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Algorithmic advancements in Computational Historical
Linguistics

Abstract

The use of computational methods in historical linguistics has seen a large boost in

recent years. An increasing availability ofmachine readable data and the growing power

of computers fostered this development. While the computational methods which are

used in this research stem fromdifferent scientific disciplines, a lot of tools fromcompu-

tational biology have found their way into this research. Drawing inspiration from ad-

vancements in related fields, this thesis aims at improving existing computational meth-

ods in different disciplines of computational historical linguistics.

Using advancements frommachine learning andnatural languageprocessing research,

I present an updated training regime for cognate detection algorithms. Besides achiev-

ing state of the art performance in a cognate clustering task, theupdated training scheme

considerably improved computation time.

Following up on these results, I develop a novel combination of tools from bioinfor-

matics and historical linguistics is developed. By defining an explicit model of sound

evolution, I include the notion of evolutionary time into a cognate detection task. The

resulting posterior distributions are used to evaluate the model on a standard cognate

detection task.

A standard problem in phylogenetic research is the inference of a tree. Current quasi

“industry-standard” methods use the classical Metropolis-Hastings algorithm. How-

ever, this algorithm is known to be rather inefficient for high dimensional and corre-

lated data. To solve this problem, I present an algorithm which uses Hamiltonian dy-

namics in the last chapter.
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Algorithmic advancements in Computational Historical
Linguistics

Zusammenfassung

Computergestützte Methoden in der historischen Linguistik haben in den letzten

Jahren einen großen Aufschwung erlebt. Die wachsende Verfügbarkeit maschinenles-

barerDaten fördertendieseEntwicklung ebensowiedie zunehmendeLeistungsfähigkeit

von Computern. Die in dieser Forschung verwendeten Berechnungsmethoden stam-

men aus verschiedenenwissenschaftlichenDisziplinen, wobeiMethoden aus der Bioin-

formatik sicherlich die Initialzündung gaben. Diese Arbeit, die sich von Fortschritten

in angrenzenden Gebieten inspirieren lässt, zielt darauf ab, die bestehenden Berech-

nungsmethoden in verschiedenen Bereichen der computergestützten historischen Lin-

guistik zu verbessern.

Mit Hilfe von Fortschritten aus der Forschung aus dem maschinellen Lernen und

der Computerlinguistik wird hier eine neue Trainingsmethode für Algorithmen zur

Kognatenerkennung vorgestellt. Diese Methode erreicht an vielen Stellen die besten

Ergebnisse im Bereich der Kognatenerkennung. Außerdem kann das neue Trainingss-

chema die Rechenzeit erheblich verbessern.

Ausgehend von diesen Ergebnissen wird eine neue Kombination vonMethoden der

Bioinformatik und der historischen Linguistik entwickelt. Durch die Definition eines

explizitenModells der Lautevolutionwird der Begriff der evolutionärenZeit in dieKog-

natenerkennung mit einbezogen. Die sich daraus ergebenden posterioren Verteilun-

genwerden verwendet, um dasModell anhand einer standardmäßigenKognatenerken-

nung zu evaluieren.

Eine weitere klassische Problemstellung in der pyhlogenetischen Forschung ist die

Inferenz eines Baumes. Aktuelle Methoden, die den “quasi-industriestandard” bilden,
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verwenden den klassischen Metropolis-Hastings-Algorithmus. Allerdings ist bekannt,

dass dieser Algorithmus für hochdimensionale und korrelierte Daten vergleichsweise

ineffizient ist. Umdieses Problem zu beheben, wird im letztenKapitel einAlgorithmus

vorgestellt, der die Hamilton’sche Dynamik verwendet.
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1
Introduction

We always want to find the origin of something or the reason why something is hap-

pening. This curiosity has been a driving force of scientific endeavors. Human lan-

guage is no exception to this. Thus, it is not surprising that the history and the origin

of languages has also been a major point of interest. Shortly before Darwin presented

his ideas on evolution and also noted the similarities between the evolution of species

and languages (Darwin, 1871), the German linguist August Schleicher published a tree

displaying relationships between the Indo-European languages as well as attempting

to reconstruct the Proto-Indo-European language (Schleicher, 1861). After becoming

aware of Darwins work, Schleicher drew several parallels between the evolution of lan-

guages and species and advocated rigorous treatment of the study of language evolution

with the tools of the natural sciences (Schleicher, 1863). As Konrad Koerner puts it in

his foreword to Schleicher’sDie SprachenEuropas in systematischerÜbersicht: linguistis-
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che Untersuchungen: “For him [Schleicher, authors note], languages could be analyzed

like organisms [...]” (p. XLVIII Schleicher, 1983).

With the increasing availability of machine-readable linguistic data and the advance-

ment of computational methods in recent years, these parallels gave rise to the appli-

cation of algorithms and methods from computational biology in a linguistic setting.

Atkinson and Gray (2005) and Croft (2001), building on Schleicher’s work, present

a systematic overview of similarities in data types and mechanisms of linguistic and bi-

ological evolution. These similarities have paved the way for methods from computa-

tional biology into linguistic research. The identification of groups of words which are

related to each other via a common ancestor has always been an important aspect of this

kind of research. While this process previously relied heavily on manual work, compu-

tational methods proved to be useful for this task. Furthermore, cognate word pairs are

important for phylogenetic inference. Modern algorithms fromcomputational biology

are able to build fairly accurate trees of language families purely based on cognacy data.

Thus, cognates play an important role in this area of research.

The aim of this thesis is to introduce new techniques to the realm of computational

historical linguistics. Thus, it tries to improve existingmodels of cognate identification

by usingMarkovModels. Suchmodels are a stochastic frameworkwhich can be used to

model sequential data. Theywere already successfully used in a number of applications

from computational biology to computational linguistics. Thus, they are well studied

and provide a powerful framework. In a second attempt, this thesis tries to bring to-

gether the task of cognate identification and phylogenetic inference. In traditional his-

torical linguistics, establishing cognate word pairs and inferring language family trees

went hand in hand. Modern approaches which bring together computational biology

and historical linguistics fall short in this regard. In this thesis, I bring together cognate

identification and phylogenetic inference by using an evolutionary model. This model

makes explicit assumptions about processes which underlie the evolutionary processes.

2



Finally, this thesis proposes a method which improves the algorithms used for phylo-

genetic inference. All algorithms in this area are based onMarkov Chain Monte Carlo

methods. The traditional algorithms for phylogenetic inference use a variant which is

known to be rather ineffective. Building on recent advancements, this thesis aims to

make these algorithms more effective.

Chapters 1 and 2 of this thesis introduce the relevant concepts in historical linguis-

tics and computational biology. Chapter 3 shows how current algorithms used for the

identification of cognates can be improved. Furthermore, these cognates are used in the

downstream application of inferring phylogenetic trees from inferred cognate sets. In

the chapter 4, I develop a model which tries to unite cognate identification and phylo-

genetic inference in one evolutionary model. The idea is to derive an explicit model of

sequence evolution for linguistics which can be used to infer cognacy and phylogenetic

relatedness. Chapter 5 is dedicated to the discussion of recent advancements inMarkov

Chain Monte Carlo techniques and their application for computational historical lin-

guistics. I conclude this thesis in chapter 6 with a discussion of the main results and a

short outlook on further topics and possible further research.
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2
(Computational) Historical Linguistics

Historical linguistics has a very long standing tradition. Taking a diachronic look at lan-

guages started at least as early as the 1820s with the work of Jacob andWilhelmGrimm.

Thus, it is arguably the oldest sub-discipline of linguistics. Research in historical lin-

guistics has shed light on the principles governing language change as well as upon the

societieswhich spoke these languages. Suchfindings also proved tobe valuable for other

fields dealing with prehistory (Renfrew, 1987; Haak et al., 2015, see also the references

in Jäger (2018)). A techniquewhich is central to historical linguistics is the comparative

methodwhich according toWeiss (2015) is used as such already since Schleicher (1852).

The different parts integral to the comparativemethod (see section 2.1) are in itself very

algorithmic in nature. This aspect, among other reasons, has lead to a computational

turn in the area of historical linguistics. The secondmain part of this chapter illustrates

algorithmic approaches to the study of language history. This research has ties to com-

putational biology (some relevant methods are introduced in chapter 3 in the area of

4



computational phylogenetic linguistics, computational linguistics (see for example chap-

ter 4) and several other disciplines.

2.1 The ComparativeMethod

The comparative method is one of the cornerstones of classical historical linguistics. In

its “narrow sense” (Ross andDurie, 1996, p. 3), the comparative method describes a se-

ries of steps necessary to systematically reconstruct (parts of) an ancestral language from

its reflexes in daughter languages. In its “wider sense” (Ross andDurie, 1996, p. 3), the

comparative method is conjoined with the theory of the “Neogrammarian hypothesis”

(Ross andDurie, 1996). One of themain parts of the neogrammarian hypothesis is that

there are no exceptions when it comes to sound change or as Osthoff and Brugmann

put it in the original:

Aller lautwandel, so weit er mechanisch vor sich geht, vollzieht sich nach
ausnahmslosen gesetzen, d. h. die richtung der lautbewegung ist bei allen
angehörigen einer sprachgenossenschaft, ausser dem fall, dass dialektspal-
tung eintritt, stets dieselbe, und alle wörter, in denen der der lautbewe-
gung unterworfene laut unter gleichen verhältnissen erscheint, werden
ohne ausnahmevonder änderung ergriffen (OsthoffandBrugmann, 1878,
p. 8).1

The neogrammarian hypothesis aims to ground the science of language history and

their tools ontofirmground inorder tohave a scientificmethodwhich canbe rigorously

analyzed. While this hypothesis makes pretty strong assumptions, it has been very vital
1The spelling is as in the original.

This translation is due to Lehmann (1967): “[E]very sound change, inasmuch as it occurs mechanically,
takes place according to laws that admit no exception. That is, the direction of the sound shift is always
the same for all the members of a linguistic community except where a split into dialects occurs; and all
words in which the sound subjected to the change appears in the same relationship are affected by the
change without exception.”
In his introduction to August Schleicher’s Die Sprachen Europas ins systematischer Übersicht: linguis-
tische Untersuchungen, Koerner argues that Osthoff’s view can already be found in Schleicher’s work
(Schleicher, 1983, p. LI).

5



to (historical) linguistics and lead to important findings about the history of languages.

The comparative method in the wider sense is concerned with questions regarding the

implications of the hypothesis and how to deal with cases that seem to violate it, e.g.,

what are probable sociolinguistic factors, cognitive or physiological factors influencing

language change? (See Ross andDurie (1996) for an overview.) The focus of this intro-

ductionwill be on the comparativemethod in its narrow sense since it lends itself readily

to automation. Scholars have used algorithmic approaches to automatize several parts

of the comparative method (see section 2.2).

2.1.1 The ComparativeMethod—narrow sense

Ross and Durie (1996) summarize the comparative method in its narrow sense into a

sequence of seven instructions. This set of instructions describes a processwhich ideally

leads to a systematic assessment of the structure of relatedness between languages of a

given group.2

1. Based on some evidence, select a set of languages which are presumably geneti-

cally related, i.e., they form a family.

2. Collect a set of alleged cognates for this family.

3. Identify sound correspondences within the cognate sets.

4. Reconstruct a protolanguage based on the sound correspondences.

5. Establish subgroups within the family based on shared innovations.

6. Build a family tree based on the subgroups from the previous step.

7. Create an etymological dictionary listing the shared innovations and reconstruc-

tions.
2See Jäger and List (2016) and Jäger (2018) for a visualization of these steps.
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Although these steps suggest that these steps should be performed sequentially, the

comparative method often works in an iterative fashion. Steps two and three, for ex-

ample are often iterated, such that new cognates are found based on sound correspon-

dences detectedpreviously. Another importantpoint regarding the comparativemethod,

which becomes evident from the formulation of the steps, is that it does not generate hy-

potheses about relatedness between languages but rather functions as a tool to validate

or invalidate such hypotheses (Weiss, 2015).

An important term for the remainder of this thesis aswell as the comparativemethod

is the notion of a cognate. Twowords are cognates if they are derived from the sameword

in a common ancestral language. For example, English fish and German Fisch are cog-

nates, their common ancestor can be traced to the stage of Proto-Indo-European *fiska-

(Kroonen, 2013). Identifying such cognates is an important aspect of the comparative

method as well as for computational methods in historical linguistics. The definition

of the term cognate only requires that two words which are cognate are derived from

a common ancestor. Consequently, the meaning of a word does not influence the no-

tion of cognacy. The English word bone and the Germanword Bein (leg) are cognate al-

though they have different meanings. Both are derived from the Proto-Indo-European

word *baina- which has the two different meanings ‘bone’ and ‘leg’ (Kroonen, 2013).

Nichols notes “that any vocabulary set displaying the regular sound correspondences is

in fact cognate, how-ever far-fetched the semantic correspondences” (Nichols, 1996, p.

41).

To illustrate the comparative method, consider the following example taken from

Weiss (2015). As the data in table 2.1 (see p. 8) shows, there are correspondences of

word initial sounds for (a) Spanish, Portuguese, Catalan and Italian k and Old French

tS in the first group, (b) Spanish T, Catalan and Portugese s, Italian tS and Old French

ts in the second group, and (c) a corresponding s for all languages. After picking up

these correspondences, the reconstruction of ancestral sounds can be done by consid-
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Sp. Po. Cat. OF. It. Gloss Group
kampo kãpu kam tSamp kampo field a
kanta kanta kant@ tSant@ kanta sings a
Tjelo sEw sEl tsjel tSEo heaven b
seko seku sEk sEk sek:o dry c
sako saku sak sak sak:o sack c

Table 2.1: Example data taken fromWeiss (2015, p. 129). Sp. Spanish, Po. Portuguese, Cat. Catalan, OF.Old French,

It. Italian.

ering the distributions of the different sounds. At close inspection, the first two sets

reveal that the sounds in the second set occur before a front vowel whereas the first oc-

curs before a non-front vowel. This complementary distribution of sounds allows the

proposal of a proto-segment which developed into two different sounds depending on

the environment. The third set does not stand in a complementary distribution to the

other two. Thus, a second proto-segment needs to be assumed for the third set. The

proto-segement which can be reconstructed for the third set is *s. For the first proto-

segment, there is no obvious choice. However, if Sardinian, another language related

to the ones above, gets taken into account, the picture changes. The reflexes for Sar-

dinian in the respective sets are k, k and s.3 By taking these data points into account, it

is possible to decide on *k as the proto-sound, since it is the only reflex which is shared

among the two sets. As Weiss (2015) illustrates, this process can be taken further by

incorporating more data. Accommodating additional items leads to a more complete

picture and allows then to propose a language tree which is supposed to be the second

but last step of the comparative method.

It is important to note that deciding on the proto-segment *k was only possible in the

presence of the evidence provided by Sardinian. This case illustrates a crucial aspect of

the comparative method, namely that reconstructions of proto-segments and identifi-

cation of correspondence sets heavily depend on the presence of complete data. There-

fore, the proper collection of data is important for a successful application of the com-
3The different words are in order: kampu, kanta, kelu, sik:u, sak:u (cf. Weiss, 2015)
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parative method. Although presented as two separate steps so far, the identification of

cognate sets and the detection of sound correspondences heavily overlap in practice. By

proposing putative cognate sets, assumptions about sound correspondences are already

implicit (Ross and Durie, 1996).

2.2 The Computational Turn

The computational turn inhistorical linguistics got serious tractionwith the availability

of sufficient data sets which allowed the application of algorithmic methods to answer

questions in historical linguistics. As elaborated above, the comparative method, a cor-

nerstone of historical linguistics, has several aspects to it: the identification of cognates

and sound correspondences, detection of sound laws and reconstruction of phyloge-

netic trees. The computational approach to historical linguistics treats these different

aspects separately. Although these parts are very much interconnected, and usually in-

form each other, it currently does not seem feasible to fully implement all aspects of the

comparative method. Jäger and List (2016) compare the classical comparative method

to approaches in computational historical linguistics (CHL). They show that also in

computational historical linguistics, there is an overlap between cognate identification

and sound correspondence detection. In comparison to the traditional approach to

these tasks, it is possible to circumvent implicit assumptions or make them an explicit

parameter of the model in a computational approach.

Several methods which are used in CHL are adapted from computational biology.

Chapter 3 of this thesis gives a short introduction to some important methods. Atkin-

son and Gray (2005) provide an overview of parallels between these different research

areas. As mentioned above and already illustrated by Atkinson and Gray (2005), paral-

lels between linguistic and biological species are already pointed out inDarwin’sThe de-

scent of Man (Darwin, 1871) and August Schleicher’s work (Schleicher, 1863). Atkin-

son and Gray note an important parallel between the characters which are used. DNA
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sequences aremade of single discrete units. The same can arguably be said for sentences

or words when they are transcribed. In both the biological and the linguistic case, there

is a sequence of discrete symbols which can be analyzed. Another parallel which is also

important for this thesis is between homology and cognacy. Although Fitch (2000) dis-

cusses problems in the proper usage of the term homology in the context of biology, the

working definition of homology is: “The relationship of any two characters that have

descended, usually with divergence, from a common ancestral character” (Fitch, 2000,

p. 229). This definition is strikingly similar to the definition of the term cognate above.

Both concepts describe the property of descending from a common ancestor. These

and other parallels suggest that the methods from computational biology may be used

in the area of CHL.

2.2.1 Databases

Asmentioned above, the increasing availability and size of databases has fueled research

in CHL. Generally, there are two types of databases in this research which can be dis-

tinguished. The main difference between the two databases is the presence of expert

cognate judgments. Databases which are annotated for cognacy tend to focus on a par-

ticular language family. The other type of database focuses on covering a wide array of

languages at the expense of cognacy annotation. Both types of databases aim to provide

a list of translations of basic concepts for each language covered. These basic concept

lists are termed Swadesh lists. Following Swadesh (1955) these concepts are supposed

to be central to the language and therefore resistant towards borrowing.

The different databases are suited for different kinds of studies. While approaches

to automatic cognate detection obviously need expert annotated cognate sets for eval-

uation purposes, the detection of sound correspondences greatly benefits from large

amounts of data. In the area of phylogenetic inference, i.e., the use of computational

methods in order to build family trees, there are two different approaches: the character
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basedmethod and the distance basedmethod. The character basedmethod utilizes cog-

nate coded data to infer language trees using models of character evolution. Distance

based approaches extract a distancemeasure on the basis of phonetic similarity to build

a tree model.

The following list of databases does not aim for completeness but rather introduces

well-known databases and ones which are used throughout the remainder.

Cognacy-coded Databases

Indo-European database

The Indo-European Lexical database (IELex) was created by Dyen et al. (1992) and

curated byMichael Dunn.4 The IELex database is not transcribed in uniform IPA and

retains many forms transcribed in the Romanized IPA format of Dyen et al. (1992). It

is a database which gives translations of 207 concepts in 52 languages.

Austronesian Basic Vocabulary Database

TheAustronesianBasicVocabularyDatabase (ABVD) (Greenhill et al., 2008) hasword

lists for 210 Swadesh concepts and more than 1500 languages.5 It does therefore cover

almost the entire language family. The database does not have transcriptions in a uni-

form IPA format.

Non Cognacy-coded Databases

Automated Similarity Judgment Program

TheAutomatedSimilarity JudgmentProgram(ASJP) is amassive cross-linguistic database

which in version 18 (Wichmann et al., 2018) provides word lists for more than 5000
4http://ielex.mpi.nl/
5https://abvd.shh.mpg.de/austronesian/
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languages.6 In order to achieve such a high coverage of different languages, the ASJP

database focuses on just a 40 itemword list (Holman et al., 2008). All items in theASJP

database are phonetically transcribed using a 41 symbol alphabet designed to encode all

commonly occurring sounds (Brown et al., 2008).

NorthEuraLex

TheNorthEuraLexdatabase (Dellert and Jäger, 2017;Dellert, 2015) is a databasewhich

contains word lists of 1016 items for 107 languages from Northern Eurasia and some

important contact languages from neighboring families.7 The words come in an IPA

encoding which is automatically generated from the orthographic source. In compari-

son to other databases, NorthEuralex aims at a high coverage per language. The list of

concepts for this database was automatically selected (Dellert and Buch, 2018).

2.2.2 Computational Approaches

Chapters 4 and 5 deal with some aspects of the automation of steps of cognate detec-

tion, identification of sound correspondences and phylogenetic reconstruction as well

as the relevant related literature. In order to provide additional context, there are some

studies which deserve to be presented and do not fit into the later parts.

Bouchard-Côté et al. (2013) propose a probabilistic method which automatizes the

complex process of reconstructing proto-sounds. Given a collection of cognate sets

frommodern day languages, their approachuses a probabilistic string transducerwhich

takes into account the context of each symbol. Their system was developed and tested

on data from the ABVD database. Bouchard-Côté et al. (2013) are able to get about

seven out of eight phonemes right in their reconstruction. They thus claim that their

system is capable of a large scale reconstruction of proto-languages despite making con-

siderable simplifying assumptions. Dellert (2017) mentions that the Austronesian lan-
6https://asjp.clld.org/
7http://northeuralex.org/
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guage family is considered to be an easier case regarding the reconstruction and consid-

ers the task of automated reconstruction of proto-forms to still be an open problem.

Another aspect of reconstructionwas studiedby Jäger andList (2018) andList (2015).

Instead of reconstructing actual word forms, their aim is to reconstruct the evolution

of word forms in terms of cognate classes. Jäger and List (2018) explore the perfor-

mance of different algorithms for reconstructing ancestral states from computational

biology. Upon closer inspection, they observe that the cases where the algorithms fail

in predicting the correct ancestral form are due to instances of other linguistic processes

interfering with the process of evolution. List (2015) uses reconstructed cognate forms

to paint a picture of lexical transfer in Chinese dialects.

Dellert (2017, 2016) uses causal inference algorithms to study the flow of lexical ma-

terial between languages. Based on automatically inferred cognate sets, these methods

show the transfer of lexicalmaterial between languages. For some instances, thesemeth-

odswere able to alsodetermine thedirectionof the transfer, whichwas evaluated against

expert knowledge.
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3
Phylogenetic Inference in

Computational Biology

Phylogenetic methods and sequence analysis techniques from computational biology

offer a rich toolbox for studying the history of languages from a mathematical point

of view. In order to successfully apply these methods, it is necessary to give a short

introduction to some basics.

In section 3.1, Markov Models are introduced as they lay the groundwork for sev-

eral techniques later on. Section 3.2 follows up with an explanation of alignment and

algorithmic alignment techniques. While the first part of section 3.2 introduces basic

alignment techniques, the second part establishes the concept of Pair Hidden Markov

models. Pair HiddenMarkov models connect the idea of alignment andMarkov mod-

els. Section 3.2.3 presents the statistical alignment framework. This framework takes

an evolutionary point of view on the alignment problem. The section on models of
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DNA evolution (section 3.3) introduces the idea of explicit mathematical models to

study the evolutionary history of nucleotides. These models are used in a wide range of

studies concernedwith phylogenetic problems. Another importantmatter in the study

of phylogenetics is the concept of a tree. The second but last section shortly defines this

concept. The last section tries to exemplify how to use thesemodels described so far for

the issue of phylogenetic inference. Moreover, it introduces an algorithm commonly

used in this framework and the important Pulley Principle.

3.1 Background onMarkovModels

Markov models provide a powerful and important machinery to several disciplines.

Markov chains and, in particular, Hidden Markov models offer a convenient mathe-

matical structure for the analysis of sequential data. Especially in the area of Speech

Recognition, Hidden Markov models are frequently applied. As stated in the famous

introduction toHiddenMarkovmodels by Rabiner, as early as the late 1960s and early

1970s, these models are used in computational approaches to language processing (Ra-

biner, 1989). But also for computational biology, Hidden Markov models play an im-

portant role. The sequential nature of, for example, genetic data lends itself naturally

to these kinds of models (cf. Durbin et al., 2001, for an overview of some applications

in computational biology).

3.1.1 Markov Chains

Markov chains implement aparticular kindofmodel generating sequences.1 Sequential

data is present in a lot of scientific areas. The DNA sequence in biology is sequential

and words or texts in linguistics are sequential, just to name two. Quite generally the
1This introduction toMarkov Chains is based on Durbin et al. (2001)
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different elements within a particular sequence appear with a certain probability. Thus,

the probability of a sequence S of length n could be written as follows.

P (S) = P (xn, xn−1, . . . , x1)

= P (xn|xn−1 . . . x1)P (xn−1|xn−2 . . . x1) . . . P (x1)
(3.1)

The second line of equation 3.1 can be derived via several applications of the chain rule

of probability. The way Markov chains model sequences is such that the probability

of the n-th segment just depends on the segment n − 1. This is called the Markov

property. Applying the Markov property to the example above considerably simplifies

the formula.

P (S) = P (xn|xn−1)P (xn−1|xn−2) . . . P (x2|x1)P (x1) (3.2)

To explain this idea, consider the following example. Suppose there is a DNA sequence.

