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Chapter 1

Introduction

The hallmark of financial economics is uncertainty (Campbell, Lo and MacKinlay,

1997). The representative investor faces uncertainty while deciding to optimally

allocate her resources. This propagates into uncertainty in the market prices of

investment assets in the economy, which is then observed in the volatility of those

assets’ prices. Empirical research in financial economics aims at reconciling the re-

ality of financial markets with theoretical economic models. Yet, as uncertainty is

the de facto phenomenon in this field, methodological work relies heavily on proba-

bility theory and statistical methods. This is essentially the origin story behind the

emergence of the field of financial econometrics.

In this dissertation, three essays are presented each using financial econometric

techniques to address the challenges posed by uncertainty. The first two essays are

concerned with the challenges faced when estimating a complex dynamic stochastic

general equilibrum (DSGE) asset pricing model. In these models, both households

and firms make investment decisions under uncertainty that ultimately determine the

pricing kernel of assets in this given economy. The third essay is concerned with the

manifestation of uncertainty in the form of volatility in the market of cryptocurren-
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cies. This dissertation has been under development at a time when cryptocurrencies

were monopolizing the financial news with their bubble burst in 2018.1 Naturally,

the examination of their volatility dynamics is a question of interest then and now.

In 2001, Tim Bollerslev’s essay in the Journal of Econometrics (Bollerslev, 2001)

highlighted the future outlook of financial econometrics at that time. He advocated

for research efforts focused in two main areas; the development of flexible methods

in estimation procedures, and the use of long-memory properties in the modeling of

the volatility of financial markets. Twenty years later, these topics are still of viable

interest, and the three financial econometrics essays, presented in this dissertation,

make use of remarkable developments in these two areas to tackle the financial

economic challenges of the current time.

The first two essays rely on developments made by Dridi, Guay and Renault

(2007) to the infamous Indirect Inference estimation method by Gourieroux, Mon-

fort and Renault (1993). Indirect inference estimation enables the estimation of

complex structural economic models with intractable likelihood functions, that oth-

erwise cannot be estimated by standard maximum likelihood methods. The the-

oretical developments made by Dridi et al. (2007) enable misspecification in the

underlying structural model to be taken into account during the estimation process.

The technique is also flexible enough to allow for some parameters of the model

to be calibrated, while the main parameters of interest are consistently estimated.

The third essay, on the other hand, utilizes developments in methods that can ac-

count for the inherent long-memory property of volatility series. These are then

used to conduct a careful scrutiny of the volatility dynamics in the latest FinTech

innovation; cryptocurrencies.

1See for example https://www.wsj.com/articles/bitcoin-falls-below-4-000-as-

cryptocurrency-collapse-worsens-1543241154
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The first essay is presented in Chapter 2 and is based on the paper Empirical

Asset Pricing in a DSGE Framework: Reconciling Calibration and Econometrics

using Partial Indirect Inference. It is joint work with Prof. Dr. Joachim Grammig

and Dr. Julie Schnaitmann. The second essay, titled The Price of Misspecification

in DSGE Asset Pricing Models is presented in Chapter 3 and is entirely my own

contribution to the field of asset pricing. The third essay is presented in Chapter

4 and is based on the paper Volatility Discovery in Cryptocurrency Markets. It is

joint work with Prof. Dr. Thomas Dimpfl and has been published in The Journal of

Risk Finance (Dimpfl and Elshiaty, 2021).

In Chapter 2, Empirical Asset Pricing in a DSGE Framework: Reconciling Cal-

ibration and Econometrics using Partial Indirect Inference, the main aim is to use

rigorous econometric methodology to critically examine the acclaimed success of

DSGE asset pricing models. In our paper, we focus on a recent variant of these

models; namely the model proposed by Chen (2017). The model uses the equi-

librium dynamics in the DSGE model to generate a pricing kernel that claims to

resolve the well-known asset pricing puzzles in financial economics while also deliv-

ering reasonable macroeconomic dynamics. The success of these DSGE asset pricing

models, including that of Chen’s, is primarily based on confirmatory evidence deliv-

ered via calibration exercises. In our study, however, we examine this model under

the diligent scheme of econometric analysis to determine whether it indeed resolves

two of the famous asset pricing puzzles; namely, the equity premium puzzle and the

risk-free rate puzzle. Our econometric approach adapts the partial indirect inference

estimation technique from Dridi et al. (2007) to the problem at hand. This allows

us to consistently estimate the parameters of interest in the pricing kernel, while all

other nuisance parameters, that come from potentially misspecified macroeconomic

dynamics, remain calibrated. We explicitly specify the assumptions under which
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consistency is maintained, and develop the asymptotic distribution necessary for

statistical inference to be performed. Our results suggest that the acclaimed success

of DSGE models to resolve the asset pricing puzzles should be viewed with caution.

Our analyses indicate that the risk-free rate puzzle still poses a considerable prob-

lem, and while the equity premium puzzle is indeed resolved, this is achieved at a

relative risk aversion rate that is higher than what is conventionally accepted.

In Chapter 3, The Price of Misspecification in DSGE Asset Pricing Models, the

main aim is to shed light on the estimation challenges posed by the potential mis-

specification in DSGE asset pricing models, and the disastrous ramifications that

this might have on the estimation quality of the models’ parameters. This problem

of non-identification of the model’s structural parameters might be why calibration

exercises, rather than due diligence via econometric methods, have thus far been the

norm in evaluating the performance of these models. Towards this end, a compar-

ison of the results of three competing econometric strategies is performed on Chen

(2017)’s model; the classical Indirect Inference (II) method developed by Gourier-

oux et al. (1993), and its two recent modifications proposed by Dridi et al. (2007);

the full encompassing partial indirect inference (FII) method and the partial indi-

rect inference (PII) method that was thoroughly discussed in Chapter 2. A fragility

measure, known as the “dark matter” measure, recently developed by Chen, Dou

and Kogan (2019), is used to challenge the underlying assumption of the previous

chapter. Namely, that misspecification exists in the entirety of the macroeconomic

dynamics. The findings indicate that ignoring misspecification has dire consequences

on the estimation precision of the parameters of the model. However, the answer is

not to simply calibrate all the macroeconomic parameters. Rather, the dark matter

measure reveals that it is advantageous to add the Gross Domestic Product (GDP)

moments to the original PII estimation. The new modified PII method then deliv-
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ers comparably precise estimation results with slightly better implied asset pricing

moments, and remarkably better business cycle dynamics.

Chapter 4, Volatility Discovery in Cryptocurrency Markets, focuses on using the

long memory properties of the volatility time series of four famous cryptocurrencies

(Bitcoin, Ethereum, Litecoin, and Ripple) that are traded on three prominent ex-

changes (Bitfinex, Bitstamp, and Kraken). The main aim is to discover whether a

certain exchange is a volatility leader for the other two, and whether a certain cryp-

tocurrency is the volatility driver for the other three considered cryptocurrencies.

The theoretical approach is a discretized version of Dias, Scherrer and Papailias

(2018). It extends the classic price discovery framework to include the long memory

property that characterizes the common latent volatility process, which is assumed

to govern the volatility on all exchanges. Empirically, the different volatility time

series are individually modeled via a stochastic volatility scheme (Sandmann and

Koopman, 1998), and altogether modeled using a fractionally cointegrated vector

autoregressive (FCVAR) model (Johansen, 2008; Johansen and Nielsen, 2012). The

latter model accounts for the long memory nature of the latent volatility processes.

The FCVAR estimation results are then used to calculate the volatility informa-

tion share of each exchange for each cryptocurrency and, in a later step, for each

cryptocurrency using the leading exchange market. In a similar fashion to the price

discovery methodology, the Hasbrouck (1995) information share and the modified

information share of Lien and Shrestha (2009) are utilized for this purpose. Our anal-

yses indicate that the market with the highest trading volume share is not necessarily

the market where volatility discovery takes place. Yet, we interpret our findings for

all cryptocurrencies other than Bitcoin with caution, as they are relatively newer.

Therefore, their sampled data is not long enough to ensure the estimation precision

of the FCVAR model.
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Finally, Chapter 5 concludes this dissertation by summarizing the findings put

forth by the three essays comprising the entire work. It can thus be thought of as a

résumé of the contributions of this dissertation to the financial econometrics field.
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Chapter 2

Empirical Asset Pricing in a

DSGE Framework:

Reconciling Calibration and Econometrics using

Partial Indirect Inference∗

2.1 Introduction

Embedding preference-based asset pricing within a dynamic stochastic general equi-

librium (DSGE) framework holds the promise to resolve the prominent puzzles of

financial economics by using a pricing kernel that is consistent with macroeconomic

processes. However, the apparent empirical success of such approaches is predomi-

∗This chapter is based on Grammig, Schnaitmann and Elshiaty (2020) and is available at https:
//ssrn.com/abstract=3648085. We are grateful for the comments given by the participants at
the Society for Financial Econometrics annual conference, Cambridge 2022, the European Finance
Association’s virtual meeting from Helsinki, Finland 2020, the Econometric Society’s virtual World
congress 2020 from Bocconi University, the European Economic Association’s virtual meeting, 2020
and the International Conference on Computational and Financial Econometrics in 2018 at the
University of Pisa for their helpful feedback. In particular, we thank Bertille Antoine, Giorgio
Calzolari, Roxana Halbleib, Alastair Hall, Frank Kleibergen, Tim Landvoigt, Olivier Scaillet and
Jantje Sönksen for their insightful comments and suggestions.
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nantly based on calibration methods, which Hansen and Heckman (1996) have crit-

icized for lacking the rigor of econometric analysis.

This study aims at delivering a critical assessment of the DSGE asset pricing

approach, and to return the empirical analysis of these models to the econometrics

fold. For that purpose, we focus on the most recent exponent proposed by Chen

(2017). Applying the partial indirect inference method (PII) introduced by Dridi

et al. (2007), we acknowledge that parts of the model (the production technology)

are misspecified, while other parts (the pricing kernel) have the claim of capturing

financial economic reality. Adapting the PII philosophy to the present problem,

we use binding functions that facilitate the consistent estimation of some structural

model parameters of interest, while treating others as nuisance parameters. The

latter do not truly capture economic reality, but are necessary to generate model-

implied data within the simulation-based estimation procedure.

The class of DSGE models considered here connects asset prices to an exogenous

technology process and an endogenously generated consumption process. In this

model economy, households try to smooth their consumption stream in response to

technology shocks, and the fluctuations in consumption determine asset prices. Cap-

ital adjustment costs induce that the supply of new capital via household investment

and consumption decisions is not perfectly flexible. Jermann (1998) pioneers this

literature by considering a real business cycle (RBC) model that explains both busi-

ness cycle moments and asset pricing facts. He introduces linear habit persistence,

which creates volatility in the pricing kernel without the need for an unreasonably

high relative risk aversion. While the model-implied time-varying risk premium re-

solves the equity premium puzzle, the linear habit specification also generates an

implausibly high volatility of the risk-free rate. Chen (2017) accounts for this draw-

back by accounting for nonlinear habit preferences as in Campbell and Cochrane
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(1999), and convex capital adjustment costs. The empirical validation of this most

recent exponent of DSGE asset pricing models is performed by means of a calibra-

tion study. The results are interpreted such that the calibrated model resolves many

empirical asset pricing puzzles.

Quite different to such a calibration study, econometric analysis challenges a

model’s specification, instead of seeking confirmatory evidence. The model parame-

ters are estimated using empirical data, which entails a careful discussion of identify-

ing restrictions. The key questions are whether these restrictions facilitate consistent

parameter estimation, and how informative the available data are to accomplish that

task. The analysis is deeply concerned with parameter estimation uncertainty, which

translates into confidence intervals for the parameters and model-implied indicators

of interest. These are all non-issues for calibration studies.

However, the econometric analysis of DSGE asset pricing models is a challenging

task. Proponents of calibration may even argue that such highly stylized models

are not suitable for econometric analysis in the first place. Notwithstanding, there

exists a large body of literature that deals with the estimation of DSGE models (not

necessarily concerned with asset pricing). Early studies rely on likelihood meth-

ods1, although the complex model structures often render the likelihood function

intractable. A more fundamental caveat concerns the notion of “true” model pa-

rameters that one seeks to estimate by maximum likelihood. Parts of a DSGE

asset pricing model are openly misspecified; as put by Dridi et al. (2007), they

represent a “caricature of reality”. As such, it is unclear what an asymptotically

efficient estimation achieves in the first place. Bayesian methods are regularly used

for the estimation of DSGE models2, but they lack the intuitive appeal of frequen-

1See, e.g. Altug (1989), Leeper and Sims (1994), McGrattan, Rogerson and Wright (1997) and
Ireland (2004).

2An and Schorfheide (2007) and Fernández-Villaverde, Rubio-Ramı́rez and Schorfheide (2016)
provide reviews of the Bayesian DSGE model estimation approach.
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tist approaches, which are capable of directly linking the structural parameters to

the DSGE model’s equilibrium conditions, as noted by Fernández-Villaverde (2010).

Moment matching strategies (generalized or simulated method of moments) are an

alternative to likelihood-based methods3, but the aforementioned caveat applies, if

one doubts that data generated from the DSGE model endowed with the “true”

parameters corresponds to the real world data generating process.

The present study pursues a matching approach that acknowledges that parts

of the DSGE asset pricing model are evidently misspecified, while others claim to

reflect economic reality. Specifically, we implement, for the first time in the context

of DSGE asset pricing, the partial indirect inference philosophy proposed by Dridi

et al. (2007) and focus our estimation efforts on those parameters and parts of the

DSGE asset pricing model that are assumed to reflect economic reality: its asset

pricing implications. We thereby build a bridge between the data generated by the

DSGE asset pricing model and the data that we observe in the real world. To the best

of our knowledge, this is the first study that provides a comprehensive application

of partial indirect inference to econometrically analyze a DSGE asset pricing model.

We make the general assumptions of Dridi et al. (2007) explicit, and derive the

limiting distribution implied by the instrumental model that we employ for our study,

which facilitates statistical inference about the estimated parameters. Applying the

PII method to estimate the structural parameters of interest, we provide confidence

3Christiano and Eichenbaum (1992) and Burnside, Eichenbaum and Rebelo (1993) pioneer the
literature that uses the generalized method of moments to estimate the full vector of structural
parameters of DSGE models with analytically tractable unconditional moments. Regarding more
complex models, for which unconditional moments cannot be provided in closed form, the liter-
ature resorts to matching the impulse response function parameters from Vector Autoregressions
(VARs) generated from both simulated data and empirical data, see for example Rotemberg and
Woodford (1997), Christiano, Eichenbaum and Evans (2005) and Altig, Christiano, Eichenbaum
and Linde (2011). Ruge-Murcia (2007) and Ruge-Murcia (2012) match simulated moments à la
Duffie and Singleton (1993) and McFadden (1989), while Ruge-Murcia (2014) uses indirect infer-
ence estimation introduced by Smith (1993) and Gourieroux et al. (1993) to match the parameters
of a non-linear VAR.
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intervals for these parameters as well as model-implied key economic indicators,

which rely on the derived limiting distribution.

Our econometric analysis shows that the empirical performance of the model

proposed by Chen (2017) is not unfavorable, but the claim that the DSGE approach

can resolve the notorious asset pricing puzzles should be viewed with caution. On the

upside, the model-implied equity premium and Sharpe ratio as well as the business

cycle and consumption growth moments are economically plausible, also when taking

estimation uncertainty into consideration. Moreover, the macroeconomic moments

are largely unaffected by the choice of the preference parameters and are mainly

impacted by a sensible calibration choice. However, there are two notable caveats.

First, the economically plausible equity premium and Sharpe ratio are not achieved

by a level of risk aversion conventionally thought to be plausible.4 Provided that

one is willing to accept a steady-state relative risk aversion coefficient of about 20, it

can be claimed that the DSGE asset pricing model with nonlinear habit persistence

may help to resolve the equity premium puzzle. Second, while the estimated model

does not imply an excessively volatile risk-free rate, which is often encountered in

production-based models (Jermann, 1998), it fails to match the empirical level of

the risk-free rate. The elevated level of the model-implied risk-free rate is associated

with a time preference point estimate above unity. Accordingly, the risk-free rate

puzzle remains unresolved.

The remainder of the paper is organized as follows: In Section 2.2.1, we present

the anatomy of the DSGE asset pricing model to be analyzed, and we highlight its

key features in Section 2.2.2. Calibration results are then presented in Section 2.2.3.

Section 2.3.1 outlines the econometric methodology. We use a brief exposition in

the main text and explain methodological details in the appendix. We elaborate

4This is is a well-documented feature of partial equilibrium habit-based asset pricing models
(see, e.g. Campbell and Cochrane (1999), Cochrane (2016), Cochrane (2017)).
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on the specific assumptions used for our instrumental model choice in Appendix

2.A, and we derive the asymptotic distribution of the PII estimator in Appendix

2.B. Section 2.3.2 motivates the parameters’ separation into structural parameters

of interest and nuisance parameters. Section 2.4 presents the estimation results as

well as a critical assessment of the empirical performance of the estimated model.

Section 2.5 concludes.

2.2 Asset pricing in a DSGE framework

In this section, we elaborate on the DSGE asset pricing model proposed by Chen

(2017). This model is built on a standard RBC model that is augmented by nonlinear

habit preferences in the spirit of Campbell and Cochrane (1999) and by convex

capital adjustment costs. Section 2.2.1 gives details about the model specification.

We focus on the model’s asset pricing features in Section 2.2.2. More specifically,

we investigate the model-implied risk-free rate and Sharpe ratio. In Section 2.2.3,

we present calibration results of the model similar to those in Chen (2017).

2.2.1 Anatomy of the DSGE asset pricing model

The representative household chooses consumption and hours of labor such that the

following expected lifetime utility function is maximized.

E0

[
∞∑
t=0

βt
(Ct −Ht)

1−γ − 1

1− γ

]
, (2.2.1)

where Ct and Ht are consumption and habit in time t, respectively, while β and

γ represent the time preference and the utility curvature parameters. Chen (2017)

assumes that there is no leisure, and that, in equilibrium, Nt = 1, i.e. the household

is endowed with a single unit of labor. Following Campbell and Cochrane (1999),

12



surplus consumption, St, determines the evolution of habit, such that St ≡ Ct−Ht

Ct
.

Surplus consumption follows an autoregressive process

st+1 = (1− ρs)s̄+ ρsst + λ(∆ct+1 − µ), (2.2.2)

where st = lnSt indicates the log of the variable, ρs is an autoregressive parameter, µ

is the steady-state growth rate of technology and λ is a constant fixed to λ = 1/S̄−1

as in Campbell and Cochrane (1999).

The utility function in Equation (2.2.1) is a power utility augmented with non-

linear external habit preferences. This specification ensures that the model has a

time-varying risk premium given by rrat = γ/St. Markets are complete and the

stochastic discount factor (SDF) of the household is given by

Mt,t+1 = β

(
Ct+1

Ct

St+1

St

)−γ
. (2.2.3)

On the production side, the representative firm produces output, Yt, according to

a constant returns to scale production function Yt = ZtK
α
t (XtNt)

1−α, where Zt, Kt

and Nt refer to the level of production technology, capital and labor available at time

t, respectively. Xt is the deterministic long-run growth component of productivity

which evolves as xt+1 = xt + µ. As in a standard RBC model, the log of the

production technology evolves in an autoregressive manner

zt+1 = ρzzt + σzεz,t+1, (2.2.4)
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where εz,t+1 ∼ N (0, 1) i.i.d. The technology shock is a homoskedastic shock, and

it constitutes the only source of uncertainty in the model. Capital accumulation in

this economy evolves according to

Kt+1 = It + (1− δ)Kt, (2.2.5)

where It refers to investment at time t, and δ refers to the capital depreciation rate.

Moreover, the representative firm faces convex capital adjustment costs Φ(It, Kt) =

φ
2

(
It
Kt
− (eµ − 1 + δ)

)2

Kt. These adjustment costs become zero in the steady state.

The firm seeks to maximize the expected discounted value of future dividends, i.e.

max
{It,Kt+1,Nt}

E0

[ ∞∑
t=0

M0,t

{
ZtK

α
t (XtNt)

1−α −WtNt − Φ(It, Kt)− It
} ]
, (2.2.6)

subject to capital accumulation in Equation (2.2.5).

In equilibrium, both the labor market and the goods market clear which gives

rise to the equilibrium wage and the budget constraint, respectively

Wt = (1− α)ZtXtK
α
t (XtNt)

−α, (2.2.7)

Ct + It = ZtK
α
t (XtNt)

1−α − Φ(It, Kt), (2.2.8)

as well as the asset pricing equation for investment return, RI
t,t+1.

Et
[
Mt,t+1R

I
t,t+1

]
= 1, (2.2.9)

with

RI
t,t+1 =

α Yt+1

Kt+1
+
(

1 + φ
(
It+1

Kt+1

))
(1− δ) + φ

2

(
It+1

Kt+1

)2

1 + φ
(
It
Kt

) , (2.2.10)
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where α Yt+1

Kt+1
is the marginal product of capital, It+1

Kt+1
is the investment rate, and φ

is the quadratic adjustment cost parameter.

2.2.2 Features of the model

In the following, we discuss the main features of this model that resolve the asset

pricing puzzles. We are primarily concerned with the risk-free rate puzzle and the

equity premium puzzle.

Empirical data show that the firm or equity return volatility, σ(RI
t,t+1), is 15%

while the volatility of the investment return rate, It+1

Kt+1
, is only 2% annually. Thus,

the volatility of the investment return will not reconcile, see Equation (2.2.10), un-

less the adjustment cost parameter, φ, is calibrated at a very high value. In fact,

Chen sets φ = 100. This implies that productivity shocks are absorbed by asset

prices rather than investment. This fact is also demonstrated in Jermann (1998),

Kogan (2004), Jermann (2010), and Kogan and Papanikolaou (2012). Thus, high

adjustment costs discourage volatile investments. Consequently, market clearing in-

dicates that productivity shocks will alternatively lead to volatile consumption which

defies consumption smoothing preferences by households as indicated in empirical

data. This dilemma, in turn, is solved by incurring low elasticity of intertemporal

substitution EIS = ∂Et[∆ct+1]

∂rft+1

= s̄
γ
≈ 0.035.

However, low EIS propagates the problem to a different part in the model, as

it implies a more volatile risk-free rate relative to empirical data (see the caveat

in Jermann, 1998), which is precisely the risk-free rate puzzle. Persistent external

habit preferences in this model smooth risk-free rate volatility via a precautionary

savings effects. The log-normal approximation of the risk-free rate is given by

rft+1 ≈ − log β +
γ

S̄
Et[∆ct+1]− γ(1− ρs)(st − s̄)−

1

2

γ2

S̄2
Vart[∆ct+1], (2.2.11)

15



where rra = γ/S̄ gives the steady-state relative risk aversion of the representative

investor. Here, intertemporal substitution, the second to last term from the r.h.s

of the above equation, implies that in bad times, investors want to borrow from

the future by selling the risk-free asset which, in turn, pushes rft+1 up. On the

other hand, precautionary savings, the last term on the r.h.s, work in the opposite

direction as they entail that, in a volatile economy, investors are more reluctant to

sell the risk-free asset. As a result, given high persistence of habit, i.e. ρs = 0.98, a

relatively smooth risk-free rate can coexist together with low EIS.

In this model, consumption volatility risk is endogenously generated. As the

model is driven by an homoskedastic productivity shock, the heteroskedasticity arises

from the nonlinearity in the law of motions of the model. This nonlinearity leads to

counter-cyclical consumption volatility, as consumption is more sensitive to shocks in

bad times. The precautionary savings channel is summarized as follows: a negative

shock to wealth strengthens the motive to save which leads to an increase in savings

and a decrease in consumption. The opposite effect occurs for a positive wealth

shock. Consequently, this uncertainty in the need for precautionary savings causes

consumption volatility. Chen (2017) further shows that external habit amplifies the

effect of this channel.

Consumption volatility risk in this model plays a crucial role in valuing assets as

the asset pricing dynamics are derived from the time-varying risk premium which,

in turn, is driven by the time-varying consumption volatility. From the model, the

conditional maximum Sharpe ratio is derived via a log-normal approximation of the

SDF as follows

max
{all assets}

[
Et(Rt+1 −Rf

t+1)

σt(Rt+1)

]
≈ γ

S̄
σt(∆ct+1). (2.2.12)
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Equation (2.2.12) shows that the steady-state relative risk aversion, rra, amplifies

the effect of consumption volatility. Thus, a small increase in the latter can result

in a large increase in risk premium.

2.2.3 Calibration

In this section, we replicate the results of Chen (2017). Towards this end, we cali-

brate the model and calculate the asset pricing implications and the business cycle

moments. The moments that are targeted and their resulting parameter values are

comparable to those reported in Campbell and Cochrane (1999) and Kaltenbrunner

and Lochstoer (2010). The parameter values used to simulate the model are pro-

vided in Table 2.1. The technology parameters are calibrated to values common in

the RBC literature: The capital share of GDP, α, is matched to the empirical target

of this ratio and set to 0.35. The depreciation rate is guided by the mean investment

rate and chosen to be δ = 0.016. The total factor productivity (TFP) parameters

are chosen as follows: long-run productivity growth µ = 0.0045 is given by the mean

output growth, the volatility of TFP is matched to the volatility of HP-filtered

GDP, i.e. σz = 0.012, whereas the persistence of TFP is set to the persistence of the

output-to-capital ratio, i.e. ρz = 0.98. The quadratic capital adjustment cost is cho-

sen to be φ = 100 comparable to Guvenen (2009) and Kaltenbrunner and Lochstoer

(2010). This choice implies that productivity shocks are absorbed by asset prices

and leads to around 0.11% mean adjustment costs in relation to output, as shown

in Table 2.2.

The subjective time-preference rate of the representative agent, β, is chosen to

match the mean return on the 90-day Treasury bill and is given by 0.995. Relative

risk aversion is captured by the ratio of the utility curvature parameter, γ, to the

surplus consumption St, i.e. rrat = γ/St, and is time-varying. In the steady-
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Table 2.1: Calibrated values

Parameter Value Target Moment Data

Preferences
β Time Preference 0.995 90-Day T-bill Return (%) 0.17
ρs Persistence of Surplus 0.980

Consumption
S̄ Steady-State Surplus 0.070

Consumption
γ Utility Curvature 2.00 for comparison with

Campbell-Cochrane
rra = γ/S̄ Steady-State 28.57

Relative Risk Aversion
Long-run Technology
α Capital Share 0.35 Mean Output/Capital 0.143
δ Depreciation Rate 0.016 Mean Investment Rate 0.025
µ TFP Growth 0.0045 Mean Output Growth (%) 0.48

Cyclical Technology
σz Volatility of TFP 0.012 Vol HP-filtered GDP (%) 1.72
ρz Persistence of TFP 0.980 Persistence of Output/Capital 0.997
φ Adjustment Cost 100.00

Note: This table replicates Table 1 in Chen (2017). It reports the parameter values obtained from
matching empirical target moments. The time series used span a period from 1948 to 2012 on
quarterly frequency from US data.

state, risk aversion is given by rra = γ/S̄, and we cannot uniquely identify the

two associated parameters. Here, the utility curvature parameter, γ, is set to 2

without targeting a specific moment, and the steady-state surplus consumption is

chosen to be S̄ = 0.07 as in Campbell and Cochrane (1999).5 Hence, the steady

state relative risk aversion is calibrated to rra = 28.57. Lastly, the persistence of

surplus consumption, ρs, is set similar to Chen (2017) at 0.98. The value is guided

by the persistence of Tobin’s Q and the first autocorrelation of the price-dividend

ratio which are reported in his paper.

We simulate the model 500 times over a time series length of T = 260, i.e.,

the length is equivalent to the number of quarters in our observed sample. The

5In Campbell and Cochrane (1999) a closed form solution for the steady-state surplus consump-
tion exists and risk aversion is only captured in γ. Here, no closed form solution exist as the system
is impacted by endogenous consumption volatility risk.
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calibration results, as well as their counterparts from Chen (2017), are provided in

Table 2.2. For the business cycle moments, the results implied by the simulations and

the observed data, are quite similar, for both pairs of moments, with the exception

of the mean output to capital ratio.6 As for the consumption growth moments, we

find that the mean and the standard deviation of log consumption growth, implied

by the model, match the empirical moments well.

For the asset pricing moments, the mean quarterly Sharpe ratio of the CRSP

index is given by 0.22 which is equivalent to the sample average over the ensem-

bles. The observed quarterly equity premium is equal to 1.82%, whereas the en-

semble mean is 2.46%. Furthermore, the volatility of the excess return is sensible

in the simulations. We use the 90-day T-bill return as a proxy of the risk-free rate.

The average quarterly risk-free rate is given by 0.17% in the data, whereas it is

considerably higher in our simulations and given by 0.65%. The volatility of the

model-implied risk-free rate at 0.74% is not excessively volatile and is in line with

the observed counterpart at 0.90%. We can, therefore, conclude that the trade-off

between the intertemporal substitution and the precautionary savings channel bal-

ances the volatility of risk-free rate well. Yet, the level of the risk-free rate is not

compatible with our empirical data. The model is, thus, affected by the risk-free

rate puzzle described in Weil (1989). Chen (2017) reports a lower level for the sim-

ulated risk-free rate. However, this value cannot be replicated in neither his nor our

code. Overall, we conclude from our simulations and that of Chen’s (2017) that the

model fares fairly well over the business cycle dimension, the consumption growth

moments and for the equity premium, though it is not capable of matching the level

of the empirical risk-free rate.

