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Abstract

Gaussian processes are robust and flexible non-parametric statistical models that benefit

from the Bayes theorem by assigning a Gaussian prior distribution to the unknown func-

tion. Despite their capability to provide high-accuracy predictions, they suffer from high

computational costs. Various solutions have been proposed in the literature to deal with

computational complexity. The main idea is to reduce the training cost, which is cubic

in the size of the training set.

A distributed Gaussian process is a divide-and-conquer approach that divides the en-

tire training data set into several partitions and employs a local approximation scenario

to train a Gaussian process at each data partition. An ensemble technique combines

the local Gaussian experts to provide final aggregated predictions. Available baselines

aggregate local predictions assuming perfect diversity between experts. However, this

assumption is often violated in practice and leads to sub-optimal solutions.

This thesis deals with dependency issues between experts. Aggregation based on ex-

perts’ interactions improves accuracy and can lead to statistically consistent results. Few

works have considered modeling dependencies between experts. Despite their theoreti-

cal advantages, their prediction steps are costly and cubically depend on the number of

experts. We benefit from the experts’ interactions in both dependence and independence-

based aggregations. In conventional aggregation methods that combine experts using a

conditional independence assumption, we transform the available experts set into clusters

of highly correlated experts using spectral clustering. The final aggregation uses these

clusters instead of the original experts. It reduces the effect of the independence assump-

tion in the ensemble technique. Moreover, we develop a novel aggregation method for

dependent experts using the latent variable graphical model and define the target function

as a latent variable in a connected undirected graph.

Besides, we propose two novel expert selection strategies in distributed learning.
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Abstract

They improve the efficiency and accuracy of the prediction step by excluding weak ex-

perts in the ensemble method. The first is a static selection method that assigns a fixed

set of experts to all new entry points in the prediction step using the Markov random field

model. The second solution increases the flexibility of the selection step by converting it

into a multi-label classification problem. It provides an entry-dependent selection model

and assigns the most relevant experts to each data point.

We address all related theoretical and practical aspects of the proposed solutions. The

findings present valuable insights for distributed learning models and advance the state-

of-the-art in several directions. Indeed, the proposed solutions do not need restricted

assumptions and can be easily extended to non-Gaussian experts in distributed and fed-

erated learning.
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Kurzfassung

Gaußsche Prozesse sind robuste und flexible nichtparametrische statistische Modelle,

die Bayes-Theorem verwenden, um einer unbekannten Funktion eine Gaußsche Prior-

Verteilung zuzuweisen. Trotz ihrer Fähigkeit, hochgenaue Vorhersagen zu liefern, leiden

sie unter hohen Rechenkosten. In der Literatur wurden verschiedene Lösungen vorge-

schlagen, um die Rechenkomplexität zu beherrschen. Die Hauptidee besteht darin, die

Trainingskosten zu reduzieren, die in der Größe des Trainingssets kubisch sind.

Der verteilte Gaußsche Prozess ist ein Teile-und-Herrsche-Ansatz, der den gesamten

Trainingsdatensatz in mehrere Partitionen unterteilt und ein lokales Näherungsszenario

verwendet, um einen Gaußschen Prozess an jeder Datenpartition zu trainieren. Eine

Ensemble-Technik kombiniert die lokalen Gaußschen Experten, um endgültige aggre-

gierte Vorhersagen zu liefern. Verfügbare Basislösungen aggregieren lokale Vorhersagen

unter der Annahme einer perfekten Diversität zwischen Experten. Diese Annahme wird

jedoch in der Praxis oft verletzt und führt zu suboptimalen Lösungen.

Diese Arbeit beschäftigt sich mit Abhängigkeitsproblemen zwischen Experten. Die

Aggregation basierend auf den Interaktionen von Experten verbessert die Genauigkeit

und kann zu statistisch konsistenten Ergebnissen führen. Nur wenige Arbeiten haben die

Modellierung von Abhängigkeiten zwischen Experten in Betracht gezogen. Trotz ihrer

theoretischen Vorteile sind ihre Vorhersageschritte kostspielig und hängen kubisch von

der Anzahl der Experten ab. Wir profitieren von den Interaktionen der Experten sowohl

bei abhängigkeits- als auch bei unabhängigkeitsbasierten Aggregationen. In konven-

tionellen Aggregationsverfahren, die Experten unter Verwendung einer bedingten Un-

abhängigkeitsannahme kombinieren, transformieren wir den verfügbaren Expertensatz

in Cluster von hochgradig korrelierten Experten unter Verwendung von spektralem Clu-

stering. Die endgültige Aggregation verwendet diese Cluster anstelle der ursprünglichen

Experten. Diese Vorgehensweise reduziert den Effekt der Unabhängigkeits- annahme in
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Kurzfassung

der Ensemble-Technik. Darüber hinaus entwickeln wir eine neuartige Aggregationsme-

thode für abhängige Experten unter Verwendung eines latenten Variablen-Grafikmodells

und definieren die Zielfunktion als latente Variable in einem verbundenen ungerichteten

Graphen.

Außerdem schlagen wir zwei neue Expertenauswahlstrategien für verteiltes Lernen

vor. Sie verbessern die Effizienz und Genauigkeit des Vorhersageschritts, indem sie

schwache Experten in der Ensemble-Methode ausschließen. Das erste ist ein statisches

Auswahlverfahren, das allen neuen Eintrittspunkten im Vorhersageschritt unter Verwen-

dung des Markov-Zufallsfeldmodells eine feste Gruppe von Experten zuweist. Die zwei-

te Lösung erhöht die Flexibilität des Auswahlschritts, indem sie ihn in ein Klassifizie-

rungsproblem mit mehreren Labels umwandelt. Es bietet ein eintragsabhängiges Aus-

wahlmodell und ordnet jedem Datenpunkt die relevantesten Experten zu.

Wir gehen auf alle damit verbundenen theoretischen und praktischen Aspekte der

vorgeschlagenen Lösungen ein. Die Ergebnisse stellen wertvolle Erkenntnisse für ver-

teilte Lernmodelle dar und bringen den Stand der Technik in mehrere Richtungen voran.

Tatsächlich benötigen sie keine eingeschränkten Annahmen und können leicht auf nicht-

Gaußsche Experten für verteiltes und föderiertes Lernen erweitert werden.
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Chapter 1

Introduction

Gaussian processes (GPs) [10] are a flexible, interpretable, and powerful non-parametric

statistical approach to learning and predicting under uncertainty. They provide accurate

predictions with quantified uncertainty and apply Bayes’ theorem for inference, allowing

them to estimate complex linear and non-linear structures without the need for restric-

tive assumptions about the model. They have been extensively used in practical cases,

e.g., optimization [11], data visualization, and manifold learning [12], building engineer-

ing [13], chemical engineering [14], reinforcement learning [15, 16], multitask learning

[17, 18], online streaming models [19, 20] and time series analysis [21, 22]. The main

bottleneck of using standard GPs is that they poorly scale with the size of the data set.

Various machine learning solutions have been proposed to render GPs feasible for more

complex and large data sets. In this thesis, we address local approximation GPs, also

called distributed GPs, and discuss some of the most pressing issues in this area.

1.1 Problem Set-up

The basic nonlinear regression problem is of the form

y = f (x)+ε,

where x ∈ RD is a D-dimensional independent variable and the observation noise ε is

assumed to be a Gaussian random variable with mean 0 and variance σ2, ε ∼ N(0,σ2).
Thus, the Gaussian likelihood is defined as p(y∣ f ) =N( f ,σ2I). The objective is to learn
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Chapter 1 Introduction

the latent function f ∶ RD → R from a training set D = {X ,y} of n observations, where

X is a D-dimensional independent variable, and y is the response or dependent variable.

The Gaussian process regression is a collection of random variables such that any finite

subset of the variables has a joint Gaussian distribution. The GP then describes a prior

distribution over the latent functions as f ∼ GP(m(x),k(x,x′)), where m(x) is a mean

function that is often assumed as zero, k(x,x′) is the covariate function (kernel) with

hyperparameter ψ , and x,x′ ∈ X . Using the Bayesian perspective allows GP to provide

the predictions and the uncertainties (variances) about the predictions at test points.

A kernel is a positive-definite function of two inputs x,x′ and specifies which func-

tions are likely under the GP prior to determining the model’s generalization properties[23].

There are various kernel functions, e.g., squared exponential, periodic, and linear kernels.

The most widely used kernel function is the squared exponential (SE) function equipped

with automatic relevance determination (ARD). The SE kernel is stationary, meaning

that its value only depends on the difference (x−x′) and not on the absolute locations of

x and x′:

k(x,x′) = σ
2
f exp

⎛
⎝
−1

2

D
∑
i=1

(xi−x
′

i)2
Li

⎞
⎠

where σ2
f is a signal variance, and Li is an input length-scale along the ith dimension,

and ψ = {σ2
f ,L1, . . . ,LD}. To train the GP, the hyper-parameters θ = {σ2,ψ} should be

determined such that they maximise the log-marginal likelihood

logp(y∣X) = −1
2

yT (K+σ
2I)−1y− 1

2
log∣K+σ

2I∣ − n
2

log2π. (1.1)

Let X∗ be the test set of size nt . For a test point x∗, the joint distribution of the

observed target values, y, and the test outputs y∗ according to the prior is

⎡⎢⎢⎢⎢⎣

y

y∗

⎤⎥⎥⎥⎥⎦
∼N
⎡⎢⎢⎢⎢⎣
0,
⎡⎢⎢⎢⎢⎣

k(X ,X) k(X ,x∗)
k(x∗,X) k(x∗,x∗)

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
.

Therefore, the predictive distribution is also a Gaussian distribution p(y∗∣y,X ,x∗) =

2



1.1 Problem Set-up

Figure 1.1: 95% Confidence Interval of GP predictive distribution.

N(µ∗,Σ∗), which its mean and covariance respectively given by

µ
∗ = kT

∗ (K +σ
2I)−1y, (1.2)

Σ
∗ = k∗∗−kT

∗ (K +σ
2I)−1k∗, (1.3)

where K = k(X ,X), k∗ = k(X ,x∗), and k∗∗ = k(x∗,x∗). Figure 1.1 depicts the mean

of the predictive distribution and the related 95% confidence interval of the Gaussian

process for 500 training observations and 50 test points from the analytical function

f (x) = cos(5πx) with Gaussian noise ε ∼ N(0,(0.1)2). The blue and red points are

training and test points, respectively.

According to (1.1), the training task maximizes the log-marginal likelihood. This

optimization task is affected by the inverse and determinant of n×n matrix C = K +σ2I

and therefore scales as O(n3). Indeed, the prediction cost is O(n2) due to vector and

matrix operations in Equations (1.2) and (1.3). Therefore, training and prediction steps

are time-consuming tasks for large data sets and impose a limitation on the scalability
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of GP. This issue currently restricts GPs to relatively small training data sets, the size of

which is typically in the order of O(104).

1.2 Scaling Gaussian Processes for Large Data Sets

Various solutions have been proposed to mitigate the training cost of Gaussian processes

in large data sets. The main difference between the solutions is how they deal with the

entire training set and inference methods. Depending on their training set strategies,

they can usually be classified into two main categories: global approximation and local

approximation [24, 25].

Global approximation. This strategy operates on a small subset of the training data

set. The methods that follow this strategy train a Gaussian process on the smaller subset

and then generalize the results. A simple approach in this area is subset-of-data (SoD)

[26, 27], which only uses a subset of size m of the training data set D. To select the data

points for the subset, one could randomly sample m data points from D or use clustering

techniques to partition the data into m subsets and choose their centroids as subset points.

Thus, the training complexity of SoD is O(m3) where m << n. However, it has limited

efficiency because it ignores the remaining data.

Another method, called sparse kernel or compactly supported kernel [28, 29], pro-

vides a sparse representation of the original kernel to reduce the training cost. It ignores

the observations that are not correlated or show a covariance smaller than a threshold. In

stationary kernels, if the distance between two different entries is more significant than a

determined value, their covariance can be set to zero. Although the training cost of this

method is O(αn3) with 0 < α < 1, there is no guarantee that the new modified kernel is

positive semi-definite.

The most popular method in this area is the sparse approximation approach, which

employs a global subset of the data (called inducing points) and low-rank matrix approx-

imations (e.g., Nyström method) to approximate the prior, and posterior distributions

[30, 31, 32]. For m inducing points, this approach reduces the training complexity to

O(nm2). Although the sparse approximation provides a full probabilistic model using

the Bayesian framework, its capability is restricted by the number of inducing points. It
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1.2 Scaling Gaussian Processes for Large Data Sets

can not be used for large and high dimensional data sets [33, 34].

Local approximation. Unlike global approximation, this strategy uses the entire train-

ing data set. It divides the observations into some partitions, trains the local GPs in each

partition, and then aggregates the local approximations [1, 35, 36, 37, 38]. Compared

to global approximations, this divide-and-conquer approach can model complex systems

and non-stationary data features. Besides, localized experts can capture the model’s local

patterns and specific behavior. If the entire training set is divided into M partitions, the

local approximation can reduce the training cost to O(nm2
0), where m0 = n

M . Figure 1.2

summarizes the computational costs of both local and global approximation models.

Figure 1.2: Scalability of local and global approximation models, where 0 < α < 1; m is
the inducing size for sparse approximations and the subset size for subset-of-data, and
m0 is the partition size in local approximations.

The most popular local approximation methods are the mixture of experts (MoE), the

product of experts (PoE), and the Bayesian committee machine (BCM), which inherit

the advantages of naive-local experts but boost the predictions through model averag-

ing. The MoE is a Gaussian mixture model that combines the local experts with their

hyper-parameters and improves the overall predictive power [39, 40]. Although this joint

training positively affects the predictive power and also helps to control the experts with

poor performance but increases the complexity [37].

The product of experts (PoE) [41] and Bayesian committee machine (BCM) [42]

methods provide a new framework for GPs. Independent experts are GPs that are learned
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separately. Both approaches suffer from the discontinuity issue and the weak experts’

problem. The generalized product of experts (GPoE) [37] and robust Bayesian commit-

tee machine (RBCM) [1] propose different aggregation criteria, which are more robust

to weak experts’ predictions.

However, the main limitation of local aggregations is that they cannot provide a com-

plete probabilistic model, which results in the so-called Kolmogorov inconsistency [43].

It means that for x∗1 ,x
∗
2 ∈ X∗, the predictive distribution p(y∗1 ∣D,x∗1) provided by the ag-

gregation procedure of the local approximation is not marginal over p(y∗2 ∣D,x∗2) of the

multivariate predictive distribution:

p(y∗1 ∣D,x∗1) ≠ ∫ p(y∗1 ,y∗2 ∣D,x∗1 ,x∗2)dy∗2 .

1.3 Distributed Gaussian Processes

The term distributed Gaussian process (DGP), which includes PoE, BCM, and their

derivatives, was proposed by [1]. It uses the fact that the computations of the stan-

dard GP can be distributed amongst individual computing units. To do that, one divides

the full training data set D into M partitions (called experts) and trains standard GPs on

these partitions. Let D′ = {D1, . . . ,DM} be the partitions, and Xi and yi be the input and

output of partition Di. All GP experts are trained jointly and share a single set of hyper-

parameters θ = {σ2,ψ}. Sharing hyper-parameters leads to automatic regularization for

protection from local over-fitting. For a test set X∗ of size nt , the predictive distribution

of the i-th expertMi is pi(y∗∣Di,X∗) = N(µ∗i ,Σ∗i ), where its mean and covariance are,

respectively:

µ
∗
i = kT

i∗(Ki+σ
2I)−1yi, (1.4)

Σ
∗
i = k∗∗−kT

i∗(Ki+σ
2I)−1ki∗, (1.5)

where Ki = k(Xi,Xi), ki∗ = k(Xi,X∗), and k∗∗ = k(X∗,X∗).
Distributed Gaussian processes aggregate local predictive distribution assuming per-

fect diversity between experts, i.e., they are conditionally independent (CI). This as-
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sumption factorizes the aggregated posterior distribution as the product of multiple local

densities. That is to say for independent experts {M}M
i=1 and a test input x∗

p(y∗∣D,x∗) ∝
M
∏
i=1

pβi
i (y∗∣Di,x∗), (1.6)

where the weights β = {β1, . . . ,βM} describe the importance and influence of the experts.

The most popular aggregation methods are the product of experts (PoE) [41], the gener-

alized product of experts (GPoE) [37], Bayesian committee machine (BCM) [42], robust

Bayesian committee machine (RBCM) [1] and generalized robust Bayesian committee

machine (GRBCM) [38]. Figure 1.3 depicts the computational graph of the standard and

hierarchical local Gaussian process approximations.

(a) 1-layer DGP model

(b) 2-layer DGP model

Figure 1.3: Computational graphs: Computational graphs of the standard and hierarchi-
cal DGP models [1]. GP experts are at the leaf nodes (gray). All other nodes recombine
computations from their direct children (experts). The top node (red) computes the over-
all prediction.
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Two significant scenarios are used for partitioning training points: random and dis-

joint (e.g., clustering) partitioning. Although random partitioning is faster than clustering

methods, it has been accepted that random partitions cannot describe the quickly vary-

ing characteristics of the target function. On the contrary, the disjoint partitions provide

refined local information, which enables the model to capture the variability of the tar-

get function. The advantage of disjoint partitioning has been empirically confirmed in

[44, 38].

1.3.1 Product of Experts

In the classical product of experts (PoE) models [41], the desired probability distribution

is given as the product of multiple densities (i.e., the experts). If the experts {M}M
i=1 are

independent, the predictive distribution for a test input x∗ is

p(y∗∣D,x∗) =
M
∏
i=1

pi(y∗∣Di,x∗). (1.7)

The experts are trained on different partitions Di. According to (1.7), weak experts can

considerably affect the PoE’s predictive distribution. To come up with this issue, authors

in [37] proposed the generalized product of experts (GPoE) as

p(y∗∣D,x∗) =
M
∏
i=1

pβi
i (y∗∣Di,x∗), (1.8)

where the β = {β1, . . . ,βM} describes the importance and influence of the experts. The

product distribution in (1.8) is proportional to a Gaussian distribution with mean and

precision, respectively:

µ
∗
D = Σ

∗
D

M
∑
i=1

βi(Σ∗i )−1
µ
∗
i , (1.9)

(Σ∗D)−1 =
M
∑
i=1

βi(Σ∗i )−1. (1.10)

The PoE can be recovered for βi = 1. The precision of PoE prediction in (1.9) is a

linear sum of individual precision values. If the number of local GPs increases, it leads

to a rise in precision and, therefore, a decrease in variance, which returns overconfident
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predictions in areas with no training data. The authors in [37] suggested a varying value

for βi as the difference in differential entropy between the prior and posterior distribution

of each expert, βi = 1
2(logk∗∗ − logΣ∗i ). With this, GPoE can increase or decrease the

importance of experts based on their prediction uncertainty.

However, the varying weights may produce undesirable and unreasonable errors and

high prediction variance for GPoE when leaving the training data [1, 38]. To describe this

issue, assume x∗ is a test point far away from the training data. Due to the definition of

the local variance in Equation (1.5), ki∗→ 0, and thus Σ∗i → k∗∗. This results in βi→ 0, and

Σ∗D→∞, see Equation (1.10). Besides, the predictive distribution of GPoE with uniform

weights βi = 1
M [1] asymptotically converges to the full Gaussian process distribution but

is too conservative (it has a high prediction variance) [38, 45].

1.3.2 Bayesian Committee Machine

Another distributed GP model is the Bayesian committee machine (BCM) [42]. Unlike

the PoE family, it uses the Gaussian process prior p(y∗∣x∗)when aggregating the experts’

predictions. It imposes a conditional independence assumption, i.e., Di ⊥⊥ D j∣y∗ for two

experts i and j. Inspired by GPoE, robust Bayesian committee machine (RBCM) [1]

improves the efficiency of BCM, especially on the regions with only few data points, by

adding the importance weights βi. The predictive distribution of this family is defined as

p(y∗∣D,x∗) = ∏
M
i=1 pβi

i (y∗∣Di,x∗)
p∑

M
i=1 βi−1(y∗∣x∗)

, (1.11)

and its mean and precision respectively are

µ
∗
D = Σ

∗
D

M
∑
i=1

βi(Σ∗i )−1
µ
∗
i , (1.12)

(Σ∗D)−1 =
M
∑
i=1

βi(Σ∗i )−1+(1−
M
∑
i=1

βi)(Σ∗∗)−1 (1.13)

where the (Σ∗∗)−1 is the prior precision of p(y∗). The available choice of the weights

is the difference in differential entropy between the prior p(y∗∣x∗) and the posterior

p(y∗∣D,x∗), i.e., βi = 1
2(logΣ∗∗ − logΣ∗i ), i = 1, . . . ,M. For βi = 1 and βi = 1

M , the basic
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BCM and GPoE models are recovered, respectively. In RBCM and GPoE with varying

βi, the predictions can not recover the full GP prediction when M = 1. In this case we

should have β = 1, while usually β = 1
2(logΣ∗∗− logΣ∗f ull) ≠ 1.

(a) PoE (b) GPoE

(c) BCM (d) RBCM

Figure 1.4: The characteristics of various local approximations compared with standard
Gaussian process.

Figure 1.4 shows the prediction with four different distributed Gaussian process mod-

els. The standard GP to be approximated is shown by the shaded area, representing the

95% confidence interval of the GP. Training data is displayed as a blue plus sign. We

assign five data points to each GP expert from the analytical function f (x) = cos(5πx)
with Gaussian noise ε ∼N(0,(0.1)2). The standard PoE model does not fall back to the

prior when leaving the training data. The generalized PoE model falls back to the prior

distribution but overestimates the variances in the region of the training data. The BCM

is close to the full GP in the range of the training data, but the predictive mean becomes

10



1.3 Distributed Gaussian Processes

unreliable outside the range of the training data. The RBCM is more robust to weak

experts than the (G)PoE and BCM and produces reasonable predictions.

The generalized robust Bayesian committee machine (GRBCM) is a modified ver-

sion of RBCM proposed in [38], which introduces a base (global) expert and considers

the covariance between the base and other local experts. For a global expert Mb in a

base partition Db, the predictive distribution of GRBCM is

p(y∗∣D,x∗) = ∏
M
i=2 pβi

bi(y∗∣Dbi,x∗)

p∑
M
i=2 βi−1

b (y∗∣Db,x∗)
, (1.14)

where the pb(y∗∣Db,x∗) is the predictive distribution of Mb, and pbi(y∗∣Dbi,x∗) is

the predictive distribution of a new expertMbi trained on the data set Dbi = {Db,Di}.
The GRBCM is an RBCM method in which the partitions are enhanced with more

data, and the Gaussian process prior p(y∗∣x∗) is replaced by the prior distribution of the

global expert. The data points of the global partition Db are always randomly sampled.

Therefore, the experts trained at Dbi, i = 2, . . . ,M can almost cover the entire data range

and improve the prediction quality of the RBCM. Due to the construction of new experts

{Mbi}M
i=2, the proposed GRBCM has a higher time complexity in prediction, compared

to (G)PoE and (R)BCM.

The prediction cost of the full GP, O(n2), is reduced by DGP methods. Since they

need the predictions of all the experts at each test point x∗, their prediction cost is

O(Mm2
0) or O(nm0), where m0 in the number of assigned points to each expert and M =

n
m0

[24]. Due to the construction of new experts, the prediction process in the GRBCM

model has a higher computational cost. It needs to combine the predictions of the global

expertMbi and (M−1) new expertsMbi, i = 2, . . . ,M at nt test points.The time complex-

ity in the prediction process of GRBCM is almost equivalent to O(8nm2
0)+O(4ntnm0),

where nt is the size of the test set, see discussion in [38].

1.3.3 Consistency

Conventional CI-based baselines (i.e., baselines that assume conditional independence

between experts) for DGPs suffer from inconsistency. Since the local experts are trained

on separated partitions, the aggregation produces inconsistent predictions which can

11



Chapter 1 Introduction

not converge to the standard GP. Several works have studied the asymptotic proper-

ties of the CI-based ensembles; see, for example [44, 45, 46]. It has been confirmed

that the DGP methods, i.e., (G)PoE and (R)BCM, are inconsistent. Mainly, these fam-

ilies of ensembles provide overconfident results. Besides, GPoE with normalized equal

weights [1] asymptotically converges to the full GP distribution. However, it is too con-

servative [45, 46].

The authors of [38] considered the consistency issue of DGP models according to the

partitioning strategies, i.e., random partitioning and disjoint partitioning. They showed

that in both partitioning scenarios, PoE and (R)BCM produce overconfident prediction

variance, and their prediction variances will shrink to zero when n→∞. Besides, GPoE

yields conservative prediction variance in disjoint partitioning while it produces consis-

tent predictions using random partitions under some mild assumptions.

By introducing a base (global) expert, GRBCM considers the covariance between the

base and other local experts, which, under some mild assumptions, can provide consis-

tent results in disjoint and random partitioning scenarios. However, it still uses the con-

ditional independence assumption between non-global experts, which sometimes yields

poor results, particularly when the data is randomly partitioned.

The CI assumption is the primary cause for the asymptotic issues of DGP models.

The following section considers dependencies between experts and related aggregation

that uses experts’ correlations.

1.3.4 Dependency Between Experts

The main reasons to use an ensemble over a single model are their performance and

robustness. An ensemble method can provide better predictions and reduce the spread

or dispersion of the model predictions [47]. The CI-based ensemble methods are widely

used for regression and classification problems [48, 49]. Local approximation GPs use

CI to reduce the computational costs of the training and prediction processes. However,

this assumption is often violated in practice. Thus, their predictions are not accurate

enough, and the aggregation based on this assumption generally returns a sub-optimal

solution [2].

In classification, modeling the dependent classifiers has been considered in several

12



1.3 Distributed Gaussian Processes

works, for example, in [2, 50, 51]. In local approximation GPs, the dependency between

experts has been discussed in few works. The primary method in this area is the nested

pointwise aggregation of experts (NPAE) [44, 46] that employs the internal correlation

between experts and the target variable y∗ to define an estimator. Figure 1.5 depicts the

computational graphs of aggregation strategies with CI assumption and dependency.

Figure 1.5(a) reveals the aggregation based on the CI assumption between experts

{M1,M2,M3,M4}. It means that two local experts Mi and M j are independent of

each other given the target variable y∗, i.e. Mi ⊥⊥M j ∣ y∗. On the other hand, Figure

1.5(b) represents an aggregation with dependent experts where the interactions between

experts show the dependencies.

(a) Independent Experts (b) Dependent Experts

Figure 1.5: Computational graphs of (a) an aggregation based on conditional indepen-
dence and (b) an aggregation based on conditional dependency between local experts.

Assume the Gaussian experts M = {M1, . . . ,MM} have been trained on different

partitions and the first and second moments of their local posterior distributions have

been defined in (1.4) and (1.5). Let µ∗(x∗) = [µ∗1 (x∗), . . . ,µ∗M(x∗)]T be an M×1 vector

that contains the centered predictions of M experts for a given test point x∗ ∈X∗. We first

assume that yi in (1.4) has not yet been observed. Therefore, the mean of the predictive

distribution µ∗i (x∗) can be considered as a random variable. This allows us to consider

correlations between the experts’ predictions and latent variable y∗, cov(µ∗i ,y∗), and

also leverage internal correlations between experts, cov(µ∗i ,µ∗j ) where i, j = 1, . . . ,M.

According to (1.4), the local experts are linear estimators: µ∗i = Γiyi, where Γi = kT
i∗(Ki+

σ2I)−1. Using this result, we can find the analytical expression for both covariances:

13



Chapter 1 Introduction

cov(µ∗i ,y∗) = cov(Γiyi,y∗) = Γicov(yi,y∗) = Γik(Xi,X∗), (1.15)

cov(µ∗i ,µ∗j ) = cov(Γiyi,Γ jy j) = Γicov(yi,y j)ΓT
j = Γik(Xi,X j)ΓT

j . (1.16)

1.3.5 Dependency Based Aggregation of Experts

As we assumed, the means (predictions) of the local predictive distributions are random

variables. Then kA(x∗) = cov(µ∗(x∗),y∗(x∗)) and KA(x∗) = cov(µ∗(x∗),µ∗(x∗)) are

the point-wise covariances at x∗. For each test point x∗, kA(x∗) is a M ×1 vector and

KA(x∗) is a M×M matrix and according to (1.15) and (1.16) their elements are defined

as kA(x∗)i = Γik(Xi,x∗) and KA(x∗)i j = Γik(Xi,X j)ΓT
j , where Γi = k(Xi,x∗)T (Ki+σ2I)−1

and i, j = 1, . . . ,M. The task is to aggregate variables µ∗i (x∗), i = 1, . . . ,M, into a unique

predictor y∗A(x∗) of y∗(x∗).
Due to the prior choice, the joint distribution of random variables (y∗,µ∗1 , . . . ,µ∗M) is

a multivariate normal distribution because any vector of linear combinations of normally

distributed observations is itself a Gaussian vector. This fact is used to define the ag-

gregated predictor, but it also implies that the experts’ predictions (µ∗1 , . . . ,µ∗M) follow

a multivariate Gaussian. Employing properties of conditional Gaussian distributions for

the centered random vector (y∗(x∗),µ∗(x∗)) allows for the subsequent aggregation:

Definition 1 (Aggregated predictor). For the test point x∗ and sub-model predictions

µ∗1 (x∗), . . . ,µ∗M(x∗), the aggregated predictor is defined as

y∗A(x∗) = kA(x∗)T KA(x∗)−1
µ
∗(x∗). (1.17)

Here, y∗A is the mean of the conditional distribution of y∗ given µ∗, i.e. p(y∗∣µ∗). The

following Proposition shows that the linear estimator in (1.17) is the best linear unbiased

predictor (BLUP) of y∗.

Proposition 1 (BLUP). y∗A(x∗) is the best linear unbiased predictor of y∗(x∗), i.e. for lin-

ear estimators of the form β µ∗ =∑M
i=1 βiµ

∗
i (x∗), the mean square error (y∗−β µ∗(x∗))2

is minimized when β = kA(x∗)T KA(x∗)−1.

