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Abstract

Satellite data and randomized controlled trials (RCTs) are a powerful combination

for analyzing causal e�ects beyond traditional survey-based indicators. The usage of

remotely collected data for evaluating RCTs is cost-e�ective, objective and possible

for anyone with treatment assignment data. By re-evaluating one of the largest RCTs

- the smartcard intervention of Muralidharan et al. (2016) covering 20 million people

- with Indian nighttime luminosity, this paper �nds that nightlights as a speci�c type

of satellite data likely often are too noisy to evaluate RCTs.

Building upon a post-treatment and a Di�erence-in-Di�erences approach, we do not

�nd any statistically signi�cant e�ects of the biometric smartcards on nightlights, con-

trasting Muralidharan et al. (2017)'s results of higher income level in treated areas.

This can be mainly explained either with the noisiness-caused inability of nightlights

to speci�cally capture economic e�ects or the absence of an increased economic ac-

tivity due to a simple redistributive e�ect of the intervention. The former is more

likely when looking at GDP implications of the noisiness in the luminosity data. Per

head estimates, sensitivity checks for spillovers, subdistrict-level instead of village-

level observations and di�erent time-wise aggregations of nightlight data do not lead

to changed results.

Although limited with nightlights, nonetheless, the potential for re-evaluating RCTs

with satellite data in general is enormous in three ways: (1) For con�rming claimed

treatment e�ects, (2) to understand additional impacts and (3) for cost-e�ectively un-

derstanding long-term impacts of interventions. Using daytime imagery for analyzing

RCTs is a promising direction for future research.
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1 Introduction

In the last decades, the landscape of rigorous evaluations in the social sciences has been

shaped strongly by randomized controlled trials (Jamison (2017)). Especially in Develop-

ment Economics, RCTs are broadly deployed because of their high internal validity. In light

of Du�o, Banerjee and Kremer's Nobel prize in 2019 for their pioneering work in this �eld,

this paper argues that there is much potential in combining the power of RCTs for under-

standing causalities with low-cost, objective satellite data.

One of the standard forms of satellite imagery is the measurement of light intensity at

night. Nightlights have been found to proxy economic activity pretty well (Henderson et al.

(2012)). During the last ten years, an increasing amount of authors provided proof for

the plausibility of nightlights as a proxy for GDP throughout the world. However, there is

limited research dedicated to nightlights-based impact evaluations of policies.

To the best of the author's knowledge, the potential of RCTs combined with satellite data

has not yet been used and analyzed, although both are a potent tool for the evaluation of

interventions. RCTs are seen as one of the best methods to identify causality, as the tech-

nique outscores other approaches in unconfoundedness of treatment assignment, bearing in

mind limitations, e.g., regarding external validity (Deaton and Cartwright (2018).

In comparison to GDP, nightlights have two core advantages. First, they can capture eco-

nomic activity in regions with lower data quality and high unreported informal economic

activity. Second, nightlights are available in higher granularity in real-time (publicly with

some delays).

In this paper, nighttime luminosity data (in the following: nightlights or simply luminosity

data) are used the �rst time to re-evaluate a randomized controlled trial, analyzing one

of the most extensive randomized controlled policy interventions: The implementation of

smartcards for the Indian national employment scheme (NREGS) and pension scheme (SSP)
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in the state of Andhra Pradesh between 2010 and 2012 by Muralidharan et al. (2016) (in

the following "MNS").

The goal of this piece of research is to evaluate whether economic impacts indicated by MNS

can be measured at the village or subdistrict level with nightlights, as GDP statistics do not

exist beyond district level. This exemplary analysis of the smartcard RCT reveals whether

nightlights as a speci�c form of satellite data enable valuable knowledge gains through

impact measurements when combined with RCTs. Based on two main speci�cations, this

paper does not �nd any statistically signi�cant 1 e�ects of the smartcard intervention

on nightlights, which does not change when including spillovers. Thus the suitability of

nightlights for re-evaluating RCTs might be limited.

After a brief overview of related literature (Section 2), the smartcard RCT of MNS is

examined with quarterly nightlight data (Section 3 and 4). Therefore, the post-treatment

values of villages in control and treatment subdistricts are compared in a regression model

that is as similar as possible to the original one used by MNS. An additional Di�erence-in-

Di�erences estimate provides further discussion ground, while a useful interpretation of the

e�ect size is made possible through a comparison with o�cial GDP values. In the end, this

paper summarizes critical learnings from the empirical analysis to �nally answer the question

of whether the combination of RCTs and nightlights as an more and more often-used type

of satellite data is fruitful for evaluating stated e�ects of economic interventions(Section

5).

2 Literature overview

This chapter summarizes fundamental results from previous research on nightlights, and

studied relationships between nightlights and GDP in the �rst part. In the second part, we

1From here on and in the following chapters, the term "signi�cant" always refers to statistical signi�-

cance, de�ned as a p-value below 5%.
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provide an overview of relevant results of the examined smartcard RCT by MNS.

2.1 Nightlights in the literature

The use and study of satellite data in the social sciences have its roots in the early 2000s,

with diverse applications across socio-economic indicators and analysis factors (e.g., Don-

aldson and Storeygard (2016)). The kickstart for nighttime luminosity as a widely used

proxy for GDP is often contributed to Henderson et al. (2012), who reveal the potential of

nightlights to augment GDP observations across the world. Nightlights have been sourced

from di�erent satellite programs, most of the studies in the following either use DMSP or

VIIRS data.

Weidmann and Schutte (2017) con�rm that the common assumption of electricity-driven

night-time luminosity increases holds. However, they �nd nightlights to proxy wealth as a

condition for investments in power generators or power grid connecting cables, and economic

activity enabling this �nancial situation. Street lamps and emitted light of manufacturing,

farming and domestic buildings are the main drivers of nightlights. As all are correlating

with economic activity and wealth - no matter how the mechanism works in individual

circumstances - nightlights are a reasonable proxy at least for those two indicators of well-

being.2 Hu and Yao (2019) and others especially investigate the �t of nightlights as a proxy

of economic activity, concluding that it might even exceed the accuracy of GDP in regions

of high informal activity and lower-income countries. Throughout the economic literature,

nightlights are seen as a reasonable proxy for GDP, although there are ongoing discussions

whether this is applicable for much smaller administrative units, such as the subdistrict and

2Beyond that, Michalopoulos and Papaioannou (2012), Ghosh et al. (2013) and others reveal signi�cant

correlations of nightlights and the Human Development Index. The direct connection between high life

quality and the emission of light at night can be questioned; however, at least in regions with a relatively

low living standard, access to electricity, and increased economic activity are often breaking the barriers

towards higher life quality. This paper will mainly refer to economic activity proxied by nightlights, leaving

it open to the reader whether to derive an indirect relationship to well-being.
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village level as well (Bickenbach et al. (2016)). Additionally, the mapping of nightlights

to GDP3 is statistically di�erent in urban and rural areas. Reasons for this are spillovers

between very light urban areas in satellite measurements, and low-light agricultural activities

in rural regions (Otchia and Asongu (2019); Wu et al. (2013)). The analysis used in this

paper only looks at rural areas, so that the rural-urban bias, that is typical for nightlights,

does not play a role.

