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Zusammenfassung

Ein grofles Anwendungsgebiet fiir Maschinelle Lernverfahren ist die Biologie.
Hierbei reichen die Anwendungen von der Vorhersage von Genen iiber die
Vorhersage der Aktivitdt von Wirkstoffen bis hin zur Vorhersage der dreidi-
mensionalen Struktur eines Proteins. Im Rahmen dieser Dissertation wur-
den kernbasierte Lernverfahren entwickelt in den Bereichen der Proteomik
und der Immunomik. Alle Anwendungen haben hierbei das Ziel, bestimmte
Eigenschaften von Teilen von Proteinen, so genannten Peptiden, vorherzusa-
gen, welche in vielen biologischen Prozessen eine wichtige Rolle spielen.

Im ersten Teil der Dissertation stellen wir einen neuen Kern vor, der zusam-
men mit einer Support-Vektor-Maschine benutzt werden kann, um das chro-
matographische Verhalten von Peptiden in Umkehrphasen-Fliissigchromato-
graphie und starker Anionenaustauschchromatographie vorherzusagen. Der
Préadiktor fiir die Fliissigchromatographie wird daraufhin verwendet, um einen
p-Wert basierten Filter fiir Peptididentifikationen in der Proteomik zu en-
twickeln. Der Filter beruht auf der Idee, dass das vorhergesagte Reten-
tionsverhalten dhnlich zum gemessenen Verhalten sein sollte. Ist dies nicht
der Fall, so ist das ein Indiz dafiir, dass die identifizierte Peptidsequenz falsch
ist. Hierdurch konnen falsch identifizierte Peptide herausgefiltert werden.
Dies kann zum einen dazu verwendet werden, um die Qualitit der Identifika-
tionen zu verbessern. Zum anderen konnen mehr Identifikationen erhalten
werden, indem auch nicht ganz sichere Identifikationen betrachtet werden, da
der Filter viele falsche Identifikationen herausfiltern und somit einen guten
Qualitatsgrad garantieren kann.

Im darauffolgenden Abschnitt zeigen wir, dass dieses Verfahren auch fiir
zweidimensionale Trennverfahren verallgemeinert werden kann, was zu einem
weiteren Anstieg an Peptididentifikationen bei &hnlicher Qualitat fiihrt. Au-
Berdem zeigen wir am Beispiel des Organismus Sorangium cellulosum, dass
das Verfahren sehr gut fiir die Verbesserung der Messungen von ganzen Pro-
teomen geeignet ist. Fir diese Anwendung konnen wir zeigen, dass wir bei
ahnlicher Prazision ca. 25% mehr Spektren identifizieren konnen.

Der néchste Abschnitt zeigt, dass der neue Kern auch zur Vorhersage pro-
teotypischer Peptide geeignet ist. Dies sind Peptide, die mit massenspek-
trometriebasierten Verfahren gemessen werden konnen und Proteine ein-
deutig identifizieren. Zusatzlich kann die gelernte Diskriminante sehr gut
dafiir verwendet werden um festzustellen, welche Aminosduren an welchen
Positionen die Wahrscheinlichkeit eines Peptids erhoht proteotypisch zu sein.
Die Fahigkeit eines Peptids eine Immunantwort auszulosen hangt von seiner
Bindeaffinitat zu einem speziellen Rezeptor des Immunsystems ab, welcher
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MHC Rezeptor genannt wird. Es gibt verschiedene Varianten dieses Rezep-
tors, die in zwei Klassen eingeteilt werden konnen. Wir prasentieren einen
kernbasierter Ansatz um die Bindeaffinitat von Peptiden zu MHC Klasse 11
Rezeptoren prazise vorherzusagen. Auflerdem zeigen wir, wie Pradiktoren fir
bestimmte Varianten dieses Rezeptors gebaut werden konnen, obwohl fiir sie
keine experimentellen Daten verfiighar sind. Hierzu werden experimentelle
Daten von anderen Varianten des Rezeptors verwendet. Durch dieses Ver-
fahren konnen wir fiir gut zwei Drittel aller MHC Klasse II Rezeptoren
Pradiktoren erstellen im Gegensatz zu ca. 6%, fiir die vorher Pradiktoren
existierten.



Abstract

Biology is a large application area for machine learning techniques. Appli-
cations range from gene start prediction over prediction of drug activity to
the prediction of the three-dimensional structure of proteins. This thesis
deals with kernel-based machine learning in proteomics and immunomics ap-
plications. In all applications, we are interested in predicting properties of
peptides, which are parts of proteins. These peptides play an important role
in many biological systems.

In the first part, we introduce a new kernel which can be used together with
a support vector machine for predicting chromatographic separation of pep-
tides in reversed-phase liquid chromatography and strong anion exchange
solid-phase extraction. The predictor for reversed-phase liquid chromatog-
raphy can be used to build a p-value-based filter for identifications in pro-
teomics. The filter is based on the idea that if the measured and the predicted
behavior differ significantly, the identified sequence is probably wrong. In this
way, we can filter out false identifications. First, this is useful for increasing
the precision of identifications. Second, one can lower mass spectrometric
scoring thresholds and filter out false identifications to get a significant in-
crease in the number of correctly identified spectra at comparable precision.
We also show in the following section that we can extend our method to pre-
dict retention times in two-dimensional chromatographic separations, which
leads to a further increase in the number of correctly identified spectra at
quality comparable to the unfiltered case. The practical applicability is
demonstrated by applying the methods to a whole proteome measurement
of Sorangium cellulosum. We can show that we can get about 25% more
spectrum identifications at the same level of precision.

The next section shows that the new kernel can also be applied to the pre-
diction of proteotypic peptides. These are peptides which can be detected by
mass spectrometry-based analysis techniques and which uniquely identify a
protein. We furthermore show that the resulting discriminant is very useful
for discovering which amino acids influence the likelihood of a peptide to be
proteotypic.

The ability of a peptide to induce an immune response depends upon its bind-
ing affinity to a specialized receptor, called major histocompatibility complex
(MHC) molecule. There are different variants of this receptor that can be
classified into two classes. We introduce a kernel-based approach for predict-
ing binding affinity of peptides to MHC class IT molecules with high accuracy
and show how to build predictors for variants of this receptor, for which no
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experimental data exists, based on data for other variants. This enables us to
build predictors for about two thirds of all different MHC class II molecules
instead of about 6%, for which predictors had already been available.
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Chapter 1

Introduction

“Wissen und Erkennen sind die Freude und die Berechtigung der Menschheit.”
- Alexander von Humboldt, Kosmos, Stuttgart 1845, volume 1, page 36

Translated into English this means, “Knowledge and recognition are the joy
and entitlement of mankind”. When the famous naturalist and explorer pub-
lished these words in his five-volume work Kosmos, he probably did not think
of discovering biological knowledge by machine learning techniques. Never-
theless, he recognized that the wealth of knowledge of a society is highly
correlated with its prosperity. Nowadays, there is a large research field that
is just concerned with building learning machines. This field is mainly influ-
enced by statistics and optimization techniques.

The term artificial intelligence (Al) was first coined by John McCarthy in
1955 in the proposal for the Dartmouth Conference, which took place during
the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The
proposal contained these two sentences: “The study is to proceed on the
basis of the conjecture that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a machine can be
made to simulate it. An attempt will be made to find how to make machines
use language, form abstractions and concepts, solve kinds of problems now
reserved for humans, and improve themselves.” (J. McCarthy, M. L. Minsky,
N. Rochester, C.E. Shannon, August 31, 1955). A sub-field of Al is the field
of machine learning. Machine learning can be described by the last part of
the second sentence. The learning algorithm tries to solve a problem. A typ-
ical problem is a supervised two-class (binary) prediction problem. In this
setting, one has training data for which the classes are known and some extra
data, for which the classes are unknown. The problem is to label the extra
data with the correct class label. A common application is a spam filter. In
this application, the training data consists of mails, for which the label is
known (spam or no spam). The problem is to predict whether an incoming
mail is spam or not.

The two most prominent topics in machine learning in the last ten years have
been kernel-based learning machines ﬂﬂ] and graphical models ﬂﬁ}, Kernels
allow the transformation of data into a (mostly high-dimensional) feature
space and solve the learning problem efficiently in this space. The choice of
the kernel is in most applications the critical part because it directly relates
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to the feature space. If the problem is easily solvable in the feature space,
the kernel choice was good, otherwise one has to find a different kernel. If
there is no suitable kernel at hand, researchers usually encode their data by
certain features that they identified to be important for the problem. In the
spam filter example, one could think of counts for phrases that occur often
in spam mails like cash bonus, free installation, and lose weight as possible
features. In this way, the feature spaces are constructed explicitly. One can
then use standard methods to solve the problem. In many cases, it is not
clear which features are best and, therefore, the standard approach is to
define a set of reasonable features and perform a feature selection. In the
spam filter example, one could count all English phrases with less than four
words and remove all phrases which are not discriminative for one of the two
classes. For a given dataset, this method usually suffices to achieve good
performance, but the application of the same features to a slightly different
dataset might lead to bad results if important features for the new dataset
are missing. The kernel approach is usually more general, because it puts
some mild assumptions on the data and learns all important features from
the given data.

A large application area for machine learning techniques is biology M] One
of the earliest applications was the prediction of translation inititation sites
in E. coli by the perceptron algorithm M] In biology, it is very often the
case that one has a set of sequences that possess a certain property (e.g., the
sequence is an RNA sequence that acts as a translation initiation site or not).
These sequences are typically measured by time- and money-consuming ex-
periments. Since it is usually not feasible to measure all possible sequences,
a common method is to train a machine learning algorithm on the mea-
sured data and predict the property for all unseen sequences of interest m]
There are also settings, whose properties are unknown beforehand and so
the machine learning methods are applied to construct clusters, in which
the sequences inside the cluster are similar to each other and dissimilar to
sequences from other clusters @] Furthermore, there are intermediate sce-
narios where one knows properties for part of the data M]

In this thesis, we are mainly interested in the first setting. We have a set
of training samples with certain properties and want to build a learning
machine that is able to predict the property for further sequences very accu-
rately. During the whole thesis, the training samples are parts of proteins,
called peptides. The properties that we want to predict for the peptides de-
pend on the application area.

Proteomics deals with the analysis of the proteome, which consists of all
proteins. Mostly, the analysis is restricted to a certain cell type of a specific
organism at a particular time point. There exist various techniques to mea-
sure the proteins under these defined conditions. The usual workflow starts
with cutting the proteins into peptides by a digestion enzyme. Then, the
peptides are separated by chromatography. The method of choice for large-
scale analyses is usually based on tandem mass spectrometry @, EI] To be
able to measure the peptides by mass spectrometry, they have to be ionized.
The peptide ions are then directed into a mass spectrometer. This mass spec-



trometer measures the mass-to-charge ratio of the ions. Typically, the three
most abundant peptide ions are chosen for further fragmentation in a colli-
sion chamber and directed into a second mass spectrometer. The peptides
are then identified by the mass spectrum of the second mass spectrometer,
which ideally contains the mass to charge ratios of all possible fragments of
the peptide E] In database search methods, the measured spectra are com-
pared to theoretical spectra for all peptides contained in the database. The
highest scoring candidate is then delivered as identification of the spectrum.
Unfortunately, the spectrum quality is not always good enough to identify
the peptides correctly. Therefore, the identification routines usually define
a certain scoring threshold to decide which of the identifications are certain.
In these standard approaches, the chromatographic behavior of the peptide
is not used for identification, although it is routinely measured by the instru-
ments.

If high-performance liquid-chromatography is used for chromatographic sepa-
ration, the peptides elute at a certain point in time, the retention time. There
already exist methods for retention time prediction like the approaches by
Petritis et al. @, M] They trained artificial neural networks with a large
number of training samples (several thousands). Since retention behavior of
peptides differs for different separation columns, one would have to measure
this amount of training peptides before being able to train and use their pre-
dictor, whenever the conditions of the column changed. Other approaches,
like the linear model by Krokhin @], are trained for very specific column
types. Very recently, Klammer et al. B] introduced a method based on a
support vector machine (SVM). They used several features together with the
linear as well as the RBF kernel and stated that they needed at least 200
unique spectrum identifications to train their learning machine.

The first goal of this thesis was to develop an efficient learning machine for
learning chromatographic behavior of a peptide which does not need that
many training samples. Having a good predictor, one can compare the pre-
dicted behavior to the measured behavior and filter out identifications for
which observed and predicted behavior differ significantly. Therefore, one
can lower the threshold of the identification routine to get correct identifica-
tions below the original scoring threshold. Since the filter is able to filter out
many false identifications, one can achieve the same accuracy as standard
identification routines, while identifying more spectra.

Another important property of a peptide with respect to mass spectrometry
is its detectability or proteotypicity. It was recently observed that certain
peptides are detected more often in mass spectrometric experiments than
others @] If these peptides can be uniquely assigned to a protein they
are called proteotypic. Especially for targeted proteomics (e.g., in multiple
reaction monitoring experiments ﬂﬁ]), it is useful to know the proteotypic
peptides of a protein. Since a peptide has to be able to pass through all
different parts of the experimental setup to finally be detected, there can be
very different properties of the peptide that are responsible for not detecting
it. For example, there are peptides that do not ionize or fragment as well
as others. Tang et al. M] first introduced a method for predicting the de-
tectability of a peptide. Mallick et al. ﬂﬂ] and Lu et al. [70] also addressed
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this issue with slightly different methods. All of these methods were based
on several biochemical properties of peptides which were either selected man-
ually or by feature selection algorithms.

An additional important peptide property is its ability to induce an immune
response by binding to major histocompatibility complex (MHC) molecules.
MHC molecules present peptides at the cell surface. There are two differ-
ent classes of MHC molecules. MHC class I molecules present peptides that
are derived from proteins inside the cell, whereas MHC class II molecules
present peptides that originate from outside of the presenting cell. Peptides,
derived from proteins of pathogens like bacteria, viruses or fungi, which are
bound to MHC class I (MHCI) or MHC class IT (MHCII) molecules can be
recognized by specialized immune cells, called T cells. These cells can then
elicit an immune response. This response may lead to the death of the in-
fected cells and/or clearance of the pathogen from the human body. Since
not every peptide can bind to every MHC molecule, it is important to know
which peptides bind to which MHC molecule in order to design peptide-
based vaccines NE] These vaccines do not contain all of the proteins of the
pathogen. Instead, they contain a set of peptides. To facilitate the selection
of peptide candidates for a vaccine, it is important to know which peptides
bind to the particular MHC molecules. There have been many studies to
address the problem of peptide-MHCII binding affinit edlctlon Early
proaches were based on positional scoring matrices E ESI
but approaches with artificial neural networks ﬂa] Gibbs Samplers @ and
SVMs Iiﬂ @ with standard kernels were also presented. Especially
for MHCII, data from experimental binding studies is very scarce, which
complicates the problem of peptide-MHCII binding affinity prediction. Fur-
thermore, the binding core, which is the part of the peptide that mainly
affects binding affinity, is unknown for most of the experimental data. This
makes the prediction problem quite complicated. Most existing methods are
just applicable to a very small subset of known MHCII molecules.

Scientists like von Humboldt discovered biological knowledge by observa-
tions. Consequently, the traditional approach to discover which properties a
certain peptide possesses would be to measure them by wetlab experiments.
Though, in many applications we are just interested in the positive exam-
ples, e.g., whether the peptide is proteotypic. We might also be interested in
the minimal set of all possible peptides of a bacterial proteome that bind to
a predefined number of different MHCII molecules, because these peptides
could be the most promising candidates for an epitope-based vaccine ). If
one wanted to discover these peptides, one would have to measure all possible
peptides of the proteome with the traditional approach. Since many exper-
iments are usually needed, a more efficient approach is to build accurate
predictors for peptide properties. If experimental confirmation is required,
one can at least limit the number of experiments by predicting the most
promising peptide candidates for a particular property.

In this work, we introduce two new kernel functions for computational pro-
teomics. They are called the oligo-border kernel (OBK') and the paired oligo-
border kernel (POBK') and can be used together with an SVM for predicting



chromatographic separation of peptides as well as for predicting proteotypic
peptides by mass spectrometry-based experiments. The key idea of these
kernels is to modity the oligo kernel, introduced by Meinicke et al. @] for
sequences of the same length, to account for sequences of different lengths.
Using the POBK together with an SVM, we show that we can build very
accurate predictors for prediction of chromatographic separation in strong
anion exchange chromatography that are significantly better than all pre-
vious approaches. Furthermore, we show that the POBK together with v-
support vector regression NEI] can be used to predict retention times in
ion-pair reversed-phase liquid chromatography. These predictors are then
used to build a p-value-based filter for identified peptides, measured by this
chromatography and tandem mass spectrometry. In this way, we are able to
improve the precision of the identifications. Furthermore, the filter allows one
to lower mass spectrometric scoring thresholds to identify more spectra with
acceptable accuracy. We show the generality of our approach by applying the
same methods to a dataset measured by two-dimensional chromatographic
separation NE] Thus, we build accurate predictors for the first separation
dimension at pH 10.0 as well as for the second dimension at pH 2.1. The
usefulness of this approach is shown on a whole proteome measurement of
Sorangium cellulosum.

For predicting proteotypic peptides, we combine the POBK with an SVM.
This method is compared to other approaches, which were summarized in
M] In this evaluation the features of the most prominent methods for
proteotypic peptide prediction (Mallick et al. ﬂﬁ] and Lu et al.@]) were
used together with an SVM to compare performances on the data of Mallick
et al. [13]. We show that for this benchmark our method performs best,
although we do not depend on specific features like the other approaches.
Therefore, our method should also be applicable to experimental setups other
than those presented in ﬂﬁ] Furthermore, the kernel function allows the vi-
sualization of important amino acids for the classifier. These insights might
be used for in silico design of proteotypic peptides or to discover properties
of the involved biochemical processes.

For immunomics, we show how to transform the peptide-MHCII binding
affinity prediction problem into a well-known machine learning problem called
multiple instance learning. This transformation allows building predictors for
MHCII molecules for which there exists training data. A comparison to a
large benchmark study by Wang et al. @] shows that the performance of our
method is as good as state-of-the-art methods or even better. Furthermore,
we introduce a new kernel function for immunomics called the positionally-
weighted RBF kernel. This kernel can be used to incorporate knowledge from
MHCII molecules into the kernel to build predictors for about two thirds of
all known MHCII molecules. Before, predictors were just available for less
than 6% of MHCII molecules.

The thesis is structured into five chapters. After this introduction, the second
chapter introduces the theoretical as well as the biological background. Our
developments for kernel-based machine learning in proteomics are described
in the third chapter. The contributions of this work towards solving the
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peptide-MHCII binding affinity prediction problem is described in the fourth
chapter before the conclusion in the last chapter.



Chapter 2

Background

2.1 Machine Learning

2.1.1 General Idea

In many real-world applications, one is given labeled data and the goal is
to come up with predictions for additional unlabeled data, which originates
from the same source, based on general properties of the data. This is, for
example, the case for stock markets, spam filtering or gene start prediction.
More formally, one assumes that the data comes from the same but unknown
source. Therefore, the data is independent and identically distributed (iid).
One situation that is suitable for machine learning is when one has labeled
data {(z,y)|r € XAy € {—1,1}}, which is often referred to as training data,
and unlabeled data x € X with X being a topological space. The goal is to
assign the most probable label y to the unlabeled data based on the knowl-
edge gained from the training data. The optimal Bayes classifier which solves
this task can be formulated as ¢g*(r) = argmax, ., P(Y = y|X = z). Unfor-
tunately, the optimal Bayes classifier cannot be constructed in general since
the underlying distribution P of the data is generally unknown. This is why
one has to come up with the best possible approximation of the Bayes classi-
fier to find the best possible solution. To be more precise regarding the best
possible approximation, we have to consider some theoretical background in
the following sections.

The above task belongs to the classification problems and the special case
with just two different labels is often referred to as binary classification.
If there are more than two possible labels, the task is called multi-class
classification. The task is called regression if the domain of the label is
continuous (e.g., y € R).

2.1.2 Finding the best function

We already introduced the optimal Bayes classifier g*(7) = argmax, .y, P(Y =
y|X = ). Since we want to find the best approximation of the optimal pre-
dictor (both in classification and in regression tasks), we have to be able
to compare the performance of different prediction functions. Therefore, we
have to introduce the notion of risks. The risk of a function f : X — ) is the
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expected error on all data that comes from the same source as the training
data and is therefore iid. This means that

RU%=/C@%N@MH%M (2.1)

XxY
(c.t. NEI]) The risk contains the function

c: XxYx)Y—LR (2.2)

This function is called the loss function. A common choice in binary classi-
fication is the 0-1 loss which is defined as:

cuwjunz{l i /(@) 7y (2.3)

0 otherwise.

In general it is not clear what the best loss function for a particular problem
is like. Consider, for example, a biomedical multi-class classification problem
in which one has three classes. Each label represents a specific type of person.
Based on this label the person gets a prescription for a drug. Now consider
that we have three drugs dy, dy and d3. d; is very cheap but just helps people
from class one. d, is more expensive than d; and is able to cure people of
all classes, but for people from class three it leads to stronger side-effects.
ds is as expensive as ds and is just able to cure people from class two and
class three but leads to stronger side-effects in people from class two. If one
is mainly interested in curing people, the loss for ¢(z, 1, 2) should be smaller
than the loss ¢(z, 1, 3) since d3 would not cure a person from class one. But
even in this simple example one could come up with different loss functions
if, for example, the price is of greater importance.

It could be important in some prediction tasks to know the amount of cer-
tainty of the prediction and not just the predicted label. In binary classi-
fication, one could think of the confidence as y - f(z), where f(x) is now
a real-valued function (positive values of f(z) correspond to label +1 and
negative values of f(z) correspond to label —1). Higher values of y - f(x)
correspond to higher certainty of the prediction. This leads to the soft-margin
loss function of Bennett and Mangasarian |:

0 if f(x)-y>1

1— f(x) -y otherwise (2.4)

(o F2) = {
A very similar loss function, called the quadratic soft margin loss, is the
following;:

0 if f(x)-y>1

c(z,9, /() = { (1— f(x)-y)* otherwise (2:5)
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Figure 2.1: Different loss functions for binary classification: a) 0-1 loss,
b) soft-margin loss, and c) squared soft-margin loss

Plots of the different loss functions can be seen in Fig. EZIl For regression
problems, the most common loss functions are squared loss

c(z,y, f(2)) = (f(x) = y)*, (2.6)

e-insensitive loss

c(,y, f(x)) = max ([f(z) = y| = ¢,0), (2.7)

in which a deviation between y and f(x) smaller than ¢ is not penalized, and
the {;-loss

c(x,y, f(x)) = [f(x) =yl (2.8)

in which every deviation is penalized by its absolute value. Fig. shows
a plot of these three loss functions. Although we know the most common

3 3 3

2 2 2

loss
loss
loss

o
o

b) c)

-2 0 2 -2 0 2 -2 0 2
f) -y f) -y f) -y

a)

Figure 2.2: Different loss functions for regression: a) squared loss, b) e-
insensitive loss, and c) ly-loss

loss functions we cannot compute the risk given by formula (T since the
distribution P(z,y) is unknown. Nevertheless, we can calculate the risk on
the training data, which is assumed to be sampled iid from the distribution

n

Remp(f) = Zc(x7y7 f(l')) (29)

=1
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(c.f. NEI]) This risk is called the empirical risk and it can be used to find
a good predictor. The induction principle of empirical risk minimization
can be described as follows. Given a model class F, which contains several
functions, choose the function f € F, which minimizes the empirical risk

(cf. [d]):

femp = arg IfIél;_l Remp(f)- (210)

It is clear that empirical risk minimization does not guarantee good results.
If the class of models contains only very simple models, one cannot expect
the risk to be small. For example, given a model class that contains all linear
hyperplanes, one could obtain good results if the distribution P(X,Y) is very
simple (e.g., as shown in Fig. Z3)), but even for slightly more difficult data
(e.g., as shown in Fig. B4, the model class would be too simple to find a
good classifier. Furthermore, if the function class has very flexible functions,

Figure 2.3: Example for linearly separable data: The blue points are nega-
tive examples and the green points are positive examples. The red line shows one
possible separation between these two classes.

one could expect that a very specialized function could be chosen, i.e. one,
which performs very well on training data but does not perform well on un-
seen data. Therefore, the model class should not be too rich. This becomes
clear if one considers the following example. If the class contained all possible
functions then one could find a function which has zero empirical risk and
classifies every new data point, drawn from the same distribution, wrongly.
The classifier would have maximum risk and this is definitely not desirable.
The idea of restricting the model class is included in the structural risk min-
imization induction principle (cf. E]) In this principle one has an infinite
sequence of models { f1, fo, ...} which are sorted by their complexity, starting
with the model of lowest complexity. The complexity of the model can be
measured in different ways. If our hypothesis space consists, for example, of
the union of all axis-parallel rectangles in which one hypothesis is a subset
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Figure 2.4: Example for data that is not linearly separable: The blue points
are negative examples and the green points are positive examples.

of the whole hypothesis space, a straightforward measure of the complexity
of the model is the number of rectangles. In structural risk minimization
one tries to minimize the empirical risk as in empirical risk minimization but
additionally, the size of the model is penalized as follows:

Jor = arg min Renp(f) +pen(d, n), (2.11)
in which n is the number of training samples, d is a number reflecting the
complexity of the model (e.g., number of rectangles), and pen(d,n) is the
penalty function. Since it could be difficult to build an infinite sequence of
models there is another slightly different idea, which is called regularization.
In this induction principle, one chooses a very rich class of models and defines
a regularizer on F. In many applications this is simply the norm || f| of
f € F. The regularizer penalizes the complexity of the model. Finding the
best model reduces to finding the minimium of

_ - 2
freg = argl;%l]I}Remp(f) + AlLFI (2.12)

The parameter \ is called the regularization parameter. It can be used to
find the best trade-off between small model complexity and minimizing the
empirical risk. Finding a good value of A is not trivial. Therefore, one uses
validation schemes in which some parts of the training data are left out to
get a good estimate of the error on unseen data given a certain value of .
According to Bousquet et al. E], the most successful methods in machine
learning can be thought of as regularization methods.