The letters which are the elements of this sequence are A, C, G and T. Each element of

the sequence is one of these four elements. Figure 3.1 on page 17 shows a graphical

representation of the described model. The black arrows indicate which symbol can

follow which. In this model, all transitions between the states representing A, C, G and

T are possible. Each arrow is associated with a probability parameter indicating how

probable it is tomove from one state to another. An important point here is that all the

transition probabilities of leaving a state, independent of their destination, sum up to

one. In the representation of the likelihood of a particular sequence which, according

to the Markov model can be factorized as in equation 3.2, the probability P (xn|xn−1)

is exactly the one present at the arrows in the model. The same equation includes the

probability of the first symbol P (x1). Instead of modeling these probabilities explic-

itly, a begin state can be added. Each Markov chain will start at the begin state and the

probability to observe the first symbol is the probability tomove from the begin state to
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Figure 3.1: Example of a Markov chain which can generate a DNA sequence. The begin (B) and end (E) state are

added and transition out and into the respective states are colored in gray (cf. Durbin et al., 2001, p. 49).

the state of the respective symbol. Similarly an end state can be added. Amove into this

statewill terminate theMarkov chain. Both the end and the begin state are notmodeled

via proper symbols in the sequence but are rather treated as silent states.

3.1.2 HiddenMarkovModels

A lot of work on Hidden Markov models was done in the area of speech recognition.

Originally developed by Leonard E. Baum and his colleagues (Baum and Petrie, 1966;

BaumandEagon, 1967; BaumandSell, 1968; Baumet al., 1970; Baum, 1972), a famous

introduction to HiddenMarkov models is due to Rabiner (1989).

Hidden Markov models extend the idea of Markov chains. In a Markov chain, the

state themodel currently is in is observable. In aHiddenMarkovmodel (HMM) this is

not the case. To put it slightly differently, in a Markov Chain the sequence of symbols

equals the symbols of states. Therefore, for a Markov chain, there is one stochastic

process, namely theone generating the sequenceof states. In anHMM, there is a second

stochastic process at work. In addition to the process responsible for a sequence of

states, there is another stochastic process governing the production of the observable

sequence of symbols (Rabiner, 1989).
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A formal definition of an HMM requires five parts (Rabiner, 1989, p. 260):

1. The number of states N in the model, with S = {s1, s2 . . . sN} as the set of

states

2. The number of distinct observationsM per state, withW = {w1, w2 . . . wM}

as the set of all symbols

3. The set of state transition probabilitiesAwith aij ∈ A being the probability to

move from state si to state sj

4. The observation symbol probability distributionB in state sj , where bj(v) is the

probability of observing symbol v at state sj

5. The initial state distribution π

Although the sequence of states underlying the stochastic process is hidden, there are

often some clues available to which and howmany states there should be. The distinct

observations per state are symbols we observe, soM is the discrete alphabet size for that

state. The state transition probabilities indicate the probabilities of moving from one

state to the next. If for all si, sj ∈ S the transition probability aij > 0 then each

state can be reached from every other state in a single step. As for Markov chains, all

the transition probabilities of leaving a state should sum up to one, i.e.,
∑

j aij = 1.

The probability distribution of symbol observations indicates how likely a given state

produces a symbol. Lastly, the initial state distribution π indicates how likely it is to

start in any of the states in S. If there is a designated start state sS , then π(sS) =

1, if there is no such designated state, then ΣS
si
π(si) = 1 (cf. section 3.1.1). Given

appropriate values forN ,M ,A,B and π anHMMcan be used to generate a sequence

of observations O = o1o2o3 . . . ol, where each oi is in V and l is the length of the

sequence O. A closer observation of the five points above shows that the number of
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states N and the size of the alphabetM are already implicitly defined through A and

B. I adapt the more compact definition by Rabiner (1989)

λ = (A,B, π) (3.3)

to define an HMM. HMMs are accompanied by a range of well-studied algorithms

which help to answer three basic questions these models can be asked (cf. Rabiner,

1989).

1. What is the probability of the observed sequence given the model?

2. Which sequence of states ς maximizes the probability of the observed sequence?

3. Which configuration of model parameters accounts best for a given set of obser-

vations?

There are three basic algorithms which can provide an answer to these three questions.

By using probability theory, the three problems can be formulated as follows.

P (O|λ) (3.4)

argmax
ς

P (O, ς|λ) (3.5)

maxP (O|λ). (3.6)

The first problem aims at finding the model which best matches an observed se-

quence. This can be viewed as a problem of deciding between different models, given a

particular sequence of observations. The second problem slightly differs from the first

in that it is not aimed at selecting the model with the best fit, but rather at uncovering

the hidden state path which is responsible for creating sequence O. The last problem

is best viewed from the perspective of training. Given a particular model topology, the

question is which parametersmaximize the probability of the sequence being generated
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by that model. Hence, the task is to find a set of transition and emission probabilities

which are optimal under certain criteria. This third problem is particularly interesting

for most applications of HMMs since it is aimed at creating the best model for a given

set of data (cf. Rabiner, 1989).

The first problem comes down to collecting the probabilities of all state paths of

length l and their respective probability to emit sequenceO. The probability of a par-

ticular state sequence can easily be calculated by considering the state transition prob-

abilities and the probability that this sequence of states emits O can be obtained via

the probability distributions of symbols per state. The probability of the observation

sequence given the model is then calculated by summing over all the state paths. A

simple enumeration of the sequences is computationally too heavy since the number

of state sequences “increases exponentially with the length of the sequence” (Durbin

et al., 2001, p. 57). However, the forward algorithm can be used to solve this problem.

The forward algorithm is based on a dynamic programming paradigm. The idea is to

calculate the probability based on a recursive condition. Suppose the probability of the

sequenceO up to symbol oi ending in state sn ∈ S given the model is known (fn(i)),

then the probability to end at any given state sk ∈ S with observation oi+1 can be

calculated from this quantity. This can be formulated as a recursive equation.

fn(i) = bn(oi)
N∑
k

fk(i− 1)akn

(cf. Durbin et al., 2001)

(3.7)

Notice, that in this equation it is not i + 1 computed from i, but rather i from i − 1.

This equation underlies the forward algorithm. The final probability P (O|λ) is then

the sum over the product of the final forward variables (fk(ol)) and their transition

probabilities to the end state.
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The backward algorithm works in a similar fashion to the forward algorithm and

can also be used to solve the first problem. Instead of considering the probability of the

partial sequence from o1 to oi, the backward algorithm considers the probability of the

partial sequence from oi to ol. A recursive equation, similar to 3.7, can be formulated

for the backwards probability β:

βn(i) =
N∑
k

ankbk(oi+1) + βk(i+ 1)

(cf. Durbin et al., 2001)

(3.8)

The algorithm which can be used to solve the second problem is very much related

to the forward algorithm. Theway the problem is phrased above, the optimal sequence

of states is the one with the highest probability. Suppose the sequence of states with

the highest probability up to observation oi which ends in state sn, vn(i), is known,

then the value for oi+1 can be obtained in a similar fashion to the forward algorithm by

replacing the summation with the maximization operation.

vn(i+ 1) = bn(oi+1)max
k

(vk(i)akn)

(cf. Durbin et al., 2001)
(3.9)

This recursive equation will find the state sequence with the highest probability. How-

ever, to obtain the best sequence of states in the end, it is necessary to store pointers to

the state maximal previous state k. Through backtracking these pointers, the optimal

sequence of states can be reconstructed. The algorithmwhich implements this is called

the Viterbi algorithm. It is, similar to the forward and the backward algorithm, a dy-

namic programming algorithm, which can calculate the optimal state sequence in an

easy fashion.
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The answer to the last problem mentioned by Rabiner (1989) can be solved via sev-

eral algorithmic techniques. As soon as the path through the state space is unknown,

as it is usually the case, there is no analytical equation which can be used. The algo-

rithms then rely on some form of iterative optimization procedure. In principle, there

is a wide array of tools available. However, in the realm of HMMs the Baum-Welch

algorithm (Baum, 1972), which belongs to the area of Expectation-Maximization al-

gorithms (Dempster et al., 1977), is typically used. The idea of this approach is pretty

straightforward. Firstly, given the currentmodel parameters consider all probable paths

for the training sequences. Secondly, derive newmodel parameters given the paths just

calculated. This procedure is repeated until a stopping criterion is reached. Using this

approach, it can be shown that the overall log likelihood of the model will increase.

However, there is no guarantee that the maximum which is found is the global maxi-

mum.

Toderive amore formal description of theBaum-Welch algorithm, suppose thatAkn

is the number of transitions from state sk to state sn in the training data and thatEk(x)

is the number of emissions of symbolx from state sk in the training data, wherex ∈ W .

The posterior probability that in the state path ς the state at position i was n (ςi = n)

and at position i + n was k (ςi+1 = k) given the sequence O and the current model

parameters can be written as follows.

P (ςi = n, ςi+1 = k|O, λ) = fn(i)ankbn(oi+1)βk(i+ 1)

P (O|λ)

(cf. Durbin et al., 2001)
(3.10)
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The expected number of transitions from n to k,Ank, can be derived from this equa-

tion by summing over all positions in the sequence and all sequences in the training

set.

Akn =
∑
j

1

P (Oj|λ)
∑
i

f j
n(i)ankbn(o

j
i+1)β

j
k(i+ 1)

(cf. Durbin et al., 2001)
(3.11)

Similarly, the expected number of times a symbol o is emitted from state k can be calcu-

lated.

Ek(x) =
∑
j

1

P (Oj|λ)
∑

{i|oji=x}

f j
k(i)β

j
k(i)

(cf. Durbin et al., 2001)

(3.12)

For both equations 3.11 and 3.12, f j
n denote the forwards variable in state n for se-

quence j; this also holds for βj
n. The maximum likelihood estimators for the actual

transition from state kn, akn, and emission of x from state k, ek(x) can now be calcu-

lated.

akn =
Akn∑
lAkl

(cf. Durbin et al., 2001)
(3.13)

ek(x) =
Ek(x)∑
y Ek(y)

(cf. Durbin et al., 2001)
(3.14)

Using these relations, a new set of model parameters can be estimated. The Baum-

Welch algorithm does this iteratively. Starting with randommodel parameters, the for-

ward and backward tables are computed, using the respective algorithm. These tables

can be used to estimate new A and E parameters. Again, the forward and backward
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tables are calculated. This process is repeated until a convergence criterion is reached.

Typical convergence criteria are a sufficiently small change in the parameter values or a

sufficiently small change in the overall log likelihood.

3.2 Background on Alignment

Throughout the following, capital lettersA,B,C, . . .will denote sequences constructed

over an alphabetΣ. The elements of the sequences are indexed such thata1 is the first el-

ement of sequenceA and an is the last element ofAwhich is of lengthn. The elements

of the sequences are ordered such that ai directly precedes ai+1.

Sequence comparison has a long-standing tradition in several scientific areas, such as

linguistics, computer science or bioinformatics, among others. The overarching ques-

tion is if two sequences are related via a common cause. This question is mostly an-

swered on the basis of an alignment. Following Kruskal (1983) and List (2014b), an

alignment is a matrix in which sequences are arranged such that proper matches are

listed in the same column.2

Definition 3.1. LetA andB be sequences overΣ. Let− denote a space. An alignment

ofA andB is a matrix with two rows, such that

1. the entries in the matrix consist ofΣ ∪ {−}

2. the first row contains the symbols ofA in order and the second row the symbols

ofB, respectively

3. one or more spaces,−, can appear between consecutive symbols ofA orB,

4. each column contains at least one letter ofΣ.

(cf. Chao and Zhang, 2008)
2List (2014b) provides a good introduction to the issue of sequence comparison and general concepts

of alignment in a linguistic setting.
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n m N
2 1 5
4 2 41
8 4 3649
10 10 8097453
106 106 < 1080

107 107 > 1080

Table 3.1: Number of alignmentsN for two sequences of lengthn andm. Where 1080 supposedly is the number

of protons in our universe (cf. Torres et al., 2003;McPherson, 2008).

Deriving such an alignment is far from trivial. Given two sequences of length n and

m respectively, the number of possible alignmentsN grows pretty fast. Table 3.1 illus-

trates this behavior. Torres et al. (2003) derive a formula to calculate the number of

possible alignments.

N =

min{n,m}∑
k=0

= 2k
(
m

k

)
·
(
n

k

)
(3.15)

N grows rapidly with increasingm and n. Typical sequence lengths in biological appli-

cations are usually greater than 200. Thus, finding the optimal alignment by an enu-

meration method is not feasible. This problem can be solved by scoring alignments

based on an additive score. Assuming such a scoring scheme, the dynamic program-

ming paradigm can be used for finding the optimal alignment.

In historical linguistics, sequence alignment takes a lot of its inspiration from com-

putational biology. In this area there are two approaches which need to be discussed;

score based and statistical alignment. Score based methods try to maximize a similarity

score orminimize a distance between twoormore sequences, based on an abstract set of

parameters. Statistical alignment approaches aim to maximize or minimize said scores

on the basis of an underlying model of evolution or phylogeny (Lunter et al., 2005).

The aim of score based alignment is to best describe the data, while statistical alignment

strives to find an explanatory model. Several of the basic techniques and terms which

are necessary for statistical alignment are best introduced using score based alignment.
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Additionally, score based alignment techniques have been very successful in computa-

tional historical linguistics (see section 4.1).

3.2.1 Score Based Alignment

Score based alignment techniques come in two different but similar forms, distance or

similarity based (Smith et al., 1981). Bothmethods aim to generate an alignmentwhich

either minimizes the distance or maximizes the similarity. Since both approaches are so

similar, I will concentrate on the similarity based approaches to explain the concept.

Finding the optimal alignment requires the definition of a metric on alignments.

Generally, there are four cases which can occur:

1. Two identical symbols appear in the same column (first column in (1)),

2. two non-identical symbols appear in the same column (third column in (1)),

3. a symbol in the first row is paired with a space or gap sign in the second row

(second column in (1)),

4. a symbol in the second row is paired with a space or gap sign in the first row (last

column in (1)).

The first case, namely an identical pair of symbols in a column, is called a match; the

second case, namely a different pair of symbols in a column, is called a substitution. The

third and fourth case are also termed deletion and insertion respectively. The alignment

in (1) exhibits three matches, one substitution and two insertions, and one deletion.

(1) A
A
G
–
T
C
A
A
–
G
C
C
–
C

Quite generally, an alignment can be represented in terms of an alignment graph.

The vertices of the alignment graph for two sequencesA andB of lengthm and n can

be thought of as the lattice points (i, j) where 0 ≤ i ≤ n and 0 ≤ j ≤ m. The
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A G T A C

C

C

G

A

C

A

Figure 3.2: Example of an alignment graph. The bold red lines represent the alignment shown in (1).

edges of this graph are directed such that there is an edge between (i, j) and (i′, j′) if

0 ≤ i′− i ≤ 1 and 0 ≤ j′− j ≤ 1. Thinking in terms of a lattice, the edges can either

be diagonal (i′−i = 1 and j′−j = 1), horizontal (i′−i = 1 and j′−j = 0) or vertical

(i′ − i = 0 and j′ − j = 1). A diagonal arrow indicates a substitution or a match, a

vertical arrow a gap in the first and a horizontal arrow a gap in the second sequence.

Each path through this grid which starts at the top left cell and ends at the bottom right

cell corresponds to a particular alignment (Chao and Zhang, 2008). Figure 3.2 shows

an example of such an alignment graph. Each alignment between the two sequences is

represented by a particular path through this graph.

The global alignment problem is to find the alignment or path through this grid,

which maximizes the similarity score. A score can only be maximized according to a

given scheme. Conceptually, matches should have the highest score, substitutions a

medium score and gaps in either string should be penalized. Needleman and Wunsch

(1970) proposed an algorithmwhich guarantees to find the alignment with the highest

similarity score given a particular scoring scheme. Their method is based on a dynamic
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programming paradigm. The scoring scheme Needleman and Wunsch proposed in

their paper assigns a positive weight, 1, to matches, a neutral weight to substitutions,

0, and a slight penalty,−1, to deletions and insertions. The optimal alignment which

has the highest similarity score is the one which maximizes the sum of all alignment

moves. Although the algorithm by Needleman and Wunsch does not directly operate

on a graph, the concept of the alignment graph can be transferred to their approach.

For two sequences A and B of length n andm, respectively, let f(i, j) denote the

alignment for the sequences A and B up to ai and bj , respectively. There are three

possible moves which can happen next according to the alignment graph: a diagonal,

a horizontal or a vertical move. The horizontal or vertical move corresponds to the

introduction of a gap. Such a move is penalized by−1. The diagonal move can either

be a substitution or amatch, so scored with a 0 or a 1, respectively. Having enumerated

these possibilities, the following recurrence can be stated.

f(i, j) = max



f(i− 1, j)− 1

f(i, j − 1)− 1

f(i− 1, j − 1) + 1 if ai = bj

f(i− 1, j − 1) if ai ̸= bj

(3.16)

The corner case is f(0, 0) which is set to 0. The cases f(0, j) and f(i, 0) successively

introduce gaps with scores−1 · j and−1 · i, respectively. An immediate improvement

of this method is a more advanced scoring scheme. Such a scheme ideally introduces a

more fine-grained analysis into the scoring of matches and substitutions via a scoring

function. A scoring function σ(i, j) assigns an individual score to the pair i, j based

on some external characteristics. Introducing sigma and a variable β for a gap move

simplifies the recurrence.
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f(i, j) = max


f(i− 1, j)− β

f(i, j − 1)− β

f(i− 1, j − 1) + σ(ai, bj)

(3.17)

A famous extension to this algorithm is due to Gotoh (1982). Instead of a penalizing

constantβ for introducing gaps, gaps are weighted by their length. Thus, β will be split

into anon-negative gapopeningpenaltyα and anon-negative gap extensionpenaltyγ·i,

with i being the length of the gap. This way of parameterizing gap penalties is known

as affine gap penalties. The idea of separating constant gap penalties from affine gap

penalties is that opening a new gap should bemore expensive than extending an existing

one. The practical implementation of the method proposed by Gotoh (1982) is still

done in the dynamic programming paradigm but requires a three-dimensional matrix

instead of a two-dimensional matrix. The three-dimensional matrix is of size (n+1)×

(m + 1) × 3 where n andm are the length of the two sequences and three resembles

the possible alignment moves of substitution/match, insertions, and deletions. These

three dimensions are labeled S, I andD. The algorithm is then formulated as follows

(cf. Chao and Zhang, 2008; Gotoh, 1982):

D(i, j) = max

D(i− 1, j)− γ

S(i− 1, j)− α− γ

I(i, j) = max

I(i, j − 1)− γ

S(i, j − 1)− α− γ

S(i, j) = max


D(i, j)

I(i, j)

S(i− 1, j − 1) + σ(ai, bj)

(3.18)
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In the calculation ofD(i, j) and I(i, j), the difference between gap opening and gap

extension penalties are visible and so is the difference to the algorithm published by

Needleman and Wunsch (1970). The extension of a gap is penalized with γ and the

opening is penalized by α and γ. The initialization of S(0, 0) = 0 is straightforward

and unproblematic.3 The dimensions I andD are initialized as I0,k = −γk − α for

1 ≤ k ≤ m and Dk,0 = −γk − α for 1 ≤ k ≤ n. Equation 3.19 shows another

formulation of the algorithm which is used repeatedly.

D(i, j) = max

D(i− 1, j)− γ

S(i− 1, j)− α− γ

I(i, j) = max

I(i, j − 1)− γ

S(i, j − 1)− α− γ

S(i, j) = max


D(i− 1, j − 1) + σ(ai, bj)

I(i− 1, j − 1) + σ(ai, bj)

S(i− 1, j − 1) + σ(ai, bj)

(3.19)

In terms of an actual alignment, this reformulation ends an insertion or deletion event

with an explicit match rather than doing it silently. This version of the algorithm, in a

slight extension of the term, will be called Needleman-Wunsch algorithm throughout

the remainder.
3As Flouri et al. (2015) note in the original paper of Gotoh, there is a slight mistake regarding the

initialization of the dynamic programming table. I adapt the corrected version according to Flouri et al.
(2015).
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M(+1,+1)

X(+1,+0)

Y(+0,+1)

-α

-α

σ(ai,bj)
σ(ai,bj)

-γ

σ(ai,bj)

-γ

(a) Finite State automaton representation of the dynamic

programming algorithm for pairwise alignment

M
poio′j

X
qoi

Y
qo′j

δ

δ

1−2δ

ϵ

1−ϵ

ϵ

1−ϵ

(b) Probabilistic version of the FSA for affine gap align-

ment.

Figure 3.3: FSA and probabilistic model of affine gap alignment (cf. Durbin et al., 2001, p. 81).

3.2.2 Pair HiddenMarkovModels

TheNeedleman-Wunsch algorithm is based on a dynamic programming paradigm.4 It

is possible to construct a finite state automaton (FSA) which corresponds to the dy-

namic programming algorithm for pairwise alignment (Karp and Held, 1967; Durbin

et al., 2001). For the algorithm for affine gap alignment described in the previous sec-

tion (cf. equation 3.19), the corresponding FSA is shown in figure 3.3a. The FSA is

to be understood such that the transitions between the states carry out a score incre-

ment and the states specify the increment value of the index in the respective sequence.

As before, for each state, there is a variable at position (i, j). The respective values are

calculated as the maximum of the incoming transitions. The FSA can be converted

into a Hidden Markov model with some straightforward changes. The first change is

concerned with the score assigned to matches and gapped symbols. If the states in the

HMM are understood as either emitting a pair of symbols (state M) or emitting a sym-

bol in one string and a gap in the other (states X and Y), the scores turn into emission

probabilities. For theHMM formulation of the alignment approach, there needs to be
4The argumentation in this part follows Durbin et al. (2001)
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M
poio′j

X
qoi

Y
qo′j

Begin End

δ

δ

τ

1−2δ−τ

ϵ

τ1−ϵ−τ

τ

ϵ

1−ϵ−τ

δ

1−2δ−τ

δ

τ

Figure 3.4: Pair HMM (cf. Durbin et al., 2001, p. 82), where δ, ϵ and τ are some transition probabilities and poio′j ,
qoi and qo′j are distributions over pairwise and single symbol emissions.

a probability distribution over the emission of two symbols and distributions for emit-

ting a single symbol and a gap in either string. For reasons of symmetry, the distribution

assigned to the X and Y state are identical. Thus, there are two distributions for symbol

emissions, one for a pair of symbols and one for a symbol and a gap.

The second modification deals with the transition between the states. It is necessary

that the probabilities of leaving a state sum to one. Again for reasons of symmetry, there

are just two free parameters. These transformations will result in a probabilistic version

of the FSA (see figure 3.3b). However, the probabilistic version of the FSA does not

represent a fullHMM. For a properHMM, an explicit begin and end state are necessary.

In comparison to the probabilistic FSA, an additional parameter is required to account

for the transitions out of the begin and into the end state. Figure 3.4 shows the resulting

model.

In comparison to the HMMs presented before, the emissions of this model happen

in two output streams. Hence, there is a pair of output streams instead of just one.

Taking this into account, this version of Hidden Markov models will be called a Pair

HiddenMarkovmodel (PHMM). As this model is aMarkovmodel, the algorithms ex-
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plained in section 3.1.1 can be transformed readily such that their structurematches the

structure of PHMMs. After the incorporation of the necessary changes, the algorithms

can be used to answer the questions posed by Rabiner (1989) in the realm of PHMMs

(see page 19 of this dissertation).

The Viterbi algorithm can be used to find the most probable path through a model.

In the case of PHMMs, this path corresponds to the most probable alignment. Equa-

tion 3.20 shows the recursion relations for the three states of the PHMM in terms of

proper probabilities.

Y (i, j) = qbj max

Y (i, j − 1)ϵ

M(i, j − 1)δ

X(i, j) = qai max

M(i− 1, j)δ

X(i− 1, j)ϵ

M(i, j) = pai,bj max


M(i− 1, j − 1)(1− 2δ − τ)

X(i− 1, j − 1)(1− ϵ− τ)

Y (i− 1, j − 1)(1− ϵ− τ)

(cf. Durbin et al., 2001)

(3.20)

These equations already look strikingly similar to the recurrence relations of theNeedleman-

Wunsch algorithm. Durbin et al. (2001) show that via the use of log-odds alignment,

the equivalent of the Needleman-Wunsch algorithm can be derived. These log-odds

can be derived by using a proper random model. The probability of two sequences

under the random model is the likelihood that the two sequences were generated ran-

domly. While the probability that two sequences are related given the PHMM can be

calculated via the recurrences shown above, the likelihood of two sequences under the

randommodelR is shown in equation 3.21, the respectivemodel is shown in figure 3.5,
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B

X Y

E

1− η

η

η

1− η

1− η

η

η

1− η

Figure 3.5: RandomModel (cf. Durbin et al., 2001, p. 83); note the silent state which serves as a hub between the

statesX andY , which ensures, that both sequences are generated independently.

where η is the state transition probability in the randommodel and qai the equilibrium

probability of symbol i in sequence a.