Proof. The proof is straightforward. We need to show that var(y∗(x∗)−β µ∗(x∗)) −

14



1.3 Distributed Gaussian Processes

var(y∗(x∗)−y∗A(x∗)) is positive semi-definite for all linear unbiased predictors β µ∗(x∗).
To do that, we extend the var(y∗(x∗)−β µ∗(x∗)):

var(y∗(x∗)−β µ
∗(x∗)) = var(y∗(x∗)−y∗A(x∗)+y∗A(x∗)−β µ

∗(x∗)) =

= var(y∗(x∗)−y∗A(x∗))+var(y∗A(x∗)−β µ
∗(x∗))+2cov(y∗(x∗)−y∗A(x∗),y∗A(x∗)−β µ

∗(x∗)) .

Now, we show cov(y∗(x∗)−y∗A(x∗),Cµ∗(x∗)) = 0,∀C.

cov(y∗(x∗)−y∗A(x∗),Cµ
∗(x∗)) =

= cov(y∗(x∗),Cµ
∗(x∗))−cov(y∗A(x∗),Cµ

∗(x∗)) =

= kA(x∗)TCT −kA(x∗)T KA(x∗)−1KA(x∗)CT =

= kA(x∗)TCT −kA(x∗)TCT = 0.

Therefore,

cov(y∗(x∗)−y∗A(x∗),y∗A(x∗)−β µ
∗(x∗)) = 0

where in this case, C = kA(x∗)T KA(x∗)−1−β . It means

var(y∗(x∗)−β µ
∗(x∗))−var(y∗(x∗)−y∗A(x∗)) = var(y∗A(x∗)−β µ

∗(x∗)) ≥ 0

because var(y∗A(x∗)−β µ∗(x∗)) is positive semi-definite variance matrix.

This method is known as the nested pointwise aggregation of experts (NPAE) and pro-

vides high-quality predictions. The non-invertibility condition on KA(x∗) can be avoided

using pseudo-inverses. This aggregated predictor has Gaussian distribution, and its mo-

ments can easily be calculated using kA(x∗) and KA(x∗) as:

E[y∗(x∗)∣µ∗(x∗)] = y∗A(x∗) = kA(x∗)T KA(x∗)−1
µ
∗(x∗) (1.18)

E[y∗(x∗)∣µ∗(x∗)] = k(x∗,x∗)−kA(x∗)T KA(x∗)−1kA(x∗) (1.19)

By using the dependencies between experts, NPAE theoretically provides consistent

predictions [44, 46]. However, its aggregation step suffers from high time complexity
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Chapter 1 Introduction

because it needs to determine the inverse of a M×M covariance matrix between experts

at each test point x∗, i.e., KA(x∗). Therefore, the computational cost of NPAE depends

on the number of experts M, and the size of the test set, i.e., almost O(ntM3), where nt

is the number of available test points.

The authors of [44] showed that the prediction cost of the NPAE can be defined as

O(ntn2). It also can be reduced to some extent by employing a hierarchical computing

structure that cannot provide identical predictions. However, NPAE leads to an imprac-

tical run time for many partitions and large test sets.

1.4 Gaussian Graphical Model

Undirected graphical models (known as pairwise Markov random fields (MRF)) provide

a framework for specifying the joint distribution over large numbers of random vari-

ables. This framework uses a matrix of parameters to describe the graph structure and

encodes the edges as parameters. If there is a connection between two nodes, a non-

zero parameter indicates the existence of an edge between them in the graph. Since the

graphical model is used in the next chapter to detect dependencies between GP experts,

the fundamental aspects of this method are discussed here.

1.4.1 Essential Assumption

The Gaussian graphical model (GGM) is a prominent graphical model with continuous

Gaussian random variables [52, 53, 54]. The basic assumption underlying GGMs is that

all variables in the network follow a multivariate Gaussian distribution. The distribution

for GGMs is

p(µ∗∣ξ ,Σ) = 1
(2π)M/2∣Σ∣1/2

exp{−1
2
(µ∗−ξ)T Σ

−1(µ∗−ξ)} , (1.20)

where µ∗ = {µ∗1 , . . . ,µ∗M} are the variables, M is the number of variables, and ξ and

Σ are the mean and covariance, respectively. The distribution in (1.20) can also be ex-
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1.4 Gaussian Graphical Model

pressed using the precision matrix Ω:

p(µ∗∣η ,Ω) = ∣Ω∣
1/2

(2π)M/2
exp{−1

2
(µ∗−η)T Ω(µ∗−η)}

∝exp{−1
2

µ
∗T

Ωµ
∗+η

T
µ
∗} ,

(1.21)

where Ω = Σ−1 and η =Ωξ . The matrix Ω is also known as the potential or information

matrix.

Without loss of generality, let ξ = 0, then the distribution of a GGM shows the poten-

tials defined on each node i as exp{−Ωii(µ∗i )2} and on each edge (i, j) as exp{−Ωi jµ
∗
i µ∗j }.

In a correlation network, if Σi j = 0, then µ∗i ard µ∗j are assumed to be independent. In a

GGM, if Ωi j = 0, then µ∗i ard µ∗j are conditionally independent given all other variables,

i.e., there is no edge between µ∗i ard µ∗j in the graph1.

1.4.2 Network Learning and Graphical Lasso

Network learning results in the precision matrix Ω that reveals the conditional dependen-

cies between experts. GGMs use the common sparsity assumption; there are only few

edges in the network, and thus the precision matrix is sparse. This assumption usually

makes sense in experts’ networks because the interaction of one expert is limited to only

a few other experts. Since the local predictions of this expert are close to the local pre-

dictions of its adjacent experts, it has stronger interactions (or similarities) with them;

see [55] for more information about similarity and dissimilarity.

To this end, the Lasso regression [56] is used to estimate the network’s precision

matrix and neighborhood selection. The Meinshausen-Bühlmann algorithm [57] is one

of the first algorithms in this area. [57] and [58] proved that with some assumptions,

Lasso asymptotically recovers the correct relevant subsets of edges. In [59], the efficient

graphical Lasso (GLasso) was proposed, which adopts a maximum likelihood approach

subject to an L1 penalty on the coefficients of the precision matrix. The graphical Lasso

has been improved in later works [60, 61, 62].

Let Sµ∗ be the sample covariance of experts’ predictions, i.e., Sµ∗ = cov(µ∗). Then,

1We would like to emphasize that this does not hold in general, but here it does hold since we assumed
that all variables are jointly Gaussian distributed.
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the Gaussian log-likelihood of the precision matrix Ω is equal to

L(Ω;Sµ∗) = log∣Ω∣ − trace(Sµ∗Ω).

The graphical Lasso maximizes this likelihood subject to an element-wise L1 norm

penalty on Ω. Precisely, the objective function is

Ω̂ = argmin
Ω∈RM×M

−L(Ω;Sµ∗)+λ ∥Ω∥1 , (1.22)

where the estimated neighborhood is then the non-zero elements of Ω̂ and λ is the spar-

sity parameter.

Figure 1.6 depicts the network structure in a GGM with varying penalty strength λ

using 200 experts. The red coloured edges represent positive connections (Ωi j > 0), while

the green edges reflect negative dependencies (Ωi j < 0). The network keeps the most

relevant edges by increasing the penalty term. The graph in Figure 1.6(a) contains many

edges with low thicknesses. On the other hand, the graph in Figure 1.6(d) only contains

the most relevant nodes. For the disconnected expert (node) i, Ωi j is approximately 0 for

all all j.
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(c) λ = 0.1
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(d) λ = 0.5

Figure 1.6: Sparsity of a GGM for 5×104 synthetic data and M = 200 experts with varying
penalty strength λ .
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Chapter 2

Our Contribution

This chapter will summarize the papers we have authored on the direction of dependency

in distributed Gaussian processes during this Ph.D. study. The motivation, methodology,

and findings are according to the discussed principles laid out in Chapter 1. The per-

fect diversity between Gaussian experts is often violated in practice and, therefore, an

aggregation may not provide high-quality predictions. Besides, modeling the experts’

dependencies leads to impractically high computational costs. This chapter will consider

these issues in both CI-based and dependency-based ensemble methods.

We first consider the CI-based aggregations and develop a novel strategy to com-

bine local experts using clusters of experts. It can be explained as a boosted 2-layers

DGP that uses spectral clustering to define the second layer. After that, we propose a

novel aggregation technique for DGPs using the latent variable GGM, where the target

variable is defined as a latent variable in an undirected graph. We employ Expectation-

Maximization (EM) to estimate the latent variable and update the related parameters of

the model. In both scenarios, dependencies between experts are detected using Gaussian

graphical models.

The main drawback of the dependency-based ensembles is their complexity, which

cubically depends on the number of experts. Therefore, an expert selection strategy that

assigns a small set of related experts to each new entry point can significantly reduce

the computational cost. Indeed, the expert selection method can improve the prediction

quality of the final aggregation by excluding the weak experts at each data point. To

come up with such a solution, we first consider the most important experts in a GGM as

a set of selected experts and show the practical and theoretical advantages of the expert
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Chapter 2 Our Contribution

selection model. Moreover, we convert the expert selection problem into a multi-label

classification task, providing a flexible and entry-dependent expert assignment model.

The detailed analysis of all proposed methods and the published papers are available in

Appendices A, B, C, D.

2.1 Dependent Experts in Conditional

Independence-Based Ensembles

In this section, we consider the dependency between experts in CI-based methods and

improve the prediction quality of the aggregation by designing a two-layer computational

graph. We mainly focus on GPoE and GRBCM models as aggregation techniques to

guarantee that the final predictions converge to the true values.

2.1.1 Motivation and Main Methodology

Distributed Gaussian processes can effectively reduce the computational costs of stan-

dard Gaussian processes. However, assuming perfect diversity or conditional indepen-

dency between experts weakens the quality of the ensemble method. The conventional

form of the DGP model considered a computational graph with multiple layers [1]. How-

ever, the authors only discussed the computational aspect of such a model and did not

propose any solution to mitigate the drawbacks of the CI assumption. The modified

model that uses a global communication expert [38] also assumes that non-global ex-

perts are conditionally independent.

The critical contribution of this section lies in considering the dependency between

Gaussian experts in CI-based ensembles and improving the prediction quality efficiently.

To this end, we develop an approach to detect the conditional correlation between Gaus-

sian experts to modify the final aggregation. The Gaussian graphical model 1.4 is used

to infer and detect dependencies between experts. The precision matrix estimated by

GLasso contains all the required information about experts’ interactions, resulting in the

related GGM. Besides, using this matrix, we can determine the clusters of strongly de-

pendent experts. It means each cluster contains some highly correlated experts, and by

gathering them in a cluster, we mitigate the effects of their dependency on the CI-based
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2.1 Dependent Experts in Conditional Independence-Based Ensembles

ensembles.

Figure 2.1 depicts the computational graph of a standard DGP with CI assumption(a)

and a DGP with clusters of correlated experts (b). The leaves Mi, i= 1, . . . ,M are Gaussian

experts trained on local partitions. The graph in Figure 2.1(a) assumes perfect diversity

between leaves, and there is no experts’ interactions. The predictive distribution of target

variable y∗ is estimated using Equation (1.6). A new layer of P new nodes K = {Ki}, i =
1, . . . ,P is defined in Figure 2.1(b) where each Ki is a cluster of some strongly correlated

experts. According to the definition of the new experts, there is perfect diversity between

experts, and this layer mitigates the effect of CI assumption on predictive distribution.

(a) Distributed GPs

(b) Clusters of correlated experts

Figure 2.1: Computational graphs: (a) DGP model with CI [1]; (b) DGP with clusters
of dependent experts [2]
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Chapter 2 Our Contribution

The new experts in K are defined using spectral clustering (SC) [55]. Performing

spectral clustering on the precision matrix Ω returns the clusters of experts K. Thus,

each cluster Ki contains strongly dependent experts based on the precision matrix, i.e.,

the experts’ interactions in GGM. Spectral clustering uses the relevant eigenvectors of

the Laplacian matrix of the similarity matrix (here, the precision matrix) alongside a

standard clustering method. The Laplacian matrix L is L =D−Ω, where D is the degree

matrix, a diagonal matrix that includes the sum of the values in each row of the precision

matrix Ω.

Figure 2.2 depicts the undirected graph of a GGM with 20 experts with sparsity pa-

rameter λ = 0.1. The sample covariance of local predictions is the main ingredient of the

GLasso to construct the graph. The GGM in (a) shows the interactions between experts

where the experts are divided into P = 5 clusters in (b). Although the black and green

clusters include more experts, there are clusters with only one expert, e.g., the red clus-

ter. In (c), we can see the amount of interaction in the green cluster. The thickness of

the edges between the experts inside this cluster is significantly more than the thickness

between these experts and the experts in other clusters, indicating a strong correlation

between the nodes in this cluster.

Each cluster Ki consists of Gaussian experts, and the moments of the related predictive

distribution can be estimated by the GRBCM method. We choose GRBCM [38] inside

the clusters because, under some mild assumption, it can provide statistically consistent

results in both random and disjoint partitioning strategies. To aggregate clusters, Ki, i =
1, . . . ,P, we employ GPoE [1] or GRBCM [38] because we can show that the moments

of the related predictive distribution converge to the true moments of the target variable.

We propose the dependent Gaussian expert aggregation method (DGEA) by aggre-

gating strongly correlated experts at each cluster. The proposed method has significantly

higher prediction quality (lower SMSE and MSLL) than the other baselines. Let’s con-

sider this analytical function as a toy example:

f (x) = 5x2 sin(12x)+(x3−0.5)sin(3x−0.5)+4cos(2x)+ε, (2.1)

where ε ∼ N (0,(0.2)2). To evaluate the prediction quality of the proposed method and

available baselines, we generated n= 104 training points in [0,1], and nt = 0.1 n test points

in [−0.2,1.2]. The data is normalized to zero mean and unit variance. The training
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2.1 Dependent Experts in Conditional Independence-Based Ensembles

(a) GGM, λ = 0.1

(b) GGM, λ = 0.1, P = 5

(c) Clusters and interactions between experts

Figure 2.2: Gaussian graphical models:(a) shows the interaction between experts in a
GGM of 20 experts with a penalty term λ = 0.1, (b) reveals the GGM with 5 clusters of
experts, and (c) depicts the interactions between experts in a cluster.

set is divided into M = {10,20,30,40,50} experts. The experts inside the clusters are

aggregated using GRBCM, and the clusters’ predictions are combined using the GPoE

method.
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(a) SMSE (b) MSLL

Figure 2.3: Prediction quality of different DGP methods with respect for different num-
ber of experts in the simulated data of the analytic function by (2.1).

The quality of predictions is evaluated in two ways, standardized mean squared error

(SMSE) and the mean standardized log loss (MSLL). The SMSE measures the accuracy

of prediction mean, while the MSLL evaluates the quality of predictive distribution [10].

Figure 2.3 shows the sensitivity of different ensemble methods concerning the change

in the number of experts. The figure indicates that clusters of dependent experts can

improve the prediction quality of the final ensemble method. Although the prediction

quality of the GPoE is low, the DGEA method that uses GPoE to aggregate clusters Ki

significantly outperforms GPoE and GRBCM methods. Raising the number of experts

increases the differences between prediction errors. However, DGEA shows better per-

formance in all cases.

Although this approach performs the aggregation several times (for clusters and la-

tent variable y∗), its computational cost is slightly smaller than standard GRBCM. It is

because the approach uses few experts at each run. For instance, there are P clusters for

final aggregation, which is much less than the number of original experts M. Therefore,

the model distributed the aggregation in some clusters of experts, and each cluster has

few experts. This advantageous behavior of DGEA over GRBCM is confirmed in Figure

2.4, which shows that DGEA is faster than GRBCM. In fact, the runtime of DGEA is

comparable to that of GPoE (the most efficient aggregation approach).
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2.1 Dependent Experts in Conditional Independence-Based Ensembles

(a) Time

Figure 2.4: Prediction time of different DGP methods with respect for different number
of experts in the simulated data of the analytic function by (2.1).

2.1.2 Discussion and Future Works

The proposed model enables CI-based ensembles to mitigate the drawbacks of the in-

dependence assumption in the predictive distribution. Although the method can also be

used for dependency-based aggregation (i.e., the NPAE method), it can not guarantee any

improvement in computational cost. It is because spectral clustering divides the nodes

into some clusters based on the similarity matrix. However, it is possible to have a clus-

ter with more experts and some with only one expert; therefore, it still has some costly

clusters. Even if we increase the number of clusters P to avoid having clusters with more

experts, performing NPAE for the final aggregation is expensive because it needs to find

the inverse of a P×P matrix at each test point. Since we increased P, it can become a

costly task.

Indeed, the model must run GLasso once at the first step. Since performing GLasso

for network learning is a costly methodO(M3), it can lead to high computational costs in

large data sets when M is a high value. However, there are newer, faster methods to learn

a GGM that can be used instead of the GLasso, see [63, 64]. For instance, the Fast and

Scalable Inverse Covariance Estimator by Thresholding (FST) model [64] reduces the

computational complexity of sparse Gaussian Graphical Model to a much lower order of

magnitude (O(M2)).
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According to the asymptotic properties of the GPoE and GRBCM model, we can

show that our new local approximation approach provides consistent results when n→∞.

Here, we integrated Gaussian graphical models into the generalized robust Bayesian

committee machine and the generalized product of experts. Nevertheless, aggregating

clusters Ki can be substituted by latent variable GGMs, assuming that the final predic-

tor is a latent variable within the graph. This line of work has been studied in several

works, e.g., [65, 66, 67], and can be another alternative for the available baselines. Be-

sides, the GGM relies on the assumption that all experts are jointly Gaussian and cannot

be used to explain complex models with the non-Gaussian distribution. However, the

normality assumption for joint distribution is not restrictive. In practice, we can relax

this assumption and consider random variables without resorting to multi-dimensional

Gaussian distribution [68, 69, 70].
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2.2 Latent Variable Gaussian Graphical Model as an Ensemble Technique

2.2 Latent Variable Gaussian Graphical Model as an

Ensemble Technique

In the previous section, we considered how standard GGM could improve the prediction

quality of the available CI-based baselines. This section proposes a new aggregation

method using the latent variable Gaussian graphical model. The experts are assumed to

be dependent, and the target variable is a latent variable in the GGM.

2.2.1 Motivation and Main Methodology

Let us consider the estimated means of local Gaussian experts in (1.4) again

µ
∗
i = kT

i∗(Ki+σ
2I)−1yi,

where Ki = k(Xi,Xi), ki∗ = k(Xi,X∗), and k∗∗ = k(X∗,X∗). Assuming that the yi has not

yet been observed helps to consider the experts’ predictions µ∗i as a random variable. It

allows us to consider correlations between the experts’ predictions and a target variable

and leverage internal correlations between experts. Unlike the point-wise correlations

in the NPAE method, the related dependencies can be approximated by a latent variable

Gaussian graphical model (LVGGM). In particular, instead of only M random variables

in standard GGM, the LVGGM considers M+1 random variables {µ∗1 , . . . ,µ∗M,y∗}where

y∗ is the random target variable.

Since the targeted expert y∗ is unobserved, the set of nodes in GGM is divided into

two subsets: latent expert and observed local experts. The goal is to find the joint dis-

tribution of (y∗,µ∗) = (y∗,µ∗1 , . . . ,µ∗M). According to the choice of prior in GP and the

experts’ randomness assumption, the joint distribution of (y∗,µ∗) ∈RM+1 is normal with

a covariance matrix Σ and precision matrix Ω = Σ−1 as

Σ =
⎛
⎝

Σy∗y∗ Σy∗µ∗

Σµ∗y∗ Σµ∗µ∗

⎞
⎠
, and Ω =

⎛
⎝

Ωy∗y∗ Ωy∗µ∗

Ωµ∗y∗ Ωµ∗µ∗

⎞
⎠
.

The GGMs with latent variables have been widely considered over the past decade.

For instance, [65] proposed a regularized maximum likelihood approach to estimate
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the precision matrix with sparse structure Ωµ∗ and the low-rank terms L∗ where L∗ =
Ωµ∗y∗Ω

−1
y∗Ωy∗µ∗ . The precision matrix in this form is Ωµ∗ −L∗, and the related Gaussian

log-likelihood L(Ωµ∗,L∗;Sµ∗) is expressed in terms of the sample covariance matrix

Sµ∗ , the precision matrix of observed variables Ωµ∗ , and the low-rank term L∗.

It is a misspecified optimization problem because the precision matrix is the sum of

two matrices. However, if Ωµ∗ is sparse and there are few latent variables, it is possi-

ble to decompose the precision matrix into its summands [65, 71]. It leads to a convex

optimization problem called Low-Rank Plus Sparse Decomposition (LR+SD). The au-

thors of [72] proposed a direct approach via Expectation-Maximization algorithm, which

converts the LR+SD model to a conventional GGM. The authors of [66] accelerated the

LR+SD model via a non-convex optimization and showed that it is faster than the convex

relaxation-based methods. In another work [67], the authors considered the model se-

lection task in GGMs in the presence of latent variables. They illustrated the conditions

required for identifiability (i.e., under which conditions does the optimization problem

admit a unique solution).

In GGMs, GLasso detects the interactions between the experts and returns the joint

distribution of random variables. But for (y∗,µ∗), the input of the GLasso method is un-

known because the targeted expert y∗ is unobserved, and therefore the sample covariance

of (y∗,µ∗) can not be calculated. Therefore, the first step is to approximate the sample

covariance matrix. Let S be the sample covariance of the full data, i.e., S = cov(y∗,µ∗),
then we can represent S as

S =
⎛
⎝

Sy∗y∗ Sy∗µ∗

Sµ∗y∗ Sµ∗µ∗

⎞
⎠

where Sµ∗µ∗ is a known M×M matrix of the sample covariance of the observed variables

µ∗, Sy∗µ∗ is an unknown 1×M vector that shows the sample covariance matrix between

latent and observed expert, and Sy∗y∗ is the internal potential of the latent expert. Per-

forming GLasso needs to estimate unknown partitions of S, i.e., Sy∗µ∗ and Sy∗y∗ . Here,

the expected-maximization (EM) algorithm is used to estimate the unknown elements of

S and Ω. At the end of the E-step, the estimated sample covariance Ŝ is obtained, i.e.,

Ŝ =
⎛
⎝

Ŝy∗y∗ Ŝy∗µ∗

Ŝµ∗y∗ Sµ∗µ∗

⎞
⎠
,
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2.2 Latent Variable Gaussian Graphical Model as an Ensemble Technique

and it will be the input of the M-step where GLasso solves the following minimization

problem:

Ω̂ = argmin
Ω
−L(Ω; Ŝ)+λ ∥Ω∥1 .

The EM algorithm iteratively applies the following two steps:

E-Step: The E-step Calculates Q(Ω ∣Ω(t)), the expected value of the penalized log-

likelihood function w.r.t. the conditional distribution of y∗ given µ∗ under the current

estimate Ω(t) of Ω.

Q(Ω ∣Ω(t)) = Ey∗∣µ∗,Ω(t) [L(Ω;S)+λ ∥Ω∥1]

= Ey∗∣µ∗,Ω(t){log ∣Ω∣ − trace(S Ω)+λ ∥Ω∥1}

= log ∣Ω∣ − trace{Ey∗∣µ∗,Ω(t)(S)Ω}+λ ∥Ω∥1 .

The output of the E-step is Ŝ = Ey∗∣µ∗,Ω(t)(S) and can be used as an input for GLasso in

M-step.

M-Step: This step finds the parameters that maximize Q(Ω ∣Ω(t)) over all (M+1)×
(M+1) positive-definite matrices Ω:

Ω
(t+1) = argmax

Ω

Q(Ω ∣Ω(t)).

This maximization problem is a GLasso problem and is equivalent to this minimization

problem:

Ω̂ = argmin
Ω

− log ∣Ω∣ + trace{Ŝ Ω}+λ ∥Ω∥1 , (2.2)

where Ω ∈R(M+1)×(M+1) and Ω ≻ 0. The authors in [72] indicate that the main difference

between the optimization problem in (2.2) and GLasso problem is the coordinate cor-

responding to the latent variable should be left unpenalized. However, using a sparsity

parameter for the latent variable can lead to an expert selection approach in the aggrega-

tion step.

The proposed EM algorithm reveals the covariance and precision matrix of the joint

distribution of the full data (y∗,µ∗). The aggregated estimator can be defined according

to the joint covariance and precision matrix. Assume the joint distribution of centered

random variables (y∗,µ∗) is Gaussian with covariance matrix Σ = (Ω)−1, where Ω is the
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output of Equation ((2.2)). Then, the LVGGM-based aggregation for local predictions is

given by:

y∗A = Σ
T
y∗µ∗(Σµ∗µ∗)−1

µ
∗. (2.3)

Figure 2.5 depicts the related graphs of ten Gaussian experts and a latent variable

y∗. The sample is a synthetic data set containing 5000 observations from Equation (2.1)

assigned to ten partitions. The graph in (a) is the standard GGM based on the precision

matrix estimated by GLasso. The graph in (b) is a latent variable GGM where the sample

covariance and precision matrix are calculated using the EM algorithm and GLasso. The

interactions between y∗ and the other nodes are used to define the aggregated predictor.

(a) GGM

(b) LVGGM

Figure 2.5: Ablation experiment A Graph for a synthetic data set with 10 observed vari-
ables, a latent variable y∗, and sparsity parameter λ = 0.01. The green and red lines return
positive and negative interaction based on the estimated precision matrix, respectively.
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2.2 Latent Variable Gaussian Graphical Model as an Ensemble Technique

The conventional mean absolute error (MAE) and the root mean squared error (RMSE)

are used to evaluate the accuracy of the aggregated estimator in Equation (2.3). A

simulated data set is generated from the one-dimensional analytical function defined

in Equation (2.1). It involves n = 104 training points in [0,1], and nt = 103 test points

in [−0.2,1.2]. To evaluate different partition sizes, we vary the number of experts,

M = {10,20,30,40}. The prediction quality of the proposed ensemble is compared with

the other DGP baselines and the full GP.

(a) MAE

(b) RMSE

Figure 2.6: Prediction quality of DGP methods with respect for different number of
experts M.
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Figure 2.6 depicts the prediction error of EM-based aggregation (EMGGM) and other

baselines compared to the standard Gaussian process. The ensemble methods that use

experts’ dependencies, i.e., EMGGM and NPAE, outperform the CI-based baselines. It

results that employing the interactions between experts significantly raises the prediction

quality. Indeed, the error values of the EMGGM method are lower than NPAE, which

shows the ability and superiority of the LVGGM as an ensemble method.

2.2.2 Discussion and Future Works

The proposed ensemble is capable of aggregating local experts considering their depen-

dencies. Unlike the NPAE method, which uses all training and test set information in the

aggregation step, the EMGGM only uses local experts’ predictions. The NPAE needs to

store all auto-covariance and cross-covariance matrices between partitions, and therefore

its storage cost is high. In contrast, the proposed method only requires a nt ×M matrix of

local responses, where nt is the size of the test set and M is the number of local experts.

Besides, the normality assumption in GGM for the joint distribution is not restric-

tive and can be relaxed. Due to the choice of the prior in GPs, the joint distribution of

the local experts in DGP is Gaussian. However, we can relax this assumption and con-

sider random variables without resorting to a multi-dimensional Gaussian distribution.

The nonparanormal graphical model [68, 69, 70] and nonparametric functional graphical

models [73, 74] are two primary types of nonparametric models that do not need normal-

ity assumption. It shows that the proposed strategy can provide an ensemble method for

Gaussian and non-Gaussian experts.

The proposed method for latent variable GGM employs the EM algorithm to encode

the interactions of the latent variables. An EM iteration does increase the likelihood

function L(Ω;S). However, no guarantee exists that the sequence converges to a max-

imum likelihood estimator. It is only guaranteed to converge to a point with a zero

gradient concerning the parameters. So it can get stuck at saddle points, see [75]. The

convergence property of the EM algorithm can be improved using a variety of heuris-

tic or meta-heuristic approaches that enable EM to escape a local maximum, e.g., hill

climbing and simulated annealing. The standard latent variable GGM (LVGGM) can

solve the existing challenges in the convergence of EM. In the presence of latent vari-
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2.2 Latent Variable Gaussian Graphical Model as an Ensemble Technique

ables, the non-linear optimization problem in Equation (1.22) can be solved by convex

or non-convex optimization methods [65, 67].
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2.3 Gaussian Process Experts Selection Using Gaussian

Graphical Models

We discussed aggregating the Gaussian experts based on their dependencies in Definition

1. As we can see in Equation (1.17), the inverse of an M×M matrix has to be computed

for each new test point, where M is the number of local experts. It makes aggregation

inefficient for large data sets. Selecting the most relevant experts reduces the aggregation

and storage costs. On the other hand, excluding the weak experts with lower-quality local

predictions improves the accuracy of the final predictive distribution. In this section, we

evaluate the importance of the experts via their related GGM.

2.3.1 Motivation and Main Methodology

To develop an expert selection strategy, we use the nt ×M local prediction matrix µ∗,

which involves the local predictions of M experts at nt test points. We still use the

randomness assumption, and therefore the joint distribution of the local experts µ∗ =
(µ∗1 , . . . ,µ∗M) is multivariate normal. Thus, they can be described through a GGM. The

selection task is done based on their importance in the graphical model.

The selection task divides the full nodes in the graph into important and unimportant

experts. The relevant precision matrix Ω obtained by the GLasso method is used to es-

timate the expert’s importance. The elements of this matrix represent the interactions

between the nodes. The nodes interacting more with the others are determined as impor-

tant experts. Assume P is the number of important experts selected for final aggregation,

where P <M. Thus, the complexity of the aggregation in Equation (1.17) is reduced from

O(M3) to O(P3).
Expert Importance: The importance of expert i is defined as

Ii =
M
∑

j=1, j≠i
∣Ω̂i j∣, (2.4)

resulting in the sorted importance set I = {Ii1,Ii2 , . . . ,IiM}. The Ω̂i j is estimated by

GLasso in Equation (1.22) and is affected by penalty term λ . The importance of the

expert i Ii is the sum of all elements in row i of Ω, except the diagonal element. To
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2.3 Gaussian Process Experts Selection Using Gaussian Graphical Models

choose the important experts in the sorted importance set I , we define a hyperparameter

α , where 0 < α ≤ 1, that indicates the percentage of the experts that should be selected

for final aggregation, i.e., P = α ×M. The α can be an almost large value, like 80%, in

small data sets or a significantly small value, e.g., 50%, in large data sets.

Importance and Prediction Quality: Essentially, the importance measure Ii reflects

the overall prediction quality of an expert. Let’s consider the conventional mean square

error (MSE) to evaluate the prediction quality of local experts. Then we compare α

percent of best experts with smaller MSE with α percent of the most important experts.

