
ABSTRACT

Human-proboscidean interactions are key nodes 
of complex ecological, cultural and socio-econom-
ic systems. In the last decades, evidence has been 
provided in support of an early human exploitation 
of proboscidean carcasses, offering further insights 
into past human behaviors, diet and subsistence 
strategies. Nevertheless, the mode of acquisition of 
the carcasses, the degree of exploitation, its timing 
relative to carnivore scavenging and to the decom-
position of the carcass, its ecological and socio-eco-
nomical role are hitherto not fully understood and 
a matter of debate. By summarizing the empirical 
evidence for human-elephant interactions in Early 
and Middle Pleistocene open-air sites of western 
Eurasia, this contribution elaborates on the need 
for a more rigorous, spatially explicit inferential 
procedure in modeling past human behaviors. A 
renewed analytical approach, namely spatial ta-
phonomy, is introduced. In its general term, spatial 
taphonomy refers to the multiscale investigation 

of the spatial properties of taphonomic processes. 
Building upon a long lasting tradition of tapho-
nomic studies, it seeks for a more effective theoret-
ical and methodological framework that accounts 
for the spatio-temporal dimension inherent to any 
complex system. By bridging into a spatio-tempo-
ral framework the traditional archaeological, geo-
archaeological and taphonomic approaches, spatial 
taphonomy enhances our understanding of the 
processes forming archaeological and palaeonto-
logical assemblages, allowing a finer comprehen-
sion of past human behaviors.

9.1	 INTRODUCTION

Human-elephant interactions comprise complex 
and interdependent ecological, cultural and so-
cio-economic aspects. While such a manifold re-
lationship might still be observed in relatively few 
modern hunter-gatherer societies —e.g., among 
the BaYaka, the Mbuti and the Baka (respectively 
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see Lewis, this volume; Ichikawa, this volume; Ya-
suoka, this volume)—, the origin of it, at least in 
the form of human exploitation of proboscidean 
carcasses, could be dated back to the Early Pleisto-
cene. An elephant butchering event was reported 
to occur as early as ~1.75 Ma at the Oldovai site 
of FLK North, level 6, Upper Bed I (Leakey, 1971; 
Bunn, 1981; Potts, 1988) —although the an-
thropogenic origin of the accumulation was later 
questioned on the basis of several taphonomic ob-
servations (Binford, 1981a; Domínguez-Rodrigo 
et al., 2007a). Yet, other indications of probosci-
dean exploitation come from the Early Pleistocene 
of Africa and Europe: e.g., HWK EE, Olduvai 
Bed II (de la Torre et al., 2017), FLK North, Old-
uvai Lower Bed II (Domínguez-Rodrigo et  al., 
2007b) and BK4b, Olduvai Upper Bed II, Tanza-
nia (Domínguez-Rodrigo et al., 2014b); Barogali, 
Djibouti (Berthelet and Chavaillon, 2001); Ol-
orgesailie Member 1, Site 15, Kenya (Potts et al., 
1999); Fuente Nueva 3, Spain (Espigares et  al., 
2013); Barranc de la Boella, Spain (Mosquera 
et al., 2015). Such evidence significantly increases 
in quantity and archaeological resolution during 
the Middle and Late Pleistocene (e.g., Villa, 1983, 
1990; Goren-Inbar et al., 1994; Piperno and Tagli-
acozzo, 2001; Gaudzinski et al., 2005; Villa et al., 
2005; Müller and Pasda, 2011; Anzidei et  al., 
2012; Aureli et al., 2012; Rabinovich et al., 2012; 
Saccà, 2012; Pawłowska et  al., 2014; Konidaris 
et  al., 2018; Tourloukis et  al., 2018; Aranguren 
et al., 2019; Yravedra et al., 2019).

Being the largest terrestrial mammals during 
the Pleistocene, proboscideans ideally constituted 
optimal sources and reserves of food (Ben-Dor 
et al., 2011; Reshef and Barkai, 2015; Agam and 
Barkai, 2016, 2018) and raw material (Gaudzinski 
et al., 2005; Boschian and Saccà, 2015; Zutovski 
and Barkai, 2016) —albeit the nutritional/energy 
return in megafauna exploitation remains debat-
ed and non-dietary utilization of proboscidean 
carcasses might have had more importance than 
previously thought (Hawkes et al., 1991; Hawkes, 
2000; Speth, 2010; Lupo and Schmitt, 2016; 
Barkai, 2019). Certainly, in the broader, long-last-

ing debate about the role of meat consumption in 
the biological and cultural evolution of hominins 
(e.g., Leakey, 1971; Isaac, 1978; Binford, 1981b, 
1984; Potts, 1982; Binford et al., 1988; Blumen-
schine, 1988; Speth, 1989, 2010; Domínguez-Ro-
drigo, 2002; Domínguez-Rodrigo et al., 2007b, 
2014a, 2017a; Pante et al., 2012, 2015; Thompson 
et al., 2019), evidence of elephant exploitation, if 
confirmed, provides further insights into past hu-
man behaviors, diet and subsistence strategies.

In this respect, the discovery in recent years of 
a number of new sites with indications of anthro-
pogenic exploitation of proboscideans (e.g., Aureli 
et al., 2012; Panagopoulou et al., 2018) and the re-
examination of older ones (e.g., Villa et al., 2005; 
Boschian and Saccà, 2010; Sánchez-Romero et al., 
2016; Santucci et al., 2016; Ceruleo et al., 2019) 
have definitely provided new data and informa-
tion, but have little increased our knowledge on 
the mode (hunting or active/passive scavenging), 
degree (systematic or occasional) and purpose of 
human exploitation of elephant carcasses. A key 
research question (among others debated in the 
scope of this symposium) is: What would elephant 
hunting and processing sites look like and what 
kind of archaeological evidence is to be expected?