2.1.3 Error Bounds

In the last section, we showed different principles that can be applied to find
a prediction function f. The interesting question is now, how good are these
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prediction functions? Therefore, we want to know whether we can bound
the error that we make by choosing f. We already introduced the risk of a
function. Let

R* =inf R 2.13

inf R(g), (2.13)
in which G contains all possible measurable functions. The quality of f can
be described as:

R(f) = B" = [R(f") = R'] + [R(f) — R(f")]. (2.14)

f* is the optimal function of the model class F. The right-hand side of (214
decomposes into an approximation error (first term) and an estimation error
(second term). Since one normally does not know anything about the best
target function, one cannot directly bound the approximation error without
making assumptions (e.g., about the value of R*). Therefore, much of the
literature deals with bounds on the estimation error, for which one does not
need these kinds of assumptions.

2.1.4 Learning Machines
Perceptron Algorithm

One of the oldest and simplest learning machines is the perceptron algorithm
introduced by Rosenblatt M} in 1958. The goal of this algorithm is to find
a separating hyperplane between the data points which come from two dif-
ferent classes. Therefore, it tries to adjust the hyperplane according to the
misclassified points. Let w be the normal vector and b the offset of the hyper-
plane. A point z with label y € {—1,1} is misclassified if y (< w,x > + b)
is negative. Let w; and b, be the parameters of the hyperplane after step
k. Let {(z1,v1), (2,92), ..., (Tn,yn)} be the training samples. The algorithm
proceeds as follows:
last_mistake « O
k — 1
1 — 1
initialize w with random values
initialize b with random value
while (k - last_mistake - 1) < n
IF y; ((wy—1, ;) + bp1) < O
THEN
Wy — Wg—1 + PYiT;
by < br—1 + py;
last_mistake « k
k— Lk + 1
1 — 1+ 1
IF 7 > n
THEN
1 — 1
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The learning rate of the algorithm, p, has to be greater than zero. It
was shown that the algorithm converges if the data is linearly separable
by a non-zero margin @] The motivation behind the update procedure
is that one tries to minimize the distance between the misclassified points
and the decision boundary. Therefore, the update shifts the hyperplane to-
wards the misclassified data point. If training sample z; is misclassified by
hyperplane k£ — 1 (y; = 1 and (< wy_1,2; > +bp1) < 0 or y; = —1 and
(< wg—1,2; > +bg_1) > 0), y; (< wr_1,x; > +bg_1) is smaller than zero. Let

L(wk_l, bk—l) = —VY; (< Wg—1,T; > +bk_1) . (215)

By minimizing L with respect to wy_; and by_q, the distance between x;
and the actual hyperplane is minimized. This is why the algorithm descends
along the gradient of L to find the best solution. The gradients with respect
to the parameters of the hyperplane are:

0
awk_lL(wk_l, bk—l) = —Y;T; (216)
and
iL( br_1) = —yi (2.17)
by Wk—1,0k-1) = —Yi- .

It is clear that the algorithm will not converge if the data is not linearly
separable. Furthermore, the algorithm stops if a separating hyperplane is
found. This means that if there are many possible hyperplanes that can
separate the data, the values of w and b are influenced by the order of the
training samples, because the update takes place after a misclassification.
Additionally, the initial values of w and b influence the final hyperplane.
Fig. a) shows the data that is generated by 400 random draws from the
normal distribution leading to 200 two-dimensional samples. The data was
split into two classes by adding seven to the second component of half of
the data points. Fig. b) shows 20 separating hyperplanes, which were
found by implementing the above pseudo-code in Matlab and executing the
function 20 times. Fig. c¢) shows the whole region which can be covered
by separating hyperplanes. Since we know how we generated the data, we
also know the best possible function f* out of the function class F that
contains all lines. In this example, f* is a line which is parallel to the first
axis and has the value 3.5 in the second dimension. To show that not every
line which separates the two classes is equally good, we drew 2000 additional
samples from the same distributions and plotted them, the 20 discriminants
of Fig. EZ0lb), as well as the optimal separating line (thick and red) in Fig.
It can be seen that the worst separating lines are the ones which are very
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Figure 2.5: Visualization of Rosenblatt’s perceptron algorithm: This plot
shows 200 data points drawn from the mormal distribution. One hundred of these
points are shifted by seven in the second dimension (crosses): a) shows the data
without any separating lines; b) additionally shows 20 separating lines learned on
the data using Rosenblatt’s Perceptron Algorithm; and c) additionally colors the
region in which the lines can be found by Rosenblatt’s Perceptron Algorithm.

close to the training samples. Furthermore, the best separating line (red) has
maximal margin with respect to the nearest samples. This motivates why
large margin hyperplane classifiers generalize well to unseen data. We will
look at these kinds of learning machines in more detail in the next subsection.

Large Margin Classifiers

Let 'H be a dot product space. One can define a hyperplane by the normal
vector and the offset of the hyperplane. The set of points that lie on the hy-
perplane can be calculated by projecting the points onto the normal vector w
and adding the offset b. If the result is zero, the point lies on the hyperplane.
The set of points that lie on the hyperplane is therefore:

{r e H| < w,x > +b=0}. (2.18)

Multiplying the normal vector and the offset by certain factors can yield the
same set of points which lie on the corresponding hyperplanes. Therefore,
Scholkopf and Smola ﬂ_’l_l__ll} define the hyperplane with respect to some data
points x1, xs, ..., x,, € H. This hyperplane is called the canonical hyperplane:

Definition 2.1 (Canonical Hyperplane). The parameters w € H and b € R
describe a Canonical Hyperplane with respect to the data x1, o, ...,x, € H,
if the point closest to the hyperplane has distance 1/||w||, which means that

min | < w,z; > +b| = 1. (2.19)

i=1,2,...,n

We already saw in the last section, that large margin separations seem
to be more robust than other separating hyperplanes. To construct a large
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Figure 2.6: Visualization of test error of Rosenblatt’s perceptron algo-
rithm: This plot shows a binary classification problem. The thin lines are 20
separating lines determined by Rosenblatt’s Perceptron Algorithm based on 200
samples. In addition to these 200 samples, the plot contains 2000 extra samples
drawn from the same distributions. The thick line corresponds to the optimal sep-
aration between the two classes.

margin classifier one has to find the canonical hyperplane with maximal mar-
gin. Since the margin of the canonical hyperplane is 1/|lw]|, the canonical
hyperplane with maximal margin is the one with minimal ||w]||. This can be
cast into a standard optimization problem:

i 2.20
werg}lgéRleh (2.20)

subject to y; ({(x;, w) +b) > 1Vi=1,2,...n.

The constraints assure that the w with minimal ||w]|| is a canonical hyper-
plane. This optimization problem yields the same solution as

. 1 2
pin - allwll®, (2.21)

subject to y; ((x;,w) +b) > 1Vi=1,2,...n.
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Since the optimization problem (ZII) has some nicer properties, it is used
in the following. This optimization problem can be solved if the data is
separable. To transform the primal problem into a dual problem we can
build the Lagrangian:

Lw,b,0) = 5wl - > i (s )+ ) 1) (2.22)

To get the solution of the dual problem, the Lagrangian L has to be maxi-
mized with respect to a and minimized with respect to w and b (c.f, @])
This means that we are trying to find a saddle point at which the derivatives
of L with respect to the primal variables must vanish:

2L(w,b, a) =0,

0
30 —L(w, b, ) = 0. (2.23)

ow

Therefore,

a n n
%L(w,b,a):0<:>—;ai-yi-1:0<:>;ai-yi-1:0 (2.24)

and

a n n
%L(w, bya) =0 w — ; oy, =0 w = ;aiyixi. (2.25)

The z;, for which «; > 0 are called support vectors because they lie directly
at the boundary of the margin of the canonical hyperplane. This is shown in
Fig. B The classifier is usually called a support vector machine (SVM). It
can be seen that the support vectors determine the hyperplane.

To arrive at the dual problem, one can write equation (Z2Z2) in the following
way:

1 n n n
§<w7 w) — Z; iy (T, w) — b; Y + Z; Q. (2.26)
Substitution of [Z24) and [Z27) into [Z20) yields

% Z aiajyiyj<xi, .ij> — Z aiajyiyj<xi, .ij> — b -0 + 2 a5 (227)

ig=1 ij=1 =1
n 1 n
= Z Q; — 5 Z Oéiajyiyj<$i,$j> (2-28)
i=1 ij=1

The dual form of the optimization problem (EZZIJ) is, therefore,
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Figure 2.7: Separating hyperplane for linearly separable data: This plot
shows a two-class problem and a separating hyperplane. The support vectors are
marked by additional circles.

max Y. o; — 3 > ooy, ), (2.29)
a€lR i ij=1
subject to 0 < «o; Vi =1,2,...,n and

Z a;y; = 0.

i=1

It can be shown that the duality gap between the primal and the dual is zero
and, therefore, a solution to the dual problem also solves the primal problem.
In real-world examples there are often samples, which are not linearly sep-
arable. Furthermore, perfect separation is not always the best choice if, for
example, one of the points is an extreme outlier. Therefore, Cortes and Vap-
nik ] introduced so-called slack-variables & > 0. These variables shift
the points to the correct side of the canonical hyperplane, which is shown
in Fig. 8 The classifiers that use slack-variables are called soft margin
classifiers. Since not every point should be allowed to have a slack variable
greater than 0, the value of the slack-variables has to be penalized in the
minimization problem. This means that the minimization problem uses the
reqularization induction principle. There exist several different approaches
in the literature to weight the slack-variables. The two most prominent ones
are the 1-norm soft margin classifier and 2-norm soft margin classifier. We
show the primal and dual problem for the 1-norm soft margin classifier. The
steps for the 2-norm soft margin classifier are similar:
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Figure 2.8: Separating hyperplane for data that is not linearly separable:
This plot shows a two-class problem as well as a separating hyperplane. The support
vectors are marked by extra circles and the penalty of the &; is indicated by the red
lines.

i L2+ OS¢,
i OB o
subject to y; ((z;,w) +b) > 1—-& Vi=1,2,...,n.

The Lagrangian of (Z30) is

L(w,b,&,a,8) =

Sl w) 40D 6~ Pl () )+ 6 1] - 3 4G (231)
i=1 =1 i=1

As in the separable case, we try to find a saddle point at which the derivatives
of L with respect to the primal variables must vanish:

a n n
%L(w,b,é,a,ﬂ):0<:>—;ai-yi-1:0<:>;ai-yi-1:0, (2.32)

a n n
%L(@U, b, a,) =0 w— Zaiyixi =0eow= Z oy (2.33)

i=1 i=1
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and

0
9%

Substitution of (Z32) and [Z33)) into €31 yields

L(w,b,¢,a,0) =0 C —a; — ; = 0. (2.34)

5 2 iy (T, ) - Z oYy (T, ) + Zai + CZ@
i=1 i=1

i,j=1 ij=1
- Z & — Z Bi&i
i=1 i=1
= Yai—3 > gy, ) + Z (C—a; = Bi) & (2.35)
i=1 ig=1 Py

Using equation (234]) we obtain

n 1 n
ZOKZ' — 5 Z ozl-ajyiyj@i, .73j>. (236)
i=1

,j=1

Since §; > 0 Vi = 1,2, ....,n the dual form of the optimization problem is

max » . a; — % > ooy (T, ), (2.37)
a€lR i ij=1
subject to 0 < ; < C'Vi=1,2,...,n and
>y = 0.
i=1

From (227) and ([Z33)) the final prediction function for the separable as well
as the non-separable case follows:

i=1

f(z) = sign (Z a;{x, x;) + b) . (2.38)

Up to now, we only considered binary classification. If there are more than
two different possible labels, one has to extend the introduced approaches.
Basically, there are three different ways of dealing with multi-class prediction
problems. The first possibility is to train a classifier for every class, which
discriminates the class from all other classes (one versus the rest). The class
to which the classifier with maximal prediction value belongs determines the
predicted class.
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The second possibility is to train single classifiers for every pair of classes
(pairwise classification). The final prediction is the class that is predicted
the largest number of times.

The third possibility is to formulate the problem as a single optimization
problem. This was shown in NEI] but there are also very recent approaches
in which the classifier tries to learn a large margin between the correct class
and the other classes M]

Support Vector Regression

To generalize support vector classification of the large margin classifiers to a
regression problem, we have to restate one of the key observations from the
last subsection. The weight vector ||w|| can be described by a linear combina-
tion of a subset of the training points (support vectors with «; > 0). To get
a similarly sparse solution for regression, Cortes and Vapnik ﬂﬂ] introduced
an e-insensitive band around the regression function where a deviation is not
penalized. To allow for bigger deviations, the authors introduced two kinds
of slack-variables {; € R and & € IR. The & allow predictions which are
larger than y; 4+ ¢ and the & allow predictions smaller than y; — . This can
be seen in Fig The e-support vector regression optimization problem is

S

Figure 2.9: e-SVR: This picture shows the e-insensitive tube around the regres-
sion line. Mistakes inside the tube are not penalized. All points on and outside the
tube are called support vectors in this case.
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defined as:

weH bER,EER™ &F ER™
subject to  ({(wj,w) +b) —y; <e+& Vi=1,2,...n
yi — ((z,w) +0) <e+&Vi=1,2,...,n
§& >0
& >0,

min Ljw||? +c§ &+€),  (239)

There also exists a dual formulation of the problem. Since in many appli-
cations one does not know the value of € beforehand, there exists a slightly
different formulation in which the optimal ¢ is identified during the optimiza-
tion. It is called v-support vector regression (r-SVR).

ot g A0+ C (24 6 460)) 240
subject to (zjw)+b)—y <e+&Vi=1,2,..n
yi — ((zw) +0) <e+ & Vi=1,2,...,n
& >0
&> 0.

The Lagrangian of this problem is

n

|2 +0ue+c§ (6+E) — e = X & +miE)  (241)

S (G s — () —b+e) — 3 (€5 — (w,wi) +b—ys + ).
=1

=1

Setting the derivatives equal to zero with respect to the primal variables and
substituting into the Lagrangian leads to the dual optimization problem:

n
1
ae%ﬁf{emi; (i —af)yi — 5 > (i —af) (a5 — ) (wy, ),

s.t. S (a;—af) =0,

f(z) = Z (o — af) (x5, 2) +b. (2.42)
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2.1.5 Kernels

So far we have only considered linear relationships in the data. The Per-
ceptron Algorithm and the large margin classifiers were introduced to find
a linear separation between classes and the SVR methods could also learn
linear functions only. In many real-world datasets there are nonlinear rela-
tionships between the different entries of the input vector. A method that is
not able to detect these similarities is expected to perform badly on this kind
of data. Therefore, there exist nonlinear extensions for many linear learning
approaches like SVMs, multiple linear regression, PCA, and Gaussian pro-
cesses, to name just a few. Usually, this is done by mapping the data into a
(mostly higher dimensional) feature space. The linear relationships in these
feature spaces then correspond to more complex relationships in input space.
A simple example is shown in Fig. EET0L The circle in input space corresponds
to a line in the feature space which, in this example, is able to separate the
two classes visualized by blue crosses and red stars.

The computation of the mapping into the potentially infinite-dimensional
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Figure 2.10: Mapping into feature space: a) This plot shows 100 data points
drawn from the mormal distribution. All points inside the unit circle are posi-
tive (crosses) and the points outside are negative (stars); b) shows the same data

mapped by the function ¢ : ¢(%}) = (z%)
B (G 1).

T3

feature spaces can be quite time-consuming. Therefore, it is desirable to
circumvent the explicit computation of the mapping. This is possible for all
algorithms for which the data is repsesented by inner products (e.g., (x;, x;)).
The inner product of the mapped data is replaced by the so-called kernel
function k(x;,x;) = (¢(z;), ¢(z;)). Usually the kernel computation needs
time proportional to the size of the data in input space. This is why one can
tackle even infinite-dimensional feature spaces by using this so-called kernel
trick. We will look at certain properties of kernels in more detail and then
introduce specific kernels that are applicable for a huge variety of learning
problems.
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Properties of Kernels

The kernel function of two input sequences x;, z; has to be equal to the inner
product of the mapped vectors, which means that k(z;, z;) = (¢(z;), ¢(x;)).
Let G be the Gram matrix with G;; = k(z;,2;) = (é(x;), ¢(x;)). Shawe-
Taylor and Christianini M] showed that every kernel function which fulfills
this property is positive semidefinite, since for any vector v,

n n

v Gu = Z vv;Gyj = Z v (d(13), P(;))

ij=1 ij=1
= _vip(r:), Y vidla;) =1 vid(x)|* > 0.
i=1 j=1 i=1

This directly implies that a function f with matrix M;; = f(x;, z;) which is
not positive semidefinite cannot correspond to an inner product of feature
vectors. This can be proven by contradiction using the above result. Positive
semidefiniteness of the Gram matrix is one of the main properties a kernel has
to have. For many kernels (e.g., the polynomial kernel) a map can be directly
given such that k(z;, z;) = (¢(z;), ¢(x;)). Nevertheless, there are numerous
kernels for which no suitable feature map is known. In these cases, it is
crucial to show that the corresponding Gram matrix is positive semidefinite,
because otherwise the kernel could not correspond to any inner product in a
feature space and, therefore, all learning algorithms would not be applicable.
This is why we show positive semidefiniteness of our new kernel functions in
the later chapters. It can be shown (c.f., ﬂl;l__ll, Iﬂ}) that for every positive
semidefinite kernel k there exists a feature mapping ¢ into a feature space.

Reproducing Kernel Hilbert Spaces

In the last section we stated that there exists a map into a feature space
for every positive semidefinite kernel. Furthermore, one can define a Hilbert

space for these kernels which is called the reproducing kernel Hilbert space
(RKHS) [111l:

Definition 2.2 (Reproducing Kernel Hilbert Space). Let X' be a nonempty
set and H a Hilbert space of functions f : X — IR. 'H is called a reproducing
kernel Hilbert space endowed with the dot product (-,-) and the norm || f| =
S, f) if there exists a function k : X x X — IR with the following properties:

1. k has the reproducing property

which means in particular that

(k(x,), k(x',-)) = k(x,2). (2.44)

2. k spans H, i.e. H = span{k(z, )|z € X}. X denotes the completion
of the set X.
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One might argue that SVMs together with a kernel function which maps into
a possibly high-dimensional feature space might not allow representation
of the optimal hyperplane by a linear combination of the support vectors.
Fortunately, Scholkopf et al. ] showed that this is possible for all positive
semidefinite real-valued kernels. More generally they showed @]

Theorem 2.1 (Nonparametric Representer Theorem). Given a nonempty
set X, a positive semidefinite real-valued kernel k on X X X, a training sample
(x1,11), (T2, Y2), ooy (Tn, Yn) € X XIR, a strictly monotonically increasing real-
valued funtion g on [0,00[, an arbitrary cost function ¢ : (X x R*)" —
IR U {0}, and a class of functions

i=1

Here, ||-|| is the norm in the RKHS Hj, associated with k, i.e., for any z; € X,
pi€ R (i €N),

2 00

i,j=1

Zﬁz‘k(', Zz)

Then any f € F minimizing the reqularized risk functional

¢ (1,1, f(21)) oy (@ Y, f(20))) + g (LFID (2.47)

admits a representation of the form
FC) =" aik(-, ). (2.48)
i=1

This theorem directly shows that large margin classifiers and SVR can be
extended by using a kernel function. The prediction function of large margin
classifiers was given in (Z38). Replacing the inner product in input space
with the inner product in feature space and substituting the kernel function
into it, we arrive at

n

)= sign (£ antote).ofo) +0)

i=1

— sien (é ak(e, 7:) + b) . (2.49)

Since the representer theorem tells us that the solution to the regularized
risk functional admits a representation of the so-called support vector expan-
sion, it is guaranteed that the optimal solution of large margin classifiers in
feature space and, therefore, the prediction function exists, given the kernel
is positive semidefinite. For SVR the argument is analogous.
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Kernels for Real-Valued Data and Strings

In the literature there exist kernels for various different input sequences like
graphs, strings, real-valued data, sets, and trees. Throughout this thesis, we
consider a string s = {(s1, s2, ..., Sn)|; € A} as a sequence of letters from a
given alphabet A. Since this work focuses on the sequence-based prediction
problems, we will just go into detail for kernels on strings. A more compre-
hensive overview of all different kinds of kernels can be found in ﬂﬂ] In
many learning problems one has real-valued data. For example, this could be
a number of different finance values if one wants to predict financial liability.
There are also applications where strings are encoded by real values. One
example is the encoding of a protein sequence by physicochemical proper-
ties [51l]. In other applications where the sequences have the same length, a
very common approach is to represent sequences by sparse binary encoding.
In this encoding, each letter is represented by a vector containing as many
entries as the number of letters in the alphabet. The vectors contain a one
at the position which corresponds to the letter, and all other entries are zero.
Standard kernels for real-valued data are:

e Polynomial kernels: k(z,2') = (x,2)?, d € N

e Gaussian or Radial Basis Function (RBF) kernels:

[lw—=]|>
T 952 o> 0.

k(x,z") = exp

Usually a kernel contains a parameter, which is also called a hyperparameter.
These parameters allow adapting the kernel to the different problems. For
example, the parameter d of the polynomial kernel controls the degree of the
polynomials that are considered, whereas the parameter o of the RBF kernel
controls the width of the Gaussians.

One of the first kernels introduced for strings was the spectrum kernel @] It
uses histograms of (contiguous) substrings of a certain length p. The feature
space consists of vectors with as many entries as there are different strings of
length p possible, given the alphabet A. The more substrings sequence s; and
sequence s; have in common, the higher will be the dot product in feature
space between them. Leslie et al. [66] showed how to efficiently calculate a
kernel function, which is equal to the inner product in feature space, and
applied their kernel function to the problem of remote homology detection.

There are various extensions of the spectrum kernel. One can consider, for
example, all contiguous or non-contiguous subsequences of a string. This
kernel is called the all-subsequences kernel m] If one fixes the length of
the allowed subsequences, one gets the so-called fized length subsequences
kernel M]

The string kernels we have introduced up to now did not consider the posi-
tion of the signal (contiguous or non-contiguous substrings). They are not
position-aware. The locality-improved kernel introduced by Zien et al. M]
does not just look at matching characters or substrings of strings, but it
also takes the positions of the substrings into account. Therefore, a certain
window around a position in the string is defined. Inside this window, the
measure looks for matching characters, weighting matches with increasing
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weights from the border to the middle. The window is shifted over the whole
sequence and an even higher-dimensional feature space is constructed by tak-
ing the measure to the power of a certain value.

Another position-aware string kernel is the weighted degree (WD) kernel m]
This kernel can be considered as a position-aware variant of the all-subsequen-
ces kernel in which the matches of different length are weighted by a certain
factor corresponding to the lenght.

A further extension to the position-aware string kernels was the incorporation
of positional uncertainty. This can be motivated by considering an example
in which a random sequence s; and the same sequence shifted by one letter
sy are compared. The locality-improved kernel as well as the WD kernel
would just detect random similarities, meaning that s; should have a higher
kernel value with a sequence s3 containing parts of the sequence s; and some
random characters. This is certainly not desirable. A position-aware string
kernel with positional uncertainty, the so-called oligo kernel, was introduced
in 2004 ﬂﬁ] The kernel considers similarities of substrings of a certain length
while the positional uncertainty is modelled by a Gaussian function around
the positions where the substring occurs. The incorporation of positional un-
certainty into the WD kernel was proposed in 2005 M] by allowing patterns
to be shifted by a certain amount of letters.