Our experiments confirm that both scenarios tend to select the same experts.
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(a) Synthetic data set, α = 50%
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(b) Synthetic data set, α = 70%
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(c) Synthetic data set, α = 80%
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(d) Pumadyn data set, α = 50%
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(e) Pumadyn data set, α = 70%
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(f) Pumadyn data set, α = 80%

Figure 2.7: Ablation experiment. Expert selection for synthetic data and a real-world
dataset (Pumadyn) with M = 15, varying expert set strength α = {50%,70%,80%}, and
λ = 0.1. The green nodes reveal the α% of the best best experts w.r.t. their individual
MSE errors while the red nodes are the most important experts according to Equation
(2.4).

Figure 2.7 compares the selected experts based on the MSE criterion and importance

measure defined in Equation (2.4) using synthetic and real-world data sets. For synthetic

data, 5×103 training points and 500 test points are generated from (2.1). The real-world

data set is Pumadyn, a 32D data set with 7,168 training points and 1,024 test points. The

training points in both data sets are divided among 15 experts. We use the actual test
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labels y∗ to calculate the MSE between local predictions and actual values 1. It results

in the corresponding MSE values of our local experts, and the experts with a lower error

are preferable. On the other hand, we estimate the importance values of all experts using

Equation (2.4). Figure 2.7 depicts the results of the synthetic data set in (a), (b), and

(c) and for Pumadyn data set in (d), (e), and (f). It confirms that the proposed selection

method approach tends to choose the best experts as the important experts.

Aggregation Based on Important and Unimportant Experts: To show how impor-

tant experts can provide better aggregation than unimportant experts, we consider again

the Equation (1.17) that combines dependent experts:

y∗A(x∗) = kA(x∗)T KA(x∗)−1
µ
∗(x∗).

We first calculate the aggregated estimator y∗A using α% of important experts. Then we

repeat the task with α% of unimportant experts. In this way, we can investigate the

influence of the importance measure in Equation (2.4) in the final aggregation.

Figure 2.8 presents the effect of important and unimportant experts on the prediction

quality of the dependency-based aggregation defined in Equation (1.17). Here, 5×103

synthetic data points from (2.1) are used with varying expert set strength α and λ = 0.1.

The quality of predictions is evaluated in two ways: the standardized mean squared error

(SMSE) and the mean standardized log loss (MSLL). The blue line shows the prediction

quality when α% of the most important experts are chosen. The red line shows the

prediction quality when the least important experts are chosen. We can see a significantly

better aggregation quality based on the most important experts than the least important

ones.

Figure 2.9 depicts the experiment in the CI-based aggregation method and confirms

that the importance measure can also be used in this class of ensembles. It can be helpful

when dealing with problems that do not allow experts to communicate, e.g., federated

learning. In both figures, the case α = 1 return the standard NPAE and GRBCM methods,

respectively.

Expert’s Weights vs Expert’s Importance: Due to the property of the Gaussian

processes, the prediction quality of GP at a test point far away from the training data set

1Here, we assume that the actual labels y∗ are available, and then we can calculate the MSE values. It is
an unrealistic assumption; in practice, we do not have the true labels.
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(a) SMSE: Dependency-based aggregation (b) MSLL: Dependency-based aggregation

Figure 2.8: Aggregating dependent important and unimportant experts.

(a) SMSE: CI-based aggregation (b) MSLL: CI-based aggregation

Figure 2.9: Aggregation conditionally independent important and unimportant experts.

is less accurate than when it is closer. Therefore, for a test point, x∗, that is far from

a partition Di, the prediction performance of the relative GP expert is generally poor.

Besides, the local experts’ covariance has been defined in Equation (1.5) as

Σ
∗
i = k∗∗−kT

i∗(Ki+σ
2I)−1ki∗.

Assume x∗ is far away from the partition Di, then k(x∗,Xi) ≈ 0, and Σ∗i ≈ k∗∗. Sup-

pose the experts’ weights are defined as the difference in differential entropy [37], i.e.,

βi = 1
2(logk∗∗ − logΣ∗i ). Then βi ≈ 0. Thus the distributed GPs tend to assign a small
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weight to Di. On the other hand, Di has weak dependencies with the other experts in

Equation (1.16) because ki∗ ≈ 0, and therefore, Γi ≈ 0. Hence, the importance measure

recognizes this expert as an irrelevant or unimportant expert. Consequently, expert se-

lection eliminates this expert, while distributed GPs tend to keep this expert and assign a

small weight to Di.

Prediction Quality of Expert Selection Strategy: Essentially, the expert selection

strategy provides an approximation for the consistent estimator in Equation (1.17). The

selection task keeps all related asymptotic properties of the original estimator and reduces

the computational costs of using all initial experts in the aggregation. Indeed, excluding

the weak experts removes their adverse effects on the final ensemble. Asymptotically,

the predictions provided by the selection method deliver results that are consistent to the

dependency-based aggregation when n→∞.

(a) SMSE (b) Time

Figure 2.10: Prediction error and running time as a function of experts. SMSE and
prediction time of NPAE with 50%, 80%, and 100% of experts , CI-based baselines,
and full GP for different partition sizes M.

Figure 2.10 depicts the SMSE values and running times of GPoE, RBCM, GRBCM

methods and dependency-based aggregation with α = {0.5,0.8,1} for partition sizes

M = {10,20,30,40,50}. As we can see here, the approximations with 50% and 80% of

most relevant experts provide competitive prediction quality compared to NPAE in just

a fraction of NPAE’s running time. It confirms the influence of the importance measure

in increasing the efficiency and accuracy of the dependency-based ensemble method. In-
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deed, the selection strategy also has a similar effect in CI-based baselines by excluding

the weak experts, while the cost of modified and original baselines is the same, see [4, 8].

Penalty Parameter: The importance measure in Equation (2.4) uses the precision

matrix Ω. This matrix depends on the selected value for λ that determines the network

sparsity. We experiment to evaluate the effect of different sparsity values on prediction

quality. The NPAE method with α = 0.5 and α = 0.8 is used for 5×103 observations of

the synthetic data set in (2.1) and M = 20.

Figure 2.11: SMSE of NPAE method with α = {0.5,0.8} for different λ values.

Figure 2.11 presents the varying sparsity parameter and depicts the prediction quality

for different λ values. As the figure shows, small and large values (i.e., smaller than 0.05

or larger than 0.5) lead to slightly poor results, but for values between 0.05 and 0.5, the

network shows stable results. The graph is dense with more edges for the small λ value,

while large λ leads to a very sparse network with only nodes and very few edges. The

figure demonstrates that λ ≈ 0.1 is an appropriate choice for the expert selection step.
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2.3.2 Discussion and Future Works

The Gaussian graphical model can provide a powerful method to represent the dependen-

cies between experts in local approximation by capturing the interactions between local

GP experts. The method does not use all local data points, and the inference is made by

using only the provided local predictions. The interactions between experts in the related

undirected graph are encoded in terms of similarities and differences between experts.

The experts that return similar predictions are typically strongly dependent on each other

and significantly influence the aggregated estimator defined in Equation (1.17). On the

other hand, when the individual predictions of an expert are far away from all other ex-

perts, the related node in the graph does not have significant interaction with the other

nodes, and it is not an influential variable in the final aggregation.

The expert selection step significantly reduces the prediction cost of the dependency-

based aggregation method in Equation (1.17). The prediction cost of the original model

is approximately equal toO(ntM3), where nt is the number of available test points and M

is the number of experts. GLasso also has cubic time complexity O(M3). Therefore, the

complexity of the expert selection-based aggregation is O(ntM3
α +M3) = O(nt(αM)3).

It means the cost of GLasso can be ignored when nt is large. However, there are newer,

faster methods to learn a GGM that reduce the computational complexity of sparse Gaus-

sian Graphical Models to a much lower order of magnitude (O(M2)), see [63, 64]. Since

α < 1, the computational cost is significantly reduced when only α% of the most rele-

vant experts are used in the final ensemble. In CI-based baselines, the complexities of

the original and modified versions are of the same rate, especially when the number of

experts is large.

The most important experts selected for the aggregation step form a static set. The

selection task assigns a fixed group of local experts to all test points. It is not a crucial

problem in smooth data sets. However, this strategy is not appropriate to explain the data

behavior in complex and quickly varying data sets. Assume there are new test points far

from the selected experts and close to the excluded ones. In this case, all selected experts

provide poor results for new entry points, affecting the final aggregation’s prediction

quality. The following subsection will discuss a flexible and entry-dependent selection

approach that captures the properties of the new data entries.
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2.4 Gaussian Process Experts Selection Using Multi-label Classification

2.4 Gaussian Process Experts Selection Using

Multi-label Classification

Despite the advantages of the expert selection approach, the proposed method using

GGM cannot capture the complex structure of quickly varying data sets. The previously

presented GGM approach returns a static group of experts, which are fixed for predic-

tion for every new entry point. We propose an entry-dependent selection approach that

converts the selection task into a multi-label classification problem to solve this problem.

2.4.1 Motivation and Main Methodology

Assume that the training data set D has been divided into M partitions {D1, . . . ,DM}
and and M= {M1, . . . ,MM} is the Gaussian experts set. The task is to assign only

some relevant experts to each new entry point x∗. Let K indicates the number of the

assigned experts, andMC(x∗) ={MC1(x∗), . . . ,MCK(x∗)} represents K selected experts

to predict at x∗. In this scenario, MC(x∗)} is selected using multi-label classification.

Unlike the static expert selection by GGM, a dynamic and flexible mechanism designates

related experts for each new observation.

Multi-label classification [76] is a generalization of multi-class classification, where

multiple labels may be assigned to each instance. It originates from the investigation of

the text categorization problem, where each document may belong to several predefined

topics simultaneously. To convert the expert selection task into multi-label classification,

we define the indices of the partitions as labels. Although a multi-class classification

problem would select an appropriate expert for predicting, it leads to a local approxima-

tion with only one expert per test point, which would produce discontinuous separation

boundaries between sub-regions and would not be appropriate for quantifying uncertain-

ties [25, 77].

Assume x∗ is a new test point andM= {M1, . . . ,MM} is the Gaussian experts set,

andL={1, . . . ,M} is the label set. The task is to findMC(x∗)={MC1(x∗), . . . ,MCK(x∗)}
that represents K selected experts to predict at x∗. LetMC , andMG be the assigned ex-

perts using classification and GGM, respectively.

To compare the scheme of static (GGM-based) and entry-based (classification-based)
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(a)M (b)MG (c)MC

Figure 2.12: Expert Selection scheme of both static and entry-dependent models for a
setting of 5 experts with 10 test points. Both selection models assign 3 experts to each
test points: (a) original set of expertsM, (b) static assignment of expertsMG , and (c)
entry-based selection of expertsMC .

selection strategies, let’s consider both models in a setting with synthetic data points

with five expertsM={M1, . . . ,M5} and their predictions at 10 test points. The task is to

assign K = 3 experts to the test points. Figure 2.12 describes the difference between static

and dynamic selection models. Figure 2.12 (a), (b), and (c) depict all initial expertsM,

GGM-based static modelMG , and entry-based dynamic modelMC , respectively. As the

scheme in (b) shows, the static model proposes a fixed set of 3 experts {M2,M4,M5}
for all new entry points even though they do not provide appropriate predictions in some

of this 10 test points. On the other hand, the dynamic model in (c) assigns only the most

relevant experts to each test point x∗ and uses the ability of experts in a better way.

To solve this multi-label classification, we consider two prominent classification mod-

els, K-nearest neighbors (KNN) and conventional deep neural networks (DNN). In addi-

tion to the moments of local Gaussian experts defined in Equations (1.4) and (1.5), the

classification task needs other information that describes the labels related to each par-

tition. When each partition determines a label, there must be an explicit mechanism to

represent the labels for the selection model. However, the details on label representation

differ for our classification methods.

In KNN, the partitions can be explained by the centroids of the clusters. These cen-

troids C = {C1, . . . ,CM} are the output of the partitioning step and contain all required
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details about the clusters. We calculate the distances between the centroids and all new

entries. Due to the properties of the Gaussian process experts, if a test point is close to

a GP expert, the expert can provide a reliable prediction for that test point. Therefore,

by estimating the distance between a new entry point and the centroids, we can find its

K nearest neighboring experts. The experts that are further away generally can not pro-

vide appropriate predictions at this point and can be ignored. However, unlike the static

model, they are not excluded from the model because they may be pretty accurate for

some new data points.

In DNN, instead of the centroids, the related labels of the training data set are used

for assignment. If each partition represents a label, we can define the partition index set

L = {1, . . . ,M} as the label set. Thus, indices can be attached to the training points and

create a new pair (xi, j) where xi ∈ D j. In the next step, a multi-label classification task

is performed to estimate the related label of the new test points. To this end, we train a

neural network with a soft-max output layer and log-loss (i.e., cross-entropy loss) that

uses the training points and their relevant partition indices and learns to which partitions

the data points belong. For a test point x∗, the output layer in a DNN returns the related

probabilities for each partition (p1(x∗), . . . , pM(x∗)), where p j(x∗) = prob(x∗ ∈D j). The

K experts that have higher probabilities are assigned to x∗.

The value of K defines how many clusters will be assigned to a specific entry point.

For example, in KNN, if K = 1, the instance will be assigned to the same class as its

nearest cluster, which is not the desired case due to discontinuity issues. Lower values

of K can have high variance, but low bias and larger values of K may lead to higher bias

and lower variance [78]. Like the static selection scenario, the dynamic selection method

keeps all asymptotic properties of the original baseline and substantially provides com-

petitive prediction performance while leading to better computational costs than other

SOTA approaches, which use the dependency assumption.

Figure 2.13 schematically shows the classification methods in this case. It represents

a KNN framework for a test point x∗ in (a). The red points are related training points

assigned to each partition, and the blue points are the clusters’ centroids. The lines

between the x∗ and the centroids show the distances. The proposed method suggests

the orange lines that are the shortest. The second solution has been depicted in (b)—the

conventional deep neural network with an input layer, H hidden layers, and an output
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(a) KNN

(b) DNN

Figure 2.13: Conventional KNN and deep neural network for multi-label classification.

layer. Since the new entry point is a D-dimensional variable, x∗ ∈RD, the input layer has

D nodes. The output layer contains M nodes because the label set has M labels. For each

node in the output layer, the model estimates a value that describes the probability of the

input belonging to the corresponding expert. The experts with the highest probability

values are assigned to x∗.

To compare the prediction quality of different expert selection approaches, we use a

real-world data set, Concrete 2. It is a small data set containing 1030 observations (90%

for training and the rest for testing) with nine attributes (8 independent variables and one

2https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
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Figure 2.14: Expert Selection prediction qualities of different experts selection methods
compared to original baseline, NPAE, from Concrete data set.

response variable). The disjoint partitioning is used to divide the data set into ten subsets.

The prediction qualities of the static selection method (GGM-based), dynamic methods

(KNN and DNN-based), and the original NPAE are compared using their SMSE values.

The number of the selected experts K changes from 2 to 8 to consider the aggregation

quality with the different numbers of partitions.

Figure 2.14 depicts the prediction quality of expert selection methods on the Con-

crete data set for different values of K. The case K = 10 refers to the NPAE method

depicted with a green dashed line. We can see that the multi-label-based expert selection

models provide higher quality predictions with lower deviation from the NPAE model,

and both KNN and DNN return proper predictions with lower error values. Unlike the

GGM-based aggregation, the quality of the aggregations that use KNN and DNN is not

significantly affected by the values of K. However, the quality of the GGM-based ensem-

ble improves by increasing the K. When the number of assigned experts rises, the quality

of the dynamic methods is slightly better than that of the original baselines, which means

that by excluding the weak experts at each test point, the final aggregation can provide

better prediction using only the relevant experts.

We can also investigate the sensitivity of the selection model when the number of par-

titions, M, increases. Figure 2.15 explains the results using synthetic data points. It uses

3×103 training points from Equation (2.1) and divides them between M = {10,15,20}.
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For the selection methods, 3 and 5 experts are selected for the final aggregation. As the

figure shows, multi-label classification methods lead to better predictions and can also

outperform the original baseline. When we increase M from 10 to 20, the partitions con-

tain a smaller amount of training data, and therefore some weak experts can not provide

a reliable estimation at a new test point. However, the quality of the static method is way

more sensitive concerning the changes in M.

Figure 2.15: Prediction Qualities of different expert selection methods for different
numbers of partitions using a synthetic data set.

The results can be explained by defining a new parameter: the relative number of

selected experts to the total number of experts KM = K
M . This ratio indicates the percent-

age of the initial experts selected to be used in the final predictive distribution. When

KM decreases, the prediction quality of GGM-based models decreases drastically. For

instance, in Figure 2.15, the SMSE values of GGM-3 and GGM-5 at M = 20 are almost

twice the SMSE at M = 15. The related KM value with five selected experts (K = 5) for

M = 15 is 1
3 while for M = 20 is 1

4 . This means that the GGM method requires more ex-

perts to provide qualitative predictions, and the difference between the SMSE of GGM-3

and GGM-5 indicates this fact.
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(a) Aggregation with 30% of Experts

(b) Aggregation with 50% of Experts

Figure 2.16: Prediction Time (seconds) of different aggregation in the synthetic data set.

It also can be seen when K changes. For instance, in M = 15, the difference between

GGM-3 and GGM-5 is remarkable, and GGM with five experts significantly outperforms

GGM with three experts. Figure 2.15 shows that GGM can not provide competitive pre-

diction quality compared to the other selection methods. For instance, the SMSE values

of DNN-3 for all sizes of M are lower than those of GGM-3 and GGM-5. This issue

confirms the low convergence rate of the GGM, which requires more experts. Besides,

the quality of KNN and DNN does not change when K increases from 3 to 5 or when
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M changes from 10 to 20, which shows that they are not sensitive concerning KM. The

figure confirms that the convergence in classification-based expert selection methods oc-

curs with smaller number of experts according to the difference between the SMSE lines

of NPAE and the other lines.

Figure 2.16 depicts the prediction time of static and dynamic selection methods. The

running times of the related baselines are compared in two cases, with 30% and 50%

of original experts. In both cases, the NPAE method is a baseline that uses all experts.

Based on the figure, the prediction times of GGM, KNN, and DNN are almost similar.

However, it shows that static and dynamic selection strategies remarkably reduce the

running time.

2.4.2 Discussion and Future Works

Multi-label classification problems can be used as an expert assignment mechanism. In

this section, we proposed a novel method to select the most relevant experts for each

test point. It determines the related experts by assigning a set of partitions’ indices to

new data points. This entry-dependent selection strategy does not have the drawbacks of

the static expert selection method. The flexibility of this method leads to a significant

improvement in prediction quality while computational costs of the proposed and GGM

method are of the same rate. However, some related aspects of this method are discussed

here.

Restrictive Assumptions: Unlike the GGM approach, expert selection using multi-

label classification does not need any distributional assumption. The GGM approach

assumes that the nodes in the graph are random and their joint distribution is Gaussian.

Although, due to the choice of the prior in GPs, the normality assumption exists, it is not

required in the dynamic selection approach. Therefore it can be used as a general expert

selection method in distributed/federated learning models and not only in the context

of local approximation GPs. Indeed, the entry-dependent expert allocation can also be

considered a self-attention mechanism that implicitly captures relationships between data

points. Recently, the explicit modeling of self-attention between all data points has been

shown to boost the classification performance [79, 80]. The proposed ensembles (KNN

and DNN) do not directly use the original training points. However, they benefit from
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the critical information of training data captured by the partitions’ centroids and the

corresponding indices for KNN and DNN, respectively.

Activation Functions in DNN: In the classification model, two main activation func-

tions are used to calculate the final probability values, softmax and sigmoid. The sigmoid

looks at each raw output value separately; therefore, the produced probabilities are not

constrained to sum up to one (labels are assumed to be independent). In contrast, the

outputs of a softmax are all interrelated, and the probabilities produced by a softmax

will always sum up to one by design. Hence, by raising the probability of one class, the

probability of at least one of the other classes has to decrease by an equivalent amount.

Since the labels represent the interdependent experts, using the softmax function for the

classification layer is reasonable.

Figure 2.17: Activation Functions for the final (i.e., output) layer of the DNN classifier:
prediction quality for K = 4 and K = 6 with 10 experts.

Figure 2.17 displays the prediction error of a DNN model with the softmax and sig-

moid function in Concrete data set. We have used M = 10 experts and different mini-

batch sizes Nb = {16,25,50,100}. Both activation functions softmax and sigmoid have

been used to select K = 4 and K = 6 experts. The figure confirms that the softmax ac-
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tivation leads to much better results due to the interaction between labels. Indeed, the

sensitivity to the size of the mini-batches in the softmax activation function is lower than

the sensitivity of the sigmoid activation.

Computational Costs and M: Using the selected experts (K experts) in GGM, KNN,

and DNN leads to the aggregation cost O(ntK3) where K is the number of selected

experts, and nt is the number of test observations. Indeed, all three methods have a

selection cost. The selection task in GGM needs GLasso to estimate the precision matrix,

and its computational cost is O(M3), which is challenging for a large number of initial

experts M. Indeed, using a small sparsity parameter λ leads to a dense graph with a more

considerable computational cost.

On the other hand, KNN and DNN methods have linear complexity concerning M.

The cost of the KNN approach is obtained by considering the cardinality of the training

set, which refers to the number of possible labels that a feature can assume, in our case M,

the dimension of each sample, i.e., D, and also the hyperparameter K. KNN computes the

distance between the new observation and each centroid point, which requiresO(KMD)
operations to select K closest centroids.

In DNN, the cost depends on the network parameters, i.e., the number of layers L,

the input dimension D, the output dimension M, and the number of hidden units. Let Ui

represent the number of units in the i’th layer (i = 1, . . . ,L), where U1 and UL represent

the number of units in the input and output layers, respectively. The computational com-

plexity is thus O(n(U1U2+ . . .+UL−1UL)) = O(n(DU2+ . . .+UL−1M), which shows that

the complexity linearly depends on the number of experts M.

Expert Selection for CI-Based Baselines: The benefits of the dynamic selection

method for correlated experts have been discussed in this section. However, the proposed

method can be easily extended to CI-based baselines. In this case, only K experts selected

by KNN or DNN methods are used for final aggregation in Equation (1.6). Since these

models are fast, the selection parameter K can also be set to relatively large values. It

indicates that the proposed method can be used in federated learning models where the

experts do not share any information and are independent.

Let us consider the Concrete data set again. Table 2.1 describes the effect of the

selection scenario on CI-based ensembles using KNN with M = 10 and K = 6. Although

this modification can not improve the asymptotic properties of the baselines, it raises their
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2.4 Gaussian Process Experts Selection Using Multi-label Classification

Table 2.1: Expert Selection in CI-Based Baselines.

Model Expert Selection SMSE MSLL Time (s)

GPoE
- 0.138 -0.876 0.03

KNN 0.115 -0.916 0.03

RBCM
- 0.0993 0.396 0.03

KNN 0.091 0.156 0.03

GRBCM
- 0.1093 -1.103 0.06

KNN 0.089 -1.21 0.06

prediction quality. The selection method significantly enhances the prediction quality of

GPoE, RBCM, and GRBCM methods. At the same time, the last column in the table

shows that the running times of both original and modified models are indistinguishable.
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Chapter 3

Outlook and Conclusion

In this thesis, we studied some aspects of decentralized learning when our local agents

are Gaussian processes. In Gaussian process regression, the training data set is divided

into several partitions to reduce the training cost. At each subset of the data, a local

Gaussian process is trained, a so-called expert. The experts produce their predictions at

each test point, and then an ensemble method should aggregate them. Assuming depen-

dency between experts leads to high prediction and storage costs, while the assumption

of conditional independence between experts (CI assumption) returns sub-optimal solu-

tions with lower-quality predictions.

We considered different aspects of distributed Gaussian processes in this work. First,

we convert the model into a two-layer computational graph to reduce the effect of perfect

diversity in CI-based ensembles. The conventional one-layer model includes the local

independent experts as leaves and the target variable as the parent. In the proposed

method, presented in Section 2.1, the new experts in the middle layer of the graph are

clusters of the highly correlated original experts. The Gaussian graphical model detects

dependency, and spectral clustering is used to construct the new experts. Although the

independence assumption is unrealistic and often violated in practice, the new experts

are conditionally independent by design, and this solution significantly improves the

prediction quality of the CI-based aggregations.

The Gaussian graphical model (GGM) detects dependency between random variables

based on the assumption that the variables’ joint distribution is Gaussian. The latent

variable Gaussian graphical model (LVGGM) is a specific form of the GGM that con-

siders latent and unobserved variables and encodes the relations between the variables.
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Chapter 3 Outlook and Conclusion

Since the related precision matrix is the sum of two matrices, the relevant optimization

problem is misspecified. We used the classical Expected-Maximization (EM) algorithm

to estimate the precision matrix. We showed that by considering the target variable as la-

tent and the local experts as observed experts, the LVGGM could be used as an ensemble

method to aggregate the local predictions considering the dependencies between experts.

This ensemble method returns the mean of the conditional distribution of the latent vari-

able given the observed variables. The optimization employs the current precision matrix

estimate and updates the conditional distribution’s mean.

Both dependency-based and CI-based ensembles can benefit from an expert selection

model in two ways: (1) through the selection of a small subset of local experts, which

lowers the computational costs that depend on the number of experts; (2) through the

exclusion of weak or irrelevant experts in the prediction step, which improves the pre-

diction quality. When an expert produces low-quality predictions, the precision of the

aggregation method is negatively affected. Thus, the expert selection task can improve

the ensemble’s efficiency and prediction quality by using only the most important ex-

perts. In this thesis, we proposed two different expert selection methods: general and

entry-dependent selection.

The general expert selection strategy provides a static set of experts for all new entry

points. In this work, we used the Gaussian graphical model to divide the initial experts

into essential and unimportant experts. The importance measure is defined using the

interaction between experts in the related undirected graph. The experts with high in-

teractions constitute the selected experts. Using theoretical and experimental analysis,

we showed that the important experts are almost identical to those with the highest lo-

cal prediction quality. The proposed technique can improve the ensemble’s performance

and provide an insightful visual perspective on the experts’ correlations, especially when

the number of experts is not too large. Indeed, this strategy only uses the local experts’

predictions and does not need the partitions’ complete information. Thus, it can also be

used for federated learning problems when we cannot share the partitions’ details due to

security requirements. Moreover, it keeps the asymptotic properties of the aggregation

methods for both dependency and CI-based ensembles.

Despite the advantages and strengths of the general selection approach, it produces a

static and fixed set of selected experts for all test points. Therefore, the model might not
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be flexible enough to capture potentially unusual behavior of new data entries. When new

observations are far away from the selected data partitions, the related experts provide

poor local predictions for them, and, therefore, the final aggregation cannot return precise

results. We converted the expert selection task to a multi-label classification problem to

address this issue. To this end, we used the related indices of the experts as labels; the

extended data set can then be used to train classification techniques on the available data

points and the related indices. In this context, a sensible expert selection strategy should

aim to find a set of the most relevant labels for each new entry point. The algorithms

we devised find the most appropriate experts for each new entry point, and the final

prediction is based on the selected experts. We developed two classification methods,

one based on k-nearest neighbors (KNN) and another based on deep neural networks

(DNN). We showed that this point-wise expert selection scenario significantly improves

the prediction quality of the aggregation while its running time is at the same rate as the

static expert selection approach.

This thesis focused on the dependency between experts in a distributed Gaussian pro-

cess framework. However, the results can be easily extended to general decentralized

learning and multi-agent decision-making problems. The normality assumption on the

joint distribution of local experts is not a severe restriction. Moreover, this assumption

can be relaxed so that the proposed solutions can work with non-Gaussian experts. In-

deed, we introduced a novel solution for CI-based aggregation methods. The CI assump-

tion is used in both distributed and federated learning problems. In federated learning,

the experts do not share any information and are entirely independent, according to se-

curity issues. The aggregation step in this problem assumes the agents are independent.

As discussed before, our solutions can be used by independent experts. Thus, the main

ideas behind this thesis’s aggregation and selection approaches can also be applied to

federated learning scenarios. Adopting the proposed approaches to federated learning

and multi-agent decision-making problems can be studied in future works.
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Appendix A

Aggregating Dependent Gaussian
Experts in Local Approximation

This chapter is based on the following article:

• Hamed Jalali and Gjergji Kasneci. Aggregating Dependent Gaussian Experts in

Local Approximation. In 25th International Conference on Pattern Recognition

(ICPR 2020), 2020. doi: 10.1109/ICPR48806.2021.9413079.
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A.1 Abstract

Distributed Gaussian processes (DGPs) are prominent local approximation methods to

scale Gaussian processes (GPs) to large datasets. Instead of a global estimation, they train

local experts by dividing the training set into subsets, thus reducing the time complex-

ity. This strategy is based on the conditional independence assumption, which basically

means that there is a perfect diversity between the local experts. In practice, however,

this assumption is often violated, and the aggregation of experts leads to sub-optimal

and inconsistent solutions. In this paper, we propose a novel approach for aggregating

the Gaussian experts by detecting strong violations of conditional independence. The

dependency between experts is determined by using a Gaussian graphical model, which

yields the precision matrix. The precision matrix encodes conditional dependencies be-

tween experts and is used to detect strongly dependent experts and construct an improved

aggregation. Using both synthetic and real datasets, our experimental evaluations illus-

trate that our new method outperforms other state-of-the-art (SOTA) DGP approaches

while being substantially more time-efficient than SOTA approaches, which build on

independent experts.

A.2 Introduction

Gaussian processes (GPs) [10] are flexible, interpretable, and powerful non-parametric

statistical methods which provide accurate prediction with a low amount of uncertainty.

They apply Bayes’ theorem for inference, which allows them to estimate complex linear

and non-linear structures without the need for restrictive assumptions of the model. They

have been extensively used in practical cases, e.g. optimization [11], data visualization,

and manifold learning [12], reinforcement learning [15], multitask learning [17], online

streaming models [19, 20], and time series analysis [21, 22]. The main bottleneck of

using standard GPs is that they poorly scale with the size of the dataset. For a dataset of

size N, the training complexity is O(N3) because the inversion and determinant of the

N×N kernel matrix are needed. The prediction over a test set and also storing the results

suffers from an additional complexity of O(NlogN). This issue currently restricts GPs

to relatively small training datasets, the size of which is typically in the order of O(104).
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To deal with large datasets two different strategies are used. The first strategy is based

on sampling a small subset of the full dataset. The methods that follow this strategy try to

train a GP on the smaller subset and then generalize the results. A simple method in this

case, is subset-of-data (SoD) [26] which only uses a subset of size m from the original

dataset; its training complexity is O(m3) where m <<N. Since this approach ignores the

remaining data, it has limited performance.