In the Indian context, Bhandari and Roychowdhury (2011) and Prakash et al. (2019) con-

clude that nighttime luminosity is a reasonable indicator for economic activity and strongly

correlates with state- and district-level GDP, bearing the potential to bridge the gap of miss-

ing subdistrict and lower level GDP estimates. Ghosh et al. (2010) harness remotely sensed

light data to state that India's informal economy and remittances are very underestimated

in o�cial GDP estimates.4

Research applying nightlights for the analysis of large-scale governmental and non-governmental

interventions is available in limited quantity when compared to other research using night-

light data. Nonetheless, several non-randomized studies have been conducted.5

3Note that in this paper, for the sake of simplicity, the term GDP is used for o�cial data of economic

activity aggregates on non-domestic levels too, which is then speci�ed.
4Note: In contrast to many studies of other countries (e.g., Bundervoet et al. (2015)), Bhandari and

Roychowdhury (2011) �nd nightlight-based estimates for GDP in Indian agricultural areas to be positively

biased compared to urban areas.
5For instance, Mitnik et al. (2018) quantify the e�ects of transport infrastructure on local GDP in Haiti

by exploiting the di�erential timing of rehabilitation projects and deploying a Di�erence-in-Di�erences

panel �xed e�ects model but lacking randomization. Corral et al. (2018) use nightlights in several impact

evaluations of local interventions. In event studies of the 2015 earthquake in Nepal and the 2016 demon-

etization in India, Beyer et al. (2018) reveal the strong e�ect on regions with high informal activity. One

of the available impact evaluations with nightlights in India is conducted by Asher and Novosad (2020),

publishing that road construction does not necessarily lead to more economic opportunities for the rural

population.
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2.2 The smartcard RCT

In a seminal RCT, MNS investigate the randomized roll-out of biometric smartcards and

reorganization of the payment process for the world's biggest rural employment program

(the National Rural Employment Guarantee Scheme (NREGS)) and the pension scheme

SSP in the Indian state Andhra Pradesh. NREGS assures every rural household 100 days of

paid work6. Due to implementation and leakage issues, the government of Andhra Pradesh

moved from a leakage prone cash-based money transfer through the di�erent administrative

levels to a more direct money transfer, with �ngerprint identi�cation for money collection

using so-called smartcards. By randomizing the roll-out of the smartcard program at the

subdistrict level, the researchers estimate the intent-to-treat e�ect (ITT) of the newly

available money transfer option. ITT estimates are necessary as conversion took time,

with 68% of villages using smartcard-enabled NREGS payments after two years, at the

endline in 2012. To prevent access problems caused by technical issues, smartcards were

not mandatory for collecting wages.7

The smartcard intervention introduced several fundamental changes to the payment pro-

cess: An organization not connected to the NREGS work reports was responsible for the

payment process, the pay-out-point was closer to the village and �ngerprint identi�cation

was introduced for payment collection. This lead to three main impacts. First, they observe

a faster and more predictable payment process for bene�ciaries. It took 22 minutes less

to collect payment (-20% relative to the control mean), and bene�ts were collected 5.8

to 10 days sooner (- 17-29%) compared to the control group. Second, the proportion of

households that reported working on NREGS increased by 7.1 percentage points (+17%),

pro�ting of the reduction of quasi-ghost bene�ciaries.

6At appr. $1.5-2 per day; mostly for local infrastructure projects
7This was an important strategy to guarantee inclusion when compared to similar programs (Muralid-

haran et al. (2020)).
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Third, leakage8 along the payment chain from the state government to bene�ciaries de-

creased by 12.7 percentage points (-41%). Thus, more money reached the bene�ciaries,

amounting to a 24% increase in NREGS-related household earnings, with similar results for

SSP. This signi�cant increase in household income holds for every income class registered

for NREGS or SSP. Total leakage reduction estimates equal $41.7 million per year, mainly

driven by exacerbating overreporting and underpayment through the new payment process

and the smartcards. Even within the same subdistrict, the government spending for the

programs remained constant (there is an exogenous budget cap for planning purposes).

This suggests substantial bene�ts of implementation improvements. The cost of the smart-

card roll-out and operation for both schemes amounts to $6.3 million, while time savings

for bene�ciaries aggregate to $4.5 million per year, based on assuming an always available

reservation wage of roughly $1.7/day. Even though the latter assumption seems naive, the

leakage reduction by far exceeds implementation and operation costs.

However, it is crucial to keep in mind that a leakage reduction is not merely an increase

in received cash without a group losing parts of their income. Instead, the smartcard pro-

gram led to a redistribution of transfers from corrupt o�cials to bene�ciaries. Although

knowledge on speci�c points of leakage is limited, the highest leakage is probably at the

local village/close-by villages level. So-called Field Assistants usually record attendance

of the village-level projects and formerly collected payments from a nearby post o�ce 9

to then distribute it to workers. Overreporting work or inventing ghost-bene�ciaries could

easily allow Field Assistants to harvest payments meant for bene�ciaries. With �ngerprint

authentication, Field Assistants were restricted in accessing payments, and thus needed to

8Leakage is de�ned as the di�erence between o�cial government data and survey-based bene�ciary

reports.
9According to government data, there is roughly one post o�ce per four villages in India. Assuming

one Field Assistant per post o�ce, or at most covering post o�ces in a radius of 20-40km (1 hour travel

by car or motorcycle) seems reasonable.
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employ more real villagers to compensate for then missing ghost bene�ciaries.10

As o�cials usually are substantially wealthier than rural bene�ciaries, the transferred income

from "the rich" to "the poor" contributes positively to a utilitarian social welfare function

with diminishing returns.

In their follow-up paper, Muralidharan et al. (2017) �nd large positive market wage devel-

opments11, as a consequence of higher reservation wages through the improved implemen-

tation of NREGS. As workers commute to nearby villages (assuming a maximum of a two

hour walk of 20 km), which might be in non-treated subdistricts, the wages increase in the

surrounding areas as well - the spillover-e�ects. Including these e�ects on nearby villages,

the total income increase amounted to 10.6%, while non-adjusted 6.5%. Consequently,

spillovers are highly relevant when considering the economic e�ects of the smartcard pro-

gram. Besides, private sector employment days rose by 20% (spillover adjusted), NREGS

employment days by 29%. The former increase is as large as the e�ect of the initial roll-out

of the NREGS program, evaluated by Imbert and Papp (2015). Higher market wages lead

to another redistributive e�ect from the rich to the poor: Landlords seeking employees have

little chance but using a higher budget for labor wages. Nevertheless, e�ects on overall

economic activity remain uncertain and thus will be studied in this paper in the following

sections.

