with #Ww) = #W) = (na, Np) and pe,n,) IS @
prefix ofw andw’ and s, n,) is @ sufix of w andw/, thenwy.j E ¢ <= W_; F ¢
foralll =1,...,kandj=1,...,n,J =1,...,n. Hence all subformulag,, ..., ¢ are
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constant except for the prefix andfx. We can thus define a new language that has
fixed prefixes and gtixes depending on the Parikh vector of the input, such that thi
language is recognized by a formula of a quantifier depththessthe quantifier depth

of ¢'.

This idea has two drawbacks, firstly the technical formahgenwill deal with in
the next section, and secondly the need to choose the rigttgs and sflixes. Since
we modify the language and create a new language with fixdtk@seand sffixes it
is important that the prefixes andfxes added do not change the complexity of the
language. The languag&bbX* for example with a fixed prefix dib becomes trivial.
The best choice is to pick words that behave neutral witheetsip the language as
prefixes and dftixes, but this is not always possible. So once we are done téth t
formalism we will carefully choose prefixes andisxes in Sectiofl 6]3.

6.2 Non-uniform morphisms

The algebraic tool to deal with prefixes andistes that depend on the Parikh vector of
the word will be the non-uniform morphisms. These are mapisithat can be shifted
in a non-uniform way, depending on the number of letters @wtiords, i.e. the Parikh
vector.

Definition 6.2 (Non-Uniform Morphism) Let (S, S, €) be a typed semigroup. Aon-
uniform morphisninto (S, S, €) is a triple @, 4, o), whereh is a semigroup morphism
h: X" — Swith h(Z) ¢ &€ andA, o are mappingst,o : N* — S. A non-uniform
morphism [, 4, o) recognizes a language £ X* iff there is a typed € & such that
we L — A#HW))hW)o(#(W)) € S.

In the following we will show some methods of modifying a nonform mor-
phism, according to the changes we needed in the previotierseEirst as one of the
basics we show that the composition of two non-uniform mmphis again a non-
uniform morphism. Since we defined the notion of a non-unifenorphism only on
the free semigroups, the image of the first non-uniform misrptwill be a subset of
the free semigroup’™.

Lemma 6.3. Assume there is a non-uniform morphisms between to alphabet is
(h, 2,0) is a typed morphism froa* to (£'*,L’, X) that recognizes L. If there is a
non-uniform morphisniy, ', 0’) to (S, S, €) that recognizes 1, then the non-uniform

morphism(h’ o h, (A" o (#(1) + #h + #(0)))(N o ), (N 0 0)(0" o (#(1) + #h + #(g))))
recognizes the language L.

Proof. We prove this by computation.
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Letw e £*, and letw = A(#(w))h(w)o(#(w)) then:

(2 0 (#() + #n + #()) ) (#W) (I 0 2)(#W))

(" o h)(w)(H" o o)(#W))(e" © (#(1) + #h + #(0)) )(#(w)) =
= A'(#W))N (AFHW))N (h(W)N (e(#(W)))o’ (Fw(w')) =
= A'(HW))N (AFHW))h(W)o(#H(W)))o' (Fw(w)) =
= A'(HW))N (W)o’ (Fw(w))

Sincew € L iffw € L’ and (v, 1, 0’) recognizes the languadé, this completes
the proof. O

We need to be able to extend the prefixes anthxas chosen. Thus we show:
Given a non-uniform morphism, we can fix a prefix offsuof the word depending
on the number of letters in the word, and still recognize #@sailt with the same typed
semigroup.

We recall a definition from the preliminaries that we needhia following. For a
morphismh : =* — S, we let #h : N* — N° be the map that mapao #h(w)), where
#(w) = v. This definition is sound sindeis a morphism and so the map is independent
of the wordw chosen.

Definition 6.4 (PrefiySuffix Extension) We call a pair {’, 0") with 2’ : N* — X* and
o IN* — Xt wherev — #(1'(V)) — #(o’(v)) is unbounded for aW € N>, aprefixsuyfix
extensionGiven a non-uniform morphisninf1, o) we say, the prefix extension’(o’)
leads to a non-uniform morphism, (1, 5), whered(v) = A(v+#(’ (V))+#(0’ (V)))h(’ (V))
andg(v) = h(o"())e(v + #('(V)) + #(0'(v))).

When we extend the prefixes andistes the language recognized changes. We
define a cut of language by a prefidtix extension and then prove that this gives the
corresponding change of the language.

Definition 6.5 (Prefi¥Suffix Cut A'~1Lo’"). A prefixsyfix cutof a language. by a
prefix’suffix extension is the language:tLo "t = {w | A" (#(w))wo’ (#(w)) € L}.

We now prove the compatibility of the algebraic definition afprefixsuftix
extension with the prefigufix cut of the language.

Lemma 6.6.1If (h, 1, o) recognizes a language L, then the pr&fiffix extensiorfl’, o')
of (h, 4, o), results in a non-uniform morphisth, 4, o) that recognizea’ Lo 2.

Proof. Letw € X*, thenw € Lo L iff A’(#(W))wo’(#(w)) € L. Since b, 1,0)
recognized., there is a type\ such thati(#(w))h(W)o(#(W)) € Aif w € L. If we set
w = A (#W))wo’ (#(w)), then we get
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A (#W))wo' (#W))) (A’ (F#W))we' (#(W)))o (' (#W))we' (#(W))) =
=(A(H#(W) + #('(#(W))) + #(o' (#W)))h(’ (#W))))h(w)-
- (he" (FW))o(#(W) + #(' (#(W))) + #(0'(#(W))))) =
=A(#W)hW)I(#HW))) € A

iff A’ (#(W))wo’ (#(w)) € L which is the same ag € 1""1Lo" !, O

The next lemma shows that the languages recognized by ni@ramorphisms
are closed under inverse length preserving morphisms addruwshifting, i.e. the
syntactic semigroups are closed under division and spiftin

Lemma 6.7. If (h,4,0) from £* to (S, S, £) recognizes a regular language L, a
semigroup T divides the syntactic semigroup of L and a suBset T, then there
is a non-uniform morphisry, 2, ¢’) to a semigroup oivc((S, S, £)), that recognizes
a language Lwith syntactic semigroufl’, T, ¥) for some unitsF.

Proof. First we prove the lemma in the special case That S.

We let (v, W,), . . ., (W,, W, ) we the set of tuples of words &r" such that this set
maps surjective on syh) x syn(L) by n x n. We define , 1’,¢") : =* — (S, S, &)
where ther; of the non-uniform morphism is the prefsutix extension by, w, .

Since synk) is the syntactic semigroup df, with L = 57(A), for every pair
s, S € syn(), there are elementsr € syn(L) such thatsr e A < Is'r ¢ A. Hence
for every elements e syn(L) there is typeA’ of (S, S, £)¢ such thah™(A) = 7(9).
Also since the types form a Boolean algebra, there is typevery subset.

