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Summary 

Performing a task, for example the selection of links during hypertext reading, raises 

cognitive demands, that is, induces cognitive load. Cognitive load may be attributed to 

working memory (WM) functioning. Core executive functions (EFs), like updating, shifting, 

and inhibition, may define the executive (i.e., working) part of WM and thus may be 

essential for WM functioning. Consequently, cognitive load may result out of the demands 

on core EFs during task performance. Brain oscillatory activity as captured in the 

electroencephalogram (EEG) by frequency band power in time-frequency representations 

(TFRs) might serve as a measure for demands on core EFs. Especially, EEG alpha frequency 

band power could serve as a global measure of the cognitive load-situation which grounds in 

demands on core EFs. Pupil dilation, which can be more efficiently acquired as compared to 

the EEG, might also be used as a measure of the overall load-situation.  

Yet, the role of core EFs for WM functioning has been rarely studied to date, and the 

interplay of core EFs and their relation to WM is still matter of debate. Most important, the 

use of the physiological measures EEG alpha frequency band power and pupil dilation for 

assessing demands on core EFs and the global cognitive load-situation in complex, real-

world task settings of hypermedia environments have to be studied further. Especially, 

possible non-cognitive factors have to be ruled out which might confound the physiological 

measures. In the current doctoral thesis, we therefore addressed in three studies ranging from 

basic to applied research 1) the relationship of core EFs and WM, 2) the interplay of core 

EFs, and 3) the use of EEG alpha frequency band power and pupil dilation as measures for 

increased demands on core EFs in a task setting of applied research, namely for hypertext 

reading and link selection.  

In Study 1, we addressed the relationship of core EFs and WM by comparing two 

commonly used WM tasks, an n-back and an operation span task, and a simple digit span 

task that is generally considered as a short-term memory task. Conceptually, the two WM 

tasks should comprise demands on all three core EFs, whereas the simple digit span task 

might mainly demand the EF updating. Overall, the outcomes of Study 1 revealed that EEG 

correlates were more similar between the n-back and the operation span task as compared to 



 
 

the simple digit span task, thus confirming the conceptual similarities between the two WM 

tasks. 

In Study 2, we addressed the interplay of core EFs like updating and inhibition which 

might be due to a common underlying factor of controlled attention. We manipulated 

demands on two core EFs, updating and inhibition, within one single WM task. This was 

done by using congruent and incongruent flanker items (inhibitory demands) as stimuli in an 

n-back task paradigm (WM updating demands). The outcomes of Study 2 revealed a 

decreased flanker interference effect under severe load on updating for most of the load-

related measures (P300, alpha frequency band power, pupil dilation), indicating the activity 

of an underlying common network structure which might serve processes of controlled 

attention and thus might enhance inhibitory control under severe load on WM updating.  

In Study 3 a)-c), we addressed the research question whether alpha frequency band 

power and pupil dilation could serve as comparable measures for demands on core EFs in a 

complex, real-world task setting of hypertext reading and link selection. Importantly, we 

carefully ruled out possible perceptual-motor confounds which often hamper the 

interpretability of hypertext studies using physiological measures. Overall, our results 

showed that both physiological measures can be used to assess changes in the load-situation 

during link-selection processes. Surprisingly however, albeit showing a comparable result 

pattern, the two measures did not correlate with one another. At this point we can only 

speculate about this rather unexpected outcome. Clearly, more research is necessary on this.  

In sum, we were interested in alpha frequency band power as an overall measure of 

cognitive load which may be grounded in demands on core EFs. Thus, alpha frequency band 

power served as dependent measure in all three studies and was supplemented by beta 

frequency band power, theta frequency band power, P300, and pupil dilation in some studies. 

Each study might serve as an initial step for conducting further research on core EFs using 

physiological measures in each specific task setting we used. Overall, the outcomes underline 

the use of physiological measures like alpha frequency band power and pupil dilation for 

studying core EFs in task settings of basic and applied research. EEG alpha frequency band 

power can be used as a measure of cognitive load which grounds in demands on core EFs.  



Zusammenfassung 

Das Ausführen einer komplexen Aufgabe, wie beispielsweise das Auswählen von Links beim 

Lesen einer Hypertextseite, stellt kognitiven Anforderungen und führt damit zu erhöhter 

kognitiver Belastung. Kognitive Belastung kann der Funktion des Arbeitsgedächtnisses 

zugeschrieben werden. Grundlegenden exekutiven Funktionen (EF) wie 'updating', 'shifting' 

und 'inhibition' definieren den exekutiven Teil des Arbeitsgedächtnisses. Sie sind damit 

zentral für die Funktion des Arbeitsgedächtnisses. Folglich sollte sich kognitive Belastung 

auf Anforderungen an EF während der Durchführung einer komplexen Aufgabe 

zurückführen lassen. Oszillatorische Hirnaktivität, die sich beispielsweise mittels des 

Elektroenzephalogramms (EEG) als Frequenzbandpower über die Zeit in Zeit-Frequenz-

Darstellungen erfassen lässt, könnte zur Messung der Anforderungen an EF dienen. 

Insbesondere die EEG alpha-Frequenzbandpower könnte als ein Maß der globalen kognitiven 

Belastungssituation dienen, die in Anforderungen an EF begründet ist. Die Pupillendilatation, 

die im Vergleich zu EEG-Daten effizienter zu erheben ist, könnte gleichfalls als ein Maß der 

globalen Belastungssituation genutzt werden.  

Allerdings wurde die Rolle, die EF für das Funktionieren des Arbeitsgedächtnisses 

spielen, bisher selten experimentell untersucht, und das Zusammenspiel der EF und ihr 

Zusammenhang mit dem Arbeitsgedächtnis wird nach wie vor kontrovers diskutiert. Vor 

allem scheinen weitere Untersuchungen nötig, die den Einsatz der physiologischen Maße 

EEG alpha-Frequenzbandpower und Pupillendilatation als Maße der Belastung von EF in 

komplexen, möglichst realistischen Aufgaben in hypermedialen Umgebungen zum 

Gegenstand haben. Insbesondere sind in diesem Kontext Faktoren auszuschließen, die die 

physiologischen Maße beeinflussen können, jedoch nicht kognitiver Natur sind. In der 

vorliegenden Dissertation adressierten wir deswegen in drei Studien folgende 

Forschungsfragen, die von der Grundlagenforschung zur Anwendungsforschung reichen: 1) 

der Zusammenhang von EF und dem Arbeitsgedächtnis, 2) das Wechselspiel zwischen EF 

und 3) den Einsatz von EEG alpha-Frequenzbandpower und Pupillendilatation als Maße für 

erhöhte Anforderungen an EF in einem Aufgabensetting der Anwendungsforschung, nämlich 

für die Auswahlprozesse von (Hyper-) Links während des (Hypertext-) Lesens. 



 
 

In Studie 1 adressierten wir die Beziehung von EF und dem Arbeitsgedächtnis, indem 

wir zwei häufig genutzte Arbeitsgedächtnisaufgaben, eine sogenannte 'n-back'-Aufgabe und 

eine 'operation span'-Aufgabe, und eine Kurzzeitgedächtnisaufgabe, eine 'digit span'-

Aufgabe, miteinander verglichen. Die beiden Arbeitsgedächtnisaufgaben sollten konzeptuell 

betrachtet Anforderungen an alle drei EF stellen, wohingegen die 'digit span'-Aufgabe nur die 

EF 'updating' erfordern sollte. Insgesamt zeigten die Ergebnisse von Studie 1, dass die 

untersuchten EEG-Korrelate ähnlicher waren zwischen der 'n-back'- und der 'operation span'-

Aufgabe, was die konzeptuelle Ähnlichkeit dieser Arbeitsgedächtnisaufgaben bestätigte.  

In Studie 2 adressierten wir den Zusammenhang zwischen den EF 'updating' und 

'inhibition', der auf einen möglicherweise zugrundeliegenden gemeinsamen Faktor von 

kontrollierter Aufmerksamkeit zurückzuführen ist. Wir manipulierten hierzu die 

Anforderungen an zwei EF, 'updating' und 'inhibition' innerhalb einer Arbeitsgedächtnis-

aufgabe. Dies wurde erreicht durch die Nutzung kongruenter und inkongruenter Flanker-

Stimuli (Anforderungen an die inhibitorische Kontrolle) als Stimuli in einem 'n-back'-

Aufgabenparadigma (Anforderungen an 'updating'). Die Ergebnisse von Studie 2 zeigten 

einen verringerten Flanker-Interferenzeffekt unter hoher 'updating'-Belastung. Dies zeigte 

sich auf den meisten der untersuchten Maße (P300, alpha-Frequenzbandpower, 

Pupillendilatation). Die Ergebnisse weisen auf die Aktivität eines zugrundeliegenden 

gemeinsamen neuronalen Netzwerks hin, das möglicherweise der Aufmerksamkeitskontrolle 

dient und das, wenn einmal aktiviert (z.B. durch die 'updating'-Belastung), die inhibitorische 

Kontrolle verstärken kann.  

In Studie 3 a)-c) adressierten wir die Forschungsfrage ob alpha-Frequenzbandpower 

und Pupillendilatation vergleichbar als Maße für Anforderungen an EF nutzbar sind und zwar 

in einem komplexen, realistischen Aufgabensetting bestehend aus Hypertextlesen und der 

Auswahl von Links. Insbesondere wurden in dieser Studie mögliche konfundierende 

Faktoren perzeptueller oder motorischer Art, die oft die Interpretierbarkeit physiologischer 

Maße in Hypertextstudien schwächen, ausgeschlossen. Insgesamt zeigten die Ergebnisse, 

dass beide physiologische Maße genutzt werden können, um Veränderungen in der 

Belastungssituation während der Linkauswahl zu detektieren. Überraschender Weise jedoch 

korrelierten die beiden Maße nicht miteinander, obwohl beide ein ähnliches Ergebnismuster 



zeigten. An dieser Stelle können über dieses eher unerwartete Ergebnis nur Spekulationen 

angestellt und auf zukünftige Forschung verwiesen werden.  

Zusammengefasst: In der vorliegenden Dissertation untersuchten wir die EEG alpha-

Frequenzbandpower als ein globales Maß kognitiver Belastung, die sich möglicherweise auf 

die Belastung grundlegender EF zurückführen lässt. Alpha-Frequenzbandpower fungierte 

dementsprechend als abhängige Variable in allen drei Studien und wurde ergänzt um die 

Untersuchung der beta- und theta-Frequenzbandpower, der P300 und der Pupillendilatation 

in einigen der Studien. Jede Studie kann als Ausgangspunkt für weitere Forschung dienen, in 

der die beschriebenen physiologischen Maße und Aufgabensettings genutzt werden, um EF 

weiter zu untersuchen. Insgesamt unterstreichen die Ergebnisse der Dissertation den Nutzen 

physiologischer Maße wie die alpha-Frequenzbandpower und die Pupillendilatation um EF in 

Aufgabensettings der Grundlagen- und Anwendungsforschung zu untersuchen. Die EEG 

alpha-Frequenzbandpower scheint als ein Maß der kognitiven Belastung genutzt werden zu 

können, die auf unterschiedliche Anforderungen an grundlegende EF zurückzuführen ist.  
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1. Introduction and Theoretical Framework 

In frameworks of applied psychological research such as, for example, the 'Cognitive Load 

Theory' (CLT; Plass, Moreno, & Brünken, 2010; Sweller, 1994; Sweller, van Merrienboer, & 

Paas, 1998) or the 'Multiple Resource Theory' (Wickens, 2002, 2008), the hypothesized 

limited capacity of working memory (WM) respective limited attentional resources are 

central for constituting the individual experience of cognitive load and thus for constraining 

the individual performance in real-world task settings. WM defines the mental work space at 

the intersection of perception and memory where currently perceived information and 

information recalled from long-term memory is temporarily kept activated, processed, and 

integrated under the focus of attention (Baddeley, 1992; Cowan, 1999; Engle, Kane, & 

Tuholski, 1999; Oberauer, Süß, Wilhelm, & Wittman, 2003). Structurally, WM may be 

divided into codality specific short-term memory (STM) storage components (e.g., a 

component for the verbal domain and a component for the visuospatial domain) which are 

under control of an attention-related, central-executive component which is responsible for 

the processing (i.e., working) aspect of WM (Baddeley, 2007, 2012; Baddeley & Hitch, 

1974; Baddeley & Logie, 1999). Functionally, WM can be defined as closely intertwined 

cognitive processes of attention and memory (Cowan, 2010; Cowan et al., 2005; Engle, 

2002; Fougnie, 2008; Oberauer, 2009). To conclude, the term cognitive load may be defined 

as the load imposed on WM during the execution of a task. Comparably to physiological 

load, cognitive load increases for increased task complexity as well as for increased time-

pressure while completing a task (Galy, Cariou, & Mélan, 2012).  

The CLT is a framework which is primarily used to guide instructional design in 

educational research (e.g., Sweller et al., 1998), but it may also be used to address concepts 

of human-computer interaction with respect to the evaluation and optimization of the 

cognitive load-situation therein (Hollender, Hofmann, Deneke, & Schmitz, 2010). With the 

advent and rise of the 'World Wide Web', that is, the constantly growing information space in 

the internet consisting of text documents (i.e., hypertext webpages) which are interconnected 

via hyperlinks, hypermedia environments and specific tasks therein like hypertext reading or 

web searching have become important tasks of today's daily life. Consequently, hypertext
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reading (for a review see DeStefano & LeFevre, 2007) or web-searching (e.g., Gwizdka, 

2010) increasingly gather research interest, especially with a focus on cognitive load. 

Notably, hypertext reading may impose additional demands on WM as compared to normal, 

linear text reading (DeStefano & LeFevre, 2007). The CLT generally identifies WM capacity 

(i.e., memory storage limitations) for limiting performance in complex, real-world task 

settings like hypermedia environments (Hollender et al., 2010; Plass et al., 2010; Scheiter & 

Gerjets, 2007; Schüler, Scheiter, & Genuchten, 2011; Sweller et al., 1998). However, studies 

in the area of hypermedia research to date mainly consider WM either in a generic sense (i.e., 

as central bottleneck) or focus rather on the codality specific, memory aspects of WM (i.e., 

the differentiation between verbal WM and visuospatial WM; see e.g., Schüler et al., 2011), 

without specifically addressing the executive component of WM. In contrast, the 'Multiple 

Resource Theory' which primarily focusses on load-situations during multi-tasking identifies 

attentional resources as performance limiting factor (Wickens, 2002, 2008).  

In the present doctoral thesis, I will foster a view on WM which highlights the role of 

core executive functions (EFs) for WM functioning (see Chapters 1.1 – 1.3). This view on 

WM may in a way link the two assumptions cited above concerning the role of WM and 

attention for constraining performance in complex task settings and thus for defining 

cognitive load. Core EFs (Diamond, 2013) like updating, shifting, or inhibition (Miyake, 

Friedman, Emerson, Witzki, & Howerter, 2000); for a detailed definition see Chapter 1.1) 

describe attention-related cognitive processes which are constituent for other higher-order, 

rather elusive EFs like goal-pursuit or planning (Jurado & Rosselli, 2007) and which are, 

consequently, essential for any goal-directed, conscious behavior of the daily life (Banich, 

2009; Diamond, 2013; Fuster, 2000; Goldstein & Naglieri, 2014; Jurado & Rosselli, 2007; 

Royall et al., 2002). Notably, core EFs are also essential for WM functioning as, 

conceptually, they may constitute the "working" part of WM (e.g., Baddeley, 1996; 

Bledowski, Kaiser, & Rahm, 2010; Bledowski, Rahm, & Rowe, 2009; Engle, 2002; Engle & 

Kane, 2004; see Chapter 1.2). For example, the 'central-executive' component of Baddeley's 

WM model mentioned above can be fractionated into different core EFs that are responsible 

for the processing (i.e., working) aspect of WM and the control of subordinated STM storage 

components (Baddeley, 1996, 2007; see also 1.2.1). Thus, an important part of cognitive load 

may originate in demands on different core EFs. Yet, to date, cognitive load has not been 
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studied under a perspective on core EFs. Therefore, in the current doctoral thesis I was 

interested in the contribution of demands on different core EFs on the global load-situation in 

basic and applied task settings (see Chapter 1.3) and the measurement thereof (see Chapter 

1.4). The overall, conceptual assumption of the current thesis is that cognitive load may 

originate in WM load which in turn may be mainly grounded in demands on core EFs.  

A central topic of any framework in applied psychological research that deals with 

cognitive load is how to measure best the cognitive load-situation (Brünken, Steinbacher, 

Plass, & Leutner, 2002; Jong, 2009; Paas, Tuovinen, Tabbers, & Van Gerven, 2003; 

Parasuraman, 2011). Principally, there exist three different methodologies or techniques for 

assessing the cognitive load-situation in complex, real-world task settings (see, e.g., Cain, 

2007, and Gawron, 2008, for recent comprehensive reviews of different load-assessment 

techniques). The load-situation, for example, can be assessed rather indirectly, by using 

subjective rating scales afterwards (e.g., the NASA-TLX; Hart & Staveland, 1988), or more 

directly, by using a dual-task methodology and assessing performance of the secondary task 

to infer the load-situation of the primary task (e.g., Brünken, Plass, & Leutner, 2003). Yet, 

most promising for a direct assessment of the load-situation in real-world task settings might 

be electrophysiological measures such as the electroencephalogram (EEG) and especially 

EEG frequency band power (Antonenko, Paas, Grabner, & Gog, 2010; Parasuraman, 2003; 

Parasuraman & Wilson, 2008) or pupil dilation (Beatty & Lucero-Wagoner, 2000). The 

advantages of these latter physiological measures
1
 are that they allow a rather unobtrusive, 

objective, and direct (i.e., online) assessment of the load-situation, in contrast to the other 

load-assessment techniques mentioned above that are rather disruptive, potentially interfering 

with the performance of the primary task, and, especially reported for the subjective ratings, 

often may not reflect the actual load-situation (e.g., Kretzschmar et al., 2013).  

                                                           
1
 For reasons of brevity and readability, I will only subsume and refer to EEG measures and pupil dilation as 

'physiological measures' henceforth. In contrast, measures that rely on brain imaging techniques like 
functional magnetic imaging (fMRI) or positron-emission tomography (PET) will explicitly not be subsumed 
under the term 'physiological measures' in the sense I will use this term throughout the current thesis. These 
latter measures will be referred to as 'brain imaging'. Thus, in the current thesis the term 'physiological 
measures' will be used for contrasting measures that give more information on the time domain (EEG and 
pupil dilation) from measures that give more information on the spatial domain (fMRI, PET). Clearly, this use of 
the term 'physiological measures' may sound rather artificial as processes that are captured via brain imaging 
technologies are clearly physiological in nature as well. However, this labeling might be justified for reasons of 
brevity as only EEG and pupil dilation served as dependent measures in the current thesis.        
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Despite these advantages, physiological measures like EEG frequency band power or 

pupil dilation so far have rather scarcely been used in hypermedia research (e.g., Antonenko 

& Niederhauser, 2010; Di Stasi, Antolí, Gea, & Cañas, 2011; Fitzsimmons, Drieghe, Weal, 

& Drieghe, 2013; Gerlic & Jaušovec, 1999). Furthermore, the few studies that used EEG 

frequency band power often compare task conditions that are not free of perceptual-motor 

confounds (e.g., Antonenko & Niederhauser, 2010; see Gerjets, Walter, Rosenstiel, Bogdan, 

& Zander, 2014 for discussing the problematics of perceptual-motor confounds in applied 

task settings). Thus, these studies fail to establish any clear relation of observed outcomes in 

physiological measures and underlying, genuinely cognitive processes such as, for example, 

core EFs. Furthermore, in basic WM research and theoretical models of WM the role of core 

EFs has rather recently begun to be addressed (e.g., Baddeley, 1996, 2007, 2012; see also 

Chapter 1.2), and, moreover, research on EFs has just started to be extended beyond a purely 

neuropsychological, clinical context that mainly focused on disorders of the frontal lobes (see 

e.g., Goldstein & Naglieri, 2014). Clearly, more research on these topics will be necessary. 

In order to advance the understanding of core EFs and WM functioning and their 

contribution to cognitive load-situations in task settings of basic and applied research like 

WM tasks and hypertext reading, in the current doctoral thesis we studied the executive 

component of WM and the core EFs therein and compared the sensitivity of certain 

physiological measures thereof. The measures we applied have been previously reported as 

potential measures for assessing the cognitive load-situation in complex task settings 

(Antonenko et al., 2010; Just, Carpenter, & Miyake, 2003; Parasuraman, 2003). Using 

(electro-) physiological measures like EEG frequency band power, the P300 event-related 

potential (ERP), or pupil dilation, we examined typical WM tasks with respect to core EFs 

therein (Study 1), the interplay of two core EFs, namely updating and inhibition, within one 

single WM task (Study 2), and the use of alpha frequency band power and pupil dilation as 

potential measures for demands on core EFs in complex task settings like hypertext reading 

(Study 3 a-c). The main goal of the current doctoral thesis was to examine EEG alpha 

frequency band power (for a detailed description see 1.4.1.1) as a global measure of 

cognitive load that may be used in task settings of basic (e.g., WM tasks) and applied 

research (e.g., hypertext reading). As we assumed that cognitive load may be grounded in 

WM load and more specifically in demands on core EFs, we studied the sensitivity of EEG 
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alpha frequency band power for demands on core EFs (Study 1, Study 2) and the use of this 

measure in task settings of basic (i.e., WM tasks; Study 1, Study 2) and applied research (i.e., 

a task of link selection in hypertext reading; Study 3). Therefore, EEG alpha frequency band 

power served as main measure in all three studies that were conducted as part of this thesis. 

Especially, Study 3 addressed the use of EEG alpha frequency band power as a measure of 

the load-situation in a complex, more real-world task setting of hypertext reading when 

potential perceptual-motor confounds have been carefully ruled out (see follow-up 

experiments described in Study 3). This way, we thought of tracing back EEG alpha 

frequency band power to cognitive processes, that is, core EFs, and to ensure that this 

measure, if applied in complex task settings, might not only reflect non-cognitive factors like 

perceptual-motor confounds. These potential confounding factors cannot be ruled out as an 

alternative explanation in studies of hypermedia research that have been conducted to date 

(e.g., Antonenko & Niederhauser, 2010; Antonenko et al., 2010; Gerlic & Jaušovec, 1999). 

Apart from this main research goal of studying alpha frequency band power as a 

measure for the global load-situation which may originate in demands on core EFs, several 

additional research questions have been addressed as part of this thesis (mostly on the level 

of the single studies). These additional research questions can be categorized as broadly 

falling into two research directions, one interested in a more in-depth understanding of the 

interplay of core EFs in WM (Study 1 and Study 2) and the other interested in the 

comparison of different measures of cognitive load (i.e., demands on core EFs) like alpha 

frequency band power and pupil dilation in tasks of basic and applied research, that is, in a 

WM task (Study 2) or in a task of hypertext reading (Study 3). Furthermore, in Study 1 we 

analyzed EEG beta frequency band power as an additional measure potentially reflecting 

WM load. The different physiological measures are described in more detail in Chapter 1.4, 

and the different research questions are summarized in Chapter 1.5. The individual research 

questions will be (re)addressed in different parts throughout this thesis when corresponding 

tasks, measures, or concepts are discussed. Table 1 shows the different research questions at 

a glance and highlights their relevance for corresponding research directions.  
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Table 1. Overview of the Research Questions.  

Research Question Addressed in Relevant for 

Overall Research Question:    

 Examination of EEG alpha frequency band power as a 
measure of cognitive load which may ground in WM load 
and, more specifically, in demands on core EFs, in task 
settings of basic and applied research.  

Study 1,  
Study 2,  
Study 3 

basic and applied 
research; research 
on EFs, WM, and 
hypermedia 

     

Additional Research Questions:    

A) With Focus on Measures    

 Comparison of EEG alpha frequency band power and 
pupil dilation as measures of cognitive load (i.e., 
demands on core EFs) in task settings of basic (i.e., a 
WM task) and applied research (i.e., hypertext reading).  

Study 2,  
Study 3 

basic and applied 
research; especially 
hypermedia 
research 

 EEG beta frequency band power as a measure for WM 
load. 

Study 1 basic research; 
especially WM 
research 

 Use of alpha frequency band power in an eye fixation-
related methodology, comparably to eye fixation-related 
potentials (EFRPs).  

Study 3 a) basic and applied 
research 

     

B) With Focus on Core EFs    

 Comparison of classical WM tasks: n-back, operation 
span, and digit span tasks with respect to EEG 
correlates (P300, alpha, beta frequency band power). 

Study 1 basic research: 
research on WM 
and core EFs 

 Examination of the interplay of core EFs in a single WM 
task (i.e., without perceptual-motor confounds) using 
EEG measures (P300, theta, alpha frequency band 
power) and pupil dilation. 

Study 2 basic research: 
research on WM 
and core EFs 

 Examination of increased cognitive load during link 
selection in hypertext reading using EEG alpha 
frequency band power and pupil dilation. 

Study 3 applied research: 
hypermedia 
research; hypertext 
reading 
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The further organization of this thesis is as follows: At first, I will give some more 

detailed information on EFs with a special focus on the core EFs updating, shifting, and 

inhibition (Chapter 1.1). In a second step, the role of core EFs in recent models of WM will 

be discussed (Chapter 1.2), and two classical WM tasks and a hypertext-reading situation 

will be conceptually analyzed with respect to core EFs therein (Chapter 1.3). Finally, the 

measures used to assess demands on core EFs will be presented (Chapter 1.4), and a brief 

summary of the three studies that were part of this thesis and the research questions thereof 

will be given (Chapter 1.5). In Chapter 2 the complete manuscripts of the tree studies are 

given as submitted to the journals. The following general discussion section comprises the 

discussion of the main outcomes (Chapter 3.1), some general limitations of the current 

research (Chapter 3.2), as well as implications for future research (Chapter 3.3), and ends 

with some concluding remarks (Chapter 3.4). 
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1.1 Core Executive Functions (EFs) 

Although EFs have been extensively studied in neuroimaging or clinical research, to date any 

unique, overarching framework of EFs with respect to amount, manner, and labeling of 

different EFs is still missing. Instead, a variety of individually different definitions of EFs are 

used as reviewed recently by Goldstein and colleagues (Goldstein, Naglieri, Princiotta, & 

Otero, 2014). Therefore, these authors concluded that the term EFs might be regarded as a 

kind of "umbrella term" under which diverse cognitive functions are subsumed which are 

required for complex, conscious task performance in situations that afford adaptive behavior. 

The complexity of cognitive functions thereunder ranges from rather basic, core EFs like 

updating, shifting, or inhibition (Diamond, 2013; Miyake et al., 2000) to higher-order, rather 

elusive EFs like goal formation, or planning (Jurado & Rosselli, 2007). In the current 

doctoral thesis I will focus on the core EFs. 

The EF updating most closely resembles processes of WM functioning as it refers to 

processes of retrieval, transformation, and substitution of WM content (Ecker, 

Lewandowsky, Oberauer, & Chee, 2010). Noteworthy, some conceptualizations of EFs use 

the terms WM and updating rather interchangeable (e.g., Diamond, 2013). This raises the 

question concerning the definition of WM and its status as being one EF amongst others or as 

incorporating different core EFs within a central-executive component (e.g., Baddeley, 1996; 

see Chapter 1.2 for a discussion of current models of WM and their relation to core EFs). The 

EF named shifting labels processes of directing the (attentional) focus towards newly relevant 

information for processing and task performance (e.g., task shifting in dual task paradigms; 

Monsell, 2003). The EF inhibition refers to processes of suppressing information that is not 

(or no longer) relevant for the current processing step in WM. Inhibition is a rather multi-

facet cognitive construct (Nigg, 2000). Depending on the concrete stage of the information 

processing chain, inhibitory control (i.e., inhibition) might describe different processes. For 

example, demands on inhibitory control can arise on the stage of perception due to 

interfering perceptual information, on the stage of cognitive processing due to interfering 

memory information, or on the response stage due to dominant (overlearned) response 

tendencies (e.g., the tendency to respond to the color word and not to the color in a Stroop 

color task; Caldas, Machado-Pinheiro, Souza, Motta-Ribeiro, & David, 2012; MacLeod, 
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1991; Stroop, 1935). In sum, up to eight specific forms of inhibition can be differentiated 

(Nigg, 2000). Nevertheless, as for the other core EFs, we will use the term inhibition in a 

rather generic sense throughout this thesis without any explicit differentiation of possible 

sub-processes thereunder (e.g., Friedman & Miyake, 2004; Nigg, 2000; see Macleod, 2007 

for an extensive discussion of inhibition). This generic view on inhibition and the other core 

EFs is in line with literature (e.g., Diamond, 2013).  

Initially, the three core EFs updating, shifting, and inhibition have been identified by 

Miyake and colleagues (2000) using a correlational research methodology. In a latent-

variable analysis using behavioral performance measures of a variety of simple tasks that 

were supposed to specifically load on single EFs and complex tasks that were supposed to 

incorporate different EFs, these authors found three factors, namely updating, shifting, and 

inhibition, that each contributed differently to the performance in the complex tasks, yet all 

showed some common underlying factor. This common underlying factor of the three EFs 

has been hypothesized to be attributable to processes of controlled attention.  

The findings by Miyake and colleagues (2000) have partly been corroborated further 

by neuroimaging research showing that several frontal and parietal brain areas are commonly 

activated by all core EFs but some certain brain areas seem to be rather specifically activated 

by single core EFs (e.g., the intraparietal sulcus for inhibition, the left mid-dorsolateral 

prefrontal cortex for shifting, or the posterior ventral frontal regions for updating) as 

summarized by a meta-analysis conducted by Nee and colleagues (Nee, Brown, & Askren, 

2013). Noteworthy however, differences in brain activation with respect to different core EFs 

seem to be rather subtle, affecting very specific and small brain areas, and are still matter of 

debate (see, e.g., Collette, Hogge, Salmon, & Van der Linden, 2006; Collette & Van Der 

Linden, 2002; Collette et al., 2005; Nee et al., 2013; Owen, McMillan, Laird, & Bullmore, 

2005; Smith & Jonides, 1999). In sum, brain imaging studies on core EFs revealed the 

activity of a variety of prefrontal and parietal brain areas during tasks demanding EFs (e.g., 

Collette, Hogge, Salmon, & Van der Linden, 2006; Collette & Van Der Linden, 2002; Owen, 

McMillan, Laird, & Bullmore, 2005). These observations led to the view that the 

physiological underpinnings of EFs may be the complex interaction and integration of 

various different neuronal networks throughout the brain (Otero & Barker, 2014). Thus, the 
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activity of prefrontal-parietal networks might be constituent for EFs (e.g., Chung, Weyandt, 

& Swentosky, 2014; Collette & Van Der Linden, 2002; Fuster, 2000; Otero & Barker, 2014).  

As a short side-note, because of the obviously distributed neuronal networks which 

underlie EFs, rather than focusing on specific brain regions future research on EFs might 

focus more on this network character, that is, the oscillatory activity associated with 

executive functioning. For this line of research, the EEG can proof to be a valuable 

methodological alternative compared to the rather static brain imaging methods like 

functional magnetic resonance imaging (fMRI) or positron-emission tomography (PET) 

which have been used in the studies cited above. EEG allows to capture the oscillatory 

activities of neuronal networks of the brain with high time-resolution and thus might reflect 

more directly the neuronal coupling or decoupling of different brain areas (e.g., Buzsáki & 

Draguhn, 2004, see also Chapter 1.4).  

Developmental studies also corroborate the possibility of separating the three core 

EFs by showing different developmental trajectories for different core EFs. Thus, for 

example, the capability of inhibition occurs early in life and develops most strongly during 

preschool age, whereas updating and shifting improve in a linear way but most strongly 

above about five years of age, that is, during the first school years (Best & Miller, 2010; 

Best, Miller, & Jones, 2010; Garon, Bryson, & Smith, 2008). Interestingly, controlled 

attention which has been hypothesized as the common underlying factor of the core EFs 

(Miyake et al., 2000) and which may reside in an anterior attention network (Petersen & 

Posner, 2012) shows a comparably developmental trajectory consisting of a strong 

improvement during late preschool and early school years (Garon et al., 2008; Posner & 

Rothbart, 2007). In addition, when comparing the developmental trajectories of EFs and the 

frontal lobes, a close connection between EFs and the frontal lobes can also be observed. 

Both maturate until the early days of adulthood (Best et al., 2010; Garon et al., 2008; Stuss, 

1992) and both are prune to age-related decline (Burke & Barnes, 2006; Fisk & Sharp, 2004). 

In line with the hypothesized possibility of separating these core EFs, the age-related decline 

has been reported to selectively affect different core EFs (see meta-analyses by Verhaeghen, 

2011). Comparably, damages or disorders of the frontal lobes often result in impaired 

performance in EFs (e.g., Alvarez & Emory, 2006; Royall et al., 2002). In sum, 
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developmental studies on EFs are in line with the differentiable yet unitary account on EFs as 

proposed by Miyake and colleagues (2000). Controlled attention might constitute the 

common underlying factor of the three core EFs with the biological underpinnings of this 

factor possibly lying in an anterior attention network.  

Noteworthy, there is some debate concerning the conceptual differentiation of core 

EFs. For example, the question is raised whether a fourth EF, "multitasking" (i.e., the ability 

to coordinate task performance of two simultaneously presented tasks), should be added to a 

taxonomy of core EFs (Strobach, 2014), or whether the EF inhibition might be 

conceptualized as the common underlying factor of updating and shifting, thus reducing the 

number of core EFs to two (Miyake & Friedman, 2012). Furthermore, a close connection 

between updating and shifting might exist as shifting might be considered to comprise 

similar sub-processes as updating, yet referring to procedural WM content whereas updating 

refers to declarative WM content (Oberauer, 2009; see 1.2.4). However, in the current thesis 

we restricted our research focus on the classical three core EFs, that is, updating, shifting, 

and inhibition, which we addressed under a rather generic view (i.e., not differentiating 

between possible sub-processes thereunder). This might be justified for reasons of brevity, 

and more importantly, as the classical definition of the three core EFs is still prevalent. 

Most research on core EFs during the last decades has been done using correlational 

research methodologies either to identify core EFs in complex tasks (e.g., Miyake et al., 

2000), or, in individual differences research, to compare performance in core EFs and, for 

example, scholastic achievement (e.g., St Clair-Thompson & Gathercole, 2006). 

Furthermore, core EFs have been addressed in developmental studies as those cited above 

(e.g., Best et al., 2010) as well as in training studies that just recently have become 

increasingly popular. Although often yielding mixed results, these training studies revealed 

that the training of core EFs might at least partly improve the performance in complex tasks 

(e.g., Dahlin, Bäckman, Neely, & Nyberg, 2009; Karbach & Kray, 2009; Klingberg, 2010; 

Morrison & Chein, 2011; Rabipour & Raz, 2012; Salminen, Strobach, & Schubert, 2012; 

Titz & Karbach, 2014; but see Shipstead, Redick, & Engle, 2010), thus underlining the 

importance of core EFs for complex cognition. Finally, fMRI and PET studies have been 

conducted to study core EFs (e.g., Bledowski et al., 2009, 2010; Collette et al., 2006; Collette 
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& Van Der Linden, 2002; Owen et al., 2005). So far, other physiological measures like EEG 

frequency band power or pupil dilation have been rather seldom used to study core EFs (see 

Chapter 1.4). Thus, one objective of the current doctoral thesis was to strengthen this 

research methodology (i.e., EEG and pupil dilation) for studying core EFs, as these measures 

might be well suited to capture the time course of cognitive load in task settings of basic and 

applied research which might be grounded in demands on core EFs
2
.  

  

                                                           
2
 For an interesting, recent discussion of neuroimaging and electrophysiological data for studying cognitive 

processes see Axmacher and colleagues (Axmacher, Elger, & Fell, 2009). 
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1.2 The Role of Core EFs in Current Theories of Working Memory (WM) 

To date, the connection of EFs and WM is somehow ambiguously defined, apparently 

depending on the authors' primary research focus. Thus, authors primarily stemming from EF 

research (e.g., Diamond, 2013) often define WM as one EF among others, whereas authors 

primarily stemming from WM research define EFs as a central aspect of WM functioning 

and thus as being a part or component of WM (e.g., Baddeley, 1996). In the current thesis we 

will favor the latter view. In the following I will briefly review some of the currently most 

prevalent models of WM in cognitive science under a special focus on the role of core EFs 

therein (for a more general and extensive discussion of recent models of WM see Miyake & 

Shah, 1999; Osaka, Logie, & D’Esposito, 2007). 

1.2.1 The multi-component model of WM 

The multi-component model of WM by Baddeley and colleagues (Baddeley & Hitch, 1974; 

Baddeley & Logie, 1999; Baddeley, 1992, 2003, 2012) still can be regarded as one of the 

most prevalent and most influential theories of WM. The multi-component model was one of 

the first conceptualizations of a WM construct. The initial formulation of the model in 1974 

(Baddeley & Hitch, 1974) might be seen to mark a turning point in memory research by 

shifting the prevalent research focus from a rather passive STM storage system of limited 

capacity (Atkinson & Shiffrin, 1968) to an active processing system consisting of different 

components, namely the WM. According to Baddeley and Hitch (1974) WM consists of 

three components, two of which are memory-related, the so-called phonological loop and the 

visuospatial sketchpad, and one is attention-related, the so-called central-executive. The 

memory components were conceptualized as codality-specific, passive storage structures of 

limited capacity for verbal or visuospatial material, thus closely resembling the former STM. 

In contrast, the central-executive was conceptualized to supervise and coordinate the storage 

components, thus resembling the supervisory attentional system (SAS) proposed by Norman 

and Shallice (Norman & Shallice, 1986). In a later revision of the multi-component model, a 

forth component, the so-called episodic buffer was added to provide a unified storage 

component for processing task material irrespective of codality (Baddeley, 2000).  
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Over the years, the central-executive component has also been developed further 

(Baddeley, 1996, 2007). Starting from a conceptualization as a rather unitary control 

component, the central-executive later was fractionated into several attention-related EFs 

which were hypothesized to be essential for WM functioning (Baddeley, 1996, 2002, 2007). 

According to Baddeley (1996) apart from supervising and coordinating the storage systems, 

the EFs of the central-executive are (a) the ability to focus attention against potentially 

distracting, irrelevant information, (b) the ability to switch attention between two or more 

stimulus sources or actions, and (c) the ability to divide attention in order to perform two 

tasks simultaneously. Noteworthy, the EFs of the central-executive as formulated by 

Baddeley (1996, 2002) seem to closely resemble the core EFs updating, shifting, and 

inhibition (Miyake et al., 2000; Diamond, 2013). The coordination of the storage components 

comprises processes which are subsumed under the EF updating, and the other processes 

described by Baddeley closely resemble the definitions of the EFs inhibition and shifting 

(compare Chapter 1.1). 