Another method which is called sparse kernel or compactly supported kernel [28,

29], ignores the observations that are not correlated or show a covariance that is smaller

than a threshold. In radial-based kernels, if the distance between two different entries

is larger than a determined value, their covariance are set to zero. Although the training

complexity of this method isO(αN3), for certain interesting cases, it does not guarantee

that the new modified kernel is positive semi-definite.

The most popular method in this area is the sparse approximation approach, which

employs a subset of the data (called inducing points) and Nyström approximation to

estimate the prior and posterior distributions [30, 31]. For m inducing points, the training

complexity is O(Nm2). Although the authors provide a full probabilistic model using

the Bayesian framework, it is not conceivable to apply the method to large and high

dimensional datasets because its capability is restricted by the number of the inducing

points [33, 34].

The second strategy is to divide the full dataset into partitions, train the local GPs in

each partition [35, 36], and then aggregate the local approximations [37, 1, 38]. Unlike

sparse approximations, this local approach can model quick-varying systems and non-

stationary data features. Since in this family, the training procedure is run in different

subsets, the final prediction may be affected by the regions with the poor predictive

performance or by discontinuous predictions in overlapping sub-regions.

The most popular local approximation methods are the mixture of experts (MoE) and

the product of experts (PoE). The MoE works as a Gaussian mixture model (GMM). It

combines the local experts with their hyper-parameters and improves the overall predic-

tive power [39, 40]. The main drawback of this method is that a joint training is needed

to learn the mixing probabilities and the individual experts. This joint training positively

affects the predictive power and helps control the experts with poor performance, but -

on the negative side - it increases the complexity [37].
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The prominent product of experts (PoE) [41] and Bayesian committee machine (BCM)

[42] provide a new framework for GPs. Independent experts are GPs that are learned sep-

arately. Both methods suffer from the discontinuity issue and the weak experts’ problem

[81, 38]. The generalized product of experts (GPoE) [37] and robust Bayesian commit-

tee machine (RBCM) [1] propose different aggregation criteria, which are robust to weak

experts’ predictions.

To cope with the consistency problem in the predictions, [44] suggested the nested

pointwise aggregation of experts (NPAE), which provides consistent predictions but

increases the time complexity. The authors of [38] proposed the generalized robust

Bayesian committee machine (GRBCM) by considering one expert as a base expert, i.e.,

a global expert that is modified the RBCM to provide consistent predictions. The authors

in [38] showed that this modified RBCM is capable of providing consistent predictions,

especially for the disjoint data partitioning regime.

The idea behind the BCM and PoE families of methods is the conditional indepen-

dence (CI) assumption between the local experts. These divide-and-conquer approaches

can speed up the computation and provide a distributed learning framework. However,

since the CI assumption is violated in practice, they return poor results in cases with

dependent experts.

The key contribution of our work lies in considering the dependency between Gaus-

sian experts and improve the prediction quality in an efficient way. To this end, we first

develop an approach to detect the conditional correlation between Gaussian experts, and

then we modify the aggregation using this knowledge. In the first step, a continuous

form of a Markov random field is used to infer dependencies and then the expert set is

divided into clusters of dependent experts. In the second step, we adopt GRBCM for this

new scenario and present a new aggregation method that is accurate and efficient and

leads to better predictive performance than other SOTA approaches, which use the CI

assumption.

The structure of the paper is as follows. Section II introduces the GP regression

problem and SOTA DGP approaches. In Section III the proposed model and the inference

process are presented. Section IV shows the experimental results, and we conclude in

Section V.
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A.3 Problem Set-up

A.3.1 Background

Let us consider the regression problem y = f (x)+ε , where x ∈ RD and ε ∼N(0,σ2), and

the Gaussian likelihood is p(y∣ f ) = N( f ,σ2I). The objective is to learn the latent func-

tion f from a training set D = {X ,y}n
i=1. The Gaussian process regression is a collection

of function variables any finite subset of which has a joint Gaussian distribution. The

GP then describes a prior distribution over the latent functions as f ∼GP(m(x),k(x,x′)),
where m(x) is a mean function and k(x,x′) is the covariate function (kernel) with hyper-

parameter ψ . The prior mean is often assumed as zero, and the kernel is the well-known

squared exponential (SE) covariance function equipped with automatic relevance deter-

mination (ARD),

k(x,x′) = σ
2
f exp

⎛
⎝
−1

2

D
∑
i=1

(xi−x
′

i)2
Li

⎞
⎠

where σ2
f is a signal variance, and Li is an input length-scale along the ith dimension,

and ψ = {σ2
f ,L1, . . . ,LD}. To train the GP, the hyper-parameters θ = {σ2,ψ} should be

determined such that they maximise the log-marginal likelihood [10]

log p(y∣X) = −1
2

yTC−1y− 1
2

log ∣C∣− n
2

log(2π) (A.1)

where C =K+σ2I. For a test set x∗ of size nt , the predictive distribution is also a Gaussian

distribution p(y∗∣D,x∗) ∼ N(µ∗,Σ∗), with mean and covariance respectively given by

µ
∗ = kT

∗ (K +σ
2I)−1y, (A.2)

Σ
∗ = k∗∗−kT

∗ (K +σ
2I)−1k∗, (A.3)

where K = k(X ,X), k∗ = k(X ,x∗), and k∗∗ = k(x∗,x∗).

According to (A.1), the training step scales as O(n3) because it is affected by the

inversion and determinant of C, which is an n×n matrix. Therefore, for large datasets,

training is a time-consuming task and imposes a limitation on the scalability of the GP.
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A.3.2 Distributed Gaussian Process

To scale the GP to large datasets, the cost of the standard GP is reduced by distributing

the training process. It involves dividing the full training dataset D into M partitions

D1, . . . ,DM, (called experts) and training the standard GP on these partitions. The pre-

dictive distribution of the i’th expert Mi is pi(y∗∣Di,x∗) ∼ N(µ∗i ,Σ∗i ), where its mean

and variance are calculated by using (A.2) and (A.3) respectively

µ
∗
i = kT

i∗(Ki+σ
2I)−1yi, (A.4)

Σ
∗
i = k∗∗−kT

i∗(Ki+σ
2I)−1ki∗. (A.5)

Aggregating these experts is based on the assumption that they are independent. The

most prominent aggregation methods are PoE [41] and BCM [42]. GPoE [37] and

RBCM [1] are new modified versions of PoE and BCM, which approach the discon-

tinuity problem and overconfident predictions.

The term distributed Gaussian process was proposed by [1] to include PoE, BCM, and

their derivatives, which are all based on the fact that the computations of the standard GP

is distributed amongst individual computing units. Unlike sparse GPs, DGPs make use

of the full dataset but divide it into individual partitions.

The predictive distribution of DGP is given as the product of multiple densities (i.e.,

the experts). If the experts {M}M
i=1 are independent, the predictive distribution of DGP

for a test input x∗ is

p(y∗∣D,x∗) ∝
M
∏
i=1

pβi
i (y∗∣Di,x∗). (A.6)

The weights β = {β1, . . . ,βM} describe the importance and influence of the experts. The

typical choice of the weights is the difference in differential entropy between the prior

p(y∗∣x∗) and the posterior p(y∗∣D,x∗) [37]. With such weights however, the predictions

of GPoE are too conservative and the predictions are not appropriate [38]. To address

this issue, the simple uniform weights βi = 1
M is used [1]. The predictive distribution of

GPoE with normalized weights asymptotically converges to the full Gaussian process

distribution but is too conservative [45].
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A.3.3 Discussions of the Properties Existing Aggregations

Consistency To deal with the inconsistency issue, the nested pointwise aggregation of

experts (NPAE) [44] considers the means of the local predictive distributions as random

variables by assuming that yi has not been observed and therefore allows the dependency

between individual experts’ predictions. Theoretically, it provides consistent prediction

but its aggregation steps need much higher time complexity. For M individual partitions,

NAPE needs to calculate the inverse of a M×M matrix in each test point that leads to a

longer running time when a large training set is used or the number of partitions is large.

Another new model is the generalized robust Bayesian committee machine (GR-

BCM) [38] which introduces a base (global) expert and considers the covariance be-

tween the base and other local experts. For a global expert, Mb, in a base partition, Db,

the predictive distribution of GRBCM is

p(y∗∣D,x∗) = ∏
M
i=2 pβi

bi(y∗∣Dbi,x∗)

p∑
M
i=2 βi−1

b (y∗∣Db,x∗)
, (A.7)

where pb(y∗∣Db,x∗) is the predictive distribution of Mb, and pbi(y∗∣Dbi,x∗) is the pre-

dictive distribution of an expert trained on the dataset Dbi = {Db,Di}. It improves the

prediction and consistency of the RBCM has time complexity O(αnm2
0)+O(βn

′
nm0),

where m0 in the number of assigned points to each expert, n
′

is the size of test set,

α = (8M−7)/M, and β = (4M−3)/M[38].

Conditional independence (CI) CI is a crucial assumption for many unsupervised

ensemble learning methods. It has been used widely in regression and classification

problems [48, 49]. The (R)BCM and (G)PoE methods are also based on CI assumption

which reduces the computational costs of the training process, see Figure A.1a.

However, in practice, this assumption is often violated and their predictions are not

accurate enough. Actually, the ensembles based on CI return sub-optimal solutions [2].

In this regard, few works have considered modelling dependencies between individual

predictors. For classification, [50] used pairwise interaction between classifiers and [51]

considered the agreement rates between subsets of experts. In another work [2], the

authors suggested a model using clusters of binary classifiers in which the classifiers
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in each cluster are conditionally dependent. The authors of [2] defined a specific score

function based on covariance between classifiers to detect dependency.

In local approximation GPs, the only method that considered the dependency between

experts is NPAE[44, 46]. It assumes the joint distribution of experts and y∗ is a Gaussian

distribution and uses the properties of conditional Gaussian distributions to define the

meta-learner. Due to the high computational cost which cubically depends on the number

of experts at each test point, this method does not provide an efficient solution for large

real-world datasets.

In the next section, we propose a new model that uses the dependency between experts

and define a modified aggregation method based on GRBCM.

A.4 Distributed Gaussian Process with Dependent

Experts

Assume the Gaussian expertsM= {M1, . . . ,MM} have been trained on different parti-

tions and let µ∗
M
= [µ∗1 , . . . ,µ∗M]T be a nt ×M matrix that contains the local predictions

of M experts at nt test points. Our approach makes use of the experts’ predictions, i.e.

µ∗
M

in order to detect strong dependencies between experts. This step results clusters of

correlated experts, C = {C1, . . . ,CP}, P≪M. By aggregating the experts at each cluster,

it leads to a new layer of experts, K = {K1, . . . ,KP}, which are conditionally independent

given y∗. Figure A.1b depicts this model where the experts in cluster Ci are condition-

ally independent given Ki, and each Ki is independent of K j, i ≠ j given y∗. The final

prediction is done by using the K instead ofM.

Definition 2 (Assignment function). A function H ∶M→ C is the assignment function

that represents the related cluster for each expert. H(Mi) = C j means that the i’th expert

belongs to j’th cluster of experts and it has a dependency with the experts in this cluster.

Therefore, ifH(Mi) =H(M j), the i’th and j’th experts are correlated to each other and

belong to the same cluster.

In the following, we will show how to detect subsets of strongly dependent experts

and present a new aggregation method for DGPs.
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(a)

(b)

Figure A.1: Computational graphs: (a) DGP model with CI [1]; (b) DGP with clusters
of dependent experts [2]

A.4.1 Dependency Detection with Gaussian Graphical Models

The key idea in an undirected graphical model (or pairwise Markov random field (MRF))

is to model the set of local estimators as a connected network such that each node rep-

resents a Gaussian expert and the edges are the interaction between them. This network

model uses a matrix of parameters to encode the graph structure. In other words, it con-

siders the edges as parameters, such that if there is a connection between two nodes, then

there are non-zero parameters for the pair.
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Gaussian graphical models (GGMs). Gaussian graphical models (GGMs) [52, 53,

54] are continuous forms of pairwise MRFs, i.e. the nodes are continuous. The basic

assumption for GGMs is that the variables in the network follow a multivariate Gaussian

distribution. The distribution for GGMs is

p(Z∣µ,Σ) = 1
(2π)Q/2∣Σ∣1/2

exp{−1
2
(Z−µ)T Σ

−1(Z−µ)} , (A.8)

where Z = {Z1, . . . ,ZQ} are the variables (nodes), Q is the number of variables, and µ

and Σ are the mean and covariance, respectively. The distribution in (A.8) can also be

expressed using the precision matrix Ω:

p(Z∣h,Ω) = ∣Ω∣
1/2

(2π)Q/2
exp{−1

2
(Z−h)T Ω(Z−h)}

∝exp{−1
2

ZT
ΩZ+hT Z} ,

(A.9)

where Ω = Σ−1 and h =Ωµ . The matrix Ω is also known as the potential or information

matrix.

WLOG, let µ = 0, then the distribution of a GGM shows the potentials defined on

each node i as exp{−Ωii(Zi)2} and on each edge (i, j) as exp{−Ωi jZiZ j}.
Unlike correlation networks, Equation (A.8), which encode the edge information in

the network on the covariance matrix, a GGM is based on the precision matrix, Equation

(A.9). In a correlation network, if Σi j = 0, then Zi ard Z j are assumed to be independent.

While in a GGM, if Ωi j = 0, then Zi ard Z j are conditionally independent given all other

variables, i.e. there is no edge between Zi ard Z j in the graph.

Network Learning. In the network, the locally trained experts are the nodes, and net-

work learning results in the precision matrix Ω; the latter reveals the conditional depen-

dencies between experts. GGMs use the common sparsity assumption, that is, there are

only few edges in the network and thus the parameter matrix is sparse. This assumption

usually makes sense in experts’ networks because the interaction of one expert is limited

to only a few other experts.

To this end, the Lasso regression [56] is used to perform neighborhood selection for

the network. The Meinshausen-Bühlmann algorithm [57] is one of the first algorithms
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in this area. [57] and [58] proved that with some assumptions, Lasso asymptotically

recovers correct relevant subsets of edges. [59] proposed the efficient graphical Lasso

which adopts a maximum likelihood approach subject to an L1 penalty on the coefficients

of the precision matrix. The graphical Lasso has been improved in later works [60, 61,

62].

Let S be the sample covariance. Then, the Gaussian log-likelihood of the precision

matrix Ω is equal to log∣Ω∣ − trace(SΩ). The Graphical Lasso (gLasso) maximizes this

likelihood subject to an element-wise L1 norm penalty on Ω. Precisely, the objective

function is

Ω̂ = argmax
Ω

log ∣Ω∣ − trace(SΩ)−λ ∥Ω∥1 , (A.10)

where the estimated neighborhood is then the non-zero elements of Ω̂. Since Ω̂ con-

tains all information about the dependency between experts, we use it to construct the

assignment function C and the clusters of experts K.

A.4.2 Aggregation

After determining the dependencies between the experts, we apply the following ag-

gregation method. First, we define clusters of interdependent experts, i.e. that include

experts with strong dependency. Then, by using the GRBCM method in ith cluster, we

generate for each cluster a modified expert Ki. The final prediction is done by aggregat-

ing the predictions of these modified experts.

Experts clustering After detecting the dependencies between experts, we use the pre-

cision matrix to find the assignment function. Performing a clustering approach on the

precision matrix returns the clusters of experts K; thus, each cluster Ki contains strongly

dependent experts based on the precision matrix. To this end, we apply spectral clus-

tering (SC) [55] which is more robust and works better in practice. Spectral clustering

makes use of the relevant eigenvectors of the Laplacian matrix of the similarity matrix

(here the precision matrix) alongside a standard clustering method. The Laplacian matrix

is L =D−Ω, where D is a diagonal matrix that includes the sum of the values in each row

of Ω.

Figure A.2 depicts the GGM of a simulated dataset with 105 training points which
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Figure A.2: Gaussian graphical models:(a) shows the interaction between experts in a
GGM of 20 experts with a penalty term λ = 0.1, (b) reveals the GGM with 6 clusters of
experts, and (c) depicts the heat map plot of the experts’ precision matrix.

have been divided into 20 partitions (experts). This dataset is considered in Section

A.5.1 in detail. Figure A.2a represents the sparse graph with a penalty term λ = 0.1 in

graphical Lasso with the nodes (experts) and edges (interactions or dependencies). Even

with this penalty term, the CI assumption is violated because all experts are connected

to each other. Figure A.2b displays the graph after performing the spectral clustering on

the precision matrix. The 6 clusters in the graph contain correlated experts, and clusters

that are now represented by only one expert (e.g. the cluster with red color) contain

the original experts that are not strongly dependent with the other experts. Figure A.2c
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represents the heat map plot of the symmetric precision matrix and shows the conditional

dependencies between experts. The main diagonal returns the experts internal potential

while the other elements are conditional dependencies between experts. In fact this figure

shows that the experts are conditionally dependent and the CI assumption is violated.

Final Aggregation We assume that the new experts {K1, . . . ,KP} are conditionally

independent given y∗ (see Figure A.1b), which is not a strong assumption due to the

process by which they were generated. The task is to find the distribution of new ex-

perts {K1, . . . ,KP} and then find p(y∗∣D,x∗). The authors in [38] showed that GRBCM

provides consistent predictions under some mild assumptions, i.e. it can recover the true

posterior distribution of y∗ when n→∞. Hence, we use the GRBCM aggregation method

in each cluster by adding the global communication expert Mb to all clusters. For aggre-

gating the new experts, we use either GPoE or GRBCM. Since the number of experts that

are aggregated in each step is smaller than M, the computational cost of this scenario is

smaller than the computational cost of GRBCM. Algorithm 1 depicts the aggregation

process.

Algorithm 1 Aggregating Dependent Local Gaussian Experts

Input: µ∗M, λ , P
1: Calculate sample covariance S of experts’ predictions
2: Estimate Ω̂ using (A.10)
3: Estimate H by performing spectral clustering SC(Ω̂, P)
4: Obtain new experts {K1, . . . ,KP} using GRBCM (A.7)
5: Aggregate new experts using GPoE (A.6) or GRBCM (A.7)
6: return The estimated mean and variance of p(y∗∣D,x∗,K), i.e. µ∗

K
and Σ∗

K
.

The following proposition gives our predictive distribution and its asymptotic proper-

ties.

Proposition 2 (Predictive Distribution). Let X be a compact, nonempty subset ofRn×D,

µ∗M = [µ∗1 , . . . ,µ∗M]T be the sub-models’ predictions. We use {K1, . . . ,KP} as defined in

Algorithm 1. We further assume that (i) limn→∞M =∞, (ii) limn→∞m0 =∞, where m0

is the partition size, and (iii) limn→∞ ∣Ci∣ = ∞, i = 1, . . . ,P, where ∣Ci∣ is the size of i’th

cluster. The second condition implies that the original experts become more informative

with increasing n, while the third condition means that the number of experts in each
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cluster increases. In addition, the third condition implies that P≪M, which describes

the dependency between the experts. 1 Then the estimation based on Algorithm 1, y∗
K

is

consistent, i.e.
⎧⎪⎪⎪⎨⎪⎪⎪⎩

limn→∞µ∗
K
= µ∗

limn→∞Σ∗
K
= Σ∗.

(A.11)

Proof: The proof is straightforward due to the consistency of GRBCM. According

to assumptions (ii) and (iii), when n→∞, each cluster returns a consistent predictor be-

cause the aggregation inside the clusters is based on GRBCM. Combining the consistent

new experts {K1, . . . ,KP} in Step 5 of Algorithm 1 leads to a consistent prediction. We

provide here the proof for the variance, when GPoE is used in Step 5, and note that the

proof for the mean is analogous. Let Σ∗
Ki

be the covariance matrix ofKi which is obtained

in Step 4 of Algorithm 1, then the aggregated precision of GPoE (Step 5 of Algorithm 1)

is equal to

lim
n→∞
(Σ∗K)−1 = lim

n→∞

P
∑
i=1

1
P
(Σ∗Ki
)−1 =

P
∑
i=1

1
P

lim
n→∞
(Σ∗Ki
)−1

=
P
∑
i=1

1
P
(Σ∗)−1 = (Σ∗)−1,

where the first equality is based on the definition of GPoE with equal weights and the

third one is due to the consistency of GRBCM.

In the next section, we showcase the importance of taking local experts’ dependencies

into account and the competitive performance of our approach using both artificial and

real-world datasets.

A.5 Experiments

The prediction quality of the proposed dependent Gaussian expert aggregation method

(DGEA) is assessed in this Section. We showcase the importance of taking local experts’

dependencies into account and the competitive performance of our approach using both

1If we assume perfect diversity between experts (i.e., CI), then P ≈M. In this case, the consistency still
holds due to the consistency of GRBCM but it is not a realistic assumption.
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artificial and real datasets. The quality of predictions is evaluated in two ways, stan-

dardized mean squared error (SMSE) and the mean standardized log loss (MSLL). The

SMSE measures the accuracy of prediction mean, while the MSLL evaluates the quality

of predictive distribution [10]. The standard squared exponential kernel with automatic

relevance determination and a Gaussian likelihood is used. The experiments have been

done in MATLAB using the GPML package2. The random partitioning method on the

training dataset has been used in all experiments.
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Figure A.3: Prediction quality of different DGP methods with respect for different num-
ber of experts in the simulated data of the analytic function by (A.12).

A.5.1 Toy Example

The goal of our first experiment is to study the effect of dependency detection on the pre-

diction quality and computation time. It is based on simulated data of a one-dimensional

analytical function [38],

f (x) = 5x2 sin(12x)+(x3−0.5)sin(3x−0.5)+4cos(2x)+ε, (A.12)

where ε ∼ N (0,(0.2)2). We generated n = 104 training points in [0,1], and nt = 0.1n

test points in [−0.2,1.2]. The data is normalized to zero mean and unit variance. We

assigned 200, 250, 330, 500 and 1000 data points to each expert, which leads to 50, 40,

30, 20, and 10 experts respectively. Figure A.3 shows the sensitivity of different DGP

methods with respect to the change in the number of experts.

2http://www.gaussianprocess.org/gpml/code/matlab/doc/
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The DGEA prediction is based on using GPoE in Step 5 of Algorithm 1. Figure

A.3a depicts the SMSE values of the different SOTA methods. Since PoE and GPoE

have the same SMSE value, the line of PoE is hidden in the plot. By increasing the

number of experts, the prediction error rises, because we assign a smaller amount of

observations to each expert, and therefore the quality of each expert decreases. While

(G)PoE and (R)BCM return poor predictions, the DGEA and GRBCM present better

results and DGEA has the smallest prediction error for the different numbers of experts.

Figure A.3b reveals the quality of the predictive distribution. The overconfident meth-

ods (PoE, BCM, and RBCM) return smaller MSLL for 10 experts. However, their MSLL

value dramatically increases with growing M. As the authors in [46] and [45] have

shown, the GPoE is a conservative method and thus returns a higher quality. In Fig-

ure A.3b we can see that its predictive distribution has a higher quality compared to

PoE and (R)BCM. However, the DGEA represents an even higher quality for the pre-

dictive distribution for the different values of M. Figure A.3c shows the computational

costs of different methods. Comparing the running time of DGEA and GRBCM demon-

strates that DGEA takes about half of the time of GRBCM, while its running time is

almost indistinguishable from the running time of the most efficient methods, (G)PoE

and (R)BCM.

A.5.2 Realistic Datasets

In this section, we use four realistic datasets, Pumadyn, Kin40k, Sacros, and Song. The

Pumadyn3 is a generated 32D dataset with 7168 training points and 1024 test points. The

8D Kin40k dataset [82] contains 104 training points and 3×104 test points. The Sacros4 is

a 21D realistic medium-scale dataset with 44484 training and 4449 test points. The Song

dataset 5 [83] is a 91D dataset with 515,345 instances which is divided into 463,715

training examples and 51,630 test examples. We extract the first 105 songs from this

dataset for training and keep the original set of 51,630 songs for testing. The random

partitioning method has been used to divide the dataset into partitions and to generate

the experts. The number of experts is 20 for Pumadyn and Kin40k, 72 for Sacros, and

3https://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
4http://www.gaussianprocess.org/gpml/data/
5https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
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150 for Song. For the Pumadyn and Kin40k datasets, 5 clusters, and for Sacros and Song,

10 clusters are used.

Table A.1: Prediction quality for various methods on Pumadyn, Kin40k, Sacros, and
Song data. For both quality measure, i.e. SMSE and MSLL, smaller values are better.

Pumadyn Kin40k Sacros Song

Model SMSE MSLL SMSE MSLL SMSE MSLL SMSE MSLL

DGEA (Ours) 0.0486 -1.5133 0.0538 -1.3025 0.0269 -1.823 0.8084 -0.122
PoE 0.0505 4.8725 0.856 2.4153 0.0311 25.2807 0.8169 69.9464
GPoE 0.0505 -1.4936 0.0856 -1.2286 0.0311 -1.7756 0.8169 -0.123
BCM 0.0499 4.6688 0.0818 1.6974 0.0308 24.868 10.4291 44.1745
RBCM 0.0498 12.1101 0.0772 2.5256 0.0305 61.5392 5.4373 1.2089
GRBCM 0.0511 -1.488 0.0544 -1.2785 0.0305 -1.4308 0.8268 0.2073

Table A.1 depicts the prediction quality of different methods. In the Pumadyn, Kin40k,

and Sacros dataset, DGEA clearly outperforms the other methods. BCM and RBCM

show lower prediction error compared to (G)PoE on these datasets, but their negative

log-likelihood (MSLL) is quite large. Since GPoE provides conservative predictions and

its posterior distribution converges to the true predictive distribution, it shows a nice per-

formance with respect to the MSLL value, even better than the performance of GRBCM

on the Pumadyn, and Sacros datasets. The drawback of PoE and (R)BCM methods can

be seen in their MSLL values, which shows that their predictive distribution does not

have competitive quality and tends to produce overconfident and inconsistent predic-

tions, which has also been discussed by [45] and [38]. With respect to the Song dataset,

DGEA and GPoE return better predictions. While GPoE performs a little bit better than

DGEA with respect to MSLL, DGEA has a lower prediction error.

The GRBCM method returns different prediction qualities for different detests. Since

in this work a new ensemble method is proposed for the non-parametric regression prob-

lem, the random partitioning is used, because in this case all Gaussian experts can cover

the full sample space and work as global predictors. The quality of GRBCM is higher

with respect to the disjoint partitioning, which is consistent with the results presented

in [38]. But overall, the prediction quality of DGEA outperforms the other methods,

which shows the importance of taking the experts’ dependencies into account.
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A.6 Conclusion

In this work, we have proposed DGEA, a novel DGP approach which leverages the

dependencies between experts to improve the prediction quality through local aggrega-

tion of experts’ predictions. To combine correlated experts, comparable SOTA meth-

ods assume conditional independence between experts, which leads to poor prediction

in practice. Our approach uses an undirected graphical model to detect strong depen-

dencies between experts and defines clusters of interdependent experts. Theoretically,

we showed that our new local approximation approach provides consistent results when

n→∞. Through empirical analyses, we illustrated the superiority of DGEA over existing

SOTA aggregation methods for scalable GPs.

For future work, we identify two directions for further research. First, for the ag-

gregated posterior, we integrated Gaussian graphical models into the generalized robust

Bayesian committee machine and generalized product of experts. Another aggregation

approach can be the latent variable graphical model, assuming that the final predictor is

a latent variable within the graph that may improve the prediction quality by using inter-

dependencies between experts while reducing time complexity. Second, the GGM relies

on the assumption that all experts are jointly Gaussian and cannot be used to explain

complex models with the non-Gaussian distribution. Therefore, finding a flexible and

capable substitute for the GGM to capture the properties of GP experts is left to future

work.
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Appendix B

Aggregating the Gaussian Experts’
Predictions via Undirected Graphical
Models

This chapter is based on the following article:

• Hamed Jalali and Gjergji Kasneci. Aggregating the Gaussian Experts’ Predictions

via Undirected Graphical Models. In IEEE International Conference on Big Data

and Smart Computing (BigComp), 2022. doi: 10.1109/BigComp54360.2022.00014.

The appendix section B.7 is based on this article:

• Hamed Jalali and Gjergji Kasneci. Gaussian Graphical Models as an Ensemble

Method for Distributed Gaussian Processes. OPT2021: 13th Annual Workshop

on Optimization for Machine Learning at 35th Conference on Neural Information

Processing Systems (NeurIPS 2021), 2021. doi: 10.48550/arXiv.2202.03287.
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B.1 Abstract

Distributed Gaussian process (DGP) is a popular approach to scale Gaussian processes

to big data which divides the training data into some subsets, performs local inference

for each partition, and aggregates the results to acquire global prediction. To combine

the local predictions, the conditional independence assumption is used which basically

means there is a perfect diversity between the subsets. Although it keeps the aggregation

tractable, it is often violated in practice and generally yields poor results. In this paper,

we propose a novel approach for aggregating the Gaussian experts’ predictions by Gaus-

sian graphical model (GGM) where the target aggregation is defined as an unobserved

latent variable and the local predictions are the observed variables. We first estimate the

joint distribution of latent and observed variables using the Expectation-Maximization

(EM) algorithm. The interaction between experts can be encoded by the precision ma-

trix of the joint distribution and the aggregated predictions are obtained based on the

property of conditional Gaussian distribution. Using both synthetic and real datasets, our

experimental evaluations illustrate that our new method outperforms other state-of-the-

art DGP approaches.

B.2 Introduction

Gaussian processes (GPs) are powerful non-parametric statistical methods based on Bayes’

theorem. Without the need for restrictive assumptions, they are capable to estimate com-

plex models with a low amount of uncertainty. Despite many advantages, GPs suffer

from their computational costs where they poorly scale with the size of the dataset.

The prominent distributed Gaussian processes (also called local approximation GPs)

are based on the divide-and-conquer approach. It means the training data is divided into

some partitions (called experts), the local inference is done for each partition separately,

and at the end, these local estimations are combined using an ensemble method. All

experts share the same hyper-parameters, which leads to automatic regularisation and

the model tends to prevent the overfitting of individual experts.

