
P4-programmable Data Plane
for Content-based Publish/Subscribe

Christian Wernecke, Helge Parzyjegla, and Gero Mühl
Institute of Computer Science

University of Rostock, 18051 Rostock, Germany
{christian.wernecke, helge.parzyjegla, gero.muehl}@uni-rostock.de

Abstract—The domain-specific programming language P4 en-
ables developers to specify how data plane devices (e.g., switches,
routers) process packets. This opens up novel opportunities
for efficient information dissemination at the network layer
drastically reducing notification delays compared to application-
layer publish/subscribe using broker overlay networks.

In this paper, we present three different strategies that use P4
to realize content-based publish/subscribe. We start with a source
routing strategy that is, then, improved to exploit and adapt a
preinstalled forwarding tree by adding or removing branches if
required. The most advanced strategy enables multiple forward-
ing trees to be dynamically stitched and adapted as needed.

I. INTRODUCTION

Publish/subscribe is a flexible messaging pattern that de-
couples senders and receivers. On the senders’ side are the
publishers that publish messages (notifications) and send them
into a middleware. On the receivers’ side are the subscribers
that receive notifications of interest from the middleware.
Subscribers use subscriptions to tell the middleware about
the content they are interested in. In a content-based system,
subscriptions consist of filters that select desired message
content. Similarly, publishers can formulate advertisements
as filters to announce their messages content. The middleware
makes use of subscriptions and advertisements to forward
and deliver published notifications to interested subscribers.
The middleware is traditionally implemented by a network of
applications-layer brokers. A broker de-serializes an incoming
packet and makes forwarding decisions based on the packet
content, and finally creates a serialized copy of the packet
content for each direction in which the packet needs to be
forwarded. However, this approach is inefficient and introduces
significant delays because the brokers operate at the application
layer and a notification message traverses the entire network
stack to be de-/serialized. In addition, the brokers communicate
using IP unicast, which can result in multiple copies being
sent over the same network link.

The P4 language [1] allows the development of customized
protocols on the network layer for publish/subscribe and
enables increasingly intelligent network devices, such as
switches, to take over broker functions. A large fraction of the
broker functionality can, thus, be replaced by programmable
network elements. Implementations on the network layer can
significantly improve delivery latency and efficiency.

II. SDN-BASED MIDDLEWARE

Switches are restricted in processing the packet header and
there is no possibility to inspect the payload. To circumvent
this restriction, a preprocessing operation on the publisher’s
side is used to encode all relevant forwarding information into
the header. To achieve this, a SDN controller first registers
all publishers and subscribers and computes appropriate dis-
tribution trees that connect the publishers and their subscriber
sets. Then, the controller installs corresponding forwarding
rules for the distribution trees and notifies the publishers of
their potential recipients. Now, when a sender publishes a
notification, the sender first determines his individual recipient
set, then it labels the packet with routing information, and
finally it sends the notification message with the attached
header stack labels into the switch infrastructure. The switches
inspect the labels and perform matching forwarding actions,
according to their flow rules preinstalled by the controller.
This label-steered forwarding continues, until all interested
recipients have received the packet.

We have implemented several content-based routing proto-
cols using P4. Our pub/sub protocols implement a perfect
multicast, in the sense that false positive notifications are
avoided. The protocols encode routing information into the
packet header and switch memory, in different parts and
proportions via header stack labels and flow rules. Please
note that our publishers have global knowledge of the pub/sub
network, enabling them to encode the routing information.

A. Source-based Routing

In our first and source-based approach [8], we implement
multicast source routing and encode the complete distribution
tree of a publisher’s notification as set of labels into the
packet header. A label refers to one or multiple output
ports of a switch. The switches examine the packet header,
extract all labels intended for them, and execute associated
forwarding rules. We evaluated our source-based protocols on
a large pub/sub network and compared their performance with
other approaches (i. e., unicast, broadcast, and broker-based
approaches). The results show that our protocols can achieve
significant bandwidth and latency reductions.

B. Referring Forwarding Trees

Our second approach [9] combines header stacks with
distribution trees stored in the switches that use tree labels to



address stable sets of receivers that get a majority of a sender’s
published messages. A tree label reduces the number of header
stack entries by assembling sub-paths that are commonly used
for notification delivery. Additionally, a tree can be extended
by hop labels. By encoding tree and hop labels, a publisher
can both refer to preinstalled trees and supplement missing
paths that lead from a node of the tree to a final destination.

C. Stitching Forwarding Trees

Our third approach [7] exploits forwarding along multiple
distribution trees. We combine multiple stored trees and encode
corresponding tree labels into the header stack, supplemented
with extra hop and opposing stop labels. Hops interconnect
trees and bridge network parts not covered by trees, while
stops conversely identify links of tree branches that have to be
truncated and where forwarding has to be stopped. We encode
distribution information with given stored forwarding trees into
the notification header. We also derived several strategies for
computing forwarding trees which are described next.

D. Computing Forwarding Trees

Our strategies for computing multicast distribution trees
are based on three different levels of increasing application-
dependent knowledge and/or runtime statistics.