Beyond, MNS do not report Di�erence-in-Di�erences estimates as they cannot �nd any

signi�cant di�erences in the dependent variables at the baseline at the village level. Their

study design is limited to comparing the treatment and non-treatment villages,12 which is

used in the following sections as well. Moreover, this paper builds upon the availability of

quarterly data, enabling the estimation of Di�erence-in-Di�erences model, taking into ac-

10Leakage at higher levels might play a role as well, but is assumed to be of smaller size. O�ces like the

subdistrict o�ces could potentially manipulate attendance reported by the Field Assistants and additionally

invent workers themselves, but need to work together with o�cials on the way or with Field Assistants.
11Consumer goods prices did not signi�cantly increase, suggesting real income gains.
12There are non-studied subdistricts working as a time bu�er that received smartcards mostly in 2011
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count historic trends reasonably. The quarterly data also allows addressing possible caveats

of MNS's strong focus on the NREGS-heavy month of June, triggered by surveys purposely

taking place directly afterwards.

In summary, this re-evaluation of the smartcard RCT will provide insights on how nightlight

data might depict additional and verify stated e�ects. Speci�cally, the impact of the smart-

card intervention on the overall economic activity beyond income in studied NREGS-heavy

periods in treated villages or subdistricts is still unclear, and cannot be derived from GDP

statistics as those are neither available at the subdistrict nor village level. This paper aims

to �ll this gap by setting an example of value additions possible with research using remotely

sensed luminosity data.

3 Data

3.1 Smartcard RCT replication �les

MNS published replication �les of their RCT. The treatment status of speci�c subdistricts

is clearly identi�able with provided census codes. All other RCT data are labeled with

random identi�ers to follow data protection guidelines, and are thus not connectable to

external data like nighttime lights.

Of 157 studied subdistricts with roughly 3,500 villages covering 20 million people, villagers

in 112 randomly selected subdistricts13 got access to smartcards in October 2010. The

remaining 45 control subdistricts got access to smartcards by October 2012.

The program setup allowed the continued use of leakage-prone access without smartcards,

to prevent IT-caused exclusion issues. Consequently, only 30% of the treated villages used

smartcards after 12 months, 60% after 17 months. Thus, interpretation of the treatment

13Randomization followed a principal component for strati�cation to care about any imbalances. Addi-

tionally, the proportion of treated and control subdistricts per district was �xed.
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e�ect needs to be adjusted - MNS, as well as this paper, focus on intent-to-treat e�ects.

3.2 Nightlights

Figure 1: Development of quarterly mean luminosity across the 3,582 studied villages (Q4

2005 - Q3 2012)

Notes: Quarterly mean luminosity is derived by taking the median of nighttime luminosity values

observed by DMSP satellites within a month in an area of appr. one km2 (30 arc-seconds) in

which the village center lies, and then the average of three months. For the �tted values, a

weighted local polynomial smoothing approach is used. The positive luminosity trend seems

reasonable when looking at the economic development, increased wealth, and speci�cally a rise in

the access and use of electricity. CI=Con�dence Interval

A collaboration between Development Seed, the World Bank, and the University of Michi-

gan led to www.india.nightlights.io, an open-source repository of nightlights with census

identi�ers, at the village level (Gaba et al. (2016)). Monthly median visibilities of weather-

adjusted observations sourced from the Defense Meteorological Satellite Program (DMSP)
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are available. After they have processed the data further, the researchers matched DMSP

raster images with a resolution of roughly one square kilometer to geocoded villages in

India. Here, in this re-evaluation, only imagery from the satellites F16 and F18 are used,

to prevent major inconsistencies between di�erent satellites.

As a background, Table 3 (appendix) provides average village statistics, e.g., the average

population per village amounts to appr. 2000, average literacy is 50%. In this paper, a

quarterly mean of the available monthly village-level luminosity value is used as the depen-

dent variable in order to smooth out some noise. This smoothing is usually done by using

yearly aggregates (e.g., Prakash et al. (2019)), but because this method would be too rough

for re-evaluating a two-year long RCT,14 we chose the mean quarterly value. This value

re�ects the relative brightness of villages, interval scaled - negative values still re�ect visible

lights, but with relatively low luminosity. We use a panel of village-level luminosity values

�ve years before the treatment (Q4 2005) up to the quartal before the treatment of the

control group two years later (Q3 2012). Besides, areas classi�ed as "urban" are excluded

to account for the rural-urban bias of both, NREGS (which is only targeted at rural citizen)

and luminosity measurements. 90% of the observations of luminosity lie between -1 and 6

(For illustration, see Figure 1 and descriptives in Table 3).

3.3 Indian Census

Every ten years, the government of India provides a village-level census. To estimate per

head light intensities, the population values of the 2011 census are used. Besides, di�er-

ent subdistrict and village-level characteristics depicted in the 2001 and 2011 census are

the basis for building a subdistrict-level principal component that captures di�erences in

the characteristics of subdistricts. Longitude and latitude data of the villages enable the

14Nevertheless, we have tested the models with yearly means as well - Table 12 and 13 in the appendix

show that they cannot �nd any signi�cance of treatment and spillovers.
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analysis of spillover e�ects between villages. Therefore, we calculate the fraction of treated

villages within a radius of 20km.

4 Empirical analysis

In the following chapter, we �rst draw a theoretical hypothesis as a basis for explaining the

two main estimation strategies to re-evaluate the smartcard RCT with the data described

before. Afterwards, the regression results are analyzed, and enhanced with additional inter-

pretations using alternative speci�cations and a comparison to o�cial district GDP.

4.1 Theoretical hypothesis

Based on the economic literature proving the ability of nightlights to measure economic

activity, the connection between the smartcard intervention and observable luminosity is

assumed as follows. The smartcards lead to a redistribution of �nancial resources from

o�cials and wealthy individuals to villagers in treated villages, raising the market wage

with spillover e�ects to nearby villages. The higher income of villagers leads to higher

consumption, boosting economic activity in the village and nearby villages. This economic

activity can be observed as infrastructural projects like street lamps (Hodler and Raschky

(2014)) and new buildings. In addition, more work is being done during the evening,

which increases the luminosity seen from space. However, it is questionable whether the

redistribution of the beforehand accumulated capital leads to signi�cantly more observable

investments. A redistribution within nearby villages is likely, as �eld o�cers usually live

close to the villages for which they supervise NREGS activities. Landlords might react to

higher labour cost in treated districts and thus focus their activities on non-treated regions,

but MNS �nd positive employment e�ects for treated regions.

The randomized setup of the trial, which MNS carefully control for, implies a possible

11



causal interpretation if we control for any other endogenous factors relevant for nightlights.

Therefore, an analysis of electri�cation status by village using Census 2011 data showed

that all studied villages have access to electri�cation (see Table 3). Politicians seeking

elections might have used so-called freebies (e.g., lightbulbs) to convince voters, but state

and national elections took place in 2009 and 2014 only, and smartcard roll-out is unlikely

to correlate with freebies given away.