In a DGP, the conditional independence assumption (CI) between partitions allows

factorizing the global posterior distribution as a product of local distributions. Although
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this assumption reduces the computational cost, it is often violated in practice. However,

solutions that deal with the dependency problem (e.g. NPAE method [44]) suffer from

extra computational costs and therefore, are impractical for large data sets.

The key contribution of our work lies in aggregating the local experts’ predictions

considering their dependencies. Unlike conventional DGPs, here the CI assumption is

violated to improve the prediction quality. The conditional dependency is inferred as

the interactions between nodes in a continuous form of a Markov random field (MRF).

We consider the local and latent experts as nodes of an undirected graph. Then, the

Gaussian graphical model (GGM) is used to construct the undirected graph between

Gaussian experts and their interactions. Since the latent expert is unobserved, we use

the latent variable Gaussian graphical model (LVGGM) to estimate the joint distribution

of observed and latent experts. The final predictions are the mean of the conditional

distribution of the latent expert given observed experts. Relative to the available base-

lines, our approach substantially provides competitive prediction performance than other

state-of-the-art (SOTA) approaches, which use the CI assumption.

The structure of the paper is as follows. Section B.3 introduces the problem formula-

tion and related works. In Section B.4 the proposed model and the inference process are

presented. Section B.5 shows the experimental results and we conclude in Section B.6.

B.3 Background and Problem Set-up

B.3.1 Background

Let us consider the regression problem y = f (x)+ε , where x ∈ Rd and ε ∼ N(0,σ2), and

the Gaussian likelihood is p(y∣ f ) = N( f ,σ2I). The objective is to learn the latent func-

tion f from a training set D = {X ,y} of size n. The Gaussian process regression is a col-

lection of random variables of which any finite subset has a joint Gaussian distribution.

The GP then describes a prior distribution over the latent functions as f ∼GP(0,k(x,x′)),
where k(x,x′) is the covariancee function (kernel) with hyperparameters ψ . To train the

GP, the hyperparameters θ = {σ2,ψ} should be determined such that they maximise the
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log-marginal likelihood,

log p(y∣X) = −1
2

yTC−1y− 1
2

log ∣C∣− n
2

log2π, (B.1)

where C =K+σ2I and K = k(X ,X). According to (B.1), the training step scales asO(n3)
because it is affected by the inversion and determinant of the n×n matrix C. Therefore,

for large data sets, GP training is a time-consuming task and imposes limitations on the

scalability of GPs.

B.3.2 Distributed Gaussian Process

The term distributed Gaussian process [1] uses the fact that the computations of the

standard GP can be distributed among individual computing units. To do that, one divides

the full training data set D into M partitions (called experts) and trains standard GPs on

these partitions. Let D′ = {D1, . . . ,DM} be the partitions, and Xi and yi be the input and

output of partition Di. All GP experts are trained jointly and share a single set of hyper-

parameters θ = {σ2,ψ}. For a test set X∗ of size nt , the local prediction of the i-th GP

expertMi is:

µ
∗
i = kT

i∗(Ki+σ
2I)−1yi, (B.2)

where Ki = k(Xi,Xi), and ki∗ = k(Xi,X∗).

Aggregating the experts in DGP is based on the assumption that they are conditionally

independent. If the experts {M}M
i=1 are independent, the posterior distribution of DGP is

given as the product of multiple local densities. That is to say for a test input x∗

p(y∗∣D,x∗) ∝
M
∏
i=1

pβi
i (y∗∣Di,x∗), (B.3)

where the weights β = {β1, . . . ,βM} describe the importance and influence of the experts.

The most popular aggregation methods are generalised product of experts (GPoE), ro-

bust Bayesian committee machine (RBCM) and generalized robust Bayesian committee

machine (GRBCM), see [38, 1].
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B.3.3 Dependency

The CI assumption is used widely in ensemble methods for both regression and classifi-

cation problems. The DGPs use CI to reduce the computational costs of the prediction

process. However, their predictions are not accurate enough and CI-based aggregation

generally returns sub-optimal solution [2, 3, 4]. In local approximation GPs, the de-

pendency between experts has been discussed in few works. For instance, the nested

pointwise aggregation of experts (NPAE) method [44] uses the internal correlation be-

tween local experts and the dependency between local experts and target variable y∗.

However, this pointwise aggregation suffers from high time complexity which cubically

depends on the number of experts at each test point, i.e. O(ntM3), and therefore, it is not

an efficient solution for large datasets.

(a) Independent Experts

(b) Dependent Experts

Figure B.1: Computational graphs of (a) a Conditional-Independent based aggregation
and (b) an aggregation based on the conditional dependency between local experts.
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Figure B.1 shows the computational graphs of CI-based and dependency-based ag-

gregation strategies. Figure B.1(a) reveals the aggregation based on conditional inde-

pendence assumption between experts {µ1,µ2,µ3,µ4}. It means two local experts mui

and mu j are connected only via the target variable y∗, i.e. mui ⊥⊥ mu j ∣ y∗. However,

this assumption is often violated in realistic conditions and the aggregation can lead to

a sub-optimal solution. On the other hand, Figure B.1(b) represents an aggregation with

dependent experts where the interactions between experts show the dependencies.

In the next section, we propose a new model that uses the dependency between ex-

perts and defines a modified aggregation method based on the latent variable Gaussian

graphical model.

B.4 Aggregating Conditionally dependent Experts with

an Undirected Graph

At the heart of our work is the following ingredient. First, we assume that yi in (B.2) has

not yet been observed, see [44]. Then the experts’ predictions µ∗i can be considered as a

random variable. This allows us to leverage internal correlations between local experts,

and also consider the correlation between the latent target variable y∗ and local experts.

Then, we exert the continuous form of Markov random field, called Gaussian graphical

model (GGM), where the nodes of the graph are the experts (local and latent) and the

edges are the interactions between them.

B.4.1 Aggregating Dependent Experts’ Predictions

Assume the Gaussian expertsM= {M1, . . . ,MM} have been trained on separated sub-

sets and let µ∗ = [µ∗1 , . . . ,µ∗M]T be a nt ×M matrix that contains their centered predictions

at nt test points. As a consequence of the choice of the prior, the joint distribution of the

local experts µ∗ and target expert y∗ is multivariate Gaussian distribution because any

vector of linear combinations of observation is itself a Gaussian vector.

Let Σy∗µ∗ encodes the correlation between latent expert y∗ and local experts µ∗, and

Σµ∗µ∗ depicts the correlation between local experts. Employing the properties of con-

ditional Gaussian distributions for the centered random vector allows for the following
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aggregation:

y∗A = Σ
T
y∗µ∗Σ

−1
µ∗µ∗µ

∗. (B.4)

The linear estimator in (B.4) is the mean of conditional distribution of y∗ given µ∗,

i.e. p(y∗∣µ∗) and is the best linear unbiased predictor of y∗, see [44].

In the next subsection, we show how the GGM can be adapted to the local approxi-

mation problem with a latent target variable and suggest a new method to compute the

aggregated estimator y∗A.

B.4.2 A Gaussian Graphical Models for Dependent Gaussian
Experts

Gaussian graphical models [52, 53, 54] are continuous forms of pairwise MRFs that

assume the variables in the network follow a multivariate Gaussian distribution. The

distribution for a GGM is

p(µ∗∣ξ ,Ω) ∝ exp{−1
2
(µ∗−ξ)T Ω(µ∗−ξ)} , (B.5)

where µ∗ = {µ∗1 , . . . ,µ∗M} are the experts, and ξ and Ω are the mean and precision,

respectively. The matrix Ω is also known as the potential or information matrix. In a

GGM, if Ωi j = 0, then µ∗i ard µ∗j are conditionally independent given all other variables,

i.e. there is no edge between µ∗i ard µ∗j in the graph.

GGMs use the common sparsity assumption, that is, there are only few edges in

the network and thus the precision matrix is sparse. To this end, the graphical Lasso

(GLasso) regression [59] is used to perform neighborhood selection for the network. It

maximizes the log-likelihood subject to an element-wise L1 norm penalty on Ω. Pre-

cisely, the objective function is

Ω̂λ = argmin
Ω
(−L(Ω;S)+λ ∥Ω∥1) (B.6)

where L(Ω;S) = log ∣Ω∣ − trace(S Ω) is the Gaussian log-likelihood and S is the sample

covariance.
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B.4.3 GGM-Based Aggregation using EM Algorithm

The main input of the GLasso method is the sample covariance of our observations. Since

the targeted expert y∗ is unobserved, one row (column) in S, related to y∗ is unknown.

Let Sµ∗µ∗ is a known M×M matrix of the sample covariance of the observed variables

µ∗, Sy∗µ∗ is an unknown 1×M vector that shows the sample covariance between latent

and observed expert, and Sy∗y∗ is the internal potential of a latent expert. To use the

GLasso, it is needed to estimate unknown partitions of S, i.e. Sy∗µ∗ and Sy∗y∗ . Here, we

explain how the expected-maximization algorithm can help us.

E-Step : The E-step Calculates Q(Ω ∣Ω(t)), the expected value of the penalized neg-

ative log-likelihood function with respect to the conditional distribution of y∗ given µ∗

under the current estimate Ω(t) of Ω:

Q(Ω ∣Ω(t)) = Ey∗∣µ∗,Ω(t) [−L(Ω;S)+λ ∥Ω∥1]

= Ey∗∣µ∗,Ω(t){− log ∣Ω∣ + trace(S Ω)+λ ∥Ω∥1}

= − log ∣Ω∣ + trace{Ey∗∣µ∗,Ω(t)(S)Ω}+λ ∥Ω∥1 .

Let Σ(t) = (Ω(t))−1, the conditional distribution of y∗ given µ∗ under the current estimate

Ω(t) follows

N (Σ(t)y∗µ∗(Σ
(t)
µ∗µ∗)

−1
µ
∗,Σ
(t)
y∗ −Σ

(t)
y∗µ∗(Σ

(t)
µ∗µ∗)

−1
Σ
(t)
µ∗y∗) .

Therefore,

Ey∗∣µ∗,Ω(t)(Sµ∗y∗) = Sµ∗µ∗(Σ(t)µ∗µ∗)
−1

Σ
(t)
µ∗y∗ , (B.7)

and

Ey∗∣µ∗,Ω(t)(Sy∗y∗) = Σ
(t)
y∗y∗ −Σ

(t)
y∗µ∗(Σ

(t)
µ∗µ∗)

−1
Σ
(t)
µ∗y∗+

Σ
(t)
y∗µ∗(Σ

(t)
µ∗µ∗)

−1Sµ∗µ∗(Σ(t)µ∗µ∗)
−1

Σ
(t)
µ∗y∗ . (B.8)

The output of the E-step, S(t) = Ey∗∣µ∗,Ω(t)(S), can be used as an input for GLasso in

M-step.
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M-Step : This step returns the updated precision matrix Ω
(t+1) that maximize Q(Ω ∣

Ω(t)) over all (M+1)×(M+1) positive-definite matrices Ω. It is a GLasso problem and

is equivalent to this minimization problem:

argmin
Ω

(− log ∣Ω∣ + trace{S(t)Ω}+λ ∥Ω∥1) . (B.9)

The whole procedure of the proposed ensemble, EMGGM, is summarized in Algo-

rithm 2.

Algorithm 2 GGM-Based Experts Aggregation (EMGGM)

Input: µ∗, λ , R (number of iterations)
1: Initialize y∗

2: Calculate sample covariance S(0) of (y∗,µ∗)
3: Estimate the initial parameter Ω(0) using Equation (B.6)
4: t ← 1
5: while t ≤ R do
6: Estimate Ey∗∣µ∗,Ω(t)(Sµ∗y∗) using Equation (B.7)
7: Estimate Ey∗∣µ∗,Ω(t)(Sy∗y∗) using Equation (B.8)
8: Update the sample covariance as S(t) = Ey∗∣µ∗,Ω(t)(S)
9: Update the precision matrix Ω(t) using Equation (B.9)

10: Σ(t)← (Ω(t))−1

11: t ← t +1
12: end while
13: Estimate the aggregated prediction y∗A using Equation (B.4)
14: return y∗A

B.4.4 Discussion

The proposed ensemble is capable to aggregate local experts considering their depen-

dencies and its computational and storage costs are much smaller than NPAE which uses

dependent experts. Although the conventional GLasso [59] for network learning is al-

most a costly method, there are newer faster methods to learn a GGM that can be used

instead of the GLasso in (B.6) and (B.9), see [63, 66, 64]. Besides, the normality as-

sumption for joint distribution is not a restrictive assumption. In practice, we can relax

this assumption and consider random variables without resorting to multi-dimensional
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Gaussian distribution[69, 70, 74]. This gives the result that the proposed strategy can be

considered as a general ensemble model, and not only for the local approximation GPs.

B.5 Experiments

In this section, we evaluate the quality of the aggregated estimator. We consider the

prediction quality of our proposed method and other related SOTA models by using

both simulated and real-world data sets. The quality of predictions is evaluated in two

ways: we use the conventional mean absolute error (MAE) and the root mean squared

error (RMSE). We use the standard squared exponential kernel with automatic relevance

determination and a Gaussian likelihood. The K-means method is used for partitioning

to divide the training data into some partitions.

B.5.1 Synthetic Example

We use the simulated data of a one-dimensional analytical function [38, 3],

f (x) = 5x2sin(12x)+(x3−0.5)sin(3x−0.5)+4cos(2x)+ε, (B.10)

where ε ∼ N (0,(0.2)2). We generate n = 104 training points in [0,1], and nt = 103

test points in [−0.2,1.2]. The data is normalized to zero mean and unit variance. We

vary the number of experts, M = {10,20,30,40}, to evaluate different partition sizes. The

prediction quality of the proposed ensemble is compared with the other baselines: GPoE

[37], RBCM [1], GRBCM [38], NPAE [44], and the full GP.

Figures B.2a and B.2b depict the prediction quality of different baselines. The ensem-

ble methods that use dependency between experts, i.e. EMGGM and NPAE, outperform

the CI-based baselines. However, the proposed method has slightly better predictions

than NPAE. Figure B.2c presents the computation time of the ensembles that use depen-

dency between experts. Remarkably, EMGGM provides predictions in just a fraction of

NPAE’s running time.
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(a) Mean Absolute Error(MAE) (b) Root Mean Squared Error (RMSE)

(c) Log of Prediction Time (in Second)

Figure B.2: Prediction quality of DGPs with respect for different number of experts in
the simulated data.

B.5.2 Realistic Datasets

In this section, we use a multivariate realistic dataset, Parkinson. It is a 20D dataset with

5875 instances which is divided into 5000 training examples and 875 test examples. We

consider the root mean squared error of the baselines’ prediction for M = 7,10,15 experts.

Because of the computational cost, we exclude the NPAE and the full GP methods, and

instead, we use linear regression in this experiment. Table B.1 shows the final results and

confirms the proposed method returns more accurate predictions than the other baselines.
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Table B.1: Prediction quality measures of DGP methods on Parkinson dataset.

GPoE RBCM GRBCM Lin-Reg EMGMM

M=7 0.0137 0.0132 0.0135 0.0168 0.0131
M=10 0.0152 0.0137 0.0139 0.0168 0.0135
M=15 0.0157 0.0140 0.0141 0.0168 0.0136

B.6 Conclusion

In this work, we have proposed a novel ensemble method, EMGGM, for distributed

GPs which aggregate dependent local experts’ predictions using GGMs. Our proposed

approach uses undirected graphical models and an EM algorithm to estimate the final

predictions. Through empirical analyses, we illustrated the superiority of EMGGM over

existing SOTA aggregation methods. Finally, future works can develop this aggregation

strategy to derive the full predictive distribution.

B.7 Appendix: Challenges and Further Discussions

B.7.1 Computational cost of EMGGM and NPAE

Both EMGGM and NPAE use dependent experts. However, there are two major differ-

ences between them. First, NPAE needs all training and test data points during aggre-

gation. Let Γi = kT
i∗(Ki +σ2I)−1. For a test point x∗, the pointwise covariance between

experts i and j in NPAE, K(x∗)i j, can be extended using (B.2) as

K(x∗)i j = cov(µ∗i (x∗),µ∗(x∗) j) =Cov(Γiyi,Γ jy j) = ΓiCov(yi,y j)ΓT
j = Γik(xi,x j)ΓT

j .

Therefore, all auto-covariance k(xi,xi) and cross-covariance k(xi,x j) matrices are re-

quired for NPAE aggregation which raises the storage costs.

Second, both aggregation methods have a O(M3) calculation in each iteration, the

inverse of M ×M matrix in NPAE and GLasso in the proposed method. NPAE should

do this costly calculation at each test point and therefore it is not efficient for large data

sets. However, the proposed model can converge after a small number of iterations.

When R≪ nt , the proposed method is much faster than NPAE. Although the conventional
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GLasso for network learning is a costly method O(M3), there are newer faster methods

to learn a GGM that can be used instead of the GLasso, see [63, 66, 64]. For instance,

the FST model [64] reduces the computational complexity of sparse Gaussian Graphical

Model to a much lower order of magnitude (O(M2)).

B.7.2 Gaussian Assumption

The normality assumption for joint distribution is not a restrictive assumption. In prac-

tice, we can relax this assumption and consider random variables without resorting to

multi-dimensional Gaussian distribution. As a semiparametric generalization for contin-

uous variables, authors in [68, 69] introduced the nonparanormal graphical model where

it is assumed that the variables follow a Gaussian graphical model only after some un-

known smooth monotone transformations on each of them. [70] considered Bayesian

inference in nonparanormal graphical models by putting priors on the unknown transfor-

mations through a random series based on B-splines.

On the other hand, nonparametric methods can be used for functional graphical mod-

els. Authors in [73] and [74] exerted additive conditional independence and functional

principal components to learn a graphical model when observations on vertices are func-

tions. This gives the result that the proposed strategy can be considered as a general

ensemble model, and not only for the local approximation GPs.

B.7.3 Latent Variable GGMs

Latent variable GGMs (LVGGMs) are used to estimate the distribution of the observed

variables with respect to some latent variables. GGMs with latent variables have been

widely considered over the past decade. Authors in [65] proposed Low-Rank Plus Sparse

Decomposition (LR+SD), a regularized maximum likelihood approach to estimate Ω

via convex optimization. The precision matrix in LR+SD contains two terms: sparse

structure Ωµ∗ and the low-rank terms L∗ =Ωµ∗y∗Ω
−1
y∗y∗Ωy∗µ∗ . The precision matrix in

this form is Ω =Ωµ∗µ∗ −L∗. The log-likelihood can be expressed in terms of the Sµ∗µ∗ ,

Ωµ∗µ∗ , and L∗:

L(Ωµ∗µ∗ ,L∗;Sµ∗µ∗) = log∣(Ωµ∗µ∗ −L∗)∣− trace(Sµ∗µ∗ (Ωµ∗µ∗ −L∗)) . (B.11)
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Essentially, it is a misspecified optimization problem because the precision matrix is

the sum of two matrices. However, if Ωµ∗µ∗ is sparse and there are few latent variables,

it is possible to decompose the precision matrix into its summands [71, 65]:

(Ω̂µ∗µ∗ , L̂∗) = argmin
Ωµ∗µ∗ ,L∗∈RM×M

−L(Ωµ∗µ∗ ,L∗;Sµ∗µ∗)+λ (γ ∥Ωµ∗µ∗∥1+∥L
∗∥∗) (B.12)

such that Ωµ∗µ∗ −L∗ ≻ 0, L∗ ⪰ 0 (B.13)

such that Ωµ∗ −L∗ ≻ 0, L∗ ⪰ 0. Here, λ > 0 and γ > 0 are tuning parameters for sparsity

and low rankness, and ∥L∗∥∗ denotes the nuclear norm of L∗ (i.e. the sum of its singular

values). To speeding up the LR+SD model, [66] proposed a non-convex optimization

model and showed that it is orders of magnitude faster than the convex relaxation-based

methods. Author in [72] proposed a direct approach via Expectation-Maximization al-

gorithm which converts LR+SD model to a conventional GGM. Here, we modified this

approach and proposed EMGGM.

However, LR+SD model has been developed to estimate the marginal distribution of

observed variables, i.e. p(µ∗) = ∫ p(µ∗,y∗)dy∗, while the desired predictive distribution

is the conditional distribution of y∗ given local experts’ predictions p(y∗∣µ∗). Hence,

further work could consider the modified form of the log-likelihood in (B.11) and the

convex optimization in (B.12) to estimate the aggregate estimator y∗A in (B.4) via a convex

or non-convex optimization problem.
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Appendix C

Model Selection in Distributed
Gaussian Processes: A Markov
Random Fields Approach

This chapter includes the following publications:

• Hamed Jalali, Martin Pawelczyk and Gjergji Kasneci. Model Selection in Local

Approximation Gaussian Processes: A Markov Random Fields Approach. In 2021

IEEE International Conference on Big Data (Big Data), 2021. doi: 10.1109/Big-

Data52589.2021.9672077.

The Appendix section C.7 is based on this article:

• Hamed Jalali, Martin Pawelczyk and Gjergji Kasneci. Gaussian experts selection

using graphical models. Published on ArXiv, 2021. doi: 10.48550/arXiv.2102.01496.https:

//arxiv.org/abs/2102.01496
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Appendix C Model Selection in Distributed Gaussian Processes: A Markov Random Fields Approach

C.1 Abstract

Local approximations are popular methods to scale Gaussian processes (GPs) to big data.

Local approximations reduce time complexity by dividing the original dataset into sub-

sets and training a local expert on each subset. Aggregating the experts’ prediction is

done assuming either conditional dependence or independence between the experts. Im-

posing the conditional independence assumption (CI) between the experts renders the

aggregation of different expert predictions time efficient at the cost of poor uncertainty

quantification. On the other hand, modeling dependent experts can provide precise pre-

dictions and uncertainty quantification at the expense of impractically high computa-

tional costs. By eliminating weak experts via a theory-guided expert selection step, we

substantially reduce the computational cost of aggregating dependent experts while en-

suring calibrated uncertainty quantification. We leverage techniques from the literature

on undirected graphical models, using sparse precision matrices that encode conditional

dependencies between experts to select the most important experts. Moreover, our ap-

proach also provides a solution to the poor uncertainty quantification in CI-based models.

C.2 Introduction

Gaussian processes [10] are interpretable and powerful statistical methods to deal with

uncertainty in prediction problems. These non-parametric methods apply Bayes’ theo-

rem to discover complex linear and non-linear structures without the need for restrictive

assumptions on the model. Due to their capabilities, they are widely used in practical

cases, e.g. optimization [11], data visualization, and manifold learning [12], reinforce-

ment learning [15], multitask learning [17], online streaming models [19, 20] and time

series analysis [21, 22].

The main limitation of these models is their computational cost on data sets with

large numbers of observations. For a data set of size n, the time and space complexities

during training are O(n3) and O(n2), respectively. These high complexities are due to

the inversion of the n×n kernel matrix and determinant computation. On the test set,

the predictions require additional time and space complexities of O(n logn). This issue

restricts GPs to relatively small training data sets of the order of O(104).
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A popular method to scale GPs is the common divide-and-conquer approach. The

idea is to partition the training data, perform local inference for each part separately,

and combine the results to obtain a global posterior approximation [39, 41, 37, 1]. This

distributed training approach generally imposes a conditional independence assumption

(CIA) between partitions, which allows factorizing the global posterior distribution as

a product of local distributions. Although this assumption reduces the computational

cost of GPs, it leads to statistical inconsistency [46, 45]. That is, in the presence of infi-

nite data, CIA based posterior approximations do not converge to the full GP posterior.

Moreover, these approaches only provide pointwise variance and confidence intervals

instead of a full GP predictive distribution. Solutions, that cope with the statistical con-

sistency problem, suffer from extra computational costs [44, 38]. Hence, these solutions

are impractical for large data sets.

Unlike the divide-and-conquer approach, which uses the full training set, another

strategy tries to use a small part of the training data. For instance, the sparse approx-

imation approach employs a subset of the data (called inducing points) and Nyström

approximations to estimate the posterior distribution [30, 31, 84, 85]. Although this line

of work provides a full probabilistic model, its capacity is restricted by the number of in-

ducing points [33, 34], and therefore it is not appropriate for large and high dimensional

data sets.

In this paper, we propose a new expert selection approach for distributed GPs which

improves the prediction quality in both dependent and independent experts aggregation

methods. The full experts set is divided into two subsets, important and unimportant

experts. The importance of an expert is measured according to his interactions with

other experts. Particularly, we use a Markov random field to construct a sparse undi-

rected graph of experts that provides information about the overall interactions. Experts

with more significant connections are treated as important experts and are used for the

final aggregation. Furthermore, relative to consistent aggregation methods that use de-

pendency information, our approach also yields consistent predictions and substantially

speeds up the running time, while maintaining competitive prediction performance.

The structure of the paper is as follows. Section C.3 introduces the problem formula-

tion and related works. In Section C.4 the proposed model and the inference process are

presented. Section C.5 shows the experimental results and we conclude in Section C.6.
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C.3 Background and Problem Set-up

C.3.1 Gaussian Process

Let us consider the regression problem y = f (x) + ε , where x ∈ RD and ε ∼ N(0,σ2)
which corresponds to the Gaussian likelihood p(y∣ f ) = N( f ,σ2I). The objective is to

learn the latent function f from a training set D = {X ,y} of size n. The Gaussian process

regression is a collection of random variables of which any finite subset has a joint Gaus-

sian distribution. The GP then describes a prior distribution over the latent functions

as f ∼GP(m(x),k(x,x′)), where m(x) is a mean function and k(x,x′) is the covariance

function (kernel) with hyperparameters ψ . The prior mean is often assumed to be zero,

and the kernel is the well-known squared exponential (SE) covariance function equipped

with automatic relevance determination (ARD),

k(x,x′) = σ
2
f exp(−1

2

D
∑
d=1

(xd −x′d)2
Ld

) ,

where σ2
f is the signal variance, and Ld is an input length-scale along the d-th dimension,

and ψ = {σ2
f ,L1, . . . ,LD}. To train the GP, the hyperparameters θ = {σ2,ψ} should be

determined such that they maximise the log-marginal likelihood,

log p(y∣X) = −1
2

yTC−1y− 1
2

log ∣C∣− n
2

log2π, (C.1)

where C =K+σ2I and K = k(X ,X). According to (C.1), the training step scales asO(n3)
because it is affected by the inversion and determinant of the n×n matrix C. Therefore,

for large data sets, GP training is a time-consuming task and imposes limitations on the

scalability of GPs.

C.3.2 Local Gaussian Process Experts

The local approximation Gaussian process uses the fact that the computations of the

standard GP can be distributed among individual computing units. To do that, one divides

the full training data set D into M partitions (called experts) and trains standard GPs on

these partitions. Let D′ = {D1, . . . ,DM} be the partitions, and Xi and yi be the input and
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output of partition Di. For a test set X∗, the predictive distribution of the i-th expertMi

is pi(y∗∣Di,X∗) ∼ N(µ∗i ,Σ∗i ), where its mean and covariance are respectively:

µ
∗
i = kT

i∗(Ki+σ
2I)−1yi, (C.2)

Σ
∗
i = k∗∗−kT

i∗(Ki+σ
2I)−1ki∗, (C.3)

where Ki = k(Xi,Xi), ki∗ = k(Xi,X∗), and k∗∗ = k(X∗,X∗). Aggregation is based on the as-

sumption that the experts are conditionally independent leading to predictive distribution

of the form

p(y∗∣D,X∗) ∝
M
∏
i=1

pβi
i (y∗∣Di,X∗)

where β = {β1, . . . ,βM} controls the expert importance.

The most popular aggregation methods are product of experts (PoE) [41] and Bayesian

committee machine (BCM) [42]. Generalised product of experts (GPoE) [37] and robust

Bayesian committee machine (RBCM) [1] are more recent modified versions of PoE and

BCM, which add the experts’ weight quantifying each expert’s contribution to the pre-

dictive distribution. Generalized robust Bayesian committee machine (GRBCM) [38] is

the most recent model, which uses a random subset Db drawn from the entire training

data and treats it as a global communication expert to augment each partition Di.

To choose the weights βi several heuristics have been put forward. The authors of [37]

suggested the difference in differential entropy between the prior and posterior distribu-

tion of each expert, i.e. βi = 1
2(logΣ∗∗− logΣ∗i ) where the (Σ∗∗)−1 is the prior precision

of p(y∗). It has been used widely in GPoE, RBCM, and GRBCM. This varying weight

may produce undesirable prediction error for GPoE. To fix this issue, [1] suggested to

choose simple uniform weights βi = 1
M , which provides better predictions.

C.3.3 Dependencies Between Experts’ Predictions

Assume the Gaussian experts M= {M1, . . . ,MM} have been trained on different par-

titions and the first and second moments of their local posterior distributions have been

defined in (C.2) and (C.3). Let µ∗(x∗) = [µ∗1 (x∗), . . . ,µ∗M(x∗)]T be an M×1 vector that

contains the centered predictions of M experts for a given test point x∗ ∈ X∗. Assuming

that yi in (C.2) has not yet been observed, the authors of [44] considered the prediction
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mean µ∗i (x∗) as a random variable. This allows us to consider correlations between the

experts’ predictions and latent variable y∗, Cov(µ∗i ,y∗), and also leverage internal corre-

lations between experts, Cov(µ∗i ,µ∗j ) where i, j = 1, . . . ,M. According to (C.2), the local

experts are linear estimators: µ∗i = Γiyi, where Γi = kT
i∗(Ki+σ2I)−1. Using this result we

can find the analytical expression for both covariances:

kA(x∗)i =Cov(µ∗i (x∗),y∗(x∗)) =Cov(Γiyi,y∗(x∗))

= ΓiCov(yi,y∗(x∗)) = Γik(xi,x∗), (C.4)

KA(x∗)i j =Cov(µ∗i (x∗),µ∗j (x∗)) =Cov(Γiyi,Γ jy j)

= ΓiCov(yi,y j)ΓT
j = Γik(xi,x j)ΓT

j . (C.5)

C.3.4 Nested Point-wise Aggregation of Experts (NPAE)

Assume the means (predictions) of the local predictive distributions are random vari-

ables. Then kA(x∗) =Cov(µ∗(x∗),y∗(x∗)) and KA(x∗) =Cov(µ∗(x∗),µ∗(x∗)) are the

point-wise covariances. For each test point x∗, kA(x∗) is a M ×1 vector and KA(x∗) is

a M×M matrix and according to (C.4) and (C.5) their elements are defined as kA(x∗)i =
Γik(Xi,x∗) and KA(x∗)i j = Γik(Xi,X j)ΓT

j , where Γi = k(Xi,x∗)T (Ki +σ2I)−1 and i, j =
1, . . . ,M. The task is to aggregate variables µ∗i (x∗), i = 1, . . . ,M into a unique predictor

y∗A(x∗) of y∗(x∗).
As a consequence from the choice of the prior, the joint distribution of random vari-

ables (y∗,µ∗1 , . . . ,µ∗M) is a multivariate normal distribution because any vector of linear

combinations of observation is itself a Gaussian vector. This fact is used to define the

aggregated predictor, but it also implies that the experts’ predictions (µ∗1 , . . . ,µ∗M) follow

a multivariate Gaussian. Employing properties of conditional Gaussian distributions for

the centered random vector (y∗(x∗),µ∗(x∗)) allows for the following aggregation:

Definition 3 (Aggregated predictor) [44]). For the test point x∗ and sub-model predic-

tions µ∗1 (x∗), . . . ,µ∗M(x∗), the aggregated predictor is defined as

y∗A(x∗) = kA(x∗)T KA(x∗)−1
µ
∗(x∗). (C.6)

In [44, 46] the authors showed that this linear estimator is the best linear unbiased
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predictor (BLUP) where the invertibility condition on KA(x∗) can be avoided by using

matrices pseudo-inverses. This aggregated predictor has Gaussian distribution and its

moments can easily be calculated using kA(x∗) and KA(x∗). This method is known as

the nested pointwise aggregation of experts (NPAE) and provides consistent predictions.