P (a, b|R) = η2(1− η)n+m

n∏
i=1

qai

m∏
j=1

qbj . (3.21)

In essence, this equation calculates the likelihood as the product of the probabilities of

each symbol sequence and corrects these products by the factor 1− η. It can be shown

that the expected length of two sequences under the randommodel is 1−η
η

(Borodovsky

and Ekisheva, 2006). Thus, there is a correction for the length of the sequences incor-

porated in the randommodel. By using the results from the randommodel, the Viterbi

algorithmcanbe adjusted toproduce the optimal log-odds alignments (cf.Durbin et al.,

2001).

After having stated the Viterbi algorithm, the forward and the backward algorithm

for PHMMs are easily obtainable. The relationship between these algorithms carries

over from the HMM case. As for HMMs, the forward or backward algorithm can

be used to calculate the probability of the observed pair of sequences given the model.

Since a path through the PHMM represents a particular alignment of two sequences,

the result of the forward algorithm returns the probability that the two sequences are

related given any alignment. Instead of finding the path that maximizes the probability,
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the probability of the two sequences given the model is calculated by summing over all

paths through the model (see 3.22).

Y (i, j) = qbj [Y (i, j − 1)ϵ+M(i, j − 1)δ]

X(i, j) = qai [X(i− 1, j)ϵ+M(i− 1, j)δ]

M(i, j) = pai,bj [M(i− 1, j − 1)(1− 2δ − τ)+

X(i− 1, j − 1)(1− ϵ− τ)+

Y (i− 1, j − 1)(1− ϵ− τ)]

(cf. Durbin et al., 2001)

(3.22)

Correspondingly, the backward algorithm can as well be formulated for PHMMs (cf.

Mackay, 2004; Wieling, 2007). Wieling (2007) also shows how the Baum-Welch algo-

rithm, which has the forward and backward algorithm as its parts, can be adapted for

PHMMs.

Criticism of Score Based Alignment

Following the argumentation of Thorne et al. (1992), score based alignment is subject

to two sources of subjectivity, which may influence the performance of this method.

The first point of criticism is the scoring function used to score matches or substi-

tutions. It is far from obvious how much better or worse, in terms of an absolute

score, a particular substitution is compared to another. However, there are attempts

to circumvent this specific source of subjectivity. On the one hand, there are empirical

approaches in computational biology such as the BLOSUM (Henikoff and Henikoff,

1992) and PAM matrices (Dayhoff et al., 1978). However, these matrices were devel-

oped on the basis of already existing alignments. Thus, these matrices do not readily

solve this problem. Due to the large number of data and some manual correction of

the alignments prior to building these matrices, the problem is mitigated. Another ap-
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proach to removing subjectivity from the creation of the scoring function is based on

an algorithmic estimation of these parameters. In an early instance, Fitch and Smith

(1983) use aMonte Carlo method to estimate adequate model parameters. In other ar-

eas, algorithmic approaches mostly based on the Expectation-Maximization paradigm

(Dempster et al., 1977) were developed to estimate the parameters of the scoring func-

tion (cf. Ristad and Yianilos, 1998;Wieling et al., 2009; Jäger, 2013, see also chapter 4).

Although these approaches estimate the parameters algorithmically and thus remove

subjectivity from the equation, these approaches are merely descriptive. In the essence

of the approach of Thorne et al. (1992), a model which has an underlying (evolution-

ary) interpretation is required. The approaches listed above try to describe the data

rather than explaining it.

The second point of subjectivity Thorne et al. identified is more subtle. It is rather

connected to the algorithmic aspect than to the scoring of substitutions or matches.

Thorne et al. (1992) note that “it is not clear that the form of the gap penalty should

be Gi = a + bi” (Thorne et al., 1992, p. 3). Without stating the evolutionary as-

sumptions underlying the process which can be modeled using this formula, such a

function is arbitrary. The reason for choosing this formulation is rather on the algo-

rithmic side than supported by any theoretical considerations (cf. Thorne et al., 1992).

The approach Thorne et al. took was to develop a statistical framework which makes

explicit assumptions about the evolutionary process. This proposal was then developed

into the statistical alignment framework (see section 3.2.3).

3.2.3 Statistical Alignment

The statistical alignment approach is based on two papers by Thorne et al. (termed

TKF91 and TKF92, respectively) (Thorne et al., 1991, 1992). As the name of this ap-

proach suggests, alignment is handled in a statistical framework which allows parame-

ter inference, hypothesis testing, and analysis of uncertainty (Lunter et al., 2005). In
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•G ⋆A ⋆T ⋆T ⋆A ⋆C ⋆A ⋆
Figure 3.6: Sequencemodeled as consisting of links (⋆) and nucleotides.

comparison to the score-based alignment approaches, statistical alignment starts with

explicit assumptions about thewayDNA sequences evolve. Starting from there, the pa-

rameters used for the actual alignment are then a function of the divergence time and

the speed or rate of evolution. This fits well with the view, that “a sequence alignment

is designed to exhibit the evolutionary correspondence between different sequences”

(Thorne et al., 1991, p. 114). However, the statistical alignment approach has two com-

ponents. One component describes the insertion-deletion process which sequences un-

dergo. Thus, it is necessary to develop a model describing how sequences evolve with

respect to their length. The second component is an explicit evolutionary model of the

substitution process. This aspect of statistical alignment is concerned with an explicit

evolutionary model of how bases evolve over time. There are several models belonging

to the second component. They will be discussed in further detail in section 3.3. The

remainder of this section rather focuses on the aspect of the insertion-deletion process

and only mentions the substitution process in abstract terms if necessary.

Thorne et al. (1991) propose an evolutionary model of sequence insertion and dele-

tion events. The model is designed as a continuous time Markov process of insertion

and deletion events. These events originate from so-called links. There is a link at the

start and the end of a sequence, as well as a link between each nucleotide (see figure 3.6).

The leftmost link is designated as an immortal link (•). All the other links ⋆ are normal

links and occur by definition to the right of a base. For a sequence of length n there are

thenn+1 links, one to the right of each base and the immortal link. The actual process

of insertion and deletion is formulated in terms of these links instead of the bases. The

fate of each link is independent of the fates of the other links. Each link is subject to

a birth-death process where all links can spawn another link with probability λ and all

normal links (⋆) can die with probability µ. Whenever a link dies, the base on its left
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will die with it andwhenever a new link spawns, it will be accompaniedwith a new base

to its left. By definition, a newborn link can never be an immortal link and will always

be a normal one. According to Thorne et al. (1991), the probability of more than one

insertion or deletion event happening in the same instant is so small that it can be ig-

nored. Thus, for a sequence of length n there can be n + 1 links which can give birth

to a new link with rate λ. A sequence of length n will therefore grow at rate (n + 1)λ.

On the other hand, there are only n links which can die at rate µ, since the immortal

link by definition cannot die. A sequence of length n then decreases to length n − 1

with the rate of nµ. The immortal link being immune to deletion prevents sequences

from growing to an infinite length or being of length 0. If additionally the death rate is

larger than the birth rate, the equilibrium distribution of the sequence length γn is the

geometric distribution (Thorne et al., 1991).

γn =

(
1− λ

µ

)(
λ

µ

)n

(3.23)

This gives an explicit model of the insertion-deletion process. Together with a process

of base substitutions, the likelihood that one sequence evolves into another can be cal-

culated.

To illustrate the structural aspect of statistical alignment, assume two sequences A

and B which have length n and m respectively. Consider the example from (1) (re-

peated here as (2)).

(2) A
A
G
–
T
C
A
A
–
G
C
C
–
C

As mentioned above, the focus of this section is on the insertion deletion process and

not on the evolutionary model of the substitution process. Since the TKF process is

also formulated in terms of links, the same alignment will just be represented in terms

of these links.
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(3) •
•
⋆
⋆
⋆
–
⋆
⋆
⋆
⋆
–
⋆
⋆
⋆
–
⋆

The task is to derive a likelihood of how a sequence of links of lengthm + 1 evolves

from a sequence of links of lengthn+1.5 The particular alignment shown in (3) could

have been generated by a multitude of evolutionary histories. The goal of statistical

alignment is to consider all these histories in the calculation of the likelihood of this

alignment. Assume that the sequence in the top row is the ancestral sequence and the

sequence in the second row is the descendant. In order to derive the likelihood of this

particular alignment structure, the fate of each of the ancestral links needs to be consid-

ered. The final likelihood is then the joint probability of all these fates. For each link,

there are in principle two fates over time and a third for the immortal link:

1. There are l descendant links from a normal one, and the original link is one of

them,

2. there are l descendant links from a normal one, and the original link dies,

3. the immortal link has l descendants including itself.

The likelihoods of the different scenarios are pHl (t), pNl (t) and pIl (t) respectively, with t

as the evolutionary time and l as the number of descendant links. For the given example,

the immortal link gives rise to zero new nucleotides. The fate of the first normal link is

described by the first scenario, i.e., pHl (t). This can be done for each of the links in the

ancestral sequence. The full likelihood P (α|θ) with α as the alignment structure and

θ as the model parameters is then:

P (α|θ) = pI0(t)p
H
1 (t)p

N
0 (t)p

H
1 (t)p

H
2 (t)p

H
2 (t). (3.24)

Thorne et al. (1991) or Lunter et al. (2005) give differential equations for the prob-

abilities of the different fates. As already noted above, this particular alignment can
5The 1 is added because of the immortal link present in every sequence.

39



• ⋆ ⋆ ⋆ ⋆ ⋆

• ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

†
†

††

ancestral sequence

descendant sequence

evolutionary time

Figure 3.7: Exemplary representation of an evolutionary history which is compatible with the alignment shown in

(3). The † represents the death of the particular residue (cf. Lunter et al., 2005).

be the result of several different evolutionary histories. One such scenario is shown in

figure 3.7. This is just one history which produces the alignment displayed in (3). Sta-

tistical alignment considers all possible histories in the formulation of the probabilities.

Thus, it remains neutral regarding the particular evolutionary history and rather quan-

tifies how probable it is that any evolutionary history generated a particular alignment.

Instead of using these differential equations, the process described by Thorne et al.

(1991) can also be formulated in terms of a Hidden Markov model (cf. Lunter et al.,

2005; Holmes and Bruno, 2001; Hein, 2001;Metzler et al., 2001). The formulation of

the TKF91 model in terms of aMarkov model makes the model in itself more compre-

hensible and the idea of the model becomes a bit clearer (see figure 3.8 on page 41).

Bτ = λβ(τ)

Eτ = µβ(τ)

Nτ = (1− e−µτ − µβ(τ))(1− λβ(τ))

Hτ = e−µτ (1− λβ(τ))

Iτ = 1− λβ(τ)

β(t) =
1− e(λ−µ)t

µ− λe(λ−µ)t

(cf. Lunter et al., 2005)

(3.25)
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pSD

pSM

pSE

arc transition probability
pMM B∞Hτ

pMI Bτ

pMD B∞(Nτ + Eτ (1−Bτ ))
pME (1−Bτ )(1−B∞)
pII Bτ

pIM B∞Hτ

pID B∞(Nτ + Eτ (1−Bτ ))
pIE (1−Bτ )(1−B∞)
pDD EτB∞
pDM

EτHτB∞
(Nτ+Eτ (1−Bτ ))

pDI
Nτ

(Nτ+Eτ (1−Bτ ))

pDE
Eτ (1−Bτ )(1−B∞)
(Nτ+Eτ (1−Bτ ))

pSM
B∞Hτ

1−Bτ

pSD B∞

(
Nτ

1−Bτ
+ Eτ

)
pSE 1−B∞

Figure 3.8: HiddenMarkov model formulation of the TKF91 insertion deletion process. The transition parameters

are as proposed by Lunter et al. (2005). The evolutionary time separating the two sequences is τ and∞
represents the equilibrium state, thus an infinite amount of time.

The actual probabilities on the arcs in the Markov model formulation follow from the

differential equations from Thorne et al. (1991) and are also shown in equation 3.25.

It is important to note that the model developed by Thorne et al. (1991) is defined

such that per unit in time, there is just one base which can be inserted or deleted. The

model cannot handle the insertion or deletion of longer snippets. Thorne et al. further

developed theirmodel such that the insertion or deletion of longer snippets are possible.

It turns out that the model described above emerges as a special case from the extended

model.

The TKF92 model extends the TKF91 model such that the deletion or insertion

process does not just delete or insert single links or bases but rather entire fragments.

The insertion and deletion process on the links is the same in both models. Therefore,

the extension of themodel is done just in terms of integrating the idea of fragments. To

properly formulate the model of insertions and deletions, it is necessary to define the

distribution which governs the size of the fragments. Thus, let h(n) be the probability
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pSD B∞

(
Nτ

1−Bτ
+ Eτ

)
pSE 1−B∞

Figure 3.9: HiddenMarkovmodel formulation of the TKF92 insertion-deletion process. The transition parameters

are as proposed by Lunter et al. (2005). The evolutionary time separating the two sequences is τ and∞
represents the equilibrium state, so the time parameter tends to infinity. The definition of the parame-

ters in the table is the same as in equation 3.25.

that a link comes with n ≥ 1 bases. Thorne et al. (1992) postulate that h(n) comes in

the form of a geometric distribution.

h(n) = (1− r)rn−1

0 ≤ r < 1, n ≥ 1
(3.26)

For r = 0 the TKF91 model emerges as a special case of the TKF92 model. A conse-

quence of introducing the idea of fragments is that the distribution of sequence length

does no longer follow the geometric distribution of the TKF91 model (cf. 3.23).

γn =

(
1− λ

µ

)
λ

µ
(1− r)

[
λ

µ
(1− r) + r

]n−1

(3.27)

In parallel to the TKF91 model, the parameters λ and µ are the birth and death rate.

The TKF92 model can be formulated in terms of a Hidden Markov model as well (cf.

figure 3.9). The difference between the Hidden Markov model formulation of the

TKF91 and TKF92 process is rather straightforward. The transition parameters for
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the TKF92 model are derived from the TKF91 model by including the parameter gov-

erning the distribution of the fragment length r (cf. equation 3.26). Each transition

probability ismultipliedby (1−r) and r is added to each self-transition (cf. Lunter et al.,

2005). Only the transitions out of the begin state remain unaltered. Reformulating the

TKF91 and TKF92 model in terms of Hidden Markov models opens up the toolbox

of standardMarkovModel algorithms, such as the forward or Viterbi algorithm.

While the TKF92 model is probably closer to reality than the TKF91 model, there

are still two strong assumptions underlying the model which are potentially problem-

atic. The first assumption is that insertion and deletion events cannot overlap and the

second assumption is that the length of the insertions or deletions is geometrically dis-

tributed (Lunter et al., 2005; Thorne et al., 1992). Amore generalmodel, which relaxes

in particular the first assumption, was developed by Miklós et al. (2004). This model,

called ‘long indel’ model, allows overlapping insertion and deletion events. This relax-

ation may be desirable from a conceptual point of view but comes at a high computa-

tional price. Relaxing the non-overlap assumption results in an entanglement of neigh-

boring nucleotides over time (cf. Lunter et al., 2005). Thus, the final probability can-

not be factorized similar to the standardTKF91 orTKF92model. Additionally, for the

general form of the ‘long indel’ model “no closed form solution of the outcome prob-

abilities are known, even for geometric indel length distributions” (Lunter et al., 2005,

p. 381). There are still algorithmswhich can calculate an approximation to the ‘long in-

del’ model, although they are computationally more demanding than the TKF91 and

TKF91 models.

Phylogenetic Inference under the Statistical AlignmentModel

In conjunctionwith a propermodel of base substitution, phylogenetic inference is pos-

sible. For certain specific trees, there are even algorithms allowing the direct calcula-

tion of the likelihoodwithout resorting to sampling approaches. Steel andHein (2001)
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present an algorithm which can calculate the likelihood of three sequences related by a

star-shaped tree directly. Miklós (2002) improves the algorithm of Steel and Hein but

also states, that it is only reasonable for about three sequences. For a small number of

sequences, Hein (2001) presents an algorithm which can calculate the likelihood of a

set of sequences evolving along the branches of a binary tree. In each of these cases, the

authors note that the application of sampling-based methods, such as Markov Chain

Monte Carlo methods, should be considered for real-sized problems.

However, there are at least two implementations available which model the use of

sampling-based methods in conjunction with statistical alignment. The StatAlign soft-

ware package (Novák et al., 2008) and the Bali-phy software package (Suchard and Re-

delings, 2006) implement the statistical alignment approach in conjunction with phy-

logenetic inference (Hein et al., 2003).

3.3 Models of DNA Evolution

As already noted previously, statistical alignment approaches use explicit models of

DNA evolution to model similarities between DNA nucleotides. These models are

not only used in the area of statistical alignment but also for already aligned sequences

of DNA data. Since the interpretation of these alignments is that the nucleotides ap-

pearing in the same column have a common origin, models of DNA evolution can be

used to model how these nucleotides evolve over time. These models can then be used

for the task of phylogenetic reconstruction of trees based on a set of functionally equiv-

alent and aligned DNA sequences. Naturally, the state space of these models consists

of the four bases. Figure 3.10 (page 45) illustrates the state space of such a model. The

arrows indicate possible changes of the bases.

Actually modeling these transitions between the states has lead to a wide number of

different models. Figure 3.11 on page 45 gives a graphical overview of several of these

models. As the graph already suggests, the Jukes-Cantormodel (JC in the graph) (Jukes
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Figure 3.10: Symbolic representation of the evolutionary process underlying the evolution nucleic acids.

JC

F81 K2P

HKY=
F84

TrN

K3SP

SYM

GTR

JC Jukes and Cantor (1969)
F81 Felsenstein (1981)
K2P Kimura (1980)
K3SP Kimura (1981)
HKY Hasegawa et al. (1985)
F84 Felsenstein and Churchill (1996)
TrN Tamura and Nei (1993)
SYM Zharkikh (1994)
GTR Lanave et al. (1984)

Figure 3.11: Overview of the relations between different models of DNA evolution. The arrows should be inter-

preted such that the model at the tip of the arrow is an extension compared to the model at the origin

of the arrow (cf. Huson et al., 2010).

and Cantor, 1969) is the most basic one. One by one the different models relax the

very restrictive assumptions of this model. The most general of these models is the

General Time Reversible model (GTR in the graph) (Lanave et al., 1984). To give an

introduction to this model, the model by Jukes and Cantor as well as the general time

reversible model will shortly be reviewed. For a more in-depth introduction to these

models see Felsenstein (2004).
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3.3.1 The Jukes-CantorModel

The Jukes-Cantormodel is the earliest andmost basicmodel ofDNAevolution.6 It also

places the most restrictions on the parameters of the model. The model is defined such

that each base has the same chance to change into any other base. In terms of the graph

in figure 3.10, the weight of each arrow is identical. Consequently, the four bases are

expected to appear with the same frequency. Assume the rate of substitutions between

all bases is u thus, since all changes have the same chance, each arrow is associated with

the weight u
3
. The graph in figure 3.10 with the associated weights can be represented

in terms of a matrix as in 3.28. 
· u

3
u
3

u
3

u
3
· u

3
u
3

u
3

u
3
· u

3

u
3

u
3

u
3
·

 (3.28)

Given a pair of aligned sequences, the distance between the two can be estimated by

calculating the transition probabilities from one state to another, i.e., from one base to

the aligned other. To ease the calculation, assume that there is an additional possible

change from a base to itself with rate u
3
. This would fill the diagonal of the matrix 3.28

with u
3
. Instead of choosing from three bases in the case of a transition, the original base

is a candidate as well, which results in four candidates. The rate of change is then not

u anymore but rather 4
3
u. This will be the same process as before since the probability

to change to a different base remains u
3
. The evolutionary time separating the two se-

quence is t. So the expected number of transition events is 4
3
ut. Since the time t is taken

to be continuous, the whole process can be modeled via a Poisson distribution. Thus,

in each tiny segment of time dt the probability of an event is 4
3
u dt. The probability

6The description of the Jukes-Cantor model loosely follows Felsenstein (2004).
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of no event happening is then the zero term of the Poisson distribution (cf. Felsenstein,

2004).

e−
4
3
ut (3.29)

Hence, the probability of at least one event happening is the complement of this quan-

tity.

1− e−
4
3
ut (3.30)

Since a consequence of the model’s parametrization is that all bases have the same fre-

quency, the probability of a base turning into another base is defined as

1

4
(1− e−

4
3
ut). (3.31)

Hence, the probability of seeing any other base after evolutionary time t is then three

times the quantity defined in 3.31.

3

4
(1− e−

4
3
ut) (3.32)

For a given alignment this equation can be used to derive a maximum likelihood esti-

mate of the evolutionary time t separating the two sequences.

3.3.2 The General Time ReversibleModel

The general time reversible (GTR) model (Lanave et al., 1984) allows the maximal

amount of flexibility while still being mathematically tractable.7 Similar to the Jukes-

Cantor model, the General Time Reversible model is reversible. Reversibility describes

theproperty that the probability of startingwithx at the beginningof a branch and end-

ing at y after time t is the same as starting with y and having x after the same amount
7The model by Rodríguez et al. (1990) is in theory even more flexible in the choice of parameters.

However, Felsenstein (2004) and Rodríguez et al. (1990) point out their needs to be more work done to
make this model useful.
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A G C T
A · πGα πCβ πTγ
G πAα · πCδ πT ϵ
C πAβ πGδ · πTη
T πAγ πGϵ πCη ·

Table 3.2: Parametrization of the general time reversible model. The table should be read such that the base in the

row changes to the base in the column so, e.g.,πCδ is the instantaneous rate of change fromG to C. This

formulation of the GTRmodel is due to Lanave et al. (1984) (cf. Felsenstein, 2004).

of time. Suppose πx and πy are the equilibrium frequencies of x and y and P (x|y, t)

is the probability of starting with y and ending with x after time t, and vice versa for

P (y|x, t). Formally speaking, reversibility is then defined as in 3.33.

πxP (y|x, t) = πyP (x|y, t) (3.33)

Note that reversibility does not assume that P (x|y, t) = P (y|x, t). Although re-

versibility is mathematically convenient, there is no reason to believe that the actual un-

derlying biological process is reversible. Besides this drawback, it appears that reversible

models match the actual observed data really closer. Therefore, the true underlying bi-

ological process may actually be close to reversible (cf. Felsenstein, 2004). The formu-

lation of the actual rates of change in the general time reversible model is shown in 3.2.

The table shows the rates of change from one base to another according to the GTR

model. Compared to the Jukes-Cantor model, this model has six different substitution

parameters and unequal base frequencies. The Jukes-Cantormodel emerges as a special

case from the GTR model if πA = πG = πC = πT and α = β = γ = δ = ϵ = η.

To calculate actual transition probabilities from the rates of change, a rate matrixQ is
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necessary. The rate matrix for the GTR model is shown in equation 3.34, where φ, χ,

ψ and ω are each the sum of the other entries in their row.

Q =


−φ πGα πCβ πTγ

πAα −χ πCδ πT ϵ

πAβ πGδ −ψ πTη

πAγ πGϵ πCη −ω

 (3.34)

The values in the matrix should be normalized by the sum of the off-diagonal values

multiplied by the probability to start with the respective base such that for a unit of

time, there is one change. The matrix of transition probabilities after time t P (t) can

be calculated by exponentiating the matrixA.

P (t) = eAt (3.35)

The entries in the resulting matrix are the probabilities to observe the base in the row

at the beginning of the branch of the tree and the base in the column at the end (the in-

terpretation of rows and columns carry over from table 3.2). The estimation of the

values for the frequencies and rates can be done via a numerical optimization tech-

nique. There are mainly two software suits available, which among other things, also

estimate the optimal branch lengths and tree structures. There is BEAST on the one

hand (Suchard et al., 2018) andMrBayes (Huelsenbeck andRonquist, 2001; Ronquist

and Huelsenbeck, 2003) on the other hand.

3.4 Trees

An important concept for phylogenetic inference in computational biology and histor-

ical linguistics is the concept of a tree. The tree as a mathematical concept is a unifying

object for disciplines concerned with the study of evolutionary processes. Trees can be
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used to answer questions of relatedness and or time scales. Evolutionary time, as men-

tioned several times above already, can easily be modeled by the means of a tree. The

evolutionary time separating two taxa can be defined as the length of the branches con-

necting the two (a more formal definition is given below). Therefore, the following

section will shortly introduce this concept. The following overview is based on Steel

(2016).

Formally speaking, trees are special instances of graphs.

Definition 3.2. An undirected graph G = (V,E) consists of set of vertices V and a

set of edgesE ⊆
(
V
2

)
.