6This value is reported to be perfectly matched in Table 1 in Chen (2017), as he is reporting
the empirical moment twice. We provide the corrected values in our Table 2.2.
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Table 2.2: Calibration results

Moment Calibration Chen (2017)

Data Simulations Simulations

Asset Prices

90-Day T-bill Return (%) 0.17 0.65 0.35
Vol of Rf (%) 0.90 0.74 0.52
Persistence of Tobin’s Q 0.96 0.96
Mean Sharpe Ratio of CRSP Index 0.22 0.23 0.16
Equity Premium Re (%) 1.82 2.46 1.72
Vol of Re (%) 8.24 10.70 11.04

Business Cycle

Mean Output/Capital 0.143 0.089 0.142
Mean Investment Rate 0.025 0.021 0.021
Mean Output Growth (%) 0.48 0.45 0.45
Vol HP-filtered GDP (%) 1.72 1.52 1.53
Persistence of Output/Capital 0.997 0.986 0.983
Relative Volatility 0.52 0.51 0.46

of Consumption Growth
Mean Adj Cost / Output (%) 0.11 0.11

Consumption Growth

Mean of ln of Consumption Growth (%) 0.47 0.45 0.46
Std of ln of Consumption Growth (%) 0.52 0.61 0.56

Note: This table shows simulated moments implied by the calibrated values given in
Table 2.1. The calibrated structural parameters of interest are given by β = 0.995
and rra = 28.57. The column labeled Chen (2017) contains the published values in
his Tables 1, 2 and Table 3. The data used is taken from the online appendix of
Chen (2017). It is described in more details in Appendix 2.D.

The previous calibration exercise seeks confirmatory evidence for the model by

matching model simulated moments to those observed empirically using economi-

cally plausible parameter values. Yet, what if economically implausible parameter

values are able to achieve such a match? From a pure calibration point of view,

those will be deemed acceptable, though economically inconceivable. This is where

econometric analysis goes beyond the scope of calibration. With the aid of estimated
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confidence intervals, we can assess the validity of the entire range of possible param-

eter values that are compatible with empirical data. In the next section, we lay

out the partial indirect inference framework which we use to estimate the structural

parameters of interest.

2.3 Returning to the econometrics fold

The indirect inference estimation philosophy is introduced and refined by Smith

(1993), Gourieroux et al. (1993) and Gallant and Tauchen (1996). This approach is

used in the presence of a nonlinear analytically intractable structural model, which

implies that the parameters of such a model (known as the structural parameters), ξ,

cannot be directly estimated. The underlying idea is to identify a binding function,

θ(ξ), which relates the structural parameters ξ to the instrumental parameters θ

which, in turn, are estimated from an instrumental model that is easily estimated.

Indirect inference implies that two sets of instrumental parameters are estimated

from the instrumental model; one using the simulated data from the structural

model, and the other from empirical data. The structural parameters are, then,

estimated such that the minimum of a quadratic loss function calculated between

the two sets of instrumental parameters is achieved.

2.3.1 The partial indirect inference approach

Intuition and motivation

Even though the DSGE asset pricing model accommodates both asset pricing and

macroeconomic dynamics, it cannot realistically represent all of the complexities of

the economy. In spite of this, its stochastic discount factor may be able to price

assets and convey some reasonable economic insights. As a result of this intrinsic
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misspecification, the empirical data generating process and the simulated data from

the structural model do not coincide. This renders any indirect estimation strat-

egy in which all structural parameters are estimated based on a correctly specified

structural model, infeasible.

Alternatively, Dridi et al. (2007) proposes an extension to the indirect inference

theory to accommodate misspecified structural models. This approach is called

partial indirect inference, and it focuses on the consistent estimation of only a subset

of the structural parameters; those that are believed not to be misspecified, while

the rest of the parameters remain calibrated. In this manner, calibration can be

viewed as econometrics for misspecified models. In their terminology, we split the

parameters ξ = (ξ1, ξ2)>, such that the only parameters of interest for the estimation

process are ξ1, while ξ2 refers to nuisance parameters that will remain calibrated for

the entire exercise. The aim is to obtain a consistent estimator of the true unknown

value ξ0
1 when solving the sample or simulation-based counterpart of the binding

function

θ0 = θ̃0
(
ξ0

1 , ξ
∗
2

)
(2.3.1)

with respect to ξ1. In this context, ξ∗2 are the pseudo-true values of the nuisance

parameters ξ2. Equation (2.3.1) constitutes a necessary condition which implies

that the structural model fully encompasses the instrumental one in the presence

of misspecification. Thus, if we choose a convenient instrumental model, Equation

(2.3.1) characterizes the true unknown parameters ξ0
1 given the misspecification in

ξ2.

If, however, only a subset of the encompassing conditions in (2.3.1) are fulfilled,

we are in a partial encompassing case. Hence, the identification of the structural

parameters ξ is incomplete, but we achieve consistent estimation of the structural

parameters of interest ξ1, if the under-identification is only about a subset of the
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pseudo-parameters ξ2 that do not appear in the binding function. In this case, the

necessary condition becomes

θ0
1 = θ̃0

1

(
ξ0

1 , ξ
∗
21

)
. (2.3.2)

This means that the structural model’s nuisance parameters are now ξ2 =
(
ξ21, ξ̄22

)>
,

where ξ̄22 do not interfere with the binding function, and thus are allowed to escape

the encompassing condition (2.3.2). These parameters, in turn, remain calibrated

during the estimation process (hence the usage of the over bar), while their coun-

terparts, ξ21, become part of the estimation process, i.e. they are identified from the

instrumental parameters, θ1, and are thus necessary for the consistent estimation of

ξ1.

PII estimator

In this subsection, we detail the construction of an indirect estimation strategy for

the structural parameters of interest ξ1. We denote the empirical time series as

{yt}Tt=1, and the model-implied series obtained from simulations by {ỹs (ξ1, z0)}Ss=1,

where z0 refers to the initial value of the state variable.

The crucial step is to carefully choose an instrumental model which is capable

of capturing the model-implied financial time series, and has a tractable estimation

function for its parameters, i.e. the instrumental parameters. Similar to the rec-

ommendations of Dridi et al. (2007), we advocate the use of well-chosen moment

restrictions that reflect the asset pricing implications of the DSGE asset pricing

model rather than using a full parametric model as an instrumental model. We,
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first, describe the estimation of the instrumental parameters based on empirical

data.7 The set of k moment restrictions is given by

E
[
u1,t

(
{yt}tt−l, θ0

1

)]
= 0. (2.3.3)

Moreover, the number of moment restrictions is at least as large as the number of

structural parameters, i.e. k = dim θ1 ≥ p1 + p21 = dim ξ1 + dim ξ21. To estimate

the instrumental parameters θ1, we maximize a GMM-type criterion function given

by

min
{θ1∈Θ1}

Q1,T

(
{yt}Tt=1, θ1

)
, (2.3.4)

where Q1,T

(
{yt}Tt=1, θ1

)
=

1

2
g1,T

(
{yt}Tt=1, θ1

)> · Ŵ1,T · g1,T

(
{yt}Tt=1, θ1

)
, (2.3.5)

g1,T

(
{yt}Tt=1, θ1

)
=

1

T

T∑
t=1

u1,t

(
{yt}tt−l, θ1

)
, (2.3.6)

with Ŵ1,T
a.s.→ W1, a positive semi-definite weighting matrix.

θ̂1,T = argmin
{θ1∈Θ1}

Q1,T

(
{yt}Tt=1, θ1

)
is a consistent estimator of θ0

1.

As the simulated data stems from a misspecified simulator, its probability limit

is not the same as that of the observed data. For the consistency of the instru-

mental parameter estimates associated with the simulated time series, we impose an

identification assumption for the simulated time series given by

E∗
[
u1,t

(
{ỹst (ξ)}tt−l, θ̃0

1(ξ0
1 , ξ
∗
21)
)]

= 0.

7We use the notation of the partial encompassing case in Dridi et al. (2007). All quantities are
indexed by a 1. More elaboration is given in Section 3.2.3 in Chapter 3.
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Under appropriate GMM assumptions given in Appendix 2.A,

θ̃s1,T (ξ1, ξ21, ξ̄22) = argmin
{θ1∈Θ1}

Q1,T

(
{ỹsT (ξ)}Tt=1, θ

s
1

)
(2.3.7)

and θ̃s1,T (ξ1, ξ21, ξ̄22) = 1
S

∑S
s=1 θ̃

s
1,T (ξ1, ξ21, ξ̄22) is a consistent estimator of θ̃0

1 (ξ0
1 , ξ
∗
21).

For the indirect estimator of the structural parameters, we require partial en-

compassing given by

θ0
1 = θ̃0

1(ξ0
1 , ξ
∗
21), (2.3.8)

where θ0
1 is the probability limit of the instrumental parameters associated with the

observed data and θ̃0
1(ξ0

1 , ξ
∗
21) is the probability limit for the simulated time series.

Equation (2.3.8) is the partial encompassing condition in Dridi et al. (2007) and the

necessary condition in Equation (2.3.2) needed in the partial encompassing case. We

refer to it as the partial encompassing null hypothesis H
(1)
0

(
ξ̄22

)
.

The partial indirect inference (PII) estimator is defined as

 ξ̂1,TS(ξ̄22)

ξ̂21,TS(ξ̄22)

 = argmin
{(ξ1,ξ21)∈Ξ1×Ξ21}

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T (ξ1, ξ21, ξ̄22)

]>
· Ω̂1,T

·

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T (ξ1, ξ21, ξ̄22)

]
,

(2.3.9)

θ̂1,T = argmin
{θ1∈Θ1}

Q1,T

(
{yt}Tt=1, θ1

)
, (2.3.10)

θ̃s1,T
(
ξ1, ξ21, ξ̄22

)
= argmin
{θ1∈Θ1}

Q1,T

(
{ỹsT (ξ)}Tt=1, θ

s
1

)
, (2.3.11)

and Ω̂1,T is a positive definite weighting matrix that converges almost surely to the

non-stochastic positive definite matrix Ω1.
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Given that ξ̂1,TS

(
ξ̄22

)
is a consistent estimator of ξ0

1 , the structural parameters

estimates of ξ1 and ξ21 follow an asymptotic normal distribution

√
T

 ξ̂1,TS

(
ξ̄22

)
− ξ0

1

ξ̂21,TS

(
ξ̄22

)
− ξ∗21

 d→ N (0,Σ (S,Ω1)) , (2.3.12)

where the asymptotic covariance Σ (S,Ω1) is given in Equation (2.B.1) in Appendix

2.B. This asymptotic covariance matrix can be used to construct confidence intervals

of our parameters of interest. Using this technique, we can return calibration to the

econometrics fold.

The underlying assumptions that ensure the consistency of the PII estimator

under the partial encompassing case are discussed in Appendix 2.A and 2.B. We refer

the reader to Dridi et al. (2007), as well as Smith (1993), Gourieroux et al. (1993)

and Gallant and Tauchen (1996) for the assumptions governing the consistency of

indirect inference estimation in general. A brief summary of how they are different

than the assumptions needed for PII is provided in Appendix 3.A.

2.3.2 Specification of the instrumental model

The PII estimation methodology is adapted to the structural model at hand; the

DSGE asset pricing model proposed by Chen (2017). Here, we conceive the asset

pricing implications of the model, the implied SDF, to be the economic reality that

we want to capture. Hence, the investor’s preference parameters are of relevance,

i.e. ξ1 = (β, rra)> where rra = γ/S̄, while the remaining parameters are understood

as caricatural aspects of the model perceived as the nuisance parameters, ξ2. We

investigate which informational content the empirical data has on the implied timing

and risk preference. As the size of the relative risk aversion and the time preference

rate carry economic meaning, this is crucial for the empirical assessment of the
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model. These parameters play a key role in consumption-preference based asset

pricing which determine the model-implied equilibrium risk-free rate and the market

equity premium. If the parameter estimates are outside the range of economically

plausible values, this is empirical evidence against the structural model. Moreover, if

the estimated confidence intervals of the parameters include a wide range of plausible

and implausible values, then the observed data are not informative for assessing the

empirical performance of the model.

The structural nuisance parameters, ξ2, are needed to specify a complete model,

but they do not convey economic reality. The bridge between the theoretical model

and the economic reality is fragile, hence, we rely on calibration for the macroe-

conomic part of the model. Section 3.2.3 elaborates on the reasoning behind the

fragility of the macroeconomic dynamics in the DSGE asset pricing model. The nui-

sance parameters are thus given by ξ̄2 = (ρs, α, δ, φ, µ, ρz, σz)
> and are calibrated to

the values specified in Section 2.2.3, i.e. ξ̄2 = (0.98, 0.35, 0.016, 100, 0.0045, 0.98, 0.012)>.

The choice of moment conditions for the instrumental parameters is guided by

the model-implied equations for the risk-free rate and the conditional Sharpe ratio

which are given in Equations (2.2.11) and (2.2.12). The dynamics of the risk-free

rate is affected by the time preference parameter, β, as well as the intertemporal

substitution and the precautionary savings motive. These, in turn, are driven by

the steady state relative risk aversion rra = γ/S̄. In addition, the conditional

Sharpe ratio is influenced by the steady state relative risk aversion. Thus, we make

use of the unconditional time-series averages of the risk-free rate E(Rf
t ) = µRf

.

Moreover, we would like to use the Sharpe ratio given by
E(Rm,t−Rf

t )

σ(Rm,t−Rf
t )

to identify

the risk aversion parameter. However, as no Law of Iterated Expectations exists

for ratios of moments, the conditional Sharpe ratio cannot be transformed into an

unconditional Sharpe ratio readily. Moreover, it is also unclear whether the ratio
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of the empirical equivalents of the expectation and standard deviation converges in

probability to the population equivalents. Hence instead of the Sharpe ratio, we

propose to use the expected value of the equity premium E(Rm,t−Rf
t ) = E(Re

m,t) =

µRe
m

and its second moment Var(Rm,t − Rf
t ) = σ2(Rm,t − Rf

t ) = σ2(Re
t ) = σ2

Re
m

separately. As a fourth moment, we use the variance of the risk-free rate Var(Rf
t ) =

σ2(Rf
t ) = σ2

Rf
.

Hence, the moment restrictions used to estimate the instrumental parameters

θ1 =
(
µRf

, µRe
m
, σ2

Re
m
, σ2

Rf

)>
are given by

E
[
u1,t

(
{yt}tt−l, θ1

)]
= E



Rf
t − µRf

Re
m,t − µRe

m

(Re
m,t)

2 − (µRe
m

)2 − σ2
Re

m

(Rf
t )2 − (µRf

)2 − σ2
Rf


= 0. (2.3.13)

Note that the moment conditions yield an exactly identified problem. Hence there

is no need to numerically optimize the instrumental objective function given in

Equation (2.3.5). Instead, we use the sample equivalents of the moments specified

above.

The classification of the structural parameters at the beginning of this section

raises the question of whether the partial encompassing condition holds for our

parameters of interest ξ1 = (β, rra) and the chosen moment conditions. Equation

(2.2.11) includes the persistence of habit, ρs, as a component of the intertemporal

substitution, yet ρs is considered a nuisance parameter in our classification. A more

refined classification is also plausible, where ρs qualifies as a ξ21 parameter. This

choice would imply that the moment conditions in our instrumental model should

identify ρs. Section 3.2.3 elaborates more on this possible extension as well as its

implications on the estimation strategy.
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2.4 Results

The econometric assessment of Chen’s (2017) model is conducted in various steps.

We start by estimating the structural parameters of interest, ξ1. Then, we compute

approximate confidence intervals around these estimates to evaluate which prefer-

ence parameter values are compatible with the observed data. Finally, we implement

a parametric bootstrap to assess the impact of the estimation uncertainty on the

DSGE asset pricing-implied moments that are matched to the empirical data.

To find the estimates of ξ1, we initially perform a grid search for the ξ1 parameter

combination that returns the minimum value of the PII objective function described

in Equation (2.3.9) together with our choice of moment conditions given by Equation

(2.3.13). Details of the grid are described in Appendix 2.C.8 From the minimum

value of the grid search, we start a numerical optimization of the objective function

with respect to ξ1. The optimization is based on the non-gradient based Neldor-

Mead algorithm.9 It yields an estimate of the time preference rate, β̂, of 1.0008,

hence, a time preference rate larger than one, and a relative risk aversion estimate,

r̂ra, of 22.6621.

We, then, compute approximate confidence intervals based on the asymptotic

distribution described in Appendix 2.B. The estimates, the standard errors and

the 95% confidence interval are given in Table 2.3. Both confidence intervals are

relatively tight around the estimated values, as the standard errors are small in

magnitude. Hence, only a small range of preference parameters values are capable

of matching the simulated moments to their empirical counterparts. This implies

that these parameters are indeed identifiable from the data.

8The grid is minimized for values of β = 1.001 and rra = 22.5. These parameter values are
inner solutions of the specified grid, and the objective function is not flat around the minimum.

9As a robustness check, we also start the numerical optimization from different starting values
and obtain similar results. This is unsurprising as the objective function has a clear minimum.
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Table 2.3: Partial indirect inference estimation results

Confidence Interval

Parameter Estimate Standard Error 2.5% 97.5%

β 1.0008 0.0034 0.9941 1.0075
rra 22.66 2.20 18.34 26.98

Note: This table reports the estimation results for the parameters of inter-
est ξ1, i.e. β and rra. It also provides standard errors and 95% confidence
intervals. The empirical data used are the real post-war quarterly data
from 1948 to 2012 and are chosen as in Chen (2017).

The steady-state relative risk aversion estimate is given by r̂ra = 22.66, and its

confidence interval ranges from around 18.3 to 27. The calibrated value of 28.57,

the rra value also used by Campbell and Cochrane (1999) and Chen (2017), is

not included in the confidence interval and, hence, it is not compatible with the

empirical data. Another concern is that the model implied steady-state relative

risk aversion is not within the microeconomic evidence based relative risk aversion

range of 1 to 5 proposed by Mehra and Prescott (1985). Hence, risk aversion in

our model is in fact not low, and the estimated parameter value, along with its

confidence interval, is economically not plausible.10 It is, however, smaller than

in a pure consumption-based asset pricing model with power utility preferences,

where astronomical risk aversion values, in a magnitude of 40 up to 200, are needed

to resolve the equity premium puzzle (c.f. Weil (1989)). In the partial-equilibrium

habit persistence model proposed by Campbell and Cochrane (1999) and the general

equilibrium model evaluated here, the steady state value is given by rra = 28.57.

Hence, it is even larger than our rra estimate. The critique of a relatively high risk

aversion coefficient value applies to all habit driven asset pricing models. Cochrane

10Note that the parameter of the utility function, γ, is set to 2 but risk aversion in our model is
given by rrat = γ

St
.
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(2016) and (2017) refers to this problem as the equity-premium risk-free rate puzzle.

In a nutshell, habit persistence models yield plausible equity premia with a relatively

low risk-free rate and sensible consumption growth moments, but the model-implied

risk aversion is not low.11 The results on the risk aversion coefficient are, thus, in

line with the habit formation asset pricing literature.

The implications of the time preference rate, β, results are even more troubling.

The parameter estimate is given by β̂ = 1.0008, and its confidence interval ranges

from 0.994 to 1.0075. The calibrated time preference rate of β = 0.995 is included in

the approximate confidence interval and it is compatible with the observed data. In

the asset pricing literature, e.g. in Mehra and Prescott (1985), Weil (1989), Camp-

bell and Cochrane (1999) and Cochrane (2009), we typically find values of the time

preference rate, β, smaller than unity. Any value of the time preference rate above

one implies that the representative agent prefers consumption tomorrow over con-

sumption today; a fact that is not supported by microeconomic experiments. The

confidence interval for the time preference rate includes many values that are in

excess of unity and, hence, these values are economically implausible. This finding

is linked to the risk-free rate puzzle described by Weil (1989). The large value of β

can be explained by a model-implied risk-free rate that is too large in comparison to

its empirical equivalent. The high model-implied risk-free rate is slightly mitigated

by using a value of the time preference rate that is larger than one when we match

empirical and simulated moments in the PII estimation. In this case, the first term

governing the risk-free rate in Equation (2.2.11), − log(β), is negative and decreases

the level of the risk-free rate.

11The puzzle is, hence, distilled in sensible asset pricing moments obtained without having low
utility curvature and risk aversion. He concludes that no model so far has achieved a full solution
of the equity premium puzzle.
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In addition to the sensibility of the preference parameter estimates, we assess the

economic plausibility of the model-implied moments using a parametric bootstrap.

We achieve this by drawing randomly from the joint normal distribution of the

estimates of the structural parameters of interest based on the asymptotic results,

i.e. from

ξ∗1 ∼ N


 1.0008

22.6621

 ,

0.0000116 −0.0064

−0.0064 4.8617


 . (2.4.1)

We use M = 1000 draws of β and rra to solve and simulate the model at the

respective values. Then, we compute the implied asset pricing and macroeconomic

moments and calculate the mean over all M samples, as well as the 2.5% and 97.5%

bootstrap quantiles. The bootstrap results are given in Table 2.4.

The table shows that the macroeconomic moments governing the business cycle

and consumption growth do not change qualitatively with the change of β and rra

as compared to Table 2.2. Moreover, the business cycle moments are not sensitive

to our bootstrapping exercise. Most of those moments are not affected by different

draws of the preference parameters; the bootstrap intervals are either just one value

or their width is very small. Hence, the impact of estimation uncertainty on these

model-implied moments is, thus, negligible.

The resulting asset pricing moments are impacted by the different choice of

preference parameters in comparison to the calibration results in Table 2.2. The

model-implied Sharpe ratio is slightly lower than that implied by US data. This

result is due to the fact that the volatility of the excess return is slightly too high,

and the level of expected excess return is slightly too low. Both of these quantities

are, however, better matched to US data in comparison to the calibrated values.

The simulated mean risk-free rate is higher than the one implied by US data, while

its volatility is slightly lower. Furthermore, the asset pricing moments are impacted
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Table 2.4: Estimation-implied economic plausibility check

Target Moment Bootstrap Quantiles
Implied

Data Estimate 2.5% 97.5%

Asset Prices

90-Day T-bill Return (%) 0.17 0.61 0.36 0.82
Vol of Rf (%) 0.90 0.67 0.59 0.76
Persistence of Tobin’s Q 0.96 0.96 0.96
Mean Sharpe Ratio of 0.22 0.17 0.11 0.23

CRSP Index
Equity Premium Re (%) 1.82 1.64 1.04 2.35
Vol of Re (%) 8.24 9.85 9.14 10.78

Business Cycle

Mean Output/Capital 0.143 0.076 0.064 0.091
Mean Investment Rate 0.025 0.021 0.021 0.021
Mean Output Growth (%) 0.48 0.45 0.45 0.45
Vol HP-filtered GDP (%) 1.72 1.53 1.52 1.53
Persistence of Output/Capital 0.997 0.984 0.981 0.985
Relative Volatility 0.52 0.47 0.40 0.53

of Consumption Growth
Mean Adj Cost / Output (%) 0.11 0.10 0.11

Consumption Growth

Mean of ln of Consumption Growth (%) 0.47 0.45 0.45 0.45
Std of ln of Consumption Growth (%) 0.52 0.56 0.48 0.63

Note: This table shows the results of a parametric bootstrap using M = 1000
draws from the joint normal distribution of β and rra around the PII estimates
β̂ = 1.0008 and r̂ra = 22.6621. It shows the selected bootstrap quantiles of asset
prices, business cycle and consumption growth moments along with the estimate-
implied and empirical means.

by the different bootstrap draws of the preference parameters and are, thus, affected

by estimation uncertainty. The equity premium moments lie within the bootstrap

interval bounds, and the empirical Sharpe ratio is approximately equivalent to the

upper bound. The widths of the bootstrapped intervals for all three quantities are

small and contain economically plausible values. Hence, the equity premium implied
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by our model is economically sensible. This finding is in line with the habit formation

literature summarized by Cochrane (2017).

Additionally, the bootstrapping results confirm that the DSGE asset pricing

model is not able to match the risk-free rate moments. The mean as well as the

2.5% and the 97.5% bootstrapping interval bounds for the expected risk-free rate

are larger than the empirical counterpart. Hence, the risk-free rate puzzle is also

apparent here. The volatility of the risk-free rate implied by the bootstrap draws is

slightly lower than the empirical one. Hence, the model-implied risk-free rate is not

excessively volatile, but its level is too high.

Over all, the empirical performance of the DGSE extension to the asset pricing

model should be taken with a grain of salt as it does not solve the asset pricing

puzzles as well as implied in the calibration results of Chen (2017). We find that

the equity premium puzzle is only resolved if we accept a value for the relative risk

aversion that is around 20. This value is, however, above the range of risk aversion

values conventionally found in the microeconomic evidence based literature (c.f.

Mehra and Prescott, 1985). More problematic, however, is the unresolved risk-free

rate puzzle, as we find that the model cannot match the risk-free rate level in the

U.S. economy. This, in turn, is reflected in a time preference rate in excess of unity

which is economically inconceivable.

2.5 Conclusion

Incorporating preference-based asset pricing in a DSGE framework holds the promise

to resolve prominent puzzles of financial economics with a stochastic discount factor

that is consistent with macroeconomic processes. However, the apparent empirical

success of the DSGE asset pricing approaches, the most recent exponent of which is

the model by Chen (2017), is predominantly based on calibration studies, which have
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been criticized by Hansen and Heckman (1996) and Dridi et al. (2007) for lacking

the discipline of econometric analysis. On the other hand, Kim and Pagan (1999;

p. 328) argue that when dealing with such highly stylized models, “the specification

errors being committed are of sufficient magnitude to make conventional estimation

and testing of dubious value”.

In the debate between proponents of calibration and econometricians, we concur

with Dridi et al. (2007) that even if a model is misspecified, economic reality is

captured by certain parameters of interest that one should aim to estimate consis-

tently. Pursuing such a goal entails focusing on economically meaningful identifying

restrictions that are associated with the parts of a DSGE asset pricing model that

claim to capture economic reality. Moreover, empirical tests of the model should

reach beyond the confirmatory nature of calibration practices. To implement these

ideas, we employ the partial indirect inference (PII) framework proposed by Dridi

et al. (2007). In line with the PII philosophy, we use binding functions that aim

at the consistent estimation of some structural model parameters of interest (re-

flecting investor preferences), while treating others (associated with macroeconomic

dynamics) as nuisance parameters.

Our results indicate that the very positive calibration results regarding the em-

pirical performance of DSGE asset pricing models should not be overstated. The

estimated model is able to match the equity premium and the Sharpe ratio, as well

as the business cycle and the consumption growth moments. These moments remain

economically plausible even when we take estimation uncertainty into consideration.

The macroeconomic moments are mainly impacted by a sensible calibration choice

and only slightly affected when varying the estimated preference parameters. How-

ever, although the equity premium and the Sharpe ratio implied by the estimated

model are plausible, they are associated with a point estimate of relative risk aver-
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sion that is generally considered as too high (as are the bounds of the 95% confidence

interval). The estimated model only provides a solution to the equity premium puz-

zle, if one is willing to accept a risk aversion coefficient in the magnitude of around

20. This is a familiar caveat, which applies to partial equilibrium habit-based asset

pricing models (e.g. Campbell and Cochrane (1999), Cochrane (2016), Cochrane

(2017)). Our results suggest that it applies to DSGE asset pricing models with

nonlinear habit preferences, too. The estimation also does not yield economically

sensible model-implied values of the risk-free rate, neither in terms of the point es-

timate of the mean risk-free rate, nor in terms of the bounds of the 95% confidence

interval. Whereas the model does not suffer from an excessively volatile risk-free

rate, it fails to match its empirical level. The implausibly high value for the model-

implied mean risk-free rate is associated with a point estimate of the time preference

parameter greater than unity. Hence, the DSGE asset pricing model is unable to

resolve the risk-free rate puzzle described in Weil (1989). Our econometric analysis,

thus, suggests that empirical asset pricing within a DSGE framework, although it

shows some potential, is not yet a panacea to resolve the prominent asset pricing

puzzles.
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Appendix

2.A The partial indirect inference estimator with instru-

mental parameters estimated by moment conditions

We construct an indirect estimation strategy for the structural parameters of interest

ξ1. In the following, we denote empirical time series as {yt}Tt=1 and we obtain the

model-implied series through simulations from {ỹsT (ξ, zs0)}Ss=1 where zs0 contains the

initial value of the state variables. As in Dridi et al. (2007), we assume that the

observed data is a realization of a stochastic process with true unknown p.d.f. P0 :

{yt, t ∈ Z}

Assumption 1. (i) P0 belongs to a family P of p.d.f. on YZ,

(ii) ξ̃1 is an application of P onto a part Ξ1 = ξ̃1(P) of Rp1,

(iii) ξ̃1(P0) = ξ0
1, the true parameters of interest belong to the interior Ξ0

1 of Ξ1.

These structural parameters of interest, ξ1, are defined through a set of identi-

fying moment conditions given by a partial parametric model

EP [h(yt, . . . , yt−p; ξ1)] = 0 → ξ1 = ξ̃1(P).

To obtain a fully parametric model, we have to make additional nominal assump-

tions. This model is likely inconsistent with the true data-generating process. The

37



partial parametric model defined by Assumption 1 is plugged into the structural

model which is fully parametric but misspecified.