The component view on WM by Baddeley and colleagues stimulated a wealth of 

neuroimaging studies that searched for brain areas associated with specific WM components 

(see e.g., Baddeley, 2007; Collette & Van Der Linden, 2002; D’Esposito, 2001; D’Esposito 

et al., 1995; Duncan & Owen, 2000; Nee et al., 2012; Smith & Jonides, 1997; Wager & 

Smith, 2003). Although initially neuroimaging studies seemed to corroborate the multi-

component model of WM (e.g., Smith & Jonides, 1997), over the years it turned out that in 

sum the component view of WM is only weakly supported by neuroimaging results. For 

example, WM tasks which load on the phonological loop show brain activity primarily in left 

frontal and temporoparietal brain regions (e.g., Broca's area), but only for low to moderate 

WM load, whereas tasks which load on the visuospatial sketchpad show rather right-

lateralized activity (Baddeley, 2003; Smith & Jonides, 1997, 1999; Wager & Smith, 2003). 

Thus, the spatial differentiation within the brain of codality-specific WM components (i.e., 

the phonological loop, the visuospatial sketchpad) holds only true under certain, specific 

circumstances.  

The frontal lobes generally show more activity for WM tasks which require executive 

processing than for simple STM storage tasks (Wager & Smith, 2003). These observations 
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indicate the location of a central-executive component in the frontal lobes. More specifically, 

Duncan and Owen (2000) identified the mid-dorsolateral, mid-ventrolateral and dorsal 

anterior cingulate cortex as commonly showing activity for a variety of different tasks which 

required executive processing, which might attribute especially these structures to a central-

executive component (Baddeley, 2007). Yet, other authors reported the activity of rather 

diverse frontal and parietal brain areas for tasks requiring EFs (Collette & Van der Linden, 

2002). Therefore, over the years of neuroimaging research, a new view emerged on the 

conception of WM. Instead of focusing on structural aspects of WM and thinking about WM 

in terms of differentiable, specific brain areas (i.e., different components that have biological 

underpinnings in specific, differentiable brain areas), a more functional view on WM 

emerged that attributed WM to the activity of fronto-parietal neuronal network structures 

without identifying a specific brain region as "the WM" (Collette & Van der Linden, 2002; 

Postle, 2006; Zimmer, 2008). Thus, the current neurobiological view on WM is one that 

hypothesizes WM as rather flexible, distributed fronto-parietal networks which rely on 

existent brain structures associated with perception, memory, and attention, instead of 

hypothesizing WM as a set of fixed brain regions which are specifically connected to single 

WM components (D’Esposito, 2007; D’Esposito & Postle, 2015; Postle, 2006). This 

functional view on neurobiological underpinnings of WM is also reflected in the newer 

theoretical models of WM that I will review below.  

1.2.2 The embedded process model of WM 

The embedded process model of WM proposed by Cowan (Cowan, 1988, 1995, 1999) can be 

seen as one representative of a functional view on WM. It emphasizes the link between long-

term memory (LTM) and attention for WM functioning. According to Cowan, WM can be 

defined as an activated subset of LTM in the focus of attention, that is, without assuming any 

specific STM components as in the conceptualization of Baddeley and colleagues (e.g., 

Baddeley & Hitch, 1974; Baddeley & Logie, 1999). Thus, Cowan describes a unitary system 

of WM with no codality-specific temporary memory stores. In doing so, his model 

overcomes a limitation of Baddeley's multi-component model that currently defines only two 

memory components for verbal and visuospatial task materials but would have to define 

additional components for dealing with other sensory information (e.g., tactile information or 
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odors). According to Cowan, the amount of information in the activated subset of LTM is 

limited by time (if no longer under the focus of attention). This is a comparable 

operationalization as for the capacity limitations of the STM storage components in the 

model by Baddeley and colleagues, where capacity limitations are also defined by the 

temporary decay when no processes of rehearsal take place.  

Additionally, in the model by Cowan the focus of attention is hypothesized to be 

capacity-limited to about four chunks of information (Cowan, 2001). Cowan assumes the 

focus of attention to be either under voluntary control of a central-executive system or under 

involuntary control of the attentional orienting system. However, despite this connection of 

WM to a central-executive system which reminds of Baddeley’s central-executive 

component, the embedded process model of WM does not provide any further information on 

the central-executive system, its potential fractionation, or the definition of specific processes 

therein. For example, Cowan (1999) speaks rather vaguely about the executive system as "a 

set of processes influenced by instructions or incentives" (Cowan, 1999, p. 67).  

Thus, as main benefits of the model by Cowan may be regarded, that the model 

addresses topics which are problematic or which have been underrepresented in the multi-

component model of WM, like, at least in earlier versions of the model, the role of LTM (see 

Baddeley, 2012). However, apart from emphasizing the role of attention for WM functioning, 

the embedded process model by Cowan seems to be of rather limited benefit with respect to 

defining the role of separate core EFs in WM.  

1.2.3 The executive attention framework 

Engle and colleagues proposed a framework of WM that was developed out of individual 

differences research (Engle, 2002; Engle & Kane, 2004; Engle, Kane, & Tuholski, 1999; 

Kane & Engle, 2002) and thus mainly focus on limiting factors of WM which may induce 

individual differences in cognition. They identified controlled attention (later renamed in 

executive attention; see Engle, 2002) as the central, limiting factor in WM, that is, as the 

factor which defines the overall capacity limits of WM. Comparable to the focus of attention 

described by Cowan (1995), controlled attention is hypothesized to be domain-independent, 

of limited capacity, and operating on LTM traces (Engle et al., 1999). Thus, the memory 
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aspect of WM in this framework is conceptualized as activated parts of LTM. Furthermore, 

the differentiation of WM with respect to verbal or visuospatial task materials is met by 

assuming codality-specific codes (Engle et al., 1999) rather than codality-specific structures 

like specific WM storage components as hypothesized in the multi-component model of 

Baddeley and colleagues (see 1.2.1).  

For the working aspect of WM, processes of controlled attention are hypothesized to 

activate memory representations, bring them into the focus of attention and, most important, 

maintain them in the focus of attention in the face of interference and distraction. Thus, 

Engle and colleagues describe a dual process model of executive attention. Executive 

attention is hypothesized to be necessary for maintaining the information in active memory 

as well as for the resolution of conflict (e.g., in case of two competing memory traces). This 

latter aspect of executive attention emphasizes particularly the role of the EF inhibition for 

WM functioning. Consequently, inhibitory capabilities play a central role in defining WM 

capacity limitations and thus in establishing individual differences in cognition (Kane & 

Engle, 2002). Anatomically, Engle and colleagues link individual differences in WM 

capacity (i.e., the ability to control attention) to the functioning of the prefrontal cortex. This 

resembles the link between the frontal cortex and EFs as described in Chapter 1.1.  

In sum, the executive attention framework of WM by Engle and colleagues may be 

regarded as a functional WM model which highlights the role of executive attention for WM 

functioning. Thus, it might be seen to bridge research on EFs (focusing on inhibitory control) 

as well as research on attention (i.e., executive attention; Gazzaley & Nobre, 2012; 

Vandierendonck, 2014) under a framework of WM.  

1.2.4 The functional model of WM 

The functional model of WM proposed by Oberauer and colleagues (Oberauer, 2009; 

Oberauer, Süß, Wilhelm, & Wittman, 2003) comprises aspects of all three models of WM 

reviewed above. It may be seen as the most global and at the same time most specific account 

of WM to date (Baddeley, 2012). Central to the functional model of WM is the division of 

WM into two facets, namely the content domain and cognitive functions (Oberauer et al., 

2003). This division resembles the differentiation of WM in memory components and a 
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central-executive component by Baddeley and colleagues (see 1.2.1). In the later version of 

the functional model (Oberauer, 2009), this dichotomy of functional and content aspects of 

WM became specified as the procedural part of WM and the declarative part of WM. 

Oberauer (2009) hypothesized each of the two parts of WM to comprise three embedded 

components. These three components are (1) an activated part of long-term memory, (2) a 

component where new structural representations are created by dynamic binding, called 

"region of direct access" for declarative WM or "bridge" for procedural WM, and (3) a 

mechanism for selecting a single element, namely the "focus of attention" for declarative 

WM and the "response focus" for procedural WM. The "bridge" in this conceptualization of 

WM may be regarded as closely resembling the central-executive component of the multi-

component model of WM (see, Baddeley, 2012).  

A detailed discussion of the functional model of WM is beyond the scope of the 

current thesis. Instead, some aspects of the model that relate to the discussion of core EFs in 

WM will be highlighted. According to Oberauer (2009), executive processes (i.e., EFs) come 

into play in WM for the flexible reconfiguration of WM which is regarded to be a general 

purpose mechanism that has to be flexibly adapted to fulfill the specific requirements of a 

current task. With respect to the core EFs, Oberauer (2009) defines updating to work on the 

declarative part of WM (i.e., replacing old declarative WM content by new one), whereas 

inhibition and shifting (called 'switching' by Oberauer, 2009) are hypothesized to work on the 

procedural part of WM (i.e., on WM functions). In this definition, shifting can be regarded as 

a form of updating, yet operating on the procedural part of WM, i.e., shifting describes 

processes of replacing the current task set in the "bridge" by a new one. Finally, inhibition 

refers to processes of establishing and consolidating a new task set in the "bridge" against 

distracting procedural information of old tasks sets that, for example, stem from habitual 

response tendencies in LTM.  

In sum, the functional model of WM proposed by Oberauer (2009) and the 

differentiation in a declarative part of WM and a procedural part of WM may serve as both, a 

thorough definition of WM functioning as well as a definition of the core EFs thereunder. 

However, as Baddeley (2012) stated, an extensive experimental investigation of all of the 

different aspects of the functional model is still to come. 
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1.2.5 Conclusion: Core EFs and models of WM 

To sum up, the review of four of the currently most prevalent cognitive theories of WM 

revealed a central position of core EFs for WM functioning. The three core EFs updating, 

shifting, and inhibition may be subsumed under a central-executive component of WM (e.g., 

Baddeley, 2007) or may be incorporated in processes of controlled or executive attention 

(Engle, 2002). A differentiable view on WM as consisting of a declarative and a procedural 

part (Oberauer, 2009) may help to capture subtle differences and commonalities in the 

definition of the three core EFs (see 1.2.4). However, whether the conceptual considerations 

concerning the relation of WM and core EFs as proposed by the models reviewed above 

might hold experimental examinations still has to be shown. Therefore, in the current 

doctoral thesis as one research question the relation of core EFs and WM has been addressed 

by comparing different WM tasks with respect to core EFs therein (Study 1) and by 

manipulating different core EFs within one single WM task (Study 2). 
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1.3 Core EFs in Tasks of Basic and Applied Research: Conceptual Task 

Analyses 

To further elaborate on the relationship between core EFs and WM in the following 

conceptual task analyses of two classical families of WM tasks, namely n-back and WM span 

tasks will be given. The n-back task has been used in Study 1 and Study 2 of the current 

thesis. WM span tasks have been used in Study 1 for comparison with the n-back task by 

means of EEG measures. Finally, (see 1.3.3) demands on core EFs during hypertext reading 

will be conceptually analyzed. Consequently, Study 3 examined the sensitivity of EEG alpha 

frequency band power and pupil dilation for link selection processes which might increase 

demands on core EFs during hypertext reading. 

1.3.1 The n-back task 

The n-back task has been mainly used in neuroimaging studies of cognitive neuroscience 

research and is commonly regarded as a typical task loading on WM updating (Gevins, 

Smith, McEvoy, & Yu, 1997; Jonides et al., 1997; Krause, Pesonen, & Hämäläinen, 2010; 

Krause et al., 2000; Owen et al., 2005; Palomäki, Kivikangas, Alafuzoff, Hakala, & Krause, 

2012; Pesonen, Hämäläinen, & Krause, 2007). In a typical n-back task a temporal sequence 

of stimuli is presented and participants have to decide via key-presses for each stimulus 

whether it was similar or different to the stimulus they saw n-steps back with respect to a 

certain stimulus dimension (i.e., they have to perform a binary match/no-match decision). 

The stimulus dimension (e.g., identity, color, or semantic content) the participants have to 

react to as well as the n-back level (e.g., 0-back, 1-back, 2-back) is announced at the 

beginning of a sequence. The 0-back task condition can be regarded as a pure matching task, 

as in this task condition one specific n-back target stimuli is shown at the beginning of the 

sequence, and during the following stimuli sequence participants have to press the match-key 

each time they saw this specific stimulus and otherwise the no-match-key. All other n-back 

conditions above the 0-back are hypothesized to require processes of WM updating, as 

beginning with the 1-back task condition participants have to base their match/no-match 

decision each time by comparing the current stimulus with the stimulus they saw at position 

n-back in the sequence.  
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Noteworthy, an EEG event-related potential (ERP) study by Watter and colleagues 

(Watter, Geffen, & Geffen, 2001) indicated that the n-back task might also incorporate 

processes of shifting, as the n-back task seems to incorporate aspects of a dual task. The 

authors observed a decrease of the P300 mean amplitude for increased n-back levels 

comparably to the decrease of the P300 amplitude of the secondary task in dual task studies 

when the task demands of the primary task increased (e.g., Allison & Polich, 2008; Kok, 

2001; see 1.4.1.4 for a detailed discussion of the P300). Furthermore, Watter and colleagues 

(2000) observed a significant increase in P300 latency only between the 0-back task 

condition and the following n-back task conditions, but not between the higher n-back levels. 

This was interpreted to underline the differentiable character of the 0-back task condition as a 

purely matching task, whereas the higher n-back levels seem to put demands on other 

cognitive processes (i.e., WM updating). This leads to the necessity to shift the attentional 

focus between the different sub-processes of matching and WM updating for the higher n-

back levels (see also Chen, Mitra, & Schlaghecken, 2008). Thus, in an n-back task for 

increased n-back load levels controlled attention might have to be divided between different 

processes (updating and shifting) which results in a decrease of the P300 amplitude as a 

measure of attentional demands (Kok, 2001; Polich, 2007). 

Conceptually, the n-back task might also necessitate processes of inhibition. For 

example, the dual decision (match/no-match) that participants have to make in an n-back task 

always requires them to suppress (i.e., inhibit) the inadequate (i.e., incorrect) response 

tendency. Furthermore, in the higher n-back levels (above the 1-back), this inadequate 

response tendency might be fostered by so-called lure trials, that is, n-back stimuli that match 

previous stimuli but at an inadequate position within the sequence (e.g., 1-back lures within a 

2-back task; see Szmalec, Verbruggen, Vandierendonck, & Kemps, 2011).  

1.3.2 WM span tasks 

WM span tasks have been mainly used in individual differences research to assess WM 

capacity (i.e., the amount of stimuli correctly recalled). This line of research usually observes 

a strong correlation between performance in complex span tasks (i.e., WM capacity) and 

several higher order cognitive abilities like reading, mathematics, problem solving, or goal 
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pursuit (e.g., St Clair-Thompson, 2007; Yuan, Steedle, Shavelson, Alonzo, & Oppezzo, 

2006). 

Because of their dual-task nature, complex span tasks can be regarded to particularly 

put demands on the EF shifting. Complex span tasks like the reading span task (Daneman & 

Carpenter, 1980) or the operation span task (Turner & Engle, 1989) consist of a processing 

sub-task (reading and verifying a sentence, respectively calculating and verifying an 

equation) and a short-term memorization sub-task (memorize words, digits, or letters). These 

sub-tasks of processing and memorization are presented in alternation until after three to 

mostly seven or eight alternations (i.e., three to eight stimuli to be memorized) the 

participants have to recall the remembered stimuli in correct serial order. Thus, the 

alternation between the processing sub-task and the memorization sub-task clearly requires 

processes of shifting between different task sets.  

Conceptually, it might be plausible to assume that complex span tasks also 

incorporate processes of WM updating due to the memorization sub-task. In principal, the 

WM updating demands in complex span tasks might be comparable to the WM updating 

demands in n-back tasks, although in an n-back task participants have to continuously update 

their WM content (i.e., load a new item in WM and 'forget' an old item), whereas in a span 

task updating seems to involve first of all processes of adding a new item for temporary 

storage in memory. Thus, on a first, shallow view the WM updating demands of span tasks 

and n-back tasks might occur to be differently, as in the span tasks the replacement (i.e., 

forgetting) of old memory items seem not to be necessary. However, because of the shifting 

between the sub-tasks and, furthermore, because of potential strategies of chunking (i.e., the 

combination of items for better memorization), complex span tasks might comprise 

comparable WM updating processes of loading new and replacing old, no longer relevant 

items in WM (e.g., items before chunking) as the n-back task.  

Also conceptually, complex span tasks might incorporate processes of inhibition. 

Comparably to the n-back task, a dual choice decision has to be made for the processing sub-

task (i.e., the decision whether the sentence respective the equation is correct or not). 

Furthermore, because of the shifting between two sub-tasks it might be plausible to assume 

that the sub-task currently not relevant for task performance has to be temporarily 
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suppressed. In Study 1 of the current thesis an operation span task was used as complex span 

task. In order to create a complex span task that was conceptually as similar as possible to an 

n-back task, participants in this task had not simply to memorize an unrelated item during the 

memorization sub-task (as in typical complex span tasks, for example, Conway et al., 2005; 

Daneman & Carpenter, 1980; Turner & Engle, 1989), but to remember a given digit that 

served as possible result for the preceding equation, that is, that matched or mismatched the 

result that participants had mentally calculated during the processing sub-task before. In 

doing so, demands on inhibitory control were also increased as compared to a standard 

complex span task where unrelated stimuli have to be memorized. This is because in cases 

when the digit presented during the memorization sub-task was the wrong result for the 

previous equation (i.e., mismatched the result participants have mentally calculated), 

participants would have to actively suppress the formerly calculated result that interfered 

with the digit that had to be remembered.  

In contrast to complex span tasks which may incorporate demands on all three core 

EFs, a simple span task like the digit span task, where participants simply have to recall a 

given sequence of three to eight digits in correct order, may mainly demand WM updating
3
. 

In order to empirically examine these conceptual considerations of the role of core EFs in n-

back and WM span tasks, Study 1 was conducted. Using EEG measures an n-back task, an 

operation span task, and a simple digit span task have been compared in this study (see 

1.5.1).  

1.3.3 Core EFs in hypertext reading and link selection  

The core EFs updating, inhibition, and shifting may not only define central aspects of WM 

functioning but they may also be highly relevant for tasks in hypermedia environments like 

hypertext reading and link selection. In the following a typical hypertext reading situation 

will be recapitulated with respect to demands on core EFs therein.  

                                                           
3
 I will refer to the digit span task rather interchangeable as STM or WM task. Traditionally, the digit span task 

is regarded as a purely STM task that only puts demands on the memory components of WM (i.e., STM). 
However, at least when the STM capacity limits are exceeded (i.e., when more than about four digits have to 
be memorized; Cowan, 2010) this task will also require central-executive processes, that is, the core EF 
updating.    
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In a typical hypertext webpage, for example, a Wikipedia article 

(http://wikipedia.org), the reader is confronted at certain positions in the text with hyperlinks, 

that is, often blue-colored, marked words which lead to other webpages. Each time the reader 

gets to a hyperlink, the reading process is interrupted and decision processes have to take 

place (DeStefano & LeFevre, 2007). Thus, the EF shifting is required, as the reader has to 

perform a task set shifting, that is, a shift from purely text reading processes to hyperlink 

selection processes. These hyperlink selection processes then might put demands on the EF 

inhibition, as the reader has to ignore the hyperlink when deciding to continue reading 

without clicking on it. These demands on inhibitory control might be especially high, if the 

hyperlink is of special interest for the reader but not relevant for the current information 

gathering process that had been the initial reason for starting reading the hypertext page 

(Salmerón, Cerdán, & Naumann, 2015). Finally, the EF updating might be continuously 

demanded, as during reading and text comprehension the situation model generated out of the 

text in combination with prior knowledge has to be continuously updated (Kintsch, 1988; 

Kintsch, Patel, & Ericsson, 1999; Zwaan & Radvansky, 1998). 

In sum, when reading a hypertext all three core EFs may be demanded. The demands 

on core EFs might moreover vary, depending on the complexity of the text itself (which 

should mainly affect updating-demands
4
), or the amount and manner of hyperlinks presented 

(which should additionally affect inhibition and shifting-demands). Importantly, the demands 

on core EFs should already occur during reading of the initial hypertext page, that is, before 

accessing (via the hyperlinks) subsequent webpages which will put additional load on the 

reader due to the additional content to be processed and the navigation-step that has to be 

remembered.  

To date, hypertext research prevalently examined the entire process of link selection 

and accessing subsequent webpages (for a review see DeStefano & LeFevre, 2007), thus 

confounding the load-situation of purely link selection (and the EFs therein) by the content of 

additional webpages and potential effects of disorientation the reader might experience (e.g., 

                                                           
4
 Noteworthy, the relevance of updating for text comprehension is mainly drawn out of the text 

comprehension model proposed by Kintsch and colleagues (e.g., Kintsch, 1991). Other models of text 
comprehension like the 'Structure Building Framework' proposed by Gernsbacher and colleagues also highlight 
the role of inhibition and shifting for creating and updating a text model, that is, for text comprehension 
(Gernsbacher & Foertsch, 1999; Gernsbacher, 1991). 
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Amadieu, van Gog, Paas, Tricot, & Mariné, 2009; Cangoz & Altun, 2012; Kim & Hirtle, 

1995; Scheiter & Gerjets, 2007). Such confounding factors, like the processing of additional 

information (because of reaching subsequent webpages), as well as perceptual-motor 

differences between task conditions, have especially to be considered when using 

physiological load measures like EEG frequency band power or pupil dilation (see e.g., 

Gerjets et al., 2014 for a recent and comprehensive discussion of potentially confounding 

factors in studies that used EEG measures in complex task settings).  

For example, Antonenko and Niederhauser (2010) studied the influence of leads on 

the cognitive load-situation in hypertext reading and hyperlink selection. The leads were 

previews which consisted of a few sentences summarizing the content of the hyperlinked 

webpages. Some hyperlinks of the primary hypertext page were presented with leads, some 

without. The leads appeared as mouse-over popup balloons when the mouse-pointer was over 

the hyperlink. The authors compared EEG frequency band power for data epochs of the 

hyperlinks with leads and the hyperlinks without leads and observed less cognitive load (i.e., 

less decrease of EEG alpha frequency band power) in the lead as compared to the no-lead 

hyperlink situations. Although in line with the authors' hypothesis, the results might be 

severely confounded. First, the lead condition was perceptually different from the no-lead 

condition. Second, the data epochs used for analysis contained different content between the 

two conditions because of the additional text of the leads which also might have influenced 

the EEG data. 

Thus, in the current thesis (Study 3 a-c) we focused on the initial load-situation 

during hyperlink selection that has not explicitly been studied up to now. Importantly, we 

avoided potential confounds due to the presentation of subsequent webpages as well as 

confounds due to perceptual-motor differences. This was achieved by creating a hypertext-

like reading situation using 'simulated' hyperlinks without any link-functionality (i.e., without 

leading to subsequent pages) and by conducting two additional follow-up experiments to 

exclude possible perceptual-motor confounds (see 1.5.3 for a more detailed discussion of 

Study 3). The main research question addressed in Study 3 was the comparison of EEG alpha 

frequency band power and pupil dilation with respect to their sensitivity for increased load-
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situations during hyperlink selection in a natural, online-text reading scenario. In the 

following chapter, the physiological measures will be presented in more detail. 
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1.4 Electrophysiological Measures and Pupil Dilation for Demands on Core 

EFs 

The advantages of using electrophysiological measures or pupil dilation for capturing 

cognitive load (i.e., demands on core EFs) have already been outlined in the introductory 

section of this thesis. In short, they may allow a rather unobtrusive, objective, direct, and 

potentially even online assessment of the load-situation in tasks of basic or applied research 

(e.g., Antonenko et al., 2010; Just et al., 2003). However, with respect to core EFs 

electrophysiological measures or pupil dilation have been seldom used to study the related 

cognitive processes under a framework of core EFs. Most research on EFs or WM so far has 

been done using neuroimaging techniques like fMRI or PET (e.g., Nee, Brown, Askren, 

2013; Owen et al., 2005; Smith & Jonides, 1999). Noteworthy, as mentioned in Chapter 1.2, 

in WM research there has been a shift from focusing on structural aspects of WM (that might 

be well captured by neuroimaging techniques like fMRI) to focusing on functional aspects of 

WM. These functional aspects might be better captured using a electrophysiological 

technique like the EEG that allows capturing the neuronal oscillatory activity with a high 

time resolution. Furthermore, neuroimaging studies on EFs showed the distributed activity of 

larger amounts of different frontal and parietal brain areas, leading to the assumption that the 

biological underpinnings of EFs might be fronto-parietal network structures that are flexibly 

activated (Collette & Van der Linden, 2002; see also Chapter 1.1). EEG frequency band 

power that captures the oscillatory activation and deactivation of neuronal networks might 

therefore be an adequate measure of EFs. In addition, pupil dilation may serve as an overall 

measure of a current load-situation, including cognitive and emotional aspects thereof 

(Beatty & Lucero-Wagoner, 2000). Especially in task settings of applied research, pupil 

dilation might serve as a load-measure that can be acquired more efficiently than EEG 

measures (cf. 1.4.2), given the problem of its vulnerability to changes in ambient or stimulus 

lighting conditions can be dealt with. In the following, I will describe the different measures 

in more detail. 

1.4.1 Electrophysiological (EEG) measures 

In general, the EEG allows capturing the ongoing oscillatory activity of neuronal networks of 

the cortex (i.e., synchronously oscillating cell assemblies of pyramidal cells in the neocortex 
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that have a specific horizontal orientation with respect to the scalp) with a time resolution in 

the range of milliseconds by recording and amplifying the thereby generated electrical 

current from the scalp (Kappenman & Luck, 2012). Thus, the EEG may provide an 

unobtrusive methodology to track instant changes in oscillatory activity due to cognitive 

processes. In doing so, the EEG may serve as an ideal measure to continuously track the 

current load-situation. In principal, there are two ways in analyzing EEG data to detect 

changes in oscillatory activity due to internal (e.g., thoughts) or external events (e.g., 

stimuli): the event-related potentials (ERPs) and the event-related synchronization (ERS) and 

desynchronization (ERD).  

First, ERPs (e.g., Kappenman & Luck, 2012) are calculated by simply averaging 

several data epochs time-locked to the same event. This averaged (and baseline-corrected) 

signal, the ERP curve, provides a picture of the evoked (i.e., time- and phase-locked) 

neuronal activity associated with the event, prune of the general EEG activity that in this 

research account is considered as noise (Bastiaansen, Mazaheri, & Jensen, 2012). Within the 

ERP curve different positive or negative deflections (i.e., components) can be visually 

identified. These ERP components have been associated with fairly specific cognitive 

processes, with the earlier components (< 100 ms) being mainly associated with perceptual 

processing (e.g., perceptual encoding) and the later components with higher order cognitive 

processes (see Kappenman & Luck, 2012 for an extensive discussion of ERPs).  

Second, the event-related synchronization (ERS) and desynchronization (ERD) can 

be analyzed, that is, the phasic changes of frequency band power induced by an event 

(Bastiaansen et al., 2012). An increase in frequency band power (i.e., an ERS) is due to the 

synchronized activity of large neuronal cell assemblies which oscillate in synchrony as a 

result of an event (e.g., a stimulus), whereas a decrease in frequency band power reflects a 

desynchronization (i.e., a decoupling of large neuronal cell assemblies into smaller ones of 

different oscillatory activity). Thus, frequency band power may be regarded to reflect the size 

and the activity of the underlying neuronal networks.  

An ERD/ERS analysis of oscillatory activity can be done by transforming the EEG 

signal of data epochs time-locked to events from the time-domain to the frequency-domain, 

that is, by calculating the frequency spectrum (e.g., by using a fast-fourier transform, FFT). 
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By calculating the frequency spectrum for a certain time window which is moved across each 

time point of the source EEG signal (e.g., by using an FFT and a moving analysis window) a 

time-frequency representation (TFR) of the original EEG data can be created. A TFR 

captures the frequency band power over time and for a certain frequency range and allows 

analyzing the time course of changes in frequency band power as a consequence of an event. 

Normally, TFRs are calculated which do not represent absolute power values but relative 

values with respect to a certain baseline. Common baselines are a pre-stimulus time period 

(i.e., the time directly adjacent to the event comparably the one used for the ERP 

calculation), but a rest-baseline (i.e., some specific condition) might also be used (e.g., 

Stipacek, Grabner, Neuper, Fink, & Neubauer, 2003). The so called ERD/ERS% formula 

given by Pfurtscheller and Lopes da Silva (1999) is one possibility to calculate such relative 

frequency band power values. This formula calculates the percentage of change of frequency 

band power between a baseline and a test condition (Pfurtscheller & Lopes da Silva, 1999; 

see also Antonenko et al., 2010).  

Traditionally, EEG frequency band power has been divided into several different 

frequency bands which might be associated with different (but rather broadly defined) 

categories of cognitive functioning (Krause, 2003). The theta (4 – 8 Hz), alpha (8 – 13 Hz), 

and recently the beta (14 – 30 Hz) frequency bands have been associated with cognitive 

processes related to attention and memory, and especially WM (Engel & Fries, 2010; Gevins 

& Smith, 2000; Klimesch, 1999; Klimesch, Schack, & Sauseng, 2005; Krause et al., 2000; 

Krause et al., 2010). Klimesch (1999) proposed a further subdivision of the alpha frequency 

band into an upper part (10 – 13 Hz) which might reflect rather semantic aspects of memory 

processing and lower parts (6 – 8 Hz and 8 – 10 Hz) which might reflect rather attentional 

aspects. Noteworthy however, the association of different frequency bands and cognitive 

processes is still matter of debate and a direct one-to-one relation between single cognitive 

processes and specific frequency bands might not be possible (Krause, 2003). Furthermore, 

as the frequency bands seems to vary with respect to exact position and band-width due to 

individual differences (Klimesch, 1999), recent studies have analyzed a rather broad 

frequency range (e.g., 4 – 30 Hz) in TFRs and defined the traditional frequency bands rather 

flexible and data-driven to categorize different oscillatory observations (e.g., Krause et al., 

2010; Palomäki et al., 2012; Pesonen et al., 2007).  
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In sum, analyzing ERPs might have the advantage that different ERP components 

have been extensively studied and thus might be associated with rather specific cognitive 

processes (see e.g., Kappenman & Luck, 2012). On the contrary, EEG frequency band power 

and potentially associated cognitive processes are still rather controversially discussed and 

might require further research (e.g., Krause, 2003). However, the advantage of using 

frequency band power as a measure of EFs might be that, when averaged over trials, it 

captures not only the evoked (i.e., time- and phase-locked) oscillatory activity as ERPs do, 

but also the induced (i.e., time- but not phase-locked) oscillatory activity (see Bastiaansen et 

al., 2012, p. 33, Fig. 2.3 for a comprehensible graphical explanation of the difference 

between phase-locked, i.e., evoked, and non-phase-locked, i.e., induced, EEG activity. The 

simple averaging technique of calculating ERPs potentially cancels out non-phase-locked 

oscillatory activity, whereas the calculation of frequency band power before averaging 

separates the power from the phase information of the signal. Consequently, amplitudes of 

different phases, i.e., the power of non-phase-locked oscillations is preserved using this 

technique.). Thus, in short, analyzing time-frequency representations of frequency band 

power might contain more information about oscillatory activity in the brain than ERPs 

(Bastiaansen et al., 2012). Furthermore, time-frequency representations of frequency band 

power may allow capturing the oscillatory activity more directly than ERPs, as in principal 

they do not require the averaging of data epochs for analysis and thus may even be used for 

an online analysis of changes of oscillatory activity due to changes of the load-situation. 

Therefore, frequency band power might be a valuable measure especially for the analysis of 

complex, real-world task material which do not provide high amounts of trials (e.g., 

Antonenko et al., 2010). 

The current thesis primarily focus on oscillatory activity in the alpha frequency band 

(i.e., alpha frequency band power), as oscillatory activity within this frequency band is 

generally most pronounced in the EEG and currently best studied with respect to cognitive 

functioning. Thus, alpha frequency band power was used as dependent measure in all three 

studies. Additionally, beta frequency band power (Study 1) and theta frequency band power 

(Study 2) were analyzed. Beta frequency band power was analyzed in Study 1, as the simple 

digit span task used in this study allowed to disentangle cognitive processes and motor 

confounds which both affect this frequency band (see also 1.4.1.3). In contrast, theta 
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frequency band power was analyzed in Study 2 as this frequency band power has been 

especially associated with cognitive control (e.g., Sauseng, Griesmayr, Freunberger, & 

Klimesch, 2010). The P300 event-related potential was used in Study 1 and Study 2 as a 

measure of the attentional distribution during increased demands on EFs (see 1.4.1.4 for a 

discussion of the P300) and pupil dilation was used as an additional, overall measure of the 

load-situation in Study 2 and Study 3 (see 1.4.2 for a discussion of pupil dilation). In the 

following, I will describe each of these measures in more detail, focusing on their sensitivity 

to demands on core EFs and their suitability to be used in complex, real-world task settings 

like hypertext reading. 

1.4.1.1 Alpha frequency band power 

The alpha frequency band was one of the first frequency bands that have been identified in 

the human EEG (Berger, 1929). Alpha frequency band power is observed maximally at about 

10 Hz (the so-called alpha peak) over parietal-occipital brain regions in the EEG of healthy 

young adults if they are in a relaxed yet attentive state (Klimesch, 1999). Alpha seems to 

reflect activity of thalamo-cortical and cortico-cortical brain networks (Başar, 2012; 

Klimesch, 1999; Krause, 2003). Interestingly, alpha oscillations of the brain share some 

commonalities with core EFs with respect to developmental traces, brain disorders, or higher 

cognitive functions (see Chapter 1.1 for the discussion of the core EFs). For example, alpha 

commonly is not observed in the spontaneous EEG of humans below age of three (Başar & 

Güntekin, 2012), increases then until after puberty, and slowly decays with age (Klimesch, 

1999). Alpha power may be related to intelligence. For example, a higher alpha frequency 

band power of the spontaneous EEG during rest periods has been reported to correlate 

positively with the performance in intelligence tests (Doppelmayr, Klimesch, Stadler, 

Pöllhuber, & Heine, 2002). Furthermore, alpha oscillatory activity has been observed to be 

reduced due to cognitive impairment (e.g., schizophrenia or Alzheimer disease; Başar & 

Güntekin, 2012).  

The first functional correlate of alpha that had been identified was the so-called 

"alpha blocking", first reported by Berger (1929). Berger observed an alpha ERD (i.e., a 

reduction in alpha band power) when participants that have previously closed their eyes, 

opened their eyes. Since then, the alpha ERD has been observed as a general phenomenon 
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when participants switch from a task that require less cognitive processing (e.g., a rest 

period) to a task that requires more cognitive processing (e.g., mental calculation). This leads 

to the long-standing prevalent hypothesis that alpha oscillatory activity might be regarded as 

reflecting a kind of 'cortical idling state' of the brain (Pfurtscheller, Stancák, & Neuper, 

1996). In this interpretation, the alpha ERD signals that the activity of a global rest-network 

breaks apart when specific brain networks are needed for task fulfillment. However, recently 

this prevalent hypothesis has been questioned by several authors that attributed alpha ERS 

rather than alpha ERD the active role for cognition (Başar, 2012; Klimesch, 2012; Klimesch, 

Sauseng, & Hanslmayr, 2007; Palva & Palva, 2007). In their interpretation alpha ERS that 

has been shown to occur for rather specific brain regions and task requirements (e.g., during 

the retention period of a STM Sternberg task; Jensen, Gelfand, Kounios, & Lisman, 2002) 

may reflect the active inhibition of brain networks which otherwise might cause interference 

with the relevant task (Händel, Haarmeier, & Jensen, 2011; Klimesch et al., 2007; Payne & 

Sekuler, 2014). 

In sum, alpha oscillatory activity clearly shows functional correlates of cognitive 

processing albeit a unique functional correlate could not be established (Başar, 2012) and the 

manner of alpha reactivity is still matter of debate (Klimesch et al., 2007; Palva & Palva, 

2007). With respect to the core EFs updating, shifting, and inhibition, several studies 

observed an alpha ERD for increased demands on these EFs.  

For example, several studies (e.g., Gevins & Smith, 2000; Gevins et al., 1997; Krause 

et al., 2000; Krause et al., 2010; McEvoy, Pellouchoud, Smith, & Gevins, 2001; Palomäki et 

al., 2012; Pesonen et al., 2007) used the n-back task paradigm which may be regarded as 

predominantly loading on WM updating (but see our discussion on the n-back task and 

underlying core EFs in 1.3.1). These studies consistently observed an alpha ERD at parietal 

electrodes for increased load on WM updating, that is, for increased n-back levels. 

Furthermore, TFRs revealed not only a more pronounced decrease of alpha frequency band 

power (i.e., increased alpha ERD) but also timely longer lasting alpha ERDs for the higher n-

back levels (e.g., Pesonen et al., 2007). Generally, the increased alpha ERD for increased n-

back load levels has been shown consistently in literature for a wide variety of different 

stimuli with respect to codality and complexity, ranging from simple stimuli like digits or 
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letters (e.g., Krause et al., 2000) over visuospatial stimuli (i.e., stimuli locations; e.g., Gevins 

& Smith, 2000; Gevins et al., 1997) to complex stimuli like websites (e.g., Palomäki et al., 

2012). Thus, the alpha ERD seems to be rather codality-free. This is in line with the 

conceptualization of EFs which are also hypothesized to be codality-unspecific (e.g., 

Baddeley & Logie, 1999).  

Furthermore, an alpha ERD has been observed for a simple span task (Stipacek et al., 

2003) which is also hypothesized to load on WM updating (see 1.3.2). Interestingly, an alpha 

ERD may be rather specifically associated with load on WM updating, that is, for continuous 

updating of WM content. In contrast, for rather passive load on WM storage components 

(i.e., during the retention interval of a Sternberg WM task) an alpha ERS has been reported 

(e.g., Jensen et al., 2002). However, an alpha ERD has also been observed in studies that 

raised demands on the EF inhibition (e.g., in a Stroop task; Hanslmayr et al., 2008), and 

studies that raised demands on the EF shifting (Sauseng et al., 2006). Thus, an alpha ERD is 

not unique to demands on the core EF updating but may reflect basic executive demands 

more generally.  

In sum, alpha oscillatory activity has been rather extensively studied for load on WM 

updating. These studies commonly observed an alpha ERD for demands on the EF updating. 

An alpha ERD was also observed in studies that put demands on the EFs inhibition or 

shifting. Thus, alpha ERD seems to be a rather general correlate of demands on EFs. 

However, the question remains whether alpha ERD might show a general sensitivity for 

different core EFs. This research question was part of Study 2 where we manipulated load on 

WM updating and demands on inhibitory control within one single task. 

Apart from basic research, alpha ERD has also been used as a rather global measure 

of the overall load-situation in some complex, real-world task settings (e.g., Antonenko & 

Niederhauser, 2010; Antonenko et al., 2010; Gerlic & Jaušcvec, 1999; Smith, Gevins, 

Brown, Karnik, & Du, 2001). However, many of these studies might be criticized for not 

adequately controlling for possible perceptual-motor confounds of the EEG data (Gerjets et 

al., 2014; see also 1.3.3). Thus, in Study 3 we were interested in the sensitivity and suitability 

of alpha ERD as a measure of the load-situation in a complex task consisting of natural text 
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reading and link-selection processes when possible perceptual-motor confounds were ruled 

out. 

