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Zusammenfassung

Eine der Gründe für den Erfolg der Mathematik ist die Tatsache, dass es ihr immer
wieder gelingt scheinbar unzusammenhängende Teilgebietemiteinander zu verknüpfen.
Diese Verbindungen erlauben es Methoden und Einsichten, die für ein Gebiet gefunden
wurden, auf das andere anzuwenden und die wechselseitige Befruchtung führt oft
zu neuen Erkenntnissen. Diese Dissertation befindet sich thematisch im Bereich
der formalen Sprachen, in dem Halbgruppentheorie, Logik und Komplexitätstheorie
zusammentreffen.

Endliche Halbgruppen haben als Transformationshalbgruppen eine enge Beziehun-
gen zu endlichen Automaten, die zum Erkennen von formalen Sprachen verwendet
werden. Mit der Logik der ersten und zweiten Stufen können formale Sprachen
durch logische Formeln beschrieben werden. Schaltkreise mit konstanter Tiefe und
polynomieller Größe bilden die Brücke zu der Komplexitätstheorie.

Das Ziel ist dabei Komplexitätsklassen voneinander zu trennen, wobei über die
formalen Sprachen die Beschreibungen der Komplexitätsklassen in der Logik oder
durch Halbgruppen untersucht werden. Durch diese Verbindung gibt es hier in der
Komplexitätstheorie, wenn auch nur wenige, so doch nichttriviale Trennungsresultate.

In dieser Dissertation werden die Beziehungen, die bisher nur für reguläre Sprachen
bekannt waren, auf beliebige Sprachklassen erweitert. Genauer gesagt wird das
Varietätentheorem von Eilenberg über die Korrespondenz zwischen Varietäten von reg-
ulären Sprachen und Varietäten von endlichen Halbgruppen,auf eine Korrespondenz
zwischen beliebigen Varietäten von Sprachen und sogenanntengetypten Halbgruppen
erweitert.

Dann wird diese Beziehung verwendet, um Logikklassen, die bisher nicht alge-
braisch betrachtet werden konnten, zu analysieren. Wir beschäftigen uns mit Majority
Logik und analyiseren die regulären Sprachen, die sich als Majority Formeln mit zwei
Variablen schreiben lassen. Außerdem wird ein Trennungsergebnis von Logikklassen
gezeigt, das auch eine Trennung von Schaltkreisklassen nach sich zieht.

Im folgenden werden die Ergebnisse der Dissertation genauer dargestellt. Mit
der Definition dergetypten Halbgruppenwird die Grenze von regulären Sprachen
und endlichen Halbgruppen überschritten. Es wird gezeigen, dass die getypten
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Halbgruppen auf natürliche Weise eine Kategorie bilden, und das Varietätentheorem
von Eilenberg von Eilenberg für die Kategorie erweitert wird.

Um besser auf einige Details von getypten Halbgruppen eingehen zu können,
wird die übliche Situation beim Erkennen von Sprachen per Homomorphismus genau
aufgezeigt: SeiL eine formale Sprache über dem AlphabetΣ undS die syntaktische
Halbgruppe. Folglich gibt es einen syntaktischen Morphismush von Σ+ nachS und
eine TeilmengeA ⊆ S, so dass sich die Sprache als Urbild von dieser Menge schreiben
läßt: L = h−1(A). Es gibt also neben der syntaktischen Halbgruppe noch weitere
algebraische Objekte,die die Sprache beschreiben: den Homomorphismush und die
akzeptierende MengeA. Diese beide Objekte werden in die Definition von getypten
Halbgruppen einfließen.

Eine getypte Halbgruppe besteht aus einem Tripel: einer Halbgruppe, einer
Booleschen Algebra über der Halbgruppe, und einer Menge vonEinheiten. Die Typen
sind die Elemente der Boolesche Algebra und werden verwendet, um die akzeptieren-
den Teilmengen einzuschränken, während die Menge der Einheiten verwendet wird,
um einen Längenbegriff auf den getypten Halbgruppen zu erhalten.

Um eine strukturelle Beziehung zwischen Logik und den getypten Halbgrup-
pen herzustellen, wird das Block Produkt für getypte Halbgruppen verallgemein-
ert. Dadurch kann für jede Logik, die durch eine Menge von Quantoren und
eine Menge von Prädikaten definiert ist, eine algebraische Charakterisierung durch
getypte Halbgruppen angeben werden. Dazu wird das Block Produkt Prinzip, das
im endlichen Fall für Logik mit zwei Variablen verwendet wurde, auf unendliche
Halbgruppen erweitert und erstmalig auch konsequent für den Fall von unbeschränkt
vielen Variablen verwendet.

Für Schaltkreisklassen wird ein gleichartiges Resultat erzielt: Jede Schaltkreis-
klasse, die durch ihre Basis (=Gattertypen) und ihre Uniformität festgelegt ist, kann
durch eine Klasse von getypten Halbgruppen charakterisiert werden. Um verbesserte
Resultate zu erhalten, wird eine eigene Definition der Uniformitätssprache, die näher
an der Logik orientiert ist, verwendet.

Diese neue algebraische Kategorie wird verwendet um Ergebnisse für Majority
Logik und Threshold Schaltkreise herzuleiten. Es stellt sich heraus, dass Majority
Logik in einem direkten Zusammenhang zu Block Produkten derganzen Zahlen steht.
Im Fall, dass die Logik auf zwei Variablen beschränkt ist, läßt sich das Block Produkt
in � Module zerlegen.

Diese lassen sich leicht in die Euklidische Geometrie einbetten. Mit Hilfe dieser
Interpretation können Majority Formeln mit nur einem Quantor als einen Halbraum
aufgefassen werden, und so Formeln der Tiefe eins als Mengenvon Halbräumen
beschrieben werden. Dies ermöglicht es induktiv für eine Majority Formel, die nur
zwei Variablen besitzt, Paare von Wörter zu konstruieren, die sich von der Formel
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nicht unterscheiden lassen. Da geometrische Beweise zwar intuitiv zu verstehen sind,
aber nicht leicht zu verifizieren, werden sie algebraisch bewiesen.

Diese geometrische Auffassung erlaubt es eine obere und untere Schranke für die
Menge der regulären Sprachen anzugeben.

Diese Logik wird schließlich noch um alle regulären und unären Predikate, sowie
Modulo Quantoren erweitert, und an Hand der algebraischen Charakterisierung wird
gezeigt, dass auch in dieser Erweiterung noch nicht alle regulären Sprachen erkannt
werden können. Dies führt auf der Schaltkreisseite zu einerTrennnung von konstant
tiefen und linear großen Threshold Schaltkreisen, die einebestimmte Uniformität
haben, von linear großen und logarithmisch Tiefen Schaltkreisen.
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Chapter 1
Introduction

If a new result has value it is when, by binding together long known
elements, until now scattered and appearing unrelated to each other, it
suddenly brings order where there reigned apparent disorder.

Henri Poincaré

Mathematics often plays a unifying role, tying together seemingly different areas
of science and allowing results from one area to be carried over to the other. It is
precisely the connection between algebra, logic and complexity theory that motivates
the fascination with our subject of study, the mathematicaltheory of formal languages.

One of the first discoveries of concern to us is Kleene’s theorem, that builds
bridges between formal languages and algebra by way of a relation between regular
languages and finite automata. Equally seen as a bridge between regular languages
and transformation semigroups, this relation led to Eilenberg’s in-depth study [Eil76]
of the correspondence between varieties of regular languages and varieties of finite
semigroups.

Büchi [Büc60] then brought together logic and formal languages, proving that the
languages that could be described by monadic second order logic with order are exactly
the regular languages. McNaughton and Pappert [MP71] refined this with a proof
that the languages describable by first order logic with order are exactly the starfree
languages.

It is not obvious how to tell whether a language is starfree orequivalently whether
it is describable by a first-order formula with order. Fortunately, Schützenberger
[Sch65] had shown that the starfree languages correspond tothe aperiodic semigroups.
Since aperiodic semigroups are exactly those semigroups that contain no groups, a
simple algorithm can tell whether an appropriately presented semigroup is aperiodic.
The results of [Sch65] and [MP71] thus allow carrying this algorithm over to formal
languages and logic, yielding decidability results there.

These early results triggered extensive research that uncovered a broad entan-
glement between extensions of first order logic and classes of semigroups. The
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2 Chapter 1. Introduction

block product defined by Rhodes and Tilson [RT89], used as a basic building
block in semigroup theory, arose as a fundamental tool to prove these connections
[Str94, STT95, CPS06]. From a more general perspective, Straubing exposed a meta-
explanation for this phenomenon [Str02].

Temporal logic is another area that became integrated into the framework. Al-
though the quantifiers used in linear temporal logic are quite different from first
order logic quantifiers, Kamp [Kam68] showed that the languages describable by
linear temporal logic are exactly the starfree languages. From the study of restricted
temporal logic emerged a tight link between this logic and first-order logic with
only two variables [CPP93, EVW97, TW98, ST03]. This also gave more weight to
results within first-order logic [PW97]. Research on extensions of first order logic
restricted to two variables brought to light some new fruitful connections with algebra
[EVW97, TW98, ST03], suggesting that natural restrictionsin logic have natural
counterparts in algebra.

Complexity theory finally entered the scene when constant depth circuits of poly-
nomial size were connected to first-order logic with arbitrary numerical predicates.
This was first discovered by [GL84, Imm87] who noticed that constant depth circuit
families with AND and OR gates recognize exactly the languages describable by first-
order logic with arbitrary numerical predicates. Emergingfrom the study of branching
programs, the computational model of a program over a finite semigroup was then
defined and shown closely tied to circuits [BT88].

As could be expected, programs over various classes of semigroups were found to
have as natural counterparts circuit families with variousgate types. Ample results
regarding different sets of gate types confirmed the robustness of the connection
[Str94, LMSV01, Str92, RS06, KLPT06]. Also, the previouslyexamined logic
restriction involving two variables was shown to have, as its counterpart, linear size
circuits [KLPT06, KPT05, TT05].

An important issue when comparing circuit complexity classes with the logic
classes and semigroups described above is uniformity. Circuits are highly nonuniform,
i.e. for each input length there is a separate structure recognizing the set of words of
that length in the language, whereas logic and algebra are uniform in the sense that the
same formula or semigroup is used for all input lengths. Given the wide uniformity gap
between the two models, there are two possibilities to set upa meaningful framework
common to circuit families on the one hand and to logic and algebra on the other.

One is to weaken the uniformity of logic and algebra, which isaccomplished in
logic by using numerical predicates that depend on the length of the input and programs
on the algebraic side. The other possibility is to limit the structural change of the
circuits for one input length to another. Barrington, Immerman and Straubing [BIS90]
used the notion of a uniformity language, to show connections between DLOGTIME-
uniform circuits and logic classes with addition and multiplication, and by a result of
Behle and Lange this connection was extended to more uniformcircuits corresponding
to logic with other sets of predicates [BL06].
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Uniformity can also be enforced indirectly, for instance byrestricting the languages
in such a way that the length of a word contains only limited information. Demanding a
neutral letter can be viewed as such a restriction. The ill-fated Crane Beach conjecture
postulated that a neutral letter would impose the same levelof uniformity as the tightest
uniformity reasonably imposed on circuits. Unfortunatelythis intuition failed and
the conjecture was proven false [BIL+05]. Performing the outright intersection of a
uniform class with the class of interest can also be viewed asimposing uniformity on
the latter [MTV08].

One of the circuits that are rather disparate are threshold circuits as introduced
in [HMP+87, HMP+93]. Unlike previous circuits they can recognize nonregular
languages by the very character of their gates even in very uniform settings. Though a
counting or majority quantifier creates a logical characterization of threshold circuits,
this link is not as pleasant as for the other gate types. It is for example necessary to
differentiate between majority quantifiers over single variables and those over tuples as
examined in [BIS90]. On the other hand majority formulas containing only the order
predicate can already simulate addition as presented by Lange [Lan04].

Since the nature of a threshold gate is non-regular, connections to algebra seem to
have no counterparts as programs or even morphisms over finite semigroups. Despite
that, or actually because of it, a characterization by infinite structures was given
in [KLR07] providing a basis to view the languages in this circuit class as inverse
morphic images of this infinite structure. This link works for various predicate sets, and
also the restriction in logic to two variables has the desired algebraic correspondence
[BKM07].

On the algebraic side, separating classes of semigroups is relatively easy, compared
to separating complexity classes. Since the latter task is very intricate, there are only
few separation results known. The sparse results are thus surveyed even more, starting
with the result of Sipser [FSS81] presenting a combinatorial proof that AC0 cannot
compute parity, thus AC0 , ACC0. Improving this Yao and Hastad showed that
this requires even exponential circuits [Yao85, Hås87]. Further, Razborov showed
in [Raz87] that ACC0[2] circuits cannot compute modulo 3, which was enhanced by
Smolensky showing that ACC0[p] for a primep cannot compute moduloq unlessq is
a power ofp. The results of [BST90] leading to a separation of CC0[p] and ACC0[p]
showed that AND cannot be computed by CC0[p] for a primep.

For TC0 there are some results suggesting a separation from NC1. Hajnal et. al.
[HMP+87, HMP+93] gave combinatorial proof separating TC0 circuits of depth two
from depth three by an explicit regular language. A quite different result of Ruhl
[Ruh99] and Lautemann, McKenzie, Schwentick, Vollmer [LMSV01] asserted that
multiplication is not computable by MAJ[<,+] formulas, which separates MAJ[<,+]
from NC1 by means of uniformity.

The current frontier on splitting complexity classes, evenfor the ones considered,
is disappointing, so we prefer to summarize the open questions. Neither of the
complexity classes CC0[q], ACC0[q] for q not a prime power, e.g. 6, is separated
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from NP yet, though it is conjectured they fail to computeLAND in the first case, and
LMODp in both cases unlessp dividesq. Both are contained in TC0, implicating that
there is no known upper bound forTC0 below NP, but again there are reasons to
believe that not all regular languages are in TC0. As a consequence of [Bar89], the
only candidates are the group languages for non-solvable groups, and moreover either
all regular languages are in TC0 or none of the non-solvable group languages.

Results of this thesis

In this thesis we will go beyond regular languages and finite semigroups. We extend the
theory of Eilenberg providing a correspondence between regular languages and finite
semigroups, to a correspondence between arbitrary languages andtyped semigroups.
Previous definitions of categories of infinite objects [Sak76] have the basic drawback,
that they have no structural correspondence to logic or circuit theory. We avoid these
problems in our category of typed semigroups.

Before giving more details on the typed semigroups, we look at an arbitrary
languageL ⊆ Σ+ and its syntactic semigroupS. The syntactic morphismh : Σ+ → S
guarantees there is a setA ⊆ S such thatL = h−1(A). So besides the semigroupS we
have a morphismh and an accepting setA, describing the language. We will use this
to define our new algebraic structure, the typed semigroup (S,S,E), consisting of a
triple: a semigroupS, a Boolean algebraS over this semigroup, and a set of elements
of the semigroupE. The elements of the Boolean algebraS are sets ofS and will
be the only sets allowed as accepting sets. In the case that the semigroup (S,S,E) is
not free the setE will allow us to define a notion of length preserving morphism, by
the requirement thath maps single letters toE. Together with the notion of a typed
morphism the typed semigroups form a category.

We can embed the category of finite semigroups into the typed semigroups, which
shows that the regular languages are just a special case of the classes of languages
captured in our theory. Using typed semigroups we can prove theorems even in the
finite case that cannot be stated only in the terms of semigroups without types and
units. We can, for example, give an algebraic counterpart tothe logic class FO[mod],
since typed semigroups enable us to differentiate between the modulo predicates and
the modulo quantifiers. This extends the result of Eilenberg, yielding a correspondence
between any class of languages and a class of typed semigroups, giving a much finer
structure previously known only for varieties of regular languages.

In order to describe the typed semigroups corresponding to logic classes we
introduce a block product in a similar way to [KLR07], being more involved than in
the finite case. Using this definition we show that for any logic class given by a set of
quantifiers and a set of predicates, there is a class of typed semigroups that recognizes
exactly the set of languages recognized by the logic class. We prove this by adopting
the block product principle [Str94, TW04] to typed semigroups and free variables,
where the latter allows to use the block product principle for an unbounded number of
variables. So given any set of quantifiers, any set of predicates, a fixed or unbounded
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number of variables, a fixed way the quantifiers are nested or arbitrary nesting, we get
an algebraic characterization using the block product for this class of languages.

We obtain a similar result for circuit classes where we can find a direct corre-
spondence to classes of typed semigroups. For this purpose we introduce a new
form of the uniformity language, giving tighter connections between logic, circuits
and algebra. The results can also be modified for previously known versions of the
uniformity language. Again this results, for any set of gatetypes, uniformity and
linear or polynomial size, in an algebraic characterization of the languages recognized
by these circuit families.

Having established this algebraic theory we apply it to majority logic and threshold
circuits. The algebraic characterization of MAJ2[<], i.e. MAJ[<] with only two
variables, results in the smallest variety closed under weak block products with powers
of �. We can embed the powers of� nicely in the Euclidean space. Using this
embedding we can interpret majority formulas of depth one ashalf planes. Given
a fixed formula with this intuition one can construct a pair ofwords that cannot be
separated by the formula.

Proofs relying to much on geometric intuition tend to be improper. To avoid this
caveat we go the elaborate way of transforming the proofs to algebra, where all the
intuitive steps can be computed, and hence be checked easily. So given any fixed
language or variety described by equations with the techniques developed it is an easy
task to see whether a language belongs to MAJ[<] with two variables or not.

Using the characterization of a variety by equations we are able to give an upper
bound. As a formal tool we use prefix and suffix mappings or later restrictions that
perform a similar task as in the proof of [FSS81] by fixing certain positions of the
input.

We also extend the logic class from MAJ2[<] to (FO+MOD+MÂJ)2[reg, arb− un]
and show that this logic still cannot recognize any non-solvable semigroup language,
hence separating this class from NC1. Compared to the master goal to separate TC0

from NC1 this may be considered only a small step, but TC0 equals MAJ[arb] and we
argue that being interested only in regular languages the gap between these two logic
classes is not big. Our separation result may therefore be extended to a separation of
TC0 from NC1 in future work.

Structure of the thesis

The thesis is structured in the following way. We begin with the preliminaries
reviewing the basics that are commonly used in logic, algebra and circuit theory. We
move on to the chapter about typed semigroups, where we extend the notion of the
syntactic semigroup in a way useful to the non-regular case.Typed semigroups are
then used to characterize varieties of (non-regular) languages by morphisms. This
allows us to expose connections between algebra, logic and circuits in the following
chapter, where we use typed semigroups instead of finite semigroups.
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Thereupon we examine majority logic for different quantifiers and predicate sets
and explore how to find a simpler algebraic characterizationthan the characterization
by the previous constructions. We also show some finer connections between logic
and algebra in the case of threshold quantifiers.

Having laid out the needed tools we apply them in chapterRegular languages in
MAJ2[<], to find an upper and lower bound for the power of majority logic when
recognizing regular languages. Finally we show that even byextending majority logic
by the first-oder and modulo quantifiers and the regular predicates are still not able to
recognize non-solvable group, thus separating this class from NC1.

Since this thesis lays out a complete framework for an algebraic counterpart for
logic and circuits and then applies it to prove a non-trivialupper bound, some chapters
might be skipped. We give an overview in the following graphic.

1 Introduction

2 Preliminaries

3 Typed Semigroups

4 Algebra,
Logic, Circuits

5 Majority Logic

6 Maj2[<] ∩REG

7 LA5 < FO+MOD+
+MAJ2[reg, arb− un]

8 Conclusion



Chapter 2
Preliminaries

In this chapter we present the necessary definitions and facts commonly used in the
areas of logic, algebra and circuits, and give a short reviewof this topic. We will
not give a complete survey of the topic since this would go beyond the scope of this
thesis; for a complete treatment we recommend Straubing’s book ([Str94]). For a brief
introduction the survey article of Tesson and Therien ([TT07]) on logic and algebra
covers everything needed here.

2.1 Basics

We denote by� the set of the integer, by�+ the positive integers and by�−0 the
negative integers and zero. The set of natural numbers is denoted by� and the set of
the square numbers by�.

Given two setsS andT we denote by 2S the power set ofS, and byTS a |S|-tuple
with values inT, which is equivalent to a functionS → T. We will switch between
these interpretations when one notion seems to be more convenient. Given a function
f : S → T we write f (s) for the value of f at s or simply fs. For every setS the
identity map is denoted by1S or simply1.

A binary relation� on a setS is a preorder if it is reflexive, i.e.s� s for all s ∈ S,
and transitive, i.e.s � t andt � u implies s � u for all s, t, u ∈ S. If the preorder is
antisymmetric, i.e.s� t andt � s impliess= t for all s, t ∈ S then it is a partial order.

A Boolean algebraS over a setS is a subset of the power set ofS that is closed
under union, intersection and complement, i.e.S,T ∈ S impliesS∪T, S∩T,S\S ∈ T.
The join∨ of two Boolean algebrasS ∨ T is the smallest Boolean algebra containing
S andT. A Boolean algebraS is coarser thanT if S ⊆ T. If we have two subsetsS,T
of the power set ofS than we sayS is coarser thanT, if this is true for the smallest
Boolean algebras that containS andT.

We will work with alphabetsΣ that are always finite. ByΣ∗ (Σ+) we denote all
words (except the empty wordε). Given a wordw ∈ Σ∗, we denote by|w| the length of

7
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w, and by #σ(w) the number of occurrences ofσ in w. Also we let #(w) be the Parikh
vector of the word, that is the tuple (#σ(w))σ∈Σ. Sometimes we write #(w)σ which
denotes theσ component of the tuple, hence #(w)σ = #σ(w).

Given a wordw = w1 . . .wn and an integeri = 1, . . . , n, we denote byw<i the prefix
w1 . . .wi−1, byw≤i the prefixw1 . . .wi, by w>i the suffix wi+1 . . .wn and byw≥i the suffix
wi . . .wn.

In what follows languagesL are always subsets ofΣ+, that isL ⊆ Σ+, though there
is no reason why the thesis could not have been written for languages inΣ∗. The results
are all the same; in some cases however it is algebraically easier to ignore the empty
word. We call the languagesΣ+ and∅ the trivial languages.

2.2 Logic over words

We use the usual notion for first order logical formulas, withthe addition of generalized
quantifiers. We omit a formal definition and just focus on extended quantifiers, which
are similar to monoidal quantifiers used in [BIS90]. FurtherV-structures as defined in
the book of Straubing are utilized, though we usually denotethe set of variables byX.

The atomic formulas consist of the query predicatecσ(x) and numerical predicates
p(x1, . . . , xk). These formulas can be combined by the usual Boolean operations as well
as by extended quantifier application as follows: Given formulasϕ1, . . . , ϕk, a variable
x and a quantifierQ(k), thenQ(k) x 〈ϕ1, . . . , ϕk〉 is a formula. We call a quantifier a
normal quantifier ifk = 1 and an extended quantifier fork > 1. If there is no confusion
possible we drop the index (k) from the quantifier to ease notation. Given a quantifier
Q x ~ϕ we callQ<y x ~ϕ andQ>y x ~ϕ the relative quantifiers corresponding toQ, where
wy= j |= Q<y x ~ϕ iff w< j |= Q x ~ϕ andwy= j |= Q>y x ~ϕ iff w> j |= Q x ~ϕ.

The semantics of the query predicatecσ(x), the numerical predicates and the
Boolean closure is defined as usual. For a quantifierQ(k) we have a function
κQ(k) : (2k)+ → S, whereS is a semigroup such thatw |= Q(k) x 〈ϕ1, . . . , ϕk〉 iff
κ({ j | wx=1 |= ϕ j} . . . { j | wx=n |= ϕ j}) ∈ A for a setA ⊆ S. We call quantifiers that
quantify over more than one formula extended quantifiers.

By Q[P] we denote all first order formulas with quantifiers inQ and predicates
in P, byQ2[P] the formulas with 2 variables only and byQ1[P] the formulas with 1
variables only or equivalently the formulas of depth 1.

Definition 2.1. Let Σ be an alphabet andX be a set of variables andϕ be a formula,
where all free variables ofϕ are inX.

We defineLΣ,Xϕ = {wx1=i1,...,xk=ik | w ∈ Σ
+,wx1=i1,...xk=ik |= ϕ}. We simply writeLϕ and

omit Σ,X if the alphabet and the set of variables is clear from the context. For a set of
sentencesΦ, we letLΣ(Φ)= {LΣ,∅ϕ | ϕ ∈ Φ} be a set of languages andL(Φ)=

⋃
ΣLΣ(Φ).

For a set of formulasΦ with all free variables inX, we letPΣ,X(Φ)= {LΣ,Xϕ | ϕ ∈ Φ}

be a set of languages andP(Φ)=
⋃
Σ,X PΣ,X(Φ). Finally we denote the set of languages

with one free variable byP1(Φ)=
⋃
Σ,|X|=1 PΣ,X(Φ).
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The following concept was first explicitly stated in [TW04],but originates from
[Str94]. It was mainly used for two variable sentences, since in the definition
mentioned it handles only one free variables bound by the block product principle.
We define this concept in a way such that all formulas can be decomposed by the
substitution principle.

Definition 2.2 (Substitution). Let Σ be an alphabet,Φ = {ϕ1, . . . , ϕk} a set formulas
overΣ andX a set of variables with one distinguished variablex. A Φ-substitution
θ with the variablex is a function mapping any sentenceψ over the alphabet 2Φ

to a formula θ(ψ) over the alphabetΣ with free variablesX \ {x} by replacing
each occurrence of the predicatecS(y) with the formula

∨
s∈S ϕs(x := y). Also we

define anadjoint operationϑ to be a map fromΣ+ ⊗ X \ {x} to 2Φ ⊗ X \ {x} by
ϑ((w1 . . .wn)x1=i1,...,xk=ik) = (u1 . . .un)x1=i1,...,xk=ik with ui = {ϕ j | wx=i |= ϕ j}.

Lemma 2.3. Let θ be aΦ-substitution andϑ be the adjoint operation, then for any
formulaψ we have w|= θ(ψ) iff ϑ(w) |= ψ.

Proof. The proof in [TW04], can be adopted to arbitrary quantifiers and predicates,
this being straightforward we omit it here. �

Definition 2.4 (Γ ◦ Λ). Let Γ,Λ be two classes of formulas, thenΓ ◦ Λ are theΛ-
substitutions ofΓ.

LetQ[P] be a class of formulas. We show that we can decompose these formulas
by substitutions into formulas ofQ1[P]. If the formula has depth 1 this is clear.
Assume the formulaϕ has higher depth, and letΦ be all subformulas ofϕ of lower
depth, thenϕ is aΦ substitution of a formula of depth one. By induction we can
decompose all formulas from the outside to the inside into formulas of depth one, i.e.
Q[P] = Q1[P] ◦ (Q1[P] ◦ (Q1[P] ◦ . . . )). Please note that this decomposition depends
heavily on the fact that substitution is also defined for formulas with free variables.

Also if ϕ is a formula with only two variables, than all innermost formulas of
depth one have only one free variable. LetΦ be the set of all formulas of depth one
of ϕ, thenϕ is aQ1[P]-substitution of a formula of lower depth. By induction we
conclude all formulas with 2 variables can be decomposed from the inside out, i.e.
Q2[P] = ((· · · ◦Q1[P]) ◦Q1[P]) ◦Q1[P].

For the decomposition from inside out it is important that the formulas with 2
variables have subformulas with only one free variable. Actually we could decompose
arbitrary formulas depending on the nesting of the variables and obtain a much finer
relation between the bracketing structure of the substitution and the nesting depth of
the usage of variables.

2.3 Algebra

The tools here used from semigroup theory are rather basic, we refer to the books on
semigroup theory [How95] and [Alm95], or for an introduction related more strongly
to formal languages to [Eil76] and [Pin86].



10 Chapter 2. Preliminaries

A semigroupS is a nonempty set with an associative binary operation called
multiplication. If the multiplication has an identity element 1S, the semigroup is called
a monoid. Also, if in a monoid for any elements ∈ S there is an inverse element
s−1∈ S, i.e. ss−1 = s−1s= 1S, then the monoid is a group.

The smallest semigroup consists only of one element and is called the trivial
semigroup denoted by�. A generator set of a semigroupS is a subset ofS such that
every element ofS can be written as a product of elements fromS. If the generator set
is fixed we call the elements of the generator set the generators. A semigroup that has
a finite generator set if called finitely generated.

If a semigroup has a generator set such that element has a unique representation as a
product of elements of the generator set then the semigroup is called a free semigroup.
We denote by�k the free semigroup withk generators.

For two semigroupsS,T, a morphismα : S → T is a map fromS to T such
thatα(s1s2) = α(s1)α(s2); a monoid morphism additionally maps 1S to 1T . We denote
by 1 the identity morphism which is equal to the identity map. A subsetS′ ⊆ S is
a subsemigroup if it is closed under multiplication, a submonoid for a monoidS if
1S ∈ S′, and a subgroup ifS′ is a group.

For two morphismsα : S → T1, β : S → T2 we say thatα factors throughβ if
for any pairs1, s2 ∈ S, β(s1) = β(s2) impliesα(s1) = α(s2). In this situation we know
there is a morphismγ such that the following diagram commutes.

S
α //

β

��
??

??
??

??
T1

T2

γ
>>

Given a morphismα : S → T we can define an equivalence relation≡α on S by
s1 ≡α s2 ⇐⇒ α(s1) = α(s1). This relation is compatible with multiplication inS, i.e.
if s1 ≡α s2 ands′1 ≡α s′2 thens1s′1 ≡α s2s′2. Conversely, given an equivalence relation
≡ on S compatible with multiplication we get a factor semigroupS/ ≡, consisting
of the equivalence classes with the inherited multiplication. An equivalence relation
compatible with the multiplication of the semigroup is known as a congruence relation.

We also have a notion for division of semigroups; we sayS dividesT, written
S ≺ T, if S is a morphism image of a subsemigroup ofT. We define division for
monoids equivalently.