While, in theory, there is no restriction on the size of V and E only finite sets of

V and E, are considered in the following. Two vertices or nodes n and n′ in a graph

are adjacent if there is a set e = {n, n′} in E. A node n and an edge e are incident

if n ∈ e ∈ E. Since the set of edges is defined as having sets of single elements as

their sole members, it follows that the edges in this graph are undirected. There are two

more consequences following this definition of graphs: fist loops are excluded as well

as parallel edges. Both of these points follow from defining the set of edges as a set of

sets with a cardinality of two. The degree of a node is the number of edges which are

incident with this node. A path in a graph is defined as a sequence of different nodes

n1 . . . nk such that each node is adjacent to the next in the sequence. The length of

a path is defined as the number of edges on the path. If there is a path with k ≥ 3

such that n1 and nk are adjacent, the path constitutes a cycle of length k. A tree is then

defined as follows.

Definition 3.3. A tree T = (V,E) is a graph that is connected and has no cycles.

In comparison to an undirected graph, there is a unique path between any two ver-

tices u and v in a tree T . Nodes which have a degree of 1, so just one incident edge, are

called leaves. Vertices, which are not leaves are called interior. The definitions of graphs
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and trees so far (definition 3.2 and definition 3.3, respectively), do not employ any no-

tion of direction on their edges. Ergo in terms of evolution and time, for two connected

nodes, there is no way to tell which one is the ancestor and which the descendant. To

get a formal grasp on this, it is necessary to include the notion of directionality. In order

to add directionality, the definition of edges as a set of sets needs to be changed.

Definition 3.4. Directed graphs consist of a set of verticesV and a set of directed edges

A ⊆ (V × V ). A directed edge (u, v) starts at u and ends at v.

The set of edges for a directed graph is no longer a set of sets but rather a set of ordered

pairs, where the order of the elements determines the direction of the edge. Instead of

the degree of an edge, the in-degree and out-degree are distinguished. The in-degree

of a node n is the number of edges ending at n, i.e., the number of pairs where n is

the second element, and the out-degree of n is the number of edges starting at n. A

directed acyclic graph (DAG) is further on defined as a graph without a directed path

from a vertex to itself. If a node n can be reached via a directed path from node u in a

DAG, then n is called a proper descendant of u. There are two fundamental properties

of DAGs by which they are characterized: 1. If a directed graphG is acyclic, then it has

at least one vertex of out-degree zero and at least one vertex of in-degree zero; 2. G is

acyclic if and only if there exists a total ordering on the vertices of G that satisfies the

following condition: if v0 is a proper descendant of v, then v is strictly less then v0 in

that ordering. Following up on DAGs, a rooted tree will be defined as follows.

Definition 3.5. A rooted tree is a tree T = (V,E), where a vertex v ∈ V is distin-

guished as a root vertex and all edges are directed away from this vertex. The root vertex

is the only node with in-degree 0. In addition, for a rooted binary tree, each non-leaf

vertex has out-degree 2.

Rooted trees are an important concept for the study of evolutionary processes. With

rooted trees, the notion of the latest common ancestor of two elements can be defined.
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Figure 3.12: Example for a rooted tree with branch lengths

A node l is the latest common ancestor of the nodes u and v if u and v are proper

descendants of l and there is no other node l′ which is a proper descendant of l and

of which u and v are also proper descendants. Also, the notion of evolutionary time

can be defined properly. To quantify the evolutionary time, it is necessary to include

the notion of branch length. The branch length can be defined via a function bwhich

assigns a real-valued length to each e ∈ E. Therefore, the evolutionary time separating

two nodes u and v is the sum of all branch lengths on the path connecting u and v.

3.5 Felsenstein’s Algorithm and the Pulley Principle

Having stated themathematical theory behind trees and themodels of DNA evolution

inprevious sections, it is possible to calculate the likelihoodof a tree. A computationally

efficient way to calculate this likelihood is provided by Felsenstein’s algorithm. Felsen-

stein developed this algorithm in two papers (Felsenstein, 1973, 1981). The algorithm

is based on the idea to factorize the likelihood of a complex tree into the likelihoods of

smaller sub-trees. In the same instance, Felsenstein pointed out that the reversibility

property of the models of DNA evolution allowed a useful property of the estimation

of evolutionary trees to be established.

As a general idea, the likelihood of a tree should be the product of the probability

of changes along the branches of the tree. Let sX denote the state of nodeX , i.e., the
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nucleotide present at this node, and πX be the prior probability of sX . For the tree in

figure 3.12 on page 52, the likelihood would be computed as the probability of change

along the branches times the prior probability of the state of the root nodes (cf. Felsen-

stein, 1981).

L = πAP (sB|sA, t1)P (sC |sA, t2)P (sD|sB, t3)

P (sE|sB, t4)P (sF |sE, t5)P (sG|sE, t6)

(cf. Felsenstein, 1981)

(3.36)

Since the state of the root and all the other internal nodes is usually unknown, the dif-

ferent states of the bases need to be summed over.

L =
∑
sA

∑
sB

∑
sC

∑
sE

πAP (sB|sA, t1)P (sC |sA, t2)P (sD|sB, t3)

P (sE|sB, t4)P (sF |sE, t5)P (sG|sE, t6)

(cf. Felsenstein, 1981)

(3.37)

Felsenstein mentions that for four possible states at the internal nodes, the resulting

expression for a tree wit n leaves would consist of 2n−2 terms. It turns out that the full

likelihood canbe computedmuchmore efficiently. The summation signs canbemoved

‘rightwards’ such that the scope of the different summation signs mirrors the topology

of the tree. The new structure of the formula indicates that the likelihood of the tree

can be evaluated by going from the leaves to the root of the tree. This particular way of

passing through the tree is also known as post-order traversal. This allows the definition

of a recursive mechanism to calculate the likelihood of a tree. Assume that the node n

has two proper descendant nodes l and r, whose incident branches have length tl and
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tr respectively, and that x and y are possible states of a node. Then the mechanism can

be stated generally by the following formula.

Ln(s) =

(∑
x

(P (x|s, tl)Ll(x))

)(∑
y

(P (y|s, tr)Lr(y))

)

(cf. Felsenstein, 1981)

(3.38)

Where Ln(s) is the probability of observing everything on the descendants of n given

that n is in state s. At the leaves of the tree, Lz(s) is 1 for the nucleotide which is

actually present and 0 for the other states. The likelihood of the entire tree can then be

calculated as follows.

L =
∑
sρ

πsρLr(sρ)

(cf. Felsenstein, 1981)
(3.39)

For all possible states sρ at the root ρ the probability of all possible scenarios given sρ

is computed. The full likelihood is then the sum over all these probabilities times the

prior probability of sρ, πsρ . The development of the method focused on just one par-

ticular site. The likelihood for a nucleotide sequence is obtained by summing over the

likelihood of each site, where the likelihood of a site is computed by the means of equa-

tion 3.39.

The second important mechanismwhich is due to Felsenstein is the Pulley Principle.

This principle is a consequence of the reversibility property of themodels of DNA evo-

lution. He shows that the likelihood term in equation 3.38 is only affected by the sum

of tl and tr. As long as tl + tr remains unaltered, Ln(s) is not affected by a changing

of the branch length. Thus, even though the algorithm works on the basis of a rooted

tree, what is actually estimated is an unrooted tree.
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4
Automatic Cognate Identification and

Phylogenetic Inference

The detection of cognate word pairs is an important aspect of computational historical

linguistics.1 Recent years have seen a surge in the number of publications in the field

of computational historical linguistics due to the availability of word lists for a large

number of languages of theworld aswell as cognate databases forAustronesian or Indo-

European (Brown et al., 2013; Bouckaert et al., 2012; Greenhill and Gray, 2009).

The availability of word lists (without cognate judgments) has sparked different lines

of research. On the one hand, scholars like Rama and Borin (2015) and Jäger (2015)

experimented with different weighted string similarity measures for the purpose of in-

ferring the family trees of the languages of the world, without explicit cognate identifi-

cation. Their research can be counted towards the area of distance based methods for
1The first part of the chapter is based on Rama et al. (2017).
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ALL AND ANIMAL . . .
English ol End Enim3l . . .
German al3 unt tia . . .
French tu e animal . . .
Spanish to8o i animal . . .
Swedish ala ok y3r . . .

Table 4.1: Example of a word list for five languages belonging to Germanic (English, German and Swedish) and Ro-

mance (Spanish and French) subfamilies transcribed in ASJP alphabet.

phylogenetic inference. On the other hand, List (2012a) proposed a cognate clustering

system that combines handcrafted weighted string similarity measures and permuta-

tion tests for the purpose of automated cognate identification. In a different approach,

Hauer and Kondrak (2011) experimented with linear classifiers like SVMs (Support

Vector Machines) for the purpose of identifying cognate clusters. Jäger et al. (2017)

also used SVMs for the task of cognate identification. Finally, Rama (2015) uses string

kernel inspired features for training a SVM linear classifier for pair-wise cognate identi-

fication.

In another line of research, the inference of phylogenetic trees using Bayesian meth-

ods (Yang andRannala, 1997) in computational historical linguistics uses data which is

annotated for cognacy by experts. This research explores the idea of reconstructing lan-

guage trees (e.g., Gray and Atkinson, 2003; Bouckaert et al., 2012) or the inspection of

sound change events (Bouchard-Côté et al., 2013). The phylogenetic inference meth-

odswhichoperate on the character level require cognate judgmentswhich are only avail-

able for a small number of well-studied language families such as Indo-European and

Austronesian. For instance, the ASJP database provides Swadesh word lists transcribed

in a uniform format for more than 60% of the languages of the world. An example

of such a word list is given in table 4.1. To further facilitate the use of phylogenetic

methods, reliable cognate judgments for a lot of language families are necessary. While

the supervisedmethods of cognate identification (e.g.,Hauer andKondrak, 2011; Jäger

et al., 2017; Rama, 2015) require some annotated data for training, well performing un-
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supervised methods are desirable to deal with the large amount of un-annotated data.

Thus, one task at hand is to automatically cluster words that show genealogical relation-

ship.

As noted by Hauer and Kondrak (2011) and tested by Rama et al. (2018), availabil-

ity of a reliable multilingual cognate identification system can be used to supply the

cognate judgments as an input to the phylogenetic inference algorithms. Such an ap-

proach connects these two steps of the comparative method which have been treated as

separate previously in computational historical linguistics.

In section 4.1, there is a short review of some relevant literature in cognate detec-

tion and alignment as well as phylogenetic inference. Section 4.3 presents an unsuper-

vised system for the detection of cognate classes from un-annotated data. The system

is compared against other systems from the literature and its performance is critically

assessed. Section 4.4 presents the paper by Rama et al. (2018) in some detail. Their

experiments use automatically inferred cognate sets for the purpose of estimating lan-

guage trees. The experiments by Rama et al. (2018) are partly based on the cognate

classes which were detected with the methods presented in section 4.3.

4.1 Sequence Alignment and Cognate Detection in the Literature

Sequence alignment methods and cognate detection approaches have made their way

into the literature in several ways already. The two areas most relevant to the current

study are dialectometry and computational historical linguistics. I discussed some of

the approaches above.

It has to be noted at this point that the notion of a cognate in the area of compu-

tational historical linguistics often employs a slightly narrower definition of the word

than in traditional historical linguistics (cf. section 2.1 of this thesis). The definition of

cognacy in computational historical linguistics is limited to words describing the same

concept. The reason for this restriction is first and foremost rooted in the design of the
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experiments as well as the lack of cross-concept cognacy annotated datasets. What this

means in practice is that a cognate pair like English bone and German Bein (leg) will be

completely ignored although they are cognate in the traditional sense. Throughout the

remainder, cognacy is used in its more narrow, computational sense.

PHMMs are used in computational dialectology (Wieling et al., 2007) and early ap-

proaches to computational historical linguistics (Mackay and Kondrak, 2005). Both

studies use PHMMs to compute word similarity. While the early study byMackay and

Kondrak had the same goal as the study presented here, i.e., to identify cognate word

pairs,Wieling et al. used PHMMs to incorporate weighted sequence distancemeasures

into the comparison of Dutch dialects.

The Needleman-Wunsch algorithm has also drawn the attention of several scholars

in dialectometry and computational historical linguistics. As discussed above, the ac-

tual scoring scheme is a point of focus. Deriving a scoring scheme based on the concept

of pointwise mutual information (PMI) (Church and Hanks, 1990) is fairly popular

(see section 4.3.1 for details).Wieling et al. (2009, 2012) employed the idea of a PMI

based scoring scheme. While Wieling et al. (2009) compared among others the results

of PMIbased alignment andPHMMs,Wieling et al. (2012) usedPMI scores tomeasure

acoustic differences. In computational historical linguistics, Jäger (2013) used the PMI

based alignment method for computing the string similarity using the ASJP database.

Kondrak (2000) introduced a dynamic programming algorithm for computing the

similarity between two sequences. The scoring scheme is based on articulatory pho-

netic features determined by Ladefoged and Johnson (2014). The structural part of

the algorithm is similar to the Needleman-Wunsch algorithm, but instead of consider-

ing only the symbol at the previous position, the ALINE algorithm also considers the

symbols at previous position (see also section 4.3.5). Kondrak introduced this exten-

sion, to account for cases where a symbol in one string corresponds to two symbols in

the other string. The author evaluated his algorithm on a list of English-Latin cognates.
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List (2012a) introduced a system known as LexStat (described in section 4.3.4) that is

sensitive to segment similarities and chance similarities due to borrowing or semantic

shift. The author tests this system on a number of small-sized datasets (consisting of

less than 20 languages) for the purpose of cognate identification and reports that the

system performs better than Levenshtein distance. The LexStat approach utilizes the

idea of sound classes. The sound class alignment (SCA) (List, 2012c,b), which LexStat

uses, is build on the idea proposed by Dolgopolsky (1964, 1986). The idea of sound

classes is also present in the development of the scoring scheme used in the ALINE

method. In a recent paper, List et al. (2016) explore the use of InfoMap (Rosvall and

Bergstrom, 2008) for the detection of partial cognates in subgroups of Sino-Tibetan

language family. The authors compare the performance of average linkage clustering

against InfoMap and find that InfoMap performs better than average linkage cluster-

ing.

As mentioned above already, Hauer and Kondrak (2011) trained a linear SVM on

word similarity features and use the SVMmodel to assign a similarity score to the word

pair. For each meaning, a word pair distance matrix is computed and supplied to the

average linkage clustering algorithm for inferring cognate clusters. The authors observe

that the SVM trained system performs better than a baseline that judges the similarity

of two words based on the identity of the first two consonants. Jäger et al. (2017) took

a similar approach to Hauer and Kondrak (2011) in that they used a supervised SVM

approach in conjunction with a clustering algorithm to infer cognate classes. In the

study of Jäger et al., the authors used more elaborate word similarity measures than in

the study of Hauer and Kondrak as well as another clustering algorithm. The studies

listed above tested similar datasets using different experimental settings. For instance,

Hauer andKondrak (2011) trained and tested on a subset of language families thatwere

provided byWichmann and Holman (2013). At the same time, the LexStat system, al-

though widely used, seems not to be evaluated on all the available language families.
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Moreover, the PMI-LANG (Jäger, 2013), has not been evaluated at the task of unsu-

pervised cognate clustering. Both systems, LexStat and PMI-LANG, were only used as

part of a pipeline, which then was evaluated on cognate clustering (Jäger et al., 2017).

In a completely different approach, Bouchard-Côté et al. (2013) used their method

which was designed to reconstruct word forms from ancient languages to infer cognate

sets. In comparison to the other techniques described above, they rely on the presence

of a family tree. This is not practical for a lot of other language families then the one

studied by Bouchard-Côté et al. since the tree structure for many language families is

not known beforehand.

4.2 Phylogenetic Inference in the Literature

The literature on phylogenetic inference using computational methods can be divided

along the previously discussed line of character based and distance basedmethods. The

character basedmethodswork on the basis of discrete characters anduse computational

approaches which are based on explicit models of character evolution. These models

are often versions of the DNA-evolution models from computational biology (see sec-

tion 3.3). In a different fashion, the distance basedmethods calculate an actual distance

between languages based on some features of the language, such as sound inventory

sizes or aggregated alignment scores. The resulting distances are then supplied to a hi-

erarchical clustering algorithm which outputs a phylogenetic tree.

The studies using character based methods for phylogenetic inference mainly evolve

around the Indo-European and the Austronesian language family. The studies which

are based on the Indo-European languages have set off a lively discussion about the age

and origin of the Indo-European language. This discussion in the linguistic literature

is very much intertwined with research in archeology and related disciplines. The two

contenders are the Steppe-hypothesis (Anthony, 2010; Haak et al., 2015, among oth-

ers) and the Anatolian hypothesis (Renfrew, 1987; Gray and Atkinson, 2003, among
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others). Both theories of origin come with different age estimates as well. While the

Steppe-hypothesis predicts the birth date of the Indo-European languages to lay be-

tween 4500-3500 BCE, the Anatolian hypothesis predicts this language family to be

about 3000 years older. Both theories have some properties which can be tested. The

work by Gray and Atkinson (2003) and Bouckaert et al. (2012) present some evidence

from linguistic dating and reconstruction of migration patterns in favor of the Anato-

lian hypothesis respectively. Using the same dataset and slightly different constraints,

the studies by Chang et al. (2015) and Rama (2018) offered support for the Steppe-

hypothesis, as their time estimates heavily favor an age estimate which is well within

the range of the Steppe hypothesis. Despite their widely different results, these stud-

ies use the same tool box, to the extent that the algorithms which are used to estimate

the parameters of their model are based on the Markov Chain Monte Carlo (MCMC)

paradigm (see section 5.3 for an introduction).

The methods which Longobardi et al. (2013) and Ringe et al. (2002) used to study

the phylogeny of Indo-European also use character data. However, the algorithms they

use are different to theMCMCbased algorithmsused in thepreviouslymentioned stud-

ies. The early study by Ringe et al. (2002) uses a mix of morphological, phonological

and lexical characters as their data. The algorithm they used to infer a phylogenetic tree

tries to minimize the incompatibility at internal nodes. Based on their dataset the algo-

rithm is not able to produce a tree without conflict, but rather produces 18 different

trees which the authors analyze further. Ringe et al. investigate these trees based on evi-

dence fromhistorical linguistics and explain the inconsistencies. Nevertheless, they con-

clude that they are able to recover major subgroups of Indo-European. Using different

data and other methods, Longobardi et al. (2013) also investigated the Indo-European

languages. They remained agnostic with regards to the origin of Indo-European and

rather focused on exploring the usability of syntactic data to infer phylogenies. Based

on syntactic features from the nominal phrase, such as the presence of a free Genitive,
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Longobardi et al. derive a distance measure which is then used as an input to a tree

building algorithm. Thus, in terms of the character and distance based methods, their

work can be counted among the distance based research. After inspecting the resulting

trees, the authors claim that syntactic features provide a signal which is similar to the

lexical signal used in other studies. Inconsistencies of their treeswith gold standard trees

are attributed to the implicational nature of some syntactic characters.

Using actual word forms, Jäger (2013, 2015) derives distances between languages us-

ing a weighted alignment technique (see section 4.3.1 for a description of the training

method). The distance between languages is designed such that it measures the likeli-

hood whether the degree of similarity between two languages could have come up by

chance. These values are then used as an input to an algorithmwhich calculates the tree

which assumes the minimum amount of evolution based on the input distance matrix.

In comparison to the other methods described above, this approach does not need any

data which is annotated by experts, it only needs semantically aligned and phonetically

transcribed word lists. Additionally, this method is able to detect language families re-

liably.

4.3 Automatic and Unsupervised Cognate Identification

In this section I present amethod aimed at automatically inferring cognate classes. The

workflowwill be to compute similarities between all thewordpairs belonging to amean-

ing and then supplying the resulting distance matrix as an input to a clustering algo-

rithm. The clustering algorithm groups the words into clusters by optimizing a simi-

larity criterion. The similarity between a word pair can be computed using supervised

approaches (cf. Hauer and Kondrak, 2011, among others) or by using sequence align-

ment algorithms such as Needleman-Wunsch (Needleman andWunsch, 1970) or Pair

HiddenMarkov model approaches (Mackay and Kondrak, 2005).
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This study uses an unsupervised approach to estimate word similarity. These simi-

larity scores are then supplied to a clustering algorithm. The resulting clusters are evalu-

ated against a gold standard tomeasure the performance. The focus is on the estimation

of word similarities which are calculated by a version of the Needleman-Wunsch algo-

rithm and a Pair Hidden Markov model (PHMM). The other two steps use standard

methods to facilitate comparison against existing methods.

Afterwards, In introduce the models that are used to compute the sequence simi-

larity, the training methods, and the clustering algorithms. The performance of the

method is comprehensively evaluated with several experiments (secction 4.3.4). Finally,

I present and discuss the results.

4.3.1 Models

While the idea of Pair HiddenMarkovmodels andNeedleman-Wunsch alignment was

already laid out above, the following section discusses some changes to PHMMs and

introduces an unsupervised mechanism to estimate a scoring scheme for Needleman-

Wunsch alignment.

Both approaches, the Needleman-Wunsch algorithm and PHMMs, produce a sim-

ilarity score, in the way they are set up in the current experiment. For the clustering

algorithm, these similarity scores are converted into distances by using a sigmoid trans-

formation:

f(x) = 1.0− (1 + exp(−x))−1. (4.1)

This function maps all the similarity scores into the range of [0, 1] (see figure 4.1 on

page 64). Low similarity scores are mapped onto distance scores between 0.5 and 1,

and high similarity scores are mapped onto distance scores between 0.5 and 0.
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Figure 4.1: Example of a sigmoid function. In this particular case y = 1.0− (1 + exp(−x))−1.

PMI-Weighted Alignment

As discussed above, selecting the appropriate scoring scheme is an important aspect

of using the Needleman-Wunsch algorithm. In comparison to computational biology,

where there are pretty reliable and well crafted scoring schemes such as the BLOSUM

(Henikoff andHenikoff, 1992) or PAM(Dayhoff et al., 1978)matrices, similarmatrices

are harder to obtain for linguistic data. There are exceptions such as the scoring scheme

by Covington (1996) or Kondrak (2000). Jäger (2013) discusses the ALINE approach

and compares it to PMI weighted alignment. He comes to the conclusion that PMI

weighted alignment is superior to handcrafted schemes.

The approach taken here is to learn the scoring scheme from the data. Based on the

idea that in cognate wordpairs sounds that have a close relationship should be aligned,

it is possible to derive a scoring scheme. Mathematically, this is based on the idea of

64



pointwise mutual information (Church and Hanks, 1990).2 The PMI score for the

two sounds i and j is defined as followed:

PMI(i, j) = log
p(i, j)

q(i) · q(j)
(4.2)

where,p(i, j) is theprobability of i, j beingmatched in apair of cognatewords,whereas,

q(i) is the probability that an arbitrarily chosen segment in an arbitrarily chosen word

equals i. A positive PMI value between i and j indicates that the probability of i being

aligned with j in a pair of cognates is higher than what would be expected by chance.

Conversely, a negative PMI value indicates that an alignment of i with j is more likely

the result of chance than of shared inheritance. Jäger (2013) introduced this idea to

computational historical linguistics. Slightly earlier and inspiring Jäger (2013), Wiel-

ing et al. (2009, 2012) used this measurement in dialectometry. Jäger (2013) brought

up a method to infer the PMI score of two sounds from unaligned and unlabeled data.

The training regime for the current study mirrors the one proposed by Jäger (2013). It

can be described by the following steps.

1. Extract a set of word pairs that are probably cognate using a suitable heuristics.

In this paper, we treat all word pairs belonging to the samemeaningwith a length

normalized Levenshtein distance (LDN) below 0.5 as probable cognates.3

2. Align the list of probable cognates using theNeedleman-Wunsch algorithmwith

the original settings of Needleman andWunsch (1970) .

3. Extract aligned segment pairs and compute the PMI value for a segment pair

using equation 4.2 and estimating probabilities as relative frequencies.
2In computational biology, the same measurement is called log odds score.
3See section 4.3.5 for an explanation of LDN.
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4. Generate a new set of aligments using Needleman-Wunsch algorithm and the

segment weights learned from step 3. For the gap penalties, we used the values

proposed in Jäger (2013).

5. We iterate between step 3 and 4 until the average similarity between the two iter-

ations does not change.

This procedure yields a scoring scheme, which is learned from the data and is not in-

formed by prior expert knowledge. This scoring scheme can then be supplied to the

Needleman-Wunsch algorithm and a PMI weighted similarity score for each wordpair

can be computed.

Pair HiddenMarkovModel

As previously discussed (see chapter 3.2.2), Pair Hidden Markov models (PHMMs)

emerge from a probabilistic reformulation of theNeedleman-Wunsch algorithm. Used

in computational biology, PHMMs also found theirway into linguistic applications (cf.

Mackay and Kondrak, 2005; Wieling et al., 2007).

Mackay and Kondrak (2005) discussed the topology of PHMMs in their study. The

topology of PHMMs in its original version shows no transition between the two gap

states (states X and Y in figure 4.2 on page 67). The authors discuss this as a possible

weakness of linguistic PHMMs. Their reasoning is mainly due to cases like the ones

displayed in (1).