1.4.1.2 Theta frequency band power 

Oscillatory activity in the theta frequency band generally has been described to form a kind 

of counterpart to alpha oscillatory activity (Klimesch, 1999; Krause, 2003). For example, 

over the life span theta power decreases from childhood to adulthood and then increases 

again in the older age (above approx. 60 years of age) or in case of neuronal disorders (e.g., 

dementia), thus showing the opposite pattern as alpha does (Klimesch, 1999). Furthermore, 

with respect to induced oscillatory activity, studies that report an alpha ERD for load on WM 

updating often also report a simultaneous theta ERS that is most pronounced at mid-frontal 

electrodes (e.g., Gevins et al., 1997; Palomäki et al., 2012).  

Generally, oscillatory activity in the theta frequency band has been associated with 

processes of cognitive control in WM functioning (Sauseng, Griesmayr, Freunberger, & 

Klimesch, 2010). Theta seems to be relevant for memory encoding as the strength of theta 

power during encoding of stimuli seems to predict their later successful recall (Jacobs, 

Hwang, Curran, & Kahana, 2006). Besides its role for cognitive control, theta may rather 

directly define the capacity limits of STM. This has been speculated because of the 

observation that the number of gamma cycles (a frequency band beyond 40 Hz) that fits into 

a theta cycle (i.e., the theta/gamma ratio) seems to be in accordance with the individual STM 

capacity as assessed by a digit span task (Kaminski, Brzezicka, & Wróbel, 2011; see also 

Lisman & Jensen, 2013).  

In sum, theta is often observed to form a kind of counter-part to alpha (i.e., in studies 

showing a theta ERS and an alpha ERD). Functionally, however, it might be different from 

alpha. Theta might be especially related to processes of controlling brain networks (e.g., in 

WM functioning; Roux & Uhlhaas, 2014; Sauseng et al., 2010), whereas alpha might be 

primarily related to processes of cortical inhibition (Klimesch et al., 2007; Palva & Palva, 

2007; Roux & Uhlhaas, 2014). We analyzed theta frequency band power in Study 2, thus 

allowing a comparison with the alpha ERD with respect to the general sensitivity for 

demands on the core EFs updating and inhibition. 
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1.4.1.3 Beta frequency band power 

Oscillatory activity in the beta frequency band traditionally has been attributed to motor 

activity rather than to cognitive processing (e.g., Keinrath, Wriessnegger, Müller-Putz, & 

Pfurtscheller, 2006; Pfurtscheller, Zalaudek, & Neuper, 1998). A beta ERS before the motor 

activity (e.g., a finger movement) followed by a beta ERD shortly after the motor activity 

(i.e., the so-called beta-rebound) is the typical oscillatory pattern observed therein 

(Pfurtscheller et al., 1998). 

Recently however, there has been accumulating evidence that beta band activity 

might not be a purely motor correlate, but might be also related to cognitive processing 

(Engel & Fries, 2010; Weiss & Mueller, 2012). Thus, the pattern of beta activity especially in 

a lower beta band range (14-20 Hz) seems to be highly comparable to the oscillatory alpha 

frequency band pattern. For example, studies that used the n-back task not only observed an 

increased alpha ERD for increased WM updating load but also an increased beta ERD 

(Krause et al., 2010; Pesonen et al., 2007). However, in these studies the observed beta ERD 

might be also attributable to motor activity as the n-back task is not free of motor activity 

because of the key-presses.  

We analyzed oscillatory activity in the beta frequency band in Study 1. In this study 

we compared the EEG correlates of an n-back task, an operation span task, and a simple digit 

span task. As the simple digit span task required no motor activity and was hypothesized to 

also load on the EF updating like the two other WM tasks, in addition to other research 

questions (see Table 1), Study 1 was also sought to extend research on oscillatory activity in 

the beta frequency band which might also be attributable to WM load and demands on core 

EFs. 

1.4.1.4 The event-related potential P300 

The P300 can be observed as a positive deflection in the ERP curve, peaking in a time-

window between 250 ms to 500 ms after stimulus onset and being maximal over parietal 

electrode positions (Polich, 2007)
5
. A distributed fronto-parietal network in the brain that 

                                                           
5
 More precisely, the P300 might be differentiated into a P3a component, peaking maximally over frontal 

electrodes and the P3b component maximally peaking over parietal electrode positions (Polich, 2007). In the 
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serves attention and memory processes is hypothesized as neuronal generator of the P300 

(Linden, 2005). In line with this assumption, the P300 has been linked to WM functioning. 

Its elicitation may reflect context-updating processes which occur in WM (Polich, 2007). For 

example, a P300 is elicited in a so-called oddball paradigm for deviant stimuli (i.e., stimuli 

that are different from the standard context) within a sequence of standard stimuli (i.e., 

stimuli generating the standard context). P300 latency may index stimulus complexity 

(Kutas, Mccarthy, & Donchin, 2007), whereas P300 amplitude may reflect attentional factors 

(Polich, 2012). Thus, P300 amplitude has been observed to be the larger, the less frequent a 

deviant in an oddball paradigm occurred (i.e., the more attention is attracted by the new 

stimulus).  

In dual task situations, where a P300 is elicited in a secondary task (e.g., an oddball 

task) and task demands of the primary task (e.g., text reading) increase, the P300 amplitude 

has been observed to decrease as a matter of task demands of the primary task. This decrease 

in amplitude is commonly interpreted as showing that attention is deducted from the 

secondary task by the increased demands of the primary task that binds attentional resources 

(Kok, 2001). Subsequently, in neuro-ergonomic research this dual task methodology has 

been established to estimate the cognitive load of a primary task by measuring the P300 

amplitude of a secondary task (Fu & Parasuraman, 2008; Schultheis & Jameson, 2004; 

Wickens, Kramer, Vanasse, & Donchin, 1983).  

Interestingly, in basic research a study by Watter and colleagues (Watter et al., 2001) 

showed a decreased P300 amplitude for increased n-back load levels (see also 1.3.1). This 

was interpreted by the authors such that attention might be drawn away from a purely 

matching sub-task (i.e., the 0-back task) to processes of WM updating in the n-back levels 

above 0-back. Watter and colleagues (2001) concluded that the n-back task might thus be 

regarded as a dual task with a purely matching sub-task and a WM sub-task. As in dual task 

settings especially the EF shifting is demanded, a possible conclusion may be that the 

observed decrease in P300 amplitude may be associated with this EF. If demands on shifting 

increase because of the task set of one task becoming more complex, the P300 amplitude 

                                                                                                                                                                                    
current thesis we focused on the P3b only, that resembles the classical P300. Thus, I will use the term P300 
rather than P3b.  
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decreases. Thus, we would expect to observe a decrease in P300 amplitude for all tasks that 

comprise a dual task character. In this vein, we analyzed the P300 amplitude in Study 1 and 

Study 2 as a potential index of the EF shifting.  

1.4.2 Pupil dilation 

Pupil dilation might serve as an overall physiological measure for load on EFs. Given that 

pupil dilation is of comparable sensitivity and validity as EEG alpha frequency band power 

to measure load on EFs and given technical developments that pupil dilation for cognitive 

processes can be securely disentangled from pupil dilation due to changing light conditions, 

the advantage of using pupil dilation would be that it is the more efficient technique than the 

EEG. Pupil dilation can be easily measured by a remote eye-tracking system and might in 

future even be measurable using the increasingly prevalent webcams in mobile computer 

devices. EEG on the contrary requires (at least to date) a thorough preparation of the 

electrodes for measurement and a rather expensive technical equipment for amplifying the 

signal recorded from the scalp. Thus, especially in task settings of applied research, pupil 

dilation might be a more efficiently usable measure than the EEG for capturing changes in 

cognitive load.  

From the 1960s on, pupil dilation has been studied as an overall measure of cognitive 

processing demands and levels of arousal (for recent reviews, see, Andreassi, 2007; Beatty & 

Lucero-Wagoner, 2000; Laeng, Sirois, & Gredeback, 2012). The pupil has been shown to 

dilate for emotional stimuli (Granholm & Steinhauer, 2004; Hess & Polt, 1960; Partala & 

Surakka, 2003) as well as for cognitive processing demands like mental calculation (Hess & 

Polt, 1964), sentence processing (Just & Carpenter, 1993; Sevilla, Maldonado, & Shalóm, 

2014), encoding and recall of memory (Goldinger & Papesh, 2012; Van Gerven, Paas, Van 

Merriënboer, & Schmidt, 2004), visual target detection (Privitera, Renninger, Carney, Klein, 

& Aguilar, 2010), or decision making (Einhäuser, Koch, & Carter, 2010), to name but a few 

examples.  

Mental effort has been proposed as the common underlying factor that causes pupil 

dilation in cognitive tasks (Beatty, 1982; Kahneman, 1973). Although the changes in pupil 

diameter due to cognitive processing demands are rather small (normally less than 1 mm 
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irrespective of baseline pupil diameter), this measure has been proven to be very reliable 

(Beatty & Lucero-Wagoner, 2000; but see Van Gerven et al., 2004). The pupil dilation 

normally starts with a short delay of about 200 milliseconds after stimulus onset, reaching its 

maximal amplitude (dilation) at about 1000 milliseconds (Andreassi, 2007).  

Anatomically, pupil dilation is caused by two opposing muscle fibers: Circular 

muscle fibers under control of the parasympathetic system produce pupil constriction when 

innervated, whereas radial muscle fibers under control of the sympathetic system produce 

pupil dilation when innervated. Recently, a direct connection between pupil dilation and the 

activity of the locus coeruleus in the brain that is central for the noradrenergic system has 

been proposed, based on the results of fMRI outcomes (Laeng et al., 2012). This indicates a 

close connection between pupil dilation and general states of arousal. Furthermore, some 

recent studies showed correlations between pupil dilation and ERPs like the P300 (Murphy, 

Robertson, Balsters, & O’Connell, 2011) and the N400 (Kuipers & Thierry, 2010, 2013), and 

(on a single subject basis) pupil dilation and pre-stimulus alpha power (Hong, Walz, & Sajda, 

2014). Thus, as Beatty and Lucero-Wagoner (2000) already concluded in their 

comprehensive review on pupil dilation, pupil dilation might serve as an easily to acquire, 

representative measure of the overall brain activity (see also Hartmann & Fischer, 2014).  

With respect to core EFs rather few studies have used pupil dilation as dependent 

measure. Nevertheless these studies consistently showed increased pupil dilation for 

increased load irrespective of the core EF loaded. Pupil dilation has been observed for 

increased load on WM updating in n-back tasks (Brouwer, Hogervorst, Holewijn, & van Erp, 

2014; Ewing & Fairclough, 2010; Karatekin, Marcus, & Couperus, 2007) or WM span tasks 

(Cabestrero, Crespo, & Quirós, 2009; Kahneman & Beatty, 1966; Peavler, 1974). 

Furthermore, pupil dilation has been observed for increased demands on inhibitory control in 

a Stroop task (Brown et al., 1999; Laeng, Ørbo, Holmlund, & Miozzo, 2011; Siegle, 

Steinhauer, & Thase, 2004), and in a flanker task (van Bochove, Van der Haegen, Notebaert, 

& Verguts, 2013). Finally, pupil dilation has been observed for increased demands on 

shifting due to dual tasking situations (Karatekin, Couperus, & Marcus, 2004). In sum, these 

studies underline the above stated character of pupil dilation as an overall measure of 

cognitive processing load. 
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However, as all cited studies used pupil dilation separately in different task settings 

with different task materials, the research question remains whether pupil dilation would 

show a genereal sensitivity for different EFs. Furthermore, the research question whether 

pupil dilation and alpha frequency band power would comparably react to demands on 

different core EFs has also not been adressed explicitely yet. Study 2 of the current thesis 

aimed to shed light on these research questions. 

With respect to complex, real-world task materials of digital information 

environments, only a few studies used pupil dilation to measure cognitive processing load 

and to compare different task conditions (Di Stasi, Antolí, Gea, Cañas, 2011; Iqbal, Zheng, & 

Bailey, 2004; Oliveira, Aula, & Russell, 2009). For example, Oliveira and colleagues (2009) 

studied the relevance of web search results using pupil dilation. They found that pupil 

dilation was increased for the selection of web search results that were considered relevant as 

compared to less relevant search results. Di Stasi and colleagues (2011) recorded participants 

pupil diameter, while participants had to perform two shopping tasks on a commercial 

website, either a goal-oriented search task (find and buy a specific object) or an experience-

oriented search task (freely browse through the websites and possibly buy objects of own 

choice). As baseline in both task conditions served an initial free exploration phase of the 

website that lasted two minutes, without buying objects. The authors found that in both task 

conditions the eye pupils significantly dilated from baseline when participants actually began 

one of the tasks. However, subjective rating scores revealed that the goal oriented search task 

was experienced as being more difficult as the browsing task. This subjective difference in 

difficulty between tasks was not reflected in pupillary results. Thus, these findings might 

indicate that pupil dilation data might be of only limited validity as a measure of load on EFs 

in a rather complex task setting and further research will be needed on this topic. 

Especially in the context of complex, real-world task materials a disadvantage of 

using pupil dilation as a measure of the overall processing load has to be mentioned. As 

outlined above, the pupil dilation for cognitive processes causes rather small (yet reliable) 

changes in pupil size (i.e., less than 1 mm). In contrast, the pupil dilation for adapting to the 

light situation of the environment is rather large, ranging from a pupil diameter of about 3 

mm (sun light) to a pupil diameter of about 7 mm (darkness; see Beatty & Lucero-Wagoner, 



40 1. Introduction and Theoretical Framework 

 

2000). Thus, changes in the ambient light condition or stimulus brightness are problematical 

confounding factors in studies using pupil dilation as (the only) dependent measure, 

especially if these studies are not controlling for these potential confounds between task 

conditions. However, technical developments (e.g., using specific computational algorithms 

to disentangle pupil dilation for cognitive processing from pupil dilation due to the light 

conditions) have been proposed that might allow using pupil dilation in more unconstraint 

task settings despite cofounding light conditions (e.g., Jainta & Baccino, 2010).  

In Study 3 of the current thesis, we were therefore interested in a direct comparison of 

pupil dilation and alpha frequency band power as measures for an increased load-situation 

due to processes of link selection during text reading (i.e., in complex, real-world task 

material), while controlling for possible perceptual-motor confounds. 
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1.5 Summary: Research Questions of the Current Doctoral Thesis 

Core EFs may play a central role for WM functioning (see 1.2, 1.3.1, and 1.3.2) as well as for 

complex cognitive tasks like hypertext reading (see 1.3.3). However, their relationship with 

WM and their hypothesized intertwined yet separable features (Miyake et al., 2000) have to 

be studied further. Thus, in Study 1 (see 1.5.1) we were interested in whether the assumed 

conceptual commonalities with respect to core EFs between different classical WM tasks 

(i.e., an n-back, an operation span, and a digit span task) would be identifiably using EEG 

measures like alpha frequency band power, beta frequency band power, and the P300. In 

Study 2 (see 1.5.2) we were interested in the interplay of the core EFs WM updating and 

inhibition when being manipulated within a single WM task. We addressed this research 

question using a variety of physiological measures like EEG alpha and theta frequency band 

power, the P300, and pupil dilation. These measures have been previously proposed as 

possible measures of cognitive load (e.g., Antonenko et al., 2010; Just et al., 2003; 

Parasuraman, 2003). Finally, in Study 3 (see 1.5.3) we were interested in whether pupil 

dilation and EEG alpha frequency band power were comparably measures for increased 

demands on EFs in complex, rather real-world task materials, that is, for link selection during 

hypertext reading.  

The overarching research question of the current thesis was the use of EEG alpha 

frequency band power as a general measure for demands on core EFs in basic and applied 

task settings, that is, to examine the use of EEG alpha frequency band power as a general 

measure of the global cognitive load-situation which may be grounded in demands on 

different core EFs. Furthermore, and more generally, the usage of the EEG as research 

methodology for studying core EFs was sought to be established. So far core EFs have been 

mainly studied using behavioral methods (e.g., correlational studies of performance scores) 

or using brain imaging techniques (e.g., fMRI). This may be due to the fact that the concept 

of EFs originally stems from clinical and neuropsychological research (Suchy, 2009). 

Although the EEG and alpha frequency band power have been used in basic research to 

assess the load-situation for example in WM tasks or with some success in applied research 

(see 1.4.1), to date a framework of core EFs has not been studied systematically using EEG 

measures. Thus, the present thesis may serve as an initial step in strengthening the use of 
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EEG (particularly with a focus on frequency band power) for the study of core EFs. 

Especially, different WM tasks like span and n-back tasks have not been compared using 

EEG measures yet (Study 1) and the effects of different core EFs on EEG measures have also 

not been explicitly compared yet (Study 2). Furthermore, we were interested in a direct 

comparison of the sensitivity of EEG alpha frequency band power and pupil dilation for load 

on different EFs within one single task (Study 2) as well as in a comparison of the sensitivity 

of these measures for the load-situation in a complex, real-world task of link selection during 

hypertext reading (Study 3).  

In sum, all three studies we ran focused on core EFs and physiological measures 

thereof. However, the granularity of the focus on EFs varied between the three studies. Study 

1 and Study 2 can be considered as basic research using classical WM tasks with a very 

specific focus on core EFs and their intertwined nature. In Study 1 two widely used WM task 

families, namely n-back and span WM tasks, were analyzed with respect to core EFs. In 

Study 2 the interplay of the core EFs inhibition and updating has been studied within one 

single WM task, namely an n-back task (that mainly loads on updating
6
) with flanker stimuli 

(inhibition). Study 3 can be considered as applied research using a task set of natural, online 

text reading with link selection processes which were expected to put demands on core EFs. 

In the following, I will briefly review the three studies we ran, focusing on the main research 

questions (see Table 1 for an overview of the different research questions). The entire 

manuscripts of the studies are given in Chapter 2. The main results with respect to core EFs 

will be presented and discussed in Chapter 3.1. See Table 2 for an overview of the three 

studies. 

1.5.1 Study 1: The comparison of n-back and WM span tasks  

In Study 1 we were interested in the relationship of the core EFs and WM. We addressed this 

research question by analyzing the EEG correlates of two widely used WM tasks, an n-back 

task and a complex operation span task, and a simple digit span task which is traditionally 

considered as a STM task. Both, the n-back task and the operation span task were 

                                                           
6
 In contrast to Study 1, a rather classical view on the n-back task was prevalent in Study 2 where this task was 

considered to mainly load on WM updating. This different view will be addressed in more detail in the general 
discussion section.    
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hypothesized to be conceptually similar with respect to core EFs, that is, both tasks were 

expected to comparably demand the core EFs updating, shifting and inhibition. In contrast, 

the simple digit span task should mainly demand the core EF updating (see 1.3.1 and 1.3.2 

for a detailed description and analysis of the three tasks with respect to core EFs therein). As 

dependent measures we used behavioral data, EEG alpha and beta frequency band power, 

and the P300. Important to note, for the EEG analyses we compared the memorization sub-

task of the operation span task and the digit span task with the n-back task as conceptually 

these task-phases were most similar with respect to timing (i.e., trial duration) and the 

perceptual, motor, and cognitive demands involved.  

Given the sensitivity of the P300 amplitude as a measure of the attentional 

distribution between sub-tasks in dual-task situations that results in decreased P300 

amplitudes for increased demands on shifting (see 1.4.1.4), we expected to observe decreased 

P300 amplitudes for increased load-levels in the n-back as well as in the operation span task 

but not in the digit span task. This was expected because of the dual task character of the n-

back task (Watter et al., 2001) and the operation span task. For increased load levels, the 

demands on shifting between the operation and memorization sub-tasks and sub-processes 

should increase in these tasks but not in the simple digit span task that contained no sub-tasks 

during the memorization phase and exclusively demanded WM updating. 

In line, the TFRs showing the time-courses of alpha and beta frequency band power 

changes were expected to be more similar between the n-back and the operation span task as 

compared to the digit span task, thus reflecting the core EFs within these tasks. However, as 

Study 1, to the best of our knowledge, was the first study analyzing EEG frequency band 

power in complex span tasks, and moreover, as oscillatory activity captured by EEG 

frequency band power in TFRs might not be easily linked to single EFs (see 1.4.1), we had 

no clear a priori expectations concerning the concrete differences or commonalities in the 

TFR patterns. Generally, we expected to observe a decreased alpha and beta frequency band 

power (i.e., an increased alpha and beta ERD) for increased load-levels in all tasks. However, 

we might expect the TFRs of the simple digit span task showing less pronounced alpha and 

beta ERDs as compared to the operation span task and the n-back task. This is because of, 
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conceptually, less EFs are required for task performance in the simple digit span task as 

compared to the two other tasks. 

A direct comparison of WM span tasks and the n-back task using EEG measures has, 

to the best of our knowledge, not been conducted yet. Thus, Study 1 was intended to enrich 

research on both tasks by adding a new, electrophysiological research methodology. So far, 

n-back and WM span tasks have been compared using behavioral performance data (e.g., 

Redick & Lindsey, 2013). These correlational studies generally found rather weak 

correlations between the two WM task families of n-back and complex span tasks. Given the 

conceptual similarities between these tasks, the observed weak correlations for behavioral 

performance measures are rather puzzling. To date, a convincing explanation for this 

observation is missing. As stated above, EEG correlates may allow investigating further 

whether the hypothesized commonalities between n-back and complex span WM tasks exist 

and thus may help to advance the longstanding debate concerning the relationship of n-back 

and complex span tasks as measures of WM functioning (e.g., Jaeggi, Buschkuehl, Perrig, & 

Meier, 2010). 

As a minor research question, we also analyzed the beta frequency band power in 

Study 1, as our task setting allowed to disentangle whether a beta ERD is mainly attributable 

to motor activation (Pfurtscheller et al., 1998) or whether it might also reflect cognitive 

processing (Engel & Fries, 2010; also see 1.4.1.3 for an extensive discussion of beta 

frequency band power). The differentiation of the beta ERD as reflecting motor or cognitive 

demands was possible in Study 1 as the simple digit span task which we used required no 

motor response. Thus, if the simple digit span task would show a beta ERD, this beta ERD 

should be genuinely attributable to cognitive processing. Furthermore, if the beta ERD would 

occur comparably in the different tasks, we could, at least indirectly, conclude that the beta 

ERD reflects cognitive processing (and not motor demands) in all tasks that might be 

specifically related with WM demands. Thus, Study 1 might valuably contribute to the 

current debate on beta frequency band power (see also 1.4.1.3).  
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1.5.2 Study 2: The interplay of core EFs 

In Study 2 we were interested in the interplay of core EFs. We studied the relationship of two 

core EFs, namely updating and inhibition, by specifically manipulating demands on these 

EFs within one single WM task. This was done by combining an n-back task (see 1.3.1) and 

a flanker task (Eriksen, 1995; Sanders & Lamers, 2002), that is, by using an n-back task 

which mainly loads on WM updating with congruent and incongruent flanker stimuli for 

additionally demanding inhibitory control. Participants performed different n-back load 

levels (0-back to 2-back) and base their n-back comparison on a central letter while ignoring 

the congruent or incongruent flankers surrounding the central letter. 

As outlined in Chapter 1.1 according to Miyake and colleagues (2000), the core EFs 

updating, shifting, and inhibition may be partly separable but may share a common 

underlying factor which has been associated with controlled attention. Traditionally, EFs 

have been studied using correlational approaches that focus on behavioral performance 

measures (e.g., latent-variable analyses, Miyake et al., 2000), or using neuroimaging 

approaches (e.g., fMRI, Nee et al., 2013) that focus on specific activations of brain areas. 

Both approaches have the disadvantage that the EFs of interest are confounded by the 

specific tasks used (e.g., Stroop task for inhibition, or an n-back task for updating). 

Therefore, in Study 2 we proposed a new experimental approach, namely the manipulation of 

different EFs within one single task, thus avoiding perceptual-motor confounds (see, e.g., 

Gerjets et al., 2014) that otherwise might impede a direct comparison of core EFs.  

As a further innovation, in contrast to most studies on EFs, we focused on EEG 

correlates of EFs. This was done because the EEG provides a high time-resolution that 

allows a detailed examination of the oscillatory activity during demands on EFs (see 1.4.1). 

We analyzed the theta and the alpha frequency band power in TFRs to capture the dynamics 

of oscillatory activity when the EFs inhibition and updating are demanded within one single 

task. Furthermore, we analyzed the P300 amplitude as a potential measure of the distribution 

of attentional demands (see 1.4.1.4). Additionally, we analyzed pupil dilation as a measure of 

the overall processing load (see 1.4.2). With respect to pupil dilation, we addressed a further 

research question, namely, whether pupil dilation would be of comparable sensitivity for load 

on different EFs as compared to EEG alpha frequency band power.  
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Generally, we expected to observe for increased demands on WM updating and 

inhibitory control increased pupil dilation, increased theta frequency band power, and 

increased reaction times, and decreased accuracy and decreased alpha frequency band power. 

Based on the assumption that EFs might be separable but share some common factor (e.g., 

Miyake et al., 2000) and based on results by Lavie and colleagues (Lavie, 2005, 2010; Lavie, 

Hirst, de Fockert, & Viding, 2004), we expected to observe an interaction between increased 

load on WM updating and increased demands on inhibitory control. In studies by Lavie and 

colleagues load on WM storage components and demands on inhibitory control were 

manipulated in dual-task paradigms. A flanker task was used for demanding inhibitory 

control. This task was integrated in the memorization phase of a Sternberg task that was used 

for manipulating load on STM (i.e., remember one or six items). The authors reported an 

increased flanker interference effect for the high as compared to the low STM load condition. 

Thus, in our task paradigm we also expected to observe an interaction between demands on 

inhibitory control and WM updating. However, as we specifically manipulated demands on 

core EFs which were hypothesized to reside within a single WM component, namely the 

central-executive (see Chapter 1.2), and to share some common underlying neuronal network 

structures of controlled attention, we had two contrasting hypotheses concerning the direction 

of the expected interaction. The interaction might be either over-additive, that is, we might 

observe an increased flanker interference effect for increased demands on WM updating, 

comparably to the results by Lavie and colleagues (2004, 2005). Such an outcome might 

occur because of a general depletion of attentional resources under high WM updating load 

(depletion hypothesis). Or, the interaction might be under-additive, that is, we might observe 

a decreased flanker interference effect for increased demands on WM updating. Such an 

outcome might occur because of a commonly underlying attention network that is generally 

activated due to demands on WM updating and that thus might facilitate inhibitory control 

(facilitation hypothesis). 

1.5.3 Study 3 a)-c): EEG alpha frequency band power and pupil dilation for link 

selection during hypertext reading 

In Study 3 a) – c) we addressed the research question whether pupil dilation and alpha 

frequency band power might be equally suited to measure demands on core EFs within a 
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complex, real-world task setting of text reading and link selection. In contrast to hypertext 

research conducted so far that often confounds initial processes of link selection with an 

additionally increased load-situation due to the presentation of subsequent webpages, we 

were specifically interested in the load situation during link selection and thus carefully 

avoided such possible confounds (see also 1.3.3). This was achieved by using a carefully 

designed, yet rather artificial hypertext reading situation, and by conducting two follow-up 

experiments to exclude possible alternative explanations due to perceptual-motor confounds 

which might have occurred in Study 3 a) despite our careful task design.  

In Study 3 a), participants had to read one long hypertext page that was presented in 

the web browser on the screen. At certain positions of the text, three words were set in 

brackets, one out of the three was the appropriate, context-matching word, and the other two 

were filler words. All three words were marked as hyperlinks, but without any hyperlink 

functionality. That is, when clicking on these marked words, no subsequent webpages were 

shown. Only the color of the 'hyperlinks' changed, but participants always stayed on the same 

single hypertext page. Participants were instructed to click on each word marked as a 

hyperlink that fits the context. This way, we simulated 'real' link selection processes as 

participants had to interrupt reading and to perform semantic decisions that might be 

comparably to genuine hyperlink-related decision processes (DeStefano & LeFevre, 2007). 

As described in Chapter 1.3.3, we expected that processes of link selection would lead to 

increased demands on core EFs. Thus, we expected to observe an increased alpha frequency 

band power ERD and an increased pupil dilation when comparing data epochs of purely text 

reading (baseline condition) with data epochs containing link selection.  

Because of potential perceptual, motor, or structural confounds between baseline and 

test condition in Study 3 a), we conducted two follow-up studies trying to exclude these 

possible confounds. In Study 3 a) participants only in the test condition but not in the 

baseline condition performed a mouse-click (i.e., motor confounds). Furthermore, because of 

the words colored as hyperlinks, perceptual differences between baseline and test condition 

exist. These perceptual-motor confounds were avoided in Study 3 b). In this study 

participants had to perform a mouse-click in the baseline and in the test condition, and 

furthermore, perceptually both conditions were matched. Study 3 b) was expected to replicate 
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the results of Study 3 a). Finally, as baseline and test condition might simply differ because 

of being positioned at different parts of the text (i.e., as they may contain different levels of 

text difficulty), Study 3 c) was conducted. In this study, baseline and test condition were kept 

identical with respect to link selection processes. Therefore, we expected to observe no 

differences between baseline and test condition in Study 3 c). This outcome would indicate 

that the expected load-related effects in Study 3 a) and 3 b) were genuinely related to link 

selection.  

In the next chapter the complete manuscripts of the three studies are presented as 

submitted for publication. Then, in Chapter 3.1, the main outcomes of the studies will be 

briefly summarized and discussed.  
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Table 2. Overview of the Three Studies Conducted as Part of the Current Thesis.  

Study N Research Question Task Materials 
Physiol. 
Measures Results 

Study 
1 

16 Do EEG correlates 
reflect the conceptual 
similarities and 
dissimilarities between 
an n-back WM task, a 
complex span WM task, 
and a digit span STM 
task with respect to 
demands on core EFs?  

n-back task (digits) 

load-levels: 1-back - 4-back 

EFs associated:         

updating, shifting, inhibition 

operation span task 

load levels: 3 - 7 digits 

EFs associated:         

updating, shifting, inhibition 

digit span task 

load levels: 3 - 8 digits 

EFs associated: updating 

 
 

P300  

alpha TFR 

beta TFR 

P300 amplitude decreased for increased demands in n-back and 
operation span task. This might reflect load on the EF shifting. 

Oscillatory activity as revealed by TFRs in sum more similar 
between n-back and operation span task as compared to the 
simple digit span task. 

Beta frequency band showed comparable oscillatory pattern as 
alpha frequency band, even if motor activity was absent. This 
indicates that beta reflects cognitive processes and not only motor 
processes. 

 

 

Study 
2 

22 Do demands on core 
EFs interact?  

n-back task                          

with flanker stimuli 

load levels: 0-back - 2-back; 

congruent/incongruent flanker 

EFs manipulated:      

updating, inhibition 

P300   

theta TFR 

alpha TFR  

pupil dilation  

All measures were sensitive for increased demands on updating 
and inhibition. 

Interaction between updating and inhibition as revealed by most 
measures: under high updating load the flanker interference effect 
was decreased or absent. 

Alpha frequency band power and pupil dilation showed a 
comparably pattern for increased demands on the EFs updating 
and inhibition. 

 

Study 
3 

a-c 

23 
20 
24 

Are pupil dilation and 
alpha frequency band 
power comparably 
suitable measures for 
increased load on core 
EFs for (hyper-) link 
selection during natural 
text reading? 

text with links presented on 
the screen to simulate a 
hypertext reading situation 
with link selection processes  

EFs associated:         

updating, shifting, inhibition 

alpha 
frequency 
band power 

pupil dilation  

Alpha frequency band power and pupil dilation are both suitable 
measures for increased load due to link-selection processes in a 
natural reading situation.   

Both measures were comparably sensitive, yet do not show a 
significant correlation. 

Possible perceptual-motor confounds were ruled out by two follow-
up experiments. 
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Abstract 

Although both, n-back tasks and complex span tasks are conceptualized as working memory 

(WM) tasks, behavioral performance measures normally show rather weak correlations 

between the two. In addition, correlations between n-back tasks and simple short-term 

memory span tasks are often reported to be comparably higher, thus questioning the nature of 

the n-back task as genuine WM task. In the current study we used the electroencephalogram 

(EEG) to compare n-back and span tasks. We focused on the P300 event-related potential 

and EEG alpha and beta frequency band power that have been shown previously to be 

sensitive measures of WM load in the n-back task. Our results revealed a comparable 

decrease of the P300 amplitude in the n-back task and in the memorization subtask of a 

complex operation span task for increased WM load that was absent in a simple digit span 

task. This might indicate the dual-task nature of the both, n-back and complex span WM 

tasks. The overall oscillatory pattern showing a decreased alpha and beta band power for 

increased WM load was comparable between the three tasks, although differences in 

magnitude and timing occur. We interpret these findings as indication that all three tasks 

might load on WM-updating processes, albeit to a different degree. 

 

Keywords: EEG time-frequency analysis; ERD/ERS; P300; working memory; n-back task; 

span tasks 

 

Highlights: > Comparison of EEG correlates of n-back, operation span, and digit span task.  

> Conceptually, n-back and operation span are comparable working memory tasks. > P300 

amplitude decreased for increased load in the two, but not in digit span task. > Overall, EEG 

alpha and beta frequency band power also more similar between the two. > In sum, EEG 

correlates confirmed conceptual task commonalities and differences.   
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1. Introduction 

Working memory (WM) can be defined as a central cognitive construct essential for 

other higher order cognitive abilities like reading, mathematics, problem solving or goal 

pursuit (Shipstead, Redick, & Engle, 2012; St Clair-Thompson & Gathercole, 2006; Yuan et 

al., 2006). For example, a typical situation requiring WM processes might be when you have 

been out for dinner and before paying you want to check the bill by doing quick mental 

calculations: You probably add the values of single positions, temporarily keeping 

intermediate results in mind until having calculated the final sum. In the meanwhile you 

might be trying to not getting distracted by ongoing conversations or even shifting back and 

forth between a conversation and the mental calculation.  

Structurally, WM is hypothesized to consist of a processing component associated 

with controlled attention (the so-called central-executive component, incorporating executive 

functions), and short-term memory (STM) components for temporarily storage of to-be-

processed information (Baddeley, 1992, 2003, 2012). Thus, in the above example the 

processing component might control the calculations, whereas intermediate results would be 

temporarily stored in the memory components. Functionally, WM is characterized by a 

temporary retention and manipulation of information under the focus of attention in the face 

of interference (Cowan, 2000; Engle, 2002; Kane & Engle, 2002; Oberauer, 2009). Amongst 

others, (and although sometimes slightly differently defined or named) often cited basic 

executive functions (EFs) in WM are updating, shifting, and inhibition (Bledowski, Kaiser, & 

Rahm, 2010; Miyake et al., 2000): The updating of information temporarily memorized for 

processing, the shifting of the attentional focus between different task demands, and the 

inhibition (or interference control) of information not (or no longer) relevant for the current 

processing step. 

Often used tasks in WM research are complex span tasks (e.g., Unsworth & Engle, 

2007) and n-back tasks (e.g., Gevins & Smith, 2000). Albeit originating from different 

research areas (individual differences research versus neuropsychological research), both, 

complex span tasks and n-back tasks, are conceptualized as genuine WM tasks that load on 

EFs. However, direct comparisons of behavioral performance measures of exemplars of the 

two task families revealed rather weak correlations between the two (e.g., Jaeggi, et al., 2010; 
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Kane et al., 2007; Miller et al., 2009; for a recent review and meta-analysis see Redick & 

Lindsey, 2013). Thus, in the current study we propose to apply another, namely an 

electrophysiological research methodology to compare n-back and span tasks. 

Electrophysiological measures based on the electroencephalogram (EEG) might allow us to 

examine whether dissociable processes are involved in n-back and span tasks and, by this, to 

potentially unravel reasons for the weak correlations between these tasks.  

1.1. Conceptual similarities of N-back and WM Span Tasks With Respect to EFs 

Complex span tasks like the reading span task (Daneman & Carpenter, 1980) or the 

operation span task (Turner & Engle, 1989) are dual-tasks consisting of a processing subtask 

and a (short-term) memory subtask. For example, in a classical operation span task, 

participants have to validate the results of simple equations (e.g., 3*5-10=4?) intermixed with 

the memorization of certain items (e.g., words, letters or digits). After three to seven trials, 

each trial consisting of an equation-validation paired with a memory-item, participants are 

asked for recall of the memorized items in correct serial order. In contrast to simple span 

tasks, like a digit span task where participants 'simply' have to update short-term memory 

content (e.g., to memorize several digits for later recall in correct serial order), in complex 

span tasks WM processes like shifting and inhibition are additionally required: Participants 

have to shift between the two subtasks and to inhibit currently irrelevant information. The 

amount of correctly recalled items defines the individuals' memory span and is used as 

measure of WM capacity. Complex span tasks are mostly used in correlational research 

addressing the connection between WM capacity and performance in higher order cognitive 

processes like reading or mathematics mostly under an individual differences research 

perspective (e.g., Bayliss, et al., 2003; Unsworth & Engle, 2007).  

In n-back tasks (Jonides et al., 1997) stimuli are presented in a temporal sequence and 

participants have to decide via key-press whether a current stimulus is or is not identical to a 

stimulus they saw n-steps back in the sequence (e.g., in a 2-back task this would be each 

stimulus 2-steps back in the sequence). Thus n defines the WM load in this task. Depending 

on n, the n-back task differently requires WM processes like updating, shifting, and 

inhibition. Whereas the 0-back task condition is a simple matching task with no specific 
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demands on EFs (as participants simply have to compare the current stimulus within the 

sequence with one specific stimulus that had been shown at the beginning of the sequence), 

in the 1-back or 2-back task condition participants have to continuously update the 

temporarily memorized stimuli, shift the attentional focus between the stimuli for 

comparison, and inhibit stimuli no longer necessary for comparison, or inhibit incorrect 

response tendencies for stimuli at the wrong position in the sequence (in the 2-back task 

condition; see for an in-depth task analysis, e.g., Chen, Mitra, & Schlaghecken, 2008; Jonides 

et al., 1997). There is some evidence that the n-back task might have a dual-task character 

(Watter, Geffen, & Geffen, 2001). Thus from a conceptual point of view the n-back task 

should share several processes and mechanisms with complex span tasks. The n-back task is 

mainly used in neuropsychological WM research (e.g., Gevins & Smith, 2000; Owen et al., 

2005; Pesonen et al., 2007). 

To sum up, both, complex span and n-back tasks are conceptually designed as 

genuine WM tasks that might comparably incorporate the EFs updating, shifting, and 

inhibition. Nevertheless, as mentioned above, behavioral measures generally show only weak 

correlations between the two tasks (mean r ~ .20; see Redick & Lindsey, 2013), and even 

higher correlations are reported between the n-back and simple span tasks (e.g., Gevins & 

Smith, 2000; Roberts & Gibson, 2002). This observation is challenging to interpret, as simple 

span tasks like the digit span task are conceptualized as STM tasks and may be regarded to 

mainly put demands on the EF updating. 

Thus, in the current study we examined the relationship between an n-back WM task, 

an operation span (complex span) WM task, and a simple digit span (STM) task. These tasks 

were all closely matched with respect to time constraints (i.e., timing of trials), number of 

trials, and the overall duration. We analyzed EEG event-related potential (ERP) data (the 

P300) and oscillatory data (alpha and beta frequency band power) that might serve as 

measures for the EFs activated in the different tasks. We focused on the memorization 

subtask of the span tasks (see Figure 1) for which we hypothesized that in the operation span 

task comparable WM processes of updating, shifting and inhibition would be required as in 

the n-back task, whereas in the digit span task only updating processes might be required. We 

hypothesized that these different requirements for EFs might specifically be manifested in the 
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EEG, that is, in the P300 and in EEG frequency band power as captured by time-frequency 

representations (TFRs).  