Now we will briefly define the Green’s relations in the way needed here. For more
details we refer to the book of John Howie [How95]. For a semigroupS, two elements
s1, s2 ∈ S are in the sameD-class if there are elementsx1, y1, x2, y2 ∈ S such that
x1s1y1 = s2 and x2s2y2 = s1. Intuitively we reach one element from the other by
multiplying elements to the left or to the right. TheH-classes are a finer relation, two
elementss1, s2 ∈ S belong to the sameH-class iff there are elementsx1, y1, x2, y2 ∈ S
such thatx1s1 = s2 ands1y1 = s2 andx2s2 = s1 ands2y2 = s1. So here can choose
multiplying an element to the left or to the right to reach oneelement from the other.

For formal language theory semigroups play an important role, especially in
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[Eil76] the connection between the transformation semigroup of a finite state automa-
ton and the language recognized by the automaton is made. A languageL ⊆ Σ+ is
recognized by a semigroupS iff there exists a morphismh : Σ+ → S, and a subset
A ⊆ S such thatL = h−1(A).

Definition 2.5. Let Σ be an alphabet andX be a set of variables andS be a semigroup.
We let LΣ(S)= {L | L ⊆ Σ+ is recognized byS} and L(S)=

⋃
ΣLΣ(S). We let

PΣ,X(S)= {L | L ⊆ Σ+ ⊗ X is recognized byS} andP(S)=
⋃
Σ,X PΣ,X(S). Finally we

denote the set of languages with one free variable byP1(S)=
⋃
Σ,|X|=1 PΣ,X(S).

For a set of semigroupsSbe defineL(S),P(S),P1(S) equivalently.

The syntactic semigroup is defined as follows: Define the following relation≡L

on Σ+ by u ≡L v iff for all wordsw,w′ ∈ Σ∗ we havewuw′ ∈ L ⇐⇒ wvw′ ∈ L.
This relation is a congruence relation onΣ+ called the syntactic congruence, and the
syntactic semigroup syn(L) is Σ+/ ≡L. Please note that the syntactic semigroup syn(L)
of a languageL is the smallest semigroup that recognizesL, in the sense that ifS
recognizesL, then syn(L) ≺ S. For any subsetM ∈ Σ+ be writeM/ ≡L for the set of
all equivalence classes ofΣ+/ ≡L that contain elements ofM.

2.3.1 Varieties

Given a language one might asked what are the other languagesrecognized by the
syntactic semigroup of the first language, in other words what is the relation between
L and L(syn(L))? Obtaining a different language thanL by syn(L), we have two
possibilities: change the morphism or change the acceptingset.

Given any morphismh′ : Σ′ → syn(L) such thatL′ = h′−1(A), we know, sinceh is
surjective, thath′ factors thoughh.

Σ′
h′ //

��

syn(L)

Σ

h
<< <<yyyyyyyyy

So L′ is an inverse morphic image ofL. On the other hand since the application
of two morphisms is a morphism any inverse morphic image ofL is recognized by
syn(L).

If we change the accepting set things are more complicated. Ashift of the accepting
set, i.e.A′ = s−1At−1, leads to the languageu−1Lv−1, whereu ∈ h−1(s), andv ∈ h−1(t)
can be chosen arbitrarily. Conversely we can recognize all shifted languages ofL by
syn(L).

But for different choices ofA′ that are not shifts, one may need direct Boolean com-
binations ofL to describeL′. For example letL = (aaa)+, thenL′ = (aaa)+ ∪ a(aaa)+

is recognized by the same semigroup�3, and we can describe it asL′ = L ∪ (aa)−1L.
We will not further immerse into this topic but it should now be obvious if

one characterizes sets of languages by sets of semigroups, there are certain closure
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properties necessary. These observations as in the book of Eilenberg [Eil76] led to the
following concepts and results.

Definition 2.6 (Variety of Languages). A varietyV of languagesis a set of languages
that is closed under the following operations:

• L1, L2 ⊆ Σ
+: L1, L2 ∈ V impliesΣ+ \ L1, L1 ∩ L2 ∈ V (Boolean operations).

• L ⊆ Σ+, u, v ∈ Σ: L ∈ V impliesu−1Lv−1 ∈ V (Cuts/Shifting).

• L ⊆ Σ+, h : Σ′+ → Σ+: L ∈ V impliesh−1(L) ∈ V (Inverse morphisms).

Definition 2.7 (Variety of Semigroups). A variety V of semigroupsis a set of semi-
groups that is closed under division and direct products.

For each variety of languageV we can associate the smallest variety of semigroups
V that contains all syntactic semigroups of the language variety, and we see that
L(V) = V.

Theorem 2.8(Correspondence [Eil76, Theorem 3.4s]). Varieties of semigroups and
varieties of regular languages are in a one to one correspondence:

• Let V a variety of languages andV the smallest variety of semigroups that
recognizes all languages inV, thenL(V) = V.

• Let V be a variety of finite semigroups andW be the smallest variety that
recognizes all languages ofL(V), thenV =W.

We define some common varieties of semigroups considered later. Fin is the
variety of all finite semigroups,A the variety of all aperiodic semigroups,G the variety
of all groups. The varietyA contains the varietyDA of all semigroups whoseD-
classes are aperiodic. The varietyG contains the variety of all solvable groupsGsolv

and all Abelian groupsAb. The semigroups which contains only solvable subgroups
are called solvable and are denoted byGsolv, the semigroups where all subgroups are
Abelian are denoted byAb. Further we look at the varietyDS of semigroups, where
all D-classes are are semigroups, andDO, where allD-classes are orthogonal. Also
to complete the list we denote byDA �G the variety spanned by the block product of
DA with G (please refer to the next section for the definition of the block product).

Everything of this chapter is also considered for the monoidcase in [Eil76], but we
restrict here to semigroups since the monoid case is equivalent.

2.3.2 Block Product

The block product was introduced in [RT89] to decompose the semigroups in their
basic building blocks. We will give here a short definition ofthe block product and
avoid to introduction notations that are not necessary for this thesis. The basic idea is
to introduce an equivalent product for semigroups as the wreath product for groups.
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U1 1 0
1 1 0
0 0 0

Figure 2.1: The semigroup U1

The semigroupST×T consists of all functionsf : T × T → S, and the pointwise
multiplication, which we usual denote by+ although it might be noncommutative. On
this set we have a left and right action ofT: let t1, t2 ∈ T, thent1 ∗ f is defined by
(t1 ∗ f )(m1,m2) = f (m1t1,m2), and f ∗ t2 by ( f ∗ t2)(m1,m2) = f (m1, t2m2) for all
m1,m2 ∈ T.

Definition 2.9 (Block Product� ). We define the block productS�T as the semigroup
on the setST×T×T equipped with the multiplication (f1, t1)( f2, t2) = ( f1∗t2+t1∗ f2, t1t2).

We let I = {1} be the smallest semigroup with the multiplication 1· 1 = 1. The
semigroupU1 consists of two elements 0, 1 and the product is 0 except for 1· 1 = 1.

Theorem 2.10(Decomposition Theorem). Every finite semigroup S divides a block
product S1� (S2� (. . . (Sk−1�Sk) . . . )), where Si = U1 or Si is a simple group for all
i ∈ 1, . . . k. If S is a group then it suffices to use factors Si that are simple groups, and
if S is aperiodic than all factors Si can be chosen to be U1.

The block productV �W of two varietiesV andW is the smallest variety that
contains all semigroupsV�W whereV ∈ V andW ∈ W. There is a close connection
between the block product of two semigroup varieties and thesubstitution of the
corresponding classes of formulas, as states in [TT05].

Theorem 2.11 (Block Product Principle). Let Γ be a class of(FO + MOD)2[<]
sentences andΛ a class of(FO + MOD)2[<] formulas with one free variable. If
V,W are semigroup varieties such thatL(Γ) = L(V) and P1(Λ) = P1(W), then
L(Γ ◦ Λ) = L(V �W).

2.4 Circuits

A circuit is a directed acyclic graph, the nodes with fan-in zero are called input nodes
and the other nodes are called gates. There is a distinguished gate called the output
gate. Since we want to recognize a languageLn ⊆ Σ

n, we allow as input nodes either
nodes labeled true or false, or nodes labeledwi = σ, wherei = 1, . . . , n andσ ∈ Σ.
We call a family ofr-ary binary functions for eachr ∈ � a gate type. The gates of the
circuit with fan-in r are labeled byr-ary binary functions from a gate type. Common
examples for gate types are AND, OR or MODp.
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Given a wordw ∈ Σn, the truth value of the gates is computed in the obvious way,
and the truth value of the circuit is that of the output gate. Given for eachn ∈ � a
circuit Cn that accepts a word of lengthn as input, where the binary functions of the
gates are only chosen from a finite set of gate types, then the family (Cn)n∈� accepts a
languageL ⊆ Σ+, wherew ∈ L if C|w| is true for the inputw.

Definition 2.12. Let Σ be an alphabet andX be a set of variables and (Cn)n∈� be a
family of circuits. We letLΣ((Cn)n∈�)= {L | L ⊆ Σ+ is recognized by (Cn)n∈�} and
L((Cn)n∈�)=

⋃
ΣLΣ((Cn)n∈�).

For a set of circuit familiesC be defineL(C) equivalently.

The depth of a circuitCn is the length of the longest directed path in it. A family
of circuitsC = (Cn)n∈� has constant depth if there is a constantd such that the depth
of each circuit is bound byd, and the size of a circuit is the number of gates. In this
thesis we are mainly interested in circuits of constant depth, and polynomial or linear
size.

The circuitCn in a family of circuits has in general no relation to any othercircuit
in the same family. In order to capture the complexity in the difference of the circuits
we will introduce a uniformity language in Chapter 4, this definition is quite different
from the usual definition of the uniformity languages as in [BIS90], but quite close
to newer definitions that allow finer uniformity [BL06]. We will refer to these papers
when we define uniformity later, so the reader can compare thenotions of uniformity.

We use the normal definition for programs over finite semigroups as in [BT88,
Bar89]. Later we will give a definition over typed semigroups(see Definition 4.18)
that also covers the finite case. LetV be a class of semigroups, then we denote by
π − V, the set of languages recognized by the programs over semigroups ofV, also
called the program variety ofV.

If we look at the previously know connections we see that there are many gaps and
the connections work only for certain quantifiers (see Figures 2.2 and 2.3). But still a
general connection between all three classes was missing. If we look at the bounded

Circuits Logic Algebra
AC0 FO[arb] π − A [GL84, Imm87, BT88]

ACC0 FO+MOD[arb] π −Gsolv

NC1 FO+G[arb] π − S
FO[<]-uniform AC0 FO[<] A [Sch65, MP71, BL06]

FO[<]-uniform ACC0 FO+MOD[<] Gsolv [STT95, BL06]
FO+MAJ[<] T< [KLR07]

FO[<]-uniform TC0 FO+MAJ[<,+, ∗] T<,S q [BL06, KLR07]
FO+G[<] S

Figure 2.2: Relation between circuits and logic and algebra
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Circuits Logic
DLOGTIME-uniform AC0 FO[<,+, ∗] [BIS90]

DLOGTIME-uniform ACC0 FO+MOD[<,+, ∗] [BIS90]
DLOGTIME-uniform NC1 FO+G[<,+, ∗] [BIS90]

Figure 2.3: Relation between circuits and logic

variable cases there were even less results, which gave the intuition that linear circuits
correspond to 2 variables in logic ([KLPT06]) again corresponding to the weak block
product in algebra ([TW98, ST02, ST03]), see Figure 2.4.

It is known by Barrington [Bar89] that polynomial length programs over the group
A5 characterize the languages in NC1. In fact any non-solvable group could be used
instead ofA5. On the other hand any semigroup not containing only solvable groups,
i.e. Gsolv, is in ACC0 and hence in TC0. Therefore in order to separate the circuit
complexity classes TC0 and NC1 by a regular language, the only possibility is to find
a nonsolvable group that cannot be recognized by TC0, where the choice of group
negligible.

Circuits Logic Algebra
LC0 FO2[arb]

FO2[<] DA [TW98, ST02]
LCC0 (FO+MOD)2[arb] [KLPT06]

(FO+MOD)2[<] DA �Gsolv [ST03]

Figure 2.4: Relation between linear circuits, logic with two variablesand algebra

2.5 Summary

In this chapter we introduced the basic terms used in logic, algebra and circuit theory.
We recalled the definition of first order formulas with generalized quantifiers,

similar to the notion of the monoidal quantifier, we allow that a quantifier has multiple
subformulas. Please note that we did not restrict the definitions to the finite/regular
case and allow infinite monoidal quantifiers and arbitrary predicate sets.

For a set of quantifiers and a set of predicates we denote byQ[P] the class
of formulas built from quantifiers ofQ and predicates inP. Further we consider
subclasses where we limit the number of variables to one (or two), written asQ1[P]
(Q2[P]).

The usual notations from the algebraic treatment of languages, mainly from semi-
group theory were given. We recapitulated the block product, and its connection to
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logic by the substitution/block product principle, but we postponed a proof to the next
chapter where we present a more general statement.

Given a logic, algebraic or circuit classV we denote byL(V) the languages over
an alphabetΣ+ recognized by the classV, and byP(V) the pointed languages inΣ+⊗X
recognized byV. Please note that recognizing of a pointed languageL ⊆ Σ+ ⊗ X is
easier than recognizing of a languageL ⊆ (Σ ∪ 2X)+.



Chapter 3
Typed Semigroups

An algebraic framework that captures the expressiveness ofarbitrary classes of logic,
like MAJ[<], by morphisms cannot be based on finite structures, since the classes
might recognize nonregular languages. Therefore the (finitely) typed (semi)groups
introduced in [KLR05] cannot be finite but are infinite (semi)groups with additional
structure. Here we use an extended version, having closer connections to logic and
circuit complexity.

First we give the basic definitions for typed semigroups and show that they form
a category. Then we proceed to prove a theorem stating that there is a one to one
correspondence between varieties of languages and varieties of typed semigroups,
equivalent to the correspondence theorem of Eilenberg in the regular case. Since we
intended to construct an algebraic characterization of thelanguages for a given class
of logic, we devote our attention to the block product of typed semigroups.

3.1 Basics

We motivate the technical details of the typed semigroups byputting it in the context
of languages recognition.

When we look at the syntactic semigroupS of a languageL, we also have the
syntactic morphism

η : Σ+ → S,

such thatL = η−1(A) for some setA ⊆ S. So we have more algebraic structure than
the semigroupS alone. We will define the typed semigroups such that the information
about the accepting setA = η(L) and the generatorsη(Σ) are also represented.

Definition 3.1 (Typed Semigroup). A typed semigroupis a triple (S,S,E), whereS
is a finitely generated semigroup,S a finite Boolean algebra overS and a finite set
E ⊆ S. The elements ofS are calledtypesand the elements ofE are calledunits. We
call (S,S,E) a typed monoidiff S is a monoid.
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In this definitionS will limit the accepting sets, in order to explain this exactly we
need the notion of a morphism, so we delay this for a moment.

Since we are later interested in classes closed under inverse length preserving
morphisms, but not inverse morphism, we need to formalize some notion of length. In
the free semigroupΣ+, the elementsw ∈ Σ+ have a notion of length|w|, where length
is the numbern of generatorsw1, . . . ,wn ∈ Σ such thatw1 . . .wn = w. For arbitrary
semigroups there no equivalent definition of length, since there is no natural set of
generators. We will use the units of typed semigroups for a reduced concept. Here
we forgo to define a length for all elements ofS, but define only a set of units, which
should be thought as the elements of length one. Even if this seems to be dissatisfying
it allows to define notions of length preserving morphisms through a requirement that
units are mapped to units.

Finite case: Clearly the finite semigroups embed in the typed semi-
groups. Given a semigroupS, we equip it with the discrete typeset and
let all elements ofS be units, i.e. (S, 2S,S).

Throughout this chapter we will reveal links to category theory, only to justify
some of the definitions in this chapter, but not to gain results. For an introduction to
category theory we refer to the book [Mac98], although no knowledge is required in
this area. With the following definition of a morphism the typed semigroups form a
category:

Definition 3.2 (Typed Morphism). Let (S,S,E) and (S′,S′,E′) be two typed semi-
groups, then a morphismh : (S,S,E)→ (S′,S′,E′) is a triple (hS, hS, hE), such that:

• hS : S→ S′ is a morphism of semigroups,

• hS : S→ S′ is a morphism of Boolean algebras,

• hE : E→ E′ is a mapping of sets,

• ∀S ∈ S hS(S) = hS(S) ∩ hS(S),

• ∀u ∈ E hS(u) = hE(u).

Because of the compatibility clauses of this definition we can omit the indices of
the morphism. A morphism of typed monoids is defined in the same way with the
additional requirement thathS is a morphism of monoids.

Finite case: This is also consistent in the finite case, since any semigroup
morphismS → T induces a typed morphism (S, 2S,S) → (T, 2T ,T). So
the finite semigroups are a subcategory of the typed semigroups.

We define when a language is recognized by a typed semigroup according to the
previous considerations, compatible with the embedding ofthe finite case.
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Definition 3.3. We say that a typed semigroup (S,S,E) recognizes a language L⊆ Σ+

iff there is a morphismh : Σ+ → S with h(Σ) ⊆ E and a setS ∈ S, such thatL = h−1(S).
Similar (S,S,E) recognizes a pointed language L⊆ Σ+ ⊗ X iff there is a morphism
h : (Σ × X)+ → S with h(Σ× ∅) ⊆ E and a setS ∈ S, if for a wordw ∈ Σ+ ⊗ X we have
w ∈ L ⇐⇒ h(w) ∈ S.

LetΣ be an alphabet andX be a set of variables and (S,S,E) be a typed semigroup.
We let LΣ((S,S,E))= {L | L ⊆ Σ+ is recognized by (S,S,E)} and L((S,S,E))=⋃
ΣLΣ((S,S,E)). We letPΣ,X((S,S,E))= {L | L ⊆ Σ+ ⊗ X is recognized by (S,S,E)}

andP((S,S,E))=
⋃
Σ,X PΣ,X((S,S,E)). Finally we denote the set of languages with

one free variable byP1((S,S,E))=
⋃
Σ,|X|=1 PΣ,X((S,S,E)).

For a set of typed semigroupsS be defineL(S),P(S),P1(S) equivalently.

The above definition uses the types to limit the accepting set, i.e. h(L) ∈ S if
the morphismh maps to the typed semigroup(S,S,E). If we look at the semigroup
(�2, {∅, {1},�2 \ {1},�2},G), whereG is a minimal generator set of�2. Then this
contains the free group�2 and hence we can mapΣ+ invectively to�2. So if we would
allow arbitrary accepting sets, then the free group�2 could recognize every language.
Through the restrictions with the types the power is restricted pretty much to recognize
the Dyck languages or inverse morphism images of them. Usinga minimal generator
set for the units reduces the power even to the Dyck language with 2 generators, and
not arbitrary generators as without units.

In the following we will ease notation by allowing to specifyS only by its
generators. We write for example (�2, 1,G) in the example above and as another
example (�, 0,±1) for (�, {{0},� \ {0},�, ∅},±1). Please note since we chose to pick
a Boolean algebra for the types, they are always closed underunion, intersection and
negation, hence the finest language sets that we can characterize by typed semigroups
have similar closure properties.

In the following we assign to a languageL ⊆ Σ+, the typed semigroup (Σ+, L,Σ) and
show that the recognition of the languageL by (S,S,E) is equivalent to the existence
of a morphism from (Σ+, L,Σ) to (S,S,E).

Lemma 3.4. For any language L⊆ Σ+, the triple(Σ+, L,Σ) is a typed semigroup and
L is recognized by(S,S,E) iff there is a morphism from(Σ+, L,Σ) to (S,S,E). Also
for any language L⊆ Σ+ ⊗X, the triple((Σ×X)+, L,Σ×∅) is a typed semigroup and L
is recognized by(S,S,E) iff there is a morphism from((Σ × X)+, L,Σ × ∅) to (S,S,E).

Proof. This follows directly from the definition of recognizability (Definition 3.3). �

For example the typed semigroup (�,�+,±1) can recognize the languageL where
each word contains morea’s thanb’s by h(a) = +1, h(b) = −1, L = h−1(�+), but for
example not the language with an equal number ofa’s andb’s. Using a direct product
(�,�+,±1)× (�,�+,±1) with h(a) = (+1,−1) andh(b) = (−1,+1), we can recognize
the language with the same number ofa’s andb’s with the type�−0 × �

−
0 .

Please note that we only consider language inΣ+ here, and not inΣ∗. In the finite
case if a languageL ⊆ Σ∗ is recognized by a monoid (or even semigroup)S, then we
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B2 a b ab ba 0
a 0 ab 0 a 0
b ba 0 b 0 0
ab a 0 ab 0 0
ba 0 b 0 ba 0
0 0 0 0 0 0

Figure 3.1: The semigroup B2

can add a neutral letter to the language without changing thesyntactic morphism. On
the other hand there is no morphism fromΣ∗ onto a semigroup, unless it is a monoid,
hence the study of languages inΣ∗ leads to coarser classes of languages that can be
examined.

In the category of typed semigroups the situation is different: a typed morphism
h : (Σ∗, L,Σ) → (S,S,E) can exist, but we cannot add a neutral letter to the language.
This is possible, sinceh(ε) might not be a unit, so we cannot add a letter and map it
to h(ε) since all letters are units and thus need to be mapped to units. Since there is
not even a subtile difference in the theory of language ofΣ+ andΣ∗ in our algebraic
theory, we decided to state everything only for languages inΣ+, since this is closer to
the intuition from the finite case.

Finite case: In the finite case the semigroupB2 (see Figure 3.1)
recognizes the languageLB2 ⊆ {a, b}

+ with LB2 = (ab)+ that does
not posses a neutral letter. The same language as a subset of{a, b}∗,
needs the monoidB1

2 to be recognized, but there we have a morphism
h : {a, b, e} → B1

2 with h(e) = 1B2 where e is a neutral letter. If
we view this in the typed semigroup sense, we have a typed morphism
h : ({a, b}+, LB2, {a, b}) → (B2, {ab}, {a, b}), that recognizes the language.
If we embed the language into{a, b}∗ we get the modified morphism
h({a, b}∗, LB2, {a, b}) → (B1

2, {ab}, {a, b}). Here we cannot simply add the
lettere to the alphabet and map it to 1∈ B1

2 since 1 is not a unit.

We proceed now with the definitions known for (finite) semigroups adopted to
typed semigroups, with a special attention to division, that will lead to the an extension
of a well known result in the regular case, that the syntacticsemigroup is the smallest
semigroup under division recognizing the language.

Definition 3.5 (Injective, Surjective, Bijective Typed Morphisms,TypedSubsemigroup
and Division). Let (S,S,E), (S′,S′,E′) be two typed semigroups.

• A morphism h : (S,S,E) → (S′,S′,E′) with h = (hS, hS, hE) is injec-
tive/surjective/bijectiveiff hS, hS, andhE are injective/surjective/bijective.
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• (S′,S′,E′) is a typed subsemigroupof (S,S,E), denoted by the order symbol
(S′,S′,E′) ≤ (S,S,E), iff S′ is a subset ofS and there is an injective morphism
from (S′,S′,E′) to (S,S,E).

• A typed semigroup (S′,S′,E′) divides a typed semigroup (S,S,E) denotes
by (S′,S′,E′) � (S,S,E) iff (S′,S′,E′) is the morphic image of a typed
subsemigroup of (S,S,E).

We will show that the definitions are sound with the abstract categorical definitions.

Lemma 3.6. Let (S,S,E), (S′,S′,E′), (T,T,F) be typed semigroups.

1. For every typed group the identity mapping is a bijective morphism.

2. The application of two (injective/surjective/bijective) is again a
(injective,surjective,bijective) morphism.

3. α : (S′,S′,E′) → (T,T,F) is an injective morphism iff β = β′ ⇐⇒ αβ = αβ′

for all morphismsβ, β′ : (S,S,E)→ (S′,S′,E′).

4. α : (T,T,F)→ (S,S,E) is a surjective morphism iff β = β′ ⇐⇒ βα = β′α for
all morphismsβ, β′ : (S,S,E)→ (S′,S′,E′).

5. α : (S,S,E) → (S′,S′,E′) is a bijective morphism iff there is a morphism
α′ : (S′,S′,E′)→ (S,S,E) with αα′ = 111(S,S,E) andα′α = 111(S′,S′,E′).

Proof. 1. This is clear.

2. This is also clear.

3. Letα be an injective morphism, andβ , β′, then there is as ∈ S with β(s) , β′(s)
and by injectivity ofα, we haveαβ(s) , αβ′(s). Assumeα is not injective,
then there ares , s′ ∈ (S,S,E) with α(s) = α(s′). We let (S,S,E) be
the subsemigroup of (S′,S′,E′) generated by (s, s′), we define two morphism
β((s, s′)) = s andβ′((s, s′)) = s′. Thenαβ = αβ′ but β , β′. Note that we can
choose types and units in such a way that the morphisms are typed morphisms.

4. This is similar to the previous case.

5. Let α = (αS, αS, αE) be a bijective morphism, then we need to show that
(α−1

S , α
−1
S
, α−1

E
) is also a typed morphism. But sinceα is surjective for every

typeS′ ∈ S′, there is a typeS ∈ S with αS(S) = αS(S) = S′ and by injectivity
we haveα−1

S (S′) = α−1
S

(S′). For the same reasonα−1
E

coincides withα−1
S .

The reverse direction follows from (3) and (4).
�

The notion of division allows us to compare two semigroups inthe finite case. we
show that we can also compare typed semigroups.
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Lemma 3.7. Division is a preorder on the class of typed semigroups.

Proof. It is clear that division is reflexive, hence we need to show that it is transi-
tive, i.e. for three typed semigroups (S,S,E),(T,T,F),(U,U,G): if (U,U,G) divides
(T,T,F) and (T,T,F) divides (S,S,E), then (U,U,G) divides (S,S,E). We are in the
following situation:

(S,S,E) (T,T,F) (U,U,G)

(S′,S′,E′)
OO

OO

α
77 77nnnnnnnnnnnn

(T′,T′,F′)
OO

OO
β

77 77ppppppppppp

(S′′,S′′,E′′)
OO

OO

α|(S′′ ,S′′ ,E′′)

77 77

In the diagram above we let (S′′,S′′,E′′) = α−1((T′,T′,F′)), thenβαmaps (S′′,S′′,E′′)
subjectively on (U,U,G) and is a subgroup of (S,S,E), hence (U,U,G) divides
(S,S,E). �

Finite case: In the finite case division is of course a partial order since if
S dividesT, then|S| ≤ |T |, and if |S| = |T | division implies isomorphism.

But please note that division in general is not a partial order, as in the finite
semigroup case. For example (�2, 1�2, ∅) divides (�3, 1�2, ∅) and (�3, 1�3, ∅) divides
(�2, 1�2, ∅), since as monoids�2 is a submonoid of�3 and also�3 is a submonoid of
�2, by the same morphisms they are typed submonoids, but they are not isomorphic.

Lemma 3.8. Let (S,S,E), (S′,S′,E′) be typed semigroups. If there is a surjective
morphismβ : (S,S,E) → (S′,S′,E′), then every morphism from the free semigroup
(T,T,F) to (S′,S′,E′) factors thoughβ. That is for every morphismα, there is a
morphismα′ such that the following diagram commutes.

(T,T,F)
α′

xx

α

''NNNNNNNNNNN

(S,S,E)
β

// // (S′,S′,E′)

Proof. For every generatort of (T,T,F), we defineα′(t) = st, wherest is any preimage
of α(t) underβ. Since (T,T,F) is free, we can extend this to a morphism and by
definitionα(t) = β(α′(t)), henceα = β ◦ α′. �

Two typed semigroups that divides each other do not need to beisomorphic but
they recognize the same languages, which we will prove with the help of the typed
syntactic semigroup in the next lemma.

Definition 3.9 (Typed Syntactic Semigroup). Let L ⊆ Σ+ be a language, then
(Σ+/ ∼L, L/ ∼L,Σ/ ∼L) is thetyped syntactic semigroupof L.
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For example letL ⊆ {a, b}+ be the language with the same number ofa’s and
b’s. Thenw ∼L w′ iff #a(w) − #b(w) = #a(w′) − #b(w′). We haveΣ+/ ∼L is the
set of equivalence classes that is isomorphic to the integers by η : Σ+ → � by
w 7→ #a(w)−#b(w). This implies thatL/ ∼L is just one equivalence class andη(L) = 0,
and the equivalence classes that containΣ are mapped byη to +1 and−1. Hence we
get syn(L) = (�, {0}, {1,−1}).

It is easy to see that the units are always a generator set of a typed syntactic
semigroup, i.e. iff (S,S,E) is a typed syntactic semigroup thenS = E+. We will
continue to show that the typed syntactic semigroup is the unique minimal semigroup
that recognizesL.

Finite case: Since division is a partial order in the finite case it is easy to
show that the syntactic semigroup is the minimal semigroup by division
that recognize the languages.

Lemma 3.10.Let (S,S,E) be a typed semigroup, then ifsyn(L) divides(S,S,E), then
(S,S,E) recognizes L.

Proof. By definition there is a subsemigroup (S′,S′,E′) of (S,S,E), such that there
is a surjective morphismα from (S′,S′,E′) to syn(L). By definition of the syntactic
semigroup, there is a morphismη : (Σ+, L,Σ) → syn(L), then by Lemma 3.8 there is a
morphismα′ : (Σ+, L,Σ) → (S′,S′,E′), with α ◦ α′ = η. So (S′,S′,E′) recognizesL
and so (S,S,E). �

Although we do not have a partial order the syntactic semigroup of L is the unique
minimal typed semigroup up to isomorphism that recognizesL.

Lemma 3.11.The typed syntactic semigroup of a language L is the minimal semigroup
under division that recognizes L.

Proof. Let L be a language recognized by a typed semigroup (S,S,E) with a mor-
phismh, and let (S′,S′,E′) be the image of (Σ+, L,Σ). We show there is a surjective
morphismα from (S′,S′,E′) to the typed syntactic semigroup (SL,SL,EL), and hence
(SL,SL,EL) divides (S,S,E).