Additionally, there is no signi�cant di�erence in the construction size of NREGS projects

between treated and non-treated subdistricts, so that luminosity related to infrastructure is

exogeneous. The Andhra Pradesh micro�nance crisis starting in 2010/2011 (Mader (2013))

has likely a�ected the studied regions, but there is no evidence that this correlates in any

form with the smartcard treatment.

4.2 Post-treatment estimate

The �rst of the two regression models deployed in this piece of research is built as close

as possible to the models used by Muralidharan et al. (2017), looking at post-treatment

di�erences at the endline in Q3 2012.

Yvmd = α + βTTmd + βNÑ
R
vmd + γYmd + λPCmd + δd + εvmd (1)

Yvmd is the mean of monthly median luminosity values for Q3 2012 for village v in mandal

(=subdistrict) m in district d. βT captures the e�ect of being in a treated mandal, and βN

the e�ect of having a higher fraction of neighboring villages who are in a treated mandal.

Ymd is the mandal-level mean of the dependent variable at the baseline in Q3 2010. With

λPCmd and δd we control �xed e�ects, the former is a principal component of key mandal

characteristics from the 2011 census15, the latter simply is a dummy for each of the seven

districts in which the studied mandals are located.

15Total rural population, literacy rate, job cards per capita, percentage of citizen belonging to a scheduled

caste or scheduled tribe, fraction of disabled citizen, fraction of old age citizen and pensions per capita
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Table 1: Post-treatment estimates in the main village-level panel (Q3 2012)

(1) (2) (3)

VARIABLES Luminosity Luminosity Luminosity

Treatment 0.136 0.104 -0.0902

(0.276) (0.443) (0.193)

Spillovers -0.772 0.121

(0.544) (0.824)

Luminosity at baseline 0.808*** 0.880***

(0.0865) (0.0900)

Constant 0.495 1.885*** 0.0416

(0.398) (0.591) (0.308)

Observations 3340 3340 3582

Mandal Principal Component YES YES YES

District Fixed E�ects YES YES YES

Adjusted R-squared 0.279 0.126 0.279

Standard errors clustered at mandal level in parentheses.

*** p<0.01; ** p<0.05; * p<0.1
Notes: The third speci�cation bears more observations as 242 villages were not included in

accessible location datasets which were the basis for the calculation of spillovers. With statistical

insigni�cance of the treatment coe�cient, its negative sign in (3) is not of a concern.

Although the coe�cient of the baseline mean of the light intensity per mandal is signi�-

cantly di�erent from zero, we can also reject that it is equal to one (p<5%, see Table 1

(1)), like MNS. In di�erence to their simple escape from a Di�erence-in-Di�erences (DiD)

approach based on this �nding, we argue that a DiD estimation is highly important to

understand time-dependent di�erences between treatment and control group (see in the

next subsection).

We do not �nd any signi�cance in the treatment nor the spillover variables as an in�uencing

factor for village luminosity, even after leaving out the baseline luminosity value. Either the

overall economic activity proxied by nightlights did not change signi�cantly because of the
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treatment, or the luminosity observations are too inaccurate to depict economic in�uences

which appears likely when looking at the strong economic e�ects that MNS found.

4.3 Di�erence-in-Di�erences estimate

The following DiD estimate nurtures the richness of the luminosity panel. We look at the

di�erences between control and treatment group, and for both at the di�erences in the

years before and after the treatment. In order to understand the (intent-to-treat)-e�ects of

the smartcard intervention, we include luminosity values from �ve years before the baseline

for every studied village, until the endline in Q3 2012.

Yvmdt = α + βTTmdt + βNÑ
R
vmdt +

8∑
j=−8

τTmd(t+j) + δmd + θt + εvmdt (2)

Yvmdt is the quarterly mean of monthly median luminosity values for village v in mandal m

in district d in the respective quarter t. Similar to above, βT and βN capture the treatment

and spillover e�ects. In contrast to the cross-section post-treatment model, this model

builds upon a panel with quarterly values between 2005 and 2012 across 3,582 villages.

Furthermore, leads and lags of the treatment capturing +/- 2 years (+/- 8 quarters) are

included, as well as a mandal dummy δmd and a dummy θt for every quartal of the 28 cov-

ered within the seven years time period. The standard errors εvmdt are clustered at mandal

level to prevent heteroscedasticity, like in the post-treatment estimate.

Table 2 shows that the e�ect of the smartcard intervention (through treatment or spillovers)

on nighttime luminosity is insigni�cant, once time �xed e�ects are controlled for. This does

not change if we control for subdistrict or village �xed e�ects when including leads and

lags of the treatment variable to account for announcement e�ects and a delayed roll-out.

Interestingly, the spillover variable takes all signi�cance and e�ect size from the treatment
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Table 2: DiD estimates in the main quarterly village-level panel

(1) (2) (3) (4) (5)

VARIABLES Luminosity Luminosity Luminosity Luminosity Luminosity

Treatment 0.722*** -0.173 -0.162 -0.218 -0.219

(0.147) (0.455) (0.465) (0.241) (0.239)

Spillovers 1.039** 0.931 0.0475 0.128

(0.464) (0.777) (0.411) (0.392)

Constant 1.351*** 1.307*** 0.545*** -0.969*** -1.007***

(0.111) (0.112) (0.0607) (0.106) (0.109)

Observations 99640 97704 97704 97704 97704

Quarterly Fixed E�ects NO NO YES YES YES

Mandal Fixed E�ects NO NO NO YES NO

Village Fixed E�ects NO NO NO NO YES

Leads and Lags NO NO NO YES YES

Adjusted R-squared 0.0111 0.0126 0.0725 0.310 0.641

Standard errors clustered at mandal level in parentheses.

*** p<0.01; ** p<0.05; * p<0.1

Notes: The treatment is insigni�cant once spillovers are included, and even those become

insigni�cant once time �xed e�ects are included. Leads and Lags, mandal FE and village FE do

not change this result. Some observations are lost once spillovers are included, as geocoding is

not available for some villages.
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variable, and even outgrows its e�ect size, but does not stay signi�cantly di�erent from zero

once �xed e�ects are included. Two major implications can be drawn, like above: Either

the smartcard program did not have a strong impact on economic activity, or the nightlight

data cannot accurately depict the economic activity increase caused by the intervention.

4.4 Alternative speci�cations

This subsection describes how we test di�erent alternative speci�cations (results in Table

6 to Table 16 in the appendix) with particular rationales in mind in order to validate our

�ndings.

First, the dependent variable only re�ects total village observations, it does not depict per

head observations. Those are calculated based on the 2011 census �gures, thus insensitive

to larger migration in the considered time frame 2005-2012. Nevertheless, the results are

similar to our previous estimations; there is no signi�cant observable impact of the treat-

ment and spillovers (Table 6 and 7). This insigni�cance is not surprising as population

distribution is not tremendously di�erent in control (mean village size = 2078, sd = 2900)

and treatment group (mean village size = 1992, sd = 2514).