(1) d
d
u
o
e
–
–
s

To produce such an alignment, it is necessary to have a transition from one gap state to

the other. Another difference between the biological and the linguistic PHMM is the

split of the parameter for the transition into the end state. Whilst the original version

only has one parameter for this purpose, the linguistic PHMMmakes use of two differ-
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Figure 4.2: Pair Hidden Markov model as proposed by Mackay and Kondrak (2005). The states of the model

are depicted by the circles and the arrows show all the possible transitions between the states.

δ, ϵ, λ, τM , τXY represent the transition probabilities.

ent probabilities τM and τXY . This split of parameters enables themodel to distinguish

between thematch state (M) being the final emitting state or any of the gap states (X,Y)

(see figure 4.2). This modification preserves the symmetry of the model while allowing

a little bit more freedom. The different algorithms, such as the forward or Viterbi algo-

rithm, all carry over to the linguistic PHMM. In order to estimate the parameters of the

model, the PHMM is trained using Baum-Welch expectation maximization algorithm

(Baum, 1972). To find the best alignment between two sequences x and y the Viterbi

algorithm can be used. This is completely parallel to the case for DNA sequences in

computational biology (see section 3.2.2). The probability of relatedness can further-

more be determined by comparing the likelihoods of the two sequences evolving under

a model of relatedness (the PHMM model) or under a random model. The random

model for the linguistic use case is the same as for the biological use case (cf. Mackay

and Kondrak, 2005). Hence, the probability of two sequences, or rather words here, x
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and y of lengthsm and n, respectively which evolve independently under a null model

R is given by the following equation 4.3 (repeating equation 3.21).

P (x, y|R) = ι2(1− ι)n+m

n∏
i=1

fxi

m∏
j=1

fyj , (4.3)

with fxi
being the equilibrium frequency of the sound at position i in sequence x,

where ι = 1
m+n

2
+1

(cf. Borodovsky and Ekisheva, 2006). Thus, the probability of relat-

edness between x and y is computed as the logarithmic ratio of the probability scores

P (x, y|µ) andP (x, y|R), whereµ is the trainedmodel andR is the null model. As for

the PMI weighted alignment, the similarity scores obtained from the PHMM are also

converted to distance scores using the sigmoid transformation.

4.3.2 Online EM

The Expectation Maximization algorithm (EM) is widely used in computational lin-

guistics for the purpose of trainingmodels of word alignment, document classification

and word segmentation. The EM algorithm starts with an initial setting of model pa-

rameters and uses these model parameters to calculate the so called sufficient statistics.

These sufficient statistics are, for example, the number of times a state emits a symbol

or a certain transition is made (3.11 and 3.12 are examples of sufficient statistics). Us-

ing these sufficient statistics, the model parameters are reestimated. The EM algorithm

reestimates the model parameters after each full scan of the training data.

Liang and Klein (2009) observe that described training procedure can lead to slow

convergence. As a matter of fact, Jäger (2013) trains his PMI system using the stan-

dard EM (also known as batch EM) which updates the parameters in a PMI scoring

matrix only after aligning all the word pairs. In contrast, Online EM (Liang and Klein,

2009) updates the model parameters after passing through just a subset of the training

data (also known asminibatch in online learning literature). TheOnline EMalgorithm
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combines the sufficient statistics (s) from the current update step k with the previous

parameters θk−1 to calculate the new parameters θk using the following equation:

θk = (1− ηk)θk−1 + ηks (4.4)

where ηk is defined as: ηk = (k + 2)−α.4 The parameter ηk determines how fast to

forget or remember the updates from the previous steps. The parameter α is in the

range of 0.5 ≤ α ≤ 1. A smaller α implies a large update to the model parameters.

The parameter k is related to the minibatch parameter (m;m = ⌈D
k
⌉; where,D is the

size of training data) and determines the number of updates to be performed. If k = 1,

the EM algorithm is almost the standard EMalgorithm, with the exception that update

steps are still connected via ηk. The other extreme, that k = D implies that an update

to the parameters happens between each sample in the training data.

The training data in the current experiment consists of word pairs and the EM al-

gorithms are the Baum-Welch algorithm for PHHMs and the procedure described in

section 4.3.1.

4.3.3 Clustering Algorithm

Following List et al. (2016), the clustering algorithm is the InfoMap algorithm (Rosvall

and Bergstrom, 2008). The InfoMap clusteringmethod is an information theoretic ap-

proach to detect community structure within a connected network. The method uses

randomwalks on a network as a proxy for information flow to detect communities, i.e.,

clusters, without the need for a threshold. A community is a group of nodes withmore

edges connecting the nodes within the community than connecting them with nodes

outside the community (Newman and Girvan, 2004). In the given case, a community
4The particular choice of ηk is only bound through the following condition:

∑∞
k=0 ηk = ∞ and∑∞

k=0 η
2
k <∞ (Liang andKlein, 2009). This particular versionofηk, followingLiang andKlein (2009),

ensures this condition.

69



refers to the words which are cognate and have higher edge weights between them. The

idea behind the algorithm is that the randomwalk is statistically more likely to spend a

long period of timewithin a community than switching communities due to the nature

of the network.

The resulting scores of the alignment algorithms described above are stored as a pair-

wise distance matrix. Such a distance matrix can be thought of as a complete weighted

graph. The cells of this matrix which have a score below 0.5 are deleted, which also

removes this particular edge from the graph. A score which is lower than 0.5 after sig-

moid transformation means that the original similarity score is below 0. In the case of

PHMMs, this has a very natural consequence. Similarity scores below 0 indicate that

the probability of being generated by the randommodel is higher than the probability

of being generated through the random model. A similar point can be made for the

PMI based Needleman-Wunsch alignment. The scoring scheme is designed such that

the previous interpretation holds as well. The interpretation gets disturbed by the fact

that a similar interpretation is not possible for the gap scores. However, to maintain

comparability, we used the same cut-off for the PMI based alignment. Thus, a non-

complete graph is constructed and the resulting network is supplied as an input to the

InfoMap algorithm.

4.3.4 Experiments

The following sectiondescribes the experimental settings, datasets, evaluationmeasures,

and the comparing systems Baseline, ALINE, PMI-LANG and LexStat, which we use

to evaluate the performance of PMI based alignment and PHMMs trained with the

online training method.
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Hyperparameters of Online EM

The best values form and α are determined by performing a grid search form in the

range ofm = 2s where s ∈ [5, 15]; and, α ∈ [0.5, 1.0] with a step size of 0.05. The

gap opening and gap extension penalties are set to −2.5 and −1.75 following Jäger

(2013). The reason to fix these parameters is that there is no straightforward way to

estimate these two parameters at the same time as the scoring scheme. The remaining

parameters are all learned via the online training method.

Datasets

The aforementioned IELex database (Dyen et al., 1992)5 and the Austronesian Vocab-

ulary Database (Greenhill and Gray, 2009) which is a subset of the ABVD database

by Greenhill et al. (2008), are not transcribed in a uniform IPA format. We cleaned

both databases from any symbols which are not IPA standard and next converted into

ASJP format. Additionally, we selected a random set of 100 languages from the Aus-

tronesian Data.6 Additionally, we used some small databases with cognate judgments

from Wichmann and Holman (2013) and List (2014b). The respective authors com-

piled cognacy wordlists for subsets of families from various scholarly sources such as

comparative handbooks and historical linguistics’ articles. The details for the different

databases are given in table 4.2.

EvaluationMeasures

We analyzed the clustering results using B-cubed F-score (Amigó et al., 2009). The B-

cubed scores are defined for each word belonging to a meaning as followed. The pre-

cision for a word is defined as the ratio between the number of cognates in its cluster

to the total number of words in its cluster. The recall for a word is defined as the ra-
5http://ielex.mpi.nl/, curated byMichael Dunn.
6LexStat takes many hours to run on a dataset of 100 languages.
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Family NOM NOL AveCC AveWC
Austronesian 210 100 20.2142 4.1143
Afrasian 40 21 9.5 2.6868
Bai dialects 110 9 2.5909 6.0166
Chinese dialects 179 18 6.8771 5.2635
Huon 84 14 6.3929 2.7672
Indo-European 207 52 12.2126 7.3461
Japanese dialects 200 10 2.3 6.1373
Kadai 40 12 3.225 5.0027
Kamasau 36 8 1.6667 5.3981
Lolo-Burmese 40 15 2.625 7.3121
Mayan 100 30 8.58 6.1521
Miao-Yao 39 6 1.8974 3.9667
Mixe-Zoque 100 10 3 4.6535
Mon-Khmer 100 16 7.75 2.7956
ObUgrian 110 21 2.2 11.8162
Tujia 109 5 1.6422 3.3792

Table 4.2: This is an overview of the characteristics of the data sets. Number of languages (NOL), Number of mean-

ings (NOM), Average number of cognate classes per meaning (AveCC) and Average number of words per

cognate class (AveWC).

tio between the number of cognates in its cluster to the total number of expert labeled

cognates. The B-cubed precision and recall are defined as the average of the words’ pre-

cision and recall across all the clusters. Finally, the B-cubed F-score for a meaning, is

computed as the harmonic mean of the average items’ precision and recall. The Aver-

aged B-cubed F-score for the whole dataset is computed as the average of the B-cubed

F-scores across all the meanings.

Amigó et al. (2009) show that the B-cubed F-score satisfies four formal constraints

known as cluster homogeneity, cluster completeness, rag bag (robustness to misplace-

ment of a true singleton item) and robustness to variation in cluster size. The authors

show that cluster evaluation measures based on entropy such as Mutual Information

and V-measure (Rosenberg and Hirschberg, 2007) and Rand index do not satisfy the

four constraints. Both Hauer and Kondrak (2011) and List et al. (2016) use B-cubed

F-scores to evaluate their cognate clustering systems.
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4.3.5 Comparing Systems

LDN

TheNeedleman-Wunsch algorithm is designed todetermine the similarity of two strings.

A high similarity between two strings also implies that there is a small distance between

them. As Sellers (1974) shows, the structure of the Needleman-Wunsch algorithm can

also be used to calculate the minimum distance. Instead of maximizing the similarity,

the distance is minimized. Under a certain scoring scheme, this algorithm then calcu-

lates the Levenshtein distance (Levenshtein, 1966). The Levenshtein distance is the

minimal number of operations to transform one string into another. Consider the two

word “house” and “haus”. Their Levenshtein distance is 2. There is the replacement of

“o” with “a” and the deletion of “e”. The scoring scheme for the Levenshtein distance

will score identical symbols with a zero and non identical symbols with a one. By defini-

tion, the maximal Levenshtein distance between two strings is the length of the longest

string. To fairly account for strings of different length, the Levenshtein distance can be

divided by the length of the longer of the two strings. This operation yields the normal-

ized Levenshtein distance (LDN). The normalized Levenshtein distance is adopted as

the baseline in the current experiments.

ALINE

ALINE is a sequence alignment system designed by Kondrak (2000) for computing

similarities between two words by decomposing phonemes into multivalued and bi-

nary phonetic features. Each phoneme is decomposed into multivalued features such

as place and manner for consonants and height and backness for vowels. Multivalued

features take values on a continuous scale ranging from [0, 1] and the values represent

the distance between the sources of articulation. Binary valued features consist of nasal,

voicing, aspirated and retroflex.
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Each feature isweighedby a salience value that is determinedmanually. The similarity

score between two sequences is computed as the sum of the aligned sound segments.

Following Downey et al. (2008), ALINE’s similarity score sab between two words a, b

is converted into a distance score based on the following formula: 1.0− 2.0∗sab
saa+sbb

.7

PMI-LANG

Jäger (2013) developed a system that learns PMI soundmatrices to optimize a criterion

designed to optimize language relatedness. The core idea is to tie up word similarity to

language similarity such that close languages like English/German tend to have more

similarity than English/Hindi. The language similarity function amounts to maximiz-

ing similarity between probable cognates to learn a PMI score matrix. The training

method and the system is also explained above. Jäger (2013) applies the learned PMI

scorematrix to infer phylogenetic trees of language families. However, the learned PMI

score matrix has not been applied to cognate clustering yet.

LexStat

LexStat (List, 2012a) is part of LingPy (List and Forkel, 2016) library offering state-of-

the-art alignment algorithms for aligning word pairs and clustering them into cognate

sets. The work flow of LexStat proceeds through the following steps:

1. LexStat uses a hand-crafted sound segmentmatrix,h, to align and score theword

pairs for each meaning. Let the similarity of a segment pair i, j be given as hij .

2. For each language pair, l1, l2 the word pairs belonging to the same meaning are

aligned. The frequency of a segment pair i, j belonging to the same meaning is

given as aij .
7In the current experiment we use the Python implementation provided by Huff and Lonsdale

(2011), which is available at https://sourceforge.net/projects/pyaline/.
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3. For l1, l2, thewords belonging to one of the language is shuffled and realigned us-

ing Needleman-Wunsch algorithm. This procedure is repeated for all language

pairs for 100 times. The average frequency of a segment pair i, j from the reshuf-

fling step is given as eij .

4. All the parameters h, a, e are combined according to the following formula to

give a new segment similarity score sij , wherew1 + w2 = 1.

sij = 2 ∗ w1log
aij
eij

+ w2hij (4.5)

5. Theweights sij are then used to score word pairs and cluster words in ameaning.

The intuition behind step 3 is to reduce the effect of chance similarities between

the sound segments that can obscure real genetic sound correspondences.8 The word

distances from all the above systems are all used as an input to InfoMap to infer cognate

clusters.

4.3.6 Results

The current study consists of two separate experiments. While the evaluation and the

methods are the same, they differ in their usage of slightly different training data.

Out-of-Family Training

In this experiment, we train our PHMM and PMI systems on the 40-item wordlists

from theASJP database belonging to families other than those language groups present

in table 4.2. It is made sure that there is no overlap between the languages present in

the test dataset and the training dataset. The training sets for both systems, PMI and

PHMM, consist of a lot of probable cognates. In sum, there are 1, 151, 178word pairs.
8The code forLingPy canbe obtained fromhttps://github.com/lingpy. TheLexStat similarity

scores are converted into distance scores using the same formula as ALINE.
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Family LDN PMI-LANG Batch PMI Online PMI Batch PHMM Online PHMM LexStat ALINE
Austronesian 0.7175 0.7355 0.6539 0.7364 0.6224 0.6709 0.7173 0.5321
Afrasian 0.7993 0.8133 0.7496 0.8392 0.7213 0.7044 – 0.6442
Bai dialects 0.8348 0.8766 0.8716 0.8774 0.8741 0.8639 0.8417 0.8462
Chinese dialects 0.7687 0.7521 0.7217 0.7803 0.7455 0.7396 0.7815 0.6651
Huon 0.8536 0.8556 0.7518 0.8775 0.7612 0.7437 – 0.6413
Indo-European 0.7367 0.7752 0.7337 0.7812 0.715 0.7126 0.7316 0.6583
Japanese dialects 0.893 0.9031 0.8943 0.9051 0.9006 0.9083 0.8875 0.8699
Kadai 0.7581 0.8175 0.8139 0.8309 0.8 0.8159 – 0.7647
Kamasau 0.9561 0.9850 0.9543 0.9823 0.9605 0.9674 – 0.9479
Lolo-Burmese 0.6469 0.713 0.7862 0.7805 0.7846 0.8218 – 0.8027
Mayan 0.8198 0.7798 0.6958 0.8074 0.6804 0.6797 0.7931 0.627
Miao-Yao 0.6412 0.7003 0.7679 0.7801 0.7411 0.7879 – 0.8426
Mixe-Zoque 0.9055 0.9149 0.8528 0.9209 0.8521 0.8599 0.8656 0.8298
Mon-Khmer 0.7883 0.8209 0.7054 0.8302 0.6921 0.7008 0.7925 0.6472
ObUgrian 0.8623 0.911 0.8987 0.9214 0.8951 0.8874 0.8837 0.8826
Tujia 0.8882 0.9091 0.9018 0.9105 0.895 0.9027 0.8905 0.8757
Average 0.8044 0.8289 0.7971 0.8415 0.7901 0.7955 0.8185 0.7548

Table 4.3: TheB-cubed F-scores of differentmodels of sixteen language groups. The last row reports the average of

theB-cubedF-scoresacrossall thedatasets. Thenumbers inboldshowthehighest scoresacrosscolumns.

The results of our experiments are given in table 4.3. As eluded above, the alignment

scores are converted into distances using the sigmoid transformation and all edges with

a distance below 0.5 were kept for the InfoMap clustering. It is expected for LexStat

to perform better in the case of Chinese since LexStat handles tones internally whereas,

the ASJP representation does not handle tones. In the case of online systems, we report

the best results form,α. Following List (2014a),we do not report LexStat results for

the language groups which have word lists shorter than 100meanings.

The Online PMI performs better than the rest of the systems at nine out of the six-

teen families. On an average, the Online PMI system ranks the best followed by PMI-

LANG and LexStat system. ALINE performs the best on Miao-Yao language group.

The Online PMI system performs better than the Batch PMI on all the datasets. As ex-

pected, the LexStat system performs the best on Chinese dialect dataset. Surprisingly,

the PHMM systems do not perform as well as the simpler PMI systems despite its com-

plexity.

Greenhill (2011) applied Levenshtein distance for the classification of Austronesian

languages and argued that Levenshtein distance does not perform well at the task of

detecting language relationships. In contrast, our experiment shows that Levenshtein
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PMI PHMM
Family m α m α

Austronesian 64 0.75 32 0.5
Afrasian 256 0.65 32 0.8
Bai dialects 8192 0.75 32 0.55
Chinese dialects 128 0.95 512 0.6
Huon 32 1 32 0.65
Indo-European 512 0.55 1024 0.5
Japanese dialects 512 0.55 32 0.6
Kadai 2048 0.7 32 0.7
Kamasau 512 0.5 128 0.55
Lolo-Burmese 16384 0.5 32 0.75
Mayan 64 0.5 32 0.55
Miao-Yao 8192 0.95 128 0.7
Mixe-Zoque 256 0.7 32 0.7
Mon-Khmer 256 0.7 32 0.5
ObUgrian 512 0.75 32768 0.5
Tujia 1024 0.65 32 0.5

Table 4.4: Best settings ofm andα for Online variants of PMI and PHMM

distance comes close to LexStat in the case of Austronesian language family. Both PMI-

LANG and Online PMI are two points better than Levenshtein distance at the task of

cognate identification.

The results aremuch clearer in the case of Indo-European language family. ThePMI-

LANG and Online PMI systems perform better than the rest of the systems. Leven-

shtein distance performs better than LexStat for the Indo-European language family.

On an average, ALINE shows the lowest performance of all the systems.

Table 4.4 shows the corresponding setting of m,α for all the online systems. The

value ofm is quite variable across language families whereas α tends to be in the range

of 0.5 − 0.75. The effect ofm and α for Indo-European and Austronesian languages

are plotted against the results of the Online PMI system in figures 4.3 (page 78). The

B-cubed F-scores are stable across the range of α but show variable results for value of

m. The top-3 F-scores for Indo-European are at m = 256, 512, 1024 and at m =

64, 128, 256 for Austronesian language family. These results suggest that the online
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Figure 4.3: Plots ofm andα against B-cubed F-scores for out-of-family training

Family Training word pairs Online PHMM Online PMI Batch PHMM Batch PMI
m α F-score m α F-score

ASJP Indo-European 380769 128 0.60 0.7646 4096 0.60 0.7868 0.7656 0.7704
Indo-European 25386 64 0.50 0.7901 1024 0.85 0.7971 0.7797 0.7914
ASJPMayan 91665 256 0.55 0.7765 128 0.90 0.8250 0.7814 0.7677
Mayan 11889 32 0.55 0.7952 64 0.70 0.7997 0.7888 0.7544
ASJP Austronesian 1000000 32 0.65 0.6190 128 0.80 0.7453 0.6239 0.6429
Austronesian 84311 32 0.5 0.6709 128 0.80 0.7460 0.6517 0.6509

Table 4.5: The results of training the PMI and PHMM systems on the ASJP 40 word lists and the full word lists of

Indo-European,Mayan and Austronesian.

training helps cognate clustering more than the batch training. The plots shown in

figure 4.3 suggest that small batch size improves the performance whereas a large batch

size (eg., 32, 768) hurts the performance on Indo-European andAustronesian language

families.

Within-Family Training

In this experiment, the PMI and PHMM systems are trained on the three largest lan-

guage families in the dataset: the Mayan, Indo-European, and Austronesian language

families. The training data for this experiment comes from another source than the test

data. We perform experiments in two different settings.
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1. The ASJP database has 40-length word lists for more languages (∼ 3 times) than

the languages in cognate databases ofMayan, Indo-European, andAustronesian

language families. The database allows the access of more word pairs than any

other database in existence.

2. A list of probable cognate pairs from the IELex, ABVD, and Mayan language

databases are extracted.

The motivation behind these experiments is to investigate the performance of both

PMI and PHMM systems when trained on the word lists belonging to the same lan-

guage family but compiled by different groups of annotators. A successful experiment

indicates that this approach of training a PMI matrix on ASJP 40 word lists can be ap-

plied to language families that have longer word lists but no cognate judgments. The

number of training word pairs and the results of our experiments are given in table 4.5

on page 78.

The Online variants perform better than the batch systems across all language fami-

lies and settings. Online PMI performs better across all the language families than the

Batch PMI. Online PMI trained on ASJP word lists of a language family show close

performance to anOnline PMI system trainedwithin the language family in the case of

Indo-European and Austronesian language families. The performance of batch PMI

system comes close to theOnline PMI system in the case of Indo-European but falls be-

hind in the case of other language families. Training the online system on ASJP word

lists improves the performance in the case of the Mayan language family. This perfor-

mance is not observed in the case of Indo-European andAustronesian language families.

The reason for this could be due to the source of the origin of the datasets.

The batch PMI and PHMM systems perform better than the LexStat method on

the Indo-European and theMayan language family. TheOnline PHMMsystem comes

close inperformance to theOnlinePMI system in the case of Indo-European andMayan

language families. PHMM systems show the lowest performance on Austronesian lan-
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guage family. Except for Indo-European, the best batch sizes for online PMI system are

small and are typically≤ 256.

4.3.7 Discussion

Effect ofm and α

Throughout the experiments, one can observe that low minibatch size gives better re-

sults than a large minibatch size. Another observation is that an intermediary value of

α is usually sufficient for obtaining the best results. Figure 4.3 on page 78 shows that

small values ofm yield stable F-scores across the range ofα. Small values ofm typically

give better results than larger values of α. In contrast to other NLP tasks that require a

largem and smallerα, the task of aligning twowords requires smaller values ofm. The

small value ofm implies a large number of updates which is important for a task where

the average sequence length (∼ 5) and the average number of word pairs are smaller

than 100, 000. Further, an intermediary value of α controls the amount of memory

retained at each update.

Speed

One advantage of our online systems (either PMI or PHMM) is that the training time

typically lasts around ten minutes on a single thread of an i7-6700 processor. In the

case of PHMM, online training speeds up the convergence and overall yields better re-

sults than the batch variant. In comparison, the PMI-LANG system takes days to train.

Finally, the results show that the online algorithm can yield better performance than

LexStat. LexStat and PHMM take more than 5 hours to test on the language subset of

the Austronesian language family. In contrast, PMI (both online and batch) takes less

than ten minutes for each value ofm,α in the case of out-of-family training. Usually,

five scans over the full data were sufficient for convergence.
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Figure 4.4: Distribution of the average difference of word lengths across concepts

Analyzing PHMM’s Performance

Although PHMMs are themost complex among the testedmodels, the performance of

these models is not as good as the conceptually simpler PMI models. This lack of per-

formance could be due to the characteristics of the PHMM.The transition probability

from the begin state to thematch or gap states is the same as the transition probability

from the match state to either gap state or itself (figure 4.2, p 67). Although desirable

for biological purposes, this poses a big problem for linguistic applications. To start an

alignment with a match is more likely than to start it with a gap.9 Therefore, the align-

ments generatedbyPHHMsaremore likely to showgaps at the endof the string than in

the beginning. This results in problems for data sets whereword length differs consider-

ably. The PHMMperforms the worst for those datasets that show a huge difference in

theword length. On the other hand, forKamasau andTujia – the two datasets with the

best performance – the difference in word length is much less pronounced (cf. figure

4.4). Based on the results of these experiments, training the PMI-based segment scores

in an online fashion and supplied to InfoMap clustering, could yield reliable cognate

judgments.
91− 2δτM is larger than δ in all models (cf. figure 4.2, p 67).
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Future work could attempt to solve the problem by reformulating the transition

probabilities between the states, especially the transitions out of the begin state. In

its current formulation, these transitions are set to the same value as their correspond-

ing transition out of thematch state. This parameterization still stems from the origins

of the PHMM in computational biology. In addition, assigning different probability

values to the transitions from the statesX and Y to the end state may make the model

even more suitable for linguistic applications.

