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1 Synopsis

1.1 Introduction and Motivation

In 1966, the ticker tape of the New York Stock Exchange displayed the first electronically pro-
cessed stock quote (Kennedy, 2017; Currie et al., 2022). This breakthrough was made possible
by electronic card readers that allowed price data to pass onto the tape in seconds instead
of minutes, as was previously common under human intermediaries (OTA, 1990; Kennedy,
2017). In the decades that followed, technological innovation drove the automation and scal-
ing of exchange infrastructure to ever-higher trade volumes, making securities trading pos-
sible without direct human interaction by the mid-1990s (MacKenzie, 2018). The automation
of trading platforms has meant that market places are no longer coordinated by “gazes and
hand signals” on bustling trading floors, but by an electronic infrastructure that connects
“masses of anonymous investors” through “nimble algorithms, sophisticated computer pro-
cessors, hacked routers, and specialized telecommunication systems” (Pardo-Guerra, 2019;
Beverungen, 2019), transforming trading floors into deserted high tech hubs (see Figure 1.1).

Spawned by this evolution as a new type of trading, algorithmic trading today accounts for
over 70% of stocks trade volume (Cartea and Jaimungal, 2013). Algorithmic trading describes
the use of mathematical models and computer algorithms to automate trading decisions, order
submission, and order management after submission (Hendershott et al., 2011; Kirilenko and
Lo, 2013). The prevalence of algorithmic trading stems from advantages of algorithms over
humans in securities trading: Algorithms have no feelings, are therefore not prone to investor
behavior such as overreactions (De Bondt and Thaler, 1985) or biased expectations (De Bondt,
1993), are likely to reduce human-caused errors, and can tackle more complex tasks (Dixon
et al., 2020). Advancing algorithmization and the speeding up of trading to higher frequen-
cies requires today’s exchanges to use massive data centers that transmit tens of millions of
messages between market participants every second (MacKenzie, 2018; Exegy, 2023).

In the past two decades, algorithmic trading has been dominated primarily by determin-
istic, rule-based models (FSB, 2017). Beverungen (2019) refers to these trading algorithms as
“dumb” algorithms because the trade decision is always the same given the same state of input

Figure 1.1: The trading floor of the New York Stock Exchange in 1963 (left) and 2022 (right). Copyright
Thomas O’Halloran (left) (O'Halloran, 1963) and Tobias Deml (right) (Deml, 2022).
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Synopsis

values, usually consisting of price, order book, or other market data. The gradual advent of
machine learning techniques in algorithmic trading in the last decade (OECD, 2021) heralded
the transition to “smart” trading algorithms that solve problems dynamically outside static
models and adapt to market environments. Algorithmic trading is a “natural playground for
machine learning” (Dixon et al., 2020) as financial markets are dynamic and trade decisions
are data-driven. Moreover, the increasing availability of computing and data storage capacity
provides ideal conditions for further advances in algorithmic trading with machine learning.

However, despite impressive experimental results for both directional trading and mar-
ket making, machine learning does not yet dominate algorithmic trading (ESMA, 2023; FSB,
2017), and practitioners doubt that artificial intelligence fully takes over trade execution in
the near future (Beverungen and Lange, 2018). While most firms have integrated machine
learning tools into their trading algorithms (ESMA, 2023), final trade execution still falls to
either humans or rule-based models. Quantitative hedge funds typically use machine learn-
ing for improving investment decisions with humans overseeing trade execution (Ashta and
Herrmann, 2021). Banks and non-bank market makers still build most of their algorithmic
trading around transparent rule-based models and use machine learning as one part of multi-
layer execution processes inside of traditional deterministic algorithms (FMSB, 2020). There-
fore, even though machine learning has made inroads into algorithmic trading, it has not yet
revolutionized securities trading like, for example, the launch of computer trading has.

Why do practitioners hesitate to adopt autonomous machine learning algorithms for trade
execution? Pozen and Ruane (2019) point out that while machine learning can help reduce
human bias, humans still need to understand what the machine has learned to “prevent new
biases from creeping in”. Ray Dalio, founder of the world’s largest hedge fund Bridgewater
Associates, stresses that trading with machine learning algorithms requires a deep under-
standing of what the model has learned and how that will play out in the face of changing
market conditions (Dalio, 2017). Thus, hazards to trading arise if we cannot discern whether
the algorithms learn anything that keeps trading consistently profitable as market conditions
change, and whether their understanding of trading is equivalent to that of a human trader.

Correspondingly, practitioners have so far relied on the symbiosis of human intelligence
and artificial intelligence to verify what the algorithms learn and preserve the mindset of a
human trader for unforeseen market conditions. In doing so, firms face a trade-off between
high machine learning-based automation with low robustness to changing market conditions
versus low automation with high robustness. To overcome this trade-off, a key task for the
future is to develop robust machine learning algorithms optimized for trading in all parts of
the trade life cycle. Two research questions arise from this task:

1. How can machine learning algorithms be optimized for algorithmic trading?

2. What do these optimized algorithms learn and what is their advantage over traditional
rule-based models?

This dissertation presents three articles, each addressing the research questions for a spe-
cific part of the trade life cycle (see Figure 1.2). The first article relates to the investment
decision process and tailors machine learning algorithms for return prediction to reduce the
likelihood of large trading losses. The second article focuses on trade execution at the re-
tail level and introduces an innovative representation of the relationship between buyer and
seller overhangs that helps retail brokers optimize order segmentation and improve market

2
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quality. The third article is located in trade execution at the wholesale level and integrates a
high-frequency trade flow prediction model into limit order trading, allowing market makers
to reduce adverse selection cost by preempting price movements.

Overall, these articles contribute to the transition from rule-based tomachine learning tech-
niques in algorithmic trading by introducing newmachine learning-based trading algorithms
that are superior to rule-based models in directional trading as well as in order execution and
market making. Specifically, the dissertation makes three contributions: First, it provides
methods for modeling the market tailored to firms’ individual trading objectives such as loss
aversion (article 1), neutralization of open positions within a particular period (article 2), or
anticipation of market movements (article 3) using novel target variables and loss functions.
Second, it empirically demonstrates that modeling the market tailored to firms’ trading objec-
tives mitigates the trade-off between automation and robustness, as machine learning algo-
rithms can better understand and mimic the intentions of the firms’ human traders. Third, it
shows that moving from rule-based to machine learning-based trading systems can be worth-
while for both directional traders and market makers, as sentiment signals relevant to the
firms’ trading objectives are captured in a way no human can, and they both benefit equally
from improved market quality and reduced adverse market movements.

The remainder of this synopsis is structured as follows: Section 1.2 outlines the structure
and concretizes the overall aim of the dissertation. Section 1.3 gives short overviews over
each of the three articles. Section 1.4 presents a final conclusion of the dissertation.

1.2 Dissertation Aim and Structure

The goal of the dissertation is to provide machine learning concepts that model financial mar-
kets in a trading-optimized manner and eliminate the need for human monitoring of trading
algorithms. Given remarkable test results, recent literature evaluates supervised learning al-
gorithms like Recurrent Neural Network (RNN) (Dixon, 2018b), especially Long Short-Term
Memory (LSTM) (Fischer and Krauss, 2018), as suitable machine learning algorithms for au-
tomated trading. However, practitioners currently only use these algorithms as additional
components in traditional programs for trade execution rather than as stand-alones, moti-
vated by the desire to control the learning process and protect against changing market con-
ditions. The dissertation therefore aims to shed light on how the market can be optimally
modeled for autonomous trade execution based on supervised learning algorithms through
novel loss functions and target variables adapted to firms’ trading preferences. In doing so, I
take an interdisciplinary research approach including recent developments in machine learn-
ing, behavioral finance, cryptocurrencies, market microstructure, and quantitative finance.

In order to address the research questions separately for specific components of a trading
system, the structure of the dissertation follows the usual trade life cycle of a marketable retail
order for publicly listed stocks (SEC, 2013; ESMA, 2023). Figure 1.2 illustrates how the articles
are intertwined with the relevant trade execution modalities.

The first article, “Return Prediction with Deep Learning under Loss Aversion”, is located in
the pre-trade phase, i.e., the pre-trade analysis and investment decision (ESMA, 2023), and
provides an approach to improve investment decisions for directional trading through loss
aversion. Prospect theory (Kahneman and Tversky, 1979) states that people are more sen-
sitive to losses than gains. Therefore, investors may value overprediction differently than
underprediction of returns. The article introduces a loss function designed for loss aversion

3
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Investment 
decision

Broker

Buyers

Exchange

Market makers

1

2

3

1 Return Prediction with Deep Learning under Loss Aversion

2 Intelligent Inventory Management for Cryptocurrency Brokers

3 Prediction-based Limit Order Trading

Pre-trade Trade execution

Internalization

Routing to 
market maker 
or exchange

Sellers

Figure 1.2: Dissertation structure based on the trade execution modalities of market orders for publicly
listed securities following SEC (2013) and ESMA (2023).

and tests it based on LSTMs for U.S. stock returns between 1990 and 2021. The model learns
unique signals, predicts returns more cautiously, and improves profit chances over standard
LSTMs and common trend signals. Referring to my research questions, I conclude that in-
vestors can model the market in a trading-optimized manner by incorporating their trading
objectives such as loss aversion into the learning algorithm, thereby beating both rule-based
trend-following and loss-neutral machine learning strategies.

The second article, “Intelligent Inventory Management for Cryptocurrency Brokers”, is set in
the first stage of trade execution, in which the broker segments orders and decides on the exe-
cution modality, and introduces a novel representation of buy and sell order flows to optimize
this decision process. Basically, a broker can either internalize a market order, i.e., execute it
internally against open positions or hold it as an open position for execution against future
orders, or route it to an exchange or market maker. This article presents a feedforward neu-
ral network, which, upon receiving a customer order, predicts whether future order flow will
be sufficient to neutralize the order before its settlement date. An empirical analysis of the
German cryptocurrency broker BISON shows that incorporating the predictions into the de-
cision process realizes meaningful cost savings for both investors and brokers over rule-based
strategies. I conclude that customizing target variables to brokers’ trading objective such as
neutralization of positions within a given period contributes to optimizing machine learning
algorithms for trade execution and improving market quality over rule-based approaches.
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The third article, “Prediction-based Limit Order Trading”, focuses on the second stage of
trade execution, where wholesale market makers execute orders that the broker routes to the
exchange or directly to them, and presents a method to optimize the market makers’ position
in the limit order book using an RNN-based trade flow model. Market makers are firms that
continuously quote buy and sell prices and profit from the spread in between through simul-
taneous trade execution, facing a trade-off between high volume with low margin versus low
volume with high margin. I attempt to overcome this trade-off by including predictions for
buyer- and seller-initiated trades when submitting limit orders. Tested for two cryptocur-
rency pairs at the Coinbase exchange, I report higher market making revenues through trade
flow-adjusted order prices and lower adverse selection costs through preempted price move-
ments. I infer that it may be worthwhile for market makers to model the market separately
for buy and sell trade flow and thus adapt algorithms to the market makers’ objective of an-
ticipating changes on the bid and on the ask side of the market.

Table 1.1 provides a condensed overview of the three articles, reporting the overarching
research objectives, the data set and the data source used, the research methodology, and
the current publication status of each article. Regarding the research methodology, one may
notice that all articles rely on supervised learning. Although there is currently a lot of ex-
perimentation going on in reinforcement learning in trading (Zhang et al., 2020), I focus on
supervised learning, as this is the dominant methodology in practice (ESMA, 2023).

1.3 Overview of Articles

1.3.1 Return Prediction with Deep Learning under Loss Aversion1

Christopher Felder and Stefan Mayer

Under prospect theory (Kahneman and Tversky, 1979), people value potential gains and losses
asymmetrically when making decisions. As one part of prospect theory, loss aversion (Tver-
sky and Kahneman, 1992) explains that people perceive losses greater than equivalent gains
and, e.g., when choosing between a 100% chance to gain $50 or a 50% chance to gain $110,
tend to choose the certain outcome even though the expected utility of the uncertain out-
come is higher. Applied to the return prediction problem, loss aversion implies that investors
perceive underpredictions differently than overpredictions of returns and, e.g., prefer an un-
derprediction of their own portfolio return to an overprediction. As standard optimization
techniques for return prediction handle prediction losses equally with both over- and under-
predictions receiving the same penalty, we reconsider return prediction from a loss-averse
perspective and introduce a novel loss function that distinguishes between ‘good’ and ‘bad’
losses. If investors buy (short) shares with a predicted positive (negative) return, ‘good’ losses
occur when the predicted positive (negative) return is less (greater) than the realized return,
while ‘bad’ losses classify overprediction (underprediction) of positive (negative) returns.

The objective is to minimize both ‘good’ and ‘bad’ prediction losses, with ‘good’ losses pre-
ferred over ‘bad’ losses. As model framework, we consider a variant of the weighted mean
squared error, where the weight is a function of the loss type. Following Tversky and Kah-
neman (1992), who show that people are twice as sensitive to losses as to gains, we penalize
‘bad’ losses up to twice as hard as ‘good’ losses. So in a scenario predicting a 3% return, we

1Parts of this work have been published in Felder and Mayer (2022). ©2022 IEEE
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Article Research Objective Data (Source) Methodology Status

1 Return Prediction with
Deep Learning under
Loss Aversion

Christopher Felder,
Stefan Mayer

⋅ Design a loss function for return predic-
tion with deep learning subject to inves-
tors’ loss aversion

⋅ Empirically examine the impact of loss
aversion in return prediction on predic-
tion quality and trading performance

⋅ Identify unique loss-averse signals and
differences in learning content compared
to traditional return prediction models

⋅ Daily closing prices of U.S.
stocks from 1990-2021 (Re-
finitiv)

⋅ Long Short-Term Me-
mory (LSTM)

⋅ Linear regression
⋅ Investment study

Previous version pub-
lished in Felder and
Mayer (2022)

2 Intelligent Inventory
Management for
Cryptocurrency Brokers

Christopher Felder,
Johannes Seemüller

⋅ Understand long- and short-term relation-
ships of buy and sell retail order flow

⋅ Extract drivers of buy and sell overhangs
from order flow and limit order book data

⋅ Create a prediction model for order flow
imbalance and analyze whether retail bro-
kers can use this model to improve order
execution for customers

⋅ Tick-level cryptocurrency
retail order flow (BISON
App)

⋅ High-frequency cryptocur-
rency OHLCV data (Kra-
ken, Coinbase, Bitstamp)

⋅ Feedforward Neural
Network

⋅ Penalized logistic re-
gression (Elastic Net)

⋅ Trading simulation

Previous version pub-
lished in Felder and
Seemüller (2022)

3 Prediction-based Limit
Order Trading

Christopher Felder

⋅ Derive a theoretical approach for market
makers to incorporate trade flow predic-
tions when posting limit orders

⋅ Develop a high-frequency prediction mod-
el for buyer- and seller-initiated trade flow

⋅ Measure the impact of incorporating trade
flow predictions into limit order trading
on adverse selection cost and market ma-
king revenues

⋅ Level II cryptocurrency
limit order book data
(Coinbase)

⋅ Tick-level trade match
data (Coinbase)

⋅ Recurrent Neural Net-
work (RNN)

⋅ Feedforward Neural
Network

⋅ Trading simulation

Working paper; present-
ed at the University of
Edinburgh’s Economics
of Financial Technology
Conference 2023

Table 1.1: Overview of dissertation articles.
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would penalize the prediction loss twice as hard when the actual return is 1% than when it is
5%. In doing so, we analyze both a binary weight function that only knows the maximum and
minimum penalties, and a sigmoid weight function that continuously distributes weights.

We test ourmodel based on LSTM, a deep learning algorithm proven suitable for return pre-
diction problems (Fischer and Krauss, 2018; Fabbri and Moro, 2018; Borovkova and Tsiamas,
2019; Flori and Regoli, 2021; Chen et al., 2022), and benchmark it against loss-neutral models
and short-term reversal signals as suggested by Jiang et al. (2022). Using a test sample of U.S.
stock returns between 1990 and 2021, we draw the following conclusions: Loss-averse LSTMs
underpredict (overpredict) rather than overpredict (underpredict) positive (negative) returns,
and investors are less likely to face situations in which their realized portfolio return is lower
than predicted. Portfolio performance improves for prediction time scales between one day
and one month, as loss-averse LSTMs extract new, unique signals that contain predictive in-
formation superior to reversal signals. Moreover, the loss function contributes positively to
portfolio returns throughout changing market sentiments, even after accounting for trading
cost and common institutional and retail investor constraints.

In order to identify drivers of the model’s superior performance, we compare return predic-
tions of loss-neutral LSTMs with those of loss-averse LSTMs. The loss-averse LSTM delivers
more conservative predictions as the distribution of predictions is narrower, i.e., fewer very
high and very low predictions occur. In a scenario where standard LSTMs produce more
overpredictions than underpredictions, a loss-averse loss function improves the network’s
approximation of the market. As we find empirical evidence of standard LSTMs’ tendency to
overpredict (underpredict) positive (negative) returns, we conclude that teaching a model to
predict returns more conservatively provides a better approximation of the market.

1.3.2 Intelligent Inventory Management for Cryptocurrency Brokers2

Christopher Felder and Johannes Seemüller

Internalization—a practice whereby brokers execute retail orders internally against their own
book instead of routing them to an exchange (Grammig and Theissen, 2012)—is the primary
executionmodality for retail orders in securities trading (Fox et al., 2019; Barardehi et al., 2022;
Comerton-Forde et al., 2018). Trading against retail order flow pays off for brokers as retail
investors are less informed (Chakravarty, 2001; Linnainmaa, 2010), but can be as profitable
for customers since internalized trades typically receive price improvements that “compensate
the market for the liquidity lost” through internalization (Kumpan, 2006).

A special type of internalization is internal order matching (Battalio and Loughran, 2008;
Challet et al., 2018), sometimes called order netting (Hagerty and McDonald, 1996; Schwartz
et al., 2005; Francioni and Schwartz, 2008), where the broker internally matches buy and sell
order flow, saving the bid-ask spread without trading against one side of the market. In doing
so, the broker stores orders in inventory for which she expects contrary orders in the future
and sends all other orders to an exchange. This segmentation is not straightforward, however,
as orders arrive asynchronously, and if she cannot internally match an order from inventory
until its settlement is due, she must reroute it to an exchange at possibly worse prices. If she
had knowledge about the future, she could store only orders actually covered by future order
flow in inventory and send all other orders to an exchange, but in practice she does not.

2Parts of this work have been published in Felder and Seemüller (2022). © 2022 ACM
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Brokers must therefore trade off between high internal matching, with higher profit mar-
gins but greater price risk of the inventory, and low internal matching, with lower margins
but reduced price risk. To this end, we present a prediction-based model of retail order seg-
mentation for internal order matching. Upon receiving an order that cannot be immediately
executed against open positions in inventory, the model predicts whether future order flow
will be sufficient to neutralize the order before its settlement date, thereby assisting the broker
in deciding whether to hold it in inventory or route it to an exchange for immediate execution.

Using the historical order flow of the German cryptocurrency broker BISON as an example,
we first determine the maximum proportion of each order that a broker could have matched
internally given a two-day settlement cycle. On average, 85% of retail order volume is fol-
lowed by contrary order volume within two days. Consequently, retail brokers can execute
a maximum of 85% of order volume by internally matching buy and sell order flows. Next,
we analyze market and order flow dynamics as a function of that maximum proportion and
derive five predictors of internal order matches, which are the order flow imbalance, average
order volume, total trade volume, high-low price range, and one-minute price changes.

Based on these predictors, a feedforward neural network correctly predicts around nine out
of ten internal order matches, allowing us to internally match three-quarters of order volume.
Internally matched orders are largely characterized by small order volume and an average
volatile market environment with marginal order flow imbalance. Predictive performance
is best during volatile and trading-intensive periods, which pays off disproportionately for
brokers and customers, as these periods are associated with large spreads. In a scenario where
customers and brokers share the realized cost savings equally, effective spreads lower by 35%.
Accordingly, the results support the theory of cost savings, consistent with empirical (Battalio,
1997; Hansch et al., 1999; Battalio et al., 2001; Peterson and Sirri, 2003; Grammig and Theissen,
2012) and theoretical (Battalio and Loughran, 2008; Degryse et al., 2022) studies of execution
costs for internalized trades, and thus suggest a potential improvement in market quality.

1.3.3 Prediction-based Limit Order Trading

Christopher Felder

Market makers are firms that continuously offer buy and sell prices for a specific asset on the
exchange by placing limit orders on both sides of the order book, thus providing liquidity to
the market. The market making business model aims to repeatedly earn the spread between
buy and sell quotes by simultaneously buying and selling the asset without accumulating a
large net position, and is subject to a trade-off between high trade volume with low margins
and low volume with high margins: Wide spreads lead to high margins but less volume, while
dealers with tight spreads trade frequently but at unfavorable prices (Guéant, 2017). Market
making is associated with several risks, including inventory risk arising from the stochastic
behavior of the firm’s net position in the traded asset and adverse selection risk arising from
limit order trading with informed traders (Frey and Grammig, 2008).

Most limit order models presented so far focus on managing inventory risk (Avellaneda
and Stoikov, 2008; Guéant et al., 2013; Cartea and Jaimungal, 2013; Guilbaud and Pham, 2013;
Cartea et al., 2014; Bayraktar and Ludkovski, 2014; Guéant, 2017; Ahuja et al., 2017) and build
on the assumption that market orders follow a stochastic process. However, there are numer-
ous studies providing empirical evidence of mid price predictability from the limit order book
(LOB) (Cao et al., 2009; Zheng et al., 2013; Cont et al., 2014; Kercheval and Zhang, 2015; Tsan-
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tekidis et al., 2017; Dixon, 2018a; Zhang et al., 2019; Tsantekidis et al., 2020). Inspired by these
findings, I present a limit order model that assumes that market order flow is predictable,
and helps to both reduce inventory and adverse selection risks and overcome the trade-off
between volume and margin by integrating trade flow forecasts into limit order trading.

Based on historical LOB and trade data of cryptocurrency pairs at the Coinbase exchange,
I model buyer- and seller-initiated trades separately using RNN and predict how large trades
will be during the next five seconds relative to the trades of the previous 24 hours. Next, I
adjust limit order prices to these predictions in two ways: First, if the model predicts large
(small) trades, I increase (decrease) the depth of orders in the LOB, i.e., post orders deeper
(closer) in the LOB. For instance, when predicting large buy orders and small sell orders, I
increase both the ask and bid price tomaximize the potentially captured spread on the ask side
and increase the chance of being consumed on the bid side. Second, I shift the reservation price
to protect against the anticipated price movement derived from the imbalance between the
predictions for buy and sell trade sizes. Hence, when anticipating a price increase (decline),
I shift the reservation price up (down) to protect from being adversely selected by informed
buyers (sellers) and participate in the price increase (decline) through long (short) exposure. In
analyzing the impact of the two adjustments on P&L, I find that there is an empirical optimum
of sensitivity to predictions, stating that one should be twice as sensitive to predictions when
adjusting quotes to relative trade sizes thanwhen adjusting them to adverse price movements.

A trading simulation reports improved P&L over the Avellaneda and Stoikov (2008) model,
but this improvement also comes with higher risk and depends on market dynamics. As
two main contributors to P&L, I identify (1) higher market making revenues due to larger
spreads earned especially when the order book is less liquid, and (2) reduced adverse selection
costs by preempting adverse price movements, with the cost reduction being proportional to
the magnitude of the adverse price movement. Accordingly, the model provides an effective
approach to both overcoming the trade-off between volume and margin and reducing adverse
selection cost by taking trade flow forecasts into account when deciding whether the market
maker can afford a wider spread to increase profitability, while controlling inventory risk.

1.4 Conclusion

Trading mechanisms and exchanges undergo constant transformation along with current
technological advances. Following computerization in the past century, the last two decades
have been dedicated to quantification, algorithmization, and acceleration of trading. Today,
algorithmic trading makes up the majority of securities trading (Cartea and Jaimungal, 2013).
The next transformation will be the adoption of algorithmic trading by machine learning
(OECD, 2021), fostered by the increasing availability of computing and data storage capaci-
ties. Yet, despite convincing experimental results, practitioners have so far been reluctant to
implement fully automated machine learning-based trade execution systems, fearing the risk
of unforeseen changes in market conditions and relying instead on the symbiosis of humans,
rule sets, and machines (Dalio, 2017; Beverungen and Lange, 2018; Pozen and Ruane, 2019).

A key task for the future of algorithmic trading is therefore to develop machine learning
algorithms that are optimized for trading purposes along the entire trade life cycle and robust
to changing market conditions such that they do not require human monitoring anymore.
From this task, I establish two research questions: (1) How can machine learning algorithms
be optimized for algorithmic trading? (2) What do these optimized algorithms learn and what
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is their advantage over traditional rule-based models?
The aim of the dissertation is to provide machine learning concepts for algorithmic trading

that model financial markets in a trading-optimized manner, thereby eliminating the need
for human or rule supervision. In three articles, I present novel approaches to adapt ma-
chine learning algorithms to securities trading that manage the entire trade life cycle—from
investment decision to trade execution and settlement—better than rule-based strategies. My
approaches focus on tailoring loss functions used during the learning process (article 1), data
representations, and target variables (articles 2, 3) to firms’ trading objectives.

Each article deals with a specific stage of the trade life cycle. The first article relates to
the investment decision stage and shows that incorporating loss aversion into return predic-
tion improves investment decisions compared to a loss-neutral algorithm. The second article
focuses on trade execution at the retail level and introduces an innovative representation of
the relationship between buyer and seller overhangs that helps retail brokers optimize trade
execution and improves market quality. The third article is located in trade execution at the
wholesale level and integrates trade flow forecasting into limit order trading, allowing mar-
ket makers to reduce adverse selection cost over rule-based strategies. Thus, aligning market
data representations or loss functions with firms’ trading objectives such as (1) loss aversion,
(2) neutralization of open positions within a particular period, or (3) anticipation of market
movements, can help machine learning algorithms to better adapt to algorithmic trading.
The main contributions of my work are methods for modeling the market tailored to firms’
individual trading objectives, which allow firms to mitigate the trade-off between automation
and robustness, and empirical evidence of their advantages over traditional rule-based trading
strategies for both directional traders and market makers.

The dissertation is contributing to the ongoing shift away from rule-based algorithms to
machine learning algorithms for algorithmic trading. However, there is still a long way to go
before machine learning fully takes over algorithmic trading (Beverungen and Lange, 2018).
The transformation may take many years or even decades, and this dissertation can only
provide impetus for possible directions that researchers and practitioners can take toward
that transformation. A key challenge for financial research will be to reliably evaluate the
performance of trading algorithms: Every trade, every order submitted, affects other market
participants, which cannot be accounted for in an empirical analysis such as this dissertation,
but can only be measured in a live trading environment. The dissertation can therefore be
seen as one building block of many to ultimately accomplish the transformation and attain
fully automated self-learning trading systems suitable for practice.

In summary, this dissertation develops three machine learning concepts for algorithmic
trading: A loss-averse prediction model of the stock market, a dynamic representation of
retail order flow imbalance, and a high-frequency model of buyer- and seller-initiated trades.
All three articles provide empirical evidence that these concepts could be advantageous over
traditional rule-based models for all market participants and market quality. With my work,
I hope to advance the transition to intelligent trading algorithms and motivate practitioners
and researchers to conduct further experiments on embedding algorithmic trading inmachine
learning techniques.
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2 Return Prediction with Deep Learning under Loss Aversion3

Christopher Felder and Stefan Mayer

Abstract

In finance, researchers typically use standard loss functions such as mean squared error
when training artificial neural networks for return prediction. However, prospect theory
suggests that people are more sensitive to losses than gains. Thus, investors might assess
overprediction differently than underprediction of portfolio returns. We present a loss
function designed for loss-averse investors and test it based on Long Short-Term Memory
(LSTM) models. Our model learns unique signals, predicts returns more cautiously, and
improves profit chances over the standard LSTM and reversal signals. Daily and weekly
revised portfolios achieve on average five percentage points higher annualized returns.
We show that our loss function is robust to market sentiment and beneficial in nonlinear
optimization.

Keywords: Time series analysis, Loss function, Return prediction, Prospect theory.

JEL classification: C45, C55, C58, G11, G12, G17.

3A previous version of this article has been published in Felder and Mayer (2022). Relevant paragraphs, tables,
and figures are reprinted with permission. ©2022 IEEE
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2.1 Introduction

An extensive literature examines trend-based return predictability and identifies numerous
predictors widely used in practice (Sullivan et al., 1999; Bajgrowicz and Scaillet, 2012; Jiang
et al., 2022). In recent years, dynamic machine learning approaches have revolutionized tech-
nical analysis. One powerful deep learning tool well suited for time series problems is the
Long Short-Term Memory (LSTM) proven successful in many return prediction problems,
see Fischer and Krauss (2018), Fabbri and Moro (2018), Borovkova and Tsiamas (2019), Chen
et al. (2022), Flori and Regoli (2021)—to name a few.

We reconsider return prediction with LSTM from a behavioral perspective and link the op-
timization problem to prospect theory (Kahneman and Tversky, 1979). Under prospect theory,
people assess potential losses and gains asymmetrically when making decisions, contradict-
ing with the expected-utility framework. One feature of prospect theory is loss aversion
(Tversky and Kahneman, 1992), explaining that people perceive losses greater than equiva-
lent gains and, e.g., tend to reject 50:50 bets to win $110 or lose $100. Correspondingly, an
investor predicting a portfolio return of 5%would be severely disappointed if the actual return
was 3%, but would be satisfied if the actual return was 7%. Standard optimization techniques
handle those two prediction errors equally, and both the positive and negative errors receive
the same penalty, even though the investor financially suffers from only one error.

We propose a loss function distinguishing between ‘good’ and ‘bad’ prediction losses.
‘Good’ losses occur when the predicted portfolio return is lower than the realized return,
‘bad’ losses describe the opposite case. The economic objective is to minimize both ‘good’
and ‘bad’ prediction losses, with ‘good’ losses preferred over ‘bad’ losses. Our framework
is based on a weighted mean squared error, where the weight is a function of the loss type.
Motivated by Tversky and Kahneman (1992), who show that people are twice as sensitive to
losses as they are to gains, we allow the weight to penalize ‘bad’ losses up to twice as hard as
‘good’ losses. Applied to our previous example, we would penalize the prediction error twice
as hard when the realized return is 3% than when it is 7%. We discuss a binary weight function
that only knows the maximum and minimum penalties, and a sigmoid weight function that
distributes weights continuously between the maximum and minimum penalties.

We benchmark our new approach with a standard LSTM as well as short-term reversal, one
of the most popular and robust trend-based predictors proven competitive with deep learning
(Jiang et al., 2022), whose signals are probably similar to LSTM signals (Fischer and Krauss,
2018; Chen et al., 2022; Gu et al., 2020). We arrive at five findings: First, the loss-averse
LSTMs underpredict positive returns rather than overpredict them. Investors are less likely
to face situations in which the realized portfolio return is lower than the predicted return.
Second, we report improved portfolio performance when tested for different prediction hori-
zons. Third, in addition to well-known reversal signals, we extract new unique signals that
contain superior predictive information. Fourth, an investor benefits from the loss functions
in the nonlinear environment of the LSTM. Fifth, our loss function contributes positively to
portfolio returns throughout changing market sentiments.

The remainder of this article proceeds as follows. Section 2.2 introduces to LSTM networks,
Section 2.3 discusses intersections between reversal and LSTM signals, Section 2.4 embeds our
research in the current state of literature, and Section 2.5 derives a trading-customized loss
function. In Section 2.6 we discuss our empirical results for daily U.S. stock returns, whereas
Section 2.7 reviews the benefits of the loss function and Section 2.8 concludes.
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2.2 LSTM networks

2.2.1 The Long Short-Term Memory architecture

The LSTM4 is an artificial recurrent neural network architecture introduced by Hochreiter
and Schmidhuber (1997). While traditional feedforward neural networks are unable to ex-
tract temporally encoded information from time series data, recurrent neural networks use
time components based on feedback connections with neurons of the same or previous layers
(Rumelhart et al., 1986a,b). A hidden state transfers information across time steps and fa-
cilitates stepwise processing of entire sequences to connect information between time steps.
However, Bengio et al. (1994) and Hochreiter (1998) discuss that conventional recurrent net-
works suffer from short-term memory in practice. The longer the time gap between the
occurrence of an information and when we need it, the less able recurrent networks are to
remember and link the information, thereby forgetting information far in the past and focus-
ing on the most recent information (see also Section 4.4.2). Technically, the problem arises
from the fact that gradients used to update the network parameters shrink over time and do
not contribute to learning anymore (Hochreiter, 1998; Hochreiter et al., 2001).

LSTMs overcome these deficits by using two different states of memory: The cell state 𝑠
serves as a long-termmemory and carries all information learned in the past when processing
a sequence. The hidden state ℎ serves as short-termmemory and carries the cell state adapted
to the information from the recent steps. Instead of updating all parameters at each step of
the sequence, multiple layers acting as gates protect the cell state from unnecessary updates.
Thus, information far in the past survives, but relevant new information still can remove or
update cell knowledge. A gate is a mechanism to filter information before passing it to the
state, consisting of a logistic layer that determines which information to pass and a multi-
plication operation with the vector of information. A value of 0 (1) indicates that we should
forget (keep) all of the component’s information, whereas values between 0 and 1 indicate
that we should keep specific parts of the information.