Assumption 2 (Nominal assumption). {yt, t ∈ Z} follows a stationary and ergodic

process conformable to the nonlinear simultaneous model

(i) r (yt, yt−1, vt, ξ) = 0, ϕ (vt, vt−1, ε̃t, ξ) = 0,

ξ = (ξ1, ξ2) ∈ (Ξ1 × Ξ2) = Ξ which is a compact subset of Rp1+p2,

(ii) {ε̃t, t ∈ Z} is white noise with known distribution G∗,

where r( · ) describes the evolution of the observable variables given the state vari-

ables, and ϕ( · ) that of the state variables given the exogenous variables. This

assumption is comparable to the fully parametric model described in Gourieroux

et al. (1993) which they perceive to describe the true data-generating process. In

case of our misspecified simulator, this only constitutes a nominal assumption. For

given values of ξ = (ξ1, ξ2)>, we simulate values {ỹs1(ξ, zs0), . . . , ỹsT (ξ, zs0)} given the

initial condition zs0 = (ys0, v
s
0)> from the simulated values {ε̃1, . . . , ε̃T} from G∗. P∗

denotes the probability limit of the simulated processes.12

Indirect inference about the true value of the structural parameters of interest

ξ0
1 of ξ1 builds on the misspecified structural model introduced in Assumption 2 and

the instrumental model Nθ. The pseudo-true values of the instrumental parameters

are defined as probability limits of an extremum estimator associated with the cri-

terion function Q1,T ({yt}Tt=1, θ1).13 Hence, the idea of PII is to use calibration as

econometrics of a misspecified structural model and to use this misspecified model

as a simulator.
12For brevity, we omit the dependence of the simulation on the initial values of the state variables

in the following.
13Here, θ1 ∈ Θ1 which is a compact subset of Rk and {yt}Tt=1 denote lagged values of yt for a

fixed number of M lags. Note that the instrumental parameters are denoted by θ1 in accordance
with the partial encompassing case in Dridi et al. (2007). In this setting, there is no second set of
instrumental parameters θ21. This is expanded upon in Chapter 3.
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The instrumental model has to be chosen carefully as the estimation of the in-

strumental variables must be tractable, and it should be capable of capturing the

properties of the model-implied financial time series. Similar to the recommenda-

tions of Dridi et al. (2007), we make use of moment restrictions that reflect the

asset pricing implications of the DSGE asset pricing model rather than using a full

parametric model as an instrumental model. The set of k moment restrictions is

given by

E
[
u1,t

(
{yt}tt−l, θ0

1

)]
= 0.

The number of moment restrictions has to be at least as large as the number of

structural parameters, i.e. k = dim θ1 ≥ p1 + p21 = dim ξ1 + dim ξ21 and

θ1 ∈ Θ1 ⊂ Rk. We assume that the true parameter θ0
1 is the only value within

the parameter space that gives a solution to the moment condition. Hence, the

identification assumption reads

Assumption 3.

E
[
u1,t

(
{yt}tt−l, θ1

)]
6= 0 for all θ1 6= θ0

1 ∈ Θ1.

We minimize a GMM-type criterion function given below to estimate the instru-

mental parameters θ1,

min
{θ1∈Θ1}

Q1,T

(
{yt}Tt=1, θ1

)
,

where Q1,T

(
{yt}Tt=1, θ1

)
=

1

2
g1,T

(
{yt}Tt=1, θ1

)> · Ŵ1,T · g1,T

(
{yt}Tt=1, θ1

)
,

g1,T

(
{yt}Tt=1, θ1

)
=

1

T

T∑
t=1

u1,t

(
{yt}tt−l, θ1

)
,

with Ŵ1,T
a.s.→ W1, a positive semi-definite weighting matrix.
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Following Hansen (1982), we impose the following regularity conditions

Assumption 4. (i) Θ1 is a compact subset of Rk,

(ii) u1,t(·, θ1) is Borel measurable for each θ1 ∈ Θ1,

(iii) E
[
u1,t

(
{yt}tt−l, θ1

)]
exists and is finite for all θ1 ∈ Θ1,

(iv) u1,t

(
{yt}tt−l, θ1

)
is first-moment continuous at all θ1 ∈ Θ1.

Using Assumption 4 and the stationarity and ergodictiy assumption of the time

series results in sufficient conditions that the GMM-type criterion in Equation (2.3.4)

converges almost surely uniformly to a non-stochastic limit criterion

Q1,∞
(
G∗, ξ

0
1 , ξ
∗
21, θ1

)
=

1

2
E
[
u1,t

(
{yt}tt−l, θ1

)]> ·W1 · E
[
u1,t

(
{yt}tt−l, θ1

)]
.

Moreover, Assumption 3 implies that the limit criterion is uniquely minimized by

θ0
1 = argmin

{θ1∈Θ1}
Q1,∞ (G∗, ξ1, ξ21, θ1) . (2.A.1)

Hence, under the nominal assumption 2, the identification assumption 3, and the

equicontinuity assumption 4,

θ̂1,T = argmin
{θ1∈Θ1}

Q1,T

(
{yt}Tt=1, θ1

)
is a consistent estimator of θ0

1 (Singleton, 2009).

In case of a misspecified simulator, the probability limits of the simulated and

observed time series are not the same. In addition to the assumptions for the

data-generating process of the observed time series, we need assumptions for the

misspecified simulator. As above, we impose an identification assumption for the

simulated time series
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Assumption 5.

E∗
[
u1,t

(
{ỹst (ξ)}tt−l, θs1

)]
6= 0 for all θs1 6= θ̃0

1(ξ0
1 , ξ
∗
21) ∈ Θs

1.

We also impose an equivalent GMM regularity conditions for the moment con-

ditions evaluated at the simulated series, i.e.

Assumption 6. (i) Θs
1 is a compact subset of Rk,

(ii) u1,t(·, θs1) is Borel measurable for each θs1 ∈ Θs
1,

(iii) E∗
[
u1,t

(
{ỹst (ξ)}tt−l, θs1

)]
exists and is finite for all θs1 ∈ Θs

1,

(iv) u1,t

(
{ỹst (ξ)}tt−l, θs1

)
is first-moment continuous at all θs1 ∈ Θs

1.

Comparable to the observed time series case and under Assumption 6 for sta-

tionary and ergodic simulated series, the GMM-type criterion in Equation (2.3.4)

evaluated at the simulated data, i.e. Q1,T

(
{ỹsT (ξ)}Tt=1, θ

s
1

)
, converges almost surely

uniformly to a non-stochastic limit criterion.14 Given Assumption 5, the limit crite-

rion is uniquely minimized by θ̃0
1 (ξ0

1 , ξ
∗
21). Hence, under the nominal assumption 2,

the identification assumption 5, and the equicontinuity assumption 6 for the simu-

lated time series,

θ̃s1,T (ξ1, ξ21, ξ̄22) = argmin
{θ1∈Θ1}

Q1,T

(
{ỹsT (ξ)}Tt=1, θ

s
1

)
is a consistent estimator of θ̃0

1 (ξ0
1 , ξ
∗
21).

14 This limit criterion is given by

Q∗1,∞
(
G∗, ξ

0
1 , ξ
∗
21, θ

s
1

)
=

1

2
E∗
[
u1,t

(
{ỹst (ξ)}tt−l, θs1

)]> ·W1 · E∗
[
u1,t

(
{ỹst (ξ)}tt−l, θs1

)]
.
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For the indirect estimator of the structural parameters, we impose the following

assumptions on the binding function

Assumption 7. (i) θ1 (·, ·) is one-to-one,

(ii) P∗ lim
T→∞

∂θ̃s1,T

∂


ξ1

ξ21



(
ξ0

1 , ξ
∗
21, ξ̄22

)>
= ∂θ̃1

∂


ξ1

ξ21


(ξ0

1 , ξ
∗
21)
>

has rank p1 + p21.

The one-to-one assumption in 7 (i) is comparable to assumption (A4) in Gourier-

oux et al. (1993) and the rank assumption in 7 (ii) is equivalent to assumption (A14)

in Dridi et al. (2007). We further require partial encompassing given by

Assumption 8. θ0
1 = θ̃0

1(ξ0
1 , ξ
∗
21),

where θ0
1 is the probability limit of the instrumental parameters associated with the

observed data defined in Equation (2.A.1) and θ̃0
1(ξ0

1 , ξ
∗
21) is the probability limit

for the simulated time series. Assumption 8 is the partial encompassing condition

in Dridi et al. (2007). We refer to it as the partial encompassing null hypothesis

H
(1)
0

(
ξ̄22

)
.

It follows that under Assumptions 3 to 8, the instrumental parameter estimators

converge uniformly in (ξ1, ξ21) to

P0 lim
T→∞

θ̂1,T = θ0
1 and P∗ lim

T→∞
θ̃s1,T (ξ1, ξ21) = θ̃0

1(ξ0
1 , ξ
∗
21),

where P0 lim
T→∞

and P∗ lim
T→∞

denote the limit with respect to the probability distribu-

tions P0 and P∗ for the observed and simulated series.
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The partial indirect inference (PII) estimator is defined as

 ξ̂1,TS(ξ̄22)

ξ̂21,TS(ξ̄22)

 = argmin
{(ξ1,ξ21)∈Ξ1×Ξ21}

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T (ξ1, ξ21, ξ̄22)

]>
· Ω̂1,T

·

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T (ξ1, ξ21, ξ̄22)

]
,

θ̂1,T = argmin
{θ1∈Θ1}

Q1,T

(
{yt}Tt=1, θ1

)
,

θ̃s1,T
(
ξ1, ξ21, ξ̄22

)
= argmin

{θ1∈Θ1}
Q1,T

(
{ỹsT (ξ)}Tt=1, θ

s
1

)
,

and Ω̂1,T is a positive definite weighting matrix that converges almost surely to the

non-stochastic positive definite matrix Ω1.

Proposition 1 (Consistency). Under assumptions 1, 3 - 8, ξ̂1,TS

(
ξ̄22

)
is a consistent

estimator of ξ0
1.

The misspecified model defined in Assumption 2 endowed with the pseudo-true

value

 ξ0
1

ξ∗21

 partially encompasses Nθ under assumptions 7 and 8. This partial en-

compassing provides a sufficient condition for the consistency of the partial indirect

inference estimator of the parameter of interest ξ̂1,TS

(
ξ̄22

)
as described in Proposi-

tion 3.3. in Dridi et al. (2007). The proof of the proposition is an adapted version

of those found in Dridi and Renault (2000) and Dridi et al. (2007). In our case,

we use a GMM-type instrumental model rather than a general extremum estimator.

This difference features in the identification assumptions 3 and 5 and the regularity

conditions 4 and 6 which are specific to the GMM-type instrumental model. As-

sumptions 1, 2 and 7 are comparable to those in Dridi et al. (2007) for the partial

encompassing case in the absence of exogenous variables.
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Asymptotic distribution of the partial indirect inference estimator

To derive the asymptotic distribution of the structural parameters, we follow a

sequential approach. In a first step, we derive the asymptotic distribution of the

instrumental parameters θ1 for the GMM-type instrumental model. We impose

additional assumptions on the moment conditions. More specifically, we assume that

a central limit theorem applies to appropriately scaled moment conditions evaluated

at the observed data {yt}Tt=1 and the simulated data {ỹst (ξ)}
T
t=1.

Assumption 9. A multivariate central limit theorem applies, such that under As-

sumption 3

√
T

[
1

T

T∑
t=1

u1,t

(
{yt}tt−l, θ0

1

)]
→
d
N (0, V1)

with

V1 = Γ1,0 +
∞∑
j=1

(
Γ1,j + Γ>1,j

)
Γ1,j = E

[
u1,t

(
{yt}tt−l, θ0

1

)
u1,t−j

(
{yt}tt−l−j, θ0

1

)>]

and

Assumption 10. A multivariate central limit theorem applies, such that under

Assumption 5

√
T

[
1

T

T∑
t=1

u1,t

(
{ỹsT (ξ)}tt−l, θ̃0

1

(
ξ̄22

))]
→
d
N (0, V ∗1 )
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with

V ∗1 = Γ∗1,0 +
∞∑
j=1

(
Γ∗1,j + Γ∗1,j

>
)

Γ∗1,j = E∗
[
u1,t

(
{ỹsT (ξ)}tt−l, θ̃0

1

(
ξ̄22

))
u1,t−j

(
{ỹsT (ξ)}tt−l−j, θ̃0

1

(
ξ̄22

))>]
.

Under the null hypothesis of partial encompassing H
(1)
0

(
ξ̄22

)
: θ0

1 = θ̃0
1

(
ξ̄22

)
given

in Assumption 8, the following result holds.

Proposition 2 (Asymptotic distribution of the instrumental parameters). Under

Assumptions 3, 5, 9, 10 and partial encompassing given in 8, the instrumental pa-

rameters are asymptotically distributed as

√
T

(
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T
(
ξ0

1 , ξ
∗
21

)) d→ N
(
0,Φ0

1 (S,W1)
)

(2.A.2)

where the asymptotic covariance matrix is given by

Φ0
1 (S,W1) = C0

1V1C
0
1
>

+
1

S
C∗01 V

∗
1 C
∗0
1
>

(2.A.3)

and

C0
1 =

{
E

[
∂u>1,t
∂θ1

(
y, θ0

1

)]
W1E

[
∂u1,t

∂θ>1

(
y, θ0

1

)]}−1

E

[
∂u>1,t
∂θ1

(
y, θ0

1

)]
W1, (2.A.4)

C∗01 =

{
E∗
[
∂u>1,t
∂θ1

(
ỹ, θ0

1

)]
W1E∗

[
∂u1,t

∂θ>1

(
ỹ, θ0

1

)]}−1

E∗
[
∂u>1,t
∂θ1

(
ỹ, θ0

1

)]
W1, (2.A.5)

Γ∗1,j = E∗
[
u1,t

(
ỹ, θ0

1

)
u1,t−j

(
ỹ, θ0

1

)>]
. (2.A.6)

where y and ỹ are short-hand notations for {yt}Tt=1 and {ỹsT (ξ)}Tt=1, respectively.
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The asymptotic distribution of the estimated structural parameters is described

in the following proposition.

Proposition 3 (Asymptotic distribution of the structural parameters). Under as-

sumptions 1 - 7, 8, 9 and 10, the structural parameters estimates of ξ1 and ξ21 follow

an asymptotic normal distribution

√
T

 ξ̂1,TS

(
ξ̄22

)
− ξ0

1

ξ̂21,TS

(
ξ̄22

)
− ξ∗21

 d→ N (0,Σ (S,Ω1)) (2.A.7)

where the asymptotic covariance matrix Σ (S,Ω1) is given in Equations (2.B.1) in

Appendix 2.B, Equations (2.A.3), and (2.A.4) - (2.A.6).

The proof of this proposition and the assumptions needed for the asymptotic

distribution are provided in Appendix 2.B.

2.B Derivation of the asymptotic distribution

In this section, we derive the asymptotic distribution of the parameters of interest

ξ1 (and of ξ21). The objective function of a partial encompassing indirect inference

estimator is given by the following quadratic form

min
{(ξ1,ξ21)∈(Ξ1×Ξ21)}

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T
(
ξ1, ξ21, ξ̄22

)]>
Ω̂1,T

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T
(
ξ1, ξ21, ξ̄22

)]
.
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The first order condition (FOC) to this minimization problem with respect to

the estimated structural parameters reads

1

S

S∑
s=1

∂θ̃s1,T

∂

 ξ1

ξ21


(
ξ̂1,TS

(
ξ̄22

)
, ξ̂21,TS

(
ξ̄22

)
, ξ̄22

)>
Ω̂1,T

·

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T

(
ξ̂1,TS

(
ξ̄22

)
, ξ̂21,TS

(
ξ̄22

)
, ξ̄22

)]
= 0.

We evaluate the FOC around the limit values ξ0
1 and ξ∗21. We need the following

two results from before; first that the derivative of the instrumental parameters with

respect to the structural parameters of interest follows a uniform convergence in the

neighborhood of θ0, i.e.

∂θ̃s1,T

∂

 ξ1

ξ21


(
ξ̂1,TS

(
ξ̄22

)
, ξ̂21,TS

(
ξ̄22

)
, ξ̄22

)>
→
a.s.

∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
,

and second, the partial encompassing assumption 7 (ii) given by

P∗ lim
T→∞

∂θ̃s1,T

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21, ξ̄22

)>
=

∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
has rank p1 + p21.
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The expansion is given by

1

S

S∑
s=1

∂θ̃s1,T

∂

 ξ1

ξ21


(
ξ̂1,TS

(
ξ̄22

)
, ξ̂21,TS

(
ξ̄22

)
, ξ̄22

)>
Ω̂1,T

√
T

[
θ̂1,T −

(
1

S

S∑
s=1

θ̃s1,T
(
ξ0

1 , ξ
∗
21

)

+
1

S

S∑
s=1

∂θ̃s1,T

∂

 ξ1

ξ21


>

(
ξ0

1 , ξ
∗
21

)( ξ̂1,TS

(
ξ̄22

)
− ξ0

1

ξ̂21,TS

(
ξ̄22

)
− ξ∗21

))]
.

We rearrange the equation for the structural parameters. Asymptotically, they

can be represented as

√
T

 ξ̂1,TS

(
ξ̄22

)
− ξ0

1

ξ̂21,TS

(
ξ̄22

)
− ξ∗21

 ' { ∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
Ω1

∂θ̃1

∂

 ξ1

ξ21


>

(
ξ0

1 , ξ
∗
21

)}−1

· ∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
Ω1 ·
√
T

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T
(
ξ0

1 , ξ
∗
21

)]

Asymptotic distribution of the instrumental parameters

As moment conditions in a GMM-type manner are used to estimate the instrumental

parameters θ1, the objective function evaluated at the observed time series {yt}Tt=1

is given by

Q1,T

(
{yt}Tt=1, θ1

)
=

1

2
g1,T

(
{yt}Tt=1, θ1

)> · Ŵ1,T · g1,T

(
{yt}Tt=1, θ1

)
,
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where g1,T

(
{yt}Tt=1, θ1

)
= 1

T

∑T
t=1 u1,t

(
{yt}tt−l, θ1

)
is the sample average of the mo-

ment condition whose limit is given as E
[
u1,t

(
{yt}tt−l, θ1

)]
6= 0 for all θ1 6= θ0

1.

First, we show how
√
T
(
θ̂1,T − θ0

1

)
is distributed. We apply a strategy similar

to that of the quadratic form above. We take the FOC of the objective function

∂g>1,T
∂θ1

(
{yt}Tt=1, θ̂1,T

)
· Ŵ1,T · g1,T

(
{yt}Tt=1, θ̂1,T

)

and use a mean value expansions of g1,T ( · ) around the limit value θ0
1

g1,T

(
{yt}Tt=1, θ̂1,T

)
' g1,T

(
{yt}Tt=1, θ

0
1

)
+
∂g1,T

∂θ>1

(
{yt}Tt=1, θ

0
1

) (
θ̂1,T − θ0

1

)
.

Then, we plug this expansion into the FOC and rearrange the equation for the

instrumental parameters

(
θ̂1,T − θ0

1

)
= −

{
∂g>1,T
∂θ1

(
{yt}Tt=1, θ̂1,T

)
Ŵ1,T

∂g1,T

∂θ>1

(
{yt}Tt=1, θ

0
1

)}−1
∂g>1,T
∂θ1

(
{yt}Tt=1, θ̂1,T

)
Ŵ1,T

· g1,T

(
{yt}Tt=1, θ

0
1

)
.

Asymptotically the equation above can be written as

√
T
(
θ̂1,T − θ0

1

)
'−

{
E

[
∂u>1,t
∂θ1

(
θ0

1

)]
W1E

[
∂u1,t

∂θ>1

(
θ0

1

)]}−1

E

[
∂u>1,t
∂θ1

(
θ0

1

)]
W1 ·

√
Tg1,T

(
{yt}Tt=1, θ

0
1

)
' −C0

1 ·
√
Tg1,T

(
{yt}Tt=1, θ

0
1

)
,

where g1,T

(
{yt}Tt=1, θ

0
1

)
= 1

T

∑T
t=1 u1,t

(
{yt}tt−l, θ0

1

)
.
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Under the CLT in Assumption 9, the instrumental parameters evaluated at the

observed data are distributed as

√
T
(
θ̂1,T − θ0

1

)
→
d
N
(

0, C0
1V1C

0
1
>
)
.

Second, we elaborate on how the instrumental parameters for the simulated

time series
√
T
(
θ̃s1,T (ξ0

1 , ξ
∗
21)− θ̃0

1 (ξ0
1 , ξ
∗
21)
)

are distributed. For simplicity, define

θ̃s1,T (ξ0
1 , ξ
∗
21) ≡ θ̃s1,T

(
ξ̄22

)
and θ̃0

1

(
ξ̄22

)
≡ θ̃0

1 (ξ0
1 , ξ
∗
21). Following the same steps for

the simulated series as for the objective function evaluated at the observed data, we

calculate the FOC

∂g>1,T
∂θ1

(
{ỹsT (ξ)}Tt=1, θ̃

s
1,T

(
ξ̄22

))
· Ŵ1,T · g1,T

(
{ỹsT (ξ)}Tt=1, θ̃

s
1,T

(
ξ̄22

))

and use a mean value expansions of g1,T ( · ) around the limit value θ̃0
1

(
ξ̄22

)
g1,T

(
θ̃s1,T

(
ξ̄22

))
' g1,T

(
{ỹsT (ξ)}Tt=1, θ̃

0
1

(
ξ̄22

))
+
∂g1,T

∂θ>1

(
θ̃0

1

(
ξ̄22

))(
θ̃s1,T

(
ξ̄22

)
− θ̃0

1

(
ξ̄22

))
.

Then, we plug this expansion into the FOC and rearrange the equation for the

instrumental parameters

(
θ̃s1,T

(
ξ̄22

)
− θ̃0

1

(
ξ̄22

))
=−

{
∂g>1,T
∂θ1

(
θ̃s1,T

(
ξ̄22

))
Ŵ1,T

∂g1,T

∂θ>1

(
θ̃0

1

(
ξ̄22

))}−1
∂g>1,T
∂θ1

(
θ̃s1,T

(
ξ̄22

))
Ŵ1,T

· g1,T

(
{ỹsT (ξ)}Tt=1, θ̃

0
1

(
ξ̄22

))
.
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Based on the simulated time series {ỹsT (ξ)}Tt=1, the instrumental parameters can be

asymptotically written as

√
T
(
θ̃s1,T

(
ξ̄22

)
− θ̃0

1

(
ξ̄22

))
' −

{
E∗
[
∂u>1,t
∂θ1

(
{ỹsT (ξ)}tt−l, θ̃0

1

(
ξ̄22

))]
W1E∗

[
∂u1,t

∂θ>1

(
{ỹsT (ξ)}tt−l, θ̃0

1

(
ξ̄22

))]}−1

· E∗
[
∂u>1,t
∂θ1

(
{ỹsT (ξ)}tt−l, θ̃0

1

(
ξ̄22

))]
W1 ·

√
Tg1,T

(
{ỹsT (ξ)}Tt=1, θ̃

0
1

(
ξ̄22

))
,

where g1,T

(
{ỹsT (ξ)}Tt=1, θ̃

0
1

(
ξ̄22

))
= 1

T

∑T
t=1 u1,t

(
{ỹsT (ξ)}tt−l, θ̃0

1

(
ξ̄22

))
.

Under the null hypothesis of partial encompassing H
(1)
0

(
ξ̄22

)
: θ0

1 = θ̃0
1

(
ξ̄22

)
given

in Assumption 8 and the CLT in Assumption 10, it follows that

√
T
(
θ̃s1,T

(
ξ̄22

)
− θ̃0

1

)
' −

{
E∗
[
∂u>1,t
∂θ1

(
{ỹsT (ξ)}tt−l, θ0

1

)]
W1E∗

[
∂u1,t

∂θ>1

(
{ỹsT (ξ)}tt−l, θ0

1

)]}−1

· E∗
[
∂u>1,t
∂θ1

(
{ỹsT (ξ)}tt−l, θ0

1

)]
W1 ·

√
Tg1,T

(
{ỹsT (ξ)}Tt=1, θ

0
1

)
' −C∗01 ·

√
Tg1,T

(
{ỹsT (ξ)}Tt=1, θ

0
1

)
,

where
√
Tg1,T

(
{ỹsT (ξ)}Tt=1, θ

0
1

)
=
√
T 1
T

∑T
t=1 u1,t

(
{ỹsT (ξ)}tt−l, θ0

1

)
→
d
N (0, V ∗1 ).

Under the null hypothesis of partial encompassing, the instrumental parameters

evaluated at the simulated series are distributed as

√
T
(
θ̃s1,T

(
ξ̄22

)
− θ0

1

)
→
d
N
(

0, C∗01 V
∗

1 C
∗0
1
>
)
.

51



Third, we investigate the distribution of
√
T
(

1
S

∑S
s=1 θ̃

s
1,T (ξ0

1 , ξ
∗
21)− θ0

1

)
. Under

the null hypothesis of partial encompassing, the instrumental parameters evaluated

at the simulated series are distributed as

√
T
(
θ̃s1,T

(
ξ̄22

)
− θ0

1

)
→
d
N
(

0,
1

S
C∗01 V

∗
1 C
∗0
1
>
)
.

Finally, the previous results are combined to show the distribution of
√
T
(
θ̂1,T − 1

S

∑S
s=1 θ̃

s
1,T (ξ0

1 , ξ
∗
21)
)

. Based on the results above, the expression can

asymptotically be written as

√
T

(
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T
(
ξ0

1 , ξ
∗
21

))
' −C0

1 ·
√
Tg1,T

(
{yt}Tt=1, θ

0
1

)
+ C∗01

√
Tg1,T

(
{ỹsT (ξ)}Tt=1, θ

0
1

)
and is asymptotically normally distributed with asymptotic covariance matrix Φ0

1 (S,W1):

Φ0
1 (S,W1) = C0

1V1C
0
1
> − C0

1K1C
∗0
1
> − C∗01 K

′
1C

0
1
>

+
1

S
C∗01 V

∗
1 C
∗0
1
>

+

(
1− 1

S

)
C∗01 K

∗
1C
∗0
1
>
,

where K1 and K∗1 are asymptotic covariance matrices of the observed and simulated

data which are non-zero if exogenous variables exist in the model. If there are no

exogenous variables in the model, the asymptotic covariance is given by

Φ0
1 (S,W1) = C0

1V1C
0
1
>

+
1

S
C∗01 V

∗
1 C
∗0
1
>
.

Given the results above, we can show the asymptotic distribution of the in-

strumental parameters. Under Assumptions 3, 5, 9, 10 and 8, the instrumental

parameters are asymptotically distributed as

√
T

(
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T
(
ξ0

1 , ξ
∗
21

)) d→ N
(
0,Φ0

1 (S,W1)
)
,
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where the asymptotic covariance matrix is given by

Φ0
1 (S,W1) = C0

1V1C
0
1
>

+
1

S
C∗01 V

∗
1 C
∗0
1
>
,

and

C0
1 =

{
E

[
∂u>1,t
∂θ1

(
y, θ0

1

)]
W1E

[
∂u1,t

∂θ>1

(
y, θ0

1

)]}−1

E

[
∂u>1,t
∂θ1

(
y, θ0

1

)]
W1,

C∗01 =

{
E∗
[
∂u>1,t
∂θ1

(
ỹ, θ0

1

)]
W1E∗

[
∂u1,t

∂θ>1

(
ỹ, θ0

1

)]}−1

E∗
[
∂u>1,t
∂θ1

(
ỹ, θ0

1

)]
W1,

Γ∗1,j = E∗
[
u1,t

(
ỹ, θ0

1

)
u1,t−j

(
ỹ, θ0

1

)>]
.

where y and ỹ are short-hand notations for {yt}Tt=1 and {ỹsT (ξ)}Tt=1, respectively.

Asymptotic distribution of the structural parameters

Overall the estimated structural parameters are distributed as follows: Under as-

sumptions 1 - 8, 9 and 10, the structural parameters estimates of ξ1 and ξ21 follow

an asymptotic normal distribution

√
T

 ξ̂1,TS

(
ξ̄22

)
− ξ0

1

ξ̂21,TS

(
ξ̄22

)
− ξ∗21

 d→ N (0,Σ (S,Ω1))
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where the asymptotic covariance matrix is given by

Σ (S,Ω1) =

{
∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
Ω1

∂θ̃1

∂

 ξ1

ξ21


>

(
ξ0

1 , ξ
∗
21

)}−1

∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
Ω1

· Φ0
1 (S,W1) Ω1

∂θ̃1

∂

 ξ1

ξ21


>

(
ξ0

1 , ξ
∗
21

){ ∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
Ω1

∂θ̃1

∂

 ξ1

ξ21


>

(
ξ0

1 , ξ
∗
21

)}−1

.

(2.B.1)

The asymptotic covariance matrix of the auxiliary parameters is given by

Φ0
1 (S,W1) = C0

1V1C
0
1
>

+
1

S
C∗01 V

∗
1 C
∗0
1
>
,

where the components read

C0
1 =

{
E

[
∂u>1,t
∂θ1

(
y, θ0

1

)]
W1E

[
∂u1,t

∂θ>1

(
y, θ0

1

)]}−1

E

[
∂u>1,t
∂θ1

(
y, θ0

1

)]
W1,

C∗01 =

{
E∗
[
∂u>1,t
∂θ1

(
ỹ, θ0

1

)]
W1E∗

[
∂u1,t

∂θ>1

(
ỹ, θ0

1

)]}−1

E∗
[
∂u>1,t
∂θ1

(
ỹ, θ0

1

)]
W1,

Γ∗1,j = E∗
[
u1,t

(
ỹ, θ0

1

)
u1,t−j

(
ỹ, θ0

1

)>]
.

where y and ỹ are short-hand notations for {yt}Tt=1 and {ỹsT (ξ)}Tt=1, respectively.