Tackling this research question is not always 
straightforward. The empirical evidence might 
not meet the expectations. First, the spatial as-
sociation of proboscidean remains with artifacts 
does not necessarily imply causation. Spatial as-
sociation, or the degree to which archaeological 
material occurs in spatial proximity, is a measur-
able condition of correlation (not causality) and 
a cornerstone analytical concept in archaeological 
science (Hodder and Orton, 1976). Nonetheless, 
it is inaccurately often used as a key, self-explana-
tory evidence in modeling past human behaviors, 
set forth by simple exploratory data analyses that 
mostly involve subjective visual methods (Bevan 
et al., 2013). As such, spatial association conveys 
an intuitive perception of spatial interaction and 
temporal contiguity. However, the observed spa-
tial patterns are rarely distinct snapshots in time 
and space of human activities and more likely the 
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result of a spatio-temporal palimpsest of natural 
and cultural processes (Bailey, 2007). As a conse-
quence of the interaction of the archaeological de-
posit with the biosphere, the atmosphere and the 
hydrosphere, syn- and post-depositional processes 
occur and may interact at different spatio-tempo-
ral scales. Accordingly, multi-scale spatio-temporal 
patterns are generated by a variety of anthropogen-
ic (e.g., site re-occupation, recycling), biological 
(e.g., trampling, carnivore ravaging, burrowing), 
geological (e.g., deflation, erosion, swelling and 
shrinking of clay) and chemical processes (e.g., 
weathering, oxidation). Each process depends on 
the outcome of the other processes, and has the 
potential to rework, obliterate or preserve it (Kar-
kanas and Goldberg, 2019). Moreover, different 
processes may achieve similar outcomes (equifinal-
ity) and a single process may lead to different out-
comes (multifinality), introducing further pitfalls 
in the inferential procedure (Lyman, 1994, 2004). 
In such a complex open system, multiple entities 
(processes) interact with each other in non-linear, 
adaptive ways, so that the outcome patterns cannot 
be easily inferred.

Hence, capturing the complexity of past hu-
man-elephant interactions (and past human be-
havior in general) is highly dependent on solid 
multidisciplinary analyses. Among others, tapho-
nomic and spatial analyses are certainly of primary 
importance. Since the first works on early hominid 
evolution (Behrensmeyer, 1975; Boaz and Beh-
rensmeyer, 1976; Hill, 1976; Gifford and Beh-
rensmeyer, 1977; Brain, 1981), taphonomy has 
developed a wider theoretical and methodological 
framework, to the extent that the ephemeral di-
chotomy between taphonomy and the study of site 
formation processes, based on the nature of the 
object of interest, eventually has dissolved in the 
last decades towards an integrative and multi-disci-
plinary investigation of the processes, both natural 
and cultural, that modify the original properties of 
organic and inorganic material (Domínguez-Ro-
drigo et  al., 2011; but see Lyman, 2010). More-
over, from different spatial perspectives, the anal-
ysis of orientation patterns, as well as refitting 

patterns, size sorting and vertical distributions as 
indicators of syn- and post-depositional processes, 
have largely benefit from improved data collection 
and sampling strategies, advanced analytical meth-
ods and enriched experimental/neo-taphonomic 
references (e.g., Bertran and Texier, 1995; Leno-
ble and Bertran, 2004; McPherron, 2005, 2018; 
Anderson and Burke, 2008; Arriaza et  al., 2018; 
Benito-Calvo and de la Torre, 2011; Bertran et al., 
2012; Domínguez-Rodrigo and García-Pérez, 
2013; Cobo-Sánchez et  al., 2014; Ullah et  al., 
2015; García-Moreno et  al., 2016; Clark, 2017; 
Vaquero et  al., 2017). These analyses have been 
at different levels widely applied in studies of hu-
man-elephant interactions (e.g., Villa, 1990; Alp-
erson-Afil et al., 2009; Boschian and Saccà, 2010; 
Müller and Pasda, 2011; Sánchez-Romero et  al., 
2016; Santucci et al., 2016). Nevertheless, the in-
tegration of spatially-explicit analytical methods 
in taphonomic studies is not yet fully developed. 
Especially the study of the spatial distribution and 
the multiscale spatial correlation of different ta-
phonomic markers is still under-developed. More-
over, it largely lacks a shared and extensive frame 
of references.

By summarizing the empirical evidence for 
human-elephant interactions in Early and Middle 
Pleistocene open-air sites of western Eurasia, this 
contribution aims to elaborate on the need for a 
more rigorous, spatially explicit inferential pro-
cedure in modeling past human behaviors. A re-
newed analytical approach, namely spatial tapho-
nomy, is introduced. In its general term, spatial 
taphonomy refers to the multiscale investigation 
of the spatial properties of taphonomic processes. 
Building upon a long lasting research tradition of 
taphonomic studies, its goal is to move beyond 
the self-explanatory, indirect evidence provided by 
the spatial association of faunal remains and arti-
facts, and to seek for a more effective theoretical 
and methodological framework that accounts for 
the spatio-temporal dimension which is inherent 
to any complex system. By complementing the 
traditional archaeological, geoarchaeological and 
taphonomic approaches, spatial taphonomy en-
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hances our understanding of the processes forming 
archaeological and palaeontological assemblages, 
allowing a finer comprehension of the mode and 
degree of human involvement in the acquisition 
and processing of elephant carcasses.

9.2	 HUMAN-ELEPHANT INTERACTIONS

9.2.1.  DIRECT AND INDIRECT EVIDENCE

The following synthesis is not intended to question 
current interpretations, but rather to stimulate the 
discussion on the need for compelling taphonom-
ic and spatial studies for a better understanding 
of human-elephant interactions. The frequency of 
direct and indirect evidence, and the composition 
of the faunal assemblages are discussed for a sam-
ple of 35 Early and Middle Pleistocene open-air 
sites in western Eurasia with a single or multiple 

elephant carcasses, or with important probosci-
dean remains in their diverse faunal assemblages 
(Fig. 9.1).