(i) In the basic case, we derive trees from topological
information only. For this purpose, we can, for instance,
partition the network and compute a broadcast tree for each
partition. These trees, then, cover all hosts in the network,
regardless of whether they act as publisher or subscriber.

(ii) In an extended case, we consider publisher-subscriber
relationships and prune the topology-derived trees so that only
hosts acting as publishers or subscribers remain in the trees.
Please note that this strategy presupposes a proper subscriber
differentiation and classification.

(iii) In a more advanced case, we consider notification
frequencies and determine the fraction of delivered messages
per subscriber in order to exclude rarely addressed subscribers
from the stored trees. Hence, we reduce the number of stop
labels to be encoded and flow rules to be installed.

We have evaluated the strategies’ performance in a larger
emulated network. Our results show that combining trees with
additional distribution information in the notification header
can further reduce header length and bandwidth requirements
compared to the pure source-based approach. Moreover, the
results indicate that the more application-specific knowledge
is involved during the installation process of forwarding trees,
the more efficiently the notifications can be delivered.

III. RELATED WORK

Several approaches are known in literature that realize
publish/subscribe over IP multicast by defining a corresponding
IP multicast address for each possible set of receivers. As an
example, OpenFlow Multicast [3] stores multicast trees in
the switches and rely on IP layer forwarding. Unfortunately,
this is less suitable for use in content-based pub/sub, since

the number of possible combinations may rise enormously
to cover all possible permutations of subscribers. To reduce
the number of multicast groups, the authors in [2] propose a
solution that clusters subscribers with similar interests. With
this solution, notifications may be unintentionally delivered to
uninterested recipients. In contrast, BIER [6] follows a multicast
approach that avoids false positives and encodes a bit-string
into the header of a multicast message. Each bit in the bit-
string stands for a specific receiver which gets a copy of the
message if its bit is set. This allows arbitrary permutation
of targets, but the bit-string overhead can be heavy with
many potential recipients. Kundel et al. [5] take a data-centric
approach that encodes event attributes into the notification
header and installs flow rules based on predicate filters into the
switch infrastructure. However, the flow rules require an update
when subscriptions change. Another data-centric approach [4]
introduces a description language to build binary decision trees.
The decision trees in turn consist of logical predicates or filter
expressions that are compiled into forwarding rules for the P4
switches. However, for large pub/sub networks this approach
requires a high filter selectivity for the subscriptions to keep
the number of rules on a manageable level.

IV. CONCLUSIONS AND FUTURE WORK

We presented three different approaches to implement
publish/subscribe using P4. Our approaches make forwarding
decisions at the network layer and feature low latency. In
the future, we aim to study different real-world networks and
intend to develop different strategies for deriving worthwhile
forwarding rules tailored to both, the required application
scenarios and the topological characteristics of the network.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[2] F. Cao and J. Singh. Efficient event routing in content-based publish-
subscribe service networks. In IEEE INFOCOM 2004, volume 2, pages
929–940. IEEE, 2004.

[3] M. Hungyo and M. Pandey. SDN based implementation of publish/
subscribe paradigm using OpenFlow multicast. In IEEE Int. Conf. Adv.
Netw. Telecommun. Syst. (ANTS), pages 1–6. IEEE, 2017.

[4] T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé. Packet
subscriptions for programmable asics. In ACM Workshop Hot Top. Netw.,
pages 176–183. ACM, 2018.

[5] R. Kundel, C. Gärtner, M. Luthra, S. Bhowmik, and B. Koldehofe.
Flexible content-based publish/subscribe over programmable data planes.
In IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS), pages 1–5. IEEE, 2020.

[6] D. Merling, S. Lindner, and M. Menth. P4-based implementation of BIER
and BIER-FRR for scalable and resilient multicast. J. Netw. Comput.
Appl., 169:102764, 2020.

[7] C. Wernecke, H. Parzyjegla, G. Mühl, P. Danielis, E. Schweissguth, and
D. Timmermann. Stitching notification distribution trees for content-based
publish/subscribe with p4. In IEEE Conf. Netw. Funct. Virtualiz. Softw.
Defin. Netw. (NFV-SDN), pages 100–104. IEEE, 2020.

[8] C. Wernecke, H. Parzyjegla, G. Mühl, P. Danielis, and D. Timmermann.
Realizing content-based publish/subscribe with P4. In IEEE Conf. Netw.
Funct. Virtualiz. Softw. Defin. Netw. (NFV-SDN), pages 1–7. IEEE, 2018.

[9] C. Wernecke, H. Parzyjegla, G. Mühl, E. Schweissguth, and D. Timmer-
mann. Flexible notification forwarding for content-based publish/subscribe
using P4. In IEEE Conf. Netw. Funct. Virtualiz. Softw. Defin. Netw.
(NFV-SDN), pages 1–5. IEEE, 2019.


	Introduction
	SDN-based Middleware
	Source-based Routing
	Referring Forwarding Trees
	Stitching Forwarding Trees
	Computing Forwarding Trees

	Related Work
	Conclusions and Future Work
	References