Second, the spillover e�ects are checked for sensitivity, expanding the radius for capturing

spillovers from 20km to 40km. Again, the results are not a�ected (Table 8 and 9). If

we use the initial monthly luminosity values (Table 10 and 11), we see a higher standard

deviation of luminosity, and do not see a change in the results. P-values are higher for the

monthly compared to the quarterly values for example for luminosity at the baseline, and

spillovers in (2) of the DiD model, which is possibly indicating the imprecision of monthly

values. A yearly instead of a quarterly mean is unable to capture any possible e�ects, with

insigni�cant treatment coe�cients for post-treatment and DiD estimates. (Table 12 and

13).
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As the smartcard program mainly leads to a redistribution to villagers from o�cials who

most likely operate within nearby villages but possibly also just in the same mandal, we

create a new mandal-level panel aggregated from the village-level luminosity values. Nei-

ther the per head nor the median estimate are signi�cant, once again proving the initial

estimates. (Table 14 and 15).

Lastly, we specify a lagged regression equation. MNS replication �les indicate that �ve

quarters post-treatment, the village conversion rate surpasses 50%. Thus, the treatment

and the spillover variable are lagged by �ve quarters. DiD estimates show no signi�cance

of the lagged treatment or spillovers for luminosity values (Table 16).

4.5 GDP and nightlights

Although the literature has proven the suitability of nightlights as a proxy for GDP, the

following subsection shortly looks into this correlation for the studied districts. It is impor-

tant to keep in mind that GDP estimates are only available at the district level and can

be of lower accuracy for depicting economic activity than luminosity values. This short

comparison is relevant in order to understand treatment sizes and be able to interpret the

main regressions meaningfully.

64.7% of the variation in o�cial GDP values in all districts of Andhra Pradesh in the period

2005-2012 can be explained with variation in luminosity levels. For every district, we divided

the o�cial GDP by the number of villages and transformed it into a monthly value to be

able to interpret the estimates of the post-treatment and DiD model directly.16 There is

16Of course, this approach bears inaccuracies, but di�cult to improve given the availability of o�cial

GDP data only at the district level. An alternative approach would be to use the sum of nightlights per

district and compare it to the district GDP values, but we purposely stay on the village-level for more direct

interpretations. In the appendix, in Table 4, an alternative per head estimate of GDP and luminosity is

provided.
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Figure 2: District-wise GDP correlations with luminosity

Notes: This is based on a panel of all studied districts. We divide the o�cial yearly GDP value

for each district by the number of villages per district, and by twelve, to �nally be able to

compare it in absolute terms to the 3-months mean luminosity. Includes one value for every year

2005-2012 for every district in Andhra Pradesh. As k USD are used, the y-axis re�ects values

between 0 and 1 million USD.

some degree of variation in the estimated coe�cient of luminosity on GDP depending on

whether we only look at studied or all districts in Andhra Pradesh. For every extra point in

luminosity, the absolute GDP per month in a village is higher by roughly 100,000 USD. 17

Using this as a reference while looking at village-wise luminosity developments, the enor-

mous variations (standard deviation of 2.773, around the mean of 1.501) are a big concern.

For example, when looking at the three months means of the luminosity of a speci�c village

in the data, it is not uncommon to observe luminosity values at 1 in one quarter and 2.5

17Speci�cally, for every extra point in luminosity, 80,110 USD extra in studied districts, 101,300 when

looking at all AP districts. Similarly, for every tenth of a point in luminosity per head, GDP per head is

higher by 6,752 USD in studied districts, and 7,942 USD in all AP districts (see Table 4 and 5).
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in the next quarter, then going down to 0.5 straight afterward. This would mean that the

village GDP of appr. 100,000 USD (roughly 20-50$ on average per villager) more than

doubled to 250,000 USD within one quarter, just to then drop to a �fth of that - to 50,000

USD. This reveals how noisy nightlight data is, and that yearly aggregates should be used

if possible. However, for a two year long RCT with slow conversion and treatment of the

control group at the end, this does not make much sense from a data point of view.

If applied to the estimated treatment size of the post-treatment model (Table 1 (1)), treat-

ment was correlated with a higher village GDP of roughly 13,600 USD per month (sd =

27,600 USD) - though not signi�cant. The - again insigni�cant - DiD estimate (Table 2

(4)) suggests a lower village GDP of 21,800 USD per month (sd = 24,100 USD), with a

size of the spillovers of 4,750 USD per month (sd = 41,100 USD). Thus based on one

standard deviation, a change of +/- 50,000 USD is estimated. Given the mean luminosity

of 1.5 (Table 3), which equals 150,000 USD per month, this would mean a change by one

third. Building upon these thoughts, the imprecision of nightlights is a barrier towards its

usage for re-evaluations. Accurate satellite data with low variations across time, resulting

in a village-wise consistent development, could be fruitfully used for estimating potential

economic gains through evaluations of di�erent policies. However, this is not the case for

the Indian nightlight data used here, and to a vast extent, for micro-level high frequency

nightlight data in general. More accurate forms of satellite data are needed to depict small

changes induced by subdistrict- or village-level randomized controlled trials.

5 Limitations and potential

The exemplary analysis of the smartcard intervention shows that the combination of RCTs

and nightlights is prone to several inaccuracies limiting the potential applicability.

Nighttime luminosity is found to be generally noisy, and prone to sensitivity di�erences
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in satellite sensors. Thus, aggregates like annual composites (as released by NOAA) are

needed. However, RCTs do not usually span across multiple years, so that at least quarterly

observations are necessary to understand impacts precisely. As seen in the analysis before-

hand, these quarterly means are still prone to noisiness (although less noisy than monthly

values), and on cloudy days, such as monsoon time in India, quarterly aggregates are based

on just a few observations or in some cases, not even available (e.g., Q2 2009).

For more accuracy, the NASA-NOAA has launched the visible infrared imaging radiometer

suite (VIIRS) in late 2011, which is found to be slightly less noisy (Addison and Stewart

(2015). The absence of light at night does not necessarily indicate lower economic activity

in the short term. Weather, cultural or political shifts of economic activity toward daytime

or more unlit activities will continue to a�ect nightlights as an economic proxy, no matter

how sophisticated the sensor systems are.

Beside aggregates across time, it is questionable in what manner nightlights or satellite

data in general can depict economic activity at the granular levels on which economists

typically randomize. Usually, randomization is done on the household or village-level. The

use of satellite data seems unreasonable for many cases of the former. With the example at

hand randomizing at an exceptionally high level - at subdistricts - it is possible to gain an

understanding of the area granularity issue, by comparing the results of both, subdistrict-

level and village-level estimates. We do not �nd any e�ect at either level so that we at

least cannot falsify the hypothesis that village-level luminosity values are reasonable to use.

Research by Dugoua et al. (2018) and others point in a similar direction.