Now we prove the lemma in the common case. TeC syn() such thafT is a
morphic image off” underh. We can assume th& = h(T’ n A), then we are in the
following situation:

(E+, L, Z) (h—/lg)» (S_” 6/, 8/)>—> (S, 6, 8)

g

I .
(SL.GL &)« «(T".B)—" (T, B)

We pick generators’ such that’* = n~(h"(T")), and letL’ = ='* n L. For all
W € 3" we havew € L’ iff h(n(w)) € B, hence syri(’) < T andL’ = 7"~ (h"{(T")),
hence T, T, ¥) is a trivial extension of the syntactic semigroup foe h(n(2’)). Also
this language is still recognized b$,(S, &). O

In the following we will show we can reduce the block depthlag hon-uniform
morphism {, 2, 0), wherenr,(h(X*)) is commutative, recognizing a languabeby
extending the prefix and fiix by A’, ¢’, and the so constructed morphism recognizes
/l’_lLQ/_l.
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Figure 6.4: m,, ms of Reduction Lemma

Since all languages except group, will have a smaller syistaemigroup when
adding any prefigsufix, we have some condition that enables us to control which
prefix/sutix applied in the construction. Assume we have fixed the Parddtor of
the word recognized, then we want to be able to ensure a rarta@imal number
of letters in the prefix and skix. We will have to functionsn,, ms that describe the
minimum letters in the prefisufix as shown in the next picture. The only condition
on the functionsn,, ms is that the number of letters that are non fixed is unbounded.

Then after our construction, we will have to functiogsts, and can choose
any prefixsutix extension with that has more letters in the prsiiKix yielding a
morphism of lower depth.

The following lemma is the main statement of this sectionitidoe a key tool to
prove the main theorems of this and the next chapter.

Lemma 6.8(Reduction Lemma)Let T’ be a weakly closed class of typed semigroups.
Let L be recognized by a non-uniform morphi@m, o) into a semigroup of the weakly
closed clas¥ =T’ = (Z = P.) and let m, ms : N* — IN* be two mappings, such that
lly = mp(y) — ms(Y)llo is unbounded for ¥ IN*. There are mappingsits : N* — N*
such that for all prefissyfix extensionsl’, o’ with #(1") > t, and#(o") > ts there is

a non-uniform morphisrth, 1, &) into a semigroup of the weakly closed clagshat
recognizest’~tLo" 1.

Figure 6.5: tp, ts of Reduction Lemma
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Proof. Letw € * andh(w;) = (fy, 0w, €). Thenw e L < A(#Ww))h(w)o(#(W)) € S
for some types which is equivalent to

f.(e rjl(gj, €)(do Po))-

[ [f(@: PO 11+ ©)- T1(@w;- (- o))

j<i j>i

fo((92 P2) Fjl(gj, €).€) € m3

by Lemmd:3:3b. We will show that for certain fixed prefijsefixes the value of the
function f, is constant on all words. Thus we can then replacey its only value and
get a morphism to semigroup of.

Since e is the unit and hence the identity &, andZ is commutative, the
subsemigroup,(h(X)) is commutative. Pick a fixed positionthen

fWi ((g/b p/l) ’ H(ng’ e)’ H(ng’ e) ’ (gg’ p@))

j<i j>i

depends on clauses of the form:

@.p) [ [@4. 8 @) [(@n 8 (@ p) €8

j<i j>i

for a types’ of the semigroupr,(X*) € Z @ P. and an elemenigg, ps) € Z = P..
This is again by Lemma=3B5 equivalent to

9u(@ Pr - P)+ ) Gy (P Pr - Po) + Gr(Pas Po) + ) Gy (P Pr. Po) + Gol(Pu - Pr. €) > 0.

j<i j>i

Leto = go(Pa, Pt-Po), 0> = Go(Pa-Pts Po), ¥+ = 9a(€, Pr-Pe)+9s (Pas Po)+0,(Pa-P1- €)
then we can rewrite the expression above as:

Z #,(Woi)o. + Z #,(W.i)os +y. >0

oex oex

If we look at all words with the same Parikh vectorwaswith at leastmg(#w),
letterso in the prefix andng(#w),, letterso in the sufix, we can estimate this sum by
Vimin, Vmax If We check all possibilities for letters in the prefix andisy i.e.:

Vimin = Z(#(r(w) - mp(#(w))(r - ms(#(W)),-) minfo., o>} + mp(#VV)rr O+ Mg(HW), - 0,

oex

Vinax = Z(#(,(W) —Mp(#W)) - —Ms(#W)),-) max{o ., o5} + Mp(H#W),; - 0« + Ms(#W) - - 0.

TeX
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Assume thatmin + Vimax > 0, then we we let
tp(#(w))a' = mp(#(W))cr + r#(W)a'/Z-I

iff o. > 0. and
to(# W) = Mp(#W))-
otherwise. Also we let

ts(#(w))a' = ms(#(w))a' + f#(W)a/21

iff o~ > 0. and
ts(#W)), = Ms(#W)).

otherwise. In this way we assign about half of the letter ®ophefix or sifix so the
sum of the assigned letters is maximal.

We process equivalently ¥, + Vmax < 0. In this way we assign about half of the
letter to the prefix or dftix so the sum of the assigned letters is minimal.

No matter how the remaining letters betwedgrandts are chosen the sum will
always be positive (or non-positive) sinCenf + Vmax)/2 > 0 (< 0). Since we
have finite many lettetr, there is a finite number of, with a finite humbers of
clauses. These clauses depend on the constgntps] of f, like above and for
the finite set of clauses we can apply induction and fix about €L - n letters
wherec is the total number of clauses. Sinfg— my(y) — ms(y)llo is unbounded,
alsolly — tp(y) — ts(W)llo = 27 - [ly — mp — mg(y)llo is unbounded.

Hence if we choose any prefsufix extension ', o) of (h, 4, o), with #1 > t, and
#o' > tg, then the functiond, are constant in all evaluations that appear. Hence we
create a new morphisfnthat mapsr to the value of this evaluation, also the functions
f, and f, are constant in all evaluations sinegh(x*)) is commutative, hence we can
also definel, g, that map a Parikh vector to the the only valijeor f, evaluates to.
The resulting typed morphism recognizes thénLo’~t, by LemmdG.b. O

6.3 Application

In this section we use the reduction lemma, to show thaticeftigpes of) languages
cannot be recognized by aAJ,[<] formula. The essential task in the following
lemmas and theorems is to choose the suitable psefix extension that does not
reduce the complexity of the language recognized to muaadelrecall the situation
of reduction Lemmd&l8, that we some freedom in choosing tkeéxpand sifix
extensions.

We start by showing that we cannot recognize nonabelianpgrethich is easy
since any prefix and s$iix can be extended to a neutral word, which eases the use of
reduction lemma.