In these sites, human-elephant interactions 
are reported on the basis of direct (i.e., cut-marks, 
proboscidean bone tools or breakages for brain/
marrow extraction, tools embedded in proboscide-
an bones) and/or indirect evidence (i.e., spatial as-
sociation with artifacts and/or human fossils, tool 
use-wear and residues patterns, refitting patterns). 
Like in legal terms, a direct evidence is defined as 
an evidence that directly proves a fact, without an 
intervening inference. On the other hand, an indi-
rect evidence, or circumstantial evidence, consists 
of a fact or set of facts which, if proven true, will 
support the formulation of an inference. Therefore, 
in the absence of verified direct evidence, the as-
sessment of human-elephant interactions primar-
ily relies on the accuracy of the indirect evidence 
and the validity of the inferential procedures.

Figure 9.1: Geographical distribution of the sample of Early and Middle Pleistocene open-air sites in western Eurasia with direct or 
indirect evidence of human-elephant interactions (made using Natural Earth public domain data – naturalearthdata.com).

https://www.naturalearthdata.com
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Yet, despite the primary importance of direct 
evidence in proving human-elephant interactions, 
it only offers a relative contribution to the narra-
tive. The place and intensity of cut-marks are con-
sidered to be good indicators of the relative tim-
ing and aiming of the human access to the carcass 
(Blumenschine, 1988, 1995). However, cut-mark 
frequency is observed to be rather low in extant 
proboscideans due to the thickness of the peri-
osteum and articular cartilage (Haynes, 1991). 
Moreover, due to a relatively high variability in 
cut-mark morphology and the lack of a shared, 
effective methodological framework, their inter-
pretation might be less clear-cut than suggested 
(Lupo and O’Connell, 2002; Domínguez-Rodri-
go et al., 2017b). Breakages for brain or marrow 
extraction are also relatively rare. The presence of 
marrow cavities in proboscidean bones seems to 
be random and not predictable (Villa et al., 2005; 
Yravedra et al., 2012; Boschian et al., 2019) and it 
is not clear which breakages were exclusively func-
tional to tool production and which were concur-
rent to marrow extraction (Zutovski and Barkai, 
2016; Boschian et  al., 2019). Artifacts made of 
proboscidean bones are generally rare during 
the Lower Palaeolithic, although they were quite 
abundant in very few sites (e.g., Gaudzinski et al., 
2005; Rabinovich et al., 2012; Saccà, 2012; Bos-
chian and Saccà, 2015). Regardless of their pres-
ence, in the absence of any use-wear/residues evi-
dence, it is still to be assessed whether they had a 
functional role or not (Zutovski and Barkai, 2016; 

Barkai, 2019). Tools embedded in proboscidean 
bones are rather rare and actually absent in the 
Early and Middle Pleistocene (Wojtal et al., 2019 
and references therein). In the absence of other 
lines of evidence, weapons closely associated with 
proboscidean bones, such as that at the site of 
Lehringen (Germany), cannot be considered un-
equivocal evidence for elephant hunting, likewise 
any other spatially associated artifacts.

Figure 9.2 shows the presence (in red) and the 
absence (in gray) of direct and indirect evidence of 
human-elephant interactions in the sampled sites. 
In addition, the graph shows the MNI (Minimum 
Number of Individuals) of proboscideans and the 
presence/absence in the same assemblage of oth-
er medium-to-large-sized herbivores (e.g., hippos, 
rhinos, Bovidae, Cervidae). The presence of large 
carnivores is marked positive by the occurrence 
in the same stratigraphic context of carnivore re-
mains (e.g., big cats, Hyaenidae, Canidae, Ursidae) 
or carnivore coprolites. Carnivore marks on the 
elephant bones are also reported. For a complete 
summary list of the faunal assemblages see Koni-
daris and Tourloukis (this volume).

Direct evidence of proboscidean exploitation 
is relatively rare in the sampled Early and Middle 
Pleistocene record. Specifically, cut-marks are re-
ported in 12 out of 35 sites (34%); bone breakages 
for brain or marrow extraction in 8 sites (23%); 
bone tools or impact flakes in 11 sites (31%); not 
a tool fragment embedded in elephant bones is re-
ported, except for the wooded lance “between the 

Figure 9.2: Geographical distribution of the sample of Early and Middle Pleistocene open-air sites in western Eurasia with direct or 
indirect evidence of human-elephant interactions (made using Natural Earth public domain data – naturalearthdata.com).

https://www.naturalearthdata.com
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ribs of the elephant” at the site of Lehringen —al-
though the original documentation is rather poor 
(Weber, 2000). Overall, 63% of the sites reported 
at least one type of direct evidence; 26% of them 
reported more than one. Indirect evidence such 
as tool use-wear and residues (23%) or refitting 
(29%) patterns are not more frequent than direct 
evidence. On the other hand, the spatial associa-
tion of faunal remains with lithic artifacts is cer-
tainly the most common evidence in support of 
human-elephant interactions (in some cases also 
the only one, in lack of any direct evidence). Inter-
estingly, only few sites rely on a positive combina-
tion of multiple direct and indirect evidence. Yet, 
also in those cases, interpretations are often limited 
by the complex palimpsest nature of the deposits 
(e.g., Boschian and Saccà, 2010).

Consequently, the mode of acquisition of pro-
boscidean carcasses and its range of variability in 
the spectrum of hunting/scavenging strategies, 
the degree of exploitation (complete, random and 
partial, selective), its timing relative to carnivore 
scavenging and to the decomposition of the car-
cass, its ecological and socio-economical role are 
hitherto not fully understood and a matter of 
debate. In the attempt to better comprehend hu-
man-elephant interactions, both direct and indi-
rect evidence should be cautiously considered with 
reference to the depositional context. For instance, 
an ideal set of evidence in support of butchering 
activities would include cut-marks, reliable spatial 
association with tools suitable for butchering, pro-
boscidean protein residues on tools and consisten-
cy of use-wear patterns (Haynes and Klimowicz, 
2015). For the purpose of this contribution, I will 
elaborate more on the role of spatial associations 
in the inferential process. Critical insights might 
come from the multi-level and multi-scale analysis 
of spatial patterns.