4.3.8 Conclusion

In this study, we evaluated the performance of various sequence alignment algorithms

– both learned and linguistically designed – for the task of cognate detection across

different language families. Training PMI and PHMM in an online fashion speeds up

convergence and yields comparable or better results than the batch variant and the state-

of-the-art LexStat system. Online PMI system shows the best performance across dif-

ferent language families. In conclusion, PMI systems can be trained faster in an online

fashion and yield better accuracies than the current state-of-the-art systems.

It is a well known point in historical linguistics that the similarity between languages

depends on regular sound changes which have happened between them. It remains an

open question how to include this into pairwise alignment algorithms and further im-

prove their performance. Notably, Hruschka et al. (2015) developed a statistical model

to distinguish regular sound changes from irregular ones. However, their approach

is based on aligned data. This shifts the focus of attention to detecting regular sound

changes rather than using information about regular sound changes to further improve

the quality of alignments and cognate detection.
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4.4 Phylogenetic Inference from automatic cognate judgments

As historical linguistics typically looks at the identification of cognates and language

phylogenies as a very intertwined problem, a lot of studies solely focus on either of the

tasks. This division of labor is typical for the area of computational historical linguistics.

One of the goals of computational historical linguistics, however, is to automatically in-

fer the language tree from the raw data. When using the cognacy information obtained

from automatic methods as an input for phylogenetic inference, algorithms need to be

tested. Rama et al. (2018) used such automatically inferred cognates for the inference

of language trees and compared these trees to gold standard data. The aim of this study

is to identify how useful automatic cognate judgments are already in the downstream

task of inferring language trees. I am going to present this study in this section in more

detail, since it is an attempt to further automate the process of the classical comparative

method.

Rama et al. (2018) tested six different automatic methods of cognacy identification.

Of these six, four are already discussed above: Online PMI, LexStat, LDNand the SVM

method of Jäger et al. (2017). The two additional methods are the Consonant-Class-

Matching (CCM) method by Turchin et al. (2010) and the Sound-Class-Based align-

ment (SCA) by List (2012c, 2014b).

4.4.1 Two Additional Approaches

The study by Rama et al. (2018) uses a slightly different set of cognate identification

methods than the one presented above. In addition to LexStat, LDN and the Online

PMI method, the authors added two approaches to the toolbox which heavily lean on

sound classes (Consonant-Class-Matching and Sound-Class-Based alignment) as well

as a supervised approach based on a Support Vector Machine (SVM). In the following,

I will shortly introduce these three additional methods.
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Consonant-Class-Matching

TheCCMapproach to cognate identification proceeds in a rather rigorousmanner. In

a first step, all consonants are mapped onto one of eight consonant classes and in a sec-

ond step, all vowels are deleted. Cognacy is then determined on the basis of the first two

consonant classes present in each word. If the first two consonant classes for a pair in

question are identical the words are judged as cognate and not cognate otherwise. The

reasoning behind this method is, that words which begin with consonants sharing the

same sound class are likely to go back to a common ancestor. To illustrate the approach,

consider the example in (2). The German and the English words, respectively, are sup-

posed to be cognate. (3) shows the respective translation into the consonant classes

proposed by Turchin et al. (2010).

(2) a. Zahn vs. tooth

b. Vater vs. father

(3) a. CN vs. TS

b. PTR vs. PTR

While the first two consonant classes match in (3)-b and the two words are correctly

identified as cognates, the same method fails in (3)-a.10 An advantage of this method is

the low number of false positive cognate judgments.

Sound-Class-Based alignment

The SCA method (List, 2012c, 2014b) proposed an idea which also makes use of the

sound classes.11 However, this approach is less strict than the CCM approach. There

are 28 sound classes in total for the SCA approach. These classes are inspired byDolgo-

polsky sound classes (Dolgopolsky, 1964, 1986). The sounds of the words are mapped
10List (2014b) discusses similar examples and points out a way to optimize the approach.
11See also section 5.1 for an overview of the sound classes.
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Method Austro-Asiatic Austronesian Indo-European Pama-Nyungan Sino-Tibetan

CCM 0.71 0.7 0.75 0.74 0.48
LDN 0.73 0.77 0.69 0.53 0.49
SCA 0.76 0.78 0.81 0.71 0.56
LexStat 0.76 0.84 0.83 0.84 0.6
OnlinePMI 0.76 0.81 0.82 0.72 0.56
SVM 0.82 0.81 0.79 0.86 0.5

Table 4.6: B-cubed F-scores for different cognate detectionmethods across the language families

to their respective classes. Based on a linguistically informed scoring scheme, the two

words are aligned using a dynamic programming paradigm similar to the Needleman-

Wunsch algorithm. All wordpairs whose score is above a certain threshold are regarded

as cognate. Following List et al. (2017), Rama et al. (2018) set the threshold to 0.45.

Support VectorMachines for Cognate identification

Jäger et al. (2017) trained a linear SVMtodistinguish between cognate andnon-cognate

word pairs. They used PMI similarity (Jäger, 2013) andLexStat distances among others

as predictors. The trained SVM computes the probability of two words being cognate.

These scores then serve as input for the InfoMap clustering algorithm.

Comparing the methods

Although several of the used cognate clustering tools were already used and compared

above, table 4.6 shows how the additional cognate detection approaches applied by

Rama et al. (2018) line up against the ones already known. Rama et al. evaluate the

quality of the cognate sets inferred by the above describedmethods using theB-cubed F-

score (Amigó et al., 2009) (see section 4.3.4 above). The authors note that the superior

performance of th LexStat Algorithm compared to the SVM system for Austronesian,

Indo-European and Sino-Tibetean is somewhat surprising. Since the LexStat scores

function as a predictor in the SVM system, they expected SVM to outperform LexStat

on the cognate detection task. In contrast, the difference in performance between On-
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linePMI and SCA compared to simpler systems such as CCM and LDN is plausible.

The author’s hypothesis was that the higher the F-score the better the quality of the

inferred phylogenetic trees.

The SVM system achieved the best scores for Austro-Asiatic and Pama-Nyungan

whereas LexStat algorithm performs the best in the case of rest of the datasets. This is

surprising since LexStat scores are used as features for SVM. Generally, it would have

been expected that the SVM system performs better than LexStat in all the language

families. Though, both OnlinePMI and SCA systems perform better than the algo-

rithmically simpler systems such as CCM and LDN. Given these F-scores, the author’s

hypothesis is that the cognate sets output from the best cognate identification systems

would also yield the high quality phylogenetic trees.

4.4.2 Bayesian Phylogenetic Inference

Using the MrBayes (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck,

2003) software package, Rama et al. (2018) compute a posterior distribution of phy-

logenetic trees. This kind of software was, as previously described, developed to infer

phylogenetic trees from biological data (cf. section 3.3.2). However, these software

packages can also be used for the linguistic case.12 Such a distribution is a result of

Bayesianphylogenetic inference.13 As thename suggests, this inferencemechanismuses

Bayes rule. Equation 4.6 presents a version of Bayes formula, already expressed in a way

suitable for the current study.

f(τ, v, θ|X) =
f(X|τ, v, θ)f(τ, v, θ)

f(X)
(4.6)

whereX is the datamatrix, τ is the topology of the tree, v is the vector of branch lengths

and θ is the substitution model parameters. The data matrix X is a binary matrix of
12Yanovich (2017) gives and introduction to the usage of these models for the purpose of linguistics.
13See section 5.3 for a more detailed introduction to these methods.
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dimensions N × C , where N is the number of languages and C is the number of

cognate clusters in a language family. It is difficult to calculate an analytic solution

to the posterior distribution f(τ, v, θ|X). One would need to sum over all possible

topologies of the tree to compute themarginal in the denominator.14 Using theMarkov

ChainMonte Carlo (MCMC)method, the posterior can be calculated without resort-

ing to the evaluation of the denominator. The software used in this experiment uses the

Metropolis-Hastings (MH) algorithm as its MCMC algorithm to sample phylogenies

from theposterior distribution (Huelsenbeck et al., 2001). Theposterior gets estimated

by constructing a Markov Chain over the states of the parameters. Step by step, a new

value for a parameter, or a block of them, gets proposed and acceptedwith a probability

r. Let θ be the current value and θ∗ be the proposed value drawn from a distribution

q(θ∗|θ).

r =
f(X|τ, v, θ∗)
f(X|τ, v, θ)

f(θ∗)

f(θ)

q(θ|θ∗)
q(θ∗|θ)

(4.7)

The likelihood of the data f(X||τ, v, θ) is computed using the Felsenstein’s pruning al-

gorithm (Felsenstein, 1981), also known as the sum-product algorithm (Jordan, 2004)

(see section 3.5). In line with previous research, Rama et al. (2018) assume indepen-

dence between τ, θ, v.

4.4.3 Experiments

Rama et al. (2018) binarize the cognate sets which were estimated from the different

cognate identificationmethods such that 1 indicates the presence of a cognate class and

0 the absence. For the details of the model definition, see Rama et al. (2018). In or-

der to measure the quality of the inferred trees, they calculate the Generalized Quartet

Distance between each tree in the posterior and the gold standard tree. This distribu-
14The number of tree topologies would already be huge for small N . For N languages, there are
(2N−3)!

2N−2(N−2)!
different topologies.
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Figure 4.5: The four different topological arrangements of a quartet. The bottom right constellation is called a star

and the others are called butterflies.

tion gives an estimate on how reliably a phylogenetic tree can be reconstructed from the

automatically inferred cognate sets.

Generalized Quartet Distance

TheGeneralizedQuartet Distance (GQD) (Pompei et al., 2011) improves on theQuar-

tet Distance (QD) by enabling a comparison of binary and polytomous trees. While

the trees generated by the MrBayes are all binary, gold standard trees which were taken

from Glottolog (Hammarström et al., 2017) are usually not, i.e., they have non-binary

internal nodes.

QDandGQDcompute the distance between two trees bymeasuring the number of dif-

ferent quartets (Estabrook et al., 1985). A quartet is defined as a set of four leaves which

are taken from a tree without replacement. Thus, for a tree with n leaves, there are
(
n
4

)
quartets in total. Figure 4.5 shows the different arrangements of four leave nodes. In

order to calculate the QD, the shared number of butterflies and stars of a pair of trees

is counted and then divided by the total number of quartets. For two trees τ and τg,

the QD is then defined as 1− |S(τ)∩S(τg)|+|B(τ)∩B(τg)|
(n4)

, where S(τ) counts the number

of stars in τ and B(τ) the number of butterflies in τ . Since the inferred trees are nec-

essarily resolved, i.e., there are no stars in an inferred tree, the QD counts butterflies in

these trees as an error if they are stars in the gold standard tree. To salvage this prob-

lem, Pompei et al. (2011) define GQD such that a star in the gold standard tree dos not
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Method Austro-Asiatic Austronesian Indo-European Pama-Nyungan Sino-Tibetan

Expert cognate sets 0.0081± 0.001 0.1056± 0.0118 0.0249± 0.0079 0.1384± 0.0225 0.0561± 0.0123

CCM 0.0243± 0.018 0.0854± 0.0176 0.0369± 0.0148 0.1617± 0.0162 0.1424± 0.027
LDN 0.0265± 0.007 0.0458± 0.0152 0.046± 0.0132 0.196± 0.0166 0.1614± 0.0282
SCA 0.0152± 0.0035 0.0514± 0.013 0.0256± 0.009 0.166± 0.0153 0.0704± 0.0206
LexStat 0.0267± 0.0085 0.0848± 0.0226 0.0314± 0.0091 0.1507± 0.0143 0.0786± 0.0209
OnlinePMI 0.0158± 0.0048 0.1056± 0.0198 0.0457± 0.0135 0.1717± 0.0185 0.1184± 0.031
SVM 0.0146± 0.0039 0.0989± 0.0224 0.0452± 0.011 0.1827± 0.0237 0.1199± 0.0269

Table 4.7: Results of the phylogenetic inference algorithms. Themean and standard deviation for eachmethod and

family is computed from 7500 posterior trees. The automatic methods which come closest to the gold

standard phylogeny is shaded in grey, and where the expert cognate sets perform best, this is indicated

with a bold font.

negatively influence the score. The GQD counts the number of different butterflies in

both trees and divides it by the resolved butterflies in the gold standard tree. It follows

that a higher GQD score indicates higher dissimilarity between trees. TheGQD is used

for comparing inferred language phylogenieswith gold standard phylogenies (Greenhill

et al., 2010; Wichmann et al., 2011; Jäger, 2013).

4.4.4 Results

Rama et al. report that with the exemption of Austronesian, the trees generated from

inferred cognate data resemble the gold standard tree fairly close. Table 4.7 shows the

results of Rama et al. (2018). Somewhat unexpectedly, algorithmically simpler systems

such as LDN or CCM outperform more complex systems such as the SVMmodel on

almost all data sets. This trend also holds for LexStat and SCA, where the latter is a

subsystemof the former. However, the authors summarize that in the absence of expert-

coded cognate data, trees generated from automatically inferred data can function as a

reasonable approximation.
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5
Cognacy Estimation under a

Time-Dependent Alignment Model

Previous approaches to alignment and cognacy estimation do not employ the idea of

evolutionary time (cf. chapter 4). The alignment model which I propose here uses the

idea of evolutionary time for alignment and cognacy estimation. Including the notion

of evolutionary time enables adjustments of parameters for a given pair of languages

based on the time separating the two. This idea is different form language specific pa-

rameters which are already used by the LexStat system (List, 2012a). While the LexStat

approach merges a set of global parameters with language specific parameters, this ap-

proach uses the toolbox which comes with models of DNA evolution (cf. section 3.3).

Thus, there is a Q-matrix of sound substitution rates fromwhich I calculate a language

specific set of substitution probabilities.
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Generally, there are two components to an alignment model. One set of parame-

ters specifies the substitution parameters for the symbols, e.g., nucleotides or sounds,

and another set defines the transition probabilities between substitution or indel events.

Section 5.1 shows a parameterization of a model of “sound evolution”, which I use to

derive the actual sound substitution probabilities. The TKF models (Thorne et al.,

1991, 1992) are models where state transition parameters are sensitive to evolutionary

time. Therefore, these models lend themselves naturally for a time dependent align-

ment model.

These two ingredients can be combined to formulate a time-dependent model for

the calculation of alignment and cognacy using the notion of a tree. Since the branch

length of already existing trees might not necessarily correspond to the time scale of

thesemodels, it is necessary to infer the branch lengths of the trees underlying themodel

of evolutionary time. I develop a likelihood function for this model in section 5.2. Pa-

rameter inference is done via aMarkov ChainMonte Carlo (MCMC) approach which

I describe in section 5.3. Section 5.4 explains how cognacy estimation is performed

under this model. Since the parameters are estimated using an MCMC algorithm, the

result is a posterior distribution of parameters. This distribution can be used to derive

a posterior distribution over cognate judgments instead of an absolute judgment as it

is the case for other approaches (section 5.4). To evaluate the performance of this new

model, a standard cognate inference task is performed and evaluated. Section 5.5 de-

scribes the experimental settings and the evaluation.

5.1 Q-matrices for Sounds

Developing aQ-matrix for linguistic purposes is pretty straightforward in itself. Instead

of a 4× 4matrix as in the case of DNA sequences, it will be a n× nmatrix, where n is

the size of the alphabet used in the experiments1. However, this results in an explosion
1For the experiments presented here n = 39
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of parameters for the linguistic case. There are n − 1 parameters for the equilibrium

frequencies and n(n−1)
2

parameters for the evolutionary rate values. Although the pa-

rameters should be constrained such that the expected amount of change per unit in

time is one, these are quite a lot of parameters to estimate. Thus, it is desirable to re-

duce the parameter space. Reducing the frequency parameters by assigning the same

frequency value to different, probably related sounds, does not reduce the parameter

space significantly since n(n−1)
2

> n. Therefore, reducing the number of evolution-

ary rate parameters is much more useful. Fortunately, the idea of sound classes can be

leveraged here. The idea of using sound classes is not new to computational histori-

cal linguistics. List (2012c) uses the idea of Dolgopolsky classes (Dolgopolsky, 1964,

1986) to align words and detect cognates. The ten classes originally proposed by Dol-

gopolsky are shown in table 5.1 (p. 93). The SCA approach (List, 2012c) extends the

idea of sound classes to a total of 28 sound classes. In comparison to the original model,

which was focused on the Indo-European languages, the SCAmodel is also capable of

handling tone.

The sound-class based approach to alignment encodes the sounds of a word as their

respective sound class. In the model proposed by Dolgopolsky (1986), aligning differ-

ent sound classes is forbidden. The approach taken by the SCA-method relaxes this as-

sumption and introduces a scoring scheme to code probabilities of divergent matches.

These probabilities are estimated based on aweighted directed graph. The directions of

the edges mirror the direction of a change and the weights mirror the respective prob-

ability. A small weight indicates a high probability of change. Based on such a graph,

List (2012c) calculates a scoring scheme.

The course I take here does not try to recode sounds as sound classes but rather

weaves the idea into the Q-matrix. The idea is to assign the same evolutionary rate to

sounds from the same sound class. To illustrate the approach, assume there are only

five sounds in the alphabet Σ = { s, p, b, t , d} and they are assigned to the sound
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class description examples

P labial obstruents p,b,f

T dental obstruents d,t,T,D

S sibilants s,z,S,Z

K velar obstruents, dental and alveolar fricatives k,g,ts,tS

M labial nasal m

N remaining nasals n,N

R liquids r,l

W voiced labial fricative and initial rounded vowels v,u

J palatal approximant j

∅ laryngeals and initial velar nasal h,H

Table 5.1: Dolgopolsky’s sound classes (Dolgopolsky, 1986) as provided by List (2012b)

classes listed in table 5.1. AQ-matrix in the style of the General TimeReversiblemodel

(Lanave et al., 1984) is shown in 5.1.

Q =



· απp βπb γπt δπd

απs · ϵπb ζπt ηπd

βπs ϵπp · θπt ιπd

γπs ζπp θπb · κπd

δπs ηπp ιπb κπt ·


(5.1)

In the standard way of assigning evolutionary rates, there is a different rate for every cell

in the upper triangle of the matrix. The sound-class-based approach taken here assigns
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the same evolutionary rate ϵ to within sound class matches across all classes but assigns

different rates for between class matches. (e.g., ζ or γ).

Q′ =



· απp απb γπt γπd

απs · ϵπb ζπt ζπd

απs ϵπp · ζπt ζπd

γπs ζπp ζπb · ϵπd

γπs ζπp ζπb ϵπt ·


(5.2)

This approach reduces the number of parameters considerably. While there were

741 evolutionary rate parameters with an alphabet size of 39, there are now 56.2 The

amount of parameters can be reduced even further by assigining the same evolution-

ary rate parameter to the match between any consonantal sound class and the vocalic

sound class. An exploratory analysis, which allowed for different parameters between

the consonantal classes and the vocalic class, convergedon the same value for all these pa-

rameters. Thus, using the reduction in the parameter space is supported from the data

and theoretical considerations. While maintaining the interpretation that matches of

sounds between classes share certain characteristics, either by having the same value as

in List (2012c) or Dolgopolsky (1986) or by sharing a certain amount of probability

mass, this approach reduces the complexity of the model significantly.

The formulation of the Q-matrix shown above also bears some similarity with other

models of DNA evolution. The model proposed by Tamura and Nei (1993) imple-

ments the idea that changes of nucleic acids are of one of two kinds, transitions or

transversions. While transitions are changes within the same group, transversions are

changes between groups. The idea of changeswithin andbetween sound classes, as used

here, runs verymuch in parallel. However, themodel by Tamura andNei (1993) places

some very strong restrictions on the frequency parameters. The proposedQ-matrix for
2The experiments reported here assume the 11Dolgopolsky classes proposed by List (2012c).
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sounds is therefore not a direct extension of the Tamura and Nei model, but rather a

mix of the General Time reversible model, in that it allows varying base frequencies,

and the Tamura and Nei model in that it uses the idea of groups.

5.2 Building theModel

Before further developing themodel, it is necessary to discuss a key difference to statisti-

cal alignmentmodels in computational biology. What separates thismodel from its bio-

logical counterparts is the basic assumption of homology. Statistical alignment models

and almost all other models in computational biology assume at least functional equiv-

alence or even homology of all the sequences under consideration. The assumption is

that all sequences are related under some model of evolution for which the parameters

can be inferred. This picture changes for computational historical linguistics. Espe-

cially in the realm of alignment and cognacy detection, the task is to decide whether

two sequences are related or not. For this reason, homology cannot be assumed a pri-

ori for linguistic applications. For this reason, existing software from computational

biology such as StatAlign (Novák et al., 2008; Arunapuram et al., 2013) or BaliPhy

(Redelings and Suchard, 2005; Suchard and Redelings, 2006) cannot be used for this

task in computational historical linguistics. Since the inference of cognate classes is part

of the task here, supplying this information beforehand is unwarranted. In order to as-

sess the applicability of time dependent alignment models for CHL, I choose a fairly

straightforward approach.

Throughout the remainder of this chapter, sc1a denotes the sequence of languageA

describing concept c1. In this fashion, languages are modelled via a set of sequences.

Thus, sc1a and sc1b denote two sequences describing the same concept, one from lan-

guageA and one from languageB. The notation sa, sb will be used as a shorthand for

scia , s
cj
b , where i = j, i.e., these sequences are semantically aligned. The superscript will
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also be dropped if a possible ambiguity is resolved by the context. Additionally, ta,b is

the length of the path connecting nodeA and nodeB in a (phylogenetic) tree τ .

Since the time dependent alignment model is only sensibly defined for homologous

sequences, any likelihood function for a model tasked with the identification of cog-

nates needs to account for this. The general idea is the following: If two sequences

are related via common ancestry, i.e., they are cognate, there is an evolutionary process

which generated the sequences. I describe this process using the time dependent align-

ment model. If two sequences are not cognate (not related via common ancestry) there

is no such process and these sequences evolved independently. Independent evolution

is modelled similarly to the random model described for PHMMs (cf. Figure 3.5 on

page 34). These considerations lead to the following definition:

Pr[sa, sb|θ, ta,b] = max
[
V it(sa, sb, θ, t) · e−ta,b , R(sb, sa, θ, t) · 1− e−ta,b

]
(5.3)

WhereV it(sa, sb, θ, t) is the score calculatedby theViterbi algorithm(cf. section3.2.2),

θ are the necessary parameters, i.e., substitutionmatrix, transition probabilities etc., ta,b

is the evolutionary time separating sa and sb. R(sb, sa, θ, t) is the score calculated un-

der a model of unrelated evolution. In terms of mere cognate detection, there is no

apparent a-priori reason to prefer the Viterbi algorithm over the forward algorithm in

the definition of the likelihood function. However, from amodelling point of view the

usage of the Viterbi algorithm shifts the model more into the direction of a maximum-

likelihood approach than a Bayesian model. Yet, I test both algorithms in the experi-

ments below to explore the capabilities of the time-dependent alignmentmodel. Given

the TKFmodel and themodel of sound evolution described above, calculating the like-

lihood of two sequences under unrelated evolution is straightforward. TheTKFmodel
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assumes that the lengths of sequences are distributed according to a geometric distribu-

tion (equation 3.23 is repeated here as 5.4), where λ is the birth and µ the death rate.

P (length(sa) = n) =

(
1− λ

µ

)(
λ

µ

)n

(5.4)

The actual elements of the sequences, i.e., the sounds of the words, are distributed ac-

cording to their equilibrium frequencies π. The likelihood of two sequences being gen-

erated independently is then defined as the product of the likelihood of the two pro-

cesses.

R(sa, sb|λ, µ, π) = P (length(sa) = n) · P (length(sb) = m)

=

(
λ

µ

)n+m(
1− λ

µ

)2 n∏
i=1

πai

m∏
j=1

πbj .
(5.5)

The score calculated under the random model and the Viterbi score are weighted by

1−e−t and e−t, respectively. The intuition is the larger the time separating the two, the

less probable is cognacy.3 It is important to note that this definition of the model does

not use any a-priori information about potential relatedness between the sequences.

As illustrated above, the Viterbi algorithm needs as its parameters the equilibrium fre-

quencies, a matrix of sound substitution probabilities and state transition probabilities.

The state transition probabilities are calculated according to the TKF model (see sec-

tion 3.2.3). The matrix of sound substitution probabilities is derived from a Q-Matrix
3This idea is related to the ideas proposed in Glottochronology Lees (1953).
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which is constructed as described in section 5.1. This process is named Q-Func in the

following. Putting these different parts together results in the following model.

sa, sb ∼ Pr[sa, sb|ta,b, π, exp(Q · ta,b), µ, λ]

π ∼ Dirichlet(|Σ|, α)

α ∼ Exponential(1)

ta,b = PathLength(A,B, τ)

τ ∼ CompoundDirichlet(1, 1, 0.1, 1)

rk ∼ LogNormal(κ, σ)

σ ∼ Exponential(1)

κ ∼ Normal(0, 0.02)

Q = Q-Func(r, π)

λ ∼ Exponential(1)

µ ∼ Exponential(1)

(5.6)

The Compound Dirichlet distribution (Zhang et al., 2012) places a rather widespread

prior on the lengthof a tree and thenpartitions this lengthusing aDirichlet distribution.