Lemma 6.9. MAJ,[<] C Ab
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Sw|l a b ab ba
ala ab ab a
b |[ba 0 b 0

abla 0 ab O
ba|ba b b ba

O OO nlo

Figure 6.6: The semigroup &,

Proof. Assume there is a MJ,[ <] formula that recognizes a language with a syntactic
semigroup that is divided by a non-Abelian group. Then thsrenorphism into
wbpcZ @ P.) by Theorenii4 14 that recognizes a langulagéth syntactic semigroup
that is a non-Abelian group by Lemmal.7. Pick a non-uniforarphism of minimal
block depth that recognizés We can use Lemnia 8.8 with, = ms = e and for any
prefix/sufix extension we get a non-uniform morphism of smaller blocktdehat
still has a syntactic semigroup that is divided by a non-fdmegjroup, a contradiction,
since a formula of the depth 0 depends only on the input lemgthur case the Parikh
vector of the word. O

We will now turn our attention to the varieA o G and show thaL(MKJ2[<]) -
L(DATOG). We use the fact that the varieA oG can be characterized by an
equation to show that every semigroup outsideD# oG is divided by a fixed
semigroup.

This fixed semigroup is syntactic semigroup of the language= X*bbX* (see

Figure[6.5).
Theorem 6.10.S ¢ DAOG = DA =« G iff Sy divides S..

Proof. If S ¢ DA 0 G then there are idempotergsf in a D-class such thagf is in
the saméD-class but not idempotent. Hence the is an elemestgh thae f s= eand
an element such thatef = f, it follows fs = te. We define a morphisia, b}* — S,
with a— fsandb - ef. LetL = h™(h({a, b, ab, ba})).

If we let S’ = h(X*) thenS’ is a subsemigroup @&. Also the elements, f, ef, fs
are in the sam®-class. If we show that these are the only elements indketass we
are done.

Letw = Z*bbx* thenh(w) € S’'(efe)S’. By computation one gets that

S'(efefs = {(ef)*!, e(fe), (fe)'f, (fe) |i = 1,

hencew ¢ L. Letw = [bla*(ba")*[b], sinceh(@) = fs is idempotent and
h(ba) = effs= eis idempotent we get(w) € h(a) U h(ab) U h(ba) U h(bab), and
sinceh(bab) = (ef f9ef = eef=ef = h(b), the result follows. m|

Next we show that, cannot be recognized byNIlz[<] and hence by the previous
theoremCL(MAJ;[<]) is contained inC(DA 0 G).
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Lemma 6.11. Ly, ¢ MAJ,[<]

Proof. Assume there is a ﬁ]z[<] formula that recognizes the langualgg. We let
mp(V) = mg(V) = (W, 1) for a vectorv = (va, V), this ensures that when we apply
Lemmal&.B thentf), > (tp), and alsots)a > (tp)a. Hence we can choose a prefix of

the forma*(ba)* and a skix of the forma*(ab)*. Butw € L iff a*(ba)*wa‘(ab)* C L,
SO we can recognize,, also in lower depthy . O

Finally adding up the results of the section we get.
Theorem 6.12.MAJ,[<] € DAOG N Ab

Proof. This follows from the previous lemmas and the fact th£M<] is a variety
(Theoren D). O

The other language of special interest to prove containmnecgrtain varieties is
Lg,. Bit Lg, is contained in M\J,[<] hence MAJ,[<] can recognize languages outside
of DS. Within DS we get an exact characterization of the syntactic semigraiip
L(MAJ;[<]) in the next section.

6.4 Lower Bound

For the lower bound we look again at the geometric intuitiod abserve that the class
of languages where we cannot apply reduction lemma, hasaagé®metric picture.
Informally speaking these languages have only very limiteddom for the words of
the language, that is there a parallel half planes of cohsliatance that leave only
small corridors. This is shown for the langudgg in Figure[6.Y.

(0,0) a

Figure 6.7: Small corridor for Lg,

With this intuition we define a variety that contains langeiafjithe form described
above.
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Definition 6.13 (Generalized Bicycle Variety)Let B, be the languages for fierent
set of parenthesis of all Dyck words with depth at mastWe letE be the variety
generated by alB,,.

_We give a construction that shows that we can recognizeeaditedE-transduction
of Ab

Theorem 6.14.L(MAJ,[<]) 2 L((---(AbOE))nE...)oE

Proof. If we need to show that (Ab) C L(MAJ[<]) and thatP,(E) € P1(MAJ,[<]),
we can apply the Block Product Princijple_3.40 and we are done.

For the first equation it stices that we can computg(Z,) for everyq e Z*. Let
L={w|w =0 modg}, then syn() = Z,. We can describe this language by

Maj XxMajy(X<YVy,...,X<Vy,T,..., T).
————— ——

q q-2

Since I\/KJZ[<] is a variety all languages with syln( = Z, can be described, hence
L(Ab) € L(MAI[<]).

For the second equation itffices to show that we can compuggon every prefix,
i.e. given a wordwv,, we need to check ifv., € Bx. This can be done by the formula

Jy < XA (=Majy (oY) VY > X =(caly) VY > X)))A
k
\/ (=Maj y (cay) VY > X (oY) VY > X), caly) VY > X =(en(y) VY > X,
j=1

X£EY, L,...,X#Y, 1))
k

The first line checks that the number 86 in the prefix is never greater than the
number ofa’s and the second line checks that the numbexr®ofs not greater than the
number ofb’s plusk. O

SinceSL C E we get as a corollary:
Corollary 6.15. L(MAJ[<]) 2 DO N Ab

Together with the upper bound we get characterizationsmkessubclasses of the
regular languages.

Corollary 6.16. L(MAJ,[<]) N L(DS) = DO N Ab
Corollary 6.17. L(MAJ,[<]) N L(G) = Ab

The language where we have only limited choice in the prefiksafiix, are exactly
the languages where we cannot get a tight upper bound, arieeaitter hand we can
recognize all these languages by the previous theorem weatare.
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Conjecture 6.18.MAJ[<] = (---(AboE))0E...)OE

The problem with this class is that it is not very well known,teere no known
algebraic characterization in terms equations, whichdsaws with the problem that
even if we could prove for given equations that they are asnaifilled, we do not
know which equations to test.

6.5 Summary

In_this chapter we aimed to characterize the regular larggiagcognizable by
MAJ[<] formulas. To that goal we first assigned paths to words atitphenes to
majority formulas of depth one. We then showed that AJM<] formula cannot
differentiate between two words where all points of the path lavaya in the same
compartment. Since a finite number of half planes cannotragpall points (Lemma
[E1) we can always find a rectangle which is not intersectetthése half planes.

Since the geometric proof might seem intuitive yet not vabi we proved
the same conclusions in algebraic terms. Here we neededim&orm morphisms
(Definition[6:2) to simulate the geometry and obtain the ctidn LemmdEB.