9.2.2.  SPATIO-TEMPORAL PALIMPSESTS

The archaeological record, “at best a static pattern 
of associations and covariations among things dis-

tributed in space” (Binford, 1980: p. 4), nonethe-
less retains information about the interactions be-
tween the past cultural system and its surrounding 
environment. With reference to human-elephant 
interactions, we are most likely dealing with hu-
man-carnivore-megafauna interactions. Besides 
the frequency of direct and indirect evidence in 
the sample of sites, Figure 9.2 shows in addition 
the presence in the same assemblages of medi-
um-to-large herbivores (including other elephants) 
and carnivores (also inferred by the presence of 
coprolites). Carnivore marks on elephant bones 
are reported in 11 of 35 cases (31%), whereas large 
carnivore remains or hyena coprolites are report-
ed in 25 sites (71%). Thus, only 8 out of the 35 
sampled sites do not include carnivore remains/
coprolites or carnivore marks on elephant bones, 
albeit at least in 2 of them (Barranc de la Boella, 
Gesher Benot Ya’aqov) the presence of carnivores 
is attested by carnivore marks on bones other than 
elephant, and nevertheless occurring in the same 
stratigraphic layer with the elephant bones and the 
artifacts. Other medium-to-large herbivores are 
likely ubiquitous (94%), and sites with an MNI 
of elephants greater than 1 are 13 (37%). Hence, 
most of the localities, where human-elephant in-
teractions have been documented, have yielded 
rich faunal assemblages marked by a significant 
presence of other medium-to-large herbivores and 
large carnivores. Both may have played major roles 
in the formation and modification of the fossil ac-
cumulations.

As an example, while the elephants’ repeated 
use of migration trails or paths leading to water 
sources might have facilitated humans in the prac-
tice of particular hunting strategies (Haynes, 2012; 
Agam and Barkai, 2018), it might have as well trig-
gered intensive trampling especially in those places 
where accumulations of elephant carcasses usually 
occur. As a consequence of trampling and kicking 
(by elephants and other megaherbivores), stratigra-
phy may be reworked, bones and artifacts may be 
dispersed and reoriented, edge-damages may occur 
on stone tools and marks and fractures may be 
variably produced on bones to the extent of mim-
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icking cut-marks or intentional breaking (Fiorillo, 
1984; Andrews and Cook, 1985; Gifford-Gon-
zalez et  al., 1985; Behrensmeyer et  al., 1986; 
Haynes, 1988, 2012; Olsen and Shipman, 1988; 
Nielsen, 1991; Domínguez-Rodrigo et  al., 2009; 
Gaudzinski-Windheuser et al., 2010; Benito-Cal-
vo et al., 2011; McPherron et al., 2014; Courtenay 
et  al., 2019a, 2020; Pizarro-Monzo and Domín-
guez-Rodrigo, 2020). Since direct evidence of el-
ephant trampling, such as ichnofossils, are rarely 
preserved (Palombo et  al., 2018; Serangeli et  al., 
2020), inferences are substantially drawn from the 
indirect evidence.

Furthermore, the significant presence of car-
nivores at elephant exploitation sites might have 
as well considerably increased the system entropy. 
Carnivore-hominin interactions are traditionally 
evaluated on the basis of the frequency and dis-
tribution of carnivore and anthropogenic mod-
ifications on bones (Lupo and O’Connell, 2002; 
Domínguez-Rodrigo et  al., 2007b; Faith et  al., 
2007; Egeland, 2014), upon their unambiguous 
definition (James and Thompson, 2015; Domín-
guez-Rodrigo et al., 2017b) and confident classi-
fication. Recent technological advances in the dig-
ital acquisition and multivariate analysis of bone 
modifications (e.g., microscope image acquisi-
tion, geometric morphometrics analysis, Bayesian 
modeling and machine learning algorithms; Bello 
and Soligo, 2008; Boschin and Crezzini, 2012; 
González et  al., 2015; Harris et  al., 2017; Pante 
et  al., 2017; Domínguez-Rodrigo and Baqueda-
no, 2018; Domínguez-Rodrigo, 2019; Courtenay 
et al., 2019b; Moclán et al., 2019) have overcome 
much of the biases of more subjective and quali-
tative approaches and have significantly increased 
the accuracy in their classification. Nevertheless, 
the equifinality issue and the spatio-temporal 
resolution of carnivore-hominin interactions are 
still major issues affecting the taphonomic inter-
pretation of many sites (e.g., McPherron et  al., 
2010; Baquedano et al., 2012; Pante et al., 2012, 
2015; Domínguez-Rodrigo et al., 2014a; Domín-
guez-Rodrigo and Alcalá, 2016; Rosell et  al., 
2019a, b; Saladié and Rodríguez-Hidalgo, 2019).

This issue is equally valid for Early and Mid-
dle Pleistocene sites. The mode and degree of hu-
man access to and exploitation of animal carcasses 
might have likely changed with a change in the 
carnivore guild (see Konidaris and Tourloukis, this 
volume), and yet the presence of carnivores, sim-
ilarly attracted by food and water resources, have 
not overall limited the presence of hominins, and 
vice versa (e.g., Espigares et al., 2013; Pineda et al., 
2017). By creating site structures and assemblage 
compositions that closely resemble anthropogenic 
ones, or by modifying at different spatio-tempo-
ral scales anthropogenic accumulations, carnivores 
definitely represent a critical element of uncer-
tainty (Binford, 1981a; Gifford-Gonzalez, 1989; 
O’Connell et  al., 1992; White and Diedrich, 
2012; Camarós et al., 2013; Arriaza et al., 2018; 
Arilla et al., 2020). A formal quantification of such 
an uncertainty in probabilistic terms marks future 
direction of analysis (Harris et al., 2017).