Efficient weighting matrix

Proposition 4 (Asymptotic distribution of the optimal structural parameters).

Under assumptions 1 - 7, 8, 9 and 10, and using the optimal weighting matrix
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Ω∗1
(
ξ̄22

)
= Φ0

1(S,W1)
−1

, the optimal structural parameters estimates of ξ∗∗1 and ξ∗∗21

follow an asymptotic normal distribution

√
T

 ξ̂∗∗1,TS
(
ξ̄22

)
− ξ0

1

ξ̂∗∗21,TS

(
ξ̄22

)
− ξ∗21

 d→ N
(
0,Σ

(
S,Ω∗1

(
ξ̄22

)))

where the asymptotic covariance matrix is given by

Σ
(
S,Ω∗1

(
ξ̄22

))
=

{
∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
Φ0

1 (S,W1)−1 ∂θ̃1

∂

 ξ1

ξ21


>

(
ξ0

1 , ξ
∗
21

)}−1

.

Estimation of the asymptotic covariance matrix

For the calculation of Σ (S,Ω1), we rely on Equations (2.B.1), (2.A.3), and (2.A.4)

- (2.A.6) in Appendix 2.A.

The first building block is calculating V1 and V ∗1 , the variance-covariance matrices

of the moment conditions in Equation (2.3.13) evaluated using the empirical data

and the model simulated data, respectively. These are computed using the Newey

and West (1987) method to account for serial correlation, up to the 10th order,

between the moment conditions.

The next step is calculating C0
1 and C∗01 shown in Equations (2.A.4) and (2.A.5)

for the empirical and simulated data, respectively. In our implementation, W1 is

chosen to be an identity matrix. Given all the necessary inputs, Φ0
1 (S,W1) can now

be calculated.

As 500 ensembles are simulated from the DSGE model for each parameter value,

the second part of Equation (2.A.3) is evaluated 500 times for each of the ensembles,

and the average is used to compute Φ0
1.
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Finally, Σ (S,Ω1) is calculated using Equation (2.B.1). Again, Ω1 is chosen to be

an identity matrix to assign identical weights to the sensitivity of each instrumental

parameter to changes in each of the structural parameters.

2.C Grid Search

To find the estimates of ξ1, we initially perform a grid search for the ξ1 parameter

combination that returns the minimum value of the PII objective function described

in Equation (2.3.9) and our choice of moment conditions given by Equation (2.3.13).

The β grid ranges from 0.98 to 1.01 in increments of 0.001, and the rra grid is

spanned between 15.5 and 39.5 in unit increments. As values of β close to 1 are

reasonable, we allow for time preference rates larger than one to find a minimum

within the grid. As for the rra, we base our specification of the grid on the steady-

state values reported in Campbell and Cochrane (1999) and Chen (2017). We use

their steady-state relative risk aversion value, rra = 28.6, in the middle of the grid

and vary around it. Note that we fix the utility parameter γ = 2 and vary the steady

state surplus consumption from 0.068 to 0.129.

The grid is minimized for values of β = 1.001 and rra = 22.5 and the objective

function is not flat around the minimum.

2.D Data

The empirical data used for the analysis of this study and shown in Tables 2.1, 2.2

and 2.4 are real U.S. post-war quarterly data from 1948 to 2012 and are chosen

similar to Chen (2017). The data, together with their sources, are summarized

in Table 2.D.1. The macroeconomic data are publicly available and can be easily

retrieved. Output, consumption, investment, wages and capital are calculated from
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quantities available in the National Income and Product Accounts (NIPA) with the

exception of private fixed assets which is retrieved from Fixed Asset Tables (FAT).

All the quantities are deflated using their price indices and divided by the population

to get their real per capita values. Productivity, however, is mimicked by total factor

productivity (TFP) which is retrieved from Fernald (2014).

Unlike the macroeconomic data, the financial time series are not publicly avail-

able. The risk-free rate is calculated as the forecast of the ex-post real return of the

90-day Treasury bill. The data needed for this forecast is the current treasury bill

yield and the inflation rate for the past 12 months. The earlier is retrieved from

the Center for Research in Security Prices (CRSP) while the latter is retrieved from

the Bureau of Labor Statistics (BLS). Firm returns are calculated as the weighted

average of the CRSP index and the Barclays U.S. corporate investment grade in-

dex. The latter is retrieved from Lehman Bond indices and is weighted by the firm

value. Firm value, in turn, is calculated as debt plus market equity, both of which

are retrieved from Compustat. Finally, Tobin’s Q time series can be retrieved from

FRED.
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2.E Numerical solution of the model

To numerically solve the DSGE model, we rely on the projection method developed

by Chen (2017).15 The projection method entails a homotopy method, whereby the

surplus consumption growth is added to the SDF in increments. This is done by

including a parameter in the SDF that is an exponent, ν, to the surplus consumption

growth, and thus controls its effect. This parameter ranges from zero to 1 in 11

incremental steps. At ν = 0, the SDF is merely that of a power utility model, while

at ν = 1, the full extent of the external habit persistence model is included in the

SDF. At each of these 11 steps, the model is solved, and the new solution is the

starting point for the next step. The homotopy method helps stabilize the nonlinear

solver.

At each of these incremental steps, the model is solved by discretizing the pro-

ductivity process into 13 states using a 13-point Markov chain via the Rouwenhorst

(1995) method. The laws of motion for capital and surplus consumption are approx-

imated by two-dimensional cubic splines of 6th order and 8th order, respectively.

Broyden’s method is used to calculate the cubic spline coefficients that satisfy the

firm’s Euler equation given in Equation (2.2.9). Given the productivity states today

and tomorrow as well as tomorrow’s values for capital and surplus consumption that

follow from their laws of motion, the remaining endogenous variables in the model

can be simulated.

15Some of the Matlab code is provided on his website https://sites.google.com/site/

chenandrewy/. Our model solution is based on the code in the RFS folder.
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2.F Details on the model solution

The firm’s Euler equation

Chen (2017) claims that the habit in consumption leads to a consumption distortion.

Due to that, the welfare theorems are no longer valid, and we cannot solve for an

equilibrium using a social planner problem. A valid alternative in this setting is a

recursive equilibrium which amounts to transforming the infinite-time problem into

a recursive problem. Thus, we solve the problem via value functions which only

depend on the value at time t and t+ 1

V (K ′;K,S, Z) = max
{I,N,K′}

[Π(K,Z,N)−W (K,S, Z)N − Φ(I,K)− I

+ EZ (M(K,S, Z;Z ′)V (K ′;K ′, S ′, Z ′))] ,

s.t. K ′ = (1− δ)K + I,

where V (·) is the value function, K,S and Z are state variables that we can observe

at time t which describe the state of the economy, and K ′16, I and N are called

control variables which have to be chosen optimally at time t. The intuition is that

given the optimal decision of these variables in t + 1, what is the optimal choice at

time t?

In order to make the optimization problem computationally less demanding,

Chen (2017) discretizes the productivity process to a 13 point Markov-chain with a

transition matrix πZ(Zi, Zj) which gives the probability of moving from state i in

period t to state j in period t + 1. Thus, the expected value and the optimization

16variables with ’ denote values at time t+ 1
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problem can be written in terms of a discrete random variable Z. When the economy

is at state i in period t, its Bellman equation can be written as

V (K ′;K,S, Zi) = max
{I,N,K′}

[
Π(K,Zi, N)−W (K,S, Zi)N − Φ(I,K)− I

+
∑
Zj

πZ(Zi, Zj)M(K,S, Zi;Zj)V (K ′;K ′, S ′, Zj)
]
,

s.t. K ′ = (1− δ)K + I.

A solution to this optimization problem consists of the F.O.C. w.r.t. labor which

gives the equilibrium wage, the F.O.C. w.r.t. investment and the Envelope and

firm’s Euler equation. Equation (2.F.1) shows the equilibrium condition that sets

the marginal productivity of labor equivalent to the wage:

∂V

∂N
= ΠN(K,Zi, N)−W (K,S, Zi)

!
= 0, (2.F.1)

where ΠN denotes the derivative of the production function w.r.t. labor N .

Equation (2.F.2), in turn, denotes the F.O.C. w.r.t investment.

∂V

∂I
= −1− ΦI(I,K) +

∑
Zj

πZ(Zi, Zj)M(·) ∂V
∂K ′

∂K ′

∂I
!

= 0,

or 1 + ΦI(I,K) =
∑
Zj

πZ(Zi, Zj)M(·)VK′(·),
(2.F.2)

where VK′(·) is

∂V

∂K ′
= −∂Φ

∂I

∂I

∂K ′
− ∂I

∂K ′
+
∑
Zj

πZ(Zi, Zj)M(·) ∂V
∂K ′

!
= 0. (2.F.3)
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In order to solve the F.O.C. seen in Equation (2.F.3), we have to find the partial

derivative of the value function w.r.t. K ′. This can be done using the following trick

1. plug the optimal K ′ into the value function

2. take the partial derivative of the value function w.r.t. K

∂V

∂K
= ΠK(K,Zi, N)− ΦK(I,K)− ∂Φ

∂I

∂I

∂K
− ∂I

∂K

VK(·) = ΠK(·) + (1− δ)(1 + ΦI(I,K))− ΦK(I,K)

3. Envelope theorem: as in equilibrium K and K ′ are almost the same, we omit

the partial derivative of K ′ w.r.t. K and the partial derivative of the value

function w.r.t. K ′ can be obtained by iterating the derivative above one period

forward:

VK′(·;Zj) = ΠK′(K
′, Zj, N

′) + (1− δ)(1 + ΦI′(Ij, K
′))− ΦK′(Ij, K

′)

4. Plug this partial derivative into the F.O.C. w.r.t. investment above and obtain

the firm’s Euler equation.

ΦI(I,K) + 1 =
∑
Zj

πZ(Zi, Zj)M(·) [ΠK′(K
′, Zj, N

′) + (1− δ)(1 + ΦI′(Ij, K
′))− ΦK′(Ij, K

′)]

1 =
∑
Zj

πZ(Zi, Zj)M(·)ΠK′(K
′, Zj, N

′) + (1− δ)(1 + ΦI′(Ij, K
′))− ΦK′(Ij, K

′)

ΦI(I,K) + 1

1 = EZ
[
M(·)ΠK′(K

′, Zj, N
′) + (1− δ)(1 + ΦI′(Ij, K

′))− ΦK′(Ij, K
′)

ΦI(I,K) + 1

]
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Household’s Euler equation

Based on the intertemporal consumption and savings decision of the household, we

obtain the usual Euler equation which holds for returns. The risky asset in this

setting is investment and the Euler equation in terms of the return to investment

RI reads

EZ [M(K,S, Zi;Zj)RI(K,S, Zi;Zj)] = 1,

or with the discretized productivity process we have

∑
Zj

πZ(Zi, Zj)M(K,S, Zi;Zj)RI(K,S, Zi;Zj) = 1.

Equilibrium

The household does not value labor, i.e., N = 1 and we can obtain the return

of investment by equating the two Euler equations which yields a state dependent

return on investment

RI(K,S, Zi;Zj) =
ΠK′(K

′, Zj, 1) + (1− δ)(1 + ΦI′(Ij, K
′))− ΦK′(Ij, K

′)

ΦI(I,K) + 1
,

as the capital, labor and investment chosen by the firms and the households are the

same in equilibrium.
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We obtain the following equilibrium conditions:

1 = EZ [M(K,S, Zi;Zj)RI(K,S, Zi;Zj)] ,

with RI(K,S, Zi;Zj) =
ΠK′(K

′, Zj, 1) + (1− δ)(1 + ΦI′(Ij, K
′))− ΦK′(Ij, K

′)

ΦI(I,K) + 1
,

where M = M(K,S, Zi;Zj) = β

(
Cj
C

Sj
S

)−γ
, from household optimization,

Cj = Π(K ′, Zj, 1)− Φ(Ij, K
′)− Ij, from accounting identity,

C = Π(K,Zi, 1)− Φ(I,K)− I,

K ′ = G(K,S, Zi), time-invariant policy function, solution to the Bellman equation,

I = G(K,S, Zi)− (1− δ)K,

Ij = G(K ′, S ′, Zj)− (1− δ)K ′

= G(G(K,S, Zi), S
′, Zj)− (1− δ)G(K,S, Zi),

and the evolution of surplus consumption satisfies

sj = (1− ρs)s̄+ ρss+ λ(cj − c).
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Chapter 3

The “Price” of Misspecification in

DSGE Asset Pricing Models

3.1 Introduction

The econometric approach studied in Chapter 2 has relayed the concept of enclos-

ing calibration within the folds of formal econometric methodology via the partial

indirect inference (PII) estimation method from Dridi et al. (2007). Its main pur-

pose is to circumvent the inaccuracies in statistical inference caused by potential,

yet very likely, misspecification in the DSGE asset pricing model. The aim of the

current chapter is to highlight, as well as to gauge against, the effect of such mis-

specification on the estimation quality of the models’ parameter estimates and its

statistically inferred key implications.

In order to achieve this aim, the PII method and its results are compared with

two other estimation strategies; the classical Indirect Inference (II) method à la

Gourieroux et al. (1993) that does not account for misspecification at all, and the full

encompassing partial indirect inference (FII) method, also from Dridi et al. (2007),

that allows for a certain degree of misspecification in the model. This chapter also
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makes use of the recently developed “dark matter” measure in Chen et al. (2019) to

quantify the degree of fragility entailed by each of the three different methodologies.

The measure is used to challenge the findings of the previous chapter. These are

primarily founded on the assumption that the source of potential misspecification

in the DSGE asset prcing model is its representation of the macroeconomic dynam-

ics. To provide an even field, the DSGE asset pricing model presented in Chen

(2017) and discussed in Chapter 2 is used as the playground for the three estimation

methodologies.

The concept of misspecification in the context of structural asset pricing models

is well established in the literature. Ludvigson (2013) elegantly articulates the fact

that misspecification is an inherent feature of asset pricing models, as the models

are merely “abstractions and therefore by definition misspecified”. The Hansen-

Jaganathan distance, developed by Hansen and Jagannathan (1997), has long been

used as a measure to compare between misspecified asset pricing models, see for

example Hodrick and Zhang (2001), Chen and Ludvigson (2009), Kan and Robotti

(2008), Almeida and Garcia (2012) and Antoine, Proulx and Renault (2020), among

others. Other prominent examples such as Kan and Zhang (1999) and Gospodinov,

Kan and Robotti (2014) construct misspecification-robust inference in the context

of linear factor asset pricing models.

More recently, Chen et al. (2019) developed their dark matter measure to assess

the fragility of asset pricing models towards their potentially misspecified moment

conditions in the context of GMM estimation. Their empirical application demon-

strates how the measure works in the context of two potentially misspecified models;

a rare-disaster risk model and a long-run risk model with endowment economies.

This chapter extends their study by applying this dark matter measure to a DSGE

asset pricing model with external habit preferences. To the best of this author’s
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knowledge, this is the first study that attempts to assess the effects of misspecfica-

tion in the context of DSGE asset pricing models.

As discussed in the previous chapter, DSGE asset pricing models have been rather

infamous since their introduction by Jermann (1998). They attempt to resolve the

famous asset pricing puzzles while maintaining the macroeconomic business cycle

dynamics. Their appeal also stems from the fact that they represent a more realistic

portrayal of reality in comparison to the endowment economy setup that has thus

far been considered in asset pricing models. In those endowment economies, the

consumption process that generates the stochastic discount factor (SDF) responsible

for pricing assets is assumed to be an exogenous process. DSGE asset pricing models,

on the other hand, offer an endogenous consumption process that is generated from

the macroeconomic dynamics embedded in the model.

It should be acknowledged that however complex the dynamics in the DSGE

asset pricing model are, they cannot feasibly capture all the relevant aspects of

economic reality. From an asset pricing perspective, there is more faith that the

asset pricing part of the model is tailored to correctly reflect economic reality, as we

rely on its SDF specification to price assets. On the other hand, the macroeconomic

part of the model is only seen as a mimic of the economy that is necessary to fully

parameterize the model and allow for simulations.

Given the source of the potential misspecification in the model, the econometri-

cian needs to be aware of the drawbacks to the inferenctial statistics incurred by this

particular misspecification. Additionally and as highlighted in the preceding chap-

ter, DSGE asset pricing models are quite cumbersome when it comes to estimating

their parameters and conducting econometric analysis. They often have intractable

likelihood functions which halts any attempt towards their direct estimation. As

will be shown in this chapter, this is where indirect inference estimation methods
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come into play, as they are capable of accounting for these two obstacles in their

econometric methodology.

The chapter starts by incorrectly assuming that there is no misspecification at

all in the DSGE asset pricing model. In this case, Indirect Inference (II) estimation

from Gourieroux et al. (1993) is used with a GMM model (Hansen, 1982) as its

instrumental model to estimate all of the structural parameters (i.e. both asset

pricing and macroeconomic parameters). Next, misspecification is accounted for by

using the full encompassing indirect inference (FII) estimation strategy from Dridi

et al. (2007). In this step, it is assumed that the instrumental GMM model fully

encompasses the structural DSGE asset pricing model. This means that the set of

moment restrictions provided in the GMM estimation are potentially able to identify

all the parameters of the structural model.

In a further step, the GMM instrumental model is shrunk to only the set of mo-

ment constraints that identify the asset pricing parameters of interest. This means

that it only partially encompasses the structural model, and only the parameters of

interest will be estimated while the remaining (macroeconomic) nuisance parameters

will be pinned down by calibration. This latter strategy is essentially the partial

encompassing indirect inference (PII) estimation strategy from Dridi et al. (2007)

that has been utilized in Chapter 2.

As previously explained, GMM estimation is used as the instrumental model

with different sets of moment constraints that either fully or partially encompass

the DSGE asset pricing model. Therefore, the dark matter measure developed by

Chen et al. (2019) arises as a suitable metric to determine the degree of fragility

that the full set of moment conditions impose on the estimation of the parameters of

interest. Hypothetically, adding more informative moment constraints to the GMM

estimation should result in reasonable point estimates with adequately tight and
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economically reasonable confidence bounds, i.e., the parameters of interest should

be better identified. However, if adding more moments to the GMM estimation

results in having wider confidence bounds that span unreasonable values, then those

additional moment constraints are introducing noise rather than information to the

estimation process. Thus, examining the point estimates and confidence bounds

that result from II, FII and PII estimations should serve as a means to determine

whether the macroeconomic part of the model is indeed misspecified.

However, in a GMM context, tight confidence intervals are a result of smaller

standard errors that come from asymptotic covariance matrices that have highly

sensitive moment conditions to the estimated parameters. This is a desirable fea-

ture provided that the moment conditions come from a correctly specified model,

as this is the basis of econometric estimation (see for example Andrews, Gentzkow

and Shapiro, 2017). Yet, if there is potential misspecification, then this indicates

that those moment conditions are susceptible to considerable change when the val-

ues of the parameters are changed. Thus, the key implications arising from the

structural model are excessively sensitive to small changes in the data generating

process (DGP). This is what is deemed by Chen et al. (2019) as model fragility and

is accounted for using their dark matter measure.

In this paper, the dark matter measure is thus used to investigate the fragility of

the macroeconomic moment conditions used in the GMM instrumental model. The

measure is thought of as a second-layer filter to rule out the inclusion of macroeco-

nomic moment conditions that suspiciously improve the identification of the asset

pricing parameters of interest. Had the information from the dark matter measure

not been considered, some macroeconomic parameters would have been mistakenly

included in the estimation process as pseudo-parameters of interest. This is due to
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the fact that the moment conditions necessary for their identification improve the

overall identification of the parameters of interest as well.

Our findings confirm that the macroeconomic dynamics in the DSGE asset pric-

ing model presented in Chen (2017) are indeed misspecified. The PII results from

Chapter 2 yield the most economically reasonable point estimates with adequately

tight confidence bounds. Adding the macroeconomic restrictions and attempting to

estimate the entire model’s parameters adds unnecessarily more noise rather than

information to the process of identifying the parameters of interest. This results in

unrealistically huge confidence bounds. The dark matter measure further confirms

that the baseline moment restrictions in the GMM instrumental model are far more

superior in identifying the asset pricing parameters of interest relative to the full

moment constraints even when misspecification is accounted for using FII.

The only exception to this conclusion is the finding obtained from incrementally

adding the macroeconomic moment conditions (and thus the macroeconomic pa-

rameters) to the estimation process to examine their individual effect. The results

indicate that adding the second moment of the Gross Domestic Product (GDP)

results in comparable point estimates and tight bounds for the asset pricing pa-

rameters. The dark matter measure further confirms that this additional moment

condition has a negligible effect on the fragility of the model. It also slightly improves

the asset pricing implications derived from the model. Therefore, it is worthwhile

to expand the PII strategy from Chapter 2 to include this macroeconomic moment

to the set of baseline moment restrictions in the instrumental GMM model.

The remainder of this chapter is organized as follows; Section 3.2 highlights the

econometric methodology of this study. Specifically, Sections 3.2.1 and 3.2.2 outline

the difference between the three different indirect inference methodologies utilized in

this study, as well as their specific estimators and asymptotic distributions, respec-
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tively. Section 3.2.3 tailors the specifications of the instrumental model underlying

the three estimators to the DSGE asset pricing model used in the study, while Sec-

tion 3.2.4 discusses the dark matter measure and adapts it also to this study. Section

3.3 presents the findings of the study as well as an in-depth analysis and critique of

the results. Finally, Section 3.4 concludes.

3.2 Misspecification in estimation and inference

As previously highlighted, estimating the parameters of DSGE asset pricing models

in general and the model in Chen (2017) specifically is a challenging undertaking.

The complex dynamics depicted in those models render their likelihood functions

intractable. A possible solution is to use II estimation as proposed by Smith (1993),

Gourieroux et al. (1993) and Gallant and Tauchen (1996). Section 2.3 briefly ex-

plained the rationale behind the indirect inference methodology and how it provides a

workaround for intractable likelihood functions via the use of an instrumental model

whose parameters are easily estimated. The estimation of the DSGE structural pa-

rameters is then achieved by minimizing a quadratic loss function constructed using

the instrumental parameters that are estimated twice; once using empirical data and

once using simulated data from the DSGE asset pricing model that is dependent on

the values of the structural parameters.

The main pillar, thus, of II estimation is the assumption that the data generating

process (DGP) of the simulated data correctly mimics reality, i.e., that the DSGE

asset pricing model is correctly specified. Yet, this is a very restrictive assumption.

Dridi et al. (2007) offer a tailored II estimation methodology for DSGE models that

accounts for potential misspecification in parts of the model. The authors have two

methodological strategies depending on whether the instrumental model fully or

partially encompasses the dynamics of the DSGE model; the FII estimation and the

71



PII estimation, respectively. The methodological strategy implemented in Chapter

2 is one possible application of PII estimation.

The binding function, as defined by Gourieroux et al. (1993) is what links the

instrumental parameters estimated using simulated data to the structural parame-

ters of the DSGE asset pricing model. The assumption governing how this binding

function is formulated is the key difference between the three different estimation

methodologies. In this section, I focus on where exactly the three methodologies,

II, FII and PII, diverge in their formulation of the binding function and the result-

ing asymptotic distribution of their estimates. Appendix 3.A provides a summary

of how the underlying assumptions governing the II and FII estimation differ from

the outlined assumptions for PII given in Appendix 2.A. Similarly, Appendix 3.B

provides an abridged version of how the derivation of the asymptotic distributions

of II and FII estimation can be generalized from the detailed derivation given in

Appendix 2.B.

The notation used follows closely that of Section 2.3 where the PII estimation

strategy was first introduced and explained. This current section expands on this

explanation to engulf the II and FII estimation strategies, thus making the method-

ologies governing the three strategies directly comparable.

3.2.1 The indirect inference methodology

Since the three methodologies have an underlying GMM instrumental model, I begin

by examining how its k moment restrictions are represented using observable data

E
[
ut
(
{yt}tt−l, θ

)]
= E

u1,t

(
{yt}tt−l, θ0

1

)
u2,t

(
{yt}tt−l, θ0

2

)
 = 0. (3.2.1)
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It is assumed in Equation (3.2.1) that the moment restrictions can be divided into

two sets of separable moment conditions k1 and k2. The k1 moment conditions

u1,t

(
{yt}tt−l, θ1

)
encompass the true part of the structural model, i.e., the part of

the model that contains the structural parameters of interest ξ1. The k2 moment

conditions u2,t

(
{yt}tt−l, θ2

)
encompass the potentially misspecified part of the struc-

tural model, and thus should identify the nuisance structural parameters ξ2.

It could be the case that the separability between the two sets of moment con-

ditions is not quite clear cut. Therefore, the set of nuisance parameters ξ2 is better

defined as ξ2 = (ξ21, ξ22)>, where ξ21 represents a subset of the nuisance parame-

ters that are identified by u1,t

(
{yt}tt−l, θ1

)
as a by-product of identifying ξ1. ξ22, in

this case, represents the subset of the nuisance structural parameters that are only

identified from u2,t

(
{yt}tt−l, θ2

)
.

For identification, the number of moment restrictions has to be at least greater

than the number of structural parameters, i.e. k1 = dim θ1 ≥ p1 + p21 = dim ξ1 +

dim ξ21, and k2 = dim θ2 ≥ p22 = dim ξ22. Next comes the GMM criterion function

that would enable the instrumental parameters θ = (θ1, θ2)> to be estimated

min
{θ∈Θ}

QT

(
{yt}Tt=1, θ

)
, (3.2.2)

where QT

(
{yt}Tt=1, θ

)
=

1

2
gT
(
{yt}Tt=1, θ

)> · ŴT · gT
(
{yt}Tt=1, θ

)
, (3.2.3)

gT
(
{yt}Tt=1, θ

)
=

1

T

T∑
t=1

ut
(
{yt}tt−l, θ

)
, (3.2.4)

with ŴT
a.s.→ W , a positive semi-definite weighting matrix.

In II and FII estimation,

θ̂T =
(
θ̂1, θ̂2

)>
= argmin

{θ∈Θ}
QT

(
{yt}Tt=1, θ

)
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is a consistent estimator of θ0 = (θ0
1, θ

0
2)
>

which is the true value achieved at the

probability limit using the observed data.

In PII estimation, as seen in Section 2.3.1, the econometrician considers calibrat-

ing the set of nuisance parameters ξ22, as she believes that their estimation would

only introduce noise to the estimation process since their value lacks any economic

meaning. As such, the k2 moment conditions u2,t

(
{yt}tt−l, θ2

)
are removed from the

set of moment restrictions. This is how the GMM criterion function in Equations

(2.3.4) - (2.3.6) arise1. They are repeated here for convenience.

min
{θ1∈Θ1}

Q1,T

(
{yt}Tt=1, θ1

)
, (3.2.5)

where Q1,T

(
{yt}Tt=1, θ1

)
=

1

2
g1,T

(
{yt}Tt=1, θ1

)> · Ŵ1,T · g1,T

(
{yt}Tt=1, θ1

)
, (3.2.6)

g1,T

(
{yt}Tt=1, θ1

)
=

1

T

T∑
t=1

u1,t

(
{yt}tt−l, θ1

)
, (3.2.7)

with Ŵ1,T
a.s.→ W1, a positive semi-definite weighting matrix.

θ̂1,T = argmin
{θ1∈Θ1}

Q1,T

(
{yt}Tt=1, θ1

)
is a consistent estimator of θ0

1.

Similarly, for the simulated data, the set of k moment restrictions can be repre-

sented as

E
[
ut

(
{ỹst (ξ)}tt−l, θ̃0

(
ξ0

1 , ξ
∗
21, ξ

∗
22

))]
= E

u1,t

(
{ỹst (ξ)}tt−l, θ̃0

1(ξ0
1 , ξ
∗
21)
)

u2,t

(
{ỹst (ξ)}tt−l, θ0

2(ξ∗22)
)
 = 0, (3.2.8)

1It also explains why all the quantites are indexed by 1, as the estimation is only dependent on
the k1 set of moment restrictions.
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and a similar GMM criterion function is minimized to get the simulated instrumental

parameters. Under II and FII estimation this is

θ̃sT (ξ1, ξ21, ξ22) = argmin
{θ∈Θ}

QT

(
{ỹsT (ξ)}Tt=1, θ

s
)
.

Under the assumptions governing II estimation which do not account for mis-

specification in the structural model, θ̃sT (ξ1, ξ21, ξ22) is a consistent estimator of θ0,

as the DGP of the simulated data is assumed not to differ from that of the observed

data. To account for misspecification, FII estimation considers that θ̃sT (ξ1, ξ21, ξ22)

is a consistent estimator of θ̃0 (ξ0
1 , ξ
∗
21, ξ

∗
22), which is in turn the true value achieved

at the probability limit using the simulated data.