We could use the reduction Leminal6.8 to reduce the block apitie typed semi-
group recognizing a language by the cost of prependpgending prefixgsutixes
to the language. Having a lot of freedom in choosing the pesfand stiixes for a
concrete language it was nofiittult to detect whether it is recognizable by AM[<]
formula. In order to use this result to prove certain vae®tio be recognizable we
needed a concrete characterization of semigroups not indhety as in Theorem
B.10. We used this and show that we can recognize only laeguia®A o G N Ab.

Some languages though, like the bicycle, allow only for fewefiges and sflixes
to be appended, e.g. in the case of the bicycle we can onlyndpfe)* or (ab)*a,
otherwise the remaining language becomes trivial. We ctijed that all languages
like the bicycle are recognizable byAd,[<]. We could show that languages with a
syntactic semigroup in{(((AboE))oE...)0E 2 DO N Ab can be recognized by
MAJ,[<], whereE is the variety spanned by the generalized bicycles (Defim.IB).

6.6 Further Research

Of course it is not satisfying to achieve an upper and lowemnkdout not characterize
the exact variety. The question still open is whether we caengl the current proof
technique to obtain a better upper bound. One possibilggmrating the languade
with a languagé.; with only few possible prefixes andfixes, so it is, geometrically
speaking, bound in some small corridors, and a languagéhere we do not need the
half spaces generating these small corridors. While pmifay induction orL; is easy,
we still do not know how to handle the problem for where we know the dierence
in letters to be very restricted for every prefix andfisu
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Another possible direction of research would be a charaetgon of the regular
languages for the case of an unbounded number of variablesvewr, any upper
bound below all regular languages or any lower bound at®yg would already
touch the question if TE= NC'; actuallyL, ¢ MAJ[<] implies FO[<, +]-uniform
TC® £ NC!. For unbounded variables the strong block product would dzl and
hence the paths would not be Zhx Z but in some non-commutative group, So we
would need some “non-commutative” geometric intuitiontfog proof to work.

Another interesting question is whether we can apply genmietuition to other
classes of logic. The FO quantifiers for example yield hadinpl that have borders
parallel to the edges of the rectangle and with a constatatrdis. Hence all words with
a certain minimum length quality as prefixes andfigas implying the equations of
DA. Modulo quantifiers are étierent since we cannot describe them by an inequality,
but still they might be feasible by this approach.
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Chapter ;

A5 not In .
FO+MOD+MAJ»[reg,arb-un]

In this chapter we will extend majority logic with two varias as far as we can
while proving that this class still does not contain all reguanguages. Since
already (FO+ MOD),[<] contains all group languages with solvable syntactic gsou
they only difer in the group languages with syntactic semigroups haviog- n
solvable subgroups. Here we show that despite extendingltes of logic to
(FO + MOD + MAJ),[reg, arb— un] we still cannot recognize a non-solvable group,
like As.

We will first show the result without arbitrary unary prediesand then extend it
to the unary predicates.

7.1 A5 notin FO+MOD +MAJ ,[req]

In this section we assume that we have a non-uniform morplishrecognize a
language with a non-solvable syntactic semigroup and shep Isy step that with
the usage of a neutral letter we can eliminate the extra gageh and quantifiers. First
we will eliminate the succ predicate, then we show that theutmquantifier can be
replaced by a modulo predicate, which we eliminate in the s&p, and finally we
have a MAJ,[ <] formula. Then we can use the reduction lemma of the prevcbapter
and reduce the block depth.

We letSemiLin be the smallest variety containing.(Z) for all numbersp > 2
and ¢, 7). All semigroups in this variety divide direct productsdfwith a typeset
generated by a semilinear set.

In the next lemma we show that in the presents of a neutrak et can modify a
(non-uniform) morphism such that it still recognizes thenedanguage but does not
need the predicate grolfy,.. at the lowest level anymore.

For a logic formula this means that we do not need the successdicate in the

85
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innermost subformulas.

Lemma 7.1. Let(h, 4, 0) be a non-uniform morphism I @ (SemiLin @ P, g, that
recognizes a language L with a neutral letter e, then theeensn-uniform morphism
(h,2,0)to T @ (SemiLin @ P.) that recognizes L.

Proof. The basic idea for this construction is to fill the neutraldebetween any two
letters of the word, then positions reachable by one suatigate can be computed
by the morphism. The following computation proves this. Atemative way to
see the result directly without heavy computation is thagufices that after this
modification the computations in the predicate gré4p., can be computed in the
submonoid {., 0)Ps,c{ f-, 0) which is Abelian. But since it is not straight-forward to
see that an Abelian predicate semigroup cannot computsutteepredicate we give a
computational proof.

We define an endomorphism &,(L) by o — ese. Then by Lemm&&I3 there is
a nonuniform morphismh(, ', ¢o") wherel' : ¥* — T @ (SemiLin @ P, g, With
(o) = h(eoe), (V) = A(v+ (2lIvil. + 2)Ee)h(e), o' (v) = h(€)o(v+ (2IMl1 + 2)Ee). Also
(h, 2, 0’) still recognized. sinceeis a neutral letter oE.

Letw e Z* andh'(w;) = (. 9. P). Thenwe L < A'(#W))N (w)o’ (#(w)) € T
which is equivalent to

file (11, P, )
H fo (02 PO 11k, ). (116, PG, P}
(@ PTG ) ) € T
by Lemmd33b.
A computation shows thap\p’ = p), pP’p" = p" and p'p, = p, (see the

multiplication table in Figur€4l2). To reduce the numberca$es we examine only
words of length> 1:

fi{e @up, + (3 PG, ) + PG, 1))
G - (G0, + (3, 9, 0) + P, )

[ fv’vi((gﬁp’ +( 2 PG P) + PG> P (G, P, + (2 PGy P,) + P, p;))-
j<i-1 ! 1 !

1<i<n 1>+

(@ + (P, P)+ Pidh, - PO (6. P)))

j<n—

f(@p+ (2 PAGy ) + Pl PL): e) emT
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We extend the range of the uniform sum by adding a term andasibt in each
argument.

fi(@ (P~ PGP, + (2 P, ) + PG, P))
fv’vl((gz, PY: (G, P, — P'Gh, P, + (,-Zl P'g, ;) + PG, p;))-

[ fv’vi((g; P+ (JZ PAGw, P) = PG -1P’ + PiGw_,» P,

1<i<n

(S Sl e Y AR (JZ P'dy, P,) + P'g,, p;))-
(0 + (2 D1, ) PGl P+ PG, ). (6 )

(000 + (3 PGl )~ Pk, P+ Pigh, D)) € T

We used often terms of the forgj, p, — p'g;,, p, to keep the sums uniform. Since
these functions ar&. valued the inverse element always exists. Also the sum is
independent of the letter singe — p'g.. = (GeP+ PY-P+ PG) — P(GeP+ PGP+ PG) =
geP— PGp. Equivalent for a shift on the left we gad,.p’ — 0., = (JeP+ PG-P+ PG) P—
(9eP + PY-P + PG) = PGP — PG We letg) = ge — PGe aNdgr = Ge — GeP.