Geological processes might as well likely con-
tribute to the building of complex palimpsests. 
Most of the Early and Middle Pleistocene open-
air sites considered here occur in fluvio-lacustrine 
and palustrine environments. These are known to 
be attractive locations to animals and to favor ar-
chaeological preservation in specific depositional 
settings. Nevertheless, they are also open, dynam-
ic systems in which diverse syn- and post-deposi-
tional geogenic processes take place that might at 
different spatio-temporal scales rework, erode or 
preserve the archaeological record (Karkanas and 
Goldberg, 2019). As an example, White and Die-
drich (2012) report that, in addition to primary 
scavenging by large carnivores and secondary scav-
enging by smaller carnivores, final disarticulation 
and scattering of the bones of a modern day ele-
phant carcass were further influenced by the sea-
sonal flooding of the lake shore. Notably, some 
type of flooding event has been reported in many 
of the sites discussed here (e.g., Boschian and Sac-
cà, 2010; Marder et  al., 2011; Sánchez-Romero 
et al., 2016; Karkanas et al., 2018).

Indeed, among the variety of natural process-
es that can contribute to the building of archae-
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ological palimpsests, water flows are certainly the 
most important and largely studied. Especially in 
terrestrial alluvial environments, anisotropy (the 
preferential orientation of fossils or artifacts along 
the flow direction) is one of the proxies tradition-
ally used to discriminate primary (in situ) vs. sec-
ondary (reworked) contexts (e.g., Toots, 1965; 
Isaac, 1967; Voorhies, 1969; Behrensmeyer, 
1982, 1988; Nash and Petraglia, 1987; Petraglia 
and Nash, 1987; Petraglia and Potts, 1994). Con-
sequently, fabric analysis, or the analysis of the 
orientation of archaeological material as clasts 
within a sedimentary matrix, has been widely 
applied in studying human-elephant interactions 
(e.g., Boschian and Saccà, 2010; Müller and Pas-
da, 2011; Sánchez-Romero et  al., 2016; Peters 
and Kolfschoten, 2020). However, it is by itself 
not sufficient to unequivocally discriminate the 
depositional context and should therefore be in-
tegrated with the analysis of other diagnostic fea-
tures (Lenoble and Bertran, 2004). As an exam-
ple, anisotropy has been equally documented in 
autochthonous lag assemblages undergoing min-
imal re-sedimentation in a modern lake flood-
plain (Cobo-Sánchez et  al., 2014). Moreover, 
besides water-flow processes, anisotropy has also 
been observed in association with a wide range 
of other processes, such as slope processes (Ber-
tran and Texier, 1995), trampling (Benito-Cal-
vo et  al., 2011) and carnivore ravaging (Arriaza 
et al., 2018).

In such a complex, dynamic system, the hu-
man exploitation of an elephant carcass might oc-
cur at different spatio-temporal scales as well. As 
an example, contrary to the usually limited exten-
sion of archaeological excavations, Hadza kill sites 
have been observed to be sometimes marked by 
such a large-scale spatial distribution of associated 
bone debris and features that largely exceeds that 
of archaeological sites (O’Connell et  al., 1992). 
Moreover, it is worth considering that, because 
larger animals such as elephants retain food value 
for a long time, they can be exploited longer than 
smaller species (Behrensmeyer, 1987). Recycling of 
raw material (e.g., bone) and delayed exploitation 

of elephant meat, fat and marrow might have been 
more common than traditionally thought (Lem-
orini, 2018; Boschian et al., 2019).

All these natural and cultural processes, work-
ing in such a dilated spatio-temporal framework, 
variably contribute to the building of complex spa-
tio-temporal palimpsests, with an increase of the 
system entropy both in terms of amount of disor-
der (chaos) and loss of information. In this con-
text, spatial association of proboscidean remains 
with artifacts should undergo scrupulous investi-
gation before being used as evidence of human-el-
ephant interactions.

9.3	 SPATIAL TAPHONOMY: 
THEORETICAL AND 
METHODOLOGICAL FRAMEWORKS

Unraveling spatio-temporal palimpsests has always 
been a critical task in archaeology. Despite recent 
theoretical and methodological advances in palimp-
sest dissection (e.g., Malinsky-Buller et al., 2011; 
Vaquero et  al., 2012; Barton and Riel-Salvatore, 
2014; Davies et al., 2016; Mallol and Hernández, 
2016; Martínez-Moreno et al., 2016; Rezek et al., 
in press), a subtle, diffuse misconception is that it 
is possible to remove the negative veil of natural 
post-depositional processes and reveal the original, 
pristine archaeological occurrence; thus implying 
the presence of a linear, homogeneous, predictable 
“background noise” to be erased. On the contrary, 
cultural and natural processes, working at different 
scales, frequencies and intensities, are dynamically 
linked within a spatio-temporal framework. They 
are so intertwined that it is not possible to remove 
one without stripping away components of the 
other.