In PII estimation, misspecification in the DGP of the simulated data as well

as calibration of ξ22 parameters takes place. This is shown in the GMM criterion

function in Equation (2.3.7), and is repeated here for convenience,

θ̃s1,T (ξ1, ξ21, ξ̄22) = argmin
{θ1∈Θ1}

Q1,T

(
{ỹsT (ξ)}Tt=1, θ

s
1

)
. (3.2.9)

In this case, only θ̃s1,T (ξ1, ξ21, ξ̄22) is a consistent estimator of θ̃0
1 (ξ0

1 , ξ
∗
21).

The instrumental moment conditions in the GMM functions of the II and the

FII estimators fully encompass the structural DSGE asset pricing model. The two

estimators, however, differ in their formulation of the binding function. For II esti-

mation, as no misspecification is handled here, the mapping at the probability limit

between the instrumental parameters from the observed and the simulated data is

assumed to be achieved at the true values of all the structural parameters, as shown

below

θ0 = θ̃0(ξ0
1 , ξ

0
21, ξ

0
22). (3.2.10)
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Conversly in FII estimation, this mapping happens at the true values of the struc-

tural parameters of interest ξ1, but only at pseudo-true values of the nuisance pa-

rameters ξ2 = (ξ21, ξ22)>, as misspecification is assumed in the dynamics governing

those parameters. To show this, these parameters are denoted with an asterisk in

the binding function

θ0 = θ̃0(ξ0
1 , ξ
∗
21, ξ

∗
22). (3.2.11)

PII estimation requires that the instrumental model only partially encompasses the

structural model, as the ξ22 parameters are calibrated in the estimation. Similar to

the FII estimation, misspecification in the dynamics governing ξ21 is taken into con-

sideration. The mapping in the binding function is assumed to be at the true values

of the parameters of interest ξ1 and only at pseudo-true values of ξ21. Accordingly,

the binding function can be stated as in Equation (2.3.8) which is repeated here for

ease of comparison

θ0
1 = θ̃0

1(ξ0
1 , ξ
∗
21). (3.2.12)

The methodology implemented in Chapter 2 is thus an instance of PII estimation

where there are no ξ21 nuisance parameters.

3.2.2 Estimators and asymptotic distributions

Given the explanation of the underlying instrumental GMM model and the binding

functions of the three different indirect inference estimators, this subsection specifies

the quadratic forms of the estimators as well as their asymptotic distributions. It

starts with the FII estimator, as the two other methodologies can be specified as

special cases from it. Through this formulation, it can be immediately recognized

whether the different methodologies will result in different point estimates or whether

the differences only impact the standard errors of the estimates.
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Fully encompassing partial Indirect Inference (FII) estimation

The FII estimator can be defined as
ξ̂1,TS

ξ̂21,TS

ξ̂22,TS

 = argmin
{(ξ1,ξ21,ξ22)∈Ξ1×Ξ21×Ξ22}

[
θ̂T −

1

S

S∑
s=1

θ̃sT (ξ1, ξ21, ξ22)

]>
· Ω̂T

·

[
θ̂T −

1

S

S∑
s=1

θ̃sT (ξ1, ξ21, ξ22)

]
,

(3.2.13)

θ̂T = argmin
{θ∈Θ}

QT

(
{yt}Tt=1, θ

)
, (3.2.14)

θ̃sT (ξ1, ξ21, ξ22) = argmin
{θ∈Θ}

QT

(
{ỹsT (ξ)}Tt=1, θ

s
)
, (3.2.15)

Ω̂T
a.s.−→ Ω. (3.2.16)

Under the assumption of misspecification in the DGP and the other assumptions

detailed in Appendix 3.A following Dridi et al. (2007), ξ̂1,TS is a consistent estimate

of ξ0
1 . Simultaneously ξ̂21,TS and ξ̂22,TS converge in the probability limit to the

pseudo-true values ξ∗21 and ξ∗22, respectively. The asymptotic distribution can, thus,

be depicted as

√
T


ξ̂1,TS − ξ0

1

ξ̂21,TS − ξ∗21

ξ̂22,TS − ξ∗22

 d→ N (0,ΣFII (S,Ω)) . (3.2.17)
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Following the derivations in Appendix 3.B, ΣFII (S,Ω) can then be formulated

as

ΣFII (S,Ω) =

{
∂θ̃

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
∗
21, ξ

∗
22

)>
Ω

∂θ̃

∂


ξ1

ξ21

ξ22


>

(
ξ0

1 , ξ
∗
21, ξ

∗
22

)}−1

· ∂θ̃

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
∗
21, ξ

∗
22

)>
Ω Φ0

FII (S,W ) Ω
∂θ̃

∂


ξ1

ξ21

ξ22


>

(
ξ0

1 , ξ
∗
21, ξ

∗
22

)

·

{
∂θ̃

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
∗
21, ξ

∗
22

)>
Ω

∂θ̃

∂


ξ1

ξ21

ξ22


>

(
ξ0

1 , ξ
∗
21, ξ

∗
22

)}−1

.

(3.2.18)

Φ0
FII (S,W ) here represents the asymptotic covariance matrix resulting from the

underlying instrumental GMM model. This can be written explicitly as

Φ0
FII (S,W ) = C0V C0> +

1

S
C∗0V ∗C∗0

>
, (3.2.19)
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and its separate constituents are2

C0 =

{
E
[
∂u>t
∂θ

(
y, θ0

)]
WE

[
∂u1

∂θ>
(
y, θ0

)]}−1

E
[
∂u>t
∂θ

(
y, θ0

)]
W, (3.2.20)

V = Γ0 +
∞∑
j=1

(
Γj + Γ>j

)
, (3.2.21)

Γj = E
[
ut
(
y, θ0

)
ut−j

(
y, θ0

)>]
, (3.2.22)

C∗0 =

{
E∗
[
∂u>t
∂θ

(
ỹ, θ0

)]
WE∗

[
∂ut
∂θ>

(
ỹ, θ0

)]}−1

E∗
[
∂u>t
∂θ

(
ỹ, θ0

)]
W, (3.2.23)

V ∗ = Γ∗0 +

∞∑
j=1

(
Γ∗j + Γ∗j

>
)
, (3.2.24)

Γ∗j = E∗
[
ut
(
ỹ, θ0

)
ut−j

(
ỹ, θ0

)>]
. (3.2.25)

Indirect Inference (II) estimation

The II estimator is similar to Equations (3.2.13) to (3.2.16). This is not surprising, as

the underlying instrumental GMM model is specified in the same way for both sets of

estimates such that it fully encompass the structural DSGE model. Therefore, the point

estimates obtained using both FII and II methodologies are identical. The main difference

between the two methodologies, thus, lies in their inference. II estimation does not allow

for misspecification in the structural DSGE model, and hence assumes that the DGP of

the simulated series is identical to that of the observed data. Following Gourieroux et al.

(1993), the assumptions detailed in Appendix 3.A entail that the entire set of ξ̂TS =(
ξ̂1,TS , ξ̂21,TS , ξ̂22,TS

)
is a consistent estimate of ξ0 =

(
ξ0

1 , ξ
0
21, ξ

0
22

)
.

2For ease of notation, {yt}Tt=1, representing the observed series, and {ỹsT (ξ)}Tt=1, representing
the simulated series, are replaced by y and ỹ, respectively.
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The asymptotic distribution can be depicted as

√
T


ξ̂1,TS − ξ0

1

ξ̂21,TS − ξ0
21

ξ̂22,TS − ξ0
22

 d→ N (0,ΣII (S,Ω)) . (3.2.26)

Following the derivations in Appendix 3.B, ΣII (S,Ω) can be formulated as

ΣII (S,Ω) =

{
∂θ̃

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
0
21, ξ

0
22

)>
Ω

∂θ̃

∂


ξ1

ξ21

ξ22


>
(
ξ0

1 , ξ
0
21, ξ

0
22

)}−1

· ∂θ̃

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
0
21, ξ

0
22

)>
Ω Φ0

II (S,W ) Ω
∂θ̃

∂


ξ1

ξ21

ξ22


>
(
ξ0

1 , ξ
0
21, ξ

0
22

)

·

{
∂θ̃1

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
0
21, ξ

0
22

)>
Ω

∂θ̃

∂


ξ1

ξ21

ξ22


>
(
ξ0

1 , ξ
0
21, ξ

0
22

)}−1

.

(3.2.27)

Note that the two Equations (3.2.18) and (3.2.27) are formulated very similarly. Notation-

wise, the only difference between them comes from the superscript notation differences in

ξ21 and ξ22. The former equation indicates that the derivatives are evaluated at the true

values of the parameters, while in the latter the pseudo-true values are used. Yet, a

substantial difference comes from the way Φ0 (S,W ) is specified. In II estimaton, since

the DGP of the simulated series is assumed to be identical to that of the observed data,
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C0 and C∗0 from Equations (3.2.20) and (3.2.23) are assumed to be identical. Thus,

Φ0
II (S,W ) can be specifed as

Φ0 (S,W ) =

(
1 +

1

S

)
C0V C0>, (3.2.28)

where its constituents are defined similar to Equations (3.2.20) - (3.2.22).

Partial encompassing partial Indirect Inference (PII) estimator

In PII estimation, calibration is formally incorporated into the estimation strategy. As

explained previously, the set of structural nuisance parameters, ξ22, are not estimated

in this setting, but rather remain fixed at appropriate values required for the structural

model to deliver sensible economic implications. The estimator is defined as in Equation

(2.3.9), and is repeated here for convenience

 ξ̂1,TS(ξ̄22)

ξ̂21,TS(ξ̄22)

 = argmin
{(ξ1,ξ21)∈Ξ1×Ξ21}

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T (ξ1, ξ21, ξ̄22)

]>
· Ω̂1,T

·

[
θ̂1,T −

1

S

S∑
s=1

θ̃s1,T (ξ1, ξ21, ξ̄22)

]
,

(3.2.29)

θ̂1,T = argmin
{θ1∈Θ1}

Q1,T

(
{yt}Tt=1, θ1

)
, (3.2.30)

θ̃s1,T
(
ξ1, ξ21, ξ̄22

)
= argmin
{θ1∈Θ1}

Q1,T

(
{ỹsT (ξ)}Tt=1, θ

s
1

)
, (3.2.31)

Ω̂1,T
a.s.→ Ω1. (3.2.32)

It can be seen here that the estimates for ξ̂1,TS(ξ̄22) and ξ̂21,TS(ξ̄22) are expected to be

different than the ones provided by FII and II, as the underlying instrumental GMM

model is reduced to only the baseline moment restrictions u1,t (y, θ1). The loss of the

information provided by u2,t (y, θ2) is expected to affect the point estimates of ξ̂1,TS(ξ̄22)

and ξ̂21,TS(ξ̄22).3

3This is true as long as 1
T

∑T
t=1

∂u>
2,t

∂θ1

(
{yt}Tt=1, θ2

)
6= 0
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The partial encompassing hypothesis in Dridi et al. (2007) along with the necessary

assumptions, as highlighted in Appendix 2.A, stipulate that only ξ̂1,TS(ξ̄22) is a consistent

estimator of ξ0
1 , while ξ̂21,TS(ξ̄22) converges to a pseudo-true value ξ∗21 in the limit. The

asymptotic distribution is then

√
T

 ξ̂1,TS

(
ξ̄22

)
− ξ0

1

ξ̂21,TS

(
ξ̄22

)
− ξ∗21

 d→ N (0,ΣPII (S,Ω1)) (3.2.33)

where ΣPII (S,Ω1) is depicted as

ΣPII (S,Ω1) =

{
∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
Ω1

∂θ̃1

∂

 ξ1

ξ21


>
(
ξ0

1 , ξ
∗
21

)}−1
∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
Ω1

· Φ0
1 (S,W1) Ω1

∂θ̃1

∂

 ξ1

ξ21


>
(
ξ0

1 , ξ
∗
21

){ ∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)>
Ω1

∂θ̃1

∂

 ξ1

ξ21


>
(
ξ0

1 , ξ
∗
21

)}−1

.

(3.2.34)

Similar to FII estimation, misspecification in the DGP of the simulated series is taken

into consideration. Accordingly, Φ0
1 (S,W1) can be viewed as the upper left quadrant of

the FII matrix Φ0
FII (S,W ) and is presented as follows

Φ0
1 (S,W1) = C0

1V1C
0
1
>

+
1

S
C∗01 V ∗1 C

∗0
1
>
, (3.2.35)

82



with its constituents being

C0
1 =

{
E

[
∂u>1,t
∂θ1

(
y, θ0

1

)]
W1E

[
∂u1,t

∂θ>1

(
y, θ0

1

)]}−1

E

[
∂u>1,t
∂θ1

(
y, θ0

1

)]
W1,

V1 = Γ1,0 +
∞∑
j=1

(
Γ1,j + Γ>1,j

)
,

Γ1,j = E
[
u1,t

(
ỹ, θ0

1

)
u1,t−j

(
ỹ, θ0

1

)>]
,

C∗01 =

{
E∗
[
∂u>1,t
∂θ1

(
ỹ, θ0

1

)]
W1E∗

[
∂u1,t

∂θ>1

(
ỹ, θ0

1

)]}−1

E∗
[
∂u>1,t
∂θ1

(
ỹ, θ0

1

)]
W1,

V ∗1 = Γ∗1,0 +

∞∑
j=1

(
Γ∗1,j + Γ∗1,j

>
)
,

Γ∗1,j = E∗
[
u1,t

(
ỹ, θ0

1

)
u1,t−j

(
ỹ, θ0

1

)>]
.

Now that the asymptotic distributions of the different estimators have been defined,

the next step is to tailor their specification to the DSGE asset pricing model developed

in Chen (2017) and discussed in details in Section 2.2. Since the specification of the PII

estimator has been previously discussed in Section 2.3.2, the next section follows along the

same lines to explain how this specification can be expanded to accommodate both the II

and FII estimators as well.

3.2.3 Specifying the instrumental model - an expanded version

The natural beginning is to classify the structural parameters into those of interest, ξ1,

and those which are considered nuisance, ξ2 = (ξ21, ξ22)>. The same lines of argument

used in Section 2.3.2 are followed; specifically, that the asset pricing part of the model is

seen to correctly reflect economic reality, while the macroeconomic part of the model only

abstractedly mimics the economy. This argument was briefly commented on in Section

2.3.2, and this section fully elaborates on why this is considered sensible.

Two arguments support this view; first, the asset pricing dynamics represented in the

model are characterized by two structural parameters; the time preference rate, β, and
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the steady-state relative risk aversion parameter, rra = γ/S̄. The time preference rate

reflects the representative agent’s intuitive preference for consumption today rather than

tomorrow. Microeconomic experiments have indeed confirmed that this value should be

smaller than unity (see for example, Samuelson, 1938 and Ainslie, 1992). The steady-

state relative risk aversion parameter is linked to the curvature of the utility function and

its value has been determined in the literature using Arrow-Debreu pricing experiments.

Mehra and Prescott (1985) presume that an appropriate range is between 1 and 5. The

second argument is that, as result of those parameter values, real financial quantities can

be determined; namely, the risk-free rate and the market equity premium. The latter is

a traded quantity whose value can be checked, and the former is regularly reported by

central banks.

The macroeconomic part of the model, on the contrary, contains quantities and pa-

rameters that are more difficult to pinpoint either by experiments or by examining the

economy. For example, the capital adjustment costs parameter, φ, is arbitrarily set at a

certain value to constrain the quantity of capital generated by the model. Additionally, the

Cobb-Douglas production function in the DSGE model does not have an empirical equiv-

alent. Furthermore, there is still an on-going prominent debate among macroeconomic

theorists on how to adequately measure aggregate capital in the first place.

Therefore, and similar to Section 2.3.2, the asset pricing parameters of interest that

should be consistently estimated using the different estimation methodologies are ξ1 =

(β, rra)>, while all the other parameters in the model should be considered nuisance

parameters ξ2 = ξ22 = (ρs, α, δ, φ, µ, ρz, σz)
>. In this setup, no ξ21 parameters are defined.

However, it turns out, that for FII and II estimation strategies, the estimation of the

entire set of structural parameters is quite cumbersome. In spite of having moments that

allegedly should identify all the parameters in ξ22, as specified in Table 2.1, the quadratic

function in Equation (3.2.13) did not converge using the none gradient-based Nelder-

Mead optimizer. A series of trial and error experiments lead to a shrinkage in the set of

nuisance parameters to ξ22 = (ρs, φ, σz)
>. The rest of the parameters (α, δ, µ, ρz)

> are
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then considered as auxiliary parameters and are left calibrated at the values proposed in

Table 2.1. In this context, the FII and II estimation strategies entail an instrumental model

that does not truly fully encompass the structural DSGE asset pricing model as presumed.

However, they still provide a fuller encompassing representation of the structural model

than the PII strategy. Thus, the premise of the study remains intact.

To identify the structural parameters of interest, ξ1, the scheme presented in Section

2.3.2 is again followed, as it is derived by the model-implied Equations (2.2.11) and (2.2.12)

where those parameters appear. Therefore, the time preference rate, β, is identified by the

first two moments of the risk-free rate E(Rft ) and σ2(Rft ), while the steady-state relative

risk aversion, rra is identified via the first two moments of the equity premium; E(Rem,t)

and σ2(Rem,t), respectively.

To identify the set of nuisance parameters ξ22 = (ρs, φ, σz)
>, the moment conditions

considered in Chen (2013)4 in his simulated methods of moments (SMM) estimation are

followed. In this case, the volatility of productivity, σz, is identified from the volatility

of GDP. Therefore, the first two moments of GDP are considered, E(Yt) and σ2(Yt),

respectively. The adjustment cost parameter φ is identified from the relative volatility of

consumption to GDP. Since this is a ratio, it cannot be ensured that its sample counterpart

converges in probability to its population value.5 Therefore, the paper opts to just add the

first two moments of consumption, E(Ct) and σ2(Ct), respectively, to the set of moment

conditions, as the first two moments of GDP are already considered.

The most troublesome parameter to identify is the persistence of surplus consumption,

ρs. Chen (2013) identifies it from the volatility of the equity premium which is inherently

its second moment and is already used in the identification of ξ1. Additionally, the param-

eter also appears in Equation (2.2.11) as an integral part of the model-implied risk-free

rate. The question then arises whether ρs should be considered as a parameter in ξ21. It

turns out that the objective function under this variant does not converge, which makes

4This is the working paper version of the DSGE asset pricing model in Chen (2017).
5This is similar to the argument in Section 2.3.2 about why the Sharpe ratio could not be used

in the set of moment restrictions in Equation (2.3.13).
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this identification scheme for ρs rather doubtful. Other possibilities from the literature

include using the first order autocorrelation of the price-dividend ratio. This is, however,

left for future research.

The set of k moment conditions can then be written specifically for the DSGE asset

pricing model as follows

E
[
ut
(
{yt}tt−l, θ

)]
= E

 u1,t

(
{yt}tt−l, θ0

1

)
u2,t

(
{yt}tt−l, θ0

2

)
 = E



Rft − µRf

Rem,t − µRe
m

(Rem,t)
2 − (µRe

m
)2 − σ2

Re
m

(Rft )2 − (µRf
)2 − σ2

Rf

Yt − µY

(Yt)
2 − (µY )2 − σ2

Y

Ct − µC

(Ct)
2 − (µC)2 − σ2

C



= 0,

(3.2.36)

and the set of instrumental parameters for the PII estimation is θ1 =
(
µRf

, µRe
m
, σ2

Re
m
, σ2

Rf

)>
,

while for FII and II estimation, θ =
(
µRf

, µRe
m
, σ2

Re
m
, σ2

Rf
, µY , σ

2
Y , µC , σ

2
C

)>
.

After explicitly detailing the three different indirect inference estimation methodologies

that will be used as well as specifying their underlying instrumental GMM model, the next

step is to formulate a quantifiable comparison between them. Towards this end, the dark

matter measure developed in Chen et al. (2019) is utilized. This is explained in the next

section.

3.2.4 The dark matter measure

The dark matter measure, as pioneered by Chen et al. (2019), is a metric used to quan-

tify the extent of model fragility in potentially misspecified models that have a GMM

setup. Model fragility, as defined by the authors, refers to the extent to which the mo-

ment conditions used in the GMM estimation are excessively sensitive to small changes
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in the parameter values that they are supposed to identify. The authors argue that such

sensitivity, while perceived as highly desirable in a correctly specified model, may render

potentially misspecified models fragile, as it implies that a small change in the DGP can

considerably distort the key implications of the model. The measure goes beyond regular

statistical inference to convey that achieving economically meaningful and tight confidence

bounds for parameter estimates is a desirable goal. Yet, it should be achieved by moment

conditions that are not excessively fragile.

Fragility of the moment conditions has dire consequences, as shown by the authors. It

manifests in the loss of power of the specification tests, which means that the model cannot

be rejected by the empirical data. It, also, causes the model to have poor out-of-sample

performance. Those two consequences of model fragility are however not investigated here

and are left for future research. This study rather uses the dark matter measure as a tool of

comparison between the different asymptotic variance-covariance matrices resulting from

the three different estimation methodologies described in Section 3.2.2. This is because it

is essentially a ratio between two asymptotic variance-covariance matrices; one computed

using the baseline moment conditions, which are assumed to be correctly specified, and

the other using the full set of moment conditions which may be misspecified.

This study adapts the authors’ ratio to accommodate the setup of the indirect infer-

ence methodologies. Here, it is perceived that the baseline model is the PII estimation

strategy with only the set of E
[
u1,t({yt}Tt=1, θ1)

]
as the moment conditions in the underly-

ing GMM instrumental model. The full model is alternatively considered to be: once the

FII estimation strategy, and once the II estimation strategy. This will ultimately provide

further confirmation that the source of potential misspecification in the model comes from

the part of the model that is concerned with the macroeconomic dynamics. It will, also,

serve as a means towards identifying the best set of moment conditions to be put in the

GMM instrumental model. This should then help in achieving the best possible identifica-

tion scheme for the structural parameters of interest. The notation in Chen et al. (2019)
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is followed as closely as possible while maintaining consistency with the notation that has

thus far been used.

Setup

The asymptotic variance-covariance matrices for the full model, i.e. the FII and the II

estimation strategies in Section 3.2.2 can be re-written as

Σm
F = D · Φ0

m ·D> (3.2.37)

where m = {FII, II} depending on the estimation strategy considered6, and

D =

{
∂θ̃

∂
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∗
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(
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1 , ξ
∗
21, ξ

∗
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)> ·Ω.

Similarly, for the baseline model, the asymptotic variance-covariance matrix can be

visualized as

ΣB = ΣPII = D1 · Φ0
1 ·D>1 (3.2.38)

where

D1 =

{
∂θ̃1

∂

 ξ1

ξ21


(
ξ0

1 , ξ
∗
21

)> · Ω1 ·
∂θ̃1

∂

 ξ1
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(
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· ∂θ̃1

∂

 ξ1

ξ21
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(
ξ0

1 , ξ
∗
21

)> · Ω1.

6Note that ξ21 is denoted with ∗ here. This is because it can be considered a true value, ξ021, or
a pseudo-true value, ξ∗21, depending on whether the estimation strategy is II or FII, respectively.
The same argument is followed for ξ22.
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Note that ΣPII is the upper-left quadrant of ΣFII . Hence, the usage of the subscript 1 in

the notation. It is, however, not true for II, as Φ0
II does not allow for misspecification in

the DGP. Nevertheless, the subscript notation is maintained for convenience.

Chen et al. (2019) formulate the dark matter measure in terms of the information

matrices computed from using the full GMM moment conditions relative to only the

baseline moment conditions. This argument is also followed here, and thus

IF = (Σm
F )−1 =

(
D · Φ0

m ·D>
)−1

, (3.2.39)

IB = (ΣB)−1 =
(
D1 · Φ0

1 ·D>1
)−1

. (3.2.40)

It should be noted, however, that in this study unlike that of Chen et al. (2019), all

of the weighting matrices used are chosen to be identity matrices rather than the efficient

weighting matrices. This choice enables a direct comparison between the three different

estimators, as the minimization problem across all of the instrumental parameters is given

equal weights. Accordingly, W and W1, necessary for the development of Φ0
m and Φ0

1,

respectively, as well as Ω and Ω1 are all identity matrices. As such, the inverse of Σm
F and

ΣB in Equations (3.2.39) and (3.2.40) are accurately described as precision matrices rather

than information matrices. The notation IF and IB is however maintained to match the

notation in Chen et al. (2019).

This study is interested in investigating how much the full encompassing models, FII

and II, impact the inferences of the parameters of interest, ξ1, relative to the baseline

partial encompassing model, PII. As such, we depict the marginal precision matrix

ImF = Λ · I−1
F · Λ

T with Λ =
[
Ip10p1×(p21+p22)

]
, (3.2.41)

which conveys the additional information (or noise?) imposed on the inference of the asset

pricing parameters ξ1 = (β, rra)> by adding the macroeconomic moment conditions to the

89



underlying GMM model. The additional information imparted by this marginal precision

matrix relative to the baseline precision matrix can be depicted as

Π = I
1/2
mF I−1

B I
1/2
mF − Ip1 . (3.2.42)

Had we been interested in only one structural parameter, the value of Π would have

been sufficient as the dark matter measure. However, since this is a multidimensional

problem, the dark matter measure is then computed as the largest eigenvalue value of Π.

This is formally defined by Chen et al. (2019) as

ϑ(ξ1) = max v>Πv, (3.2.43)

where v represents the matrix of eigenvectors of Π. This number then represents the

maximum degree of fragility inherent in the model along all linear dimensions.

It is important to understand what this resulting number represents. The size of this

measure indicates how much more information the marginal precision matrix of the full

model adds that is relevant to the estimation of the ξ1 parameters. As previously ex-

plained, this marginal precision matrix results from the information obtained from the

set of instrumental parameters, θ2, which in turn are identified from the potentially mis-

specified moment conditions. Therefore, the higher the size of ϑ(ξ1), the more fragile the

estimation of ξ1, as it is excessively dependent on potentially misspecifed information.

Beyond the analysis provided in Chen et al. (2019), this study considers the case when

the resulting maximum eigenvalue from Equation (3.2.43) has a negative sign. This would

indicate that the marginal precision matrix of the full model is adding noise rather than

information to the estimation strategy of ξ1. In this case, the identification scheme of

those parameters is better achieved using the baseline model. In terms of the “effective

sample size” interpretation in Chen et al. (2019), this would mean that the empirical sam-

ple should be shortened in order for the full models to be able to match the inferential

precision of the baseline model. The study uses this argument to determine how detrimen-
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tal misspecification in the macroeconomic dynamics is to the inferential precision of the

structural asset pricing parameters of interest. The results of such analyses are detailed

in the next section.

3.3 Results

The main aim of this section is to compare the results of the FII and II estimation strategies

with those achieved from the PII estimation in Section 2.4. The target is no longer, thus,

to analyze the plausibility of the DSGE asset pricing model, proposed by Chen (2017),

in solving the prominent asset pricing puzzles, which has been extensively dealt with in

the aforementioned section. Rather, the target is to examine whether better inferential

statistics for the parameters, and the asset pricing target moments of the model, can be

achieved by explicitly investigating the effect of the underlying misspecification inherent

in the model.

The task is to challenge the PII estimation results, repeated again in panel A of

Table 3.1 for convenience, by including the information from the macroeconomic dynamics

into the estimation strategy. I start by assuming that there is no misspecification in

the structural DSGE asset pricing moment and perform II estimation. The results are

displayed in panel B of Table 3.1. It is shown that even though the point estimates for the

different parameters are somewhat reasonable, the standard errors are unreasonably large.

This, in turn, translates into very wide confidence bounds that span unrealistic values;

β̂ is shown to accept values that are more economically reasonable, but also more values

that are in excess of 1. The value for r̂ra encompasses negative and positive values that

are close to 100 which indicates that the model cannot reject the assumptions that the

representative agent can be both risk neutral and excessively risk-averse. The confidence

bounds for ρ̂s accommodates values that are greater than 1 indicating a non-stationary

habit process.
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Table 3.1: Estimation results using the different methods

Confidence Interval

Parameter Estimate Standard Error 2.5% 97.5%

Panel A: PII results from Section 2.4

β 1.0008 0.0034 0.9941 1.0075
rra 22.66 2.20 18.34 26.98

Panel B: II results ϑ = -0.4031

β 1.0039 0.0141 0.9763 1.0315
rra 16.66 55.75 -92.61 125.93
ρs 0.9772 0.0693 0.8413 1.1130
φ 104.07 125.22 -141.36 349.49
σz 0.0135 0.0009 0.0118 0.0152

Panel C: FII results ϑ = -0.4035

β 1.0039 0.0141 0.9763 1.0315
rra 16.66 55.70 -92.52 125.84
ρs 0.9772 0.0693 0.8414 1.1129
φ 104.07 125.13 -141.19 349.33
σz 0.0135 0.0009 0.0118 0.0162

Note: This table reports the estimation results for the structural param-
eters. Panel A replicates the results from Section 2.4 using partial en-
compassing indirect inference (PII) estimation. Panels B and C report
results using Indirect Inference (II) estimation and full encompassing in-
direct inference (FII) estimation, respectively. The standard errors and
95% confidence intervals of all the parameters are provided. The dark
matter measure for FII and PII is provided as the value of ϑ in the re-
spective panel with panel A considered as the baseline model.

Even more problematic is the value of φ̂ which spans a wide range of positive and

negative values in three digits. The value of zero is thus included in this wide confidence
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interval. This in turn implies that there are no convex capital adjustment costs incurred

by the representative firm and consequently the capital stream Kt produced by the model

is detrimentally destabilized. The only parameter that seems to have a reasonable point

estimate as well as tight confidence bounds is the volatility of the technology process σ̂z.