An LSTM cell has three gates: The forget gate 𝑓 decides which information from the pre-
vious cell state to forget, the input gate 𝑖 updates the cell state with new information, and the
output gate 𝑜 generates the new hidden state. Figure 2.1 illustrates an LSTM cell at time 𝑡 ,
where the inputs to the cell are the vector of cell states 𝑠𝑡−1, the vector of hidden states ℎ𝑡−1,
and the vector of elements of the current input sequence 𝑥𝑡 .

Each of the gates processes the input information one after another. First, the forget gate
processes vectors ℎ𝑡−1 and 𝑥𝑡 through a logistic layer 𝜎 and determines which components
of 𝑠𝑡−1 to remove. The output of the forget gate at time step 𝑡 is a vector 𝑓𝑡 that contains
activation values for each element in 𝑠𝑡−1. 𝑓𝑡 is defined by

𝑓𝑡 = 𝜎 (𝑤𝑓 ,𝑥 ⋅ 𝑥𝑡 + 𝑤𝑓 ,ℎ ⋅ ℎ𝑡−1 + 𝑏𝑓) (2.1)

where𝑤𝑓 depicts the weight matrix and 𝑏𝑓 depicts the bias vector. When later computing the
new cell state in equation (2.4), we use element-wise multiplication (∘) of 𝑓𝑡 by 𝑠𝑡−1 to activate
those elements in the cell state 𝑠𝑡−1 that the layer decides to remove.

Second, the input gate uses the weight matrix 𝑤𝑖 and the bias vector 𝑏𝑖 to control that only
the necessary information from ℎ𝑡−1 and 𝑥𝑡 will pass to the cell state. The output of the input

4Section 2.2.1 describes the functionality of LSTMs following Olah (2015), Fischer and Krauss (2018), Aggarwal
et al. (2018), Graves (2013), Brownlee (2017), Karpathy (2015), Zhao et al. (2017), and Sherstinsky (2020).
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Figure 2.1: Structure of an LSTM cell following Olah (2015) with cell state 𝑠, hidden state ℎ, forget gate
𝑓 (black), input gate 𝑖 (red), and output gate 𝑜 (green) at time 𝑡 . Rectangles denote neural network layers,
circles are element-wise operations.

gate at time step 𝑡 is a vector of activation values, 𝑖𝑡 , that is defined by

𝑖𝑡 = 𝜎 (𝑤𝑖,𝑥 ⋅ 𝑥𝑡 + 𝑤𝑖,ℎ ⋅ ℎ𝑡−1 + 𝑏𝑖) (2.2)

and contains values between 0 and 1 that activate elements of ℎ𝑡−1 and 𝑥𝑡 according to their
relevance for the cell state. In a parallel operation, a 𝑡𝑎𝑛ℎ layer computes the information from
the input vectors ℎ𝑡−1 and 𝑥𝑡 that we potentially could add to the cell state. Accordingly, we
calculate the vector of these candidate values ̃𝑐𝑡 at time step 𝑡 by

̃𝑐𝑡 = 𝑡𝑎𝑛ℎ (𝑤 ̃𝑐,𝑥 ⋅ 𝑥𝑡 + 𝑤 ̃𝑐,ℎ ⋅ ℎ𝑡−1 + 𝑏 ̃𝑐) (2.3)

where the weight matrix 𝑤 ̃𝑐 and the bias vector 𝑏 ̃𝑐 highlight the important information in
ℎ𝑡−1 and 𝑥𝑡 when adding to the cell state. In contrast to the sigmoid function, 𝑡𝑎𝑛ℎ scales the
input information to a range between −1 and 1, thereby avoiding that signals disappear when
multiplied by zero. Now, the new cell state 𝑠𝑡 equals the sum of ̃𝑐𝑡 scaled by the input gate’s
activation values 𝑖𝑡 and the information from 𝑠𝑡−1 that survived the forget gate:

𝑠𝑡 = 𝑓𝑡 ∘ 𝑠𝑡−1 + 𝑖𝑡 ∘ ̃𝑐𝑡 . (2.4)

Third, the output gate 𝑜 manages the information flow to the hidden state through the weight
matrix 𝑤𝑜 and the bias vector 𝑏𝑜 . Analogous to equations (2.1) and (2.2), we calculate the
activation values of the output gate, 𝑜𝑡 , by

𝑜𝑡 = 𝜎 (𝑤𝑜,𝑥 ⋅ 𝑥𝑡 + 𝑤𝑜,ℎ ⋅ ℎ𝑡−1 + 𝑏𝑜) (2.5)

determining which information from the inputs ℎ𝑡−1 and 𝑥𝑡 to pass to the new hidden state
ℎ𝑡 . Finally, we compute the LSTM layer’s new hidden state output by

ℎ𝑡 = 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ (𝑠𝑡) (2.6)

where a 𝑡𝑎𝑛ℎ operation for the current cell state 𝑠𝑡 ensures that no important information
gets lost. Thus, the new hidden state output is the cell state vector 𝑠𝑡 filtered by the important
short-term information carried by ℎ𝑡−1 and 𝑥𝑡 .
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2.2.2 Network configuration

We propose an LSTM network that processes one-day returns on stock 𝑗 and one-day returns
on the market portfolio𝑚. Our approximation to the market portfolio is an equally weighted
portfolio holding the S&P 500 and the Nasdaq Composite. We follow Fischer and Krauss
(2018) and calculate the one-day return on asset 𝑗 on day 𝑡 based on the closing price 𝑝 by

𝑟𝑗,𝑡 =
𝑝𝑗,𝑡
𝑝𝑗,𝑡−1

− 1. (2.7)

Figure 2.2 illustrates the architecture of our network, comprising an input layer with two fea-
tures (𝑟𝑗,𝑡 , 𝑟𝑚,𝑡 ) and 60 days time dimension, one single hidden layer with 32 LSTM cells and
a one-node dense output layer (𝑟𝑗,𝑡 ), which is similar to Fischer and Krauss (2018) and Flori
and Regoli (2021). The time dimension varies by researchers from five to 60 days in Jiang
et al. (2022) up to one year in Flori and Regoli (2021). We choose a sequence length of 60 days,
accounting for the fact that LSTMs retrieve the most important information from recent time
steps. At market close on day 𝑡 , the network processes the sequence [𝑟𝑗,𝑡−59, 𝑟𝑚,𝑡−59, 𝑟𝑗,𝑡−58,
𝑟𝑚,𝑡−58, ..., 𝑟𝑗,𝑡 , 𝑟𝑚,𝑡 ] and predicts the next one-day stock return, 𝑟𝑗,𝑡+1. Strictly speaking, it is
not possible to consider the closing price to predict the next one-day return and simultane-
ously buy or sell at the same closing price. Accordingly, we consider the closing price as an
approximation of the last market price prior to market close used to deliver a prediction.

We regularize training in three ways. First, we prohibit cell states from communicating
across training batches. In a stateful LSTM,memory transfers information between sequences
of different batches so that states persist for a full training epoch. Our stateless configura-
tion allows states to transfer information between sequences of the same batch, but resets
memory after one batch. Second, we allow the network to shuffle samples within batches
to ensure generalizability across batches. Batches thus contain randomly picked sequences
from different shares at different time points. Third, we apply model averaging using dropout
(Srivastava et al., 2014). Dropout randomly ignores a certain fraction of neurons in hidden

𝑚,𝑡−59 𝑚,𝑡−58 𝑚,

,𝑡−59 ,𝑡−58 ,

One-day stock returns

One-day market returns

Input layer
2 input variables

Hidden layer
32 LSTM cells

Output layer
1 output variable

, +1

60 days time dimension LSTM1

.

.

.

LSTM2

LSTM32

One-day stock return

Figure 2.2: LSTM network architecture comprising two input variables (𝑟𝑗 , 𝑟𝑚) with 60 days time dimension,
one single hidden layer with 32 LSTM cells, and a one-node dense output layer.
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and visible layers. Motivated by Fischer and Krauss (2018) who implement a dropout ratio
of 10% and Jiang et al. (2022) who use 50% dropout, we use a dropout ratio of 30%. For the
optimization, we use stochastic gradient descent with an initial learning rate of 0.001 and a
batch size of 8. The activation function on the hidden units is the hyperbolic tangent. Sim-
ilar to Fischer and Krauss (2018), we train our models using keras (Chollet et al., 2015) and
Google’s TensorFlow (Abadi et al., 2015). The training runs for 50 epochs.

2.3 Short-term reversal signals

A well-known trend phenomenon is short-term reversal. Stocks with relatively poor (strong)
performance in a previous short-term period, e.g., one month, are likely to produce positive
(negative) abnormal returns in the following period (Fama, 1965; Jegadeesh, 1990; Lehmann,
1990; Jegadeesh and Titman, 1993). According to Flori and Regoli (2021), among the most
common explanations are investor behavioral bias leading to over- or underreaction to news
events (Jegadeesh and Titman, 1995; Subrahmanyam, 2005; Lehmann, 1990), and size (Lo and
MacKinlay, 1990; Boudoukh et al., 1994) and liquidity effects (Avramov et al., 2006; Chordia
et al., 2002), which foster reversal patterns for small, illiquid shares. Research on reversal
phenomena assumes that past performances may affect investors’ future trading behavior
and thus contain predictive signals for future returns, thereby contradicting with the efficient
market hypothesis by Fama (1970), which states that returns are stochastic and unpredictable.

Many studies document a close relationship between reversal signals and LSTM signals. In
Fischer and Krauss (2018), LSTMs buy (sell) stocks that previously exhibited sharp declining
(increasing) returns. Other researchers employ LSTMs utilizing reversal patterns (Flori and
Regoli, 2021) and point out that LSTMs extract the most important information from short-
term reversal signals (Chen et al., 2022; Gu et al., 2020). Besides, there are also studies claiming
that signals have less in common (Guijarro-Ordonez et al., 2021). Another well-documented
trend signal is momentum (Jegadeesh and Titman, 1993). Since LSTMs do not extract momen-
tum signals (Fischer and Krauss, 2018) and momentum portfolio returns are less competitive
with LSTMs (Jiang et al., 2022), we choose to limit our financial benchmark to reversal.

We follow Jiang et al. (2022) and benchmark our model against month reversal (𝑀𝑅) and
week reversal (𝑊𝑅), which consider the returns achieved in the last month and week, re-
spectively. Additionally, we include the midweek reversal (𝑀𝑊𝑅) that focuses on returns
achieved in the last two days. We calculate returns following equation (2.7), replacing the
reference price 𝑝𝑗,𝑡−1 with the closing price one month (𝑀𝑅), one week (𝑊𝑅) or two trading
days (𝑀𝑊𝑅) ago. A reversal strategy buys (sells) the shares with the most negative (positive)
returns in the previous period.

2.4 Related work

We build our methodology on Fischer and Krauss (2018) and Jiang et al. (2022), both of which
have analyzed a U.S. stock sample similar to ours. While Fischer and Krauss (2018) focus on
return classification and compare LSTMs to memory-free methods, Jiang et al. (2022) use con-
volutional neural networks and document improvements in prediction quality and portfolio
performance over 𝑊𝑅 and 𝑀𝑅. Our motivation stems from Avramov et al. (2023), who dis-
cuss that the return prediction power of LSTMs weakens when taking into account investor
constraints, such as excluding micro caps, distressed firms or firms with poor credit ratings.
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Literature widely debates the reliability of trend analysis. While Sullivan et al. (1999) and
Bajgrowicz and Scaillet (2012) doubt significant benefit of technical trading rules, Brock et al.
(1992) and Lo et al. (2000) present evidence for predictive information in some trading sig-
nals (Jiang et al., 2022). Although the invention of LSTM dates back more than two decades,
with the increasing availability of computational power and data, financial research on trend
analysis has discovered LSTM-driven approaches to model time series data only a few years
ago (Chen et al., 2015). The literature discusses return predictions with LSTMs that disen-
tangle technical trading indicators (Bao et al., 2017; Sang and Di Pierro, 2019), process high-
frequency data (Borovkova and Tsiamas, 2019; Nelson et al., 2017), improve prediction quality
over ARIMA or feedforward neural networks (Fabbri and Moro, 2018; Siami-Namini et al.,
2018), detect buy and sell signals from market data (Fischer and Krauss, 2018; Troiano et al.,
2018), model the stochastic discount factor and explore economic state processes (Chen et al.,
2022), trace reversal patterns in pairs trading (Flori and Regoli, 2021), and include additional
layers with attention mechanisms (Qiu et al., 2020).

Besides, our work addresses studies of prospect theory and loss aversion in financial market
modeling. To date, behavioral research studies investigate the impact of loss aversion on
return predictability (Barberis et al., 2001), the predictive power of prospect theory values for
stock returns (Barberis et al., 2016), asset prices and trade volume under prospect theory (Li
and Yang, 2013), implications of loss aversion for asset prices (Yang, 2019), and the level of
loss aversion implied by historical stock returns (Berkelaar et al., 2004).

We contribute to both research disciplines with a novel approach that links the optimization
problem of return prediction to the behavioral characteristics of trading. Recent literature
debates approaches that regard the optimization problem from a market perspective, e.g., by
weighting prediction errors by market capitalization (Gu et al., 2020) or by the length of the
observation period (Chen et al., 2022). We show that considering the optimization problem
from a behavioral perspective provides investors with more cautious return predictions and
thus adapts to investors’ loss aversion. Thus, although not explicitly addressing this question,
our work also comes in the wake of recent debates about whether investors are loss-averse at
all or whether loss aversion under prospect theory is a result of sampling biases in favor of
individuals with high cognitive ability (Chapman et al., 2022).

2.5 A loss-averse loss function

As part of the optimization algorithm, the loss function used to train a deep neural network
plays a pivotal role: The loss of a prediction determines by how much the network adjusts
the weights to reduce the loss of the next prediction. Large losses are associated with large
adjustments, small losses are associated with small adjustments. Our goal is to make the loss
function distinguish between positive and negative prediction errors and force the network
adjust weights more when realized returns are lower than predicted.

In practice, where investors can both buy and short shares, there are four cases of prediction
losses. We assume an investor who buys shares with a positive return prediction ( ̂𝑟𝑗,𝑡 > 0) and
short-sells shares with a negative return prediction ( ̂𝑟𝑗,𝑡 < 0). The prediction error is ̂𝑟𝑗,𝑡 − 𝑟𝑗,𝑡 .
Figure 2.3 illustrates the change in returns on portfolio 𝑝, 𝑟𝑝,𝑡 , as a function of the loss type
for long and short investments. Prediction errors in quadrants II and IV are associated with
increasing portfolio returns: In the case of a long (short) position, investors would be happy
to see a negative (positive) prediction error because the portfolio return increases unexpect-
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Figure 2.3: Change in portfolio returns 𝑟𝑝,𝑡 by prediction loss type in the range [−1, 1]. Quadrants I and II
(III and IV) represent a positive (negative) return prediction error. Red (black) quadrants indicate decreased
(increased) portfolio returns 𝑟𝑝,𝑡 in response to `bad' (`good') prediction errors. © 2022 IEEE

edly, thereby financially benefiting from this ‘good’ prediction error. In quadrants I and III,
the investor faces unexpectedly lower portfolio returns (‘bad’ errors) resulting from a return
overprediction (underprediction) for a long (short) position.

We use the term ‘unexpected portfolio loss’ to describe a situation in which the realized
portfolio return is less than the predicted portfolio return, but can still be positive. For exam-
ple, a predicted return of 5% with a realized return of 3% means an unexpected loss of 2%. An
‘unexpected portfolio gain’ describes a situation where the realized return is greater than the
predicted return, i.e., the realized return on the portfolio is larger than predicted.

Next, we design a framework for a loss function capable to consider prediction losses ac-
cording to Figure 2.3 under prospect theory and loss aversion. Themost common loss function
for regression problems is the mean squared error (𝑀𝑆𝐸). The 𝑀𝑆𝐸 of a set of 𝑛 ⋅ 𝑧 return
predictions for 𝑛 shares and 𝑧 time steps is

𝑀𝑆𝐸 = 1
𝑛𝑧

𝑛
∑
𝑗=1

𝑧
∑
𝑡=1

( ̂𝑟𝑗,𝑡 − 𝑟𝑗,𝑡)
2 . (2.8)

Accordingly,𝑀𝑆𝐸 treats any prediction loss equally, regardless of the sign. In order to weight
prediction errors according to their loss type, we propose a weighted 𝑀𝑆𝐸 (𝑊𝑀𝑆𝐸) in the
style of Gu et al. (2020). We define 𝑊𝑀𝑆𝐸 by

𝑊𝑀𝑆𝐸 = 1
𝑛𝑧

𝑛
∑
𝑗=1

𝑧
∑
𝑡=1

𝑤 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡) ( ̂𝑟𝑗,𝑡 − 𝑟𝑗,𝑡)
2

(2.9)

where the weight 𝑤 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡) is a function of the loss type determined by ̂𝑟𝑗,𝑡 and 𝑟𝑗,𝑡 . To
comply with the properties of loss aversion (Kahneman and Tversky, 1979), 𝑤 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡)must
satisfy at least two requirements for 𝑊𝑀𝑆𝐸: First, 𝑊𝑀𝑆𝐸 should penalize small ‘bad’ errors
heavier than small ‘good’ errors. Second, large ‘bad’ errors should receive the maximum
weight, and large ‘good’ errors should receive the minimum weight.

Next, we configure the weight function according to prospect theory (Kahneman and Tver-
sky, 1979; Tversky and Kahneman, 1992). As outlined by Yang (2019), Tversky and Kahneman
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(1992) propose that people assess gains and losses by the value function

𝑣(𝜌) = {
𝜌 for 𝜌 ≥ 0

𝜆𝜌 for 𝜌 < 0 (2.10)

where 𝜆 > 1 controls for the degree of loss aversion and 𝜌 ≥ 0 (𝜌 < 0) indicates gains (losses).
The larger 𝜆, the larger the sensitivity to losses. Tversky and Kahneman (1992) show that,
empirically, people are more sensitive to losses than gains by a factor of two (𝜆 ≈ 2). We
follow Tversky and Kahneman (1992) and propose to weight prediction errors that lead to
unexpected portfolio losses twice as much as an error that leads to unexpected portfolio gains.
Hence, the numerical range for the minimum and maximum weights is 𝑤 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡) ∈ [1, 2].

Analogous to 𝑣(𝜌), we consider a binary weight distribution in the first step. A binary
weight function forces the model to distinguish exclusively between ‘bad’ and ‘good’ errors.
Small negative errors are penalized in the sameway as large negative errors, and the difference
in penalty between small positive and small negative errors equals the difference for large
positive versus large negative errors.

We define the binary weight function 𝑤𝑏𝑖𝑛 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡) by

𝑤𝑏𝑖𝑛 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡) = {
1.5 + 𝑠𝑔𝑛 ( ̂𝑟𝑗,𝑡) (0.5) for ̂𝑟𝑗,𝑡 − 𝑟𝑗,𝑡 ≥ 0
1.5 − 𝑠𝑔𝑛 ( ̂𝑟𝑗,𝑡) (0.5) for ̂𝑟𝑗,𝑡 − 𝑟𝑗,𝑡 < 0 (2.11)

where 𝑠𝑔𝑛 ( ̂𝑟𝑗,𝑡) is the signum function of the predicted return ̂𝑟𝑗,𝑡 that determines the type
of investment, taking −1 (resp. 1) for ̂𝑟𝑗,𝑡 < 0 (resp. ̂𝑟𝑗,𝑡 > 0) and 0 for ̂𝑟𝑗,𝑡 = 0. If ̂𝑟𝑗,𝑡 ≠ 0,
𝑤𝑏𝑖𝑛 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡) can only take 1 or 2. Thus, if the investor buys the security ( ̂𝑟𝑗,𝑡 > 0), the penalty
for a positive prediction error is 1.5+0.5 = 2 and for negative prediction errors 1.5−0.5 = 1. If
the investor short-sells the security, the penalty for a positive prediction error is 1.5 − 0.5 = 1.

Inspired by Kahneman and Tversky (1979), who present a value function that is concave for
gains and convex for losses, we additionally consider a continuous weight function, providing
a more economical understanding as small prediction losses have less impact on the portfolio
performance than large losses and thus may receive a smaller penalty. The model learns that
a large loss is worse than a small loss and penalizes very small positive losses similarly with
very small negative losses. We define the continuous weight function 𝑤 𝑙𝑜𝑔 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡) by

𝑤 𝑙𝑜𝑔 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡) =
1

1 + 𝑒−𝑠𝑔𝑛( ̂𝑟𝑗,𝑡)( ̂𝑟𝑗,𝑡−𝑟𝑗,𝑡)⋅100
+ 1. (2.12)

Since the prediction loss usually is a small percentage, we multiply it by 100 to accelerate the
impact of the weighting. Figure 2.4 illustrates the weights for prediction losses in the range
[−5%, 5%]. For example, if the investor is long, a prediction loss of 2% (−2%) receives a weight
of 1.88 (1.12), while a relatively small loss of 0.1% (−0.1%) receives a weight of 1.52 (1.48).

One might wonder how investors’ preference for prediction errors would affect a model’s
prediction quality. Our loss function aims to deliver more conservative return predictions,
i.e., to narrow the distribution of return predictions. In a scenario where overpredictions
(underpredictions) exceed underpredictions (overpredictions) for positive (negative) returns,
using the loss-averse loss function instead could improve the network’s approximation of
the market over the standard LSTM. As Table 2.1 and Figures 2.5 and 2.9 present empirical
evidence that standard LSTMs indeed overpredict (underpredict) positive (negative) returns
on average, we conclude that teaching a network to predict returns more conservatively can
provide a better approximation of the market.
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Figure 2.4: Logistic weight function 𝑤 𝑙𝑜𝑔 ( ̂𝑟𝑗,𝑡 , 𝑟𝑗,𝑡) for prediction errors ̂𝑟𝑗,𝑡 − 𝑟𝑗,𝑡 between −5% and 5%.
̂𝑟𝑗,𝑡 > 0 depicts a long investment (red), ̂𝑟𝑗,𝑡 < 0 depicts a short investment (black).

2.6 Prediction of U.S. stock returns

2.6.1 Data

We exploit the Refinitiv database5 for daily adjusted closing prices of U.S. stocks primarily
listed on NYSE or Nasdaq between 1990 and 2021. The set includes 9,289 shares from NYSE
and 6,841 shares from Nasdaq. Since we address our work to private investors, we require a
minimum market cap of $50 million to ensure liquidity and moderate transaction costs. As
proposed by LeCun et al. (2012), we standardize returns by subtracting the cross-sectional
mean of returns and dividing by the standard deviation prior to training the network.

We follow Jiang et al. (2022) and split the data set into a shorter period for training and
validation (1990 to 2004), with validation accounting for the last quarter of the period, and a
longer period for testing (2005 to 2021). Training a model once on the training data and then
testing it on the test data makes the model more general compared to retraining parameters
multiple times over rolling windows as in Fischer and Krauss (2018), but at the same time
may result in lower performance as the model cannot adapt as easily to short-term dynamics
(Jiang et al., 2022). An implicit assumption therefore is that the chosen test period is a suitable
test period for what the model has learned during the training period. We perform the data
split before sequencing the time series periods, i.e., no element of a sequence in one data set
appears in a sequence of another data set. The validation set serves to calibrate the network’s
hyperparameters such as the number of LSTM cells or the batch size (see Section 2.2.2).

2.6.2 Prediction quality

In order to assess the behavior of the network for long and short investments, we split the
test set into ̂𝑟𝑗,𝑡 ≤ 0 and ̂𝑟𝑗,𝑡 > 0 groups. Table 2.1 reports the average prediction errors
and the share of negative prediction errors for each group. LSTM𝑏𝑖𝑛 (LSTM𝑙𝑜𝑔 ) denotes the

5We download price data from Refinitiv by using the Refinitv Eikon software package, see https://www.refinitiv.
com/en/products/eikon-trading-software.
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Model ̂𝑟𝑗,𝑡 ≤ 0 ̂𝑟𝑗,𝑡 > 0 All
Average prediction error (%)

LSTM𝑏𝑖𝑛 −0.01 −0.07 −0.04
LSTM𝑙𝑜𝑔 0.08 0.03 0.05
LSTM𝑚𝑠𝑒 −0.02 0.18 0.08

Share of negative prediction errors
LSTM𝑏𝑖𝑛 0.50 0.51 0.50
LSTM𝑙𝑜𝑔 0.48 0.49 0.49
LSTM𝑚𝑠𝑒 0.49 0.47 0.48

Table 2.1: Prediction error metrics sorted by model and sign of the predicted return. The prediction error
is the difference between the predicted and realized return ( ̂𝑟𝑗,𝑡 − 𝑟𝑗,𝑡 ). © 2022 IEEE

LSTM trained with the𝑊𝑀𝑆𝐸 using the binary (logistic) weight function, whereas LSTM𝑚𝑠𝑒
represents the standard LSTM trained with the 𝑀𝑆𝐸.

In the loss-averse LSTMs, the average prediction errors are greater in the short position
than in the long position (−0.01 > −0.07 and 0.08 > 0.03), i.e., the models favor ‘good’ losses
when buying shares over ‘bad’ losses when selling shares. Moreover, the proportion of unex-
pected gains on long positions exceeds the proportion of unexpected losses on short positions
(0.51 > 0.50 and 0.49 > 0.48). In contrast, the average error of the𝑀𝑆𝐸 model is greater in the
long position than in the short position, resulting in larger unexpected losses on both types
of investments, and investors face relatively more ‘bad’ than ‘good’ losses.

As aggregated ratios do not tell us about the actual distribution of prediction errors, we
next examine the relationship between prediction errors and ̂𝑟𝑗,𝑡 . To this end, Figure 2.5 illus-
trates average prediction errors as a function of ̂𝑟𝑗,𝑡 percentile groups, with percentile group
1 (100) containing the 1% lowest (highest) ̂𝑟𝑗,𝑡 . The left chart in Figure 2.5 transfers the theo-
retical model from Figure 2.3 with exemplary values into a function of return predictions to
illustrate what the extreme scenarios—a prediction model with only ‘bad’ or with only ‘good’
losses—would look like. Assumed that the median return prediction is zero, i.e., predictions
are positive in the upper half of predictions and negative in the lower half, a prediction model
with only ‘bad’ (‘good’) losses generates only positive (negative) prediction errors for positive
return predictions and only negative (positive) errors for negative return predictions.

The right chart in Figure 2.5 demonstrates the error distribution of our empirical results
and shows that the loss-averse LSTMs largely squeeze prediction errors into quadrants II
and IV, and the ‘bad’ errors in quadrants I and III are small compared to the ‘good’ errors
in quadrants II and IV. The negative slope indicates the preference for ‘good’ errors in both
types of investments. The𝑀𝑆𝐸model has ‘bad’ errors in about three quarters of ̂𝑟𝑗,𝑡 percentile
groups. In particular, strong buy and strong sell classifications pose significant unexpected
losses. If compared with the left chart in Figure 2.5, the loss-averse models behave most
similarly to a prediction model with only ‘good’ losses, whereas the 𝑀𝑆𝐸 model is similar
to a prediction model with only ‘bad’ losses. In Appendix 2.A, we show that the total sum
of unexpected losses in all unexpected movements is at least eight times larger in the 𝑀𝑆𝐸
model than in the loss-averse strategies, which is due to the fact that the ‘bad’ losses in the
loss-averse strategies are relatively small compared to the ‘bad’ losses in the 𝑀𝑆𝐸 strategy.

Next, we convert our prediction task into a classification problem with buy ( ̂𝑟𝑗,𝑡 > 0) and
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Figure 2.5: Prediction errors as a function of ̂𝑟𝑗,𝑡 percentile groups. The left chart illustrates a prediction
model with only `good' losses, a prediction model with only `bad' losses, and a perfect prediction model
based on theoretical values. The right chart presents our empirical results. © 2022 IEEE

sell ( ̂𝑟𝑗,𝑡 < 0) signals. Accordingly, reversals classify shares with preceding negative (positive)
returns as buy (sell) class. Following the confusion matrix illustrated in Table 2.2, a true
positive (negative) classification is a buy (sell) classification followed by a positive (negative)
realized return, whereas a false positive (negative) classification is a buy (sell) classification
followed by a negative (positive) realized return.

Our prediction quality measure is the prediction accuracy 𝐴𝐶𝐶 , which determines the pro-
portion of true classifications in all classifications by

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2.13)

where 𝑇𝑃 (𝑇𝑁 ) indicates true positive (negative) classifications and 𝐹𝑃 (𝐹𝑁 ) indicates false
positive (negative) classifications (see Table 2.2).

Table 2.3 reports the prediction accuracy of the models. All models correctly classify more
than 50% of returns. The mean accuracy across all models is 52%, largely consistent with Jiang
et al. (2022). Our loss functions lead to a marginal improvement over the standard models6.

6It is important to note here that minor changes in accuracy are scalable for investors and can already provide
financial benefit. For example, in Jiang et al. (2022), each 0.5% increase in accuracy for monthly signals results in

Realized return Buy ( ̂𝑟𝑗,𝑡 > 0) Sell ( ̂𝑟𝑗,𝑡 < 0)
𝑟𝑗,𝑡 > 0 True positive (𝑇𝑃 ) False negative (𝐹𝑁 )
𝑟𝑗,𝑡 < 0 False positive (𝐹𝑃 ) True negative (𝑇𝑁 )

Table 2.2: Confusion matrix for the directional return classification problem.
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Model ACC Correlation
LSTM𝑏𝑖𝑛 52.24 4.49
LSTM𝑙𝑜𝑔 52.29 4.58
LSTM𝑚𝑠𝑒 52.17 4.35
𝑀𝑅 51.93 3.87
𝑊𝑅 52.16 4.33
𝑀𝑊𝑅 52.20 4.41

Table 2.3: Prediction accuracy and correlation. Correlation is the cross-sectional Pearson correlation be-
tween return classifications and subsequent realized returns. 𝑀𝑅 denotes the month reversal strategy,𝑊𝑅
denotes week reversal strategy, and 𝑀𝑊𝑅 denotes the midweek reversal strategy. All numbers denote in
percentage. © 2022 IEEE

In the right column, we also determine the cross-sectional correlation of signals and realized
returns. Most signals have a correlation of about 4% with subsequent realized returns, which
is slightly higher than in Jiang et al. (2022).

Finally, we follow Fischer and Krauss (2018) and employ the Diebold and Mariano (1995)
test, finding empirical evidence against the null that the difference between predictions of
the loss-averse LSTMs and the benchmark models is zero (all p-values < 0.05). Even when
adjusting the critical p-value to 0.00625 to control for multiple testing (Bonferroni correction),
we reject the null in seven out of eight tests. We conclude that our proposed loss function
provides investors with superior forecasts.

2.6.3 Decile portfolio analysis

Next, we follow Gu et al. (2020), Flori and Regoli (2021), Chen et al. (2022), Jiang et al. (2022),
and many other researchers and analyze portfolio performance based on signal deciles, where
signal decile 1 (10) comprises the lowest (highest) 10% of return predictions. Similarly, reversal
strategies assign the 10% shares with the most positive (negative) preceding returns to decile
1 (10). Accordingly, when correctly assigned, decile 1 has the lowest realized return and decile
10 has the highest realized return. Figure 2.6 illustrates realized daily returns and annualized
standard deviations as functions of ̂𝑟𝑗,𝑡 deciles.

Similar to Jiang et al. (2022), realized returns are slightly negative in the first signal decile
and positive in all other deciles, with an overall positive slope from decile 1 to decile 10.
While the loss-averse LSTMs show the steepest increases at the edge deciles that flatten out
around the median, the other models show steady to slightly increasing returns in the lower
percentiles and reflect a rather softly linear increase. Thus, our loss-averse LSTMs are most
superior in predicting large negative and large positive returns, whereas the differences in
signal decile 10 are relatively small compared to those in decile 1. Besides, the volatility curves
are U-shaped, consistent with Jiang et al. (2022). Edge portfolios are more risky compared to
portfolios with very small returns. The skewness towards the upper deciles indicates that
the portfolios with large positive returns are riskier than the portfolios with large negative
returns. Accordingly, Appendix 2.C illustrates that Sharpe Ratios (Sharpe, 1994) are similar
across strategies, with a marginal lead of the loss-averse LSTMs in the edge portfolios. Decile
10 produces a Sharpe Ratio of up to 0.84, which is slightly less than in Jiang et al. (2022).

a 0.1 increase in Sharpe Ratio.
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Figure 2.6: Average realized daily return (left) and annualized standard deviation (right) as functions of
signal ( ̂𝑟𝑗,𝑡 ) deciles. Decile 1 (10) comprises the lowest (highest) 10% of return predictions. The illustration
style follows Jiang et al. (2022). Note that for decile 10 in the left-hand chart, LSTM𝑙𝑜𝑔 covers 𝑊𝑅.

2.6.4 Long-short spread returns

Long-short spread returns are a widely used metric to measure the financial utility of return
forecasts (Fischer and Krauss, 2018; Jiang et al., 2022). We calculate long-short spread returns
as the difference between the equal-weighted realized returns of the highest 5% return pre-
dictions and the realized returns of the lowest 5% predictions. Table 2.4 shows the average
long-short spread returns before transaction costs and their risk characteristics. In addition,
we determine the statistical difference between the long-short spread returns and the returns
of a Buy & Hold strategy, which represents a long position in all shares in the dataset.