2.1.6 Consistency of Support Vector Machines

We already explained why large margin classifiers should generalize well to
unseen data. Nevertheless, we did not show that, given enough data, the
algorithm will converge to the best possible predictor. In this sense one is
usually interested in consistency of the learning algorithm. Loosely speak-
ing, this means that, given an infinite amount of data from the source, the
probability that the prediction function will deviate by € > 0 tends to zero.
More formally, consistency is defined as:

Definition 2.3 (Consistency). Let f; be the target function of the learning
algorithm. A classifier is said to be weakly/strongly universally consistent if

lim R(f,) = R* (2.50)

holds in probability/almost surely for all distributions P on X x Y.

Convergence in probability means that the probability that the deviation
is greater than € > 0 converges to zero as n goes to infinity. Almost sure
convergence means that

P(lim [R(f;) = B"| = 0) = 1. (2.51)

It was shown that the 1-norm soft margin classifier and the 2-norm soft
margin classifier are strongly universally consistent if a universal kernel is
used and the regularization parameter is chosen properly m]
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2.2 Proteomics

2.2.1 General Overview

The proteome is the set of all proteins that can be made out of the genome
of an organism. Given a biological sample, one interesting question to ask
is which proteins are contained therein. The first approaches to answer this
question were developed by Edman and one of these methods is nowadays
called Edman degradation ﬂﬁ] In this technique, the protein is degraded
from the N-terminus, one amino acid at a time. The identity of the removed
amino acid is then determined by analytical methods like HPLC, which we
will consider in more detail in Section The removal and analysis of
the amino acid is called a cycle. To identify the protein at least six or seven
cycles are usually required to get a unique protein hit. Although the method
has been improved over the years, there are some shortcomings. First of all,
each cycle takes about 45 minutes ﬂﬁ] This limits the number of analyzed
samples per day to two or three. The second shortcoming is that there are
many proteins with blocked N-termini. Consequently, these proteins can-
not be identified by Edman degradation. Additionally, the sensitivity of the
method is not high enough.

Protein identification based on mass spectrometry (MS) analysis has been
around for more than 40 years ﬂa] Nevertheless, the wide application of
MS-based methods for protein analysis did not start until the commercial-
ization of electrospray ionization (ESI) and matrix-assisted laser desorp-
tion/ionization (MALDI) B} The importance of these methods to science
was underlined by the Nobel committee, which awarded half of the 2002 No-
bel prize in chemistry to the scientists who introduced these two methods.
There are mainly two different approaches. One of them is called the ”top-
down approach”. In this approach intact proteins are measured by the mass
spectrometer [38]. Two-dimensional (2D) gel electrophoresis is a common
method to separate the proteins before directing them to the mass spec-
trometer. The proteins are first separated with respect to their isoelectric
point using isoelectric focusing. Afterwards, the proteins are separated ac-
cording to their molecular weight along the second, orthogonal dimension.
One disadvantage of gel electrophoresis is that it cannot be directly coupled
to an ESI source. Instead, the proteins of interest have to be cut out of the gel
manually. This intervention is not needed in a ”bottom-up approach” using
chromatography for separating the analytes. Typical steps in this approach
are:

1. digestion of proteins into smaller parts (peptides)

2. separation of peptides according to certain properties
3. ionization of peptides

4. analysis of peptides by mass spectrometry

5. identification of peptides/proteins from mass spectrometry data.
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The first step can be performed in a solution using proteolytic enzymes like
trypsin or chymotrypsin. These enzymes usually cut at very distinct posi-
tions. Trypsin, e.g., cleaves after the amino acids arginine and lysine but not
before a proline residue.

We will look at steps two, three, four, and five in more detail for strong an-
ion exchange and high-performance liquid chromatography coupled to ESI
MS/MS. For an introduction to MALDI, the interested reader is referred,
e.g., to @]

Although spectra can be interpreted manually, current high throughput ex-
periments require computational methods for fast and accurate analysis of
mass spectrometry data to identify and quantitate the measured proteins.
These methods are introduced in section

2.2.2 Chromatographic Separation

Due to the complexity of the sample, it is often beneficial to separate peptides
before analyzing them by mass spectrometry. The most widely used tech-
nique for this purpose is liquid chromatography (LC), which separates the
peptides according to certain properties of the peptide. With this technique,
the peptides are directed through a column and, depending on properties like
hydrophobicity, length, molecular mass, and amino acid composition, each
peptide will elute from the column at a certain timepoint. This means that
peptides with similar properties should elute at similar timepoints. We will
now review the most common chromatography techniques.

In High-Performance Liquid Chromatography (HPLC), a sample is directed
through a column to separate the peptides depending on specific properties.
The liquid that is pumped through the column is called the mobile phase.
The substances that are fixed to the column are part of the stationary phase.
Usually, the stationary and the mobile phases have different chemical prop-
erties. According to the properties of the peptides, each peptide will have
a stronger interaction with either the stationary or the mobile phase. If a
peptide interacts stronger with the mobile phase than with the stationary
phase, it will flow faster through the column than peptides that interact
stronger with the stationary phase. Different combinations of stationary and
mobile phases are known, but the most widely used is called reversed-phase.
Therefore, reversed-phase HPLC will be explained in more detail. Strong an-
ion exchange chromatography is also introduced, since we also analyze data
obtained by this technique in this thesis.

Reversed-Phase HPLC

In reversed-phase HPLC, the stationary phase is non-polar and the mobile
phase consists of an aqueous, moderately polar solution. The more hydropho-
bic the peptides are, the greater is the tendency of the column to retain
them. Consequently, the more hydrophilic the peptides are, the faster they
flow through the column.
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Strong Ion Exchange Chromatography

In ion exchange chromatography, the stationary phase either contains cations
or anions. In strong anion exchange (SAX) chromatography the peptides that
have many positively charged side-chains interact stronger with the column.
The main practical difference between strong ion exchange and reversed-
phase HPLC is that strong ion exchange can just separate the peptides into
different fractions (e.g., 15 fractions if coupled to a mass spectrometer on-
line or 96 fractions via an off-line combination @]), whereas peptides in
reversed-phase HPLC elute at a distinct point in time.

Two-Dimensional Chromatographic Separation

To get even better separation, it is common to combine two chromatographic
separations that separate the peptides according to different criteria. One
possibility for a two-dimensional separation is to use strong ion exchange
chromatography prior to a reversed-phase HPLC. Washburn et al. @] ap-
plied this two-dimensional separation with a strong cation exchange chro-
matography followed by a reversed-phase chromatography to perform a large-
scale proteome analysis. This technique is called MudPIT and is based on
work by Link et al. @] Very recently, Delmotte et al. M] introduced a
combination of two reversed-phase HPLC separations at different pH values.

2.2.3 Ionization

Electrospray ionization (ESI) was introduced in 1985 by Fenn and co-workers

|. This technique can be used to ionize peptides in the solvent phase and
bring them into the gas-phase. A schematic illustration of ESI is shown
in Fig. ZTIl A watery, acidic solution, which contains peptides, is sprayed
through a very thin needle. The high positive voltage at the tip of the needle
leads to sputtering of droplets. A negative voltage is applied to the mass
spectrometer. Therefore, the positively charged ions travel towards the mass
spectrometer. Since the ions travel through a heated near-vacuum region, the
ions get desolvated, which finally leads to protonated peptides in gas-phase.

2.2.4 Tandem Mass Spectrometry

Tandem mass spectrometry or MS/MS usually refers to the analysis of a sam-
ple using two mass spectrometers consecutively. With just one mass spec-
trometer only the mass-to-charge ratio (m/z) of a peptide can be measured.
Since one cannot distinguish sequences with the same amino acid composi-
tion from each other by this information alone, a single mass spectrometer
does not suffice to identify peptide samples with high accuracy. In MS/MS,
there is a collision chamber between the two mass spectrometers. In this col-
lision chamber there is an inert gas like argon or helium. When the peptide
flies through the chamber, it collides with these inert gas atoms/molecules
and breaks apart (fragmentation). For collision-induced dissociation (CID)
the peptide usually breaks at an amide bond. If the charge is retained at
the N-terminus, the corresponding ion is called a b-ion and if the charge is
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Figure 2.11: Electrospray ionization: The sample is directed through a cap-
illary column in an acidic solution. At the tip of the needle, a high voltage is
applied. Positively charged droplets form, which are directed towards the entrance
of the mass spectrometer. During the flight through the heated, near-vacuum re-
gion, the droplets are desolvated (adapted from [54]).

retained at the C-terminal part, the ion is called a y-ion. A peptide together
with the b- and y-ions can be seen in Fig. The whole measurement
process can be seen in Fig. ZT3 The ion which flies through the first mass
spectrometer is usually called a precursor ion and the b- and y-ions of the
precursor ion are called product ions. Usually the three highest peaks in
an MS1 spectrum are selected for further fragmentation. These peaks are
found by so-called survey scans, which scan a certain mass-to-charge range.
A survey scan together with the product ion spectrum of the most intense
precursor peak are shown in Fig. EET4

Two of the most prominent mass spectrometers are the quadrupole and
time-of-flight (TOF) types. In quadrupole mass spectrometers, like in
Fig. ET3, only ions with a certain m/z value (£ a certain tolerance) can
travel through the electrostatic field on a stable path. All other ions collide
with the rods and do not reach the detector. To measure the whole sample,
the whole range of possible m/z values is probed from lowest to highest.
In TOF mass spectrometers, the principle is simpler. The ions are acceler-
ated towards the detector via an electric field. Then, they travel through a
field-free region. The higher the m/z value of the ion, the slower it will travel
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Figure 2.12: Peptide with b- and y-Ions: If the peptide ion breaks at an amide
bond, the resulting tons are called b- and y-ions.
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Figure 2.13: Simplified overview of an MS/MS experiment: a) The pep-
tides leave the capillary column and are protonated by ESI; b) Only the pep-
tides which match the selected m/z value can travel on a stable path through the
quadrupole mass spectrometer; c) In the collision chamber the peptide fragments;
d) The peptide fragments travel through the second quadrupole mass spectrometer,
but only the ions which match the selected m/z value can travel on a stable path
and finally reach the detector.

through the analyzer. Therefore, the m/z can be calculated given the length
of the travel and the time the ion needed between entering the field-free
region and hitting the detector.

2.2.5 Computational Annotation of Tandem Mass Spec-

tra
De Novo Identification and Database Search Methods

A tandem mass spectrum contains the product ions of a particular precursor
ion. If the spectra contained all possible y-ions and all ions had the same
charge, the peptide sequence could be constructed easily by transforming the
identification problem into a graph problem. Every m/z value in this graph
corresponds to an m/z value of one of the ions. A node at value zero (source)
and a node at the m/z value of the precursor ion (sink) are added. Nodes are
connected by an edge if the m/z difference corresponds to the m/z value of
an amino acid with the same charge. The sequence can then be constructed
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Figure 2.14: MS spectrum of potential precursor ions and product ion
spectrum of selected precursor ion: The graphs plot m/z value against inten-
sity, given in percentage, according to the peak intensity of the most intense peak.
a) An MS scan of all ions at a certain retention time. The ion with the highest
intensity is chosen for fragmentation. b) The product ion spectrum of the selected
precursor ion. The graphs are made with TOPP View ,@/

by finding the longest path. This kind of identification is usually called de
novo identification or de novo sequencing m, @]

Unfortunately, many b- and y-ions in a spectrum are missing and with in-
struments which do not have good precision the charge state cannot be deter-
mined accurately. Consequently, there are other approaches for identification
which are not that sensitive to spectra quality. One big class of methods can
be called database search methods. In these approaches, the experimental
spectra are compared to theoretical spectra which are constructed from all
possible peptides of the protein database. One example of an experimental
spectrum together with its theoretical spectrum (only y-ions) is shown in
Fig. Various methods for scoring and assessing the significance of these
matches have been introduced. Among the first introduced methods were
SEQUEST @] and Mascot @], but still nowadays there is room for im-
provement of database search methods since a significant number of spectra
remain unidentified ﬂﬂ]

Perkins et al. ﬂﬁ] did not reveal the details of the Mascot search engine
because it is proprietary software. Nevertheless, they stated that Mascot
uses probability-based scoring. This means that for each match between an
experimental and a theoretical spectrum the probability that a match with
the same or better score occurs by chance is estimated. For each experi-
mental spectrum, the match with the lowest probability is considered the
best possible identification. The peptide sequence of the corresponding the-
oretical spectrum is returned as annotation of the spectrum. Furthermore,
the significance of the best identification can be assessed via a p-value. To
calculate probabilities one has to assume a certain distribution underlying
random matches. Since Perkins et al. did not state which distribution un-



2.2 Proteomics

33

I R [ | T [ [ [ r_____l_ ______________________________
___________ v on _____i________l I ____L____i______________________________
i ] I ] ] I
——————————— T L e S S
I I I I I I I | i
Loy . E - ] . E . M . E . M
___________ o B o e o e | S T
1 1 1 1 1 1 | 1
e R premmenmeee-t e B R e R e I e
. . 1 .
I S (A | B B I R [ERR IR S S IS
l l l ! 1
___________ T IS I SO AV S S U
. . 1
| | |
----------- s T T .- I, ..., - i
i ;
e R . e
@ |
c i
Bl I T t[ ---------------------------------
£ 1
dab bt o dodi i b LHIJL TR T J Il_ I. i b Il | Ill i b
m/z !
1
) (I 1 AV S EUO USRS ESU U B A S S
i
L | g S g g |}
1
1
] e S
) (I 1 AV S B U ESU U B S A
A S IS PSR U ENUUOU I SR S ISR U E NS PR
i
) (I AV S B USRS ESU U B SRR IS E SR SUU
1
i
R T P EEPE T | EEEE EEEEEEE EEREPEEEEEE EREEEEEES EERET CREER! EEEEEEREEEE CEEPEE SERREEEE
i
A Y IS SRR S NS SR S ISR NS E N SO
i
1

Figure 2.15: Experimental spectrum together with theoretical spectrum:
An experimental spectrum (top) is shown together with the best matching theoret-
ical spectrum (bottom) visualized with TOPPView [@/ The peptide sequence is
TVMENFVAFVDK.

derlies the Mascot model, we look at a database search method by Sadygov
and Yates M] called PEP_PROBE. This method uses the hypergeometric
distribution to model the frequencies of matches between experimental and
theoretical spectra. It is a modified version of SEQUEST [29].

Let m be the number of red balls and N the total number of balls. The hy-
pergeometric distribution can be used to estimate the probability that after
n draws without replacement we end up with exactly k red balls:

() ()

P(X =k) = (N”) (2.52)
In PEP_PROBE, N is the number of all predicted fragment ions in a sequence
database that consists of all peptide sequences matching the precursor mass
(M+H)* of the tandem mass spectrum. The variable m represents the num-
ber of all of these fragments that match a peak in an experimental tandem
mass spectrum. If one considers just b- and y-ions, the number of draws for
a peptide sequence of length L is n = 2 (L — 1). The hypergeometric distri-
bution can then be used to estimate the probability that k of the fragments
of the peptide sequence match the experimental spectrum just by chance.
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The peptide sequence with the lowest probability is the resulting annotation
of the experimental spectrum. Furthermore, PEP_PROBE delivers a p-value
for the null hypothesis that the hit is random.

False Discovery Rates and ¢-Values

Since not every database search method uses the same underlying distri-
bution and some models do not even provide p-values, other measures for
assessing the significance of identifications have been introduced @] One
very common measure is estimating the false discovery rate (FDR) of an iden-
tification. Given hypotheses ¢ with associated score s;, the false discovery
rate @] is defined as the expected ratio of the number of false hypotheses
to the number of all hypotheses that are considered significant at threshold
t:

FDR(t) = E {%} , (2.53)

with F'(t) being the number of all significant false hypotheses and S(t) the
number of all significant hypotheses at threshold ¢. Since it is usually im-
possible to estimate this expectation value, the following approximation is
widely used:

E(F(t))
E(S5(t)

FDR(1) = E [F (t)] ~ (2.54)

S(t)

For identifications from tandem mass spectrometry experiments, the numer-
ator is estimated by using the database search method on a decoy database.
This decoy database contains bogus protein sequences. These can be con-
structed by reversing or shuffling the sequences of a normal database. The
denominator can be estimated by using the database search method on a
normal database @] Let di,ds, ...,d, be the scores of spectrum identifica-
tions to the decoy database and let sq, s9, ..., s,, be the scores of the spectrum
identifications to the normal database. Without loss of generality, we assume
that a hypothesis is the more significant the larger its corresponding score
is. The FDR of a certain score threshold ¢ can then be approximated by

= #Hdild > tNi>1Ai<n}
FDR{t) = : 2.55
©) #{si|si >t Ni>1Ni<n} (2.55)

Since the FDR can be smaller for hypothesis ¢ with score s; than for hypoth-
esis j with score s; even though s; < s; (e.g., if all hypotheses with score
larger than s; and smaller than s; are true), the FDRs cannot directly be
used as filter thresholds. Storey and Tibshirani @] introduced g-values.
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A g-value for hypothesis i is the minimum FDR that can be attained when
calling hypothesis i significant (s; > ¢). Kall et al. @] used g-values for
assigning significance to identifications from tandem mass sectrometry data.
In this setting, the g-value of a certain spectrum identification is the smallest
FDR at which the spectrum identification is accepted. Therefore,

q(i) = min FDR(?). (2.56)

t<s;
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2.3 Immunomics

2.3.1 General Overview

The latin word immunis can be translated as exempt. This word was chosen
as a basis for immunity and immunology because the whole field emerged
from the observation that people who had recovered from particular infec-
tious diseases were afterwards exempt from falling ill to the disease. These
people were immune to the corresponding disease. From then on, the goal
of doctors and scientists in this field has been to make people immune to
a certain disease even before a first infection. The first disease for which
reports exist was the smallpox disease. In the fifteenth century, the Chinese
and Turks tried to immunize people with the dried crusts of smallpox pus-
tules. In 1798, Edward Jenner made the observation that milkmaids who fell
ill with cowpox and subsequently recovered were later immune to smallpox.
Therefore, he used the fluid of a cowpox pustule to inoculate a person and
he showed that the person was then immune to smallpox. Between this dis-
covery and the current state of immunological knowledge there were many
ground-breaking studies, which can also be seen by the fact that 16 Nobel
prizes had been awarded for immunologic research by 1996 M]

There are different mechanisms of the body which lead to immunity to a
certain infectious agent and they can be divided into two categories called
Innate Immunity and Adaptive Immunity. Innate immunity contains non-
adaptive barriers to infectious agents. There are four different types of barri-
ers: anatomic barriers, physiological barriers, phagocytic/endocytic barriers,
and inflammatory barriers. In contrast, adaptive immunity comprises all de-
fense mechamisms which are able to adaptively recognize and destroy specific
agents.

2.3.2 Innate Immune System

The innate immune system can be seen as the first line of defense against in-
vading microorganisms. The underlying mechanisms prevent a large class of
microorganisms from entering or staying in the human body. The first part
of this system comprises the anatomic barriers. The skin, which is made up
of the epidermis and the dermis, is the outer barrier. The epidermis contains
dead cells as well as the protein keratin, which makes this layer waterproof.
The dermis is composed of connective tissue. Because of the low pH, between
3 and 5 in this tissue, it inhibits the growth of most infectious agents.
Another important anatomic barrier is the mucosal surface. It can be found
on the mucosal membranes of the alimentary, urogenital, and respiratory
tracts as well as on the mucosal membrane of the conjunctivae. Since these
membranes are easier for the microorganisms to penetrate, there exist a
number of non-specific defense mechanisms that serve to remove the invad-
ing microorganism from the body. These defense mechanisms are, e.g., tears,
saliva and mucous secretion, and hairlike protrusions called cilia.

The second part of the innate immune system comprises the physiological
barriers. All physiological conditions in the body which inhibit the growth
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of, or destroy microorganisms, can be seen as manifestations of these barri-
ers. The temperature of the human body, for example, inhibits the growth
of certain organisms and the low pH in the stomach leads to the destruc-
tion of many microorganisms. Furthermore, there are chemical mediators
like lysozyme, complement, and interferon, which favor the lysis of certain
pathogens or facilitate phagocytosis.

The third part of the innate immune system comprises the phagocytic and
endocytic barriers. Some specialized cells in the body (e.g., monocytes, neu-
trophils, and macrophages) are able to phagocytose foreign organisms. This
means that the cells surround the pathogens to internalize them in so-called
phagosomes. The content of these phagosomes is then digested by lysosomal
enzymes and the products of this reaction are released from the cell. Phago-
cytosis is a special form of endocytosis which describes the uptake of material
from its surrounding. A certain type of endocytosis, which is called receptor-
mediated endocytosis, allows a cell to specifically uptake certain extracellular
molecules after they have been bound by the corresponding receptors.

The fourth part of the innate immune system comprises the inflammatory
barrier. If a tissue is ruptured, usually an inflammatory response is triggered,
in which vascular fluid, containing serum proteins with antibacterial activity
as well as phagocytic cells, are released into the affected region. After the
activation of an enzyme cascade, insoluble fibrin strands separate the rup-
tured area from the rest of the body to prevent further microorganisms from
entering.

2.3.3 Adaptive Immune System

The adaptive immune system can very selectively recognize and eliminate
invading microorganisms. There are many cells and receptors involved in this
adaptive response. For such a system to work there are a few requirements.
First of all, there has to be a mechanism to discriminate self from non-self
cells. Since invading microorganisms can be quite diverse, there has to be
a mechanism by which the immune system can construct very diverse but
also specific cells which recognize the pathogens. To be able to react to
an infectious agent as fast as possible, it is also desirable to have a sort
of memory which enables a faster reaction if the person is infected by an
infectious agent against which it has already reacted. The adaptive immune
system fulfills all these requirements. We will now look at parts of the system
in more detail.

The term antigen will be used quite frequently in this thesis. When it was
first introduced in the literature, it stood for any substance which could
stimulate antibody generation. Nowadays, the term is used for any substance
which can be recognized by the adaptive immune system.

Major Histocompatibility Complex

The major histocompatibility complex (MHC) is a cluster of genes whose
encoded proteins are responsible for many important parts of the adaptive
immune system of mammals. In humans, the MHC is referred to as the hu-
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man leukocyte antigen (HLA) complex. T cells, which are introduced in the
next section, can only recognize antigens that are presented by MHC class
I (MHCI) or MHC class II (MHCII) molecules. Throughout this thesis we
use MHCI molecule (sometimes also MHCI allele) as a synonym for the gene
products HLA-A, HLA-B, and HLA-C encoded by the HLA complex regions
A, B, and C. We use the term MHCII molecule (sometimes also MHCII al-
lele) as a synonym for the gene products HLA-DP, HLA-DQ, and HLA-DR
encoded by the HLA complex regions DP, DQ, and DR. MHCI molecules
can be found on nearly all nucleated cells. In contrast, MHCII molecules can
just be found on antigen-presenting cells such as B cells, dendritic cells, and
macrophages. The structures of the MHCI and MHCII molecules are very
similar. Both have a binding cleft in which about nine amino acids can fit.
This enables peptides to interact with and therefore bind to the molecule.
Examples of MHCI and MHCII molecules can be seen in Fig. BT The
main difference between these two classes of molecules is that the binding
cleft is closed at the ends for MHCI and open for MHCII. Therefore, MHCI

a)

Figure 2.16: Structure of MHC molecules with binding peptide: a) This
picture shows an MHCI molecule (purple) together with a binding peptide (green).
The PDB ID of the structure is 1JF1. b) This picture shows an MHCII molecule
(blue) together with a binding peptide (green). The PDB ID of the structure is
1BX2. Both MHC molecules were visualized with BALLView [71].

molecules can just bind peptides of a narrowly defined length. The binding
peptides are usually between eight and twelve amino acids long. In contrast,
the peptides that can bind to MHCII molecules can have even more than
twenty amino acids ﬂﬁ]

MHCT molecules present peptides which are derived from proteins inside the
cell. In contrast, MHCII molecules present peptides derived from proteins
outside of the cell. The proteins enter the cell via the endosomal pathway.
Inside the cell, they are exposed to several proteases, which cut them into
smaller parts (peptides). The peptides are then transported to a compart-
ment known as the MIIC (MHCII-rich endosomal compartment). In this
compartment, the peptides are loaded into MHCII molecules. Afterwards,
the peptide-MHCII complex is transported to the cell surface.
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Every human expresses at most six different types of MHCI molecules and
twelve different types of MHCII molecules .