MNS conducted on-the-ground interviews to explicitly look at the most impacted month

of June. If nightlights are only valuable in quarterly or yearly aggregates, such speci�c

outcome measurements are challenging to obtain. Nonetheless, the monthly estimates pre-

sented here show similar results, although noisier. One of the biggest potentials of satellite
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data lies in understanding the impacts of randomized interventions beyond the endline, es-

pecially when on-the-ground measurements are not possible or simply too costly. For this,

even nightlights as yearly aggregates can be an option. In cases where the control group

can access treatment right after the endline, like in the smartcard example, the potential of

long-term evaluations is somewhat limited. But for hundreds of already conducted RCTs,

with no treatment of the control group straight after the endline, satellite data provide

an excellent, easy-to-harness potential. With remotely sensed data, researcher can deeply

understand e�ects beyond a typical RCT evaluation setup looking at a couple of years be-

tween baseline and endline. Generally, the high inter-comparability of satellite data will help

to gain much more objective data, e.g., the e�ects of a similar RCT conducted on di�erent

continents can be measured with the same satellite.

Furthermore, it is crucial to understand which variables of interest can be proxied with

remotely sensed luminosity values. The most prominent measure is economic activity, the

most straight-forward measure electricity use. The re-evaluation of the large-scale smart-

card RCT has shown that roughly 50% of the variation of GDP for a seven year time

span can be explained with luminosity values in the studied districts, even though not all

subdistricts per district have been treated or were in the control group. The most often

used measures in Development Economics randomized controlled trials are in the areas of

economic bene�t (income, goods, and other), health and education. Only for a small part

of the former - mainly economic activity and electricity access - nightlights are widely found

to be useful. 18 Although still slightly inappropriate for the latter two, daytime satellite

data can depict far more economic indicators, e.g., roof conditions (Varshney et al. (2015).

Beyond, remotely sensed data are compelling for ecological indicators like tree cover, vege-

tation and air pollution (Fowlie et al. (2019)), which could be an exciting addition to many

18Ghosh et al. (2013) are one of a few authors looking at nightlight predictions of human well-being and

poverty, but it is once again GDP that is found to be most accurately predicted by nightlights.
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randomized controlled impact measurements. Daytime imagery exceeds the capabilities

of nightlights when looking at the spatial resolution, possible measurements of economic

indicators and noisiness - although it lacks the simplicity of nightlights and usually requires

advanced geomapping tools.Jain (2020) provide a useful overview of typical measurement

errors in satellite data that are important for deriving causal inference.

For satellite imagery in general, as well as for nightlights, the critical question is: Can

remotely sensed data capture small, but signi�cant e�ects caused by randomized interven-

tions? The spatial resolution, noisiness and usability are key features. As shown in the

empirical analysis, nightlight data likely are rather unable to capture those small e�ects

because of their noisiness. Daylight imagery might �nd signi�cant positive e�ects. The

combination of more sophisticated satellite data and RCTs is a key direction for future

research.

However, the other side of this powerful combination needs to be kept in mind as well: The

randomized controlled trial itself. Besides general issues like limited external validity, RCTs

still need to be conducted on the ground, involving high setup costs. Although satellite

data can help to reduce the burden of data collection, valuable microdata, e.g., related to

personal feelings, health issues, and education can only be gathered through on-the-ground

surveys. Satellite data can enable a cost-e�cient analysis of large-scale RCTs targeted at

economic activity, with low-cost measurements during the trial and beyond.

6 Conclusion

Satellite data and randomized controlled trials (RCTs) are a powerful combination for an-

alyzing causal e�ects beyond traditional survey-based indicators. The usage of remotely

collected data for evaluating RCTs is cost-e�ective, objective, open for anyone with treat-
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ment assignment data and possible beyond the endline. By re-evaluating one of the largest

RCTs ever conducted in the context of development economics - the smartcard interven-

tion of Muralidharan et al. (2016) covering nearly 20 million people - with Indian nighttime

luminosity, this paper �nds that nightlights as a speci�c type of satellite data are too noisy

to evaluate short-term RCTs. Other satellite data, especially daytime imagery will probably

outscore luminosity-based approaches.

In the analysis, there was no statistically signi�cant e�ect found of the randomized smart-

card intervention on nighttime luminosity, neither with a post-treatment nor a Di�erence-

in-Di�erences estimate. Di�erently aggregated speci�cations con�rm the initial absence of

statistically signi�cant e�ects of the smartcard treatment on economic activity proxied by

nighttime luminosity. A look at the correlation with GDP to meaningfully interpret the

noisiness of nightlight data leads to the conclusion that this kind of satellite data has a

limited suitability for the analysis of RCTs.

Nonetheless, the potential for re-evaluating RCTs with other satellite data than nightlights

is enormous in three ways: First, for con�rming claimed treatment e�ects. Second, to

understand further impacts, e.g., on the ecological or comprehensive economic side at the

endline. Third, for understanding long-term impacts of randomized interventions. In the re-

search, we have struggled to receive access just to the treatment assignment information for

RCTs. There is a clear trade-o� between data protection and usability for re-evaluation that

is a barrier for harnessing the massive potential that the combination of RCT's treatment

assignment data and satellite data brings. Moreover, large-scale RCTs can be evaluated

much more cost-e�ectively with the support of satellite data. On-the-ground analysis will

likely always remain relevant, while satellite data becomes a more and more critical addition

with increased accuracy and granularity that new technical solutions like daytime imagery

processing bring. Nightlights might remain valuable for other purposes, but likely not for

re-evaluating RCTs, maybe except for some long-term analysis using yearly aggregates.
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7 Appendix

Table 3: Descriptive statistics of key variables in the main quarterly village-level panel

(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

Luminosity 99,640 1.501 2.773 -3.417 56.79

L per head 92,925 0.00636 0.160 -0.211 14.30

Treatment 99,640 0.208 0.406 0 1

Spillovers 97,704 0.196 0.347 0 1

Access to electricity 99,640 1 0 1 1

Total population 98,863 2,016 2,628 0 36,031

Literacy rate 92,925 0.501 0.101 0 1

Notes: This table re�ects the full panel, with quarterly values between Q4 2005 and Q3 2012.