Borrowed from complex system theory, the 
concept of “emergence” describes well this prop-
erty of archaeological palimpsests (Goldstein, 
1999; Holland, 2000 and, for a more recent ar-
chaeological application, Rezek et  al., in press). 
Emergence is defined as the “the arising of novel 
and coherent structures, patterns and properties 
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during the process of self-organization in com-
plex systems” (Goldstein, 1999: p.  49). Thus, 
emergent spatio-temporal structures are patterns 
that arise in the system as a whole from the inter-
actions in space and time between its components 
—patterns not otherwise produced by the sys-
temic processes alone. Because emergent patterns 
are neither predictable, nor reducible to their 
parts alone, explanation of the system dynamics 
in term of its elements alone is insufficient. On 
the other hand, understanding such a complex 
system is possible by focusing on across-system 
associations and interactions among its compo-
nents (Goldstein, 1999). Hence, capturing the 
complexity of past human-elephant interactions 
(and past human behavior in general) requires the 
rejection of the binary, hierarchical opposition 
between cultural and natural layers; it demands 
a change of focus from the system components 
themselves to the whole archaeological record as 
scale-dependent, emergent interactions between 
its parts. Variations in the observed patterns can 
be explained by the system dynamics and the ran-
domness, unpredictability of interactions between 
its components, which often inherit a spatial di-
mension. Indeed, the spatio-temporal dimension 
of emergent patterns has long been universally 
recognized to be paramount in the investigation 
of the archaeological record (e.g., Whallon, 1973, 
1974; Hodder and Orton, 1976; Clarke, 1977; 
Butzer, 1982, 2008; Kintigh and Ammerman, 
1982; Orton, 1982; Hietala and Larson, 1984; 
Lyman, 1994; Petraglia and Potts, 1994; Dibble 
et al., 1997; Wheatley and Gillings, 2002; Conol-
ly and Lake, 2006; Rapp and Hill, 2006; Gillings 
et al., 2020). With reference to human-elephant 
interactions, this is especially valid in multi-car-
cass sites where the archaeological record emerges 
from complex dynamics of anthropogenic and 
natural processes (e.g., Boschian and Saccà, 2010; 
Anzidei et al., 2012).

Therefore, can we attempt to explain such 
complex systems in terms of the multifaceted in-
teractions between their components, more than 
as the sum of their parts? Can we estimate uncer-

tainty and account for the observer’s bias1 and the 
biases derived from missing, time/space-averaged 
data and spatially uneven sampling strategies? As-
suming a spatial dimension of time (Wandsnider, 
1992), I argue that the spatial distribution of en-
tities and their attributes is among the most infor-
mative aspects of the archaeological variability and 
that understanding the dynamics of past complex 
systems requires spatially explicit, multi-scale ana-
lytical methods and adequate inferential approach-
es. Surely, drawing sound inferences highly de-
pends also on accurate data collections, sampling 
strategies consistent with the scale of the research 
question, and adequate frames of references with 
respect to the specific context under study.

Following a long tradition of research in site 
formation processes —a systemic (processualist) 
approach that emerged in the ’60s from general 
system theory and strongly advocated the use of 
quantitative data and hypothetico-deductive mod-
els (Binford and Binford, 1968; Clarke, 1968; 
Flannery, 1968; and Kohler, 2012 for a review), 
system theory still provides an adequate framework 
for developing sound methodological approaches 
to investigate the spatio-temporal dimension of 
past complex systems such as human-elephant in-
teractions. Many of the lessons of the processualist 
approach have been nowadays largely assimilated, 
albeit, a half-century after, many other intuitions 
have still to find full recognition and application 
(Shennan, 1989; Lycett and Shennan, 2018). For 
instance, the call for a multiscale and multilev-
el analysis of the spatio-temporal dimension of 
past cultural systems (Clarke, 1968) was possibly 
ahead of the technology of the time, while it could 
nowadays generously benefit from the more recent 
technological advances in GIS, AI and agent based 

1	  On the concept of emergence as a function of the episte-
mological bias of the observer, Crutchfield (1993: p. 3) noted: 
“the detected patterns are often assumed implicitly by analysts 
via the statistics they select to confirm the patterns’ existence 
in experimental data. The obvious consequence is that ‘structu-
re’ goes unseen due to an observer’s biases“. An issue related 
to the natural tendency to seek confirmation, rather then rejec-
tion, of our assumptions.
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modeling (which in turn are connected to the de-
velopment of complexity theory).

Nevertheless, the analysis of spatial patterns 
still lacks a more formal, quantitative framework, 
being on the contrary mostly based on visual ex-
aminations and intuitive interpretations of dis-
tribution maps and cross-sectional plots alike 
(Bevan and Wilson, 2013). Even though such 
an “eye-balling” technique to read spatial distri-
butions has long been criticized2, it is still largely 
used to search for evidence of spatial association 
and co-variation. Similarly, for many of the sites 
considered here, a functional association of arti-
facts with elephant remains has been inferred on 
the basis of simple visualizations of distribution 
maps. On the other hand, moving beyond this 
basic exploratory analysis, more compelling spatial 
analyses of taphonomic and technological attri-
butes in higher dimensional space might open new 
research perspectives. Indeed, multiple taphonom-
ic or techno-economic proxies could be eventually 
spatially defined in order to investigate not only 
the spatial extension and intensity of taphonomic 
and behavioral processes, but also the multiscale 
interactions between them.

In spatial point pattern analysis, points are 
defined as the location of events generated by a 
point process (natural or cultural). The intensity of 
a spatial process, generally evaluated by means of 
kernel density estimation (Diggle, 1985), informs 
about its rate of occurrence (uniform or spatially 
varying across the study area). Although instruc-
tive, intensity does not provide sufficient informa-
tion to reliably infer interactions between process-
es, which are instead of interest in the analysis of 
emergent patterns. On the other hand, multiscale 
inter-point interactions are measured by less com-
mon, higher-order statistics, such as the Ripley’s K 
correlation function (Ripley, 1977). In investigat-
ing the spatio-temporal dimension of past complex 
systems, such multiscale and multivariate statistics 

2	  “There is a widespread belief that we should go beyond the 
‘eyeballing’ of spatial distributions and develop more objective 
approaches to the recognition of spatial patterns“ (Kintigh and 
Ammerman, 1982: p. 31).