T Lymphocytes

T Iymphocytes or T cells are cells which arise in the bone marrow and mature
in the thymus gland (hence the name). T cells express a unique antigen-
binding receptor, called the T cell receptor, which is not able to recognize an
unbound antigen. Instead, it recognizes antigens bound to MHC molecules.
T cells can be divided into two groups, namely T helper (7 ) and T cytotoxic
(T¢) cells. They can be distinguished by the existence of glycoproteins on the
cell surface. Ty cells express CD4 and T cells express the glycoprotein CDS.
Examples of both kinds of T cells are depicted in Fig. ZTA If T cells recognize
an antigen, they get activated. An activated Ty cell releases cytokines, which
are important for the activation of T cells, B cells, macrophages, and a
number of other cells that belong to the immune system. An activated T cell
differentiates into a cytotoxic T lymphocyte (CTL), which exhibits cytotoxic
activity. The whole process is described in more detail in Section

antibody TCR

B cell T helper (TH) cell T cytotoxic (Tc) cell

Figure 2.17: Lymphocytes: This figure shows different types of lymphocytes.
From left to right, the figure shows a B cell, a Ty cell, and a To cell. The B
cell expresses membrane-bound antibodies. The T cells are depicted with a T cell
receptor (TCR), the Ty cell additionally contains CD/, and the T cell contains
CDS.

B Lymphocytes

B Lymphocytes or B cells arise in the bone marrow like T cells but unlike
T cells they stay in the bone marrow for maturation (hence the name). As
shown in Fig. ZT7, B cells express an antigen-binding receptor, which is very
specific. Each B cell expresses several copies of the same receptor, which is
a membrane-bound antibody, when it leaves the bone marrow. If a B cell
encounters an antigen to which the membrane-bound antibodies can bind,
it starts dividing rapidly. The resulting cells differentiate into memory B
cells and plasma cells. Memory B cells live longer than standard B cells still
having the same membrane-bound antibody. Plasma cells usually express
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little or no membrane-bound antibodies. They are able to produce copious
numbers of the antibody and secrete them. The whole process is described
in more detail in Section

Antibody Generation
¥ A
Foh
anti‘gen g‘ - s,

antibodies

antigen

cytokines

®

Figure 2.18: Antibody production after recognition of antigen: a) A naive
Ty cell gets activated after recognizing an MHCII-bound antigen. b) After activa-
tion it releases cytokines. The cytokines are absorbed by nearby B cells. c¢) If one
of these B cells recognizes an antigen, it divides into antibody-producing plasma
cells and memory B cells.

The humoral response to antigens is shown in Fig. T8 If a naive Ty
cell encounters an antigen which is presented by an MHCII molecule, the
Ty cell gets activated. The activation leads to the release of cytokines. A
B cell, which absorbs these cytokines and recognizes an antigen via one of
its membrane-bound antibodies, divides into plasma cells and memory B
cells. The plasma cells produce a huge amount of the antibody and secrete
it. Usually these plasma cells have little or no membrane-bound antibodies.
Since the antibodies can bind to the antigen and these antigens are likely
to be proteins that are expressed on the exterior of bacteria or viruses, the
existence of a large number of these antibodies promotes the clearance of the
infectious agents.

CTL Response to Antigens

The cell-mediated response to an antigen is shown in Fig. ZTd One require-
ment for a Ty cell to differentiate into a CTL is that it encounter cytokines.
These are produced with the same mechanisms as described in Section
If a CTL encounters an antigen presented at the cell wall of an infected or
altered cell via an MHCI molecule, the CTL induces apoptosis in the cor-
responding cell. Since MHCI molecules present peptides, which are derived
from proteins inside the cell, the recognition of a foreign peptide signals that
either the cell is infected by an infectious agent or the cell has altered protein
sequences, which happens, e.g., in cancer. Therefore, it can be assumed that
mechanisms which promote apoptosis of these kinds of cells proved to be
advantageous during evolution.



2.3 Immunomics

41

cytokines

®

Figure 2.19: Cell-mediated response to antigens: a) A naive Ty cell gets ac-
tivated after recognizing an MHCII-bound antigen. b) After activation it releases
cytokines, which are absorbed by nearby To cells. This contributes to the differen-
tiation of To cells into CTLs. ¢) A CTL, which recognizes an antigen presented by
an MHCI molecule, releases signalling molecules which induce apoptosis. d) The
cell wall of the infected or altered cell evaporates.

2.3.4 Epitope-Based Vaccine Design

We have already defined an antigen as a substance, which can be recognized
by the immune system. In many cases, not the whole substance is recognized.
Instead, just a smaller part interacts with B or T cells. For example, if a
protein of the cell wall of a bacterium can be recognized by the immune sys-
tem, this protein is termed an antigen. The peptides from this protein that
can bind to the B cell or T cell receptors are called antigenic determinants
or epitopes. As mentioned in Section EZ37] the traditional approach of vacci-
nation is to expose an individual to a non-pathogenic form of the pathogen.
The vaccination strategy in epitope-based vaccine design | is a little bit
different. In this approach, the vaccine just contains a set of epitopes.

T cells can only recognize an epitope if it is bound to an MHC molecule.
One prerequisite for the rational design of an epitope is, thus, that these
epitopes are able to bind to MHC molecules. Since every human has at most
six different MHCI molecules and twelve different MHCII molecules M],
it is important to know which peptides can bind to the MHC molecules of
the patient. Several databases exist that contain data from binding studies,
measuring whether a peptide can bind to a certain MHC molecule @], but
these databases just contain data for a small fraction of all known MHC
molecules @] Therefore, many approaches for peptide-MHC binding pre-
diction have been introduced (class I and class II). Two recent benchmarks
of available methods can be found in @, @]

Many epitope identification studies have been performed M] Providing
researchers with good predictors for peptide-MHC binding can significantly
reduce the number of necessary experiments. If epitopes are known for a cer-
tain pathogen, there are different approaches for how to combine them into a
vaccine ﬂﬁl}, but there are still many open questions in this field (e.g., how
to best deliver the epitopes, how many epitopes should be used).
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Chapter 3

Applications in Proteomics

3.1 A New Kernel for Chromatographic Sep-
aration Prediction

3.1.1 Introduction

Experimental techniques for determining the composition of complex pro-
teomes have been improving rapidly over the past decade. The application
of tandem mass spectrometry-based identification has resulted in the gener-
ation of enormous amounts of data, requiring efficient computational meth-
ods for their evaluation. There are numerous database search algorithms
for protein identification such as Mascot @], Sequest @], OMSSA ﬂﬁ] and
X!Tandem ﬂﬂ], as well as de novo methods like Lutefisk M] and Pep-
Novo ﬂﬂ] Furthermore, there are a few methods like InsPecT @] which
use sequence tags for pruning the possible search space using more computa-
tionally expensive and more accurate scoring functions afterwards. Database
search algorithms generally construct theoretical spectra for a set of possible
peptides and try to match these theoretical spectra to the measured ones to
find the candidate(s) which match(es) best. In order to distinguish between
true and random hits, it is necessary to define a scoring threshold, which
eliminates all peptide identifications with scores below the scoring threshold.
This threshold value is chosen quite conservatively to get very few false pos-
itives. Consequently, there is a significant number of correct identifications
below the threshold that are not taken into account, although these spectra
often correspond to interesting (e.g., low abundance) proteins. One of the
goals of this work was to increase the number of reliable identifications by
filtering out false positives in this twilight zone’ below the typical threshold.
There are various studies addressing this issue |26, [72, @} by calculating the
probability that an identification is a false positive.

Standard identification algorithms are based on MS/MS data and do not use
the information inherent to the separation processes typically used prior to
mass spectrometric investigation. Since this additional experimental infor-
mation can be compared to predicted properties of the peptide hits suggested
by MS/MS identification, false positive identifications can be detected. In
SAX-SPE, it is important to know whether a peptide binds to the column or



44

Applications in Proteomics

flows through. This information can also be incorporated into the identifica-
tion process to filter out false positive identifications. Oh et al. @] elaborated
several chemical features such as molecular mass, charge, length and a so-
called sequence index of the peptides. These features were subsequently used
in an artificial neural network approach to predict whether a peptide binds
to the SAX column or not. The sequence index is a feature reflecting the cor-
relation of pl values of consecutive residues. Strittmater et al. M] included
the experimental retention time from an ion-pair reversed-phase liquid chro-
matographic separation process into a peptide scoring function. They used a
retention time predictor based on an artificial neural network @] but a num-
ber of other retention time predictors exist M, @] If the deviation between
observed and predicted retention time is large, then the score of the scoring
function becomes small. Since they only consider the top scoring identifica-
tions (rank = 1), they miss correct identifications of spectra where a false
positive identification has a larger score than the correct one. We also address
these cases in our work, demonstrating that filtering out identifications with
a large deviation between observed and predicted retention time significantly
improves the classification rate of identifications with small maximal scores.
Recently, Klammer et al. @] used support vector machines (SVMs) ﬂﬁl]
to predict peptide retention times. Nevertheless, they used standard kernel
functions and stated that they needed at least 200 identified spectra with
high scores to train the learning machine.

When applying machine learning techniques to the prediction of chromato-
graphic retention, a concise and meaningful incorporation of the peptide
properties is crucial. The features used for this incorporation must capture
the essential properties of the interaction of the peptide with the station-
ary and the mobile phases. These properties are mostly determined by the
overall amino acid composition, by the sequence of the N- and C-terminal
ends, and by the sequence in general. One of the most widely applied ma-
chine learning techniques are SVMs, introduced in Section 2T 4. SVMs use
a kernel function which is used to encode distances between individual data
points (in our case, the peptides). There are numerous kernel functions de-
scribed in the literature which can be applied to sequence data. An overview
is presented in Section EZT.H All of these kernels were either introduced for
sequences of the same length or not position-aware. However, the length
of peptides typically encountered in computational proteomics experiments
varies significantly, ranging roughly from 4 to 40 amino acids. Because it
can be assumed that the local alignment kernel @}, which can also handle
sequences of different lengths, does not suit this kind of problem perfectly, we
propose a new kernel function, which can be applied to sequences of different
lengths. Consequently, this new kernel function is applicable to a wide range
of computational proteomics applications.

In 2006 Petritis et al. @l] evaluated different features like peptide length,
sequence, hydrophobicity, hydrophobic moment and predicted structural ar-
rangements like helix, sheet or coil for the prediction of peptide retention
times in reversed-phase liquid chromatography-MS. They used an artificial
neural network and showed that the sequence information, together with
sequence length and hydrophobic moment yield the best prediction results.
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In their study, they used only the border residues of the peptide sequences;
their evaluation showed that a border length of 25 worked best for their
dataset. Since they used one input node for every position of the borders
of the peptide, they needed a very large training set. They trained their
learning machine on 344,611 peptide sequences.

Since one cannot routinely measure such an amount of training sequences
before starting the actual measurements, it is reasonable to apply a sort of
Gaussian smoothing effect to the sequence positions. This means that in
our representation, not every amino acid at every position is considered but
rather regions (consecutive sequence positions) where the amino acid occurs.
The distance of the amino acids of two sequences is scored with a Gaussian
function. The size of this region modeled by our kernel function can be con-
trolled by the kernel parameter o of the kernel function and can be found
by cross validation. By this and because we use support vector machines
in combination with our kernel function, the number of necessary training
sequences can be decreased dramatically. By just using the amino acid se-
quence, we do not rely on features which are important for certain separation
processes. This means that we learn the features (e.g., composition (using a
large o in the kernel function), sequence length, hydrophobic regions) which
are important for the prediction process within the data because they are
reflected in the amino acid sequence. This is why our kernel function can be
used for retention time prediction in IP-RP-HPLC as well as for fractionation
prediction in SAX-SPE.

When applied to the same dataset as Oh et al. @] used, our kernel func-
tion in conjunction with support vector classification predicts 87% of the
peptides correctly. This is better than for all reported methods. Further-
more, our retention time prediction model is based on a new kernel function
in conjunction with support vector regression m], which allows to predict
peptide retention times very accurately, requiring only a very small amount
of training data. This method has a better performance on a test set than the
artificial neural network method used by Strittmater et al. M], even with a
much smaller training set. Additionally, our method outperforms the meth-
ods introduced by Klammer et al. @] Section BT A describes our new kernel
function and we explain our p-value-based filtering approach. Section
introduces the datasets used in this study. In Section B4 we demonstrate
that our new kernel function, in combination with support vector classifica-
tion, achieves better results in SAX-SPE fractionation prediction than any
other published method. Next, we show that our kernel function also per-
forms very well for peptide retention time prediction in IP-RP-HPLC with
very little training data required. This allows us to train our predictor on
a small dataset to predict retention times for further datasets, and to filter
the data by deviation in observed and predicted retention time. This leads
to a huge improvement in the precision of the identifications of spectra for
which only identifications with small scores can be found, and also improves
the precision of high-scoring identifications.
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3.1.2 Machine Learning Methods

In this thesis, we introduce a new kernel function, which can be used to
predict peptide properties using support vector classification and v-support
vector regression ﬁ%}, introduced in Section EZT 4l We apply this kernel
function to predict fractionation of peptides in SAX-SPE as well as peptide
retention times in IP-RP-HPLC. To show the superior performance of the
new kernel function, we provide comparisons to established kernel functions
and the latest approaches of other working groups @, m, @]

Kernel Function

The oligo kernel introduced by Meinicke et al. @] is a kernel function that
can be used to find signals in sequences for which the degree of positional
uncertainty can be controlled by the factor o of the kernel function. The
standard oligo kernel was introduced for sequences of fixed length. Since
there are many problems in which the length of the sequences varies signif-
icantly (e.g., peptide retention time prediction), this kernel function cannot
be applied to them directly.

Petritis et al. [91] predicted peptide retention times very accurately by encod-
ing the border residues directly, meaning that they accounted for 25 amino
acids from each border (starting at the termini). This led to a very large neu-
ral network, which was therefore trained with about 345,000 peptides. As
stated in E], the oligo kernel can be used as a motif kernel. Therefore, one
can focus on important signals instead of using all k-mers of a sequence. This
motivated us to construct a kernel which only considers the border residues
of a peptide for a fixed border length b. Consequently, the kernel function
is called oligo-border kernel (OBK). Here, a motif is a certain k-mer at a
position inside the b residue border at each side where b € {1,...,30}. This
means that every k-mer at the leftmost b residues contributes to its oligo
function as well as every k-mer at the rightmost b ones. For the peptide
sequence s € A" the left border L is defined as L = {1,2,..., min(n,b)}
and R = {max(0,n — b+ 1),...,n}. The set S¥ = {py,ps,...} contains
the positions where the k-mer w € AF occurs inside the left border and
SE = Ipy,pa, ...} the k-mer positions for the right border. This means that
SENL =8 and SENR = SE In @] the feature space representation
of a sequence is a vector containing all of its oligo functions. These oligo
functions are the sums of gaussians for every particular k-mer:

polt) = Y e (3.)

pESw

Consequently, the oligo-border function is:
M _(=p)?
pal(t)y =Y e, (3.2)
pesHt

where M € {L, R}. This leads directly to the feature map:

@(S) = [:uuljl (t)’ - >M£‘Ak‘ (t)’ ,Ufl (t)’ - 7“5‘Ak‘ (t)]T (33)
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Let U = LU R and let S be the set SU of sequence s;. Let

ind(p, q) =

[[(pe Ling e Ly)l(p € Ri Nq € Ry)]] (3.4)

for p € U; and ¢ € U; in which [[condition]] is the indicator function. This
function equals one if condition is true and zero otherwise. Similar to ﬂ]

one can derive the kernel function:
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From (B4 to (B), we shifted both gaussians by min(p, ¢) to the left and de-
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opposite borders. This means that there is only one oligo function for a
certain oligo and the occurrence positions of signals in the right border are
numbered from one to min(n,b) from right to left. In this way, a high sim-
ilarity between the right border of a peptide and the left border of another
peptide can also be detected. Throughout the thesis, this kernel is called the
paired oligo-border kernel (POBK') and the kernel function is:

kPOBK(Si>3j) = Vo Z

weAk
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L R,
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This kernel function can be computed as efficiently as the oligo kernel by
appropriate position encoding. The kernel matrix is positive definite which
follows directly from m], because the oligo border functions are also finite
sums of Gaussians. Since preliminary experiments showed that the POBK
performs better for chromatographic separation prediction than the OBK,
we used only the POBK for prediction of chromatographic separation in this
thesis. A comparison of the OBK and the POBK can be found in Sec-
tion for proteotypic peptide prediction. Furthermore, the preliminary
experiments showed that the best performance of the k-mer length is one
which is quite reasonable, since the peptides are very short compared to the
number of different amino acids. This is also supported by a study on pro-
tein sequences @], in which histograms of monomer distances performed
better than distance histograms of longer k-mers. A combination of different
lengths as in m] also led to inferior results, which could be due to the nor-
malization of the single kernel functions. Consequently, in the whole thesis,
we only used k-mer length one.

P-Value Calculation and Filtering

As stated earlier, the retention time prediction is used in this work to im-
prove the certainty of peptide identifications found by search engines like
Mascot and to filter out false identifications. This is done by fitting a linear
model to the prediction data in the training set. The model reflects the fact
that retention times of late eluting peptides show a higher deviation than
early ones. This can be explained by the constant relative error for retention
times, which sums up the larger the RT becomes. Poorer performance in
retention time prediction for longer peptides was also observed in @l] For
our predictions, we therefore match an area to the prediction data of the
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training set which contains > 95% of the points and allows a larger deviation
between observed and predicted normalized retention time (NRT) for larger
retention times. An application of the model can be found in Fig. b)
and Fig. c¢). We call the smallest distance in the model v, at NRT equal
to zero, and Y, is the biggest gamma at NRT = 1. We can consequently
calculate a corresponding gamma for every normalized retention time ¢,
by v = Y0 + tnor * (Ymaz — Y0)- Since we assume Gaussian error distribution,
gamma corresponds to double the standard deviation of the normal distribu-
tion such that a p-value can be calculated for every retention time prediction
by calculating the probability that a correct identification has a larger devi-
ation between observed and predicted normalized retention time. The null
hypothesis is that the identification is correct. For filtering identifications,
we use these p values in the following way.

Since we do not want to filter out correct identifications, the probability of
filtering out a correct identification can be controlled by a significance level.
In the experiments, we set the significance level to 0.05. This means that the
probability that a correct identification has a deviation between observed and
predicted retention time equal or greater than the allowed deviation is 0.05.
The probability of filtering out correct identifications is thus 5%. Concerning
the p-values mentioned above, this means that p has to be greater than 0.05.

Computational Resources

All methods introduced in this section were integrated into OpenMS, a soft-
ware platform for computational mass spectrometry @], which has a wrap-
per for the LIBSVM M] This library was used for the support vector
learning. Furthermore, we integrated the prediction models into TOPP @]
Some additional evaluations for peptide sample fractionation prediction were
performed using shogun .

3.1.3 Experimental Methods and Additional Data

For peptide sample fractionation prediction, we used the data from Oh et
al. [84] to assess the performance of our method. For peptide retention time
prediction, we used different datasets. The first one is a validation dataset
which was used by Petritis et al. in 2006 M] to predict peptide retention
times using artificial neural networks. In their experiment, they measured
more than 345,000 peptides, and chose 1303 high-confidence identifications
for testing and the remaining peptides for training. Since they only published
the 1303 test peptides, we could only use this small number of peptides. The
dataset was used in our study in order to to show the performance of our
methods compared to other well established methods for peptide retention
time prediction. Further datasets for retention time prediction were mea-
sured by Andreas Leinenbach, who was then in the laboratory of Prof. Dr.
Christian Huber at Saarland University, to show that training on the data of
one run suffices to predict retention times on the next runs very accurately
and to improve spectrum identifications significantly.



50

Applications in Proteomics

Experimental Setup

The datasets for training and evaluation of the retention time predictor had
to fulfill two basic requirements. First, the identity of the studied peptides
had to be known with high certainty in order to avoid incorrect sequence
annotations for the training dataset. Second, retention times had to be mea-
sured with high reproducibility. Altogether, Andreas Leinenbach measured
19 different proteins, which were purchased from Sigma (St. Louis, MO) or
Fluka (Buchs, Switzerland). To avoid excessive overlapping of peptides in the
chromatographic separations, the proteins were divided into three artificial
protein mixtures and subsequently digested using trypsin (Promega, Madi-
son, WI) using published protocols ﬁ@] The protein mixtures contained
the following proteins in concentrations between 0.4 - 3.2 pmol/pul:

e Mixture 1: [-casein (bovine milk), conalbumin (chicken egg white),
myelin basic protein (bovine), hemoglobin (human), leptin (human),
creatine phosphokinase (rabbit muscle), al-acid-glycoprotein (human
plasma), albumin (bovine serum).

e Mixture 2: cytochrome C (bovine heart), §-lactoglobulin A (bovine),
carbonic anhydrase (bovine erythrocytes), catalase (bovine liver), myo-
globin (horse heart), lysozyme (chicken egg white), ribonuclease A
(bovine pancreas), transferrin (bovine), a-lactalbumin (bovine), albu-
min (bovine serum).

e Mixture 3: thyroglobulin (bovine thyroid) and albumin (bovine serum).

Adding albumin to each protein mixture was performed because in each
run, there had to be an identical set of peptides to normalize the retention
times. The resulting peptide mixtures were then separated using capillary
IP-RP-HPLC and subsequently identified by electrospray ionization mass
spectrometry (ESI-MS) as described in detail in @, EIPE] The separations
were carried out in a capillary/nano HPLC system (Model Ultimate 3000,
Dionex Benelux, Amsterdam, The Netherlands) using a 50 x 0.2 mm mono-
lithic poly-(styrene/divinylbenzene) column (Dionex Benelux) and a gradient
of 0-40% acetonitrile in 0.05% (v/v) aqueous trifluoroacetic acid in 60 min at
55°C. The injection volume was 1 ul, and each digest was analyzed in trip-
licate at a flow rate of 2 ul/min. Online ESI-MS detection was carried out
with a quadrupole ion-trap mass spectrometer (Model esquire HCT, Bruker
Daltonics, Bremen, Germany).

Identification of Spectra and Normalization of Retention Times

Peptides were identified on the basis of their tandem mass spectra (maxi-
mum allowed mass deviations: precursor ions: + 1.3 Da, fragment ions: =+
0.3 Da) using Mascot @] (version 2.1.03). The database was the Mass Spec-
trometry Database, MSDB (version 2005-02-27) restricted to chordata. We
allowed one missed cleavage as well as charges 14, 24+ and 3+. The mass
values were monoisotopic. The significance level of the significance threshold
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score for the peptide hits was 0.05. Since the amino acid sequences of the
19 proteins of our mixtures are known, we could verify the identifications by
sequence comparison with the protein sequences. To avoid random verifica-
tions, we restricted the peptide length to be equal or greater than six. The
whole process led to two datasets for each protein mixture — one which only
contained the verified peptides and the other one with all Mascot identifica-
tions. We call the datasets containing the verified peptide sequences vds and
the datasets with all Mascot identifications ds. The wvdss are used to train
the predictors and the dss are used to assess the classification performance
of the identification process.

We chose two standard peptides which were identified in all of the runs.
One of these peptides, which had the amino acid sequence TCVADESHAGCEK,
elutes very early and the other one, which had the amino acid sequence
MPCTEDYLSLILNR, elutes very late. We scaled the retention times linearly so
that the early eluting peptide got an NRT of 0.1 and the late eluting pep-
tide an NRT of 0.9. All peptides with an NRT below zero or above 1 were
removed.

Reimplementation of Existing Methods for Comparison Purposes

For retention time prediction we compared our method with several methods.
Therefore we had to reimplement the methods by Klammer et al. @] as well
as the methods by Petritis et al. M] For the methods by Klammer et al., we
implemented the same encoding as described in the literature and used the
RBF kernel of the LIBSVM M] The cross validation was performed with the
same parameter ranges as described in the paper (C' € {1073,1072,...,107}
and o € {107%,1077,107%}). For comparison with the models by Petritis et
al. we reimplemented the models as described in the literature using Mat-
lab R2007a (The MathWorks, Inc., United States) and the neural networks
toolbox version 5.0.2 (The MathWorks, Inc.). This means that for the first
model of Petritis et al. @] we had a feedforward neural network with 20
input nodes, two hidden nodes and one output node. The frequencies of the
amino acids of the peptides served as input. For the second model of Petritis
et al. M] we had 1052 input nodes, 24 hidden nodes, and one output node.
The amino acids at the 25 leftmost and the 25 rightmost residues served as
input as well as the length and the hydrophobic moment of the peptide as
described in M] Both models were trained using a backpropagation algo-
rithm.

3.1.4 Results and Discussion

In this section, we present the results for two different application areas of
our new kernel function. The first one is peptide sample fractionation predic-
tion in SAX-SPE, and the second one is peptide retention time prediction in
[P-RP-HPLC experiments. For peptide sample fractionation prediction, we
demonstrate that our method performs better than the established method.
In retention time prediction, we show that we obtain good predictions with
very little training data. This allows to train our predictor with a dataset
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measured in one run to predict retention times of the next runs very ac-
curately. Peptide identification is improved afterwards by filtering out all
peptides with a large deviation between observed and predicted retention
time.