(Σ+, L,Σ) h // //

η
����

(S′,S′,E′)

α
wwww

// // (S,S,E)

(SL,SL,EL)

So we need to show thatα(s) = η(h−1(s)) is well defined. But assume that there
are w1,w2 with h(w1) = h(w2) and η(w1) , η(w2), then there areu, v ∈ Σ+ with
uw1v ∈ L ⇐⇒ uw2v < L, but h(uw1v) = h(uw2v) henceL is not recognized by
S.
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In order to show that is (SL,SL,EL) is the unique minimal typed semigroup we
assume (S,S,E) divides (SL,SL,EL). Then there is a submonoid (S′L,S

′
L,E

′
L) of

(SL,SL,EL).

(Σ+, L,Σ) h // //

η
����

(S′,S′,E′)

α
wwwwnnnnnnnnnnnn

// // (S,S,E)

(SL,SL,EL)

(S′L,S
′
L,E

′
L)

OO

OO

β

77 77ooooooooooooooooooooooooooooo

SinceΣ generatesΣ+ andh is surjective, we know that|E′|, |EL| < ∞, E′ generates
S′, alsoSL is generated byEL. Also we know|E′| ≤ |E| ≤ |E′L| ≤ |EL| ≤ |E

′|, so
|E′| = |E| = |E′L| = |EL|. We get (SL,SL,EL) � (S′L,S

′
L,E

′
L), andβ mapsS′L to the span

of E, henceE generatesS, which again implies (S,S,E) � (S′,S′,E′).
Now we have a surjective morphism from (S,S,E) to (SL,SL,EL) and converse,

but this does not imply that there is an isomorphism. But it isclear thatαβ is a
permutation ofE, hence there is a power ofαβ that is the identity onE. But then
this power is also an identity on (S,S,E) and we have (SL,SL,EL) � (S,S,E). �

Contrary to the finite case bilateral division does not implyisomorphy between two
typed semigroups, but we can prove a weaker result:

Lemma 3.12. If (S,S,E) and (T,T,F) are two typed semigroups that divide each
other, thenP((S,S,E)) = P((T,T,F)).

Proof. The lemma is equivalent to statement: the syntactic semigroup of language
divides (S,S,E) iff it divides (T,T,F). This is true since division is a preorder. �

Finite case: The previous lemma is again trivial for finite semigroups
since division is a partial order there.

Finally we define the direct product as the last basic operation.

Definition 3.13 (Direct Product). The direct productof two semigroups (S,S,E),
(S′,S′,E′), denoted by (S,S,E) × (S′,S′,E′), is defined as (S × S′,S ×S′,E × E′).

The direct product in the abstract categorical sense is defined as in the following
lemma, where we show that the two definitions coincide.

Lemma 3.14. The direct product of two semigroups(S,S,E) and (S′,S′,E′), is
the smallest typed semigroup such that for every typed semigroup (T,T,F) and all
morphismsα, β, there is a morphismγ such that the following diagram commutes.

(S,S,E) × (S′,S′,E′)
π1

uukkkkkkkkkkkkkk
π2

))SSSSSSSSSSSSSS

(S,S,E) (T,T,F)αoo
β

//

γ

OO

(S′,S′,E′)
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Proof. It is clear that for the direct product we can letγ = α × β and the diagram
commutes. Assume that (S,S,E) × (S′,S′,E′) does not divide the direct product
(U,U,G), then we let (T,T,F) = (S,S,E) × (S′,S′,E′), andα = π1, β = π2. So
the morphismγ cannot be injective, hence there are two elements (s1, s′1), (s2, s′2)
that map to the same element in (U,U,G). But then both elements are mapped to
the same elements underπ1γ andπ2γ, this impliess1 = s2 and s′1 = s′2, and hence
(s1, s′1) = (s2, s′2) a contradiction . �

Finally we show how the direct product can be used to disassemble the Boolean
algebra of a typed semigroups:

Lemma 3.15.Let (S,S,E) and(S,S′,E) be two typed semigroups, then(S,S∨S′,E)
divides(S,S,E) × (S,S′,E).

Proof. We defineh : (S,S×S′,E)→ (S,S,E)×(S,S′,E), with h(s) = (s, s), note that
(s, s) is a unit. Then forS ∈ S, h(S) = S×S∩h(S), and forS′ ∈ S′, h(S′) = S×S′∩h(S),
henceh is a typed morphism, and is clearly injective. �

3.2 Weakly closed classes

We will now impose certain closure properties on typed semigroups similar as [Eil76],
to get a one-to-one relation to varieties of languages. As anintermediate step we
show a weaker relation for classes and weakly closed classesof languages and typed
semigroups.

It is possible that the Boolean algebra chosen is to coarse tomake use of the
semigroup. For example if we look at a typed semigroup with the trivial Boolean
algebra (S, {S, ∅}), then we can recognize only the trivial languages independent ofS.
But still this typed semigroup is not the trivial typed semigroup (�, �, �) unlessS is the
trivial semigroup�, so we introduce a concept that avoids this problem.

Definition 3.16 (Reduced Semigroup/Trivial Extension). Let (S,S,E) be a typed
semigroup such that there is a congruence∼ of S andS is coarser than∼. Then
we call ˜(S,S,E) = (S/ ∼,S/ ∼,E/ ∼) the reduced semigroup, and (S,S,E) a trivial
extensionof (S/ ∼,S/ ∼,E/ ∼).

Finite case: There is no counterpart for the concept above in finite
semigroups, since every semigroup except the trivial one, allows us to
recognize non-trivial languages. But in the case of typed semigroups any
semigroupS with a trivial typeset, i.e. only∅,S, can only recognize trivial
languages.

Some examples of trivial extensions are: LetG be any group andN be a normal
subgroup, then (G,N) is a trivial extension of (G/N, 1). Another example is (�, 2�)
which is a trivial extension of (�2, 0). Also for each languageL, the typed semigroup
(Σ+, L,Σ) is a trivial extension of the syntactic semigroup ofL.
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Lemma 3.17. If ˜(S,S,E) = (S′,S′,E′), thenP((S,S,E)) = P((S′,S′,E′)). Also
˜(S,S,E) divides×S∈S

˜(S, S,E).

Proof. Let L ⊆ Σ+ be a language inP((S,S,E)), then there is a typed morphism
h : (Σ × 2X)+ → (S,S,E) such thath(Σ × ∅) ⊆ E andL = h−1(S) for anS ∈ S. We
know there is a morphismh′ : (S,S,E) → (S′,S′,E′) henceh′h is a morphism that
recognizesL with the typeh′(S). It follows P((S,S,E)) = P((S′,S′,E′)), since the
other direction is trivial.

Again we know there is a morphismh′
S

: (S, S,E) → ˜(S, S,E), and a morphism
h′ : (S,S,E)→ ˜(S,S,E). We define a typed morphismh : (S,S,E)→ ×S∈S

˜(S, S,E),
by h(s) = ((hS(s))S∈S).

(S,S,E) h //

h′

%%LLLLLLLLLL
×S∈S

˜(S, S,E)

˜(S,S,E)

h̃
77

We need to show thath factors throughh′, so we have a morphism̃h. Assume
that h′(s1) = h′(s2), then for all elementsl, r ∈ S and all typesS ∈ S we have
ls1r ∈ S ⇐⇒ ls2r ∈ S. But if for a fixed typeS we have for alll, r ∈ S that
ls1r ∈ S ⇐⇒ ls2r ∈ S, thenh′

S
(s1) = h′

S
(s2). It follows thath′(s1) = h′(s2) implies

thath(s1) = h(s2), and so there is a morphism̃h. �

Lemma 3.18. A typed semigroup is the syntactic semigroup of a language iff it is
reduced, generated by its units and has 4 or 2 types.

Proof. For the one direction it is clear that by minimality of the syntactic semigroup it
is reduced, generated by its units and has 4 types, or if it is trivial 2 types.

Assume a reduced semigroup has 2 types, then it is the trivialsemigroup and hence
the syntactic semigroup ofΣ+ and∅ iff it has a unit.

Assume a reduced semigroup (S,S,E) has 4 types and is generated by its units. We
let h : E+ → S be the natural morphism, andL = h−1(S) whereS ∈ S is a nontrivial
type. Then syn(L) = (S,S,E), by the definition of the syntactic semigroup. �

Finite case: While it is hard to decide if a finite semigroup is the syntactic
semigroup of language, it is easy here since a typed syntactic semigroup
can have only a minimal typeset and for a fixed type it is easy todecide
if a semigroup is a syntactic semigroup. This compares to theproblem in
the finite case: given a semigroup and an accepting set, is theaccepting
set is disjunctive.

Definition 3.19((Weakly Closed) Class). A classof typed semigroups is a non-empty
set of typed semigroups, that is closed under division and trivial extensions. A class
of typed semigroups that is closed under direct products is called aweakly closed
class. If S is a set of typed semigroups then wc(S) is the smallest weakly closed class
containingS.
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Lemma 3.20.Let V be a typed semigroup class, then(Σ+, L,Σ) ∈ V iff syn(L) ∈ V.

Proof. This is clear since (Σ+, L,Σ) is a trivial extension of syn(L) by definition and
syn(L) divides (Σ+, L,Σ) by Lemma 3.11. �

Definition 3.21 ((Weakly Closed) Class of Languages). Let V be a (weakly closed)
class of semigroups, then we callV = L(V) a (weakly closed) class of languages.

We begin to show that the languages recognized by a (weakly closed) class of typed
semigroups have certain closure properties.

Proposition 3.22. If V is a (weakly closed) class of typed semigroups, thenV = L(V)
is closed under inverse length preserving morphisms (and Boolean combinations).

Proof. If L2 ∈ V then there is a morphismη : Σ+2 → syn(L2), that recognizesL2.
Assume there is a length preserving morphismh : Σ+1 → Σ

+
2 with h(L1) = L2, thenηh

recognizesL1.
Also for a weakly closed class, ifL1, L2 ∈ V then syn(L1), syn(L2) ∈ V, and hence

syn(L1) × syn(L2) ∈ V which can recognizeL1 ∩ L2 andL2 ∪ L2. �

Finite case: The previous proposition has no correspondence in the finite
semigroup world; since the accepting set is ignored, the languages are
always closed under quotients. Finite semigroups do not keep track of
the units, hence to characterize a closure under inverse length preserving
morphisms but not under inverse morphisms is not possible, and the
weakly closed class of languages recognized by a weakly closed class
of semigroups is already a variety. This makes it even impossible to
characterize the weakly closed class of languages recognized for example
by FO[<,mod], which we can describe by finite typed semigroups.

Proposition 3.23.For two classesV ⊆W andV = L(V),W = L(W) we haveV ⊆W.

Proof. This is clear since for everyL ∈ V we have syn(L) ∈ V ⊆W soL ∈W. �

The next proposition is extremely important since it ensures that every (weakly
closed) class of languages can be characterized by a (weaklyclosed) class of typed
semigroups.

Proposition 3.24. If V is a set of languages closed under inverse length preserving
morphisms (and Boolean combination), then there is a (weakly closed) class of typed
semigroupsV with L(V) = V.

Proof. We only prove this proposition for weakly closed classes of languages, the
other proof is equivalent. LetV be the smallest weakly closed class that contains
all syntactic semigroups ofV. Then by definitionV is a subset of the corresponding
language variety toV.
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AssumeL has a syntactic semigroup (S,S,E) = syn(L) in V. Then (S,S,E)
divides×i(Si,Si,Ei), where (Si ,Si,Ei) = syn(Li) for some languageLi ∈ V. So the
semigroup×i(Si ,Si,Ei) recognizesL, i.e. there is a morphismh : Σ+ → ×i(Si,Si,Ei).
Also since the syntactic morphism ofLi are surjective we can choose a tuple (wi)i

of words with wi ∈ Σ
+
i such thath(s) = η((wi)i). But then we have a morphism

h′ : Σ+ → ×Σ+i such thathh′ recognizesL, and sinceπih′(L) = Li the languageL is
the inverse image of

⋃
i Li and soL ∈ V. �

3.3 Varieties

While the one-to-one relation fails for weakly closed classes, we now proceed to define
the notion of a variety to get the one-to-one correspondence. We need more than
closure under direct product and division, like for the definition of a variety of regular
languages, we have additional closure properties.

Let A ⊆ S be a subset of the semigroupS, then for λ, ̺ ∈ S, we let
λ−1A̺−1 = {s | λs̺ ∈ A}. This definition is consistent so far that iff λ and ̺
have inverse elements, then this notion coincides with the normal definition, i.e.
λ−1A̺−1 = {λ−1s̺ −1 | s ∈ A}.

Definition 3.25(Shifting). Let (S,S,E) be a typed semigroup than (S,S′,E) is ashift
of (S,S,E), iff there areλ, ̺ ∈ S with S′ = {λ−1S̺−1 | S ∈ S}.

The units help to preserve the length in the mappings, which is not desired
in some cases hence we define a way to “ignore” the units. We needed units to
characterize (weakly closed) classes of languages algebraically; since varieties of
languages are closed under inverse morphisms, the units arenot needed in the algebraic
characterization of varieties of languages.

Definition 3.26 (Unit Relaxation). Let (S,S,E) be a typed semigroup then (S,S,E′)
for any finite setE′ ⊆ S is aunit relaxationof (S,S,E).

Definition 3.27 (Variety). A varietyof weakly closed class of typed semigroups that
is closed under shifting and unit relaxation.

In the later chapters we will mostly use varieties, hence ourtyped semigroups are
closed under unit relaxation. Because of this we write (S,S) for a typed semigroup
(S,S,E) where the unit set is an arbitrary finite subset ofS.

Finite case: A variety of finite semigroups is automatically closed under
shifting and unit relaxation; since we embed a finite semigroup S into
the typed semigroups as (S, 2S,S), the semigroupS already posses all
possible types and units.

Proposition 3.28. If V is a variety of typed semigroups, thenV = L(V) is a variety of
languages.
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Proof. If L1, L2 ∈ V then syn(L1), syn(L2) ∈ V, and hence syn(L1) × syn(L2) ∈ V
which can recognizeL1 ∩ L2 andL2 ∪ L2. Also if L2 ∈ V then there is a morphism
η : Σ+2 → syn(L2), that recognizesL2. Assume there is a (length preserving) morphism
h : Σ+1 → Σ

+
2 with h(L1) = L2, thenηh recognizesL1. In the case thath is not length

preserving we need to replace syn(L2) by an appropriate unit relaxation, otherwise we
would map unit elements to non-unit elements. Finally ifL ∈ V then so areσ−1L and
Lσ−1 since the types of the semigroup variety is closed under shifting. �

Proposition 3.29. For two varietiesV ⊆ W we haveV ⊆ W, where equality occurs
only if V =W.

Proof. It is clear thatV ⊆ W, so we need to show that equivalence statement for
varieties.

Let (S,S,E) be a semigroup inW and assumeV = W. We let {Si}i = S, then
(S, Si) is a typed semigroup for each typeSi ∈ S. It follows (S,S,E) divides×i(S, Si)
and also ˜(S,S,E) divides×i

˜(S, Si), but for each˜(S, Si) there is language inW with
syn(Li) = ˜(S, Si). The same languages are inV and hence˜(S, Si) is also inV, and by
the closure property also˜(S,S,E) and with a trivial extension also (S,S,E) and hence
V =W. �

Proposition 3.30. For every variety of languagesV there is a corresponding variety
of typed semigroupsV, such thatV = L(V).

Proof. Let V be the smallest variety that contains all syntactic semigroups ofV. Then
by definitionV is a subset of the corresponding language variety toV.

AssumeL has a syntactic semigroup (S,S,E) = syn(L) in V, we need to
show thatL ∈ V. Then (S,S,E) divides a trivial extension of×i(Si ,Si), where
(Si ,Si,Ei) = syn(Li) for some languageLi ∈ V. So the semigroup×i(Si ,Si)
recognizesL, i.e. there is a morphismh : Σ+ → ×i(Si,Si). Also since the syntactic
morphism ofLi are surjective we can choose a tuple (wi)i of words withwi ∈ Σ

+
i such

that h(s) = η((wi)i). But then we have a morphismh′ : Σ+ → ×Σ+i such thathh′

recognizesL, and sinceπih′(L) = Li the languageL is the inverse image of
⋃

i Li and
soL ∈ V. �

Now we can state an extension of the Eilenberg Theorem to arbitrary varieties of
languages. So we get the same result as in the finite case in both directions.

Theorem 3.31.Varieties of typed semigroups and varieties of languages are in a one
to one correspondence:

• LetV a variety of languages andV the smallest variety of typed semigroups that
recognizes all languages inV, thenL(V) = V.

• Let V be a variety of typed semigroups andW be the smallest variety that
recognizes all languages ofL(V), thenV =W.
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Proof. By Proposition 3.28 the correspondence of a semigroup variety V and the
languagesL(V) is a relation between varieties. Then by Proposition 3.29 this mapping
from the semigroup varieties to the language varieties is injective, and by Proposition
3.30 also surjective. �

Since we are most of the time only interested in an algebraic characterization of
some language class, we are mainly interested in the first condition of the previous
theorem, that we have an algebraic characterization of a variety of languages.

Finite case: Please note that the Eilenberg Theorem in the finite case fol-
lows directly from this theorem, since we showed that the finite semigroup
can be embedded in the typed semigroups.

3.4 Block product

In the regular case the block product was defined with much freedom, here we need to
make some restrictions, as already pointed out in [KLR05].

The block product is used to model algebraically the nestingof quantifiers in logi-
cal formulas. The substitution as defined in the preliminaries allows us to decompose
formulas. We will use this decomposition in the reverse way to build complex typed
semigroups from simple ones. First we will define an algebraic equivalent of the
substitution, and show that we can compute this substitution by the block product
as defined below.

We define transductions for typed semigroups, compatible with the definition for
finite semigroups as in [TW04].

Definition 3.32 ((S,S,E)-Transduction). Let h : ((Σ × X)+, L,Σ × ∅)→ (S,S,E) be a
morphism andC ⊆ S a finite set andΣ′ an alphabet. A (S,S,E)-transductionis a map
τ : Σ+ ⊗ X→ (Σ′)+ ⊗ X, where

τ((w1 . . .wn)x1=i1,...,xk=ik) = (w′1 . . .w
′
n)x1=i1,...,xk=ik.

In this map thew′i depend onwi and on the type ofh(w1 . . .wi−1cwi+1 . . .wn) for all
c ∈ C, i.e. there is a mapΣ ×SC → Σ′. We letτh be the corresponding morphismh to
the transductionτ.

Finite case: In the finite there exists also the notion of aS-transduction.
There it is convenient to useΣ′ = S×Σ×S and letw′i = (h(w<i),wi , h(w>i)).
But in our case this is not possible sinceS is not finite and the construction
would be too powerful.

We will now define the block product of (S,S,E) with (S′,S′,E′) such that this
captures the languages recognized by (S,S,E) after applying a (S′,S′,E′) transduc-
tion. We need more restrictions in the definition than in the finite case (see Chapter
2.3.2), otherwise the block product would be too powerful.
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Definition 3.33(Block Product⊡ ). Let (S,S,E), (S′,S′,E′) be two typed semigroups
andC ⊆ S′ be a finite set, then theblock product(S,S,E)⊡ C(S′,S′,E′)= (T,T,F) is a
typed semigroup, whereT is the finitely generated subsemigroup ofS�S′, generated
by the elements (f , s), where f : S′1 × S′1 → E and s ∈ E ∪ C. We require that
f (b1, b2) = f (b′1, b

′
2) if for all c ∈ C and allS′ ∈ S′ we have

b1cb2 ∈ S′ ⇐⇒ b′1cb′2 ∈ S′.

The typesT are{( f , s) | f (e, e) ∈ S} for all S ∈ S. The unitsF are the elements
( f , s), where f is a generator functions, hencef maps only to units of (S,S,E), ands
is a unit.

Note thatE, C andS′ are finite and hence there are only finitely many elements
( f , s) generating the subsemigroup. We cannot simply letC be (S′,S′,E′) since the
block product is not finitely generated. But since any finite setC will do we will skip
to specifyC in the future and assume the correctC is picked.

Remark3.34. The definition of the block product is chosen in such a way thatif two
elements have the same first component, they are in the same type. We could have
defined this similar to the direct product and have allowed Boolean combinations of
types on the first and second component, but this would be further apart from the
logic. Algebraically this is only a tiny difference since one can simulate the second
component by a direct product, i.e. (A ⊡ B) × B captures this power.

Finite case: In the finite case we can allow all functions in the block
product and need no restriction, but in the infinite case we��� already
contains the free semigroup with two generators. So we couldget an
injective mapping of the alphabet into��� and if we have no types
recognize all languages. Even with types, if we allow all functions
(�, 0,±1)� (�, 0,±1) contains the free semigroup with two generators and
(�, 0,±1)� ((�, 0,±1)� (�, 0,±1)) could recognize all languages. The
reason is that if we allow all functions, we could choose the characteristic
function of the language in the left block product.

Now we show how the type of a word is computed in a block product. Let
(T,T,F) = (S,S,E) ⊡ (S′,S′,E′) be a typed semigroup with a typeT ∈ T, then
an elementt is in T iff π1(t)(e, e) is in some typeS of (S,S,E). We call this typeπ1T

that corresponds toT, i.e. s ∈ T ⇐⇒ π1(s)(e, e) ∈ π1T.

Lemma 3.35.Let h : Σ+ → (T,T,F) = (S,S,E) ⊡ (S′,S′,E′), then h(w) ∈ T ∈ T iff

n∑

i=1

π1(h(w))(
∏
j<i
π2(h(w)),

∏
j>i
π2(h(w))) ∈ π1T ∈ S
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Proof. We do this by computation.h(w) ∈ T iff π1(h(w)) ∈ π1T. We leth(wi) = (gi , zi)
wheregi : S′ × S′ → S, andzi ∈ S′. We compute

h(w) = ( f1, g1)( f2, g2) . . . ( fn, gn) =

= ( f1g2 + g1 f2)( f3, g3) . . . ( fn, gn) =

= ( f1g2g3 + g1 f2g3 + g1g2 f3)( f4, g4) . . . ( fn, gn) =

=

(
f1
( n∏

j=2
g j
)
+ · · · +

(∏
j<i

g j) fi
(∏

j>i
gi) + · · · +

( n−1∏
j=1

g j
)
fn,

n∏
i=1

gi

)
=

=

( n∑

i=1

(∏
j<i

g j
)
fi
(∏

j>i
gi
)
,

n∏
i=1

gi

)

Since (gl f gr)(e, e) = f (gl, gr) the result follows. �

We list some facts about block products of typed semigroups,that were similar
listed in [TW04] for the case of finite monoids.

Lemma 3.36. Let (S,S,E), (S′,S′,E′), (T,T,F), (T′,T′,F′) (U,U,G) be typed
semigroups.

1. If (S,S,E) and (S′,S′,E′) are typed monoids, then(S,S,E) ⊡ (S′,S′,E′) is a
typed monoid.

2. If (S,S,E) and (S′,S′,E′) are typed groups, then(S,S,E) ⊡ (S′,S′,E′) is a
typed group.

3. ((S,S,E) ⊡ (S′,S′,E′))k � (S,S,E)k
⊡ (S′,S′,E′)k.

4. If (S,S,E) is a typed monoid and divides(T,T,F), and(S′,S′,E′) � (T′,T′,F′),
then(S,S,E) ⊡ (S′,S′,E′) � (T,T,F) ⊡ (T′,T′,F′).

5. Let 1 denote the trivial typed monoid. Then(S,S,E) ⊡ 1 � (S,S,E), and
1 ⊡ (S,S,E) is a trivial extension of 1.

6. (S,S,E) � (S,S,E) ⊡ (S′,S′,E′).

7. ((S,S,E)⊡ (T,T,F))⊡ (U,U,G) � (S,S,E)⊡ (((T,T,F)⊡ (U,U,G))×(U,U,G)).

Proof. 1. (eS, eS′) is the one element of (S,S,E) ⊡ (S′,S′,E′).

2. Let (f , s′) ∈ (S,S,E) ⊡ (S′,S′,E′), then

(s′−1 f −1s′−1, s′−1)( f , s′) = (s′−1 f −1s′−1s′ + s′−1 f , s′−1s′) =

= (s′−1 f −1 + s′−1 f , eS′) =

= (s′−1( f −1 + f ), eS′) =

= (s′−1eS, eS′) =

= (eS, eS′)

and also (f , s′)(s′−1 f −1s′−1, s′−1) = (eS, eS′).
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3. Let ((fi, s′i ))i∈{1,...,k} ∈ ((S,S,E) ⊡ (S′,S′,E′))k, where
fi : (S′,S′,E′) × (S′,S′,E′) → (S,S,E) for i ∈ {1, . . . , k}. We let
f̃i : ((S′,S′,E′)k × (S′,S′,E′)k)→ (S,S,E) by f̃i(t1, t2) = fi(πi(t1), πi(t2)). Then
(( f̃i)i , (s′i )i) ∈ (S,S,E)k

⊡ (S′,S′,E′)k, and the map ((fi, s′i ))i 7→ (( f̃i)i, (s′i )i) is an
injective morphism.

4. If S′ < S andT′ < T then (f ′, t′) 7→ ( f , t′) where f is the extension onT × T
by the neutral element ofS is an injective morphism. Hence we can assume that
thatS′ is a morphic image ofS andT′ of T.

In the special caseT = T′, we define a map (f , t) maps to (f ′, t), where f ′(t1, t2)
is the morphic image off (t1, t2). It is clear that this is a surjective morphism.

Now we assume thatT , T′, then we take the subsemigroupV of T × T → S,
where the functions are constant on the congruence classes of the mapT → T′.
It is clear that there is a morphism from (f , t) for f ∈ V to ( f ′, t′) sinceV is has
constant functions on a congruence.

5. The morphisms 7→ (s, e) and its inverse are bijections, sinces is a function
1× 1→ (S,S,E) � (S,S,E). Also the typed semigroup 1⊡ (S,S,E) has only
one type, hence is a trivial extension of 1.

6. The morphisms 7→ (s, e) is injective.

7. We show ((S,S,E) ⊡ (T,T,F)) ⊡ (U,U,G) is a typed subsemigroup of (S,S,E)
⊡ (((T,T,F) ⊡ (U,U,G)) × (U,U,G)). We need the extra typed semigroup
(U,U,G) only to get the correct types, not for the computation. Hence we will
first show that (S�T)�U is a subsemigroup ofS� (T �U) and even that this
map works for the restricted block product version.

First we describe the elements in the semigroup of (S�T)�U, by a triple
(( f , g), z), where f : U2 → (T2 → S), g : U2 → T andu ∈ U. Since the
tuple (f , g) describes a mapU2 → S�U it is clear that the triple describes
exactly the elements of (S�T)�U.

Now the elements in the strong block product are inS� (T �U) also by triples
( f̂ , (ĝ, ẑ)), where f̂ : (T �U)2 → S, ĝ : U2→ T andẑ ∈ U. Here (ĝ, ẑ) describes
an elements ofT �U. Already by the functions of these two triples one gets an
idea how to map the last to components, but for the first this isa bit tricky.

Let (( f , g), z) ∈ (S�T)�U. We definef̂z : (T �U)2 → S by

f̂z((g1, z1), (g2, z2)) = f (z1, z2)(g1(e, zz2), g2(z1z, e)).

Then we have a mapα : (S�T)�U → S� (T �U) by (( f , g), z) 7→ ( f̂z, (g, z)).
We need to show this map is a morphism. Before this we define thenotion
of a left and right action∗ of g : U2 → T on f : U2 → (T2 → S), where
g acts pointwise onf , by the left and right action ofT on T2 → S, i.e.
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( f ∗ g)(z1, z2)(b1, b2) = ( f (z1, z2)g(z1, z2))(b1, b2) = f (z1, z2)(b1, g(z1, z2)b2) and
(g ∗ f )(z1, z2)(b1, b2) = (g(z1, z2) f (z1, z2))(b1, b2) = f (z1, z2)(b1g(z1, z2), b2). So
we compute the products:

(( f , g), z)(( f ′, g′), z′) = (( f z′) ∗ (zg′) + (gz′) ∗ (z f′), gz′ + zg′, zz′).

( f̂z, (g, z))( f̂z′, (g′, z′)) = (( f̂z)(g′, z′) + (g, z)( f̂ ′z′), (gz′ + zg′, zz′)).

If we show (f̂z)(g′, z′) = ̂(( f z′) ∗ (zg′))zz′ we are done by symmetry.

We compute

( f̂z)(g
′, z′)((g1, z1), (g2, z2))

= ( f̂z)((g1, z1), (g
′, z′)(g2, z2))

= ( f̂z)((g1, z1), (g
′z2 + z′g2, z

′z2))

= f (z1, z
′z2)(g1(e, zz′z2), (g

′z2 + z′g2)(z1z, e))

= f (z1, z
′z2)(g1(e, zz′z2), g

′(z1z, z2) + g2(z1zz′, e))

We compute

̂(( f z′) ∗ (zg′))zz′((g1, z1), (g2, z2))

= (( f z′) ∗ (zg′))(z1, z2)(g1(e, zz′z2), g2(z1zz′, e))

= f (z1, z
′z2)(g1(e, zz′z2), (zg′)(z1, z2) + g2(z1zz′, e))

= f (z1, z
′z2)(g1(e, zz′z2), g

′(z1z, z2) + g2(z1zz′, e))

Hence the mapping is a morphism, and it is clearly injective.

Finally we need to show that this maps generating functions of the restricted
block product to generator functions. So letf be a generator functions. We have
f̂z((g1, z1), (g2, z2)) = v iff f (z1, z2)(g1(e, zz2), g2(z1z, e)) = v, which depends on
a finite collection of clauses of the form:z1cz2 ∈ U since this is a projection of
generator function of the outer block product of (S�T)�U and of clauses of
the form (g1(e, zz2)bg2(z1z, e)) ∈ T since f maps to generator functions ofS�T.
The last condition can be rewritten to (g1, z1)(b, z)(g2, z2) in a type ofT �U. But
f̂z is not a generator function since we cannot test the first typeof conditions.
Hence we need the extra (U,U,G), the ((f , g), z) is mapped to (̂fz, ((g, z), z)), and
now we can definêfz equivalently as above and here it is a generator function.