are extremely useful to determine the type of spa-
tial dependence (i.e., random, positive or negative 
association) between multiple processes, quantify 
its strength and spatial range. As an example, with 
reference to human-elephant interactions, it might 
be of interest to investigate the three-dimensional 
spatial dependence between behavioral and tapho-
nomic processes by cross-analyzing techno-func-
tional (e.g., raw material units, artifact types, 
use-wear/residue traces) and taphonomic proxies 
(e.g., bone surface modifications, bone breakage 
patterns, skeletal part profiles, dimensional class-
es). Furthermore, simulation techniques, such as 
Monte Carlo methods (Robert and Casella, 2004), 
might be employed in an hypothesis testing frame-
work in order to build statistical significance and 
bypass with confidence the equifinality/multifinal-
ity inferential pitfalls. Statistical modeling is yet 
another, less common, but more powerful way to 
build statistical inference. Indeed, statistical mod-
eling allows one to explicitly fit different explana-
tory variables to the empirical data. Thus, by build-
ing different statistical models and by using model 
selection techniques, it is possible to choose the 
best fitting model from among different compet-
ing hypotheses (e.g., Eve and Crema, 2014 for an 
application to archaeological settlement analysis). 
Moreover, contrary to the frequentist null hypoth-
esis testing, Bayesian inference allows one to esti-
mate model parameters in a probabilistic fashion, 
taking into account both prior knowledge and em-
pirical data (e.g., Crema et al., 2014; Harris et al., 
2017). By using such a probabilistic approach, it 
is possible to build best predictions starting from 
incomplete observations (such as the archaeologi-
cal record), thus acknowledging a certain degree of 
uncertainty.

Interestingly, in his review of spatial statistics 
for the study of cultural processes, Orton (1982) 
beforehand discussed the utility of univariate and 
multivariate spatial point pattern statistics (e.g., 
K-function; Ripley, 1977) and the use of Monte 
Carlo simulations in hypothesis-testing frame-
works. Nonetheless, only a relatively small number 
of scholars have continued to adopt advanced spa-
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tial statistics to unravel past human behaviors from 
scatters of material culture (e.g., Orton, 2004; Bev-
an and Conolly, 2006, 2009; Crema et al., 2010; 
Bevan and Wilson, 2013; Crema and Bianchi, 
2013; Eve and Crema, 2014; Crema, 2015; Negre 
et al., 2016, 2017; Reeves et al., 2019). Although 
these studies acknowledge post-depositional ef-
fects, they nevertheless lack explicit consideration 
of the spatial structure of natural processes. Besides 
well-developed quantitative methods for the anal-
ysis of orientation patterns, advanced spatial sta-
tistics are still insufficiently applied to the study of 
taphonomic processes. Therefore, spatial taphono-
my aims to fill this gap. It refers to the multiscale 
and multilevel investigation of the spatial proper-
ties of taphonomic processes. It seeks for a more 
effective way to investigate past complex system, 
by bridging the traditional archaeological, geoar-
chaeological and taphonomic approaches into a 
spatio-temporal analytical framework.

An early attempt to adopt a specific taphonom-
ic perspective in the analysis of spatial distributions 
dates back to the early ’80s (Hivernel and Hodder, 
1984). More recently, only a relatively small num-
ber of studies have answered the need for a more 
robust spatial analysis of taphonomic processes 
(e.g., Lenoble et  al., 2008; Domínguez-Rodrigo 
et al., 2014b, c, 2017a; Giusti and Arzarello, 2016; 
Romagnoli and Vaquero, 2016; Organista et  al., 
2017; Discamps et al., 2019; Giusti et al., 2019; 
Mendez-Quintas et al., 2019). Applications to the 
study of past human-elephant interactions are also 
relatively few (Sánchez-Romero et al., 2016; Giusti 
et al., 2018; Mackie et al., 2020; Peters and Kolf-
schoten, 2020). In these works, a spatially explicit, 
multi-scale analytical approach allowed to capture 
the spatial dimension of the processes forming the 
archaeological record; hypothesis-testing methods 
were also used to build sound statistical infer-
ences. As an example, Giusti et al. (2018) used a 
comprehensive set of spatial statistics in order to 
disentangle the depositional processes at the ele-
phant-butchering site of Marathousa 1 (Greece). 
Besides orientation patterns and vertical distribu-
tions, the authors analyzed spatial trends in either 

the assemblage intensities and the associations be-
tween different classes of remains (e.g., the spatial 
dependence between two depositional units sepa-
rated by an erosional contact). All together, these 
spatial analyses allowed the authors to reliably 
draw inferences about the autochthonous origin of 
the assemblage.

Hence, spatial point pattern analysis results 
particularly useful to investigate the spatio-tem-
poral dimension of taphonomic processes and 
their multiscale and multilevel interactions with 
emergent behavioral processes. Moving forward, 
spatial taphonomy would also benefit from the 
integration of the spatial dimension in machine 
learning algorithms (ML) and agent based models 
(ABM). During the last few years, ML has been 
successfully applied in taphonomic studies of bone 
surface modifications, bone breakage patterns and 
skeletal part profiles (Arriaza and Domínguez-Ro-
drigo, 2016; Domínguez-Rodrigo and Baquedano, 
2018; Byeon et  al., 2019; Cifuentes-Alcobendas 
and Domínguez-Rodrigo, 2019; Courtenay et al., 
2019a, b; Domínguez-Rodrigo, 2019; Moclán 
et  al., 2019). These studies employed advanced 
multivariate statistics and classification methods in 
order to bypass the equifinality inferential pitfall 
and to objectively discriminate the human/carni-
vore agency in fossil accumulation. Likewise, ML 
allows a through investigation of spatial patterns. 
For instance, the combination of unsupervised, 
hybrid and supervised learning has already proved 
to be effective in the analysis of spatial data and in 
the identification of discrete fossiliferous levels in 
palaeontological sites (Martín Perea et al., 2020). 
Furthermore, by complementing the spatial data 
with other crucial archaeological, geological and 
taphonomic attributes, ML would likely allow us 
to objectively and efficiently reveal the complex 
interactions that lead to the emergence of archaeo-
logical spatio-temporal patterns.