Performance of Peptide Sample Fractionation Prediction

In order to be able to compare our results with existing methods, we used the
same dataset and the same setup as Oh et al. @] We randomly partitioned
our data into a training set and a test set with 120 peptides for training
and 30 peptides for testing. Performance was measured by classification
success rate (SR), which is the number of successful predictions divided by
the number of predictions. The whole procedure was repeated 100 times
to minimize random effects. The training was conducted by a 5-fold cross-
validation (CV) and the model was trained using the best parameters from
the CV and the whole training set.

To compare our new kernel function with established kernels, we used the
best four feature combinations of Oh et al. @] and trained an SVM with
the polynomial and the RBF kernel for each feature combination. Feature
number one is molecular weight, the second is sequence index, the third is
length, and the fourth feature is the charge of the peptide. We used the
same evaluation setting as described above and in the 5-fold CV the SVM
parameter C' € {27*-2|i € {0,2,...,14}}. For the o parameter of the RBF
kernel, o € {2715-2/|i € {0,1,...,24}} and for the degree d of the polynomial
kernel, d € {1,2,3}.

The results are shown in Table Bl It seems as if the fourth feature (the
charge of the peptide) is the most important factor but molecular weight
also seems to improve the prediction performance.

Feature combination | Polynomial kernel RBF kernel
1,2, 3,4 0.78 0.80
1,2, 3 0.66 0.63
1,2, 4 0.78 0.80
2,3, 4 0.75 0.75

Table 3.1: Peptide sample fractionation prediction using standard
SVMs: This table shows the classification success rates of the different feature
combinations for SVMs with the polynomial and the RBF kernel on the dataset
of Oh et al. ,é/ The features are (1) molecular weight, (2) sequence index (3)
length and (4) charge of the peptide calculated as in |84].

An independent approach which just uses the sequence information of the
peptides was performed using the local-alignment kernel by Vert et al. ['@ .
Using the same setup as described above, we used the BLOSUMG62 matrix ﬁl]
and the kernel function parameters were the following:

8 €{0.1,0.2,0.5,0.8,1},d € {1,3,5,7,9,11,13} and e € {1,3,5,7,9,11,13}.
Nevertheless, the performance of these kernel approaches led to inferior re-
sults than the published method by Oh et al. [84]. Therefore more appro-
priate kernel functions are needed, like our new POBK, which is explained
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in Section BT The kernel function has a kernel parameter b which is the
border length of the peptide. A small b means that only few border residues
of the peptides contribute to the kernel function, and a border length equal
to the sequence length would mean that all residues contribute to the ker-
nel function value. To determine the best border length of the POBK, we
performed the evaluation for all b € {1,...,30}. The evaluation of border
length b depicted in Fig. Bl shows that for a b greater than 19, the SR does
not change significantly, with a slight improvement for b = 22. This is why in
the following, only the POBK for b = 22 is considered. To study the relation
between border length and the length of the peptides, we plotted a histogram
of peptide lengths in Fig. It can be seen that with border length 22 all
amino acids of the peptides are considered in at least one of the two borders.
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Figure 3.1: Border length evaluation of the POBK: This figure shows the
evaluation of SR using different border lengths b for the POBK on the dataset of
Oh et al. [84].

A comparison of the SR for different methods can be found in Fig. B3 The
first two bars represent the SR performance of the best SVMs using standard
kernels of Table Bl The third bar demonstrates the performance of an SVM
with the local-alignment kernel. The fourth bar shows the performance of
the best predictor in Oh et al., which is 0.84. The last bar represents the SR
of the POBK for peptide sample fractionation and retention time prediction.
The SR of this method is 0.87, which is significantly better than all other
approaches. Since the dataset is very small, there is a significant deviation
between performances of different runs. Therefore, Fig. B shows a boxplot
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Figure 3.2: Length distribution of peptides in dataset: This figure shows a
histogram of the peptide lengths of the dataset of Oh et al. [84].

of the methods, for which we performed the evaluation.

Correctly Predicted Peptides in Peptide Sample Fractionation Pre-
diction

In Oh et al. [84] the prediction process with 100 random partitionings was
done for the best four predictors, and for every peptide, the whole predictions
were stored. Oh et al. then classified a peptide by the majority label which
had been assigned to the peptide. By this method, they were able to assign
127 of the 150 peptides correctly, which corresponds to an SR of 0.85.

To be able to compare this procedure with our method, we made the assump-
tion, that for a particular peptide, the SVM would make a correct assignment
more often. Furthermore, we assumed that if we also stored the predictions
for each peptide and each run, we could also get a majority predictor which
yields good performance. The evaluation of this procedure shows that we
are able to predict 134 peptides correctly in this setting, which is an SR of
0.8933. Fig. shows a histogram of the SRs for the different peptides for
the method by Oh et al. [84] and the SVM with the POBK.
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Figure 3.3: Performance comparison for peptide sample fractionation
prediction: Comparison of classification success rates for different methods pre-
dicting peptide sample fractionation on the dataset of Oh et al. 1@]

Evaluation of Model Performance for Peptide Retention Time Pre-
diction

For peptide retention time prediction, we had several goals. The first one
was to construct a retention time predictor showing equivalent performance
as established methods but requiring just a fraction of the training set size.
To demonstrate that our retention time predictor fullfills the desired con-
straints, we performed a 2-deep CV on the Petritis dataset M] described
in Section This means that we partitioned the data randomly into
ten partitions and performed a CV with the data from nine of the ten par-
titions to find the best parameters. Later, we trained our model with the
best hyperparameters and the data of the nine partitions to evaluate the
performance of the predictor on the omitted tenth partition. This was done
for every possible combination of the ten partitions and the whole procedure
was repeated ten times to minimize random effects.

A plot of the observed normalized retention time against the predicted nor-
malized retention time can be seen in Fig. B for one of the ten 2-deep CV
runs. Since the standard deviation of the Pearson correlation between ob-
served and predicted NRT over the ten runs was 0.0007, this plot is quite rep-
resentative for the model performance. Petritis et al. @] showed that their
method performs better than those of Meek ﬂﬁ], Mant et al. ﬂﬂ], Krokhin
et al. |61] and Kaliszan et al. M], using this dataset for validation. Thus, in
Table B2, we only compare the performance of our method with the work of
Petritis et al. @l]
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Figure 3.4: Boxplot for peptide sample fractionation prediction success
rates: Bozplot of classification success rates for different methods predicting pep-
tide sample fractionation on the dataset of Oh et al. 1@/ The boxplot is produced
with Matlab using standard parameters: The central mark of each box represents
the median. The box edges represent the 25th and the 75th percentiles and the
whiskers extend to the most extreme data points which are not considered as out-
liers. Qutliers are visualized by circles.

Method Number of training sequences  R?
Meek 1980 [75] 344611 0.816
Mant et al. 1988 [74] 344,611 0.833
Krokhin et al. 2004 [61] 344,611 0.844
Kaliszan et al. 2005 [46] 344,611 0.817
Petritis et al. 2003 [90] 344,611 0.870
Petritis et al. 2006 [91] 344,611 0.967
This work 1040 0.880
200 0.854
100 0.805

Table 3.2: Comparison of different retention time predictors: This table
shows the squared correlation coefficient (R?) between observed and predicted nor-
malized retention time of established retention time prediction methods presented
mn 1@/ on the Petritis test set [@/ These values are compared to our method,
the POBK, on the Petritis test set 1@/ The second column gives the number of
training sequences used. For the last two rows, subsets of the data were chosen
randomly so that 100 respectively 200 training peptides were selected.
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Figure 3.5: Histogram of classification success rate: This figure shows a
histogram of the SR of particular peptides using the majority classifier on the data
set of Oh et al. [@/ This is compared to the ensemble prediction of Oh et al.

This comparison is somewhat biased since we only had a fraction of the orig-
inal validation set for training, which means that our training set size was
300 times smaller than that of the other methods. Nevertheless, our method
performs better than the model @] which is used by Strittmater et al. M]
in their filtering approach. The only model with a better performance is the
artificial neural network with 1052 input nodes and 24 hidden nodes M] It is
obvious that a model like this needs a very large amount training data. Petri-
tis et al. M] trained their model with more than 344,000 training peptides.
Therefore, this type of model is not suitable for retention time prediction for
measurements under different conditions or with different machines because
it is very time consuming to acquire identification and retention time data
for more than 344,000 training peptides before starting the actual measure-
ments.

To demonstrate that our method is robust enough for training on verified
data of one single run, we constructed a non-redundant dataset from datasets
vdsl and vds2. A detailed description of these datasets can be found in Sec-
tion For different training sizes s € {10,20,...,170}, we randomly
selected s peptides for training and 40 peptides for testing. Fig. B indicates
that for the POBK, 40 verified peptides are sufficient to train a predictor
which has a squared correlation coefficient between observed and predicted
normalized retention time greater than 0.9 on the test set. This number is
much smaller than the number of verified peptides we get for one run since
vds1 has 144 peptides, vds2 has 133 peptides and vds3 has 116. This evalu-



58

Applications in Proteomics

ation shows that with our predictor, it is possible to measure one calibration
run with a well-defined and easily accessible peptide mixture prepared from
real biological samples to train a predictor, which can then be used to predict
retention times for the peptides very accurately. Furthermore, Fig. B shows
a comparison of the POBK to the methods introduced by Klammer et al. B]
and Petritis et al. @, M] as described in Section ETA Our method needs
significantly less training data for a good prediction and has also superior
performance if all training sequences of our dataset are used. One possible
explanation for the low performance of the models from Petritis et al. is that
their models need a larger amount of training data. This is supported by the
fact that they used about 7,000 @] and about 345,000 M] training peptides
in their studies. To compare our method with the work by Krokhin [60],
we used our verified datasets. We trained our model on vds! and predicted
the retention times for peptides of the union of vds2 and wvds3, which were
not present in vdsl. If a peptide occured in vds2 and in vds3, we only kept
the peptide identification with the biggest score. For the POBK, we per-
formed a 5-fold CV with SVM parameters C' € {2']i € {-9,-8,...,0}},
v e {0412 € {0,1,2}} and o € {0.2-1.221055'|i € {0,1,...,21}} to
determine the best parameters. Afterwards, we trained our model with the
whole training set and the best parameters and calculated the squared cor-
relation between observed and predicted retention time on the test set. This
procedure was repeated ten times to minimize random effects. Since there
exists a web server for the method by Krokhin @], we could also compare
the observed retention times with the predicted ones on our test sets with
this method. To calculate the hydrophobicity parameters a and b of this
method, we used our two standard peptides introduced in the Section
Furthermore, we used the 300 A column since the other columns led to in-
ferior results. As can be seen in Table B3, the model by Krokhin performs
quite well even though it had been developed on another type of sorbent.
Nevertheless, the POBK achieves a significantly higher squared correlation
coefficient. It should be noted that the web-server by Krokhin is restricted to
three different columns. The advantage of our method is that there is not any
restriction to a certain type of experimental setup. One only needs a small
amount of training peptides and can train a model which can immediately
be used for retention time prediction.

It should be mentioned that the POBK has a higher squared correlation

Training set Test sets POBK Krokhin [60]
vds1 (vds2 U vds3) \ vdsl  0.9570 0.9101
vds?2 (vds1 U vds3) \ vds2  0.9564 0.9212
vds3 (vdsl U vds2) \ vds3  0.9521 0.9229

Table 3.3: Evaluation of prediction performance for retention time pre-
diction using the POBK: This table shows the performances of the POBK using
our verified datasets (introduced in Section[Z13). The other columns contain the
squared correlation coefficient between the observed normalized retention times and
the predicted ones for the POBK and the method by Krokhin [@/

between observed and predicted retention time on our datasets than on the
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testset by Petritis et al. This could be due to the fact that Petritis et al.
performed peptide identification using database search M] It is commonly
accepted that this results in a significant false positive rate.
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Figure 3.6: Example figure for peptide retention time prediction: This
plot shows the observed normalized retention time against the predicted normalized
retention time for one of ten 2-deep CV runs on the Petritis test set [@/ Since
every peptide occurs exactly once in the test set, this plot shows predictions for all
of the peptides in the Petritis dataset.

Improving Peptide Identifications by Using Retention Time Pre-
diction

The second goal for retention time prediction was to elaborate a retention
time filter which could be used for improving peptide identifications. In this
setting, we trained our learning machine on one of the vds (i.e. wvdsl) and
predicted the retention times for the remaining ds (i.e. ds2 and ds3). The
peptides of the training and test sets were made disjoint by removing all
identifications of the test set which belonged to spectra having an identifi-
cation which was also present in the training set. On every training set, we
performed a 5-fold CV with SVM parameters C' € {2/|i € {—9,—8,...,0}},
v € {0.4-1.2i € {0,1,2}} and o € {0.2-1.221055')i € {0,1,...,21}}. Since
the results of the POBK for all three datasets in Table show nearly the
same squared correlation coefficient of about 0.95 between observed and pre-
dicted normalized retention times, we restricted ourselves in the following to
training our learning machine on vds3 and evaluated the filtering capability
of our filtering approach on ds! and ds2.

The performance evaluation of our filter model was done by a two-step ap-
proach. In the first step, we measured the number of true positives and the
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Figure 3.7: Learning curve for peptide retention time prediction: This
plot shows the Pearson correlation coefficient depending on the number of train-
ing samples for the union of vdsl and vds2. For every training sample size, we
randomly selected the training peptides and 40 test peptides and repeated this evalu-
ation 100 times. The plot shows the mean correlation coefficients of these 100 runs
for every training sample size as well as the standard deviation for the POBK, the
methods introduced by Klammer et al. mj using the RBF kernel, and the meth-
ods by Petritis [@, . The vertical line corresponds to the minimal number of
distinct peptides in one of our verified datasets which was acquired in one run.

number of false positives for the identifications returned by the Mascot ﬂﬁ]
search engine. This was conducted for different significance values. Mascot
provides a significance threshold score for the peptide identification at a given
significance level (0.05 in all our studies). In order to be able to compare the
identification performance at different levels of certainty we chose different
fractions of the significance threshold score. This means for example, that
for a fraction of 0.5, all identifications have to have a score which is equal to
or greater than half of the significance threshold score. The evaluation was
accomplished for varying threshold fractions ¢t € {0.01,0.02,...,1}. In this
setting, we could evaluate the precision. This is the number of true identifi-
cations with a score higher than ¢ times the significance threshold divided by
the number of spectra having at least one identification with a score higher
than t times the significance threshold score. If there was more than one
identification with the maximal score for one spectrum, the spectrum was
excluded from the evaluation. In the second step, we filtered the data by our
retention time model which was trained on the training set and conducted the
same evaluation as in the first step. After this, we compared the classification
performance of these two evaluations. Fig. a) demonstrates the good pre-
cision for identifications with high Mascot scores. A threshold fraction equal
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to one means that all identifications have a score equal or larger than the
significance threshold score given by the Mascot search engine. Nevertheless,
even for these identifications, filtering with the retention time filter improves
the precision from 89 to 90%. An even greater improvement can be achieved
for identifications with smaller scores. If all identifications are constrained to
have a score equal or larger than 60% of the significance threshold score, the
precision improves from 55 to 77% by using our filter. A precision of 0.77 is
still quite good and, as can be seen in Table B4l the number of true positives
increases from 350 to 557. This means that a significantly larger number
of spectra can be identified with an acceptable number of false positives by
applying our retention time filtering approach. Fig. b) shows that our
model is valuable for removing false identifications since many false positives
have larger deviations between observed and predicted NRT than allowed and
are removed by our filter (threshold fraction of 0.95). Fig. c¢) shows this
even more drastically for a threshold fraction of 0.6. The whole evaluation
shows that our retention time prediction can be used to improve the level of
certainty for high-scoring identifications and also to allow smaller thresholds
to find new identifications with an acceptable number of false positives.
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Figure 3.8: Visualization of filter performance: This plot shows the improve-
ment in precision one can get by using our retention time filter for a) varying frac-
tions of the significance threshold value, b) all predictions of spectra having a score
equal or greater than 95% of the significance threshold value, c¢) all predictions of
spectra having a score equal or greater than 60% of the significance threshold value.
The model was trained using the vds3 dataset and the performance was measured
on ds1 and ds2. If there was more than one spectrum with the same identification
we plotted the mean values of the observed NRT versus the predicted NRT.



Fraction of threshold | tp fp Precision tp with filter fp with filter Precision with filter
0.0 683 2572 0.2098 699 626 0.5275
0.1 682 2460 0.2171 692 602 0.5348
0.2 678 2260 0.2308 683 555 0.5517
0.3 669 1909 0.2595 668 483 0.5804
0.4 654 1410 0.3169 646 380 0.6296
0.5 624 868 0.4182 609 261 0.7000
0.6 D7H 474 0.5481 557 166 0.7704
0.7 516 235 0.6871 500 103 0.8292
0.8 468 125 0.7892 452 66 0.8726
0.9 420 72 0.8537 404 49 0.8918
1.0 366 46 0.8883 350 38 0.9021

Table 3.4: Evaluation of filter performance: This table presents the precisions of the identified spectra for varying fractions of the significance
threshold with and without retention time filtering. The model was trained using the vds3 dataset and the performance was measured on dsl and
ds2. In this context, tp stands for the number of true positives (correct hypotheses which are significant at the particular significance level) and fp
for the number of false positives (false hypotheses which are significant at the particular significance level). The precision is tp divided by the sum

of tp and fp.
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3.1.5 Conclusions

In this section, we introduced a new kernel function which was successfully
applied to two problems in computational proteomics, namely peptide sample
fractionation by SAX-SPE and high resolution peptide separation by IP-RP-
HPLC. Furthermore, we demonstrated that the predicted retention times can
be used to build a p-value-based model which is capable of filtering out false
identifications very accurately.

Our method performs better than all previously reported peptide sample
fractionation prediction methods. For retention time prediction, our method
is (to our knowledge) the only learning method which can be trained with a
small training size of 40 peptides, while still achieving a high correlation be-
tween observed and predicted retention times. This small required training
set allows us to imagine the following application which would be very helpful
for proteomic experiments. One could identify a well-defined protein mixture
before starting the experiments and use the verified peptides for training the
predictor. Next, the predictor can be used to predict retention times for all
identifications of the following runs. This predicted retention time can then
be applied to improve the certainty of the predictions. It can also be used to
identify a much larger number of spectra with an acceptable number of false
positives. This is achieved by lowering the significance threshold and filter-
ing the identifications by our p-value-based retention time filter. The best o
was usually between five and seven in our experiments. A very small value
of o (e.g., 0.3) would indicate, that positional information is very important
and that the positional smearing does not improve prediction results. A very
large o (e.g., 30) would indicate that positional information is not important
for the prediction problem. Since the optimal ¢ was between five and seven,
this indicates that the positional smearing is reasonable. The more training
sequences are available, the better the positional information is represented.
Therefore, the optimal o is expected to be smaller when more training se-
quences are available.

Since all our methods are integrated into the OpenMS @] library, which
is open source, every researcher is able to use the presented methods free
of charge. Also, we offer the prediction models as tools which are part of
the OpenMS proteomics pipeline (TOPP) @] These tools can be easily
combined with other tools from TOPP building sophisticated applications in
computational proteomics. One application is, for example, a simulator for
LC-MS maps, called LC-MSsim |, which was built using OpenMS and
TOPP. The RT of the peptides are predicted using an SVM and the POBK.
Another application is the combination of retention time prediction, predic-
tion of peptide proteotypicity (see Section B3), and peptide fragmentation
prediction to design scheduled multiple reaction monitoring experiments E],
which we presented at the Proteomic Forum 2009 (manuscript in prepara-
tion).

Further research could be pursued to enhance retention time prediction by us-
ing multiple kernel learning (MKL) HE] with the 2-norm optimization ﬂﬁ]
Therefore, one could combine the POBK and OBK for different sigmas and
k-mer lengths with other kernels which contribute features that cannot be
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directly learnt from the sequence. In preliminary studies, we evaluated the
performance of such kernel combinations with the 1-norm optimization but,
unfortunately, did not get increased performances. The 1-norm multiple ker-
nel learning tends towards sparse kernel combinations and, therefore, does
not lead to better performances in many applications, which could explain
the results of our experiments. The 2-norm optimization problem of Kloft et
al. ﬂﬁ] was presented only very recently. It would be very interesting to eval-
uate different kernel combinations with this approach to improve retention
time prediction.
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3.2 Two-Dimensional Chromatographic Sep-
aration Prediction

3.2.1 Introduction

We already saw in Section Bl that there are many approaches based on
machine learning techniques in which a measured parameter such as the
chromatographic retention time of a peptide is compared to a predicted one
to filter out false spectrum identifications in mass spectrometry-based exper-
iments m, @] In addition to chromatographic retention, there were other
properties of the peptides which were used to improve the number of identi-
fied spectra. Klammer et al. @] predicted the fragmentation of spectra and
through this they could improve the identification process by incorporating
the predicted likelihood of a spectrum identification to be correct. Uwaje et
al. ] used a database of measured pairs (peptide, pI) to improve peptide
identification.

Two-dimensional separations are most commonly used for the analysis of
complex samples due to limited peak capacities of only one separation di-
mension. The most common combinations of chromatographic techniques
are strong cation exchange chromatography (SCX) with reversed-phase (RP)
or ion-pair reversed-phase (IP-RP) high-performance liquid chromatography
(HPLC) E] Toll et al. @] and Delmotte et al. [20] were able to show that
peptide separation on reversed-phase stationary phases using different pH
and eluent additives showed significant orthogonality. In the present work,
an offline combination of RP-HPLC at pH 10.0 with IP-RP-HPLC at pH 2.1
was used @] Although the two separation dimensions are not fully orthogo-
nal, the combination leads to better ”"peptide identification yield” compared
to the classical combination of SCX with RP m] This is mainly based on the
fact that in this combination the fractions collected from the first-dimension
separation contain no salt and can, after concentration, be injected directly
into the second separation system.

In this section we significantly extend the applicability of peptide retention
prediction M] to whole proteome analysis by incorporating retention time
predictors for both separation dimensions. By doing so, we are able to in-
corporate essentially four different peptide properties into an identification
scheme, namely peptide retention in high-pH reversed chromatography, pep-
tide retention in low-pH ion-pair reversed-phase chromatography, and intact
molecular mass and fragmentation pattern of a peptide. This means that
we build a model for the first as well as the second separation dimension
and then use predicted and observed retention times to build one filter for
the first as well as one filter for the second dimension. We show that each
filter independently improves the precision of the spectrum identifications,
whereas the largest improvement in precision can be achieved by combining
the filters. In this way, one can get about 35% more spectrum identifications
at the same precision for a standard protein mixture analyzed according to
this protocol. In order to show the feasability of this approach to the anal-
ysis of whole proteomes, the filtering methods were applied to a whole cell
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lysate of the Sorangium cellulosum bacteria, which also yielded an increase
of about 26% in terms of the number of uniquely identified spectra.

3.2.2 Methods and Data

Experimental Setup

The data sets for the standard mixture and the whole digested proteome
were generated with emphasis on high reproducibility in terms of retention
times using an actively split capillary HPLC system (Ultiate 3000, Dionex,
Germering, Germany). This was done by Andreas Leinenbach, who was
then at the laboratory of Prof. Dr. Christian Huber at Saarland University.
Separated peptides were detected and identified by electrospray ionization
tandem mass spectrometry (ESI-MS/MS) in an ion trap mass spectrometer
(HCT Ultra PTM Discovery System, Bruker Daltonics, Bremen, Germany).
Two different tryptic peptide mixtures were analyzed: a simple protein di-
gest as a training and validation data set and a tryptic digest of a whole
protein extract from Sorangium cellulosum. The simple protein mixture con-
sisted of albumin (220 fmol/ul, bovine serum, Sigma Aldrich, St. Louis, MO,
USA) and thyroglobulin (410 fmol/ul, bovine thyroid gland, Fluka, Buchs,
Switzerland). The proteomic sample was from Sorangium cellulosum (So
ceb6, digest of 690 ug of protein ectract), a soil-dwelling bacterium from
the group of myxobacteria. Proteins were digested with trypsin (Promega,
Madison, WI, USA) using published protocols M] The peptide mixtures
were separated using an offline two-dimensional HPLC setup as described in
reference @] They combined reversed-phase (RP) high-performance liquid
chromatography (HPLC) at pH 10.0 with micro ion-pair reversed-phase (IP-
RP) HPLC at pH 2.1. Finally, the training data set was used to characterize
both separation dimensions. In total, 36 fractions of the simple protein digest
(fractions 4 to 39) and 31 fractions from the analysis of Sorangium cellulosum
(fractions 14 to 44) were analyzed in triplicate in the second dimension.