Misspecification in the DGP is then accounted for by using the FII estimation strategy.

The results are displayed in panel C of Table 3.1. As expected, the point estimates of

the parameters are identical to those obtained from II estimation, since the quadratic

function minimized to obtain those parameters remains unaltered as explained previously.

The results, however, show that the statistical inference of the parameters is only very

slightly improved. This indicates that ΦII ≈ ΦFII , as this is the only difference between

Equations (3.2.19) and (3.2.28). Consequently, it is concluded that the DGP governing

the instrumental moment conditions resulting from both the observed and the simulated

data is very close.

Would this finding negate misspecification in this DSGE asset pricing model? Tech-

nically, this finding indicates that the first two moments of Rft , Ret , Yt and Ct, which

comprise the set of instrumental GMM moment conditions, are not very different between

the observed and the simulated data. Yet, there are other quantities in the model that have

not been examined, such as It, Kt and Wt. Those macroeconomic quantities should have

been able to identify the remaining structural parameters of the model that have remained

calibrated, namely the set (α, δ, µ, ρz)
>. It has been previously mentioned in Section 3.2.3

that attempting to identify those parameters resulted in an unstable function that could

not be successfully optimized. Therefore, misspecification in the macroeconomic dynamics

of the DSGE asset pricing model cannot be ruled out.

The dark matter measure displayed in panels B and C in Table 3.1 further confirms

the statistical inference findings. The negative values of ϑ indicates the inferiority of

both the II and the FII estimation strategies relative to the baseline model represented

by the PII estimation strategy. The size of the measure implies that the FII results are

only slightly more precise than that of the II results. In terms of the “effective sample
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size” interpretation, the dark matter measure specifies that the data set used in the full

encompassing estimation strategies, FII and II, should be reduced by around 40% to match

the inferential precision of the PII estimates. This indicates that the additional u2,t (y, θ2)7

moment conditions introduce noise rather than information into the identification process

of the structural parameters of interest, ξ1 = (β, rra). They are, thus, disruptive to the

estimation process, and the econometrician would do well by excluding them from the

estimation and have them as calibrated values.

Yet, note that the estimation of σ̂z in both FII and II estimation is rather precise. It

might be the case that the instrumental GMM moments used for identifying this parameter

carry some truths with regards to ξ1. To investigate this issue, a new PII estimation is

considered where only the first two moments of GDP are augmented to the u1,t (y, θ1) from

before. In this instance, the presence of a ξ21 parameter is envisioned and is set equal to

σz. The result of this compromise estimation strategy is presented in panel A of Table

3.2.

It is seen that the point estimates as well as the precision of the structural parameters

considered are vastly improved relative to the ones seen in the FII and II estimation

strategies in Table 3.1. In fact, the estimates are very much comparable to the PII results

that were originally obtained; β̂ remains slightly larger than unity, but its standard error

is slightly improved. The estimated steady-state relative risk aversion parameter seems to

indicate that the representative agent is less risk averse than indicated by the original PII

results, as the r̂ra is somewhat lower than in panel A of Table 3.1. Its confidence bounds are

reasonably tight and encompasses the value from the original PII results. The estimation

of σ̂z is also precisely executed using this strategy. However, no economic meaning is

attached to this value as it seen as a pseudo-true value under this estimation strategy, as

explained previously. To confirm that the remaining first two moments of consumption is

what is indeed troublesome in the II and FII results, a second PII estimation strategy is

7y here does not have any superscripts or subscripts to indicate that it can come from either
the observed or the simulated data.
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Table 3.2: PII estimation results using alternative specifications

Confidence Interval

Parameter Estimate Standard Error 2.5% 97.5%

Panel A: PII results with ξ21 = σz ϑ = 0.29103

β 1.0013 0.0033 0.9949 1.0077
rra 17.19 4.02 9.32 25.07
σz 0.0135 0.0011 0.0114 0.0156

Panel B: PII results with ξ21 = φ ϑ = -0.2252

β 1.0001 0.0041 0.9921 1.0080
rra 21.65 90.32 -155.37 198.67
φ 101.66 259.27 -406.49 609.82

Note: This table reports the partial encompassing indirect inference (PII)
estimation results for different alternative specifications of ξ21. The dark
matter measure is provided as the value ϑ in the respective panel. The
baseline model is the PII estimation in Panel A of Table 3.1.

considered with ξ21 = φ. The results in panel B of Table 3.2 are quite comparable to the

imprecise results previously found.

The question then becomes whether the original PII results from Section 2.4 should

be denounced in favor of the modified estimation strategy with ξ21 = σz. The dark matter

measure should shed some light on this issue. Again, the original PII estimation strategy

is considered as the baseline model. The value of ϑ in panel A of Table 3.2 is found to be

around 0.29. The positive value indicates that the overall precision of the new modified PII

strategy is better in the estimation of the asset pricing parameters of interest. Additionally,

the size of the measure is not large enough to indicate that there should be any concerns

with regards to fragility, as the data set has to be stretched by only 30% for the baseline

model to match the precision of the new modified strategy.
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These results are further confirmed by the economic plausibility analysis in Table

3.3 which is conducted in a similar fashion to Table 2.4 for ease of comparison. The

results show that the volatility of the risk-free rate is better matched in the modified

PII strategy, though the level is still unreasonably high even with the slightly lower 95%

confidence bound in the modified strategy. This implies that the risk-free rate puzzle

remains thus far unresolved. The equity premium moments are comparable to those

obtained from the original PII strategy; they still encompass the empirical values within

the 95% confidence bounds. Therefore, the conclusion from Section 2.4 remains intact;

namely that the equity premium puzzle is resolved provided that a higher than usual

relative risk aversion parameter is accepted.

The main difference between Tables 2.4 and 3.3 lies in their matching of the business

cycle moments. The modified PII strategy achieves a better match for the volatility of the

HP-filtered GDP than its counterpart. This is unsurprising, as the second moment of the

GDP is one of the moment restrictions used to identify σz in the modified PII estimation.

It follows that most of the business cycle moments that are dependent on output are

slightly more volatile than before, but the confidence bounds still encompass the value of

the empirical data. Additionally, the relative volatility of consumption growth is better

matched, with the empirical value lying conveniently in the midst of the confidence interval

instead of on the upper bound.

Overall the empirical findings suggest that the modified PII strategy with ξ21 = σz is

capable of fairly enhancing the results of the original PII strategy in Section 2.4. Although

the risk-free rate puzzle remains unresolved, the second moment of the risk-free rate is

better matched while still retaining the favorable equity premium results. Additionally,

many of the business cycle moments are better matched. The inclusion of the first two

moments of GDP in the underlying GMM instrumental model, necessary to identify σz,

instead of just calibrating its value creates more variation in the simulated business cycle

moments which allows for a better match with the empirical equivalents.
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Table 3.3: Implied economic plausibility check using modified PII results

Target Moment Bootstrap Quantiles
Implied

Data Estimate 2.5% 97.5%

Asset Prices

90-Day T-bill Return (%) 0.17 0.63 0.31 0.99
Vol of Rf (%) 0.90 0.73 0.62 0.84
Persistence of Tobin’s Q 0.96 0.96 0.96
Mean Sharpe Ratio of 0.22 0.16 0.11 0.21

CRSP Index
Equity Premium Re (%) 1.82 1.57 1.04 2.05
Vol of Re (%) 8.24 9.86 8.70 10.50

Business Cycle

Mean Output/Capital 0.143 0.076 0.062 0.090
Mean Investment Rate 0.025 0.021 0.021 0.021
Mean Output Growth (%) 0.48 0.45 0.45 0.45
Vol HP-filtered GDP (%) 1.72 1.73 1.45 1.99
Persistence of Output/Capital 0.997 0.979 0.970 0.985
Relative Volatility 0.52 0.53 0.42 0.68

of Consumption Growth
Mean Adj Cost / Output (%) 0.11 0.08 0.12

Consumption Growth

Mean of ln of Consumption Growth (%) 0.47 0.45 0.45 0.45
Std of ln of Consumption Growth (%) 0.52 0.56 0.48 0.63

Note: This table shows the results of a parametric bootstrap using M = 1000
draws from the joint normal distribution of β, rra and σz around the PII estimates
β̂ = 1.0013, r̂ra = 17.19 and σ̂z = 0.0135. It shows the selected bootstrap quantiles
of asset prices, business cycle and consumption growth moments along with the
estimate-implied and empirical means.

3.4 Conclusion

Formally enclosing calibration within the folds of econometric methodology via PII esti-

mation (Dridi et al., 2007) provides a convenient way of dealing with DSGE asset pricing

models that are inherently misspecified. It enables the calibration of all the nuisance pa-

rameters of the models that are responsible for the allegedly misspecified dynamics, while

allowing the parameters of interest to be consistently estimated. Section 3.2.3 elaborates
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extensively on why it is believed that the macroeconomic dynamics put forth by DSGE

asset pricing models is believed to be potentially misspecified, while the asset pricing

dynamics indeed convey true economic processes.

The natural question that follows then is whether those macroeconomic dynamics are

indeed misspecified. If this is the case, then their inclusion in the estimation strategy

would only introduce noise rather than meaningful information to the estimation of the

asset pricing parameters of interest. This, consequently, translates into point estimates

with very wide confidence bounds that span economically unreasonable values. To examine

whether this is indeed the case, this study compares the results of the PII estimation in

Section 2.4 with two other variants of the indirect inference methodology; namely, the

classic II estimation, as proposed in Gourieroux et al. (1993) and the FII estimation as

put forth by Dridi et al. (2007). The former does not account for misspecification at all,

and thus claims to consistently estimate all the parameters of the model, while the latter

allows for misspecification, but still estimates all the parameters of the model albeit with

consistency claims for only the parameters of interest. The DSGE asset pricing model

proposed by Chen (2017) and discussed in Section 2.2 is used as the underlying structural

model for all three methodologies.

To quantitatively compare between the different estimation methods, the newly devel-

oped dark matter measure, proposed by Chen et al. (2019), is utilized. This measure uses

the PII estimation as the baseline model and effectively relays how much the sample size

used in the two other estimation methods should be lengthened (or shortened) to match

the precision of the PII estimation. However, an excessively high positive value for the

measure is viewed unfavorably, as it implies that the model is excessively sensitive/fragile

to small changes in the DGP, even though its parameter estimates have tight confidence

bounds. In this way, the dark matter measure is a second-line of defense against potential

misspecification in the dynamics of the DSGE asset pricing moments.

The findings indicate that not all of the macroeconomic dynamics in the DSGE as-

set pricing model should be hastily dismissed from the estimation process via calibrating
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their parameters. Although neither II nor FII can surpass the performance of the original

PII estimation results in Section 2.4, a modified PII estimation, which includes the GDP

dynamics as well as the asset pricing dynamics in the underlying instrumental model, is

a worthwhile rival. The additionally included macroeconomic dynamics result in com-

parative point estimates with adequately tight confidence bounds for the asset pricing

parameters as well as for the volatility of total factor productivity (TFP) parameter that

arises as a by-product of this modified estimation strategy. Additionally, the dark matter

measure confirms that there is little fragility in this modified estimation methodology.

The economic plausibility analysis conducted with this modified variant of the PII

estimation results in modestly better asset pricing dynamics, but a remarkably better

match to the business cycle moments. From an asset pricing perspective, the equity

premium moments remain matched albeit with a relative risk aversion aversion that is

slightly lower than the original PII results but still higher than conventionally accepted

values. The risk-free rate puzzle continues to be troublesome, as the level of the risk-free

rate is still unattainable, although its volatility is moderately approached. The business

cycle moments, on the other hand, are noticeably better matched with their empirical

equivalents, as the estimation strategy inherently grants the best possible fit for the GDP

moments. As a result, all the business cycle moments that are dependent on the GDP

dynamics conform better to their empirical counterparts.

Overall, this econometric analysis suggests that incorporating calibration within an

econometric framework is the road map towards tackling misspecification issues that arise

in DSGE asset pricing models. Yet, calibration should not be prematurely used to fix

all of the allegedly nuisance parameters. Rather, careful analysis should be conducted to

determine whether possibly some secondary dynamics could be included in the estimation

process that will improve the overall precision of the estimates without incurring excessive

fragility. In light of this conclusion, the possibilities for further improvements are endless,

especially with regards to the persistence of habit parameter, ρs. This is left for future

research.
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Appendix

3.A The assumptions for the different estimators

This appendix section can be viewed as a road map describing how Appendix 2.A, which

is explicitly written for PII estimation, can be tailored to fit the two other estimators

discussed in Section 3.2. This section, thus, follows closely the assumptions in Gourieroux

et al. (1993) for the II estimation as well as the assumptions in Dridi et al. (2007) for the

FII and PII estimation strategies. The main aim here is to explicitly highlight where the

two sets of assumptions differ and where they conform.

As mentioned in Section 3.2, the main difference between II estimation and FII and

PII estimation strategies is the assumption of misspecification in the DGP in the latter

two strategies regarding the dynamics governing the ξ2 parameters. In II estimation, the

DGP is assumed to be correctly specified for the entire structural model. Accordingly,

there is no need to distinguish between the parameters that are of interest and which form

part of the model that portrays a correctly specified DGP, ξ1, and those which are not,

ξ2. As such, in II estimation, Assumption 1 is not needed and the nominal assumption,

Assumption 2, provides the functional form of the true DGP for the entire set of structural

parameters. For FII and PII estimation methodologies both Assumption 1 and Assumption

2 are needed.

The main difference between PII estimation and FII and II estimation is the fact that

PII is only concerned with estimating the set of ξ1 parameters. As such, the instrumental

model, Nθ, only focuses on the k1 moment restrictions that should be able to identify
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the ξ1 parameters, as explained in Section 3.2.1. Therefore, to generalize Assumption 3

in order to fit FII and II estimation, Equation (3.2.1) is followed. Assumption 3, which

provides the GMM moment conditions using the empirical data, can thus be re-written as

E
[
ut
(
{yt}tt−l, θ

)]
= E

u1,t

(
{yt}tt−l, θ1

)
u2,t

(
{yt}tt−l, θ2

)
 6= 0 for all θ1 6= θ0

1 ∈ Θ1 and θ2 6= θ0
2 ∈ Θ2.

The required GMM criterion function is then formulated as in Equations (3.2.2) - (3.2.4).

Assumption 4, which describes the regularity conditions imposed on the GMM esti-

mation of the instrumental parameters, is maintained for both FII and II estimation. It

is merely altered to include the entire set of k1 + k2 moment conditions and the entire set

of instrumental parameters θ = (θ1, θ2)>. The stationarity and ergodicity assumption of

the time series as well as the altered Assumption 4 are then sufficient conditions for the

GMM criterion function in Equation (3.2.2) to converge almost surely to a non-stochastic

limit criterion function. For II estimation, this is

Q∞
(
G∗, ξ

0
1 , ξ

0
21, ξ

0
22, θ

)
=

1

2
E
[
ut
(
{yt}tt−l, θ

)]> ·W · E [ut ({yt}tt−l, θ)] ,
and for FII estimation, it is

Q∞
(
G∗, ξ

0
1 , ξ
∗
21, ξ

∗
22, θ

)
=

1

2
E
[
ut
(
{yt}tt−l, θ

)]> ·W · E [ut ({yt}tt−l, θ)] .
Notice that the difference between the previous two criteria functions pertains only to

the difference in the notation given to the ξ21 and ξ22 parameters. The former indicates

that they are true values while in the latter, they are only pseudo-true values due to the

assumption of misspecification. However, the l.h.s of both functions are exactly the same.

Therefore, Q∞
(
G∗, ξ

0
1 , ξ

0
21, ξ

0
22, θ

)
= Q∞

(
G∗, ξ

0
1 , ξ
∗
21, ξ

∗
22, θ

)
. It is only that FII estimation
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cautions against the misspecified DGP generated by ξ21 and ξ22. Accordingly, the limit

criterion function for both II and FII estimation is the same and is uniquely minimized by

θ0 = argmin
{θ∈Θ}

Q∞
(
G∗, ξ

0
1 , ξ
∗
21, ξ

∗
22, θ

)
. (3.A.1)

To maintain due diligence, the superscript given to ξ21 and ξ22 in Equation (3.A.1) is kept

similar to the FII notation even though the equation conforms with II estimation too.

For II estimation, Assumption 2, and the altered Assumptions 3 and 4 provide that

θ̂T = argmin
{θ∈Θ}

QT
(
{yt}Tt=1, θ

)
is a consistent estimator of θ0. For FII estimation, Assumption 1 is also needed for the

prior statement to hold.

Assumptions 5 and 6 are the simulated data counterparts to Assumptions 3 and 4.

They are thus altered in a similar manner. Following Equation (3.2.8), Assumption 5

becomes

E
[
ut
(
{ỹst (ξ)}tt−l, θs (ξ1, ξ21, ξ22)

)]
= E

u1,t

(
{ỹst (ξ)}tt−l, θs1(ξ1, ξ21)

)
u2,t

(
{ỹst (ξ)}tt−l, θs2(ξ22)

)
 6= 0

for all θs1(ξ1, ξ21) 6= θ̃0
1(ξ0

1 , ξ
∗
21) ∈ Θ1 and θs2(ξ22) 6= θ̃0

2(ξ∗22) ∈ Θ2.

Assumption 7 is twofold. The first part maintains that the binding function is one-

to-one, and this holds for FII and II estimation. The second part pertains to the rank

assumption of the derivative of the instrumental parameters with respect to the structural

parameters. In both FII and II estimation strategies, the structural nuisance parameters
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ξ22 are estimated and not calibrated unlike PII. Therefore, for FII and II estimation, the

second part of Assumption 7 becomes

P∗ lim
T→∞

∂θ̃sT

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
∗
21, ξ

∗
22

)>
has full rank p1 + p21 + p22.

Note that for II estimation, ξ∗21 and ξ∗22 would be considered true values instead of the

pseudo-true values, as no misspecification is assumed.

Assumption 8 explicitly denotes the binding function for partial encompassing. The

counterparts for the full encompassing conditions required for II and FII estimaton are

provided in Equations (3.2.10) and (3.2.11), respectively. As explained in Section 3.2.2

and highlighted in the altered Assumptions 3 to 7, both FII and II estimation have the

same underlying instrumental model. They thus have the same estimator which is given

in Equations (3.2.13) to (3.2.16).

Proposition 1 can also be altered to clarify the assumptions under which consistency

is maintained for the two other estimators. For FII, Assumptions 1, 2 and the altered As-

sumptions 3 to 8 provide that ξ̂1,TS is a consistent estimator of ξ0
1 while ξ̂21,TS and ξ̂22,TS

converge in the probability limit to the pseudo-true values ξ∗21 and ξ∗22, respectively. Con-

versely, in II estimation, Assumption 2 and the altered Assumptions 3 to 8 provide that the

entire set of ξ̂TS =
(
ξ̂1,TS , ξ̂21,TS , ξ̂22,TS

)>
is a consistent estimate of ξ0 =

(
ξ0

1 , ξ
0
21, ξ

0
22

)>
.

As previously explained in Section 3.2.2, the asymptotic distribution is what is truly

different between the FII and II estimation methodologies. For both methodologies, As-

sumption 9 providing the central limit theorem necessary for the distribution of the em-
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pirical moments is similar. It is slightly altered from Appendix 2.A to match the altered

Assumption 3. It thus becomes

√
T

[
1

T

T∑
t=1

u1,t

(
{yt}tt−l, θ0

)]
→
d
N (0, V ),

with V and Γj formulated as in Equations (3.2.21) and (3.2.22).

For II estimation, the DGP of the simulated series is assumed to be identical to that

of the empirical series. As such, the altered Assumption 9 along with the assumptions

in Proposition 1 are sufficient to put forth an altered Proposition 2 which provides the

asymptotic distribution of the instrumental parameters under the II estimation

√
T

(
θ̂T −

1

S

S∑
s=1

θ̃sT
(
ξ0

1 , ξ
0
21, ξ

0
22

)) d→ N
(
0,Φ0

II (S,W )
)
, (3.A.2)

where Φ0
II (S,W ) is provided in Equation (3.2.28).

For FII estimation, the allowance for misspecification materializes in the fact that the

DGP for the simulated series is allowed to be different than that of the empirical series.

As such, and following the altered Assumption 5, an altered Assumption 10 is needed for

the simulated moments

√
T

[
1

T

T∑
t=1

ut

(
{ỹsT (ξ)}tt−l, θ̃0

(
ξ0

1 , ξ
∗
21, ξ

∗
22

))]
→
d
N (0, V ∗),

where V ∗ and Γ∗j are formulated as in Equations (3.2.24) and (3.2.25), respectively. Ac-

cordingly, FII estimation has a different Proposition 2 than II:

√
T

(
θ̂T −

1

S

S∑
s=1

θ̃sT
(
ξ0

1 , ξ
∗
21, ξ

∗
22

)) d→ N
(
0,Φ0

FII (S,W )
)
, (3.A.3)

where Φ0
FII (S,W ) is provided in Equation (3.2.19).

Finally, an altered Proposition 3 is needed to provide the asymptotic distribution

of the structural parameters under both FII and II estimation. In FII estimation, under
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Assumptions 1 to 10, the structural parameter estimates ξ̂TS =
(
ξ̂1,TS , ξ̂21,TS , ξ̂22,TS

)>
are

asymptotically distributed as in Equation (3.2.17). In II estimation, only Assumptions 2

to 9 are required for the asymptotic distribution in Equation (3.2.26) to take place.

3.B Derivation of the different asymptotic distributions

The main aim of this appendix section is to show how the asymptotic distributions of the

different estimators shown in Section 3.2.2 can be derived. The appendix section follows

along the same lines of the derivation of the asymptotic distribution of the PII estimator

presented in Appendix 2.B. The only difference is that the current appendix section shows

how the derivation can be generalized to include the II and FII estimators too.

As usual, the starting point is to minimize the objective function of the estimator under

analysis. As previously mentioned, the FII and II estimators have the same objective

function which is presented in Equation (3.2.13). It is repeated here for convenience

min
{(ξ1,ξ21,ξ22)∈Ξ1×Ξ21×Ξ22}

[
θ̂T −

1

S

S∑
s=1

θ̃sT (ξ1, ξ21, ξ22)

]>
· Ω̂T ·

[
θ̂T −

1

S

S∑
s=1

θ̃sT (ξ1, ξ21, ξ22)

]
.

Note that unlike the PII estimation, ξ22 is part of the estimation process and is not

calibrated. As such, the first order condition (FOC) of this objective function with respect

to the estimated structural parameters will include the set of ξ22 parameters as follows

1

S

S∑
s=1

∂θ̃sT

∂


ξ1

ξ21

ξ22



(
ξ̂1,TS , ξ̂21,TS , ξ̂22,TS

)>
· Ω̂T ·

[
θ̂T −

1

S

S∑
s=1

θ̃sT

(
ξ̂1,TS , ξ̂21,TS , ξ̂22,TS

)]
= 0.

The next step is to expand this FOC around the limit values of the structural param-

eters. For II estimation, these are
(
ξ0

1 , ξ
0
21, ξ

0
22

)
. For FII estimation, given the misspecifi-
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cation assumption in the dynamics governed by the nuisance parameters, the limit values

are
(
ξ0

1 , ξ
∗
21, ξ

∗
22

)
. For brevity, the notation here is expressed in terms of the FII estimation.

1

S

S∑
s=1

∂θ̃sT

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
∗
21, ξ

∗
22

)>
Ω̂T

√
T

[
θ̂T −

(
1

S

S∑
s=1

θ̃sT
(
ξ0

1 , ξ
∗
21, ξ

∗
22

)

+
1

S

S∑
s=1

∂θ̃sT

∂


ξ1

ξ21

ξ22


>
(
ξ0

1 , ξ
∗
21, ξ

∗
22

)

ξ̂1,TS − ξ0

1

ξ̂21,TS − ξ∗21

ξ̂22,TS − ξ∗22


)]

.

Rearranging to have the structural parameters on the l.h.s, the following equation

results

√
T


ξ̂1,TS − ξ0

1

ξ̂21,TS − ξ∗21

ξ̂22,TS − ξ∗22

 '
{

∂θ̃

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
∗
21, ξ

∗
22

)>
Ω

∂θ̃

∂


ξ1

ξ21

ξ22


>
(
ξ0

1 , ξ
∗
21, ξ

∗
22

)}−1

(3.B.1)

· ∂θ̃

∂


ξ1

ξ21

ξ22



(
ξ0

1 , ξ
∗
21, ξ

∗
21

)> · Ω · √T [θ̂T − 1

S

S∑
s=1

θ̃sT
(
ξ0

1 , ξ
∗
21, ξ

∗
22

)]
.

(3.B.2)

The last term on the r.h.s of the previous equation represents the difference between the

estimated instrumental parameters from the empirical and simulated data respectively. It

is a key ingredient when deriving the asymptotic distribution of the structural parameters.
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Therefore, the next step is to determine how this term is asymptotically distributed. In

order to do so, the asymptotic distribution of the instrumental parameters has to be

derived.

The starting point is thus the GMM objective function that is used to estimate the

instrumental parameters θ. Using the empirical data, this objective function is given in

Equation (3.2.3) and is repeated here for convenience

QT
(
{yt}Tt=1, θ

)
=

1

2
gT
(
{yt}Tt=1, θ

)> · ŴT · gT
(
{yt}Tt=1, θ

)
.

Similar to how the structural parameters were dealt with, the first step is to get the FOC

of this GMM objective function

∂g>T
∂θ

(
{yt}Tt=1, θ̂T

)
· Ŵ1,T · gT

(
{yt}Tt=1, θ̂T

)
,

and expand gT ( · ) around the limit value θ0. After rearranging, this becomes

(
θ̂T − θ0

)
= −

{
∂g>T
∂θ

(
{yt}Tt=1, θ̂T

)
ŴT

∂gT
∂θ>

(
{yt}Tt=1, θ

0
)}−1

∂g>T
∂θ

(
{yt}Tt=1, θ̂T

)
ŴT

· gT
(
{yt}Tt=1, θ

0
)
.

Equation (3.2.20) in Section 3.2.2 indicates that asymptotically, the previous equation

can be written as

√
T
(
θ̂T − θ0

)
'−

{
E
[
∂u>t
∂θ

(
θ0
)]
WE

[
∂ut
∂θ>

(
θ0
)]}−1

E
[
∂u>t
∂θ

(
θ0
)]
W ·
√
TgT

(
{yt}Tt=1, θ

0
)

' −C0 ·
√
TgT

(
{yt}Tt=1, θ

0
)
.
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Using the altered Assumption 9 in Appendix 3.A, the instrumental parameters under the

empirical data can be asymptotically distributed as follows

√
T
(
θ̂T − θ0

)
→
d
N
(

0, C0V C0>
)
,

with V formulated as in Equations (3.2.21) and (3.2.22).

The same rationale is applied for the instrumental parameters evaluated using the

simulated data. The FOC of the objective function is then

∂g>T
∂θ

(
{ỹsT (ξ)}Tt=1, θ̃

s
T

)
· ŴT · gT

(
{ỹsT (ξ)}Tt=1, θ̃

s
T

)
.

Again, an expansion of gT ( · ) around the limit value θ̃0 is performed and after rearrange-

ment, the equation becomes

(
θ̃sT − θ̃0

)
= −

{
∂g>T
∂θ

(
θ̃sT

)
ŴT

∂gT
∂θ>

(
θ̃0
)}−1

∂g>T
∂θ

(
θ̃sT

)
· ŴT · gT

(
{ỹsT (ξ)}Tt=1, θ̃

0
)
.

Using Equation (3.2.23) and the altered Assumption 8 which provides the binding func-

tions for full encompassing in II and FII estimation, θ0 = θ̃(·), the previous equation

asymptotically becomes

√
T
(
θ̃sT − θ0

)
' −

{
E∗
[
∂u>t
∂θ

(
{ỹsT (ξ)}Tt=1, θ

0
)]
WE∗

[
∂ut
∂θ>

(
{ỹsT (ξ)}Tt=1, θ

0
)]}−1

· E∗
[
∂u>t
∂θ

(
{ỹsT (ξ)}Tt=1, θ

0
)]
W ·
√
TgT

(
{ỹsT (ξ)}Tt=1, θ

0
)

' −C∗0 ·
√
TgT

(
{ỹsT (ξ)}Tt=1, θ

0
)
,

and the CLT in the altered Assumption 10 provides that the instrumental parameters

evaluated using the simulated data are asymptotically distributed as follows

√
T
(
θ̃sT − θ0

)
→
d
N
(

0, C∗0V ∗C∗0
>
)
,
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with V ∗ formulated as in Equations (3.2.24) and (3.2.25). Note, however, that in II

estimation, the DGP of the simulated series is assumed to be identical to that of the

empirical series. In such a case, C0 = C∗0 and V = V ∗. Accordingly, the asymptotic

distributions of
√
T
(
θ̂T − θ0

)
and
√
T
(
θ̃sT − θ0

)
are identical.

Using the above results,
√
T
[
θ̂T − 1

S

∑S
s=1 θ̃

s
T

(
ξ0

1 , ξ
∗
21, ξ

∗
22

)]
can be expressed as

√
T

(
θ̂T −

1

S

S∑
s=1

θ̃sT
(
ξ0

1 , ξ
∗
21, ξ

∗
22

))
' −C0 ·

√
TgT

(
{yt}Tt=1, θ

0
)

+ C∗0
√
TgT

(
{ỹsT (ξ)}Tt=1, θ

0
)

and it is asymptotically normally distributed with asymptotic covariance matrix Φ0
FII (S,W )

as in Equation (3.2.19) in FII estimation in the absence of exogenous variables in the model.

