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Summary

In this thesis, we examine the dynamics of many-body systems within both quan-

tum and classical contexts. When dealing with many-body systems, the focus is typi-

cally on what are known as order parameters. These parameters indicate whether the

physical system is in an ordered phase or not. Order parameters often correspond to the

expectation values of local observables, or to the averages of the microscopic degrees of

freedom within the system’s configuration. Specifically, we leverage machine learning

methodologies to develop an interpretable and physically consistent theoretical frame-

work for describing local and macroscopic degrees of freedom within both quantum

and classical contexts. In the case of quantum system, we develop a method that is able

to approximate a “dynamical generator,” that is, an operator which is able to evolve in

time few body observables of the system. In particular, this generator preserves some

important physical quantities of the state representing the system under investigation,

such as its probabilistic interpretation. We explore the capabilities of this method in

our first and second scientific paper. In the first work, we provide full access to the

dynamics through the coherence vector, a representation of the quantum state. In our

second work, more akin to actual experimental conditions, we supply the variational

method with data obtained via state tomography through projective measurements, a

routine approach in retrieving the state of quantum devices using qubits. Here, we

further develop the methods used in our fist work to address the problem of learning

the dynamical generator in the presence of projection noise. Given that projective mea-

surements introduce noise into the dynamics, we naturally consider how to represent

physical noise in a machine learning routine. To better understand how noise could be

managed by a machine learning routine, we studied the reduced degrees of freedom of

classical systems composed of many ”binary” spin degrees of freedom whose evolution

is probabilistic in our third scientific paper. Average quantities of these spin variables

are inherently stochastic. By taking the expectation values over numerous stochastic

trajectories, order parameters emerge. Specifically, we model the dynamics of this or-

der parameter using a stochastic di!erential equation of Itô type. Such equations are

first-order di!erential equations in time that include a directed force term, known as

the “drift coe”cient,” and a noisy force term called the “di!usion coe”cient.” We con-
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centrate on encoding the di!usion term and the drift term of this stochastic di!erential

equation into two separate neural networks. This method proves robust in reproducing

the dynamics and allows us to extract valuable information about the system, such as

the critical point and the critical exponent.

ii



Zusammenfassung

In dieser Arbeit untersuchen wir die Dynamik von Vielkörpersystemen sowohl

im quantenmechanischen als auch im klassischen Kontext. Bei der Betrachtung von

Vielkörpersystemen liegt der Fokus typischerweise auf sogenannten Ordnungsparam-

etern. Diese Parameter zeigen an, ob sich das physikalische System in einer geordneten

Phase befindet oder nicht. Ordnungsparameter entsprechen oft den Erwartungswerten

lokaler Observablen oder den Mittelwerten der mikroskopischen Freiheitsgrade in einer

Konfiguration des Systems. In dieser Arbeit nutzen wir Methoden des maschinellen

Lernens, um interpretierbare und physikalisch konsistente Bewegungsgleichungen zu

finden, die lokalisierte und makroskopische Freiheitsgrade sowohl im quantenmech-

anischen als auch im klassischen Kontext beschreiben. Im Fall eines Quantensystems

entwickeln wir eine Methode, die in der Lage ist, einen lokalen ”dynamischen Gener-

ator“ zu approximieren, also einen Operator, der wenige lokalisierte Observablen des

Systems in der Zeit entwickelt. Insbesondere bewahrt dieser Generator einige wichtige

physikalische Eigenschaften des Zustands des zu untersuchenden Systems, wie z. B.

seine probabilistische Interpretation. In unserer ersten und zweiten wissenschaftlichen

Arbeit erforschen wir die Einsatzbereiche dieser Methode. In der ersten Arbeit nehmen

wir an, dass wir vollständigen Zugang zum Quantenzustand haben. In unserer zweiten

Arbeit, die eher experimentellen Bedingungen entspricht, benutzen wir Daten, die über

Zustandstomographie durch projektive Messungen gewonnen wurden. Dies ist ein

Routineverfahren zur Bestimmung des Zustands von aus Qubits zusammengesetzten

Quantensystemen. Hier entwickeln wir die Methoden aus unserer ersten Arbeit weiter,

um das Problem des Lernens des dynamischen Generators unter dem Einfluss von Pro-

jektionsrauschen zu behandeln. Dabei untersuchen wir, wie physikalisches Rauschen

in im maschinellen Lernalgorithmus implementiert werden kann. Um besser zu ver-

stehen, wie Rauschen in einem maschinellen Lernverfahren behandelt werden kann,

untersuchen wir in unserer dritten wissenschaftlichen Arbeit die reduzierten Freiheits-

grade klassischer Systeme, die aus vielen ”binären“ Spinfreiheitsgraden bestehen, deren