Please not that since the types are only defined on the first component this
map gives rise to an embedding of ((S,S,E) ⊡ (T,T,F)) ⊡ (U,U,G) into
(S,S,E) ⊡ ((T,T,F) ⊡ (U,U,G)) × (U,U,G).

�

The block product of two weakly closed classes is the weakly closed class spanned
by the block product of their elements. We get the follow facts:
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Lemma 3.37.Let U,V,W be weakly closed classes of typed semigroups.

• If V,W ⊆ G, thenV ⊡ W ⊆ G.

• Vk
⊡ Wk = (V ⊡ W)k.

• (U ⊡ V) ⊡ W ⊆ U ⊡ ((V ⊡ W) ×W).

Proof. All these results are directly obtained from the previous lemma. �

Lemma 3.38. Let (S,S,E), (S′,S′,E′) be two typed semigroups, then for every
language L: L∈ P((S,S,E) ⊡ (S′,S′,E′)) iff there is an(S′,S′,E′)-transduction
τ such thatτ(L) ∈ P((S,S,E)).

Proof. Let L be recognized byh into (T,T,F) = (S,S,E) ⊡ (S′,S′,E′). Then by
Lemma 3.35, we havew ∈ L iff

n∑

i=1

π1(h(w))(
∏
j<i
π2(h(w)),

∏
j>i
π2(h(w))) ∈ π1T.

We can rewrite this as
∑n

i=1 vi ∈ π1T, wherevi ∈ (S,S,E), and

vi = π1(h(w))(
∏
j<i
π2(h(w)),

∏
j>i
π2(h(w))).

But since the setV of all possiblevi is finite we letΣ′ = Σ × V, and the map
w1 . . .wn 7→ (w1, v1) . . . (wn, vn) is a (S′,S′,E′)-transduction. Also the product of thevi

is computed in (S,S,E), henceτ(L) ∈ P((S,S,E)).
If τ(L) ∈ P((S,S,E)) wherehτ is the morphism corresponding toτ, then there is

a morphismh′ to (S,S,E) that recognizesτ(L). Also for w1,w2 ∈ Σ
∗, σ ∈ Σ, we let

τ(w1, σ,w2) = τ(w1σw2)|w1|+1. We let fσ(t1, t2) = h′(τ(h−1
τ (t1), σ, h−1

τ (t2))), by definition
of τ this is well defined. Nowh to (S,S,E) ⊡ (S′,S′,E′) byσ 7→ ( f , hτ(σ)) recognizes
L. This can be seen by a small computation: Since

n∑

i=1

f (
∏
j<i

hτ(w),
∏
j>i

hτ(w)) ∈ π1T

is equal to

n∑

i=1

h′(τ(w)i) ∈ π1T

by definition ofh. �

In the following lemma we will show that forΓ-substitution the is an equivalent
V-transduction ifP(Γ) = P(V). We will not have the same map in both cases since the
adjoint map of theΓ-substitution maps to a different alphabet than theV-transduction.
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Lemma 3.39. Let Γ be a set of formulas andV be a weakly closed class of typed
semigroups, withP(Γ) = P(V). Then for anyΓ-substitutionθ there is aV-transduction
τ such thatϑ = hτ, where h is a length preserving morphism of the resulting alphabets.
Also for anyV-transductionτ there is aΓ-substitutionθ such thatτ = hϑ, where h is
a length preserving morphism of the resulting alphabets.

Proof. Let σ be anΓ-substitution then there are formulasΦ = {ϕ1, . . . , ϕk} ⊂ Γ

such thatσ is a Φ substitution. SinceP(Γ) = P(V) for eachϕi there is a typed
semigroup (Si ,Si,Ei) in V such thatLϕi is recognized byhϕi into (Si ,Si,Ei) by the
typeSi. We define ah = ×k

i=1 hϕi into×k
i=1(Si,Si,Ei) transductionτ with the constants

C = (h((σ, x)))σ∈Σ.
Thenϑ(w1 . . .wn) = w′1 . . .w

′
n andw′i ∈ 2Φ is the set

{ϕi | wx=i |= ϕi} = {ϕi | wx=i ∈ Lϕi } =

= {ϕi | hϕi (w) ∈ S} =

= {ϕi | πi(h(w)) ∈ S} =

= {ϕi | h(w) ∈ Si} =

= {ϕi | τ(w)i ⊆ Si}

We leth : S+ → 2Φ by h(S) = {ϕi | S ⊆ Si}, thenϑ = hτ.
The reverse direction is proven equivalent. �

Now we come to the main theorem that allows us to construct typed semigroup
classes with the block product that correspond to logic classes.

Theorem 3.40(Block Product Principle). Let Γ,Λ be two classes of formulas and
V,W be two classes of semigroups, such thatP(Γ) = P(V) and P(Λ) = P(W),
then P(Γ ◦ Λ) = P(V ⊡ W). Also if L(Γ) = L(V) and P1(Λ) = P1(W), then
L(Γ ◦ Λ) = L(V ⊡ W).

Proof. By Lemma 2.3 we knowL ∈ P(Γ ◦ Λ) iff there is aΛ-substitutionθ and
ϑ(L) ∈ P(Γ) = P(V). But by Lemma 3.39 this is equivalent to there is aW-transduction
τ with τ(L) = ϑ(L). And by Lemma 3.38 this is equivalent toL ∈ P(V ⊡ W). �

Definition 3.41 (sbpc,wbpc). We write sbpc(V) for the smallest weakly closed class
closed under block products from the left, and wbpc(V) for the smallest weakly closed
class closed under block product from the right.

Proposition 3.42. If V is a weakly closed class of semigroups, then

sbpc(V) ⊇ wbpc(V).

Proof. This is a consequence of Lemma 3.36 (7) and (3). �
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Since we often consider the< predicate we introduce a new version of the block
product that is closer to the block product in the finite case.Later we will see that in
the present of the order predicate in the logic class this block product yields a simpler
algebraic equivalence.

Definition 3.43 (Block Product ⊠ ). Let (S,S,E), (S′,S′,E′) be Let C ⊆ S′ be
a finite set, then theblock product(S,S,E) ⊠ C(S′,S′,E′)= (T,T,F) is a typed
semigroup, whereT is the finitely generated subsemigroup of (S,S,E)�S′, generated
by the elements (f , s), where f : S′1 × S′1 → E and s ∈ E ∪ C. We require that
f (b1, b2) = f (b′1, b

′
2) if for all c ∈ C and allS′ ∈ S′ we have

b1cb2 ∈ S′ ⇐⇒ b′1cb′2 ∈ S′ ∧ b1c ∈ S′ ⇐⇒ b′1c ∈ S′ ∧ cb2 ∈ S ⇐⇒ cb′2 ∈ S.

The typesT are{( f , s) | f (e, e) ∈ S} for all S ∈ S. The unitsF are the elements
( f , s), where f is a generator functions, hencef maps only to units of (S,S,E), ands
is a unit.

Finite case: This block product is actually closer to the finite case. Even
in the finite case this gives the problem that the block product can be
used only for logic classes that contain the order predicate, otherwise it
is already there to strong. The advantage in the finite case isthat with this
definition all functions are possible, and hence the algebrais easier.

The difference in the definition of⊡ and ⊠ is that we allow more generator
functions. The following lemmas have essentially the same proofs as above.

Lemma 3.44. Let (S,S,E), (S′,S′,E′), (T,T,F), (T′,T′,F′) (U,U,G) be typed
semigroups.

1. If (S,S,E) and (S′,S′,E′) are typed monoids, then(S,S,E) ⊠ (S′,S′,E′) is a
typed monoid.

2. If (S,S,E) and (S′,S′,E′) are typed groups, then(S,S,E) ⊠ (S′,S′,E′) is a
typed group.

3. ((S,S,E) ⊠ (S′,S′,E′))k � (S,S,E)k
⊠ (S′,S′,E′)k.

4. If (S,S,E) is a typed monoid and divides(T,T,F), and(S′,S′,E′) � (T′,T′,F′),
then(S,S,E) ⊠ (S′,S′,E′) � (T,T,F) ⊠ (T′,T′,F′).

5. Let 1 denote the trivial typed monoid. Then(S,S,E) ⊠ 1 � (S,S,E), and
1 ⊠ (S,S,E) is a trivial extension of 1.

6. (S,S,E) � (S,S,E) ⊠ (S′,S′,E′).

7. ((S,S,E)⊠ (T,T,F))⊠ (U,U,G) � (S,S,E)⊠ (((T,T,F)⊠ (U,U,G))×(U,U,G)).
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Proof. The proof of this lemma is essentially the same as Lemma 3.36. �

Lemma 3.45.Let U,V,W be weakly closed classes of typed semigroups.

• If V,W ⊆ G, thenV ⊠ W ⊆ G.

• Vk
⊠ Wk = (V ⊠ W)k.

• (U ⊠ V) ⊠ W ⊆ U ⊠ ((V ⊠ W) ×W).

Proof. This follows again directly from the previous lemma. �

Definition 3.46 (sbpc<,wbpc<). We write sbpc<(V) for the smallest weakly closed
class closed under block products from the left, and wbpc<(V) for the smallest weakly
closed class closed under block product from the right.

Proposition 3.47. If V is a weakly closed class of semigroups, then

sbpc<(V) ⊇ wbpc<(V).

Proof. This is a consequence of Lemma 3.44 (7) and (3). �

It is also possible to define a block product principle as above, then we would see
that this is equivalent to a substitution where we allow formulas on the prefix and suffix
ϕ<x, ϕ>x additionally.

3.5 Summary

In this chapter we gave the definition of the algebraic structure of a typed semigroup
(Definition 3.1) and of morphisms between typed semigroups (Definition 3.2) and
attained a typed syntactic semigroup (Definition 3.9) similar to the regular case. This
allows us to hold on to the usual diagram where a typed semigroup (S,S,E) recog-
nizes a languageL with syntactic semigroup (SL,SL,EL), since the typed syntactic
semigroup is the smallest semigroup recognizing the languageL.

(Σ+, L,Σ) h // //

η
����

(S,S,E)

wwwwooooooooooo

(SL,SL,EL)

We assume here that (S,S,E) is the image ofh

Analogous to the Correspondence Theorem of Eilenberg Proposition 3.24 states
that for every class of languages there is a corresponding class of typed semigroups,
even for non-regular languages; for varieties there even isa one-to-one connection, see
Theorem 3.31. This showed that the structure of a typed semigroup suffices to describe
any language class.
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The definition of the block product (Definition 3.33) allows to describe quantifier
nesting if we know the typed semigroup corresponding to the quantifier. The proof
of this will be given in a new way using the block product principle (Theorem 3.40)
even in the case of unbounded variables. Our goal for the nextchapter is therefore to
describe the semigroups corresponding to quantifiers and predicates.

3.6 Further Research

In the definitions of this chapter we made some technical decisions on how to define
the category of typed semigroups. These decisions were mainly made with the goal
of establishing close relation to logic and circuit theory while keeping the algebra
simple enough for using it concrete calculations, as we willsee in the proceeding
chapters. Since there might be other needs for typed semigroups we will not conceal
some alternative definitions that might suit other needs better.

The first striking restriction is looking only at finitely generated semigroups. The
reason is easy to see: Since our alphabet is always finite all semigroups ever considered
for recognizing languages are finitely generated, so even ifwe allowed infinitely
generated semigroups we would only examine subsemigroups that are finitely gen-
erated. For a more general theory it might be interesting to add infinitely generated
semigroups. To arrive at a one to one correspondence as in Theorem 3.31, one needs
a closure property stating that: if all finite subsemigroupsof (S,S,E) are inV then
(S,S,E) is in V. But this would mean no modification of the rest of the theory.The
question still remains whether this is of any use or just a generalization that obscuring
proofs by introducing more technical details instead of giving deeper insight into the
kernel of the theory.

Loosening the restriction of a finite Boolean algebra for thetype set and allowing
infinite type sets on a semigroup would require a similar closure property as above for
one to one correspondence, but otherwise the theory would remain unchanged. Similar
considerations could be made allowing infinite direct products, but then we would need
to pay close attention to the allowed types on such products.Albeit an extension as
such is only useful if it helps giving results or deeper insight into the theory.

Another possible extensions would be to separate the types and units into positive
and negative sets, with the goal to describe language classes that are not closed under
complement, similar to the positive varieties introduced by Pin [Pin98]. One would
have an obvious definition for recognition and with a few technical restriction gain a
block product in these settings.
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Chapter 4
Connections between Algebra,
Logic and Circuits

In this chapter we will exhibit the three-way connection between algebra, logic and
circuits. For the finite case the importance of this connection originates from the fact
that we do not only have a correspondence between the languages recognized by the
classes of all of the three systems, but also a linkage between the structure, i.e. the
basic building blocks and the operations used to build more complex classes.

quantifier nesting

quantifier predicate

gate uniformitypredicate
class

typed quantifier
semigroup

wires

Circuits

Logic

Algebra

Formal Languages

block product

In logic we have quantifiers and predicates, which correspond to gates and uni-
formity in circuit families. For algebra the differences between quantifiers/gates and
predicates/uniformity are not obvious; using the usual constructions we obtain typed
semigroups where the set of units is unimportant and semigroups with only one unit.

41
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So the “atomic” algebraic objects correspond more closely to the formulas or circuits
of depth one than to either quantifiers or predicates.

A connection of this kind for two variables and majority logic was shown in
[BKM07] and is extended here to an unbounded number of variables and arbitrary
quantifiers.

4.1 Logic

In this section we present connections between the syntactic structure of logical for-
mulas and a construction of typed semigroups. We start by defining a correspondence
between quantifiers and algebra, where we prove connectionsto algebra for formulas
with the equality predicate only. Then we link predicates toalgebra and gain a results
for formulas with larger predicate sets.

4.1.1 Quantifiers

It is quite natural to describe the computational power of a quantifier by a semigroup.
We can also view this as a quantifier that captures the computational power of a
semigroup. An example of this are monoidal quantifiers [BCST92], where we have
correspondence between∃,∀ andU1 or Modp and�p.

We extend this correspondence to typed semigroups: Given anextended quantifier
Q x 〈ϕ1, . . . , ϕk〉 as defined in Section 2.2, we will define a semigroup corresponding
to this quantifier. Throughout of this section we will use this quantifier semigroupin
the block product to obtain a correspondence between logic and algebra.

Definition 4.1 (Typed Quantifier Semigroup). For a quantifierQ(k) we letΣQ = {0, 1}k.
Then we define thetyped quantifier semigroup(SQ,SQ,EQ) to be the syntactic semi-
group ofLQ ⊆ ({0, 1}c)+, where

LQ = {w | w |= Q x 〈c11(x), c21(x), . . . , ck1(x)〉},

wherec j1(x) checks if thej-th entry of the letter atx is a 1, i.e.

wx=i |= c
j
1(x) ⇐⇒ π j(wi) = 1.

We denote byhQ the syntactic morphism and bySQ the accepting sethQ(LQ).

In order to justify the naming we will examine the languages recognized by the
quantifier semigroup in this proposition.

Proposition 4.2. Let Q be a quantifier and(SQ,SQ,EQ) be the typed quantifier
semigroup of Q, thenL(Q1) = L(wc((SQ,SQ,EQ))).
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Proof. Let L ⊆ Σ+ be a language inL(Q1). We lethQ : ΣQ → SQ be the morphism as
in the definition of the typed quantifier semigroup. The languageL can be described
by a Boolean combination of formulas or the formQ x 〈ϕ1, . . . , ϕk〉, where theϕi are
Boolean combinations of thecσ(x) predicates. Since the subformulasϕl depend only
on the letter at the position ofx, we have a tuplevσ = {0, 1}k = ΣQ for eachσ ∈ Σ,
such that (vσ)l = 1 iff σx=1 |= ϕl. We leth : Σ+ → (SQ,SQ,EQ) : σ 7→ hQ(vσ), then
h(w) ∈ SQ iff w |= Q x 〈ϕ1, . . . , ϕk〉. For the Boolean combinations of the quantifiers
we can use direct product of (SQ,SQ,EQ).

For the other direction assume there is a morphismh : Σ+ → (S,S,E), where
(S,S,E) ∈ wc((SQ,SQ,EQ)). We can assume that (S,S,E) is a direct product of
(SQ,SQ,EQ). Assume for a moment that (S,S,E) = (SQ,SQ,EQ).

Sinceh(Σ) ⊆ EQ, we can choose for eachσ ∈ Σ an lettervσ ∈ ΣQ = {0, 1}k such
thath(σ) = hQ(vσ). Then we build formulasϕ1, . . . , ϕk that are Boolean combinations
of cσ(x) predicates, such thatσx=1 |= ϕl iff (vσ)l = 1.

If (S,S,E) is a power of (SQ,SQ,EQ), we use Boolean combinations of the
formulas constructed for each factor as above. For any typeS ∈ S, this yields a
depth on formulaϕ such thatw |= ϕ ⇐⇒ h(w) ∈ S. �

We just constructed for a given quantifier a typed semigroup such that they
recognize the same languages. The reverse, i.e. given a typed semigroup construct a
quantifier, is also possible which leads to the definition of atyped semigroup quantifier
as in the next definition.

Definition 4.3 (Typed Semigroup Quantifier). Given a typed semigroup (S,S,E), then
for any mapf : {0, 1}k→ (S,S,E) and any typeS ∈ S, we letQf ,S x 〈ϕ1, . . . , ϕk〉 be a
typed semigroup quantifierof (S,S,E), also called a (S,S,E)-quantifier. For ak-tuple
of formulasϕ1, . . . , ϕk, we letw |= Qf ,S x ~ϕ iff

∏|w|
i=1 f (v(i)) ∈ S, wherev(i) is ak-tuple

such thatv(i)
l = 1 if wx=i |= ϕl andv(i)

l = 0 otherwise.

Since the algebra has no clear disjunction between “quantifiers” and “predicates”,
the typed semigroup quantifier is only a useful counterpart for certain typed semi-
groups. We will state a property that ensure a close connection between the typed
semigroup quantifier and its typed semigroup. Please note that we show equivalence
for the typed semigroups which is stronger than the equivalence for the languages they
recognize.

Lemma 4.4. Let (S,S,E) be a typed semigroup, with S= E+. We letQ be the set
of all (S,S,E)-quantifiers andQ be the weakly closed class of all typed quantifier
semigroups ofQ, thenQ = wc((S,S,E)).

Proof. We let k = ⌈log |E|⌉ and fix any surjective mapf : {0, 1}k → E, then the set
of quantifiersQf ,S for S ∈ S corresponds to the quantifier semigroup (S, S,E). By
Lemma 3.15 the typed semigroup (S,S,E) � ×S∈S(S, S,E).

The other direction is trivial. �
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When we lift the correspondence between logic and algebra toformulas of depth
greater than one, the block product is involved on the algebraic side. As we have seen
in the previous chapter the languages classes characterized by typed semigroups are
always closed under inverse length preserving morphisms (Proposition 3.22). Since
we will additionally need pointed languages in the inductions below, we extend the
definition of length preserving morphisms to pointed languages.

Definition 4.5 (Nearly Length Preserving Morphism). A morphismΣ+ ⊗X→ Σ′+ ⊗X
is nearly length preservingif h((Σ × ∅)) ⊆ Σ′ × ∅.

If X = ∅, then a nearly length preserving morphism is a length preserving
morphism.

The following proposition is the extension of the Proposition 4.2 to pointed
languages for certain sets of quantifiers. We will use this proposition as the induction
step in a theorem relating formulas with depth greater than one to block products of
typed semigroups.

Proposition 4.6. Let Q be a set of quantifiers such thatP(Q1[=]) is closed under
inverse nearly length preserving morphisms. LetQ be the weakly closed class of all
typed quantifier semigroups corresponding toQ, then

P(Q1[=]) = P(Q)).

Proof. Let L ∈ P(Q1[=]), with L ⊆ Σ+ ⊗ X. There are multiple possible languages
L′ ⊆ (Σ × 2X)+ with L = L′ ∩ Σ+ ⊗ X, but in generalL′ < L(Q1). Since we do not
have any predicates except equality, we can replace the equality predicate by the query
predicate and obtain a languageL′ ∈ L(Q1) such thatL = L′ ∩ Σ+ ⊗X. By Proposition
4.2 we haveL′ ∈ L(Q) and henceL ∈ P(Q).

For the other direction we cannot argue in the same way. Because if there is a type
morphism recognizingL as pointed languageh : ((Σ × 2X)+, L,Σ × ∅) → (S,S,E) for
(S,S,E) ∈ Q, then there is no reason thath((Σ × 2X)) ⊆ E, so we cannot use the same
morphism to recognize a languageL′ by this morphism.

We choose a map̃h : Σ × 2X → E+ with h̃((σ, ∅)) = h((σ, ∅)) and otherwise
h̃((σ, ~x)) = w with

∏
i wi = h((σ, ~x)). We extend̃h to a morphism from (Σ×2X)+ to E+.

Thenh̃ is nearly length preserving so it suffices to show̃L = h̃(L) is in P(Q1[=]). Also
note that we have a natural morphismh′ : (E+, L̃,E)→ (S,S,E) by h′(w) =

∏
i wi. But

now we can apply Lemma 4.2 and see thatL̃ ∈ L(Q1). But this impliesL ∈ P(Q1[=]).
�

In the next theorem we use the fact that all formulas can be constructed from
formulas of depth one by the substitution principle (Definition 2.2), and that the typed
semigroups we consider can be constructed from the typed quantifier semigroup by
the block product (Definition 3.33). Please note that we prove this theorem for pointed
languages which is a stronger statement than for languages without free variables.
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Theorem 4.7.LetQ be a set of quantifiers such thatP(Q1[=]) is closed under inverse
nearly length preserving morphisms. We letQ be the weakly closed class of all typed
quantifier semigroups corresponding toQ, then

1. P(sbpc(Q)) = P(Q[=]),

2. P(wbpc(Q)) = P(Q2[=]).

Proof. “⊇” Let ϕ be a formula inQ[=]. If ϕ has depth 1, the inclusion follows in
both cases from Proposition 4.6. Ifϕ has depth more than one, we look at the cases
of unbounded number of variables first. Using substitution (Definition 2.2) we can
decomposeϕ as aΦ-substitution ofϕ′, whereϕ is of depth 1 and all formulas of
Φ have lower depth thanϕ. By induction the formulas ofΦ are recognized by a
typed semigroup (S,S,E) ∈ sbpc(Q), andϕ′ is recognized by Proposition 4.6 by a
semigroup ofQ. Hence by the block product principle (Lemma 3.40)Lϕ is recognized
by (SQ,SQ,EQ) ⊡ (S,S,E) ∈ sbpc(Q).

In the case of two variables we know by decomposition proposition ϕ is a Φ-
substitution ofϕ′, whereϕ is of lower depth and all formulas ofΦ have depth 1. By
induction the formulaϕ′ is recognized by a typed semigroup of (S,S,E) ∈ wbpc(Q)
and the formulasΦ are recognized by Proposition 4.6 by a semigroup ofQ, hence by
the block product principleϕ is recognized by (S,S,E) ⊡ Q ∈ wbpc(Q).

“⊆” For the other direction assume a language is recognized by (S,S,E). We
are done in both cases if (S,S,E) divides a semigroup ofQ by Proposition 4.6.
Otherwise in the case of an unbounded number of variables we can assume that
(S,S,E) = Q ⊡ (S′,S′,E′). By induction we knowP((S′,S′,E′)) ⊆ P(Q[=]) so
we can apply Theorem 3.40 and getP((S,S,E)) ⊆ P(Q1[=] ◦ Q[=]) = P(Q[=]).
In the case of two variables we can assume that (S,S,E) = (S′,S′,E′) ⊡ Q. By
induction we knowP((S′,S′,E′)) ⊆ P(Q2[=]) so we can apply Theorem 3.40 and get
P((S,S,E)) ⊆ P(Q2[=] ◦Q1[=]) = P(Q2[=]).

�

4.1.2 Numerical Predicates

We turn our attention to the sets of numerical predicates used by the logic classes and
define an algebraic counterpart. We will use this correspondence to prove theorems as
in the previous section but for logic classes with larger predicate sets.

Each predicatep(x1, . . . , xk) has a natural connection to its pointed language
Lp ⊆ {a}+⊗{x1, . . . , xk}. This language can be understood as a languageL̂p ⊆ ({a}×2X)+

such that̂Lp ∩ {a}+ ⊗ {x1, . . . , xk} = Lp The choice of the languagêLp is not unique.
When we have a typed semigroup (S,S,E) that recognizesLp, then there is a

morphismh : (Σ × 2X)+ → (S,S,E) and a typeS ∈ S such thatLp = h−1(S) ∩ {a} ⊗ X.
Here L̂p = h−1(S) is a language in (Σ × 2X)+. This difference will be important in the
considerations of this section.
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P< (111, 1) (111, 0) ( f , 1) ( f , 0) 0 Sample for a word
(111, 1) (111, 1) (111, 0) ( f , 1) ( f , 0) 0 ε

(111, 0) (111, 0) (111, 0) 0 0 0 wx

( f , 1) ( f , 1) ( f , 0) ( f , 1) ( f , 0) 0 wy

( f , 0) ( f , 0) ( f , 0) 0 0 0 wx=i,y= j with i < j
0 0 0 0 0 0 wx=i,y= j with i ≥ j

Figure 4.1: A sample for a typed predicate semigroup for the order predicate

For any predicatepwe call a typed semigroup (S,S,E) that recognizesLp ⊆ {a}+⊗X
a typed predicate semigroup forp. We will examine the order predicate and construct
an explicit typed predicate semigroup for order and even further characterize all
predicate classes for the order predicate later in this section. Now we look at the
order predicate.

We can give a concrete typed semigroup that is a predicate semigroup for the
order predicate. Letf : U1 × U1 → U1 be a function withf (s1, s2) = 0 iff s1 = 0
and f (s1, s2) = 1 otherwise. We letP< = {(111, 1), (111, 0), ( f , 1), ( f , 0), (000, 0)}, then
(P<, (000, 0), (111, 1)) is an order predicate monoid (see Figure 4.1).

We will continue to characterize sets of predicates.

Definition 4.8 (Predicate Class Of Typed Semigroups). LetP be a set of predicates. A
predicate classfor P is a class of typed semigroupP such that: For a predicatep ∈ P,
the languageLp ∈ P(P) iff p ∈ P.

This definition does not assure that there is any set of predicates such that a
predicate class exists. The following proposition fills this gap, showing that for most
predicate sets usually considered such a predicate class exists.

Proposition 4.9. If P is a set of predicates, such thatP(P) is closed under inverse
nearly length preserving inverse morphisms, then there is apredicate class forP.

Proof. Let P ∈ P. We letLP ⊆ {a}+ ⊗ X ⊆ ({a} × 2X)+ be the language corresponding
to the predicateP, and (SP,SP,EP) = (({a} × 2X)+, LP, {a}). We need to show that if
for a predicateP′ the languageLP′ is recognized by (SP,SP,EP), thenLP′ is a nearly
length preserving inverse morphism ofLP, but sinceLP′ is recognized by (SP,SP,EP)
we have a morphism (({a} × 2X′), LP′ , {a} × ∅) → (SP,SP,EP) = (({a} × 2X)+, LP, {a}),
and henceP′ ∈ P, sinceP is closed under nearly length preserving morphisms.�

We will now characterize all typed predicate semigroups forthe order predicate.
The following lemma states that any monoid where the one is the only unit can express
at most order.

Lemma 4.10.Let (S,S,E) be a typed monoid andE = {1}, then

P((S,S,E)) ⊆ P(wc(P<, (000, 0), (111, 1))).
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Proof. Let LP be recognized by a morphismh to (S,S,E) whereE = {1}, then:
h(w~x) = h(w′

~x′
) if the order or all free variables is the same, since the morphism

maps to the neutral element at all other positions. Hence thepredicateP is a Boolean
combination of the order predicate and can be recognized by amorphism to a direct
product of an order monoid. �

Definition 4.11 (Order Predicate Monoid). Any typed non-commutative monoid
(S,S,E) where 1S is the only unit, i.e.E = {1S}, is anorder predicate monoid. In
the following we letP<<< be set of allorder predicate monoids.

We begin to show the correspondence between logic and algebra starting with the
formulas of depth one.

Lemma 4.12. Let P be a set of predicates, such thatP(P) is closed under inverse
nearly length preserving morphisms,P be the corresponding predicate class,Q be a
set of quantifiers andQ the set of typed quantifier semigroups forQ, then

L(Q1[P]) = L(Q ⊡ P).

Proof. It is easy to see that aQ1[P] formula is a P-substitution of aQ1 for-
mula. SinceL(Q1) = L((SQ,SQ,EQ)) and P(P) = P((SP,SP,EP)), we have
L(Q1[P]) = L((SQ,SQ,EQ) ⊡ (SP,SP,EP)) by the block product principle (Lemma
3.40). �

Again we need pointed languages in the inductive step later so we prove the
following lemma for formulas of depth one and pointed languages.

Lemma 4.13. Let P be a set of predicates, such thatP(P) is closed under inverse
nearly length preserving morphisms,P be the corresponding predicate class,Q be
a set of quantifiers, such thatP(Q) is closed under inverse nearly length preserving
morphism, andQ the set of typed quantifier semigroups forQ, then

P(Q1[P]) = P(Q ⊡ P).

Proof. Again aQ1[P] formula is aP-substitution of aQ1 formula. SinceP(Q1) =
P(Q) andP(P) = P(P), we haveP(Q1[P]) = P(Q ⊡ P) by the block product principle
(Lemma 3.40). �

We will proceed to use the block product principle (Lemma 3.40) as in the previous
chapter to show the correspondence for arbitrary logic classes.