This is repeated here for convenience

Φ0
FII (S,W ) = C0V C0> +

1

S
C∗0V ∗C∗0

>
.

In II estimation, the two terms on the r.h.s of the above equation are identical and thus

can be combined together. This is shown in Equation (3.2.28) and is also repeated here

for convenience

Φ0
II (S,W ) =

(
1 +

1

S

)
C0V C0>,

The last step is to determine the distribution of the structural parameters. This has

been previously given in Section 3.2.2 in Equations (3.2.17) and (3.2.26) for FII and II

estimation, respectively. The details of the asymptotic covariance matrices are given in

Equations (3.2.18) and (3.2.27), respectively. They are a result of forming a quadratic

form of Equation (3.B.1) around the relevant Φ0 (S,W ) depending on whether FII or II

estimation is being performed.
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Chapter 4

Volatility Discovery in

Cryptocurrency Markets ∗

4.1 Introduction

Investing in cryptocurrencies is a risky undertaking due to their high volatility which has

frequently been documented in the empirical literature (see, for example, Baek and Elbeck,

2015; Klein, Thu and Walther, 2018). At the same time, it may offer attractive benefits in

terms of the prospect of high returns (Resta, Pagnottoni and De Giuli, 2020) and due to

their hedging capabilities (Borri, 2019; Guesmi, Saadi, Abid and Ftiti, 2019). Investment

strategies such as tail hedging require the estimation of a volatility time series and it is not

clear which exchange or which data source to consider (see also the critique of Alexander

and Dakos, 20201). Hence, it is preferable to turn to the leading market in terms of

volatility discovery. We contribute to the literature with an investigation of the structural

interdependence of volatility among a set of cryptocurrencies (Bitcoin, Ethereum, Litecoin,

and Ripple) which are traded on several exchanges. We choose to conduct our analysis

∗This chapter is based on Dimpfl and Elshiaty (2021)
1The authors find inconsistencies in the empirical results of cryptocurrencies using data obtained

from different sources, and accordingly suggest several guidelines to approach the numerous data
sources for cryptocurrencies
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on three of those exchanges (Bitfinex, Bitstamp, and Kraken), as they have the highest

trading volume in our selected cryptocurrencies.

Our theoretical approach is based on the price discovery framework which has recently

been extended to the discovery of volatility by Dias et al. (2018). The key idea is that

a latent, common volatility process governs the volatility on all exchanges, similar to the

common efficient price in the price discovery model of Hasbrouck (1995). Short term

deviations from the underlying latent volatility are possible, but do not persist. We refor-

mulate the model of Dias et al. (2018) in discrete time, accounting for the long memory

property of volatility which is a well-documented stylized fact in finance (Baillie, 1996;

Bollerslev, Osterrieder, Sizova and Tauchen, 2013; da Silva and Robinson, 2008). With

this long memory property adjustment in mind, the well-established price discovery theory

is then applied to volatility discovery.

In the empirical application, we estimate each market’s volatility using a discrete time

stochastic volatility model (Sandmann and Koopman, 1998). To quantify the contribu-

tion of the individual markets to the common variance of the volatility, we rely on the

information share measure of Hasbrouck (1995). As the volatility time series exhibit long

memory, we model them with a fractionally cointegrated vector autoregressive (FCVAR)

model which directly allows the computation of Hasbrouck (1995) information shares.

However, the shares of Hasbrouck (1995) are not unique, and the often applied Cholesky

decomposition would lead to extreme bounds in our application. Therefore, we rely on

the method of Lien and Shrestha (2009) to identify a unique information share for each

market. Their paper proposes an alternative to the Cholesky decomposition that relies

on the correlation matrix of the innovations and involves the entire matrix rather than

its lower triangular decomposition only. This in turn renders the ordering of the markets

obsolete and results in unique information shares. While the methodology is readily used

in stock market applications (Fricke and Menkhoff, 2011; Liu and An, 2011; Chen, Chung

and Lien, 2016), this study is the first to use it in the context of cryptocurrency volatility.
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This study is related to several strands in the literature due to the multitude of methods

used. The application of the price discovery framework to cryptocurrency markets can now

be considered a well-established part of the cryptocurrency research. The first article is

Brandvold, Molnár, Vagstad and Valstad (2015) who find that the now closed Mt.Gox and

Btce are the most informative markets for Bitcoin prices. Since then, further studies have

considered different sets of markets and extended the analysis to other cryptocurrencies,

driven by the need to update the results in a constantly changing environment (Brauneis

and Mestel, 2018; Pagnottoni and Dimpfl, 2019; Dimpfl and Peter, 2020). Even more

recently, the analysis has been extended to Bitcoin spot and futures markets by Alexander,

Choi, Park and Sohn (2020), Alexander and Heck (2020), Baur and Dimpfl (2019), Corbet,

Lucey, Peat and Vigne (2018), or Fassas, Papadamou and Koulis (2020).

Analyzing the structure of volatility dynamics, in contrast, is a more recent topic, and

this is, to the best of our knowledge, the first study which considers volatility discovery in

cryptocurrency markets. Existing studies so far have considered stock volatility on different

exchanges (Dias et al., 2018), stock and options volatility (Baule, Frijns and Tieves, 2018;

Wang, 2014), or the volatility of options and credit default swaps (Forte and Lovreta,

2019). In terms of cryptocurrencies, there are studies which consider the interrelatedness

of volatility across different currencies (Chaim and Laurini, 2019; Katsiampa, 2019), but

not of the same currency across different exchanges.

As regards the methodological approach, FCVAR models are readily used in empirical

finance (e.g. Bollerslev et al., 2013; Caporin, Ranaldo and De Magistris, 2013; Rossi and

Santucci de Magistris, 2013; Nielsen and Shibaev, 2018). However, applications with the

goal of price or volatility discovery are scarce and there are, to the best of our knowledge,

only two studies which use the FCVAR model in this context, namely Dolatabadi, Nielsen

and Xu (2015) and Dias et al. (2018). Both studies use the model in a two market context:

Dolatabadi et al. (2015) investigate price discovery among the spot and futures markets of

five non-ferrous metals. Dias et al. (2018) investigate both price and volatility discovery in

30 stocks traded on three different exchanges, but limit the main analysis to two pairs of
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exchanges at a time and only use the three markets together as a robustness check. In con-

trast, this study examines volatility discovery among the three cryptocurrency exchanges

at once. Additionally, Dolatabadi et al. (2015) start from price time series which are I(1)

while their difference is fractionally integrated. In contrast but similar to our study, Dias

et al. (2018) start from volatility time series which are fractionally integrated while their

difference is stationary.

Our results may be summarized as follows. We find that all our volatility time series are

fractionally integrated with an integration order d > 0.5 which confirms their long memory

properties in line with established results in the literature (see for example the discussion

in da Silva and Robinson, 2008). As regards volatility discovery, we find that Bitfinex and

Bitstamp are the leading markets depending on the cryptocurrency. Kraken’s information

share is the lowest, but still around 30% for Ethereum, Litecoin, and Ripple. While

Bitfinex is the most important market in terms of trading volume for all cryptocurrencies,

it is only the leader in volatility discovery for Bitcoin and Ripple, whereas Bitstamp is

found to be the leader for both Ethereum and Litecoin. Apart from Bitcoin, we cautiously

consider our results for the other three cryptocurrencies, as the sampled data series studied

are not long enough to ensure precision of our FCVAR parameter estimates.

In a further step, we investigate whether among the three studied cryptocurrencies, a

certain coin2 is considered the volatility leader. This examination provides a deeper insight

into how volatility propagates through the three cryptocurrencies and their exchange mar-

kets in this study. Our analysis hints at Bitcoin having the highest volatility information

content. Whether this is because it is the oldest and most established coin in the market,

or because of its high volume as compared to the other considered cryptocurrencies is a

question that will be answered with time as the other coins gain more vigour in the market.

The chapter proceeds as follows. Section 4.2 presents our theoretical framework and

motivates the (fractionally) cointegrated nature between the volatility series of the same

cryptocurrency in different markets. Subsequently, it introduces the FCVAR model, the

2We use the terms coins and cryptocurrencies interchangeably.
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information share methodology of Hasbrouck (1995) and the implemented identification

strategy. Section 4.3 describes the data and presents the volatility estimation, while Sec-

tion 4.4 discusses the results of the volatility discovery analyses. Finally, Section 4.5

concludes.

4.2 Theoretical Framework and Modeling Strategy

Our theoretical framework is a discretized version of the model proposed by Dias et al.

(2018). The authors extend the “one security - many markets” setting which is discussed

in detail in Hasbrouck (1995) and with a follow up in Lehmann (2002). In such a setting,

the (log-)prices of an asset traded in different markets may not drift apart in the long run

as they are linked by the asset’s fundamental value mt, which is assumed to evolve as a

random walk

mt = mt−1 + ut, (4.2.1)

where ut are pricing relevant innovations with E [ut] = 0 and Var [ut] = σ2
t,u. The difference

to the standard model of Hasbrouck (1995) is that the variance of ut is allowed to be time

dependent. In particular, it is assumed that σ2
t,u has a long memory (as, e.g., in Bollerslev

et al., 2013) and is, thus, best described by a fractionally integrated process of order d

(I(d)). This specification allows the fundamental value to exhibit volatility clustering,

heteroskedasiticty, and persistence which are often documented properties of prices. We

give a brief description of long memory processes and their properties in Appendix 4.A.

The trading prices, pi,t, which are realized on a given market i differ from the funda-

mental value mt due to microstructure frictions (e.g., bid-ask bounce, price discreteness,

or high latency). Hence, the observed (log-)price can be formulated as

pi,t = mt + νt, (4.2.2)
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where νt captures the microstructure noise component with E [νt] = 0. In contrast to

σ2
t,u, σ2

i,ν is assumed to be time independent, as microstructure effects are short-lived and

should neither persist nor cluster, which makes them i.i.d. (which is a standard assump-

tion in realized volatility literature, see, e.g., Andersen, Bollerslev and Meddahi, 2011).

However, market microstructure effects probably depend on the market design which re-

quires that σ2
i,ν depends on market i. Hence, σ2

i,ν itself represents the simplest form of a

stationary process, a constant. In other words, it is I(0). In addition, we assume that σ2
i,ν

is independent of the fundamental innovations’ variance σ2
t,u.

Taking first differences of Equation (4.2.2), the variance of the (log-)returns of the

observed price can be calculated as

Var [∆pi,t] = σ2
t,u + 2σ2

i,ν , (4.2.3)

which is a fractionally integrated process of order d, as it inherits its properties from σ2
t,u.

Similar to how the law of one price would govern the cointegration relationship between

the prices of the asset on two different markets i and j, the volatility of the two markets

can also not drift apart as the prices are linked by mt. Therefore, the difference of the

markets’ variances which are both I(d) will be stationary I(0) again:

Var [∆pi,t]− Var [∆pj,t] = 2σ2
i,ν − 2σ2

j,ν . (4.2.4)

As Equation (4.2.4) shows, calculating the difference between the variance of different

markets cancels the dependence on σ2
t,u. What is left is the sum of two I(0) processes

which is itself I(0). Hence, the variances are fractionally cointegrated of order 0. This

gives rise to the fractionally cointegrated vector autoregression (FCVAR) model proposed

by Johansen (2008) and Johansen and Nielsen (2012), and which is briefly summarized in

the next subsection.
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4.2.1 FCVAR Model

Johansen (2008) and Johansen and Nielsen (2012) provide the fractional processes’ coun-

terpart of the Granger representation theorem (Engle and Granger, 1987). They derive

the error correction representation of a vector autoregressive (VAR) model of order p that

has fractionally integrated variables, Yt, of dimensions (n× 1), with t = {1, · · · , T}, as

∆dYt = αβ′∆d−bLbYt +

p∑
i=1

Γi∆
dLibYt + εt, (4.2.5)

where ∆d is the fractional difference operator, such that ∆dYt is I(0). Lb is the fractional

lag operator, i.e., Lb = 1−∆b, d and b represent the fractional integration order and the

degree of fractional co-integration, respectively, and 0 < b ≤ d. In other words, if Yt ∼ I(d),

then ∆bYt ∼ I(d − b). If d = b = 1, the cointegrated VAR (CVAR) model of Johansen

(1995) -more commonly referred to as the Vector Error Correction Model (VECM)- arises

as a special case of Equation (4.2.5). Hence, the remaining symbols in Equation (4.2.5)

can be interpreted accordingly: β is an (n × l) matrix which contains the l cointegration

vectors in its columns, the (n × l) matrix α contains the adjustment coefficients to the

long-run equilibrium (or cointegration relations), and Γi are (n×n) matrices which account

for the short-run dynamics of the system. The model innovations, εt, are assumed to be

independently and identically distributed with mean zero and variance-covariance matrix

Ω. For further mathematical details, the reader is referred to Johansen (2008).

Estimation of the set of parameters λ = (d, b, α, β,Γ) in Equation (4.2.5) is conducted

via the conditional maximum likelihood (CML) method of Johansen and Nielsen (2012).

Conditioning on N observations, the estimation requires maximizing

logLT (λ) = −n
2

(log(2π) + 1)− T

2
log det

{
T−1

T+N∑
t=N+1

εt(λ)εt(λ)′

}
(4.2.6)

with

εt(λ) = ∆dYt − αβ′∆d−bLbYt −
p∑
i=1

Γi∆
dLibYt. (4.2.7)
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Before performing the estimation, we check whether our data are suitable for the anal-

ysis. In particular, we test whether the data are fractionally cointegrated and determine

the cointegration rank using the trace test of Johansen and Nielsen (2012). As our appli-

cation considers the volatility process of the same cryptocurrency on different exchanges,

our working hypothesis is that there is only one common stochastic trend which governs

volatility on all exchanges alike. In this case, we expect a cointegration rank of n− 1. To

conduct the test and to estimate the FCVAR model, the Matlab toolbox provided by

Nielsen and Popiel (2014) is adapted to our purposes.

4.2.2 Hasbrouck’s (1995) Information Share

To identify the leading market in terms of volatility, we quantify the contribution of each

of the exchanges to the common volatility component. For that purpose, we rely on the

methodology proposed by Hasbrouck (1995) and calculate information shares. While most

applications consider only two markets, information shares can be computed involving

three or even more markets (see, for example, Huang, 2002; Ivanov, 2013; Grammig and

Peter, 2018). As shown by Dias et al. (2018), the information shares can be directly

computed from the parameters of the estimated FCVAR based on the decomposition of

the variance of the long-run impact of the innovations in each market. Therefore, the first

step is to examine the long-run dynamics of the system via the vector moving average

(VMA) representation of a fractionally integrated process

Yt = Ψ(L)∆−d+ εt +Xt. (4.2.8)

Johansen and Nielsen (2012) decompose the fractional process, Yt, into I(0) and I(d)

constituents. Xt, in Equation (4.2.8), refers to the I(0) component, while the I(d) dy-

namics are governed by the sequence of innovations {εt}Tt=1 that are differenced using

the truncated fractional difference operator3, ∆−d+ . Consequently, the long-term effects of

3See the detailed explanation of how a fractional difference operator works, and what it means
to have a truncated version of it in Appendix 4.A.

117



these innovations are determined in the values of the Ψ(1) = I +
∞∑
s=0

ψs matrix which can

be calculated as

Ψ(1) = β⊥

[
α′⊥

(
In −

p∑
i=1

Γi

)
β⊥

]−1

α′⊥, (4.2.9)

based on the estimates obtained from the estimation of the FCVAR in Equation (4.2.5).

In the current setting, where we have only one common volatility component, we assume

that the volatility across markets is equal in the long run (see Equation (4.2.4)). In

the short run, deviations are possible. This setting gives rise to a cointegrating matrix

β = (In−1,−1n−1), where 1 is a column vector of ones. The resulting rows of Ψ(1) are

identical and denoted by ψ.

Given that Ω = E(εtε
′
t), with a suitable estimate of εt obtained from the residuals

during the estimation of Equation (4.2.5), the total variance of the long-run impact of the

innovations can be calculated as ψΩψ′. In order to attribute the share of each market’s

variance to the total variance, we need to isolate the variance contribution of each indi-

vidual market. This is, however, not possible without further identifying restrictions if

the innovations of the different markets are contemporaneously correlated, i.e., if Ω is not

a diagonal matrix. In this case, Hasbrouck (1995) suggests decomposing Ω = CC ′ using

Cholesky decomposition. The information share of market i can then be computed as

IS(i) =
(ψiCii)

2

ψΩψ′
, (4.2.10)

where ψi is the i-th element of ψ and Cii is the row i column i element of C.

Yet, Cholesky decomposition entails a dependence of the information shares on the

ordering of the markets in the dataset, i.e., the market which is ordered first will have a

dominant share in the common variance as compared to the market which is ordered last.

To circumvent this problem, an upper and a lower bound of the information share of each

market can be determined by performing the previous analysis on all possible combina-

tions of the markets. Naturally, this becomes more exhaustive as the number of markets

increases. Additionally, the higher the correlation between the different markets, the more
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the upper and lower bounds widen and become negligibly different across the different

markets. This renders the average information share of a single market uninformative.

Therefore, the literature has proposed various approaches to identify unique information

shares. For example, Grammig and Peter (2013) assume a mixture of distributions for

the innovations εt to obtain a unique decomposition of Ω. Another example is Lien and

Shrestha (2009) who propose a factor structure for Ω. We rely on the second approach as

it is more widely used in the literature.

4.2.3 Unique Identification Strategy of Lien and Shrestha (2009)

Lien and Shrestha (2009) propose a method to uniquely identify the contribution of each

market to the variance of the fundamental volatility process. Their approach can be

translated immediately to our application, as we similarly assume that the innovations

are stationary and that the system entails one common stochastic trend (which is I(d)

here and I(1) in their work). It is also directly applicable in a setup with more than

two markets (see, for example, Arzandeh and Frank, 2019). Lien and Shrestha (2009) use

a decomposition scheme for Ω that is dependent on the innovations’ correlation matrix.

They suggest a factor structure of the form

εt = Fzt (4.2.11)

for the innovations in Equation (4.2.5), such that their variance results as Ω = E(εtε
′
t) =

FF ′. The zt are assumed to be of mean zero and to have a variance E [ztz
′
t] = In. The

factor F is defined as

F =
[
GΛ−

1
2G′V −1

]−1
, (4.2.12)

where Λ is a diagonal matrix with the eigenvalues of the innovations correlation matrix

on its main diagonal, G is the corresponding matrix of eigenvectors of the innovations’

correlation matrix, and V = diag(
√

Ω11,
√

Ω22, . . . ,
√

Ωnn) is a diagonal matrix which
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contains the standard deviation of each market’s innovation on its main diagonal. Similar

to Equation (4.2.10), the modified information share of market i is then defined as

MIS(i) =
(ψiFii)

2

ψΩψ′
. (4.2.13)

However, due to the fact that Equation (4.2.12) contains the matrix Λ
−1
2 , the factors

are not altogether unique. This is because the matrix contains on its diagonal the reciprocal

of the square root of the eigenvalues of the correlation matrix. As such, both the positive

as well as the negative roots could be used in this matrix. Yet, since Equation (4.2.13)

requires using the square of the factor in the numerator, using either roots will not impact

the information share obtained for each of the markets.

Given the previously discussed theoretical framework and the explanation of the es-

timation strategy for detecting the volatility leader, we next turn to a description of the

cryptocurrency data used in the analysis.

4.3 Data Description and Volatility Estimation

For the analysis, daily (log-)prices of dollar denominated Bitcoin, Ethereum, Litecoin, and

Ripple from the three exchanges Bitfinex, Bitstamp, and Kraken are used. The chosen

cryptocurrencies have the highest trading volume of all cryptocurrencies (according to data

from coinmarketcap.com retrieved in July, 2020) for which sufficiently long data series is

available. The chosen markets are then the ones which exhibit the highest trading volume

in USD in said cryptocurrencies. The dataset for Bitcoin extends from 1st of January 2015

till 30th of June 2020. For the other cryptocurrencies, the datasets are shorter. The first

observation for Ethereum is on 29th of August 2017, while Litecoin and Ripple datasets

start from 22nd of June 2017. The data have been retrieved from investing.com.4

For each coin, Figure 4.1 presents the daily trading volume share of each of the three

exchanges over time. As can be seen, Bitfinex mostly dominates in terms of trading

4https://www.investing.com/crypto/

120

https://coinmarketcap.com/
https://www.investing.com/crypto/


Figure 4.1: Daily share of market volume
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Note: The figure presents the evolution of the daily share of traded volume in Bitcoin and Etherum
(upper panel), and Litecoin and Ripple (lower panel) across the three exchanges Bitfinex (blue),
Bitstamp (green), and Kraken (orange).

volume for Bitcoin, Ethereum and Litecoin during the early period of the sample with few

exceptions. Starting from 2019, however, the trading volume share of Bitstamp increases

remarkably, and by the end of the data series, it dominates the other two markets in the

trading of Bitcoin and Litecoin, while for Ethereum, the end of the data series shows an

almost equal share of trading volume across the three exchanges. For Ripple, the beginning

of the sample period shows a domination of Bitstamp, but it loses much trading volume

between the end of 2017 and the end of 2018 in favor of Bitfinex. The end of the sample

period, however, shows again a clear domination of Bitstamp.
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In light of our theoretical framework discussion in Section 4.2, ∆pi,t from Equation

(4.2.3) is chosen to be modeled as a stochastic volatility (SV) process. In such a model,

Var [∆pi,t] is an unobserved component that follows some latent stochastic process, usually

an autoregressive process of order 1, AR(1). We follow Sandmann and Koopman (1998)

and model our SV process in discrete time instead of the continuous time versions in Taylor

(1994) and others. This SV model has also been previously used in the cryptocurrency

literature, see for example Phillip, Chan and Peiris (2018) who use this model to examine

the volatility process of 224 different cryptocurrencies among which are Bitcoin, Ethereum,

and Ripple, and Chaim and Laurini (2018) who build on this model to examine volatility

jumps in Bitcoin.

The SV model for each market/cryptocurrency is described by the following equations

(the i index for the market is omitted for simplicity):

rt = exp

(
ht
2

)
ξt with ξt

iid∼ N (0, 1), (4.3.1)

ht = µ+ φht−1 + ηt with ηt
iid∼ N (0, σ2

η), (4.3.2)

where rt = ∆pt refers to the daily log-returns and ht is the latent log-volatility which

follows an AR(1) process with a constant µ and a level of persistence φ. Both innovations

ξt and ηt are assumed to be normally distributed with unit variance and σ2
η, respectively.

Thus, the goal is to estimate the set of parameters {µ, φ, σ2
η}. This turns out to be a

cumbersome task, as the linearization of Equation (4.3.1),

ln
(
r2
t

)
= ht + εt with εt = ln

(
ξ2
t

)
, (4.3.3)

shows that the innovations εt in Equation (4.3.3) have a ln
(
χ2

1

)
distribution, for which

there is no analytical expression. Some solutions to this problem are summarized in

Sandmann and Koopman (1998) among which is a Bayesian approach using a Markov

Chain Monte Carlo (MCMC) technique developed by Jacquier, Polson and Rossi (1994).
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This technique is found to be superior to other methods, such as the Quasi-Maximum

Likelihood (QML) and the Method of Moments (MM) estimation, yet it involves extensive

simulations. Thus, we rely on its implementation in R by Kastner (2016) for our estimation

purposes and keep the prior hyperparameters and the MCMC sampling configuration

parameters at the suggested default values.5

Table 4.1 provides the estimates for the set of parameters {µ, φ, σ2
η} for each coin on

each market. The small standard errors (reported in parentheses) for all the parameter

estimates provide evidence that the MCMC sampler from the posterior distributions of the

parameters has indeed converged without problems for all the exchanges and for all the

cryptocurrencies. The estimated φ indicates that the latent log-volatility, ht, is stationary

for all entities in the sample as φ̂ < |1| in all cases. As expected, the differences among the

estimates across exchanges for the same cryptocurrency are minor, due to the fact that

we are modeling the prices of the same coin, and those, in turn, are cointegrated (as seen

in the next subsection).

The differences across cryptocurrencies are more pronounced. As regards persistence,

Bitcoin is found to have the highest persistence as φ̂ is in the vicinity of 0.90, while

Ethereum is the least persistent with φ̂ around 0.7. Litecoin and Ripple occupy the

middle-ground with φ̂ of approximately 0.8. Furthermore, Bitcoin has a higher mean

stochastic volatility in levels as evidenced by its higher estimate of µ relative to the other

cryptocurrencies, but has the lowest estimate for ση, the standard deviation of the innova-

tion in the latent AR(1) volatility. Ethereum, on the other hand, has the highest estimate

for ση.

Based on the estimates reported in Table 4.1, the latent volatility time series for our

sample period is then reconstructed. The result is graphically illustrated in Figure 4.2 for

Bitfinex. As can be seen, volatility reached a high at the end of December 2017 which is the

time when Bitcoin reached its all-time high value of 19,141 USD. Overall, the figure reflects

the pattern which is expected from the parameter estimates in Table 4.1, in particular that

5For further details, please refer to Kastner and Hosszejni (2019).
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Table 4.1: Estimation results of the stochastic volatility model

Bitfinex Bitstamp Kraken Bitfinex Bitstamp Kraken

A: Bitcoin B: Ethereum

µ̂ -7.14 -7.14 -7.15 -6.39 -6.39 -6.39
(0.14) (0.14) (0.14) (0.10) (0.10) (0.11)

φ̂ 0.91 0.91 0.90 0.69 0.69 0.72
(0.02) (0.02) (0.02) (0.10) (0.10) (0.08)

σ̂η 0.54 0.54 0.57 0.78 0.78 0.75
(0.05) (0.05) (0.05) (0.13) (0.13) (0.12)

C: Litecoin D: Ripple

µ̂ -6.18 -6.18 -6.21 -6.38 -6.38 -6.41
(0.11) (0.11) (0.11) (0.14) (0.14) (0.14)

φ̂ 0.80 0.80 0.79 0.84 0.84 0.82
(0.05) (0.05) (0.05) (0.04) (0.04) (0.04)

σ̂η 0.60 0.60 0.62 0.68 0.68 0.73
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Note: The table presents the parameter estimates of the stochastic volatility model for each coin
and market in the sample. Robust standard errors of the estimates are provided in parentheses.
Panel A (B, C, D) holds the results for Bitcoin (Ethereum, Litecoin, and Ripple).

the three other cryptocurrencies have a higher standard deviation compared to Bitcoin.

The time series plots for the remaining markets look similar and are therefore presented

in Appendix 4.B.

Table 4.2 provides descriptive statistics for each coin and market. It shows that,

on average, the volatility time series of Litecoin appears to be more volatile than the

volatility of other currencies, while, consistent with Table 4.1 and Figure 4.2, Bitcoin is

the least volatile in our sample period. Additionally, across the different market exchanges,

Bitstamp has on average the highest volatility for all the cryptocurrencies except for

Ripple, where Kraken, on average, is shown to have the highest volatility.

To motivate the application of the FCVAR model, Figure 4.3 presents the estimated

autocorrelation coefficients along with their 95% confidence bounds (based on robust stan-

dard errors which are estimated using GMM) of the latent volatility of Bitcoin traded on

the three exchanges. Similar to the illustrations in Appendix 4.A, it can be seen that
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Figure 4.2: Latent volatility time series in Bitfinex market
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Note: The figure presents the time series of the latent volatility of the four cryptocurrencies
Bitcoin, Ethereum, Litecoin, and Ripple based on data from Bitfinex market.

the autocorrelation is rather persistent, as it takes around 700 lags before the confidence

bounds start oscillating around zero. This indicates that our latent volatility process, al-

beit an AR(1) process with | φ̂ |< 1, exhibits the slow decline associated with long memory

processes. The autocorrelation functions of the remaining cryptocurrencies show a similar

pattern and, thus, support the assumption of a long memory in the volatility process and

are provided in Appendix 4.C.

4.4 On the Origin of Volatility

4.4.1 Volatility Discovery among Cryptocurrency Markets

The FCVAR model in Equation (4.2.5) is estimated for the three markets; Bitfinex, Bit-

stamp, and Kraken (n = 3), with Yt =
(
ĥ1,t, ĥ2,t, ĥ3,t

)
, and ĥi,t estimated according to
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Table 4.2: Descriptive statistics of the latent volatility

Mean S.D. Min Max Mean S.D. Min Max

A: Bitcoin B: Ethereum

Bitfinex 0.0344 0.0191 0.0073 0.1740 0.0476 0.0187 0.0164 0.2373
Bitstamp 0.0339 0.0201 0.0055 0.2172 0.0473 0.0193 0.0143 0.2388
Kraken 0.0345 0.0193 0.0059 0.1839 0.0474 0.0189 0.0147 0.2400

C: Litecoin D: Ripple

Bitfinex 0.0516 0.0205 0.0179 0.1977 0.0502 0.0286 0.0145 0.2938
Bitstamp 0.0514 0.0211 0.0172 0.2108 0.0500 0.0287 0.0141 0.2882
Kraken 0.0512 0.0208 0.0166 0.2020 0.0501 0.0291 0.0147 0.2925

Note: The table presents descriptive statistics (mean, standard deviation (S.D.), minimum (Min),
and maximum (Max)) of the latent volatility estimated on daily data for Bitfinex, Bitstamp, and
Kraken. Panel A (B, C, D) holds the results for Bitcoin (Ethereum, Litecoin, and Ripple).