Table 2.4 illustrates that the loss-averse LSTMs provide investors with statistically signif-
icant long-short spread returns and superior Sharpe Ratios. For example, the binary LSTM
model generates an annualized return of 50% before transaction costs and a Sharpe Ratio of
1.6, beating all reversal strategies, whereas the 𝑀𝑆𝐸 model ranks in roughly the same per-
formance category as the week reversal. Overall, week reversal returns appear to be most
competitive with LSTM returns, consistent with Jiang et al. (2022). The risk metrics suggest
that the distributions of realized returns of the loss-averse LSTM may be advantageous com-
pared to the 𝑀𝑆𝐸 model and some reversal models. For example, the VaR1% of the binary
model is 7% smaller than that of the 𝑀𝑆𝐸 model. In terms of maximum drawdown, investors
do not benefit from the loss-averse LSTM models. The standard deviation is similar across all
models, resulting in higher Sharpe Ratios for the LSTMs given higher non-adjusted returns.
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Model LSTM𝑏𝑖𝑛 LSTM𝑙𝑜𝑔 LSTM𝑚𝑠𝑒 MR WR MWR
Av. daily return (%) 0.17∗∗∗ 0.15∗∗∗ 0.14∗∗ 0.10 0.13∗ 0.10
Annualized return 0.50 0.43 0.42 0.28 0.41 0.27
Sharpe Ratio 1.61 1.42 1.33 0.90 1.31 0.93
Standard deviation 0.24 0.23 0.24 0.25 0.24 0.22
Max. drawdown −0.50 −0.57 −0.46 −0.53 −0.35 −0.55
VaR1% (%) −3.66 −3.61 −3.94 −4.00 −3.89 −3.57
CVaR1% (%) −4.92 −5.20 −5.42 −5.61 −5.35 −5.10

Table 2.4: Average realized long-short spread returns between the highest 5% and lowest 5% return
predictions and their risk characteristics. Daily returns accompanied by ∗∗∗, ∗∗, ∗ are significantly different
from a Buy & Hold strategy at the 1%, 5%, 10% level (t-test). Returns disregard transaction cost.

Next, we explore long-short spread returns along the time axis. Figure 2.7 plots the average
daily long-short spread returns for each year of the test period. With few exceptions, the
loss-averse LSTMs (black and red markers) consistently achieve higher average daily returns
than the 𝑀𝑆𝐸 model (gray) and some reversal models. Reversals and LSTMs follow similar
patterns and tend to perform well (poorly) relative to the market represented by the Buy
& Hold strategy when others also perform well (poorly). It is also noticeable that a large
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Figure 2.7: Average daily realized long-short spread returns between the highest 5% and lowest 5% by
year. Returns are before transaction cost.
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portion of the returns generated occurs in years associated with high market volatility, e.g.,
2008 and 2009. One explanation could be that LSTMs follow reversal patterns (discussed in
Section 2.7.1) that are likely to be most pronounced during volatile periods with large over-
and underreactions by investors. If compared with the Buy & Hold strategy, we find that
LSTM and reversal strategies perform best (worst) during falling (rising) markets.

2.6.5 Investment case study

Our practice test discusses how beneficial our models are for private investors and whether
the loss function actually delivers on its promise to protect investors from unexpected losses.
Fama and French (2010) argue that active management pays off only when the portfolio con-
stantly outperforms the market after costs. In our investment study, we assume a private
investor who uses an online broker to trade shares every day at market close and pays $0.50
per trade and $0.004 per share traded. With most popular online brokers, private investors
can go both long and short in a matter of seconds at the same cost. We assume that the in-
vestor buys the 15 shares with the highest return predictions and shorts the 15 shares with
the lowest return predictions, with the shares being arbitrarily divisible. Similar to Section
2.6.4, we compare our models to a Buy & Hold portfolio that buys shares when they first trade
and sells them on the last trading day.

Table 2.5 shows the average annualized returns and Sharpe Ratios after transaction costs for
an initial investment of $20,000. The investor allocates the money either equally or by market
capitalization (in parentheses) across the selected shares. The last column gives the average
number of trades per day, where replacing one portfolio constituent triggers two trades, i.e.,
the maximum number of trades per day is 60. Compared to the benchmark models, the loss-
averse LSTMs contribute positively to portfolio performance and generate beneficial Sharpe
Ratios and returns. For example, the logistic LSTMmodel delivers an equally weighted Sharpe
Ratio of 1.25. While the binary LSTM incurs an average of 39.2 trades each day and a cost
of $0.50 ⋅ 39.2 = $19.6 plus a smaller fee per share traded, the logistic LSTM model benefits
from less trading activity and generates a higher annual return. Similarly, the 𝑀𝑆𝐸 model
suffers from frequent trading and performs worse than the other LSTM models. In contrast,
the monthly reversal strategy, for example, incurs on average $7.4 in transaction costs per
day. When allocating funds by market capitalization, portfolio returns decrease, which leads
us to conclude that the profitability of our trading strategies largely depends on small stocks.

Model Annualized return Sharpe Ratio Trades per day
LSTM𝑏𝑖𝑛 0.62 (0.59) 1.23 (0.88) 39.2
LSTM𝑙𝑜𝑔 0.64 (0.53) 1.25 (0.80) 32.7
LSTM𝑚𝑠𝑒 0.57 (0.50) 1.06 (0.78) 39.8
𝑀𝑅 0.60 (0.38) 1.15 (0.58) 14.8
𝑊𝑅 0.59 (0.52) 1.16 (0.79) 26.2
𝑀𝑊𝑅 0.25 (0.09) 0.56 (0.13) 40.5
Buy & Hold 0.13 (0.13) 0.41 (0.49) 0.3

Table 2.5: Equal-weighted (value-weighted) absolute returns after transaction costs on an initial invest-
ment of $20,000. We model an investor who buys the 15 shares with the highest and shorts the 15 shares
with the lowest return predictions. The right column reports the average number of trades per day.
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Hence, as discussed by Avramov et al. (2023), our LSTM and reversal signals indeed seem
to favor small caps over large caps, which could negatively impact the profit chances of our
models in practice if investors are restricted in trading small caps.

Next, we focus on the protection from unexpected portfolio losses. To this end, we calculate
the predicted portfolio return from the sum of the predictions for all 30 selected shares. So, for
example, if we predict a −5% return for the 15 shares we short and a 5% return for the 15 shares
we buy, the equally weighted portfolio return prediction is 10%. The left panel in Figure 2.8
shows the fraction of days on which the investor faces unexpected portfolio gains (black) out
of all trading days, with the dashed gray line marking the half of all 3,850 trading days of the
test sample. While both loss-averse LSTMs predict too large portfolio returns (red) only on
around 1,800 days,𝑀𝑆𝐸 investors experience unexpected portfolio losses on two-thirds of all
trading days. Thus, our loss functions reduce the number of trading days with unexpected
portfolio losses by about 30%, fulfilling our idea of protecting investors from situations where
the realized return is lower than the predicted return.

The right panel in Figure 2.8 illustrates the average loss or profit for positive and negative
prediction errors, respectively. The loss-averse models earn about 1.8% return on top of the
predicted return if the prediction is too low, and loose about 1.6% if the prediction is too high.
For𝑀𝑆𝐸 investors, on the other hand, average unexpected losses exceed average unexpected
gains (2.11% > 1.28%). Relating these results to the left-hand chart, the average unexpected
gain is 1.76% ⋅0.54−1.62% ⋅0.46 = 0.23% in the binary model, and −1.03% in the𝑀𝑆𝐸 model. In
other words, the𝑀𝑆𝐸 investor earns on average 1.03% less daily return than predicted, while
the binary model investor earns on average 0.23% more daily return than predicted.

This observation is consistent with the density plots of portfolio return prediction losses
in Figure 2.9, whose maximums are reached for negative prediction losses in the case of the
loss-averse LSTMs and for positive prediction losses in the case of the 𝑀𝑆𝐸 model. While
the loss-averse LSTMs produce mostly negative losses, the 𝑀𝑆𝐸 model rather overpredicts
portfolio returns. This, in turn, helps explain why loss-averse loss functions capture return
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Figure 2.8: Left: Trading days with recorded unexpected portfolio gains (black) and trading days with
unexpected portfolio losses (red). The dashed gray line marks the half of all trading days. Right: Average
change in portfolio value for unexpected portfolio gains and losses, respectively. © 2022 IEEE
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Figure 2.9: Estimated probability density function of daily portfolio return prediction losses in the range
[−0.075, 0.075] based on Gaussian kernels and bandwidth selection method by Scott (1992).

patternsmore successfully: Standard loss functions tend to overpredict returns disproportion-
ately and may predict returns too optimistically. Accordingly, training a network to predict
returns more conservatively leads to better capture of returns, reducing the number of real-
ized portfolio losses and increasing realized portfolio returns.

2.6.6 Long-horizon predictions

There are two reasons why we should test our model for longer prediction and holding pe-
riods. First, the fractal markets hypothesis states that returns exhibit self-repeating patterns
when viewed at different time scales (Cont, 2005; Mandelbrot, 2013; Jiang et al., 2022). Second,
onemay argue that our case study is not relevant for every private investor due to the frequent
trading. Thus, we follow Jiang et al. (2022) and test our models at weekly and monthly predic-
tion scales and assume a private investor who uses the predictions to rebalance the portfolio
once per week or once per month, respectively. To this end, we consider closing prices on the
last day of a period (week or month) and calculate the returns achieved during that period
following equation (2.7). Accordingly, the LSTM processes only weekly (monthly) returns
when predicting weekly (monthly) returns. We convert the sequence length of 60 trading
days to 12 weeks in the weekly model and to 3 months in the monthly model. Apart from
that, the network configuration is identical to the daily model defined in Section 2.2.2.

Table 2.6 reports the average annualized returns and Sharpe Ratios after transaction cost de-
termined following the investment case study from Section 2.6.5. As prediction periods grow,
the advantage of LSTMs over reversal strategies increases, e.g., the returns on the weekly re-
vised loss-averse LSTM portfolio are about three times larger than the returns on the reversal
portfolios. One reason is that, compared to the daily model, less trading and thus lower trans-
action costs improve trading performance, making weekly-revised LSTM portfolios superior
to their daily-revised counterparts in Table 2.5. For instance, even if the strategy replaces all
portfolio constituents once a week, the trade frequency is still much lower than that from Ta-
ble 2.5. On average, investors using loss-averse LSTMs would outperform reversal strategies
and standard LSTMs on either daily, weekly or monthly prediction scales, whereas the lead
of loss-averse LSTMs over standard LSTMs decreases for longer time scales.
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Model
Weekly rebalancing Monthly rebalancing

Annualized
return Sharpe Ratio

Annualized
return Sharpe Ratio

LSTM𝑏𝑖𝑛 0.71 1.40 0.41 0.88
LSTM𝑙𝑜𝑔 0.73 1.54 0.66 1.20
LSTM𝑚𝑠𝑒 0.65 1.24 0.65 1.16
𝑊𝑅 (𝑀𝑅) 0.23 0.53 0.29 0.14

Table 2.6: Long-short spread returns on long-horizon portfolios. Returns are equal-weighted absolute
returns after transaction costs on an initial investment of $20,000 calculated according to Section 2.6.5.
Due to the lower data frequency, our benchmark models are the week (month) reversal for the weekly
(monthly) rebalancing trading strategy. © 2022 IEEE

2.6.7 Robustness to market sentiment

Patterns in financial time series captured by LSTMs may reflect market sentiment. One ques-
tion that arises is whether our models perform equally well in different market environments
or exhibit systematic differences. For example, it would be possible that a particular strat-
egy systematically performs better in a specific market phase because it can better capture
the characteristics of that market phase. As a measure of market sentiment, we develop 32
sentiment classes representing all possible combinations of signs of the market return during
the last five trading days before a prediction. The first (last) sentiment class represents five
consecutive positive (negative) market returns, the second class represents four consecutive
positive followed by a negative market return, and so on. Higher sentiment classes are associ-
ated with more negative market returns in the last five trading days. In more detail, Appendix
2.B illustrates the market return sequences of each market sentiment class.

Figure 2.10 plots the average daily long-short spread returns calculated following Section
2.6.4 as a function of the market sentiment class. From left to right, market sentiment changes
from very positive (first class) to very negative (last class). The map illustrates that each pre-
diction model has its own strengths and weaknesses in different situations. On average, how-
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Figure 2.10: Average realized long-short spread returns between the highest 5% and lowest 5% return
predictions before transaction cost as functions of the market sentiment. Market sentiment class 1 (32)
represents five consecutive positive (negative) market returns.
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ever, the models perform slightly better in the right and left parts of the map. This area groups
combinations with four or more positive and negative returns, respectively. We conclude that,
consistent with Section 4.6.1, the prediction models perform well when market sentiment is
either clearly positive or clearly negative. Besides, the returns on the loss-averse LSTM port-
folios outperform the benchmark models in the majority of sentiment classes, indicating the
robustness of the loss functions to market sentiment.

Oneway to balance the strengths andweaknesses ofmultiple predictionmodels conditional
on market sentiment is to combine the models into an ensemble that selects predictions based
on the current market sentiment. The literature presents various approaches of ensemble
learning in return prediction (Krauss et al., 2017; Sun et al., 2018; Borovkova and Tsiamas, 2019;
Gu et al., 2020; Chen et al., 2022). Similar to Borovkova and Tsiamas (2019), whose ensemble
weights predictions based on recent model performance, we consider an ensemble that picks
prediction models based on their historical performance in the current market sentiment.
For example, if the market return has been positive for five consecutive trading days, the
ensemble picks the prediction of the model with the best past performance in the first market
sentiment class. Appendix 2.D outlines the learning content of the ensemble, emphasizing
that it considers predictionmodels in roughly equal proportions. Using ensemble learning, we
achieve 52.40% accuracy and a long-short spread Sharpe Ratio of 2.03, which is 0.1 percentage
point and 0.4 higher than the best stand-alone model in Table 2.3 and Table 2.4, respectively.

2.7 Review of the loss function

2.7.1 Reversal imitation or unique learning?

One might wonder why loss-averse LSTMs outperform all other approaches. We try to
shed light on this question by looking into how unique the signals of the loss-averse LSTMs
are compared to reversal signals. To date, the literature comes to mixed conclusions about
whether trend signals captured by deep learning algorithms are similar to reversal signals or
not: Guijarro-Ordonez et al. (2021) and Jiang et al. (2022) claim that the signals have little in
common, whereas Fischer and Krauss (2018) or Chen et al. (2022) report that LSTMs largely
adapt to reversal patterns. Motivated by this contrast, we examine the relationship between
LSTM and reversal signals in four steps:

First, Figure 2.11 illustrates the average preceding returns over the last two days, last week,
and last month for positive and negative return predictions, respectively. The top (bottom)
panel focuses on negative (positive) return predictions. For example, if the binary LSTM
model delivers a negative return prediction for a particular share, the share has averaged a
return of 3% in the past week and a return of slightly less than 5% in the past month, while
if its return prediction is positive, the past week and month returns of the share are negative
on average. Similar to the reversal strategies, the preceding returns for positive (negative)
return predictions of LSTMs are negative (positive) on average. The large distance between
the preceding returns of positive return predictions and the corresponding preceding returns
of negative return predictions indicates the imitation of reversal signals. This distance is
smaller in the 𝑀𝑆𝐸 model than in the loss-averse models, suggesting that reversal imitation
is more pronounced in the loss-averse models.

Second, we analyze the correlation between the signal deciles discussed in Figure 2.6. To
this end, we determine the cross-sectional Pearson correlation between all signal deciles per
strategy. Figure 2.12 illustrates the correlation matrix and indicates that the correlation be-

36



Review of the loss function

LSTM𝑏𝑖𝑛 LSTM𝑙𝑜𝑔 LSTM𝑚𝑠𝑒 𝑀𝑅 𝑊𝑅 𝑀𝑊𝑅

−6
−4
−2

2
4
6
8

A
ve
ra
ge

re
tu
rn

(%
)

̂𝑟𝑗,𝑡 > 0

̂𝑟𝑗,𝑡 < 0

Midweek return
Week return
Month return

1

3

5

7

LSTM𝑏𝑖𝑛 LSTM𝑙𝑜𝑔 LSTM𝑚𝑠𝑒 𝑀𝑅 𝑊𝑅 𝑀𝑊𝑅

−1
−3
−5

̂𝑟𝑗,𝑡 > 0

̂𝑟𝑗,𝑡 < 0

Midweek return Week return Month return

Figure 2.11: Average preceding returns for negative and positive return predictions ̂𝑟𝑗,𝑡 . The upper (bottom)
panel shows the average two-day, one-week and one-month return generated prior to a negative (positive)
return prediction. All numbers denote in percentage. © 2022 IEEE

tween loss-averse LSTMs and week and midweek reversals is higher than between all other
strategies except between the two loss-averse LSTMs themselves. Thus, a higher return pre-
diction by a reversal strategy is likely accompanied by a higher return prediction by the loss-
averse models. Since 𝑊𝑅 and 𝑀𝑊𝑅 do not have quite as high a correlation with each other,
we infer that loss-averse LSTMs extract different signals fromweek reversal patterns andmid-
week reversal patterns, respectively. The 𝑀𝑆𝐸 model, on the other hand, imitates reversals
less strongly and extracts more non-reversal signals, consistent with Figure 2.11.

Third, we follow Jiang et al. (2022) and Fischer and Krauss (2018) and examine the rela-
tionships between portfolios using linear regression on portfolio returns. To include all pre-
dictions, we calculate portfolio returns by the equally weighted spread between the realized
returns of all buy signals ( ̂𝑟 > 0) and the realized returns of all sell signals ( ̂𝑟 < 0). Table 2.7
shows the estimated parameters and the 𝑅2 while controlling for the market risk premium
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Figure 2.12: Cross-sectional Pearson correlation of signal deciles.
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Model LSTM𝑏𝑖𝑛 LSTM𝑙𝑜𝑔 LSTM𝑚𝑠𝑒
Alpha 0.02∗∗∗ 0.02∗∗∗ 0.01∗
MRP 0.08∗∗∗ 0.04∗∗ 0.09∗∗∗
𝑀𝑅 0.09∗∗∗ 0.09∗∗∗ 0.05∗∗∗
𝑊𝑅 0.25∗∗∗ 0.26∗∗∗ 0.25∗∗∗
𝑀𝑊𝑅 0.32∗∗∗ 0.33∗∗∗ 0.17∗∗∗
𝑅2 0.55 0.63 0.28

Table 2.7: Linear regression of LSTM portfolio returns on the market risk premium (MRP) and reversal
portfolio returns. Portfolio returns are the daily equally weighted spreads between the realized returns on
buy signals and the realized returns on sell signals. Numbers followed by ∗∗∗, ∗∗, and ∗ indicate p-values
below 1%, 5%, and 10%. © 2022 IEEE

MRP, which we calculate by subtracting the risk-free rate7 from the market portfolio defined
in Section 2.2.2. The coefficients illustrate that the relationships of LSTM portfolio returns
with reversal portfolio returns are stronger than with the returns on the market portfolio.
Moreover, LSTM portfolios earn returns on reversal patterns mainly over time horizons of
one week and shorter. While the 𝑅2 is larger than in Fischer and Krauss (2018) and Jiang
et al. (2022), the association between LSTM and reversal portfolios is similar to Fischer and
Krauss (2018). Thus, market and reversal returns explain slightly more than half of the vari-
ation in LSTM portfolio returns, but at the same time this means that they also fail to explain
less than half of the variation in returns.

Finally, to determine the proportion of unique learning content, we follow Jiang et al. (2022)
and compare the 𝑅2 of linear approximations to realized returns with and without controlling
for return predictions. To do this, we run four regressions: First, we regress the realized re-
turns on the set of predictors we use to train the LSTM, i.e., 60-days sequences of market and
stock returns. In the other three models, we regress realized returns on both the set of pre-
dictors and the predictions of one prediction model each. Table 2.8 illustrates the explanatory
power of the four approaches: While𝑀𝑆𝐸 predictions do not increase the 𝑅2, the predictions
generated by the loss-averse LSTMs improve the determination by up to 14%. The higher
explanatory content of the realized returns suggests that the loss functions provide unique
information, undiscovered by the standard models, that leads to better knowledge.

7We model the nominal U.S. treasury yield curve following the Nelson–Siegel–Svensson method (Nelson and
Siegel, 1987; Svensson, 1994; Gürkaynak et al., 2007) with considering an investment horizon of one day, consis-
tent with the prediction scale and portfolio revision frequency. We use the beta and tau parameters provided by
Nasdaq Data Link, see https://data.nasdaq.com/data/FED/PARAMS-us-treasury-beta-and-tau-parameters.

Predictor 𝑅2 (%)
Market data 1.97

Market data & LSTM𝑚𝑠𝑒 1.99
Market data & LSTM𝑏𝑖𝑛 2.24
Market data & LSTM𝑙𝑜𝑔 2.23

Table 2.8: Linear regression of realized returns on the set of predictors used to train the LSTM and defined
in Section 2.2.2 (`Market data') with and without controlling for LSTM return predictions. LSTM predictions
base on parameters trained during the training period. © 2022 IEEE
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Conclusion

Model Accuracy (%) Correlation (%) Annualized return Sharpe Ratio
LIN𝑙𝑜𝑔 51.85 3.71 0.10 0.23
LIN𝑚𝑠𝑒 51.92 3.84 0.12 0.34

Table 2.9: Prediction quality and long-short spread returns of linear models. Annualized returns are ab-
solute long-short spread returns after transaction costs on an initial investment of $20,000 calculated
according to Section 2.6.5, with long in the 15 highest and short in the lowest 15 predictions. © 2022 IEEE

2.7.2 Loss functions in linear approximations to returns

LSTMs are often said to be superior compared to other time series models (Siami-Namini et al.,
2018) because of their capability of capturing nonlinearity in the data. However, the question
arises whether linear approximations to returns would also improve with our loss-averse loss
function. To answer this question, we perform a linear approximation to realized returns
minimizing the 𝑊𝑀𝑆𝐸 on the training and validation period and then use the estimated
coefficients to predict returns for the test period.

Table 2.9 shows the prediction quality and equally weighted long-short spread returns after
transaction costs on a 15-15 portfolio (see Section 2.6.5). Here, we omit the binary loss func-
tion since the coefficients are identical with the𝑀𝑆𝐸 model, i.e., all losses are ‘bad’ losses and
receive the same weights. Although the prediction quality competes with LSTMs, the portfo-
lios exhibit a high trading frequency and thus underperform the market with an annualized
return of less than 0.13, suggesting poor nominal return predictions at the return distribution
tails. Besides, the 𝑀𝑆𝐸 loss function provides better results in linear approximations than
the𝑊𝑀𝑆𝐸 loss function. We infer that loss-averse loss functions are beneficial in non-linear
optimization, but do not add value in linear optimization. Nevertheless, Appendix 2.D shows
that under some market conditions, the linear models deliver trading results superior to the
non-linear models, thereby adding value to an ensemble.

2.8 Conclusion

In this paper, we present a novel approach that connects return prediction with prospect
theory and loss aversion of investors. To this end, we introduce a loss-averse loss function
for return prediction that teaches LSTMs to underpredict rather than overpredict returns. We
show that annualized returns on regularly revised portfolios increase by an average of five
percentage points over the standard LSTM and reversal strategies.

One limitation of our approach, however, is that both the computing power required for
the training and the technical infrastructure for automated trading with connected live mar-
ket data are not easy to set up for private investors. Yet, our model does not require costly
retraining: Once the model is trained and set up, it runs with very little effort.

Overall, our proposed loss function is beneficial in nonlinear optimization and extracts
unique signals in a return-predicting LSTM model. Moreover, we find robust performance
throughout a wide range of market sentiments.
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Appendix

2.A Share of unexpected gains

Figure 2.13 reports the share of the absolute sum of ‘good’ prediction losses in the absolute
sum of all losses. Due to relatively small ‘bad’ losses, the loss-averse LSTMs exhibit a large
share of unexpected gains, whereas the 𝑀𝑆𝐸 model exposes nine times larger unexpected
losses than gains due to relatively large ‘bad’ prediction losses. In the binary (logistic) model,
85% (73%) of all prediction losses are associated with realized returns larger than predicted.

0 20 40 60 80 100
Share of unexpected gains (%)

LSTM𝑏𝑖𝑛

LSTM𝑙𝑜𝑔

LSTM𝑚𝑠𝑒

85
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9

Figure 2.13: Share of unexpected gains in all unexpected movements. Unexpected gains are the area
between the loss curve and the x-axis in quadrants II and IV in Figure 2.5 (right chart), unexpected losses
are the corresponding area in quadrants I and III.

2.B Market sentiment classes

Figure 2.14 illustrates the market return sequences of each sentiment class used for the ro-
bustness check in Section 2.6.7. We define the market sentiment class on day 𝑡 based on the
market returns 𝑟𝑚 during the past five trading days, where 𝑡 − 5 denotes the day five trading
days ago, and 𝑡 − 1 denotes the last trading day. For instance, market sentiment class 1 is the
most positive sentiment with five consecutive days that generated a positive market return.
With increasing classes, market sentiment becomes more negative.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Market sentiment class (𝑡)

𝑡 − 5
𝑡 − 4
𝑡 − 3
𝑡 − 2
𝑡 − 1

𝑟𝑚 < 0𝑟𝑚 > 0

Figure 2.14: Market sentiment classes on day 𝑡 based on the market returns during the past five trading
days. Black (red) dots indicate negative (positive) market return.
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2.C Average realized returns and Sharpe Ratios

In complement to Figure 2.6, Table 2.10 reports the average realized daily return and annu-
alized Sharpe Ratio (Sharpe, 1994) by signal ( ̂𝑟𝑗,𝑡 ) decile. Out of all benchmark models, the
week reversal portfolio appears to be most competitive with LSTM in both realized returns
and Sharpe Ratios, consistent with Jiang et al. (2022). Both loss-averse LSTMs and the week
reversal produce a Sharpe Ratio of more than 0.8 in decile 10, whereas loss-averse LSTMs
produce negative Sharpe Ratios and are thus superior to the week reversal in decile 1.

Decile portfolio
Model 1 2 3 4 5 6 7 8 9 10

Average realized daily return (%)
LSTM𝑏𝑖𝑛 −0.01 0.02 0.03 0.03 0.04 0.06 0.06 0.08 0.09 0.13
LSTM𝑙𝑜𝑔 −0.00 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.09 0.12
LSTM𝑚𝑠𝑒 0.00 0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.07 0.11
𝑀𝑅 0.02 0.02 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.11
𝑊𝑅 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.09 0.12
𝑀𝑊𝑅 0.02 0.03 0.04 0.04 0.05 0.06 0.06 0.07 0.08 0.10

Annualized Sharpe Ratios
LSTM𝑏𝑖𝑛 −0.22 0.07 0.20 0.25 0.36 0.51 0.49 0.64 0.68 0.83
LSTM𝑙𝑜𝑔 −0.12 0.09 0.21 0.26 0.36 0.45 0.53 0.60 0.66 0.84
LSTM𝑚𝑠𝑒 0.02 0.22 0.28 0.32 0.39 0.42 0.48 0.48 0.52 0.70
𝑀𝑅 0.05 0.14 0.25 0.37 0.39 0.48 0.44 0.49 0.53 0.74
𝑊𝑅 0.02 0.09 0.16 0.26 0.36 0.40 0.48 0.57 0.67 0.83
𝑀𝑊𝑅 0.06 0.14 0.26 0.32 0.37 0.49 0.51 0.54 0.61 0.67

Table 2.10: Equal-weighted average realized returns and Sharpe Ratios by signal decile. Decile 1 (10)
contains the shares with the lowest (highest) 10% return predictions.

2.D (Non-)Linear Ensemble learning

We consider an ensemble that comprises all LSTM, reversal and linear (Section 2.7.2) predic-
tion models. Thus, in total, the ensemble comprises eight unique forecast models. To ensure
the ensemble sees only training and validation data, we train the ensemble with long-short
spread returns on the validation set and then test it on the test set. An ensemble prediction
consists of two sequential steps: First, the ensemble defines the market sentiment based on
the present sequence of the past five market returns. Second, it selects the prediction model
with the best performance in that sentiment during the validation period and uses the se-
lected model to produce a prediction. Figure 2.15 explores what the ensemble learns from the
validation set. It is important to keep in mind that Figure 2.10 focuses on test data and thus
is not related to the results presented in this section which may differ from Figure 2.10.

The left chart in Figure 2.15 shows the proportion of prediction models selected by the
ensemble. LSTMs account for 16, reversals for eleven, and linear models for five sentiment
classes, with loss-averse LSTMs accounting for about one third of sentiment classes. How-
ever, as market sentiment classes are not equally distributed within the considered period—
sentiment classes occur with different frequencies—, Figure 2.15 does not tell us how often the

45



Return Prediction with Deep Learning under Loss Aversion

LSTM𝑏𝑖𝑛

LSTM𝑙𝑜𝑔

LSTM𝑚𝑠𝑒

𝑀𝑅

𝑊𝑅
𝑀𝑊𝑅

LIN𝑙𝑜𝑔

LIN𝑚𝑠𝑒

0.2 0.4 0.6 0.8
Share of 𝑟𝑚 > 0

LIN𝑙𝑜𝑔

𝑀𝑅
𝑀𝑊𝑅

LSTM𝑙𝑜𝑔

LSTM𝑚𝑠𝑒

𝑊𝑅
LSTM𝑏𝑖𝑛

LIN𝑚𝑠𝑒

Figure 2.15: Learning content of the ensemble (validation period). The left image illustrates the share of
each model in the prediction models picked by the ensemble. The right chart reports the average share of
positive market returns in the market class per prediction model if picked by the ensemble. Red (green)
indicates reversal (linear) strategies, whereas black (gray) indicates LSTM strategies based on loss-averse
(standard) loss functions.

ensemble actually picks a particular model. Thus, if sentiment classes for which the ensemble
picks the LSTM occur more frequently, the distribution among prediction models could ex-
hibit a different pattern. The right chart in Figure 2.15 documents the average share of positive
market returns in market classes per selected prediction model. For instance, a combination
with two positive and three negative signs corresponds to a share of 0.4. Linear models fill
the edge cases with the lowest and highest shares, i.e., linear models perform best in market
classes with at most one day diverging from a dominant one-week market trend. Apart from
that, both reversals and LSTMs exhibit relatively large and small shares.
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3 Intelligent Inventory Management for Cryptocurrency Brokers8

Christopher Felder and Johannes Seemüller

Abstract

In equity trading, internalization is the predominant execution method for uninformed order
flow, allowing retail brokers to realize cost savings and thereby offer price improvements
to customers. In cryptocurrency trading, there are doubts as to whether informed and
uninformed traders can be distinguished in the same way, leading brokers to seek cost
savings through internal order matching instead. Using the historical order flow of the
German cryptocurrency broker BISON, we present a prediction-based approach to internal
order matching: Upon receiving a customer order, our model forecasts whether future order
flow will be sufficient to neutralize the order before the settlement date. With a prediction
accuracy of 85%, it enables brokers to match three-quarters of order volume internally,
which is three times as much as a traditional rule-based approach, and realize meaningful
cost savings, even after accounting for common minimum price improvements.

Keywords: Segmentation, Retail internalization, Cryptocurrency.

JEL classification: C45, C55, C63, D49, G17, G24.

8Parts of this article have been published in Felder and Seemüller (2022). Relevant paragraphs, tables, and figures
are reprinted with permission. ©2022 ACM
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3.1 Introduction

Only few retail stock traders are aware that their orders are typically not executed on ex-
changes (Comerton-Forde et al., 2018). Instead, firms execute them internally against their
own book. Internalization represents the major trading modality for retail order flow in eq-
uity trading (Fox et al., 2019; Barardehi et al., 2022) and pays off because retail traders are
supposed to not have superior information (Chakravarty, 2001; Linnainmaa, 2010). The tech-
nique is sometimes referred to as ‘cream skimming’ (Easley et al., 1996; Battalio, 1997) as bro-
kers pick the uninformed part of the order flow and route unwanted orders to an exchange
(Preece and Rosov, 2014). Since order filling at exchanges is not necessary while brokers are
obliged to the best execution principle (Macey and O’Hara, 1997; SEC, 2013), firms typically
offer price improvements over the quoted spread for internalized trades. Consequently, “in-
ternalization can be profitable both for the customer, who receives the price improvement,
and for the broker, who earns a large realized spread” (Grammig and Theissen, 2012).

In cryptocurrency (crypto) trading, given the large retail share in the total trade volume
(Bianchi et al., 2022), brokers may have similar incentives for retail internalization. However,
while academic literature is confident that retail orders are less informed than institutional
orders in equity trading, this is rather unclear in crypto trading. Makarov and Schoar (2020)
find that “it is less obvious whether there are traders who are more informed than others and
what the nature of the information is”. Moreover, Bianchi et al. (2022) argue that the opaque-
ness of information flow compared to traditional markets and participants’ heterogeneous
beliefs about cryptocurrencies generate information asymmetry.

As a consequence, trading against the crypto retail order flow is not necessarily profitable,
and brokers may seek for alternative off-exchange execution methods to save costs. One
method discussed by Battalio and Loughran (2008) and Challet et al. (2018) is to internally
match customers’ buy and sell orders instead. Internal order matching, sometimes called or-
der netting (Hagerty andMcDonald, 1996; Schwartz et al., 2005; Francioni and Schwartz, 2008),
allows brokers to save the bid-ask spread without having to trade against customers for their
own account. The broker stores orders in inventory for which she expects a contrary order
in the future and sends all other orders to the exchange. However, this order segmentation
is not straightforward as it depends on the future order flow and traders submit orders asyn-
chronously (Challet et al., 2018). If a broker had knowledge about the future, she could store
exclusively orders covered by the future order flow in inventory, and route all other orders to
the exchange. In practice, brokers do not have this information, and rule-based frameworks
serve to control the market risk of their inventory position: Indeed, if she cannot internally
match an order from inventory before its settlement date, she will have to execute it on the
exchange at possibly worse prices and pay the full spread (Hagerty and McDonald, 1996).