Theorem 4.14.LetP be a set of predicates, such thatP(P) is closed under inverse
nearly length preserving morphisms,P be the corresponding predicate class,Q be
a set of quantifiers, such thatP(Q) is closed under inverse nearly length preserving
morphism, andQ the set of typed quantifier semigroups forQ, then

• P(sbpc(Q ∪ P)) = P(Q[P]),
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Psucc ( f , 1) (1, 0) ( f<, 0) ( f>, 0) ( f<>, 0) 0 Sample for a word
( f , 1) ( f , 1) ( f>, 0) ( f<>, 0) ( f>, 0) ( f<>, 0) 0 (a, ∅)+

(1, 0) ( f>, 0) (1, 0) ( f<, 0) 0 0 0 (a, x)+

( f<, 0) ( f<, 0) 0 0 0 0 0 (a, ∅)+(a, x)+

( f>, 0) ( f<>, 0) ( f>, 0) ( f<>, 0) 0 0 0 (a, x)+(a, ∅)+

( f<>, 0) ( f<>, 0) 0 0 0 0 0 (a, ∅)+(a, x)+(a, ∅)+

0 0 0 0 0 0 0 (a, x)+(a, ∅)+(a, x)+

Figure 4.2: A sample for a typed predicate semigroup for thesuccpredicate

• P(wbpc(Q ⊡ P)) = P(Q2[P]).

Proof. “⊇” Let ϕ be a formula inQ[P]. If ϕ has depth 1, the result follows in both cases
from Proposition 4.13. Ifϕ has depth more than one, we look at the cases of unbounded
number of variables first. By the decomposition propositionϕ is aΦ-substitution of
ϕ′, whereϕ is of depth 1 and all formulas ofΦ have lower depth. By induction the
formulas ofΦ are recognized by a typed semigroup (S,S,E) ∈ sbpc(Q ∪ P), and
ϕ′ is recognized by Proposition 4.13 by a semigroup of (Q ⊡ P). Hence by the block
product principle (Lemma 3.40)ϕ is recognized by (Q ⊡ P) ⊡ (S,S,E), which divides
Q ⊡ (P ⊡ (S,S,E)) ∈ sbpc(Q ∪ P).

In the case of two variables we know by decomposition proposition ϕ is a Φ-
substitution ofϕ′, whereϕ is of lower depth and all formulas ofΦ have depth
1. By induction the formulaϕ′ is recognized by a typed semigroup of (S,S,E) ∈
wbpc(Q ⊡ P) and the formulasΦ are recognized by Proposition 4.13 by a power of
Q ⊡ P, hence by the block product principleϕ is recognized by

(S,S,E) ⊡ (Q ⊡ P) ∈ wbpc(Q ⊡ P).

“⊆” For the other direction assume a language is recognized by (S,S,E). We
are done in both cases if (S,S,E) divides a semigroup ofQ ⊡ P by Proposition
4.13. Otherwise in the case of an unbounded number of variables we can assume that
(S,S,E) = (Q ⊡ P) ⊡ (S′,S′,E′). By induction we knowP((S′,S′,E′)) ⊆ P(Q[P])
so we can apply Theorem 3.40 and getP((S,S,E)) ⊆ P(Q1[P] ◦ Q[P]) = P(Q[P]).
In the case of two variables we can assume that (S,S,E) = (S′,S′,E′) ⊡ (Q ⊡ P). By
induction we knowP((S′,S′,E′)) ⊆ P(Q2[P]) so we can apply Theorem 3.40 and get
P((S,S,E)) ⊆ P(Q2[P] ◦Q1[P]) = P(Q2[P]). �

We end this section by examining the closure properties of the languages recog-
nized by logic classes depending on the predicates used. Forthe languagesL(Q[P])
we can determine certain closure properties depending on closure properties of the
predicates. For this reason we give a definition for the succ predicate.

Definition 4.15(Successor Predicate Monoid). Let Psuccbe the submonoid ofU1�U1

generated by (f , 1),(111, 0), where f : U1 × U1 → U1 with f (s1, s2) = 0 if s1 = s2 = 0
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and f (s1, s2) = 1 otherwise. Then thetyped successor monoidis (Psucc, (1, 0), ( f , 1)),
we letPsucc be the smallest weakly closed class of typed semigroup that contains this
monoid. We letP<<<,succ= P<<< × Psucc.

Psucc computes the the predicate that is true iff the distance betweenx andy is 1,
i.e. x = y+1∨y = x+1. Please note that (f , 1) of the previous definition is idempotent.

The following remark is inspired by to [Str02, theorem 3].

Remark4.16. If Q is a set of quantifiers, such thatP(Q1) is closed under inverse
morphisms, andP is a set of predicates, then

• If for each predicate inP there is a predicate semigroup such that the unit is the
identity, then the language classL(Q[P]) is closed under erasing morphisms.

• If for each predicate inP there is a predicate semigroup where the unit is
an idempotent, then the language classL(Q[P]) is closed under non-erasing
morphisms.

• If for each predicate inP the predicate semigroup is a group and closed
under shifting, then the language classL(Q[P]) is closed under length multiple
morphisms.

Note that in the previous remark that the predicate semigroups where the unit is
the identity correspond to the predicates that are Boolean combinations of the order
predicate (Lemma 4.10), and by definition ofPsucc the identity of the typed successor
semigroup is an idempotent. For the third case of the previous remark we have the set
of modulo predicates that fulfill the conditions.

4.2 Circuits

We will progress in a similar with circuits as in the logic section. A logical formula
and constant depth circuits are highly equivalent as expressed in [BL06] or for linear
size circuits in [BKM07]. We will use this similarity to structure the proofs in a similar
fashion.

4.2.1 Gates

Usually circuits are studied only for AND, OR and MOD gate types. We will examine
here arbitrary gate types as defined in Section 2.4. In order to allow arbitrary gate
types we need a way to describe the function they compute. Following the algebraic
approach we use typed semigroups for this purpose. We will define in a natural way a
language that characterizes the gate type.

Definition 4.17 (Typed Gate Semigroup). Let G be a gate type, i.e. a family of
functions f (r)

G : {0, 1}r → {0, 1} for r ∈ �. We let fG : {0, 1}+ → {0, 1} be a
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function so thatfG(w) = 1 if the value of a gate of typeG with |w| inputs that are
assigned the truth valuesw1, . . . ,wn is true, i.e. fG(w) = f (r)

G (w1, . . . ,wr). We let
LG = {w ∈ {0, 1}+ | fG(w) = 1}, then (SG,SG,EG) = syn(LG) is the typed gate
semigroupandhG the syntactic morphism.

Since the input size of a gate is not fixed to the input length and the wiring can
be non-uniform we cannot expect to have a correspondence between the languages
recognized by a circuit family with a single gate and the languages recognized by its
typed gate semigroup via morphisms. We introduce programs over typed semigroups
to close the gap.

Definition 4.18 (Program). Let L ⊆ Σ+ be a language and (S,S,E) be a typed
semigroup. Aninstruction is a pair (i, f ), wherei is a natural number andf is map
from Σ to E, where there ares1, s2 ∈ E andσ′ ∈ Σ such that

f (σ) =


s1 if σ = σ′,

s2 otherwise.

A program Pn over (S,S,E) is a sequence of instructions (i1, f1) . . . (i l , fl), where
the indicesi j ≤ n. ThenPn defines a mapw 7→ Pn(w) by Pn(w) =

∏l
j=1 f j(wi j ). The

languageL is recognized by a family of programs (Pn)n∈� if there is a typeS ∈ S such
thatw ∈ L with |w| = n iff Pn(w) ∈ S.

For a setS of semigroups we denote byL(π − S) the set of languages recognized
by programs over a semigroup ofS.

Please note that if we would not restrict the instructions for the programs of all
lengths to map to a finite set, there underlying semigroup would have few infor-
mation of the complexity of the recognized language. For example the semigroup
(�,�+) ⊡ (�,�+) would already recognize all language by programs of linearlength.

Lemma 4.19.A language L is recognized by a depth one circuit with linear/polynomial
wires and the gate type G, iff L is recognized by a linear/polynomial length family of
programs over the typed gate semigroup(SG,SG,EG) of G.

Proof. Let L be recognized by a circuit of depth one, then the circuit consists of one
gate. We let (i1, σ1), . . . , (i l, σl) be the wiring of the circuit for a word of lengthn, i.e.
the j − th input of the gate queries if thei j-th letter isσ j.

So we can define a program (i1, f1), . . . , (i l, fl) by f j(σ) = hG(1) iff σ = σ j and
f j(σ) = hG(0) otherwise. By definition of the gate semigroup this family of program
recognizesL.

The other direction is equivalent. �

In the following theorem we extend the previous lemma to constant depth circuits.
Compared to the logic case it emerges that we need only the weak block product
closure in the following theorem. The reason for this is simply the fact that the
programs can have polynomial size, and hence we multiply a polynomial number of
elements, so compared to the length of the program the circuit has linear size.
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Theorem 4.20.Let G be a gate type where the gate semigroup(SG,SG,EG) is a group.
The following three statements are equivalent:

• A language L is recognized by a constant depth circuit of polynomial size and
polynomial wires with G gates.

• A language L is recognized by a polynomial length program over a typed
semigroup ofwbpc((SG,SG,EG)).

• A language L is recognized by a polynomial length program over a typed
semigroup ofsbpc((SG,SG,EG)).

Proof. We will only show that the first statement implies the second.By Proposition
3.42 the second statement implies the third. The construction of a circuit for the
program of the third statement is a straight-forward induction due to Lemma 4.19.

Let d be the depth of the circuit, than we can assume that there is a polynomial
p(n) and for each word lengthn, the circuit is a completep(n)-tree. So all gates except
the gates at the lowest level, i.e. the gates that access the input, form a circuit over the
output of the bottom level gates. We do induction on the depthof the circuit.

If the circuit has depth one we can apply Lemma 4.19, otherwise we know by
induction that the language computed by the gates which are not bottom level gates can
also be computed by a programπ to a semigroup of (S,S,E) ∈ wbpc((SG,SG,EG)).

In the programπ a command is of the form (i, f ), wherei is the number of the
bottom level gate andf : {0, 1} → (S,S,E) is a map.

Let (S′,S′,E′) = (S,S,E) ⊡ (SG,SG,EG) and letπ′i be a program to (SG,SG,EG)
that computes the bottom level gatei, we can natural change this into a program to
(S′,S′,E′) by the embedding (SG,SG,EG)→ (S,S,E) ⊡ (SG,SG,EG) : g 7→ (1S, g).

We create a program by replacing every command (i, f ) of π by a sequence of com-
mandsπ′i f ′π′−1

i where f ′ = ( f ′′, 1SG) and f ′′ : (SG,SG,EG)× (SG,SG,EG)→ (S,S,E)
with f ′′(m1,m2) = f (1) iff m1m2 ∈ A for the typeA corresponding to the programπ′i
and f ′′(m1,m2) = f (0) otherwise.

Please note thatπ′i f ′π′−1
i multiplies out to (f (1), 1SG) if the i-th bottom gate is true

and (f (0), 1SG) otherwise. Hence the new program computes the correct language. �

For majority logic and threshold circuits we get:

Corollary 4.21. A language L is recognized by a TC0 circuit family iff it recognized
by a program overwbpc((�,�+,±1)).

4.2.2 Uniformity

In the previous section we used programs to describe the languages recognized by
circuit families. In order to overcome this limitation and obtain a description by
morphisms, we introduce a uniformity language. All circuits considered in the
following will have a uniformity languages, which does not imply that the circuit
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cannot be highly non-uniform unless we have a uniform description of the uniformity
language.

We will define the uniformity language as a pointed language,this has the ad-
vantage that we do not need to worry about the encoding of variable positions, but
have a clean way to describe the circuits. Uniformity languages that encode the
variable positions always get a difference between the uniformity of the circuit and
the complexity of the uniformity language, depending on theencoding. So the results
in the following are basically the same for any definition of auniformity language, but
there might be a slight variation in the exact complexity.

Definition 4.22 (Uniformity Language). Assume we have a circuit withn inputs. We
label the gates by tuples of the numbers 1 ton, where the first entry is bounded by a
constantl. We assume that the input lengthn is always greater or equal tol. The gate
numbers (k, i, 1, . . . , 1, 1) for k = 1, . . . , |Σ|, i = 1, . . . , n are reserved as the input gates
that query if there is a letterσk at positioni, and the gate label (l, n, . . . , n) is reserved
for the output gate.

We let Conn(~x, ~y) be a predicate, such that it is true if the gate~x has the gate~y
input. The order of the inputs is given by the following order

(1, 1, . . . , 1), (2, 1, . . . , 1), . . . , (l, 1, . . . , 1), (1, 2, . . . , 1), . . . , (l, n, . . . , 1), . . . , (l, n, . . . , n).

If the label of a gate is (x1, x2, . . . , xk), thenx1 determines the gate type, i.e. there is a
map from{1, . . . , l} to the gate types including the input gate types and the output gate
type.

The uniformity language is the predicate languageLConn. A circuit family is Conn-
uniform if Conn describes the uniformity language. Also an Conn-uniform circuit
family is X-uniform if X recognizesLConn, whereX is a class of formulas or a class of
typed semigroups.

We always assume that the input lengthn is greater than the largest constant used
in the first component of the tuples used for the labeling.

Again for induction purposes we need to define when a circuit recognizes a pointed
language. In logic this is handled by free variables, hence the formula has no need to
use the query predicatec to find the position of the extra information in the input. For
circuits we do not have free variables, but we can describe circuits with multiple output
gates.

Definition 4.23. A family of circuits (Cn)n recognizes a languageL ⊆ Σ+ ⊗ X if there
is a vector~c such that the gate labeled (~c,~i) outputs 1 for inputw iff w~x=~i ∈ L.

Definition 4.24. Let Σ be an alphabet andX be a set of variables and (Cn)n∈� be a
family of circuits. We letPΣ,X((Cn)n∈�)= {L | L ⊆ Σ+ ⊗ X is recognized by (Cn)n∈�}

andP((Cn)n∈�)=
⋃
Σ,X PΣ,X((Cn)n∈�). Finally we denote the set of languages with one

free variable byP1((Cn)n∈�)=
⋃
Σ,|X|=1 PΣ,X((Cn)n∈�).
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Definition 4.25. For a set of predicatesP and a set of gate typesQ, we denote by
P-uniformQC0 for the class of all families ofP-uniform circuits withQ gates, with
polynomial size and constant depth. If we restrict the fan-in of each gate to linear size
we writeP-uniformQC0

lin . If we further restrict the size of the circuit to linear sizewe
writeP-uniform LQC0 for the corresponding class.

For a set of circuit familiesC be defineP(C),P1(C) equivalently.

Please note that a circuit with a single non-commutative gate that has all positions
as input, cannot be realized by a uniformity language in depth 1, as the order of the
inputs is determined by the labels of the gates. So in this case one would add an extra
layer of gates (k + 1, 1), . . . , (k + 1, n) such that (k + 1, i) is connected to (1, n− i + 1)
and the gates with label (k+ 1, ·) compute the identity, then we can connect the single
non-commutative gate to the gates (k + 1, 1), . . . , (k+ 1, n).

So in this section when we talk about depth, it is the depth of the uniform circuit
even if the uniformity language is highly non-uniform.

Lemma 4.26. Let P be a set of predicates, such thatP(P) is closed under inverse
nearly length preserving morphisms,P be the corresponding predicate class,Q be a
set of quantifiers, andQ the set of typed quantifier semigroups forQ, whereQ is closed
under unit relaxation, then

L(P-uniformQC0
lin of depth one) = L(Q ⊡ P).

Proof. Since this circuit has only one gate and this is labeled (n, n, . . . , n), we let
C′l ( j) = C((n, n, . . . , n), (l, j, 1, . . . , 1)). It is clear that eachC′l can be recognized by
a morphismhC′l

to (SP,SP,EP). The circuit itself can have at most|Σ| · n wires, since
there are not other possible connections. We can take the direct product (SP,SP,EP)Σ

can get a morphismhC′ and a typeSl such thath(wy= j) ∈ Sl iff wy= j |= C′l (y).
LetΣ = {σ1, . . . , σm} in the same way as the letters are numbered by the uniformity

language. We will construct functions that add a true input to the gate iff there is a
connection from the output gate to the input gate at positiony querying the letterl.
We let f 1

σ : (SP,SP,EP)Σ × (SP,SP,EP)Σ → (SG,SG,EG) by f 1
σ(p1, p2) = hG(1) iff

p1hC′((a, xl))p2 ∈ SC′l
and f 1

σ(p1, p2) = 1 otherwise. Note that 1 exists sinceEG = E∗G.
Similar we let f 1

σ : (SP,SP,EP)Σ×(SP,SP,EP)Σ → (SG,SG,EG) by f 1
σ(p1, p2) = hG(0)

iff p1hC′((a, xl))p2 ∈ SC′l
and f 1

σ(p1, p2) = 1 otherwise.
Now at each position there is at most one letter so we letfσl =

∏l−1
i=1 f 0

σi
f 1
σl

∏n
i=l+1 f 0

σi
.

Also we leth(σl) = ( fσl , hC′(a)), then this morphism simulates with each letter the
wires from this position to the output gate and add the correct number of true and false
inputs. Hence there is a typeT such thatL = h−1(T). �

Lemma 4.27. Let P be a set of predicates, such thatP(P) is closed under inverse
nearly length preserving morphisms,P be the corresponding predicate class,Q be a
set of quantifiers, andQ the set of typed quantifier semigroups forQ, whereQ is closed
under unit relaxation, then

P(P-uniformQC0
lin of depth one) = P(Q ⊡ P).
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Proof. Given a circuitC in X, that recognizes a languageL ⊆ Σ+ ⊗ {x1, . . . , xk}, then
C consists ofnk gates, the output gates, each has at most linear fan-out, since there are
only |Σ| · n possible predecessors. The construction of the previous lemma works.

For the other direction leth : Σ+⊗{x1, . . . , xk} → (SG,SG,EG) ⊡ (SP,SP,EP), that
recognizes a languageL. We leth((σ, x)) = ( fσ,x, px), then by Lemma 3.35 we know
h(w~x=~i) ∈ S, iff

n∏

i=1

fwi (π2(h(w<i)), π2(h(w>i))).

So we connect thei-th input of the gate so that to the input gates such that it input fwi

to the gate. �

Definition 4.28 (Input Gate Substitution). Let (Cn)n and (C′n)n be a circuit families,
where the gates (Cn) are labeled (1, ~x) to (k, ~x) and (C′n)n are labeled (1, ~x) to (k′, ~x).
If the input gates of (Cn)n have values 1 tom, then we relabel the gates of (Cn)n by
(i, ~x) 7→ (k′ −m+ 1, ~x). Then (Cn ∪C′n) is theinput gate substitutionof (Cn)n by (C′n)n.
We write (Cn)n ◦ (C′n)n for the resulting circuit.

Any polynomial size circuit with linear fan-in gates can be build by input gate
substitution of depth one circuits, if we start with the output gate and successifly add
the predecessor gates. If we have a linear size circuit we caninductively build the
circuit bottom up.

Lemma 4.29. Let X,Y be a classes of circuits, andV,W be classes of typed semi-
groups. IfP(X) = P(V) andP(Y) = P(W) thenP(X ◦ Y) = P(V ⊡ W).

Proof. This is equivalent to the proof of Theorem 3.40. �

Theorem 4.30.LetP be a set of predicates, such thatP(P) is closed under inverse
nearly length preserving morphisms,P be the corresponding predicate class,Q be a
set of quantifiers, andQ the set of typed quantifier semigroups forQ, whereQ is closed
under unit relaxation, then

• P(sbpc(Q ∪ P)) = P(P − uniformQC0
lin),

• P(wbpc(Q ⊡ P)) = P(P − uniform LQC0).

Proof. This proof is very similar to Theorem 4.14. We do this by induction on the
depth of the circuit. For depth one circuit this is proven in Lemma 4.27.

For the first equation, if the depth is greater than one, than the circuit is a gate
substitution of a depth one circuit by a circuit of smaller depth. The depth one circuit
can be recognized byQ ⊡ P by Lemma 4.27, and the circuit of smaller depth by a
typed semigroup of sbpc(Q ∪ P), hence the circuit can be recognized by sbpc(Q ∪ P).

For the other direction we let (S,S,E) ∈ sbpc(Q ∪ P). Then we can as-
sume (S,S,E) � (Q ⊡ P) ⊡ (S′,S′,E′), where (S′,S′,E′) ∈ sbpc(Q ∪ P).
By Lemma 4.27 we knowP(Q ⊡ P) ⊆ P(P − uniformQC0

lin of depth one) and
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by induction alsoP((S′,S′,E′)) ⊆ P(P − uniformQC0
lin) so by Lemma 4.29 we

haveP((S,S,E)) ∈ P(P − uniformQC0
lin of depth one ◦ P − uniformQC0

lin) =
P(P − uniformQC0

lin).
Forthe second equation, if the depth is greater than one, than the circuit is a gate

substitution of a smaller depth circuit by a circuit of depthone. The depth one circuit
can be recognized byQ ⊡ P by Lemma 4.27, and the circuit of smaller depth by a
typed semigroup of wbpc(Q∪P), hence the circuit can be recognized by wbpc(Q∪P).

For the other direction we let (S,S,E) ∈ wbpc(Q ∪ P). Then we can as-
sume (S,S,E) � (Q ⊡ P) ⊡ (S′,S′,E′), where (S′,S′,E′) ∈ sbpc(Q ∪ P). By
Lemma 4.27 we knowP(Q ⊡ P) ⊆ P(P − uniform LQC0 of depth one) and by
induction alsoP((S′,S′,E′)) ⊆ P(P − uniform LQC0) so by Lemma 4.29 we have
P((S,S,E)) ∈ P(P − uniform LQC0 ◦ P − uniform LQC0 of depth one) =
P(P − uniform LQC0).

�

4.3 Logic-Algebra-Circuits

Now we can state a threeway connection between logic algebraand circuits.

Theorem 4.31.LetP be a set of predicates, such thatP(P) is closed under inverse
nearly length preserving morphisms,P be the corresponding predicate class,Q be a
set of quantifiers, andQ the set of typed quantifier semigroups forQ, whereQ is closed
under unit relaxation, then

1. L ∈ P-uniformQC0
lin ,

2. L ∈ L(Q[P]),

3. L ∈ L(sbpc(Q ∪ P)).

Remark4.32. The previous theorem could also be stated starting from an algebra: if
we start with a weakly closed class of typed semigroupsP, and a weakly closed class
of typed semigroupsQ closed under unit relaxation, and letP be the set of predicates
recognizable byP, andQ the set of typed semigroup quantifiers forQ, the previous
theorem holds.

Similar starting from circuit theory: if we letP be a set of predicates, such
that P(P) is closed under inverse nearly length preserving morphisms, P be the
corresponding predicate class,Q be a set of gate types, andQ the corresponding set of
typed semigroups, whereQ is closed under unit relaxation, then the previous theorem
holds.

For a bounded number of variables we get:

Theorem 4.33.LetP be a set of predicates, such thatP(P) is closed under inverse
nearly length preserving morphisms,P be the corresponding predicate class,Q be a



56 Chapter 4. Connections between Algebra, Logic and Circui ts

set of quantifiers, andQ the set of typed quantifier semigroups forQ, whereQ is closed
under unit relaxation, then

1. L ∈ P-uniform LQC0,

2. L ∈ L(Q2[P]),

3. L ∈ L(wbpc(Q ⊡ P)).

Remark4.34. The statement of the previous Remark 4.32 also holds for thistheorem.

Since these theorems are stated in a very general way they have many implications.
For the consequences in the usual logic and circuit classes considered see Figures 4.3
and 4.4 for the polynomial and linear case.

Circuits Logic Algebra (via morphism)
CC0[q] (MODq)[arb] sbpc(�q ∪ Parb−un)
AC0 FO[arb] sbpc(U1 ∪ Parb−un)
ACC0[q] (FO+MODq)[arb] sbpc(U1 ∪�q ∪ Parb−un)
TC0 MAJ[arb] sbpc((�,�+) ∪ Parb−un)
NC1 FO+G[arb] sbpc(Fin ∪ Parb−un)
FO[<]-uniform CC0[q] (MODq)[<] sbpc(�q ∪ P<<<)=sbpc<(Zq)
FO[<]-uniform AC0 FO[<] sbpc(U1 ∪ P<<<)=sbpc<(U1)
FO[<]-uniform ACC0[q] (FO+MODq)[<] sbpc(U1 ∪�q ∪ P<<<) =

= sbpc<(U1 ∪�q)
FO[<]-uniform TC0 MAJ[<] sbpc((�,�+) ∪ P<<<) = sbpc<(�)

Figure 4.3: Relations between circuits, logic and typed semigroups (polynomial case)

Circuits Logic Algebra (via morphism)
lin-CC0[q] (MODq)2[arb] wbpc(�q ⊡ wc(Parb−un))
LC0 FO2[arb] wbpc(U1 ⊡ wc(Parb−un))
LCC0[q] (FO+MODq)2[arb] wbpc((U1 ×�q) ⊡ wc(Parb−un))
LTC0 MÂJ2[arb] wbpc((�,�+) ⊡ wc(Parb−un))
FO[<]-uniform lin-CC0[q] (MODq)2[<] wbpc(�q ⊡ wc(P<<<))=wbpc<(�q)
FO[<]-uniform LC0 FO2[<] wbpc(U1 ⊡ wc(P<<<))=wbpc<(U1)
FO[<]-uniform LCC0[q] (FO+MODq)2[<] wbpc((U1 ×�q) ⊡ wc(P<<<)) =

= wbpc<(U1 × Zq)
FO[<]-uniform LTC0 MÂJ2[<] wbpc((�,�+) ⊡ wc(P<<<))

Figure 4.4: Relations between circuits, logic and typed semigroups (linear case)
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4.4 Summary

In this chapter we consistently used the block product principle (Theorem 3.40) to
prove one of our main results: a tight connection between logic, algebra and circuits
(Theorems 4.31, 4.33).

For this purpose we needed to define the basic building blocks. For logic we de-
fined a typed quantifier semigroup (Definition 4.1) for each quantifier, and conversely a
typed semigroup quantifier (Definition 4.3) for each typed semigroup (where the units
generate the typed semigroup). For the predicates used in logic in Definition 4.8 we
defined an algebraic equivalent and showed that for any predicate set with minimal
closure properties, there is an algebraic equivalent.

For circuits we proceeded in a similar way and defined a typed gate semigroup
(Definition 4.17) showing that circuits are equivalent to programs over weakly blocked
typed gate semigroups. Striving to characterize the circuits by morphisms into the
typed semigroups and not by programs we introduced an uniformity language (Defini-
tion 4.22). We then used the block product principle adopting it to circuits (Theorem
4.29) and gave a morphic characterization of circuit families.

4.5 Further Research

Here we will survey some other natural restrictions for logic and observe their effect
on the algebraic correspondence. One obvious restriction is bounding the quantifier
depth to some constantd. Since by Lemma 4.13 we have a correspondence to depth
one formulas this results in a typed semigroup class starting with the building blocks
(SQ,SQ,EQ) ⊡ (SP,SP,EP) and limiting the block depth tod.

Another restriction already studied is restricting the number of variables to some
constantr. While the classes of logic FO[<], FO+MOD[<] containing only regular
languages are known to have a bound of three variables, for other classes of logic it is
still unknown if there is a bound for the variables needed even when considering only
regular languages.

We will show that MAJ2[<]∩REG( MAJ3[<]∩REG, and we know that MAJ4[<]
contains all languages in FO+MOD[<]. The question is thus whether MAJ3[<]∩REG
is a proper subset of( MAJ4[<] ∩ REG or whether they are equal, and analogously
MAJ4[<] ∩ REG( MAJ5[<] ∩ REG, the latter already implying that TC0 = NC1. So
proving the number of variables in majority logic to be a truehierarchy can be expected
to be a profound task.

An algebraic characterization of logic bounded tor variables could also be useful.
A restriction in logic tor variables translates to block products of (SQ,SQ,EQ)⊡
(SP,SP,EP), where the constantsc of the block product have the property that
πr

2(c) = 1. It is easy to see that this is equivalent to restricting formulas such that
every bound variable occurs onlyr − 1 quantifiers inside the quantifier that it is bound
by, which is equivalent to the power ofr variables. Observe that forr = 1 the block
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product can be replaced by the direct product and forr = 2 the block product can be
transformed to its weak version (Proposition 3.42).

This algebraic characterization on the other hand corresponds to circuit families
with at mostnr−1 gates, and regular language always have circuits of sizen1+ǫ [CFL85].
This construction however requires adequate predicates onthe side of logic, and
therefore does not answer any of the hierarchy questions mentioned above. The
eligibility of such a characterization of course depends onits future usefulness in
helping to find proofs.



Chapter 5
Majority Logic

In this chapter we take a close look at majority logic. It is known the majority quantifier
can simulate the counting quantifier [Lan04] and the counting quantifier can simulate
the majority quantifier. There are many other quantifiers that have similar properties in
this chapter. We consider different quantifiers and predicates and compare their power
in recognizing languages. Since the cases of an unbounded number of variables and
two variables have to be differentiated we examine the two cases separately. For the
two variable case we will see that the majority quantifier is not as robust as desired.
We therefore introduce the extended majority quantifier.

As it turns out the majority quantifier with an arbitrary set of predicates including
the order predicate is a variety. For the two variables case we show the extended
majority quantifier with the order predicate is also a variety. Moreover we present a
very basic algebraic characterization for these varieties.

5.1 Several Counting Quantifiers

We will now recall the definition of some counting quantifiers. According to the
definition in the preliminaries we call a quantifier a normal quantifier if it quantifies
over one subformula and an extended quantifier if it quantifiers over more than one
formula. We will examined the normal and the extended version of these quantifiers
separately, where the extended quantifier have not been usedbefore in most cases.