Peptide Identification and Normalization of Retention Times

We aligned the MS/MS spectra of the standard mixture by the algorithm
of Lange et al. | using standard parameters. This was also done for
the MS/MS spectra of S. cellulosum. We identified the MS/MS spectra
using Mascot (version 2.2) ﬂﬁ] with one missed cleavage, precursor tolerance
1.3 Da, carboxymethyl as fixed modification and deamidated asparagine or
glutamine as well as oxidized methionine as variable modifications. For the
standard mixture, we searched against the MSDB database, restricted to
chordata (vertebrates and relatives). For the S. cellulosum spectra we used
an in-house database containing all protein sequences of the organism con-
structed from the published DNA sequence ﬂJ_T:] For both data sets we also
searched the spectra against a reverse version of the database. In this way,
we could estimate the FDRs and ¢-values of the spectrum identifications as
described in @] and Section 22201

All spectrum identifications corresponding to peptides shorter than six amino
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acids were filtered out since identifications of shorter length are less reliable
and in most cases they cannot be mapped uniquely to protein sequences.

Prediction of Retention Times and Filtering by Retention Times

In this application area, the retention times were predicted with an improved
version of the method introduced in Section Bl The retention time predic-
tors use v-SVR, introduced in Section 2T and the POBK to train the
predictor. All methods are integrated into the open-source framework for
mass spectrometry (OpenMS) Eﬂ] The tools for retention time prediction
and filtering are part of the OpenMS Proteomics Pipeline (TOPP) @] We
now describe the extensions to the methods presented in Section Bl

The main advantage of the POBK in application to computational pro-
teomics is that it enables the learning machine to learn chemical properties
of the data (e.g., composition, sequence length, hydrophobic regions) directly
from the amino acid sequence. It was shown that very little training data
is needed for v-SVR in combination with the POBK to achieve very accu-
rate retention time prediction models. The kernel operates directly on the
sequence data on which every different amino acid is considered as a separate
letter in the alphabet. In this section, we extend this alphabet to modified
amino acids. For example, a modified methionine with an additional methyl
group is treated differently than an oxidized methionine. The method does
not rely on any special features because it learns the necessary features for the
particular separation process directly from the training data. Therefore, the
POBK can be applied to a wide range of problems like separation prediction
in strong anion-exchange chromatography and reversed-phase chromatogra-
phy. It can also be used to learn peptide retention behavior under different
pH conditions.

A further extension to the method introduced in Section Bl is that one does
not have to normalize the retention times to the interval between zero and
one. Instead, the aligned retention times can be used directly to train the
learning machine. The learned retention time models for each dimension are
then used to build a retention time filter for the corresponding dimension.
The filters are based on a statistical test which measures how likely it is,
that the peptide under consideration is a true identification. Therefore, the
measured and the predicted retention times are taken into account and the
user can specify a certain significance level for the filter.

Evaluation of Precision of the Identifications

Precision (PR) was measured for different subsets of the spectrum identifi-
cations. PR is defined as the number of true positives (TP) divided by the
sum of the number of true positives and the number of false positives (FP):

TP

PR = TP+ FP

(3.16)
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In our application, the precision is the number of spectra for which the best-
scoring identification is correct divided by the total number of identified spec-
tra. Before the evaluation of the precision, we removed all spectra for which
the best score was not unique among the identifications for the particular
spectrum.

3.2.3 Results and Discussion
Retention Time Prediction at pH 10.0 and pH 2.1

Because fractions of peptides were taken in the first dimension, we can only
assign retention windows for peptide elution and take the median of the elu-
tion window as the retention time for all peptides contained in a fraction.
To show that the method performs well for the prediction of retention times
in both dimensions, we performed a nested cross-validation on a subset of
the data with high-quality identifications. Therefore, we utilized all spec-
trum identifications with a g-value lesser than or equal to 0.1 and a peptide
length greater than five residues that were a substring of the known protein
sequences of the standard mixture. If there were several copies of the same
spectrum identification, we took a median of the retention times. Before we
measured the performance of the retention time prediction models, we mea-
sured the quality of the retention times of the spectrum identifications. To
do this, we calculated the standard deviation of the retention times for each
peptide that was identified more than once. The average standard deviation
was 1.36 min for the retention times at pH 10.0. In the second dimension,
where a retention time represents the exact elution time of a peptide, the
average standard deviation of retention times was 8.43 s.

The nested CV was performed in the following way: First the spectrum iden-
tifications were split randomly into five partitions. On four of the partitions
we performed a 5-fold CV to find the best parameters of the learning ma-
chine (C, v, and o). Therefore, v € {0.4-1.2"i € {0,1,2}}, and o € {0.2 -
1.221055'|i € {0,1,...,21}}. Since it is recommended to have the C' values in
the range of the maximal label ﬂa}, we had C' € {0.001,0.01,0.1, 1, 10, 100}
for the retention times at pH 10.0 and C' € {0.001,0.01,0.1, 1, 10, 100, 1000}
for the retention times at pH 2.1 since the retention times at pH 10.0 were
measured in minutes and the retention times at pH 2.1 were measured in
seconds. Then, we trained on the four partitions with the best parameters
of the 5-fold CV and measured the Pearson correlation between the observed
and the predicted retention times on the residual fifth partition. This was
done for every possible combination of the five partitions to get a mean per-
formance. To exclude random effects introduced by the random partitioning
of the data, we repeated the calculations five times with different random
partitionings. The average Pearson correlation coefficient between predicted
and observed retention times for the evaluation at pH 10.0 is 0.93 and 0.98
at pH 2.1. This means that the prediction of retention times works very well
for both dimensions. The better performance for the second-dimension sepa-
ration at pH 2.1 can be explained by the fact that we only collected fractions
at pH 10.0 every minute. Although an exact measurement of the retention
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times in the first dimension would increase the performance of the predic-
tion methods, this is experimentally not feasible for off-line two-dimensional
peptide separations.

Elimination of False Identifications by Retention Time Filters

To show the applicability of retention time filters, we conducted the following
experiment on the standard mixture. We trained the retention time model
on all peptides yielding spectra with a g-value lesser than or equal to 0.01.
This data set contains 223 unique peptides. The retention times of these
peptides in both separation dimensions and their corresponding sequences
were utilized to perform SVR with the POBK function. Then we used the
trained models to predict retention times for both dimensions for the whole
data set, similar to Klammer et al. @] With the two models for retention
time prediction, we could build a filter for each dimension as described in
Section BZ2A Since the model for the first-dimension separation at pH 10.0 is
slightly worse than the model for the second dimension at pH 2.1, we set the
significance level of the retention time filter of this dimension to 0.01. This
means that the probability of filtering out a correct identification is smaller
than or equal to 0.01. The significance level for the filter of the second
dimension was set to the standard value, which is 0.05. Since we knew which
proteins were in the mixture and could therefore distinguish false positives
from true positives, we were able to evaluate the performance of the filtering
approach. Therefore, we measured the precision as described in Section
on all spectrum identifications having a ¢g-value smaller than or equal to 0.01
and correspondingly for ¢g-values 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, and 0.2. The
precision was measured for the data sets without filtering as well as with one
of the filters or with both filters in combination. Fig. B shows that each
filter improves the precision for every evaluated subset. Furthermore, it can
be seen that the combination of both filters leads to the biggest improvement
in precision. The numbers underlying the figure are shown in Table B3 which
contains additional data for g-value thresholds 0.25, 0.3, ..., 0.5.

The complementarity of both filters is demonstrated by Fig. BI0 which
shows the number of correctly identified spectra with regard to precision.
To calculate the underlying values, we took the precision of the different
identification sets and evaluated for each data set how many spectra were
identified correctly. It can be seen that both filters improve the number
of correctly identified spectra. Moreover, the biggest improvement in the
number of correctly identified spectra can be achieved for a combination
of both filters. For example, at precision 0.94, meaning that 94% of the
identifications are correct, one gets 1567 correctly identified spectra by using
both filters compared to 1165 spectra without filtering. This corresponds to
a 35% increase in peptide identifications at the same level of precision. The
same precision of 0.94 is achieved for the spectrum identifications having
a g-value lesser than or equal to 0.05 with additional filtering by our two-
dimensional retention time filter or for all spectrum identifications with a
g-value lesser than or equal to 0.01 without filtering.



q value unfiltered filtered in 1st dimension filtered in 2nd dimension filtered in both dimensions
threshold | tp fp  precision tp fp precision tp fp precision tp fp precision
0.01 1165 70 0.943 1106 58 0.950 1165 64 0.948 1106 56 0.952
0.02 1345 100 0.931 1279 80 0.941 1342 85 0.940 1277 72 0.947
0.03 1468 130 0.919 1395 99 0.934 1464 101 0.935 1393 83 0.944
0.04 1577 159 0.908 1495 115 0.929 1569 117 0.931 1489 91 0.942
0.05 1663 183 0.901 1575 125 0.926 1653 128 0.928 1567 96 0.942
0.10 1962 393 0.833 1852 239 0.886 1942 221 0.898 1836 158 0.921
0.15 2104 598 0.779 1981 329 0.858 2078 292 0.877 1960 198 0.908
0.20 2230 807 0.734 2102 422 0.833 2198 339 0.866 2076 223 0.903
0.25 2315 1097  0.678 2185 553 0.798 2282 415 0.846 2158 267 0.890
0.30 2408 1360  0.639 2268 677 0.770 2366 475 0.833 2233 303 0.881
0.35 2512 1780  0.585 2367 877 0.730 2466 569 0.813 2328 356 0.867
0.40 2595 2562  0.503 2443 1166 0.677 2542 783 0.765 2401 444 0.844
0.45 2665 3368  0.442 2505 1523 0.622 2606 954 0.732 2458 535 0.821
0.50 2723 4044  0.402 2562 1809 0.586 2663 1132 0.702 2513 619 0.802

Table 3.5: Overview of precision depending on q-value threshold and filtering: This table shows the precision for different subsets of the
data. Every row corresponds to one subset. The q-values of the spectrum identifications have to be smaller than or equal to the q-value threshold
in the first column. tp stands for the number of true positives (correct hypotheses which are significant at the particular significance level) and fp
stands for the number of false positives (false hypotheses which are significant at the particular significance level). The precision is defined as tp

/ (tp + fp).
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Figure 3.9: Comparison of precision depending on the q-value of the
identifications with and without filtering: This plot shows the precision for
various data sets with and without filtering. At every point all spectrum identifi-
cations having a q-value smaller than or equal to the x-axis value are considered.

To illustrate the filtering capabilities, we plotted the observed retention time
against the predicted retention time for the identifications with g-value lesser
than or equal to 0.05. Fig. BT1l shows the performance of the filter for the
separation at pH 10.0. It can be seen that the correlation between observed
and predicted retention time is quite good for the correct identifications.
The lines represent the 99% confidence intervals for the retention times pre-
dicted by our model for peptide separation at pH 10.0 (see Section for
details). Furthermore, one can see that there are false identifications which
are filtered out only by the filter of the first dimension (crosses without circle).
This effect can also be seen in Fig. BT, which demonstrates the performance
of the filter for the second-dimension separation at pH 2.1. The correlation
between observed and predicted retention time is even better than for the
first retention time dimension.

Using RT Filters to Improve Identifications in Whole Proteome
Analysis

The same protocol as above was applied to the Sorangium cellulosum data
to obtain more identifications, keeping the precision at the same value. We
did not train on all spectra with a ¢-value smaller than or equal to 0.01 since

our learning method does not require such a large amount of training data M]

Instead, we just used the 600 best-scoring identifications. We then utilized



72

Applications in Proteomics

3000 - - .

2500

2000

1500

1000 -

—O— unfiltered
500¢| - =A~filtered in first dimension 7
—+— filtered in second dimension
= B = filtered in both dimensions

number of correctly identified spectra

0 Il Il
0.8 0.85 0.9 0.95

precision

Figure 3.10: Comparison of correctly identified spectra with and without
filtering: This plot shows the number of correctly identified spectra with and with-
out filtering. From right to left, the points correspond to the different partitions of
the data which were evaluated. The first point is for all spectrum identifications
with a q-value smaller than or equal to 0.01. The following points are for the
q-values 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, ..., 0.5 if the corresponding measured
precision was larger than or equal to 0.8. The numbers underlying this figure can
be found in Table [T (precision vs tp).
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Figure 3.11: Filter performance of separation at pH 10.0: This plot shows
observed against predicted retention time (first dimension) for all spectrum iden-
tifications having a q-value which is lesser or equal to 0.05. The lines show the
borders of the filter (at p-value 0.01). FEvery point which is not between the two
lines is filtered out by this filter. Points having an extra circle are also filtered out
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Figure 3.12: Filter performance for separation at pH 2.1: This plot shows
observed against predicted retention time (second dimension) for all spectrum iden-
tifications having a q-value which is lesser or equal to 0.05. The lines show the
borders of the filter (at p-value 0.05). FEvery point which is not between the two
lines is filtered out by this filter. Points having an extra circle are also filtered out
by the filter of the first dimension (pH 10.0).
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the trained models to predict retention times in both dimensions for the
whole data set of mass spectrometrically identified S. cellulosum peptides.
The study on the standard mixture showed that one can achieve similar pre-
cision by choosing all spectrum identifications with a g-value smaller than or
equal to 0.01 without filtering or choosing all spectrum identifications with a
g-value smaller than or equal to 0.05 and filtering by our two retention time
filters. Since, in the whole proteome, we can not directly distinguish between
true and false positive identifications, we evaluated the total number of iden-
tified spectra and the number of identified unique peptides for these two sets
of identification parameters. At a g-value of 0.01 we annotated 21,038 spectra
which identified 6,202 unique peptides, and at a g-value of 0.05 with addi-
tional RT-filtering we annotated 25,347 spectra, which yielded 7115 unique
peptide identifications. This represents an increase in the number of suc-
cessful peptide identifications by 15% without any loss in the precision of
peptide identifications. In this evaluation, peptides with the same amino
acid sequence but different post-translational modifications were considered
to be different peptide identifications. Furthermore, we looked at the over-
lap of the unique peptide identifications between the two sets. The majority
of identifications are part of both sets. Nevertheless, there are 720 unique
peptide identifications in the unfiltered set and 1,633 unique peptide iden-
tifications in the filtered set. This means that one can get 1,633 or more
than 26% more unique peptide identifications by combining the identifica-
tions of these two sets compared to the number of identifications one gets by
just taking the unfiltered identifications. The numbers are plotted as a Venn
diagram in Fig. B3

3.2.4 Conclusions

We present a new approach to improve the number of correctly identified
spectra resulting from mass spectrometry experiments by using experimental
data that are inherent to the analytical process. We are able to build reten-
tion time predictors for a two-dimensional chromatographic separation using
the retention times of peptides identified with high confidence by tandem
mass spectrometry. Thus, no additional calibration using standard samples
was necessary. The retention time filters were successfully applied to filter
out false positive identifications. Moreover, we show that the scoring thresh-
old can be lowered to include more previously false negatives (and to get
more correct spectrum identifications) at the same level of precision in terms
of correct identifications. This is accomplished by incorporating the reten-
tion time predictors into a two-dimensional filter which removes many false
positive identifications. Therefore, we can achieve the same rate of precision
although the mass spectrometric scoring threshold is smaller. The method
was validated on a standard protein mixture. Finally, we applied the same
method to the whole proteome analysis of the Sorangium cellulosum bacte-
ria. The analysis showed that by using this method we can find about 26%
more unique spectrum identifications.

It would be interesting to apply this two-dimensional filtering to data from
other two-dimensional chromatographic separation techniques. We already
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Figure 3.13: Increase in unique identifications on the Sorangium cellu-
losum data set: This plot shows the number of unique spectrum identifications
of two sets, for which the precision is estimated to be equal (based on empirical
results on standard mizture). In the first set are all unfiltered identifications with
a q-value smaller than or equal to 0.01 and in the second set are all spectrum iden-
tifications having a q-value smaller than or equal to 0.05 which are not filtered out
by any of the two retention time filters. By combining the identifications one gets
7,835 instead of 6,202 unique peptide identifications.

showed in Section Bl that the POBK can be used to predict separation
in strong anion exchange chromatography. Therefore, it is very likely, that
a two-dimensional filter can be built for data measured by a combination
of strong cation exchange (SCX) chromatography and reversed-phase chro-
matography (see Section 2Z22).
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3.3 Prediction of Proteotypic Peptides

3.3.1 Introduction

The two main goals in computational proteomics are identification and quan-
titation of all proteins in a protein mixture. Unfortunately, in nearly every
mixture, there are highly abundant proteins as well as low-concentration pro-
teins. This creates the problem that high-abundance proteins are identified
several times but those in low abundance are often missed. As explained
in Section EZZ4] the highest peaks of the MS1 spectrum are chosen for frag-
mentation in the second stage of the mass spectrometer. Only those peptides
chosen for fragmentation can be identified by the instrument. This is one of
the reasons why certain peptides have a higher likelihood of being detected
by the instruments @] Kuster et al. @] showed that certain peptides of a
protein can be identified more often than others of the same protein. They
called peptides that are experimentally observable and uniquely identify a
protein or protein isoform proteotypic peptides. In their study, they sug-
gested that instead of trying to measure all possible peptides, one should
concentrate on the proteotypic peptides of the proteins of interest for better
reproducibility of the results.

In the same paper, they introduced a database called PeptideAtlas, which
was intended as a resource for experimenters to obtain and store peptide
identifications. If the database contained measurements for all proteins, one
could look-up the proteotypic peptides for the proteins of interest and limit
the analysis to this small part of the whole peptide space. Unfortunately,
measurements are very time-consuming and costly and the number of differ-
ent proteins is large. For newly sequenced genomes, the full proteome is still
to be presented. Furthermore, peptides which are observable by a certain
type of experimental design (e.g., LC-ESI-MS/MS) may be unobserved by
another experimental design (e.g., PAGE-MALDI-TOF/TOF).

To be able to measure proteins for which no experimental data of proteotypic
peptides is available, computational tools for the prediction of proteotypic
peptides are needed. Tang et al. M] presented the first method for the
prediction of proteotypic peptides, but methods for prediction of proteo-
typic peptides were also introduced in the work of Mallick et al. ﬂﬁ], Lu et
al. ml]j, and Webb-Robertson et al. @] All methods have in common that
they use standard physico-chemical features together with standard learning
techniques to build the predictor. Unfortunately, none of the groups com-
pared their method to the methods of any other group. This complicates
the choice for the researchers. In this work, we introduce two new predic-
tors of proteotypic peptides based on the OBK or the POBK and an SVM.
We compare the performance of each predictor on the dataset of Mallick
et al. to an SVM, which uses the same features as introduced by Mallick
et al. ﬂﬁ] and Lu et al. m] benchmarked in M] In this comparison, our
methods perform significantly better than the other methods, although they
do not contain any specialized features. Furthermore, we investigate which
properties of a peptide make it proteotypic. Therefore, we first analyze the
different datasets by standard approaches and afterwards, visualize which
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amino acids are important for the resulting classifiers. This analysis shows
that positive and negative amino acids strongly determine detectability of
a peptide. For MALDI measurements, we can also support the hypothesis
that aromatic amino acids ﬂ] contribute positively to peptide detectability.
Furthermore, we support the hypothesis that an arginine at the C-terminal
end of the peptide contributes more to peptide detectability than a lysine for
MALDI experiments @]

3.3.2 Methods and Data
Data

We used four different datasets for performance evaluation of methods for
proteotypic peptides prediction. The datasets were introduced by Mallick et
al. [73] and contain measurements of yeast proteins on four different plat-
forms. For each platform it consists of a set of proteotypic peptides and a set
of non-observed peptides, which are neither substrings nor do they contain
substrings of proteotypic peptides. Because of the different measurement
platforms, the datasets are named as follows:

e ICAT-ESI: This dataset is measured by ICAT labelling with LC-ESI-
MS/MS.

e MudPIT-ESI: This dataset is measured by a combination of MudPIT
and ESI-MS/MS.

e PAGE-ESI: This dataset is measured by one-dimensional (1D) gel elec-
trophoresis followed by LC-ESI-MS/MS.

e PAGE-MALDI: This dataset is measured by 1D gel electrophoresis fol-
lowed by MALDI.

All sequences also contain the flanking residue at the N- and C-terminal
ends because Mallick et al. had better prediction results by including them.
This means that the second amino acid of the sequence is the residue at
the N-terminal end and the second to last amino acid is the residue at the
C-terminal end of the peptide.

Visualization of Important Amino Acids

One common argument against applying machine learning approaches is the
lack of interpretability of the results. The machine learning algorithm is in
these cases called a ”"Black Box”. Especially for Support Vector Machines
this reasoning was often an argument against using string kernels although
there exist approaches to elucidate the importance of certain k-mers regard-
ing SVM classification @, E, E] Since we use the POBK and the OBK,
introduced in Section BET2, with k-mer length one for classification of proteo-
typic peptides, we visualize the discriminant similar to Meinicke et al. @]
POIMs of Sonnenburg et al. m] just improve the visualization performance
for k-mer lengths greater than one.

As introduced in Section BT the feature map of the OBK is defined as:
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in which the w; are the different k-mers, L and R are used for the left and
the right borders, and the p,, functions are the oligo functions of the corre-
sponding k-mer. One can visualize the training data by weighting them with
the a; from the SVM and summing them for each position and each oligo. If
one is, for example, interested in the contribution of the amino acid proline
(P) at position five in the left border, the importance value is calculated by:
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Given a position t and an oligo w, the importance weight w is calculated by:
LIR o [LIR
whB(t) = 20@;@,‘ l(1).

The weight values can then be computed for every position-oligo combination
and the resulting matrix can be visualized by interpreting the weights as color
values. The weight matrix for the POBK can be computed analogously. A
low (high) weight corresponds to a signal, which can be more often found in
sequences which are predicted negative (positive). Therefore, the image of
the weight matrix allows direct interpretation of the discriminant learned by
the SVM.

3.3.3 Results and Discussion
Performance Evaluation of Different Predictors

This evaluation compares the performance of the OBK and POBK to the
performance of the features introduced by Mallick et al. E] and Lu et al. @]
presented in reference M] For this purpose, we chose an SVM as the clas-
sifier and trained it using the OBK and POBK.

The datasets contain many more negative than positive samples. We chose
the datasets exactly as in m] To transparently access the performance
of the different approaches, we only used balanced datasets for the evalua-
tion. Furthermore, we wanted to compare the performances across datasets.
Therefore, all datasets had to contain the same number of samples, which
is why the number of training samples from each class is 697: this is the
number of positive samples in the smallest dataset. Thus, every evaluation
dataset contained 697 positive samples and 697 negative samples. The sam-
ples were chosen randomly if a dataset contained more than 697 of them, so
as not to introduce a bias in the evaluation due to sampling. This was done
ten times to get a mean performance value. The performance was measured
by 5-fold cross-validation and the performance measure was the classification
rate. The results of the comparison are shown in Table B8 It can be seen
that the POBK performs better than all other methods on nearly all datasets
except the PAGE-MALDI dataset, where the features of Lu et al. m] lead

to similar performance results.
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Dataset Mallick et al. Lu et al. OBK POBK
MudPIT-ESI 0.82 4 o0.01 0.84 & 001 0.84 001 0.85 +0.01

PAGE-ESI 0.83 £ 0.01 0.84 £ 001 0.86 & 0.01 0.87 & 0.01

ICAT-ESI 0.81 £ 0.01 0.83 £ 001 0.83 001 0.84 & 0.01
PAGE-MALDI 0.86 + 0.01 0.88 £ 001 0.87 £ 001 0.88 % 0.01

Table 3.6: Comparison of classification rates for proteotypicity predic-
tion: This table shows the classification rates and standard deviations of the dif-
ferent approaches for predicting proteotypic peptides. The column labeled Mallick
et al. represents the approach with the features of Mallick et al. and the column
labeled Lu et al. represents the approach with the features of Lu et al. as presented
n M/ Columns labeled OBK and POBK represent Oligo-Border Kernel and
the Paired Oligo-Border Kernel, respectively.

Analysis of Different Datasets with Standard Statistics

The goal of this study was not only to come up with the best predictor for
proteotypic peptides, but also to elucidate how proteotypic peptides differ
from non-proteotypic peptides. Therefore, we first analyzed the datasets ac-
cording to the log of the ratio of the number of positively charged amino
acids to the number of negatively charged amino acids. This means that we
calculated the ratio for each peptide in each dataset and plotted boxplots for
the log of the ratios for the proteotypic peptides and for the non-observed
peptides for each dataset. The boxplots can be seen in Figs. BT4 and A
general trend is that non-observed peptides contain more positively charged
amino acids than negatively charged ones. Furthermore, it can be seen that
proteotypic peptides contain more negatively charged amino acids than posi-
tively charged amino acids for the ICAT-ESI and the MudPIT-ESI datasets,
whereas this trend cannot be observed for the PAGE-ESI and the PAGE-
MALDI datasets (median of the log of the ratios is equal to zero).