The number of observations for per head luminosity and spillovers is lower because of missing

population data or values of zero for some villages and missing geocoding for others. Because

processed data is used, luminosity values do not represent any physical unit, and can only be

interpreted relatively on an interval scale. Spillovers have been created by simply looking at the

fraction of treated villages in a 20km radius using longitude and latitude data - in contrast to

MNS, we do not exclude villages in the same mandal from this fraction. Although non-treated

villages have spillover values greater than zero if they are close to treated villages, the mean of

the treatment is still greater than the mean of the spillovers because treated villages in proximity

to non-treated villages bear values below one. The mean of the treatment variable, 0.208, re�ects

a value of zero in the �ve years before the treatment starts, and a value of one for roughly 70%

(112 out of 157 mandals were treated with similar number of villages) of the villages during the

two year treatment period. For more speci�c comparisons of village and mandal characteristics

between treatment and control group, MNS provide insightful tables, suggesting high similarity.
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Table 4: District-wise GDP correlations with Luminosity (all AP districts)

(1) (2) (3) (4)

VARIABLES GDP per head GDP per head GDP GDP

Luminosity per head 79.42*** 18.68**

(6.820) (7.160)

Luminosity 101.3*** 89.23***

(6.321) (8.512)

Constant 0.0701*** 0.0498*** 148.5*** 128.6***

(0.00297) (0.00459) (11.58) (19.53)

Observations 144 144 144 144

District Fixed E�ects NO YES NO YES

Year Fixed E�ects NO YES NO YES

Adjusted R-squared 0.485 0.922 0.642 0.947

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Notes: This is based on a panel of all studied districts. We divide the o�cial yearly GDP value

for each district by the number of villages per district, and by twelve, to �nally be able to

compare it in absolute terms to the 3-months mean luminosity. Includes one value for every year

2005-2012 for every district in Andhra Pradesh. Converted INR to USD with year-speci�c

exchange rates from the Worldbank. Per head estimates are slightly skewed for values below

zero, as luminosity values have no de�ned zero point. The dependent variable GDP is in k USD.
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Table 5: District-wise GDP correlations with Luminosity (studied districts)

(1) (2) (3) (4)

VARIABLES GDP per head GDP per head GDP GDP

Luminosity per head 67.52*** 6.319

(10.27) (6.160)

Luminosity 80.11*** 44.91***

(12.26) (13.96)

Constant 0.0715*** 0.0504*** 156.4*** 84.29***

(0.00355) (0.00298) (13.46) (19.31)

Observations 48 48 48 48

District Fixed E�ects NO YES NO YES

Year Fixed E�ects NO YES NO YES

Adjusted R-squared 0.473 0.975 0.470 0.950

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Notes: Same procedure as above, but only includes studied districts. Keep in mind that for every

studied district, there were treatment, control and non-studied bu�er subdistricts. The

dependent variable GDP is in k USD.
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Table 6: Per head post-treatment estimates in the main quarterly village-level panel (Q3

2012)

(1) (2) (3)

VARIABLES L per head L per head L per head

Treatment 0.000659 -0.00536 -0.00139

(0.000830) (0.00433) (0.00309)

Spillovers 0.000864 0.0121*

(0.00114) (0.00704)

L per head at baseline 0.361***

(0.0600)

Constant 0.000518 0.00166 0.00841*

(0.000883) (0.00239) (0.00484)

Observations 3318 3318 3340

Mandal Principal Component YES YES YES

District Fixed E�ects YES YES YES

Adjusted R-squared 0.916 -3.10e-05 -0.000690

Standard errors clustered at mandal level in parentheses. L=Luminosity

*** p<0.01; ** p<0.05; * p<0.1
Note: Per head estimates have been created by dividing quarterly luminosity by the population of

a village. Because the population is only available for the 2011 census, this per head estimate is

slightly inaccurate, and not sensitive towards migration. Additionally, per head values for

negative luminosity values are biased as well, because of the interval scale of luminosity, and thus

only be an approximation. We do not exclude values below zero, as they are still relevant, and

this bias because of the division by population does not seem like a strong concern as.
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Table 7: Per head DiD estimates in the main quarterly village-level panel

(1) (2) (3) (4) (5)

VARIABLES L per head L per head L per head L per head L per head

Treatment -0.000705 -0.00559 -0.00665 0.00801 0.00670

(0.00169) (0.00525) (0.00534) (0.00562) (0.00580)

Spillovers 0.00543 0.0169 -0.00393 -0.00353

(0.00507) (0.0102) (0.00526) (0.00271)

Constant 0.00651** 0.00605** 0.00233** -0.00409* -0.00487**

(0.00296) (0.00283) (0.00114) (0.00230) (0.00212)

Observations 92925 92749 92749 92749 92749

Quarterly Fixed E�ects NO NO YES YES YES

Mandal Fixed E�ects NO NO NO YES NO

Village Fixed E�ects NO NO NO NO YES

Leads and Lags NO NO NO YES YES

Adjusted R-squared -7.59e-06 1.96e-05 0.000196 0.0355 0.711

Standard errors clustered at mandal level in parentheses. L=Luminosity

*** p<0.01; ** p<0.05; * p<0.1

See above. Treatment and spillovers are insigni�cant also in this speci�cation, even before time

�xed e�ects are introduced. This might be due to the inaccuracies involved with calculating the

per head estimate.
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Table 8: Post-treatment estimates in the main quarterly village-level panel (Q3 2012), with

40km spillovers

(1) (2)

VARIABLES Luminosity Luminosity

Treatment -0.117 0.0108

(0.209) (0.307)

Spillovers (40km) -0.304 1.246

(0.825) (1.166)

Luminosity at baseline 0.799***

(0.0878)

Constant 0.370 1.160

(0.606) (0.868)

Observations 3340 3340

Mandal Principal Component YES YES

District Fixed E�ects YES YES

Adjusted R-squared 0.277 0.129

Standard errors clustered at mandal level in parentheses.

*** p<0.01; ** p<0.05; * p<0.1
Spillovers have been created by simply looking at the fraction of treated villages in a 40km radius

using longitude and latitude data - in contrast to MNS, we do not exclude villages in the same

mandal from this fraction.
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Table 9: DiD estimates in the main quarterly village-level panel, with 40km spillovers

(1) (2) (3)

VARIABLES Luminosity Luminosity Luminosity

Treatment 0.722*** 0.0364 -0.192

(0.147) (0.351) (0.209)

Spillovers (40km) 0.869** -0.0689

(0.356) (0.515)

Constant 1.351*** 1.298*** -0.987***

(0.111) (0.114) (0.141)

Observations 99640 97704 97704

Quarterly Fixed E�ects NO NO YES

Mandal Fixed E�ects NO NO YES

Village Fixed E�ects NO NO NO

Leads and Lags NO NO YES

Adjusted R-squared 0.0111 0.0126 0.310

Standard errors clustered at mandal level in parentheses.

*** p<0.01; ** p<0.05; * p<0.1
Spillovers have been created by simply looking at the fraction of treated villages in a 40km radius

using longitude and latitude data - in contrast to MNS, we do not exclude villages in the same

mandal from this fraction. Of course, spillovers are zero for any village before treatment starts.
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Table 10: Post-treatment estimates monthly, at the village level (07-09/2012)

(1) (2)

VARIABLES Luminosity Luminosity

Treatment 0.144 0.127

(0.388) (0.446)

Spillovers -0.336 -0.0293

(0.758) (0.834)

Luminosity at the baseline 0.290***

(0.0554)

Constant 2.188*** 1.960***

(0.557) (0.611)

Observations 8427 9723

Mandal Principal Component YES YES

District Fixed E�ects YES YES

Adjusted R-squared 0.136 0.0920

Standard errors clustered at mandal level in parentheses.