First we define the finite counting quantifier∃=c x ϕ for a constantc ∈ � by
w |= ∃=c x ϕ iff |{i | wx=i |= ϕ}| = c. It is known that this quantifier has not much
extended power over the existential quantifier. We have alsoa threshold version of
this quantifier∃>c x ϕ requires that there are more thanc positionsi for x, such that
wx=i |= ϕ. The extended versions of these quantifiers coincide with the usual quantifiers
because we are always closed under Boolean combinations.

Similar we can replace the constantc by a function f : � → �, such that the
value depends on the length of the input word. This yields thequantifiers∃= f and∃> f .

59



60 Chapter 5. Majority Logic

∃=c x ϕ constant counting quantifier exactlyc positions
∃>c x ϕ constant threshold quantifier more thanc positions
∃= f x ϕ threshold counting quantifier exactlyf (|w|) positions
∃> f x ϕ threshold quantifierf (n) more thanf (|w|) positions
Maj x ϕ majority quantifier more than half positions
∃=y x ϕ counting quantifier exactlyy positions
∃>y x ϕ threshold quantifier more thany positions
∃∈S x ϕ The number of positions is in the setS ⊆ �
∃∈Sn x ϕ The number of positions is in the setSn ⊆ �

Figure 5.1: List of several counting quantifiers

Since f is not bounded these quantifiers do not coincide in general with the extended
quantifiers, hence we definê∃= f and ∃̂> f as the corresponding logic classes with the
extended versions of these quantifiers. The majority quantifier Maj x ϕ is a special
case of this forf (n) = ⌊n/2⌋. We define the logic classes MAJ and M̂AJ for the normal
and extended version of this quantifier.

Instead of counting up to a number we can count the number of positions and ask
whether they are in a given setS ⊆ � or not. These quantifiers correspond to the
natural numbers in algebra and have the quantifier semigroup(�,S, {0, 1}); a typical
example of such a quantifier is the square quantifier, i.e.S is the set of squares�. We
get a quantifier∃∈S x ϕ, defined byw |= ∃∈S x ϕ iff |{i | wx=i |= ϕ}| ∈ S. For the
extended version we let∃∈S x 〈ϕ1, . . . , ϕk〉 be defined byw |= ∃∈S x 〈ϕ1, . . . , ϕk〉 iff
|{(i, l) | wx=i |= ϕl}| ∈ S. This defines the logic classes∃∈S and∃̂∈S.

The quantifier above can also be defined for a set that depends on the input length
of w. With an equivalent definition we get the logic classes∃∈Sn and∃̂∈Sn.

The counting quantifier∃=y x ϕ, defined bywy= j |= ∃
=y x ϕ iff |{i | wx=i,y= j |= ϕ}| = j,

counts if there are exactly the value ofy many positions forx whereϕ is true. Since
this quantifier requires a variabley that is not bound by the quantifier itself, we always
add the regular existential quantifier∃ and obtain the logic class∃+∃=y. The extended
version of this quantifier allows multiple subformulasϕ1, . . . , ϕk: ∃=y x 〈ϕ1, . . . , ϕk〉,
defined bywy= j |= ∃

=y x 〈ϕ1, . . . , ϕk〉 iff |{(i, l) | wx=i,y= j |= ϕl}| = j. This quantifier
together with the existential quantifier forms the logic class∃ + ∃̂=y. Also because of
the quantifier make use of two variables this quantifier will not be useful if the number
of variables if bound to two.

Similar we have a threshold quantifier∃>y x ϕ, equivalent to the quantifier above
that requires more than the value ofy positions for x such thatϕ is true. The
corresponding logic class is∃ + ∃>y and with the extended quantifier∃ + ∃̂>y.

We defined quite a lot counting quantifiers, so we list them in the following Figure
5.1.
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5.1.1 Unbounded number of variables

We now compare the power of the previous introduced quantifier in the presence of
different predicate sets. In the case of using the equality predicate solely, we have only
trivial inclusions.

Proposition 5.1. For the predicate set{=} and an unbounded number of variables, the
following inclusions hold, where A→ B means that A can be simulated by B:

∃ = ∃=c = ∃>c

�� ""

��

∃= f

��

∃ + ∃=y

��

∃∈S

$$

MAJ

qq
∃> f

��

∃ + ∃>y

∃∈Sn

The extended quantifiers can simular the normal quantifiers and the same relations
among themselves as in the normal case. Additionally the majority quantifier can
simulate the existential quantifier.

Proof. We show only one inclusion, the others are trivial or similar.

∃=c x ϕ(x) = ∃>c−1 x ϕ(x) ∧ ¬∃>c x ϕ(x).

�

If we allow the order predicate the picture becomes more simple. We can split
the set of quantifiers in uniform quantifiers which are eitherfirst order or counting
quantifiers and the non-uniform quantifiers which split in three classes.

Proposition 5.2. For the predicate set{<} and an unbounded number of variables, the
following inclusions hold, where A→ B means that A can be simulated by B:

∃ = ∃=c = ∃>c

##��

∃∈S

$$

MAJ = ∃ + ∃=y = ∃ + ∃>y

��

∃= f = ∃> f

oo∃∈Sn
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The extended version and the normal version of the quantifierare always equally
powerful.

Proof.

∃>c x ϕ(x) = ∃=1 y (∃=c+1 x x≤ y∧ ϕ(x)) ∧ ¬(∃=c+1 x x< y∧ ϕ(x)).

By [Lan04, Corollary 3.3] we know∃ can be simulated by MAJ[<], as well as
counting. On the other hand there is a formulaϕ(x) in ∃ + ∃>y that is true ifi = ⌈n/2⌉,
wherei is the value ofx. �

If we also use the unary arbitrary predicates the non-uniform quantifiers can be
simulated by the uniform quantifiers, which gives a clear picture.

Proposition 5.3. For the predicate set{<, un − arb} and an unbounded number of
variables, the following inclusions hold, where A→ B means that A can be simulated
by B:

∃ = ∃=c = ∃>c

��

∃∈S

��

MAJ = ∃= f = ∃> f = ∃ + ∃=y = ∃ + ∃>y = ∃∈Sn

The extended version and the normal version of the quantifierare always equally
powerful.

Proof. We choose a unary predicatep that is true for values inS, then

∃∈S x ϕ(x) = ∃ y p(y) ∧ ∃=y x ϕ(x).

�

5.1.2 Two variable case

We continue to examine the case of two variables again for different predicate sets.
Naturally, it turns out that there are less equivalences than in the unbounded number
of variables case.

Proposition 5.4. For the predicate set{=} and two variables, where A→ B means
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that A can be simulated by B:

∃

��

��

∃

��

��

��

∃=c = ∃>c

��





∃=c = ∃>c

��





∃= f

��

∃ + ∃=y

��

∃= f

��

∃ + ∃=y

��

∃∈S

##

MAJ

vv

∃∈S

##

MAJ

vv

∃> f

��

∃ + ∃>y ∃> f

��

∃ + ∃>y

∃∈Sn ∃∈Sn

Proof. �

Taking a look at the order predicate we obtain different pictures in the case of the
normal and the extended quantifiers, in the extended case themajority quantifier can
simulate most other quantifiers.

Proposition 5.5. For the predicate set{<} and two variables, where A→ B means
that A can be simulated by B:

∃

��

��

∃

��

��

��

∃=c = ∃>c

��





∃=c = ∃>c

��





∃= f

��

∃ + ∃=y

��

∃= f

��

∃ + ∃=y

��

∃∈S

##

MAJ

vv

∃∈S

##

MAJ

vv

∃> f

��

∃ + ∃>y ∃> f

��

∃ + ∃>y

ff

∃∈Sn ∃∈Sn

Proof. �

As we see in the last diagram, if we are interested in the uniform quantifiers,
the extended majority quantifier can simulate all other uniform quantifiers. In the
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following we always include the order predicate when we use the majority quantifier
in the unbounded case and the extended majority quantifier inthe two variables case,
which seems to be the most interesting case.

5.2 Several Predicate Sets

In this section we examine the power of the majority quantifier in terms of the
numerical predicates that can be simulated.

Lemma 5.6. The following equalities hold:

• MAJ[<] = MAJ[<,+]

• MAJ[<, square]= MAJ[<,+, ∗]

Proof. This is proven in [Lan04, Theorem 4.1]. �

On the other hand we have some nonexpressibility results.

Lemma 5.7. We have the following inequalities in majority logic:

• MAJ[+] , MAJ[<,+]

• MAJ[<,+] , MAJ[<,+, ∗]

Proof. The first inequality is proven in [Lan04], and the second is a consequence of
[Ruh99] and independently of [LMSV01]. �

5.3 Varieties

In this section we show that for all sets of predicatesP the languages expressed by the
majority logic MAJ[<,P] form a variety.

This is very different compared to less powerful logic classes that cannot count. For
example the modulo predicates are closed under inverse morphisms, but the languages
recognized by formulas of FO[<,mod] are not closed under inverse morphisms. We
can for example recognize the languageL of all words of even length in{a, b}+ by
a formula of FO[<,mod]. The morphismh : {a, b}+ → {a, b}+ that mapsa 7→ a
andb 7→ bb, can be used to defineL′ = h−1(L). ThenL′ is the language of an even
number ofa’s, that is not recognized by FO[<,mod]. So FO[<,mod] is not closed
under inverse morphisms and hence not a variety.

For logic classes that can count the situation is different as seen in the following
theorem:

Theorem 5.8. For every set of predicatesP closed under inverse morphisms and
containing order the classL(MAJ[P]) is a variety of languages.
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Proof. Please note thatL(MAJ[P]) = L(MÂJ[P]) since the predicates contain order.
Hence we may use the extended majority quantifier in our proof.

We need to show the following closure properties:

1. The languages in MAJ[P] are closed under Boolean operations.

2. If L ∈ MAJ[P], L ⊆ Σ+ and h : (Σ′)+ → Σ+ is a morphism then
L′ = h−1(L) ⊆ (Σ′)+ is in MAJ[P].

3. If L ∈ MAJ[P], L ⊆ Σ+ thenu−1Lv−1 ∈ MAJ[P], whereu−1Lv−1 = {w | uwv∈ L}.

(1) Let L1, L2 ∈ L(MAJ[P]), then there are formulasϕ1, ϕ2 ∈ MAJ[P] such that
Lϕ1 = L1 andLϕ2 = L2. It is easy to see thatL1 ∩ L2 = Lϕ1∧ϕ2, L1 ∪ L2 = Lϕ1∨ϕ2 and
L1 = L¬ϕ1, henceL(MAJ[P]) is closed under Boolean operations.
(2) Let L ∈ L(MAJ[P]), then there is a formulaϕ such thatLϕ = L. Given a
morphismh : Σ′+ → Σ+, we need to show thatL′ = h−1(L) is in L(MAJ[P]). Let
c = maxσ′∈Σ′ |h(σ′)| be maximal length a letter is mapped to.

We will use induction over the subformulas ofϕ to proof this. Since the subformu-
las contain free variables we extend the morphism in a special way to free variables:

Given a wordw′x1=i1,...,xk=ik
∈ Σ′+ ⊗ {x1, . . . , xk}, and a vectorv ∈ {0, . . . , c− 1}k, we

let
hv(w

′
x1=i1,...,xk=ik) = h(w′)x1=|h(w′

<i1
)|+v1,...,xk=|h(w′

<ik
)|+vk .

So we map the variablexj pointing to the letterwi j to the position under the morphism,
wherevi is the offset sinceh(w′i j

) might be a word (not only a single letter). Please note
that this construction maps a sentence to a sentence (not a set of sentences).

We callv the offset vector. It is easy to see that there are formulasδv in MAJ[P],
such thatw′x1=i1,...,xk=ik

|= δv if vj < |h(i j)| for all j. We call an offset vectorv valid for
w′x1,...,xk

iff w′x1,...,xk
|= δ.

We will define recursively a map that maps any formulaψ with free variables
X1, . . . ,Xk to a set of formulasψ′v with v ∈ {0, . . . , c − 1}k, such that for each word
wx1,...xk ∈ Σ

′+ ⊗ {x1, . . . , xk} and valid offset vectorv:

wx1=i1,...,xk=ik |= ψ
′
v

iff
hv(wx1=i1,...,xk=ik) |= ψ.

(i) Assumeψ = cσ(x1). We letψ′v =
∨

σ′∈Σ′,h(σ′)v1=σ
cσ′(x1).

(ii) Assumeψ = p(x1, . . . , xk). Sincep ∈ P andP are closed under inverse morphisms
there are predicatesp′v′ for v′ ∈ {0, . . . , c − 1}k such thatp′v′(y1, . . . , yk) is true iff
p(y1 · c+ v′1, . . . , y1 · c+ v′k) is true. We cannot usep′ directly, so we let

ψ′v =
∨

v′
∃ y1 · · · ∃ yk

y1 · c+ v1 = |h(w<x1)| + v′1 ∧ · · · ∧ yk · c+ vk = |h(w<xk)| + v′k
∧ p′v′(y1, . . . , yk)
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It is easy to see that the arithmetic operations can be performed by an extended majority
quantifier using the order predicate.
(iii) Assumeψ = Maj x 〈ψ1, . . . , ψm〉. Since the majority quantifier bounds a variable,
we need to ensure that only valid offset vectors are considered when evaluating the
subformulasψ j. Please note that the offset vector is valid depending on the position of
x.

We define Majδv x 〈ψl〉l to equal Majx 〈ψ′l ∧δv, ψ
′l ∨¬δv〉l. Then if for the position

of x the offset vector is invalidψ′l ∧ δv evaluates to true andψ′l ∨¬δv evaluated to false,
hence this position is ignored by the majority quantifier. Inthe case that the offset
vector is valid both terms evaluate toψ′l .

Now we can defineψ′v. We letψ′v = Majδv x 〈ψ′1v,b, . . . , ψ
′m
v,b〉b=0,...,c−1.

(3) This construction is similar to the construction of (2).We use an vectorv ∈ {0, 1, 2},
depending wether we are at the first, a middle or at the last position and construct to
each formulaψ three versionsψ′0, ψ

′
1, ψ

′
2. �

The proof is also valid for two variables, if we have no predicates:

Theorem 5.9.The classL(MÂJ2[<]) is a variety.

Actually the results follows for any logic class that can count where the quantifiers
and predicates are closed under inverse morphism. It is mucheasier to check if a
quantifier or a predicate is closed under inverse morphisms than to check this for the
whole class of logic formulas.

Remark5.10. The languages in the logic class MAJ+ Q[P] form a variety, if the
inverse morphic closure of the quantifiersQ and the predicatesP is in MAJ+Q[P].

Also we get a consequence that somehow reduces hopes to proveCrane Beach
results for majority logic.

Corollary 5.11. L ∈ MAJ[P] then L with a neutral letter is also in MAJ[P].

Proof. This follows from the proof of Theorem 5.8. �

This gives an alternative proof of theorem 6.3(b) in [BIL+05].

5.4 Algebraic Characterization

With the relative block product we can give a cleaner characterization for majority
logic.

Theorem 5.12.The following are equations are true:

• sbpc<((�,�+)) = MAJ[<],

• sbpc<((�, {�+, �})) = MAJ[<,+, ∗]
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Proof. It clear that the⊆ relation is true in both cases since the relative majority
quantifier can be simulated by the majority quantifier ([Lan04]). For the other direction
we need to show that we can express<, by Lemma 4.10 any non-commutative monoid
suffices, hence� ⊠ �, recognizes the order predicate and by Theorem 4.14 we have
sbpc<((�,�+)) ⊇ MAJ[<].

For the second equation we need to show that we can express thesquare predicate.
But it is easy to see that (�,�+) ⊠ (�, �) can recognize this predicate and again by
Theorem 4.14 we have sbpc<((�,�+, �)) ⊇ MAJ[<,+, ∗] �

This gives us the following result in circuit theory. Pleasenote that we use
morphism into semigroups here to describe the languages recognizable by circuit
family and not programs as usual.

Corollary 5.13. DLOGTIME − TC0 = MAJ[<,+, ∗] = sbpc<(�, {�+, �},�).

5.5 Summary

We gave an overview of majority logic with a strong focus on expressiveness and
algebra. Starting with several different quantifiers (see Figure 5.1) of similar expressive
power, we presented their relative power in the presence of different predicate sets.

We discovered that for an unbound number of variables the majority quantifier
in the presence of the order predicate is as strong as any “uniform” linear counting
quantifier, and in the presence of arbitrary predicates it isas strong as any of the
linear counting quantifier examined here. In the case of two variables there seem to
be differences for the normal quantifiers, even in the presence of arbitrary predicates.
Together with the order predicate the extended majority quantifier has an excelling
power relative to all “uniform” quantifiers.

We therefore concluded we can concentrate our attention to the majority quantifier
for the case of an unbounded number of variables, and to the extended majority
quantifier for the case of two variables. For these two cases we examined which
predicates can be simulated by others and which cannot.

We then showed that contrary to other classes of logic, the majority quantifier with
most of the commonly considered predicate sets forms a variety, and that this also
holds for the extended majority quantifier with the order predicate in the two variables
case. This finally led to a very basic algebraic characterization of these varieties, which
is interesting in its own right.

5.6 Further Research

In this chapter many questions remain open. We left unsettled many questions of the
inequalities of majority logic with the different predicate sets considered. Using typed
semigroups we can construct an algebraic characterizationfor each of these classes of
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logic and in this way try to give an algebraic proof for some ofthe inequalities. Also,
we touch on the Crane Beach conjecture or on its generalization the Uniformity Duality
Property of [MTV08], the latter conjecturing MAJ[arb]∩CFL = MAJ[<]∩CFL, which
implies MAJ[arb]∩REG= MAJ[<] ∩REG. If this conjecture proves correct it might
be the reason for it being hard to show thatLA5 is in MAJ[<] or the contrary.



Chapter 6
Regular languages in M ÂJ2[<<<]

The goal of this chapter is finding an upper and a lower bound for the finite syntactic
semigroups of the regular languages in MÂJ2[<]. In order to achieve this aim we use
typed semigroups and the characterization of MÂJ2[<] of the previous chapter.

We devote the first section to a geometric interpretation of MÂJ2[<] formulas to
gain insight into the algebraic proof techniques used in thefollowing section. We then
apply these proof techniques to find an upper bound. The lowerbound is proven by a
construction of M̂AJ2[<] formulas for the finite semigroups contained in this bound.

6.1 Geometry

In what follows we consider the infinite grid graph on� × � as in Figure 6.1. The
vertices of the graph are all points in� ×� and there is an edge between two points
(x1, y1) and (x2, y2) iff their distance is one, i.e.|x1 − x2| + |y1 − y2| = 1. There is one
distinguished vertex (0, 0) that we call the origin of the graph. For two points we write
(x1, y1) ≤ (x2, y2) if x1 ≤ x2 ∧ y1 ≤ y2.

We call a path ((x0, y0), . . . , (xn, yn)) in this graph positive iff (xi−1, yi−1) ≤ (xi , yi)

a

b

0,0

Figure 6.1: The path for the word aabbababaabaabbaaa
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for all i = 1, . . . , n. There is an obvious correspondence between all (non trivial)
positive paths starting in the origin and the words in{a, b}+, defined by the fol-
lowing correspondence:w1 . . .wn corresponds to the path ((x0, y0), . . . , (xn, yn)) iff
wi = a ⇐⇒ xi − xi−1 = 1 andwi = b ⇐⇒ yi − yi−1 = 1. Informally speaking
the path makes a step to the right for eacha, and a step upwards for eachb, see Figure
6.1 for an example.

The observation above is only essential because we limit ourattention to words
with a fixed Parikh vector #(w) = (na, nb) ∈ � × �. Then the wordsw with
#(w) = (na, nb) correspond to the positive paths between the origin and thevertex
(na, nb). So we can focus to the subgraph of all points (x, y) ≤ (na, nb).

For the set of words with fixed Parikh vector we will now show that MÂJ1[<]
formulas with one free variable can be interpreted as half planes when we embed the
graph in the Euclidean plane� ×�. Similar to the correspondence above a wordwy= j

corresponds to the path ofw with a marker on the point (xj , yj). Below we will show
that all information about a wordwy= j inferable from a majority formula depends on
the point (xj , yj), or more specifically it depends on in which set of the half planes the
point is for a fixed set of half planes.

We will demonstrate the geometric interpretation on an example. Let ϕ be
the formula Maj x ((ca(x) ∧ x ≤ y) ∨ (cb(x) ∧ x > y)), then wy= j |= ϕ iff
#a(w≤ j) + #b(w> j) > #a(w> j) + #b(w≤ j)). This can be reformulated as

#a(w≤ j) + #b(w> j) − #a(w> j) − #b(w≤ j) > 0 ⇐⇒

⇐⇒ #a(w≤ j) − (na − #a(w≤ j)) + (nb − #b(w≤ j)) − #b(w≤ j) > 0 ⇐⇒

⇐⇒ 2#a(w≤ j) − 2#b(w≤ j) − na + nb > 0

The last equation describes a half plane. Given a wordw and considering the path
(x0, y0), . . . , (xn, yn) corresponding tow, thenwy= j |= ϕ iff (xj , yj) is part of the half
plane corresponding toϕ. This is illustrated by an example in Figure 6.2.

a

b

(0,0)

Figure 6.2: The path for the word aabbababăabaabbaaa, whereă marks the
position of the free variable y and half plane correspondingto the formula
ϕ = Maj x ((ca(x) ∧ x ≤ y) ∨ (cb(x) ∧ x > y)).

Below we will show that for each formula of M̂AJ1[<] we can find a set of
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corresponding half planes corresponding to them. To this purpose we need to analyze
all formulas of depth one.

Let ϕ be a formula Majx 〈ψ1, . . . , ψk〉 with one free variabley. The subformulas
ψl are Boolean combinations ofx < y, x = y, x > y andca(x), cb(x), ca(y), cb(y). We let
cab(x) = ca(x) ∨ cb(x) andc∅(x) = ⊥, and letB be the set{∅, {a}, {b}, {a, b}}. Then every
subformulaψl can be written in the form:

ca(y) ∧
(
(x < y∧ cB(l)

a,<
) ∨ (x = y∧ cB(l)

a,=
) ∨ (x > y∧ cB(l)

a,>
)
)
∨

∨cb(y) ∧
(
(x < y∧ cB(l)

b,<
) ∨ (x = y∧ cB(l)

b,=
) ∨ (x > y∧ cB(l)

b,>
)
)
,

where B(l)
a,<, B

(l)
a,=, B

(l)
a,>, B

(l)
b,<, B

(l)
b,=, B

(l)
b,> ∈ B. Please note that for every wordwx=i,y= j

exactly one of the clausesx?y∧CB(l)
a,?

is true.

Given a fixed wordwy= j thenwy= j |= ϕ iff

n∑

i=1

|{l | wx=i,y= j |= ψl}| > kn/2 ⇐⇒
k∑

l=1

{i | wx=i,y= j |= ψl}| > kn/2

Let #B′(w) =
∑

b∈B′ #b(w) for B′ ∈ B, then for a fixedl the size of{i | wx=i,y= j |= ψl},
equals

#B(l)
wj ,<

(w< j) + #B(l)
wj ,=

(wj) + #B(l)
wj ,>

(w> j) =

= #B(l)
wj ,<

(w< j) + #B(l)
wj ,=

(wj) + nB(l)
wj ,>
− #B(l)

wj ,>
(w< j) − #B(l)

wj ,>
(wj) =

=

(
#B(l)

wj ,<
(w< j) − #B(l)

wj ,>
(w< j)

)
+

(
#B(l)

wj ,=
(wj) + nB(l)

wj ,>
− #B(l)

wj ,>
(wj)
)

The inequality above can now be reformulated as:

k∑

l=1

(
#B(l)

wj ,<
(w< j) − #B(l)

wj ,>
(w< j)

)
+

k∑

l=1

(
#B(l)

wj ,=
(wj) + nB(l)

wj ,>
− #B(l)

wj ,>
(wj)
)
> kn/2

The idea is to create two half planes, one for the casewj = a and one for the case
wj = b. We already fixed the Parikh vector of the word; if the letterwj is also fixed the
term on the right is constant, and the sum on the left is a linear combination of #a(w< j)
and #b(w< j). Hence we obtain two half planes, one forwj = a and one forwj = b, such
that if for two wordswy= j andw′y= j′ with #(w) = #(w′) = (na, nb) andwj = w′j′ and the
marker on the path ofwy= j being contained in the same set of half planes as the marker
of the path ofw′y= j′ thenwy= j |= ϕ ⇐⇒ w′y= j′ |= ϕ, i.e. ϕ cannot distinguish between
wy= j andw′y= j′ .

Since every formula of depth one is a Boolean combination of formulas of the form
of ϕ, if we pick any formula of depth one we can use this method to get a set of half
planes with the above properties. It is important to note that the exact paths ofw and
w′ have no influence, only the position of the marker has.



72 Chapter 6. Regular languages in M ÂJ 2[<<<]

Thus every formula corresponds to a constant number of half planes for every
Parikh vector (na, nb), but the rectangle grows with (na, nb). We show that for a fixed
number of half planes, for an arbitrarily large rectangle being cut by these half planes
there is always an arbitrarily large rectangle inside with all points contained in exactly
the same set of half planes.

Lemma 6.1. Given numbers c, n′a, n
′
b, and an rectangle of size at least(2c · n′a, 2

c · n′b),
for every set of c half planes we can find a rectangle inside of size (n′a, n

′
b) where all

points of this rectangle are contained in exactly the same set of half planes.

Proof. We split the interval into four quadrants, each of size (2c−1n′a, 2
c−1n′b), and pick

a half plane. Since a line can only intersect three quadrantsat most, there is one
quadrant that is either completely contained in the half plane or completely outside.
By induction over the number of half planes we get the result. �

The basic idea to characterize the languagesL(MÂJ2[<]) is the following: Given
a formulaϕ′ recognizing a languageL, we proceed as above and find for every Parikh
vector (na, nb) a rectangle uncut by the half planes corresponding to the subformulas
ϕ1, . . . , ϕk of depth one inϕ′. We can assume that the formulas have a free variable
namedy. So for each Parikh vector (na, nb) we have two wordsp(na,nb) ands(na,nb) such
thatp(na,nb) corresponds to a path from the origin to the lower left vertexof the rectangle
and s(na,nb) corresponds to a path from the top right vertex to the vertex (na, nb).See
Figure 6.3 for an example.

a

b

(0,0)

p(na,nb)

s(na,nb)

Figure 6.3: Here we choose the rectangle as drawn in the top left corner. The prefix we choose
is abbb and the suffix is aaaaaaba. The formulaϕ = Maj x ((ca(x) ∧ x ≤ y) ∨ (cb(x) ∧ x > y))
has no word wy= j as model if abbb is a prefix of w and aaaaaba is a suffix and y points the
a letter between the prefix and the suffix, i.e. 4 ≤ j ≤ 10. Henceϕ is constant on the inner
rectangle. Please not that we have some freedom in choosing the prefix and suffix for the same
rectangle.

If we now choose two wordsw,w′ with #(w) = #(w′) = (na, nb) and p(na,nb) is a
prefix of w andw′ ands(na,nb) is a suffix of w andw′, thenwy= j |= ϕl ⇐⇒ w′y= j′ |= ϕl

for all l = 1, . . . , k and j = 1, . . . , n, j′ = 1, . . . , n. Hence all subformulasϕ1, . . . , ϕk are
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constant except for the prefix and suffix. We can thus define a new language that has
fixed prefixes and suffixes depending on the Parikh vector of the input, such that this
language is recognized by a formula of a quantifier depth lessthan the quantifier depth
of ϕ′.

This idea has two drawbacks, firstly the technical formalismwe will deal with in
the next section, and secondly the need to choose the right prefixes and suffixes. Since
we modify the language and create a new language with fixed prefixes and suffixes it
is important that the prefixes and suffixes added do not change the complexity of the
language. The languageΣ∗bbΣ∗ for example with a fixed prefix ofbb becomes trivial.
The best choice is to pick words that behave neutral with respect to the language as
prefixes and suffixes, but this is not always possible. So once we are done with the
formalism we will carefully choose prefixes and suffixes in Section 6.3.

6.2 Non-uniform morphisms

The algebraic tool to deal with prefixes and suffixes that depend on the Parikh vector of
the word will be the non-uniform morphisms. These are morphisms that can be shifted
in a non-uniform way, depending on the number of letters in the words, i.e. the Parikh
vector.

Definition 6.2 (Non-Uniform Morphism). Let (S,S,E) be a typed semigroup. Anon-
uniform morphisminto (S,S,E) is a triple (h, λ, ̺), whereh is a semigroup morphism
h : Σ+ → S with h(Σ) ⊆ E andλ, ̺ are mappingsλ, ̺ : �Σ → S. A non-uniform
morphism (h, λ, ̺) recognizes a language L⊆ Σ+ iff there is a typeS ∈ S such that
w ∈ L ⇐⇒ λ(#(w))h(w)̺(#(w)) ∈ S.

In the following we will show some methods of modifying a non-uniform mor-
phism, according to the changes we needed in the previous section. First as one of the
basics we show that the composition of two non-uniform morphism is again a non-
uniform morphism. Since we defined the notion of a non-uniform morphism only on
the free semigroups, the image of the first non-uniform morphism will be a subset of
the free semigroupΣ′+.

Lemma 6.3. Assume there is a non-uniform morphisms between to alphabets, that is
(h, λ, ̺) is a typed morphism fromΣ+ to (Σ′+, L′,Σ) that recognizes L. If there is a
non-uniform morphism(h′, λ′, ̺′) to (S,S,E) that recognizes L′, then the non-uniform

morphism
(
h′ ◦ h,

(
λ′ ◦ (#(λ) + #h + #(̺ ))

)(
h′ ◦ λ

)
,
(
h′ ◦ ̺)

(
̺′ ◦ (#(λ) + #h + #(̺ ))

))

recognizes the language L.