Inspired from thework of Challet et al. (2018), this article presents a prediction-basedmodel
of crypto retail order segmentation for internal order matching. When a broker receives an
order that she cannot immediately execute against open orders in inventory, the model pre-
dicts whether future order flow will be sufficient to neutralize the order before its settlement
date. Using this prediction, the broker can decide whether to hold the order in inventory or
route it to an exchange for immediate execution. Based on an order sample from BISON, the
crypto retail broker of Börse Stuttgart Group with more than half a million active users and
a trade volume of €5.6 billion in 2021, we develop a supervised learning model in two steps:
First, we define the target variable optimal internal matching rate, which represents the maxi-
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mum fraction of an order that a broker could have matched internally given a 𝑡 + 2 settlement
cycle, and thus is the true case we want to predict. Second, we derive predictors from an
analysis of market and order flow dynamics prior to the submission of internally matched or-
ders (positive outcome) and orders routed to the exchange (negative outcome). Our proposed
predictors are the buy volume surplus, average order volume, total trade volume, high-low
price range, and one-minute price changes. Prior to order submission, each predictor exhibits
behavior specific to each of the two outcomes.

We arrive at the following findings: Historically, 85% of order volume is followed by con-
trary order volume within two days. Consequently, brokers can internally match a maximum
of 85% of buy and sell order volume. Using both penalized logistic regression and artificial
neural networks, we predict 85% of order flow correctly, allowing brokers to internally match
three-quarters of daily order volume. Surprisingly, our models achieve the best prediction
results during highly volatile and trading-intensive periods. Since these periods are typi-
cally associated with large spreads, internal order matching disproportionately pays off for
both brokers and customers. Assumed that customers and brokers share the cost savings
equally, prediction-based segmentation leads to a 35% reduction in effective spreads com-
pared to quoted spreads. These results also hold under minimum price improvements such as
required by the European Union for equity trading (Lucas, 2020). Our results thus support the
theory of cost savings, consistent with empirical (Battalio, 1997; Hansch et al., 1999; Battalio
et al., 2001; Peterson and Sirri, 2003; Grammig and Theissen, 2012) and theoretical (Battalio
and Loughran, 2008; Degryse et al., 2022) studies of execution costs for internalized trades,
and thereby suggest a potential improvement in market quality.

The remainder of the article is structured as follows. Section 3.2 embeds our research in
the current state of theoretical and empirical research. Section 3.3 introduces the market
structure of internally matching retail brokers, and Section 3.4 presents the data set used.
Section 3.5 develops a model for retail order flow prediction. Section 3.6 is devoted to the
empirical analysis of prediction-based order internalization, and Section 3.7 concludes.

3.2 Literature and regulation overview

Internalization has attracted the attention of researchers and regulators for about two and a
half decades (Malinova, 2012). While there is a widespread agreement in the research litera-
ture that internalization may realize cost savings (Battalio, 1997; Hansch et al., 1999; Battalio
et al., 2001; Peterson and Sirri, 2003; Battalio and Loughran, 2008; Grammig and Theissen,
2012; Degryse et al., 2022), there are mixed conclusions about market quality under internal-
ization: Opponents of the practice argue that off-exchange trade execution reduces the liquid-
ity of the lit market and thus may deteriorate market quality (Easley et al., 1996; Bessembinder
and Kaufman, 1997; Chakravarty and Sarkar, 2002; Preece and Rosov, 2014). The problem is
that if uninformed trades do not reach the public market anymore, market makers may cover
increasing adverse selection risk through wider spreads. On the other hand, Battalio (1997),
Battalio et al. (1997), and Hansch et al. (1999) find no evidence of detriments to traders.

One approach to regulate internalization in a way that allows realizing cost savings while
protecting or improving market quality could be to require a minimum price improvement for
internalized orders. Under a minimum price improvement, firms are allowed to internalize
orders only if they offer a substantially better price than the public market to the trader and
thereby reduce effective spreads. Hence, a minimum price improvement can be regarded “as a
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means to compensate the market for the liquidity lost” due to internalization (Kumpan, 2006).
Indeed, Larrymore andMurphy (2009) and Comerton-Forde et al. (2018) show that mandatory
price improvements for internalized orders can improve market quality.

With MiFID (Directive 2004/39/EC)9 and MiFID II (Directive 2014/65/EU)10, the European
Union established a uniform regulation of internalization for equity trading. Accordingly,
firms are required to either internalize orders at a minimum price improvement (Lucas, 2020),
thereby “generating economically meaningful cost savings” (Preece, 2012), or route the orders
to an exchange. Hence, internalization is higher among less liquid stocks with more potential
for price improvement and lower among liquid stocks (Anolli and Petrella, 2007). As of today,
crypto trading is not subject to internalization regulation by MiFID II. However, in the course
of the upcoming regulation of the crypto market by MiCA11, crypto internalizers could face
the same or similar conditions as for equity trading in the next few years.

Besides, our work contributes to studies of order netting (Hagerty and McDonald, 1996)
and order segmentation (Fleming and Nguyen, 2013; Garriott and Walton, 2018; Brolley and
Cimon, 2020). We build our prediction model on study results on the predictive power of
retail order flow in the stock market (Kelley and Tetlock, 2013; Boehmer et al., 2021) and in the
crypto market (Scaillet et al., 2018; Silantyev, 2019; Ante, 2020). For instance, Boehmer et al.
(2021) argue that retail investor behavior can predict future returns, with the predictive power
depending on the level of the price improvement. Moreover, ourwork addresses studies on the
drivers of internalization (Anolli and Petrella, 2007; Kwan et al., 2015; Barardehi et al., 2022),
with Barardehi et al. (2022) finding that firms’ internalization decisions depend on order type,
amount of retail order flow and institutional liquidity demand. Finally, we contribute to the
analysis of crypto order flow, although we do not attempt to measure informed trading (Wang
et al., 2021; Feng et al., 2018), but follow the argument of Makarov and Schoar (2020) that it is
unclear what the nature of superior information is in crypto trading. Our model eliminates
the need to identify informed traders and thus contributes a meaningful improvement to off-
exchange trade execution in crypto trading. Themotivation for this article stems fromChallet
et al. (2018), who present an inventory prediction model for market participants who try to
match buy and sell order flows by keeping some orders in their inventory.

3.3 Market structure

3.3.1 Internal order matching of a retail broker

We assume a retail broker who deploys a Request for Quote system for crypto trading as
shown in Figure 3.1. When receiving a Request for Quote from a customer, the broker displays
the price at which order execution is possible. The displayed price thus depends on how the

9Directive 2004/39/EC of the European Parliament and of the Council of 21 April 2004 on markets in financial
instruments amending Council Directives 85/611/EEC and 93/6/EEC and Directive 2000/12/EC of the European
Parliament and of the Council and repealing Council Directive 93/22/EEC, Official Journal of the European Union,
L 145, 2004/04/30, p. 1–44. Download link: http://data.europa.eu/eli/dir/2004/39/oj.

10Directive 2014/65/EU of the European Parliament and of the Council of 15 May 2014 on markets in financial in-
struments and amending Directive 2002/92/EC and Directive 2011/61/EU. Official Journal of the European Union,
L 173, 2014/06/12, p. 349–496. Download link: http://data.europa.eu/eli/dir/2014/65/oj.

11Markets in Crypto-Assets (MiCA) is a proposed regulation for European crypto-assets with the title ‘Proposal
for a regulation of the European Parliament and of the Council on Markets in Crypto-assets, and amending
Directive (EU) 2019/1937 COM/2020/593 final’. Download link: https://eur-lex.europa.eu/legal-content/EN/T
XT/?uri=CELEX:52020PC0593.
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Market structure

broker executes the order: When routing the order to an exchange, the broker determines the
public price at which immediate trade execution would be possible, i.e., the current volume-
weighted best ask (bid) price for buy (sell) orders. When executing the order internally against
other customer orders, the broker may offer a better price. We assume that the brokerage
market is competitive and brokers have an incentive to offer price improvements on internally
matched orders although not yet being obliged to do so (see Section 3.2).

Next, we parameterize that price improvement. Grammig and Theissen (2012) state that
the price improvement determines how customer and broker share the cost savings. Under
MiFID II, the minimum price improvement is one tick size, i.e., the broker may receive all
cost savings beyond one tick. In contrast, Battalio and Loughran (2008) argue that brokers
meet best execution only when passing the full monetary benefit to the customers, which,
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Figure 3.1:Market structure of a retail crypto broker who deploys a Request for Quote system and executes
customer orders by internally matching with other customer orders at improved prices (black stream), or by
placing market orders at exchanges (red stream). The illustration uses elements of Barardehi et al. (2022),
but takes the broker's perspective and focuses on internal order matching.
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however, implies that brokers have no monetary incentive to internalize. Thus, we assume
that brokers and customers equally share the benefit and trade at the midpoint between the
mid price and the quoted price, both saving one-fourth of the quoted spread. For instance,
when BTC-EUR trades at €30,000/€30,020, the broker internally matches a buy (sell) order at
€30,015 (€30,005), realizing cost savings of €5 for both herself and the customer12.

By accepting the displayed quote, the customer submits a request for trade. If confirmed
by the broker, the trade is legally binding for both sides and no subsequent changes to the
execution price are possible. The broker takes the counterpart of the trade, i.e., a buy (sell)
order results in a short (long) position of the broker. When executing the order at an ex-
change, she places a corresponding buy (sell) market order and thereby neutralizes the open
position. When internally matching the order instead, she either immediately executes the
order against open positions from inventory, thereby neutralizing the position, or stores it in
inventory, thereby holding the position and awaiting internal order matches in the future.

Motivated by the standard settlement procedure in European securities trading
(Thomadakis, 2022), we assume 𝑡 +2 (48 hours) settlement cycle, i.e., the broker has to transfer
the traded amounts between the customer’s and her own wallet 48 hours after trade confir-
mation at the latest. When immediately routing the order to the exchange or executing the
order against open positions, trade settlement occurs in 𝑡 . When the broker cannot fully ex-
ecute the order against incoming orders within two days, she has to close the position at an
exchange two days after, which is detrimental to her revenue as she pays the quoted spread
and thus makes a loss of one-fourth of the quoted spread on that trade13. For this reason,
when internally matching customer orders, older orders in inventory have a higher priority.
For instance, if we receive a large buy order while we have several small sell orders in inven-
tory, we start the internal matching procedure with the longest waiting sell order, continue
with the second longest waiting order, and so on until we have been able to fully internally
match the order. If the order is larger than the total open position, we hold the remaining
amount as an open position in inventory to execute against future orders. So in this scenario,
our exposure would change from a net long to a net short position.

3.3.2 Order segmentation

Order segmentation describes the practice of picking the part from the order flow which we
wish to execute internally. We regard two methods of order segmentation: The traditional
size-based segmentation and a novel prediction-based segmentation. In size-based segmen-
tation, illustrated in Figure 3.2, brokers segment orders by order size, which is the standard
approach for filtering uninformed trades (Kim and Verrecchia, 1991; Grundy and McNichols,
2015; Shen et al., 2017). Similar to Anolli and Petrella (2007), our proxy for the critical order
size is the European Union regulation of Systematic Internalizers that are allowed to internal-
ize orders up to the standard market size defined by the Commission Delegated Regulation

12In practice, brokers internally match asynchronously submitted orders, and the displayed quotations in the order
book at the time of arrival are usually not identical. For instance, internally matching a buy order about 1 BTC
at €40,050 against a sell order about 1 BTC at €40,055 submitted by another customer few seconds later would
occur a loss of €5 for the broker. However, Appendix 3.A suggests that, empirically, price differences between
orders executed against each other net out in the cross-section and thus have no impact on the broker’s revenue.

13Besides, closing open positions in 𝑡 +2 bears market risk, as market prices can change in the time between order
arrival and final execution. Appendix 3.A shows, however, that these price differences have no impact on our
revenue in the cross-section, consistent with the price differences for internal order matches. As a result, the
average loss from closing inventory positions is one-fourth of the bid-ask spread.
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Figure 3.2: Market structure of a retail crypto broker who segments order flow based on order size and
routes large orders to the exchange and small orders to inventory.

2017/58714, amounting to €10, 000 for most securities analyzed by Lucas (2020). Thus, the
broker theoretically could route all incoming orders up to €10, 000 volume to inventory.

However, in practice, brokers limit their exposure to market risk by setting a maximum
open position (Challet et al., 2018). As this limit typically depends on undisclosed firm-specific
risk metrics, we assume a discretionary inventory limit of €100,000, i.e., if a broker is short
(long) €98,000 and receives another €5,000 buy (sell) order, she has to route it to an exchange.
Accordingly, Figure 3.2 shows that, after checking the order for eligibility under the order
size limit and before determining the trade execution modality, we check whether routing the
arriving order to inventory would lead to a violation of the inventory limit. If so, we would
route the order to the exchange, although it might be of eligible order size. As we choose
a discretionary inventory limit, Appendix 3.E examines the relevance of the inventory limit
choice for order segmentation and demonstrates that it plays a rather minor role compared to
the order size limit. Overall, size-based order segmentation under inventory limit constraints
is very straightforward as the broker only needs to check order size and net position to decide
whether to internally match the order or route it to the exchange.

In contrast, we present a novel prediction-based segmentation as a way to segment order
flow by predicting future order flow from a broker’s private order flow data and exchanges’
publicly available market data. Figure 3.3 illustrates a broker who determines trade execution

14Commission Delegated Regulation (EU) 2017/587 of 14 July 2016 supplementing Regulation (EU) No 600/2014
of the European Parliament and of the Council on markets in financial instruments with regard to reg-
ulatory technical standards on transparency requirements for trading venues and investment firms in re-
spect of shares, depositary receipts, exchange-traded funds, certificates and other similar financial instru-
ments and on transaction execution obligations in respect of certain shares on a trading venue or by a sys-
tematic internalizer. Official Journal of the European Union, L 87, 2017/03/31, p. 387–410. Download link:
http://data.europa.eu/eli/reg_del/2017/587/oj.
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Figure 3.3: Market structure of a retail crypto broker who segments order flow based on order flow predic-
tions and routes orders either to an exchange or to inventory. We assume that the broker processes private
information from previous order flow data and public information from market data to deliver a prediction.

modality according to order flow prediction: When receiving a customer order that the broker
cannot immediately execute against open inventory positions, we retrieve market and order
flow data and forecast whether the future order flowwill neutralize the requested order before
the settlement date. If predicted so, the broker offers an improved price and stores the order
in inventory unless it violates the inventory limit. Otherwise, the broker offers the public
quotes and routes the order to an exchange. Before generating a prediction, the broker must
check whether adding the order to the inventory would exceed the inventory limit. Hence,
wemake a prediction only if we cannot immediately execute the requested order against open
positions and if we do not violate our inventory limit. If we can internally match a portion
of the requested order against open positions, we make a prediction based on the remaining
order amount. Correspondingly, we are also allowed to split requested orders in order to meet
the inventory limit: Thus, if we are short €98,000 and receive another €5,000 buy order, we
could hold 40% of the position in inventory and route the other 60% to the exchange.

3.4 Data

Wegratefully acknowledge the complete order history of the BISON app fromBoerse Stuttgart
Group and its affiliate Sowa Labs. In the provided data set, each order entry reports the exact
time, currency pair, order size and order side. BISON offers Euro-paired trading for Bitcoin
Cash (BCH), Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), and Ripple (XRP)15. BISON cus-

15We exclude Chainlink and Uniswap from the data set since BISON only started trading in late 2021. In late 2022,
BISON launched additional currency pairs, but these were not yet part of the dataset (last entry March 30, 2022).
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Figure 3.4: Share of order volume by currency pair between July 01, 2020 and March 30, 2022.

tomers can submit market and limit orders, whereas a triggered limit order is converted to a
market order. Due to the low trade volume in the early phase of the app, we analyze market
orders and triggered limit orders between July 01, 2020 and March 30, 2022. Figure 3.4 illus-
trates the order volume share by currency. BTC and ETH together account for nearly three
quarter of the total order volume, whereas XRP accounts for about 15%.

In addition, we download historical open, high, low, closing price and trade volume
(OHLCV) data at one-minute granularity from the crypto exchanges Bitstamp16, Kraken17,
and Coinbase18, three popular crypto exchanges also considered by other empirical studies
like Alexander et al. (2020), which serve as the broker’s reference markets for immediate order
execution in our study. As historical limit order book data are not publicly available, we fol-
low Brauneis, Mestel, Riordan and Theissen (2021), who propose to estimate cryptocurrency
high-frequency spreads based on the Abdi and Ranaldo (2017) estimator (Brauneis, Mestel
and Theissen, 2021). Given the high (ℎ), low (𝑙) and closing (𝑐) price of a time interval 𝑡 , Abdi
and Ranaldo (2017) estimate the bid-ask spread for two adjacent intervals 𝑡 and 𝑡 + 1 by

Spread𝑡 = √max [4 ⋅ (ln(𝑐𝑡 ) − 𝑚𝑡) (ln(𝑐𝑡 ) − 𝑚𝑡+1) , 0] (3.1)

where𝑚𝑡 = 1
2 ⋅ (ln(ℎ𝑡 ) + ln(𝑙𝑡 )) is the midpoint between logarithmic high and logarithmic low

price of interval 𝑡 . In the following sections, we report bid-ask spreads as volume-weighted
average across exchanges, where the volume weights base on the total trade volume of the
respective exchange during that minute. For more details, Appendix 3.C illustrates the histor-
ical volume-weighted daily bid-ask spread estimates separated by exchange, suggesting that
spreads are similar across all three exchanges.

Lastly, we divide the data set into training and test periods. Following Ji et al. (2019), we
distinguish two potential partitioning methods19: Sequential partitioning uses the first, e.g.,
80% of the period for training and validation and the rest 20% for testing, assuming that dy-
namics in the data remain constant, e.g., that March 2022 would be suitable to test of what the
model has learned from 2020 (see Section 2.6.1). In contrast, 𝑛-fold cross validation divides
the period into 𝑛 equal-sized sub-intervals and trains 𝑛 independent models for each of the
sub-intervals, each consisting of a sequentially partitioned train and test period.

Ji et al. (2019) show that for classification problems in crypto trading, 𝑛-fold cross-validation

16We download historical OHLCV data from Bitstamp via the Bitstamp API (https://www.bitstamp.net/api/).
17Kraken offers readily downloadable OHLCV data online at https://support.kraken.com/hc/en-us/articles/3600
47124832-Downloadable-historical-OHLCVT-Open-High-Low-Close-Volume-Trades-data.

18We retrieve historical OHLCV data from Coinbase using get_product_historic_rates method of the Public
Client of cbpro (Paquin, 2020), the Python client for the Coinbase Pro API (https://docs.cloud.coinbase.com/).

19Following Ji et al. (2019), another method is random partitioning that randomly picks training and test data
from the entire period, i.e., both training and test set comprise data from the entire period. However, for testing
our predictions in a trading simulation with internal matching of subsequent orders, we need time sequential
predictions for a given period.
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Figure 3.5: Division of the observation period into overlapping five-weeks sub-intervals for 𝑛-fold cross
validation. Each sub-interval consists of three weeks (60%) training (red), one week (20%) validation (gray)
and one week (20%) test (black). The overlap is four weeks.

is the best-suited sequencing method. Moreover, compared to Section 2.6.1, the dynamics of
the crypto market differ substantially from traditional markets (Klein et al., 2018), driven
by temporary trends due to exploding retail and institutional inflows between 2020 and 2022.
Therefore, we follow Ji et al. (2019) and divide the entire period into overlapping sub-intervals
of five weeks in length, of which, as Figure 3.5 illustrates, the first three weeks are for training
(60%), the fourth week is for validation (20%), and the last week is for testing (20%). The entire
period comprises 87 such sub-intervals. The validation sets serve to design the architecture
of the prediction model and to regularize the training (see Section 3.5.4). The overlap is four
weeks, i.e., we test every week of the entire period with an independently trained model.

3.5 A prediction model for internal order matching

3.5.1 Optimal internal matching rate

The internal matching rate of an order measures the share of the internally matched order
volume in its total order volume (Anolli and Petrella, 2007). For instance, if we receive an order
about 0.5 BTC and can internally match 0.25 BTC of it, the internal matching rate of that order
is 50%. As target variable for our prediction model, we propose the optimal internal matching
rate of an order. The optimal internal matching rate represents the maximum achievable
internal matching rate under 𝑡 + 2 settlement. A broker with complete knowledge of the
future would achieve the optimal internal matching rate by holding in inventory all orders
for which she receives a contrary order in the future and routing to the exchange only those
orders that cannot be neutralized by future order flow. Thus, the optimal internal matching
rate represents the true case wewish to predict, as we assume a profit-maximizing broker who
aims to internally match as much order volume as possible and route the smallest possible
share of orders to the exchange.

We determine the optimal internal matching rate by chronologically routing all orders to
inventory, where we either execute them immediately against open positions, or store them
and determine whether future orders are sufficient to neutralize the resulting position or not.
An internal matching rate of 1 occurs when either open inventory positions at the time of
order arrival or subsequent order flow have fully neutralized the order. A rate of 0 indicates
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Figure 3.6: Daily volume-weighted optimal internal matching rate of order flow across all currency pairs.
We calculate optimal internal matching rate according to Section 3.5.1. The black (red) bars represent
internally matched buy (sell) order volume, while the gray (green) bars represent buy (sell) volume routed
to the exchange. © 2022 ACM

that we either have the order stored in inventory but future orders could not neutralize it, or
we had to pass it to an exchange due to the inventory limit. An internal matching rate of 0.5
may indicate that subsequent orders neutralized half of the order, and we routed the other
half to an exchange in 𝑡 + 2. Since internal order matching is possible only within orders of
the same currency pair, we carry out the iteration for each pair once.

Figure 3.6 illustrates the daily volume-weighted optimal internal matching rate across all
currencies. We determine daily volume-weighted internal matching rates bymultiplying each
order’s volume with its optimal internal matching rate, and then aggregating the resulting
optimal internal matching volumes on a day-by-day basis. Finally, we calculate the volume-
weighted averages across all currency pairs. The figure illustrates that we can internally
match 85% of daily buy and sell order volume on average, i.e., 85% of daily buy (sell) order
volume is followed by sell (buy) order volume within 48 hours. Hence, a broker who is willing
to internally match as much order volume as possible, theoretically could realize cost savings
for 85% of order volume. Orders routed to the exchange are largely buy orders, indicating a
buy surplus in the underlying period of the data set. Overall, Figure 3.6 suggests that internal
matching seems to be relatively constant throughout time with no general trends.

3.5.2 Market and order flow dynamics before and after order arrival

Next, we wish to understand what are the drivers of internal matching and whether partic-
ular market and order flow circumstances drive internal matching. To this end, Figure 3.7
illustrates market and order flow dynamics before and after order arrival for internal order
matches and orders routed to the exchange. The upper left plot illustrates the average hourly
buy volume share, which is the buy order volume during a particular period divided by the to-
tal order volume during that period. The x-axis reports the time difference to the order arrival
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Figure 3.7: Market and order flow dynamics before and after order arrival for internally matched customer
orders (black, red) and customer orders uncovered by subsequent order flow (gray, green). Internal order
matches base on the optimal internal matching rate following Section 3.5.1. Reported values are equal-
weighted averages within each currency pair and volume-weighted averages across pairs. © 2022 ACM
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time in hours. For instance, the value reported at −5 hours depicts the average buy volume
share between 5 and 6 hours prior to receiving an order. The calculation of the reported value
includes two steps: First, for each order of the data set, we aggregate all orders between 5 and
6 hours prior to the order arrival time, and divide the total buy order volume of the aggre-
gated group by the total order volume of that group. Second, we take the equal-weighted
average of the calculated ratios across all orders. The chart shows that buy (sell) orders that
we could not internally match exhibit relatively high (low) buy volume shares prior and after
order arrival, suggesting that the chance that future order flow neutralizes arriving buy (sell)
orders may be lower when the current buy volume share is above (below) the cross-sectional
mean, i.e., when there is a buyer (seller) overhang, and higher when we received fewer buy
(sell) orders in the past.

The upper right plot illustrates the average order volume, which measures the total order
volume during a period divided by the number of orders during that period. For reasons of
data confidentiality, we have normalized the numbers in the range [0, 1]. Orders routed to the
exchange exhibit a sharply increasing average order volume shortly before order arrival, sug-
gesting that when customers submit large orders, inventory positions and future order flow
cover smaller portions of subsequent orders. The reason is that the internal order matching
algorithm follows a waiting time hierarchy (see Section 3.3.1), which gives older open posi-
tions a higher priority. As a consequence, future order flow neutralizes older orders first, and
the larger they are, the less likely it is that the future order flow will be sufficient to neutralize
new orders, regardless of their size.

The center left plot presents the logarithmic relative order size of orders, which is the vol-
ume of the submitted order relative to the previous total trade volume. For instance, the value
reported at −5 hours depicts the order volume divided by the total order volume between five
and six hours ago. Orders that we are not able to internally match are relatively large com-
pared to the order flow: The volume of internally matched orders accounts for less than 1% of
previous and following hourly order volume on average (𝑒−5 < 1%), while the volume of buy
and sell orders routed to the exchange averages 18% (= 𝑒−1.7) and 67% (= 𝑒−0.4), respectively,
of the hourly order flow. The downward breakout of the gray and green graphs around the
time of order arrival indicates a large order volume at that time.

The center right chart shows the one-minute percentage high-low price range, calculated
by dividing the distance between the high and low price in a minute by the high price in that
minute. We determine high and low prices as the trade volume-weighted average high and
low prices at Kraken, Bitstamp and Coinbase. Compared to internally matched orders, orders
routed to the exchange exhibit both decreasing high-low ranges prior and after order arrival
and rising high-low ranges around the time of arrival, suggesting that order flow less likely
offsets incoming orders when high-low price ranges increase. As high-low ranges can serve
as a measurement of volatility (Martens and van Dijk, 2007), we show in Appendix 3.D that
standard deviation of returns, total trade volume and bid-ask spreads follow similar patterns.
Orders routed to the exchange are accompanied by below-mean volatility before and after
order arrival, and sharply increasing volatility around the time of order arrival.

Finally, the bottom chart shows the average arithmetic one-minute return, determined by
the one-minute percentage change of volume-weighted mid prices at Kraken, Bitstamp and
Coinbase. The black and red graphs indicate that slightly decreasing (increasing) returns
may increase internal matching rate of buy (sell) orders. Orders routed to the exchange occur
in an environment of sharply changing returns, e.g., sell orders see abruptly falling returns
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before order arrival, followed by strong positive returns at the time of order arrival, potentially
indicating a period in which customers sell large volumes when a price increase slows down.

3.5.3 Predictors of internal matches

We define the prediction task as a classification problem with the optimal internal matching
rate as target variable, labeled as ‘1’ if it is greater or equal to 50%, and labeled as ‘0’ otherwise.
Thus, the model predicts the probability that future order flow neutralizes an incoming order.
Next, we derive suitable predictors for that prediction task based on what we have learned
from the market and order flow analysis in Section 3.5.2.

Since all variables analyzed in Figure 3.7 show individual behavior for both classes, i.e.,
orders internally matched and orders routed to the exchange, we propose the differences be-
tween the current one-hour averages and the past two-hours, three-hours, six-hours, twelve-
hours, one-day and two-days averages of all variables as predictors. For example, if the buy
volume share has been 0.4 in the past hour and 0.5 in the past six hours, the six-hours change is
−0.1. The chosen time windows serve to incorporate both short-, mid- and long-term trends.
Prior to the training, we standardize each predictor separately for each currency by subtract-
ing the mean and dividing by the standard deviation across all sub-intervals (LeCun et al.,
2012). With controlling for the order side, order volume, order amount, open inventory posi-
tion and currency, all combinations yield a total of 5 ⋅ 6 + 5 = 35 predictors.

3.5.4 Prediction methodology

Elastic Net The first prediction methodology20 that we analyze is logistic regression. Logis-
tic regression minimizes the binary cross-entropy loss, which is

𝐿log (𝑦𝑖 , 𝑦̂𝑖) = −1𝑛
𝑛
∑
𝑖=0

(𝑦𝑖 ⋅ log (𝑦̂𝑖) + (1 − 𝑦𝑖) ⋅ log (1 − 𝑦̂𝑖)) (3.2)

where 𝑦𝑖 is the true label and 𝑦̂𝑖 is the predicted label of order 𝑖, and 𝑛 is the number of or-
ders. However, as our predictors set is large and predictors are partly correlated or irrelevant,
which causes the simple logistic regression to “overfit noise rather than extract signal” (Gu
et al., 2020), we consider penalized logistic regression instead. Penalized logistic regression
appends a penalty on coefficient estimates to 𝐿log (𝑦𝑖 , 𝑦̂𝑖) in order to reduce the number of es-
timated parameters 𝛽𝑗 , thereby avoiding noise fit. Ridge regression (Hoerl and Kennard, 1970)
penalizes the sum of squared coefficients in order to shrink them towards zero (𝐿2 regular-
ization). LASSO regression (Tibshirani, 1996) penalizes the sum of the coefficients’ absolute
values and performs variable selection by shrinking coefficients to exactly zero (𝐿1 regular-
ization). Elastic Net (Zou and Hastie, 2005) combines 𝐿1 and 𝐿2 regularization based on a mix
parameter 𝛼 ∈ [0, 1] that determines each penalty’s share. The Elastic Net loss function is

𝐿ENet (𝑦𝑖 , 𝑦̂𝑖 , 𝛼, 𝜆) = 𝐿log (𝑦𝑖 , 𝑦̂𝑖) + 𝜆
𝑚
∑
𝑗=1(

1
2𝛼𝛽

2𝑗 + (1 − 𝛼) |𝛽𝑗 |) (3.3)

where 𝜆 controls the level of coefficient shrinkage and 𝑚 equals the number of predictors.
We follow Gu et al. (2020) and optimize 𝛼 and 𝜆 based on the volume-weighted prediction

20Section 3.5.4 describes prediction methodologies following Gu et al. (2020), Algamal and Lee (2015), Aggarwal
et al. (2018), Géron (2018), Nielsen (2015), and Brownlee (2016).
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accuracy (see Section 3.6.1) for the validation samples. Our grid includes each 100 values for
𝛼 ranging from 0.01 to 1.00 and for 𝜆 on a logarithmic scale ranging from 0.0001 to 10,000. We
train Elastic Net using the linear classifiers with stochastic gradient descent training provided
by the scikit-learn package (Pedregosa et al., 2011).

Artificial Neural Network The second prediction methodology that we analyze is the Artifi-
cial Neural Network (ANN). ANNs are able to learn data structures outside of a static model
structure by using multiple layers that extract different levels of characteristics from the input
information. Equipped with nonlinear activation functions, ANNs generally can approximate
any complex, nonlinear function. We consider feedforward neural networks, which have an
input layer of raw predictors, one or more hidden layers that transform the predictors, and
an output layer that aggregates the previous layers into a prediction (Gu et al., 2020).

Figure 3.8 illustrates an example of an ANN with eight predictors and two hidden layers.
Inspired by how animal brains learn and process information, each layer contains neurons
connected with neurons in the next layer by individual synapses. The number of neurons
(units) in the first and last layer equals the dimensions of predictors and target variables,
respectively. Accordingly, our network’s input layer has 35 units and the output layer has
one unit. Designing the hidden architecture is not as straightforward: While Csáji et al.
(2001) argue that a single hidden layer can approximate any function, Eldan and Shamir (2016)
demonstrate that increasing depth can be superior to increasing width. We use the validation
sets to test fully connected architectures of up to five hidden layers with dimensions according
to the geometric pyramid rule (Masters, 1993), i.e., a three-layer architecture with one hidden
layer architecture has √35 ⋅ 1 ≈ 6 hidden neurons, the four-layer architecture has [12, 3], the
five-layer architecture has [16, 6, 2] hidden neurons, and so on. Finally, we choose the four-
layer architecture that achieves the highest volume-weighted accuracy on the validation sets.

Each training step minimizes the cross-entropy loss 𝐿log (𝑦𝑖 , 𝑦̂𝑖) defined in equation (3.2)
using stochastic gradient descent and the Adam algorithm (Kingma and Ba, 2015) with an
initial learning rate of 0.001 and a batch size of 16. Stochastic gradient descent improves the
generalization of the model (Smith et al., 2020) by introducing randomness into the optimiza-

f f

f f f f

Input layer

Hidden layer 1

Hidden layer 2

Output layer

Figure 3.8: Illustrative artificial neural network following Gu et al. (2020) with eight input units, two
hidden layers in the style of Masters (1993) with activation functions 𝑓 , and one output neuron.
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tion routine so that repeated optimizations can lead to different local minima, i.e., different
model parameterizations. As activation function of the nodes in the hidden layers, we con-
sider the rectified linear unit (ReLu) defined in Nair and Hinton (2010) by

ReLu(𝑥) = {
0 if 𝑥 < 0,
𝑥 otherwise.

(3.4)

We regularize training in two ways. First, dropout is a way of model averaging by randomly
ignoring a certain fraction of neurons in both hidden and visible layers and thereby simulating
a large number of different network architectures in one model (Srivastava et al., 2014). As
calibrated on the validation sets, we use 10% dropout, i.e., the network randomly ignores every
tenth node during each training step. Second, an early stopping rule serves to halt training
once the performance on the validation set does not improve for more than two epochs. Like
in Section 2.2.2, we train ANN with the keras package (Chollet et al., 2015) and Google’s
TensorFlow (Abadi et al., 2015).