Entwicklung probabilistisch ist. Durchschnittswerte dieser Spinvariablen sind von Na-

tur aus stochastisch, und die Mittelung über zahlreiche stochastische Trajektorien ist

hier zur Berechnung eines Ordnungsparameters notwendig. Konkret modellieren wir

iii



die Dynamik eines solchen Ordnungsparameters mittels einer stochastischen Di!er-

entialgleichung vom Itô-Typ. Solche Gleichungen sind zeitliche Di!erentialgleichun-

gen erster Ordnung, die einen gerichteten Kraftterm, parametrisiert durch den soge-

nannten ”Driftkoe”zienten“, sowie einen rauschbehafteten Kraftterm, bestimmt durch

den ”Di!usionskoe”zienten“, enthalten. Wir konzentrieren uns in dieser Arbeit da-

rauf, den Di!usionsterm und den Driftterm dieser stochastischen Di!erentialgleichung

in zwei separaten neuronalen Netzwerken zu codieren. Diese Methode erweist sich als

robust bei der Reproduktion der Dynamik und ermöglicht es uns, wertvolle Informa-

tionen über das kollektive Verhalten des Systems zu extrahieren, wie den kritischen

Punkt und kritische Exponenten.
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2.1.6 Itô processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.7 The drift and the di!usion terms . . . . . . . . . . . . . . . . . . . 22

2.2 Open quantum systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Time evolution of open quantum systems . . . . . . . . . . . . . . 25

2.2.3 The Nakajima-Zwanzig equation . . . . . . . . . . . . . . . . . . . 27

2.2.4 The Lindblad equation . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.5 Microscopic derivation . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.6 The coherence vector . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.7 The single qubit case . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Methods and machine learning 43

3.1 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 The perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

viii



3.1.2 Feed-forward neural networks . . . . . . . . . . . . . . . . . . . . 47

3.2 Universal approximation theorem . . . . . . . . . . . . . . . . . . . . . . 50

3.3 The loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 The gradient descent algorithm . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 The back-propagation algorithm . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Stochastic gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Results and publications 58

5 Conclusions and outlook 105

6 Bibliography 108

1



1 Introduction

1.1 Many-body systems

One of the most captivating areas in modern physics concerns the understanding

of the collective behavior that arises from the interactions of a vast number of particles

[1, 2, 3]. This is because the interactions among many particles can lead to ”emergent

phenomena”. Emergent phenomena are collective behaviors and properties that arise

from the (complex) interactions within many-body systems and cannot be straightfor-

wardly predicted from the fundamental laws governing individual particles [4, 5]. An

illustrative example of such emergent behavior is crystalline solids’ (beautiful) forma-

tions. These formations arise due to large quantities of interacting atoms. Here, we

see that new properties and behaviors, i.e. a breaking of spatial symmetry, emerge due

to the collective interactions within a many-body system. These properties cannot be

directly inferred from those observed of just two atoms: as summarized by the famous

quote of Anderson, “more is di!erent” [4].

The emergent behavior of many-body systems is of primary concern in the fields

of condensed matter physics and statistical mechanics. In fact, these disciplines en-

compass a broad spectrum of phenomena and theoretical frameworks, making signif-

icant contributions to both material science and fundamental physics providing deep

insights into the properties of materials and their underlying physical principles [6].

In principle, classical physics o!ers a formalism to describe the equations of motion

for the positions and momenta of a large number of particles through Hamiltonian

mechanics. However, solving these equations of motion is extraordinarily challenging,

even for a system as seemingly simple as three interacting particles [7]. The complexity

and computational di”culty grow exponentially with the number of particles involved,

necessitating alternative approaches [8]. For example, instead of solving exact equa-

tions, the general properties of the system, such as its relaxation time to its stationary

state or its equilibrium state, when existing, can be described by probabilistic meth-

ods: therefore, probabilistic and or statistical methods become essential. In classical

systems, the approach of statistical mechanics is to select an observable and consider

that the dynamical evolution of the systems’ particles probabilistically a!ects this ob-
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servable. Probability plays a fundamental role in quantum mechanics [9]. In a wide

range of scenarios of theoretical and practical importance, such as the behavior of mate-

rials at very low temperatures, the classical treatment of the system fails, necessitating

a quantum mechanical description of the system. This means that some of the methods

of simulations that can be safely used in classical systems can fail or must be revised,

such as Monte Carlo simulations [10, 11]. In comparison with classical systems, ad-

ditional correlations between particles arise in quantum systems, due to entanglement

[12, 13, 14]. Entanglement occurs in quantum systems when particle can only be de-

scribed globally, by means of a so called many-body wave-function, which is akin to the

square of a probability distribution describing their configuration. A physical configu-

ration includes the spatial arrangement of electrons in an atom, the projection of a spin

operator on a given axis for a spin system, and possibly other quantum numbers such

as angular momentum, orbital number etc.. Because each configuration has a nonzero

probability of being measured, the amount of information the wave function carries

tends to grow faster than polynomially with the system size. This results in a prob-

ability distribution with an extremely large support, typically growing exponentially

with the number of particles involved. Consequently, developing e”cient methods for

storing and managing this information is of great experimental and theoretical interest

[15].

1.2 Phase transitions and critical phenomena

One of the main concepts of many-body system in statistical mechanics is the so-

called “thermodynamic limit”, [8, 7]. Another is the transition from magnetic to para-

magnetic state in ferromagnetic materials such as iron. In this transition, the state of

the material moves from an ordered (ferromagnetic) state, where its dipoles point in

the same direction, to a disordered (paramagnetic) state at the Curie temperature.