The diterence in the arguments f@f, andf; from any otherf, is thatg) is not
shifted byp’ from the right inf;, andg, is not shifted byp’ from the left inf;, . We
computeg;, — g,p = (9iP + Pade) — (9P + Pa0e)P = Pale — PaleP = Pa0r, and also
g, — PY, = (GePy + P%) — P(TePo + PL) = Ti Py

Substituting these definitions yields, please n@iteg = p/,gr andgipp, = gip;:

fﬁ(e, @p, + (; P'gy, ) + P'Y, p;))-
£, (0P + Pl P, (9P, + (3, P, P0) + PG, )}

ﬂ fv’vi((g; P+ (X PG, ) + Pagr, P, (9P, + (JZ P'G, P,) + PO, p;,))-

1<i<n <!

fv’vn((g; P+ (2 PGy ) + PG ). (G, + PO, p;))-

j<n

@ + (3 g, ) + Pl B €) € T
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Now we can put everything under the product over
fé(e, (9p, + (; POy, PL) + PG, p;))-
]i_[fv’vi((g; P+ (2 Py )+ PG PO)- (@F, + (2 PG ) + PG p;))-
U@ + (2 pig, ) + Pl ). €) € T
Since the sum is commutative:
(f;(ap,, p’))(e, ((§ POy, P,) + 'Y, p;))-
]i—[((p;gr, P) fu (9P, p’))((g; P+ (JZ P9, P, |o;),((j2>i PG, P,) + P, p;))-
(Pigr M) E((@P + (2 Pl P). P, €) € T
We letg; = p'g;p’, g, = P'g, andg; = g,p":
(ti(ap, p)(e (2 g/ + . p)))
]__[((p;gr, P) fu (G, p’))((g’j + (X Pagw,)- P ((J_Z>i O, P5) + 9, p;))-

j<i

(Pigr D) ED((@ + (2 pigl). pi). ) e maT

(titap,, p)(e (11}, 9. r))

j<i j>i

[ 1(Pige- P T (@p P((G PTG ©): (T1(6k- )G, P)))
((Pigr P (07 POCTI(GL ). €) € maT
So we can define
h(e) = (P39 P) f (@1 P, P). 91 ©),
AV) = (f1, (@R, P)- 97 P,) andglv) = ((Pgr. P) /.97, p,). Then 6, 2,0) recog-

nizesL and maps t@ @ (SemiLin @ P.), since all semigroups where the one is the
only unitisinP.. O
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In logical terms the following lemma shows that we can modifgodulo quantifier
to a modulo predicate for the innermost subformulas if weogaize a language
where the syntactic semigroup is a perfect group. This isrga general idea that is
independent of the logic class and could be easily exteraether semigroup classes.

Lemma 7.2(Commutator lemma)Let T be a weakly closed class of typed semigroups
and(h, 4, o) be a non-uniform morphism to a semigrouplira (SemiLin @ P.) that
recognizes a language L where G is a subgroup of the syntsetigcgroup, then there

is a non-uniform morphisrth, A,) to a semigroup off @ (SemiLin @ P.), such
that |z,(h(Z))| = 1, that recognizes a languadewith syn(() = G’, where G is the
commutator group odyn(L).

Proof. We can assume that= 71(e) by Lemmd&.J.

First we show that we can find wowd, for everyg € G such thaty(w;) = g and
that all words have the same Parikh vector.

The subgroupG’ is generated by all commutators &, i.e. all elements
[a,b] = albtabfor a,b € G. We define two words for every paa,b € G.
Sincen is surjective for everya € G there is a wordw, with n(w,) = a. We let
Ugp = WaiWy1WaW, andVap = Wa-1WaWy1Wh, thenn(uap) = [a bl andn(vap) = €
whereu,, andv,;, have the same Parikh vector.

Unfortunately the set of commutators is n@t but only spansG’. Since the
commutators spa’ for eachg € G’, we can compose a word from thgy, for
a,b € G, as above that maps tpi.e. there ared?, b'?), . .. (aﬁ%), b(g)) with n(Ug) =
whereuy = Ugo 1o - - U0 .- Also we have a word with equal Parikh vector that maps
toe vy = Va(lg)’b(lg) .. Va%)b%) andn(vy) = e.

Now we letw; = Uy [[gecn(g) Vo> thenn(wg) = g- e = g. Also the Parikh vector for

all W is the same since

HWy) = #(Ug) + > #(vg) =
geG’\{g}

=#Vg) + Y #lvy) =
geG'\{g}

= ) #(vy)

g/EG/

We now let¥’ = G’ and define a morphisii : £¥* — T @ (SemiLin & P.) by
h' (o) = h(w,). We also adopt the prefix andféid functions’(v) = A(||Vly - #W)),
ando’(v) = o(|IVil1-#W)). Then @', ', 0’) recognizes all words that are products equal
to e, hence the syntactic monoid@s. O

Finally on the logic side we show if we recognize a languagé wineutral letter
that uses the a mod -predicate can be also recognized witth@utmod -predicate
in the innermost subformulas.
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Lemma 7.3. Let h be a morphism td @ (SemiLin @ P.) with |m(h(Z))l = 1,
that recognizes L with neutral letter then there is a nonfarmn morphismh to
T = (Z @ P.), that recognizes the same language.

Proof. Let h map to T,%,9) = ((Z% SemiLin @ P.), where T,%,5) € T,
(z°,SemiLin € SemiLin and P. € P.. Let S be a type of the semigroup
(¢, S emiLir) andgs be the period of the semilinear set if there is #liset greater than
gs we choose a multiple afs. So for any vectov € Z°, we know thafz| zqve 8} is
a union of QZ~,Z". We choose g = [[sQs.

We leth' (o) = h(ce®™), 2'(v) = Av+ (d - 1)IMl1Ee), 0'(V) = o(v + (q - D)Vl Ee).
Then (v, 2, 0’) recognizes the same language.