3.6 Prediction-based internal order matching

3.6.1 Prediction quality

Given that the positive and negative classes represent order execution through internal
matching and routing to the exchange, respectively, a classification is true-positive (𝑇𝑃 ) if
we hold the order in inventory and subsequent order flow actually neutralizes it. If the posi-
tion remains uncovered until 𝑡 +2 and we have to close it on the exchange, the classification is
false positive (𝐹𝑃 ). If we routed it to an exchange and subsequent order flow would actually
not have neutralized it, the classification is true negative (𝑇𝑁 ). Otherwise, if the order flow
had been sufficient to neutralize it, the classification would have been false negative (𝐹𝑁 ).

Traditional quality measures are accuracy (𝐴𝐶𝐶), true positive rate (𝑇𝑃𝑅), and true neg-
ative rate (𝑇𝑃𝑁 ). 𝐴𝐶𝐶 determines the proportion of true classifications in all observations,
whereas 𝑇𝑃𝑅 (𝑇𝑁𝑅) determines the ratio between inventory (exchange) classifications and
the actual number of orders internally matched (routed to the exchange). In a trading context,
however, these measures are insufficient as they weight all observations equally and thus ig-
nore the financially different effects of classifications. For example, misclassifying a large
order may have a larger impact on the broker’s revenue than misclassifying a small order.
We therefore consider order volume-weighted variants of the traditional quality measures
instead: According to equation (2.13), we define the order volume-weighted accuracy by

𝐴𝐶𝐶𝑤 = 𝑉𝑇𝑃 + 𝑉𝑇𝑁
𝑉𝑇𝑃 + 𝑉𝑇𝑁 + 𝑉𝐹𝑃 + 𝑉𝐹𝑁

(3.5)

where 𝑉𝑇𝑃 (𝑉𝑇𝑁 ) is the total order volume of 𝑇𝑃 (𝑇𝑁 ) classifications and 𝑉𝐹𝑃 (𝑉𝐹𝑁 ) is the
total order volume of 𝐹𝑃 (𝐹𝑁 ) classifications. Correspondingly, the order volume-weighted
true positive rate 𝑇𝑃𝑅𝑤 and true negative rate 𝑇𝑁𝑅𝑤 are defined by

𝑇𝑃𝑅𝑤 = 𝑉𝑇𝑃
𝑉𝑇𝑃 + 𝑉𝐹𝑁

(3.6)

𝑇𝑁𝑅𝑤 = 𝑉𝑇𝑁
𝑉𝑇𝑁 + 𝑉𝐹𝑃

(3.7)
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We segment orders based on the prediction probability 𝑝 and the probability threshold 𝑡ℎ.
If 𝑝 > 𝑡ℎ, we store the order in inventory, and if 𝑝 ≤ 𝑡ℎ, we route it to the exchange. In
case of a data set with balanced class distributions, a common value for 𝑡ℎ is 50%, implying
that we store orders in inventory if we predict that future order flow neutralize them with a
probability of more than 50%. However, as our data set is imbalanced with relatively more
internally matched orders and Zou et al. (2016) point out that “classification with imbalanced
class distributions is a major problem in machine learning”, we should choose 𝑡ℎ carefully.

Figure 3.9 analyzes prediction quality for different values of 𝑡ℎ and reveals the typical trade-
off between high 𝑇𝑁𝑅𝑤 with low 𝑇𝑃𝑅𝑤 vs. low 𝑇𝑁𝑅𝑤 with high 𝑇𝑃𝑅𝑤 . A question that
arises is whether either brokers or customers have individual preferences for a particular
prediction quality outcome. For instance, a high 𝑇𝑁𝑅𝑤 combined with a low 𝑇𝑃𝑅𝑤 implies
that the broker has to close more inventory positions on the exchange than she erroneously
sends to the exchange. Consequently, the broker prefers a high 𝑇𝑃𝑅𝑤 over a high 𝑇𝑁𝑅𝑤 . On
the other hand, customers save more cost when the broker sends more orders to inventory
by accepting a lower 𝑇𝑃𝑅𝑤 and thus prefer a high 𝑇𝑁𝑅𝑤 . In order to consider both sides’
preferences, we propose 𝑡ℎ for which 𝑇𝑁𝑅𝑤 ≈ 𝑇𝑃𝑅𝑤 , which is 𝑡ℎ = 97% in the case of Elastic
Net and 𝑡ℎ = 89% for ANN. In other words, we route orders to inventory if the predicted
probability of an internal match for this order is more than 97% or 89%, respectively. These
values are well above 50%, reflecting the fact that most orders are neutralized by subsequent
order flow, so we must be more sensitive to the prediction probability by already routing
orders to the exchange with even a small chance that future order flow may be insufficient to
neutralize them.

Table 3.1 reports the prediction quality of four order segmentation scenarios: In the sce-
nario ‘None’, we do not segment order flow at all and route all orders to the exchange. The sce-
nario ‘Order size’ represents size-based order segmentation, whereas ‘Elastic Net’ and ‘ANN’
represent prediction-based order segmentation following Elastic Net and ANN predictions,
respectively. The bottom line focuses on the Pearson correlation of optimal internal match-
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Figure 3.9: Volume-weighted prediction quality as a function of the probability threshold 𝑡ℎ (validation
sets). Reported values use the predictions of Elastic Net (left) and ANN (right). We define prediction quality
for each value in the range 𝑡ℎ = [0, 1] in 0.01 steps. © 2022 ACM
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Segmentation None Order size Elastic Net ANN
𝐴𝐶𝐶𝑤 0.14 0.40 0.84 0.86
𝑇𝑃𝑅𝑤 0.00 0.30 0.84 0.86
𝑇𝑁𝑅𝑤 0.14 0.99 0.82 0.87
Correlation − 0.13 0.38 0.51

Table 3.1: Volume-weighted prediction quality of the four scenarios `None' (without internal matching),
`Order size' (size-based segmentation), `Elastic Net' and `ANN' (prediction-based segmentation). The last
row reports the Pearson correlation of optimal internal matching rates and prediction probability. The
probability threshold 𝑡ℎ is 97% for Elastic Net and 89% for ANN. © 2022 ACM

ing rates and prediction probability as a measure of model fit.
Prediction-based order segmentation correctly sends around 85 out of 100 traded Euros to

either exchange or inventory, which is more than double the amount of size-based segmen-
tation, with ANN being slightly superior to Elastic Net. Regarding Figure 3.6, this means that
we correctly predict 85% out of 85% of potential internal order matches. The large 𝑇𝑁𝑅 in
size-based segmentation accounts for the fact that large orders typically are not neutralized
by subsequent order flow (see Figure 3.7). Besides, ANN predictions achieve a correlation of
51% with realized order neutralization, outperforming Elastic Net by more than 10 percentage
points. Finally, we implement a Diebold and Mariano (1995) test for the null that the differ-
ence between size- and prediction-based classifications is zero. We can reject the null at the
0.0001 significance level for both Elastic Net and ANN, and conclude that the forecasts are
significantly different from size-based segmentation, i.e., our prediction models extract more
information from the input data than just that we should send large orders to the exchange.

3.6.2 Internal matching rate

Precisely, evaluating our model performance by statistical measures is insufficient as a true
classification does not necessarily imply that we are actually able to internally match that
order. For instance, when erroneously sending an order to the exchange (false negative), a
subsequent order that was empirically executed against that first order, now cannot be inter-
nalized anymore. If nevertheless routing that second order to inventory, the order classifica-
tion would appear as true positive when comparing predicted and true labels, when in fact
we cannot execute it internally and have to close it on the exchange. Hence, for both brokers
and traders, only the share of successfully internally matched orders is relevant.

To this end, we determine the internal matching rate following order segmentation based
on Elastic Net or ANN predictions according to the order execution algorithm from Section
3.3.1. Figure 3.10 illustrates the proportion of internally matched volume by currency across
all test periods. The bottom row represents the volume-weighted average of all currencies
and shows an internal matching rate of one quarter for size-based segmentation and three
quarters for forecast-based segmentation, which is about 10 percentage points below the op-
timal internal matching rate indicated by green diamonds. Thus, by using our forecast model
instead of order size limits, a broker can triple internal matching. Internal matching rates
achieved by Elastic Net and ANN are comparable across all currency pairs, whereas size-
based segmentation reveals that orders in less liquid currency pairs such as BCH or LTC are
smaller and thus generate higher internal matching rates.

Next, we analyze the relationship between internal matching rate and predictors. Figure
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Figure 3.10: Internal matching rate by currency. We determine internal matching rate based on size-based
segmentation (black), prediction-based segmentation for Elastic Net predictions (gray) and ANN predictions
(red). Green diamonds indicate the optimal internal matching rate from Section 3.5.1. Note that gray and
red diamonds are close to each other and sometimes cover each other. © 2022 ACM

3.11 illustrates the volume-weighted internal matching rate for percentile groups of predic-
tors, where percentile group 1 (100) contains the orders in the lowest (highest) 1% of a predic-
tor across all test periods. For instance, if the internal matching rate of ANN is high (red) for
the lower 20% of AvOrderVol_24h and low (blue) for the upper 20% of AvOrderVol_24h,
this means that ANN achieves relatively large internal matching rates when the average order
volume has decreased within the past 24 hours, and relatively small internal matching rates
when the average order volume has increased instead.

Size-based segmentation shows characteristic behavior for small orders and negative
changes in the average order volume and relative order size. Prediction-based segmenta-
tion achieves high (low) internal matching when changes in buy volume share and average
order volume are negative (positive), which is consistent with our findings from Figure 3.7
that suggest lower internal matching rate given strong increases in the two variables. Corre-
spondingly, negative changes in the relative order size are also associated with high internal
matching rates. Since relative order size has the total trade volume as denominator, negative
changes in the relative order size may indicate increasing total trade volume with a higher
chance of internal order matches (see Appendix 3.D). Apart from that, however, the models fit
less strongly to volatility measured by the high-low price range and to one-minute arithmetic
returns. Overall, the size of an order is critical to its internal matching rate, regardless of the
segmentation method. Orders executed on the exchange refer to relatively large orders in
an above-average volatile market environment accompanied by a buy or sell surplus. When
comparing ANN and Elastic Net, we notice that ANN internally matches more large orders
than Elastic Net and shows a more pronounced relationship with the buy volume share.

3.6.3 Learning content

In order to examine what our model learns from the provided input data, we follow Jiang
et al. (2022) and regress true and predicted labels on the predictors set. In total, we carry out
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Figure 3.11: Internal matching rate for percentile groups of predictors. Predictors are named according to
the considered sequence length, e.g., AvOrderVol_6h denotes the change in the average order volume
between now and six hours ago. Currency represents BCH (groups 1-20), BTC (21-40), ETH (41-60), LTC
(61-80) and XRP (81-100). OrderSide represents sell (groups 1-50) and buy (51-100) side. Percentile 1
(100) of OpenInventory demonstrate the 1% largest short (long) position. © 2022 ACM

four separate logistic regressions, each with the same regressors. Figure 3.12 illustrates the
estimated coefficients with black (red) dots indicating (no) statistical significance. A positive
(negative) coefficient means that an increase in that variable leads to a higher (lower) proba-
bility of order neutralization by future order flow. For instance, since larger orders are more
difficult to neutralize than small orders, the coefficients for order volume are negative.

Consistent with Figure 3.11, the signs of the estimated coefficients for order volume, or-
der amount, buy volume share, average order volume and relative order size are all negative.
Increasing buy volume share and large order sizes lower the neutralization probability. Co-
efficients for high-low price range and arithmetic one-minute return are mixed. Regarding
the coefficients for relative order size, we notice that long-term changes have more impact
on internal matching than short-term changes. Both Elastic Net and ANN learn character-
istics from the data similar to the direct approximation to optimal internal matching labels,
represented by identical signs for most of the coefficients, although the estimated coefficients
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are larger for most predictors. The left column emphasizes that the two most relevant pre-
dictors for predicting optimal internal matches are order volume and the two-day change in
the relative order size. Accordingly, a large (small) order submitted at a time where its two-
day relative order size increases (decreases), e.g., due to a smaller (larger) total trade volume
during the past two days, have a low (high) probability to be internally matched.

3.6.4 What drives segmentation performance?

This section aims to understand what circumstances make which segmentation approach per-
form well. For this purpose, we compare the one-day 𝑇𝑃𝑅𝑤 and 𝑇𝑁𝑅𝑤 with the daily means
of the five variables buy volume share, average order volume, relative order size, high-low
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Figure 3.12: Estimated coefficients of logistic regression of optimal internal matching rate labels (first
column), size-based and prediction-based labels on predictors during all test periods. Black dots indicate
statistical significance at the 0.01 level, red dots indicate no significance. Currency is 0 for BCH, 0.25 for
BTC, 0.50 for ETH, 0.75 for LTC and 1.00 for XRP. OrderSide takes `1' for buy and `0' for sell orders.
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price range and arithmetic one-minute return. We group the test periods into ten groups,
where decile group 1 covers the 10% days with the lowest 𝑇𝑃𝑅𝑤 (𝑇𝑁𝑅𝑤 ) and decile group
10 covers the 10% days with the highest 𝑇𝑃𝑅𝑤 (𝑇𝑁𝑅𝑤 ). Prior to the grouping, we standard-
ize each variable to a mean of zero and a standard deviation of 1. The upper (lower) panel
in Figure 3.13 illustrates the daily means of the five variables as functions of one-day 𝑇𝑃𝑅𝑤
(𝑇𝑁𝑅𝑤 ) decile groups. The charts can be interpreted as follows: For instance, under size-
based segmentation, the graph for the average order volume has its maximum (minimum) at
the first 𝑇𝑃𝑅𝑤 (𝑇𝑁𝑅𝑤 ) decile group. This means that the 10% days with the poorest inventory
(exchange) classifications are the 10% days with the highest (lowest) average order volume.

Size-based segmentation delivers the best (worst) inventory classifications in a low-volatile
(high-volatile) market environment with small (large) daily means of average order volume,
relative order size, high-low price range, and buy volume share, associated with negative
(positive) returns. Exchange classifications are poor when average order volume is small and
volatility is low while prices are rising. In contrast, surprisingly, prediction-based segmenta-
tion provides the best inventory decisions in an above-average volatile environment, whereas
prediction quality declines in a relatively low-volatile market environment. We cannot iden-
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Figure 3.13: Market and order flow dynamics of daily 𝑇𝑃𝑅𝑤 and 𝑇𝑁𝑅𝑤 decile groups. Numbers report the
average daily values of standardized market variables for daily 𝑇𝑃𝑅𝑤 (top row) and 𝑇𝑁𝑅𝑤 (bottom row)
decile groups. The two left plots focus on size-based segmentation, whereas the middle (right) plot focus
on prediction-based segmentation following Elastic Net (ANN) predictions. Arithmetic return and high-low
price range are the volume-weighted averages from Coinbase, Kraken and Bitstamp. © 2022 ACM
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tify a relationship with specific states of buy volume share and price changes. Prediction-
based exchange classifications are weak when the buy volume share is low, whereas, apart
from that, 𝑇𝑁𝑅𝑤 shows no dominant relationship with market volatility or price changes.

In relating these results to our previous results from Figure 3.7 and Figure 3.11, it is first
important to distinguish between statistical measures and internal matching, and to keep in
mind that, e.g., a large 𝑇𝑃𝑅𝑤 does not automatically imply high internal matching. Onemight
wonder why in volatile markets the prediction quality for internal matches increases, while
at the same time the chance of internal matching decreases. One possible reason is that we
chose a probability threshold 𝑡ℎ optimized for volatile environments. Since trading volume is
highest in volatile market environments, and we parameterized 𝑡ℎ based on volume-weighted
quality measures, our parameterization is possibly less suited for low-volatile periods, po-
tentially requiring a less strict probability threshold. We support this argument by testing a
prediction model with 𝑡ℎ parameterized based on equally weighted quality measures, which
reports inverse behavior of 𝑇𝑃𝑅𝑤 and 𝑇𝑁𝑅𝑤 deciles.

3.6.5 Analysis of cost savings

In the absence of internal order matching, investors always trade at the quoted price and
thus pay the quoted spread for trade execution. In the presence of internal order matching,
investors trade at either the quoted or the improved price. Wemeasure investors’ cost savings
from internal order matching by the distance between the actual trade price and the quoted
price based on the effective spread. We follow Bollen et al. (2004) and calculate the effective
spread by (2 ⋅ |trade price − mid price|)/mid price, where the mid price is the average of the
quoted ask and bid price, and the trade price of an internally matched order is the midpoint
between mid price and quoted ask or bid price, respectively (see Section 3.3.1).

Table 3.2 reports the average volume-weighted effective spreads by segmentation scenario.
The average quoted spread across all currencies is 0.17%21, represented by the scenario with-
out internal order matching (‘None’). Internal matching by size-based segmentation leads
to a 10% decrease in effective spreads to 0.15%, whereas Elastic Net and ANN reduce effec-
tive spreads by around 35% to 0.11%. Similar to Anolli and Petrella (2007), cost savings are

21In light of the historical bid-ask spreads illustrated in Appendix 3.C, 0.17% appears to be large. Appendix 3.B
elaborates that this impression is due to the fact that spreads are larger in volatile market phases with large
trade volumes and thus receive a larger weight when calculating volume-weighted spreads.

Currency None Order size Elastic Net ANN
BCH 0.25 0.20 0.16 0.15
BTC 0.13 0.12 0.08 0.08
ETH 0.17 0.15 0.11 0.10
LTC 0.23 0.18 0.14 0.14
XRP 0.23 0.20 0.14 0.14
All 0.17 0.15 0.11 0.11

Table 3.2: Average volume-weighted quoted (`None') and effective (`Order size', `Elastic Net', `ANN')
spreads across all test periods. Numbers denote in percentage. We follow Bollen et al. (2004) and weight
spreads once according to the volume of each individual trade, and once across exchanges according to
the trade volume share of each exchange. © 2022 ACM
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larger for less liquid pairs, e.g., 40% for BCH, and smaller for liquid pairs such as BTC and
ETH. Thus, on average, retail investors can save more than one third of the quoted spread if
their broker uses prediction-based internal order matching and passes half of the cost savings
to customers (see Section 3.3.1). Accordingly, the broker also achieves cost savings of one
third of the spread, so the total monetary value added is around 70% of the bid-ask spread.
Nonetheless, this 70% can be split arbitrarily by the regulator or the participants, e.g., brokers
in a competitive environment could provide even greater cost savings to their customers.

Finally, we evaluate whether our results are robust to possible regulatory changes with
respect to order internalization in crypto trading. Following Section 3.2, one possible regula-
tion would be that crypto brokers, similar to MiFID II, would only be allowed to internalize
orders when meeting a minimum price improvement, and would have to send all orders for
which they cannot meet this requirement to the exchange. For our analysis, however, we
cannot simply adopt the MiFID II regulation because tick sizes in the crypto market are not
as uniformly harmonized as they are under MiFID II (Lucas, 2020). For example, the tick size
of BTC on most exchanges is €0.01, even though the price is in the five-digit range.

To this end, we measure price improvement in basis points (bp) of the volume-weighted
mid price, i.e., given a minimum price improvement of 1 bp, an order about 1 BTC trading at
a mid price of €30,000 must receive a price improvement of at least €3. With regard to MiFID
II, a 1 bp price improvement for a stock trading at €100 is €0.01, identical with the MiFID II
tick size regime. As we assume that customers and brokers share the cost savings equally, a
1 bp price improvement also implies 1 bp additional gain for the broker.

Figure 3.14 illustrates internal matching as a function of the minimum price improvement.
At 1 bp, the broker could internally match 70% of the order volume, but would save relatively
more in costs than the customer on most of these orders. The broker could also internally
match more than 70% if she accepts that the customer saves relatively more costs. More than
60% of total order volume could receive a price improvement of more than 2.5 bp.

3.7 Conclusion

In this article, we introduce a new approach to internal order matching in crypto trading. To
this end, we present an order segmentation methodology based on predicting whether or not
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Figure 3.14: Volume-weighted internal matching under minimum price improvements between 0.0 and
2.5 basis points (bp) of the mid price. © 2022 ACM
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Conclusion

an incoming order that the broker cannot immediately execute against orders in inventory
will be neutralized by future order flow before its settlement date. We show that a broker
using our model can triple internally matched volume compared to traditional segmentation,
allowing both brokers and traders to realize cost savings of 35% of the quoted spread.

A limitation of our work is that we cannot assess the actual impact of increased internal
matching on market quality. Our analyses assume a positive linear relationship between
internal matching and cost savings. However, in equity trading, empirical studies ques-
tion this relationship (Easley et al., 1996; Bessembinder and Kaufman, 1997; Chakravarty and
Sarkar, 2002; Preece and Rosov, 2014). Future work should examine whether increased in-
ternal matching in crypto markets affects market quality and, if so, whether customers’ cost
savings could be eroded by widening spreads in the main market.

Overall, our model is robust to market dynamics and provides a data-driven solution for
preferenced trading with crypto order flow, that realizes meaningful cost savings both for
brokers and traders, even after accounting for common minimum price improvements.
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Appendix

3.A Distribution of profits and losses on internal order matches

This section analyzes whether different order prices of internally matched orders would im-
pact our revenue differently than price changes between confirming and executing an order
at an exchange. To this end, we compare the distribution of profits per order when we inter-
nally match all contrary orders as described in Section 3.5.1 with the distribution of profits per
order when we route all orders to the exchange. As approximation to the broker’s execution
price at the exchange for an order received in 𝑡 , we consider the market price in 𝑡 + 1.

We calculate the profit on internal order matches as follows: For each buy order in the
order history, we weight the order price by the order volume internally matched and sub-
tract from it the volume-weighted order price of the sell order(s) against which we internally
match that order. For instance, if we receive a buy order about 1 BTC with an order price
of €40, 000 and internally match 90% of the total order amount against a sell order about
0.75 BTC with an order price of €40,050 and 30% of a sell order about 0.50 BTC with an or-
der price of €40,025, the nominal profit on the internally matched part of the buy order is
90% ⋅ €40, 000 − (100% ⋅ 0.75 ⋅ €40, 050 + 30% ⋅ 0.50 ⋅ €40, 025) = €36, 000 − €36, 041.25 = −€41.25.
Finally, we scale the nominal profit by the initial volume-weighted order price of the buy or-
der, i.e., −€41.25÷(90% ⋅ €40, 000) = −0.11%. Hence, a positive profit indicates that we received
more money from the buyer than we spent to the seller(s), whereas a negative profit indicates
that we spent more for buying than we received from selling the asset.

Correspondingly, we define the profit on an order routed to the exchange by the percent-
age difference between the volume-weighted order price and the volume-weighted execution
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Figure 3.15: Frequency distribution of profits per order when internally matching all contrary orders (black)
and when routing all orders to the exchange (red) in the range [−1.5%, 1.5%] for BTC and ETH. We calculate
profits according to Section 3.A.
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price at the exchange. Continuing the example from above, if we execute the other 10% of
the buy order at the exchange at a price of €40, 005, we generated a percentage profit of
(10% ⋅ €40, 000 − 10% ⋅ €40, 005) ÷ €40, 000 = −0.01%. Hence, the number indicates the impact
of price changes between confirming and executing orders on our revenue. This calculation
also considers the close-out of open positions when internal order matching was not possible
within 𝑡 + 2 despite we routed the order to inventory. Note that we have to calculate profits
on internal matches only for buy orders, as this already covers internally matched sell orders.

Figure 3.15 shows the frequency distribution of profits per order for the two scenarios.
We find that profits fluctuate more when matching orders internally than when routing all
orders to the exchange, although both scenarios show an equal distribution of profits and
losses. This means, for example, that in each of the two scenarios a profit of 0.5% occurs about
as frequently as a profit of −0.5%, with the absolute frequency being higher in the internal
matching scenario than in the scenario without internal matching. When we pass all orders
to the exchange, the price differences are smaller compared to the internal matching scenario,
resulting in fewer large losses and profits, and we have more frequent very small profits and
losses, respectively. We conclude that the impact of price differences in internally matched
orders on the broker’s profit is on average zero and thus similar to the impact of differences
between order prices and execution prices on the exchange. Analogously, the graph also
conveys that close-outs of the position in 𝑡 + 2 can also be equally both profitable and loss-
making. On this basis, we can disregard these price effects in a cross-sectional analysis.

3.B Daily order volume

Figure 3.16 illustrates the daily average order volume across the observation period. The
chart emphasizes that the first half of 2021 accounts for the largest part of order volume in
the data set, with BTC reporting the largest order volume. When transferring Figure 3.16
to Figure 3.17 in Appendix 3.C, we find that bid-ask spreads are large (small) on days with
high (low) trade volume, which explains why volume-weighted spreads are larger than equal-
weighted spreads (see Section 3.6.5). However, we still use volume-weighted spreads in order
to demonstrate total internalization-driven cost savings measured by the order volume.
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Figure 3.16: Daily total order volume by currency pair across the entire observation period. We normalize
order volume in the range [0, 1] for data confidentiality purposes and aggregate buy and sell orders.
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3.C Historical bid-ask spreads

We estimate bid-ask spreads according to the Abdi and Ranaldo (2017) estimator presented
in equation (3.1). Figure 3.17 illustrates the average volume-weighted daily estimated bid-ask
spreads by exchange. Bid-ask spreads are similar across all three exchanges and the lowest for
the BTC-EUR and ETH-EUR pairs. Overall, the estimates are smaller compared to Brauneis,
Mestel and Theissen (2021), potentially indicating that spreads narrowed throughout the past
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Figure 3.17: Average daily volume-weighted bid-ask spreads between July 01, 2020 and March 30, 2022.
Reported bid-ask spreads base on the Abdi and Ranaldo (2017) estimator (equation (3.1)). We could not
retrieve OHLCV data for XRP from Coinbase starting from 2021.
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two years. In Section 3.4, we weight bid-ask spreads based on the share of daily trade volume
between the three exchanges: For instance, if Kraken has a trade volume of €10,000 and an
average daily spread of 10 basis points, whereas Coinbase and Bitstamp each have a trade
volume of €5,000 and an average daily spread of 5 basis points, the volume-weighted average
daily bid-ask spread across all three exchanges is 7.5 basis points.

3.D Market and order flow dynamics before and after order arrival (continued)

Figure 3.18 continues the analysis of Figure 3.7 and reports the hourly average total trade
volume (top left), standard deviation (top right), and bid-ask spread (bottom) for internally
matched orders and orders routed to the exchange. We calculate the total trade volume as
the sum of the nominal trade volume in Euro across the exchanges of Bitstamp, Coinbase
and Kraken. Standard deviation is the one-hour standard deviation of one-minute log re-
turns, where log returns are the trade volume-weighted log returns of mid prices at Bitstamp,
Coinbase and Kraken. Lastly, the bid-ask spread is the trade volume-weighted bid-ask spread
based on the Abdi and Ranaldo (2017) estimator across the three exchanges (equation (3.1)).
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Figure 3.18: Market and order flow dynamics before and after order arrival (continued). Internal order
matches base on the optimal internal matching rate determined in Section 3.5.1. Reported values are
equal-weighted averages within each currency pair and volume-weighted averages across pairs.
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Appendix

3.E Sensitivity of internal matching to inventory constraints

As we assume a discretionary inventory limit of €100,000 in Section 3.3.2, we also should
analyze whether a different choice would impact our order execution performance. To this
end, Figure 3.19 illustrates the internal matching rate for inventory limits between €100,000
and €1,000,000. Internal matching generally is positively related with the inventory limit, as a
larger inventory limit allows us to store more orders in inventory and thus match more orders
internally. A shift from €100,000 to €200,000 leads to a 1 percentage point increase in internal
matching rate in the case of size-based segmentation and a 0.2 percentage point increase
in the case of ANN prediction-based segmentation. Consequently, the inventory limit may
limit internal matching to some extent, but the impact on trade execution decisions is small
compared to other factors such as the eligible order size or the segmentation methodology.

74

75

76

10
0,
00
0

20
0,
00
0

30
0,
00
0

40
0,
00
0

50
0,
00
0

60
0,
00
0

70
0,
00
0

80
0,
00
0

90
0,
00
0

1,
00
0,
00
0

Inventory limit (€)

28

29

30

In
te
rn
al
m
at
ch
in
g
ra
te

(%
)

Order size
Elastic Net
ANN

74

75

76

10
0,
00
0

20
0,
00
0

30
0,
00
0

40
0,
00
0

50
0,
00
0

60
0,
00
0

70
0,
00
0

80
0,
00
0

90
0,
00
0

1,
00
0,
00
0

Inventory limit (€)

28

29

30

In
te
rn
al
m
at
ch
in
g
ra
te

(%
)

Order size
Elastic Net
ANN

Figure 3.19: Sensitivity of internal matching to the inventory constraint in the range €100,000 to
€1,000,000. Reported numbers are volume-weighted by trade volume. An inventory limit of €300,000
allows us to hold open positions of up to €300,000.
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4 Prediction-based Limit Order Trading

Christopher Felder

Abstract

Managing the trade-off between volume and margin is among the most fundamental
challenges for dealers in a securities market. We attempt to overcome this trade-off by
incorporating predictions for buyer- and seller-initiated trades when submitting limit orders.
Using the Avellaneda–Stoikov model as an example, we show how dealers can adjust
quotes to predictions and thereby capture larger spreads at constant volume. Simulations
on historical limit order book data illustrate that our model allows dealers to both increase
market making revenues through trade flow-optimized positioning in the order book and
reduce adverse selection cost through preempted adverse price movements.

Keywords: Sequence learning, Limit order trading, Avellaneda–Stoikov model, Adverse price
selection, Cryptocurrency.

JEL classification: C45, C53, C55, C63, D49, G17.
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4.1 Introduction

Intuitively, dealers aim to repeatedly earn the ‘spread’ between buy and sell prices by simul-
taneously buying and selling an asset without accumulating a large net position. As a result,
dealers face a trade-off between trade volume and margin: Dealers with tight spreads trade
frequently but at unfavorable prices, while wide spreads lead to high margins but less volume
(Guéant, 2017). Additionally, following Guilbaud and Pham (2013), dealers face inventory
risk arising from the stochastic behavior of their net position (Avellaneda and Stoikov, 2008),
execution risk arising from limit orders not being executed or only partially executed (Handa
and Schwartz, 1996; Kühn and Stroh, 2010), and adverse selection risk arising from trading
with informed traders (Frey and Grammig, 2008). Thus, much of the research literature has
been concerned with the question of whether there is an optimal strategy for posting limit
orders (Ahuja et al., 2017).

Avellaneda and Stoikov (2008) propose a stochastic optimal control model in which the
dealer’s reservation price is a function of the net position: When the dealer is long (short),
the reservation price is below (above) the mid price to incentivize execution of sell (buy) or-
ders and return to a neutral inventory, thereby allowing the dealer to manage inventory risk.
Numerous studies discuss extensions of the model, see Ahuja et al. (2017), Aydoğan et al.
(2022), Bayraktar and Ludkovski (2014), Cartea and Jaimungal (2013), Cartea and Jaimungal
(2015), Cartea et al. (2014), Fodra and Labadie (2012), Guéant (2017), Guéant et al. (2013) or
Guilbaud and Pham (2013)—to name a few. Like Avellaneda and Stoikov (2008), most of these
studies assume that market orders follow a stochastic process. In contrast, Cao et al. (2009),
Cont et al. (2014), Dixon (2018a), Kercheval and Zhang (2015), Tsantekidis et al. (2017), Tsan-
tekidis et al. (2020), Zhang et al. (2019) and Zheng et al. (2013) present evidence of mid price
predictability from the limit order book (LOB). Moreover, Hirschey (2021) finds that high-
frequency traders anticipate specific order flow trends, while Fodra and Labadie (2012) shows
that high-frequency traders can improve their Profit & Loss (P&L) with directional bets.

Motivated by these discussions, we introduce an approach to integrate trade flow fore-
casting into limit order trading. We model buyer- and seller-initiated trades using a Recur-
rent Neural Network (RNN)—a powerful sequence learner well suited for modeling the high-
frequency dynamics of an LOB (Dixon, 2018b)—that processes tick-level LOB and trade data
to predict average 24-hour percentile ranks of buyer- and seller-initiated trade sizes during
the next five seconds, respectively. For example, a 90% prediction for buyer-initiated trades
means that the average size of buyer-initiated trades over the next five seconds is greater than
90% of all buyer-initiated trades over the last 24 hours.

Using the Avellaneda–Stoikov model as an example, we adjust limit order prices to these
predictions in two ways: First, if our model predicts large (small) trades, we increase (de-
crease) the depth of orders in the LOB, i.e., post orders deeper (closer) in the LOB. For example,
when predicting large buy orders and small sell orders, we increase both the ask and bid price
to maximize the potentially captured spread on the ask side and increase the chance of being
consumed on the bid side. Second, we shift the reservation price to protect against the antici-
pated price movement, which we derive from the imbalance between the predictions for buy
and sell trade sizes. Hence, when anticipating a price increase (decline), we shift the reser-
vation price up (down) to protect from being adversely selected by informed buyers (sellers)
and participate in the price increase (decline) through long (short) exposure, regardless of our
current net position. In order to control by how much we adjust prices in response to predic-
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tions, we scale price adjustments using sensitivity parameters, where high (low) sensitivity
indicates relatively larger (smaller) adjustments to Avellaneda–Stoikov prices.