Proof. We prove this by computation.
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Let w ∈ Σ+, and letw′ = λ(#(w))h(w)̺(#(w)) then:

(
λ′ ◦ (#(λ) + #h+ #(̺ ))

)(
#(w)
)(

h′ ◦ λ
)(

#(w)
)

(
h′ ◦ h

)(
w
)(

h′ ◦ ̺
)(

#(w)
)(
̺′ ◦ (#(λ) + #h+ #(̺ ))

)(
#(w)
)
=

= λ′(#(w′))h′(λ(#(w)))h′(h(w))h′(̺(#(w)))̺′(#w(w′)) =

= λ′(#(w′))h′(λ(#(w))h(w)̺(#(w)))̺′(#w(w′)) =

= λ′(#(w′))h′(w′)̺′(#w(w′))

Sincew ∈ L iff w′ ∈ L′ and (h′, λ′, ̺′) recognizes the languageL′, this completes
the proof. �

We need to be able to extend the prefixes and suffixes chosen. Thus we show:
Given a non-uniform morphism, we can fix a prefix or suffix of the word depending
on the number of letters in the word, and still recognize the result with the same typed
semigroup.

We recall a definition from the preliminaries that we need in the following. For a
morphismh : Σ+ → S, we let #h : �Σ → �S be the map that mapsv to #(h(w)), where
#(w) = v. This definition is sound sinceh is a morphism and so the map is independent
of the wordw chosen.

Definition 6.4 (Prefix/Suffix Extension). We call a pair (λ′, ̺′) with λ′ : �Σ → Σ+ and
̺′ : �Σ → Σ+, wherev− #(λ′(v)) − #(̺ ′(v)) is unbounded for allv ∈ �Σ, aprefix/suffix
extension. Given a non-uniform morphism (h, λ, ̺) we say, the prefix extension (λ′, ̺′)
leads to a non-uniform morphism (h, λ̃, ˜̺), whereλ̃(v) = λ(v+#(λ′(v))+#(̺ ′(v)))h(λ′(v))
and ˜̺(v) = h(̺′(v))̺(v+ #(λ′(v)) + #(̺ ′(v))).

When we extend the prefixes and suffixes the language recognized changes. We
define a cut of language by a prefix/suffix extension and then prove that this gives the
corresponding change of the language.

Definition 6.5 (Prefix/Suffix Cut λ′−1L̺′−1). A prefix/suffix cut of a languageL by a
prefix/suffix extension is the language:λ′−1L̺′−1 = {w | λ′(#(w))w̺′(#(w)) ∈ L}.

We now prove the compatibility of the algebraic definition ofa prefix/suffix
extension with the prefix/suffix cut of the language.

Lemma 6.6. If (h, λ, ̺) recognizes a language L, then the prefix/suffix extension(λ′, ̺′)
of (h, λ, ̺), results in a non-uniform morphism(h, λ̃, ˜̺) that recognizesλ′−1L̺′−1.

Proof. Let w ∈ Σ+, thenw ∈ λ′−1L̺′−1L iff λ′(#(w))w̺′(#(w)) ∈ L. Since (h, λ, ̺)
recognizesL, there is a typeA such thatλ(#(w′))h(w′)̺(#(w′)) ∈ A if w′ ∈ L. If we set
w′ = λ′(#(w))w̺′(#(w)), then we get
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λ(#(λ′(#(w))w̺′(#(w))))h(λ′(#(w))w̺′(#(w)))̺(λ′(#(w))w̺′(#(w))) =

=
(
λ(#(w) + #(λ′(#(w))) + #(̺ ′(#(w))))h(λ′(#(w)))

)
h(w)·

·
(
h(̺′(#(w)))̺(#(w) + #(λ′(#(w))) + #(̺ ′(#(w))))

)
=

=λ̃(#(w))h(w) ˜̺(#(w))) ∈ A

iff λ′(#(w))w̺′(#(w)) ∈ L which is the same asw ∈ λ′−1L̺′−1. �

The next lemma shows that the languages recognized by non-uniform morphisms
are closed under inverse length preserving morphisms and under shifting, i.e. the
syntactic semigroups are closed under division and shifting.

Lemma 6.7. If (h, λ, ̺) from Σ+ to (S,S,E) recognizes a regular language L, a
semigroup T divides the syntactic semigroup of L and a subsetB ⊆ T, then there
is a non-uniform morphism(h′, λ′, ̺′) to a semigroup ofwc((S,S,E)), that recognizes
a language L′ with syntactic semigroup˜(T,T,F) for some unitsF.

Proof. First we prove the lemma in the special case thatT = S.
We let (wl1,wr1), . . . , (wlk,wrk) we the set of tuples of words inΣ+ such that this set

maps surjective on syn(L) × syn(L) by η × η. We define (h′, λ′, ̺′) : Σ+ → (S,S,E)k

where theπi of the non-uniform morphism is the prefix/suffix extension bywli ,wr i .
Since syn(L) is the syntactic semigroup ofL, with L = η−1(A), for every pair

s, s′ ∈ syn(L), there are elementsl, r ∈ syn(L) such thatlsr ∈ A ⇐⇒ ls′r < A. Hence
for every elementss ∈ syn(L) there is typeA′ of (S,S,E)k such thath−1(A′) = η−1(s).
Also since the types form a Boolean algebra, there is type forevery subset.

Now we prove the lemma in the common case. LetT′ ⊆ syn(L) such thatT is a
morphic image ofT′ underh̃. We can assume thatB = h̃(T′ ∩ A), then we are in the
following situation:

(Σ+, L,Σ)
(h,λ,̺)

// //

η
����

(S′,S′,E′)

ϕ
wwww

// // (S,S,E)

(SL,SL,EL) (T′, B′)oooo h̃ // (T, B)

We pick generatorsΣ′ such thatΣ′+ = η−1(h̃−1(T′)), and letL′ = Σ′+ ∩ L. For all
w′ ∈ Σ′+ we havew ∈ L′ iff h̃(η(w)) ∈ B, hence syn(L′) � T andL′ = η′−1(h̃−1(T′)),
hence (T,T,F) is a trivial extension of the syntactic semigroup forF = h̃(η(Σ′)). Also
this language is still recognized by (S,S,E). �

In the following we will show we can reduce the block depth of the non-uniform
morphism (h, λ, ̺), whereπ2(h(Σ+)) is commutative, recognizing a languageL by
extending the prefix and suffix by λ′, ̺′, and the so constructed morphism recognizes
λ′−1L̺′−1.
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ms

mp

∞

Figure 6.4: mp,ms of Reduction Lemma

Since all languages except group, will have a smaller syntactic semigroup when
adding any prefix/suffix, we have some condition that enables us to control which
prefix/suffix applied in the construction. Assume we have fixed the Parikhvector of
the word recognized, then we want to be able to ensure a certain minimal number
of letters in the prefix and suffix. We will have to functionsmp,ms that describe the
minimum letters in the prefix/suffix as shown in the next picture. The only condition
on the functionsmp,ms is that the number of letters that are non fixed is unbounded.

Then after our construction, we will have to functionstp, ts, and can choose
any prefix/suffix extension with that has more letters in the prefix/suffix yielding a
morphism of lower depth.

The following lemma is the main statement of this section andwill be a key tool to
prove the main theorems of this and the next chapter.

Lemma 6.8(Reduction Lemma). LetT′ be a weakly closed class of typed semigroups.
Let L be recognized by a non-uniform morphism(h, λ, ̺) into a semigroup of the weakly
closed classT = T′ ⊡ (Z ⊡ P<<<) and let mp,ms : �Σ → �Σ be two mappings, such that
‖y−mp(y) −ms(y)‖0 is unbounded for y∈ �Σ. There are mappings tp, ts : �Σ → �Σ

such that for all prefix/suffix extensionsλ′, ̺′ with #(λ′) ≥ tp and #(̺ ′) ≥ ts there is
a non-uniform morphism(h̃, λ̃, ˜̺) into a semigroup of the weakly closed classT′ that
recognizesλ′−1L̺′−1.

tp

ts

Figure 6.5: tp, ts of Reduction Lemma
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Proof. Let w ∈ Σ+ andh(wi) = ( fwi , gwi , e). Thenw ∈ L ⇐⇒ λ(#(w))h(w)̺(#(w)) ∈ S

for some typeS which is equivalent to

fλ(e,
∏

j
(g j, e)(g̺, p̺))·

∏

i

fwi ((gλ, pλ)
∏
j<i

(gwj , e),
∏
j>i

(gwj , e)(g̺, p̺))·

f̺((gλ, pλ)
∏

j
(g j , e), e) ∈ π1S

by Lemma 3.35. We will show that for certain fixed prefixes/suffixes the value of the
function fσ is constant on all words. Thus we can then replacefσ by its only value and
get a morphism to semigroup ofT′.

Since e is the unit and hence the identity ofP<<<, and� is commutative, the
subsemigroupπ2(h(Σ·)) is commutative. Pick a fixed positioni, then

fwi ((gλ, pλ) ·
∏
j<i

(gwj , e),
∏
j>i

(gwj , e) · (g̺, p̺))

depends on clauses of the form:

(gλ, pλ) ·
∏

j<i

(gwj , e) · (gf , pf ) ·
∏

j>i

(gwj , e) · (g̺, p̺) ∈ S′

for a typeS′ of the semigroupπ2(Σ+) ∈ Z ⊡ P<<< and an element (gf , pf ) ∈ � ⊡ P<<<.
This is again by Lemma 3.35 equivalent to

gλ(e, pf · p̺)+
∑

j<i

gwj (pλ, pf · p̺)+ gf (pλ, p̺)+
∑

j>i

gwj (pλ · pf , p̺)+ g̺(pλ · pf , e) > 0.

Letσ< = gσ(pλ, pf ·p̺),σ> = gσ(pλ·pf , p̺), γ∗ = gλ(e, pf ·p̺)+gf (pλ, p̺)+g̺(pλ·pf , e)
then we can rewrite the expression above as:

∑

σ∈Σ

#σ(w<i)σ< +
∑

σ∈Σ

#σ(w>i)σ> + γ∗ > 0

If we look at all words with the same Parikh vector asw with at leastmp(#w)σ
lettersσ in the prefix andms(#w)σ lettersσ in the suffix, we can estimate this sum by
vmin, vmax if we check all possibilities for letters in the prefix and suffix, i.e.:

vmin =
∑

σ∈Σ

(#σ(w)−mp(#(w))σ−ms(#(w))σ) min{σ<, σ>}+mp(#w)σ ·σ<+ms(#w)σ ·σ>,

vmax =
∑

σ∈Σ

(#σ(w)−mp(#(w))σ−ms(#(w))σ) max{σ<, σ>}+mp(#w)σ ·σ<+ms(#w)σ ·σ>.
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Assume thatvmin + vmax > 0, then we we let

tp(#(w))σ = mp(#(w))σ + ⌈#(w)σ/2⌉

iff σ< > σ> and
tp(#(w))σ = mp(#(w))σ

otherwise. Also we let

ts(#(w))σ = ms(#(w))σ + ⌈#(w)σ/2⌉

iff σ≥ > σ< and
ts(#(w))σ = ms(#(w))σ

otherwise. In this way we assign about half of the letter to the prefix or suffix so the
sum of the assigned letters is maximal.

We process equivalently ifvmin + vmax ≤ 0. In this way we assign about half of the
letter to the prefix or suffix so the sum of the assigned letters is minimal.

No matter how the remaining letters betweentp and ts are chosen the sum will
always be positive (or non-positive) since (vmin + vmax)/2 > 0 (≤ 0). Since we
have finite many letterσ, there is a finite number offσ with a finite numbers of
clauses. These clauses depend on the constants (gf , pf ) of fσ like above and for
the finite set of clauses we can apply induction and fix about (1− 2−c) · n letters
wherec is the total number of clauses. Since‖y − mp(y) − ms(y)‖0 is unbounded,
also‖y− tp(y) − ts(y)‖0 ≈ 2−c · ‖y−mp −ms(y)‖0 is unbounded.

Hence if we choose any prefix/suffix extension (λ′, ̺′) of (h, λ, ̺), with #λ′ ≥ tp and
#̺′ ≥ ts, then the functionsfσ are constant in all evaluations that appear. Hence we
create a new morphism̃h that mapsσ to the value of this evaluation, also the functions
fλ and f̺ are constant in all evaluations sinceπ2(h(Σ+)) is commutative, hence we can
also definẽλ, ˜̺, that map a Parikh vector to the the only valuefλ or f̺ evaluates to.
The resulting typed morphism recognizes thenλ′−1L̺′−1, by Lemma 6.6. �

6.3 Application

In this section we use the reduction lemma, to show that certain (types of) languages
cannot be recognized by a M̂AJ2[<] formula. The essential task in the following
lemmas and theorems is to choose the suitable prefix/suffix extension that does not
reduce the complexity of the language recognized to much. Please recall the situation
of reduction Lemma 6.8, that we some freedom in choosing the prefix and suffix
extensions.

We start by showing that we cannot recognize nonabelian groups which is easy
since any prefix and suffix can be extended to a neutral word, which eases the use of
reduction lemma.

Lemma 6.9. MÂJ2[<] ⊆ Ab
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Sbb a b ab ba 0
a a ab ab a 0
b ba 0 b 0 0
ab a 0 ab 0 0
ba ba b b ba 0

Figure 6.6: The semigroup Sbb

Proof. Assume there is a M̂AJ2[<] formula that recognizes a language with a syntactic
semigroup that is divided by a non-Abelian group. Then thereis morphism into
wbpc(Z ⊡ P<<<) by Theorem 4.14 that recognizes a languageL with syntactic semigroup
that is a non-Abelian group by Lemma 6.7. Pick a non-uniform morphism of minimal
block depth that recognizesL. We can use Lemma 6.8 withmp = ms = e and for any
prefix/suffix extension we get a non-uniform morphism of smaller block depth that
still has a syntactic semigroup that is divided by a non-Abelian group, a contradiction,
since a formula of the depth 0 depends only on the input length, in our case the Parikh
vector of the word. �

We will now turn our attention to the varietyDA �G and show thatL(MÂJ2[<]) ⊆
L(DA �G). We use the fact that the varietyDA �G can be characterized by an
equation to show that every semigroup outside ofDA �G is divided by a fixed
semigroup.

This fixed semigroup is syntactic semigroup of the languageLbb = Σ
∗bbΣ∗ (see

Figure 6.6).

Theorem 6.10.S < DA �G = DA ∗G iff Sbb divides S .

Proof. If S < DA �G then there are idempotentse, f in a D-class such thate f is in
the sameD-class but not idempotent. Hence the is an elementsssuch thate f s= eand
an elementt such thatte f = f , it follows f s= te. We define a morphism{a, b}+ → S,
with a 7→ f sandb 7→ e f. Let L = h−1(h({a, b, ab, ba})).

If we let S′ = h(Σ+) thenS′ is a subsemigroup ofS. Also the elementse, f , e f, f s
are in the sameD-class. If we show that these are the only elements in thisD-class we
are done.

Let w = Σ∗bbΣ∗ thenh(w) ∈ S′(e f e f)S′. By computation one gets that

S′(e f e f)S′ = {(e f)i+1, e( f e)i, ( f e)i f , ( f e)i | i ≥ 1},

hencew < L. Let w = [b]a+(ba+)+[b], since h(a) = f s is idempotent and
h(ba) = e f f s= e is idempotent we geth(w) ∈ h(a) ∪ h(ab) ∪ h(ba) ∪ h(bab), and
sinceh(bab) = (e f f s)e f = ee f = e f = h(b), the result follows. �

Next we show thatLbb cannot be recognized by M̂AJ2[<] and hence by the previous
theoremL(MÂJ2[<]) is contained inL(DA �G).
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Lemma 6.11. Lbb < MÂJ2[<]

Proof. Assume there is a M̂AJ2[<] formula that recognizes the languageLbb. We let
mp(v) = ms(v) = (vb, 1) for a vectorv = (va, vb), this ensures that when we apply
Lemma 6.8 then (tp)a ≥ (tp)b and also (ts)a ≥ (tp)a. Hence we can choose a prefix of
the forma∗(ba)+ and a suffix of the forma∗(ab)+. But w ∈ L iff a∗(ba)+wa∗(ab)+ ⊆ L,
so we can recognizeLbb also in lower depth . �

Finally adding up the results of the section we get.

Theorem 6.12.MÂJ2[<] ⊆ DA �G ∩ Ab

Proof. This follows from the previous lemmas and the fact that MÂJ2[<] is a variety
(Theorem 5.9). �

The other language of special interest to prove containmentin certain varieties is
LB2. Bit LB2 is contained in M̂AJ2[<] hence M̂AJ2[<] can recognize languages outside
of DS. Within DS we get an exact characterization of the syntactic semigroups of
L(MÂJ2[<]) in the next section.

6.4 Lower Bound

For the lower bound we look again at the geometric intuition and observe that the class
of languages where we cannot apply reduction lemma, has a clear geometric picture.
Informally speaking these languages have only very limitedfreedom for the words of
the language, that is there a parallel half planes of constant distance that leave only
small corridors. This is shown for the languageLB2 in Figure 6.7.

a

b

(0,0)

Figure 6.7: Small corridor for LB2

With this intuition we define a variety that contains language of the form described
above.
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Definition 6.13 (Generalized Bicycle Variety). Let Bn be the languages for different
set of parenthesis of all Dyck words with depth at mostn. We let E be the variety
generated by allBn.

We give a construction that shows that we can recognize all iteratedE-transduction
of Ab

Theorem 6.14.L(MÂJ2[<]) ⊇ L((···((Ab �E))�E . . . )�E

Proof. If we need to show thatL(Ab) ⊆ L(MÂJ2[<]) and thatP1(E) ⊆ P1(MÂJ2[<]),
we can apply the Block Product Principle 3.40 and we are done.

For the first equation it suffices that we can computeL(�q) for everyq ∈ �+. Let
L = {w | |w| ≡ 0 modq}, then syn(L) = Zq. We can describe this language by

Maj x Maj y 〈x < y, . . . , x < y︸              ︷︷              ︸
q

,⊤, . . . ,⊤︸    ︷︷    ︸
q−2

〉.

Since M̂AJ2[<] is a variety all languages with syn(L) = �q can be described, hence
L(Ab) ⊆ L(MÂJ2[<]).

For the second equation it suffices to show that we can computeBn on every prefix,
i.e. given a wordwx, we need to check ifw<x ∈ Bk. This can be done by the formula

∃y ≤ x∧
(
¬Maj y 〈cb(y) ∨ y > x,¬(ca(y) ∨ y > x)〉

)
∧

k∨

j=1

(
¬Maj y 〈ca(y) ∨ y > x,¬(cb(y) ∨ y > x), ca(y) ∨ y > x,¬(cb(y) ∨ y > x),

x , y,⊥, . . . , x , y,⊥︸                     ︷︷                     ︸
k

〉
)

The first line checks that the number ofb’s in the prefix is never greater than the
number ofa’s and the second line checks that the number ofa’s is not greater than the
number ofb’s plusk. �

SinceSL ⊆ E we get as a corollary:

Corollary 6.15. L(MÂJ2[<]) ) DO ∩ Ab

Together with the upper bound we get characterizations of some subclasses of the
regular languages.

Corollary 6.16. L(MÂJ2[<]) ∩ L(DS) = DO ∩ Ab

Corollary 6.17. L(MÂJ2[<]) ∩ L(G) = Ab

The language where we have only limited choice in the prefix and suffix, are exactly
the languages where we cannot get a tight upper bound, and on the other hand we can
recognize all these languages by the previous theorem we conjecture.
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Conjecture 6.18.MÂJ2[<] = (···((Ab �E))�E . . . )�E

The problem with this class is that it is not very well known, so there no known
algebraic characterization in terms equations, which leaves us with the problem that
even if we could prove for given equations that they are always fulfilled, we do not
know which equations to test.

6.5 Summary

In this chapter we aimed to characterize the regular languages recognizable by
MÂJ2[<] formulas. To that goal we first assigned paths to words and half planes to
majority formulas of depth one. We then showed that a MÂJ2[<] formula cannot
differentiate between two words where all points of the path are always in the same
compartment. Since a finite number of half planes cannot separate all points (Lemma
6.1) we can always find a rectangle which is not intersected bythese half planes.

Since the geometric proof might seem intuitive yet not verifiable we proved
the same conclusions in algebraic terms. Here we needed non-uniform morphisms
(Definition 6.2) to simulate the geometry and obtain the reduction Lemma 6.8.

We could use the reduction Lemma 6.8 to reduce the block depthof the typed semi-
group recognizing a language by the cost of prepending/appending prefixes/suffixes
to the language. Having a lot of freedom in choosing the prefixes and suffixes for a
concrete language it was not difficult to detect whether it is recognizable by a MÂJ2[<]
formula. In order to use this result to prove certain varieties to be recognizable we
needed a concrete characterization of semigroups not in thevariety as in Theorem
6.10. We used this and show that we can recognize only languages inDA �G ∩ Ab.

Some languages though, like the bicycle, allow only for few prefixes and suffixes
to be appended, e.g. in the case of the bicycle we can only append (ab)∗ or (ab)∗a,
otherwise the remaining language becomes trivial. We conjectured that all languages
like the bicycle are recognizable by M̂AJ2[<]. We could show that languages with a
syntactic semigroup in (· · ·((Ab �E))�E . . . )�E ) DO ∩ Ab can be recognized by
MÂJ2[<], whereE is the variety spanned by the generalized bicycles (Definition 6.13).

6.6 Further Research

Of course it is not satisfying to achieve an upper and lower bound but not characterize
the exact variety. The question still open is whether we can extend the current proof
technique to obtain a better upper bound. One possibility isseparating the languageL
with a languageL1 with only few possible prefixes and suffixes, so it is, geometrically
speaking, bound in some small corridors, and a languageL2 where we do not need the
half spaces generating these small corridors. While performing induction onL2 is easy,
we still do not know how to handle the problem forL1 where we know the difference
in letters to be very restricted for every prefix and suffix.
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Another possible direction of research would be a characterization of the regular
languages for the case of an unbounded number of variables. However, any upper
bound below all regular languages or any lower bound aboveGsolv would already
touch the question if TC0 = NC1; actuallyLA5 < MAJ[<] implies FO[<,+]−uniform
TC0

, NC1. For unbounded variables the strong block product would be used and
hence the paths would not be in� × � but in some non-commutative group, so we
would need some “non-commutative” geometric intuition forthe proof to work.

Another interesting question is whether we can apply geometric intuition to other
classes of logic. The FO quantifiers for example yield half planes that have borders
parallel to the edges of the rectangle and with a constant distance. Hence all words with
a certain minimum length quality as prefixes and suffixes implying the equations of
DA. Modulo quantifiers are different since we cannot describe them by an inequality,
but still they might be feasible by this approach.
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Chapter 7
A5 not in
FO+MOD+MÂJ2[reg,arb-un]

In this chapter we will extend majority logic with two variables as far as we can
while proving that this class still does not contain all regular languages. Since
already (FO+MOD)2[<] contains all group languages with solvable syntactic groups,
they only differ in the group languages with syntactic semigroups having non-
solvable subgroups. Here we show that despite extending theclass of logic to
(FO+ MOD + MÂJ)2[reg, arb− un] we still cannot recognize a non-solvable group,
like A5.

We will first show the result without arbitrary unary predicates and then extend it
to the unary predicates.

7.1 A5 not in FO+MOD+MAJ 2[reg]

In this section we assume that we have a non-uniform morphismthat recognize a
language with a non-solvable syntactic semigroup and show step by step that with
the usage of a neutral letter we can eliminate the extra predicates and quantifiers. First
we will eliminate the succ predicate, then we show that the modulo quantifier can be
replaced by a modulo predicate, which we eliminate in the next step, and finally we
have a M̂AJ2[<] formula. Then we can use the reduction lemma of the previouschapter
and reduce the block depth.

We letSemiLin be the smallest variety containing (�,�p) for all numbersp > 2
and (�,�+). All semigroups in this variety divide direct products of� with a typeset
generated by a semilinear set.

In the next lemma we show that in the presents of a neutral letter we can modify a
(non-uniform) morphism such that it still recognizes the same language but does not
need the predicate groupPsucc at the lowest level anymore.

For a logic formula this means that we do not need the successor predicate in the

85
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innermost subformulas.

Lemma 7.1. Let (h, λ, ̺) be a non-uniform morphism toT ⊡ (SemiLin ⊡ P<<<,succ) that
recognizes a language L with a neutral letter e, then there isa non-uniform morphism
(h̃, λ̃, ˜̺) to T ⊡ (SemiLin ⊡ P<<<) that recognizes L.

Proof. The basic idea for this construction is to fill the neutral letter between any two
letters of the word, then positions reachable by one succ predicate can be computed
by the morphism. The following computation proves this. An alternative way to
see the result directly without heavy computation is that itsuffices that after this
modification the computations in the predicate groupPsucc, can be computed in the
submonoid (f<, 0)Psucc( f<, 0) which is Abelian. But since it is not straight-forward to
see that an Abelian predicate semigroup cannot computer thesucc predicate we give a
computational proof.

We define an endomorphism of (Σ, L) by σ 7→ eσe. Then by Lemma 6.3 there is
a nonuniform morphism (h′, λ′, ̺′) whereh′ : Σ+ → T ⊡ (SemiLin ⊡ P<<<,succ) with
h′(σ) = h(eσe), λ′(v) = λ(v+ (2‖v‖1+2)Ee)h(e), ̺′(v) = h(e)̺(v+ (2‖v‖1+2)Ee). Also
(h′, λ′, ̺′) still recognizesL sincee is a neutral letter ofL.

Let w ∈ Σ+ andh′(wi) = ( f ′wi
, g′wi

, p′). Thenw ∈ L ⇐⇒ λ′(#(w))h′(w)̺′(#(w)) ∈ T

which is equivalent to

f ′λ

(
e,
(∏

j
(g′wj

, p′)
)
(g′̺, p

′
̺)
)
·

∏

i

f ′wi

(
(g′λ, p

′
λ)
(∏

j<i
(g′wj

, p′)
)
,
(∏

j>i
(g′wj

, p′)
)
(g′̺, p

′
̺)
)
·

f ′̺

(
(g′λ, p

′
λ)
(∏

j
(g′wj

, p′)
)
, e
)
∈ π1T

by Lemma 3.35.
A computation shows thatp′λp′ = p′λ, p′p′ = p′ and p′p′̺ = p′̺ (see the

multiplication table in Figure 4.2). To reduce the number ofcases we examine only
words of length> 1:

f ′λ

(
e,
(
g′w1

p′̺ + (
∑
j>1

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

f ′w1

((
g′λ, p

′
λ

)
,
(
g′w2

p′̺ + (
∑
j>2

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

∏

1<i<n

f ′wi

((
g′λp′ + (

∑
j<i−1

p′λg
′
wj

p′) + p′λg
′
wi−1

, p′λ
)
,
(
g′wi+1

p′̺ + (
∑

j>i+1
p′g′wj

p′̺) + p′g′̺, p
′
̺

))
·

f ′wn

((
g′λp′ + (

∑
j<n−1

p′λg
′
wj

p′) + p′λg
′
wn−1

, p′λ
)
,
(
g′̺, p

′
̺

))
·

f ′̺

((
g′λp′ + (

∑
j<n

p′λg
′
wj

p′) + p′λg
′
wn
, p′λ
)
, e
)
∈ π1T
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We extend the range of the uniform sum by adding a term and subtract it in each
argument.

f ′λ

(
e,
(
g′w1

p′̺ − p′g′w1
p′̺ + (

∑
j

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

f ′w1

((
g′λ, p

′
λ

)
,
(
g′w2

p′̺ − p′g′w2
p′̺ + (

∑
j>1

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

∏

1<i<n

f ′wi

((
g′λp′ + (

∑
j<i

p′λg
′
wj

p′) − p′λg
′
wi−1p′ + p′λg

′
wi−1

, p′λ
)
,

(
g′wi+1

p′̺ − p′g′wi+1
p′̺ + (

∑
j>i

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

f ′wn

((
g′λp′ + (

∑
j<n

p′λg
′
wj

p′) − p′λg
′
wn−1

p′ + p′λg
′
wn−1

, p′λ
)
,
(
g′̺, p

′
̺

))
·

f ′̺

((
g′λp′ + (

∑
j

p′λg
′
wj

p′) − p′λg
′
wn

p′ + p′λg
′
wn
, p′λ
)
, e
)
∈ π1T

We used often terms of the formg′w1
p′̺ − p′g′w1

p′̺ to keep the sums uniform. Since
these functions are� valued the inverse element always exists. Also the sum is
independent of the letter sinceg′σ− p′g′σ = (gep+ pgσp+ pge)− p(gep+ pgσp+ pge) =
gep− pgep. Equivalent for a shift on the left we get:g′σp′−g′σ = (gep+ pgσp+ pge)p−
(gep+ pgσp+ pge) = pgep− pge. We letgl = ge− pge andgr = ge − gep.

The difference in the arguments forf ′w1
and f ′wn

from any otherf ′wi
is thatg′λ is not

shifted byp′ from the right in f ′w1
andg′̺ is not shifted byp′ from the left in f ′wn

. We
computeg′λ − g′λp = (gλp + pλge) − (gλp + pλge)p = pλge − pλgep = pλgr , and also
g′̺ − pg′̺ = (gep̺ + pg̺ ) − p(gep̺ + pg̺ ) = gl p̺.