Also a wordw is in L iff

file (11, 9)(ci. 7))
[ 15 (@ P16k, 0. (1166, (@, P))
(@ PTG, 9. ¢) € maT

by Lemmd3.3b.
Fix a fixed positiori, then the value of;, depends on clauses of the form:

gi(& psp,) + (JZ G, (P PrI,)) + 9r (Pa, Po)+
+ (2 O, (PAPs, P,)) + 9, (P Pr, €) € 1S

j>i
Since @, .€) = (9w,.€)? = (qdw,,€) by the choice ofg, we need to check if
the sum above is greater, equal or less than 0. Hence theZyg@gé ,0 sufice
and sinceZ,{Z*,7,0}) divides ¢,Z*)? by Lemma3.1b, we have a morphism to
(T,TL.H o (Z,Z2)Y* e P)eT o (ZaP,). O

Theorem 7.4. The typed semigroups @fbpcSemiLin @ P. g cannot recognize
regular languages with non-solvable syntactic semigroups

La, ¢ L(wbpcSemiLin @ P.gycd)

Proof. Assume As € wbpcSemiLin @ P.g), then there is a semigroup
(5,6,8)=(8,2,8) m ((Z° SemiLin @ P g¢c) With (Z°, S emiLin) € SemiLin and
P< suce € P<suce that recognizes, by a non-uniform morphisnh( 4, o). Choosing a
typed semigroup of minimal block depth we can assugigd’, £’) does not recognize
LAS'

Now we can apply Lemmia—.1 and get a non-uniform morphisn$tod’, £’)’ @
((Z¢,SemiLin @ P.) with P. € P.. This enables us to apply commutator Lemma
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[2 and get a non-uniform morphism t8’(&, £’) @ ((Z°, SemiLin @ P.) where
Imo(h(Z))] = 1. Finally LemmalZl3 modifies the morphism to map into
(s,<,8Y o (Z,72Y)° o P.) for (Z,72%)° € Z. But then reduction Lemmia8.8
gives a morphism to’, &', £’), a contradiction to the minimality o5, S, €). m]

7.2 Arbitrary Unary Predicates

Now we turn our attention to arbitrary unary predicates. ptaof idea is essentially
the same except that we need to extend the power of non-omifasrphism in such
a way that they can compute arbitrary unary predicates &&. fBut first we need to
define the algebraic structure we are working with.

We letN be the variety generated by all typed semigrodps&, 1). This variety
of typed semigroups recognizes exactly the variety geeéray all unary languages.
We letP,y,_un be the variety generated by all typed semigroup&)in {0, 1}, {1}) @ N.

Please note that although we allow direct product in algéhisavariety cannot
recognize binary predicates, that cannot be decompose8atlean combinations of
unary predicates. It is clear thdt, () is the only unit of these semigroups. Assume
L C Z*®{x, y} isrecognized by a semigroup{, {0, 1}, {1}) @ (N, %, 1). Then thereisa
types§ such thaw,.;-; € Lwithi < jiff (1,i-1)(9x nx)(1, j—i—1)(9y. ny)(L, n—j) € 8.
Which is by Lemm@&3.35 the cad@gy(i—1, n—i—1+ny)+gy(j—2+nx, N—j—1) € 118.
Since the image aody, gy is finite, i.e. either 0 or E U,, and the constants,, n, used
are of a finite set, this is a Boolean combination of an unaegigate forx and an
unary predicate foy. HenceP,,_yu, IS @ predicate group for the unary predicates.

We let P succarb-un= P< V Psucc V Pan—un b€ the smallest variety that contains all
unary predicates as well as order and successor. Also we let

Warb—un = Wpr(Sem”—in O P<,succarb—un),

W;rb_un = SemiLin | P<’succarb_un anderb_un = Wgr_bl_un | (SemiLin o] P<’succarb_un).

We show that we can add block with such a predicate group,@f,, on the right
without increasing the block depth.

Lemma 7.5. \/\:grb_un is closed under blocking withP,,_y, from the right, i.e.
Wd

_ d
arb—un g Parb—un - Warb—un'

Proof. Let P, P’ € Pap_un, then

(T,T,9) = (SemiLin @ P)) @ P’ <

<(T,T,9) = (((SemiLin @ P) @ P)x P’) <

<(T,T,5) = ((SemiLin @ (P P)xP))xP) <

<(T,T,5) = ((SemiLin @ ((P @ P") x P")) x (SemiLin @ P")) <
<(T,T,9) =@ SemiLin®> o (P @ P") x P?)
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|eee*eee*ee* e ee e e & x e e e e £ x € € x e e e

Figure 7.1: A sample restriction

Also ((P @ P’) x P?) is a predicate semigroup henceRgy_,, and SemiLin is
closed under direct products hence the claim follows. O

In the following we modify morphisms in a more extreme waythathe conse-
guence that they do not recognize the same language anyBatrstill we will have
an infinite set of words, some in the language some outsidd, that the modified
morphism can still check for this subset if a word belongitolanguage. We call this
subset of words a restriction and formalize this in the foifg.

Definition 7.6 (Restriction) A restriction is a mag : N* — (X U {*x})*. We say that
a wordw is in the restriction if for every we havew; = £(#(W)); or £(#W))i = . A

non-uniform morphismH, 4, o) with restriction recognizes a languagef for every

wordw in the restriction we haver € L — A(#(w))h(w)o(#(W)) € A. A restriction
is good if¢ maps toe, x, whereeis a neutral letter ok, and there is a constaosuch
that for eacng there is an > ng with #,(£(n)) > ¢/n.

We consider only restrictions that map positions to the naglgtter. In this way a
word that is in the restriction belongs to the langudtjthe subword at the-positions
belongs to the language.

Lemma7.7.Leté : N* — {*,0,1,...,P}, where there are words of unbounded Parikh
vector such thak appears at leagfv||;/c times in&(Vv), then for every numberd N,
there is a subword v {x,0,1,..., P}*, with#,(w) = | there are words of unbounded
Parikh vector where w appears at ledst|,/(c?1?(P + 1)%) times non-overlapping in

£(V).

Proof. First we show that in a worev are on averagévil:/(c?l?) non-overlapping
factor words with at leadtx’s.

Pick a word of lengtm = c2?n’(P + 1)% with at leastn/c x’s and divide it in
m = cln’(P + 1) non-overlapping factor words of length. Assume there are less
thank = n’(P + 1)® words that contain at leabstars. Then we can approximate the
number ofx from the top, since there are less thawords withl or more stars and
the remaining words have less thastars. So there are at most

k-cl+m-(I1-1)=
= (M(P+ 1) — 1)(cl) + (N (P + 1)1 — 1) =
=cln(P+ 1) —cl+clPr(P+ 1) —cIn(P+ 1) =
=clP(P+1) —cl=
=n/c-cl
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x’sin the wordj.

But then there are at mosP (+ 1) different words of lengtltl, hence of the
(P + 1) words withl x’s, there is a fixed word with stars that appears at least
n’ times. O

Now we will use this lemma to find equal non-overlapping sutmspthen we fix
all x-positions outside these subwordsegoand replace each of these subwords by
a x-position. In this way we construct a new morphism where,aifi yyo back to
the old morphism, each position has the same number ofdeatiethe prefiysuffix
independent of the choice of the letters at #ipositions.