Equation (4.3.2). The number of lags p is chosen according to the Bayesian Information

Criterion for each coin and a cointegration rank of n− 1 = 2 is used as evidenced by the

trace test of Johansen and Nielsen (2012) shown in Table 4.D.1. The test supports our

working hypothesis of a single stochastic trend driving the volatility processes in the dif-

ferent markets. Additionally, and following our theoretical scheme presented in Equation

(4.2.4) in Section 4.2, we expect the deviations of the single markets from the long-run

equilibrium to be short-term, and as such, β′Yt should be an I(0) mean-reverting process.

Thus, we impose a restriction of d = b while estimating Equation(4.2.5). A white noise test

on the residuals of the resulting FCVAR model for each of the cryptocurrencies indicates

that the residuals are uncorrelated. We, thus, conclude that the model, given the imposed

restrictions, fits the data reasonably well.

Table 4.3 holds the results of the FCVAR estimation. It can be seen that d̂ is sta-

tistically significant for all the cryptocurrencies under consideration, thus, supporting the

assumption of a fractional nature of the latent stochastic volatility processes in all the

markets for all the cryptocurrencies. Furthermore, we find that the order of magnitude

of d̂ is quite similar across the different cryptocurrencies and varies around 0.7. Turning

to the cointegration matrix, β̂, by means of LR-tests, it is found that we cannot reject
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Figure 4.3: Autocorrelation plots of the latent volatility of Bitcoin
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Note: The figure presents the autocorrelation plots and their 95% GMM based bounds for the
three exchanges Bitfinex, Bitstamp (upper panel), and Kraken (lower panel) for the cryptocur-
rency Bitcoin.

the hypothesis of a matrix structure of β̂ = (In−1,−1n−1)′ for all the cryptocurrencies

on a 5% significance level. This indicates that the latent stochastic volatilities of the

cryptocurrencies traded on the different exchanges are expected to behave similarly in

equilibrium.

As mentioned previously, α̂, for each coin, reflects the adjustment coefficients of the

different exchanges to the n − 1 equilibrium/cointegration equations. It is, therefore,

interesting to determine the significance level of each α̂j,i, where j = 1, . . . , n− 1 denotes
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Table 4.3: FCVAR model estimates

Bitfinex Bitstamp Kraken Bitfinex Bitstamp Kraken

A: Bitcoin (p =2) B: Ethereum (p =2)

α̂′

0.002 0.061 0.067 -0.236 -0.106 0.067
(0.018) (0.022) (0.019) (0.152) (0.149) (0.144)
-0.040 -0.102 0.065 0.137 -0.024 0.524
(0.025) (0.029) (0.025) (0.195) (0.190) (0.185)

d̂ 0.775 (0.033) d̂ 0.744 (0.029)

C: Litecoin (p =5) D: Ripple (p =2)

α̂′

-0.170 0.003 -0.068 -0.000 0.092 0.113
(0.118) (0.119) (0.123) (0.115) (0.122) (0.125)
0.114 -0.077 0.126 -0.110 -0.220 -0.061

(0.121) (0.124) (0.126) (0.142) (0.150) (0.154)

d̂ 0.852 (0.032) d̂ 0.716 (0.034)

Note: The table presents selected FCVAR estimates for the latent log-volatility ĥt. Robust stan-
dard errors are given in parentheses. Panel A (B, C, D) holds the results for Bitcoin (Ethereum,
Litecoin, and Ripple) for the given number of lags p chosen according to the Bayesian Information
Criterion.

the equilibrium equation, and i = (Bitfinex,Bitsamp,Kraken) is the relevant exchange

market. If H0 : α̂j,i = 0, then this market does not adjust to the equilibrium, and it is,

thus, the one driving the volatility. From Table 4.3, it is seen that for Bitcoin, Bitfinex

does not adjust to the two cointegration equations, as α̂′1,1 and α̂′2,1 are statistically

insignificant at the 5% significance levels. Bitstamp and Kraken, however, have statistically

significant results, and adjust according to the magnitude and sign of their respective α̂j,i.

Therefore, it is expected that Bitfinex would be the volatility leader in the Bitcoin market.

Unfortunately, a similar clear story cannot be told for the other three cryptocurrencies,

as most of the values in their respective α̂ are statistically insignificant. It is our belief

that this is in part due to the considerably shorter time series of Ethereum, Litecoin,

and Ripple as compared to Bitcoin (cp. Section 4.3). Rossi and Santucci de Magistris

(2013) show in a Monte Carlo simulation study that the CML estimation precision of

the FCVAR model, described in Section 4.2.1, is highly dependent on the sample size

128



of the dataset. It becomes more reliable for T = 2000, as the finite sample distribution

of the estimates resemble more closely their asymptotic limiting Gaussian distribution.

Thus, it can be concluded that Bitfinex is the leading market in terms of bitcoin volatility,

while the two other markets, Bitstamp and Kraken, merely adjust to the volatility process

which is determined by Bitfinex. If statistical significance is temporarily disregarded, the

α̂ estimates for Ethereum and Litecoin would suggest that Bitstamp is the market which

adapts the least while Bitfinex and Kraken might exhibit similar adaptation mechanisms.

Yet, for Ripple, similar to Bitcoin, Bitfinex appears to be the leading market. However,

these interpretations should only be viewed with caution due to the imprecise nature of

the estimation.

The α̂ results for Bitcoin are clearly reflected in the Hasbrouck information share results

presented in panel A in Table 4.4. It is found that for Bitcoin, the Bitfinex exchange has

the highest upper and lower information share bounds relative to the other two exchanges.

For Ethereum and Litecoin, Bitstamp appears to have the largest upper and lower bounds,

whereas for Ripple, Bitfinex is again the dominating exchange market. However, we remain

skeptical about the results of the latter three cryptocurrencies due to their insignificant α̂,

as previously explained. It is noticeable from Table 4.4 that the Hasbrouck information

share bounds are very wide, due to the high correlation between the different markets.

Consequently, we also report the Lien and Shrestha (2009) information shares in panel B.

Again, here, Bitfinex dominates the market for Bitcoin with almost 60% of the information

share followed by Kraken and then Bitstamp. For Ethereum, Litecoin and Ripple, the

information shares are more evenly distributed across the three markets, which is in line

with the insignificant α̂ results. Yet, in line with the Hasbrouck information shares, some

dominance is achieved by Bitstamp, for Ethereum and Litecoin, and by Bitfinex for Ripple.

The last panel in Table 4.4 contains the traded volume shares of each exchange mar-

ket in each of the cryptocurrencies under examination. It is evident that Bitfinex largely

dominates in this aspect for all the cryptocurrencies, although it is not that outstandingly

dominant in Ripple, while Bitstamp is the second highest market in all of the cryptocur-
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Table 4.4: Information and volume shares

Bitfinex Bitstamp Kraken

A: Hasbrouck’s 1995 information shares in %

upper lower upper lower upper lower

Bitcoin 97.0 13.2 81.5 0.7 69.3 1.8
Ethereum 95.0 0.6 98.8 2.8 90.7 0.6
Litecoin 96.5 0.03 99.0 1.3 98.6 0.8
Ripple 98.8 1.6 95.7 0.04 97.6 0.4

B: Lien and Shrestha’s 2009 information shares in %

Bitcoin 59.1 17.8 23.1
Ethereum 25.0 45.6 29.4
Litecoin 25.7 38.3 36.0
Ripple 42.0 21.9 36.1

C: Volume shares in %

Bitcoin 62.3 27.3 10.4
Ethereum 62.6 14.6 23.2
Litecoin 70.6 18.8 10.6
Ripple 44.8 42.2 13.0

Note: The table presents the information and volume shares of each cryptocurrency traded on
the three exchanges: Bitfinex, Bitstamp and Kraken. Panels A and B display the Hasbrouck
information share bounds and the modified information shares using Lien and Shrestha’s method,
respectively, and Panel C calculates the traded volume share which is an average of the daily
shares presented in Figure 4.1.

rencies with the exception of Ethereum. These results indicate that for Bitcoin, the market

with the highest volume share is also the market which contributes most to the common

volatility process. This is a result frequently documented in the price discovery literature

where high trading activity and a high information share often correspond. For Ripple,

the result is also in line with this conjecture. For the two remaining cryptocurrencies, the

result is not as clear-cut. For Ethereum, Bitstamp has the highest information share, but

the lowest share in volume, while in the case of Litecoin, Bitstamp also dominates the

volatility process, but has a decisively lower volume share than Bitfinex.
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Given the low statistical significance of the FCVAR results, a clear statement can only

be made about the volatility discovery of Bitcoin where Bitfinex turns out to be the leading

market. For the remaining (younger) cryptocurrencies, estimation is very imprecise due

to the low number of observations available at present. Nevertheless, they point to a

dominating position of Bitfinex in the case of Ripple and of Bitstamp for Ethereum and

Litecoin.

As a robustness check, we compare the out-of-sample forecasts of the estimated FCVAR

model with that of a standard CVAR to determine whether the added complications of

fractional differencing actually play a role in the representation of our data. The results are

displayed in the two figures presented in Appendix 4.E. For conciseness, only the results

of Bitcoin are displayed. The figures show that a 9-month out-of-sample forecast using

FCVAR is able to match the trend (and sometimes the level) of the actual data, while

a standard CVAR performs quite poorly. Thus, we abide by our choice of a fractional

differencing cointegration scheme to investigate the volatility discovery in cryptocurrency

markets.

4.4.2 Volatility Discovery among Cryptocurrencies

In this subsection, we investigate whether among the four examined cryptocurrencies, a

certain coin is considered a volatility leader. Table 4.5 shows the cointegrating rank test

performed on the four coins using the leading exchange market for each coin retrieved

from the first stage results presented in the previous section. Our results suggests that

there are three different cointegrating relations between the four coins, and thus, only one

stochastic trend. This indicates that the markets and cryptocurrencies are linked by a

common fundamental volatility process which could be considered the fundamental risk of

cryptocurrencies.

The next step is to find which coin acts as the volatility leader in the cryptocurrency

market. Thus, a second-stage volatility discovery analysis is run with the four cryptocur-

rencies. The second-stage FCVAR results are presented in Table 4.6. Interestingly, we
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Table 4.5: Second stage cointegration rank test

Rank d b Log-Likelihood LR statistic P-value

0 0.934 0.934 7235.041 199.748 0.000
1 0.960 0.960 7280.432 108.967 0.000
2 0.976 0.976 7314.298 41.234 0.000
3 0.994 0.994 7334.668 0.495 0.544
4 0.995 0.995 7334.916 – –

Note: The table presents Johansen’s trace test (Johansen and Nielsen, 2012) for the cointegrating
rank conducted on the four coins in our study: Bitcoin, Ethereum, Litecoin and Ripple. The
results are achieved with p = 1 according to the Bayes Information Criterion.

find that d̂ is considerably higher than the results in the first stage of the analysis and

lies more in the vicinity of one. This indicates that, whereas the volatility series of differ-

ent exchange markets trading in a single coin are fractionally cointegrated, the volatility

series of the different coins are governed by a cointegrated rather than a fractionally coin-

tegrated relation. The α̂′ results indicate that Bitcoin may be the volatility leader while

all the other coins follow suit, as the first cointegrating equation shows that only Bitcoin’s

adjustment coefficient estimate is not significantly different from zero. The second coin-

tegrating equation, however, indicates that both Litecoin and Ripple do not adjust to the

disequilibrium (with adjustment coefficients not significantly different from zero) and that

Bitcoin and Ethereum follow their lead, as their adjustment coefficients are significantly

different from zero. In the third equation, the adjustment coefficients of all the coins are

significantly different from zero. Yet, if the order of magnitude is considered, Bitcoin is

again viewed as the volatility leader, as its respective α̂ is the smallest compared to the

other coins.

The second-stage Hasbrouck (1995) and Lien and Shrestha (2009) information share

results presented in Table 4.7 confirm the preliminary α̂ results and indicate that Bitcoin

is indeed the volatility leader among the other cryptocurrencies in the analysis. The

Hasbrouck information shares of Bitcoin lie between an upper bound of 91% and a lower

bound of 25%, while all the other coins have considerably smaller upper and lower bounds.
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Table 4.6: Second stage estimates of the FCVAR model

Bitcoin Ethereum Litecoin Ripple

α̂′

-0.004 0.047 0.036 0.033
(0.008) (0.014) (0.010) (0.012)
-0.034 -0.146 -0.005 -0.012
(0.013) (0.023) (0.016) (0.019)
0.026 0.087 -0.045 0.041

(0.014) (0.024) (0.017) (0.020)

d̂ 0.994 (0.025)

Note: The table presents the relevant FCVAR estimates for the latent log-volatility ĥt of the
second-stage results. Robust standard errors are presented in parentheses. The results are
achieved with p = 1 according to the Bayes Information Criterion.

Table 4.7: Second stage information shares

HIS MIS

upper lower

Bitcoin 91.0 25.5 60.8
Ethereum 39.4 0.2 1.6
Litecoin 63.3 0.8 21.5
Ripple 48.7 1.6 16.1

Note: The table presents Hasbrouck’s (HIS) and Lien and Shrestha’s modified (MIS) information
shares of volatility among the different cryptocurrencies.

Similary, the Lien and Shrestha information share puts Bitcoin at a dominant 60% while

the next market, Litecoin, has only a third of that share.

Hence, it seems that the established nature of Bitcoin makes it a volatility leader for

the other cryptocurrencies. Only time will tell whether it will withhold its superiority as

the other cryptocurrencies become more established.

4.5 Conclusion

Cryptocurrency markets are characterized by high risk which is reflected in the high volatil-

ity of the currencies’ trading prices. Understanding how the volatility of different cryp-
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tocurrencies or among different markets is related can open up hedging strategies and even

provide opportunities for high returns. In this study, we investigate the interrelatedness of

the volatility (estimated based on a discrete stochastic volatility model) of cryptocurrencies

(Bitcoin, Ethereum, Litecoin and Ripple) traded in the most prominent cryptocurrency

markets (Bitfinex, Bitstamp and Kraken).

Our theoretical framework and empirical approach extend the usual strategies for price

discovery into the realm of volatility discovery. A detour has to be taken along the way,

as volatility series tend to possess long memory properties, and thus, fractional cointegra-

tion, rather than standard cointegration, governs the relationship between the different

volatility series. Towards this end, we rely on Johansen and Nielsen’s 2012 fractionally

cointegrated vector autoregressive model and exploit its results to calculate Hasbrouck’s

1995 information shares and the refinement to modified information shares by Lien and

Shrestha (2009).

Our results indicate that the dominating market for volatility of Bitcoin is Bitfinex.

It is found to have both the highest trading volume share and the highest volatility in-

formation share. For the other coins, we cautiously consider our results, as the FCVAR

estimation is imprecise due to the considerably lower number of observations available to

date. We find that while Bitfinex still dominates the share of traded volume, Bitstamp has

the highest volatility information share for both Ethereum and Litecoin, and for Ripple,

Bitfinex has both the highest traded volume and information shares, but only with a small

margin from the other two exchange markets in the analysis.

In a second step, we consider whether volatility in the cryptocurrency market may

actually originate from a particular coin and then diffuse to the other coins in the market.

Our findings indicate that Bitcoin might be a volatility leader in this regard, as it exhibits

the highest volatility information share. Nevertheless, it remains to be seen whether

in such a dynamic market Bitcoin will be able to maintain its distinction, as the other

cryptocurrencies gather more momentum and a larger dataset is available for examination.
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To address the problem of a limited dataset which we face in our study, a panel

volatility discovery approach could be fruitful. For price discovery, panel estimation is

used already (e.g., Narayan, Sharma and Thuraisamy, 2014; Karabiyik, Westerlund and

Narayan, 2022). In the present context, however, a panel approach would have to take

the fractional nature of volatility into account. To the best of our knowledge, there is no

theory on fractionally integrated panel vector autoregressive models (yet). This is, thus,

left for future research.
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Appendix

4.A Long memory processes and the principles of fractional

integration

This appendix section explains some time series properties of long memory processes and

their underlying mathematical concepts to the extent that is relevant to the current study.

The section depends heavily on the review provided in Baillie (1996), which relies on the

work of Granger and Joyeux (1980) and Granger (1980, 1981). For further details, the

aforementioned papers should be consulted.

In standard time series analysis, an autoregressive moving average process is denoted

as ARMA (p, q), where p and q refer to the number of autoregressive and moving average

lags, respectively. If this ARMA (p, q) process is covariance stationary, then it can be

expressed using Wold’s decomposition as:

Yt = µ+

∞∑
j=0

ψjεt−j , (4.A.1)

where ε is a white noise process6 and square summability is assumed, i.e.,
∑∞

j=0 ψ
2
j <

∞. As a result, the Wold decomposition coefficients, ψj , exhibit an exponential rate of

decay (Hamilton, 1995). The covariance stationary ARMA (p, q) processes are, thus,

seen as short memory processes. Long memory processes, in contrast, have a slower rate

6Not to be confused with ε used otherwise in the FCVAR model described in Section 4.2.1.
This appendix has standalone symbols.
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of decay. Specifically, they exhibit a hyperbolic rate of decay, which makes them ideal

for representing shocks and autocorrelations that have some degree of persistence. They

are, thus, thought of as processes that are integrated of order d, or I(d) processes, where

0 < d < 1, and pose a flexible compromise between covariance stationary processes, I(0),

and unit root processes, I(1).

For many useful applications, such as forecasting exercises, ARMA (p, q) processes

that have unit roots outside the unit circle need to be differenced in order to reduce their

order of integration to zero, i.e., to make them covariance stationary. In that sense, the au-

toregressive integrated moving average process, denoted as ARIMA(p, d, q) is modeled. If

d is allowed to take noninteger numbers, the autoregressive fractionally integrated moving

average process, ARFIMA (p, d, q) then arises. It is modeled as:

φ(L) (1− L)d Yt = µ+ θ(L)εt, (4.A.2)

where φ(L) = 1 − φ1L − φ2L
2 − · · · − φpLp, and θ(L) = 1 + θ1L + θ2L

2 + · · · + θqL
q.

Here, (1− L)d is the fractional difference operator, and it works via binomial expansion

as follows:

(1− L)d = ∆d =

∞∑
i=0

(−1)i

d
i

Li (4.A.3)

= 1− dL+
d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + · · · (4.A.4)

Yet, this poses a mathematical problem, as the fractional differencing process can extend

to infinity. Therefore, in many cases, the differencing is truncated at a certain value,
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usually at t− 1, as in practice initial values rarely exist. Therefore, following Jensen and

Nielsen (2014), to calculate the truncated fractional difference of a process, Yt,

∆d
+Yt =

t−1∑
i=0

πi(−d)Yt−i, t = 1, · · · , T (4.A.5)

with πi(−d) =
−d(−d+ 1) · · · (−d+ i− 1)

i!
. (4.A.6)

The ‘+’ subscript in Equation (4.A.5) indicates that the differencing is restricted to only

positive values of t, as no initial values exist in this case. Nevertheless, as T increases,

the complexity of the fractional difference solution increases, and in turn its computation

time. Jensen and Nielsen (2014) develop a fractional difference algorithm in Matlab that

utilizes discrete Fourier transform, and is thus fast. We rely on their algorithm in this

study.

A simple simulation study

In order to illustrate the properties of a long memory process, a simple simulation study is

carried out. Figure 4.A.1 shows the ensemble mean and variance of four different ARFIMA

(1,d,0) processes simulated with different degrees of integration, d = {0, 0.3, 0.6, 1}. Panel

A, with d = 0 is thus the standard AR(1) process with ensemble mean and variance

that oscillates around their respective theoretical values without any persisting deviations.

Panel D, on the other hand, represents an AR(1) process with unit root, as d = 1. As

expected, it is a non stationary process, and predictably, the ensemble variance is time-

dependent. The two other in-between panels represent different degrees of deviations from

the completely stationary AR(1) process. Panel C with d = 0.3 more closely resembles the

stationary AR(1) process, as the ensemble variance, although oscillating to higher values,

does not exhibit a clear trend. Conversely, panel C with d = 0.6 shows an ensemble

variance with an upward trend, but it accelerates at a slower pace relative to the unit root

process.
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Figure 4.A.1: Ensemble simulations of various ARFIMA(1,d,0) processes
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Note: The figure presents the ensemble mean and variance of 100 simulations of different
ARFIMA(1,d,0) process with φ = 0.1 and T = 100. Panel A presents an ARFIMA(1,0,0) process,
i.e a standard AR(1) process. Panel B presents an ARFIMA(1,0.3,0) process. Panel C presents an
ARFIMA(1,0.6,0) process. Panel D presents an ARFIMA(1,1,0) process, i.e. a unit root AR(1)
process.

To illustrate the persistence of the long memory, Figure 4.A.2 shows the ensemble

autocorrelations of the ARFIMA (1,d,0) processes in Figure 4.A.1. The figure illustrates

the slower rate of decay of the autocorrelations of the different processes as d approaches

1. Panels B and C, which represent the long memory processes, have autocorrelations of

zero only after 15 and 20 lags, respectively. In comparison, panel A, the standard AR(1)

process, reaches zero in less than 5 lags, while panel D, representing the unit root process,

does not reach zero at all and is thus permanently persistent.
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Figure 4.A.2: Autocorrelations of various ARFIMA(1,d,0) processes
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Note: The figure presents the mean autcorrelations of 100 simulations of different ARFIMA(1,d,0)
process with φ = 0.1 and T = 100. Panel A presents an ARFIMA(1,0,0) process, i.e a stan-
dard AR(1) process. Panel B presents an ARFIMA(1,0.3,0) process. Panel C presents an
ARFIMA(1,0.6,0) process. Panel D presents an ARFIMA(1,1,0) process, i.e. a unit root AR(1)
process.
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4.B Time series plots of the latent volatility (continued)

Figure 4.B.1: Latent volatility time series in Bitstamp and Kraken markets
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Note: The figure presents the time series of the latent volatility of the four cryptocurrencies
Bitcoin, Ethereum, Litecoin, and Ripple based on data from Bitstamp (upper panel) and Kraken
(lower panel) markets.
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4.C Autocorrelation plots of the latent volatility (contin-

ued)

Figure 4.C.1: Autocorrelation plots of the latent volatility of Ethereum
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Note: The figure presents the autocorrelation plots and their 95% GMM based bounds for the
three exchanges Bitfinex, Bitstamp (upper panel), and Kraken (lower panel) for the latent volatil-
ity of the cryptocurrency Ethereum.
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Figure 4.C.2: Autocorrelation plots of the latent volatility of Litecoin
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Note: The figure presents the autocorrelation plots and their 95% GMM based bounds for the
three exchanges Bitfinex, Bitstamp (upper panel), and Kraken (lower panel) for the latent volatil-
ity of the cryptocurrency Litecoin.
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Figure 4.C.3: Autocorrelation plots of the latent volatility of Ripple
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Note: The figure presents the autocorrelation plots and their 95% GMM based bounds for the
three exchanges Bitfinex, Bitstamp (upper panel), and Kraken (lower panel) for the latent volatil-
ity of the cryptocurrency Ripple.
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4.D Results of the cointegration rank tests

Table 4.D.1: Cointegration rank tests of the different cryptocurrencies

Rank d b Log-Likelihood LR statistic P-value

A: Bitcoin

0 0.642 0.642 13390.900 155.029 0.000
1 0.673 0.673 13438.129 60.570 0.000
2 0.775 0.775 13467.987 0.854 0.350
3 0.760 0.760 13468.414 – –

B: Ethereum

0 0.410 0.410 6825.426 143.560 0.000
1 0.700 0.700 6871.657 51.098 0.000
2 0.744 0.744 6894.247 5.917 0.014
3 0.688 0.688 6897.206 – –

C: Litecoin

0 0.743 0.743 8866.598 104.714 0.000
1 0.788 0.788 8894.642 48.624 0.000
2 0.852 0.852 8918.648 0.613 0.451
3 0.839 0.839 8918.955 – –

D: Ripple

0 0.602 0.602 8555.480 84.879 0.000
1 0.651 0.651 8580.804 34.230 0.000
2 0.716 0.716 8594.863 6.113 0.012
3 0.651 0.651 8597.919 – –

Note: The table presents Johansen’s trace test (Johansen and Nielsen, 2012) for the cointegration
rank conducted on the three cryptocurrency markets in our study for each of the coins; Bitcoin
(panel A), Ethereum (panel B), Litecoin (panel C) and Ripple (panel D).
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4.E Comparison of out-of-sample forecasts of Bitcoin using

FCVAR and standard CVAR

Figure 4.E.1: Out-of-sample forecasts
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Note: The figure shows the out-of-sample daily forecasts of Bitcoin from 1st of July 2020 till
31st of March 2021. The solid blue (green, orange) line in both panels represents the latent

log-volatility, ĥt, of the Bitfinex (Bitstamp, Kraken) market. The dashed blue (green, orange)
line represents the out-of-sample forecast of the latent log-volatility of the Bitfinex (Bitstamp,
Kraken) market using FCVAR estimates in the upper panel versus CVAR estimates in the lower
panel.
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Chapter 5

Summary and Conclusion

This dissertation is an assortment of three distinct studies that attempt to methodically

contribute to the field of financial econometrics. They collectively tackle different chal-

lenges resulting from the uncertainty taking place in financial markets. The first two

studies, presented in Chapters 2 and 3, are concerned with asset pricing and its challenges

in the context of a DSGE model with habit preferences. The final study, presented in

Chapter 4, looks beyond prices to the volatility taking place in cryptocurrency markets.

It attempts to discover the volatility leader among the different cryptocurrency markets

as well as among the different cryptocurrencies.

The methodical contributions of Chapters 2 and 3 lie in adapting estimation techniques

that can withstand misspecification in highly structured models. In Chapter2, this is the

PII estimation which encloses calibration within its folds. It can thus deliver consistent es-

timates of a subset of the structural model’s parameters in the presence of misspecification

in its calibrated part. This estimation technique is used to deliver a critical assessment of

a DSGE asset pricing model with habit preferences, the model in Chen (2017). The find-

ings indicate the successful identification of the parameters of interest; the asset pricing

parameters. This leads to the resolution of the equity premium puzzle, provided that a

high estimate of the relative risk aversion parameter is accepted. The risk-free rate puzzle
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remains problematic; though we manage to estimate a slightly lower value for the volatility

of the risk-free rate, we fail to match its level relative to its empirical counterpart. As

such, we caution against the overstatement of the calibration results of DSGE asset pricing

models.

Chapter 3 draws from the conclusions in Chapter 2, and asks what happens if misspec-

ification in those highly structured DSGE asset pricing models is not taken into account?

The methodical contribution lies in the comparison between three indirect inference strate-

gies; the classical II estimation which does not account for misspecification, and the FII

estimation and the PII estimation from Chapter 2. The latter two account for misspecifi-

cation with differing degrees. An additional contribution is in tailoring the “dark matter”

measure of Chen et al. (2019) to fit indirect inference estimation strategies. This mea-

sure goes beyond statistical inference and determines how fragile the estimation process is

to the potentially misspecified moment conditions in the underlying GMM instrumental

model. The findings indicate that, as expected, not accounting for the misspecification

in the macroeconomic moments via II estimation results in unidentifiable parameter es-

timates. Yet, using FII estimation does not alter these unfortunate results. The dark

matter measure, however, reveals that there is a better option than simply disregarding

all of the macroeconomic dynamics by calibrating their parameters, as in the PII esti-

mation in Chapter 2. Rather, adding the first two moments of GDP to the original PII

estimation results in identifiable parameters. This modified PII method is found to de-

liver slightly improved estimates for the asset pricing moments and remarkably improved

implied macroeconomic moments.

Finally, Chapter 4 departs from the macro-level view of the economy and dissects

at close the market for cryptocurrencies. Since the same cryptocurrencies are traded on

many different exchange platforms, the aim is to find out which exchange market is the

volatility leader. Given the leading exchange market, the overall cryptocurrency volatility

driver can also be discovered. The contribution here is not methodical per se, but lies in

extending the price discovery framework to a volatility discovery scheme that takes into
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account the long memory nature of volatility series. This is a novel attempt in the context

of cryptocurrencies. As such, the FCVAR estimation of Johansen (2008) and Johansen

and Nielsen (2012) is utilized, which then allows for the computation of Hasbrouck (1995)

and Lien and Shrestha (2009) information shares. The findings indicate that the different

cryptocurrencies tend to have different market volatility leaders. For Bitcoin, it can be

confidently stated that this is Bitfinex. For the other cryptocurrencies under investigation,

the estimation results are imprecise due to the considerably shorter time series available

at the time of analysis. The dominance of Bitcoin is also demonstrated, as it is found to

be the volatility leader among the three other cryptocurrencies under examination. Yet

with the market for cryptocurrencies gaining more traction with time, it is possible that

the “younger” cryptocurrencies may outshine Bitcoin. The investigation of this possibility

is left for future research.

Overall the studies presented in this dissertation, while diverse in nature, all provide

additional insights into some of the current research themes in financial econometrics. The

possibilities for future research in these areas are far from limited; cryptocurrency is still

a novice financial market with much to be discovered, cointegration analysis of time series

with long memory properties is still far from developed, the resolution of asset pricing

puzzles is still unattainable, and finally the DSGE asset pricing models which hope to be

their salvation remain troublesome to estimate. My hope is that this dissertation serves

as a stepping stone for future research in these areas.
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