Substituting these definitions yields, please notep′λpgr = p′λgr andgl pp′̺ = gl p′̺:

f ′λ

(
e,
(
gl p
′
̺ + (
∑
j

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

f ′w1

((
g′λp′ + p′λgr , p

′
λ

)
,
(
g′l p

′
̺ + (
∑
j>1

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

∏

1<i<n

f ′wi

((
g′λp′ + (

∑
j<i

p′λg
′
wj

p′) + p′λgr , p
′
λ

)
,
(
gl p
′
̺ + (
∑
j>i

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

f ′wn

((
g′λp′ + (

∑
j<n

p′λg
′
wj

p′) + p′λgr , p
′
λ

)
,
(
gl p
′
̺ + p′g′̺, p

′
̺

))
·

f ′̺

((
g′λp′ + (

∑
j

p′λg
′
wj

p′) + p′λgr , p
′
λ

)
, e
)
∈ π1T
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Now we can put everything under the product overi:

f ′λ

(
e,
(
gl p
′
̺ + (
∑
j

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

∏

i

f ′wi

((
g′λp′ + (

∑
j<i

p′λg
′
wj

p′) + p′λgr , p
′
λ

)
,
(
gl p
′
̺ + (
∑
j>i

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

f ′̺

((
g′λp′ + (

∑
j

p′λg
′
wj

p′) + p′λgr , p
′
λ

)
, e
)
∈ π1T

Since the sum is commutative:

(
f ′λ(gl p

′
̺, p

′)
)(

e,
(
(
∑
j

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

∏

i

(
(p′λgr , p

′) f ′wi
(gl p

′
̺, p

′)
)((

g′λp′ + (
∑
j<i

p′λg
′
wj

p′), p′λ
)
,
(
(
∑
j>i

p′g′wj
p′̺) + p′g′̺, p

′
̺

))
·

(
(p′λgr , p

′) f ′̺
)((

g′λp′ + (
∑
j

p′λg
′
wj

p′), p′λ
)
, e
)
∈ π1T

We letg′′σ = p′g′′σp′, g′′̺ = p′g′̺ andg′′λ = g′λp′:

(
f ′λ(gl p

′
̺, p

′)
)(

e,
(
(
∑
j

g′′j p′̺) + g′′̺ , p
′
̺

))
·

∏

i

(
(p′λgr , p

′) f ′wi
(gl p

′
̺, p

′)
)((

g′′λ + (
∑
j<i

p′λg
′′
wj

), p′λ
)
,
(
(
∑
j>i

g′′wj
p′̺) + g′̺, p

′
̺

))
·

(
(p′λgr , p

′) f ′̺
)((

g′′λ + (
∑
j

p′λg
′′
wj

), p′λ
)
, e
)
∈ π1T

(
f ′λ(gl p

′
̺, p

′)
)(

e,
(∏

j
(g′′j , e)

)
(g′′̺ , p

′
̺)
)
·

∏

i

(
(p′λgr , p

′) f ′wi
(gl p

′
̺, p

′)
)(

(g′′λ , p
′
λ)
(∏

j<i
(g′′wj

, e)
)
,
(∏

j>i
(g′′wj

, e)
)
(g′̺, p

′
̺)
)
·

(
(p′λgr , p

′) f ′̺
)((

(g′′λ , p
′
λ)
(∏

j
(g′′wj

, e)
)
, e
)
∈ π1T

So we can define

h̃(σ) =
(
(p′λgr , p

′) f ′wi
(gl p

′
̺, p

′), g′′σ, e
)
,

λ̃(v) =
(
f ′λ(v)(gl p′̺(v), p

′), g′′λ , p
′
λ

)
and ˜̺(v) =

(
(p′λgr , p′) f ′̺ , g

′′
̺ , p

′
̺

)
. Then (̃h, λ̃, ˜̺) recog-

nizesL and maps toT ⊡ (SemiLin ⊡ P<<<), since all semigroups where the one is the
only unit is inP<<<. �
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In logical terms the following lemma shows that we can modifya modulo quantifier
to a modulo predicate for the innermost subformulas if we recognize a language
where the syntactic semigroup is a perfect group. This is a very general idea that is
independent of the logic class and could be easily extended to other semigroup classes.

Lemma 7.2(Commutator lemma). LetT be a weakly closed class of typed semigroups
and(h, λ, ̺) be a non-uniform morphism to a semigroup inT ⊡ (SemiLin ⊡ P<<<) that
recognizes a language L where G is a subgroup of the syntacticsemigroup, then there
is a non-uniform morphism(h̃, λ̃, ˜̺) to a semigroup ofT ⊡ (SemiLin ⊡ P<<<), such
that |π2(h̃(Σ))| = 1, that recognizes a languagẽL with syn(L̃) = G′, where G′ is the
commutator group ofsyn(L).

Proof. We can assume thatL = η−1(e) by Lemma 6.7.
First we show that we can find wordw′g for everyg ∈ G such thatη(w′g) = g and

that all words have the same Parikh vector.
The subgroupG′ is generated by all commutators ofG, i.e. all elements

[a, b] = a−1b−1ab for a, b ∈ G. We define two words for every paira, b ∈ G.
Sinceη is surjective for everya ∈ G there is a wordwa with η(wa) = a. We let
ua,b = wa−1wb−1wawb andva,b = wa−1wawb−1wb, thenη(ua,b) = [a, b] and η(va,b) = e,
whereua,b andva,b have the same Parikh vector.

Unfortunately the set of commutators is notG′ but only spansG′. Since the
commutators spanG′ for eachg ∈ G′, we can compose a word from theua,b, for
a, b ∈ G, as above that maps tog, i.e. there are (a(g)

1 , b(g)
1 ), . . . , (a(g)

ng , b
(g)
ng ) with η(ūg) = g

whereūg = ua(g)
1 ,b(g)

1
. . .ua(g)

ng ,b
(g)
ng

. Also we have a word with equal Parikh vector that maps

to e: v̄g = va(g)
1 ,b(g)

1
. . . va(g)

ng ,b
(g)
ng

andη(v̄g) = e.

Now we letw′g = ūg
∏

g′∈G′\{g} v̄g′ , thenη(w′g) = g · e= g. Also the Parikh vector for
all w′g is the same since

#(w′g) = #(ug) +
∑

g′∈G′\{g}

#(vg′) =

= #(vg) +
∑

g′∈G′\{g}

#(vg′) =

=
∑

g′∈G′
#(vg′)

We now letΣ′ = G′ and define a morphismh′ : Σ′∗ → T ⊡ (SemiLin ⊡ P<<<) by
h′(σ) = h(w′σ). We also adopt the prefix and suffix functionsλ′(v) = λ(‖v‖1 · #(w′e)),
and̺′(v) = ̺(‖v‖1 ·#(w′e)). Then (h′, λ′, ̺′) recognizes all words that are products equal
to e, hence the syntactic monoid isG′. �

Finally on the logic side we show if we recognize a language with a neutral letter
that uses the a mod -predicate can be also recognized withoutthe mod -predicate
in the innermost subformulas.
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Lemma 7.3. Let h be a morphism toT ⊡ (SemiLin ⊡ P<<<) with |π2(h(Σ))| = 1,
that recognizes L with neutral letter then there is a non-uniform morphismh̃ to
T ⊡ (Z ⊡ P<<<), that recognizes the same language.

Proof. Let h map to (T,T,F) ⊡ ((�c,S emiLin) ⊡ P<), where (T,T,F) ∈ T,
(�c,S emiLin) ∈ SemiLin and P< ∈ P<<<. Let S be a type of the semigroup
(�c,S emiLin) andqS be the period of the semilinear set if there is an offset greater than
qS we choose a multiple ofqS. So for any vectorv ∈ �c, we know that{z | zqv∈ S} is
a union of 0,�−,�+. We choose aq =

∏
S qS.

We leth′(σ) = h(σeq−1), λ′(v) = λ(v+ (q− 1)‖v‖1Ee), ̺′(v) = ̺(v+ (q− 1)‖v‖1Ee).
Then (h′, λ′, ̺′) recognizes the same language.

Also a wordw is in L iff

f ′λ

(
e,
(∏

j
(g′wj

, e)
)
(g′̺, p

′
̺)
)
·

∏

i

f ′wi

(
(g′λ, p

′
λ)
(∏

j<i
(g′wj

, e)
)
,
(∏

j>i
(g′wj

, e)
)
(g′̺, p

′
̺)
)
·

f ′̺

(
(g′λ, p

′
λ)
(∏

j
(g′wj

, e)
)
, e
)
∈ π1T

by Lemma 3.35.
Fix a fixed positioni, then the value off ′wi

depends on clauses of the form:

g′λ(e, pf p′̺) +
( ∑

j<i
g′wj

(p′λ, pf p
′
̺)
)
+ gf (pλ, p̺)+

+
( ∑

j>i
g′wj

(p′λpf , p
′
̺)
)
+ g′̺(p

′
λpf , e) ∈ π1S

Since (g′wσ
, e) = (gwσ

, e)q = (qgwσ
, e) by the choice ofq, we need to check if

the sum above is greater, equal or less than 0. Hence the type�+,�−, 0 suffice
and since (�, {�+,�−, 0}) divides (�,�+)2 by Lemma 3.15, we have a morphism to
(T,T,F) ⊡ ((�,�+)2c

⊡ P<) ∈ T ⊡ (Z ⊡ P<<<). �

Theorem 7.4. The typed semigroups ofwbpc(SemiLin ⊡ P<<<,succ) cannot recognize
regular languages with non-solvable syntactic semigroups.

LA5 < L(wbpc(SemiLin ⊡ P<<<,succ))

Proof. Assume A5 ∈ wbpc(SemiLin ⊡ P<<<,succ), then there is a semigroup
(S,S,E) = (S′,S′,E′) ⊡ ((�c,S emiLin) ⊡ P<<<,succ) with (�c,S emiLin) ∈ SemiLin and
P<<<,succ ∈ P<<<,succ, that recognizesLA5 by a non-uniform morphism (h, λ, ̺). Choosing a
typed semigroup of minimal block depth we can assume (S′,S′,E′) does not recognize
LA5.

Now we can apply Lemma 7.1 and get a non-uniform morphism to (S′,S′,E′)′ ⊡
((�c,S emiLin) ⊡ P<) with P< ∈ P<<<. This enables us to apply commutator Lemma
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7.2 and get a non-uniform morphism to (S′,S′,E′)′ ⊡ ((�c,S emiLin) ⊡ P<) where
|π2(h(Σ))| = 1. Finally Lemma 7.3 modifies the morphism to map into
(S′,S′,E′)′ ⊡ ((�,�+)c

⊡ P<) for (�,�+)c ∈ Z. But then reduction Lemma 6.8
gives a morphism to (S′,S′,E′), a contradiction to the minimality of (S,S,E). �

7.2 Arbitrary Unary Predicates

Now we turn our attention to arbitrary unary predicates. Theproof idea is essentially
the same except that we need to extend the power of non-uniform morphism in such
a way that they can compute arbitrary unary predicates for free. But first we need to
define the algebraic structure we are working with.

We letN be the variety generated by all typed semigroups (�,S, 1). This variety
of typed semigroups recognizes exactly the variety generated by all unary languages.
We letParb−un be the variety generated by all typed semigroups in (U1, {0, 1}, {1}) ⊡ N.

Please note that although we allow direct product in algebrathis variety cannot
recognize binary predicates, that cannot be decomposed into Boolean combinations of
unary predicates. It is clear that (1, 1) is the only unit of these semigroups. Assume
L ⊆ Σ+⊗{x, y} is recognized by a semigroup (U1, {0, 1}, {1})⊡ (�,N, 1). Then there is a
typeS such thatwx=i,y= j ∈ L with i < j iff (1, i−1)(gx, nx)(1, j−i−1)(gy, ny)(1, n− j) ∈ S.
Which is by Lemma 3.35 the case iff gx(i−1, n−i−1+ny)+gy( j−2+nx, n− j−1) ∈ π1S.
Since the image ofgx, gy is finite, i.e. either 0 or 1∈ U1, and the constantsnx, ny used
are of a finite set, this is a Boolean combination of an unary predicate forx and an
unary predicate fory. HenceParb−un is a predicate group for the unary predicates.

We letP<<<,succ,arb−un= P<<< ∨ Psucc∨ Parb−un be the smallest variety that contains all
unary predicates as well as order and successor. Also we let

Warb−un = wbpc(SemiLin ⊡ P<<<,succ,arb−un),

W1
arb−un = SemiLin⊡P<<<,succ,arb−un andWd

arb−un = Wd−1
arb−un ⊡ (SemiLin⊡P<<<,succ,arb−un).

We show that we can add block with such a predicate group ofParb−un on the right
without increasing the block depth.

Lemma 7.5. Wd
arb−un is closed under blocking withParb−un from the right, i.e.

Wd
arb−un ⊡ Parb−un =Wd

arb−un.

Proof. Let P,P′ ∈ Parb−un, then

((T,T,F) ⊡ (SemiLin ⊡ P)) ⊡ P′ �

� (T,T,F) ⊡ (((SemiLin ⊡ P) ⊡ P′) × P′) �

� (T,T,F) ⊡ ((SemiLin ⊡ ((P ⊡ P′) × P′)) × P′) �

� (T,T,F) ⊡ ((SemiLin ⊡ ((P ⊡ P′) × P′)) × (SemiLin ⊡ P′)) �

� (T,T,F) ⊡ SemiLin2
⊡ ((P ⊡ P′) × P′2)
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e e e e e e e e e e e e e e e ee e ee⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ e ee e

Figure 7.1: A sample restriction

Also ((P ⊡ P′) × P′2) is a predicate semigroup hence inParb−un andSemiLin is
closed under direct products hence the claim follows. �

In the following we modify morphisms in a more extreme way, with the conse-
quence that they do not recognize the same language anymore.But still we will have
an infinite set of words, some in the language some outside, such that the modified
morphism can still check for this subset if a word belongs to the language. We call this
subset of words a restriction and formalize this in the following.

Definition 7.6 (Restriction). A restriction is a mapξ : �Σ → (Σ ∪ {⋆})+. We say that
a wordw is in the restriction if for everyi we havewi = ξ(#(w))i or ξ(#(w))i = ⋆. A
non-uniform morphism (h, λ, ̺) with restriction recognizes a languageL if for every
word w in the restriction we havew ∈ L ⇐⇒ λ(#(w))h(w)̺(#(w)) ∈ A. A restriction
is good ifξ maps toe, ⋆, wheree is a neutral letter ofL, and there is a constantc such
that for eachn0 there is an > n0 with #⋆(ξ(n)) ≥ c/n.

We consider only restrictions that map positions to the neutral letter. In this way a
word that is in the restriction belongs to the language iff the subword at the⋆-positions
belongs to the language.

Lemma 7.7.Letξ : �Σ → {⋆, 0, 1, . . . ,P}, where there are words of unbounded Parikh
vector such that⋆ appears at least‖v‖1/c times inξ(v), then for every number l∈ �,
there is a subword w∈ {⋆, 0, 1, . . . ,P}+, with #⋆(w) = l there are words of unbounded
Parikh vector where w appears at least‖v‖1/(c2l2(P + 1)cl) times non-overlapping in
ξ(v).

Proof. First we show that in a wordw are on average‖v‖1/(c2l2) non-overlapping
factor words with at leastl ⋆’ s.

Pick a word of lengthn = c2l2n′(P + 1)cl with at leastn/c ⋆’ s and divide it in
m = cln′(P + 1)cl non-overlapping factor words of lengthcl. Assume there are less
thank = n′(P + 1)cl words that contain at leastl stars. Then we can approximate the
number of⋆ from the top, since there are less thank words with l or more stars and
the remaining words have less thanl stars. So there are at most

k · cl +m · (l − 1) =

= (n′(P+ 1)cl − 1)(cl) + (cln′(P+ 1)cl)(l − 1) =

= cln′(P+ 1)cl − cl + cl2n′(P+ 1)cl − cln′(P+ 1)cl =

= cl2n′(P+ 1)cl − cl =

= n/c− cl
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⋆’ s in the word .
But then there are at most (P + 1)cl different words of lengthcl, hence of the

n′(P + 1)cl words with l ⋆’ s, there is a fixed word withl stars that appears at least
n′ times. �

Now we will use this lemma to find equal non-overlapping subwords, then we fix
all ⋆-positions outside these subwords toe, and replace each of these subwords by
a ⋆-position. In this way we construct a new morphism where, if you go back to
the old morphism, each position has the same number of letters in the prefix/suffix
independent of the choice of the letters at the⋆-positions.

Theorem 7.8. LA5 < L((FO+MOD +MÂJ)2[reg, arb− un])

Proof. We will do induction on the block depth. We will use a restriction in the
induction that restricts the words allowed in the input. Theidea is that we can restrict
the words allowed input in such a way that formulas of depth 1 with one free variable
depend only on letters in a window around the free variable and the position of the
variable. By choosing a suitable different morphism we can the replace these formulas
by unary predicates and get a formula of lower depth.

Assume there is a morphismh into (S,S,E) ∈ T′ ⊡ (SemiLin ⊡ P<<<,succ,arb−un),
that recognizesLA5 with the good restrictionξ. We will construct a morphismh′ into
T′ ⊡ Parb−un that recognizesL with a good restrictionξ′. Then by Lemma 7.5 we can
reduce the block depth by one.

We assume the truth value of every predicate to the left and tothe right of each
star in the restriction is the same. This is possible since there are only finitely many
predicates involved.

Now we will show that we can apply a similar trick as commutator Lemma 7.2.
We choosew′g as in commutator lemma, and letl = |w′g|. We use Lemma 7.7 to get
a wordw. We may assume thatw does not start nor end with a⋆. We letwg be the
wordw where the⋆’ sare replaced by the letters ofw′g. We letµ : (Σ ∪ {e′})+ → Σ+ by
h(g) = wg andh′(e′) = e. We define a restrictionξ′ such that the image ofµ is in the
restriction ofξ, due to Lemma 7.7 the restrictionξ′ is good.

e e⋆e⋆⋆e⋆

⋆ ⋆ ⋆ ⋆

e e⋆e e⋆ ⋆⋆e e⋆e e⋆⋆ e ee e⋆e⋆⋆e⋆

e e e e e e e e e e ee e e e e e

⋆e e e⋆⋆⋆⋆⋆e e

e e e e e e e e e e e

e e⋆e⋆⋆e⋆ e e⋆e⋆⋆e⋆

Figure 7.2: Commutator Lemma in the presents restrictions

Please note that morphism is not a typed morphism sinceπ2
2(h(g)) , π2

2(h(e′)),
but we can still consider this as a semigroup morphism. Also we know that
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π2
2(h(g)) = π2

2(h(e′))x, where x ∈ �. But for P<<<,succ we know that the unit is an
idempotent, and since we consider only words where the⋆ positions are filled by
letters ofΣ, i.e. not e′, for a fixed restriction we can replace the unary predicate
semigroup such that we can assumeπ2

2(h(g)) = π2
2(h(e′)).

Let ( f ′σ, g
′
σ, p

′) = h′(σ), then by Lemma 3.35, we adde′ as a neutral letter toL,
then we knoww ∈ L iff

∏

i

f ′wi

(∏
j<i

(g′wj
, p′),

∏
j>i

(g′wj
, p′)
)
∈ π1T

We want to show that the value off ′wi
depends only on the positioni. This is clear

since the prefix and suffix for a fixed positioni have, independent of the input, the
same Parikh vector and the unary predicates have the same value at every position
except were the lettere′ is, but this letter is fixed by the restriction. We need to show
that for any constant (g′f , p

′
f ) of f ′wi

the following product is always in the same typeS

independent of the wordw chosen.

∏
j<i

(g′wj
, p′) · (g′f , p

′
f ) ·
∏
j>i

(g′wj
, p′) ∈ S ⇐⇒

∑
j<i

g′wj
(p′ j−1, p′i− j−1p′f p′n− j) + g′f (p

′i−1, p′n−i) +
∑
j>i

g′wj
(p′i−1p′f p′ j−i−1, p′n− j) ∈ π1S

We what to show that the equation above depends only onj andwj, but not on the
wj′ for j′ , j. Assume we have two wordsw andw′ such thatwj = w′j, we will show
that the equations above evaluate to the same types.

Please note that the value of theg′wj
is independent of the input, and depends only

on the order ofi and j.
Now we have only the problem that we extended the alphabet by anew lettere′.

But the lettere′ appears exactly at some positions, so we can find a unary predicate
that marks these positions, and replacee′ by e. So on the algebraic side we need to
enlarge the typed semigroup by a unary predicate semigroup.But because of Lemma
7.5, this does not increase the block depth.

So now since the type of the product above depends only on the position, we
can interpretπ2(h′(Σ+)) as a unary predicate semigroup, also by the block structure
the is only one constant in the computation, hence we can replaceπ2(h′(Σ+)) by a
semigroup ofParb−un. As mentioned before applying Lemma 7.5 we get a morphism
to T′, completing the proof. �

7.3 Summary

First we extended the proof of the previous chapter to arbitrary commutative monoidal
quantifiers. We could have still provide a geometric proof ofthis which is intuitive,
but fails to be easily checkable. So this proof was done completely algebraically.
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In Lemma 7.1 we showed that we do not need a successor predicate (in the
innermost subformulas) if the language to be recognized hasa neutral letter. We
proceeded to show that for perfect groups we can replace the modulo quantifier by
a modulo predicate (in the innermost subformulas), see commutator Lemma 7.2).
And finally, in the presence of a neutral letter all modulo predicates (in the innermost
subformulas) could be removed from the formula. So if a perfect group is recognized
by a formula of (FO+ MOD + MÂJ)2[reg], then we can assume that the innermost
formulas have only the order predicate. This enabled us to use reduction Lemma 6.8
from the previous chapter to reduce the quantifier depth of the formula.

We concluded that a perfect group is not recognizable by a (FO+MOD+MÂJ)2[reg]
formula.

In the second part, we replaced the proof idea of a fixed prefix and suffix by a
restriction (Definition 7.6). Restrictions fix some of the inputs while they do not fix
others. Restrictions are quite often used in circuit theory(e.g. [FSS81]), where some of
the inputs of the circuit are fixed, but have hitherto not beendefined for logic formulas
or algebraic structures.

The restrictions allowed us to annihilate the power of the arbitrary unary predicates
by considering only positions of inputs such that all predicates always have the
same value. We could have still given a geometric interpretation of arbitrary unary
predicates, but the intuition would lead to false results.

So in Theorem 7.8, we again applied the commutator Lemma 7.2 adopted to
restrictions to show that no (FO+MOD+MÂJ)2[reg, arb− un] formula can recognize
a perfect group.

7.4 Further Research

Allowing for only two variables imposes a severe restriction on the possible formulas,
but we will argue that in the presence of prefix/suffix mappings or restrictions this is
rather a restriction problem of the uniformity.

The construction of prefix/suffix mappings as given in Definition 6.2 or a polyno-
mial version of a good restriction similar to Definition 7.6 would allow to overcome
this by padding words with polynomial manye’s. Thus a circuit of polynomial size for
any word is a circuit of linear size for a padded word for a sufficiently long padding.
On the side of logic this is less intuitive, but with arbitrary predicates for a formula for
a languageL there is a two variable formula forL padded with suffixes of polynomial
length.

In a more uniform version, i.e. allowing less predicates, this observation is not
true any more. So what is a minimal set of predicates that thisrelation is true? More
general given a set of quantifiersQ, what are the minimal sets of predicatesP such
thatL ∈ Q[P] iff a polynomial padded version ofL is inQ2[P]?

We know that any setP equipped with a tuple predicate suffices, but even among
the tuple predicate tuples there are various possibilitiesto consider. The question is
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therefore, can we extend the predicate set in this section such that it contains a tuple
predicate? Be warned that this would already separate non-uniform TC0 from NC1.

Another interesting question is iff the Lemmas 7.1 and 7.3 can be modified to
show a Crane Beach like result for M̂AJ2[reg], i.e. all languages with neutral letter in
MÂJ2[reg] are in M̂AJ2[<]. This might lead to a more straight-forward proof for the
results in this chapter.



Chapter 8
Conclusion

In this thesis we focused on the interplay of logic, algebra and circuit theory. While
their interaction was previously mainly studied for the case of regular languages we
extend the focus to non-regular languages and show that similar connections can be
proven. One of the big open questions in circuit theory is whether the classes TC0 and
NC1 coincide, which is equivalent to the question whetherLA5 ∈ TC0. In this thesis we
established some separation results for subclasses of TC0 that might finally result in a
separation of TC0 from NC1.

We started by giving an algebraic characterization for arbitrary logic and circuit
classes. Of course, any such characterization includes non-regular languages and
hence finite semigroups are not sufficient, whereas infinite semigroups are too cum-
bersome. The key ingredient to this characterization was the typed semigroup which
allowed for infinite semigroups, taming them by additional algebraic structures. The
theory of typed semigroups coincides with the theory of finite semigroups in the finite
case, additionally allowing for finer correspondences, andis a natural extension for the
infinite case.

The known connections between algebra, logic and circuits were extended in a
unifying proof. For this we needed to extend the block product to typed semigroups.
One must exercise caution when defining the block product foran infinite structure,
since the power of an infinite object is hard to handle. Using the block product
principle extended to the infinite case, and to unbounded variables in logic as well,
we gave a full picture of the connections between logic, circuits and algebra. It should
be noted that this proof covers all known connections in the finite case in a much more
general way.

Examining restrictions like two variables, the relations between two variable logic,
weakly blocked semigroups and linear size circuits, were also generalized to arbitrary
quantifiers and to arbitrary predicates using weakly blocked typed semigroups. In this
case, too, the known proofs for these connections were entirely covered by our proof.

Therefore this paper gave an algebraic characterization for any class of logic in
terms of typed semigroups. Having found this characterization we can also easily see

97
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when an algebraic characterization in terms of finite semigroups exists for a given
class of logic. On the algebraic side restrictions like a bounded number of variables or
a bounded quantifier depth can also be modeled.

Having found this algebraic characterization we apply it tothe case of majority
logic or threshold circuits. The superordinate goal is to separate TC0 from NC1. Since
a lot of effort was put into this by other researchers with limited success, e.g. TC0 is
still not separated from NP, it is not surprising that we do not accomplish a separation
of TC0 from NC1. So we restrict ourselves to the subclass of MAJ[<] logic with only
two variables.

Using the algebraic characterization via typed semigroup for this class of logic,
which is basically a direct product of the integers that can be blocked weakly, we
embed it into the Euclidean space. We then show by geometric means how to describe
which words can be separated by a majority formula of depth one. It transpires that
there is a correspondence between these formulas and hyperplanes in the vector space.
It is intuitively obvious that with a constant number of hyperplanes an arbitrarily
large cube cannot be split in such a way that all integer valued points are separated.
Translated back to our logic this gives us two words, having the same truth value for
all formulas of depth one.

Using induction we can give an upper bound on the power of MÂJ[<] formulas
with two variables. Using geometric intuition there seem tobe many possible exten-
sions, but in order to give clean proofs we will formalize them using algebra. Our
algebraic concept allows us to enlarge the allowed quantifier set and predicate set to
show that FO+ MOD + MÂJ[reg, arb− un] with two variables cannot recognize any
language with a non-solvable syntactic semigroup.

The techniques introduced here differ completely from previous attempts, and it
appears to be likely that they can be extended to bigger subclasses of TC0 or even
TC0. We touch on some possible ways of extending the given proofsin the end of the
chapters, and will now finalize this thesis by motivating some other open questions
that could lead to a separation of TC0 and NC1 or at least from NP.

Open Questions

We will discuss some possible direction of further researchhere, involving the open
question whether TC0 = NC1. Open questions that are more specific can be found at
the end of each chapter.

The major open question remains whether TC0 = NC1, but we can state some
intermediate steps on the way of showing such a separation result. Currently the largest
class logic is (FO+MOD+MÂJ)2[reg, arb− un] which we can show to not recognize
LA5.

Intermediate open questions are therefore: Can we extend our proof to addition, or
generally speaking is it true thatLA5 < L(MAJ2[reg,+])? Showing this would still be a
smaller step than showing thatLA5 < L(MAJ[<]), since the latter class of logic already
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contains addition. Since we do not know whether majority logic with three variables
is weaker than with four variables, an intermediate step could be examining whether
LA5 ∈ L(MAJ3[<]) (we give an algebraic characterization for this in Section 4.5). Still
unsolved but related is the question whetherL(MAJ3[<]) containsL(FO+MOD[<]).
To give a warning of problems that seem easy at first glance, weknow that showing
L(MAJ4[<]) ∩ REG, L(MAJ5[<]) ∩ REG would imply TC0 = NC1.

In a perfect world. Theorem 5.12 states that TC0 are the languages recognized
by a morphism to block products of the integers. In the special case thath(Σ+) is a
group, all problems become decomposed. Assume a group languageL is recognized
by a morphismh:

(Σ+, L,Σ) h // //

η
����

(S,S,E)

α
wwwwooooooooooo

(SL,SL,EL)

We assume here that (S,S,E) is the image ofh

The morphismα is a group morphism from the infinite group (S,S,E) to the finite
group (SL,SL,EL). Since (S,S,E) is a subgroup of a block product of integers it is
solvable, and by the morphismα it follows SL is also solvable, hence we can only
recognize group languages of solvable groups.

So what destroys this simple situation whenh(Σ+) is not a group? First of allα is
not a group morphism any more, so the preimage of an element ofSL and its inverse
are not a set of elements inS and their inverses, but could be unrelated. Since a
block product of the integers with themselves already contains the free semigroup, we
can pick nearly arbitrarily two elements in this free semigroup and map them to an
element ofSL and its inverse. Secondly and even more frustratingly we do not even
have a meaning of solvability for the semigroup (S,S,E). Some direct possibilities
come to mind, but all of them seem to fail.

If h recognizes a group language and (S,S,E) is a subsemigroup of group (T,T,F)
we still do not know whether there is a subgroup of (T,T,F) that recognizes the same
language. We know some cases where this is impossible, for example if one allows
all types on the block product of the integers, but this is more a construction of a
counter-example than an application to the case of majoritylanguages.

Even if this is not possible we could extend the alphabetΣ by Σ̄, and let
h(σ̄) = h(σ)−1. This construction however modifies the language being is recognized,
and yet for simple languages we have no control about the new language recognized
by the same type when not restricting the morphismh heavily.

As a last thought in this direction, it is not really necessary if we have the notion
of an “inverse”, it would suffice to have a “commutator” notion in our subsemigroups,
because we would have the notion of “solvable”. There are many ways to redefine
“commutators” for the blocked integers in such a way that they remain “solvable”,



100 Chapter 8. Conclusion

but again we need to extend the image ofh, which modifies the language in an
unforeseeable way.

Still this might be a viable way and another step towards a better understanding
of the low complexity classes. Another promising continuation would be applying
typed semigroups to other circuit classes and reproving known results like parity not
in AC0 algebraically to gain deeper insight, or tackling problemslike LAND in CC0 by
approaching it with the uniform circuit classes of our algebra.
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