We test our model on historical LOBs of the BTC-USD and ETH-USD pairs and arrive at the
following findings: The RNN improves prediction quality by about 40% over a standard feed-
forward neural network and performs best when previous trade flow is balanced. Moreover,
there is an empirical optimum of sensitivity to predictions, which states that we should be
twice as sensitive to predictionswhen adjusting order depth to trade sizes thanwhen adjusting
reservation price to adverse price movements. Our limit order model significantly improves
P&L over a wide range of test periods compared to the Avellaneda–Stoikov model, e.g., by up
to 7% for one-hour test periods, but this improvement also comeswith higher risk and depends
onmarket dynamics. As twomain contributors to the P&L surplus, we identify higher market
making revenues due to larger spreads earned especially when the order book is less liquid,
and reduced adverse selection costs by preempting adverse price movements, with the cost
reduction being proportional to the magnitude of the adverse price movement. Accordingly,
our model provides an effective approach to both overcoming the trade-off between volume
and margin and reducing adverse selection cost by taking trade flow forecasts into account
when deciding whether we can afford a wider spread to increase profitability.

The remainder of the article is structured as follows: Section 4.2 introduces to the basics
of LOBs and high-frequency trading. Section 4.3 presents our data set and Section 4.4 de-
rives a sequence prediction model for high-frequency trade flow. In Section 4.5, we illustrate
how dealers can adjust order prices to predictions for limit order trading. Finally, Section 4.6
presents the results from the trading simulation and Section 4.7 concludes.

4.2 High-frequency trading in a limit order book

4.2.1 Limit order book (LOB)

A limit order22 is an order to buy or sell a specified amount of an asset at a particular price.
Upon submission, the trader must specify the price limit, amount, and side of the trade. If
execution is not possible at the time of arrival, the order queues in the LOB at the respective
price level. The LOB is an aggregation of all open limit orders awaiting execution by incoming
market orders (Haider et al., 2022) and can be viewed as a continuous double auction where
traders compete by submitting bid and ask orders (Lim and Gorse, 2018). The LOB repre-
sents market demand and supply at any point in time, “a cross-section of orders to execute
at various price levels away from the market price” (Dixon, 2018a). LOBs typically follow a
price-time priority, with orders queued according to their price level and arrival time. For
more information on LOBs, we refer to Gould et al. (2013) and Abergel et al. (2016).

The counterpart of limit orders are market orders, which serve impatient traders by instan-
taneous order execution. A market order has no price limit and executes immediately against
open orders in the LOB, starting with the best price level and, if necessary, continuing with
subsequent price levels until the exchange’s matching engine has been able to match the total
order volume. This process drives price discovery and carries a price risk for the impatient
trader, as the final execution price could be worse than the best market price currently dis-
played. Buy (sell) market orders execute against the best ask (bid) price, i.e., the ‘spread’ is a
cost for immediate execution of the trade.
22Section 4.2.1 describes limit order books following Gould et al. (2013), Abergel et al. (2016), Lim and Gorse (2018),
Spooner et al. (2018), Dixon (2018a) and Haider et al. (2022).
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Figure 4.1: Impact of a large market sell order on the LOB. We take LOB snapshots of the BTC-USD pair from
Coinbase at 2022-09-26 07:08:00.0516 UTC (left) and 2022-09-26 07:08:00.0563 UTC (right)
and represent the LOB in aggregate (top) and plain (bottom) format. Between the two snapshots, a sell
market order about 4.68 BTC arrived and matched with open buy orders. Dashed lines represent the best
bid (green) and best ask price (red).

The mid price marks the equal-weighted midpoint between the best bid and best ask price.
Changes in the mid price indicate that either traders cancel their open limit orders or market
orders arrive and execute against open limit orders at either the bid or the ask side. Figure 4.1
illustrates the impact of a large seller-initiated trade on the LOB using the Coinbase BTC-USD
pair as an example. The top (bottom) charts show the LOB in aggregate (plain) format prior to
the arrival of the market order (left) and after the order has arrived and fully executed against
open limit orders (right). The dashed lines represent the respective price levels of the best
bid (green) and best ask price (red). As the arriving market order is larger than open limit
orders at the top of the bid side, the order consumes multiple price levels between $18,774
and $18,772, causing the mid price to fall from $18,776 to less than $18,775, indicated by the
$2 decrease of the best bid and the widened spread.

4.2.2 High-frequency trading

Traditionally, the role of dealers was taken by ‘official’ market makers who had signed a
contract with an exchange or listed company (Guéant, 2017). Today, most modern exchanges
are organized as order-driven markets (Guilbaud and Pham, 2013), where any participant
can become a market maker. Menkveld (2013) and Guéant (2017) refer to this category as
‘new’ market makers, which can be any type of high-frequency trader. With a share of up to
80% (Hagströmer and Nordén, 2013), market making activities dominate high-frequency limit
order trading over other high-frequency strategies such as statistical arbitrage.

The objective of dealers is to provide liquidity to the market by continuously offering buy
and sell prices through the LOB without accumulating large net positions (Menkveld, 2013) in
order tominimizemarket risk. The prices offered therefore should take into account a dealer’s
net position: Symmetrically placing orders around the mid price, e.g., at the top of the order
book, risks adverse selection, as downward or upward trends could lead to a disproportionate
number of filled buy or sell orders, respectively, resulting in a large net position that the dealer
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would have to offset at unfavorable prices. Thus, market making initially is non-directional
and keeps inventory close to zero (Menkveld, 2013).

A common approach in the literature23 for determining a dealer’s optimal buy and sell price
is to treat market making as a stochastic optimal control problem introduced by Ho and Stoll
(1981), who analyzes the optimal price of a single stock for a monopolistic dealer. Avellaneda
and Stoikov (2008) extend this approach and formulate the problem mathematically for a
dealer who optimizes the expected utility of the terminal profit. Consistent with empirical
indications presented in Gabaix et al. (2006), Gopikrishnan et al. (2000), Maslov and Mills
(2001), Potters and Bouchaud (2003), and Weber and Rosenow (2005) (Ahuja et al., 2017), the
authors assume that market order flow follows a Poisson process with rate 𝐴𝑒−𝜅𝛿 , where 𝛿 is
the distance between order price and mid price, and 𝐴 and 𝜅 represent order book liquidity.
The authors solve the stochastic control problem using a Hamilton–Jacobi–Bellman equation
with an asymptotic expansion for a small inventory position (Fushimi et al., 2018) and derive
the indifference or reservation price 𝑟𝐴𝑆 and the optimal bid-ask spread 𝛿𝑎 + 𝛿𝑏 as

𝑟𝐴𝑆 = 𝑠 − 𝑞𝛾𝜎2 (𝑇 − 𝑡) (4.1)

𝛿𝑎 + 𝛿𝑏 = 𝛾𝜎2 (𝑇 − 𝑡) + 2
𝛾 ln(1 +

𝛾
𝜅 ) (4.2)

where 𝑠 denotes the mid price, 𝑞 depicts the dealer’s inventory net position, 𝜎 is the stan-
dard deviation of the mid price, 𝛾 is an inventory risk aversion parameter, and ‘𝐴𝑆’ indi-
cates the Avellaneda–Stoikov model. Accordingly, the dealer’s optimal ask price is 𝑟𝑎𝐴𝑆 =
𝑟𝐴𝑆 + 1

2 (𝛿𝑎 + 𝛿𝑏) and the optimal bid price is 𝑟𝑏𝐴𝑆 = 𝑟𝐴𝑆 − 1
2 (𝛿𝑎 + 𝛿𝑏). Following equation

(4.2), the optimal bid-ask spread is a decreasing function of time: Close to terminal (𝑡 → 𝑇 ),

𝛿𝑎 + 𝛿𝑏 converges towards
2
𝛾 ln(1 +

𝛾
𝜅) and thus becomes symmetrical to the mid price, in-

creasing the dealer’s chance of finishing the trading day with a zero net position. The ask and
bid order’s depth in the order book is defined by 𝛿𝑎 = 𝑟𝑎𝐴𝑆 − 𝑠 and 𝛿𝑏 = 𝑠 − 𝑟𝑏𝐴𝑆 , respectively.

A large literature discusses extensions of the Avellaneda–Stoikov model: Guéant et al.
(2013) include inventory constraints and apply the model to longer time scales, Cartea and
Jaimungal (2015) regard the market impact on the mid price, and Aydoğan et al. (2022) take
stochastic volatility, drift effects, and market influences into account. Studies focusing on re-
modeling the market order flow process include Bayraktar and Ludkovski (2014), who con-
sider the liquidation problem and model order arrivals as a function of the liquidation price,
Cartea et al. (2014), who integrate stronger market order dynamics, and Ahuja et al. (2017) and
Fodra and Labadie (2012), both of which replace the Brownian process with a mean-reverting
process such as the Ornstein-Uhlenbeck process. Correspondingly, Chakraborty and Kearns
(2011) demonstrate the general profitability of market making algorithms on mean-reverting
time series. Ahuja et al. (2017) find that, far from terminal, the optimal bid and ask prices are
constant. Inspired fromKühn and Stroh (2010), Guilbaud and Pham (2013) considermarket or-
ders and limit orders together with stochastic spreads modeled by a continuous-time Markov
chain, which is, according to Guéant (2017), “one of the only market making models really
well suited to stocks” as it does not assume discrete nature of prices and takes time-priority

23This paragraph describes the Avellaneda–Stoikov model according to Guéant (2016), Fushimi et al. (2018), Ahuja
et al. (2017), Hummingbot (2021), Hummingbot (2023) and Avellaneda and Stoikov (2008).
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into account. Cartea and Jaimungal (2013) embed a discrete-time Markov chain and try min-
imizing the dealer’s adverse selection risk. Bringing many of the aforementioned studies
together, Guéant (2017) generalizes the proposed extensions by equipping the Avellaneda–
Stoikov model with general intensity functions and extending it to the multi-asset case. More
recently, reinforcement learning has led to improvements over stochastic optimal control
formulations—see Spooner et al. (2018), Lim and Gorse (2018), Ganesh et al. (2019), Guéant
and Manziuk (2019), Gašperov and Kostanjčar (2021), or Schnaubelt (2022).

On the question of whether market order flow is stochastic, numerous studies examine the
relationship between LOBs and price discovery. Yet, Dixon (2018a) acknowledges that there
is “no consensus on the extent to which limit order books convey predictive information”.
Studies arguing that limit orders are not informative include Glosten (1994) and Seppi (1997).
In contrast, Cao et al. (2009), Zheng et al. (2013), Cont et al. (2014), Kercheval and Zhang
(2015), Palguna and Pollak (2016), Tsantekidis et al. (2017), Dixon (2018a), Zhang et al. (2019),
or Tsantekidis et al. (2020) argue that LOBs may contain predictive information. For more
studies, we refer to the survey of Zaznov et al. (2022). In terms of high-frequency trading,
Dixon (2018a) outlines that price predictions may serve to reduce the likelihood of adverse
price selection through preempted adverse price movements, Li et al. (2014) design a limit
order trading algorithm based on sentiment predictions from LOB and market news, and
Haider et al. (2022) implement price predictions into a reinforcement learning pricing strategy.

4.3 Data

Schnaubelt (2022) outlines that cryptocurrency exchanges “represent a well suited test en-
vironment” for limit order trading models, as—in contrast to global stock exchanges—data
are easily and free to access and “major cryptocurrency exchanges operate like established
limit order exchanges and exhibit very similar stylized facts” (Makarov and Schoar, 2020;
Schnaubelt et al., 2019). As one of the most liquid centralized cryptocurrency exchanges with
more than 100 million traders as of October 2022 (Coinbase, 2022), we therefore consider the
Coinbase exchange as a suitable example to test our limit order model. Accordingly, we focus
on the two most liquid pairs, ‘BTC-USD’ and ‘ETH-USD’.

Since tick-level data fromCoinbase is not downloadable, we record LOB and trademessages
between 2022-08-16 05:37:27 UTC and 2022-10-05 16:07:40 UTC via WebSocket us-
ing cbpro (Paquin, 2020), the Python client for the Coinbase Pro API. We receive batches
of level-2 messages every 50 milliseconds through the level2_batch channel and price up-
dates on each match through the ticker channel. After recording, we replay the messages
to reconstruct LOBs and trade flows, aggregate both data sets into one-second intervals and
cut the LOBs behind the top 50 price levels on each side of the book. To obtain comparable
results between the two pairs, we index all prices at 100 with the first recorded price.

For the split into training, validation and test periods, we follow the reasoning of Section 3.4
and use 𝑛-fold cross validation that divides the entire period into 𝑛 equal-sized sub-intervals,
for each of which we train independent models. We choose an overlapping split of five days
in length, of which the first three days are for training (60%), the fourth day is for validation
(20%), and the last day is for test (20%). As illustrated in Figure 4.2, the overlap is four days,
i.e., we shift the sub-intervals by one day, yielding a total of 45 sub-intervals, allowing us to
test each day once with an independent model. As the shift length equals the length of the test
period, each trade occurs exactly once across all test periods. Considering that we use our

88



High-frequency trade flow prediction

…

Aug 16, 2022 Oct 5, 2022
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Figure 4.2: Division of the observation period for 𝑛-fold cross validation into overlapping five-days sub-
intervals, consisting of three days (60%) training (red), one day (20%) validation (gray) and one day (20%)
test (black). The overlap is four days.

model for simulations of continuously trading cryptocurrency markets, it is probably most
realistic to evaluate performance for one gap-less period rather than for individual days.

4.4 High-frequency trade flow prediction

4.4.1 24-hour trade size percentile ranks

Wemodel buyer- and seller-initiated trade flows using the percentile ranks of trade sizes in the
frequency distribution of all trade sizes over the past 24 hours. Analogous to Roscoe (1975),
we calculate the 24-hour percentile rank 𝑅 of a trade size as the share of trade sizes that are
less than that trade size, indicating whether the trade tends to be large or small relative to
other trades from the previous 24 hours.

We define the 24-hour percentile rank 𝑅 of a particular trade size by

𝑅 = 𝑀 + 0.5 ⋅ 𝐹
𝑁 (4.3)

where 𝑀 is the cumulative frequency of all trade sizes less than or equal that trade size, 𝐹 is
the frequency of that trade size in the distribution of all trade sizes, and 𝑁 is the number of all
trades occurred within the past 24 hours. Thus, 𝑅 is defined in the range [0, 1], with 𝑅 > 0.5
(𝑅 < 0.5) indicating a relatively large (small) trade. Considering the differences between bid
and ask market order flow, we calculate 𝑅 separately for buyer-initiated trades (𝑅𝑏) and seller-
initiated trades (𝑅𝑎). For example, if a buyer-initiated trade about 1.5 BTC has a percentile
rank of 𝑅𝑏 = 0.90, this means that 90% of all buyer-initiated trades over the past 24 hours
are smaller than 1.5 BTC. To obtain comparable results across all sub-intervals, we calculate
percentile ranks prior to separating training, validation and test periods. Figure 4.9 illustrates
that, although we calculate percentiles based on sequences along the time axis, the percentile
ranks are evenly distributed across test periods.

Together, 𝑅𝑏 and 𝑅𝑎 convey two pieces of information: First, 𝑅𝑏 and 𝑅𝑎 indicate whether
trades are more likely to consume one or multiple price levels. Figure 4.18 in Appendix 4.A
illustrates that, empirically, trades with a low (high) trade size percentile rank consume one
(multiple) price level(s), e.g., trade sizes with 𝑅 = 90% consume five price levels on average.
Second, the difference between 𝑅𝑏 and 𝑅𝑎 indicates the imbalance between the buyer- and

89



Prediction-based Limit Order Trading

seller-initiated trade flow. For example, a small 𝑅𝑏 combined with a large 𝑅𝑎 may represent a
sell surplus. In contrast to the widely used definition (Albers et al., 2021; Silantyev, 2019), we
follow Sadighian (2019) and define the trade flow imbalance 𝑇𝐹𝐼 in the range [−1, 1] by

𝑇𝐹𝐼 = 𝑅𝑏 − 𝑅𝑎
𝑅𝑏 + 𝑅𝑎 (4.4)

where 𝑇𝐹𝐼 < 0 (𝑇𝐹𝐼 > 0) indicates a sell (buy) surplus. Consistent with Chan (2017) and
Silantyev (2019), we consider 𝑇𝐹𝐼 as an approximation of the price movement, with 𝑇𝐹𝐼 > 0
(𝑇𝐹𝐼 < 0) indicating a price increase (decline).

4.4.2 Sequence learning for limit order trading

We present a limit order trading model that adjusts buy and sell prices according to the pre-
dicted 24-hour percentile rank of future seller- and buyer-initiated trade sizes. The prediction
task is a regression task with 𝑅𝑏 and 𝑅𝑎 as target variables. As Silantyev (2019) shows that
trade flow imbalance is auto-correlated and Dixon (2018a) states that high-frequency price
“increments are neither independent nor stationary and depend on the state of the order
book”, we assume that the observations of 𝑅𝑏 and 𝑅𝑎 , respectively, are auto-correlated and
not i.i.d. Hence, we define our prediction task as a sequence prediction model that uses lagged
values of 𝑅𝑏 and 𝑅𝑎 sequences to predict subsequent values of that sequences. A sequence
learner proven successful in modeling high-frequency dynamics (Dixon, 2018b) is the RNN.
While some researchers (Tsantekidis et al., 2020; Zhang et al., 2019) prefer Long Short-Term
Memory (LSTM) over RNN, Dixon (2018b) outlines that for high-frequency LOB modeling,
“short-term memory is adequate”, i.e., the auto-correlation lowers for larger lags and the van-
ishing gradient problem of RNNs (Bengio et al., 1994; Hochreiter, 1998; Hochreiter et al., 2001)
therefore is not an issue, and hypothesizes that “there is little to no benefit in using an LSTM”
(see also Section 2.2). Given these findings as well as the higher computation time of LSTMs,
which may affect the monetary benefit in a high-frequency environment, we follow Dixon
(2018b) and model the market order flow with RNN networks.

Introduced by Rumelhart et al. (1986a,b), the RNN network24 is an artificial neural net-
work architecture capable to extract temporally encoded information from time-series data
by using feedback connections with neurons (units) of the same or previous layers. A hidden
state ℎ transfers information contained in cell outputs across time steps and facilitates step-
wise processing of sequences to connect information between time steps. Hidden state loops

24We describe RNNs following Aggarwal et al. (2018), Olah (2015), Géron (2018), and Brownlee (2017).

−1

Figure 4.3: Structure of an RNN cell following Olah (2015) with input 𝑥 , hidden state ℎ, cell output 𝑦 and
a hyperbolic tangent activation function at time 𝑡 .
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Figure 4.4: Unfolded RNN cell with a direct feedback connection and a hyperbolic tangent activation
function between 𝑡 − 1 and 𝑡 + 1 following Olah (2015) and LeCun et al. (2015).

within the network have a memory function and allow past information to persist. Figure 4.3
illustrates the structure of an RNN cell where the vector of hidden states ℎ𝑡 is the output of a
cell at time 𝑡 and serves as the cell memory for the next time step. The cell passes the current
hidden state to the next time step of the sequence to process them again together with the
current input.

At each time step 𝑡 = 1, ..., 𝑇 , the RNN cell processes both ℎ𝑡−1 and the vector of current
elements of the input sequence, 𝑥𝑡 , to generate the new hidden state ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑥𝑥𝑡+𝑤ℎℎ𝑡−1+
𝑏ℎ) through a 𝑡𝑎𝑛ℎ activation function, where 𝑏ℎ is the bias vector and 𝑤𝑥 (𝑤ℎ) is a weight
matrix determining which elements of 𝑥𝑡 (ℎ𝑡−1) to keep and which to remove. This procedure
ensures that the network takes into account the important knowledge acquired in previous
time stepswhen processing any new information. Themodel output at time 𝑡 is 𝑦𝑡 = 𝑤𝑦ℎ𝑡+𝑏𝑦 .
In our case, 𝑦𝑡 is a 2 × 1 vector containing 𝑅𝑏𝑡 and 𝑅𝑏𝑡 . The ultimate model output of the final
hidden state is 𝑦𝑇 = 𝑤𝑦 ⋅ ℎ𝑇 + 𝑏𝑦 . Figure 4.4 illustrates an unfolded RNN cell with a direct
feedback connection, revealing a chain structure where each chain block represents one time
step. In that sense, the RNN is the basis of the LSTM (Section 2.2), which adds a second type
of state and replaces the 𝑡𝑎𝑛ℎ layer with three different gates with unique tasks.

4.4.3 Predictors of trade flow

Since we use aggregated one-second data (see Section 4.3), we can process predictors and tar-
get variables as time series where one time step represents one second. Besides the sequences
of 𝑅𝑏𝑡 and 𝑅𝑎𝑡 , we additionally include sequences of predictors proposed by the price predic-
tion literature: First, we include the price level distance, which is the distance of each of the
10 best price levels on both sides of the order book from the mid price, expressed as a per-
centage of the mid price (Tsantekidis et al., 2020). Second, we include the cumulative depth
size, which reports the cumulative sum of open limit order sizes at each of the 10 best price
levels (Tsantekidis et al., 2020). Both variables yield a vector of 20 unique values for each time
step. Third, we include the order flow imbalance 𝑂𝐹𝐼 (Cont et al., 2014; Palguna and Pollak,
2013), which we calculate as the difference between the cumulative bid and ask size at the
tenth price levels on each side, divided by their sum (Cartea et al., 2015). For example, if the
cumulative size at the 10th price level on the bid side is 5 ETH and on the ask side 4 ETH, it
is 𝑂𝐹𝐼 = (5 − 4)/(5 + 4) = 0.11. Finally, we include the percentage change in the mid price
(Tsantekidis et al., 2020; Zaznov et al., 2022) and the distance between the highest and lowest
trade price of all matches within each one-second interval (Zaznov et al., 2022).
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In total, given that we process 𝑛 observations per batch, each time step includes five pre-
dictors with shape 𝑛×1 and two predictors with shape 𝑛×20, i.e., we process 45 predictors per
time step. A key parameter in sequence learning is the sequence length or lookback period,
which determines the number of lags we provide to our model in order to deliver a prediction.
Motivated by Dixon (2018a), who chooses a sequence length of 10 for tick-level data, we use
a sequence length of 10 seconds, i.e., we process 45 predictors over 10 time steps to deliver
a prediction for 𝑅𝑏 and 𝑅𝑎 . The final vector of input variables thus has shape 𝑛 × 45 × 10.
Prior to training, we standardize the input data by subtracting the mean and dividing by the
standard deviation across all sub-intervals (LeCun et al., 2012).

4.4.4 Network configuration

We use a three-layer network architecture with two visible layers and one hidden layer. The
number of units in the first and last layer equals the dimension of the vector of input and
output variables, respectively. The activation function for the two output units is the sigmoid
function, which squashes predictions into the range [0, 1], corresponding to the range for
which 𝑅𝑏 and 𝑅𝑎 are defined, thereby facilitating learning. Determining the number of units in
the hidden layer is not as straightforward. Out of architectures tested with 16, 32, 64, 128, and
256 hidden units, we choose 64 hidden units, resulting in the lowest mean squared prediction
error for the validation sets. As activation function we select 𝑡𝑎𝑛ℎ, scaling values between
[−1, 1] and thereby avoiding dropping information by scaling towards 0. The depth of the
network corresponds to the chosen sequence length: Each time step unfolds the RNNmodule
once and increases the depth by one. We do not consider deep RNNs (Pascanu et al., 2014)
that extend the hidden state loop operation across multiple layers, as Dixon (2018b) presents
promising results when using a standard RNN for modeling limit order book dynamics.

Each training step, we minimize the mean squared prediction error, a loss function suited
for regression problems in modeling high-frequency dynamics (Dixon et al., 2019), across
batches of 8 random samples using the stochastic gradient descent (Graves, 2013; Rojas, 2013)
with an initial learning rate of 0.01. As we have a large amount of possibly irrelevant or
correlated data, a major task in training our network is regularization. We regularize training
inmultipleways: First, stochastic gradient descent introduces randomness to the optimization
routine and improves generalization. Second, we consider a stateless RNN, i.e., memory does
not transfer between sequences of different batches and persist for one batch. Third, we allow
the network to shuffle sampleswithin batches. Fourth, we apply 20% dropout (Srivastava et al.,
2014) to the input layer and, as proposed by Graves (2013), to the non-recurrent connections
in the hidden layer. Finally, we use early stopping and halt training when there has been no
improvement for the validation set for two epochs. Corresponding to Sections 2.2.2 and 3.5.4,
we train RNNs with keras (Chollet et al., 2015) and Google’s TensorFlow (Abadi et al., 2015).

4.5 Prediction-based limit order trading

4.5.1 Prediction-based order depth

We propose order depth as a function of the predicted trade size percentile ranks, 𝑅𝑏 and 𝑅𝑎 .
Assumed that we make predictions one period ahead and use these predictions to adjust 𝑟𝑎𝐴𝑆
and 𝑟𝑏𝐴𝑆 , respectively, the function should fulfill two requirements: First, if 𝑅𝑏 < 1

2 (𝑅𝑎 < 1
2 ),

i.e., predicting small buy (sell) orders, we should post sell (buy) orders closer to the top of the
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book to increase the hit probability, whereas if 𝑅𝑏 > 1
2 (𝑅𝑎 > 1

2 ), we should post sell (buy)
orders deeper in the book to maximize the captured spread. Second, the spread adjustment
should be proportional to the percentile rank, i.e., the adjustment for 𝑅𝑏 = 0.9 should be larger
than that for 𝑅𝑏 = 0.6. Based on the Avellaneda–Stoikovmodel, we define the spread-adjusted
ask price 𝑟𝑎𝑆𝑃 and the spread-adjusted bid price 𝑟𝑏𝑆𝑃 by

𝑟𝑎𝑆𝑃 = 𝑟𝐴𝑆 +
1
2 (1 + 1

𝛼1 (2𝑅𝑏 − 1)) (𝛿𝑎 + 𝛿𝑏) (4.5)

𝑟𝑏𝑆𝑃 = 𝑟𝐴𝑆 −
1
2 (1 + 1

𝛼1 (2𝑅𝑎 − 1)) (𝛿𝑎 + 𝛿𝑏) (4.6)

where 𝛼1 ≥ 0 is a scaling parameter that determines how sensitive order depth is to predicted
percentile ranks, i.e., by howmuch wewiden or tighten the spread in response to a prediction.
As equation (4.5) can be rewritten by 𝑟𝑎𝑆𝑃 = 𝑟𝑎𝐴𝑆 +

1
2𝛼1 (2𝑅

𝑏 − 1) (𝛿𝑎 + 𝛿𝑏), we simply add a

weighted version of 𝛿𝑎 + 𝛿𝑏 to 𝑟𝑎𝐴𝑆 . The terms
1
𝛼1 (2𝑅

𝑏 − 1) and
1
𝛼1 (2𝑅

𝑎 − 1) are positive for

𝑅𝑏 > 1
2 and 𝑅𝑎 > 1

2 , respectively, as we wish to post orders deeper in the LOB, zero for 𝑅𝑏 = 1
2

and 𝑅𝑎 = 1
2 as predicted orders are neither large nor small and we are indifferent between

widening or tightening spreads, and negative for 𝑅𝑏 < 1
2 and 𝑅𝑎 < 1

2 as we wish to narrow
the spread. For 𝛼1 = 1, the terms are defined in the range [−1, 1], implying that the maximum
spread adjustment (𝑅𝑏 , 𝑅𝑎 = 1) is 𝑟𝑎𝑆𝑃 − 𝑟𝑎𝐴𝑆 = 1

2 (𝛿𝑎 + 𝛿𝑏) and 𝑟𝑏𝐴𝑆 − 𝑟𝑏𝑆𝑃 = 1
2 (𝛿𝑎 + 𝛿𝑏), i.e., the

order’s depth in the order book is twice the depth given by the Avellaneda–Stoikov model,
and the minimum spread adjustment (𝑅𝑏 , 𝑅𝑎 = 0) is 𝑟𝑎𝑆𝑃 − 𝑟𝑎𝐴𝑆 = −1

2 (𝛿𝑎 + 𝛿𝑏) and 𝑟𝑏𝐴𝑆 − 𝑟𝑏𝑆𝑃 =
−1
2 (𝛿𝑎 + 𝛿𝑏), i.e., 𝑟𝑎𝑆𝑃 , 𝑟𝑏𝑆𝑃 = 𝑟𝐴𝑆 . Smaller (larger) values for 𝛼1 are associated with more (less)

impact of predictions on the depth.
Figure 4.5 illustrates 𝑟𝑎𝑆𝑃 − 𝑟𝑎𝐴𝑆 (left) and 𝑟𝑏𝑆𝑃 − 𝑟𝑏𝐴𝑆 (right) as functions of 𝛼1 and 𝑅𝑏 and

𝑅𝑎 , respectively. Both charts emphasize that small (large) values for 𝛼1 are associated with
strong (little) changes to the quotes as order depth reacts more (less) strongly to predictions. If

𝛼1
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Figure 4.5: Prediction-based spread adjustments in the range 𝛼1 = [0.25, 1.5] and 𝑅𝑏 , 𝑅𝑎 = [0, 1]. We
measure spread adjustments by the difference between 𝑟𝑎𝑆𝑃 and 𝑟𝑎𝐴𝑆 (left) and difference between 𝑟𝑏𝑆𝑃 and
𝑟𝑏𝐴𝑆 (right plot). For illustration purposes, we use the following parameters: 𝛾 = 0.25, 𝜎 = 0.3, 𝑇 = 1,
𝑡 = 0.3, 𝜅 = 2, 𝑞 = 0. Note that the axis origin in the left (right) chart is on the left (right).
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𝑅𝑏 > 1
2 , we increase the ask price to exploit a larger spread from arriving large buy orders, and

lower the ask price if 𝑅𝑏 < 1
2 to increase the chance of being consumed by small buy orders.

Correspondingly, we decrease the bid price if 𝑅𝑎 > 1
2 and increase it if 𝑅𝑎 < 1

2 . One may
interpret our extension as away to reduce adverse selection cost: Informed trades typically are
larger than uninformed trades (Chakravarty, 2001; Linnainmaa, 2010). By increasing spreads
when predicting large orders, we potentially protect against adverse selection by informed
traders placing large orders (Sandås, 2001).

4.5.2 Prediction-based reservation price

Adverse price selection occurs when better informed traders pick off our limit orders on one
side of the order book (Cartea and Jaimungal, 2013), resulting in an adverse price movement
for our limit orders on the other side, which now queue away from the inside market (Dixon,
2018a). Following Dixon (2018a), one approach “potentially reducing the likelihood of ad-
verse price movement” between the fill of a sell and the fill of a buy order is predicting price
movements, thereby preempting unfavorable execution of orders. For example, Cartea and
Jaimungal (2013) simulates an informed dealer using a hidden Markov model and reports re-
duced adverse selection costs. If we expect a mid price increase (decline), we may increase
the reservation price in order to avoid disproportionate execution of sell (buy) orders and
hold (close) an open long position or close (hold) an open short position. Thus, incorporating
directional forecasts can help controlling both inventory risk and adverse selection risk.

We propose the reservation price as a function of the predicted trade flow imbalance, 𝑇𝐹𝐼 ,
given by 𝑇𝐹𝐼 = (𝑅𝑏 − 𝑅𝑎) (𝑅𝑏 + 𝑅𝑎)

−1
, analogous to equation (4.4). This function should

fulfill two requirements: First, if 𝑇𝐹𝐼 > 0, we should increase the reservation price in order to
avoid adverse filling of sell orders and incentivize long exposure for participating in the price
increase, whereas if 𝑇𝐹𝐼 < 0, we should decrease the reservation price for avoiding adverse
filling of buy orders and incentivize short exposure. Second, considering our net position,
these directional adjustments should be allowed to contradict with the Avellaneda–Stoikov
model, i.e., if we predict a price increase (decline), we should be able to use a reservation price
greater (less) than 𝑟𝐴𝑆 even if we are long (short). Based on the Avellaneda–Stoikov model
(equation (4.1)), we define the directional forecast-adjusted reservation price 𝑟𝐷𝐹 by

𝑟𝐷𝐹 = 𝑠 + (𝑠𝑔𝑛 (𝑞)
1
𝛼2

𝑇𝐹𝐼 − 1) 𝑞𝛾𝜎2 (𝑇 − 𝑡) (4.7)

where 𝛼2 ≥ 0measures how sensitive the reservation price is to a prediction and 𝑠𝑔𝑛(𝑞) is the
signum function of 𝑞, taking −1 (resp. 1) for 𝑞 < 0 (resp. 𝑞 > 0) and 0 for 𝑞 = 0. Rewriting
equation (4.7) as 𝑟𝐷𝐹 = 𝑟𝐴𝑆 + 𝑠𝑔𝑛 (𝑞) 1

𝛼2
𝑇𝐹𝐼 𝑞𝛾𝜎2 (𝑇 − 𝑡) illustrates that we simply add or

subtract a weighted version of the Avellaneda–Stoikov correction term 𝑞𝛾𝜎2(𝑇 −𝑡). For 𝛼2 = 1
and 𝑞 > 0, themaximum adjustment (𝑇𝐹𝐼 = 1) is 𝑟𝐷𝐹 −𝑠 = 0, i.e., we neutralize the Avellaneda–
Stoikov correction, and the minimum adjustment (𝑇𝐹𝐼 = −1) is 𝑟𝐷𝐹 − 𝑠 = 2 (𝑟𝐴𝑆 − 𝑠), i.e., we
double the distance to the mid price. Smaller (larger) values for 𝛼2 imply a higher (lower)
price sensitivity to 𝑇𝐹𝐼 . For instance, if 𝑇𝐹𝐼 = 0.25, the price adjustment is 2𝑞𝛾𝜎2(𝑇 − 𝑡) for
𝛼2 = 1

2 and
1
2𝑞𝛾𝜎

2(𝑇 − 𝑡) for 𝛼2 = 2.
Figure 4.6 illustrates the difference between 𝑟𝐷𝐹 and 𝑟𝐴𝑆 for values in the range 𝑞 = [−2, 2]

and 𝑇𝐹𝐼 = [−1, 1]. If predicting a sell surplus, it is 𝑟𝐷𝐹 < 𝑟𝐴𝑆 , either contradicting (𝑞 < 0) or
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Figure 4.6: Prediction-based reservation price adjustments in the range 𝑞 = [−2, 2] and 𝑇𝐹𝐼 = [−1, 1].
We measure reservation price adjustments by the difference between 𝑟𝐷𝐹 and 𝑟𝐴𝑆 based on the following
parameters: 𝛼2 = 1, 𝛾 = 0.25, 𝜎 = 0.3, 𝑇 = 1, 𝑡 = 0.3.

reinforcing (𝑞 > 0) the Avellaneda–Stoikov correction. Analogous, if predicting a buy surplus,
it is 𝑟𝐷𝐹 > 𝑟𝐴𝑆 , either contradicting (𝑞 > 0) or reinforcing (𝑞 < 0) the Avellaneda–Stoikov
correction. The directional forecast-adjusted ask and bid quote is 𝑟𝑎𝐷𝐹 = 𝑟𝐷𝐹 + 1

2 (𝛿𝑎 + 𝛿𝑏) and

𝑟𝑏𝐷𝐹 = 𝑟𝐷𝐹 − 1
2 (𝛿𝑎 + 𝛿𝑏), respectively.