Importantly, the only aspect of τ that is sampled is the branch lengths.

There are two aspects of the definition of the model which deserve some discussion.

The first aspect is the prior distribution on the evolutionary rates. By definition, the

rates need to be positive which eliminates all distributions defined on negative num-

bers. The LogNormal distribution with a mean value close to 0 is peaked at 1. In order

to remain neutral about the relative weights of the evolutionary rates a-priori, a prior

distribution peaked at 1 is a good fit. This is exactly what the LogNormal distribution

can do.

The second aspect is concerned with the parameters µ and λ. The TKF91 model

requires λ to be smaller than µ. This would turn the priors of the two parameters to

two truncated exponential distributions which change with each change in µ and λ.
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To solve this problem, the model is reparametrized. Let ρ = λ
µ
, since µ > λ and both

being positive the following condition holds.

0 < ρ < 1 (5.7)

Placing a prior which is defined on the interval between 0 and 1 on ρ and formulating

µ in terms of ρ and λ removes the complex relations of the priors. This second consid-

eration changes the model definition slightly to the following.

sa, sb ∼ Pr[sa, sb|ta,b, π, exp(Q · ta,b), µ, λ]

π ∼ Dirichlet(α)

α ∼ Exponential(1)

ta,b = PathLength(A,B, τ)

τ ∼ CompoundDirichlet(1, 1, 0.1, 1)

rk ∼ LogNormal(κ, σ)

σ ∼ Exponential(1)

κ ∼ Normal(0, 0.02)

Q = Q-Func(r, π)

µ = λ
ρ

λ ∼ Exponential(1)

ρ ∼ 1
1+ρ′

ρ′ ∼ Exponential(1)

(5.8)

5.3 Parameter Estimation

The last section described a method to calculate the likelihood of a given time depen-

dent alignment model. As a next step, it is necessary to estimate the parameters of the

model. The approach I take here is to find a distribution of parameters which describes
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the model, i.e., the distribution P (θ|D) needs to be estimated. According to Bayes’

formula this quantity can be calculated as follows:

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (5.9)

From this equation we know that the probability of the model parameters given the

data, i.e., P (θ|D), can be calculated by multiplying the likelihood P (D|θ) with the

prior P (θ) and by dividing this product by the marginal likelihood of the data P (D).

The calculationof the likelihood canbe carriedoutusing themethoddescribed above in

section 5.2. The prior can be calculated by carefully selecting the appropriate distribu-

tion. This makes the numerator easy to calculate. However, determining the marginal

likelihood of the data turns out to be difficult. In theory, this quantity can be calculated

by integrating over all possible parameter values as well.

P (D) =

∫
θ

P (D|θ)P (θ)dθ (5.10)

Although this integration can be broken down into a summation over topologies (τ )

and a multidimensional integration over parameter values for the substitution model,

the transition model and the branch lengths (χ), it is impossible to calculate the value

of the integral directly (Ronquist et al., 2009).

P (D) =
∑
τ

∫
χ

P (D|τ, χ)P (χ)dχ (5.11)

Since this marginal probability cannot be calculated analytically, calculating the pos-

terior distribution P (θ|D) analytically is not possible either. However, by using the

Markov Chain Monte Carlo (MCMC) method, it is still possible to get an estimate of

the posterior distribution. The idea is to build aMarkov chain of the parameters which

converges to an equilibrium state which resembles the posterior distribution. The equi-
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librium state is also independent of the starting point of the chain. Constructing such

a chain can be achieved by using the Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970). The general idea of this method is to propose a new state, i.e.,

make a change to the parameters and accept it if the likelihood increases or reject it with

some probability if the likelihood does not increase. The steps of the Metropolis hast-

ings algorithm are shown below.

1. Start with a random parameter vector θ,

2. propose a new state θ′,

3. calculate the ratio r of the posterior probabilities of θ′ and θ

(a) if r > 1 accept θ′

(b) else accept θ′ with probability r, if θ′ is rejected stay in θ,

4. return to step 2.

The change to this algorithm which Hastings (1970) proposed was in the calculation

of r. In the original formulation by Metropolis et al. (1953) all parameter changes are

equally likely. Hastings (1970) adjusted the method such that parameter changes can

be weighted by their probability. Using this extension, the acceptance probability can

be calculated as follows.

r =min

(
1,
P (θ′|D)

P (θ|D)
× P (θ|θ′)
P (θ′|θ)

)
min

(
1,

P (θ′)P (D|θ′)
P (D)

P (θ)P (D|θ)
P (D)

× P (θ|θ′)
P (θ′|θ)

)

min

(
1,
P (θ′)

P (θ)
× P (D|θ′)
P (D|θ)

× P (θ|θ′)
P (θ′|θ)

) (5.12)

The last term in the third row of equation 5.12 accounts for different probabilities of

parameter moves. In the formulation by Metropolis et al. (1953) all parameter moves
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are equally likely, i.e., P (θ′|θ) ≡ P (θ|θ′), which means that this probability cancels

out. Another important aspect is that the intractable marginal probability cancels out.

This makes r easy to compute. Furthermore, the construction of r ensures that after

a sufficient amount of time, the proportion of time a chain spends sampling a particu-

lar parameter is proportional to the posterior probability of that parameter (Ronquist

et al., 2009). Due to the fact that the first parameter estimate is random, the likelihood

in the beginning is usually low. For the chain to properly sample from the posterior

region with a high probability mass without being influenced by the initial choice of

model parameters, an initial amount of samples will be discarded. This phase of the

sampling procedure is called the burnin. When the chain starts to sample from the

equilibrium distribution, the likelihood seems to converge onto a plateau. Since the

Metropolis-Hastings algorithm proposes a change based on the current value of a pa-

rameter, successive values are highly correlated. In order to get independent samples,

usually only every n-th sample is recorded. This is also known as thinning.

5.3.1 Improved Sampling

The traditional Metropolis-Hastings algorithm is known to be rather inefficient in its

sampling behavior. This has lead to the development of several techniques which lead

to a faster convergence of the algorithm (Andrieu andThoms, 2008). In order to speed

up and improve the sampling behavior for the present experiment, I use a mixture of

proposal moves. More technically, the transition matrix of a Markov chain can be in-

terpreted as a transition kernel in continuous space. It can be shown that a mixture

of such kernels where each kernel has the same invariant distribution p(·) also has the

invariant distribution p(·). Thus it is possible to use different samplers for the parame-

ters to achievemore efficient sampling behavior (Andrieu et al., 2003). The topology of

the tree is sampled using traditional random-walk Metropolis-Hastings. For the other

parameters a slice sampler is used. These parameters are the branch lengths of the tree,

102



Figure 5.1: Illustration of the slice sampler. A vertical level is drawn between 0 and f(x0) to define a horizontal
slice.

equilibrium frequencies of the sounds, the evolutionary rate parameters and the param-

eters of the transition model.

Slice Sampling

The idea of the slice sampling (Damlen et al., 1999; Higdon, 1998) approach is to sam-

ple from an augmented distribution rather than from the original one. The reason

for this approach is that it is often more convenient to sample from the distribution

p∗(x, u) than it is to sample from p(x). (Andrieu et al., 2003; Neal, 2003) This new

extended distribution p∗(x, u) is defined as follows:

p∗(x, u) =

1 if 0 ≤ u ≤ p(x)

0 else
(5.13)

Sampling x then reduces to jointly sample from (x, u) and then to ignore u. Figure 5.1

helps to illustrate the procedure of the slice sampling approach.

1. A horizontal slice is defined (indicated by the continuous line) by drawing a ver-

tical line in the interval between 0 and f(x0).

2. A window around x0 is drawn from which the new point x1 is sampled.
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3. If x1 is inside the slice, i.e., equation 5.13 is 1, it is accepted, otherwise a new

point is drawn and the window will be shrunk.

There are several techniques on how to select and adapt the proper window around x0

(steps 2 and 3). Neal (2003) presents some algorithms for selecting and adapting the

window. The slice sampling approach can also be used to sample from a multivariate

distribution.

In case a vector valued parameter v = (v1, v2, . . . , vn) is such that for all vi in v it is

the case that 0 < vi < 1 and
∑n

i=1 xi = 1, the support for the posterior distribution

of this vector is the standard (n-1) simplex (Cowles et al., 2009).Sampling from this sim-

plex can be done using an algorithm presented by Cowles et al. (2009). In the current

experiment, the equilibrium frequencies as well as the evolutionary rates meet the con-

straints for the simplex sampling approach. I sample the values for the branch lengths

and the transition model using the standard slice sampling scheme. It is important to

note that sampling the branch lengths vector does not change the topology of the tree.

The set of branch lengths associated with one particular tree topology form a euclidean

space (Dinh et al., 2017). Thus, slice sampling of a particular branch length vector is

possible.

5.4 Cognacy Estimation in the Time-DependentModel

Evaluating the time dependent alignment model is not as straightforward as it is for

other alignment approaches. The time-dependent alignment model does not define a

distribution over cognate classes. Thus, measuring the models ability to correctly pre-

dict cognate classes can only be evaluated indirectly. The approach taken here is as

follows: By using a set of parameters from a particular draw from the posterior, a tra-

ditional pairwise cognacy detection task can be performed, resulting in a cognate/non-

cognate statement for each pair of semantically aligned words. The same steps are car-

ried out for each draw . These statements can be counted and the proportion of the
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respective cognate/non-cognate statements are calculated. This results in an approxi-

mation of a posterior distribution over cognate classes instead of an absolute statement

as it is done in other approaches.

The task is to label each target word pair as cognate or non-cognate for a given set of

parameters. Using the alignment model described above, the probability of relatedness

for a target pair can be calculated. However, similar to other approaches, it is necessary

to determine a threshold to judge the pair as cognate or non-cognate.4 The approach

taken here is partly inspired by Jäger (2013) and Hein et al. (2000).5 Although Jäger

(2013) did not focus on the identification of cognate word pairs, there are some similar-

ities in the approach. Jäger (2013) observes that the pairwise distances of related words

aremuch lower than for non-cognateword pairs. Following up on this observation, the

scores of all word-pairs (potential cognates and definite non-cognates) are ranked. The

resulting rankings show an expected pattern: For unrelated languages, the distribution

of ranks approximate a uniform distribution, while for related languages, the distribu-

tion is heavily skewed towards the small values. He continues to use this skewness to

derive a distance measure which is based on the shape of the distribution mentioned

before. In the current approach the idea of using the scores of unrelated words, and

comparing them to the scores of related words is developed into a threshold method

for cognacy detection.

The idea is as follows: The alignment score of related sequences should be consider-

ably different from alignment scores of random sequences. Although the parameteriza-

tion of this randomdistribution is hard to obtain analytically, an approximation of this

distribution given the data is possible. For a given pair of languages and a Swadesh list of

words for each language, imagine a grid with the words belonging to the first language

along the x-axis and the words of the other language listed along the y-axis (cf. table 5.2

on page 106).
4See section 5.7.1 for a discussion of alternatives.
5Similar suggestions were already made in the pioneering paper by Needleman andWunsch (1970).
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English
German Ich Du Blut Laus

I -2.16 -6.16 -9.60 -6.53
You -5.63 0.98 -2.65 -2.65
blood -7.31 -3.33 6.01 -2.82
louse -7.52 -0.07 0.90 12.22

Table 5.2: Alignment scores using ASJP encoding the alignmentmechanism described by Jäger (2018).

The simplifying assumption made here and also in other research dealing with the

identification of cognates is to assume that potential pairs of cognates can only ap-

pear along the diagonal of the data structure shown above. All the pairs on the off-

diagonal are supposed to reflect random word pairs. Thus, the alignment scores in the

off-diagonal cells can be used to approximate a random distribution. The decision if a

givenword pair is judged as cognate or not comes down to comparing a particular align-

ment score to the distribution of random scores. The remaining question is: “How big

should the difference between random and potential cognates be?” The “difference

from randomness” is parameterized as being above the nth-percentile of the random

distribution. This question can either be solved theoretically or by a grid search opti-

mizing the percentile cut-off. Independent of the choice of the exact cut-off, each pair

above the cut-off is considered to be cognate or non-cognate otherwise. This results in

a statement of cognacy for each word pair.

In thedescriptionof themodel above, cognatewordpairs are alignedusing theViterbi

algorithm in the first and the forward algorithm in the second experiment. Crucially, in

comparison to other approaches, these are the plain algorithms and not the respective

log-odds variants. The log-odds variants of the Viterbi or forward algorithm are used

to correct for sequence length or chance similarities. The models formulated above do

not use the log-odds variants. This is due to the characteristics of the TKF 91 model

and the explicitmodelling of sound evolution. TheTKF91model is based on an clearly

specifiedmodel of sequence length and includes this resultingdistribution in the formu-

106



lation of its transition probabilities. Thus, a correction for the different probabilities

of sequence lengths is already a part of the model and need not to be added. This also

holds for the model of sound evolution. This separates the current model from other

approaches such as the PMI approach. In contrast to those models, where a correction

for spurious sound similarity is necessary since mere sound frequencies are used for the

similarity scores, the model used in this thesis solves this problem conceptually. For

these reasons, the cognate identification is done on the plain variant of the Viterbi and

forward algorithm rather than with their respective log-odds variants.

5.5 Experiments

I evaluate, the evolutionary alignment model on a standard cognate identification task.

Each sample from theposterior distribution functions as a set of parameters for the kind

of cognate identification procedure described above. Using the parameters from each

sample from the posterior, eachwordpair can be judged as cognate or not. For each sam-

ple there is a matrix of cognate judgements similar to the experiment described in the

previous chapter. These matrices are used as an input to the InfoMap algorithm (Ros-

vall and Bergstrom, 2008). The resulting clusters are evaluated using B-cubed F-scores.

The experiments are performedon the three datasets Indo-European,Austronesian and

Sino-Tibetean , which were also used in the study by Rama et al. (2018).

5.6 Results

I perform a grid search among quantiles as described in the previous section; The result-

ing posterior distribution of F-scores are plotted in figure 5.2 (see page 108). The plots

all show a similar pattern, namely the highest median F-score is achieved by treating a

wordpair as cognate if the alignment score is above the 90th to 94th quantile. Although

all results are numerically different, this pattern holds across datasets and algorithms.
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(a) Posterior distribution of B-cubed F-scores for themodel using the Viterbi algorithm.

(b) Posterior distribution of B-cubed F-scores for themodel using the forward algorithm.

Figure 5.2: Resulting distributions of the posterior B-cubedF-scores for the twodifferentmodel variants evaluated

on the three different datasets. The x-axes show the different quantiles and the y-axes the respective

F-scores.

Viterbi forward
F-score Quantile F-score Quantile

Austronesian 0.743 0.96 0.750 0.94
Indo European 0.769 0.94 0.770 0.94
Sino-Tibetean 0.543 0.88 0.548 0.88

Table 5.3: Highest median B-cubed F-score values for the different experimental settings and the corresponding

quantile.
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Viterbi forward
F-score Quantile Cut-off F-score Quantile Cut-off

Austronesian 0.757 0.84 0.95 0.761 0.88 0.90
Indo European 0.78 0.94 0.55 0.783 0.92 0.80
Sino-Tibetean 0.55 0.82 0.95 0.555 0.82 0.70

Table 5.4: Optimal F-score valueswith corresponding quantile and cut-off values for the pairwise probability evalu-

ationmethod.

Table 5.3 (p. 108) lists the highest median B-cubed F-score values with the correspond-

ing quantile. This method of evaluating the model provides a posterior distribution

over cognate clusters.

Another way of evaluating the experiments is to get a posterior point probability

of each individual wordpair being cognate. Instead of estimating a cognate cluster for

each sample from the posterior, the pairwise judgements are aggregated over the full

posterior. This results in a probability of each wordpair being cognate. This method

of evaluating the experiments is againperformed as a grid search amongquantiles. In ad-

dition a similar grid search for the cutoffparameter in the infomap-clustering algorithm

is performed (cf. section 4.3.3). This results in singular F-scores instead of a distribu-

tion. Figure 5.3 on page 110 gives an overview of the different results; table 5.4 lists

the highest F-scores and their corresponding cutoff and quantile settings. Regarding

the quantile value, the results of this evaluation technique do not show a trend similar

to the previous one. Generally speaking, wordpairs above the 88th to 94th quantile of

all alignment scores for a pair of languages tend to correspond to actual cognate words.

Unfortunately, a similarly clear statement is not possible regarding the cutoff value for

the infomap-algorithm.

5.7 Discussion

I tested two different evaluation methods. In both approaches, I used samples from

the posterior distribution to generate pairwise cognate judgements. For the first eval-
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(a)B-cubed F-scores for the pairwise probability evaluation technique of themodel using the Viterbi algorithm.

(b)B-cubed F-scores for the pairwise probability evaluation technique of themodel using the forward algorithm.

Figure 5.3: Results of the pairwise probability evaluation technique for the two different model variants evaluated

on the three different datasets. The x-axes show the different quantiles and the y-axes the respective

F-scores.
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uation, I inferred a distribution over cognate classes with these judgements. For the

second evaluation, I aggregated the pairwise judgements and based on this aggregation

inferred cognate classes. Comparing the two evaluation methods, it can be stated that

in terms of point estimates, the overall better performance is achieved using the second

evaluation technique. This behaviour stems from the more nuanced judgements of

similarity which are supplied to the clustering algorithm. While the similarity scores

used for the clustering in the first technique are either 1 or 0, the scores in the second

technique are not binary but continuous. The infomap-algorithm is actually capable

of picking up the differences of the continuous values. This property of the clustering

algorithm is lost for the first technique.

In comparison to the other cognate detection techniques presented in chapter 4.4,

it has to be stated though that the results of both methods are rather in the middle of

the pack than actual frontrunners. In its general architecture, the time dependent align-

ment model is build on the foundation of a PHMM. The PMI approach was already

superior to the PHMMmodel setup in the experiments presented in section 4.3.6.

5.7.1 Comments

Although I formulated the model described in this chapter as a hierarchical Bayesian

model, care has to be taken. I evaluated the model on a cognate identification task by

generating distribution of cognate judgements and cognate classes. This should not be

confused with an actual posterior distribution over cognate classes or judgements. The

only thing the model can provide in its current form is a posterior distribution over

alignment scores. These scores can be used in a cognate identification task. Hence, the

evaluation of the model is done indirectly.

A fully Bayesian model should integrate the cognate classes into its likelihood func-

tion. Such a model could be used to estimate an actual posterior distribution over cog-

nate classes. Thus, the model described above should not be confused with a model
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which samples cognate classes in a completely Bayesian fashion. Additionally, as already

noted above, the usage of the Viterbi algorithmmoves the model towards a maximum-

likelihood model. This model can, however, be taken as a first step into the direction

of a Bayesian modelling of cognacy. It shows that an explicit model of sound evolu-

tion can be employed for computational historical linguistics, whichmight be a crucial

component in a full fledged Bayesian model for cognate classes.

There is an alternative to theway to assess cognacy. In the definition of the likelihood

function, the result of themax operator can be probed to get an estimate of the judge-

ments of the model. If the larger value is the one stemming from the related model,

the respective pair of words is judged cognate or not cognate. Such an approach would

eliminate the comparison of the diagonal vs. off-diagonal scores. However, a tentative

evaluation suggest sub-par performance in terms of cognate detection. In addition, this

way of setting-up the model has the same shortcomings discussed in the previous para-

graph in that it is still not fully Bayesian.

5.8 Conclusion

This chapter shows how a hierarchical Bayesian model can be defined for the task of

cognate identification. Using an explicit model of sequence and sound evolution, the

model includes phylogenetic information, or rather the branch lengths of the pyhlo-

genetic tree, to use this information for cognate detection. While the results do not

match current state of the art methods yet, this model has the potential to be improved

through itsmodular nature. In comparison to other existingmethods for cognate detec-

tion, this is the first Bayesian approach to this task. By directly including a phylogenetic

tree into the cognate detection paradigm, this model can be seen as a step towardsmerg-

ing cognate identification and phylogenetic inference into one unified model.
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6
No-U-Turn Sampling for Phylogenetic

Trees

As alreadymentioned above, some samplers used forMarkovChainMonteCarlometh-

ods tend to have a slow mixing behavior and are thus rather inefficient. Especially the

Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), which has

been the workhorse for phylogenetic research, is prone to slow mixing. In recent years,

several different sampling techniques were proposed which can be used to improve the

sampling procedure. Such a technique is the slice sampling approach presented above

(see section 5.3).1 While these improved methods are able to guide the randomwalk of

the originalMetropolis-Hastings procedure, they still show a local randomwalk behav-

ior. In order to avoid such a randomwalk,HamiltonianDynamics can be used to create
1Andrieu et al. (2003) provide an overviewof different variants on how to improveMCMCsampling

behavior.
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another type of Monte Carlo samplers (Duane et al., 1987). Borrowing from physics,

HamiltonianMonteCarlo enriches the parameters of themodel by corresponding ‘mo-

mentum’ variables to rapidly explore the target distribution and suppress the local ran-

dom walk (Gelman et al., 2013).

In section 6.1, I will shortly introduce the idea of Hamiltonian dynamics and their

application in MCMC settings, especially how it is used in the No-U-Turn sampler

(Hoffman andGelman, 2014). Section 6.2 is concerned with the problems of applying

the concept of Hamiltonian dynamics to the space of trees and a solution to this prob-

lem. In section 6.3 I develop a No-U-Turn Sampler for the space of trees. Section 6.4

presents some experiments using the Phylogenetic-No-U-Turn Sampler.

6.1 Hamiltonian Dynamics and the No-U-Turn Sampler

Hamiltonian dynamics provide a mathematical framework tomodel the dynamics of a

physical system over time using the systems energy. Neal (2011) provides the following

example.

In two dimensions, we can visualize the dynamics as that of a frictionless
puck that slides over a surface of varying height. The state of the system
consists of the position of the puck, given by a 2D vector q, and the mo-
mentum of the puck (its mass times its velocity) given by a 2D vector p.
The potential energy, U(q), of the puck is proportional to the height of
the surface at its current position, and its kinetic energy,K(p), is equal to
|p|2/(2m), wherem is the mass of the puck (Neal, 2011, p. 2).

The momentum of the puck will help it to slide along a rising slope as long as the

kinetic energy is above zero. At the point where the kinetic energy becomes zero it will

naturally slide down again. In a non physical setting the position of the puck is equated

to the variable of interest and the potential energy to the minus of the log probability

density of the given variable. Only the momentum variable will be set artificially (Neal,
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2011). By using the Hamiltonian equations, the development of p and the parameters

θ over time t can be determined:

dθi
dt

=
∂H

∂pi
dpi
dt

=
∂H

∂θi

i = 1 . . . d.

(6.1)

WhereH is theHamiltonian function taking p and θ as arguments andd the dimension

of p and θ. The functionH(θ, p) can be written as

H(θ, p) = U(θ) +K(p). (6.2)

It has been shown in other places (e.g., Duane et al., 1987; Neal, 2011) that Hamil-

tonian dynamics exhibit the mathematical properties which are necessary to generate

valid Markov ChainMonte Carlo updates.

6.1.1 Leapfrog approximation

For a practical implementation of Hamiltonian Dynamics, the continuous equations

in the system need to be approximated. This can be solved by using a discretization

approximation with a small stepsize ε. The state of the system is then computed at in-

tervals of ε starting at time zero. Themethodwhichmay first come tomind for such an

approximation is Euler’s method. However, another method has prevailed in practical

applications. Themethod of choice is the leapfrog integrator, which is a slightmodifica-

tion of Euler’s method. Euler’s method does a small step ε for the momentum and the

position (i.e., parameter) vector in turn. In contrast, the leapfrog integrator first does

a half step of the momentum variable, then full step for the position variables, i.e., the
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variable which is sampled, and then again a half step for the momentum variable (Neal,

2011).

pi

(
t+

ϵ

2

)
= pi (t)−

(ε
2

) ∂U
∂θi

(θ (t))

θi(t+ ϵ) = θi (t) + ε
pi
(
t+ ε

2

)
mi

pi(t+ ϵ) = pi

(
t+

ε

2

)
−
(ε
2

) ∂U
∂θi

(θ (t+ ε))

(6.3)

In one update step, the leapfrog approximation is done for L steps. This describes the

Hamiltonian Monte Carlo (HMC) algorithm. The discretization procedure necessar-

ily introduces a slight error into the computation. The error depends on ε and L and

can theoretically grow out of bounds depending on L (Leimkuhler and Reich, 2005).

In real world applications, however, this is usually not an issue (Hoffman and Gelman,

2014). The leapfrog integrator fulfills all properties which are necessary for valid up-

dates on the parameters (see Neal (2011) for formal details). Algorithm 1 on page 117

shows the general procedure of the Hamiltonian Monte Carlo method including the

leapfrog approximation.