Theorem 7.8. L, ¢ L((FO+ MOD + MKJ)Z[reg, arb—un])

Proof. We will do induction on the block depth. We will use a resioatin the
induction that restricts the words allowed in the input. Tde=a is that we can restrict
the words allowed input in such a way that formulas of depthth ane free variable
depend only on letters in a window around the free variabtéthe position of the
variable. By choosing a suitablefiirent morphism we can the replace these formulas
by unary predicates and get a formula of lower depth.

Assume there is a morphishinto (S, S, &) € T @ (SemiLin @ P syccarb-un)s
that recognizes , with the good restrictio. We will construct a morphisr’ into
T’ @ Pap_un that recognizes with a good restrictiog’. Then by Lemm&<15 we can
reduce the block depth by one.

We assume the truth value of every predicate to the left antleaight of each
star in the restriction is the same. This is possible sineeetlare only finitely many
predicates involved.

Now we will show that we can apply a similar trick as commutdtemmalZ.P.
We choosey; as in commutator lemma, and let |wg|. We use Lemm&77 to get
a wordw. We may assume that does not start nor end with-a. We letwy be the
wordw where thex’ s are replaced by the letterswf. We letu : (XU {€})" — X by
h(g) = wy andh’'(€¢') = e. We define a restrictio#’ such that the image ¢f is in the
restriction of¢, due to Lemma&717 the restrictighis good.

le eve o [coxerser | xxeexe [corexxor]seeossssee [coxerses loxs [coxerses ee|

VARVRVAY,

|eeeee:|eeeeee|zleeeeeeeeee$ x Jeeel |ee|

Figure 7.2: Commutator Lemma in the presents restrictions

Please note that morphism is not a typed morphism sig®g)) # 73(h(€)),
but we can still consider this as a semigroup morphism. Also kmow that
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m3(h(g)) = m5(h(€))*, wherex € N. But for P.g,c We know that the unit is an
idempotent, and since we consider only words wherexhgositions are filled by
letters ofX, i.e. note, for a fixed restriction we can replace the unary predicate
semigroup such that we can assumBi(g)) = m5(h(€)).

Let (f/,g., p’) = W(0), then by Lemm&=3.35, we ad¥ as a neutral letter ta,
then we knoww € L iff

[ fv’vi( [1(gl P T1(G% p’)) e mT

We want to show that the value @f, depends only on the positionThis is clear
since the prefix and $lix for a fixed positioni have, independent of the input, the
same Parikh vector and the unary predicates have the same atakvery position
except were the lette¥ is, but this letter is fixed by the restriction. We need to show
that for any constanty, p;) of f;, the following product is always in the same type
independent of the wondl chosen.

j[li(ng,-, P) - (g py) - j[[i(gsv,., p)es =

7i—1 7i—1

> G (P P ™) + g (P P + X g, (PR T p) € a8

j<i j>i

We what to show that the equation above depends onlyasdw;, but not on the
wj for j” # j. Assume we have two wordgandw’ such thatv; = w;, we will show
that the equations above evaluate to the same types.

Please note that the value of t{mJ is independent of the input, and depends only
on the order of andj.

Now we have only the problem that we extended the alphabetrignelettere’.

But the lettere’ appears exactly at some positions, so we can find a unarycatedi
that marks these positions, and replatéy e. So on the algebraic side we need to
enlarge the typed semigroup by a unary predicate semiguipbecause of Lemma
[/1, this does not increase the block depth.

So now since the type of the product above depends only ondbiign, we
can interpretr,(h'(X*)) as a unary predicate semigroup, also by the block streictur
the is only one constant in the computation, hence we camcepb(h’(X*)) by a
semigroup ofP,y_un. As mentioned before applying Lemial7.5 we get a morphism
to T’, completing the proof. O

7.3 Summary

First we extended the proof of the previous chapter to amyittommutative monoidal
guantifiers. We could have still provide a geometric prootto$ which is intuitive,
but fails to be easily checkable. So this proof was done cetalyl algebraically.
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In LemmalZ1l we showed that we do not need a successor peedioathe
innermost subformulas) if the language to be recognizedahasutral letter. We
proceeded to show that for perfect groups we can replace tuilm quantifier by
a modulo predicate (in the innermost subformulas), see agator Lemmd7]2).
And finally, in the presence of a neutral letter all modulodicates (in the innermost
subformulas) could be removed from the formula. So if a mérdeoup is recognized
by a formula of (FO+ MOD + MAJ),[reg], then we can assume that the innermost
formulas have only the order predicate. This enabled usdaaeduction LemmBa3&.8
from the previous chapter to reduce the quantifier deptheofahmula. .

We concluded that a perfect group is not recognizable by a(FOD+MAJ),[reg]
formula.

In the second part, we replaced the proof idea of a fixed prefiksaffix by a
restriction (DefinitiodZ16). Restrictions fix some of thgirs while they do not fix
others. Restrictions are quite often used in circuit théeny. [ESS811]), where some of
the inputs of the circuit are fixed, but have hitherto not beéefmed for logic formulas
or algebraic structures.

The restrictions allowed us to annihilate the power of thteary unary predicates
by considering only positions of inputs such that all pratks always have the
same value. We could have still given a geometric intergicetaof arbitrary unary
predicates, but the intuition would lead to false results.

So in Theoren 718, we again applied the commutator Lerima dopted to
restrictions to show that no (FEMOD + MAJ),[reg, arb— un] formula can recognize
a perfect group.

7.4 Further Research

Allowing for only two variables imposes a severe restrigtom the possible formulas,
but we will argue that in the presence of prggutfix mappings or restrictions this is
rather a restriction problem of the uniformity.

The construction of prefisufix mappings as given in Definitidn 6.2 or a polyno-
mial version of a good restriction similar to Definition]7.@wd allow to overcome
this by padding words with polynomial maeig. Thus a circuit of polynomial size for
any word is a circuit of linear size for a padded word for #isiently long padding.
On the side of logic this is less intuitive, but with arbitrgredicates for a formula for
a language. there is a two variable formula fdr padded with sfiixes of polynomial
length.

In a more uniform version, i.e. allowing less predicatess tibservation is not
true any more. So what is a minimal set of predicates thatéhagion is true? More
general given a set of quantifiels what are the minimal sets of predicat@ssuch
thatL € Q[¥] iff a polynomial padded version &fis in Q,[B]?

We know that any sep equipped with a tuple predicateffges, but even among
the tuple predicate tuples there are various possibiliteonsider. The question is
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therefore, can we extend the predicate set in this sectiom that it contains a tuple
predicate? Be warned that this would already separate niform TC® from NCL.

Another interesting question isfithe Lemmag 7]1 and 7.3 can be modified to
show a Crane Beach like result forAJ,[reg], i.e. all languages with neutral letter in
MAJ;[reg] are in MAJ,[<]. This might lead to a more straight-forward proof for the
results in this chapter.
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Conclusion

In this thesis we focused on the interplay of logic, algebrd aircuit theory. While
their interaction was previously mainly studied for theeca$ regular languages we
extend the focus to non-regular languages and show thaasiotinnections can be
proven. One of the big open questions in circuit theory istivbiethe classes Tand
NC* coincide, which is equivalent to the question whethgre TC. In this thesis we
established some separation results for subclasses®@h&Cmight finally result in a
separation of T€from NC.