Being understood that the appropriate choice 
of an analytical technique depends on the context 
of application, these recent advances in comput-
er science and mathematics are definitely pushing 
forward our understanding of archaeological pa-
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limpsests, promoting a more objective analysis of 
spatial patterns. Nevertheless, the interpretation 
of emergent patterns requires valid theory-based 
models tailored to specific theoretical problems 
and forms of information. In this regard, ABM 
provides a convenient framework for developing 
formal models of complex archaeological systems. 
ABM, and simulations in general, are primary tools 
for studying the emergent properties of complex 
systems, allowing the investigation of changes and 
interactions in space and time (see Crabtree et al., 
2019; Davies et  al., 2019; Romanowska et  al., 
2019 and references therein). For instance, a spa-
tially explicit ABM has been successfully used to 
model a palimpsest deposit in a fluvial landscape, 
thus aiding interpretations of the archaeological 
deposit (Davies et al., 2016).

Nonetheless, drawing sound statistical in-
ferences highly depends as well on references 
grounded on empirical observations. In order to 
consolidate the spatial taphonomic approach, it 
is therefore necessary to build a rich, exhaustive 
frame of references from actualistic, archaeologi-
cal or palaeontological cases, where the spatial and 
taphonomic signatures might be more explicitly 
recognizable and attributable to particular sets of 
circumstances. On a side note, the building of ef-
fective frames of references would greatly benefit 
from a broader application of open science prac-
tices in archaeology (Marwick et al., 2017). Open 
access to raw taphonomic data (including spatial 
coordinates) should be facilitated and promoted if 
we aim to develop a spatial taphonomic referential 
framework for both archaeological and palaeonto-
logical assemblages (Giusti et al., 2019).

9.4	 CONCLUSION

Human-elephant interactions represent key nodes 
of complex ecological, cultural and socio-econom-
ic systems. In the last decades, evidence has been 
provided in support, to some degree, of the exis-
tence of such interactions since the Early Pleisto-
cene and their intensification in the Middle and 

Late Pleistocene. Nevertheless, the nature of early 
human-elephant interactions are yet to be fully 
understood —the mode (hunting or active/pas-
sive scavenging), degree (systematic or occasional), 
purpose of human exploitation of proboscideans 
and its relation to other systemic agents are hither-
to a matter of debate. Models are commonly built 
by using inductive reasoning from a set of obser-
vations that is, for its archaeological nature, very 
fragmented.

What would elephant hunting and process-
ing sites look like and what kind of archaeologi-
cal evidence is to be expected? Tackling this kind 
of research questions would require a high level 
of generalization that should nevertheless derive 
from consolidated knowledge about specific pro-
cesses (Villa et al., 2005). At the site-scale of anal-
ysis, there is no single evidence that can lead to 
a certain solution; but the combination of many, 
examined within the specific context of each site, 
might allow probabilistic inferences. This is due 
to the palimpsest nature of the archaeological re-
cord and its extremely high variability generated 
by the non-linear interactions among different 
agents (human/carnivore/other megaherbivore) 
within different dynamic environments. Such in-
teractions inherit an ineluctable spatio-temporal 
dimension that emerge in spatio-temporal pat-
terns. Thus, on a site-by-site basis, if we tenta-
tively want to shed light on the vast complexity 
of human-elephant interactions, we should move 
beyond a reductionist understanding of the whole 
system in the mere terms of its constituent parts, 
and instead investigate, within a spatio-temporal 
analytical framework, the emerging interactions 
between the different biotic and abiotic compo-
nents of such a complex system of the past. Spatial 
taphonomy aims to answer this need by bridging 
the traditional archaeological, geoarchaeological 
and taphonomic approaches into a spatio-tempo-
ral analytical framework.

In the broad sense, this approach is hardly new 
—from different perspectives (e.g., orientation 
and refitting patterns), the spatial dimension of 
taphonomic processes has long been investigated. 
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Nevertheless, the study of the spatial distribution 
and the multiscale spatial correlation of different 
taphonomic and technological markers is still un-
der-developed. Only a relatively small number of 
recent studies has successfully investigated the spa-
tial properties of taphonomic processes adopting 
more compelling spatial statistics and hypothe-
sis-testing methods. Few have applied such meth-
ods in studies of human-elephant interactions. In 
these works, multiscale and multilevel spatial point 
pattern statistics allowed to draw more reliable in-
ferences about the site formation processes and 
the human involvement in the exploitation of ele-
phant carcasses. Nevertheless, despite these recent 
methodological advances, much work has still to 
be done. Unraveling complex systems such as past 
human-elephant interactions requires a thorough 
investigation of the multiscale interactions between 
taphonomic and behavioral processes. Besides the 
use of robust spatial statistics, the analysis of such 
a complex system might further benefit from the 
critical adoption of other powerful, less common 
analytical techniques, such as machine learning 
algorithms and agent based models. Nonetheless, 
building exhaustive and shared frames of refer-
ences from theory-based simulations or empirical 
cases remains a crucial step for the future devel-
opment of a spatial taphonomic approach to the 
study of archaeological palimpsests.

On the other hand, the increasing use of an array 
of advanced quantitative methods and techniques of 
analysis does not represent any scientific progress if 
methods and techniques do not follow an epistemo-
logical shift. Is the old paradigm “Man the hunter” 
still projecting its long shadow on the current de-
bate about past human-elephant interactions? After 
decades of research, much of the discussion is still 
largely revolving around the hunting vs. scavenging 
models, while a real shift of perspective towards a 
more holistic approach is still an ongoing process. 
By emphasizing the mode of meat acquisition, the 
risk is to underestimate other important issues, such 
as the degree of proboscidean exploitation and its 
relative role with respect to other taxa exploitation, 
non-animal resources and non-dietary behaviors.
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