C.3.5 Consistency

The conventional PoE, GPoE, BCM, and RBCM produce inconsistent predictions and

generally do not converge to the predictive distribution of the standard GP when n→∞
[43, 46]. Using normalized equal weights, GPoE asymptotically converges to the full

GP distribution, however, it is too conservative [45]. Integrating a global partition into

RBCM, [38] showed that GRBCM can provide consistent results. However, it still uses

the conditional independence assumption between non-global experts, which sometimes

yields poor results.

To deal with the inconsistency issue, NPAE considers dependencies between indi-

vidual experts’ predictions and uses the property of conditional Gaussian distributions

to find the predictive distribution of y∗. Although it theoretically provides consistent

predictions, its aggregation step suffers from high time complexity because it needs to

determine the inverse of a M×M covariance matrix between experts at each test point x∗,

i.e. O(ntM3), where nt is the number of available test points. This leads to impractically

long running times for many partitions and large test sets.

To mitigate the drawbacks of the NPAE and CI-based aggregations, we will implicitly

incorporate an expert selection step by using expert interaction strengths. The influences

of the weak experts’ prediction on prediction quality and computational cost can be elim-

inated by excluding them in both CI-based and NPAE methods. In the next section, we

present our new approach. First, we explain the proposed pruning step which is based on

undirected graphical models. Second, we propose a new aggregation method with this

pruning approach and consider its asymptotic properties.
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C.4 Expert Selection with Gaussian Graphical Models

At the heart of our work is the following ingredient. We assume that the local experts

can be divided into 2 sets: important and unimportant experts. Aggregation based on

important experts provides consistent and competitive predictions with significantly re-

duced computational time. Instead of expert selection, state-of-the-art (SOTA) methods

use expert weighting, i.e. they assign weights to each expert, but they do not provide

a systematic way to determine the most important experts. In NPAE, the point-wise

weights of local expert predictions are defined as kA(x∗)T KA(x∗)−1. In section C.4.1, we

propose a novel approach that estimates the set of important experts based on the experts’

interactions in an undirected graph.

C.4.1 Gaussian Graphical Models for Correlated Gaussian Experts

Since the experts’ mean predictors are random variables with joint Gaussian distribution,

we can study them using the machinery of sparse Gaussian graphical models (GGM). In

GGMs, the assumption is that there exist few interactions, i.e., edges, between variables;

a penalty parameter controls the network’s sparsity. It will allow us to obtain a set of

important experts M̃ = {M̃1, . . . ,M̃p}, where p <M.

Definition 4 (Important and Unimportant Experts). LetM= {M1, . . . ,MM} be the

set of GP experts and let G(V,E) be their Gaussian graph, where V =M and the edges

E are the interactions between experts. Then, M̃α is the set of important experts, if it

contains α ×100 of the most connected experts in G, where α ∈ [0,1]. Its complement,

M̃c
α , contains the remaining unimportant experts andM=M̃α ∪M̃c

α . The selection rate

α controls how many experts should be assigned to M̃α , i.e. ∣M̃α ∣ =Mα = ⌈αM⌉, where

∣ ⋅ ∣ denotes the cardinality.

Gaussian Graphical Models. Undirected graphical models (known as pairwise Markov

random fields (MRF)) provide a framework for encoding joint distributions over large

numbers of interacting random variables. This framework uses a matrix of parameters to

encode the graph structure. In other words, it encodes the edges as parameters: if there

is a connection between two nodes, then there is a non-zero parameter indicating that the

edge between nodes is present in the graph. In Gaussian graphical models [52, 53, 54]
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the nodes are continuous Gaussian random variables. The main assumption underlying

GGMs is that all variables follow a multivariate Gaussian distribution,

p(µ∗∣ξ ,Ψ) = 1
(2π)M/2∣Ψ∣1/2

exp{−1
2
(µ∗−ξ)T Ψ

−1(µ∗−ξ)} , (C.7)

where µ∗ = {µ∗1 , . . . ,µ∗M} are the variables (nodes), M is the number of variables, and

ξ and Ψ are the mean vector and the covariance matrix, respectively. We can rewrite

(C.7) using the precision matrix Ω,

p(µ∗∣η ,Ω) = ∣Ω∣
1/2

(2π)M/2
exp{−1

2
(µ∗−ξ)T Ω(µ∗−ξ)} ∝ exp{−1

2
µ
∗T

Ωµ
∗+η

T
µ
∗} ,
(C.8)

where Ω =Ψ−1 and η =Ωξ . The matrix Ω is also known as the potential or infor-

mation matrix. Without loss of generality, let ξ = 0, then the distribution of a GGM

shows the potentials defined on each node i as exp{−Ωii(µ∗i )2} and on each edge (i, j)
as exp{−Ωi jµ

∗
i µ∗j }. In the correlation network, expressed through (C.7), Ψ encodes in-
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(a) M = 15, α = 50%
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(b) M = 15, α = 70%
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(c) M = 15, α = 80%
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(d) M = 20, α = 50%
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(e) M = 20, α = 70%
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(f) M = 20, α = 80%

Figure C.1: Ablation experiment 1. Expert selection for synthetic data from (C.13) with
varying expert set strength α , M = {15, 20}, and λ = 0.1. The green nodes reveal the α%
of the best experts w.r.t. their individual MSE errors while the red nodes are the most
important experts according to Definition 5.

dependences: if Ψi j = 0, then µ∗i and µ∗j are assumed to be independent. On the other
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hand, in the GGM in (C.8) we have: if Ωi j = 0, then µ∗i are µ∗j are conditionally in-

dependent given all other variables, i.e. there is no edge connecting µ∗i and µ∗j in the

graph.1Besides, Ωi j ≈ 0 means there is a weak interaction between µ∗i and µ∗j .

C.4.2 Network Learning for the Aggregated Posterior

We use the GGM as follows: the locally trained experts represent nodes and network

learning involves computing the precision matrix Ω that provides the interactions (edges)

between the experts. To keep inference in GGMs tractable, one imposes a sparsity as-

sumption: there exist few edges in the network, and thus Ω is a sparse matrix. This

assumption is empirically meaningful in an experts’ network because the strong interac-

tion of one expert can be typically limited to only a few other experts. In fact, since the

local predictions of this expert are close to the local predictions of its adjacent experts, it

has stronger interactions (or similarities) with them, see [55] for more information about

similarity and dissimilarity.

The literature has suggested several inference algorithms to recover the edge set.

Lasso regression [56, 57] can be used to perform neighborhood selection to recover the

network. [57] and [58] proved that, under some regularity conditions, Lasso asymptoti-

cally recovers the correct and relevant subset of edges. The authors of [59] proposed a

more efficient inference algorithm, the graphical Lasso (GLasso), which adopts a max-

imum likelihood approach subject to an l1 penalty on the coefficients of the precision

matrix. Its inference is fast and has been improved in subsequent works [86, 60, 61, 62].

The authors in [3] used the GLasso to detect dependencies between Gaussian experts and

define clusters of strongly dependent experts.

The GLasso objective is formalized as follows. Let S be the sample covariance of

local predictions µ∗. Then, the Gaussian log likelihood of the precision matrix Ω is

equal to log ∣Ω∣ − trace(SΩ). The Graphical Lasso maximises this likelihood subject to

an element-wise l1-norm penalty on Ω. More precisely, the objective function is,

Ω̂λ = argmax
Ω

log ∣Ω∣ − trace(SΩ)−λ ∥Ω∥1 ,

1We would like to emphasize that this does not hold in general, but here it does hold since we assumed
that all variables are jointly Gaussian distributed.
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where the estimated expert network is then given by the non-zero elements of Ω̂λ .

Definition 5 (λ -related Expert Importance). The λ -related importance of expertMi

based on its interactions is defined as Ii = ∑M
j=1, j≠i ∣Ω̂λ ,i j∣, resulting in the sorted impor-

tance set I = {Ii1 ,Ii2, . . . ,IiM}.

Figure C.1 depicts graphs based on 5×103 training points from (C.13) divided among

15 experts (333 training points for each expert) and 20 experts (250 training points for

each expert) and 500 test points. Figures (a), (b), and (c) present the graphs of 15 experts

while (d), (e), and (f) show the related graphs of 20 experts. First, after training the local

experts the prediction quality of each expert is measured based on their mean squared

error (MSE). Then the experts that are among the α% of the best experts with the lowest

MSE values are highlighted in green. To evaluate the proposed expert selection approach,

the most important experts – based on their interactions with other experts – are depicted

as red nodes. For Figure C.1 we have used the network inference method based on

GLasso approximation [61] and Definition 5. It can provide a selection approach which

tends to choose the best experts as the important experts.

C.4.3 Point-wise Aggregation with Expert Selection

Assume M̃α and M̃c
α are important and unimportant experts’ sets as defined by Defini-

tions 4 and 5. Further, let µ̃∗α represent the local predictions of the experts in M̃α . We

use k̃α and K̃α to denote Cov(µ̃∗α ,y∗) and Cov(µ̃∗α , µ̃∗α), respectively. Using Definition

4, the following proposition gives the predictive distribution of NPAE*, our new NPAE

estimator with expert selection.

Proposition 3 (Predictive Distribution). Let X be a compact, nonempty subset ofRn×D,

µ∗(x∗) = [µ∗1 (x∗), . . . ,µ∗M(x∗)]T be the sub-models’ predictions at a test point x∗. We

further assume that (i) limn→∞M =∞ and (ii) limn→∞m0 =∞, where m0 is the partition

size. The vector (µ∗1 , . . . ,µ∗M,y∗) is a multivariate Gaussian distribution and we obtain

the following results:

(I) The experts’ importance-based aggregated estimator of y∗(x∗) given µ∗(x∗) is
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Gaussian with mean and variance given by:

E[y∗(x∗)∣µ̃∗α(x∗)] = y∗α(x∗)

= k̃α(x∗)T K̃α(x∗)−1
µ̃
∗
α(x∗) (C.9)

V[y∗(x∗)∣µ∗(x∗)] = k(x∗,x∗)

− k̃α(x∗)T K̃α(x∗)−1k̃α(x∗). (C.10)

(II) y∗α(x∗) is a consistent estimator for y∗(x∗), i.e.

lim
n→∞

sup
x∗∈X∗

E[y∗(x∗)−y∗α(x∗)]
2→ 0. (C.11)

(III) y∗α(x∗) provides an appropriate approximation for y∗A(x∗) in (C.6), i.e.

lim
n→∞

y∗α(x∗) → y∗A(x∗). (C.12)

Proof. The proof of part (I) and (II) is obvious using the property of conditional Gaus-

sian distribution and NPAE method. We here proof part (III).

Our proof is based on disjoint K-means partitioning, and the proof for random par-

titioning is similar. For the proof, we need to show that the importance-based esti-

mator y∗α(x∗) is almost equivalent to y∗A(x∗) in (C.9). To do that, we partition both

kA(x∗) and KA(x∗)−1 with respect to M̃α and M̃c
α . Hence, we obtain kA(x∗)= [kα(x∗),kc(x∗)],

µ∗(x∗) = [µ̃∗α(x∗),µ∗c (x∗)], and

KA(x∗)−1 =
⎡⎢⎢⎢⎢⎣

Kα(x∗)−1 Kαc(x∗)−1

Kt
αc(x∗)−1 Kc(x∗)−1

⎤⎥⎥⎥⎥⎦
.

Due to the definition of M̃c
α , we have Kαc(x∗)−1 ≈ 0. Note that Kc(x∗)−1 is approxi-

mately a diagonal matrix, where the diagonal elements are pointwise variances of ex-

perts’ predictions corresponding to (C.3). For the sake of better readability, we omit x∗
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from our notation. Now, we have:

y∗A = kT
A K−1

A µ
∗ = [kα ,kc]

⎡⎢⎢⎢⎢⎣

K−1
α K−1

αc

K−t
αc K−1

c

⎤⎥⎥⎥⎥⎦
[µ̃∗α ,µ∗c ]

= kαK−1
α µ̃

∗
α +kcK−t

αcµ̃
∗
α +kαK−1

αc µ
∗
c +kcK−1

c µ
∗
c

≈ kαK−1
α µ̃

∗
α +kcK−1

c µ
∗
c .

What remains to be shown is that when n→∞, kcK−1
c µ∗c ≈ 0. LetMci be the i-th partition

of M̃c
α . SinceMci does not have strong interactions with other experts given x∗, the off-

diagonal values of KA(x∗)−1 related to this partition are small. Since the interactions

between experts are estimated using their local predictions, small interactions between

this partition and the others means its prediction µ∗ci
is not close to the other experts’

predictions, see (C.5) and the definition of Γi. According to the disjoint partitioning

method, we can conclude that x∗ is away from the training partitionMci (If x∗ is close

to the training partition Mci , then its local predictions should be approximately close

to the local predictions of its neighbor partitions and therefore, it should have strong

interactions with them but it not true due to the definition of M̃c
α , see Section C.4.5 for

more details.).

It is clear that the further x∗ is away from a partition, the higher the relative distance

rci = ∥x∗−x∥x∈Mci
grows. Using assumption (ii) stated in proposition 3, we have rci →∞

since n→∞. It says by increasing the sample size, the distance between a test point and

the partitions away from that increases. Thus we have limrci→∞
Σ∗i = k∗∗, i.e. k(x∗,Xci)→

0. Without loss of generality, we can assume that δ is an upper bound for the values of

µ∗c . Then

(kcK−1
c µ

∗
c )i ≤ k(x∗,Xci)[k(x∗,x∗)−k(x∗,Xci)T (Kci +σ

2I)−1k(x∗,Xci)]
−1

δ → 0.

Therefore, y∗A(x∗) ≈ y∗α(x∗) when n→∞.

The quality of this approximation has been discussed in Section C.5 by both syn-

thetic and real-world data sets. As a direct consequence, y∗α(x∗) inherits the asymptotic

properties of y∗A(x∗). A detailed proof, showing that y∗A(x∗) is statistically consistent can

be found in [46] (see their proof of Proposition 2), which employs a triangular array of

observations. ◻
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Proposition 3 reveals that the aggregation of the most important experts in NPAE*

leads to consistent predictions and the estimator in (C.9) provides an appropriate approx-

imation for the NPAE estimator in (C.6). This expert selection offers two interesting

implications. First, it suggests that the unimportant experts are irrelevant to obtain con-

sistent predictions and thus the prediction quality can suffer from these weak experts.

Second, using only the most important experts indicates that computation time can be

substantially reduced. In a nutshell, Proposition 3 suggests that the described expert

selection strategy leads to a consistent and efficient estimator.

Figure C.2 presents the effect of Definition 5 on the prediction quality for 5× 103

training points from (C.13) divided among 20 experts (250 training points for each ex-

pert) and 500 test points. The quality of predictions is evaluated in three ways: the mean

absolute error (MAE), the standardized mean squared error (SMSE), and the mean stan-

dardized log loss (MSLL). The SMSE measures the accuracy of the prediction mean,

while the MSLL evaluates the quality of the predictive distribution [10]. We can see a

significantly better quality of the aggregation based on the most important experts com-

pared to the least important ones in the NPAE* method.

C.4.4 CI-Based Models with Experts Selection

Our selection strategy can easily be extended to CI-based methods. Although it can not

improve the asymptotic properties of CI-based models, it improves upon the prediction

quality of the baseline models. Thus, the modifications consist of excluding the weak

experts based on the procedure explained in Section C.4.1 which leads to (G)PoE* and

(R)BCM* models.

Using the expert selection with GRBCM requires an extra step. The modification in

the GRBCM model, say GRBCM*, consists of the following two tasks:

(i) excluding the weak experts based on the procedure explained in Section C.4.1

(ii) choosing Ii1 (i.e., the top-most expert) in the sorted importance set I as the global

communication expert (see Definition 5).

The global communication expert Db in GRBCM* can be selected via sorted im-

portance set I in Definition 5, because it contains expert interactions and the intensity

114



C.4 Expert Selection with Gaussian Graphical Models

(a) MAE (NPAE*) (b) SMSE (NPAE*)

(c) MSLL (NPAE*)

Figure C.2: Ablation experiment 2. Expert selection for synthetic data from (C.13) with
varying expert set strength α and λ = 0.1. The blue line shows the prediction quality
when α% of most important experts are chosen using the GGM. The red line shows
the prediction quality when the least important experts (according to Definition 5) are
chosen.

of those interactions. The GRBCM* maintains the desired asymptotic properties of the

original GRBCM, i.e. it leads to consistent estimation of the full Gaussian process at

the presence of the assumption (i) and (ii) in Proposition 3 when n→∞. These modifi-

cations lead to a better predictive distribution at the end. While the first step eliminates
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the negative effects of weak experts in the final aggregation, the second step chooses

the most reliable (i.e., interconnected) expert in the related GGM as a global commu-

nicator. Note that the conventional GRBCM approach does not propose a strategy for

selecting the global communication expert. Since this expert has a crucial impact on the

final aggregation, the most interconnected expert is an appropriate choice for the global

communication.

C.4.5 Relation between Experts Weights and expert selection

Here, we give a brief overview of how expert weighting is conducted for CI-based meth-

ods, and discuss the difference to our expert selection approach.

Assume a test point x∗ is far away from a data partition Di. Using this partition,

the prediction will generally be poor. Then, k(x∗,Xi) ≈ 0, and Σ∗i ≈ Σ∗∗. Suppose the

weights are defined as the difference in differential entropy. Then βi ≈ 0. Thus CIA

based distributed GPs tend to assign a small weight to Di. On the other hand, in our

expert selection approach, since Di provides a poor prediction at x∗, its interactions with

the other experts are weak, see (C.5) when Γi ≈ 0. Hence, our approach recognizes

this expert as an irrelevant expert. Consequently, expert selection eliminates this expert,

while CIA based distributed GPs tend to keep this expert and assign a small weight to

Di.

Finally, if equal weights are used for the CIA based methods, i.e. βi = 1/M, weak

and strong experts have an equal effect on the aggregated predictions. This may not be

appropriate, particularly when there is a large number of candidate experts.

C.4.6 Computational Costs

The expert selection step significantly reduces the prediction cost of the NPAE method.

The prediction cost of the original NPAE method is O(ntM3), where nt is the number

of available test points and M is the number of experts. Glasso has also cubic time

complexity O(M3) 2 . Therefore, the complexity of NPAE* is approximately O(ntM3
α +

M3) ≈O((ntα
3)M3) where α < 1. It means the cost of Glasso can be ignored when nt is

2There are newer faster methods to learn a GGM that reduce the computational complexity of sparse
Gaussian Graphical Model to a much lower order of magnitude (O(M2

)), see [63, 64].
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large and the aggregation complexity of NPAE* is much lower than NPAE. In CI-based

methods, the complexities of the original and modified versions are of the same rate

when the number of experts is large, see Section C.5.

C.5 Experiments

In this section, we evaluate the quality of the expert-importance-based estimator. We

consider the prediction quality of our proposed model and other related SOTA models

by using both simulated and real-world data sets. The quality of predictions is evaluated

in two ways: we use the standardized mean squared error (SMSE) and the mean stan-

dardized log loss (MSLL). In addition, the conventional mean absolute error (MAE) is

also used in Section C.5.1. We use the standard squared exponential kernel with auto-

matic relevance determination and a Gaussian likelihood. Since the disjoint partitioning

of training data captures the local features more accurately and outperforms random par-

titioning [38], it is mostly used in our experiments. All experiments have been conducted

in MATLAB using the GPML package.3

C.5.1 Sensitivity Analysis using Synthetic Example

The goal of our first experiment is to study the effect of expert selection on prediction

quality and computation time of the NPAE method. It is based on simulated data of a

one-dimensional analytical function [38],

f (x) = 5x2sin(12x)+(x3−0.5)sin(3x−0.5)+4cos(2x)+ε, (C.13)

where ε ∼N (0,(0.2)2). We generate n=5×103 training points in [0,1], and nt =0.1n test

points in [−0.2,1.2]. The data is normalized to zero mean and unit variance. We vary the

number of experts, M = {10,20,30,40,50}, to consider different partition sizes. K-means

method is used for the partitioning to compare the prediction quality of NPAE* with its

original version NPAE, GPoE, RBCM, GRBCM and the full GP. Since the quality of

PoE and BCM methods are low, we ignore them in this part. For α , we use two values,

0.5 and 0.8, which mean 50% and 20% of experts are excluded in the final aggregation.
3http://www.gaussianprocess.org/gpml/code/matlab/doc/
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(a) (b)

(c) (d)

Figure C.3: Prediction quality and computation time as a function of experts. MAE,
SMSE, MSLL, and running time of NPAE* with 50% and 80% of experts ,NPAE,
GPoE, RBCM, GRBCM, and full GP for 5 × 103 training points and partition size
M = 10,20,30,40,50 with K-means partitioning. The x-axis shows the number of parti-
tions (experts) (M) used in training step for fixed λ = 0.1.

Figure C.3 depicts the prediction quality of NPAE* compared to other baselines and

the full GP. For NPAE*, we vary the percentage of selected experts which leads to

NPAE*(0.5) and NPAE*(0.8). These two methods reflect the prediction quality of the ap-

proximation method, proposed in Proposition 3 for pointwise NPAE method. The plots

in C.3a, C.3b and C.3c indicate that even 50 percent of the highly connected experts, as

selected by NPAE*(0.5), provide accurate approximation for NPAE while NPAE*(0.8)

even improves the prediction quality of NPAE to some extent. When the number of

experts increases, the difference in prediction error between NPAE family and CI-based
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models increases, implying that with small partition size CI-based models are not capable

to provide accurate predictions. Figure C.3d depicts the trade-off between the inclusion

of more experts and computation time in NPAE method. Remarkably, NPAE*(0.5) and

NPAE*(0.8) provide competitive prediction quality compared to NPAE in just a fraction

of NPAE’s running time.

(a) MAE (b) SMSE

(c) MSLL

Figure C.4: MAE, SMSE and MSLL of NPAE* method with α = 0.5 and α = 0.8 for
different values of the penalty term λ .

Finally, Figure C.4 presents the varying of the sparsity parameter λ to see how it

affects the performance of NPAE*. It depicts the prediction quality measures for different

λ values for 5×103 observations of the synthetic data set in (C.13) and M = 20. In this
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experiments, NPAE*(0.5) and NPAE*(0.8) are used, which are related to α = 0.5 and

α = 0.8, respectively. As the figure C.4 shows, small and large values (i.e. smaller than

0.05 or larger than 0.5) lead to slightly poor results but for values between 0.05 and 0.5,

the network shows stable results. For the small λ value, the graph is dense with more

edges while large λ leads to a very sparse network with only nodes and very few edges.

Therefore, they do not provide appropriate results. The figures demonstrate λ ≈ 0.1 is an

appropriate choice to do the expert selection step.

A similar analysis can be found in Figure C.2 for α when M = 20. The blue lines

show the prediction quality of NPAE* when the value of the α changes ( α = 1 shows the

conventional NPAE method). We can see that when for α ≥ 0.5, the blue lines are almost

horizontal, which means for values in this range, NPAE* returns a very close prediction

to the standard NPAE. By increasing the α , the computational cost of NPAE* raises and

approaches the NPAE’s cost.

C.5.2 Real-World Data Sets

Partitioning Strategies in a Medium-Scale Data Set

In this section, we use a medium-scale real-world data set to assess the effect of the

data assignment strategy on the prediction quality. The Pumadyn4 is a generated data

set with 32 dimensions and 7,168 training points and 1,024 test points. Both disjoint

and random partitioning are used to divide the data set into 15 subsets. We consider the

GPoE, RBCM, GRBCM, and NPAE with random and K-means partitioning. For the

GPoE, RBCM, GRBCM and NPAE, we evaluate the proposed expert selection strategy

with α = 0.8 for GPoE, RBCM and GRBCM and α = 0.5 and α = 0.8 for NPAE. The

penalty term λ is 0.1 in this experiment.

Table C.1 depicts the prediction quality of local approximation methods for this data

set. The column Type shows the interactions between experts in the aggregation method,

D for dependent experts, and CI for conditionally independent experts. The GPoE*,

RBCM*, GRBCM*, and NPAE* are the modified versions of GPoE, RBCM, GRBCM,

and NPAE, respectively. For CI-based methods, the modified methods outperform their

original methods. For NPAE, the NPAE* with 50% of the experts returns an appropriate

4https://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
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Table C.1: SMSE and MSLL of different baselines on the Pumadyn data set for different
partitioning strategies. Both dependent (D) and conditionally independent (CI) aggrega-
tion methods are used.

K-means Random

Model Type SMSE MSLL SMSE MSLL

GPoE CI 0.0483 -1.5166 0.0488 -1.5125
GPoE* CI 0.0477 -1.5213 0.0485 -1.518
RBCM CI 0.0478 1.1224 0.0485 2.9205
RBCM* CI 0.0474 0.3949 0.0482 1.7881
GRBCM CI 0.0499 -1.4949 0.0507 -1.502
GRBCM* CI 0.0488 -1.508 0.0491 -1.510

NPAE*(0.5) D 0.0470 -1.5285 0.0477 -1.5265
NPAE*(0.8) D 0.0468 -1.531 0.0474 -1.530
NPAE D 0.0466 -1.536 0.0472 -1.534

approximation for NPAE which has been discussed in Proposition 3. The NPAE* with

80% of the experts excludes only weak experts which leads to a significant improvement

in prediction quality and offers results very close to the original NPAE. Besides, it has

been widely accepted that the local features of the data can be captured more accurately

in disjoint partitioning, see [38]. Table C.1 confirms this fact where the original and

modified versions of aggregation methods reveal better prediction quality in K-means

partitioning.

Figure C.5 depicts the prediction time of different baselines on the Pumadyn data set

using both partitioning strategies. Figure C.5a compares the impact of our expert selec-

tion approach with NPAE and confirms that NPAE* is an appropriate fast approximation

of NPAE. Its running time is up to one third that of NPAE while providing competitive

results. On the other hand, Figure C.5b shows the computational costs of the CI-based

methods and our suggested variants (GPOE*, RBCM*, and GRBCM*): the computa-

tional costs increase marginally while our modified versions improve upon prediction

quality as shown in Table C.1.
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(a) Dependent Experts (b) Conditionally Independent Experts

Figure C.5: Prediction Time (seconds) of different aggregation for disjoint and random
partitioning strategies in Pumadyn data set. In both partitioning strategies, the training
data set is divided into 15 subsets and a fixed penalty term (λ = 0.1) is used.
Large Data sets

In this section we use three large-scale data sets, Protein5, Sacros6, and Song7. Protein

has 9 dimensions and 45730 observations, 90% of which are used for training (i.e. 41,157

training and 4,573 test points). Sacros has 21 dimensions and 44,484 training and 4,449

test points. Finally, Song is a 91-dimensional data set with 515,345 instances, divided

into 463,715 training and 51,630 test examples. We extract the first 105 songs from

this data set for training and keep the original set of 51630 songs for testing. We used

disjoint partitioning to divide the data sets into 70 (for Protein), 72 (for Sacros), and 150

(for Song) subsets.

Next, we compare SOTA baselines with NPAE*. We also consider GPoE*, RBCM*,

and GRBCM*. For the model selection based methods, we set α to 0.8 which means

20% of weak experts are excluded. For the Song data set only, we set α = 0.1 in NPAE*.

Since NPAE is computationally burdensome, especially when M and nt are large, it is

not used in this part. Table C.2 reveals the prediction quality of local approximation

baselines and shows NPAE* outperforms other SOTA methods on various data sets. In

particular, NPAE* provides significantly better predictions on the Song data set using

5https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+

Tertiary+Structure
6http://www.gaussianprocess.org/gpml/data/
7https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
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C.6 Conclusion

Table C.2: Prediction quality for various methods on Protein, Sacros, and Song data.
The table depicts SMSE and MSLL values for SOTA baselines and the modified versions
of GPoE, RBCM, and NPAE, i.e. GPoE*, RBCM*, and NPAE* respectively.

Protein Sacros Song

Model Type SMSE MSLL SMSE MSLL SMSE MSLL

PoE CI 0.8553 33.2404 0.045 2.724 0.952 70.325
GPoE CI 0.8553 -0.082 0.045 -1.183 0.952 -0.029
GPoE* CI 0.8146 -0.1146 0.0038 -1.282 0.943 -0.034
BCM CI 0.3315 -0.3329 0.007 -2.359 2.660 3.438
RBCM CI 0.3457 -0.584 0.0045 -2.413 0.847 -0.006
RBCM* CI 0.3411 -0.5953 0.0041 -2.520 0.842 -0.022
GRBCM CI 0.3477 -0.613 0.0037 -2.642 0.836 -0.0926
GRBCM* CI 0.3452 -0.623 0.0035 -2.731 0.819 -0.102

NPAE* D 0.3101 -0.6653 0.0028 -2.772 0.794 -0.110

only 10 percent of mostly interacted experts. For CI-based methods, GPoE*, RBCM*,

and GRBCM* improve the prediction quality of GPoE, RBCM, and GRBCM method,

respectively. On the Protein data set, BCM and RBCM* have smaller SMSE values

while the MSLL values of RBCM* and GRBCM are of the same rate. On the Sacros

data set, the SMSE values of GPoE*, GRBCM, and GRBCM* are smaller than the other

CI-based methods while RBCM*, GRBCM, and GRBCM* have smaller MSLL values.