4.5.3 Consolidated prediction-based limit order model

Finally, we combine both 𝐷𝐹 and 𝑆𝑃 models to one consolidated limit order model that con-
siders 𝑟𝐷𝐹 as reservation price and determines bid and ask quotes based on equations (4.5)
and (4.6) with replacing 𝑟𝐴𝑆 by 𝑟𝐷𝐹 . As a result, the consolidated ask price is 𝑟𝑎𝑆𝑃𝐷𝐹 =
𝑟𝐷𝐹 + 1

2 (1 +
1
𝛼1 (2𝑅

𝑏 − 1)) (𝛿𝑎 + 𝛿𝑏) and, correspondingly, the consolidated bid price is

𝑟𝑏𝑆𝑃𝐷𝐹 = 𝑟𝐷𝐹 − 1
2 (1 +

1
𝛼1 (2𝑅

𝑎 − 1)) (𝛿𝑎 + 𝛿𝑏).
One might wonder how 𝐷𝐹 and 𝑆𝑃 relate to each other and whether 𝐷𝐹 and 𝑆𝑃 adjust-

ments to 𝐴𝑆 quotes would offset each other in the consolidated model. To understand their
relationship, we compare the absolute difference between 𝑆𝑃𝐷𝐹 quotes and 𝐴𝑆 quotes (e.g.,
|𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 |) with the absolute difference between 𝑆𝑃 or 𝐷𝐹 quotes and 𝐴𝑆 quotes (e.g.,
|𝑟𝑎𝐷𝐹 − 𝑟𝑎𝐴𝑆 | or |𝑟𝑎𝑆𝑃 − 𝑟𝑎𝐴𝑆 |). By using absolute differences, we take into account that 𝑆𝑃 or 𝐷𝐹
corrections occur in both directions, either increasing or decreasing 𝐴𝑆 quotes, which allows
us to summarize the comparison in four cases represented by inequalities (4.8)–(4.11). For
instance, if inequality (4.8) holds, this means that 𝑆𝑃𝐷𝐹 does not offset or reinforces the 𝐷𝐹
adjustment, whereas if it does not hold, this means that the 𝑆𝑃𝐷𝐹 adjustment to𝐴𝑆 is less than
the 𝐷𝐹 adjustment, i.e., 𝑆𝑃𝐷𝐹 contradicts 𝐷𝐹 and neutralizes (parts of) the 𝐷𝐹 adjustment.

|𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 | ≥ |𝑟𝑎𝐷𝐹 − 𝑟𝑎𝐴𝑆 | (4.8)

|𝑟𝑏𝑆𝑃𝐷𝐹 − 𝑟𝑏𝐴𝑆 | ≥ |𝑟𝑏𝐷𝐹 − 𝑟𝑏𝐴𝑆 | (4.9)

|𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 | ≥ |𝑟𝑎𝑆𝑃 − 𝑟𝑎𝐴𝑆 | (4.10)
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|𝑟𝑏𝑆𝑃𝐷𝐹 − 𝑟𝑏𝐴𝑆 | ≥ |𝑟𝑏𝑆𝑃 − 𝑟𝑏𝐴𝑆 | (4.11)

With regard to 𝐷𝐹 strategy, we find in Appendices 4.B.ii and 4.B.iii that inequality (4.8) holds
if 𝑅𝑏 ≥ 𝑅𝑎 and 𝑅𝑏 ≥ 1

2 or if 𝑅𝑏 < 𝑅𝑎 and 𝑅𝑏 ≤ 1
2 , and inequality (4.9) holds if 𝑅𝑏 ≥ 𝑅𝑎 and

𝑅𝑎 ≤ 1
2 or if 𝑅𝑏 < 𝑅𝑎 and 𝑅𝑎 ≥ 1

2 . For instance, when 𝐷𝐹 shifts the reservation price upward

(𝑅𝑏 > 𝑅𝑎), 𝑆𝑃 does so as well if buy orders are relatively large (𝑅𝑏 > 1
2 ) or sell orders are

relatively small (𝑅𝑎 < 1
2 ). Thus, if predicting a buy surplus, we increase the reservation price

to protect from being adversely selected by informed buyers, thereby implicitly increasing
(decreasing) the depth of buy (sell) orders in the LOB. This does not hold if the predicted buy
surplus is based on a relatively small buy volume, as in that case, we choose a closer spread
to increase the chance of being consumed by small orders.

Appendices 4.B.ii and 4.B.iii outline that inequalities (4.8) and (4.9) also hold in the opposite
cases, e.g., 𝑅𝑏 ≥ 𝑅𝑎 with 𝑅𝑏 < 1

2 for inequality (4.8), if the 𝐷𝐹 adjustment to the reservation

price is smaller than the 𝑆𝑃 adjustment to the order depth. For instance, given 𝑅𝑏 ≥ 𝑅𝑎
with 𝑅𝑏 < 1

2 , inequality (4.8) holds if
1

2𝛼1 (1 − 2𝑅𝑏) (𝛿𝑎 + 𝛿𝑏) > 2 (𝑟𝐷𝐹 − 𝑟𝐴𝑆). Figure 4.19 in

Appendix 4.C numerically illustrates that for small 𝑞 and market standard values for 𝛾 , 𝜎 and
𝜅, this condition is given in most possible combinations of 𝑅𝑏 and 𝑅𝑎 . Hence, as our trading
strategies are designed to keep inventory close to zero, we infer that 𝐷𝐹 largely shifts prices
in the same direction as 𝑆𝑃 .

With regard to 𝑆𝑃 strategy, we find that, analogous to 𝐷𝐹 strategy, inequality (4.10) holds
if 𝑅𝑏 ≥ 𝑅𝑎 and 𝑅𝑏 ≥ 1

2 or if 𝑅𝑏 ≤ 𝑅𝑎 and 𝑅𝑏 < 1
2 , and inequality (4.11) holds if 𝑅𝑏 ≤ 𝑅𝑎 and

𝑅𝑎 ≥ 1
2 or if 𝑅𝑏 ≥ 𝑅𝑎 and 𝑅𝑎 < 1

2 . If predicting large sell orders (𝑅𝑎 > 1
2 ) and a sell surplus

(𝑅𝑏 < 𝑅𝑎), we post buy orders deeper in the book to maximize the captured spread, thereby
implicitly lowering the midpoint between ask and price, which is consistent with lowering
the reservation in response to the sell surplus. If predicting a buy surplus instead, the 𝐷𝐹
adjustment would contradict the 𝑆𝑃 adjustment in response to 𝑅𝑎 ≥ 1

2 . Corresponding to
𝐷𝐹 strategy, we show in Appendices 4.B.iv and 4.B.v that inequalities (4.8) and (4.9) can also
hold in the opposite scenarios, such as 𝑅𝑏 < 𝑅𝑎 with 𝑅𝑏 ≥ 1

2 for inequality (4.10), when the
𝐷𝐹 adjustment to the reservation price is larger than the 𝑆𝑃 adjustment to the order depth.
However, Figure 4.20 in Appendix 4.C numerically illustrates that for small 𝑞, this condition
does mostly not hold. Regarding the fact that the trading strategies aim to minimize 𝑞, we
infer that, in these opposite cases, 𝑆𝑃 largely would offset the 𝐷𝐹 price adjustment.

4.5.4 Trading model

We propose a limit order trading model in which we predict the five-second averages of 𝑅𝑎
and 𝑅𝑏 , use these predictions to determine our bid and ask price, and then simultaneously
place a corresponding buy order and a corresponding sell order in the limit order book. After
five seconds, the orders have either been filled by incoming market orders or we cancel them
and submit new orders. Even if both orders get filled in less than five seconds, we still wait
five seconds before submitting new orders. We choose a five-second interval to present a
robustmodel that does not depend on perfect market conditions, latency, and othermicroscale
features, and instead can be easily embedded in any practical setup. As target variables we
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consider the equal-weighted averages of all five values in the five-second intervals of 𝑅𝑏 and
𝑅𝑎 , respectively, while keeping the predictors in one-second granularity (see Section 4.3).
Thus, our prediction conveys information about how large market orders in the next five
seconds will be on average relative to the orders in the last 24 hours.

We follow themarketmaking literature and base our tradingmodel on several assumptions:
First, the money market pays no interest and we can submit and cancel orders at no cost
(Avellaneda and Stoikov, 2008). Second, there is no latency (Guilbaud and Pham, 2013), which
is a rather minor condition since we consider five-second intervals to be largely independent
of latency. Third, our limit orders have no impact on the market (Avellaneda and Stoikov,
2008; Cartea et al., 2014; Fodra and Labadie, 2012; Spooner et al., 2018), which is a simplifying
assumption as, in practice, limit orders do affect other traders and price discovery. However,
the alternative measure would be a live trading algorithm, which is difficult to evaluate: If
one runs multiple live trading strategies in parallel, they would affect each other and thus bias
trading results, whereas if run sequentially or simultaneously in different markets, the results
might not be comparable. As a result, market making research must make this simplifying
assumption to obtain empirical indications of trading performance. The assumption is most
realistic when modeling highly liquid assets (Zhang et al., 2019) and order sizes that are small
compared to the total quantity traded in the market (Spooner et al., 2018). We meet these
two requirements by focusing on the two most liquid cryptocurrency pairs in the market (see
Section 4.3) and modeling order sizes of 0.1 BTC and 0.1 ETH, respectively.

Next, we parameterize the Avellaneda–Stoikov model. First, we assume a constant risk
aversion of 𝛾 = 0.5, where large (small) values of 𝛾 indicate high (low) risk aversion. Second,
we assume an order book density of 𝜅 = 2, where large (small) values of 𝜅 indicate regimes
where trading is fast (slow) and volatility is low (high), leading to small (large) bid-ask spreads
and orders placed far from (close to) the mid price, forcing us to narrow (widen) our own
spread (see equation (4.2)) (Cartea and Jaimungal, 2013). For further reading on the calibration
of 𝜅, we refer to Laruelle (2013). Third, corresponding to 𝑅𝑏 and 𝑅𝑎 , we compute 𝜎 as the 24-
hour standard deviation of the mid price, i.e., each 𝜎𝑡 represents the volatility of the mid price
between 𝑡 and 24 hours ago.

We set the maximum net position at ±0.5 BTC and ±0.5 ETH, respectively. Once reached
the inventory limit, we stop posting orders on the respective side until the net position is less
than 0.5. We trade BTC and ETH simultaneously, with hedging of positions between BTC and
ETH being not allowed, and calculate P&L following Avellaneda and Stoikov (2008) separately
for each currency pair in three steps: First, our net position at the end of interval 𝑡 is the net
position from 𝑡 − 1 plus bid and less ask orders executed in 𝑡 . Second, our cash position at the
end of 𝑡 is the cash position in 𝑡 − 1, less the money spent for bid orders and plus the money
received from ask orders executed in 𝑡 . Finally, our P&L at the end of 𝑡 equals the new cash
position plus the new inventory position scaled by the mid price (Spooner et al., 2018). As we
use indexed prices (Section 4.3), P&L numbers reported do not represent currency units. In
the following sections, we determine P&L as equal-weighted average of both currency pairs.

Due to the LOB’s aggregate form, we have no access to the time queue at a particular price
level. While we can separate new from waiting orders based on trade history, if the size at
a price level decreases without a trade at that time, we cannot identify which orders were
canceled, and we do not know whether our order was ahead or behind that order (Spooner
et al., 2018). We follow Spooner et al. (2018) and “assume that cancellations are distributed
uniformly throughout the queue”, i.e., the “probability that the canceled order is ahead [...] is
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proportional to the amount of volume ahead [...] compared to the amount of volume behind”
our order. At the beginning of a five-second interval, we submit orders at the end of the queue
of the respective price level. Each one-second interval, we update the LOB and match it with
the market order flow. Accordingly, any increase (resp. decrease) in volume at a particular
price level that is not related to a tradewill queue behind our order (resp. be evenly distributed
among the orders before and after our order).

4.5.5 Empirical calibration of 𝛼1 and 𝛼2
As we have historical data, instead of analytically approximating the likelihood of order con-
sumption by 𝛼1 and 𝛼2, we can empirically determine which values of 𝛼1 and 𝛼2 would have
been P&L-optimal. For this calibration, we assume to have full knowledge of the future and
determine quotes according to the realized 𝑅𝑏 and 𝑅𝑎 , which represents the scenario of trad-
ing with a perfect prediction model, resulting in the empirically maximum achievable P&L
for each 𝛼1, 𝛼2.

Figure 4.7 illustrates the average one-hour P&L, i.e., the average P&L at the end of each
hour, and the execution rate ExR, i.e., the share of executions in all submissions, achieved
by 𝑆𝑃 as a function of 𝛼1 and achieved by 𝐷𝐹 as a function of 𝛼2 based on the validation
sets. We find that P&L𝑆𝑃 and P&L𝐷𝐹 have their optima for 𝛼1 < 1 and 𝛼2 < 1, respectively,
indicating relatively high sensitivity to predictions. For very small 𝛼1 and 𝛼2, 𝑆𝑃 and 𝐷𝐹 are
less profitable as orders get filled rarely. For 𝛼1, 𝛼2 < 1, 𝑆𝑃 and 𝐷𝐹 outperform 𝐴𝑆 despite
less order executions, suggesting larger spreads earned or reduced adverse selection cost. The
optimal calibration for 𝑆𝑃 is 𝛼1 = 0.5, resulting in a 35% improvement in P&L over 𝐴𝑆, and
for 𝐷𝐹 it is 𝛼2 = 0.9, resulting in a 10% P&L improvement.
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Figure 4.7: Average one-hour P&L (solid lines with markers) and order execution rate (dashed lines) of 𝑆𝑃
strategy (black) and 𝐷𝐹 strategy (red) as functions of 𝛼1 and 𝛼2, respectively, based on realized values 𝑅𝑏

and 𝑅𝑎 . The gray lines represent the 𝐴𝑆 benchmark, which is independent of 𝛼1 and 𝛼2.
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Figure 4.8: Average 𝑆𝑃𝐷𝐹 one-hour P&L as a function of 𝛼1 and 𝛼2 based on realized values 𝑅𝑏 and 𝑅𝑎

(validation sets).

As under particular circumstances (see Appendix 4.B), 𝑆𝑃 and 𝐷𝐹 adjustments to order
prices could offset each other, we need to calibrate 𝛼1 and 𝛼2 separately for the consolidated
model. Figure 4.8 illustrates the average one-hour P&L achieved by 𝑆𝑃𝐷𝐹 as a function of
𝛼1 and 𝛼2. Similar to Figure 4.7, P&L is the lowest for large and very small values of 𝛼1 and
𝛼2, and has its maximum for the combination of 𝛼1 = 0.55 and 𝛼2 = 1.00, improving P&L by
more than 40%. This calibration is similar to the stand-alone strategies 𝑆𝑃 and 𝐷𝐹 , requiring
us to be about twice as sensitive to predictions when adjusting order depth to trade flow than
when adjusting the reservation price to adverse price movements.

4.6 Trading simulation with order predictions

4.6.1 Prediction quality

We analyze prediction quality benchmarked against a single-layer feedforward neural net-
work (SFN), which directly maps the inputs to 𝑅𝑏 and 𝑅𝑎 based on sigmoid activation func-
tions. We train SFN with the training and validation periods mentioned in Section 4.3 and test
it with the same test periods we use for RNN. Figure 4.9 illustrates the frequency distribution
of 𝑅𝑏 and 𝑅𝑎 over all test periods. Regarding the distribution of 𝑅𝑏 and 𝑅𝑎 , RNN apparently
captures the true case better than SFN by achieving a stretched and rather flat predictions
distribution. Both models predict very large and small values poorly, with substantially less
(RNN) or hardly any (SFN) predictions in the upper and lower 10%. The SFN distribution is
slightly right-skewed with more predictions in the upper 20% than in the lower 20%.

Table 4.1 reports average prediction errors aggregated by side and prediction error sign.
Throughout all groups, RNN shows smaller prediction errors than SFN. For instance, if over-
predicting percentile ranks of buyer-initiated trade sizes (𝑅𝑏 − 𝑅𝑏 > 0), SFN ranks them on
average 23 percentile ranks too high, whereas RNN ranks them on average 14 ranks too high,
suggesting an improvement over SFN by 40%. The mean squared prediction error of RNN is
less than half of the SFN model, which corresponds with the flatter frequency distribution in
Figure 4.9. Moreover, Figure 4.21 in Appendix 4.D illustrates that mean squared prediction er-
rors depend on the predicted percentile rank, with RNN showing the best (worst) prediction
quality when predicting average (extreme) values. Accordingly, RNN predictions are most
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Figure 4.9: Frequency distribution of realized and predicted percentile ranks. Black (red) lines focus on
RNN (SFN) predictions 𝑅𝑏 and 𝑅𝑎 , whereas gray lines focus on the realized values 𝑅𝑏 and 𝑅𝑎 . Solid (dashed)
lines represent seller- (buyer-) initiated trades.

reliable for predictions inside the range 𝑅𝑏 , 𝑅𝑎 = [0.2, 0.8], whereas SFN exhibit the smallest
errors when predicting large percentile ranks.

Next, we investigate whether prediction quality depends on market sentiment. Analogous
to the sequence length, we group the last ten seconds before a prediction into two equal-sized
intervals: The first (second) interval 𝑇𝐹𝐼1−5 (𝑇𝐹𝐼6−10) represents the aggregated 𝑇𝐹𝐼 of the
first (last) five seconds, wherewe calculate 𝑇𝐹𝐼 according to Section 4.4.1 based on the 24-hour
percentile ranks of aggregated five-second trade sizes. Figure 4.10 shows the mean squared
error as a function of 𝑇𝐹𝐼1−5 and 𝑇𝐹𝐼6−10 for RNN and SFN predictions. Prediction models
perform well when the preceding trade flow is relatively balanced between buyer- and seller-
initiated trade volume, and poorly when there is an excess of either buyer- or seller-initiated
trades. This behavior is less pronounced for RNN than for SFN predictions, indicating that
RNN outperforms SFN when making predictions based on imbalanced trade flows. For prac-
tical purposes, a trader may conclude that predictions are most reliable when trade volume is
balanced, and most prone to error when it is biased during the last 10 seconds.

Side 𝑅𝑏 𝑅𝑎
𝑅 − 𝑅 < 0 > 0 All < 0 > 0 All

Average prediction error
RNN −0.14 0.14 −0.00 −0.14 0.14 −0.00
SFN −0.22 0.23 0.01 −0.22 0.22 0.00

Mean squared prediction error (%)
RNN 3.78 3.78 3.78 3.83 3.80 3.82
SFN 6.96 7.21 7.09 7.14 7.04 7.09

Table 4.1: Average and mean squared prediction errors aggregated by prediction error sign. We calculate
prediction errors by 𝑅𝑏 − 𝑅𝑏 and 𝑅𝑎 − 𝑅𝑎 , respectively. Prediction error sign group 𝑅 − 𝑅 < 0 (𝑅 − 𝑅 > 0)
includes all predictions smaller (larger) than the realized values. Each observation and each test period has
the same weight.
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Figure 4.10: Mean squared prediction error by market sentiment. We measure market sentiment by the
combinations of the two last five-second 𝑇𝐹𝐼 before a prediction, 𝑇𝐹𝐼1−5 and 𝑇𝐹𝐼6−10. The two top
(bottom) plots are based on RNN (SFN) predictions, while the two right (left) plots refer to buy (sell)
predictions. Note that color bars belong to the prediction model of the respective row.

An alternative method to evaluate prediction quality is transforming our prediction task
into a classification task, where the positive class represents a trade size percentile rank
greater than 0.5, and the negative class represents a percentile rank less than or equal 0.5.
Table 4.3 in Appendix 4.D shows that SFN reaches a classification accuracy of 64% and RNN
reaches an accuracy of 82%, i.e., in 64% (resp. 82%) of all observations, SFN (resp. RNN) pre-
dicts correctly whether buy and sell market order flow in the next five seconds will be less or
greater than the 24-hour median. Thus, RNN improves SFN by about 30%.

4.6.2 Trading performance

We conduct trading simulations separately for 𝑆𝑃 , 𝐷𝐹 , and 𝑆𝑃𝐷𝐹 strategy, once based on
RNN and once based on SFN predictions. Table 4.2 presents the equal-weighted average of
cumulative P&Ls achieved within non-overlapping periods of 1 minute to 12 hours. In the
majority of periods, prediction-based strategies lead to an improvement over 𝐴𝑆, e.g., we im-
prove one-hour P&L by up to 7%. We also perform t-tests between the P&L distributions of
prediction-based strategies and that of 𝐴𝑆 strategy and find that increases in P&L are statisti-
cally significant in most cases. RNN-based strategies produce, on average, a higher P&L than
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Strategy 1 min 5 min 1 h 12 h

𝐴𝑆 0.13
(0.25)

0.66
(0.79)

7.89
(5.71)

81.37
(32.95)

𝑆𝑃
RNN

0.14∗∗∗
(0.28)

0.70∗∗∗
(0.95)

8.06∗∗
(7.48)

101.93∗∗∗
(44.71)

SFN
0.14∗∗∗
(0.27)

0.68∗
(0.92)

8.01∗
(7.29)

91.86∗∗
(42.27)

𝐷𝐹
RNN

0.13∗∗
(0.25)

0.69∗∗
(0.80)

8.34∗∗∗
(5.74)

88.10∗∗
(32.56)

SFN
0.13
(0.25)

0.66
(0.80)

7.88
(5.76)

81.00
(32.91)

𝑆𝑃𝐷𝐹
RNN

0.14∗∗∗
(0.28)

0.75∗∗∗
(0.93)

8.45∗∗∗
(7.29)

104.13∗∗∗
(43.61)

SFN
0.14∗∗
(0.26)

0.67
(0.90)

7.92
(7.08)

92.01∗∗
(41.06)

Table 4.2: Equal-weighted average of cumulative P&L after periods between 1 minute (min) and 12 hours
(h). Numbers in brackets report the P&Ls' standard deviation. Numbers followed by ∗∗∗, ∗∗ and ∗ indicate
statistical difference from 𝐴𝑆 at the 1%, 5% and 10% level (t-test).

SFN-based strategies. Moreover, the standard deviation of P&Ls illustrate that higher profit
chances come at the cost of higher risk. Only 𝐷𝐹 actually achieves a meaningful increase in
profits while keeping standard deviation constant.

In order to quantify this P&L improvement, we define the P&L surplus as the difference
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Figure 4.11: Average one-minute P&L surplus as a function of one-minute P&L𝐴𝑆 percentile groups (left)
and prediction error percentile groups (right). Percentile group 1 (100) contains the worst (best) 1% ob-
servations of a variable. Prediction errors are the sum of absolute prediction errors recorded for buy and
sell predictions over one minute. Solid (dashed) lines refer to RNN (SFN) predictions.
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between the P&L of a prediction-based strategy and the P&L of 𝐴𝑆 (P&L𝐴𝑆 ). The left chart
in Figure 4.11 illustrates the average one-minute P&L surplus as a function of one-minute
P&L𝐴𝑆 percentile groups, where percentile group 1 (100) contains the worst (best) 1% of all
one-minute P&L𝐴𝑆 . In both RNN- and SFN-based strategies, we benefit from prediction-based
strategies when 𝐴𝑆 performs poorly. The better 𝐴𝑆 performs, the less beneficial or more
detrimental prediction-based strategies are.

The right chart plots the P&L surplus over one-minute prediction error percentile groups,
where percentile group 1 (100) contains the 1% smallest (largest) one-minute prediction errors.
Sincewe have prediction errors for buy and sell forecasts separately, while the P&L aggregates
executed buy and sell orders, we sum the absolute values of prediction errors recorded for buy
and sell forecasts within one minute. The graph illustrates that P&L surplus is large (small)
when prediction errors are small (large), suggesting that prediction quality is an indicator of
P&L performance. Besides, the charts show that 𝐷𝐹 is less dependent on prediction quality
and P&L𝐴𝑆 than 𝑆𝑃 or 𝑆𝑃𝐷𝐹 strategy.

Next, we analyze the relationship between P&L and the dynamics of order flow and trade
flow. To this end, Figure 4.12 illustrates each strategy’s average one-minute P&L as a function
of one-minute 𝑇𝐹𝐼 and one-minute 𝑂𝐹𝐼 . We calculate one-minute 𝑇𝐹𝐼 based on minute-by-

𝐴𝑆

𝑇𝐹 𝐼

−0.9
−0.3

0.3
0.9 𝑂𝐹𝐼−0.9

−0.3
0.3

0.9

O
ne
-m

in
ut
e
P&

L

0.0

0.1

0.2

0.0

0.1

0.2

𝑆𝑃

𝑇𝐹 𝐼

−0.9
−0.3

0.3
0.9 𝑂𝐹𝐼−0.9

−0.3
0.3

0.9

O
ne
-m

in
ut
e
P&

L

0.0

0.1

0.2

0.0

0.1

0.2

𝐷𝐹

𝑇𝐹 𝐼

−0.9
−0.3

0.3
0.9 𝑂𝐹𝐼−0.9

−0.3
0.3

0.9

O
ne
-m

in
ut
e
P&

L

0.0

0.1

0.2

0.0

0.1

0.2

𝑆𝑃𝐷𝐹

𝑇𝐹 𝐼

−0.9
−0.3

0.3
0.9 𝑂𝐹𝐼−0.9

−0.3
0.3

0.9

O
ne
-m

in
ut
e
P&

L

0.0

0.1

0.2

0.0

0.1

0.2

Figure 4.12: Average one-minute P&L achieved by 𝐴𝑆 strategy (top left) and prediction-based strategies
using RNN predictions as a function of one-minute 𝑇𝐹𝐼 and 𝑂𝐹𝐼 . We calculate 𝑂𝐹𝐼 as an equal-weighted
average of all one-second order book states. 𝑇𝐹𝐼 < 0 (𝑂𝐹𝐼 < 0) indicates a sell surplus in matched orders
(open limit orders). Each chart refers to the same color bar.
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minute aggregated buy and sell trades, whereas for 𝑂𝐹𝐼 , we consider the equal-weighted
averages of all one-second LOB records within a minute, since the order book is a snapshot
at a given point in time and aggregation is not possible. All four charts show that trading is
least profitable during a seller overhang in the LOB (𝑂𝐹𝐼 < −0.5) in combination with a buyer
surplus in trade flow (𝑇𝐹𝐼 > 0.5), potentially representing high competition among waiting
sellers such that we can catch only a small share of impatient buyers. P&L is the highest in
the opposite scenario, 𝑂𝐹𝐼 > 0.5 with 𝑇𝐹𝐼 < −0.5, indicating that we are more successful in
competing with buyers than with sellers (see Section 4.6.3).

Overall, 𝐴𝑆 and 𝐷𝐹 (𝑆𝑃 and 𝑆𝑃𝐷𝐹 ) are less (more) dependent on market dynamics and
therefore provide a less (more) volatile P&L profile. Apparently, 𝑆𝑃 and 𝑆𝑃𝐷𝐹 are superior
to 𝐴𝑆 and 𝐷𝐹 only if 𝑂𝐹𝐼 > 0 and 𝑇𝐹𝐼 < 0, whereas in all other situations, 𝐴𝑆 and 𝐷𝐹
are superior to 𝑆𝑃 and 𝑆𝑃𝐷𝐹 . Hence, imbalances in trade flow and order flow may indicate
whether a strategy is more profitable than another one. In practice, firms could use this
information and switch between trading strategies in response to changes in trade flow and
order flow, e.g., switch to 𝐴𝑆 or 𝐷𝐹 (𝑆𝑃 or 𝑆𝑃𝐷𝐹 ) when the buyer share (seller share) in trade
flow is large while the buyer share (seller share) in the LOB is small.

Since P&L includes both market making revenues and unrealized directional changes of the
net position (Spooner et al., 2018), we next aim to understand each component’s contribution
to P&L. We calculate P&L generated from directional movements, P&L𝐷𝑅 , as the change in
value of the net position caused by the mid price change (Anolli and Petrella, 2007), i.e., if the
mid price increases by 0.1 while we are long 2 assets, it is P&L𝐷𝑅 = 0.2. The left plot in Figure
4.13 reports RNN-based P&L𝐷𝑅 surplus as a function of one-minute mid price change decile
groups, i.e., decile group 1 (10) contains the 10% minutes with the most negative (positive)
mid price changes. In case of 𝐷𝐹 , P&L𝐷𝑅 surplus is the highest (smallest) when the mid price
sharply (slightly) increases or decreases. As P&L𝐷𝑅 can be viewed as an approximation of
adverse selection cost, this result suggests that 𝐷𝐹 ’s reduction in adverse selection cost is
proportional to the magnitude of price movement: The larger the positive or negative price
movement, the larger the reduction in adverse selection cost.
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Figure 4.13: Average one-minute P&L𝐷𝑅 surplus as a function of mid price change decile groups (left) and
average one-minute P&L𝑀𝑀 surplus as a function of bid-ask spread decile groups (right). All strategies
base on RNN predictions. Bid-ask spreads are the average spreads of all one-second snapshots per minute.
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As second P&L component, we calculate P&L from market making activities, P&L𝑀𝑀 , by
subtracting P&L𝐷𝑅 from P&L (Spooner et al., 2018). Thus, we implicitly subsume realized
directional revenues (Anolli and Petrella, 2007) under market making revenues. The right plot
in Figure 4.13 shows average P&L𝑀𝑀 surplus as a function of one-minute bid-ask spread decile
groups, where decile group 1 (10) contains the 10%minutes with the smallest (largest) average
bid-ask spread across all one-second snapshots per minute. Both 𝑆𝑃 and 𝑆𝑃𝐷𝐹 achieve the
largest increase in market making revenues when bid-ask spreads are large, suggesting that
the strategies are most successful at adjusting their LOB position to trade flowwhen the order
book is less liquid. From both charts in Figure 4.13, we infer that P&L surplus of 𝐷𝐹 is mainly
driven by reduced adverse selection cost, while P&L surplus of 𝑆𝑃 and 𝑆𝑃𝐷𝐹 is mainly due
to increased market making revenues.

4.6.3 Limit order book dynamics

In Section 4.6.2, we gained an understanding of how the trading strategies relate to each
other from a P&L perspective. Yet, we have no information how they affect our positioning
in the LOB. To this end, Figure 4.14 illustrates the average depth of ask orders, 𝛿𝑎 , and the
average depth of bid orders in the order book, 𝛿𝑏 , as functions of bid-ask spread percentile
groups (top left), the net position (top right), the predicted trade flow imbalance (below left),
and one-second P&L percentile groups (below right). For consistency purposes with previous
sections, we continue to analyze BTC-USD and ETH-USD pairs together, although the LOB
characteristics may differ between the two pairs. Figure 4.23 in Appendix 4.G shows that the
results for the aggregated order books also hold for the stand-alone order books.

The top left graph shows that 𝑆𝑃 and 𝑆𝑃𝐷𝐹 place orders deeper in the book than 𝐴𝑆 and
𝐷𝐹 , suggesting that 𝑆𝑃 and 𝑆𝑃𝐷𝐹 seek increasing the margin through wider spreads rather
than increasing trade volume through tighter spreads. 𝐴𝑆 and 𝐷𝐹 quotes are less sensitive to
bid-ask spreads, i.e., when bid-ask spreads increase, 𝐴𝑆 and 𝐷𝐹 follow this trend slower than
𝑆𝑃 and 𝑆𝑃𝐷𝐹 . It is 𝛿𝑎 > 𝛿𝑏 in most cases, indicating that our average net position is short
(see Figure 4.22 in the Appendix). Thus, despite prediction-based corrections, the dominant
parameter determining 𝛿𝑎 and 𝛿𝑏 remains 𝑞. Correspondingly, the top right graph shows that
𝛿𝑎 is large (small) when we are short (long) and 𝛿𝑏 is small (large) when we are short (long)
to return to a neutral net position.