1.2. EEG Correlates of N-back and Span WM Tasks With Respect to EFs  

Both, P300 and EEG frequency band power have been shown to be sensitive load 

measures mainly in the context of n-back tasks. However, to the best of our knowledge a 

direct comparison of span and n-back tasks within one single study by means of these EEG 

measures has not been conducted yet. In the following, we will briefly review studies that 

used these measures in n-back or span tasks and we will formulate hypotheses about 

associated EFs and potential outcomes of the measures. 

1.2.1. The P300. The P300 amplitude might be specifically sensitive for dual task 

situations, that is, when the EF shifting is needed. For increased n-back load levels the P300 

amplitude decreased (Chen & Mitra, 2009; McEvoy et al., 2001; Watter et al., 2001). Thus, 

the P300 amplitude in an n-back task showed a comparable outcome as in dual-task studies 

(e.g., Kok, 2001), leading Watter and colleagues (2001) to conclude the n-back being of a 

dual-task nature. In general, according to Watter and colleagues (2001), the P300 amplitude 

serves as an index for the internal distribution of controlled attention when different 

executive WM functions are required. In contrast, P300 latency seems to be unaffected by 

any increase in load above the 1-back load level (Watter et al., 2001).  

Only few studies have addressed the P300 for measuring load in simple span tasks, 

yet yielding mixed results. Grune et al. (1996) studied the P300 amplitude in a digit span 

task. Participants had to remember sequences of seven digits, each digit presented one after 

another on the screen. The authors compared the averaged ERP curves for each digit position 

and found a decrease of the P300 amplitude for increased digit position (i.e., increased load 

on updating). However a closer examination of the results revealed a significant decrease of 

the P300 amplitude only up to the fourth digit position. Contrary to the results by Grune and 

colleagues, a comparable study by Gross, Metz, and Ullsperger (1992) found an increased 

P300 amplitude for increased load in a digit span task.  

In sum, the results concerning the P300 in span tasks are sparse and conflicting for 

simple span tasks like digit span tasks, and, to the best of our knowledge, are non-existent for 
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operation span tasks. However, as both, the n-back and the operation span task are (a) 

conceptualized as WM tasks, (b) share a dual-task nature (Watter et al., 2001) and (c) 

possibly require common WM processes like updating, shifting, and inhibition, we would 

expect to observe a comparable decrease in P300 amplitude in both tasks for increased load 

levels. On the contrary, the P300 latency might be unaffected by increased WM load in both 

tasks. For the digit span task we expected to observe either an increase or a decrease in P300 

amplitude (Gross et al., 1992; Grune et al, 1996), however in case of a decrease a less 

pronounced one as compared to the operation span or the n-back task; this is because the 

digit span task requires less EFs compared with the complex span and the n-back task. 

1.2.2. Time-frequency representations (TFRs). TFRs visualize the oscillatory 

activity measured as frequency band power values for a certain time period and frequency 

range (see Figure 5). Several studies reliably found a characteristic oscillatory pattern in 

TFRs for the n-back task when analyzing oscillatory activity at parietal-midline electrodes in 

a frequency range of about 4 Hz to 30 Hz (Krause, Pesonen, & Hämäläinen, 2010; Palomäki 

et al., 2012; Pesonen, Hämäläinen, & Krause, 2007). For example, Pesonen et al. (2007) used 

a verbal n-back task (visually presented letters) with the load-levels 0-back to 3-back and 

analyzed the oscillatory event-related desynchronization (ERD) and synchronization (ERS) 

pattern for a frequency range between 4 Hz to 30 Hz in the time-window 0 – 1800 ms after 

stimulus onset. At parietal electrode sites, they observed in the alpha frequency band (8 – 13 

Hz) an ERD (i.e., a decrease in alpha frequency bad power) that became more pronounced 

and of longer durations in the higher n-back load levels (2-back, 3-back) as compared to the 

lower load levels. In the beta frequency band (14 – 24 Hz) the authors observed a comparable 

pattern of load-related oscillatory activity than in the alpha band, with a beta ERD that also 

became more pronounced and of longer durations in the higher n-back load levels. They 

attributed these effects as reflecting increased load on WM processes. Additionally, the 

authors observed an ERS in the beta frequency band close to the alpha frequency band 

starting about 500 ms post-stimulus onset and visible only in the low (0-back, 1-back) load 

conditions. The authors identified this ERS as a possible post-movement beta-rebound (cf., 

Pfurtscheller, Zalaudek, Neuper, 1998).  
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When looking at mean alpha frequency band power averaged over time, the alpha 

frequency band power is commonly reported to decrease with increasing n-back levels 

(Gevins et al., 1997; Gevins & Smith, 2000) which normally is interpreted in terms of 

indicating load on WM processes (Klimesch, 1999). For a digit span task, Stipacek et al. 

(2003) also reported a decreased alpha frequency band power for increased numbers of to-be-

remembered digits (but see in contrast, yet in other task settings, reports on increased alpha 

frequency band power associated with increased WM load, for example, Jensen et al., 2002; 

Palva & Palva, 2007).  

In sum, with respect to oscillatory activity in the alpha and beta frequency band, we 

expected to observe TFRs at parietal electrodes showing an oscillatory pattern more similar 

between the two WM tasks (n-back, operation span) as compared to the digit span (STM) 

task. However, as a direct comparison of TFRs for n-back and span tasks has not been done 

before, we had no clear expectations how exactly the TFR patterns of the digit span task 

might differ from the two WM tasks. Generally, we expected to observe a decrease of alpha 

frequency band power and beta frequency band power (i.e., an increased alpha and beta 

ERD) for increased load in all tasks. However, we might observe task specific effects in 

magnitude and timing of the ERDs because of the hypothesized different requirements for 

EFs in the current tasks. 

1.3. The Current Study 

To sum up, in the current study we were interested in a direct comparison of n-back 

and span tasks, with focus on a numerical n-back and the memorization subtask of an 

operation span and a digit span task, using the EEG measures P300 and alpha and beta 

frequency band power TFRs. Because of their conceptualization as genuine WM tasks and 

their comparatively assumed dual-task nature, we hypothesized that both, the n-back and the 

operation span task would incorporate the EFs updating, shifting, and inhibition. In contrast, 

we hypothesized the simple digit span task to require less EFs, potentially only updating. 

Thus, we expected to observe EEG patterns of the P300 and TFRs being more similar for the 

n-back and the operation span task as compared to the digit span task. Especially, because of 
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the hypothesized dual-task nature of the operation span and the n-back task we expected to 

observe a comparable decrease in P300 amplitude for these two tasks. 

2. Method 

2.1. Participants 

Sixteen university students (age: M = 25.06, SD = 3.32; 9 females) participated in the 

study and received a payment of 8,- €/h. They were all native speakers of German, right-

handed according to the Edingburgh Handedness Inventory (Oldfield, 1971) and reported no 

neurological disorders. All participants had normal or corrected-to-normal visual acuity. The 

study was approved by the local ethic committee. Participants gave their written consent at 

the beginning of the study. Four participants had to be excluded from final data analysis 

because of falling below our minimal criterion of achieving at least fifteen artifact-free, 

correctly recalled trials for the higher load conditions in the operation span task (see section 

2.5.). 

2.2. Materials  

2.2.1. n-back task. Eight different single digits (1-9, except 7) served as stimuli in 

the n-back tasks (the 7 was excluded because in contrast to all other used digits it consists of 

two syllables; thus potentially it may load verbal WM differently). The digits were either 

printed in blue (RGB-values: 51,75,177) or in yellow (51,75,177) on black background and 

printed in one of four different fonts (Arial; Curlz MT; Viner Hand ITC; Castellar) in 25 

points font size each. This combination of two colors and four fonts resulted in eight different 

stimuli forms. The stimuli were presented at one of the eight outer positions of a 3x3 grid. 

The grid was centrally located on the screen and was marked through grey colored thin 

horizontal and vertical lines. The height and width of the grid was about 5.5 cm each. The 

assignment of digit value, position, and form (color and font) was done randomly for the 

current stimuli in the n-back sequences.  

The stimuli were presented sequentially at a random position within the grid for 500 

ms followed by 1500 ms of black screen with only the grey grid lines visible (cf., Figure 1). 
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Thus one trial lasted 2000 ms. A sequence of 34 trials constituted an n-back block. The first 

four trials of a block were excluded from data analysis. The total duration of a block 

(including task instruction) summed up to about 90 seconds. 

During an n-back block, participants had to indicate via key-press whether, or not, the 

stimulus of the current trial matched the stimulus they saw n-steps back with respect to a 

certain stimulus dimension (i.e., digit value, location, or form). One third of the trials of a 

block were 'matches', that is, required participants to press the 'yes'-key ('m') as correct 

response, two third of the trials were 'no-matches', that is, required participants to press the 

'no'-key ('x') as correct response. The sequences of 'matches' and 'no-matches' were pseudo-

randomly generated with the constraint that after a maximum of three 'matches' at least one 

'no-match' followed.  

At the beginning of each n-back block the actual task condition and n-back level for 

the current block was announced. We used four n-back levels (1-back, 2-back, 3-back, 4-

back) and three task conditions (digit value, position, form), albeit data analyses for 

comparison of the n-back and the span tasks was restricted to the numerical (digit value) n-

back condition. During blocks of the task condition 'digit value', participants were instructed 

to focus only on the digit values and to perform the n-back comparison process only on this 

stimulus dimension and ignore the other two dimensions (position and form). During blocks 

of the task condition 'position', participants had to focus only on the position of the stimuli 

while ignoring digit values or forms, during blocks of the task condition 'form' they had to 

focus only on the form (color and font) of the stimuli while ignoring the other two 

dimensions. In the 1-back task condition participants had to compare the announced stimulus 

dimension (e.g., value, position, or form) of the current stimulus with the same stimulus 

dimension of the directly preceding stimulus. In the 2-back (3-back, 4-back) load condition 

the stimulus for comparison was the stimulus presented two (three, four) steps back in the 

sequence. 

In total we used twelve different task conditions (digit value, position, and form, each 

1-back to 4-back). Each task condition was assigned to three blocks. This resulted in 36 

blocks in total. The sequence of the 36 blocks (four n-back levels and three n-back 

conditions) was randomly created for each participant. Importantly, all blocks were 
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perceptually identical. Only the pre-block task instruction defined the task at hand for the 

participants.  

Participants performed a training session of each n-back level and n-back condition 

(with blocks of only 20 trials) once before the actual task (36 blocks) started. The total 

duration of the n-back tasks, including training and breaks, summed up to about 90 minutes. 

Data of the different n-back task conditions (value, position, form) were recorded to 

address a second research question, namely the comparison of EEG correlates for different 

kinds of n-back tasks. However, in the current paper we restricted our research question on 

the comparison of n-back and span tasks. As we only had data for verbal variants of the span 

tasks (operation span and digit span), we only used data of the verbal n-back task conditions 

('digit value') for further analyses and comparisons. 

2.2.2. digit span task. We used eight different single digits (1-9, except 7) as stimuli 

for the digit span task (i.e., the same digit values as in the n-back task). The digits were 

printed in grey color on black background in Arial font (25 points font size). Sequences of 

single digits were presented at the center of the screen. Each digit was shown for 500 ms, 

followed by a fixation-cross for 1500 ms. Thus, a digit span trial was of the same length as an 

n-back trial. Participants were instructed to remember the digits they saw on the screen in 

correct order. After three to eight trials (digits) a recall screen was shown where participants 

had to type in the remembered digits. Participants were allowed to take a self-paced short 

break after having typed in the digits. The next digit span sequence started when participants 

pressed the 'return'-key.  

Participants did not know beforehand the length of the current digit span sequence 

(i.e., at which trial position the recall-screen would occur). We used 30 sequences of eight 

digits, and 18 sequences of seven to three digits each, respectively. At the end of these digit 

span sequences the recall screen was shown. The single digits of a sequence as well as the 

order of the sequences were randomly chosen for each participant. Importantly to note, as the 

higher digit span sequences incorporated trials of the lower digit span sequences (e.g., in a 

digit span sequence of eight digits are incorporated trials of the lower digit span sequences 

one to seven), the total amount of trials per load level (i.e., the current trial position in a digit 
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span sequence) was additive by the factor 18. Thus, we had 30 trials of load level eight, 48 

trials of load level seven, 66 trials of load level six and so on. 

The duration of a sequence varied between six to 16 seconds, depending on length. 

The total duration of the digit span task (including the recall screens) summed up to about 35 

minutes. Therefore, we split the digit span into two parts of about 16 minutes length that 

were presented in alternation with two parts of the operation span task (cf. below).  

2.2.3. operation span task. The operation span task design built upon the digit span 

task design: Participants had to remember sequences of single digits (1-9, except 7) of 

different length (memorization subtask). Additionally, they had to perform simple 

calculations within each trial (processing subtask). 

Each trial in the operation span task started with a simple equation (e.g., 3*4-8), 

centrally presented on the screen (Arial, 25 points font size, grey-colored, black background). 

The equation was shown for 2500 ms followed by an equal sign presented for 500 ms. Then a 

single digit (1-9, except 7) was shown for 500 ms as possible result of the equation. This 

digit was blue-colored to ease participants' comprehension of the task instruction, which digit 

they had to remember for later recall (see below). After a question mark, presented for 1500 

ms, the next trial began. The total duration of an operation span trial summed up to five 

seconds. 

The task of the participants was to indicate via key-press whether the single digit 

presented before the question mark was the correct result of the preceding equation or not. 

Assignment of response keys and length of the response window was the same as in the n-

back task, as well as the probability of 1/3 matches (i.e., correct result shown) and 2/3 no-

matches (i.e., wrong result shown). Additionally, like in the digit span task, participants had 

to remember these (colored) digits (i.e., the possible results) for later recall in correct order. 

After sequences of three to seven trials, a recall screen was shown, identical to the procedure 

of the digit span task described above.  

The equation was either of the form of a multiplication combined with a subtraction 

(a*b-c) or a division combined with an addition (c/b+a), with 'a' and 'b' being single digits (1-



2.1 Study 1: Same, same, but different: n-back and WM span tasks 65 

 

9, except 7) and 'c' being a two digits number. The third operator, 'c', was chosen to create a 

result of the equation that again was a one digit number (1-9, except 7).  

For the operation span task, we set the maximal length of a sequence to seven trials. 

We had 30 sequences of length seven, and like in the digit span task, 18 sequences of length 

six to three, respectively. Thus, the amount of trials per load level was comparable to the 

digit span with 30 trials for the load level seven, 48 trials for the load six, 66 trials for the 

load five, and so on.  

The duration of a sequence varied between 15 to 35 seconds, depending on length 

(three to seven trials). The total duration of the operation span task (including the recall 

screens) summed up to about 55 minutes. We split the operation span task into two parts of 

about 28 minutes length that were presented in alternation with two parts of the digit span 

task (cf. above). 

 



66 2.1 Study 1: Same, same, but different: n-back and WM span tasks 

 

Figure 1. Schematic sequence of n-back and span task trials (left). The right side of the figure exemplarily 

shows single n-back, operation span and digit span trials and their timing. Marked by thick vertical lines is the 

2000 ms data analysis window that we used for all tasks. 

 

2.3. Procedure 

Participants performed two experimental sessions on two different days within one 

week. Each session, including EEG preparation and breaks, lasted to about two and a half 

hours. In the first session, participants performed the n-back tasks. In the second session, the 

same participants performed the operation span and digit span task, each split into two parts 

and in alternation with one another. At the beginning of each session, participants got 

training trials of the sessions' tasks.  

2.4. Apparatus  

The study was run in a quiet room that was dimly lightened. Participants sat in a 

comfortable chair in front of a 17-inch monitor (iiyama ProLite E481S, 1024 x 768 pixels 

screen resolution, about 70 cm viewing distance) while their EEG data were recorded. EEG 

data were recorded from 27 electrode sites (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, 

FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, O2) positioned 

according to the international 10/20 system (Jasper, 1958). The right mastoid served as 

reference during recording. Ground electrode was positioned at FPz. Three additional 

electrodes were placed around the eyes for EOG recording. EEG data were recorded with the 

BCI 2000 toolbox (Schalk et al., 2004) at 512 Hz sampling rate (two 16 channels g.USBamp 

Generation 3.0 amplifiers, g.tec medical engineering, Inc.) using active electrodes (ActiCap, 

Brainproducts, Inc.). Impedances were kept below 5 kOhm.  

2.5. Data Preprocessing and Analysis 

EEG data were preprocessed and analyzed using customized analysis scripts (Matlab 

2012b, MathWorks, Inc.; EEGLAB v. 11.0.5.4b, Delorme & Makeig, 2004). During 

preprocessing the continuous EEG data were filtered (low-pass 40 Hz, high-pass 0.5 Hz, 

linear finite impulse response filters). Electro-Occulogram (EOG) artifacts were corrected 
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using independent component analysis (ICA) decompositions. Independent components (ICs) 

identified as EOG-ICs by visual inspection were rejected. EEG data were re-referenced to 

average reference. 

After preprocessing, the continuous EEG data were divided into stimulus-locked 

epochs of 2000 ms length. The data analysis window which is covered by these epochs is 

marked in Figure 1 for all three tasks (n-back, operation span, digit span) in comparison. We 

chose a data analysis window that covered aspects of the three different tasks that were 

highly comparable. Within the data analysis window in all tasks participants were presented 

digits (500 ms) they had to remember followed by a 1500 ms retention period. In the n-back 

task and the operation span task participants additionally had to perform decision processes 

during this 2000 ms time window. 

An automatic artifact removal was performed with respect to the EEG data: Epochs 

that exceeded ±100 µV were excluded from further analyses (Duncan et al., 2009). In doing 

so, epochs containing severe artifacts (e.g., muscle artifacts) were excluded. No further 

artifact removal or correction was performed on the EEG data.  

With respect to the n-back and the span tasks, only correct trials were included in the 

analysis. For the span tasks, we defined correct trials as those trials, whose digits were 

remembered and recalled later at the correct serial position when being typed in at the recall 

screen. This way we wanted to ensure that participants in fact had activated memory 

processes during the trials. Figure 2 shows the recall accuracies for the different digit 

positions in the sequence (p1 to p8), that is, the recall accuracies for increasing WM load. 

The recall accuracy of a digit trial in the sequence was calculated as the percentage of 

correctly recalled digits at the specific digit position with respect to the total amount of trials 

of this specific digit position (i.e., we performed the first step of the partial-credit, unit 

scoring procedure used for the calculation of an overall span score as described by Conway 

et al., 2005). 

We run a one way repeated-measures analysis of variance and post-hoc pairwise 

comparisons on these accuracy values. This analysis (see section 3.1.2. and 3.1.3.) revealed 

certain steps within the digit sequence where recall accuracy significantly dropped and others 
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parts within the sequence for which recall accuracy remained quite stable. For example, the 

accuracy is quite comparable for remembering one to three digits and it was significantly 

reduced for remembering four digits. Using results of this analysis, we defined three load 

categories (l1 = easy, l2 = mid, l3 = difficult) and corresponding trial difficulty levels. For the 

operation span and the digit span task, the load category l1 was formed by the trials within 

the sequences of the third digit (digit position p3) to be remembered. The load category l2 

was formed by trials of the fifth (operation span) or sixth (digit span) digit to be remembered 

(p5 or p6, respectively). The load category l3 was formed by the combined trials of the sixth 

and seventh digit to be remembered for the operation span (i.e., p6 + p7) and the combined 

trials of the seventh and eighth digit to be remembered for the digit span task (i.e., p7 + p8). 

We used a different load assignment of these three categories for the operation span and the 

digit span to match the difficulty levels between the span tasks. As in the n-back task reaction 

times and accuracy indicate no significant difference between 3-back and 4-back load level, 

we used the 1-back to 3-back load level as representative for defining load level l1 to l3 and 

excluded the 4-back load level from any further analysis.  

In the span tasks, we combined trials of two digit positions for the high load condition 

(l3) to increase the total amount of correctly recalled trials which would have otherwise been 

too low for a concise EEG data analysis in many subjects. Nevertheless, we had to exclude 

four participants from further analyses. These participants showed too few correct trials in 

the operation span high load (l3) category (< 15 trials). All other participants had in average 

43 (SD = 16) correctly remembered trials in the high load condition of the operation span, 

which fitted the recommendations for running P300 analysis (e.g., Duncan et al., 2009). In all 

other tasks and conditions the minimal trial amount was above 50 artifact-free, correctly 

recalled trials. 

2.5.1. P300. Single trial EEG data epochs were averaged separately for each load 

level and participant, using a -150 ms prestimulus baseline. We calculated P300 latencies for 

each load level and participant separately by detecting the most positive data point within the 

time window 250 ms to 450 ms after stimulus onset at electrode Pz (Polich, 2007). P300 peak 

amplitudes were then defined for these Pz latency time points for all electrodes (Picton et al., 
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2000). Figure 3 shows the grand average event-related potentials at electrode Pz for the three 

tasks. 

2.5.2. Time-frequency representations (TFRs). We calculated TFRs at electrode Pz 

for each task, load level and participant separately within a frequency band range from 2 Hz 

to 32 Hz and a time range from 0 ms to 2000 ms. The frequency band power for the TFRs 

was calculated using stepwise fast-fourier transforms (FFTs, 500 ms width moving windows, 

10 ms steps) applied over the entire epoch length. Then the percentages of event-related 

desynchronization/synchronization (ERD/ERS%; Pfurtscheller & Lopes da Silva, 1999) were 

calculated for each data point with respect to a baseline. As baseline we used the mean 

frequency band power of the load level l1 (i.e., the averaged power over the entire epoch 

length of l1) for each task individually. Grand-average TFR plots (TFRs averaged over all 

participants) are given in Figure 5. Blue colors denote percent of event-related 

desynchronizations (ERD), red colors indicate event-related synchronizations (ERS). 

Pairwise comparisons of consecutive load levels within a task (rows) were performed 

(EEGLAB bootstrapping statistics, using false-discovery-rate corrections for multiple 

comparisons) and are shown in Figure 5 as small plots in between the TFR plots. Red color 

areas in the small plots indicate data points of statistically significant differences between 

two consecutive load levels (p < .05). 

For further statistical analysis comparable to the P300 analysis, we defined two 

frequency bands, alpha (10 – 13 Hz) and beta (14 – 24 Hz) and two time-windows (0 – 800 

ms, 800 – 1600 ms) by visual inspection of the TFRs. For each frequency band separately, 

the ERD/ERS% values were averaged over time and frequency range and analyzed using 3-

factorial repeated-measures ANOVAs with the factors task(3), time-window(2), and load(3).  

3. Results 

3.1. Behavioral Data 

For each task, we run separate one-factorial repeated-measures ANOVAs. 

Greenhouse-Geyser corrections were performed on the p-values where necessary. For post-

hoc pairwise comparisons (t-tests, two-tailed) all p-values were Bonferroni corrected for 
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multiple comparisons. Level of significance was set at α = .05 for all analyses and partial eta-

square (ηp
2
) is reported as a measure of effect size. Figure 2 shows the mean recall accuracies 

of the span tasks (for digit positions p1 to p7 and p8, respectively) and the accuracies and 

reaction times of the n-back task. 

 

Figure 2. Behavioral data results. Mean accuracy and reaction times (RT) for the n-back task on the left-hand 

side. Mean recall accuracy for each digit position for the operation span (positions p1 to p7) and the digit span 

task (positions p1 to p8). Black error bars indicate ±1 standard error of the mean.  

3.1.1. n-back task. Reaction times (RTs) were calculated only for correctly 

responded trials. For RTs, the one-factorial repeated-measures ANOVA revealed a main 

effect of load, F(3, 33) = 9.11; p < .001; ηp
2
 = .48. The strongest increase in RTs could be 

observed for the step from the 1-back (606 ms) to the 2-back task condition (727 ms, p = 

.006). As can be seen in Figure 2, the RTs increased further on the higher load levels (3-back: 

753 ms, 4-back: 763 ms), however this increase was rather marginally and statistically not 

significant between load levels above the 2-back level (all p = 1.00). 

Accuracy decreased with increasing n-back load as shown by a main effect of load, 

F(3, 33) = 8.93; p < .001; ηp
2
 = .45. Interestingly, accuracy did not differentiate between 1-

back (90%) and 2-back (88%, p = 1.00) and between 3-back (80%) and 4-back (76%, p = 

1.00) load level. Only between 2-back and 3-back load level there was a significant decline 

in accuracy (p < .05).  

Thus it seemed reasonable to only use n-back levels 1-back to 3-back for a direct 

comparison with three defined load categories of the span tasks: RTs increased most between 

1-back to 2-back load level, accuracies decreased significantly between 2-back and 3-back 
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load levels. No significant difference could be observed between 3-back and 4-back load 

levels on neither RTs nor accuracy. 

3.1.2. operation span task. In the operation span we observed a significant decrease 

of recall accuracy with increasing digit positions, as revealed by a main effect of load, F(6, 

66) = 37.01; p < .001; ηp
2
 = .77. Post-hoc pairwise comparisons showed certain steps of 

comparable recall accuracy followed by significant drops in accuracy. Recall accuracy for 

trials at digit position p1 to p3 was statistically equal (p1: 88%, p2: 88%, p3: 86%, all p = 1) 

and significantly higher as recall accuracy for trials at digit position p5 (73%, all p < .05). 

Trials at this digit position in turn showed higher accuracies than trials at digit positions p6 

and p7 (p6: 59%, p7: 50%, all p < .05). Trials at these digit positions in turn showed quite 

equal accuracies (p = .19). Thus our classification of three load-levels and the assignment of 

digit position p3 to load level l1, p5 to l2 and p6 and p7 to l3 as described in the method 

section seemed to be justified by the results of this statistical analysis. Additionally, we 

checked the performance in the processing subtask of the operation span (i.e., the accuracies 

and reaction times for the decision, whether the given result is the correct or wrong result of 

the preceding equation).  

The accuracy of the operation subtask (equation-result decision) numerically 

decreased only slowly and showed in average 77% correct responses, with a range between 

81% (SD = 12) at trial position p1 to 68% (SD = 20) at trial position p7. A one-factorial 

repeated-measures ANOVA revealed only a trend for a main effect of load, F(6, 66) = 2.78; 

p = .07; ηp
2
 = .20. In turn, the reaction times of the equation-result decision numerically 

increased for increased trial positions from p1: 744 ms (SD = 183) to p7: 769 ms (SD = 142) 

and an average of 720 ms (SD = 165). RTs of the result-decision were significantly 

influenced by WM load, F(6, 66) = 2.67; p = .022; ηp
2
 = .20. These results nevertheless 

generally indicated that participants as expected were equally performing both subtasks of 

the operation span task, that is, the processing subtask and the memorization subtask, thus 

confirming the successful execution of the task.  

3.1.3. digit span task. In the digit span task we also observed a significant decrease 

of recall accuracy with increasing digit positions, as revealed by a main effect of load, F(7, 

77) = 45.62; p < .001; ηp
2
 = .81. Like in the operation span, we observed certain steps of 
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comparable recall accuracy followed by significant drops in accuracy. Recall accuracy was 

comparable between trials at digit positions p1, p2 and p3 (p1: 95%, p2: 92%, p3: 91%, all p 

= 1.00). Recall accuracy of these trials was significantly higher than recall accuracy for trials 

at position p6 (69%, all p < .05). Trials at this digit position in turn showed higher accuracies 

than trials at digit position p7 and p8 (p7: 54%, p8: 48%, all p < .05). Trials at digit position 

p7 and p8 in turn showed quite equal accuracies (p = .54). Thus our classification of three 

load-levels and the assignment of digit position p3 to load level l1, p6 to l2 and p7 and p8 to 

l3 as described in the method section seems to be justified by the results of this statistical 

analysis. 

3.1.4. Correlational analysis. For correlational analysis we calculated a memory 

span score for the operation span and the digit span that was defined as the last memory load-

level where more than two-third of the digit sequences were memorized completely in the 

correct order (i.e., we performed a rather restrictive all-or-nothing scoring procedure; see 

Conway et al., 2005). We calculated Pearson's correlation coefficients (two-tailed) for these 

mean recall accuracy scores of the operation span and the digit span task and the accuracies 

of the four n-back load levels. The results of the correlational analysis are given in Table 1. 

 

Table 1. Pearson's correlation coefficients (two-tailed) for the mean recall accuracy scores of the operation span 

(oSpan) and the digit span task (dSpan) and the accuracies of the four n-back load levels. Note. + p < .10, * p < 

.05, ** p < .01 

  1 2 3 4 5 M SD N 

1) oSpan 
     

5.00 1.28 12 

2) dSpan .66** 
    

5.75 0.87 12 

3) 1-back .07 .27 
   

0.90 0.06 12 

4) 2-back .51+ .009 .62* 
  

0.88 0.10 12 

5) 3-back .63* .33 .21 .20 
 

0.80 0.08 12 

6) 4-back .51+ .50 -.47 -.19 .51+ 0.76 0.09 12 

 

With respect to a comparison of performance in the n-back task load levels and the 

overall performance in the span tasks, we found a positive correlation between performance 

in the 3-back load level and the overall performance in the operation span task (r = .63, p < 

.05) as well as a trend for a positive correlation between performance in the 2-back and 4-
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back load levels and the overall performance in the operation span task (both r = .51, p < 

.07). We did not find any significant correlation between any level of the n-back task and the 

digit span task. However, we observed a positive correlation between overall performance in 

the operation span task and performance in the digit span task (r = .66, p < .01), which is 

consistent with other studies (e.g., Kane et al., 2004; Turner & Engle, 1989; Unsworth & 

Engle, 2007). Besides, the 1-back and 2-back load levels showed a significant positive 

correlation (r = .62, p < .05) and the 3-back and 4-back load levels showed a trend for a 

positive correlation (r = .51, p < .07). 

3.2. P300 Data 

 

Figure 3. Event-related potential curves at electrode Pz (upper part of the figure) for the three tasks and three 

load levels. Lower part of the figure shows topoplots (i.e., topographically distributions of the peak amplitude 

values at all electrodes over the scalp). 

 

Table 2. Mean P300 latencies [in ms] and mean P300 peak amplitudes [in µV] at electrode Pz for the three 

tasks and load categories. 

P300 latency [ms]   P300 amplitude [µV] 

  n-back oSpan dSpan     n-back oSpan dSpan 

l1 352 (15) 359 (40) 363 (65)   l1 8.09 (2.61) 3.02 (2.12) 1.70 (1.38) 

l2 365 (26) 355 (43) 339 (58)   l2 6.47 (2.84) 2.62 (2.00) 2.49 (1.72) 

l3 357 (19) 357 (28) 343 (66)   l3 6.91 (3.12) 1.95 (1.86) 2.01 (1.90) 
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Figure 4. P300 latency and peak amplitude at electrode Pz for the three load-levels of the n-back, operation 

span (oSpan), and digit span (dSpan) task. Black error bars indicate ±1 standard error of the mean. 

Grand-average ERPs are shown in Figure 3. Peak latency and amplitude data for the 

P300 at electrode Pz are given in Table 2. We ran two separate two-factorial repeated 

measures ANOVAs with the factors task (n-back, operation span, digit span) and load (l1, l2, 

l3) for the peak latencies and peak amplitude values respectively. 

 The peak latencies did not differ, neither between the load levels of a single task, nor 

between the three different tasks (F(4, 44) = .73; all p > .50). For the peak amplitudes 

however, we found a main effect of task, F(2, 22) = 45.75; p < .001; ηp
2
 = .81 and a main 

effect of load, F(2, 22) = 4.17; p = .029; ηp
2
 = .28. These main effects were modulated by a 

significant interaction, F(4, 44) = 5.43; p = .001; ηp
2
 = .33. The main effect of task was not 

affected by this interaction: On all three load levels, the peak amplitude of the n-back task 

was significantly higher than the peak amplitudes of the operation span and digit span task 

(l1: 8.10 vs. 3.02 and 1.70 µV, p < .001; l2: 6.47 vs. 2.62 and 2.49 µV, p < .001; l3: 6.91 vs. 

1.95 and 2.01 µV, p < .001). The peak amplitudes of the operation span and digit span did 

not differ. However, depending on task the P300 peak amplitude showed a differently load 

related decrease (n-back, operation span) or no decrease at all (digit span). In the n-back task, 

the P300 amplitude decreased for increasing load, as expected. In line with the results of the 

reaction time data, the strongest decrease in amplitude could be observed between the 1-back 

and 2-back load condition (-1.62 µV, p < .001). No significant difference occurred between 

the 2-back and the 3-back load level (p > .4). In the operation span, we also observed a 

significant decrease in P300 peak amplitude for increased load levels. In the operation span 
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task the most pronounced decrease in peak amplitude was between load levels l1 and l3 (-

1.07 µV, p = .024). In the digit span task however, we did not observe any decrease in 

amplitude for increased load levels. In fact, between certain load levels, the amplitude in the 

digit span rather seemed to increase for increased load (l1 to l2: +.79 µV, l2 to l3: -.44 µV; 

all n.s.). 

3.3. Time-Frequency Representations (TFRs) 

The TFR plots (cf. Figure 5) show the ERD/ERS% values (i.e., the oscillatory 

activity) over time for the three tasks and three load levels. All tasks show an ERD in the 

alpha frequency band and beta frequency band in a time-window of about 0 - 800 ms post-

stimulus onset that increased with increased load levels. Furthermore, the alpha frequency 

band showed ERD effects which lasted longer in time for larger load conditions compared to 

smaller load conditions in the n-back and the operation span task. In the digit span task, the 

alpha ERD seemed to be more focused in time (i.e., maximally in the first time-window, 0 – 

800 ms post-stimulus onset). The oscillatory pattern of the n-back resembled the TFR results 

described by Pesonen et al. (2007). Interestingly, the ERS in the low-load (l1, 1-back) 

condition in the beta frequency band starting about 800 ms after stimulus onset that might be 

attributed to a post-motoric beta rebound effect (Pesonen et al., 2007) was only visible in the 

n-back task. 
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Figure 5. Time-frequency representations (TFRs) of the ERD/ERS% values of the n-back, operation span 

(oSpan) and digit span (dSpan) task in a frequency range from 2 Hz to 32 Hz and a time range from 0 to 2000 

ms post-stimulus onset. From left to right increasing load levels (l1 to l3). The black horizontal lines denote the 

frequency band borders of the alpha frequency band (8 – 13 Hz). The dotted vertical line at 800 ms marks the 

border between the two time-windows (0 – 800 ms and 800 – 1600 ms) that were used for further analysis. Blue 

colors signal event-related desynchronization (ERD), red colors signal event-related synchronization (ERS) 

measured in percent with respect to a baseline condition. The small plots in between the larger TFRs indicate 

statistically significant differences in ERD/ERS% values between two adjacent load levels (p < .05).  

 

For a more in-depth statistical analysis, we performed two separate three-factorial 

analyses of variance for the averaged ERD/ERS% data of the alpha frequency band (8 -13 

Hz) and the beta frequency band (14 – 24 Hz; cf. methods section) with the factors task (n-

back, oSpan, dSpan), time window (0 – 800 ms, 800 – 1600 ms) and load (l1 to l3). The 

averaged ERD/ERS% data are given in Figure 6. 
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3.3.1 alpha band mean ERD/ERS%. The three-factorial repeated-measures 

ANOVA revealed significant main effects for all three factors, task: F(2, 22) = 13.57; p < 

.001; ηp
2
 = .55, time-window: F(1, 11) = 22.84; p < .001; ηp

2
 = .68, and load: F(2, 22) = 

13.87; p = .001; ηp
2
 = .56. Overall, the operation span showed the largest alpha ERD (-

40.69%), the digit span (-14.52%) and n-back (-20.42%) showed a comparably lower ERD. 

The alpha ERD was overall more pronounced in the time window 0 – 800 ms (-37.25% vs. -

13.17%). Increased load levels led to significantly increased alpha ERD (i.e., decreased alpha 

frequency band power values). These effects however were further qualified by a two-way 

interaction task X load: F(4, 44) = 4.08; p = .043; ηp
2
 = .27 and a three-way interaction task 

X time-window X load: F(4, 44) = 9.36; p = .001; ηp
2
 = .46. To resolve this three-way 

interaction, we run additional two-factorial repeated-measures ANOVAs with the factors 

task(3) and load(3) for each time-window separately.  

In the first time-window (0 – 800 ms) the two-factorial repeated-measures ANOVA 

revealed a main effect of task, F(2, 22) = 17.05; p < .001; ηp
2
 = .61 and a main effect of load, 

F(2, 22) = 20.33; p < .001; ηp
2
 = .65 as well as a significant interaction between these factors, 

F(4, 44) = 7.30; p = .007; ηp
2
 = .40. In the n-back and in the digit span task the alpha ERD 

increased significantly from load-level l1 (n-back: -13.61%, digit span: -6.31%) to load-level 

l2 (-36.21%, -34.32%) and l3 (-37.79%, -38.43%) with the latter two showing no significant 

differences. In the operation span the alpha ERD values did not vary significantly for the 

different load levels (l1: -56.23%, l2: -56.35%, l3: -55.97%) and was on all load-levels more 

pronounced as in the n-back (-13.62%, -36.21%, -37.79%) or digit span task (-6.31%, -

34.32%, -38.43%), with the latter two showing comparable (i.e., statistically not-significant 

different) alpha ERD values on all load-levels. This result might indicate that in the first 

time-window of the operation span memorization subtask additional cognitive processes 

might be loaded because of still ongoing processes associated with the equation calculation 

of the preceding processing subtask. 

In the second time window (800 – 1600 ms), the ANOVA revealed a trend for a main 

effect of task, F(2, 22) = 3.53; p = .07; ηp
2
 = .24, a main effect of load, F(2, 22) = 8.99; p = 

.007; ηp
2
 = .45 and again an interaction between the two, F(4, 44) = 4.50; p = .031; ηp

2
 = .29. 

Like in the first time-window, in the n-back task the alpha ERD increased significantly for 
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increasing load from load-level l1 (18.36%) to l2 (-28.72%) and l3 (-24.54%), not 

differentiating between the latter two. However the digit span showed no load-effect in the 

second time window (l1: 2.38%, l2: -2.57%, l3: -7.88%). In contrast, the operation span 

which showed no load-effect in the first time-window, showed a significantly increased alpha 

ERD for load-level l3 (-31.96%) as compared to load level l1 (-18.71%). In the second time-

window only for load-level l1 the alpha ERD of operation span was significantly larger as the 

alpha ERD of the n-back and the digit span task (-18.71% vs. 18.36% and 2.38%). For load-

level l2 (operation span: -24.90, n-back: -28.72, digit span: -2.57) and l3 (operation span: -

31.96%, n-back: -24.54%, digit span: -7.88%) the alpha ERD did not differ between tasks.  