Although all CI-based methods return poor predictions on the Song data set, RBCM*,

GRBCM, and GRBCM* provide smaller SMSE while the MSLL value in GRBCM and

GRBCM* is smaller than other CI-based SOTA methods. Although the SMSE of RBCM

and RBCM* are of the same rate, RBCM* significantly improves the MSLL values of

the RBCM method.

C.6 Conclusion

In this work, we have proposed a novel expert selection approach for distributed GPs

which leverages expert selection to aggregate dependent local experts’ predictions. To
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combine correlated experts, comparable SOTA methods use all experts and are affected

by weak experts or leading to impractically high computational costs. Our proposed

approach uses an undirected graphical model to find the most important experts for the

final aggregation. Theoretically, we showed that our new local approximation approach

provides consistent results when n → ∞. Through empirical analyses, we illustrated

the superiority of our approach which improves the prediction quality of existing SOTA

aggregation methods, while being highly efficient.

C.7 Appendix: Additional Experiments

C.7.1 Experimental Results: Synthetic Example

Figure C.6 depicts confidence intervals of different aggregation methods relative to the

full GP from Section C.5.1 with M = 20. The NPAE, NPAE*(0.8), and NPAE*(0.5)

produce reliable predictions when leaving the training data, i.e. for x ∈ [−0.2,0] and x ∈
[1,1.2]. Their estimated mean values and confidence intervals are highly accurate, while

the other methods show significant deviation from the full GP, e.g. see the mean vector

of CI-based method in x ∈ [−0.2,0.2] and x ∈ [0.8,1.2] of figure C.6. Both NPAE*(0.5)

and NPAE*(0.8) return impressive results which means their NPAE approximations are

acceptable. The main drawback of GRBCM is its mean value, especially for x ∈ [0.8,1.2].
However, its confidence intervals are much better than GPOE and RBCM methods. The

results also fit the previous expectations about the GPOE and RBCM, RBCM provide

overconfident results while GPOE is conservative.

C.7.2 Experimental Results: Pumadyn Data set

In this section we present the full experimental results for Pumadyn data set in Section

C.5.2. We consider the GPoE, RBCM, GRBCM, and NPAE with random and K-means

partitioning. For the GPoE, RBCM and NPAE, we evaluate the proposed expert selection

strategy with α = 0.8 for GPoE and RBCM and α = 0.5 and α = 0.8 for NPAE. We used

both disjoint and random partitioning to divide the data set into 7, 15, and 20 subsets.
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(a) NPAE*(0.5) (b) NPAE*(0.8)

(c) NPAE (d) GPOE

(e) RBCM (f) GRBCM

Figure C.6: 99% confidence interval of different aggregation methods and full GP
for 5×103 training points and partition size m0 = 250 with K-means partitioning. The
NPAE*(0.5) and NPAE*(0.8) results are based on α = 0.5 and α = 0.8, where λ = 0.1.
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Table C.3: SMSE and MSLL of different baselines in Pumadyn data set for K-means
partitioning strategy.

Number of Experts M=7 M=15 M=20

Model SMSE MSLL SMSE MSLL SMSE MSLL

GPoE 0.0475 -1.5213 0.0483 -1.5166 0.0499 -1.490
GPoE* 0.0473 -1.5299 0.0477 -1.5213 0.0497 -1.493
RBCM 0.0474 2.2199 0.0478 1.1224 0.0495 4.4283
RBCM* 0.0473 1.5514 0.0474 0.3949 0.0493 3.0198
GRBCM 0.0476 -1.5164 0.0499 -1.4949 0.0494 -1.5029

NPAE*(0.5) 0.0468 -1.5326 0.0470 -1.5285 0.0483 -1.5179
NPAE*(0.8) 0.0465 -1.5362 0.0468 -1.531 0.0480 -1.5202
NPAE 0.0464 -1.5367 0.0466 -1.536 0.0476 -1.5245

Table C.4: SMSE and MSLL of different baselines in Pumadyn data set for Random
partitioning strategy.

Number of Experts M=7 M=15 M=20

Model SMSE MSLL SMSE MSLL SMSE MSLL

GPoE 0.0485 -1.511 0.0488 -1.5126 0.05 -1.4789
GPoE* 0.048 -1.52 0.0485 -1.518 0.0497 -1.4802
RBCM 0.0534 -0.0739 0.0485 2.9205 0.0495 3.4551
RBCM* 0.052 -0.3986 0.0482 1.7881 0.0492 2.2147
GRBCM 0.0498 -1.5056 0.0507 -1.502 0.0513 -1.4904

NPAE*(0.5) 0.0478 -1.525 0.0477 -1.5265 0.0488 -1.5039
NPAE*(0.8) 0.0469 -1.535 0.0474 -1.530 0.0480 -1.5103
NPAE 0.0473 -1.534 0.0472 -1.5344 0.0478 -1.5177

C.7.3 GRBCM Model with Expert Selection

The expert selection strategy can be easily extended to the GRBCM model. The modifi-

cation in the GRBCM model, say GRBCM*, consists of the following two tasks:

(i) excluding the weak experts based on the procedure explained in Section C.4.1
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(ii) choosing Ii1 (i.e., the top-most expert) in the sorted importance set I as the global

communication expert (see Definition 5).

The global communication expert Db in GRBCM* can be selected via sorted im-

portance set I in Definition 5, because it contains expert interactions and the intensity

of those interactions. The GRBCM* maintains the desired asymptotic properties of the

original GRBCM, i.e. it leads to consistent estimation of the full Gaussian process at

the presence of the assumption (i) and (ii) in Proposition 3 when n→∞. These modifi-

cations lead to a better predictive distribution at the end. While the first step eliminates

the negative effects of weak experts in the final aggregation, the second step chooses

the most reliable (i.e., interconnected) expert in the related GGM as a global commu-

nicator. Note that the conventional GRBCM approach does not propose a strategy for

selecting the global communication expert. Since this expert has a crucial impact on the

final aggregation, the most interconnected expert is an appropriate choice for the global

communication.

C.7.4 Experimental Results: Large Scale Data sets

Table C.5 depicts the prediction quality of the CI-based aggregation method, i.e. (G)PoE,

(R)BCM, and GRBCM. The consistent methods have been discussed in Table C.2. For

a constant penalty term, λ = 0.1, the modified version of CI-based methods have been

defined using α = 80% of the most important experts. The (G)PoE*, (R)BCM*, and

GRBCM* are the expert selection version of the original (G)PoE, (R)BCM, and GRBCM

methods. Table C.5 shows a significant improvement after excluding the weak experts.

Since the CI-based methods do not have appropriate asymptotic properties, they are not

capable to outperform the NPAE which considers the experts’ dependency. Figure C.7

presents the running time of the baselines on three large scale data sets in Table C.5. We

can observe that the running time of both original and modified versions are of the same

rate. The cost of the modified versions contain the cost of the GLasso (one time) and

then the cost of aggregation on a smaller expert’ set.
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Table C.5: Prediction quality for various CI based baselines and their modified versions
on Protein, Sacros, and Song data sets.The table depicts SMSE and MSLL values for
(G)PoE, (R)BCM, GRBCM, and their modified version after excluding the weak experts,
i.e. (G)PoE*, (R)BCM*, and GRBCM* respectively.

Protein Sacros Song

Model SMSE MSLL SMSE MSLL SMSE MSLL

PoE 0.8553 33.2404 0.045 2.724 0.952 70.325
GPoE 0.8553 -0.082 0.045 -1.183 0.952 -0.029
BCM 0.3315 -0.3329 0.007 -2.359 2.660 3.438
RBCM 0.3457 -0.584 0.0045 -2.413 0.847 -0.006
GRBCM 0.3477 -0.613 0.0037 -2.642 0.836 -0.0926

PoE* 0.8146 26.0748 0.038 1.139 0.943 55.476
GPoE* 0.8146 -0.1146 0.0038 -1.282 0.943 -0.034
BCM* 0.324 -0.3776 0.007 -2.500 2.161 2.349
RBCM* 0.3411 -0.5953 0.005 -2.520 0.842 -0.022
GRBCM* 0.3452 -0.623 0.0035 -2.731 0.819 -0.102
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(a) Protein Data Set

(b) Sacros Data Set

(c) Song Data Set

Figure C.7: Running Time of CI-based aggregation methods on Protein, Sacros, and
Song data sets.
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Appendix D

Entry Dependent Expert Selection in
Distributed Gaussian Processes Using
Multilabel Classification

This chapter is based on the following articles:

• Hamed Jalali and Gjergji Kasneci. Entry Dependent Expert Selection in Dis-

tributed Gaussian Processes Using Multilabel Classification. Under review at the

IEEE Transactions on Neural Network and Learning Systems (TNNLS), 2022.

• Hamed Jalali and Gjergji Kasneci. Expert Selection in Distributed Gaussian Pro-

cesses: A Multi-label Classification Approach. GPSMDMS: NeurIPS Workshop

onGaussian Processes, Spatiotemporal Modeling, and Decision-making Systems

at 36th Conference on Neural Information Processing Systems (NeurIPS 2022).1

1This publication is a short version of the article submitted in TNNLS.
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D.1 Abstract

By distributing the training process, local approximation reduces the cost of the standard

Gaussian Process. An ensemble technique combines local predictions from Gaussian

experts trained on different partitions of the data. Ensemble methods aggregate models’

predictions by assuming a perfect diversity of local predictors. Although it keeps the

aggregation tractable, this assumption is often violated in practice. Even though ensem-

ble methods provide consistent results by assuming dependencies between experts, they

have a high computational cost, which is cubic in the number of experts involved. By

implementing an expert selection strategy, the final aggregation step uses fewer experts

and is more efficient. However, a selection approach that assigns a fixed set of experts to

each new data point cannot encode the specific properties of each unique data point. This

paper proposes a flexible expert selection approach based on the characteristics of entry

data points. To this end, we investigate the selection task as a multi-label classification

problem where the experts define labels, and each entry point is assigned to some ex-

perts. The proposed solution’s prediction quality, efficiency, and asymptotic properties

are discussed in detail. We demonstrate the efficacy of our method through extensive

numerical experiments using synthetic and real-world data sets.

D.2 Introduction

Gaussian processes (GPs) [10] are interpretable and powerful Bayesian non-parametric

methods for non-linear regression. A Gaussian process is a stochastic process where

every finite collection of those random variables has a multivariate Gaussian distribution.

By applying Bayes’ theorem for inference, the posterior predictive distribution of a GP

is the best linear unbiased estimator (BLUE) under the assumed model and provides

proper quantification of the prediction error uncertainty. GPs do not need restrictive

assumptions of the model and can estimate complex linear and non-linear structures.

While GPs are extensively used in practical cases [87, 13, 88, 89, 20, 22], their cubic

training and quadratic prediction costs 2 limit their application to big data use cases [1].

For GP regression, the major computational hurdle is the need to estimate the kernel

2I.e., in the size of the training set.
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inversion and determinant, which is prohibitively expensive when n is large. Because of

this issue, GPs are typically restricted to relatively small training data sets in the range

of O(104).
To reduce computational expense, sparse approximation techniques use a subset of

the training sets (called inducing points) and Nyström approximation to estimate poste-

rior distributions [30, 31, 84, 85]. In this case, this approach provides a full probabilistic

model and appropriate predictions based on the Bayesian framework. Despite its ad-

vantages, this method cannot handle large data sets since its capacity is limited by the

number of inducing points [33, 34].

Unlike the sparse approximation, which uses only the inducing points, the promi-

nent distributed Gaussian processes (DGPs) use the full training set. This method uses

centralized distributed learning, which means that the training data is partitioned into

numerous subsets, local inference is conducted for each partition separately, and then

the local estimations are combined through ensemble learning [90, 91, 92]. A local GP

that has expertise in a particular partition is called an expert. Experts share the same

hyper-parameters, thus accounting for implicit regularisation and encountering overfit-

ting [1, 93].

In a DGP, the conditional independence (CI) assumption between partitions (i.e., be-

tween experts given the target) allows factorizing the global posterior distribution as a

product of local distributions. While this assumption reduces the computational cost, it

results in inconsistencies and suboptimal solutions [45] caused by the partitioning of the

data set, such that when N →∞, the CI-based posterior approximations do not converge

to the full GP posterior.

Relaxing the independence assumption raises the aggregation’s theoretical properties.

If the experts’ predictions are assumed to be random variables, their relative correlations

define dependencies between experts. The aggregated posterior distribution, in this case,

provides high-quality forecasts and is capable of returning consistent results [44, 46, 6].

However, solutions that deal with the consistency problem suffer from extra computa-

tional costs induced by the need to find the inverse of the covariance matrix between

experts for each test point. It means the complexity of this model cubically depends on

the number of experts (say M), and therefore it can become computationally prohibitive

when M is large.
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Few works have considered boosting the efficiency of dependency-based aggrega-

tion. In [4, 8], authors discuss complexity reduction as an expert selection scenario

that excludes a subset of original experts and considers only the valuable experts in the

aggregation. For this purpose, the precision matrix of the experts’ predictions is esti-

mated using the Gaussian graphical model (GGM). Experts are the nodes in the obtained

undirected sparse graph, and their interactions are the edges. The nodes with fewer inter-

actions are defined as unimportant experts and excluded from the model. This approach

can lower the complexity and provide a good approximation for the original estimator.

However, it is not flexible concerning new entries, and the selected experts are fixed for

all test points. If new entry data points have specific behavior or are close to excluded

partitions, the prediction error increases.

The critical contribution of our work lies in selecting a subset of local experts for

each new data point using multi-label classification. Unlike the static expert selection by

GGM [4], the proposed method does not assign a fixed set of local experts for all test

points. A dynamic and flexible mechanism for each new observation designates related

experts to provide local predictions. Multi-label classification [76] is a generalization

of multi-class classification, where multiple labels may be assigned to each instance. It

originates from the investigation of the text categorization problem, where each docu-

ment may belong to several predefined topics simultaneously.

To transform the distributed learning case into multi-label classification, the indices

of the partitions/experts are the labels/classes. The task is to assign some experts to a

new data point. Multi-class classification problem would select an appropriate expert

for predicting and would lead to a local approximation with only one expert per test

point. This one-expert inductive model, however, produces discontinuous separation

boundaries between sub-regions and therefore is not a proper solution for quantifying

uncertainties [77, 93].

Two algorithms can be adapted to assign experts to data points: k-nearest neighbors

(KNN) and deep neural networks (DNN). For the first one, we use the centroid of the

partition as a substitute of the corresponding local expert. By estimating the distance

between a new entry point and the centroids, we can find its K nearest neighboring ex-

perts. Due to the properties of the Gaussian process experts, if a test point is close to a

GP expert, the expert can provide a reliable prediction for that test point.
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For the second approach, we train a neural network with soft-max output layer and

log-loss (i.e., cross-entropy loss) using the train points and their related partition index

that shows the partition they belong to. After training the DNN, we send a new test

point through the network, and the experts with higher probability are assigned to this

test point. Relative to consistent aggregation methods that use dependency information,

our approach keeps all asymptotic properties of the original baseline and substantially

provides competitive prediction performance while leading to better computational costs

than other SOTA approaches, which use the dependency assumption. By extending the

proposed method for CI-based ensembles, we can use it in federated learning problems,

which do not consider dependencies between agents, see [94, 95].

The structure of the paper is as follows. Section D.3 introduces the problem for-

mulation and related works. The proposed model and inference process are presented

in Section D.4. Section D.5 discusses some associated details. Section D.6 shows the

experimental results, and we conclude in Section D.7.

D.3 Problem Set-up

D.3.1 Gaussian Process

We start with the basic non-linear regression problem y = f (x)+ε , and the objective is to

learn the latent function f from a training set P ={X ,y}. Assume the training set contains

N observation, X is a d-dimensional variable, x ∈ Rd , and ε is a zero-mean Gaussian

noise ε ∼ N(0,σ2). The Gaussian process describes a prior distribution over the latent

functions as f ∼ N (0,k(x,x′)), where k(x,x′) is the covariate function (kernel) with

hyperparameters ψ , and x,x′ ∈X . The prior kernel is the well-known squared exponential

(SE) covariance function equipped with automatic relevance determination (ARD),

k(x,x′) = s2 exp(−1
2

d
∑
i=1

(xi−x′i)2
Ti

) ,

where σ2
f is the signal variance, and Ti is a correlation length scale parameter along the

i-th dimension. Let τ = {s2,T1, . . . ,Td}, training the GP involves determining the hyper-
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parameters θ = {σ2,τ} such that they maximise the related log-marginal likelihood,

log p(y∣X) = −1
2

yTZ−1y− 1
2

log ∣Z∣− N
2

log2π, (D.1)

where Z = k(X ,X)+σ2I. Optimization task in (D.1) scales as O(N3) because it requires

to calculate the inversion of the N ×N matrix Z . It inflicts limitations on the scalability

of GPs, and the training step is time-consuming for large data sets.

D.3.2 Local Approximation Gaussian Process

The local approximation Gaussian process is a divide-and-conquer approach, which par-

titions the training data set into M subsets P ′ = {P1, . . . ,PM} and trains standard GPs on

these subsets. It is also called distributed Gaussian process (DGP for short), which builds

on distributing the training of the standard GP among several computing units. Let Xi and

yi be the input and output of subset Pi. The related local GPs at each subset are called

experts that are trained jointly and share a single set of hyper-parameters θ = {σ2,ψ}
[1].

The local predictive distribution of the i-th expert Ei a test set X∗ of size Nt is pi(y∗∣Pi,X∗)∼
N(µ∗i ,Σ∗i ) with mean and covariance as:

µ
∗
i = kT

i∗(Ki+σ
2I)−1yi, (D.2)

Σ
∗
i = k∗∗−kT

i∗(Ki+σ
2I)−1ki∗, (D.3)

where Ki = k(Xi,Xi), ki∗ = k(Xi,X∗), and k∗∗ = k(X∗,X∗).
To divide the training data set P into M partitions, two different strategies are used:

random and disjoint partitioning. Although random partitioning is faster than disjoint

partitioning, it has been widely accepted that disjoint partitioning can capture the local

features of the data more accurately, see [38, 4]. Therefore, we assign training data to

experts using a K-mean clustering approach in this work.

A DGP typically aggregates the local GP experts assuming perfect diversity between

them that means they are conditionally independent, i.e., EiáE j∣y∗ where i, j ∈ {1, . . . ,M}.
Using CI assumption between experts {E}M

i=1 allows us to factorize the predictive distri-

bution of a DGP over all local predictive distributions. That is to say, for a test input
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Figure D.1: Computational graphs of an aggregation based on conditional indepen-
dence assumption between experts.

x∗

p(y∗∣P,x∗) ∝
M
∏
i=1

pβi
i (y∗∣Pi,x∗). (D.4)

Equation (D.4) shows that the aggregated predictive distribution can be defined as the

product of local densities. The β = {β1, . . . ,βM} describe the weights and influence of

the experts. The most prevalent CI-based aggregation methods are product of experts

(PoE) [41], generalised product of experts (GPoE) [37], Bayesian committee machine

(BCM) [42], robust Bayesian committee machine (RBCM) [1] and generalized robust

Bayesian committee machine (GRBCM) [38].

Figure D.1 depicts the computational graph of the DGP strategy. It reveals the ag-

gregation based on conditional independence assumption between experts {E1, . . . ,E10}.
The CI assumption means two local experts Ei and E j are connected only via the target

variable y∗, i.e. Ei ⊥⊥ E j ∣ y∗. Thus, there is no interaction between experts, and they can

not affect each other.

D.3.3 Beyond Conditional Independence Assumption

Ensemble methods extensively employ the conditional independence assumption for re-

gression and classification problems [48, 49]. Although this assumption reduces the

prediction cost of DGPs, it generally leads to a sub-optimal solution and their related

predictions are not accurate enough [2]. In classification, modeling dependencies be-
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tween classifiers has been considered in several works, for example, in [50, 51, 2]. How-

ever, few works have considered modeling expert dependencies in local approximation

GPs. The nested pointwise aggregation of experts (NPAE) method [44, 46] defines an

estimator using the interactions between experts and the target variable y∗.

For a given test point x∗ ∈X∗, assume the vector µ∗(x∗) = [µ∗1 (x∗), . . . ,µ∗M(x∗)]T con-

tains the centered predictions of M local GP experts E = {E1, . . . ,EM}, where µ∗i (x∗), i =
1, . . . ,M has been defined in (D.2). Each of the local Gaussian experts Ei is a linear es-

timator because the related prediction µ∗i is linear with respect to the observed values

of the random variable yi, i.e., µ∗i = Qiyi, where Qi = kT
i∗(Ki +σ2I)−1. Authors in [44]

assumed that yi in (D.2) has not yet been observed. It allows us to consider µ∗i (x∗) as a

random variable. Therefore, the experts’ dependencies can be investigated in two ways;

the correlations between the experts’ predictions and target variable, Cov(µ∗i ,y∗), and

internal correlations between experts’ predictions, Cov(µ∗i ,µ∗j ) where i, j = 1, . . . ,M.

The analytical explanation of both covariances can be defined as:

Cov(µ∗i ,y∗) = cov(Qiyi,y∗) =Qik(Xi,X∗) (D.5)

Cov(µ∗i ,µ∗j ) = cov(Qiyi,Q jy j) =Qik(Xi,X j)QT
j (D.6)

For a test point x∗ ∈ X∗, the point-wise covariances are defined as

r(x∗) =Cov(µ∗(x∗),y∗(x∗))

and

R(x∗) =Cov(µ∗(x∗),µ∗(x∗))

, where r(x∗) is a M ×1 vector and R(x∗) is a M ×M matrix. The joint distribution of

random variables (y∗,µ∗1 , . . . ,µ∗M) is a multivariate normal distribution. This issue comes

from here that any vector of linear combinations of normally distributed observations is

itself a Gaussian vector. This fact is used to define the predictor y∗A(x∗) of y∗(x∗) which

aggregates variables µ∗i (x∗), i = 1, . . . ,M, and leads to the subsequent aggregation:

Definition 6 (Dependency-Based Aggregation). The aggregated predictor for the test
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(a) SMSE (b) MSLL

Figure D.2: Ablation experiment1. Prediction quality of different aggregation baselines
for the Concrete data set.

point x∗ and local predictions µ∗1 (x∗), . . . ,µ∗M(x∗) is defined as

y∗A(x∗) = r(x∗)T R(x∗)−1
µ
∗(x∗). (D.7)

This method is called the nested pointwise aggregation of experts (NPAE) and pro-

vides high-quality predictions. It is straightforward to show that this linear estimator is

the best linear unbiased predictor (BLUP), see [44].

Example 1 (Concrete Data Set). Concrete Compressive Strength 3 data set contains

1030 observations of 9 attributes (8 independent variables and one response variable).

We use %90 of the observations for training and the rest for testing, where disjoint parti-

tioning is used to divide the data set into 5, 7, and 10 subsets. The prediction quality of

CI and dependency-based aggregations are compared with standard GP. The quality of

predictions is evaluated in two ways, standardized mean squared error (SMSE) and the

mean standardized log loss (MSLL). The SMSE measures the accuracy of the prediction

mean, while the MSLL evaluates the quality of predictive distribution [10].

Figure D.2 shows the prediction quality of available baselines for the Concrete data

set when the number of experts (M) changes. NPAE, which uses the dependencies be-

tween experts, provides consistently better results, confirming that modeling the experts’
3https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
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interactions improves the quality of the aggregated predictive distribution. Especially,

the quality of NPAE is not sensitive to changes in the number of experts (M). On the

other hand, increasing M (reducing the size of the sub-partitions) lowers the prediction

accuracy of existing CI-based DGP methods.

D.3.4 Asymptotic Properties

Conventional DGP baselines suffer from inconsistency. Since the local experts are trained

on separated partitions, the aggregation produces inconsistent predictions which can not

converge to the standard GP. Several works have investigated the asymptotic properties

of the CI-based ensembles and confirmed the inconsistent and overconfident predictions

of the PoE and (R)BCM methods. Besides, the GPoE with normalized equal weights [1]

conservatively converges to the full GP distribution when N →∞ [45, 46]. However,

the authors in [38] showed that the GPoE produces consistent predictions using random

partitioning under some mild assumptions.

The generalized robust Bayesian committee machine (GRBCM) [38] introduces a

base (global) expert and considers the covariance between the base and other local ex-

perts, which, under some mild assumptions, can provide consistent results using both

random and disjoint partitioning. However, it still uses the CI-based aggregation in the

RBCM method and sometimes yields poor results, particularly when the data is randomly

partitioned.

The point-wise NPAE method is capable of providing consistent results. It benefits

from both dependencies forms in Equations (D.5) and (D.6), and the aggregated predic-

tor in (D.7) produces high-quality predictions employing the properties of conditional

Gaussian distribution. Estimating the inverse of the internal correlation R(x∗) leads to

two issues: the existence of the inversion matrix and computational cost. Using matrice’s

pseudo-inverse can solve the first issue, but the second complicates employing the NPAE

for large data sets. Calculating the inverse of the M ×M matrix R(x∗) has cubic time

complexity in the number of local experts at each test point x∗ ∈X∗. Therefore the aggre-

gation cost is O(NtM3), which is not an efficient solution for complex real-world data

sets with large M and Nt values.

In the next section, we propose a new expert selection approach using the multi-label
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classification model to assign test points to some proper experts instead of using the full

experts set that modifies the aggregation estimator in (D.7).

D.4 Expert Selection in Local Approximation GPs

The current DGP baselines rely on experts’ weighting with the goal to quantify the ex-

perts’ importance. In [1], the authors discussed different weights for local experts and

came to the conclusion that they can not outperform the linear mixture weights based on

experts’ correlations defined in (D.7). However, despite the high accuracy of the NPAE

aggregation, its computational cost is a challenge for using the method on large data sets.

Expert selections can improve the performance of dependency-based aggregation in

two ways. First, unrelated experts for a given data point can be excluded and only in-

formative partitions can be considered to make the prediction. Second, mitigating the

number of experts reduces the prediction cost and enables the ensemble to be used in

large data sets.

D.4.1 Expert Selection Using Graphical Models

Gaussian graphical model (GGM) is the continuous form of pairwise Markov random

fields. It assumes the nodes of an undirected graph are random variables, and the joint

distribution of the random variables is multivariate Gaussian distribution with zero mean

and precision matrix Ω, N(0,Ω−1). The elements of the precision matrix are the un-

known parameters and show interactions between experts (edges in the graph).

Let S be the sample covariance of local predictions µ∗, i.e. S = Cov(µ∗). Then,

the log-likelihood of the Gaussian multivariate distribution and precision matrix Ω is

equal to log ∣Ω∣−trace(SΩ). To estimate the precision matrix, Graphical Lasso (GLasso)

[59, 61] is an efficient inference algorithm that maximizes this likelihood subject to an

element-wise l1-norm penalty on Ω. More precisely, the objective function is,

Ω̂ = argmax
Ω

log ∣Ω∣ − trace(SΩ)−λ ∥Ω∥1 , (D.8)

where the estimated expert network is then given by the non-zero elements of Ω̂.
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(a) GGM (b) Selected Experts

Figure D.3: Expert Selection using GGM for a set of 10 local experts from the Concrete
data set: (a) the experts’ graph and (b) selected experts based on 60% of most important
experts (green nodes).

Modeling the dependency in distributed learning by GGMs has been studied in [3,

6], where the precision matrix encodes the interactions between experts. The authors

in [3] used the GLasso algorithm to detect dependencies between Gaussian experts and

identify clusters of strongly dependent experts. Besides, expert selection by GGM has

been proposed and investigated in [8, 4], which divides the experts into important and

unimportant experts and excludes the unimportant experts in the final aggregation. The

strength of an expert’s interactions in the related undirected graph defines the expert’s

importance.

Definition 7 (GGM-related Expert Importance). The importance of expert Ei based

on the estimated precision matrix Ω̂ is defined as Ii =∑M
j=1, j≠i ∣Ω̂i j∣.

According to the interactions, the GGM-related expert selection task uses the first K

experts in the descending sorted importance set I = {Ii1,Ii2, . . . ,IiM}, leading to a new

expert set. MGGM = {MG1, . . . ,MGK} and K < M. The number of selected experts

is defined as K = α ×M, where α is a hyperparameter that indicates the percentage of

original experts selected for the final aggregation. The experts inMGGM are fixed and

used for prediction at any new entry point. The GGM-based aggregation can provide

consistent results, and its predictive distribution is a consistent approximation of the

unbiased estimator in (D.7) [4].

Figure D.3 depicts the related GGM of local experts’ predictions. The Concrete data

set in Example 1 is divided into 10 partitions, i.e., one for each expert, and the experts’
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Algorithm 3 Aggregating Dependent Experts Using GGM

Input: Local predictions of GP experts µ∗, sparsity hyperparameter λ , selection per-
centage α .

Output: Aggregated estimator y∗A.
1: Calculate sample covariance S of experts’ predictions.
2: Estimate Ω̂ using GLasso (D.8).
3: Calculate the importance values {I1,I2, . . . ,IM}
4: Sort the importance values to find I as defined in Definition 7 .
5: Select α percent of most important experts.
6: Create the expert set for Aggregation,MG .
7: Aggregate selected expertsMG using (D.7).

predictions are used to quantify interactions between experts in this graph. Figure D.3a

presents the original GGM related to this distributed learning case. Figure D.3b shows

an expert selection scenario when only 60% of the experts are selected based on their

importance. In [8, 4], the authors studied this selection method in CI-based baselines

and reported remarkable improvements over state-of-the-art aggregation approaches in

terms of prediction quality.

Algorithm 3 summarizes the aggregation procedure with GMM-based expert selec-

tion. Its primary input is given by the local predictions, meaning that this selection

method is employed after individual experts’ predictions. Therefore, it does not depend

on the entry points. Indeed, based on the Definition 7, only absolute values of condi-

tional dependencies are used for the importance calculation, i.e., ∣Ω̂∣, indicating that the

importance is affected only by the amount of the dependency, and not its direction.

Although GGM-based expert selection provides an interpretable method, it suffers

from two significant obstacles. First, it needs GLasso to obtain the precision matrix,

and the cost of the GLasso is O(M3). Hence, for massive data sets with large M, its

application is impractical. Besides, the algorithm is not flexible enough to capture the

specific behavior of new data points because it provides a static method that selects a

fixed set of experts for all test points. Even if an expert can provide accurate prediction

for some part of the data set, it will be excluded from the model if it does not have high

interactions with the other experts.