What remains for the user to do is to specify L and ε. In practice, setting these two

parameters can be tedious. As Hoffman and Gelman (2014) point out, an ε which is

too smallwill waste precious computation timewhile a εwhich is too largewill produce

inaccurate samples. Similarly, ifL is too small, theHMCmirrors randomwalkbehavior

and ifL is too large theHMCwill start to loop back and retrace its steps. In some severe

cases, if L is too large, some of the formal properties making the leapfrog method a

valid sampler may even break down (Neal, 2011). Thus fine-tuning L and ε is very

important.
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Algorithm 1 The pseudo code for HMC following Hoffman and Gelman (2014).
WithL being the logarithm of the joint density of the variable θ.

Given θ0, ε, L,L,M
for i = 1 toM do

Sample p0 ∼ N (0, I)

Set θi ← θi−1, θ̃ ← θi−1, p̃← p0

for j=1 to L do
Set θ̃, p̃← LeapFrog(θ̃,p̃, ε)

end for
With probability α = min

{
1,

exp{L(θ̃)− 1
2
p̃·p̃}

exp{L(θi−1)− 1
2
p0·p0}

}
, set θi ← θ̃, pi ← −p̃

end for

function LeapFrog(θ, p, ε)
Set p̃← p+ (ε/2)∇θL(θ)
Set θ̃ ← θ + εp̃
Set p̃← p̃+ (ε/2)∇θL(θ̃)
return θ̃, p̃

end function

6.1.2 No-U-Turn sampler

To avoid tedious and time consuming fine tuning ofL and ε in several trial experiments,

Hoffman and Gelman (2014) developed the No-U-Turn sampler (NUTS). This sam-

pling technique extends HMC by adaptively setting the number of steps L and opti-

mizing ε during the burnin phase.

NUTS uses a stochastic optimization technique to optimize ε during the burnin

(Andrieu and Thoms, 2008; Hoffman and Gelman, 2014). The starting value for ε is

set by either doubling or halving ε until the probability of accepting an HMC update

with L = 1 crosses 0.5.2 Usually the seed value for ε is 1. By simulating an acceptance

probability of the proposedHMCmoves during burnin, ε is altered such that the over-

all acceptance probability approximates a given value. Hoffman and Gelman (2014)

suggest a target acceptance probability between 0.45 and 0.65.
2AHMC update withL = 1 is also known as a Langevin proposal.
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In contrast to the original HMC sampling scheme where the number of leapfrog

steps L is a fixed parameter, the number of steps in NUTS can change in each genera-

tion. Importantly,L is not set randomly but rather such that it maximizes the distance

between successive proposals while also avoiding a loop back. Furthermore, varying

the number of steps accounts for the shape of the probability density surface in the

current region. The algorithm proceeds by building a set of candidate states following

the slice sampling approach, i.e., only if a proposed state is within the slice, it is added

to the set. This set building procedure continues until one of two stopping criteria is

reached. The two criteria which are checked are whether the proposed states start to

retrace themselves or if the sampling error introduced via the leapfrog discretization be-

comes too large. As soon as the extension of the candidate set is terminated, a new state

is randomly selected from the set. This way, a maximally distant new proposal state

can be ensured while avoiding sampling errors and loop back behavior. There are two

points within this design of the algorithmwhichwarrant some attention. These are the

stopping rules and the formation of the set of new states.

The construction of the candidate set proceeds by simulating the Hamiltonian dy-

namics forward and backward in time. The final state of a forward time simulation

will be called θ+ and θ− will be the result of a backwards time simulation. Starting

from the initial state the time direction is chosen randomly. For the first iteration, the

Hamiltonian dynamics are simulated for one step. For the next iteration, the dynamics

are simulated for two steps and the next for four steps. Consequently, every new iter-

ation doubles the number of leapfrog steps taken. This procedure implicitly builds a

balancedbinary treewith the leaves corresponding toposition-momentum states (Hoff-

man and Gelman, 2014). More formally, let C be the set of candidate states and let

B ⊇ C be the set of states a leapfrog integrator visits during an iteration. Hoffman

andGelman (2014) show that, as long as the initial state of the current generation is an

element of C and for all other elements of C it is the case that they are in the current
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slice and the stopping criteria are not met, sampling a random element from C are valid

updates. Building up C in this way is only valid if the method doing so preserves vol-

ume.3 Neal (2011) shows that the leapfrog integrator does preserve volume, so it can

be used to propose new states for C. While the algorithm for building candidate sets

and sampling from it fulfills all necessary conditions of being a valid sampler and also

proposes distant states from the starting state, Hoffman and Gelman (2014) modify

their initial algorithm slightly to improve its memory efficiency and also enable it to do

larger jumps on average. The modifications include an earlier breakout of the simula-

tion procedure if one of the stopping criteria is met and amore efficient sampling from

C which prevents the storing of all states in memory.

In comparison to the intricate mechanism of proposing new candidate states, the

stopping rules ofNUTS are rather straightforward. Recall the two tests which stop fur-

ther simulation of Hamiltonian dynamics. The first checks for sampling inaccuracies

and the second for an indication of retracing of states. Formulating the first condition

is rather uncomplicated. Hoffman and Gelman (2014) suggest to compare the Hamil-

tonian to some constant ∆max and check if the loss of energy is larger than this con-

stant. The other condition checks whether the simulation of the Hamiltonian dynam-

icswould suggest that a retracing of states is going to happen. This condition is checked

via simulating the dynamics for another infinitesimal amount forward and backward.

If this simulation would reduce the distance between the new states, the simulation is

stopped.4

6.2 Hamiltonian Dynamics in the Tree Space

HamiltonianMonteCarlomethods are defined on aEuclidean parameter space. There-

fore, the application of this technique for sampling phylogenetic trees is not straightfor-
3See Betancourt (2018) for a conceptual overview overHamiltonianDynamics and volume preserva-

tion.
4Betancourt (2013a,b) present a generalization to the No-U-Turn measure.
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ward. Trees consist of two parts, a discrete graph defining the topology and an associ-

ated continuous space of branch lengths. Importantly, Billera et al. (2001) propose a

continuous formulation of the space of trees. Building on this work, Dinh et al. (2017)

proposed a HamiltonianMonte Carlo sampler for trees.

The set of all binary phylogenetic trees withN leaves will be called TN . An element

of the set TN is a pair (τ, q), where τ defines the topology and q the vector of associated

branch lengths. For a particular tree, there is a topology τ and a vector q ∈ Rn
≥0, where

n is the dimension of q. The individual branch lengths are bounded by 0 for technical

reasons (Dinh et al., 2017).5 For each topology τ of the trees in TN , there is a specific

space Rn
≥0 associated with it. There is a specific case where for each topology τ , the

value of each entry of q is 0. In this case all trees are indistinguishable. This point is

called the origin of the space. If defined in this way, the different spaces Rn
≥0 form so

called orthants. For a set ofN leaves there are (2N − 3)!! such orthants. This formu-

lation neatly gives rise to an intuitive neighboring relation between trees embedded in

this space. Imagine reducing the length of an internal edge of a particular tree to zero.

In this case, the two nodes connected by this edge would collapse into one vertex with

degree four. By expanding the resulting degree four vertex in an edge and two vertexes

with degree three, a new tree topology can be created. This operation is also known as

a nearest neighbor interchange (NNI) operation (Dinh et al., 2017; Steel, 2016). See

figure 6.1 on page 121 for an example. By using this relation, orthants are called neigh-

bors if there exists one NNI operation which can transform the one topology into the

other. Neighboring orthants share a so called face. The face of an orthant in this case is

a lower dimensional vector of branch lengths. The tree in the middle of figure 6.1 has

a branch length vector with lower dimensionality than the left or right one.

Importantly, Billera et al. (2001) show, that this space of trees has certain properties

such that a geodesic between two trees exists. Thus, the distance between two trees in
5Furthermore, there seems to be no intuitive interpretation of a tree with negative branch length in

phylogenetic applications.
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Figure 6.1: The rightmost tree can be generated from the leftmost by an NNImove. The tree in themiddle displays

thesituationwhere the lengthof thebranch t1 is reduced to0 fromwhich thenewtreecanbegenerated.

this space is properly defined. Amenta et al. (2007) show how the lower and upper

bound on this distance can be calculated in linear time and Owen (2008) presents an

exact algorithm. Named after the authors of the original paper, this space of trees is

called a Billera-Holmes-Vogtmann space.

This formulation of the space of trees can be used to define a Hamiltonian Monte

Carlo sampler for (phylogenetic) trees. Since the space within one orthant is continu-

ous, the traditionalHMCprocedure canbe applied. It only becomesproblematicwhen

the boundary of an orthant is reached. Reaching the boundary of an orthant means

that one particular element of the branch length vector q hits zero or becomes negative.

Through the way the space of trees is defined, it is possible to interpret the scenario

when an element of q becomes zero. In the case of a rooted binary tree, there are three

topologieswhich share this particular face, two generated via anNNIoperation and the

original, which share this particular face. The sampler picks one of these three orthants

at random andwill continue the simulation in the newly selected orthant. Themomen-

tum corresponding to that particular attribute is then negated. Dinh et al. (2017) proof

that the Hamiltonian remains unaffected by using the described technique. This de-

fines the “leap-prog” integrator, the probabilistic counterpart to the standard leapfrog
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integrator. If multiple elements of q hit zero in a current update step, the random selec-

tionprocess is done for each element. Thus, it is possible to visitmultiple tree topologies

in just one leap-prog step.

As an extension to this simple algorithm, Dinh et al. (2017) note that via the discon-

tinuity of the space of trees, the potential energy function on τ and q which is the like-

lihood function is not differentiable on the whole space and may thus lead to a loss of

accuracy which cannot be neglected. To circumvent this problem, the authors propose

to use a smooth approximation for (τ, q) such that each element of q is approximated

such that the gradient vanishes when the element approaches 0. Dinh et al. (2017) pro-

pose the following smoothing function:

gδ(x) =

x, x ≥ δ

1
2δ
(x2 + δ2), 0 ≤ x ≤ δ.

(6.4)

This allows the derivative to be continuous across orthants. As a trade-off however,

the likelihood function is not continuous anymore across orthants. To alleviate this

problem, the state resulting from a topologymove is accepted using the original Hamil-

tonian. As a side effect, a particular choice of δ also results in a lower bound for the in-

dividual branch lengths. Theminimumof gδ(x) is at δ
2
, which will effectively function

as the lower bound. It can be shown that the Hamiltonian dynamics defined above up-

hold the reversibility, volume preservation and k-accessibility properties of traditional

Hamilitonian dynamics (Dinh et al., 2017).

6.3 No-U-Turn Sampling in the Tree Space

Defining a No-U-Turn sampling scheme for (phyloegenetic) trees is straightforward

given the theoretical groundwork laid out above. There are two aspects ofNUTSwhich

need to be adapted to define the pyhlogeneticNo-U-Turn sampler (p-NUTS).The first
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part is to provide a HMC sampler in the space of trees and the second is to define an

appropriate stopping rule for the NUTS tree building procedure.

Replacing the leapfrog integrator in the No-U-Turn sampler with the leap-prog in-

tegrator described in section 6.2 is straightforward. Since the leap-prog integrator pre-

serves volume and is reversible like the leapfrog integrator, the replacement does not

impact the target distribution. Dinh et al. (2017) prove the relevant properties which

make the leap-prog integrator a valid HMC sampler. Thus, using the leap-prog inte-

grator instead of the traditional leapfrog method maintains the theoretical properties

of the original No-U-Turn sampler. Since Dinh et al. (2017) report a superior perfor-

mance for the leap-prog integratorwhichuses the smoothedbranch lengths, this variant

will also be used for p-NUTS.

The secondaspectwhichneeds todefined is an appropriate stopping rule. ForNUTS,

the tree building procedure is stopped if an infinitesimal change in either direction

would cause the states at the left- and rightmost part of the search tree to start moving

closer together. For p-NUTS, this means a comparison of trees is necessary. Since the

space of trees in which the algorithm operates has a distance measure to it, the geodesic

is used for calculating these distances. Building on the definition of the lower andupper

bound on the geodesic in the Billera-Holmes-Vogtman space by Amenta et al. (2007),

these bounds are used as proxies for the actual distances. Using the lower and upper

bounds as distance proxies results in the following procedure for checking the No-U-

Turn behavior.

1. Simulate one leap-prog step for θ− and θ+ resulting in θ−′ and θ+′ , respectively.

2. Calculate the lower bound on the distance of θ+′ and θ−′ , Dl and the upper

boundDu for θ+ and θ−

(a) ifDl < Du terminate the sampling step

(b) else continue sampling.
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Data Set # sites # languages
Dravidian 231 38
HmongMien 892 36
Timor Alor Panta 240 59

Table 6.1: Overview of the data sets used to test p-NUTS

Similar to standard NUTS, the simulation is also aborted if the error in the simulation

becomes too large. The same rule as described above is used. This new stopping rule

also leaves the target distribution intact since the target distribution is not affected by

any of the operations in the No-U-Turn measure. The difference to standard NUTS

lies in the more complex evaluation of θ−′ and θ+′ . While the standard algorithm only

requires the computation of two inner products, the p-NUTS sampler requires the eval-

uation of an entire leap-prog step. However, as soon as the height of the binary search

tree j becomes larger than 2, computing two leap-prog steps is cheaper than comput-

ing another 2(j+1) new leap-prog steps. This concludes the definition of the stopping

rule for p-NUTS and thus the definition of the p-NUTS sampler. All the other steps

of standard NUTS remain unchanged and thus the target distribution is not affected

by the changes introduced here.

6.4 Empirical Evaluation

In order to asses the performance of the p-NUTS sampler, I conducted some empirical

tests. I used three different datasets from the supplementarymaterial of Jäger (2018) to

infer posterior distributions over phylogenetic treeswith the newp-NUTSmethod and

MrBayes (Ronquist andHuelsenbeck, 2003), as the quasi “industry-standard”. The as-

sumption is that p-NUTS converges faster to the target distribution and yields a higher

or similar estimated sample size for a smaller numberof runs. Table 6.1 gives anoverview

over the relevant statistics of the data sets that were used to test p-NUTS. The data

show different relations between the number of sites and the number languages. Since
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Dravidian
π TL LL top. gen. top./gen.

MrBayes 0.781 (± 0.014) 2.798 (± 0.171) -1604.046 (± 7.18) 1× 106 106 1
p-NUTS 0.778 (± 0.014) 3.034 (± 0.219) -1620.548 (± 11.16) ≈ 2.58× 107 5× 105 ≈ 51.6

Timor Alor Pantar
π TL LL top. gen. top./gen.

MrBayes 0.831 (± 0.010) 3.535 (± 0.20) -2263.246 (± 9.14) 1× 106 106 1
p-NUTS 0.827 (± 0.010) 3.754 (± 0.250) -2281.340 (± 14.08) ≈ 7.05× 106 5× 105 ≈ 14.1

HmongMien
π TL LL top. gen. top./gen.

MrBayes 0.820 (± 0.006) 4.205 (± 0.109) -8862.094 (± 6.49) 1× 106 106 1
p-NUTS 0.819 (± 0.005) 4.257 (± 0.124) -8871.125 (± 9.08) ≈ 3.6× 106 5× 105 ≈ 7.3

Table 6.2: Results from the MCMC runs for MrBayes and p-NUTS. π is the equilibrium frequency of the presence

of the character, TL is the tree length, LL is the log-likelihood of the model, top. is the number of tree

topologies visited by the chain, gen. is the number of generations the chain was run and top./gen. are the

topologies visited per generation. For π, TL and LL, the mean values of the posterior distributions are

reported here, the values in the brackets are the standard deviations.

the aim is not to infer a perfect phylogenetic model for the three different data sets but

to test how well p-NUTS can sample tree structures, the only parameters inferred are

the trees and the equilibrium frequency of the presence/absence of the binary coding

character.

Table 6.2 provides a summary of the results of the different analyses.6 The table

clearly indicates that p-NUTS converges much faster on the desired posterior distribu-

tions than MrBayes. This is somewhat expected as already the original NUTS sampler

is able to produce nearly independent samples in every generation. This behavior is

mirrored by p-NUTS as can be seen by the fast convergence. Dinh et al. (2017) already

showed that the probabilistic-path Hamiltonian Monte Carlo scheme is able to out-

performMrBayes in this regard. The number of tree topologies visited also shows the

improved sampling behavior of the p-NUTS in comparison to the standard Markov

Chain Monte Carlo setting used by MrBayes. The MCMC sampler used by MrBayes

in the current experiment uses four different moves to propose a new tree topology per
6It has to be kept inmind, that p-NUTS has a lower bound on the branch lengths through the usage

of the smoothing parameter δ. This may lead to slightly different estimates in the exact branch lengths
of the tree.
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Figure 6.2: Distribution of GQD scores between the gold standard tree and the trees in the posterior sample of

PNUTS andMrBayes.

generation. Overall, the data in the table shows that p-NUTS and MrBayes converge

to similar posterior distributions. This statement is also confirmed by comparing the

distributions of GQDs of the trees from the respective posterior samples to the gold

standard trees (cf. figure 6.2).

It has to be noted that p-NUTS is able to cycle through a considerably larger num-

ber of topologies per generation. Additionally, since MrBayes uses the Metropolis-

Hastings sampler, only a part of the trees which are proposed are actually accepted.

On the contrary, all the tree topologies which p-NUTS cycles through in its current

implementation are accepted via the Hamiltonian.

6.4.1 Computational Performance

Although p-NUTSneeds a considerably smaller amount of generations to sample from

the target distribution, the current algorithm is not yet up to speed or even faster than

MrBayes. Due to the design of the algorithm, the likelihood function needs to be eval-

uated for each proposed tree move. Consequently, for all the experiments, the number

of tree topologies visited by p-NUTS is the minimal number of times the likelihood

function is evaluated. As can be seen in table 6.2 on page 125, this number is always

considerably larger than the number of generations in the experiments done with Mr-

Bayes. In addition to calculating the likelihood function, p-NUTS requires several eval-
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(a) Shrink factor against time for p-NUTS (b) Shrink factor against time forMrBayes

Figure 6.3: These graphs plot Gelman and Rubin’s shrink factor against the elapsed run time of the MCMC chain

for the experiment with the Dravidian data set using p-NUTS and MrBayes. (Gelman and Rubin, 1992;

Brooks and Gelman, 1998)

uations of the gradient,which adds further computational burden. Implemented in the

Julia programming language (Bezanson et al., 2017), the current version of p-NUTS

can calculate100, 000 generations in three hours and 50minutes for theDravidian data

set, which amounts to roughly 435 generations perminute.7 In addition to the costly p-

NUTS sampler for the phylogenetic tree, the equilibrium frequencies are sampledusing

a slice sampler. The slice samplermay also requiremultiple evaluations of the likelihood

function per generation. On the same machine, MrBayes can finish the calculations in

a matter of minutes.8 Figure 6.3 displays the evolution of Gelman and Rubin’s shrink

factor against run time (Gelman and Rubin, 1992; Brooks and Gelman, 1998). Even

though MrBayes runs considerably faster and as a function of time the shrink factor
7Times are measured on an AMDRyzen 9 3900X CPU with 12 cores and 2.9GHz. Although the

particular version of p-NUTS used only 4 cores maximally.
8On a side note, MrBayes is implemented in the C programming language. To compare p-NUTS

and MrBayes on equal footing, both approaches would need to be written in the same programming
language. It is, however, unlikely that this would change the quality of the runtime comparison because
of the increased complexity of p-NUTS.
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approaches convergence faster, p-NUTS also converges rapidly to a shrink factor of 1.

In addition, the convergence of the log likelihood is much smoother in the case of p-

NUTS.

As identified above, the two main bottlenecks for the current implementation of

p-NUTS are the high number of evaluations of the likelihood function as well as the

computation of the gradient. In its current implementation, p-NUTS uses an auto-

matic differentiation library. It needs to be determined if a static version of the gradient

can yield higher performance. Moreover, it is desirable to find a way to eliminate the

frequent calculations of the likelihood function. Solving this issue may eventually also

spill over to the stopping rule, which in its current state requires the simulation of a full

leap-prog step. For further improvement of the p-NUTS algorithm, the second issue

seems to be the most important one.

6.5 Conclusion

In this chapter I proposed an algorithm which is capable of performing No-U-Turn

sampling for phylogenetic trees. Despite the complicated structure of the space of trees,

Billera et al. (2001) were able to define the space of trees in such away thatHamiltonian

Monte Carlo sampling is possible. The leap-prog approach for sampling phylogenetic

trees brought forward by Dinh et al. (2017) lends itself naturally to build an algorithm

for phylogeneticNo-U-Turn sampling. The results show that indeed bettermixing and

faster convergence is achieved by using p-NUTS to sample phylogenetic trees.
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7
Conclusion

This thesis presented three different avenues by which the phylogenetic methods used

in computational historical linguistics can be improved. On the one hand, there is the

model presented in chapter 5, which aims to include explicit phylogenetic information

into cognate detection. This can be seen as a step towards moving from the traditional

two step approach of CHL to a one step approach as it is implicit in the traditional

procedure in the comparative method. On the other hand, chapters 4 and 6 took a dif-

ferent way to adjust existing methods. While chapter 4 shows how an online training

procedure is able to improve the training of existing cognate identification algorithms,

it also argues that the current quality of automatically generated cognate clusters is al-

ready sufficient for phylogenetic inference. Especially the second part is important for

the advancement of CHL since expert labeled cognate sets are hard to come by and

are very labor intensive. Building on recent advancements in the area of Hamiltonian

dynamics for non-continuous spaces, chapter 6 presents an algorithmwhich is capable
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of performingNo-U-Turn sampling for phylogenetic trees. Hamiltonian dynamics are

known toperformwell forhighly correlatedparameters and it is thus important tomake

them available for phylogenetic trees.

In chapter 4, I showed that current cognate detection algorithms benefit consider-

ably from optimized training regimes. Even in comparison to hand crafted alignment

weights, the online trainingmethod showed superior performance in detecting cognate

classes. This opens up the usage of automatic cognate identification tools for under-

studied languages. I showed that training on a large but unrelated dataset is sufficient

to generate good cognate judgments. Especially, if these cognate sets are used in the

downstream task of phylogenetic inference. Chapter 4.4 displayed an up to equal qual-

ity of phylogenetic trees from gold standard or inferred cognate data.

Building on the promising results of the preceding chapter, chapter 5 presented a

hierarchical Bayesian model which includes phylogenetic information into a cognate

detection task. The model introduces a time dependent notion of alignment which is

build on an explicit model of sequence evolution. The parameters of this model are

estimated usingMarkov ChainMonte Carlo techniques. This results in a posterior dis-

tribution over alignment scores. I used these scores to derive a distribution over cognate

classes, which clearly distinguishes it from alternative approaches.

After introducing the slice-sampling approach toCHL for the time dependent align-

mentmodel, chapter 6 proposed aNo-U-Turn sampler for phylogenetic tree structures.

The standard tools for phylogenetic inference in CHL almost exclusively use random

walk Markov Chain Monte Carlo methods. They are known to have slow mixing and

convergence. Building on recent advancements which translates Hamiltonian Monte

Carlo techniques such that they can be used for phylogenetic trees, I developed a proto-

type for a No-U-Turn sampler for phylogenetic trees. The algorithm indeed sampled

from the correct distribution and reached faster convergence.
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7.1 Outlook and FutureWork

There are different ways to extend the work presented here. Obviously, since the time

dependent alignmentmodel did not fully live up to the expectations, some future work

in this direction is necessary. As already discussed in the corresponding chapter, this

model only approximates a posterior distribution over cognate classes. It is but a first

step towards a full-scale Bayesianmodel of cognate class evolution. Another goal would

be to introduce phylogenetic inference into the model to infer cognacy and phylogeny

from the raw wordlist.

Another avenue to extend the results and methods presented in this thesis, is con-

cerned with the p-NUTS algorithm. The No-U-Turn measure requires the explicit

calculation of the next leap-prog step. This may result in a substantial computational

overhead in the long run. It would be desirable to find a more refined way to calculate

the No-U-Turn measure which has the same or similar predictive power as the current

version. This may actually go hand in hand with eliminating several computations of

the likelihood function which are done when walking through the space of trees. On

the technical side, the partial derivative of the likelihood function becomes increasingly

costly to compute for larger trees. This makes the algorithm in its current implementa-

tion unattractive for larger data sets. Thus, an efficient calculation of the partial deriva-

tive increases the usability of p-NUTS considerably.

7.2 Final Remarks

The main contribution to the field of computational historical linguistics surely are

rather to methodology than to the results themselves. It has been shown that the tool-

box of computational historical linguistics may still be constrained to a small set of in-

struments. However, these instruments can be refined in order to achieve better and

sometimes faster results. It is, however, important to develop tools and models which
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maintain explainability and which can be tested explicitly. By developing such models

and instruments, the reliability and quality of the results and theories can be strength-

ened.
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