The chart below left illustrates 𝐷𝐹 ’s and 𝑆𝑃𝐷𝐹 ’s protection against adverse price selection:
𝛿𝑎 increases for 𝑇𝐹𝐼 > 0 to protect against informed buyers, and decreases for 𝑇𝐹𝐼 < 0 to
incentivize short exposure for positively participating in the price decline. Accordingly, buy
prices are lower, represented by increasing 𝛿𝑏 , when predicting a sell surplus, although the
effect is less pronounced than for sell orders, which could be due to the fact that we are short
on average and thus generally place buy orders deeper in the book. The chart below right
illustrates that submitting sell orders deep in the book is risky: The highest and lowest P&L
are associated with the deepest sell orders, while sell orders close to the top of the order book
are associated with average P&L. Again, this relationship is less clear for buy orders.

Next, we compare the price level priority of orders between prediction-based strategies and
the 𝐴𝑆 strategy. We start counting price levels at the top of the book as position 1, continuing
with the second-best price level as position 2, and so on. Thus, a position difference of 1 (−1)
means that the prediction-based strategy is one price level behind (ahead of) 𝐴𝑆, i.e., it has
a one price level lower (higher) priority. Figure 4.15 shows the average price level difference
for RNN-based strategies as a function of 𝑇𝐹𝐼 (left) and 𝑂𝐹𝐼 (right). The left chart shows that
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Figure 4.14: Average depth of ask orders 𝛿𝑎 (solid lines) and bid orders 𝛿𝑏 (dotted lines) in the order book
for both BTC-USD and ETH-USD pairs. 𝑆𝑃 , 𝐷𝐹 , and 𝑆𝑃𝐷𝐹 base on RNN predictions. 𝛿𝑎 and 𝛿𝑏 denote
in basis points. `Net position' represents each strategy's individual net position. `Bid-ask spread' is the
one-second bid-ask spread at the end of a one-second interval.

all three strategies post sell (buy) orders deeper in the book when predicting a price increase
(decline) to protect against informed buyers (sellers). This effect is most pronounced for 𝐷𝐹
and 𝑆𝑃𝐷𝐹 , since 𝑆𝑃 initially does not consider directional forecasts. The right chart illustrates
that 𝑆𝑃 and 𝑆𝑃𝐷𝐹 orders have a lower (equal) priority when there is either (neither) a large
buy or (nor) a large sell overhang in the order book. In contrast, 𝐷𝐹 posts sell orders closer
to the top of (deeper in) the book when 𝑂𝐹𝐼 > 0 (𝑂𝐹𝐼 < 0), thus acts contrary to 𝑇𝐹𝐼 .

To understand how our positioning in the LOB contributes to P&L, the bar chart in Figure
4.16 illustrates the execution rate by price level. An execution rate of 30% at price level 3
means that 30% of our orders queuing at price level 3 are filled within five seconds. The circle
markers indicate the average margin earned, measured by 𝛿𝑎 + 𝛿𝑏 . A margin of 5 basis points
at price level 2 means that we earn 5 basis points on average if one buy and one sell order,
each waiting at the second best price level, get simultaneously filled by market orders. As
relevant price levels, we consider the price level at the time of execution. If we submit an
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Figure 4.15: Average difference in price levels between orders submitted by RNN-based trading strategies
and orders submitted by 𝐴𝑆 as functions of 𝑇𝐹𝐼 and 𝑂𝐹𝐼 . Results represent averages of limit orders in
both the BTC-USD and ETH-USD order book. Solid (dashed) lines belong to ask (bid) orders.

order at price level 2, and one second later the volume at the best price level gets filled, the
order slips to position 1. Thus, execution on a price level greater than 1 always requires a
market order greater than the total size on position 1.

While at the top of the order book all strategies achieve a similar execution rate, 𝑆𝑃 and
𝑆𝑃𝐷𝐹 exceed 𝐴𝑆 and 𝐷𝐹 by five to ten percentage points for higher price levels. Thus, when
𝑆𝑃 and 𝑆𝑃𝐷𝐹 submit orders at, e.g., the third-best price level, they historically have a five
percentage point higher chance of being consumed. Similarly, the margins earned at the top
of the order book are comparable for all strategies, but fall much larger from price level 2 for
𝑆𝑃 and 𝑆𝑃𝐷𝐹 than for 𝐴𝑆 and 𝐷𝐹 . This suggests that 𝑆𝑃 and 𝑆𝑃𝐷𝐹 can execute deeper orders
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Figure 4.16: Execution rate (bar chart) and average margin earned (circle marker plot) by price level.
Execution rate measures the share of executed orders in all orders waiting at a given price level. Earned
margin measures the average 𝛿𝑎 +𝛿𝑏 of simultaneously executed bid and ask orders at corresponding price
level positions in basis points.
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Figure 4.17: Share of order executions by price level. The figure illustrates the respective share of order
executions by price level in all order executions under a particular trading strategy. Price level indicates
the price level at the time of execution.

even when the bid-ask spread is large, whereas 𝐴𝑆 and 𝐷𝐹 execute on these levels only when
the bid-ask spread is small anyway and, accordingly, earn less margin. Thus, 𝑆𝑃 and 𝑆𝑃𝐷𝐹
maximize the margin earned by increasing the depth of orders while keeping the execution
share at a high level. In Figure 4.17, we analyze the share of executed orders by price level in
all order executions. For instance, 79% (14%) of all orders executed by 𝐴𝑆 have been waiting
at the first (second) price level at the time of execution, whereas this share is 75% (15%) for 𝑆𝑃
strategy. Thus, 𝑆𝑃 and 𝑆𝑃𝐷𝐹 execute about 5 percentage points more orders at price levels
2 to 5 than 𝐴𝑆 and 𝐷𝐹 . We infer that the higher market making revenue of 𝑆𝑃 and 𝑆𝑃𝐷𝐹
largely comes from a higher execution share of orders with more profitable spreads.

4.7 Conclusion

In this paper, we present a data-driven attempt to overcome dealers’ trade-off between vol-
ume and margin. To this end, we develop a sequence prediction model for buyer- and seller-
initiated trades that predicts how the trade sizes of the next five seconds relate to the trade
sizes of the previous 24 hours. Using the Avellaneda–Stoikov model as an example, we show
how to adjust reservation price and order depth in response to predictions based on empir-
ically calibrated sensitivity parameters. In a trading simulation, we find both higher market
making revenues through trade flow-optimized positioning in the order book and lower ad-
verse selection costs through anticipated price movements.

For future work, we see two approaches to improving our method. Given the recent de-
velopment of reinforcement learning approaches in high-frequency trading, one approach
would be to incorporate our predictions into the training of an agent, thus providing predic-
tive information to the agent. Second, instead of approximating price changes using trade
flow imbalance, predicting price changes directly could improve our protection against ad-
verse selection as negative (positive) trade flow imbalance need not always be associated with
a price decrease (increase).

Overall, our model can help market makers to anticipate market movements when post-
ing limit orders. As we process publicly available data in five second frequency, technical
implementation for cryptocurrency trading might not be limited to professional traders.
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Appendix

4.A Price level consumption by trade size percentile

Figure 4.18 presents the average number of price levels consumed by market orders as a func-
tion of 𝑅𝑏 and 𝑅𝑎 , respectively. We determine the number of price levels consumed based on
the last price level a market order consumes. Hence, a price level consumption of 3 indicates
that the market order matches with all orders of the first and second best price level, and all or
some orders of the third best price level. As relevant price level, we consider price priority at
the time of the order arrival. The minimum price level consumed is 1, i.e., the order has been
fully matched with open limit orders from the top price level. Figure 4.18 suggests that larger
trades are associated with larger margins earned by dealers, and 𝑅𝑏 (𝑅𝑎) thus may indicate
the number of ask (bid) price levels consumed by the order as assumed in Section 4.4.1.
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Figure 4.18: Average number of bid (green) and ask (red) price levels consumed as a function of 𝑅𝑎 and
𝑅𝑏 , respectively. We consider partially consumed price levels as fully consumed price levels.

4.B Conditions for inequalities between trading strategies

4.B.i Basics

This section examines what relationship must exist between 𝑅𝑏 and 𝑅𝑎 for inequalities (4.8)
to (4.11) to be valid. In the derivation of necessary and sufficient conditions of the inequalities
(4.8) to (4.11), only the following two types of problems occur (𝑥, 𝑦 ∈ ℝ):

• Type 1: |𝑥 + 𝑦| ≥ |𝑥|
• Type 2: |𝑥 − 𝑦| ≥ |𝑥|

We are looking for necessary and sufficient conditions for the validity of the respective in-
equality in the form of conditions on the real numbers 𝑥 and 𝑦 or on their relation to each
other. We first focus on these conditions in Appendix 4.B.i, before focusing on the initial
inequalities in Appendices 4.B.ii to 4.B.v.
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Conditions for the validity of Type 1 inequality

The inequality |𝑥 + 𝑦| ≥ |𝑥| holds under the following conditions for 𝑥 and 𝑦:
1. Case 𝑥 ≥ 0: The inequality holds if

a) 𝑦 ≥ 0 or

b) 𝑦 < 0 and −𝑦 > 2 ⋅ 𝑥
2. Case 𝑥 < 0: The inequality holds if

a) 𝑦 ≤ 0 or

b) 𝑦 > 0 and 𝑦 > −2 ⋅ 𝑥

Conditions for the validity of Type 2 inequality

The inequality |𝑥 − 𝑦| ≥ |𝑥| holds under the following conditions for 𝑥 and 𝑦:
1. Case 𝑥 ≥ 0: The inequality holds if

a) 𝑦 ≤ 0 or

b) 𝑦 > 0 and 𝑦 > 2 ⋅ 𝑥
2. Case 𝑥 < 0: The inequality holds if

a) 𝑦 ≥ 0 or

b) 𝑦 < 0 and −𝑦 > −2 ⋅ 𝑥

4.B.ii Inequality of directional forecast-adjusted ask prices

Inequality (4.8) represents the inequality between directional forecast-adjusted ask prices,
𝑟𝑎𝐷𝐹 , and ask prices of the consolidated model, 𝑟𝑎𝑆𝑃𝐷𝐹 , in the form

|𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 | ≥ |𝑟𝑎𝐷𝐹 − 𝑟𝑎𝐴𝑆 |.

Transformations of the initial inequality

For 𝛼1, 𝛼2 > 0, it applies

𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆 +
1
2
1
𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏)

and
𝑟𝑎𝐷𝐹 − 𝑟𝑎𝐴𝑆 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆

and further

𝑟𝐷𝐹 − 𝑟𝐴𝑆 = 𝑠 + (𝑠𝑔𝑛(𝑞) 1𝛼2
⋅ 𝑇 𝐹 𝐼 − 1) 𝑞𝛾𝜎2(𝑇 − 𝑡) − [𝑠 − 𝑞𝛾𝜎2(𝑇 − 𝑡)] =

𝑠𝑔𝑛(𝑞) 1𝛼2
⋅ 𝑇 𝐹 𝐼 ⋅ 𝑞𝛾𝜎2(𝑇 − 𝑡) = 𝑇𝐹 𝐼 ⋅ |𝑞|𝛾𝜎

2

𝛼2
(𝑇 − 𝑡) = 𝑅𝑏 − 𝑅𝑎

𝑅𝑏 + 𝑅𝑎 ⋅ |𝑞|𝛾𝜎
2

𝛼2
(𝑇 − 𝑡). (4.12)

It should be noted here that it applies

(𝑟𝐷𝐹 − 𝑟𝐴𝑆 ) ∼ 0 ⇔ (𝑅𝑏 − 𝑅𝑎) ∼ 0 ⇔ 𝑅𝑏 ∼ 𝑅𝑎 (4.13)

where ∼ denotes the possible equality and inequality signs =, <, ≤, ≥, >.
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Conditions for the validity of the inequality

Now we can transform the initial inequality and get

|𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 | ≥ |𝑟𝑎𝐷𝑃 − 𝑟𝑎𝐴𝑆 |

⇔ |||(𝑟𝐷𝐹 − 𝑟𝐴𝑆 ) + (
1
2
1
𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏))

||| ≥ |𝑟𝐷𝐹 − 𝑟𝐴𝑆 |
which, according to the case distinction in Section 4.B.i, with

• 𝑥 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆
• 𝑦 = 1

2
1
𝛼1 (2𝑅

𝑏 − 1) (𝛿𝑎 + 𝛿𝑏)
holds for

1. Case 𝑥 ≥ 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 ≥ 0 ⇔ 𝑅𝑏 ≥ 𝑅𝑎 if
a) 𝑦 ≥ 0 ⇔ 1

2𝛼1 (2𝑅
𝑏 − 1) (𝛿𝑎 + 𝛿𝑏) ≥ 0 ⇔ 𝑅𝑏 ≥ 1

2 or

b) 𝑦 < 0 ⇔ 𝑅𝑏 < 1
2 and

−𝑦 > 2 ⋅ 𝑥 ⇔ 1
2𝛼1 (1 − 2𝑅𝑏) (𝛿𝑎 + 𝛿𝑏) > 2 ⋅ (𝑟𝐷𝐹 − 𝑟𝐴𝑆) =

2 ⋅ 𝑅
𝑏 − 𝑅𝑎

𝑅𝑏 + 𝑅𝑎 ⋅ |𝑞|𝛾𝜎
2

𝛼2
(𝑇 − 𝑡)

2. Case 𝑥 < 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 < 0 ⇔ 𝑅𝑏 < 𝑅𝑎 if
a) 𝑦 ≤ 0 ⇔ 1

2𝛼1 (2𝑅
𝑏 − 1) (𝛿𝑎 + 𝛿𝑏) ≤ 0 ⇔ 𝑅𝑏 ≤ 1

2 or

b) 𝑦 > 0 ⇔ 𝑅𝑏 > 1
2 and

𝑦 > −2 ⋅ 𝑥 ⇔ 1
2𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏) > 2 ⋅ (𝑟𝐴𝑆 − 𝑟𝐷𝐹) =

2 ⋅ 𝑅
𝑎 − 𝑅𝑏

𝑅𝑎 + 𝑅𝑏 ⋅ |𝑞|𝛾𝜎
2

𝛼2
(𝑇 − 𝑡)

4.B.iii Inequality of directional forecast-adjusted bid prices

Inequality (4.9) represents the inequality between directional forecast-adjusted bid prices, 𝑟𝑏𝐷𝐹 ,
and bid prices of the consolidated model, 𝑟𝑏𝑆𝑃𝐷𝐹 , in the form

|𝑟𝑏𝑆𝑃𝐷𝐹 − 𝑟𝑏𝐴𝑆 | ≥ |𝑟𝑏𝐷𝐹 − 𝑟𝑏𝐴𝑆 |.

Transformations of the initial inequality

For 𝛼1, 𝛼2 > 0, it applies
𝑟𝑏𝑆𝑃𝐷𝐹 − 𝑟𝑏𝐴𝑆 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆 −

1
2
1
𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏)

and
𝑟𝑏𝐷𝐹 − 𝑟𝑏𝐴𝑆 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆

Further, the relationships demonstrated by equations (4.12) and (4.13) apply.
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Conditions for the validity of the inequality

Now we can transform the initial inequality and get

|𝑟𝑏𝑆𝑃𝐷𝐹 − 𝑟𝑏𝐴𝑆 | ≥ |𝑟𝑏𝐷𝐹 − 𝑟𝑏𝐴𝑆 |

⇔ |||(𝑟𝐷𝐹 − 𝑟𝐴𝑆 ) − (
1
2
1
𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏))

||| ≥ |𝑟𝐷𝐹 − 𝑟𝐴𝑆 |

which, according to the case distinction in Section 4.B.i, with

• 𝑥 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆

• 𝑦 = 1
2

1
𝛼1 (2𝑅

𝑎 − 1) (𝛿𝑎 + 𝛿𝑏)

holds for

1. Case 𝑥 ≥ 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 ≥ 0 ⇔ 𝑅𝑏 ≥ 𝑅𝑎 if
a) 𝑦 ≤ 0 ⇔ 1

2𝛼1 (2𝑅
𝑎 − 1) (𝛿𝑎 + 𝛿𝑏) ≤ 0 ⇔ 𝑅𝑎 ≤ 1

2 or

b) 𝑦 > 0 ⇔ 𝑅𝑎 > 1
2 and

𝑦 > 2 ⋅ 𝑥 ⇔ 1
2𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏) > 2 ⋅ (𝑟𝐷𝐹 − 𝑟𝐴𝑆) =

2 ⋅ 𝑅
𝑏 − 𝑅𝑎

𝑅𝑏 + 𝑅𝑎 ⋅ |𝑞|𝛾𝜎
2

𝛼2
(𝑇 − 𝑡)

2. Case 𝑥 < 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 < 0 ⇔ 𝑅𝑏 < 𝑅𝑎 if
a) 𝑦 ≥ 0 ⇔ 1

2𝛼1 (2𝑅
𝑎 − 1) (𝛿𝑎 + 𝛿𝑏) ≥ 0 ⇔ 𝑅𝑎 ≥ 1

2 or

b) 𝑦 < 0 ⇔ 𝑅𝑎 < 1
2 and

−𝑦 > −2 ⋅ 𝑥 ⇔ 1
2𝛼1 (1 − 2𝑅𝑎) (𝛿𝑎 + 𝛿𝑏) > 2 ⋅ (𝑟𝐴𝑆 − 𝑟𝐷𝐹) =

2 ⋅ 𝑅
𝑎 − 𝑅𝑏

𝑅𝑎 + 𝑅𝑏 ⋅ |𝑞|𝛾𝜎
2

𝛼2
(𝑇 − 𝑡)

4.B.iv Inequality of spread-adjusted ask prices

Inequality (4.10) represents the inequality between spread-adjusted ask prices, 𝑟𝑎𝑆𝑃 , and the
ask prices of the consolidated model, 𝑟𝑎𝑆𝑃𝐷𝐹 , in the form

|𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 | ≥ |𝑟𝑎𝑆𝑃 − 𝑟𝑎𝐴𝑆 |.
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Transformations of the initial inequality

For 𝛼1, 𝛼2 > 0, it applies

𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆 +
1

2𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏)
and

𝑟𝑎𝑆𝑃 − 𝑟𝑎𝐴𝑆 = 𝑟𝐴𝑆 +
1
2 (1 + 1

𝛼1 (2𝑅𝑏 − 1)) (𝛿𝑎 + 𝛿𝑏) − (𝑟𝐴𝑆 +
1
2 (𝛿

𝑎 + 𝛿𝑏)) =
1

2𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏)
Further, the relationships demonstrated by equations (4.12) and (4.13) apply.

Conditions for the validity of the inequality

Now we can transform the initial inequality and get

|𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 | ≥ |𝑟𝑎𝑆𝑃 − 𝑟𝑎𝐴𝑆 |

⇔ |||(𝑟𝐷𝐹 − 𝑟𝐴𝑆 ) + (
1

2𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏))
||| ≥

|||(
1

2𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏))
|||

⇔ |||(
1

2𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏)) + (𝑟𝐷𝐹 − 𝑟𝐴𝑆 )
||| ≥

|||(
1

2𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏))
|||

which, according to the case distinction in Section 4.B.i, with

• 𝑥 = 1
2𝛼1 (2𝑅

𝑏 − 1) (𝛿𝑎 + 𝛿𝑏)
• 𝑦 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆

holds for

1. Case 𝑥 ≥ 0 ⇔ 1
2𝛼1 (2𝑅

𝑏 − 1) (𝛿𝑎 + 𝛿𝑏) ≥ 0 ⇔ 𝑅𝑏 ≥ 1
2 if

a) 𝑦 ≥ 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 ≥ 0 ⇔ 𝑅𝑏 ≥ 𝑅𝑎 or

b) 𝑦 < 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 < 0 ⇔ 𝑅𝑏 < 𝑅𝑎 and

−𝑦 > 2 ⋅ 𝑥 ⇔ 𝑟𝐴𝑆 − 𝑟𝐷𝐹 > 1
𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏)

⇔ 𝑅𝑎 − 𝑅𝑏
𝑅𝑎 + 𝑅𝑏 ⋅ |𝑞|𝛾𝜎

2

𝛼2
(𝑇 − 𝑡) > 1

𝛼1 (2𝑅𝑏 − 1) (𝛿𝑎 + 𝛿𝑏)

2. Case 𝑥 < 0 ⇔ 1
2𝛼1 (2𝑅

𝑏 − 1) (𝛿𝑎 + 𝛿𝑏) < 0 ⇔ 𝑅𝑏 < 1
2 if

a) 𝑦 ≤ 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 ≤ 0 ⇔ 𝑅𝑏 ≤ 𝑅𝑎 or

b) 𝑦 > 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 > 0 ⇔ 𝑅𝑏 > 𝑅𝑎 and

𝑦 > −2 ⋅ 𝑥 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 > 1
𝛼1 (1 − 2𝑅𝑏) (𝛿𝑎 + 𝛿𝑏)

⇔ 𝑅𝑏 − 𝑅𝑎
𝑅𝑏 + 𝑅𝑎 ⋅ |𝑞|𝛾𝜎

2

𝛼2
(𝑇 − 𝑡) > 1

𝛼1 (1 − 2𝑅𝑏) (𝛿𝑎 + 𝛿𝑏)
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4.B.v Inequality of spread-adjusted bid prices

Inequality (4.11) represents the inequality between spread-adjusted bid prices, 𝑟𝑏𝑆𝑃 , and the
bid prices of the consolidated model, 𝑟𝑏𝑆𝑃𝐷𝐹 , in the form

|𝑟𝑏𝑆𝑃𝐷𝐹 − 𝑟𝑏𝐴𝑆 | ≥ |𝑟𝑏𝑆𝑃 − 𝑟𝑏𝐴𝑆 |.

Transformations of the initial inequality

For 𝛼1, 𝛼2 > 0, it applies

𝑟𝑏𝑆𝑃𝐷𝐹 − 𝑟𝑏𝐴𝑆 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆 −
1

2𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏)

and

𝑟𝑏𝑆𝑃 − 𝑟𝑏𝐴𝑆 = 𝑟𝐴𝑆 −
1
2 (1 + 1

𝛼1 (2𝑅𝑏 − 1)) (𝛿𝑎 + 𝛿𝑏) − (𝑟𝐴𝑆 −
1
2 (𝛿

𝑎 + 𝛿𝑏)) =

− 1
2𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏) .

Further, the relationships demonstrated by equations (4.12) and (4.13) apply.

Conditions for the validity of the inequality

Now, analogous to Section 4.B.iv, we can transform the initial inequality and get

|𝑟𝑏𝑆𝑃𝐷𝐹 − 𝑟𝑏𝐴𝑆 | ≥ |𝑟𝑏𝑆𝑃 − 𝑟𝑏𝐴𝑆 |

⇔ |||(𝑟𝐷𝐹 − 𝑟𝐴𝑆 ) − (
1

2𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏))
||| ≥

|||(
1

2𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏))
|||

⇔ |||(
1

2𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏)) − (𝑟𝐷𝐹 − 𝑟𝐴𝑆 )
||| ≥

|||(
1

2𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏))
|||

which, according to the case distinction in Section 4.B.i, with

• 𝑥 = 1
2𝛼1 (2𝑅

𝑎 − 1) (𝛿𝑎 + 𝛿𝑏)
• 𝑦 = 𝑟𝐷𝐹 − 𝑟𝐴𝑆

holds for

1. Case 𝑥 ≥ 0 ⇔ 1
2𝛼1 (2𝑅

𝑎 − 1) (𝛿𝑎 + 𝛿𝑏) ≥ 0 ⇔ 𝑅𝑎 ≥ 1
2 if

a) 𝑦 ≤ 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 ≤ 0 ⇔ 𝑅𝑏 ≤ 𝑅𝑎 or

b) 𝑦 > 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 > 0 ⇔ 𝑅𝑏 > 𝑅𝑎 and

𝑦 > 2 ⋅ 𝑥 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 > 1
𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏)

⇔ 𝑅𝑏 − 𝑅𝑎
𝑅𝑏 + 𝑅𝑎 ⋅ |𝑞|𝛾𝜎

2

𝛼2
(𝑇 − 𝑡) > 1

𝛼1 (2𝑅𝑎 − 1) (𝛿𝑎 + 𝛿𝑏)
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2. Case 𝑥 < 0 ⇔ 1
2𝛼1 (2𝑅

𝑎 − 1) (𝛿𝑎 + 𝛿𝑏) < 0 ⇔ 𝑅𝑎 < 1
2 if

a) 𝑦 ≥ 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 ≥ 0 ⇔ 𝑅𝑏 ≥ 𝑅𝑎 or

b) 𝑦 < 0 ⇔ 𝑟𝐷𝐹 − 𝑟𝐴𝑆 < 0 ⇔ 𝑅𝑏 < 𝑅𝑎 and

−𝑦 > −2 ⋅ 𝑥 ⇔ −(𝑟𝐷𝐹 − 𝑟𝐴𝑆 ) >
1
𝛼1 (1 − 2𝑅𝑎) (𝛿𝑎 + 𝛿𝑏)

⇔ 𝑅𝑎 − 𝑅𝑏
𝑅𝑎 + 𝑅𝑏 ⋅ |𝑞|𝛾𝜎

2

𝛼2
(𝑇 − 𝑡) > 1

𝛼1 (1 − 2𝑅𝑎) (𝛿𝑎 + 𝛿𝑏)

4.C Numerical examples of inequalities between trading strategies

Figures 4.19 and 4.20 illustrate numerical examples for the inequalities (4.8) to (4.11) and ex-
plore under which combinations of 𝑅𝑎 and 𝑅𝑏 the inequalities hold given market standard

|𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 | ≥ |𝑟𝑎𝐷𝐹 − 𝑟𝑎𝐴𝑆 |
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Figure 4.19: Inequalities between 𝑆𝑃𝐷𝐹 , 𝑆𝑃 , and 𝐷𝐹 for small inventory (𝑞 = 1). We test the inequalities
(4.8) to (4.11) for all combinations of 𝑅𝑎 and 𝑅𝑏 with a granularity of 0.01 in the range 𝑅𝑎 , 𝑅𝑏 = [0.1, 0.9].
We assume the following parameters: 𝛼1 = 1, 𝛼2 = 1, 𝑠 = 100, 𝛾 = 0.5, 𝜎 = 0.3, 𝑇 = 1, 𝑡 = 0.3, 𝜅 = 2.
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|𝑟𝑎𝑆𝑃𝐷𝐹 − 𝑟𝑎𝐴𝑆 | ≥ |𝑟𝑎𝐷𝐹 − 𝑟𝑎𝐴𝑆 |
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Figure 4.20: Inequalities between 𝑆𝑃𝐷𝐹 , 𝑆𝑃 , and 𝐷𝐹 for large inventory (𝑞 = 5). We test the inequalities
(4.8) to (4.11) for all combinations of 𝑅𝑎 and 𝑅𝑏 with a granularity of 0.01 in the range 𝑅𝑎 , 𝑅𝑏 = [0.1, 0.9].
We assume the following parameters: 𝛼1 = 1, 𝛼2 = 1, 𝑠 = 100, 𝛾 = 0.5, 𝜎 = 0.3, 𝑇 = 1, 𝑡 = 0.3, 𝜅 = 2.

values for 𝛾 , 𝜎 , and 𝜅. To this end, we consider two relevant cases: First, Figure 4.19 assumes
a small inventory (𝑞 = 1); second, Figure 4.20 assumes a large inventory (𝑞 = 5). ‘True’ (resp.
‘False’) indicates that the inequality holds (resp. does not hold).

In both Figures 4.19 and 4.20, the two top (bottom) charts focus on ask (bid) prices, whereas
the two left (right) charts focus on 𝐷𝐹 (𝑆𝑃 ) strategy. Figure 4.19 emphasizes that for small
𝑞, 𝐷𝐹 adjusts prices in the same direction as 𝑆𝑃 for most combinations of 𝑅𝑎 and 𝑅𝑏 . Only
when predicted buy (sell) volume is neither small nor large with predicted sell (buy) vol-
ume being either very small or very large, 𝐷𝐹 offsets the 𝑆𝑃 adjustment to sell (buy) prices.
This is due to the fact that the conditions given in Sections 4.B.ii and 4.B.iii are valid for
small 𝑞, e.g., in case of inequality (4.8), if 𝑅𝑏 ≥ 𝑅𝑎 and 𝑅𝑏 < 1

2 , small 𝑞 fulfill the condition
1

2𝛼1 (1 − 2𝑅𝑏) (𝛿𝑎 + 𝛿𝑏) > 2 ⋅ (𝑟𝐷𝐹 − 𝑟𝐴𝑆) for most common values for 𝜅, 𝜎 and 𝛾 .
On the other hand, Figure 4.20 shows that for increasing inventory, this relationship

changes and 𝐷𝐹 more often offsets 𝑆𝑃 strategy, which may be due to the fact that the condi-
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tions for 𝑆𝑃 strategy to act in the same direction as 𝐷𝐹 are stronger: For instance, inequality
4.10 holds for 𝑅𝑏 < 1

2 and 𝑅𝑏 > 𝑅𝑎 if 𝑟𝐷𝐹 − 𝑟𝐴𝑆 > 1
𝛼1 (1 − 2𝑅𝑏) (𝛿𝑎 + 𝛿𝑏), which is opposite

to the condition for inequality (4.8) and therefore holds only for large 𝑞. Hence, we infer that
𝐷𝐹 rarely offsets the 𝑆𝑃 strategy in the consolidated model, whereas 𝑆𝑃 largely offsets 𝐷𝐹 in
the consolidated model, except for the a) cases defined in Sections 4.B.iv and 4.B.v.

4.D Distribution of prediction errors

To gain a better understanding of the conditions under which the prediction models perform
either well or poorly, Figure 4.21 illustrates the mean squared prediction error as a function of
the percentile groups of 𝑅𝑏 and 𝑅𝑎 . Thus, the value plotted at the 20th percentile reflects the
mean squared prediction error of all predictions that fall between the 19th and 20th percentiles
of the respective prediction distribution. The plot illustrates that RNN predictions between
the 20th and 80th percentiles are more accurate than small or large RNN predictions. For
example, when RNN delivers a small prediction, the potential prediction error is larger on
average than for an average prediction. In contrast, SFN achieves smaller prediction errors
for extreme predictions. Nevertheless, RNN is superior to SFN in all percentile groups.
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Figure 4.21: Mean squared prediction error as a function of 𝑅𝑏 and 𝑅𝑎 . Black (red) lines represent buy
(sell) predictions, where solid (dashed) lines represent RNN (SFN) predictions. According to Section 4.6.1,
we calculate prediction errors by 𝑅𝑏 − 𝑅𝑏 and 𝑅𝑎 − 𝑅𝑎 , respectively.

4.E Prediction accuracy of classification task

Table 4.3 reports prediction quality of the trade size classification task, where the positive class
represents a trade size percentile rank greater than 0.5, and the negative class represents a
percentile rank less than or equal 0.5. Accuracy𝐴𝐶𝐶 reports the number of true classifications
in all observations (see equation (2.13)). True Positive (Negative) Rate reports the share of
correct classifications in all positive (negative) observations. We calculate True Positive Rate
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Appendix

𝑇𝑃𝑅 analogous to equation (3.6) by 𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ) and True Negative Rate 𝑇𝑁𝑅
analogous to equation (3.7) by 𝑇𝑁𝑅 = 𝑇𝑁 /(𝑇𝑁 + 𝐹𝑃).

RNN SFN
𝑅𝑏 𝑅𝑎 All 𝑅𝑏 𝑅𝑎 All

𝐴𝐶𝐶 0.82 0.82 0.82 0.64 0.64 0.64
𝑇𝑃𝑅 0.82 0.81 0.82 0.65 0.64 0.64
𝑇𝑁𝑅 0.83 0.83 0.83 0.63 0.64 0.64

Table 4.3: Prediction accuracy of the trade size classification task

4.F Net position percentiles

Figure 4.22 shows the percentiles of net positions held as an equal-weighted average for both
ETH-USD and BTC-USD pairs. For instance, the 20th percentile of net positions held under
𝑆𝑃 strategy is −0.3. Following Section 4.5.4, the inventory limit is ±0.5 BTC or ±0.5 ETH,
respectively. The chart shows that in more than 50% (less than 20%) of all seconds, we are net
short (net long), whereas in about 30% of all seconds the position is neutral. As a result, we
post sell orders on average deeper than buy orders in the order book (see Figure 4.14).
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Figure 4.22: Percentiles of net positions held during the total trading period. We consider net positions in
one-second intervals and calculate percentiles separately for each trading strategy. The net position can
take any value out of [−0.5, −0.4, −0.3, ..., 0.3, 0.4, 0.5].

4.G Depth of orders in the order book by currency pair

Since Figure 4.14 aggregates order books of BTC-USD and ETH-USD,we analyze in Figure 4.23
whether our findings for the aggregated order books also hold for stand-alone order books of
the BTC-USD and ETH-USD pairs. Figure 4.23 illustrates that the dynamics of the stand-alone
order books are largely similar to the dynamics demonstrated by Figure 4.14, which suggests
that the relationships between trading strategies are similar for both BTC-USD and ETH-USD
order books, allowing us to consider the order books of BTC-USD and ETH-USD together.
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Figure 4.23: Average depth of ask orders 𝛿𝑎 (solid lines) and bid orders 𝛿𝑏 (dotted lines) in the order book
for BTC-USD pair (left) and ETH-USD pair (right). 𝑆𝑃 , 𝐷𝐹 , and 𝑆𝑃𝐷𝐹 base on RNN predictions. 𝛿𝑎 and 𝛿𝑏
denote in basis points. `Net position' represents each strategy's individual net position. `Bid-ask spread' is
the one-second bid-ask spread at the end of a one-second interval.
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