In the following subsections, we propose a novel approach that estimates the essential

(i.e., data-related) experts for each new test point by converting the problem into a multi-
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label classification. The obtained labels for each test point define the data-point-wise

selected experts.

D.4.2 Multi-label Classification for Flexible Expert Selection

Assigning experts to new entry points in a distributed learning model can be seen as

a classification problem. Let’s assume that each expert is a class of estimators. The

selection problem then for each test point x∗ is defined as a multi-label classification task

where each instance can be associated with some classes. The main advantage of this

method is its flexibility because the selected experts depend on the given test point, and

thus different experts can be assigned to different test points.

Assume x∗ is a new test point and E = {E1, . . . ,EM} is the Gaussian experts set, and

L = {1, . . . ,M} is the label set. The task is to findMC(x∗) = {MC1(x∗), . . . ,MCK(x∗)}
that represents K selected experts to predict at x∗. We adapt two prominent classifi-

cation models to solve this multi-label task without requiring problem transformations,

K-nearest neighbors (KNN) and conventional deep neural networks (DNN).

Example 2 (Expert Selection Models). Let’s consider an example with five local ex-

perts E = {E1, . . . ,E5} that predict at 10 test points and K = 3. Figure D.4 describes the

difference between static and dynamic expert selection models in an example with syn-

thetic data points. Figure D.4a depicts the original aggregation where all experts are

used, e.g., for the ensemble model in (D.7). The GGM-based expert selection in D.4b

proposes a fixed set of 3 experts {E2,E4,E5} for all new (i.e., 10) entry points even though

they do not provide appropriate predictions in some of this 10 test points. The flexibility

of the entry-based selection model is depicted in D.4c, where the model assigns different

experts to each test point x∗ and uses the ability of experts in a better way.

D.4.3 Adopted K-nearest neighbors (KNN)

The K-nearest neighbors algorithm [96] is a lazy, non-parametric classification approach

that uses proximity to classify an individual data point. It is a supervised machine learn-

ing algorithm, working off the assumption that similar data points are located near one

another. Here, we adopt this algorithm for the experts’ assignment in a distributed learn-
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(a) E (b) EG (c) EC

Figure D.4: Expert Selection scheme of both static and entry-dependent models for a
setting of 5 experts with 10 test points. Both selection models assign 3 experts to each
test points: (a) original set of experts E , (b) static assignment of experts EG , and (c)
entry-based selection of experts EC .

ing scenario such that the raw training data set is not needed for the selection process and

only the partitions’ information is used.

Let P ′ = {P1, . . . ,PM} be the partitions based on a disjoint partitioning strategy, i.e.

K-Means clustering. Also, assume C = {C1, . . . ,CM} contains the related centroids of the

clusters in P . For each test point x∗, there is a 1×M vector dist(x∗,C) , in which the i’th

element is the distance between x∗ and Pi, where dist() is a distance metric. Therefore,

the adopted KNN algorithm is defined as:

• calculate the distance between x∗ and the centroids dist(x∗,C)

• choose K experts with closest centroids to x∗

• returnMC(x∗) based on the selected experts.

To determine which experts/partitions are closest to a given query point, the distance

between the query point and the other data points will need to be calculated using a

distance metric. The distance metric helps to form decision boundaries, which partition

test points into different subsets/experts. There are several distance measures that can be

chosen, e.g. Euclidean, Manhattan, Minkowski, and Hamming distances. In this work

we use the conventional Euclidean distance.
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(a) KNN

Figure D.5: Adopted K-nearest neighbors for multi-label classification.

The value of K in the KNN algorithm defines how many clusters will be checked to

determine the classification of a specific entry point. For example, if K = 1, the instance

will be assigned to the same class as its nearest cluster, which due to discontinuity issues,

is not the desired case. Lower values of K can have high variance, but low bias and larger

values of K may lead to higher bias, and lower variance [78].

Figure D.5 schematically shows how the KNN method works for the multi-label clas-

sification methods. It represents a KNN framework for a test point x∗. The red points

are related training points assigned to each partition, and the blue points are the clusters’

centroids. The lines between the x∗ and the centroids show the distances. The proposed

method suggests the orange lines, which are the shortest, and the related experts are

assigned to this test point.

Algorithm 4 summarizes the whole procedure of the KNN-based aggregation. The

main advantage of the KNN method is it does not include another training period. The

only thing to be calculated is the distance between different points; therefore, it is straight-

forward to implement and accepts new entry data at any time. Besides, instead of n train-

ing points, the modified KNN proposed in Algorithm 4 only uses the M centroids and

scales the distance calculations in large data sets.

Generally, this selection method is defensible and justifiable because Gaussian pro-
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Algorithm 4 Aggregating Dependent Experts Using KNN
Input: Test point x∗ ∈ X∗, centroids set C, hyperparameter K, Local GPs moments, dis-

tance metric.
Output: Aggregated estimator y∗A(x∗)

1: Calculate distance vector for x∗, i.e. dist(x∗,C).
2: Sort the elements of dist(x∗,C) ascendingly.
3: Select the first K experts in the sorted list of expert distances to generate the set of

related expertsMC(x∗).
4: Estimate local GPs by the experts inMC(x∗) using (D.2) and (D.3).
5: Aggregate local predictions from Step 4 using (D.7).

cesses predict better when a test point is close to them. Since the distance-based solution

may have some drawbacks in high dimensional data sets, we propose another multi-label

classification solution in the next section that can be effective in high dimensional cases.

D.4.4 Adapted Neural Networks for Classification

Conventional deep neural networks (DNNs) are widely used in machine learning prob-

lems, especially in classification tasks [97, 98]. By converting the expert selection task

into a multi-label classification task, this supervised learning problem can be solved

through DNNs. The capability of the neural networks can compensate for the possible

weaknesses of KNN classifiers in dealing with high-dimensional data sets and underlying

dependencies between labels.

Multi-label classification can be supported directly by neural networks simply by

specifying the number of target labels in the problem as the number of nodes in the

output layer. We will define a Multi-layer Perceptron (MLP) model for the multi-label

classification task described in subsection D.4.2. The network requires an input layer

that expects D inputs to specify the dimension of X , H nodes in the hidden layers, and

M nodes in the output layer, indicating the number of experts. Each node in the output

layer must use the softmax or sigmoid activation to predict the label’s class membership

probability. Finally, the model must fit with the binary cross-entropy loss function and

the Adam version of stochastic gradient descent.

To consider the expert selection task as a multi-label classification, a label set L =
{1, . . . ,M} contains required classes related to the training data set. For each xi ∈ X ,
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Figure D.6: Deep Neural Network Architecture for adopted multi-label classification
in DGPs.

i = 1, . . . ,N, the related partition label li ∈ L is available as an output of the training step

in DGP. Therefore, instead of the original training set (X ,y), a new set of points and

labels (X ,L) is constructed for training the DNN. After that, for each test point x∗ ∈
X∗ the network will provide a probability vector PL(x∗) where PL(x∗) j represents the

probability that x∗ belongs to the j’th expert. The K partitions with highest probabilities

in PL(x∗) are assigned to x∗.

Figure D.6 depicts a simple network for a multi-label classification task that assigns

local approximation Gaussian process experts to new entry points. The network receives

training set X as input and their clusters’ indices as output. After training the network,

test points x∗ ∈X∗ are sent to the neural network, which returns the classifier’s raw output

values.

Figure D.7 depicts the prediction quality of expert selection methods on the Concrete

data set with 10 partitions for different values of K. As it can be seen, multi-label-based

expert selection models provide higher quality predictions with lower deviation from the

NPAE model. The quality of the classification-based aggregations changes less as the

selection parameter K increases. The case K = 10 leads to the original NPAE baseline

148



D.5 Discussion

Algorithm 5 Aggregating Dependent Experts Using DNN
Input: Test point x∗ ∈ X∗, training points X and their indices, index set L, hyperparam-

eter K, Local GPs moments.
Output: Aggregated estimator y∗A(x∗)

1: Train the network parameters using X and indices.
2: Return the classifier’s output values PL(x∗), i.e., as produced by the softmax layer.
3: Sort the elements of PL(x∗) descendingly.
4: Select the first K indices of the sorted PL(x∗).
5: Create the expert set for x∗,MC(x∗).
6: Estimate local GPs by the experts inMC(x∗) using (D.2) and (D.3).
7: Aggregate local predictions from Step 6 using (D.7).

(a) SMSE (b) MSLL

Figure D.7: Expert Selection prediction qualities of different experts selection methods
compared to original baseline, NPAE, from Concrete data set.

(the dashed green lines in Figures D.7a and D.7b), and both KNN and DNN return proper

error values in both plots.

D.5 Discussion

This section considers some specific aspects of the expert selection models.

D.5.1 Restrictive Assumptions

The GGM approach assumes that the nodes in the graph are random, and their joint dis-

tribution is Gaussian. This normality assumption leads to a Gaussian likelihood, and
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GLasso solves this optimization problem. This assumption is strong, and in some cases,

it can be restrictive. Various solutions have been proposed to relax this assumption by

considering the model as a nonparametric problem and solving after some smooth mono-

tone transformation [69, 70, 73, 74] at the cost of requiring higher time complexity. On

the other hand, expert selection using multi-label classification does not need any distri-

butional assumption. Therefore it can be used as a general expert selection method in

distributed/federated learning models and not only in the context of local approximation

of GPs.

Besides, the classification-based expert allocation can also be considered a self-attention

mechanism that implicitly captures relationships between data points. Recently, the ex-

plicit modeling of self-attention between all data points has been shown to boost the

classification performance [79, 80]. In our case, to explain the dependencies between

training and test points, the expert ensembles do not use the original training points. In-

stead, the final prediction benefits from the critical information of training data captured

by the partitions‘ centroids and the corresponding indices for KNN and DNN, respec-

tively.

D.5.2 Computational Costs of Expert Selection Models

The aggregation cost in all three selection methods, i.e., GGM, KNN, and DNN, is

O(NtK3) where K is the number of selected experts and Nt is the number of test obser-

vations. However, their selection strategies lead to different computational costs. GGM

in Algorithm 3 needs GLasso to estimate the precision matrix, and its computational cost

is O(M3), where the M is the number of initial experts and is challenging for large M.

Indeed, the sparsity parameter can affect the cost such that choosing a smaller value for

λ leads to a dense graph with a more considerable computational cost.

The cost of the KNN approach 4 is obtained by considering the cardinality of the

training set, which refers to the number of possible labels that a feature can assume, in

our case M, the dimension of each sample, i.e., D, and also the hyperparameter K. The

computation time for calculating the distances are usually negligible compared to the rest

of the algorithm. However, we consider this aspect as well in the overall cost estimation.

Algorithm 4 computes the distance between the new observation and each centroid point,
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(a) SMSE (b) MSLL

Figure D.8: Activation Functions for the final (i.e., output) layer of the DNN classifier:
prediction quality for K = 4 and K = 6 in an experiment from the Concrete data set with
10 experts.

requiring O(MD) work for an iteration and therefore O(KMD) work overall to select K

closest centroids.

The cost of the DNN approach in Algorithm 5 depends on the network structure, i.e.,

the number of layers L, the input dimension D, the output dimension M, the number of

hidden units. Let Ui represent the number of units in the i’th layer (i = 1, . . . ,L), where

U1 and UL represent the number of units in the input and output layers, respectively. The

computational complexity is thus O(N(U1U2+ . . .+UL−1UL)).
In conclusion, both methods described in Algorithms 4 and 5 have linear complexity

concerning M. Therefore, they are more efficient when the number of partitions is an

enormous value, unlike the cubical dependency in Algorithm 3.

D.5.3 Activation Functions in DNN

Using a softmax output layer for the DNN-based classification in Section D.4.4 leads to

a probability vector PL(x∗) of the output values. Hence, when the probability of one

class increases, the probability of at least one of the other classes has to decrease by

an equivalent amount. Since the labels represent the interdependent experts, using the

softmax function for the classification layer is reasonable.

Figure D.8 explains how different activation functions can affect the prediction qual-
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ity. It considers the Concrete data set with M = 10 and different mini batch sizes Nb =
{16,25,50,100}. Both activation functions softmax and sigmoid have been used to select

K = 4 and K = 6 experts. The quality of the related aggregations confirms that due to the

interaction between labels, the softmax activation leads to much better results, and its

sensitivity to the size of the mini batches is lower than for the sigmoid activation.

D.5.4 Expert Selection for CI-Based Baselines

In [4], the authors extended the GGM-based expert selection for CI-based ensembles.

They introduce an extra step aiming to exclude the unimportant experts from the model

before using the weight parameters β . The same procedure can be used for entry-based

expert selection methods. In this case, for a test point x∗ in ((D.4)), only K experts are

used, and the selection is based on the Algorithm 4 or Algorithm 5. Since these models

are fast, the selection parameter K can be also set to relatively large values.

Table D.1: Expert Selection in CI-Based Baselines.

Model Expert Selection SMSE MSLL Time (s)

GPoE
- 0.138 -0.876 0.03

KNN 0.115 -0.916 0.03

RBCM
- 0.0993 0.396 0.03

KNN 0.091 0.156 0.03

GRBCM
- 0.1093 -1.103 0.06

KNN 0.089 -1.21 0.06

Table D.1 describes the effect of the selection scenario on CI-based ensembles using

KNN on the Concrete data set with M = 10 and K = 6. Although this modification can

not improve the asymptotic properties of the baselines, it raises their prediction quality.

At the same time, the running times of both original and modified models are indistin-

guishable.

D.6 Experiments

The quality of the expert selection methods is assessed in this Section. We consider the

prediction quality and the required prediction time of the proposed and state-of-the-art
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distributed GP models using both simulated and real data sets. The quality of predictions

is evaluated by the standardized mean squared error (SMSE) and the mean standardized

log loss (MSLL). The standard squared exponential kernel with automatic relevance de-

termination and a Gaussian likelihood is used. Since the disjoint partitioning of training

data captures the local features more accurately and outperforms random partitioning

[38, 4], it is mainly used in our experiments. The sparsity parameter in the GGM-based

expert selection method is set to λ = 0.1, Euclidean norm measures the distances in KNN,

and a neural network with a single hidden layer is used for the DNN classification. The

experiments have been conducted in MATLAB using the GPML package4.

D.6.1 Sensitivity Analysis

In this section, we investigate the influence of hyperparameters on the prediction qual-

ity and computational cost of the proposed methods and available baselines. First, we

consider the aggregations of dependent experts with the selection step using a synthetic

one-dimensional data set. Then, we use a medium-scale real-world data set to study how

hyperparameters affect the results in a complex multi-dimensional data set.

Synthetic Example

The first experiment evaluates the effect of hyperparameters M and K on prediction qual-

ity and computation time in different selection scenarios. It is based on simulated data

of a one-dimensional analytical function [38],

f (x) = 5x2sin(12x)+(x3−0.5)sin(3x−0.5)+4cos(2x)+ε, (D.9)

where ε ∼N (0,(0.2)2). We generate n training points in [0,1], and Nt = 0.1n test points

in [−0.2,1.2]. The data is normalized to zero mean and unit variance. We vary the

number of experts to consider different partition sizes. The K-means method is used for

the partitioning to compare the prediction quality of the proposed selection methods with

other baselines. Since the quality of CI-based methods is low, they are excluded in these

experiments.

4http://www.gaussianprocess.org/gpml/code/matlab/doc/
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(a) NPAE (b) GGM

(c) KNN (d) DNN

Figure D.9: 99% Confidence Interval of NPAE, expert selection methods and full GP
for n = 3× 103 training points from Equation ((D.9)) and M = 10 (partition size m0 =
300) with K-means partitioning. The GGM, KNN, and DNN results are based on K = 5
selected experts. We see that the DNN and the KNN approximations to the full GP
are practically indistinguishable from the NPAE approximation; all three techniques are
quality-wise superior to the GGM approach.

Figure D.9 depicts the 99% confidence interval of NPAE, expert selection based ag-

gregations and the full Gaussian process. In the experiment, n = 3× 103 training data

points from Equation (D.9) are used. The training set is divided into M = 10 partitions,

i.e., partition size m0 = 300, with K-means clustering, and K = 5 agents are used for the

final prediction. The confidence intervals of KNN and DNN are closer to the original

baseline NPAE, and their predictions (mean of the predictive distribution) are close to

the full GP. For test points out of the training set domain, the multi-label classification

leads to accurate expert selection results; see for example the interval [−0.2,0] in the
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(a) SMSE and n = 3000 (b) MSLL and n = 3000 (c) Time and n = 3000

Figure D.10: Prediction quality of available baselines as a function of experts for 3×103

training points and partition size m0 = 300 with K-means partitioning.

(a) SMSE and n = 3000 (b) MSLL and n = 3000 (c) Time and n = 3000

(d) SMSE and n = 5000 (e) MSLL and n = 3000 (f) Time and n = 3000

Figure D.11: Prediction quality and running time of DGP baselines for 3000 and
5000 training points from Equation ((D.9)) with different numbers of partitions, M =
{10,15,20}. For expert selection-based methods, K = {3,5} experts have been selected
for the final aggregation.

GGM plot, which shows a significant deviation from the standard GP.

Figure D.10 depicts the prediction quality of expert selection methods compared to

NPAE for 3×103 training points and partition size m0 = 300 (i.e., ten experts) with K-

means partitioning. The x-axis shows the number of selected experts (K) used in the
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final aggregation. We vary the number of selected experts for selection methods and use

the NPAE as a baseline that refers to K = 10. The plots in D.10a and D.10b indicate that

multi-label classification leads to a selection strategy with fast convergence to original

estimator.

When the number of experts increases, the prediction errors of KNN and DNN do

not show significant changes, which is an indication of predictive stability. On the other

hand, GGM needs more experts to provide closer results to NPAE and has a slow con-

vergence procedure. For K ≥ 7, the error values of all three methods are almost the same.

Figure D.10c indicates that the computational costs of the aggregations based on GGM,

KNN, and DNN are at the same rate.

We evaluate the prediction quality of the expert selection methods using n = 3×103

and n = 5×103 training points and different numbers of experts, M = {10,15,20}. All

related baselines are used in this experiment with K = {3,5} selected experts. Figure

D.11 depicts the results of both generated samples. KNN and DNN aggregations in

both samples have remarkable prediction qualities, and their SMSE and MSLL values

are close to each other, which means both classification methods return almost similar

results.

On the other hand, when the ratio of the selected experts to the total number of ex-

perts KM = K
M decreases, the prediction quality of GGM-based models decreases drasti-

cally. For instance in Figure D.11a, the differences between SMSE values of GGM-3

and GGM-5 at M = 20 are almost twice the SMSE at M = 15. Indeed, GGM requires

more experts to provide qualitative predictions, and the difference between the SMSE

and MSLL of GGM-3 and GGM-5 indicates this fact. At the same time, the quality of

KNN and DNN does not change significantly when K increases from 3 to 5.

Figures D.11c and D.11f show the running time of the baselines that consider the

dependencies between experts. All expert selection-based aggregations have same pre-

diction process (of O(NtK3)), and their difference in only with respect to the selection

task. Besides enhancing the number of selected experts, K increases the computational

cost of selection methods because it raises the prediction cost O(NtK3), see Section

D.5.2. In these experiments with smooth 1D data points, the running times of the GGM,

the KNN, and the DNN are of the same rate.
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Multi-Dimensional Real-World Data Set

The relative number of experts KM = K
M defined in Section D.6.1 indicates the percentage

of the initial experts selected to be used in the final predictive distribution. In this section,

we use a medium-scale real-world data set and KM to appraise the efficacy of the data

assignment strategy on the prediction quality. Pumadyn5 is a generated data set with

32 dimensions and 7,168 training points and 1,024 test points. The disjoint partitioning

divides the data set into 10, 15 and 20 subsets. We consider the GPoE[1], GRBCM[38],

NPAE[44], GGM-based aggregation [4], and proposed classification-based methods with

K-means clustering. The penalty term λ is 0.1 for GGM, and a neural network with a

single hidden layer and 50 hidden units is used in this experiment.

The expert selection approaches based on GGM, KNN, and DNN, use KM = 0.5 and

KM = 0.7, which means 50% and 70% of available experts are selected, respectively.

Table D.2 depicts the prediction quality of local approximation methods for the Pumadyn

data set. The column Type shows the interactions between experts in the aggregation

method, D for dependent experts, and CI for conditionally independent experts. The

GGM-5, GGM-7, KNN-5, KNN-7, DNN-5, DNN-7, and NPAE are the dependency-based

methods while GPoE and GRBCM are CI-based aggregations. The numbers after the

names of the methods indicate the ratio. For instance, KNN-5 and KNN-7 refer to KNN

with KM = 0.5 and KM = 0.7, respectively.

NPAE is a basis for comparison because it is the best linear unbiased predictor (BLUP).

The multi-label classification methods provide accurate results, and their derivatives with

KM = 0.5 and KM = 0.7 are close to the NPAE. This performance shows the fact that con-

vergence occurs faster in these methods. However, the proficiency of the GGM method

is sensitive to the number of agents and has more deviation from the NPAE when KM

is small. Both KNN and DNN with 50% of the experts return appropriate approxima-

tions. They offer a significant improvement in prediction quality when KM = 0.7, and for

M = 10, they outperform the BLUP baseline, i.e., the NPAE method. It happens because

the selection step properly excludes only weak experts at each test point.

Figure D.12 depicts the running time of different aggregations with dependent experts

for Pumadyn data set. The training data set is divided into M ={10,15,20} partitions, and

5https://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
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Table D.2: SMSE and MSLL of different baselines on the Pumadyn data set for different
number of partitions strategies. Both dependent (D) and conditionally independent (CI)
aggregation methods are used.

M = 10 M = 15 M = 20

Model Type SMSE MSLL SMSE MSLL SMSE MSLL

GPoE CI 0.0487 -1.5092 0.0489 -1.5087 0.0501 -1.4815
GRBCM CI 0.049 -1.5129 0.0490 -1.5083 0.0486 -1.5133

NPAE D 0.0462 -1.5397 0.0473 -1.5271 0.0470 -1.5285

GMM-5 D 0.0477 -1.5249 0.0485 -1.5103 0.0481 -1.5180
GGM-7 D 0.0471 -1.5307 0.0481 -1.5165 0.0478 -1.5208
KNN-5 D 0.0467 -1.5364 0.0477 -1.5236 0.0475 -1.5234
KNN-7 D 0.0462 -1.5402 0.0474 -1.5266 0.0470 -1.5285
DNN-5 D 0.0465 -1.5370 0.0477 -1.5232 0.0476 -1.5216
DNN-7 D 0.0460 -1.5418 0.0475 -1.5253 0.0470 -1.5285

(a) Aggregation with 50% of Experts (b) Aggregation with 70% of Experts

Figure D.12: Prediction Time (seconds) of different aggregation for disjoint partitioning
in Pumadyn data set. The training data set is divided into 10, 15, and 20 subsets and a
50% and 70% of experts are selected for final aggregation.

the prediction time of the related baselines is compared in two different cases, with 50%

and 70% of original experts. In both cases, the NPAE method is used as a baseline that

uses all dependent experts. Based-on the plots, the prediction time of GGM, KNN, and

DNN are almost at the same rate. However, Table D.2 shows that GGM can not provide
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competitive prediction quality compared to the other selection methods. For instance, the

SMSE and MSLL values of DNN-5 for all values of M are lower than those of GGM-5

and GGM-7. This issue is also confirmed by Figures D.10 and D.11. The main reason

for this issue is the low convergence rate of the GGM, which requires more experts.

D.6.2 Prediction Quality in Real-World Data Sets

In this section, we use real-world data sets to evaluate the prediction quality of proposed

aggregations and compare them with available baselines. The baselines that we use here

are GPoE with uniform weights[1], RBCM[1], GRBCM[38], NPAE[44], GGM-based

aggregation[4], KNN and DNN based ensemble methods. Various real-world data sets

with different sizes and dimensions are used here which have been explained in D.3.

Table D.3: Real-World Data Sets.

Data Set (#) Observations n Nt D
Airfoil6 1,503 1,203 300 5

Parkinson7 5,875 5,000 875 20
Pole Telecom[99] 15,000 10,000 5,000 26

Protein8 45,730 40,000 5,730 9
Sacros9 48,938 44,489 4,449 21
Song10 515,345 463,715 51,630 91

We divide the observations in Airfoil, Parkinson, and Protein into training and test

sets by extracting 85% of the sample as training and the rest as test points. In the other

data sets, there are predefined training and test sets. Indeed, in Song data set, we extract

the first 105 songs from this data set for training and the first 104 songs from the original

test set for testing. We used disjoint partitioning (K-means) to divide the data sets into

5(for Airfoil), 10(for Parkinson and Pole Telecom), 70 (for Protein), 72 (for Sacros), and

80 (for Song) subsets.

6https://archive.ics.uci.edu/ml/datasets/airfoil+self-noise
7https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
8https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+

Tertiary+Structure
9http://www.gaussianprocess.org/gpml/data/

10https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
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Next, we compare SOTA baselines with classification-based aggregations. For the

selection-based methods, we set KM to 0.5, which means 50% of experts are selected. For

the Song data set only, we set KM = 0.2 in. Since NPAE is computationally burdensome,

especially when M and Nt are large, it is only used in small and medium-scale data sets.

DNN uses a neural network with a hidden layer and 50 hidden units to evaluate the labels.

Table D.4: SMSE for various methods on real-world data sets. The table depicts SMSE
values for SOTA baselines and the classification-based aggregations, i.e. KNN, and
DNN. Both dependent (D) and conditionally independent (CI) aggregation methods are
used.

SMSE

Model Airfoil Parkinson Pole Telecom Protein Sacros Song

GPoE (CI) 0.1305 0.2703 0.0727 0.8654 0.0461 0.9221
RBCM (CI) 0.0881 0.2339 0.0237 0.3569 0.0039 0.8127
GRBCM (CI) 0.0777 0.2395 0.0191 0.3540 0.0034 0.7762

NPAE (D) 0.0694 0.2121 0.0144 - - -

GMM-5 (D) 0.0765 0.2317 0.0182 0.3326 0.0025 0.7379
KNN-5 (D) 0.0694 0.2126 0.0145 0.2743 0.0025 0.7007
DNN-5 (D) 0.0694 0.2127 0.0141 0.2744 0.0025 0.6994

Tables D.4 and D.5 reveal the SMSE and MSLL values of the baselines. Selecting the

experts enables us to encode dependency between agents efficiently while the prediction

quality is comparable with the original baseline NPAE. However, their running times are

acceptable, especially when dealing with high-dimensional large data sets where using

the NPAE is not feasible. Besides, the convergence rate of KNN and DNN is much faster

than GGM. Even with 50% of experts, the results of the GGM still have a remarkable

deviation from NPAE and cannot provide relevant results in the different data sets.

We consider Parkinson data set as an instance. GGM can not provide accurate pre-

diction when KM = 0.5. Our experiments with KM = 0.7 11 confirm that increasing the

KM to 0.7 for GGM reduces the SMSE to 0.2208 and MSLL to −0.8541 which are close

to the SMSE and MSLL of NPAE. It indicates that GGM converges to NPAE, but the

11The results for KM = 0.7 are not shown in the Tables D.4 and D.5
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Table D.5: MSLL for various methods on real-world data sets. The table depicts MSLL
values for SOTA baselines and the classification-based aggregations, i.e. KNN, and
DNN. Both dependent (D) and conditionally independent (CI) aggregation methods are
used.

MSLL

Model Airfoil Parkinson Pole Telecom Protein Sacros Song

GPoE (CI) -1.1875 -0.5862 -1.5171 -0.0759 -1.165 -0.0449
RBCM (CI) -1.3187 -0.5433 -1.5901 -0.6164 -2.5347 -0.1266
GRBCM (CI) -1.4706 -0.8123 -2.293 -0.6378 -2.7985 -0.1563

NPAE (D) -1.5207 -0.8583 -2.3537 - - -

GMM-5 (D) -1.4928 -0.7937 -2.1658 -0.6173 -2.8017 -0.1613
KNN-5 (D) -1.5209 -0.8563 -2.3851 -0.7348 -2.8005 -0.1913
DNN-5 (D) -1.5208 -0.8569 -2.3823 -0.7349 -2.8023 -0.1926

convergence is slower than KNN and DNN. Meanwhile, the SMSE values of the KNN

and DNN methods for KM = 0.7 are 0.2122 and 0.2117, respectively12. Therefore, by in-

cluding more experts in the final aggregation, KNN and DNN can outperform the NPAE

by excluding the effects of low-quality experts in Equation ((D.7)).

In CI-based methods, the conservative GPoE does not return acceptable results and

can not outperform RBCM and GRBCM methods. The quality of the GRBCM is slightly

better than RBCM because of the global communication expert. The global expert im-

proves the quality measures of GRBCM compared to RBCM, especially in MSLL, where

the values are always smaller the those of RBCM. Both methods provide competitive re-

sults with GGM when KM = 0.5. However, their deviation from NPAE, KNN, and DNN

is remarkable. Indeed, by increasing the KM GGM can easily outperform them.

D.7 Conclusion

In this work, we have proposed a novel expert selection approach for distributed learn-

ing with Gaussian agents, which leverages expert selection to aggregate dependent local

experts’ predictions. The available ensemble baselines use all correlated experts in the

12the MSLL values of the KNN and DNN methods for KM = 0.7 are −0.8575 and −0.8587, respectively.
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aggregation step. It affects the final predictions by the local predictions of weak ex-

perts or leads to impractically high computational costs. Our proposed approach uses a

multi-label classification model, and the allocation of data points to experts is defined by

considering the experts as class labels.

Unlike the available expert selection method that assigns a fixed and static set of the

selected experts to all new data points, the proposed model is more flexible to the model

and data changes and chooses a related group of experts at each entry point. Excluding

unrelated experts at each test point improves the prediction quality and reduces com-

putational costs. Meanwhile, it keeps the original baseline’s asymptotic properties that

use all exerts and provides consistent results when n→∞. The classification methods in

this work, i.e., KNN and DNN, can be replaced with recent and more efficient solutions

proposed to solve the multi-label classification problem. The proposed approach can be

used for distributed and federated learning and does not impose restricted assumptions.

Through empirical analyses, we illustrated the superiority of our approach, which im-

proves the prediction quality of existing SOTA aggregation methods while being highly

efficient.
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