We started by giving an algebraic characterization forteaky logic and circuit
classes. Of course, any such characterization includegsamaiar languages and
hence finite semigroups are noffistient, whereas infinite semigroups are too cum-
bersome. The key ingredient to this characterization wasyped semigroup which
allowed for infinite semigroups, taming them by additiongledraic structures. The
theory of typed semigroups coincides with the theory ofdisgmigroups in the finite
case, additionally allowing for finer correspondences,ia@chatural extension for the
infinite case.

The known connections between algebra, logic and circugievextended in a
unifying proof. For this we needed to extend the block pradodyped semigroups.
One must exercise caution when defining the block producamoinfinite structure,
since the power of an infinite object is hard to handle. Usimg block product
principle extended to the infinite case, and to unbounde@as in logic as well,
we gave a full picture of the connections between logicutiscand algebra. It should
be noted that this proof covers all known connections in thigefcase in a much more
general way.

Examining restrictions like two variables, the relatioms$vieeen two variable logic,
weakly blocked semigroups and linear size circuits, wese generalized to arbitrary
guantifiers and to arbitrary predicates using weakly blddigeed semigroups. In this
case, too, the known proofs for these connections weresntiovered by our proof.

Therefore this paper gave an algebraic characterizatioarfy class of logic in
terms of typed semigroups. Having found this charactedmatie can also easily see

97
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when an algebraic characterization in terms of finite seouigs exists for a given
class of logic. On the algebraic side restrictions like artted number of variables or
a bounded quantifier depth can also be modeled.

Having found this algebraic characterization we apply ithe case of majority
logic or threshold circuits. The superordinate goal is fmesate TE from NC'. Since
a lot of efort was put into this by other researchers with limited sasce.g. T€is
still not separated from NP, it is not surprising that we doaszomplish a separation
of TC? from NC!. So we restrict ourselves to the subclass of M4Jpgic with only
two variables.

Using the algebraic characterization via typed semigraugHis class of logic,
which is basically a direct product of the integers that canblocked weakly, we
embed it into the Euclidean space. We then show by geometramshow to describe
which words can be separated by a majority formula of depth dntranspires that
there is a correspondence between these formulas and lepesin the vector space.
It is intuitively obvious that with a constant number of hyplanes an arbitrarily
large cube cannot be split in such a way that all integer ¥bpgnts are separated.
Translated back to our logic this gives us two words, havirgggame truth value for
all formulas of depth one. _

Using induction we can give an upper bound on the power 881M] formulas
with two variables. Using geometric intuition there seenbéomany possible exten-
sions, but in order to give clean proofs we will formalizerthesing algebra. Our
algebraic concept allows us to enlarge the allowed quangiéeand predicate set to
show that FO+ MOD + MAJ[reg arb— un] with two variables cannot recognize any
language with a non-solvable syntactic semigroup.

The techniques introduced herdtfdr completely from previous attempts, and it
appears to be likely that they can be extended to bigger astes of T€ or even
TCP. We touch on some possible ways of extending the given pindfe end of the
chapters, and will now finalize this thesis by motivating goather open questions
that could lead to a separation of ¥&nd NC or at least from NP.

Open Questions

We will discuss some possible direction of further resedrere, involving the open
question whether TC= NC!. Open questions that are more specific can be found at
the end of each chapter.

The major open question remains whethe® <€ NC?, but we can state some
intermediate steps on the way of showing such a separasatt.r€urrently the largest
class logic is (FG- MOD + MKJ)Z[reg, arb— un] which we can show to not recognize
LAS'

Intermediate open questions are therefore: Can we extararoof to addition, or
generally speaking is it true thig, ¢ L(MAJ,[reg, +])? Showing this would still be a

smaller step than showing thiat, ¢ L(MAJ[<]), since the latter class of logic already
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contains addition. Since we do not know whether majoritydagth three variables
is weaker than with four variables, an intermediate stepdcba examining whether
La, € L(MAJ3[<]) (we give an algebraic characterization for this in Sedddd). Still
unsolved but related is the question whetBé@1AJ;[<]) containsL(FO + MODI<]).
To give a warning of problems that seem easy at first glanceknee that showing
L(MAJL[<]) N REG # L(MAJs[<]) N REG would imply TC = NC.

In a perfect world. Theoren[ 5112 states that $@re the languages recognized
by a morphism to block products of the integers. In the specse thah(X*) is a
group, all problems become decomposed. Assume a groupdgagus recognized
by a morphisnh:

LX) — (S, S, &)

ln /
(SL, G, EL)

We assume here tha,(S, €) is the image oh

The morphismr is a group morphism from the infinite grou§, (S, €) to the finite
group 5., S, EL). Since G, G, €) is a subgroup of a block product of integers it is
solvable, and by the morphismit follows S, is also solvable, hence we can only
recognize group languages of solvable groups.

So what destroys this simple situation wH&R&™") is not a group? First of alt is
not a group morphism any more, so the preimage of an eleme\t and its inverse
are not a set of elements B and their inverses, but could be unrelated. Since a
block product of the integers with themselves already doatihe free semigroup, we
can pick nearly arbitrarily two elements in this free sermigr and map them to an
element ofS, and its inverse. Secondly and even more frustratingly weatewen
have a meaning of solvability for the semigroi) €, £). Some direct possibilities
come to mind, but all of them seem to fail.

If hrecognizes a group language a8&d&, €) is a subsemigroup of group (T, F)
we still do not know whether there is a subgroupBf, F) that recognizes the same
language. We know some cases where this is impossible, &angbe if one allows
all types on the block product of the integers, but this is enarconstruction of a
counter-example than an application to the case of majlanityuages.

Even if this is not possible we could extend the alphabeby X, and let
h(c) = h(c)™X. This construction however modifies the language beingcsgeized,
and yet for simple languages we have no control about the aegukage recognized
by the same type when not restricting the morphisheavily.

As a last thought in this direction, it is not really necegséve have the notion
of an “inverse”, it would sffice to have a “commutator” notion in our subsemigroups,
because we would have the notion of “solvable”. There areymeays to redefine
“commutators” for the blocked integers in such a way thay tteamain “solvable”,
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but again we need to extend the imagehpfwhich modifies the language in an
unforeseeable way.

Still this might be a viable way and another step towards gebeinderstanding
of the low complexity classes. Another promising contimatwvould be applying
typed semigroups to other circuit classes and reprovingvknesults like parity not
in AC® algebraically to gain deeper insight, or tackling probléike Layp in CC by
approaching it with the uniform circuit classes of our algeb
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