3.3.2. beta band mean ERD/ERS%. The overall picture for beta band effects was 

comparable to the alpha band effects. The three-way ANOVA revealed a main effect of task, 

F(2, 22) = 9.81; p = .001; ηp
2
 = .47, a main effect of time-window, F(1, 11) = 58.99; p < 

.001; ηp
2
 = .84, and a main effect of load, F(2, 22) = 34.73; p < .001; ηp

2
 = .76. The operation 

span (-23.83%) showed overall a larger beta ERD as compared to the n-back (-7.96%) and 

the digit span (-10.58%), with the latter two showing comparable ERD values. The ERD was 

more pronounced in the first time window (-24.31% vs. -3.94%) and for the higher load-

levels (l2: -18.66% and l3: -20.24%) as compared to the lowest load-level (l1: -3.47%) and 

the second time-window. However these main effects were qualified further by significant 

two-way and three-way interactions: interaction task X load: F(4, 44) = 7.20; p < .001; ηp
2
 = 

.40, interaction task X time window: F(2, 22) = 14.36; p < .001; ηp
2
 = .57, interaction time 

window X load: F(2, 22) = 5.10; p = .015; ηp
2
 = .32, and a three-way interaction task X time 

window X load: F(4, 44) = 6.63; p < .001; ηp
2
 = .38. To resolve this three-way interaction, 

we run two additional two-factorial repeated-measures ANOVAs, one for each time-window, 

as described for the alpha band.  

In the first time-window (0 – 800 ms) the two-factorial repeated-measures ANOVA 

revealed a main effect of task, F(2, 22) = 15.93; p < .001; ηp
2
 = .59, a main effect of load, 

F(2, 22) = 30.20; p < .001; ηp
2
 = .73 and an interaction between these factors, F(4, 44) = 

7.41; p = .001; ηp
2
 = .40. For the n-back task, load-level l2 (-25.17%) showed a significantly 

increased beta ERD as compared to load-level l1 (-12.96%). For the operation span we 

observed a tendency for an increased beta ERD for load-level l3 (-40.23%) as compared to l1 
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(-35.21%, p = .076). The digit span showed the same outcome as for the alpha frequency 

band ERD: beta ERD was significantly increased for load-levels l2 (-23.29%) and l3 (-

24.59%) as compared to load level l1 (2.30%) with no significant difference between load-

levels l2 and l3. Overall, the operation span showed a more pronounced beta ERD (-37.82%) 

as the digit span (-15.20%) and the n-back (-19.91%), this pattern being consistently found 

for all load-levels. 

In the second time-window (800 – 1600 ms) the two-factorial repeated-measures 

ANOVA revealed a main effect of task, F(2, 22) = 5.53; p = .011; ηp
2
 = .34, a main effect of 

load, F(2, 22) = 29.29; p < .001; ηp
2
 = .73, and a significant interaction between the two, F(4, 

44) = 6.77; p = .005; ηp
2
 = .38. In the n-back task in load-level l1 we observed a beta ERS 

rather than a beta ERD (as indicated by the positive ERD/ERS% value: 23.64%). This ERS 

turned into a beta ERD for load-levels l2 (-7.36%) and l3 (-4.30%), with the latter two being 

statistically not different. This pronounced beta ERS load-level l1 could be only observed for 

the n-back task. As a consequence, at load level l1 ERD/ERS% values differed significantly 

between the n-back task (23.64%) and the operation span (-6.31%) and digit span (7.73%) 

task, with the latter two being statistically not different. At load levels l2 (n-back: -7.36%, 

operation span: -7.12%, digit span: -11.00%) and l3 (-4.30%, -16.07%, -14.63%) the beta 

ERD values did not differ significantly between the tasks. The operation span showed 

significantly more pronounced beta ERD at load level l3 as compared to l1 and l2 (the latter 

two being of comparable magnitude). The digit span showed significantly increased beta 

ERD values for load levels l2 and l3 in comparison to load level l1 (with l2 and l3 being of 

equal magnitude). 
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Figure 6. Mean ERD/ERS% values for the n-back, operation span (oSpan) and digit span (dSpan) task for the 

alpha (8 – 13 Hz) and beta (14 – 24 Hz) frequency band and the two time-windows (0 – 800 ms, 800 – 1600 ms 

post-stimulus onset). Black error bars indicate ±1 standard error of the mean. 

4. Discussion 

In the current study we were interested in a direct comparison of a simple digit span 

(STM) task and two classical WM tasks, a verbal n-back and an operation span task, using 

the P300 and EEG frequency band power changes as expressed by ERD/ERD% values in 

TFRs. Studies using correlational designs for comparison of behavioral performance 

measures of span and n-back tasks normally reported rather low correlations (with r ~ .20) 

between these two (Jaeggi et al., 2010; Kane et al., 2007; Redick & Lindsey, 2013). We used 

carefully designed tasks with respect to timing of the stimuli presentation as well as the trial 

numbers of the tasks and observed rather high correlations between the operation span task 

performance scores and the n-back task accuracy (r between .50 and .60 for the 2-back, 3-

back, and 4-back load level accuracies and the overall operation span performance).  

The used EEG measures added valuable information about underlying WM processes 

(i.e., EFs) that are involved in the different task of the current study. The main outcomes 
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concerning the EEG measures were A) with respect to P300: A comparable decrease of P300 

amplitude in the n-back and operation span task that was absent in the digit span task, 

suggesting that n-back and operation span expose higher demands on EFs than the digit span 

task; and B) with respect to TFRs: Comparatively oscillatory patterns of increased alpha and 

beta frequency band ERDs for all tasks, albeit differences in exact timing and magnitude 

could be observed that might indicate (in line with the P300 results) that more EFs are 

required and are more intensively demanded in the n-back and operation span task as 

compared to the digit span task. In the following, we will discuss these results in the light of 

our hypotheses for each measure separately followed by a general conclusion section. 

4.1. Behavioral Data 

The behavioral data of the n-back and the span tasks are in accordance with literature 

and confirmed the successful load manipulation. For increasing WM load due to increasing 

n-back levels or to-be-remembered digits, the accuracy decreased and the reaction times in 

the n-back increased (e.g., Gevins & Smith, 2000; Turner & Engle, 1989).  

In contrast to literature, we observed noticeably higher correlations between n-back 

and complex span performance (see Table 1) as usually reported (cf. the review by Redick & 

Lindsey, 2013, reporting a mean correlation coefficient of about r = .20). These different 

outcomes might be mainly due to the careful task design in our study with respect to 

comparable timing and amount of trials (i.e., local and global timing) between n-back and 

span tasks. Such careful, comparable task designs with respect to timing are often lacking in 

correlational studies of purely behavioral performance measures (e.g., Conway et al., 2005; 

Jaeggi et al., 2010). For example, in the current study the amount of trials in the span tasks 

exceeds the amount of trials normally used by a factor of about ten. Especially, in order to 

have data epochs of comparable length and timing in all tasks for later EEG data analysis, we 

put severe and comparable time-constraints on all tasks. These time-constraints are normally 

lacking in complex span tasks (e.g., Turner & Engle, 1989). In line with theoretical 

considerations about the influence of time and time constraints on WM load (see the 'time-

based resource sharing model' proposed by Barrouillet, Bernardin, & Camos, 2004; 
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Barrouillet et al., 2007), we hypothesize the observed rather high correlations between the n-

back and the span tasks might be grounded in comparably severe time-constraints in all tasks. 

4.2 P300 Data 

As the n-back and the operation span task were conceptualized as genuine WM tasks 

and were hypothesized to share a dual-task character (see Watter et al., 2001), we 

hypothesized these tasks to comparably require EFs updating, shifting, and inhibition. In 

contrast to the n-back and operation span task, the digit span task seems to involve less 

demands on EFs, and potentially it requires only the updating function. Therefore, we 

expected the P300 amplitude to decrease for increased load in the n-back and the operation 

span task in a comparable manner. In contrast, for the digit span task we expected an 

outcome of the P300 amplitude being distinct. As P300 latencies have been shown to be not 

influenced by increased load in the n-back task above the 1-back load level (McEvoy et al., 

2001; Watter et al., 2001), we expected P300 latencies not to differentiate between increased 

WM load in the n-back task and the operation span task.  

Our hypotheses concerning the P300 were completely fulfilled. P300 latencies did not 

vary significantly between load levels of all three tasks. The n-back task and the operation 

span task evoked a P300 with the amplitude significantly decreasing for increased WM load. 

Furthermore, also the absolute P300 amplitude in the n-back task was significantly higher 

than in the span tasks, the reductions of the P300 amplitude between the low load condition 

and the high load condition in both, the n-back and the operation span task were of 

comparable magnitude. The digit span task in contrast showed only a weak P300 effect with 

an amplitude that rather increased than decreased for increased load levels (albeit not 

significantly).  

In sum, the P300 data showed the expected similarity between the n-back and the 

operation span task. In our view, these findings point to both, the dual-task nature of the n-

back task and to similarities between the n-back task and the operation span task as WM 

tasks that comparably load on EFs. When WM processes are increasingly involved, internal 

attention seems to be more wide-spread distributed over different WM processes as indicated 

by the decreased P300 amplitude for increased WM load. Thus, we conclude that in an n-
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back task and the memorization subtask of an operation span task common EFs like 

updating, shifting and inhibition are required, potentially to a similar degree, whereas the 

digit span task requires less EFs, potentially mainly updating.  

4.3 Time-Frequency Representations (TFRs) 

With respect to the TFRs we expected to observe an oscillatory pattern being more 

similar between the n-back and the operation span as compared to the digit span. We 

hypothesized the alpha ERD (and beta ERD) to indicate load on WM processes (Engel & 

Fries, 2010; Gevins et al., 1997; Gevins & Smith, 2000; Pesonen et al., 2007; Stipacek et al., 

2003). Thus, we expected to observe in the n-back task and in the operation span task 

comparable, more pronounced alpha ERDs (and beta ERDs) as conceptually (and indicated 

by the P300 amplitude effects reported above) in these tasks more EFs might be demanded as 

in the digit span task.  

Our results however yielded mixed results concerning this hypothesis. In the alpha 

frequency band the n-back task and operation span task showed significant load effects in a 

later time-window (800 – 1600 ms post-stimulus onset) whereas the digit span task showed a 

significant load effect only in an earlier time window (0 – 800 ms post-stimulus onset). 

Additionally, the n-back task and the operation span task showed timely longer lasting alpha 

ERDs for increased load levels. This might be related to the increased updating and shifting 

demands in the n-back task and the operation span task compared to the digit span task. From 

a task analytical point of view this interpretation is plausible: The observed P300 data 

indicated that both, n-back task and operation span task may be regarded as dual-tasks. Thus, 

in both tasks additionally to purely WM updating, processes of shifting (between the 

subtasks) and inhibition (e.g., of the currently not active subtask component) are required. In 

the digit span task during the first time window the memory updating process might take 

place. After about 800 ms in the simple digit span task a purely retention phase might take 

place which might not be associated with an increased alpha ERD (or even, depending on 

task, with an alpha ERS, cf. Jensen et al., 2002; Palva & Palva, 2007).  

Furthermore, in the operation span task and the n-back task the retention phase might 

start later and might not be free of additional processes because of the dual-task nature of the 
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both tasks: The updating process might be timely prolonged as in the first time window the 

stimuli-comparison processes of the dual-task take place. After these comparison processes 

took place, WM is updated with the new stimulus. This interpretation might be corroborated 

further by the beta ERS effect in the n-back task in the low load condition. This ERS in the 

second time window might be interpreted as a beta rebound of previous motoric activity 

(Pfurtscheller, Stanca, & Neuper, 1996) during the first time window (key-press), thus 

signaling the end of thereby associated processes. This interpretation holds also for the 

operation span task, although we did not observe a beta-rebound in this task. However, the 

average reaction times that range in both tasks within the first time window, might also 

indicate that certain processes of stimulus comparison are terminated in the second time 

window and a shift to updating and memorization processes might be necessary. 

In the beta frequency band, the load-associated effects resembled those of the alpha 

frequency band albeit showing less differences between tasks and time-windows. Beta ERD 

has recently begun to be interpreted as being associated with cognitive processes like WM 

processes and not only with motor activity (Engel & Fries, 2010; Weiss & Mueller, 2012). 

Beta ERD effects for increased load in an n-back task paradigm have been consistently 

observed in several studies (Krause et al., 2010; Palomäki et al., 2012; Pesonen, et al., 2007). 

Although these authors hypothesized the beta ERD effects as being cognitively induced, they 

could not rule out a purely motor explanation as their n-back task required overt motor 

activity (key-press). Our data show comparable beta ERD effects for all three tasks. As the 

digit span task required no motor activity, we may hypothesize the beta ERD truly reflecting 

WM load associated processes. Furthermore, we may hypothesize that the observed beta 

ERD may reflect specifically processes of WM updating, as conceptually the EF updating is 

the only common EF that might be involved in the digit span task as well as in the operation 

span task and the n-back task.  

Interestingly, the operation span task showed more pronounced alpha ERD and beta 

ERD in the first (and to lesser extend in the second) time window as compared to the n-back 

and the digit span task. This might indicate that in the operation span task WM processes are 

loaded most, or other cognitive processes associated with the calculation subtask are still 

active during (or at least at the beginning) of the memorization subtask. In line with this 
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interpretation is the missing beta ERS effect in the operation span task as compared to the n-

back task. This beta ERS vanishes in the n-back task for higher load levels and might not be 

present in the operation span task even in the low load condition because of a generally 

increased load-situation in this task. 

In sum, the overall pattern of alpha band and beta band ERD was comparable across 

all three tasks but yielded differences in magnitude and timing between the tasks that might 

indicate differences in demands on EFs. In the digit span task less EFs (potentially only 

updating) seem to be demanded as indicated by changes in oscillatory activity mainly in an 

early time-window. In contrast in the n-back and operation span task more EFs seem to be 

demanded (additionally to purely updating, shifting and inhibition might be required) as 

indicated by longer lasting and more pronounced changes in oscillatory activity. However, 

put the other way around, if alpha and beta ERD reflect load on WM processes as 

hypothesized, all three tasks might be regarded as WM tasks.  

5. Conclusion 

To sum up, in the current study we were interested in a direct comparison of two 

tasks conceptualized as WM tasks, an n-back task and a complex operation span task, and a 

STM task, a simple digit span task. Our study revealed a comparable character of the n-back 

and the operation span task as dual-tasks as indicated by a comparable decrease of the P300 

amplitude in both tasks that was different from the simple digit span task. Additionally more 

pronounced and longer lasting effects in the TFRs indicated that these two tasks exposed 

more demands on EFs than the simple digit span task. These results are consistent with our 

assumption that the operation span and then-back tasks require common EFs like updating, 

shifting, and inhibition to similar degree, whereas the digit span task might only require the 

EF updating.  

Consistent with this assumption, we found rather high correlations between 

performance measures of the n-back and the operation span task. We hypothesized this 

unexpected outcome to be potentially caused by the carefully designed tasks we used with 

comparably time-constraints in the two paradigms. Therefore, the current behavioral and 

EEG results pointing to commonalities between the n-back and the operation span task (and 
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in case of the digit span task: differences) with respect to EFs, call for future studies that 

control for similar time-constraints when comparing the performance of subjects and the 

involved processes in n-back and span tasks. 
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Abstract 

We investigated the interplay between inhibition and updating, two executive working 

memory (WM) functions. We applied a novel task paradigm consisting of flanker stimuli 

presented within an n-back task and studied the interaction between inhibitory demands and 

load on WM updating using behavioral measures, electroencephalograph (EEG), and pupil 

dilation. In contrast to studies that examine the interaction between inhibitory demands and 

load on WM storage components, the current task paradigm allowed testing the interaction 

between the executive WM components updating and inhibition. We found a reduced flanker 

interference effect for the highest (2-back) updating load condition compared to lower 

updating load conditions on most measures. We interpret these findings as indicating that 

inhibitory control and WM updating are closely intertwined executive functions. Increased 

load on updating seemed to result in an overall more activated attentional network thus 

enhancing inhibitory control, such that task performance is less susceptible to distracting 

information.  
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Introduction 

Working memory (WM) is functionally defined by the temporary storage and 

manipulation of relevant information during performance of cognitive tasks, like reading, 

problem solving or calculating (Shah & Miyake, 1999). Defining WM as the interplay of 

attentional processes and memory structures seems to encompass the minimal commonalities 

between different frameworks of WM (Baddeley, 2003; Cowan et al., 2005; Engle, 2002; 

Oberauer, 2009). According to the multi-component model of WM (Baddeley & Hitch, 1974; 

Baddeley, 2012), which is currently a leading model in the field, WM may consist of at least 

three structural components: two memory-related storage components and an attention-

related supervisory component, the central-executive. The central-executive component is 

hypothesized to be divided into executive WM functions (EFs) that serve the coordination 

and manipulation of information in WM (Baddeley, 1996, 2007). 

Three core EFs are commonly differentiated: updating, shifting, and inhibition 

(Diamond, 2013; Miyake, Friedman, Emerson, Witzki, & Howerter, 2000). Updating refers 

to processes of retrieval, transformation, and substitution of WM content (Ecker, Ullrich, 

Lewandowsky, Oberauer, & Che, 2010). Shifting indicates processes of directing attentional 

focus toward newly relevant information (e.g., task shifting in dual task paradigms; Monsell, 

2003). Inhibition refers to processes of suppressing information that is not (or no longer) 

relevant for the current processing step in WM (Diamond, 2013). The n-back task is regarded 

by many authors as a typical task loading on WM updating (Jonides et al., 1997; Miyake et 

al., 2000). In an n-back task temporal sequences of stimuli are presented and participants 

have to indicate via key press whether a stimulus was same as or different from the stimulus 

they saw n-steps back. Thus, depending on n, this task relies on WM content to be 

continuously updated. The flanker task is a typical task demanding inhibitory control 

(Eriksen, 1995; Sanders & Lamers, 2002). In a letter flanker task, participants have to focus 

on a central letter and ignore surrounding letters (i.e., the flankers) that could be identical 

(i.e., congruent) or different (i.e., incongruent) to the central letter. In case of incongruent 

flankers, inhibitory control processes are loaded to overcome interference effects. However, 

although these EFs can be manipulated separately using specific tasks, a latent variable 

analysis by Miyake et al. (2000) revealed that updating, shifting, and inhibition share a 

common underlying process. These findings are corroborated by neuroimaging studies 
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observing overlapping frontal and parietal activations for these EFs (Collette et al., 2005; 

Nee et al., 2013). All EFs rely on attentional processes, and controlled attention might 

constitute the commonality that updating, shifting, and inhibition share (Miyake et al., 2000; 

Engle, 2002). 

The interplay of attentional demands and load on WM storage components has been 

studied by several authors (see Fougnie, 2008 and Vandierendonck, 2014 for comprehensive 

reviews). For example, Lavie and colleagues (Lavie, Hirst, de Fockert, & Viding, 2004; 

Lavie, 2005, 2010) studied the influence of load on WM storage on the performance of 

inhibitory control. In dual task studies, these authors used a flanker task to induce processing 

load on inhibitory control and a Sternberg task (Sternberg, 1966) to induce either low or high 

load on WM storage (i.e., participants had to remember one or six items and to perform the 

flanker task during the retention interval). The authors generally observed an increased (over-

additive) flanker interference effect in the high as compared to the low WM load condition. 

This was interpreted as depletion of common attentional control processes necessary in both 

tasks, resulting in less control over suppressing the flanker interference in the high WM load 

condition, thus leading to the over-additive interference effect. However, this interpretation 

might be challenged by studies that use a Stroop task (Stroop, 1935) to demand inhibitory 

control while participants perform a WM storage task (Kim, Kim, & Chun, 2005; Park, Kim, 

& Chun, 2007). These studies reported that the increased (over-additive) interference effect 

under high WM load only occurred when WM stimuli and Stroop stimuli were of the same 

modality (e.g., both verbal). In contrast, when stimuli were of different modalities (e.g., 

spatial-verbal) the interference effect was attenuated under high WM load. This may indicate 

that stimulus specific interference effects might explain the over-additive effect observed by 

Lavie and colleagues rather than a depletion of global attentional resources. In contrast, when 

attentional processes are increased under high WM load there may be even beneficial effects 

on interference control. 

To sum up, whereas the influence of load on WM storage components on single EFs, 

such as inhibition for example, and the role of attention therein has previously been studied 

by several authors, the mutual influence of load on WM updating and inhibitory demands 

has, to the best of our knowledge, not yet been explicitly addressed. Thus, in the current 
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study we focused on the latter research question by using an n-back task that increased load 

on WM updating with flanker items for simultaneous demands on inhibitory control. This 

novel task paradigm allowed us to compare the mutual influence of load on these two EFs 

within one single task, without the additional load on shifting processes as would occur 

during a dual task.  

We hypothesized two possible outcomes for the flanker interference effect under high 

load on WM updating. Firstly, an increased (i.e., over-additive) flanker interference effect, 

comparable to the results by Lavie and colleagues, that might be due to a depletion of 

attentional control under high WM updating load, thus impeding inhibitory control (depletion 

hypothesis). Alternatively, we might find a decreased (i.e., under-additive) flanker 

interference effect, comparable to the outcomes by Kim and colleagues (Kim et al., 2005), 

due to a general increased activation of attentional processes under high WM updating load, 

which facilitates inhibitory control (facilitation hypothesis).  

In addition to pure behavioral measures, we used electroencephalographic (EEG) and 

pupil dilation measurement methods that have previously been shown to be sensitive to load 

on WM updating in n-back tasks and to inhibitory demands in flanker or Stroop tasks. The 

additional measurement of these parameters provides us with additional information about 

the influence of load on the task processing. In the following, we will give a brief overview 

of the measures' sensitivity for updating or inhibition processes and how these measures may 

allow disentangling between our competing hypotheses. 

With respect to behavioral measures, increased load on WM updating due to 

increased n-back levels normally result in increased reaction times (RTs) and decreased 

accuracies, that is, number of correct responses (e.g., Jaeggi, Buschkuehl, Perrig, & Meier, 

2010). For demands on inhibitory control in a flanker task, increased RTs (and decreased 

accuracies) are normally observed for incongruent as compared to congruent flanker stimuli 

(e.g., Erikson, 1995).  

With respect to EEG measures, time-frequency representations (TFRs) of oscillatory 

EEG activity can provide a more detailed picture of the hypothesized shared neuronal 

networks of attention control with regard to the activation strength and its timing. For 
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example, increased n-back levels typically result in increased EEG theta frequency band 

power at frontal electrodes as well as decreased EEG alpha band power at parietal electrodes 

(Gevins, Smith, McEvoy, & Yu, 1997; Gevins & Smith, 2000; Jensen & Tesche, 2002; 

Pesonen et al., 2007). According to Watter, Geffen, and Geffen (2001), the event-related 

P300 mean amplitude can serve as an index for the internal distribution of attention when 

different executive WM functions are required. They observed a decreased P300 amplitude 

for increased n-back levels. This was interpreted as indicating that attentional processes are 

more distributed when executive WM updating functions are required during task processing 

(i.e., in the 1-back or 2-back task) as compared to a purely matching task (i.e., a 0-back task). 

For flanker tasks, studies describing oscillatory activity (as measured by frequency band 

power changes) are rather scarce and focus mainly on theta band activity. Nigbur, Ivanova, & 

Stürmer (2011) observed increased theta power for increased demands on inhibitory control 

in a flanker task, similar to a study by Hanslmayr, Pastötter, Bäuml, Gruber, Wimber, & 

Klimesch (2008) for a Stroop task. The P300 amplitude reportedly decreases during 

incongruent compared to congruent flanker trials (Pratt, Willoughby, & Swick, 2011). 

Finally, pupil dilation data might provide a physiological measure of the global load-

situation (Beatty & Lucero-Wagoner, 2000). Increased pupil dilation has been observed for 

higher load during WM updating (Ewing & Fairclough, 2010; Karatekin, Marcus, & 

Couperus, 2007) as well as for increased demands on inhibitory control (Laeng, Ørbo, 

Holmlund, & Miozzo, 2011).  

Given their sensitivity for updating and inhibition, the behavioral and the 

physiological measures we used should show dissociable result patterns depending on the 

relationship between these EFs. If WM updating demands facilitate interference processing 

(facilitation hypothesis), we expected to observe under-additive interference effects under 

high (compared to low) WM updating load, because the activation of updating processes 

should be accompanied by improved distractor inhibition. On the contrary, if high WM 

updating demands deplete resources required for inhibition, then we should find over-

additive interactions between updating and inhibition demands in the used measures 

(depletion hypothesis). 
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Method 

Participants 

Twenty-two students (Mage = 24.64, SD = 4.32, 12 females) of the University of 

Tuebingen participated in the study and received a payment of 8€ per hour. They were all 

native speakers of German, right-handed (except one) and reported no neurological disorders. 

All participants had normal or corrected-to-normal visual acuity. The local ethics committee 

of the Knowledge Media Research Center Tuebingen approved the study. Participants gave 

their written consent at the beginning of the study. 

Stimuli 

The letters 'S', 'H', 'C', 'F' were used as stimuli. For each trial, one out of these four 

letters was randomly chosen and presented centrally on the screen either flanked by the same 

letters (congruent condition, the same letter appeared three times on the left and on the right 

sides of the centered target letter, e.g., 'HHH H HHH') or by randomly chosen different 

letters (incongruent condition, one of the three remaining letters appeared three times on the 

left and on the right sides of the centered target letter, e.g., 'FFF H FFF'). All letters were 

presented in gray on black backgrounds in Arial at 25 points font size. Each stimulus was 

shown for 500 ms, followed by a black screen for 1500 ms (see Figure 1). Thus, one trial 

lasted 2000 ms. 
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Figure 1. Stimulus sequence and timing of the n-back task with flanker stimuli. Stimuli were originally 

presented in gray color on black background. For better readability in this publication only we changed the 

background color to white. Light gray color symbolizes congruent trials, dark gray incongruent trials.  

Procedure 

Participants performed an n-back task: they saw temporal sequences of the stimuli 

and indicated via key press ('yes'/'no'-key) whether the central letter of the current trial 

matched (i.e., was identical to) or mismatched (i.e., was different from) the central letter they 

had seen in the sequence n-steps back. Henceforth, we will refer to stimuli of the match 

situation as n-back targets, and to stimuli of the mismatch situation as n-back nontargets. 

Participants were instructed to respond as quickly and accurately as possible and to focus 

only on the centrally presented letter (i.e., to ignore the flanker). 

We used three n-back difficulty levels (0-back, 1-back, 2-back). In the 0-back 

condition, before the stimulus sequence started a randomly chosen letter ('S', 'H', 'C', or 'F') 

was displayed as n-back target letter. During the following stimuli sequence, each time this 

letter occurred as central letter, participants had to press the 'yes'-key, in all other cases the 

'no'-key. In contrast, in the 1-back and the 2-back condition participants had to base their 
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target/nontarget (i.e., match/mismatch) decision on the particular central letter they saw 

within the sequence one or two trials before, respectively. On every trial, participants pressed 

the key 'l' with their right index finger on a standard QWERTZ-keyboard in case of an n-back 

target, whereas they pressed the key 'd' with their left index finger if the currently presented 

central letter was not an n-back target. Assignment of 'yes'/'no'-key and left/right index finger 

was counterbalanced across participants. 

The n-back stimuli sequences were presented in blocks. Each block consisted of 154 

trials. Half of the trials were targets, half of the trials were nontargets. About one third of the 

stimuli of each response category were incongruent (e.g., 'FFF H FFF'), two thirds were 

congruent (e.g., 'FFF F FFF'). The first four trials of each block were always congruent 

nontargets and were excluded from any further analyses. Stimuli were presented using E-

Prime presentation software (E-Prime 2 Professional, Psychology Software Tools, Inc.) with 

predefined stimuli lists. The trial sequences within the blocks were pseudo-randomized: To 

avoid attenuation of the interference effect for incongruent stimuli due to conflict adaptation 

processes (i.e., the so-called 'Gratton effect'; Botvinick, Braver, Barch, Carter, & Cohen, 

2001; Davelaar, 2012; Gratton, Coles, & Donchin, 1992), incongruent-incongruent stimuli 

sequences were excluded in advance during construction of the stimuli lists. To further avoid 

any Gratton-like effects, congruent trials following incongruent trials were excluded from 

any further data analyses. Apart from these constraints, the stimulus sequence (i.e., the letters 

chosen as stimuli as well as their assignment as target/nontarget or congruent/incongruent) 

was randomly generated for each block and each participant.  

To avoid a diminishing flanker effect in the later parts of a block, some randomly 

chosen stimuli were replaced by stimuli without a central letter (i.e., 10 targets and 10 

nontargets per block consisted only of the flankers on both sides of a gap). We instructed 

participants to remember in these cases the flanker letters of the actual trial for the following 

comparison and to base their actual target/nontarget judgment on a comparison of the flanker 

letters with the previous central letter at position 1-back or 2-back, respectively. By means of 

this instruction we wanted to avoid participants becoming increasingly unaware of the 

flankers during the course of a block, that is, we wanted to avoid a diminishing flanker effect 
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that would be attributable only to effects of time. We excluded these 'gap'-stimuli and the two 

immediately following stimuli from any further analyses.  

At the beginning of each block, the n-back level that participants' had to perform 

during the following stimuli sequence was announced (0-back, 1-back, or 2-back). In case of 

the 0-back, the target letter for this task (randomly chosen out of the four possible letters) 

was additionally shown. The subsequent stimuli sequence did not differentiate between the n-

back load-levels. In accordance with the traditional n-back task design, each block consisted 

of one n-back level. Each n-back level was presented twice. Thus, participants performed a 

total of six blocks. The sequence of blocks was randomly assigned for each participant with 

the constraint that each n-back level was presented once before an n-back level was presented 

for the second time. One block lasted about five minutes.  

At the beginning of the study, participants performed training blocks for each n-back 

level. Training was repeated until participants reached an accuracy of at least 60 percent 

correct responses. During training, participants' accuracy was displayed at the end of a block 

to give them feedback regarding their performance. No feedback was given during the actual 

task presentation. The total experiment, including EEG preparation, task training, task run, 

and breaks, took about 2 hours. 

Apparatus 

The study was run in a quiet room that was dimly lit. Participants sat in a comfortable 

chair in front of a 22-inch Dell monitor (1680x1050 pixels screen resolution). Below the 

monitor a 250 Hz SMI remote eye tracking system with infrared-cameras was positioned to 

record participants' pupil sizes. A chin rest was used to avoid head movements during data 

recording and to ensure the eyes remained a fixed distance of about 70 cm from the eye 

tracking device. The eye tracking data were recorded at a sampling rate of 250 Hz (SMI 

iView X 2.7.13). The eye tracker was calibrated at the beginning and after each break using 

the built in calibration routines (SMI Experiment Center, 9-point calibration). 

EEG was recorded at 27 electrode sites positioned according to the international 

10/20 system (Jasper, 1958). The right mastoid served as reference during recording. The 

ground electrode was positioned at AFz. Three additional electrodes were placed around the 
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eyes for EOG recording. EEG data were recorded (PyCorder 1.0.2) at 500 Hz sampling rate 

(ActiCHamp, Brainproducts, Inc.) using active electrodes (ActiCap, Brainproducts, Inc.). 

Impedances were kept below 5 kOhm.  

Data Preprocessing and Analysis 

Accuracy was calculated for each task condition as the mean percentage of correct 

response of all trials. Reaction times (RT) were calculated as the mean RT for correct 

responses in each task condition. Additionally, responses faster than 200 ms were excluded 

from RT calculation (less than 0.05% of all trials).  

Eye tracking data were synchronized with the EEG data and preprocessed using 

customized Matlab scripts (Matlab 2012b, MathWorks, Inc.; EEGLAB v. 11.0.5.4b, Delorme 

& Makeig, 2004, with EYE-EEG plugin, Dimigen, Sommer, Hohlfeld, Jacobs, & Kliegl, 

2011). During preprocessing, the eye tracking data were upsampled to 500 Hz to match the 

sampling rate of the EEG data. Eye blink artifacts (i.e., missing data points) were corrected 

using linear interpolation. The pupil sizes of the left and the right pupil were averaged. This 

mean pupil size was averaged over the entire time window from 0 ms to 2000 ms after 

stimulus onset for each trial. Finally, the mean pupil size values for all trials of each task 

condition were calculated and used for statistical analyses.  

EEG data were preprocessed and analyzed using the same software solutions as 

described above. During preprocessing the continuous EEG data were filtered (low-pass 40 

Hz, high-pass 0.5 Hz, linear finite impulse response filters). EOG artifacts were corrected 

using independent component analysis (ICA) decomposition. Independent components (ICs) 

identified as EOG-ICs by visual inspection were rejected. The continuous EEG data were 

then epoched in stimulus-locked time windows (-500 ms to 2500 ms). Note that the time 

window we chose for epoching was larger than the length of a single trial. This was done 

because, for technical reasons, the later time-frequency decomposition of the signal needed 

some additional data at the trial borders to cover the whole trial (0 - 2000 ms). An automatic 

artifact removal was performed: Epochs that exceeded ±100 µV were excluded from further 

analyses (Duncan et al., 2009). No further artifact removal or correction was performed on 

the EEG data. In the final data set we had in average 56 (SD = 11) correctly responded, 
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artifact-free trials per task condition. Finally the EEG data were re-referenced to average 

reference.  

P300 mean amplitude was calculated as the mean power in the typical P300 time 

window of 250 ms to 500 ms after stimulus onset (Polich, 2007). Statistical analyses were 

performed for the mean P300 amplitude at electrode Pz.  

EEG time-frequency representations (TFRs) give information not only of the 

activation strength of neuronal network structures (i.e., the frequency band power) but also of 

their timing (Krause, Pesonen, & Hämäläinen, 2010; Palomäki, Kivikangas, Alafuzoff, 

Hakala, & Krause, 2012; Pesonen et al., 2007). We calculated TFRs at electrodes Fz and Pz 

for each task condition and participant separately within a frequency band range from 2 Hz to 

32 Hz and a time range from 0 ms to 2000 ms. First, using stepwise fast Fourier transforms 

(FFTs, 500 ms width moving windows, 10 ms steps), the frequency band power for each 

TFR data point was calculated for the entire epoch length. Then, the percentage of event-

related desynchronization/synchronization (ERD/ERS%; Pfurtscheller & Lopes da Silva, 

1999) was calculated for each data point with respect to the mean frequency band power of a 

global pre-stimulus time interval (-500 ms - 0 ms). Finally, the individual TFRs were 

averaged over all participants (grand-average). TFR plots were created for the electrodes Fz 

and Pz (see Figure 4). Pairwise comparisons of consecutive n-back levels and the flanker 

conflict conditions were performed (EEGLAB bootstrapping statistics, using false-discovery-

rate corrections for multiple comparisons).  

Beyond their role for comparing different types of load on executive WM functions, 

we additionally used the TFRs for defining the time-window for calculating the mean 

frequency band power over time. This specific measure allowed for a more concise 

comparison with the other load measures that were also averaged over time (i.e., pupil 

dilation and P300 mean amplitude). EEG frequency band power was calculated using FFTs 

for the time window of 0 ms to 1000 ms after stimulus onset. This time window showed 

maximal oscillatory effects for both the updating load and the inhibition load as revealed by 

visual inspection of the TFR-plots. We used the individual alpha frequency (IAF) band 

selection account of Klimesch (1999) to calculate the mean frequency band power for 

individual adjusted frequency band borders of the theta and the upper alpha frequency band. 
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The ratio of this procedure is to calculate more dynamic frequency band borders that take 

individual differences into account. The IAF for each participant was calculated at electrode 

Pz as the frequency point of maximum alpha frequency band power during a rest period (i.e., 

a 20 seconds EEG recording, within which participants had to relax with eyes open, centrally 

fixating the screen). The mean IAF for all participants was at 10.29 Hz (SD = 0.40). In line 

with Klimesch (1999), the theta frequency band was then defined individually for each 

participant as the frequency band of 2 Hz bandwidth that started 6 Hz below the IAF. The 

upper alpha was defined as the frequency band of 2 Hz bandwidth that started directly above 

the IAF. Mean frequency band power for IAF adjusted theta and upper alpha frequency 

bands were calculated for each task condition at the electrodes Fz and Pz, respectively.  

We restricted our EEG data analyses to these two electrodes, as frontal-midline 

electrodes like Fz have been reported to show largest effect sizes for WM load in the theta 

frequency band whereas parietal-midline electrodes like Pz show largest effect sizes for WM 

load in the alpha frequency band (e.g., Gevins et al., 1997). P300 amplitude effects have also 

been reported to be maximally over parietal electrodes (e.g., Polich, 2007), therefore a 

restriction of this measure to Pz was chosen. 

Statistical Analysis 

Except for the TFRs, which were statistically analyzed within MATLAB 2012b 

(MathWorks, Inc.), all statistical analyses were conducted using SPSS Statistics 20.0. (SAS 

Software, Inc.). For each measure, we computed separate repeated-measures ANOVAs with 

the factors n-back level (0-back, 1-back, 2-back) and congruency (flanker interference: 

congruent vs. incongruent flankers). For the physiological data only artifact-free trials with 

correct responses were used for data analysis, with additional exclusion of trials that might 

yield to any Gratton-like effect (see Procedure section above). This procedure resulted in the 

following amount of trials per factor level: 0-back, congruent, M = 54.05, SD = 5.24; 0-back, 

incongruent, M = 65.68, SD = 7.08; 1-back, congruent, M = 52.77, SD = 6.68; 1-back, 

incongruent, M = 64.54, SD = 9.50; 2-back, congruent, M = 44.05, SD = 8.89; 2-back, 

incongruent, M = 55.05, SD = 11.07. Greenhouse-Geyser corrections were performed on the 

p-values where necessary and additionally epsilon values were given in these cases. For post-
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hoc pairwise comparisons (t-tests, two-tailed) all p-values were Bonferroni corrected for 

multiple comparisons. Level of significance was set at α = .05 for all analyses and partial eta-

square is reported as a measure of effect size for the ANOVAs. Cohen's dz for dependent 

measures is reported as a measure of effect size for the t-tests.  

Results 

TFR results are shown in Figure 4, all other results (mean values) in Figure 2. 

Frequency band power data is given in 10*log10[µV
2
/Hz]. Henceforth, for reasons of 

readability, we omitted noting the "10*log10". Figure 3 additionally shows the event-related 

potential (ERP) curves at Pz. 

 

Figure 2. Mean values for reaction times, accuracy, pupil size (indicating pupil dilation), P300 amplitude at 

electrode Pz, upper alpha power (Pz), and theta power (Fz). Error bars: ± 1 SEM. The *, >, and < mark 

significant differences (p < .05). Light gray color symbolizes congruent trials, dark gray color incongruent 

trials. 
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Reaction Times (RTs) 

RTs were significantly higher for incongruent flanker trials (549 ms) than for 

congruent flanker trials (518 ms), indicated by a main effect of congruency, F(1, 21) = 30.83, 

p = .001, ηp
2 

= .60. In addition, RTs increased with increasing n-back levels (0-back: 462 ms, 

1-back: 506 ms, 2-back: 632 ms; all n-back levels' RTs were significantly different), yielding 

a main effect of n-back level, F(2, 42) = 39.55, p < .001, ε = .56, ηp
2
 = .65. These two main 

effects were modulated by a significant interaction between n-back level and congruency, 

F(2, 42) = 3.65, p = .047, ε = .78, ηp
2
 = .15. Post-hoc pairwise comparisons revealed that a 

significant flanker interference effect could only be observed for the 0-back (35 ms slower 

reactions for incongruent as compared to congruent flanker trials, p < .001, dz = -1.44) and 1-

back (39 ms slower reactions for incongruent flanker trials, p < .001, dz = -1.49) conditions, 

but not for the 2-back condition (18 ms slower reactions for incongruent flanker trials, p = 

.077, dz = -0.40). Paired sampled t-tests (two-tailed) were conducted to further assess whether 

flanker interference effect (i.e., the RT difference in between incongruent and congruent 

trials) were larger in the 0-back and 1-back conditions than in the 2-back condition. While no 

significant difference occurred between the 0-back and 1-back condition, t(21) = 0.73, p = 

.47, dz = -0.16, the congruency effect was significantly reduced in the 2-back relative to the 

1-back condition, t(21) = 2.27, p = .03, dz = 0.48, and tended to be reduced in the 2-back 

relative to the 0-back condition, t(21) = 1.82, p = .08, dz = 0.39. This suggests the congruency 

effect decreases with increasing WM updating load. 