Analysis of Proteotypic Peptides by Two Sample Logo

To further investigate the properties of proteotypic peptides, we analyzed
the datasets with the two sample logo method by Vacic et al. @] Given
a multiple sequence alignment (MSA) for a positive set of sequences and
an MSA of negative sequences, the method can be used to find enriched
and depleted signals in the positive MSA. Since peptides usually differ in
length, we aligned all peptides at the C-terminus and stripped off the flanking
residues. This implicitly assumes that signals are distributed equally over the
sequence independent of the length of the peptide. This assumption might be
too strong, but nevertheless one can gain a first insight into the importance
of amino acids at certain positions. The OBK and POBK are also based
on a similar assumption, but by the positional smearing by the parameter
o, the bias to certain positions introduced by the alignment can be reduced.
Furthermore, OBK and POBK consider the alignements from both termini.
A general trend which can be found in all two sample logos is that the
positively charged amino acids lysine (K) and arginine (R) are depleted in
the set of proteotypic peptides. Fig. BI6 shows this trend for the PAGE-ESI



3.3 Prediction of Proteotypic Peptides

81

o o
2l — T - T -
| |
| |
151 o | | |
o | [¢) |
| |
1+ © I | | -
1 I I I
I ! I !
0.5 ! I B
| |
5 | xx | X%
Qo 0 L |
IS
3 I I
g 05 I I -
=3 | I
=) [
o | | |
-1 | | | | -
| | |
|
| | | |
-1.5- | | | _
P | P
O I
° ; | i ]
o] o o]
o) o) —L o)
Q Q O Q
251 3 8 g i
@]
_3 = -
ICAT-ESI (proteotypic) ICAT-ESI (non—-observed) MudPIT-ESI (proteotypic) MudPIT-ESI (non-observed)

Figure 3.14: Boxplot of amino acid ratios for the MudPIT-ESI and
the ICAT-ESI datasets: This plot shows a boxplot of the log of the ratios of the
number of positively charged amino acids to the number of negatively charged amino
acids per peptide for peptides of the MudPIT-ESI and the ICAT-ESI datasets.
According to the T-test and the Kolmogoroff-Smirnov test, the distributions of the
ratios of the proteotypic and the non-observed peptides are significantly different
(p-value < 0.01) for both datasets.
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Figure 3.15: Bozxplot of amino acid ratios for the PAGE-ESI and the
PAGE-MALDI datasets: This plot shows a boxplot of the log of the ratios of the
number of positively charged amino acids to the number of negatively charged amino
acids per peptide for peptides of the PAGE-ESI and the PAGE-MALDI datasets.
According to the T-test and the Kolmogoroff-Smirnov test, the distributions of the
ratios of the proteotypic and the mon-observed peptides are significantly different
(p-value < 0.01) for both datasets.
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dataset. This could be an artifact of the dataset generation of the non-
observed peptides. Therefore, we restrict the following two sample logo anal-
ysis to fully tryptic peptides (without missed cleavages). For the ICAT-ESI
dataset, it can be seen in Fig. BT7, that the negatively charged amino acid as-
partate (D) is enriched. This observation fits to the analysis in Section B:33]
in which we found that there are more negatively charged amino acids for the
proteotypic peptides of the ICAT-ESI dataset. This fact cannot be seen for
the MudPIT-ESI dataset in Fig. B8 although the analysis in Section
suggested the same trend for this dataset. An explanation could be, that the
enrichment is not as significant as for the ICAT-ESI dataset. Since we use
the two sample logo method with Bonferroni correction, which is very conser-
vative, some weaker enrichments are hidden. The two sample logo without
Bonferroni correction in Fig. shows an enrichment of negatively charged
amino acids for the proteotypic peptides of the MudPIT-ESI dataset. For
the PAGE-MALDI dataset in Fig. B2l arginine at the C-terminus seems
to be highly enriched in the set of proteotypic peptides. This observation
was also reported by Krause et al. [39]. The authors hypothesized, that this
is due to the chemical properties of arginine because of the basicity of the
guanidino functionality of the arginine side chain which might result in better
ionization in the liquid and/or gas phase. At the C-terminal end of tryptic
peptides, there can only be an arginine or lysine. Therefore, an enrichment
of arginine at this position implies a depletion of lysine. An enrichment of
arginine at the C-terminal end can also be seen for the PAGE-ESI dataset in
Fig. B20, although the enrichment is not as strong as for the PAGE-MALDI
dataset (41.7% compared to 7.5%). Additionally, an enrichment for alanine
and valine can be seen.
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Figure 3.16: Two sample logo for PAGE-ESI dataset: This plot shows the
two sample logo Z@/ of the MSAs of the proteotypic and the non-observed peptides
for the PAGE-ESI dataset. Amino acids which are enriched in the proteotypic
peptides are shown at the top and depleted amino acids are shown at the bottom.
The numbers refer to the positions of the amino acids in the peptide and all peptides
are aligned to the C-terminal end without flanking residues.

Visualization of Important Amino Acids

We visualized one of the ten random draws for each dataset with the methods
introduced in Section B.32 The visualization results for the POBK com-
pared to the OBK were in all experiments very similar. An example for the
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Figure 3.17: Two sample logo for ICAT-ESI dataset: This plot shows the
two sample logo ,@/ of the MISAs of the proteotypic and the non-observed peptides
for the ICAT-ESI dataset. All peptides are aligned to the C-terminal end without
flanking residues. Only fully tryptic peptides are used (no missed cleavages).
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the two sample logo of the MSAs of the proteotypic and the non-observed
peptides for the MudPIT-ESI dataset. All peptides are aligned to the C-terminal
end without flanking residues. Only fully tryptic peptides are used (no missed
cleavages).

Figure 3.18: Two sample logo for MudPIT-ESI dataset: This plot shows
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Figure 3.19: Two sample logo for MudPIT-ESI dataset (without Bon-
ferroni correction): This plot shows the two sample logo 1@/ of the MSAs of
the proteotypic and the non-observed peptides for the MudPIT-ESI dataset with-
out Bonferroni correction. All peptides are aligned to the C-terminal end without
flanking residues. Only fully tryptic peptides are used (no missed cleavages).

MudPIT-ESI dataset can be seen in Figs. B2Z2AB23 Since the visualization
of the OBK allows investigation of both borders separately, we only present
the OBK visualizations for the other datasets in Figs. BZAB26, and B23. A
general trend which can be observed for all datasets, is that arginine or lysine
near the peptide ends have very negative weights, with the sole exception of
arginine at the C-terminal end for the PAGE-MALDI dataset. Furthermore,
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Figure 3.20: Two sample logo for PAGE-ESI dataset: This plot shows the
two sample logo m/ of the MSAs of the proteotypic and the non-observed peptides
for the PAGE-ESI dataset. All peptides are aligned to the C-terminal end without
flanking residues. Only fully tryptic peptides are used (no missed cleavages).
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Figure 3.21: Two sample logo for PAGE-MALDI dataset: This plot shows
the two sample logo | of the MSAs of the proteotypic and the non-observed
peptides for the PAGE-MALDI dataset. All peptides are aligned to the C-terminal
end without flanking residues. Only fully tryptic peptides are used (no missed
cleavages).

aspartate and glutamate near the borders of the peptide seem to be positive
for peptide detectability. Since arginine and lysine are positively charged
and aspartate and glutamate are negatively charged, this could be a general
property and further supports the analysis in Section B33l Mallick et al. ﬂﬂ]
also identified positive charge (total count or average) to be one of the five
most important features for proteotypicity prediction in each dataset.

The plots for the ICAT-ESI (Fig. B24) and the MudPIT-ESI (Fig. B22)
datasets are very similar, because both measurements use LC-ESI-MS/MS.
Furthermore, these datasets show a stronger positive effect for glutamate in
the left border than in the right border, which shows that the visualization
of the OBK can provide more insights than that of the POBK. The visual-
ization of the discriminant of the PAGE-ESI dataset shows a weaker positive
effect of aspartate. Additionally, the aliphatic amino acids isoleucine, leucine,
and valine seem to contribute positively. A very interesting observation for
the PAGE-MALDI dataset, shown in Fig. B2 is that amino acids with
aromatic side chains seem to contribute positively to peptide detectability.
The positive effect of aromatic amino acids in MALDI experiments was also
presented in ﬂ] It can be assumed that peptides with aromatic amino
acids can interact better with the matrix and are therefore better ionizable.
Furthermore, the classifier was able to find the positive arginine signal at the
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C-terminal end, which was also found by the two sample logo analysis and
reported by Krause et al. E]
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Figure 3.22: Visualization of important positions for MudPIT-EST
dataset (OBK): This plot shows the visualization of the importance weights of
the OBK classifier calculated as described in Section 3. The first 22 positions
correspond to the primal representation of the left border of the peptide and the re-
maining positions correspond to the primal representation of the right border of the
peptide (n is the position of the amino acid at the C-terminal end of the peptide).
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Figure 3.23: Visualization of important positions for the MudPIT-EST
dataset (POBK): This plot shows the visualization of the importance weights

of the POBK classifier calculated as described in Section [T 4. Since the POBK
looks at the signals in both borders simultaneously, a positive weight for position i
corresponds to the amino acids at position © and position n — i+ 1.
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Figure 3.24: Visualization of important positions for the ICAT-EST
dataset (OBK): This plot shows the visualization of the importance weights of
the OBK classifier calculated as described in Section B2 A The first 22 positions
correspond to the primal representation of the left border of the peptide and the re-
maining positions correspond to the primal representation of the right border of the
peptide (n is the position of the amino acid at the C-terminal end of the peptide).
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Figure 3.25: Visualization of important positions for the PAGE-MALDI
dataset (OBK): This plot shows the visualization of the importance weights of
the OBK classifier calculated as described in Section [ZZ3ZA. The first 22 positions
correspond to the primal representation of the left border of the peptide and the
remaining positions correspond to the primal representation of the right border
of the peptide (n is the position of the amino acid at the C-terminal end of the

peptide).
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Figure 3.26: Visualization of important positions for the PAGE-ESI
dataset (OBK): This plot shows the visualization of the importance weights of
the OBK classifier calculated as described in Section T3 The first 22 positions
correspond to the primal representation of the left border of the peptide and the
remaining positions correspond to the primal representation of the right border
of the peptide (n is the position of the amino acid at the C-terminal end of the

peptide).
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3.3.4 Conclusions

We show in this section that the POBK as well as the OBK can be used to
predict proteotypic peptides with high accuracy. Our kernel function in com-
bination with a support vector machine performs significantly better than the
features of other groups together with a support vector machine and a stan-
dard kernel. Furthermore, we show that amino acids have different effects
on detectability depending on the experimental setup. Similar to Mallick
et al. ﬂﬁ], we find that positively charged amino acids help distinguish be-
tween proteotypic and non-observed peptides. Additionally, we can show
in our analysis that the classifier discovers interesting properties concerning
the underlying biochemical mechanisms of the measurement processes. One
example are aromatic amino acids, which seem to contribute positively to
peptide detectability in PAGE-MALDI experiments. This was also reported
by other groups ﬂ] Another observation is that arginine at the C-terminus
seems to increase detectability, compared to lysine, in PAGE-MALDI ex-
periments. This observation is found by computing the two sample logo as
well as with our analysis of the learnt classifier and is supported by a recent
study @] Consequently, our method for peptide detectability has state-of-
the-art performance and allows direct interpretation of the learnt classifier
to provide interesting insights.

It would be very intersting to extend this binary prediction problem to a
regression problem, in which we could predict the degree of proteotypicity.
We included the proteotypicity prediction into the LC-MSsim m], which
can be used to simulate LC-MS maps. Therefore, we used the probability
estimates of the 1ibSVM to compute the likelihood of a peptide to be pro-
teotypic. To train the proteotypicity predictor, we just used binary data
(peptide is proteotypic or not). Extending the proteotypicity prediction to a
regression problem would mean that every peptide gets a label representing
its proteotypicity. This could be, for example, the intensity of each peptide
feature normalized by the amount of protein present in the sample. A peptide
feature is the three-dimensional shape (m/z, RT, and intensity) of the pep-
tide measurement, defined by the isotopic distribution as well as the elution
profile of the peptide. An accurate predictor for peptide feature intensity
could be used to predict the absolute amount of a protein in a sample.
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Chapter 4

Applications in Immunomics

4.1 Introduction

The adaptive immune system is one of the most advanced and most im-
portant systems in humans. It can direct immune responses according to
various kinds of invading microorgansims and even recognize and destroy
tumor cells @] The main components of the immune system were intro-
duced in Section MHCII presents peptides originating from the outside
of the cell. There are various different MHCII alleles which have very specific
sets of peptides to which they can bind. At present there are more than 750
unique MHCII alleles known M] (regarded on the protein sequence level),
but for less than 3% of them sufficient experimental data to construct a pre-
dictor is available. Since every human has at most twelve different MHCII
alleles, it is very important for vaccine design to know which peptides can
bind to the particular alleles. A good predictor for MHC peptide binding
can reduce the number of possible peptides and therefore save a lot of time
- and money-consuming wetlab experiments.

In contrast to MHCI, the ends of the binding clefts of the MHCII are open.
This is why the length of the binding peptides varies significantly (from 8
to more than 30 amino acids). Nevertheless, analyses of MHCII structures
revealed that the part of the peptide responsible for binding to MHCII is
usually nine amino acids long. This part is also called binding core of the
peptide. For most of the experimental data it is unknown which part of
the peptide actually is the binding core, which complicates the problem of
MHCII peptide binding prediction compared to MHCI peptide binding pre-
diction. The binding clefts of MHCI are closed at the ends and the binding
peptides have a length between eight and twelve. There are various meth-
ods for MHCII peptide binding prediction for alleles for which there exists
sufficient experimental data. Some of these models are based on positional
scoring matrices E, (), @, @, Iﬂ, @], others use Gibbs samplers M] or
hidden Markov models @] Further works have used the ant colony search
strategy @], artificial neural networks ﬂﬁ], partial least squares E,a

], evo-
lutionary algorithms [95] or support vector machines with standard kernel
functions [24, @, ]. Very recently Wang et al. @] combined several

of these predictors to build a new predictor. There have also been efforts to
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improve binding prediction by using structural information @]

To the best of our knowledge all but two of the models for MHCII peptide
binding prediction are based on experimental data for the particular alleles
for which the predictions are for. The models of Singh et al. M] and Za-
itlen et al. | are the only methods which were shown to predict binding
for alleles without training on them. However, the model by Singh et al.
is only applicable to 51 alleles M] which is about 7% of all known alleles
and Zaitlen et al. require three-dimensional structures of a similar allele to
perform this kind of predictions which limits the number of alleles accessible
through the method. Since the experimental data for peptide-MHCII binding
is very scarce, we introduce a method to predict peptide binding for alleles,
for which few or no experimental data is available. Similar ideas have also
recently been introduced for MHCI predictions, although based on different
machine learning techniques and for a far simpler problem (MHCI peptides
have more or less identical lengths) m, @, @I])

We use similarities of the binding pockets of the alleles to build predictors
for alleles, which do not need experimental data of the target allele to reach
good prediction performance. The similarities are incorporated into the pre-
dictions using a specialized kernel function, which is based on the normalized
set kernel by Gartner et al. @] Therefore, the problem is transformed into
a multiple instance learning problem [22]. The predictor is trained using
the kernel function and Support Vector Regression (SVR) m] Using this
method we are for the first time able to build predictors for about two thirds
of all MHCII alleles. Assessment of their quality in blind predictions for
alleles with known data reveals that the predictions are of sufficient quality
for use in vaccine design. Furthermore, we show that our transformation of
the problem into the multiple instance learning problem enables us to build
predictors which perform equally well or even better than the best methods
for MHCII peptide binding prediction.

4.2 Methods and Datasets

4.2.1 Multiple Instance Learning

In standard supervised binary classification, the associated label for every
instance out of the sets of training samples is known. The input space X is
usually a Hilbert space. Every instance can be represented as (z;,y;) where
x; € X and y; € {—1,1}. We define the set of positive training examples as
S, = {(z,y)|]r € X Ny = 1} and the set of negative training examples as
S ={(z,y)|r € X Ny = —1}. In multiple instance learning [22] not every
label y; for every z; is known. The positive label is only known for sets of
instances which are called bags. For every bag X; with label 41 it is only
known that at least one instance of X, is associated with label +1. Every
instance in a negative bag is associated with label —1. More formally this
means that the set of positive bags is X, = {(X;,1)|3z; € X, : (z;,y;) € Sp}.
The set of negative bags is X,, = {(X;,—1)|Vz; € X, : (x;,y;) € Sp}. The
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Figure 4.1: Binding core of a peptide: This figure shows the structure of
an MHCII molecule (grey) together with a bound peptide (blue and yellow). The
binding core of the peptide is shown in yellow visualized with BALLView [21]. The
PDB ID of the structure is 1BX2.

multiple instance learning problem is to find the best predictor for predicting
the labels of bags.

Kernels for multiple instance learning were introduced by Gértner et al. @]
in 2002. The normalized set kernel (NSK) by Gértner et al. ﬂﬁ] is the

following:
Z k?( (.%', IE,)
B(X, X') = ZEXTEY 41
A ) Farn 00 -y
with £y being a kernel on X'. Gartner et al. ﬂﬁ] evaluated different normal-

ization functions f,om and showed that averaging (fnom (X) = #X) and fea-

ture space normalization (fpom(X) = > kx(z,2’)) perform equally
rzeX,x'eX

well on the datasets studied. Preliminary results on our data also suggest

that both methods perform equally well (data not shown). Therefore, in the

following only normalization by feature space normalization is considered.

Gartner et al. ﬂﬁ] hypothesized in their paper, that the kernel could also be

used for multiple instance regression ﬁ? Fé] In this setting every bag X;

has a label y; € R.

4.2.2 Multiple Instance Learning for MHCII Predic-
tion

Since for most of known MHCII binders the binding core is unknown, one
cannot directly use the binding core for training a learning machine. Fig. @1
shows a structure of an MHCII molecule for which the binding core is known.
Unfortunately there are very few such structures available.

Previous work on MHCII prediction m, @] suggests that only aliphatic
(Tle, Leu, Met, Val) and aromatic (Phe, Trp, Tyr) amino acids in position one
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are common. Thus, we represent every putative binder by a bag containing
all 9-mers (putative binding cores) with aromatic or aliphatic amino acid
at position one. By this, we transformed the data directly into a multiple
instance learning problem in which every positive bag has at least one positive
binding core. All negative bags just contain false binding cores. Formally,
this means that every putative binder s; of length m is represented by a bag

(Xz‘, yz‘)‘

.....

{Ile, Leu, Met, Val, Phe, Trp, Tyr}}

are all putative binding cores and y; is the binding affinity measured for the
putative binder s;.

In this thesis we introduce two predictors for MHCII binding peptide predic-
tion. The first predictor is just trained on parts of the data of the allele for
which the predictions should be made. This predictor is called MHCIISingle
in the following. It will be shown that the performance of MHCIISingle is
comparable to the best methods in the field. This predictor is particularly
useful for alleles, for which sufficient binding data is available.

The second predictor does not need to be trained on data of the allele for
which the predictions should be made. Instead, data from other alleles can
combined in a way which reflects the similarity of the binding pockets of the
target allele to the binding pockets of the other alleles. This predictor will be
called MHCIIMulti in the following. Because no data of the allele, for which
the predictions should be made is needed, one can even build predictors for
alleles with little or no experimentally determined binders.

In this thesis, we use the normalized set kernel with an RBF kernel for
MHCIISingle. Furthermore, we introduce a new kernel based on the normal-
ized set kernel for MHCIIMulti.

4.2.3 Feature Encoding

Venkatarajan and Braun M] evaluated in 2001 different physicochemical
properties of amino acids. They performed a dimension reduction by princi-
pal component analysis (PCA) on a large set of features from the AAindex
database @] and showed that every amino acid can be represented ade-
quately by a five-dimensional feature vector. This encoding was already
used in a recent study on MHC binding by Hertz et al. m] and will be called
PCA encoding in the following.

4.2.4 Predictions for Alleles with Sufficient Data

For alleles, for which enough experimental data is available, we build predic-
tors which are just trained on binding peptide data for the particular allele.
In this setting we use the normalized set kernel ﬂﬁ] with ky being the RBF
kernel. X is the set of all putative binding cores. This means that X" is the
set of every possible nine amino acid long peptide sequence in PCA encod-
ing for which the first amino acid is aliphatic or aromatic. This means that
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every input vector has length 45. The predictor is trained using this kernel
function together with »-SVR [110].

4.2.5 Combining Allele Information with Peptide In-
formation

Representation of MHCII Alleles

Sturniolo et al. M] showed in 1999 that there is a correspondence between
the structures of the binding pockets of the MHCII and the polymorphic
residues in this region. They defined certain positions inside the amino acid
sequence of the allele sequences and showed that alleles having the same
residues at these positions also have similar binding pocket structures. This
was done for several alleles and binding pockets for peptide positions 1, 4, 6,
7 and 9 because these positions are assumed to have the largest influence on
binding M]

To represent each allele, we encode every polymorphic residue of the pockets
1, 4, 6, 7, and 9 by PCA encoding and calculate a mean of the encoded
vectors for every pocket position. This results in a 25 x 1 dimensional vector
p = (pr{,pf,pg,p?,pg)zp for every allele, which is called pocket profile vec-
tor in the following. To get the polymorphic residues for alleles that were
not defined by Sturniolo et al. |, we used the HLA-DRB1, HLA-DRB3,
HLA-DRB4 and HLA-DRB5 alignments of the IMGT/HLA database m]
(release 2.18.0, 09-July-2007).

We computed the sequence logo ﬂﬁ] for an alignment of all HLA-DRBI,
HLA-DRB3, HLA-DRB4 and HLA-DRB5 alleles. It is shown in Fig.
Since the alignments show very good conservation for alleles HLA-DRBI,
HLA-DRB3, HLA-DRB4 and HLA-DRB5 at the non-pocket positions, we
assume that this procedure is applicable at least for these HLA-DRB alleles
which constitute 525 of all 765 unique MHCIT alleles (on the protein sequence
level), currently contained in the IMGT/HLA database mj]

Similarity Function of MHCII Binding Pockets

Our goal was to get a similarity measure between pocket positions of alleles.
Since we have the pocket profile vectors, a natural idea is to take the Pearson
correlation between the corresponding positions of the pocket. To get a
similarity measure we added one which means that the similarities are in the
interval [0, 2]. The resulting similarity measure for each pocket i = 1,4,6,7,9
is then

sim;(p, p') := Pearson(p;, p;) + 1. (4.2)

This function was used in our work to measure similarity between the bind-
ing pockets corresponding to peptide position 1, 4, 6, 7 and 9.
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Figure 4.2: Conservation of MHCII allele protein sequences: The con-
servation of the alignments of all HLA-DRBI1, HLA-DRB3, HLA-DRB/j and
HLA-DRBS alleles from the IMGT/HLA database IM/ 1s shown in this sequence
logo ,E/ The arrows pointing at positions of the sequence logo are polymorphic
residues, which are used for the binding pocket profile vectors.

Combining Allele Pocket Profiles with Peptide Information

For MHCI binding peptide prediction there have been two approaches for
learning binding prediction models for alleles which do not need experimen-
tal data for the target allele m, @] Both methods measure the similarity
of the alleles for the whole allele.

Looking at the structural level, one amino acid that does not fit into a bind-
ing pocket can change the whole binding affinity of the peptide. Therefore,
we want to enforce similarity of peptides at a certain position of the bind-
ing core if their binding pockets for the respective position are very similar.
Thus, we use similarities between the binding pockets directly in our kernel
function to be able to account for these cases, too.

We now define the kernel kyy_gpr, which is defined on A x X. A is the
set of all possible pocket profile vectors and X is again the set of all pos-
sible nine amino acid long peptide sequences in PCA encoding. Let p =
(plT,pZ,pﬁT,p?,pg)T be the pocket profile vector of peptide sequence s. Let
= (z], 2], .. 2)T be a putative binding core of sequence s, for which ev-
ery xz; is the PCA encoding of the amino acid at position ¢ in the putative
binding core. Let p’ and 2’ be defined analogously for peptide sequence s'.

In MHCIISingle the inner kernel function of the normalized set kernel is a
standard RBF kernel:

2
[lz—="]]

krpr(x,2’) = exp™ 27 . (4.3)

As mentioned above, the kernel function should be able to weight positions

according to the similarity of the alleles. Therefore, we use a positionally-
weighted RBF-kernel:

wy X [lzg =2 |12 +wo x ||wg —ah |2+ 4wy x |lzg —f|?

kpw—rBr((p, 2), (P, 2')) = exp” 27 . (44)

In our setting the weights are determined using the sim function, which was
mentioned above:

w; = simy;(p,p’) Vi =1,4,6,7,9 (4.5)

Since the other positions are not as important for binding, we set the weights
way, w3, ws and wg (which correspond to peptide positions 2, 3, 5 and 8) to
0.5.