*** p<0.01; ** p<0.05; * p<0.1
Notes: For easier relative interpretations, the mean of Luminosity is 1.507 (sd=3.079).
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Table 11: DiD estimates monthly, at the village level

(1) (2) (3) (4) (5)

VARIABLES Luminosity Luminosity Luminosity Luminosity Luminosity

Treatment 0.732*** -0.172 -0.159 -0.207 -0.196

(0.148) (0.456) (0.466) (0.236) (0.232)

Spillovers 1.057** 0.915 0.0604 0.139

(0.467) (0.778) (0.420) (0.397)

Constant 1.343*** 1.293*** 0.993*** -0.506*** -0.530***

(0.111) (0.113) (0.0747) (0.107) (0.109)

Observations 275604 269829 269829 269829 269829

Monthly Fixed E�ects NO NO YES YES YES

Mandal Fixed E�ects NO NO NO YES NO

Village Fixed E�ects NO NO NO NO YES

Leads and Lags NO NO NO NO NO

Adjusted R-squared 0.00983 0.0112 0.0984 0.294 0.569

Standard errors clustered at mandal level in parentheses.

*** p<0.01; ** p<0.05; * p<0.1

Notes: For easier relative interpretations, the mean of Luminosity is 1.507 (sd=3.079). In the

monthly panel, only every third lead and lag has been included.
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Table 12: Post-treatment estimates yearly, at the village level (2012)

(1) (2)

VARIABLES Luminosity Luminosity

Treatment -0.0801 -0.0541

(0.235) (0.440)

Spillovers -0.391 0.362

(0.453) (0.845)

Luminosity at the baseline 0.812***

(0.0665)

Constant 0.0733 2.598***

(0.308) (0.620)

Observations 3340 3340

Mandal Principal Component YES YES

District Fixed E�ects YES YES

Adjusted R-squared 0.338 0.123

Standard errors clustered at mandal level in parentheses.

*** p<0.01; ** p<0.05; * p<0.1
Notes: For easier relative interpretations, the mean of Luminosity is 1.54 (sd=2.59), the mean of

Luminosity per head is 0.00657 (sd=0.152 ). The post-treatment e�ects are statistically

insigni�cant - which is not surprising, as we can only observe three values for the years 2010

(baseline), 2011 (excluded here) and 2012 (endline) so that yearly means are too rough for RCTs

spanning across two years or less.
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Table 13: DiD estimates yearly, at the village level

(1) (2) (3) (4) (5)

VARIABLES Luminosity Luminosity Luminosity Luminosity Luminosity

Treatment 0.696*** -0.201 -0.194 -0.382 -0.380

(0.153) (0.475) (0.485) (0.239) (0.242)

Spillovers 1.038** 0.968 0.0604 0.143

(0.484) (0.804) (0.438) (0.444)

Constant 1.398*** 1.355*** 0.657*** -0.882*** -0.942***

(0.116) (0.118) (0.0767) (0.0943) (0.103)

Observations 25074 24590 24590 24590 24590

Yearly Fixed E�ects NO NO YES YES YES

Mandal Fixed E�ects NO NO NO YES NO

Village Fixed E�ects NO NO NO NO YES

Leads and Lags NO NO NO YES YES

Adjusted R-squared 0.0118 0.0134 0.0637 0.355 0.742

Standard errors clustered at mandal level in parentheses.

*** p<0.01; ** p<0.05; * p<0.1

Notes: For easier relative interpretations, the mean of Luminosity is 1.54 (sd=2.59), the mean of

Luminosity per head is 0.00657 (sd=0.152 ).
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Table 14: Post-treatment estimates quarterly, at the subdistrict level (Q3 2012)

(1) (2) (3) (4)

VARIABLES L per head L per head L-median of villages L-median of villages

Treatment -1.91e-05 0.000182 -0.0736 0.0761

(0.000112) (0.000151) (0.176) (0.208)

L per head at baseline 0.828***

(0.0781)

L-median at baseline 0.647***

(0.0843)

Constant 2.95e-05 0.00132*** 0.649* 1.762***

(0.000232) (0.000266) (0.329) (0.349)

Observations 157 157 157 157

Mandal Principal Component YES YES YES YES

District Fixed E�ects YES YES YES YES

Adjusted R-squared 0.644 0.285 0.564 0.317

Standard errors clustered at mandal level in parentheses. L=Luminosity

*** p<0.01; ** p<0.05; * p<0.1

Notes: For easier relative interpretations, the mean of Luminosity is 1.219 (sd=1.331), the mean

of Luminosity per head is 0.000765 (sd=0.000968). As we look at the rough subdistrict-level

panel here, we do not include spillovers between bordering villages.
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Table 15: DiD estimates quarterly, at the subdistrict level

(1) (2) (3) (4)

VARIABLES L per head L per head L-median of villages L-median of villages

Treatment 0.000362*** 1.14e-06 0.575*** -0.105

(6.73e-05) (0.000116) (0.0925) (0.217)

Constant 0.000691*** -0.000501*** 1.101*** -0.907***

(5.71e-05) (4.32e-05) (0.0731) (0.0624)

Observations 4375 4375 4375 4375

Quarterly Fixed E�ects NO YES NO YES

Mandal Fixed E�ects NO YES NO YES

Leads and Lags NO YES NO YES

Adjusted R-squared 0.0226 0.788 0.0301 0.763

Standard errors clustered at mandal level in parentheses. L=Luminosity

*** p<0.01; ** p<0.05; * p<0.1

Notes: For easier relative interpretations, the mean of Luminosity is 1.219 (sd=1.331), the mean

of Luminosity per head is 0.000765 (sd=0.000968). As we look at the rough subdistrict-level

panel here, we do not include spillovers between bordering villages.
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Table 16: Lagged DiD estimates in the main quarterly village-level panel

(1) (2) (3) (4) (5)

VARIABLES Luminosity Luminosity Luminosity Luminosity Luminosity

Treatment (5 quartals lagged) 0.564*** -0.118 -0.135 -0.0979 -0.0843

(0.157) (0.515) (0.525) (0.287) (0.287)

Spillovers (5 quartals lagged) 0.724 0.903 0.00661 0.0728

(0.518) (0.864) (0.465) (0.450)

Constant 1.457*** 1.447*** 0.545*** -1.000*** -1.039***

(0.119) (0.120) (0.0607) (0.0820) (0.0843)

Observations 99640 98914 98914 98914 98914

Quarterly Fixed E�ects NO NO YES YES YES

Mandal Fixed E�ects NO NO NO YES NO

Village Fixed E�ects NO NO NO NO YES

Leads and Lags NO NO NO NO NO

Adjusted R-squared 0.00296 0.00263 0.0695 0.309 0.635

Standard errors clustered at mandal level in parentheses.

*** p<0.01; ** p<0.05; * p<0.1

In this analysis, both treatment and spillovers have been lagged 5 quarters. According to

conversion data from MNS, in December 2011 and then constantly in all months of Q1 2012,

and 2012 in general, the fraction of converted villages picks up and reaches values beyond 60% .

Q1 2012 is �ve quarters after the start of the treatment in Q4 2010, so that values are lagged 5

quarters.
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