Accuracy 

For accuracy, we found significant main effects of congruency, F(1, 21) = 6.03, p = 

.023, ηp
2
 = .22 and of n-back level, F(2, 42) = 17.58, p < .001, ε = .62, ηp

2
 = .46, but no 

interaction effect (p = .89). Overall accuracy for congruent trials was significantly higher 

(86%) than for incongruent trials (83%). Moreover, accuracy decreased with increasing n-

back levels (0-back: 88%, 1-back: 86%, 2-back: 79%). Post-hoc pairwise comparisons 

revealed that accuracy in the 2-back condition was significantly reduced relative to the 0-

back and the 1-back conditions (p < .001), with no significant difference occurring between 

the latter two conditions (p = .78).  
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Pupil Dilation 

Results for pupil dilation were in accordance with the RT results. As expected, pupil 

diameter increased for increasing n-back levels (0-back: 5.59 mm, 1-back: 5.72 mm, 2-back: 

6.14 mm), yielding a main effect of n-back level, F(2, 42) = 56.69, p < .001, ηp
2
 = .73. 

Additionally, pupil sizes were larger for incongruent flanker trials (5.84 mm) than for 

congruent flanker trials (5.80 mm), resulting in a main effect of congruency, F(1, 21) = 

20.15, p = .001, ηp
2
 = .49. Moreover, as for RTs we observed a significant interaction 

between n-back level and congruency, F(2, 42) = 15.27, p < .001, ηp
2 

= .42. Only in the 0-

back and 1-back conditions, we found a significant flanker interference effect on pupil 

dilation, that is, significantly increased pupil diameter for incongruent as compared to 

congruent flanker trials (0-back: 0.09 mm difference, p < .001, dz = -1.08, 1-back: 0.05 mm 

difference, p = .007, dz = -0.63). For the 2-back condition, we even observed a marginally 

significant reversed pattern with a slight decrease in pupil dilation (-0.02 mm difference, p = 

.052, dz = 0.44). Further paired-samples t-tests revealed that the interference effect was larger 

in the 0-back condition relative to the 1-back condition, t(21) = 2.71, p = .01, dz = 0.58, and 

the 2-back task condition, t(21) = 4.78, p < .001, dz = 1.02, as well as in the 1-back relative to 

the 2-back condition, t(21) = 3.30, p = .003, dz = 0.70. 

P300 

Results for the event-related potential curves at electrode Pz are shown in Figure 3. 

The mean amplitude values are given in figure 2. We found a decrease in mean P300 

amplitude with increasing n-back levels (0-back: 4.05 µV, 1-back: 3.76 µV, 2-back: 2.75 

µV), indicated by a main effect of n-back level, F(2, 42) = 12.47, p < .001, ε = .71, ηp
2
 = .37 

as well as a decrease in P300 amplitude for the flanker interference, resulting in a main effect 

congruency, F(1, 21) = 15.44, p = .001, ηp
2
 = .42. Additionally we found a marginally 

significant interaction between n-back level and congruency, F(2, 42) = 2.82, p = .07, ηp
2
 = 

.12. The pattern of this interaction was the same as for RTs and pupil dilation. Only in the 0-

back and 1-back task conditions, P300 amplitude was significantly decreased for incongruent 

as compared to congruent flanker trials (0-back: -0.74 µV, p < .001, dz = 0.78, 1-back: -0.82 

µV, p = .005, dz = 0.67). For the 2-back task condition, this difference was not significant (2-

back: -0.21 µV, p = .28, dz = 0.24). While interference effects did not differ between the 0-
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back and the 1-back condition, t(21) = 0.24, p = .81, dz = 0.05, the interference effect was 

significantly reduced in the 2-back relative to the 0-back, t(21) = 2.10, p = .048, dz = -0.45 

and the 1-back condition, t(21) = 2.12, p = .046, dz = -0.45. 

 

Figure 3. Event-related potential curves at electrode Pz, baseline-related to a 250 ms to 0 ms pre-stimulus time-

interval. Solid black curve indicates congruent flanker trials, black dotted curve incongruent flanker trials. From 

left to right increasing n-back levels. Vertical black lines mark the time window for the calculation of mean 

P300 amplitude (250 ms to 500 ms after stimulus-onset). Grey shades around the lines are ± 1 SEM. 

Time-Frequency Representations (TFRs) 

Results for the TFRs are provided in Figure 4. Similar to Pesonen et al. (2007) and 

Krause et al. (2010), we found for increased n-back levels longer-lasting and more 

pronounced event-related synchronization (ERS) in the theta frequency range as well as 

longer-lasting and more pronounced event-related desynchronization (ERD) in the alpha 

frequency range. The alpha ERD and theta ERS for the flanker conflict were more 

pronounced within the first 1000 ms after stimulus onset. 
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Figure 4. Time-Frequency representations (TFRs) of the n-back levels (increasing from left to right) for 

congruent and incongruent stimuli at frontal electrode Fz (upper half of the figure) and at parietal electrode Pz 

(lower half of the figure). Within the Fz and Pz part of the figure, the larger time-frequency plots show stepwise 

(10 ms bins) the percentage of change in frequency band power (y-axis from 2 Hz to 32 Hz) for the entire trial 
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length (x-axis from 0 ms to 2000 ms) in relation to a 500 ms pre-stimulus baseline period (i.e., the percentage of 

event-related desynchronization / synchronization; ERD/ERS%, see Pfurtscheller & Lopes da Silva, 1999, and 

Pesonen et al., 2007). Blue colors indicate a desynchronization, that is, a reduction of frequency band power in 

relation to baseline, red colors indicate a synchronization, that is, an increase of frequency band power in 

relation to baseline. The smaller plots in between give the areas of statistically significant differences (dark red 

color; p < .05) between two conditions (left to right: updating load; upper to lower: inhibition load). Black 

vertical lines in the TFR plots show the approx. center frequencies of the theta frequency band (5 Hz, lower 

vertical line) and the upper alpha frequency band (11 Hz, upper vertical line). 

Mean Upper Alpha Frequency Band Power 

The results for the mean upper alpha frequency band power at electrode Pz are shown 

in Figure 2. We found a main effect of n-back level, F(2, 42) = 22.14, p < .001, ηp
2
 = .51, due 

to a decrease in frequency band power for increasing n-back levels (0-back: 6.80 µV
2
/Hz, 1-

back: 6.25 µV
2
/Hz, 2-back: 5.43 µV

2
/Hz). A significant interaction between n-back level and 

congruency, F(2, 42) = 8.38, p < .001, ηp
2
 = .29, revealed that the flanker interference effect 

led to a decrease in upper alpha band power only for the low updating-load conditions (0-

back: -0.54 µV
2
/Hz, p = .026, dz = 0.51, 1-back: -0.43 µV

2
/Hz, p = .023, dz = 0.53). 

Comparable to the pupil dilation results, for the 2-back condition we observed the reversed 

pattern: incongruent flanker trials showed an increase in upper alpha band power instead of 

the expected decrease (2-back: 0.47 µV
2
/Hz, p = .017, dz = -0.55). Additional paired-samples 

t-tests revealed that the flanker interference effects of the 0-back and 1-back task condition 

were not statistically different, t(21) = 0.40; p = .70, dz = -0.08, while the flanker interference 

effect was significantly reduced in the 2-back relative to the 0-back, t(21) = 3.21, p = .004, dz 

= -0.69, and 1-back condition, t(21) = -3.97, p = .001, dz = -0.85. 

Mean Theta Frequency Band Power 

The results for the mean theta frequency band power at electrode Fz are also shown in 

Figure 2. As expected, theta frequency band power increased for increasing n-back levels (0-

back: 11.34 µV
2
/Hz, 1-back: 11.87 µV

2
/Hz, 2-back: 12.12 µV

2
/Hz), yielding a main effect of 

n-back level, F(2, 42) = 7.84, p = .001, ηp
2
 = .27, as well as for incongruent (11.96 µV

2
/Hz) 

as compared to congruent flanker trials (11.59 µV
2
/Hz), resulting in a main effect of 

congruency, F(1, 21) = 11.81, p = .002, ηp
2
 = .36. We observed no interaction of congruency 
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and n-back level, F(2, 42) = .10, p = .90, ηp
2
 = .01. Thus, for this measure the flanker 

interference showed a purely additive effect. 

Discussion 

In the current study, we investigated the interplay of two EFs, inhibition and 

updating, manipulated within one single task. We hypothesized that due to common 

processes of attention control involved in all EFs we might observe interactions between 

simultaneous load on inhibitory control and WM updating for load-related measures like 

RTs, EEG theta and alpha frequency band power, P300 amplitude, and pupil dilation. These 

interactions might be either due to over-additive (depletion hypothesis) or under-additive 

effects (facilitation hypothesis).  

Our results showed, first, that all measures yielded the expected outcomes for the load 

on WM updating. With increasing n-back levels, accuracy and mean P300 amplitude at 

parietal electrodes decreased, whereas RTs and pupil dilation increased (see Watter et al., 

2001; Ewing & Fairclough, 2010). Similarly, theta power increased and upper alpha power 

decreased (see Gevins & Smith, 2000). Additionally we observed similar effects in the TFRs 

as found by Pesonen et al. (2007) and Krause et al. (2010): Increased n-back levels led to 

more prolonged and pronounced theta frequency band ERS and alpha frequency band ERD. 

Thus, the observed effects in behavioral and electrophysiological measures for load on 

updating are in line with findings of previous studies using the n-back task paradigm, 

confirming the sensitivity of the used indicators as measures of WM updating load. 

Second, all measures were also sensitive to inhibitory demands. As expected, we 

observed that demands on inhibitory control (i.e., incongruent relative to congruent flanker 

trials) resulted in increased RTs, theta frequency band power, and pupil dilation as well as in 

decreased alpha frequency band power and accuracy (see Hanslmayr et al., 2008; Nigbur et 

al., 2011).  

The most important finding with regard to the topic of the current paper was, 

however, that in contrast to studies by Lavie and colleagues (Lavie et al., 2004; Lavie, 2005, 

2010), the flanker interference effect did not increase under high WM updating load as 
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shown by the outcomes of all measures. Moreover, instead of an over-additive effect, we 

observed an under-additive effect for the flanker interference under high WM updating load 

on most of our load-related measures. Only for no or low load on updating (i.e., the 0-back 

and 1-back task conditions), the flanker interference effect led to increased RTs and 

increased pupil dilation and decreased upper alpha frequency band power and decreased 

P300 mean amplitude. In contrast, under high load on updating (2-back) we observed no 

significant flanker interference effect (RT, pupil dilation, P300) or the effect even was 

reversed (EEG upper alpha frequency band power). Importantly, for these measures we 

found the flanker interference effect to be significantly reduced in the 2-back compared with 

the 1-back and 0-back conditions. 

Thus, with regard to our two alternative hypotheses of an over-additive or under-

additive load effect for simultaneous load on updating and inhibition, the results favor the 

latter. In line with Miyake et al. (2000), our results indicate that the EFs updating and 

inhibition might share underlying network structures that serve controlled attention. The high 

demands of the 2-back task on WM updating might have led to increased levels of controlled 

attention which in turn facilitated inhibitory control processes and enhanced participants' 

attentional focus on the task-relevant central letter. This enhanced attentional focus on the 

central letter may have resulted in a shielding against the distracting flanker letters, leading to 

the observed reduced flanker interference effects in the 2-back condition.  

This explanation is in line with the predictions of the task-engagement/distraction 

trade-off model by Sörqvist & Rönnberg (2014). In dual task studies investigating auditory 

distraction under visual WM updating load these authors and others observed that task 

irrelevant auditory stimuli caused less interference under high as compared to low visual 

WM updating load (San Miguel, Corral, & Escera, 2008; Sörqvist, Stenfelt, & Rönnberg, 

2012). They concluded that the higher task engagement under more difficult task conditions 

shielded cognition from auditory distraction. Our results might indicate that this shielding 

from distraction might even work within the same stimulus modality when stimuli that load 

on WM updating and stimuli that demand inhibitory control are both of the same, visual 

domain. More importantly however, as we manipulated load on WM updating and demands 

on inhibitory control within one single task, we avoided additional load on shifting that might 
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confound the results of dual task studies with respect to a specific interpretation of the 

interplay of updating and inhibition. Thus, we may conclude that our novel task paradigm of 

an n-back task with flanker stimuli might have identified the specific interplay of WM 

updating and inhibitory control.  

Our facilitation hypothesis is supported by the P300 mean amplitude as an indicator 

of internal attentional distribution (Watter et al., 2001). In line with Watter et al. (2001), we 

interpret the observed decrease in P300 amplitude for the higher n-back levels and the flanker 

interference as an indicator of the distribution of attention required by the current task 

demands. When different EFs are necessary for task performance, attention is thought to be 

distributed among updating and inhibition functions which resulted in the decrease of the 

P300 amplitude. The attenuated P300 amplitude reduction for load on inhibitory control in 

the 2-back task as compared to the 0-back or 1-back task suggests that no additional 

attentional resources must be attributed to inhibitory control processes in the 2-back 

condition because attentional resources are already fully focused on the task-relevant central 

letter due to the severe demands on WM updating. 

Upper alpha frequency band power seems to corroborate the facilitation hypothesis. 

Under high WM updating load (2-back) we observed no further decrease of alpha frequency 

band power for incongruent as compared to congruent flanker stimuli, but rather an increase. 

This larger decrease of alpha frequency band power for congruent as compared to 

incongruent flanker stimuli between 1-back and 2-back load level might be puzzling. 

However, in line with recent interpretations of the functional relevance of alpha oscillatory 

activity for inhibitory processes and the so called 'inhibition-timing hypothesis' (Klimesch, 

2012), we hypothesize that this outcome might indicate strong inhibitory processes under the 

2-back load level that led to an increase of alpha oscillatory activity. For example, Händel, 

Haarmeier, & Jensen (2011) observed that information in a visual hemifield that participants 

were cued to ignore led to increased alpha frequency band power in the contra-lateral 

hemisphere. They interpreted this observation in terms of neuronal inhibitory processes 

triggered by increased alpha activity. Thus, in our study, the severe load on WM updating in 

the 2-back task condition may have led to strong inhibitory processes with regard to the 

flanker interference as shown by the increased alpha frequency band power for incongruent 
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compared to congruent flanker stimuli in the 2-back task condition. We speculate that this 

outcome could potentially reflect overlying effects of oscillatory activity in the alpha 

frequency band for simultaneous load on updating and inhibition. Clearly future studies are 

necessary to further elaborate on circumstances under which load on inhibitory control leads 

to an increase rather than a decrease of alpha frequency band power. 

The results for pupil dilation as overall measure of WM load (Beatty & Lucero-

Wagoner, 2000) also indicated that under severe load on WM updating inhibitory control 

processes are facilitated, possibly due to an increased attentional focus on task relevant 

information. As consequence, incongruent flanker stimuli in the 2-back task condition did not 

lead to additionally increased pupil diameter relative to congruent stimuli. Pupil dilation data 

should be interpreted with some caution, although the findings are in line with the outcomes 

of the RTs, alpha frequency band power, and P300 measures. First, as the inter-trial interval 

of two seconds used in the current study was relatively short (see, e.g., Laeng et al., 2011, 

using inter-trial intervals of three seconds in a Stroop task), the pupil dilation data may not be 

free of carry-over effects. In other words, the magnitude of the pupil dilation on the current 

trial may be affected by the pupil size in the preceding trial. However, as the sequence of 

congruent and incongruent flanker trials was random for each n-back load level and each 

participant, we argue that such effects should affect congruent and incongruent trials equally. 

Second, we reported absolute pupil diameter values, contrary to studies using single-trial pre-

stimulus baseline-corrected pupil diameters (e.g., Laeng et al., 2011; Van Gerven, Paas, Van 

Merriënboer, & Schmidt, 2004). Importantly, the n-back task paradigm does not allow 

specifying single-trial pre-stimulus baselines that are free of the cognitive demands of 

interest in the current study. This is because of the continuous WM demands across trials that 

are inherent for the n-back task. However, we think that baseline-corrected pupil dilatation 

data may be mainly important for between-group comparisons (Van Gerven et al., 2004), but 

it may less be an issue in case of within-subjects designs as in the current study. In within-

subject designs, the amount of pupil dilation for cognitive processes has been shown to be 

rather unaffected by the initial pupil size, that is, the impact of cognitive demands on pupil 

dilatation appears robust to the pupil diameter in a pre-stimulus baseline (e.g., Beatty & 

Lucero-Wagoner, 2000; Bradshaw, 1969). Thus, although the pupil results must be 

interpreted with some caution due to methodological limitations, we think that, nevertheless, 
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the pupil dilatation data provide additional support for our conclusions, given the conformity 

of the pupil data with other measures. 

In conclusion, the pattern of results we consistently found on most load-related 

measures indicate that severe load on WM updating might have activated processes of 

controlled attention serving all EFs, thus enhancing inhibitory control. However, the 

outcomes of the current study are in contrast to studies by Lavie and colleagues (Lavie et al., 

2004; Lavie, 2005, 2010). Some conceptual differences might explain the different outcomes. 

Most important, Lavie and colleagues used dual task paradigms with one task loading on 

WM storage components and the other demanding inhibitory control. In contrast, we 

specifically demanded two EFs, namely updating and inhibition within one single task. Thus 

the over-additive load effect Lavie and colleagues observed might be due to the necessity of 

dividing controlled attention between executive WM components (i.e., inhibitory control) 

and WM storage components with additional processes required to handle the overload-

situation in the WM storage components. This overload-hypothesis is further corroborated by 

the fact that the over-additive load effect seems only to be present if the stimuli of the WM 

storage task and the stimuli of the flanker interference task were of the same category, 

thereby inducing load on the same, resource-limited storage component (see Kim et al., 2005; 

Park et al., 2007). 

The results of the current study indicate that if EFs are specifically loaded, rather than 

a depletion of attentional processes (see depletion hypothesis) an enhanced activation of 

attention control might occur, thus leading to a decreased (or even absent) flanker 

interference effect under high WM updating load (see facilitation hypothesis). Naturally, the 

current study could only serve as a first step in studying the interplay between different EFs 

when manipulated within one single task. Some open questions may be addressed in more 

detail in future studies.  

Firstly, one might wonder whether increasing WM updating load further beyond the 

2-back load level (e.g., 3-back or 4-back) might consistently result in a reduced (or absent) 

flanker interference effect under all high WM updating load conditions. Given our 

facilitation hypothesis, we would expect to observe an under-additive flanker interference 

effect for load levels above the 2-back as well. However, for severely n-back overload (e.g., 
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for load levels above 4-back) it might be also plausible to expect a depletion (or collapse) of 

attentional control processes, thus leading to a reoccurrence (or even strengthening) of the 

flanker interference effect. This question has to be addressed by future studies. 

Secondly, one might wonder whether the interaction we observed between load on 

WM updating and inhibitory control demands may generalize to other task-combinations. For 

example, an obvious next study would be to use Stroop stimuli instead of the flanker stimuli 

to demand inhibitory control. Given such a task, we would expect to observe comparable 

outcomes as the ones of the current study. Interestingly, we might interpret a recent study by 

Soutschek and colleagues (Soutschek, Strobach, & Schubert, 2013, experiment 2) as a hint 

for the generalizability of our assumptions. These authors used the n-back task to manipulate 

load on WM updating and combined this task with a Stroop task, yet in a dual task setting. 

Thus, contrary to our current experiment, the task-relevant information in the updating task 

was not identical with the task-relevant information in the inhibition task. Nevertheless, 

Soutschek and colleagues also observed a significantly decreased interference effect at the 

highest (2-back) WM updating load condition. However, as the authors focused on a 

different research question, they did not explicitly address and discuss these effects. 

Therefore, further studies on this topic might be desirable.  

Finally, one might wonder at which level of the stimulus processing chain the 

enhanced inhibitory control under severe load on updating takes place. Although this 

question was not in the primary focus of our current study, we may hypothesize from our 

results that the task irrelevant stimulus dimension (i.e., the flanker) seems to be processed 

even in the 2-back task condition at least up to certain neuronal stages. This can be inferred 

from the purely additive effect that we observed for the theta frequency band power which 

might indicate that specific aspects of inhibitory control are equally activated under all n-

back levels. In line with this reasoning, close connections between specific EFs and frontal 

oscillatory activity in the theta frequency band range have recently been hypothesized by 

several authors (e.g., Nigbur, Ivanova, & Stürmer, 2011; Sauseng, Hoppe, Klimesch, Gerloff, 

& Hummel, 2007; Sauseng, Griesmayr, Freunberger, & Klimesch, 2010; Womelsdorf, 

Vinck, Leung, & Everling, 2010). According to these authors, theta activity seems to reflect 

the subordinated coordination of the diverse cognitive processes in WM (Sauseng et al., 
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2010). Our results might indicate that these subordinated coordination processes are rather 

unaffected by load on updating. 

In sum, our study revealed a close connection of the EFs updating and inhibition 

which was shown by an interaction between these two EFs on most load-related measures. 

The under-additive load effect we observed might be explained by commonly activated 

neuronal network structures of controlled attention. Severe load on WM updating might lead 

to overall increased processes of controlled attention, thus enhancing inhibitory control and 

resulting in a decreased flanker interference effect under high WM updating load. Clearly, 

future studies have to be conducted to overcome the limitations of the current study as 

discussed above (e.g., concerning the pupil dilation data) and to validate the overall 

generalizability of our results with respect to a invariable or even decreased flanker 

interference effect under high WM updating load. 
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Abstract 

Executive working memory functions play a central role in reading comprehension. In the 

present research we were interested in additional load imposed on executive functions by 

link-selection processes during computer-based reading. For obtaining process measures, we 

used a methodology of concurrent electroencephalographic (EEG) and eye-tracking data 

recording that allowed us to compare epochs of pure text reading with epochs of hyperlink-

like selection processes in an online reading situation. Furthermore, this methodology 

allowed us to directly compare the two physiological load-measures EEG alpha frequency 

band power and pupil dilation. We observed increased load on executive functions during 

hyperlink-like selection processes on both measures in terms of decreased alpha frequency 

band power and increased pupil dilation. Surprisingly however, the two measures did not 

correlate. Two additional experiments were conducted that excluded potential perceptual, 

motor, or structural confounds. In sum, EEG alpha frequency band power and pupil dilation 

both turned out to be sensitive measures for increased load during hyperlink-like selection 

processes in online text reading. 
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Introduction 

Imagine you want to gather some information about a certain topic. You may start by 

reading an introductory article on 'Wikipedia' (http://en.wikipedia.org/), nowadays the 

standard online encyclopedia in the Internet. While reading the article you will be confronted 

with hyperlinks that lead to further web pages with additional information. These hyperlinks 

may be matching your target topic, or they may be only partly relevant or even irrelevant for 

your current information gathering process [1]. In all cases the hyperlinks will interrupt your 

current reading process and will call for additional decision processes, that is, you have to 

decide which links to follow or which links to ignore [2].  

Cognitively, these decision processes induced by hyperlinks can be expected to 

increase load on executive functions (EFs) that are already loaded during normal reading [3]. 

EFs can be defined as attention-related top-down control processes that are necessary to 

accomplish complex cognitive tasks that require adaptive behavior [4]. EFs are usually 

conceptualized to reside within the central-executive component of working memory [5,6]. 

Often differentiated core EFs are updating, shifting, and inhibition [7,8]. Although being 

differentiable, these core EFs have been shown to share a common underlying factor that has 

been attributed to processes of controlled attention [8]. The EF labeled 'updating' is generally 

defined to incorporate core processes of working memory (WM) functioning, namely the 

updating, monitoring, and manipulation of WM representations. The EF 'shifting' is defined 

by processes of shifting between multiple tasks, operations, or mental sets. The EF labeled 

'inhibition' in a narrow sense refers to processes of response inhibition (e.g., in a Stroop task, 

cf. [8]), and more broadly defined refers to general processes of interference control or 

executive attention [9].  

Text reading and comprehension require a number of lower level cognitive processes 

like letter decoding and word recognition as well as higher level cognitive processes like 

language and discourse processes, and domain general processes such as WM and EFs [10–

12]. WM and EFs are especially required for the comprehension level of text reading [11,13]. 

According to the influential construction-integration model by Kintsch and colleagues 

[14,15], text comprehension consists of an iterative sequence of two steps that each refers to 

a specific level of mental representation. First, in the construction step, a mental model of the 
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propositions of the text (i.e, the textbase) is generated. This textbase that has been 

constructed purely text-driven is then integrated into a situation model, that is, a mental 

model of what the text is about [16]. The situation model comprises information from the text 

as well as inferences made based on the text and prior knowledge [17]. During reading, the 

situation model has to be continuously updated to integrate the new information [14].  

Generally, hyperlinks might affect both steps of the construction-integration cycle 

during reading. First, the construction step may be affected when hyperlinks interrupt the 

reading process and demand additional EFs like shifting and inhibition: Readers have to 

perform a task shift from purely reading to a decision on hyperlink selection. Additionally, 

inhibitory processes may be required to ignore irrelevant links and focus on relevant links. 

Second, when readers decide to follow a hyperlink the integration step might also be affected 

as the text of the following web page has to be integrated into the situation model [2,14]. 

Traditionally, hypertext research (for a review, see [2]), has studied the entire process of link 

selection and browsing through the subsequent web pages as a whole, without differentiating 

between load on EFs imposed by the hyperlink selection processes per se (i.e., affecting the 

construction step of text comprehension) and the load imposed on EFs through getting 

disoriented on the following web pages (i.e., affecting the integration step of text 

comprehension; [1,18–21]).  

In the present research we were explicitly interested in load on EFs imposed by link 

selection processes per se, without inducing additional load due to the retrieval of subsequent 

hypertext pages and possible additional effects of disorientation. While the load effects of 

hyperlinks have been stated by several authors (e.g., [22,23]), to the best of our knowledge 

only one study by Fitzsimmons, Weal, and Drieghe so far has explicitly addressed the 

influence of links on text reading without the additional effects of load induced by displaying 

the following hypertext pages [24].  

In this study (Experiment 2) by Fitzsimmons and colleagues [24] the authors 

compared reading of modified Wikipedia articles with texts that were either presented with 

hyperlinks (blue colored words) or without hyperlinks. Additionally the words chosen as 

hyperlinks were either high-frequent or low-frequent words. Participants were instructed to 

simply read through the texts. They had no possibility to actually select the hyperlinks (i.e., 
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to click on the links). During reading, eye-tracking data were recorded. The authors did not 

find an overall effect of disruption in the reading process due to the hyperlinks. Only low 

frequent words marked as hyperlinks led to longer fixation durations and a rereading of 

previous paragraphs. This was interpreted by the authors as indication that hyperlinks may 

highlight important information for the reader which might be especially of relevance in case 

of uncommon, difficult concepts. However, as participants in this study did not have to 

perform selection processes (by clicking on the hyperlinks), the potential influence of actual 

link selection processes on reading due to a possible increase in load on EFs remained 

unclear.  

Thus, in the current study we wanted to extend this line of hypertext reading research 

by focusing on the initial selection processes of words marked as hyperlinks. Specifically, we 

were interested in whether words marked as hyperlinks from which readers had to select 

appropriate ones, would induce additional load on EFs during the reading process due to the 

selection processes required. For this purpose we used pupil dilation and EEG alpha 

frequency band power as measures of load on EFs during reading in a task paradigm that 

allowed us to record and analyze these physiological measures in a natural reading situation. 

As will be outlined in the following, both measures, pupil dilation and EEG alpha frequency 

band power, have been shown to be sensitive for load on EFs when used in highly controlled, 

low-level tasks, such as working memory or attention tasks. However, only few studies have 

examined these load-measures in more unconstrained, natural task situations.  

Examining low-level tasks it has been shown that the eye pupil dilates if EFs are 

required, for example, due to demands on the EF 'updating' in an n-back task [25] or the EF 

'inhibition' in a Stroop task [26]. However, the eye pupil not only dilates due to specific 

demands on EFs but also more generally due to load on the cognitive processing system 

[27,28] as well as due to increased effort [29], or even changes in emotional or motivational 

states [30]. Recently, a direct connection between pupil dilation and the activity of the locus 

coeruleus in the brain that is central to the noradrenergic system has been proposed, based on 

the results of fMRI outcomes [31]. This indicates a close connection between pupil dilation 

and general states of arousal. Thus, pupil dilation may be seen as a rather overall load 

measure, including aspects of effort, motivation, arousal, and emotion [30,32–36]. 
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Depending on the environmental lighting condition, the size of the pupils varies between two 

to nine millimeters [32]. Changes in pupil diameter due to cognitive processing demands are 

rather small, normally less than one millimeter irrespective of the baseline pupil diameter. 

Nevertheless, this measure has been proven to be very reliable in low-level tasks [30].  

Only few studies have used pupil dilation in rather complex task materials such as 

unconstrained, free (hypertext) reading situations [37,38]. For example, Di Stasi and 

colleagues [38] recorded participants’ pupil diameter while they had to perform two shopping 

tasks on a commercial website, either a goal-oriented search task (find and buy a specific 

object) or an experience-oriented search task (freely browse through the websites and 

possibly buy objects of own choice). In both task conditions an initial two minutes free 

exploration of the website without buying objects served as baseline. The authors found that 

in both task conditions the eye pupils significantly dilated from baseline when participants 

started one of the tasks. However, in addition, subjective rating scores revealed that the goal-

oriented search task was experienced as being more difficult as the browsing task. This 

subjective difference in difficulty between tasks was not reflected in pupillary results. To 

conclude, these findings indicate that the sensitivity of pupil dilation as a measure of load in 

complex task settings is limited. Therefore, part of the research question of the present 

research was to examine the general sensitivity of pupil dilation as a measure of load on EFs 

in online reading and hyperlink selection. 

EEG alpha frequency band power reflects the strength of EEG oscillatory activity and 

has been traditionally defined as the frequency range between eight to 13 Hz [39]. For 

increased demands on cognitive processing, for example, due to load on the EF 'updating' in 

an n-back task [40] or due to load on the EF 'inhibition' in a Stroop task [41], oscillatory 

activity has been observed to desynchronize. This event-related desynchronization (ERD) 

due to cognitive processing load during task performance results in decreased alpha 

frequency band power as compared to the frequency band power of a baseline interval [42]. 

The alpha ERD is commonly most pronounced over parietal electrodes [43], but it can also 

show certain effects of lateralization depending on the task material used (e.g., a left-

lateralization for linguistic task material [44]). A synchronization of oscillatory activity in the 

alpha frequency band range (i.e., an increase in alpha frequency band power) might either 
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reflect the activity of a cortical idling network [45], or, as proposed more recently, the active 

suppression of those brain networks not required for task performance or of those that are 

potentially interfering with task-relevant ones [46,47]. The alpha ERD has been associated 

with processes of attention and semantic memory [48,49]) and generally seems to reflect 

cognitive processing demands when WM or EFs are demanded ([40,41]). Thus, alpha 

frequency band power might be particularly suited to capture cognitive processes associated 

with link selection as described above.  

EEG measures have quite recently been started to be applied in the context of 

unconstraint ('real-world') text reading, mostly using eye fixation-related potentials [50–53]. 

We sought to extend this line of research by focusing on EEG alpha frequency band power 

and the use of hypertext material as task domain. Only few studies report EEG alpha 

frequency band power as measures of load in rather complex, free reading situations (e.g., 

[54,55]; see [56] for a review in the context of hypermedia research). For example, 

Antonenko and Niederhauser [54] used the EEG alpha frequency band power to assess the 

impact of leads (i.e., short previews or descriptions of succeeding websites) on cognitive load 

during hyperlink selection. As expected, they observed a decrease in alpha frequency band 

power during link selection (i.e., an alpha ERD). However, this alpha ERD was reduced for 

those hyperlinks that provided a preview of some initial sentences of the following 

hyperlinked page via mouse-over. This was interpreted by the authors to reflect reduced 

cognitive load during the link selection process when leads are given as compared to normal 

hyperlinks without leads. However, as the task conditions in this study (leads versus no-

leads) also varied considerably with regard to perceptual differences, the observed effects 

might simply go back to perceptual confounds and not to different load-situations per se (for 

a comprehensive overview of this critical issue in most studies using complex task materials 

see [57]). By carefully controlling for perceptual confounds, our study was hypothesized to 

tap deeper into purely load-related effects of link selection processes during text reading.  

To sum up, in the present study we sought to further address and extend two currently 

emerging research directions: (a) a more in-depth analysis of demands on EFs in online 

reading and hyperlink selection, and (b) the combined recording and analysis of EEG data 

and pupil dilation data in a complex reading task. To the best of our knowledge a direct 



128 2.3 Study 3: Pupil dilation and EEG alpha frequency band power for link selection 

 

comparison of pupil dilation data and EEG alpha frequency band power data as measures of 

load on EFs has not been conducted before, neither in highly constrained (e.g., working 

memory) task settings, nor in rather unconstrained, free reading task settings.  

As we focused on the influence of initial link selection processes during reading (i.e., 

during the construction step of text comprehension as described above) without hampering 

reading comprehension due to following web pages (i.e., the integration step of reading 

comprehension), we created a rather artificial hypertext reading situation that consisted of 

one text presented on the screen with words marked as hyperlinks but without any hyperlink 

functionality (i.e., no further pages could be reached). Furthermore, we simulated the link 

selection processes by instructing the participants to only click on context-matching words 

that were designed as links (see Method section for a detailed description of the task 

material). Although we expected our research account to tap into comparable cognitive 

effects of link selection during reading that might occur in genuine hypertext reading 

situations, one should keep in mind that we used a rather artificial hypertext-reading situation 

with simulated link-selection processes (see the General Discussion section for addressing 

the validity of our research account).  

We hypothesized to observe increased load on EFs during those link selection 

processes (test condition) in terms of increased pupil dilation (Hypothesis 1a) and decreased 

alpha frequency band power (Hypothesis 1b) when comparing this test condition to a 

baseline condition within the same text but consisting of pure text reading. Additionally, we 

expected that the change of pupil dilation and the change of alpha frequency band power 

between baseline and test condition would be correlated. As the pupil dilation was expected 

to increase for increased task demands and the alpha frequency band power was expected to 

decrease for increased task demands (i.e., an increased alpha ERD) we expected to observe a 

negative correlation between the two measures (i.e., a larger increase in pupil dilation should 

be accompanied by larger, yet negatively signed, alpha ERD; Hypothesis 2). 

In the following sections we will describe three experiments that were run to address 

these research questions and to carefully rule out possible alternative explanations due to 

confounding factors. Experiment 1 most closely simulated a hypertext reading and link 

selection situation. Experiment 2 and Experiment 3 ruled out possible alternative 
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explanations of the observed results due to perceptual (i.e., word color), motor (i.e., mouse-

click), or structural (i.e., sentence difficulty) confounds. 

Experiment 1 

In the present research we were interested in a specific aspect of load-induction due to 

the availability of hyperlinks, namely the load on EFs that is induced when text reading is 

interrupted by words marked as hyperlinks and selection processes have to take place. In 

Experiment 1 we used a methodology of combined recording and analysis of eye-tracking 

and EEG data. This methodology allowed us to directly compare the outcomes of two 

physiological load-measures, pupil dilation and EEG alpha frequency band power, during 

natural reading of one hypertext page. Two task conditions (baseline and test condition) were 

implemented within the text. In Experiment 1, parts of the text requiring pure text reading 

served as baseline condition. Parts of the text requiring additional hyperlink-like selection 

processes served as test condition. 

Method 

Participants. Twenty-three university students (mean age = 24.83 years, SD = 3.20, 

13 females) participated in the study and received a payment of 8 €/h. They were all native 

speakers of German, right-handed, and reported no neurological disorders. All participants 

had normal or corrected-to-normal visual acuity. The study was approved by the local ethic 

committee of the Knowledge Media Research Center Tuebingen. Participants gave their 

written informed consent at the beginning of the study. None of the participants was familiar 

beforehand with the task materials we used. 

Materials and procedure. Task materials consisted of a text taken out of a German 

reading-comprehension task (the LGVT, [58]). The text was of standardized difficulty, 

suitable for testing reading abilities of German high-school students and thus neither over- 

nor undertaxing a university student sample. The text was 1727 words long. It was presented 

as one hypertext page in a normal web browser (Microsoft Internet Explorer). Font size was 

35 points; spacing was set to 24 points. Font type was Times New Roman, font color black, 
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and background color light gray (see Fig 1 for an exemplary part of the stimulus material 

used in Experiment 1).  

 

Fig. 1 Exemplary extract of the task materials used in Experiment 1. 

Participants were instructed to read through the text quickly yet attentive. As in the 

standard LGVT task instruction, participants were informed that they would have only four 

minutes for text reading. We slightly deceived our participants about the actual time 

constraint: Although we announced a time constraint of four minutes, we let participants read 

through the whole text in their individual reading speed until they reached the final sentence. 

By announcing a hypothetical time constraint we wanted to ensure a concentrated, linear text 

reading process without losing data for the later analysis. A visual inspection of the eye 

tracking data afterwards confirmed the generally linear reading process. Only when areas of 

the text were reached that contained the links, participants interrupted shortly the linear 

reading pattern and some back and forth jumps to nearby words could be observed. A rather 

shallow text processing in the form of text skimming (e.g., [59]) due to the announced rather 

short time constraint of four minutes did not occur. This can also be inferred from the rather 

high reading comprehension scores obtained (see Tables 1 and 2).  

At each of 23 different positions in the text three words were set in brackets. One out 

of the three words matched the context, the two others were distractors. For example, the 

exemplary text part given in Fig 1 describes the bad food supply situation of the population 

during World War II, and mentions a certain kind of bad black bread. The sentence in the test 

condition states: "The worst thing about this bread was that the food rations were too [big, 
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black, small]". Participants had to click on the context-matching word (i.e., "small" in this 

case). Thus, they had to perform decision and selection processes that we hypothesized to be 

comparable to initial hyperlink-selection processes. The words in brackets were blue colored 

to simulate hyperlinks. To provide a visual feedback the blue color changed to red once a 

link was clicked on. There were no other effects of clicking. The 23 decision items of 

simulated hyperlinks were in 12 cases nouns, in 7 cases adjectives, in 2 cases verbs, and in 2 

cases pronouns. The use of different word forms might resemble the distribution of actual 

hyperlinks for example in a Wikipedia article where also not only nouns serve as hyperlinks. 