In this work k,w_rpr is used as the inner kernel function of the normalized

set kernel E] in conjunction with »-SVR m for MHCIIMulti.
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Positive Semi-Definiteness of NSK with Positionally-Weighted RBF
Kernel

Gartner et al. @] showed that the normalized set kernel is positive semi-
definite if and only if the inner kernel function is positive semi-definite. This
directly means, that the NSK in conjunction with the standard RBF kernel
is positive semi-definite. For the combination of NSK with the positionally-
weighted RBF kernel (kpyw—_rpr), we just have to show that &, _grpr is positive
semi-definite. Our proof is very similar to Li and Jiang [67] who used the
Schoenberg Theorem M]

Theorem 4.1 (SCHOENBERG THEOREM). Let X' be a space in which a

distance function d(x,y) is defined subject to the following conditions:
1o d(z,y) =d(y,x) 2 0
2. d(z,z) =0

for all z,y € X. The function exp"T@Y) js positive definite if 0 < p < 2
and not positive definite if p > 2.

Theorem 4.2 (Positive Semi-Definiteness of kpw_rpr). The positionally-
weighted RBF' kernel with

12 /2 12
_wy X[z~ [[THwg X|lzg —ap [T+ Fwg X [Jzg —zg ||

kPW—RBF((p> .CE), (p/> .T,)) = eXp 202
as defined in [[.2.] is positive semi-definite.

Proof: Since p = 1, it is sufficient to show that requirements 1. and 2. of the

Schoenberg theorem hold for d(x, z") =

202
L.(d(z,2") =d(z',x) > 0) :
d(z,2') = 55 (w1 x |lag — 2> + ... + wg X [|zg — 24||?)
= o (w1 X ||2] — 2| + . Fwy X [z — 20|?) = d(2,2)

(4.6)

Furthermore, d(z,2’') > 0 YV, 2’ € X since all summands are positive (the w;
are between zero and two). This means that d(x,z") = d(2/,x) > 0Vz, 2’ €
X.

2.(d(x,x) =0) :
This immeadiately follows from the definition:

d(z,x) = ﬁ (w1 X ||zy — 21 ||* + ... +wg X ||xg — 29]|?) = 0. [ |

wi X ||z =@ || +wa x |lwa—wh||* +... 4wy x |lzg—a | .
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Training Choices for MHCIIMulti

We design a procedure to get the largest possible training set, in which the
similarities of the target allele to the other alleles are reflected in the number
of training samples from the particular alleles. The idea is that training sam-
ples from more similar alleles should enable better predictions for the target
allele than distant ones. To compute similarities between alleles, we calculate
the Pearson correlation between alleles using the pocket profile vectors. Let
p; and p; be the pocket profile vectors of alleles ¢ and j. The similarity be-
tween these vectors is the Pearson correlation of p; and p; scaled linearly to
0, 1]. This value is called allelesim; ; in the following. Let n; be the number
of sequences of allele 7. For a particular target allele 7, the procedure is the
following:

For every allele i # j
Compute the maximal number ¢; such that allelesim;; x t; < n,.
Choose the minimum of all ¢;, which is now called t*.
For every allele i # j
Choose t*xallelesim; ; peptide sequences randomly from allele ¢
and assign them to the training set.

Since for the benchmark dataset the binding affinities are not distributed uni-
formly, we partition the data into three parts ([0, %] ,]%, %] and ]%, max]).
We then randomly choose from these partitions such that we have the same

number of samples from each partition.

Nearest Neighbor Predictor MHCIISingle™

To show that the k,y_grpr kernel function of MHCIIMulti really improves
the MHCII binding prediction if data from various alleles is combined we
introduce MHCIISingle™N. This predictor is the MHCIISingle predictor of
the nearest neighbor allele. The nearest neighbor allele j of allele ¢ is the
allele for which allelesim; ; is maximal V5 # 1.

Aggregating Predictor MHCIIMulti*

We choose the number of training samples per allele according to the similar-
ities of the alleles as described above. Therefore, we do not use all peptides
that are available. Since we do not want to miss important peptides we
build aggregating predictors over ten random draws of the training sets. The
idea is similar to bagging ﬂ] The only difference is that we do not need
bootstrapping, since we have enough data for the training alleles. The ag-
gregating versions of the predictor MHCIIMulti is called MHCIIMulti*. The
whole workflow can be seen in a UML activity diagram in Fig.
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Figure 4.3: UML activity diagram of performance evaluation for LOAO
predictors: This UML activity diagram shows the workflow of the performance
evaluation of the leave one allele out predictors MHCIIMulti and MHCIIMulti*.
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4.2.6 Data

We show the performance of our predictors on an MHCII benchmark dataset,
introduced by Wang et al. @] This dataset contains peptide binding data,
measured in the laboratory of Wang et al. @], for 14 human alleles as
well as three mouse alleles. Binding affinities of the benchmark dataset were
given as ICsy values, which is defined as the concentration at which 50% of
the MHCII molecules are bound. The smaller the 1C5q value, the better is
the binder. There are many peptides with very high ICs, values. Since the
cutoff for binders is between 500 and 1,000 nM there is not a big difference
between a non-binder with 1Csy value of 10,000 or 20,000 nM. Therefore, we
transformed the 1Cyy values like Nielsen et al. @] to the interval [0, 1]. Let
a; be the binding affinity of peptide 7. The log-transformed binding affinity
a; is defined as a} := 1 — loggyge (@;). Like Nielsen et al. @], we set the
a; < 0 to zero, which is needed for all peptides with ICs, value larger than
50,000 nM. In the following, the dataset will be called Dyenchmark-

Peptide sequences for which no binding core could be found (aliphatic or
aromatic amino acid at position one) were excluded from all evaluations.
This was the case for less than 3% of peptides (270 out of all 9478). Out
of these peptides only 64 peptides are considered binders (ICsy value smaller
than 1,000 nM M] which is equal to a log-transformed value greater than
0.3616). Since the whole dataset contains 6,475 binders in total, this means
that our assumption that every binder has to have a binding core with an
aliphatic or aromatic amino acid at position one just misses 64 out of 6,475
binders which is under 1%.

4.3 Results

In this section we compare our predictors to other state-of-the-art methods.
In particular we compare our performance to the results of Wang et al. @]
who performed a large scale evaluation on MHC class II prediction meth-
ods. We show on their benchmark dataset that our predictor MHCIISingle,
which is trained on parts of the target allele dataset, performs equally well
or better than all other methods. Furthermore, we show that MHCIIMulti*
can predict binding for alleles without using any training data of the target
allele and achieves performances that are comparable to the best predictors
trained on binding data of the target allele.

4.3.1 Performance on Single Allele Datasets

Wang et al. @] recently compared the performances of state-of-the-art
predictors for MHCII binding. We show a comparison to the top four
methods of their evaluation. All performances are measured in area un-
der the ROC curve. Wang et al. @] measured the performance of the
ARB method ﬂa] by 10-fold cross-validation. The performance of the other
methods was evaluated using available webservers. The authors justified
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this procedure by the fact that they measured the performance on unpub-
lished data, which had been measured in their labs. Therefore, it is un-
likely that any of these methods (except the ARB method) was trained on
parts of this dataset. To compare the performance of MHCIISingle to this
evaluation, we performed a 10-fold cross-validation using parameter ranges
C € {0.001,0.01,0.1,1,10,100,1000}, v € {0.2 x 1.4"}i = 1,2,...,5} and
o € {0.0625,0.125,0.25, ..., 16}. Table ETl shows that MHCIISingle outper-
forms all other single methods. The column ”Consensus” corresponds to the
consensus approach of Wang et al. @] in which the best three predictors
for the particular allele are combined to achieve higher accuracy. One could
assume that with MHCIISingle as one of these three predictors the accuracy
will improve, since the performance of MHCIISingle is comparable to the
consensus approach.

A further improvement can be achieved by incorporating binding data from
other alleles. Therefore, we performed a CV with MHCIIMulti and the
same parameters as above. Additionally, we chose data from other alleles
of Dpenchmark- To minimize random effects, we performed this procedure ten
times and listed the mean performance in Table EETl It can be seen that
the incorporation of extra data improves the performances on many alleles
(8 out of 14). Especially for the two alleles, for which MHCIISingle per-
formed worst, a significant improvement can be achieved by MHCIIMulti.
The worse performance on allele HLA-DRB1*0101 can be explained by the
number of samples in Dyenehmark Since there are 3,882 peptides. For alleles
for which there exist such a big amount of training data the incorporation of
binding data from different alleles does not improve the predictions which is
in accordance with what one would expect. The bad performance on allele
HLA-DRB3*0101 can be explained by the fact that the eleventh residue of
the beta chain (411) of the MHCII molecule of this allele has an arginine,
which reaches into pocket number four (and therefore influences binding),
although it is located in pocket number six @] Since the arginine at $11
is exclusive to the DR52a @] alleles with the sole exception of DRB1*1446,
it can be assumed that this effect is limited to this small number of alleles
(37).

4.3.2 Performance of Leave-Allele-Out Predictors

To show that MHCIIMulti performs well, although it is not trained on
any data of the target allele, we conducted the following experiment. The
training samples were chosen as described in the Section EE2  We then
performed a validation on the training set to determine the best hyper-
parameters (C' € {0.01,0.1,1,10}, v € {0.2 x 1.4°)i = 1,2,...,5} and o €
{0.0625,0.125,0.25, ...,4}). The binding data of the alleles were stored in
separate partitions. The best hyperparameters were found by training on all
but one of these partitions and measuring the performance on the left-out
partition. With the best hyperparameters of the validation we trained our
predictors with the whole training set. We then measured the area under the
ROC curve performance on the target allele. The whole process was repeated
ten times to minimize random effects. The mean area under the ROC



MHCII type | # peptides ARB PROPRED SMM-align Consensus MHCIISingle MHCIIMulti
DRB1*0101 3882 0.76 0.74 0.77 0.79 0.81 0.75
DRB1*0301 502 0.66 0.65 0.69 0.72 0.73 0.72
DRB1*0401 512 0.67 0.69 0.68 0.69 0.67 0.78
DRB1*0404 449 0.72 0.79 0.75 0.80 0.79 0.80
DRB1*0405 457 0.67 0.75 0.69 0.72 0.83 0.79
DRB1*0701 205 0.69 0.78 0.78 0.83 0.82 0.90
DRB1*0802 245 0.74 0.77 0.75 0.82 0.76 0.79
DRB1*0901 412 0.62 - 0.66 0.68 0.64 0.66
DRB1*1101 520 0.73 0.80 0.81 0.80 0.85 0.87
DRB1*1302 289 0.79 0.58 0.69 0.73 0.74 0.73
DRB1*1501 520 0.70 0.72 0.74 0.72 0.72 0.75
DRB3*0101 420 0.59 - 0.68 - 0.72 0.57
DRB4*0101 245 0.74 - 0.71 0.74 0.79 0.78
DRB5*0101 520 0.70 0.79 0.75 0.79 0.81 0.90
Mean 0.71 0.73 0.73 0.76 0.76 0.77

Table 4.1: Performance comparison on benchmark dataset: The performance of our predictors is compared to the best four methods
presented in . The performance of MHCIISingle, MHCIIMulti and ARB are measured by 10-fold cross validation. All other methods are
trained on binding data of the target allele which was not contained in the benchmark dataset. MHCIIMulti uses additional training data from the
other alleles of the benchmark dataset.

41!
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MHCII type | MHCIISingle™ MHCIIMulti MHCIIMulti*
DRB1*0101 0.74 0.64 0.69
DRB1*0301 0.61 0.69 0.70
DRB1*0401 0.64 0.76 0.78
DRB1*0404 0.70 0.79 0.82
DRB1*0405 0.78 0.76 0.77
DRB1*0701 0.72 0.89 0.91
DRB1*0802 0.71 0.77 0.79
DRB1*0901 0.57 0.64 0.65
DRB1*1101 0.79 0.87 0.90
DRB1*1302 0.62 0.68 0.69
DRB1*1501 0.66 0.75 0.77
DRB3*0101 0.51 0.54 0.54
DRB4*0101 0.77 0.69 0.72
DRB5*0101 0.73 0.89 0.92
Mean 0.68 0.74 0.76

Table 4.2: Leave-allele-out prediction on benchmark dataset: The perfor-
mance of our predictors MHCIIMulti and MHCIIMulti* are shown which are not
trained on any data of the target allele. Instead, the predictors are trained on data
from the other alleles of Dypenchmark- Additionally, the performance of the nearest
neighbor predictor MHCIISingleN™ is shown, which is trained on data of the most
stmilar allele to the target allele.

curve over the ten runs is given in Table For the aggregating predictor
MHCIIMulti*, which was introduced in the Section EE2L we calculated the
mean prediction labels for every test sample over the ten runs. Afterwards,
we measured the area under the ROC curve for these labels.

It can be seen in Table that the predictors MHCIIMulti and especially
MHCIIMulti* perform quite well on Dyenchmark @lthough they were not trained
on any binding data of the target allele. One can hypothesize that this per-
formance could also be reached for other alleles, for which no binding data
is available, since we did not use any data of the target allele. These predic-
tors perform even better than MHCIISingle on some alleles which shows that
the method is not just valuable for new alleles but also for predictions for
alleles for which there exists binding data. The performance of the nearest
neigbor predictor MHCIISingle™¥" is worse than the performance of MHCII-
Multi. The fact that MHCIIMulti and MHCIIMulti* outperform the nearest
neighbor predictor underlines that our new kernel function, which takes the
similarities of the alleles into account, is very valuable for this kind of pre-
dictions.

4.3.3 Implementation

All methods were implemented in C+4. We used LIBSVM M] for sup-
port vector learning. The predictions for all alleles are integrated into Epi-
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ToolKit @], available at http://www.epitoolkit.org/mhciimultil

4.4 Discussion

The proposed method is a novel approach for predicting MHC class I binding
peptides for alleles lacking experimental data and thus opens up new alleys
for the design of peptide-based therapeutic or prophylactic vaccines. Obvi-
ously, a conclusive validation of predicitons for alleles without experimental
data is difficult. The leave-one-allele out predictions presented here indicate,
however, that the method performs very well. One could object that restrict-
ing the first amino acid of the binding core to aromatic and aliphatic amino
acids is a strong assumption. Nevertheless, if one selects all putative binding
peptides of the 9,478 peptide sequences in Dyenchmark for which no binding
core with an aromatic or aliphatic residue at position one can be found, a
predictor which just predicts 0 (non-binder) would have 0.7630 classification
rate on these peptides. In other words, only for 270 peptides or 2.85% out
of the 9,478 peptides no binding core with aromatic or aliphatic residue at
position one can be found and only 64 out of these are considered as binders
(log-transformed binding affinity greater than 0.3616). This is why we think
that the heuristic is very well applicable and reflects a general property for
MHCII binding. This is also supported by previous work ﬂﬁ, bﬁ) More-
over, the restriction to these binding cores is one of the key parts of this work
because if one selected all 9-mers as binding cores this would add a lot of
noise to the bags and the positional weighting of the binding core would not
have a big effect since nearly every residue of a peptide (except the residues
at the ends) would be at every position in one of the instances in the bag.
Ultimately, only experimental testing or structure-based studies will reveal
whether some of the rarer alleles might deviate from this behavior on the
first position.

To improve peptide-MHCII affinity prediction it would be interesting to use
other multiple instance learning approaches. Kwok et al. @] presented
marginalized multi-instance kernels in 2007 at the International Joint Con-
ference on Artificial Intelligence. In this approach, the kernel k(X;, X;) does
not weight every kx(z;,z;) equally, as the NSK does. Instead, it weights
the inner kernel function by the similarity of the (estimated) labels of the
single instances. In their paper, Kwok et al. state that their marginalized
multi-instance kernels could be combined with the regularization framework
they presented at ICML 2006 ﬂﬂ] A combination of this framework and
the marginalized multi-instance kernels should lead to improved results for
peptide-MHCII binding affinity prediction.

Building predictors for alleles for which no experimental data exists belongs
to the field of transfer learning. Bickel et al. M] very recently presented a
sophisticated approach for transfer learning. It would be very interesting to
combine this approach with the marginalized multi-instance kernels.


http://www.epitoolkit.org/mhciimulti

Chapter 5

Conclusions and Discussion

“My mind seems to have become a kind of machine for grinding laws out of
large collections of facts,...”
- Charles Darwin, The Autobiography of Charles Darwin, 1881

In biology, there are always interesting traits to discover. Unfortunately,
there does not exist for each object of interest an expert machine like Charles
Darwin. Therefore, we are interested in designing learning machines which
are able to learn general rules from the data of biological entities. One of the
main questions to ask before building a learning machine is: “which proper-
ties of the data should be learnt by the learning algorithm?” In this step it is
usually beneficial if expert knowledge of the particular domain is available.
If, for example, our task was to predict whether a person is able to speak,
it would be very reasonable to account for the age of the person inside the
learning algorithm. Unfortunately, it is often not that easy to find meaning-
ful parts of the data — which help in predicting the property of interest, and
expert knowledge is often not available. Thus, in many applications of ma-
chine learning, scientists put all the “appropriate” features into the learning
algorithm and perform feature selection during the learning process.

In this thesis, we focus on kernel-based approaches for machine learning.
Applying a certain kernel to an application area also requires some prior
knowledge. If, for example, the position of particular k-mers is very impor-
tant and one chooses the spectrum kernel [66], which is not position-aware,
it will be hard to come up with any reasonable results. In most cases, the
assumptions one makes by choosing the kernel are milder than by choosing
features. We introduce the paired oligo-border kernel in this thesis, which
assumes that all interesting properties of the peptides are represented by
the amino acids. We do not directly put into the assumption that aromatic
amino acids at certain positions are indicative for proteotypic peptide pre-
diction in PAGE-MALDI experiments, but nevertheless, the SVM with the
POBK is able to find and exploit this feature. Thus the approach is more
general than deciding on a specific set of features beforehand. This leads to
a wider applicability of our kernel function.

We show in Sections Bl and that the POBK can be used to predict
chromatographic separation very accurately. For SAX-SPE behavior predic-
tion, our method performs better than all other methods. For retention time
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prediction in reversed-phase chromatography, our method performs better
than all but one of the available methods. The only method with better
performance requires about 345,000 training peptides which are not easily
measured before being able to use the predictor. Our method just needs
a fraction of this amount of training data (40 - 200 peptides) although it
achieves nearly the same performance. We show that a good predictor for
chromatographic behavior is very valuable for peptide identification by apply-
ing the predicted retention time in a p-value-based filter. This filter allows us
to lower mass spectrometric scoring thresholds, filter out false identifications,
and get more correctly identified spectra while keeping the same precision.
We furthermore show that our method is applicable under different chro-
matography conditions in Section in which we predict retention times
for chromatographic separations at different pH values. Since we are able to
build accurate predictors for both dimensions, we can build filters for both
retention time dimensions. As both separations are nearly orthogonal m],
it is even more unlikely that a false peptide identification is not filtered out
by one of the two filters. We can show that the combined filters yield the
largest increase in the number of correctly identified spectra at comparable
precision.

The good performance of the POBK and the OBK at predicting proteotypic
peptides, shown in Section B3 is further evidence that it is generally ap-
plicable to computational proteomics problems. We show that our kernels
perform better than other methods using the features of Mallick et al. ﬂﬂ] or
Lu et al. m] on a comparative benchmark. Furthermore, the visualization of
the resulting classifier allows gaining interesting insights into the biochemical
processes which are involved during the whole measurement process.

For predicting peptide-MHCII affinity, we put in another mild assumption
to be able to use kernel-based learning machines. This assumption was that
there has to exist a reasonable binding core in every peptide for which we
want to perform the prediction. This mild assumption is enough to transform
the prediction problem into a multiple instance learning problem for which
kernel approaches exist ﬂﬁ] For our positionally-weighted RBF kernel, we
put in the further assumption that MHCII molecules with similar pockets
should also bind similar amino acids at the particular positions. This en-
ables us to build predictors for about two thirds of all known MHCII alleles,
instead of just about 6% for which there existed peptide-MHCII binding
affinity predictors previously.

It would be interesting to use multiple kernel learning m] together with the
POBK and OBK for different sigmas and k-mer lengths using the 2-norm
optimization ﬂﬁ] We performed experiments with the 1-norm optimization
but unfortunately did not get better results. This could be explained by
the fact that 1-norm multiple kernel learning tends towards sparse kernel
combinations and therefore does not lead to better performances in many
applications. The 2-norm optimization problem of Kloft et al. ﬂﬁ] was pre-
sented only very recently. It would be very interesting to see whether kernel
combinations using the 2-norm optimization lead to increased performances
in retention time prediction. One could even try to add other kernels which
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contribute features which cannot be directly learnt from the sequence. This
should enable even higher performances.

For peptide-MHCII affinity prediction, it would be interesting to use other
multiple instance learning approaches. Kwok et al. @] presented a kernel
which does not weight every instance in the bag equally as the NSK does.
We also performed experiments with the method of Bunescu et al. NE] but
achieved performances comparable to the NSK for multiple instance classi-
fication (data not presented in this thesis). We could not use the approach
of Bunescu et al. for the binding affinity prediction problem since it cannot
be applied in multiple instance regression. Kwok et al. @] state in their
paper that their marginalized multi-instance kernels could be combined with
the regularization framework they presented at ICML 2006 ﬂﬂ] It would,
therefore, be interesting to see whether this combination of methods leads to
better results.

Building predictors for alleles for which no experimental data exists belongs
to the field of transfer learning. Bickel et al. M] very recently presented a
sophisticated approach for transfer learning. It would be very interesting to
combine these methods with the marginalized multi-instance kernels.
Beyond the problems tackled in this thesis, there are many open problems
in computational biology, for which kenel-based machine learning should de-
liver accurate results. The problem of spectrum intensity predictiorﬁ], for
example, could also be approached by structured output prediction [41] using
appropriate kernels.
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Abbreviations

Al Artificial Intelligence

CID Collision-Induced Dissociation

CTL Cytotoxic T Lymphocyte

Ccv Cross-Validation

ESI Electro Spray lonization

HLA Human Leukocyte Antigen

HPLC  High Performance Liquid Chromatography
ICAT Isotope-Coded Affinity Tag

IP Ion-Pair

LC Liquid Chromatography

MALDI Matrix-Assisted Laser Desorption/Ionization
MHC Major Histocompatibility Complex

MHCI  Major Histocompatibility Complex Class I
MHCIT  Major Histocompatibility Complex Class II
MS Mass Spectrometry

MSA Multiple Sequence Alignment

MSDB  Mass Spectrometry Database

MudPIT Multidimensional Protein Identification Technology
NSK Normalized Set Kernel

OBK Oligo-Border Kernel

PAGE  Polyacrylamide Gel Electrophoresis
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PDB ID
POBK

RBF
RKHS
RP
RT
SAX
SPE
SVM
SVR
SR
TOF
UML
WD

Protein Data Bank Identifier
Paired Oligo-Border Kernel
Pearson Correlation Coefficient
Radial Basis Function
Reproducing Kernel Hilbert Space
Reversed-Phase

Retention Time

Strong Anion Exchange

Solid Phase Extraction
Support Vector Machine
Support Vector Regression
Classification Success Rate
Time-of-Flight

Unified Modeling Language
Weighted Degree
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Contributions

At all research topics I always talked about the latest ideas to my supervisor
Prof. Dr. Oliver Kohlbacher. These discussions always lead to new ideas or
directions.

1. Section B1+ A New Kernel for Chromatographic Separation
Prediction.

The main ideas of this work were presented in a journal ar-
ticle in 2007 M] A short introduction is published in Ref-
erence | and preliminary ideas were presented in Ref-
erence [A8]. The contributions, as mentioned in the paper
were: OK and CH designed the experiment and the study.
AL was responsible for the experimental data generation. NP
developed and implemented the theoretical methods and per-
formed the data evaluation.

2. Section Two-Dimensional Chromatographic Separation
Prediction.

This work is accepted in a similar form at the Journal of
Proteome Research @] The contributions were the same as
in the work presented in Section Bl

3. Section Prediction of Proteotypic Peptides.

This work started in 2008, when Ole Schulz-Trieglaff asked
me whether we could predict proteotypic peptides with OpenMS.
The first evaluations were published in ] and included
into a simulator for LC-MS maps called LC-MSsim m]
After the publication we wanted to assess the performance

of different approaches more transparently. This was pur-
sued in the bachelor thesis of Till Helge Helwig M], which I
supervised. The evaluation of the POBK and OBK as pre-
sented in this thesis were not presented in Reference h]
The visualization results presented in this thesis are also not
yet presented anywhere else.
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4. Chapter @ Applications in Immunomics.

Parts of this work were presented at WABI 2008 @] The
introduction of the aggregating predictor is not published
anywhere else and the proof of the positive semi-definiteness
of the positionally-weighted RBF kernel is also new. We only
presented a sketch of the proof in Reference @]
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