Furthermore, comparable to real hyperlinks, the 23 decision items required semantic 

processing. None of the correct items could be inferred by syntactical or morphological 

processing.  

The text out of a German reading comprehension task we used may be regarded as a 

rather artificial kind of a hypertext page. However, we favored the use of a carefully 

designed text of standardized difficulty like the LGVT text as task material for two reasons: 

Firstly, the controlled text ensured that participants' reading comprehension was challenged 

but not over-taxed, that is, it ensured that the participants were cognitively neither over- nor 

under-loaded during reading (which otherwise might have confounded our physiological 

measures). Secondly, the LGVT text provided us with two behavioral measures, reading 

speed and reading comprehension scores, which we could use to check whether participants 

had attentively read the text. 

The experiment started after the EEG preparation and the calibration of the eye-

tracker. Written task instructions were presented as the first page on the screen. Participants 

reached the LGVT page via a hyperlink at the end of the task instructions. The total duration 

of the experiment including the technical preparation procedures was about one hour.  

Apparatus. The experiment was run in a quiet room that was dimly lit. Participants 

sat in a comfortable chair in front of a 22-inch Dell monitor (1680x1050 pixels screen 

resolution) while their EEG and eye-tracking data were recorded. Eye-tracking data were 

recorded using a 250 Hz SMI (SensoMotoric Instruments) infrared remote eye-tracking 

system that was positioned below the monitor. A chin rest was used to avoid head 

movements during data recording and to guarantee a fixed distance of about 70 cm between 
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the eyes and the eye-tracking device. The eye-tracking data were recorded at a sampling rate 

of 250 Hz (SMI iView X 2.7.13). The eye-tracker was calibrated using the built-in 

calibration routines (SMI Experiment Center, 9-point calibration) before the first page 

(written task instructions) appeared on the screen. EEG data were recorded from 27 electrode 

sites (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, 

CP2, CP6, P7, P3, Pz, P4, P8, O1, O2) positioned according to the international 10/20 system 

[60]. The right mastoid served as reference during recording. Ground electrode was 

positioned at AFz. Three additional electrodes were placed around the eyes for recording of 

the electro-occulogram (EOG). EEG data were recorded (PyCorder 1.0.2) at 500 Hz 

sampling rate (ActiCHamp, Brainproducts, Inc.) using active electrodes (ActiCap, 

Brainproducts, Inc.). Impedances were kept below 5 kOhm.  

Data preprocessing and analysis. During preprocessing, before synchronization 

with the EEG data, the eye-tracking data were upsampled to 500 Hz to match the sampling 

rate of the EEG data. Eye-tracking data and EEG data were preprocessed and synchronized 

using customized Matlab scripts (Matlab 2012b, MathWorks, Inc.; EEGLAB v. 11.0.5.4b, 

[61], with EYE-EEG plugin, [51]). Eye blink artifacts (missing data points) in the eye-

tracking data were corrected using linear interpolation. The continuous EEG data were 

filtered (low-pass 40 Hz, high-pass 0.5 Hz, linear finite impulse response filters). EOG 

artifacts were corrected using independent component analysis (ICA) decompositions. 

Independent components (ICs) identified as EOG-ICs by visual inspection were rejected. 

EEG data were re-referenced to average reference. 

The combined continuous EEG and eye-tracking data were split in epochs of two 

seconds length for the two task conditions of interest, baseline and test condition. Only first 

visits of these epochs were considered for analyses. However, a visual inspection of the eye-

tracking data showed a rather linear text reading process with no severe view jumps (e.g., 

regressions to previously read sentence lines). For the baseline condition (pure text reading) 

the epochs were defined through areas of interest (AOIs) positioned around text lines that lay 

maximally in between parts of the text where link selection took place. On average 2.9 text 

lines (range: 1 to 7) were between the test and the baseline conditions. Post-hoc visual 

inspection of the eye-tracking data ensured that even in cases where the two conditions were 
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separated by only one line, the two conditions were not confounded by each other. For the 

test condition (link selection) the epochs were defined as ending 500 ms before the mouse 

click to avoid motor artifacts in the EEG data [62] and to minimize the motor differences 

between baseline and test condition. In total, 46 data epochs were created, 23 epochs for each 

task condition. An automatic artifact removal was performed with respect to the EEG data: 

Epochs that exceeded ±100 µV were excluded from further analyses [63]. By using this 

criterion, epochs containing severe artifacts (e.g., muscle artifacts) were excluded. No further 

artifact removal or correction was performed on the EEG data.  

For the eye-tracking data, the mean pupil size was calculated by averaging the left 

and right pupil data. These mean pupil data were further averaged for each of the 2 s epochs 

and then averaged over all epochs for each task condition. For the EEG data, EEG frequency 

band power was calculated using fast-fourier transforms (FFTs) for the entire epoch lengths 

in the alpha frequency band spectrum (8 Hz to 13 Hz). The alpha frequency band power was 

then averaged individually over all epochs for each task condition. 

Results  

Behavioral data. Reading comprehension scores were calculated according to the 

LGVT manual: For the initial four minutes of text reading each correctly selected word 

counted as +2 points, each wrongly selected word as -1 point. Points were summed up for 

each participant. Total reading time was defined as the entire time participants read through 

the LGVT page until they reached the final sentence. Reading comprehension score and total 

reading time are given in Table 1. These measures show that participants attentively read the 

text, yet not being cognitively overloaded (i.e., participants' reading comprehension scores 

are in the upper third of the common LGVT outcomes, a result quite typical for university 

students).  

Physiological data. For each physiological measure (EEG alpha frequency band 

power at electrode Pz and pupil size), we computed separate one-factorial repeated measures 

ANOVAs (baseline condition vs. test condition). The results for the physiological variables 

are shown in Fig. 2. We restricted this analysis to the parietal electrode Pz as alpha frequency 

band power effects are generally reported to be most pronounced at parietal electrodes with 
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Pz as representative (e.g., [64,65]). To further explore topographical differences of the alpha 

frequency band power effects as indicated by the topoplot in Fig 3, an additional 3-way 

repeated-measures ANOVA was conducted with the factors hemisphere (left / right), 

electrode site (frontal / parietal) and task condition (baseline / test). For post-hoc pairwise 

comparisons all p-values were Bonferroni corrected for multiple comparisons. Level of 

significance was set at α = .05 for all analyses and partial eta-square (ηp2) is reported as a 

measure of effect size.  

 

Fig. 2 Mean alpha (8 – 13 Hz) frequency band power at electrode Pz and mean pupil dilation of Experiment 1. 

Note. *** indicate p < .001, black error bars indicate +1 standard error of the mean. 

For the pupil dilation data we found a main effect of task condition, F(1, 22) = 21.85, 

p < .001, ηp
2 

= .50. In line with hypothesis 1a, pupil sizes in the test condition (M = 3.58 mm, 

SD = 0.32) were significantly larger as compared to pupil sizes in the baseline condition (M = 

3.51 mm, SD = 0.32). We also found a main effect of task condition for the alpha frequency 

band power at electrode Pz, F(1, 22) = 16.05, p = .001, ηp
2 

= .42. As expected by Hypothesis 

1b, the alpha frequency band power in the test condition (M = 6.58 µV
2
/Hz, SD = 2.16) was 

significantly lower as in the baseline condition (M = 7.96 µV
2
/Hz, SD = 2.84).  

The 3-way repeated-measures ANOVA strengthened these results (cf. the topoplot in 

Fig 3 showing the percent change in alpha frequency band power between baseline and test 

condition for all electrodes plotted over the scalp). We observed a main effect of hemisphere, 

F(1, 22) = 11.32, p = .003, ηp
2
 = .34, with electrodes over the left hemisphere generally 

showing lower alpha frequency band power values (left: 7.94 µV
2
/Hz vs. right: 8.40 

µV
2
/Hz), and a main effect of task condition, F(1, 22) = 10.13, p = .004, ηp

2
 = .32, with the 
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test condition showing significantly lower alpha frequency band power values as compared 

to the baseline condition (test: 7.82 µV
2
/Hz vs. baseline: 8.40 µV

2
/Hz).  

 

Fig. 3 Topoplot of the percentual changes of alpha (8 – 13 Hz) frequency band power between baseline 

condition and test condition for Experiment 1. Percentual frequency band power changes (i.e., the event-related 

desynchronization/synchronization, ERD/ERS%) were calculated after the formula given in [42]. 

However, these main effects were qualified by a significant interaction between task 

condition and hemisphere, F(1, 22) = 20.61, p < .001, ηp
2
 = .48. This interaction was due to 

the fact that the alpha frequency band power decreased more strongly in the left than in the 

right hemisphere between baseline and test condition (left: -.88 µV
2
/Hz, p = .001, right: -.52 

µV
2
/Hz, p = .028) and particularly due to the fact that only in the test condition alpha 

frequency band power between left and right hemisphere differed (test condition: -.64 

µV
2
/Hz, p < .001, baseline condition: -.29 µV

2
/Hz, p = .058). These findings are in line with 

other studies using linguistic task material that observed left lateralized effects, as will be 

discussed in the general discussion section of this paper. 

Additionally we observed a significant interaction between task condition and 

electrode site, F(1, 22) = 15.41, p = .001, ηp
2
 = .41. This interaction resulted from a larger 

decrease of alpha frequency band power due to test condition at parietal-occipital electrode 

sites as compared to baseline condition (parietal-occipital: -.91 µV
2
/Hz, p < .001, frontal: -

.50 µV
2
/Hz, p = .047). These findings are in line with typically observed largest effect sizes 

of alpha frequency band power changes at parietal-occipital electrodes (e.g., [43]).  

Correlational data. As we were further interested in whether changes in pupil 

dilation and changes in EEG alpha frequency band power were measures of comparable 

sensitivity for changes in load on EFs due to the selection processes in the test condition as 
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compared to the baseline condition, we calculated the mean differences between test and 

baseline condition (i.e., test condition subtracted from baseline condition) for the mean pupil 

sizes and the mean alpha frequency band power at electrode Pz (cf., Table 1). We calculated 

Pearson's correlation coefficients (two-tailed) for these two physiological measures 

(difference values), as well as the two behavioral measures, that is, the LGVT reading 

comprehension score and the total reading time. Results of the correlational analyses are 

given in Table 1. Contrary to Hypothesis 2, we observed no significant correlation between 

the amount of change in alpha frequency band power and pupil dilation. Interestingly, 

however, there was a marginally significant negative correlation between participants’ LGVT 

reading comprehension score and the difference value of alpha frequency band power 

between baseline and test condition. Participants with a higher LGVT reading comprehension 

score showed a more pronounced decrease in alpha frequency band power (i.e., more 

negative difference values). Finally, in accordance with the typical outcomes of the LGVT, 

we additionally found a strong negative correlation between the LGVT reading 

comprehension scores and the total reading times of the text. Participants who showed higher 

reading comprehension scores were also faster in reading. 

 

Table 1 Pearsons' correlations coefficients (two-tailed) for the physiological measures (difference in alpha 

power [in µV
2
/Hz] and pupil size [in mm] between baseline and test condition) and the LGVT reading 

comprehension score and the total reading time [in minutes] of Experiment 1.  

Variable 1 2 3 M SD N 

1. ∆ alpha power        -1.38 1.65 23 

2. ∆ pupil size -.16     0.07 0.07 23 

3. reading comprehension .-41
+
 .16   21.17 5.62 23 

4. total reading time .16 -.11 -.80*** 8.43 1.69 23 
 

Note.
+
 p < .10, * p < .05, *** p < .001. 

 

Discussion 

To sum up, in Experiment 1 both physiological measures showed the expected 

outcomes: When comparing parts of the text that required purely reading (baseline condition) 

with parts of the text where participants had to interrupt reading and to perform hyperlink-
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like selection processes (test condition), we observed a significant increase in pupil size as 

well as a significant decrease of alpha frequency band power. These results are in accordance 

with our above stated Hypotheses 1a and 1b that the hyperlink-like selection processes in the 

test condition imposed additional load on EFs as compared to the pure reading situation in 

the baseline condition. 

However, there are two possible alternative explanations that may account for the 

observed results. As will be outlined in the following the results might go back to motor or 

perceptual differences between baseline and test condition and not to cognitive processes per 

se. First, participants' motor activity differed between baseline an test condition. In the 

baseline condition, participants were reading only whereas in the test condition they had to 

perform a mouse-click on a word. Although we used a data epoch for data analysis that 

ended 500 ms before the mouse-click, we cannot fully rule out the possibility that differences 

in motor activity (or motor preparation processes) have confounded our results and thus serve 

as an alternative explanation. Second, in the baseline condition all words were black colored 

whereas in the test condition the words that could be selected were blue-colored and changed 

their color to red after participants clicked on them. These perceptual differences could also 

be responsible for the changes in pupil dilation. To rule out these possible effects of the 

perceptual and motor confounds in Experiment 1, we conducted a second experiment with 

slightly modified task materials.  

Moreover, contrary to Hypothesis 2, we observed no significant correlation between 

the amount of change in alpha frequency band power and pupil dilation. This was unexpected 

as separate ANOVAs of pupil dilation data and EEG alpha frequency band power data both 

showed the expected outcomes, when comparing the two task conditions (baseline and test 

condition). Therefore we would have expected to find a clear negative correlation between 

the difference values of the two physiological measures, as the ANOVAs had shown that the 

pupil size increased significantly from baseline to test condition whereas the alpha frequency 

band power decreased significantly from baseline to test condition. One potential reason for 

this unexpected outcome might be the potential perceptual and motor confounds mentioned 

above, which might have affected the physiological variables differently. For example, one 

could hypothesize that the different color of the words in the test condition could affect pupil 
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sizes but not alpha frequency band power, thus masking the expected correlation between 

these two measures. 

Finally, we found a trend for a negative correlation between the LGVT reading 

comprehension score and the difference value of alpha frequency band power between 

baseline and test condition. Participants with a higher LGVT reading comprehension score 

showed a more pronounced decrease in alpha frequency band power (i.e., more negative 

difference values). This might underline the character of alpha frequency band power as a 

valid measure of essential cognitive processes. If participants were cognitively more 

engaged, they showed a higher reading comprehension score. In contrast, no such correlation 

was shown for pupil dilation. 

Experiment 2 

In Experiment 2 we modified the baseline and test condition of Experiment 1 to avoid 

possible perceptual-motor differences between them that might have confounded our results 

in Experiment 1. Thus, in Experiment 2 participants had to perform a mouse-click on a word 

in the baseline condition in a comparable manner as in the test condition. Furthermore, we 

changed the color of the words in the test condition to black and removed the color-change to 

red of words that have been clicked on.  

Method 

Participants. Twenty additional university students (mean age = 24.90, SD = 3.23, 9 

females) participated in Experiment 2. The general subject pool was the same as in 

Experiment 1 and the same constraints, incentives, and formal procedures were applied. 

None of the participants had attended Experiment 1 or was familiar with the LGVT task. One 

participant had to be excluded from data analysis due to technical problems during data 

acquisition and partly missing data. 

Materials and procedure. Task material and presentation was the same as described 

for Experiment 1 with the following modifications aiming at reducing any motor or 

perceptual differences between baseline condition and test condition as far as possible: We 

modified the baseline condition insofar that participants had to click on a single word set in 
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brackets in the baseline condition (instead of purely text reading as in Experiment 1). 

Furthermore, to avoid any perceptual differences between baseline condition and test 

condition, the three words in brackets in the test condition were perceptually equalized to the 

entire text (i.e., black color, no color change when mouse-click was performed). In doing so, 

we assured in Experiment 2 that any observed difference between test condition and baseline 

condition should only be due to additional selection processes that were hypothesized to load 

more on EFs in the test condition as compared to the baseline condition. See Fig 4 for an 

exemplary part of the task material. As an additional minor modification, we slightly 

increased the spacing between sentence lines to 28.8 points. This allowed us to more easily 

define areas of interest that included single sentence lines. 

 

Fig. 4 Exemplary extract of the task materials used in Experiment 2. 

Data preprocessing and analysis. Data preprocessing and analysis steps were 

identical to Experiment 1 with the only difference that the epoch alignment in the baseline 

condition in Experiment 2 was also related to the (now available) mouse-click. This equals 

the epoch alignment of the test condition (i.e., the 2 s epochs used for data averaging and 

analysis ended 500 ms before the mouse-click in both task conditions) and minimizes 

possible non-cognitive differences between baseline and test condition. 

Results  

Behavioral data. The average LGVT reading comprehension score and the average 

total reading time are given in Table 2. These behavioral variables were comparable to 
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Experiment 1, again indicating an attentive yet non-overloaded reading process of the 

participants. 

 

Physiological data. As in Experiment 1, we found a main effect of task condition for 

the pupil dilation data, F(1, 18) = 32.61, p < .001, ηp
2 

= .64. Pupil sizes in the test condition 

(M = 3.64 mm, SD = 0.36) were significantly larger as compared to pupil sizes in the 

baseline condition (M = 3.57 mm, SD = 0.34), confirming Hypothesis 1a. We also found a 

main effect of task condition for the alpha frequency band power, F(1, 18) = 15.00, p = .001, 

ηp
2 

= .45. As expected by Hypothesis 1b, the alpha frequency band power in the test 

condition (M = 8.05 µV
2
/Hz, SD = 2.03) was significantly lower as in the baseline condition 

(M = 8.87 µV
2
/Hz, SD = 9.03). The outcomes of these measures can be seen in Fig 5. 

 

Fig. 5 Mean alpha (8 – 13 Hz) frequency band power at electrode Pz and mean pupil dilation of Experiment 2. 

Note. *** indicate p < .001, black error bars indicate +1 standard error of the mean. 

The 3-way repeated-measures ANOVA revealed a main effect of hemisphere, F(1, 

18) = 8.55, p = .009, ηp
2
 = .32, and a main effect of electrode site, F(1, 18) = 95.68, p < .001, 

ηp
2
 = .84. However there was also a significant interaction between hemisphere and electrode 

site, F(1, 18) = 20.99, p < .001, ηp
2
 = .54. This interaction was due to the fact that only for 

parietal-occipital electrode sites alpha frequency band power was in general significantly 

smaller in the left hemisphere than in the right hemisphere (frontal-left: 7.08 µV
2
/Hz vs. 

frontal-right: 6.89 µV
2
/Hz, p = .09; parietal-left: 8.42 µV

2
/Hz vs. parietal-right: 9.23 µV

2
/Hz, 

p < .001). This hemispheric difference did not occur at frontal electrode sites. The significant 

main effect of electrode site and the interaction between hemisphere and electrode site were 

not present in Experiment 1. We do not have a concise explanation of this difference between 
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Experiment 1 and Experiment 2. However, and more importantly, comparable to Experiment 

1 we found an interaction between task condition and hemisphere, F(1, 18) = 8.60, p = .009, 

ηp
2
 = .32. Although all post-hoc pairwise comparisons were significant (p < .001), 

numerically, alpha frequency band changes for test condition in comparison with baseline 

condition were larger in the left than in the right hemisphere (left: -.82 µV
2
/Hz, p < .001, 

right: -.65 µV
2
/Hz, p = .001), which mirrors the results of Experiment 1. Additionally 

hemispheric differences were larger in the test condition as compared to the baseline 

condition (test: -.40 µV
2
/Hz, p = .006, baseline: -.22 µV

2
/Hz, p = .024). This again indicates, 

in line with the literature, that the strongest alpha frequency band effects occur at parietal-

occipital electrodes (e.g., Gevins et al., 1997) and that left-lateralized effects may be typical 

for linguistic task material. Fig 6 visualizes the topographic distribution of the alpha 

frequency band change between baseline and test condition on the scalp.  

 

Fig. 6 Topoplot of the percentual changes of alpha (8 – 13 Hz) frequency band power between baseline 

condition and test condition for Experiment 2. Percentual frequency band power changes (i.e., the event-related 

desynchronization/synchronization, ERD/ERS%) were calculated after the formula given in [42].  

Correlational data. In line with Experiment 1 we found no significant correlations 

between the difference values of both physiological measures (i.e., the difference value of 

mean pupil size between baseline and test condition and the difference value of mean alpha 

frequency band power between baseline and test condition, see Table 2). Also in line with the 

results of Experiment 1, we found a significant negative correlation between the LGVT 

reading comprehension score and the difference value of the alpha frequency band power 

between baseline and test condition. Furthermore, there was a trend for a positive correlation 

between total reading time and the alpha power difference value. Finally, the observed 
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negative correlation between LGVT reading comprehension scores and total reading times 

also resemble the results of Experiment 1 (cf. Tables 1 and 2). 

 

Table 2 Pearsons' correlations coefficients (two-tailed) for the physiological measures (difference in alpha 

power [in µV
2
/Hz] and pupil size [in mm] between baseline and test condition) and the LGVT reading 

comprehension score and the total reading time [in minutes] of Experiment 2.  

Variable 1 2 3 M SD N 

1. ∆ alpha power       -0.98 1.10 19 

2. ∆ pupil size -.14     0.07 0.05 19 

3. reading comprehension -.50* -.23   19.84 5.09 19 

4. total reading time .43
+
 .08 -.84*** 8.52 1.90 19 

 

Note.
+
 p < .10, * p < .05, *** p < .001. 

Discussion  

To sum up, the outcomes of the physiological measures of Experiment 2 were 

comparable to the results of Experiment 1. The results strongly support the hypothesis that 

selection processes in the test condition led to additional load on EFs. This increased load 

was measurable by increased pupil dilation data (Hypothesis 1a) as well as decreased EEG 

alpha frequency band power (Hypothesis 1b). As we carefully controlled the task material in 

Experiment 2 for any motor or perceptual confounds, we can rule out the alternative 

explanation of our results raised in Experiment 1 based on possible perceptual-motor 

confounds. However, apart from perceptual-motor confounds a third alternative explanation 

might be formulated: The parts of the text included in the test condition might per se have 

happened to be more difficult as compared to the parts of the text included in the baseline 

condition. To also rule out this alternative explanation, we conducted Experiment 3.  

Furthermore, in line with Experiment 1 we found no significant correlations between 

the difference values of the two physiological measures (i.e., the difference value of mean 

pupil size between baseline and test condition and the difference value of mean alpha 

frequency band power between baseline and test condition). As we carefully controlled 

baseline and test condition for perceptual-motor confounds in Experiment 2, we may rule out 
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any explanation of this non-correlation due to perceptual-motor influences that affected one 

measure but not the other. We will discuss this unexpected outcome in the general discussion 

section of this paper.  

Finally, also in line with the results of Experiment 1, where we observed a trend for a 

negative correlation between the LGVT reading comprehension score and the difference 

value of the alpha frequency band power between baseline and test condition, in Experiment 

2 we found a significant negative correlation between these two variables. In Experiment 2 

this negative correlation was furthermore accompanied by a trend for a positive correlation 

between total reading time and the alpha power difference value. As hypothesized above, 

these results may be interpreted to underline the character of alpha frequency band power as 

reflecting essential cognitive processes. The more successfully participants performed the 

task (as indicated by higher LGVT reading comprehension scores and lower total reading 

times) the more pronounced was the difference of the oscillatory alpha frequency band 

activity between baseline and test condition (i.e., the more negative were the difference 

values between baseline and test condition). 

Experiment 3 

Experiment 3 was conducted to exclude potential differences between baseline and 

test condition due to differences in difficulty of the text parts used in these two conditions. 

Therefore, we modified the test condition of Experiment 2 to resemble the task of the 

baseline condition (i.e., we eliminated the word selection processes): In the test condition (as 

well as in the baseline condition) participants had to click on one single word in brackets (cf. 

Fig 7 for an exemplary part of the task material used in Experiment 3). We expected the 

textual difficulty in both conditions to be equal, that is, we expected to observe no 

differences between baseline and test condition in Experiment 3. As pupil dilation data and 

EEG alpha frequency band power data had been showing similar load-related effects, for 

reasons of time-efficiency we recorded and analyzed only pupil dilation data in Experiment 

3. 
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Method 

Participants. Twenty-four additional university students (mean age = 23.38, SD = 

2.55, 16 females) participated in Experiment 3. The general subject pool was the same as in 

Experiment 1 and Experiment 2 and the same constraints, incentives, and formal procedures 

were applied. None of the participants had attended Experiment 1 or Experiment 2 or was 

familiar with the LGVT task.  

Materials and procedure. Task material and presentation was the same as described 

for Experiment 2 with the following modification: Instead of presenting three words in 

brackets in the test condition only the one context-matching word was presented. Thus the 

task in the test condition was identical to the task in the baseline condition (see Fig. 7 for an 

exemplary extract of the task materials used). In both conditions participants had to simply 

click with the mouse cursor on the word in brackets. The baseline condition was identical to 

Experiment 2.  

 

Fig. 7 Exemplary extract of the task materials used in Experiment 3. 

Data preprocessing and analysis. Data preprocessing and data analysis steps were 

identical to Experiment 2 for the eye-tracking data. Data epochs of 2 seconds length ending 

500 ms before the mouse-clicks in both task conditions were used for data analysis. 

Results and Discussion 

Behavioral data. Participants had a total mean reading time of about 7.24 minutes 

(SD = 1.67) which was slightly shorter than in Experiment 1 and Experiment 2 (cf. Table 1 
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and 2). This result is not surprising due to the fact that participants' task in Experiment 3 was 

less complex as in the two previous experiments. Still, the overall reading time was not 

severely different from the two other experiments indicating that the participants were 

thoroughly reading the text, despite the 'easy' task.  

Physiological data. We conducted a one-factorial repeated-measure ANOVA for the 

pupil size data of the two task conditions (baseline versus test condition). As expected we 

found no significant difference between pupil sizes in the baseline condition (M = 3.66 mm, 

SD = 0.35) and the test condition (M = 3.67 mm, SD = 0.36), F(1, 23) = .04, p = .85. In line 

with our expectations, this indicates that the text was of comparable difficulty in the baseline 

and in the test condition. The results for the pupil dilation are shown in Fig. 8. To conclude, 

these results can rule out that the observed findings of Experiment 1 and Experiment 2 were 

based on potentially confounding perceptual (i.e., word color), motor (i.e., mouse-click) or 

structural (i.e., sentence difficulty) differences between baseline and test condition. 

 

Fig. 8 Mean pupil dilation of Experiment 3. Note. black error bars indicate +1 standard error of the mean. 

General discussion 

In the present research we aimed at examining increased load on EFs during 

hyperlink-like selection processes in online text reading. In particular, we were interested in 

effects of initial link-selection processes without inducing additional load due to subsequent 

hypertext pages. We used a methodology of combined EEG and eye-tracking data recording 

and analysis that allowed us to compare two physiological load-measures, namely pupil 

dilation and EEG alpha frequency band power in the online hypertext-like reading situation.  
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As expected, both physiological measures were sensitive to increased load on EFs 

during hyperlink-like selection processes, confirming Hypotheses 1a and 1b. When 

comparing baseline and test condition, both in Epxeriment 1 and in Experiment 2 we found 

significantly increased pupil dilation as well as decreased alpha frequency band power for the 

test condition. These results are in line with studies that manipulated load on EFs in highly 

controlled working memory or attention tasks and that found increased pupil dilation and 

decreased alpha frequency band power for increased load conditions (cf., [26,43]). Thus, our 

study indicates that both measures, pupil dilation and EEG alpha frequency band power, 

seem to be sufficiently sensitive to also detect changes in load on EFs in an online reading 

situation. 

Experiment 1 most closely simulated a hypertext-reading and hyperlink-selection 

situation. Participants read a text (baseline condition) and at different parts of the text they 

had to perform hyperlink-like selection processes (test condition). Experiment 2 and 

Experiment 3 ruled out possible alternative explanations of the observed results that were 

based on potentially confounding perceptual (i.e., word color), motor (i.e., mouse-click), or 

structural (i.e., sentence difficulty) differences between baseline and test condition. Thus, we 

can conclude that the observed differences we consistently found between baseline and test 

condition in Experiment 1 and Experiment 2 indeed reflect changes in the load-situation that 

may be related to increased demands on EFs. These findings extend traditional hypertext 

research that in general does not distinguish between the load imposed by hyperlink-selection 

processes per se (as examined in our study) and the load imposed by the additional 

information of subsequent web pages or the potentially experienced disorientation due to 

non-linear navigation processes between different pages in a hypertext [2]. Thus, our results 

can be seen as an empirical validation of the often implicitly made assumption in hypertext 

research that the presence of links per se might increase the load-situation and therefore 

might hamper text reading and comprehension (e.g., see [2]).  

 As the links we used did not lead to any subsequent text page, in our study mainly 

the construction step of text comprehension might have been affected (i.e., the creation of a 

textbase). The updating of a situation model of a text (i.e., the integration step of reading 

comprehension) in contrast might especially be influenced by additional information of 
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subsequent web pages [2,14]. However, although this reasoning might sound plausible, we 

did not test for effects on reading comprehension by using text comprehension questions 

afterwards that might have allowed disentangling text comprehension with respect to 

propositions or inferences (i.e., textbase or situation model construction). Clearly, in future 

studies the influence of link-selection processes on reading comprehension should be 

assessed as well.  

Some further limitations of the present research have to be addressed. First, as 

described in the introduction, conceptually it may be justified to assume that link selection 

during text reading would increase load on EFs. The EF shifting may be loaded because of 

the task-set shift from purely reading to selection and decision processes when links are 

encountered. In addition, the EF inhibition may be required when irrelevant links have to be 

ignored. However, we did not specifically manipulate load on EFs during link selection. In 

future research such specific manipulation of EFs during link selection might, for example, 

be done by presenting links of different relevance for a certain information gathering goal. 

Depending on the relevance of the links, the EF inhibition might be differently loaded, as for 

example clearly irrelevant links might be easier to ignore than links that are of mixed 

relevance (see [1] as an exemplary study that manipulated the relevance of links). The 

research methodology of combined EEG and eye-tracking data analysis might be valuably 

used in future studies implementing such a fine-grained manipulation of EFs. Yet, our 

research can serve as an initial step to advance hypertext research by showing increased 

cognitive demands during initial link-selection processes that might conceptually be linked to 

load on EFs and that can be assessed by the physiological measures pupil dilation and EEG 

alpha frequency band power.  

Another limitation of the current research to be addressed is the ecological validity of 

our research paradigm that might be questioned. This is first because we used non-functional 

links (i.e., links that did not lead to a subsequent web page), second because we presented 

each time three links in direct sequence, which might be rather uncommon for hypertext 

reading (but which may be the typical situation readers are confronted with in case of web-

search results), and third because of the for hypertexts rather unnatural linear reading 

situation. With respect to the first two critical aspects, we are confident that the word-
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selection in our paradigm in principal leads to load-related effects that are comparable to 

those effects that are essential in genuine hyperlink selection, such as an increased load on 

EFs due to performing task shifts from purely reading to decision-making, the inhibition of 

irrelevant words, and the selection of relevant ones. A logical next step would be to use the 

methodology of a combined EEG and eye-tracking data recording and analysis in a more 

realistic hypertext reading and browsing situation. As mentioned above, this methodology 

might also be used to differentiate on a fine-grained level between load imposed by different 

kinds of hyperlinks, for example task-relevant versus task-irrelevant (but nevertheless 

interesting) hyperlinks [1,66]. Clearly, such follow-up studies that explicitly manipulate load 

on different EFs during link selection will be needed to directly test our assumption that link-

selection raises demands on EFs.  

With respect to the third critical aspect, the task paradigm we used afforded a rather 

linear text reading (which was confirmed by our visual inspection of participants' eye-

tracking data) that might be different from genuine online hypertext reading. Depending on 

the hypertext-material used, different reading patterns have been observed for online text 

reading. One classical example are the F-shaped reading patterns that Nielsen and colleagues 

observed in eye-tracking studies of real hypertext pages (e.g., [67]). Duggan and colleagues 

[59,68] observed reading patterns of text skimming (i.e., selectively scanning of text parts) 

when the time to read an online text was limited. Such time-pressure may be the typical 

situation in online web reading, when a huge amount of web pages addressing a certain topic 

are available and have to be skimmed for relevance. Reader and Payne ([69], see also 

[59,68]) observed an online text reading strategy termed satisficing: Parts of the text (or 

different texts) are skimmed through until the relevant parts of the text (or texts) are reached. 

These are then read more thoroughly until the individual information gain is reached. 

Although in the current research we announced a time-limit for text reading, the task 

instruction afforded our participants to apply a linear text reading strategy. Therefore, one 

has to keep in mind that other text reading strategies might occur in online text reading when 

no such task instruction is given. This has to be taken into account in future studies that 

should use more realistic hypertext materials that additionally might provide more realistic 

hypertext reading situations with respect to reading strategies than the present research. 
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Nevertheless, given that an online text adequately meets the readers' information demands, a 

linear text reading like the one in our current research still might occur [69]. 

Despite these limitations, the current research showed the general sensitivity of pupil 

dilation and alpha frequency band power for an increased load-situation during link-

selection. Surprisingly, however, the change in pupil dilation and the alpha frequency band 

power change did not correlate (Experiment 1 and Experiment 2). This outcome was rather 

unexpected given that the general load effect was observed for both measures. More 

precisely, as pupil dilation increased and alpha frequency band power decreased for 

increased load, we expected to observe a negative correlation between the two measures (cf., 

Hypotheses 2). At least two possible explanations for the observed non-correlation might be 

hypothesized.  

First, the non-significant correlation between the two measures may indicate that they 

were sensitive to different aspects of load induction during hyperlink-like selection 

processes. Yet, we may only speculate which different aspects of load induction this may be. 

Pupil dilation may function as a more global load measure that also includes motivational or 

emotional aspects of load (e.g., [30,34–36]). This interpretation is corroborated by the non-

existent correlation between reading comprehension scores and pupil dilation. In contrast, we 

observed a negative correlation between LGVT reading comprehension score and EEG alpha 

frequency band power change. This strengthens the assumption of alpha oscillatory activity 

being a cognitive correlate: For participants that showed higher reading comprehension 

scores, we observed a stronger decrease in alpha oscillatory activity. This is in line with 

current literature reporting a stronger alpha ERD (i.e., decrease in alpha band power) 

associated with higher semantic memory performance [49]. Generally, as discussed in the 

introduction, alpha ERD has been related to purely cognitive processes like working memory 

functioning, attention, and inhibitory control [46,48,49,70,71]. The interpretation of alpha 

frequency band power as a more sensitive measure of cognitive processes than pupil dilation 

may be corroborated further by the observation that in both experiments (Experiment 1 and 

2) of the present research the alpha frequency band power effect was topographically 

maximal over left-hemispheric, parietal electrodes. This is in line with studies reporting left-

lateralized alpha frequency band power effects for linguistic task material [44,72]. 
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Noteworthy, however, based on our current results, we cannot infer that alpha frequency 

band power and pupil dilation might be sensitive for different EFs. Rather, the two measures 

might be sensitive for different aspects of load on EFs: Alpha frequency band power might 

be sensitive to purely cognitive aspects of load on EFs whereas pupil dilation might 

additionally be sensitive for emotional or motivational aspects of load on EFs [30,34,35].  

Individual differences may be a second explanation for the non-existing correlation 

observed between the two physiological measures. In some participants pupil dilation might 

be the 'better' measure to detect a changed load-situation, whereas in other participants EEG 

alpha frequency band power might be the 'better' one. If this result generally turns out to be 

true, it has important consequences for the entire research area of 'neuro-ergonomics' [73–

75], where researchers try to detect participants' load-situations using physiological measures 

for evaluating and adapting human-computer interfaces. For this research area our results 

may suggest to collect several different physiological measures and to select the most 

sensitive one individually later on. However, as mentioned above, these interpretations and 

conclusions are somewhat speculative at this point. Clearly, further research should be 

conducted with combined EEG and eye-tracking data recording in order to directly compare 

pupil dilation data and EEG frequency band data in diverse task settings and to study more 

closely their interlinked yet different nature. Although a few other studies have also recorded 

EEG data and pupil dilation data simultaneously using rather complex task materials, to the 

best of our knowledge correlations between EEG frequency band measures and pupil dilation 

measures have never been calculated or reported ([25,76–78]; but see some basic research 

studies mainly focusing on EEG event-related potentials for comparison with pupil dilation, 

e.g., [79–82], as referred to below).  

To conclude, the present research may serve as an initial step with respect to two 

currently emerging research directions: (a) a more in-depth analysis of load on EFs in 

hypertext reading and hyperlink selection, and (b) the combined recording and analysis of 

EEG frequency band data and pupil dilation (even in 'real-world' tasks) and the exploration 

of different aspects of load they capture. With respect to (a), we again have to underline that 

we are well aware of the artificial hypertext situation in the current research as discussed 

above that may call for conducting additional studies. With respect to (b), we may also 
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suggest further studies of combined EEG frequency band power analysis and pupil dilation. 

For this research direction using more controlled, low-level tasks may prove to be valuable. 

Indeed, there are some initial studies of combined EEG data and pupil dilation data analysis 

in basic research, reporting correlations between pupil diameter and certain EEG event-

related potentials, like P300 and N400 [80–82] or between stimulus-evoked pupil dilation 

and EEG alpha activity [79]. These studies often use single-subject stepwise correlational 

analysis over the time course of trials, which were beyond the scope of the present paper. 

However, to the best of our knowledge a direct comparison of EEG frequency band power 

and pupil dilation data in more complex task situations has not been conducted up to now. 

 Thus, notwithstanding the limitations of the present work, our data showed for 

complex task materials and task situations simulating hypertext reading that both pupil 

dilation and EEG alpha band power overall are sensitive measures to assess the general load-

situation during hyperlink-like selection processes, yet, alpha frequency band power might be 

the more specific measure for cognitive processes (i.e., EFs). The combined recording and 

analysis of eye-tracking and EEG frequency band data may be a promising methodological 

account to further study unconstrained, 'real-world' hypertext reading and link selection 

processes. Hence, this line of research may turn out to be highly relevant for the design and 

optimization of hypermedia learning environments. For example, future versions of 

Wikipedia articles may be optimized with regard to the kind and amount of hyperlinks so that 

additional load on readers' EFs is kept minimal, allowing to allocate more cognitive 

resources to processes of reading and comprehension. Especially as performance in EFs may 

be reduced in older adults [83] or impaired in certain populations (e.g., dyslexic or ADHD 

populations; [84,85]), assessment of load on EFs and the optimization of hypermedia 

environments with respect to amount and type of links therein causing this load might be 

valuable and necessary topics of future research. In this vein, individual differences research 

addressing, for example, the interaction between individuals' WM capacity or general 

executive function abilities and load during link selection processes might be carried out as 

well. 
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3. General Discussion 

The main research goal of the current doctoral thesis was an examination of EEG alpha 

frequency band power as a global measure of cognitive load which may be grounded in WM 

functioning and demands on different core EFs like updating, inhibition, and shifting 

(Diamond, 2013; Miyake et al., 2000). Thus, EEG alpha frequency band power served as 

primary measure in all three studies. The task settings ranged from basic to applied research. 

Other measures like the EEG theta and beta frequency band power, the P300, and pupil 

dilation were used in some studies.  

Study 1 compared two classical WM task families, namely an n-back task and an 

operation span task and a STM digit span task, with respect to EEG correlates (EEG alpha 

and beta frequency band power, P300). In Study 2 we addressed the interplay of two core 

EFs, updating and inhibition, by manipulating demands on both within one single WM task, 

thus avoiding potential perceptual-motor confounds. Furthermore, we were interested in a 

comparison of EEG alpha frequency band power and pupil dilation as measures of core EFs 

in a WM task of basic research (Study 2) and as potential measures in a real-world task of 

hypertext reading and link selection (Study 3).  

Study 1 and Study 2 can be considered as basic research that revealed some insights 

into the interplay of the core EFs and their relation to WM which might be of both, a 

conceptual as well as a practical value concerning a framework of core EFs. Furthermore, the 

studies may generally underline the value of using EEG methodologies to examine core EFs. 

Study 3 can be considered as applied research that mainly addressed the use of EEG alpha 

frequency band power and pupil dilation to assess different load-situations during hypertext 

reading (i.e., in comparing text reading and link selection). In the following, I will present 

and discuss the main outcomes of each study that has been conducted as part of this doctoral 

thesis, and for each study I will suggest some topics for future research.  
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3.1 Main Outcomes and Potential Future Research  

Concerning the overall research question addressing the role of EEG alpha frequency band 

power as a measure of cognitive load the three studies conducted as part of this doctoral 

thesis revealed that a) EEG alpha frequency band power showed an overall sensitivity to 

demands on different core EFs (Study 1, Study 2), and b) EEG alpha frequency band power 

could comparably be used in task settings of basic and applied research. Especially, even 

when potential perceptual-motor confounds were ruled out in a task setting of applied 

research consisting of link-selection in hypertext reading, EEG alpha frequency band power 

showed a decrease for increased cognitive load (Study 3). Thus, EEG alpha frequency band 

power might serve as a global measure of the cognitive load-situation that may be grounded 

in demands on core EFs. In the following the main outcomes at the level of each individual 

study will be summarized. 

3.1.1 Study 1: The comparison of n-back and WM span tasks 

In line with our hypotheses (see Chapter 1.5.1), the outcomes of Study 1 revealed a decreased 

P300 amplitude for increased load-levels in the n-back and the operation span task but not in 

the simple digit span task. This indicates that both tasks, the n-back task and the operation 

span task, share some dual task characteristic, i.e., might comparably demand the EF shifting. 

Also in line with our hypotheses, overall the TFRs of the n-back and the operation span task 

were more similar as compared to those of the simple digit span task. Interestingly, the beta 

frequency band power showed an oscillatory pattern which was comparable to that of the 

alpha frequency band. This was also the case for the simple digit span task that required no 

key-pressing (i.e., no motor activity). Thus, the results of Study 1 concerning the beta 

frequency band power clearly indicate that beta can be regarded to be sensitive to cognitive 

processing (and not only to motor activity) in WM tasks.  

With respect to the long-standing debate concerning the rather weak correlations 

normally observed between n-back and complex span WM tasks for behavioral performance 

measures (see, e.g., Jaeggi et al., 2010; Redick & Lindsey, 2013; Schmiedek et al., 2009) and 

some questioning about the n-back task as genuine WM task (Kane, Conway, Miura, & 

Colflesh, 2007), Study 1 provides some valuable results to advance the discussion. First, 
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Study 1 showed that performing a verbal n-back task and an operation span task in sum led to 

comparable EEG patterns. This may be seen to confirm the hypothesis that in both tasks core 

EFs are comparably active (see 1.3.1 and 1.3.2), thus underlining the assumption that both 

tasks might be comparably considered as genuine WM tasks. Second, the correlational results 

of the performance measures in Study 1 showed rather high correlations between the n-back 

task and the operation span task (and additionally weaker correlations between the n-back 

task and the digit span task). This was completely in line with the EEG results of the current 

study and the conceptual considerations with regard to core EFs, but in severe contrast to 

literature (see, e.g., the meta-analysis by Redick & Lindsey, 2013). One important reason for 

the rather high correlations we observed in Study 1 might be that we used carefully designed 

n-back and span tasks with respect to a comparable timing of the single task trials and the 

overall number of trials. Both factors normally vary severely between complex span and n-

back tasks (even in studies that directly compare the both tasks), with the complex span task 

being used with less trials and longer trial durations (up to self-paced, e.g., Jaeggi et al., 

2013, Experiment 1) than the n-back task. Thus, the time-pressure in complex span tasks 

might normally be less severe than in n-back tasks. As timing is a critical factor with respect 

to the induced WM load (see Barrouillet, Bernardin, & Camos, 2004; Barrouillet, Bernardin, 

Portrat, Vergauwe, & Camos, 2007), differences in timing (and amount of trials) may 

account for the rather weak correlations between n-back and complex span tasks that are 

normally reported. Our results indicate that if the tasks are controlled for such differences, 

the correlations between the two tasks are much higher and thus are more in line with 

theoretical considerations concerning the nature of the both tasks as WM tasks. Clearly, 

future studies have to be conducted that explicitly address this assumption by directly 

manipulating time constraints when comparing n-back and complex span WM tasks.  

With respect to beta frequency band power, Study 1 might contribute to the recently 

advanced hypothesis that oscillatory activity in the beta band might not only be associated 

with motor preparation and motor activity (e.g., Pfurtscheller et al., 1998) but might also 

reflect cognitive processing (Engel & Fries, 2010; Weiss & Mueller, 2012). We observed an 

increased beta band ERD for increased load on WM updating in the n-back comparably to 

Krause and colleagues (Krause et al., 2010; Pesonen et al., 2007). However, as the n-back 

task contains motor activity (key-presses), the beta band effects in these studies could not 



162 3. General Discussion 

 

assuredly be attributed to cognitive processing but might simply reflect the motor activity. 

We observed a comparable beta ERD in the operation span task (that also required motor 

responses in form of key-presses) and more importantly, in the simple digit span task, 

although this latter task required no motor responses. Thus, our results revealed that 

comparably to the alpha ERD the beta ERD may reflect load on WM updating. Recently, the 

role of beta band oscillatory activity and linguistic processing has been put forward (Weiss & 

Mueller, 2012). Our results may indicate that the beta frequency band might also be 

important for processes of WM-functioning. 

In sum, Study 1 confirmed the conceptually assumptions that the n-back task and the 

operation span task share some commonalities as genuine WM tasks. The commonalities 

may be due to comparably demanded core EFs in these tasks, whereas the simple digit span 

task may mainly demand one single EF, namely WM updating (see 1.3.1 and 1.3.2).  

3.1.2 Study 2: The interplay of core EFs 

In Study 2 we were interested in the interplay of the core EFs updating and inhibition that we 

manipulated in one single task consisting of an n-back task (updating) with flanker stimuli 

(inhibition). We expected to observe an interaction between the n-back levels (i.e., load on 

WM updating) and the flanker interference (i.e., demands on inhibition). This interaction 

could be either due to an over-additive or under-additive effect (see 1.5.2). Furthermore, in 

Study 2 we were interested in the sensitivity of different measures like behavioral data, the 

P300 amplitude, and alpha and theta frequency band power, for demands on these core EFs. 

Specifically, we were interested whether EEG alpha frequency band power and pupil dilation 

would show a comparable pattern of results for load on WM updating and inhibitory 

demands.  

The outcomes of Study 2 revealed first, that all measures that we used were sensitive 

to load on WM updating as well as demands on inhibitory control. Furthermore, most of the 

measures consistently showed an interaction between severe load on WM updating and 

demands on inhibitory control. In the 2-back load level but not in the lower n-back levels, the 

flanker interference effect was reduced or absent for reaction times, the P300 amplitude, 

alpha frequency band power, and pupil dilation. This interaction was in line with our 
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facilitation hypothesis (see 1.5.2), that is, the assumption that different core EFs may share 

some common underlying factor which might be attributable to processes of controlled 

attention (Miyake et al., 2000). Under severe load on WM updating, some common processes 

of controlled attention might be activated that also serve inhibitory control, and thus facilitate 

inhibitory control. However, the results of the reduced flanker interference effect under 

severe load on WM updating are in contrast to observations reported by Lavie and colleagues 

(Lavie, 2005, 2010; Lavie et al., 2004; see also 1.5.2). These authors reported an increased 

interference effect under high STM load (i.e., load on WM storage components). The 

different outcomes of Study 2 and the studies by Lavie and colleagues might be due to the 

fact that we directly manipulated executive WM load, that is, demands on WM updating and 

inhibitory demands, whereas Lavie and colleagues manipulated only one EF, namely 

inhibition in the face of load on STM (i.e., load on WM storage components using a 

Sternberg task). An additional difference between the studies which might have contributed 

to the different outcomes was that the manipulation of core EFs was done in a single task 

paradigm in Study 2, whereas participants in the studies by Lavie and colleagues had to 

perform two different tasks (a flanker task and a Sternberg task) which were sequentially 

intermixed.  

Taken together, the results of Study 2 underline the closely intertwined character of 

core EFs. However, the generalizability of these outcomes has to be addressed in future 

studies. These future studies might use other task designs for manipulating load on WM 

updating and demands on inhibitory control to exclude any potential task-specificity of our 

results. Furthermore, other combinations of core EFs (e.g., updating and shifting) might be 

studied in a task setting comparably to the one we used allowing both EFs to be manipulated 

within one single task, and thus avoiding potentially confounding perceptual-motor factors. 

With respect to the second research question, namely the comparison of different 

measures for demands on core EFs, Study 2 revealed a comparable pattern of results for pupil 

dilation and alpha frequency band power. Pupil dilation and alpha frequency band power 

were sensitive for load on WM updating as well as demands on inhibitory control and both 

measures also reflected the interaction between the two EFs. Consequently, both measures 

might be comparably used to study core EFs. In contrast, EEG theta frequency band power 
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increased for both, increased load on WM updating and increased demands on inhibition, but 

showed no interaction between the two. This might be interpreted to reflect the nature of 

theta frequency band power as a general correlate of cognitive control (e.g., Nigbur, Ivanova, 

& Stürmer, 2011; Sauseng et al., 2010). Irrespective of the WM updating load the processes 

of cognitive control may be active. However, the interpretation of EEG theta frequency band 

power might be rather speculative at this point, as EEG theta frequency band power in Study 

2 was the only physiological measure that showed no interaction between load on WM 

updating and demands on inhibitory control. Clearly, further studies have to be conducted to 

examine the robustness of the observed theta frequency band power effects before any valid 

interpretation can be given.  

3.1.3 Study 3: EEG alpha frequency band power and pupil dilation for link selection 

during hypertext reading 

In Study 3 we were interested in the increased load-situation during the initial processes of 

link selection in hypertext reading that might be attributable to increased demands on core 

EFs (see 1.3.3 and 1.5.3). As expected, we observed an increased alpha ERD and an 

increased pupil dilation during link-like selection processes (i.e., the test condition) as 

compared to a baseline condition. The baseline condition was purely text reading in Study 3 

a). Given our assumption that selecting a context matching word out of three response 

alternatives resemble genuine cognitive processes of hyperlink selection (see 1.5.3), this 

outcome indicates that already initial processes of link selection during hypertext reading 

lead to an increased load-situation that can be assessed by pupil dilation or EEG alpha 

frequency band power ERD and that (at least conceptually, see 1.3.3) might be attributed to 

core EFs. Study 3 b) replicated these results although a modified baseline was used. In Study 

3 b) in the baseline condition participants had to perform a mouse-click on a word, 

comparably to the test condition, yet without choosing between response alternatives to click 

on (i.e., baseline and test condition were matched with respect to motor activity related with 

moving of the mouse cursor and clicking on a word). Additionally, baseline and test 

conditions were perceptually matched with respect to text color. This way, Study 3 b) 

eliminated perceptual-motor confounds of Study 3 a) between baseline and test condition 

thus ruling out the alternative hypothesis that these confounds would have accounted for the 
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observed results in Study 3 a). Finally, Study 3 c) excluded possible context effects (i.e., 

differences in local text difficulty) that also could be an alternative explanation for the 

observed different load-situation between baseline and test condition in Study 3 a) and 3 b), 

that is, when comparing different positions in the text. As Study 3 c) revealed no difference 

between baseline and test condition when the task in both conditions was equalized to purely 

mouse-clicking on one word (i.e., no decision and selection processes between response 

alternatives in the test condition), local text difficulty can also be ruled out as alternative 

hypothesis for the results of Study 3 a) and 3 b).  

In sum, Study 3 showed that both measures, pupil dilation and EEG alpha frequency 

band power can be applied in a rather real-world, complex task setting like hypertext reading 

and link selection. Both measures were sensitive to the increased load-situation during link 

selection in hypertext reading. Surprisingly however, although showing the same patterns of 

results, the two measures did not correlate with one another. At this point we can only 

speculate about possible explanations for this rather unexpected outcome. First, as both, the 

quality of EEG data as well as the quality of eye-tracking data is prune to individual 

differences (i.e., some participants might show rather noisy EEG data, e.g., because of 

muscle artefacts, whereas some participants might show rather noisy eye-tracking data, e.g., 

because of high blink-rates), those technical reasons could account for the non-existent 

correlation. Furthermore, the rather complex online-reading situation might have affected the 

EEG data and the pupil dilation data differently in single subjects. However, as we carefully 

controlled Study 3 for potential perceptual-motor confounds and as we used only artefact-

free epochs for data analysis, such technical reasons for the non-existent correlation might be 

rather ruled out. Another hypothesis concerning the observed non-correlation between pupil 

dilation and EEG alpha frequency band power ERD might be that pupil dilation also captures 

additional aspects of a load-situation, like emotional or motivational aspects (e.g., Hess & 

Polt, 1960; Wykowska, Anderl, Schubö, & Hommel, 2013; see also 1.4.2), whereas alpha 

frequency band power might capture more purely cognitive aspects of a load-situation (see 

1.4.1.1). Thus, these additional aspects of the load-situation might confound the pupil 

dilation data but not the EEG alpha frequency band power data which may result in the 

observed outcome of a non-correlation between the two measures.  
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Clearly, at this point these considerations concerning the observed non-correlation are 

rather speculative and should be addressed in future studies. These studies might use rather 

low-level task materials and should be designed as genuine correlational studies (e.g., using 

larger numbers of subjects). Additionally, to further avoid potential confounds that may 

selectively affect pupil dilation, auditory task materials might be used, thus avoiding any 

perceptual influences on pupil dilation.  

Another major limitation of Study 3 concerning the task materials has to be addressed 

in future studies. Although we are quite convinced that the task materials we used triggered 

comparably processes of decision making, selection, and demands on core EFs that occur 

during genuine hyperlink-selection in 'real' hypertext reading situations, we are aware that 

our task materials might be considered as rather artificial. This is mainly because participants 

in Study 3 simply had to click each time on one context-matching word out of three words. 

Clearly, future studies have to be conducted using hypertext task materials which more 

closely resemble genuine hypertext reading with 'true', single hyperlinks to be selected at 

different positions in the text. Furthermore, the links should provide a 'true' hyperlink-

functionality (i.e., lead to subsequent pages) that also missed in Study 3. Noteworthy 

however, in the current study we were interested in analyzing the initial link-selection 

processes, that is, without possible confounds due to subsequent web-pages (see 1.5.3). Thus, 

the non-functional hyperlinks were due to our task paradigm and could not be avoided.  

Furthermore, although conceptually the observed increased load-situation during link 

selection may be attributed to demands on core EFs (see 1.3.3), a direct examination of this 

assumption still has to be conducted. This could be done in future studies either using a dual 

task methodology, that is, using secondary tasks that demands specific core EFs (e.g., a 

flanker task that mainly demands inhibition) while participants read the hypertext and 

perform the link selections. Such a dual task methodology might allow to selectively test 

which EF is most strongly demanded during link selection. However, as the dual-task 

methodology has the risk to negatively interfere with the primary task (i.e., to lead to 

unexpected confounds), a more suitable methodology might be to specifically manipulate the 

manner of the hyperlinks in a text to study the induced demands on core EFs. Thus, for 

example, a comparison between hyperlinks that are highly interesting but not relevant for a 
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current information-gathering task and hyperlinks that are relevant or irrelevant might be 

conducted. The interesting but irrelevant hyperlinks should lead to increased demands on 

inhibitory control in comparison to purely irrelevant hyperlinks (i.e., non-interesting and not-

relevant hyperlinks).  

Despite these obvious limitations discussed above, two major strengths of Study 3 

have to be highlighted. First, Study 3 advances traditional hypertext research by using 

physiological data, and, more importantly, by using a combined EEG-eye-tracking 

methodology. This methodology allowed us, comparably to the eye-fixation-related 

potentials methodology (EFRP; e.g., Baccino, 2011; Dimigen, Sommer, Hohlfeld, Jacobs, & 

Kliegl, 2011), to use the eye-tracking data to define areas of interest (AOIs) for the EEG 

frequency band power analysis, that is, to analyze data sections (epochs) of the EEG data that 

are time-locked to the eye-fixations on specific parts of the text. For example, in Study 3 a) 

we used this technique to define the text parts for EEG data analysis that contained AOIs of 

purely text reading. These text parts served as baseline condition in Study 3 a). Noteworthy, 

in Study 3 b) we defined the EEG data epochs of the baseline condition in a more classical 

way, namely time-locked to the mouse-event (mouse-click). This was possible as participants 

in Study 3 b) had to perform a mouse-click in both, baseline and test conditions. 

Nevertheless, despite these differences between Study 3 a) and 3 b) in defining the baseline 

condition for the EEG data analysis, the outcomes of Study 3 b) were very similar to Study 3 

a). Thus, Study 3 a) and b) may be regarded to proof the feasibility of using AOIs to define 

EEG data epochs for EEG data analysis even for calculating EEG frequency band power (and 

not only for the calculation of EFRPs).  

Second, in contrast to other studies on hypertext reading using neurophysiological 

measures (e.g., Antonenko & Niederhauser, 2010; Antonenko et al., 2010; Gerlic et al., 

1999), we focused on the load-situation during initial link-selection processes and carefully 

controlled our task materials for possible confounds like perceptual-motor or content-related 

differences between the task conditions of interest. Such confounds often hamper the 

interpretability of studies using complex task materials (e.g., Antonenko & Niederhauser, 

2010; see Gerjets et al., 2014 for a discussion of the problems of perceptual-motor confounds 

in these task-settings especially for the EEG). Thus, in sum, the outcomes of Study 3 may be 
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seen to underline the feasibility and sensitivity of EEG frequency band power and pupil 

dilation for research on hypertext reading even if confounding factors are ruled out that are 

often considered as an alternative hypotheses to explain observed effects (Gerjets et al., 

2014). 

To conclude, Study 3 may serve only as an initial, but important step in studying link-

selection processes during hypertext reading and possible demands on core EFs. Follow-up 

studies using the same methodology of combined EEG-eye-tracking analyses may apply 

more realistic hypertext materials and may actually manipulate the demands on core EFs 

within hypertext reading. In the following chapter some general strengths and limitations of 

the current thesis will be discussed.  
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3.2 Strengths and Limitations of the Current Thesis 

The three studies that were conducted as part of this doctoral thesis span a broad field not 

only ranging thematically from basic research (Study 1 and Study 2) to applied research 

(Study 3) but also linking concepts of cognitive science with (neuro-) physiological 

measurement. Taking such a broad research account and using such diverse measures like 

EEG frequency band power, P300, and pupil dilation, on the positive side may yield in 

several new insights on both, a basic level of the single studies (see Chapter 3.1), as well as 

on an overall level in connecting the single outcomes and the different research areas. Thus, 

the outcomes of the three studies might provide valuable insights in core EFs and 

measurement techniques thereof and may serve to stimulate further research (see the 

following Chapter 3.3). 

However, one potential negative side of taking such a global research approach might 

be the risk of shallowness to a certain extent. Because of limits in time and space (especially 

within a doctoral thesis), not all aspects of the single different research areas, methodologies, 

or models may have been presented in an adequate depth. Especially, as stated above, each 

study we conducted would have called for direct follow-up studies for each single research 

topic addressing the newly raised questions or potential pitfalls of the single studies. We 

postponed such studies to the future and instead focused on different aspects of core EFs and 

physiological measures thereof in diverse task settings. Therefore, instead of digging deep 

into one specific research question, the current thesis took a multifaceted research approach 

(resembling the multifaceted nature of EFs) that might serve as an overall, rich source for 

stimulating future studies in diverse areas of research (see above and Chapter 3.3) that focus 

on core EFs, physiological measures, and cognitive load.  

In the discussion above (Chapter 3.1), some of such possible or necessary follow-up 

studies have already been presented. Especially the restrictions of Study 3 might have to be 

addressed in future studies. Thus, the current study might allow only very restricted 

interpretations with respect to core EFs in hypertext-like task materials and with respect to 

real-world hypertext reading, as we used a kind of 'simulated' link selection processes 

without any explicit manipulation of the core EFs therein. Furthermore, it might be 

questioned whether the task materials that we used (a rather artificial hypertext and link-
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selection situation) might resemble genuine processes that occur in genuine hypertext reading 

situations. Thus, although our assumptions concerning the role of core EFs in hypertext 

reading and link-selection as described in Chapter 1.3.3 may sound plausible, the validity of 

our assumptions have to be tested further in future studies. These studies might use more 

genuine hypertext materials with real hyperlink-selection (e.g., Wikipedia articles) and might 

for example manipulate demands on core EFs like inhibitory control by varying the amount 

and manner of hyperlinks (e.g., by presenting relevant links, interesting but irrelevant links, 

and completely irrelevant links; see 3.1.3).  

Some further limitations of the current thesis have to be addressed. First, as research 

on both, EFs as well as EEG oscillatory activity is still a vivid field, with an ultimate 

definition of a framework of EFs still missing (see Chapter 1.1) and the link of oscillatory 

activity and specific cognitive processes still being matter of debate (see Chapter 1.4), a 

concise formulation of a priori hypotheses in the current thesis has been somewhat 

complicated. Therefore, we choose a research account of formulating specific hypotheses 

whenever possible and otherwise to present the outcomes rather data-driven if no clear 

hypotheses could be formulated a priori. For example in Study 1 we had only vaguely 

expectations concerning commonalities and differences in the TFR patterns of the three 

different tasks (see 1.5.1). However, as TFRs have not been used before for the comparison 

of different WM and STM tasks, a rather descriptive presentation of the TFR results seems to 

be justified. 

Second, the EEG analyses we conducted were restricted to EEG frequency band 

power (and P300) at selected electrodes. The electrodes for the statistical EEG data analysis 

were chosen in accordance with literature (e.g., Antonenko et al., 2010; Duncan et al., 2009; 

Gevins & Smith, 2000) to yield maximal effects on each measure. For example, the electrode 

Pz was chosen to represent oscillatory activity of mid-parietal brain regions that have been 

previously shown to yield maximal effects on alpha frequency band power and P300 for 

cognitive processing-load. The restriction to use single electrodes for the main (statistical) 

data analysis was motivated (and may be justified further) by the overarching goal of the 

current thesis, namely to examine measures that showed sensitivity to specific cognitive 

processing like demands on core EFs in basic research (see Study 1 and Study 2) and that 
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may be also used in applied task settings (see Study 3). Especially in applied research it 

might be wishful to have some few, rather easily (i.e., efficiently) to acquire measures. 

Despite its advantage as a rather direct measure of brain activity with high time-resolution 

(see Chapter 1.4), the EEG (at least to date) needs some preparation time to get a good 

signal-to-noise ratio, that is, a good connection between the single EEG electrodes and the 

skin. Thus, the reduction to few, most sensitive electrode position may severely decrease the 

preparation times for EEG data recordings in applied task settings and consequently may 

help to foster the (efficient) use of the EEG methodology in rather applied research like 

hypertext reading (see also Chapter 3.3 for some future applications of the EEG methodology 

in applied task settings). 

Apart from the restriction to few, selected electrodes, we limited our EEG data 

analyses to ERPs (i.e., the P300) and frequency band power for a frequency range between 4 

to 30 Hz (theta, alpha, and beta frequency bands). The selection of these measures was also 

literature-driven (see 1.4.1; e.g., Antonenko et al., 2010; Just et al., 2003; Parasuraman, 

2003). The ratio for the chosen measures (i.e., the data analyses methods) was also (like for 

the selection of the electrodes) to have easily to acquire measures that would allow the 

application in task settings of both, basic and applied research. Thus, the measures should at 

least principally allow assessing the individual load-situation based on a few trials. These 

prerequisites might especially be fulfilled by EEG frequency band power. More advanced 

data analysis methods to capture oscillatory activity like analyzing phase information and 

calculating coherence measures (e.g., Sauseng & Klimesch, 2008; Sauseng, Klimesch, 

Schabus, & Doppelmayr, 2005), or source localization (e.g., Hanslmayr et al., 2008) were 

beyond the scope of the current thesis. Noteworthy however, such EEG data analysis 

methods might be used in future studies (at least in basic research) to further increase the 

understanding of brain oscillatory activity and core EFs. 

Third, another limitation of the current thesis might be, as already stated in Chapter 

1.1, that we had a rather generic view on core EFs, that is, we did not differentiate possible 

sub-processes thereunder. Although this view is in line with the prevalent research on core 

EFs (see Chapter 1.1), a further fractionation of core EFs in possible sub-processes and the 

analysis thereof using EEG methodologies in future studies may help to identify whether 
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controlled attention is the commonality of different core EFs (as assumed in the current 

thesis) or whether specific shared sub-processes might constitute commonalities between 

different core EFs. Thus, for example, updating might be in principal equal to shifting, yet 

only referring to different WM 'content' (see Oberauer, 2009 and 1.2.4 of the current thesis). 

Clearly, future research may develop a conceptually more fine-grained framework of core 

EFs that then may be empirically tested, e.g., using EEG methodologies like the ones 

proposed in the current thesis.  

Finally, to avoid any confusion, we have to address our slightly different focus on the 

n-back task with respect to the core EFs therein in Study 1 as compared to Study 2. In Study 

1 we assumed that the n-back task would incorporate all three core EFs, that is, updating, 

shifting, and inhibition, comparably to a complex operation span task. In Study 2 we labeled 

the n-back task as a task that 'mainly' loads on the EF updating. Given our task analysis (see 

1.3.1) and the results of Study 1, the definition of the n-back task in Study 2 might be 

considered as slightly shortened. However, for reasons of brevity and, furthermore, for 

reasons of conformity with the prevalent literature on the n-back task (e.g., Gevins & Smith, 

2000; Gevins et al., 1997; Jonides et al., 1997; Pesonen et al., 2007), it may be justified that 

we considered the n-back task in Study 2 mainly as representative for WM updating load. 

Yet, given that the n-back task also task-inherently demands inhibition and shifting, one 

possible alternative hypothesis for the outcomes of Study 2 might be raised. According to 

this alternative hypothesis, the observed reduced flanker interference effect under the high, 2-

back load-level might be directly due to the already demanded inhibitory control (i.e., 

processes of inhibition that are incorporated in the n-back) and not only, as stated in 3.1.2, 

due to the increased activation of some commonly underlying network structure of controlled 

attention. Therefore, our conclusion of Study 2 might be considered with some caution. 

Clearly, more studies are needed that manipulate different core EFs in different task settings 

using the EEG methodologies in order to unravel the exact nature of any underlying common 

factor. 

To conclude, the rather wide-spread research account of the present doctoral thesis 

might show some limitations at the level of each individual study as discussed above and in 

Chapter 3.1. However, these limitations may be ruled out by future research. Thus, each 
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current study may serve as a starting point for triggering further research. In sum, the studies 

showed that (neuro-) physiological research methods like EEG alpha frequency band power 

or pupil dilation are valuable research accounts to study core EFs in basic and applied task 

settings (but see the limitations concerning the applied task setting we used as discussed 

above). Both measures were sensitive to changes in the general load-situation when core EFs 

are demanded (Study 2). Furthermore, the current thesis showed that the beta frequency band 

power might be another valuable measure of WM functioning (Study 1). All EEG frequency 

band power measures were sensitive to demands on different core EFs (Study 2). Yet, none 

of the EEG frequency band power measures was selectively sensitive to one specific EF. 

Thus, EEG frequency band power like alpha frequency band power might serve as a rather 

general measure of the overall cognitive load-situation in task settings of basic and applied 

research. This overall load-situation might be altered due to demands on core EFs.  

In the next chapter potential implications of the main outcomes of the current thesis 

will be discussed. 
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3.3 General Implications and Future Research Directions 

The outcomes of the present doctoral thesis have several implications for both, basic and 

applied research. In the following, some main implications will be summarized and some 

future research directions will be highlighted. 

3.3.1 Basic research: WM and EFs 

The outcomes of Study 1 confirmed the conceptual similarities of an n-back task and an 

operation span task which might be attributable to core EFs that are demanded in both WM 

tasks comparably, and which are less demanded in a STM digit span task. Thus, Study 1 

extends purely correlational research accounts that focus on behavioral performance data for 

comparing WM tasks (e.g., Jaeggi et al., 2010; Redick & Lindsey, 2013), and shows the 

value of using an (electro-) physiological research approach for examining and comparing 

different WM tasks. Future studies may take this research approach and compare n-back and 

WM span tasks using tasks of different modalities (e.g., a spatial n-back task instead of a 

verbal n-back task, or a reading span task instead of an operation span task). The outcomes of 

such studies should resemble the results of Study 1 as executive WM processes are 

hypothesized to be independent of concrete task modalities (Baddeley, 1996). Furthermore, 

WM and STM tasks beyond the n-back and WM span tasks may be included in the task 

comparison using the EEG methodology (e.g., Sternberg tasks). Finally, Study 1 

demonstrated the importance of carefully designed task paradigms with respect to timing and 

number of trials for a direct task comparison (see 3.1.3). Future studies interested in the 

comparison of WM task might explicitly manipulate time constraints or, at least, should keep 

in mind the importance of matching such constraints.  

Study 2 proposed a novel research account to examine core EFs, namely the direct 

manipulation of core EFs within one single task, thus avoiding potential confounds that are 

otherwise inevitable when using different tasks for studying core EFs (e.g., perceptual-motor 

differences or task-set differences between tasks). EEG alpha frequency band power, the 

P300 ERP, and pupil dilation showed a comparable sensitivity for the interplay of the core 

EFs updating and inhibition in this study. Consequently, future studies may use the research 

approach of manipulating different single core EFs within one single task and may also 
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include the manipulation of the EF shifting. This way, the interplay of all core EFs may be 

studied, and their separable yet intertwined character may be examined further. As there is 

still debate concerning the exact number and conceptualization of core EFs (see Chapter 1.1 

and 3.2), such studies may help clarifying commonalities and differences between different 

core EFs and thus may advance the development of a general framework of core EFs that 

grounds on biological underpinnings as identified by physiological measures.  

In sum, Study 1 and Study 2 both showed the value of using the EEG for conducting 

research on WM and core EFs. Thus, future studies on WM and core EFs may also include 

EEG measures. From the results obtained so far we may conclude that EEG measures (at 

least the ones we used) are sensitive to changes in the load-situation when core EFs are 

demanded. However, we did not observe a specific single EEG measure that could be 

attributed to a specific single core EFs. The P300 may be considered as one measure that 

might be most closely assigned to one single core EF, namely shifting (see 1.3.1 and 1.4.1.4). 

Clearly, more research has to be conducted to verify this assumption. EEG frequency band 

power seems to react more like a global measure of the entire load-situation. EEG frequency 

band power may not miss when demands on a single core EFs are changed and the overall 

load-situation is altered, but it may not allow to specifically disentangling different core EFs. 

Thus, in line with literature on EEG frequency band power (e.g., Krause, 2003; see also 

1.4.1) we may conclude that there is no simple one-to-one link between a specific core EF 

and the oscillatory activity in one specific frequency band.  

Pupil dilation may serve as a more easily to acquire, yet comparably sensitive 

measure for the overall load-situation, as for example, EEG alpha frequency band power (see 

Study 2 and Study 3). Yet, as Study 3 revealed, the two measures might not be used 

completely interchangeable. Clearly, more research has to be conducted on the relationship 

of pupil dilation and EEG (alpha) frequency band power as measures of core EFs. The 

outcomes of Study 3 may indicate that pupil dilation captures more aspect of the load-

situation than EEG alpha frequency band power, for example, aspects that are beyond purely 

'cold' cognition, like motivational or emotional aspects. Given that this assumption turns out 

to be valid, combined analysis of EEG frequency band power data and pupil dilation may be 

used to disentangle cognitive and emotion-motivational aspects of a load-situation. In doing 
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so, this research methodology may become interesting for the evolving research on core EFs 

and emotions (e.g., Levens & Gotlib, 2010; Mitchell et al., 2007; Pessoa, 2009).  

Finally, as already stated in Chapter 3.2, the outcomes of the current thesis underline 

the general value of the EEG methodology for studying core EFs and WM. In future studies, 

more advanced EEG data analyses methods might be taken into account like source 

localization (e.g., Hanslmayr et al., 2008) or phase-coherence measures (e.g., Sauseng & 

Klimesch, 2008; Sauseng et al., 2005) which might allow to actually disentangle different 

core EFs. With respect to EEG frequency band power we may conclude that this measure 

may serve as a rather global measure of the cognitive load-situation in tasks that demand core 

EFs.  

3.3.2 Applied research: EFs in hypertext reading 

Study 3 revealed that physiological measures like EEG alpha frequency band power and 

pupil dilation can be used in applied research settings like hypertext reading and link 

selection to assess the global load-situation therein. Importantly, we used in Study 3 highly 

controlled yet complex task materials and ruled out potential confounds in follow-up 

experiments (see 1.5.3). Thus, Study 3 advances traditional hypertext and hypermedia 

research by (a) using physiological measures, (b) at least conceptually focusing on core EFs, 

and (c) carefully controlling for potentially confounding factors. Future studies may draw 

upon the outcomes of Study 3 and may adopt the research methodology of combined EEG-

eye-tracking data analyses.  

In principal there are two main research directions in applied research using 

physiological measures like EEG alpha frequency band power or pupil dilation with respect 

to hypertext or, more generally, hypermedia applications, that may benefit from the outcomes 

of the current thesis. First, physiological measures can be used for the analysis and evaluation 

of hypermedia applications with respect to the load-situation therein. Second, and more 

intriguingly, physiological measures may be used to assess the individual load-situation in 

hypermedia applications online, that is, in single subject, single trial situations. Advanced 

EEG data analyses methods and the use of machine learning algorithms may allow to 

automatically detect the instant load-situation of an user (see, e.g., the passive brain-
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computer interface account proposed by Zander & Kothe, 2011, or the physiological 

computing account by Allanson & Fairclough, 2004; Fairclough, 2009). The hypermedia 

application may then be adapted accordingly (e.g., by reducing distracting information like 

irrelevant hyperlinks that could be faded out, or by inserting relevant hyperlinks which may 

provide webpages with additional, helpful information). 

With respect to the first research area, the analysis and evaluation of hypermedia 

applications, our results indicate the feasibility and sensitivity of EEG alpha frequency band 

power and pupil dilation to assess the load-situation therein. Especially the methodology of 

combined EEG-eye-tracking data recording and analysis (see 3.1.3) may advance future 

hypermedia research. For example, future studies may use these methodologies to analyze 

the load-situation during hypertext reading of, for example, Wikipedia articles or webpages 

presenting search results. These applications may then be evaluated and optimized (see also 

1.4 for a discussion for the general advantages of using physiological measures to assess the 

load-situation in complex, real-world task settings). For example, in case of hypertext 

webpages, the load-situation therein might be optimized by varying the amount and manner 

of hyperlinks. Furthermore, the research approach of combined EEG-eye-tracking data 

recording may be used to identify specific areas in webpages which induce high demands on 

cognitive processing. In addition, the cognitive integration of different elements on a 

webpage like textual and pictorial information might be studied using this research 

methodology. Finally, grounding on our conceptual considerations with respect to core EFs 

in hypertext reading (see 1.3.3) future research may further address the role of core EFs in 

hypertext reading. In doing so, traditional models of reading comprehension (e.g., Kintsch & 

Welsch, 1991; Kintsch, 1988) may be advanced by incorporating core EFs in their 

conceptual considerations. Focusing on cognitive processes during reading seems generally 

to be an evolving research direction (see, e.g. Kendeou, Van Den Broek, Helder, & Karlsson, 

2014). Given the prevalence of electronic (hyper-) texts we are nowadays faced with (see 

Chapter 1, Introduction), incorporating hypertext reading and cognitive processes like core 

EFs that are especially associated with this text category may become an important research 

direction in the future to advance current models of text comprehension. The outcomes of the 

current thesis indicate that both, the EEG and pupil dilation can serve as valuable research 

methodologies for this research direction.  
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With respect to the second research area, the use of physiological measures for 

assessing the individual load-situation online (i.e., in a single subject, single trial situation) in 

order to create load-adaptive hypermedia applications, our results indicate that EEG 

frequency band power or pupil dilation might be used to assess the global load-situation, but 

may not be suitable to directly differentiate specific demands on different core EFs. 

Theoretically, an intriguing idea would be that core EFs may guide specific forms of 

adaptation. For example, if demands on inhibitory control are detected to be high, distracting 

information might be reduced. Or, if demands on shifting are detected to be high, some form 

of attentional guidance might be implemented to help users to focus on the central task. A 

major prerequisite of such an adaptive system however would be to have measures that are 

able to differentiate demands on different core EFs. The outcomes of the current thesis 

indicate that EEG frequency band power alone may not suffice to specifically differentiate 

demands on core EFs. Although being sensitive to changes of demands on core EFs that alter 

the global load-situation, we did not observe any specific one-to-one relationship between a 

single core EFs and a specific EEG frequency band. Thus, more advanced EEG data analysis 

methods might be necessary to specifically disentangle the demands on single core EFs (see 

Chapter 3.2). Importantly, the observed non-correlation between pupil dilation and EEG 

frequency band power in Study 3 of the current thesis implies that especially for research 

approaches on load-adaptive systems it might be useful to capture different load-measures, as 

the different load-measures may work differently well for different subjects (see the 

discussion in 3.1.3).  
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3.4 Conclusion 

In the current doctoral thesis I was interested in research questions concerning cognitive load, 

its potential origin in WM and demands on core EFs, and measures thereof. As overall 

research question, we studied EEG alpha frequency band power as a measure of cognitive 

load which we assumed to originate from demands on core EFs. This was done in task 

settings of basic and applied research. The outcomes of the three studies we conducted 

validated EEG alpha frequency band power as a general measure of cognitive load that could 

be traced back to reflect demands on core EFs. As a prerequisite of this overall research 

question, we studied the role of core EFs for WM functioning (Study 1 and Study 2) and 

(with some limitations) for hypertext reading (Study 3). In detail, we studied the relation of 

core EFs and WM by comparing EEG correlates for different WM tasks (Study 1), the 

interplay of core EFs within one single WM task (Study 2), and the sensitivity of EEG 

frequency band power and pupil dilation as measures for demands on core EFs in a WM task 

(Study 2) and for cognitive load during processes of link selection in hypertext reading 

(Study 3).  

The outcomes of the three studies may serve as starting-points for a variety of follow-

up studies also ranging from basic to applied research. They thus may potentially be of 

relevance for diverse disciplines like cognitive science, neuroscience, or computational 

science to draw upon. Ideally, the results of the current thesis may initiate (and contribute to) 

the further development of a thoroughly defined framework of core EFs that is currently 

missing, and may furthermore advance hypertext research (and, more generally, hypermedia 

research) by directing future research foci on core EFs therein, and, finally, may have 

highlighted the use of (electro-) physiological measures as valuable research methodologies 

for both, basic and applied research areas to study cognitive load.  
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