The mathematical framework in which this phenomena are phrased and under-

stood is the renormalization group [16]. The explanation that this general framework

gives for the anomalies in the physical observables, and in particular for the divergence

of correlation lengths, is that near the critical point, the behavior of the system is self-

similar at di!erent time and space scales. This is e!ectively translated mathematically
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in the scaling hypothesis [17, 18]. This hypothesis states that at the critical point physical

observables, such as the correlation length and susceptibility, can be described by ho-

mogeneous functions known as scaling functions. These functions exhibit power law

divergences at the critical point. The exponents of these power laws are termed “crit-

ical exponents”. Empirical observations [19] have shown that these critical exponents

can be remarkably consistent across vastly di!erent physical phenomena. This surpris-

ing consistency led to the concept of “universality classes,” where models that share

the same scaling functions and critical exponents are considered to belong to the same

class. In this thesis, in particular in [20], we set out to study the directed force acting

on an order parameter in classical models of statistical mechanics. This force can be

interpreted as the gradient of a “dynamical function” or, in equilibrium systems, the

free energy. The properties of this function, particularly its zeros, are expected to scale

according to power laws, linking to the scaling functions utilized in the scaling hypoth-

esis. Our paper [20] (see also Sec. 2.1)is aimed at using machine learning techniques to

approximate the dynamical generators of the system, that is, the equations governing

the time evolution of macroscopic physical observables of the system. This generators

are related to the scaling functions and allow to gain insight into the physics of the

problem.

1.3 Machine learning dynamics of reduced observables

As already mentioned in the summary, the main scope of this thesis is to explore

the capabilities of machine learning methods to approximate generators of the dynam-

ics of order parameters in quantum and classical systems. Machine learning employs a

variety of variational trial functions, or Ansätze, which can be trained for di!erent tasks,

from distinguishing images of cats and dogs [21, 22] to approximating the ground state

of a quantum many-body problem [23, 24]. A key aspect of machine learning routines

is that the optimization procedure makes use of automatic di!erentiation to compute

the gradients of a loss function, which measures how well the variational Ansatz pre-

dicts the desired output. The loss function is either minimized or maximized along the

direction of larger variation dictated by the gradients. This optimization is typically per-

formed using stochastic gradient descent, which estimates the loss function by stochas-
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tically sampling from the set of desired outputs, enabling e”cient handling of large

datasets, and eschewing problem associated with local minima, by allowing the loss

to “jump” past them. Among the most common variational Ansatz in machine learn-

ing are neural networks, which come in various forms, such as fully connected feed-

forward networks, convolutional neural networks, and tensor networks (also known

as tensor trains). Notably fully connected feed-forward networks, consist of intercon-

nected linear transformations and nonlinear activation functions inspired by biological

neural networks.

Despite their biological inspiration, the primary interest in artificial neural net-

works today is computational and mathematical. Universal approximation theorems

[25, 26] guarantee that these neural networks can approximate a wide range of func-

tions, provided they have enough variational parameters. However, a significant draw-

back of neural networks is the di”culty in determining an upper bound on the number

of variational parameters needed, which is crucial to avoid overfitting—a common is-

sue where the network learns features specific to data used to optimize it rather than

generalizable patterns. Machine learning methods are appealing in physics because

they allow to treat phenomena that at first sight are disparate, in an unified manner.

In our works [27] and [28], we employed models that are physically constrained to

minimize the number of variational parameters, enhancing the interpretability of the

model. These models are based on “one-layer feed-forward neural networks”. In con-

trast, the method we develop in [20] uses deep feed-forward neural networks, sacrific-

ing some interpretability for greater representation power and the ability to approxi-

mate a broader class of functions. In particular, we learn the equation of motion gov-

erning some noisy processes in statistical mechanics. The fact that we employ di!er-

entiable functions, allows us to easily find the minima of the e!ective potential. This

e!ective potential governs the relaxation times and the value of the stationary point. In

all three studies, the application of machine learning techniques facilitated the retrieval

of a ”dynamical generator” employed to predict distinct classes of physical dynamics.

The following subsections provide a more detailed explanation of the methods utilized

and the specific physical scenarios.
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FIG. 1. Training of the drift coe�cient µ� and the di�usion coe�cient �� from the stochastic trajectories of
the order parameter. (a) The network for the drift coe�cient, µ�, is trained by minimizing a distance, L[µ](�) in Eq. (4),
between µ�(x) and the drift coe�cient µ, cf. Eq. (3). For a given value x of the order parameter, we consider all the values
Zt close to it in the observed trajectories, and their update Zt+dt. The finite di�erence Zt+dt � Zt is then used to locally
approximate the drift coe�cient µ. (b) The network for the di�usion coe�cient �� is trained by minimizing a distance, cf. Eq.
(10), between �2

�(Zt) and the derivative of the quadratic variation �t[Z]t, see L[�](�) in Eq. (9). The quadratic variation [Z]t
itself, cf. Eq. (6), is locally approximated from the observed trajectories.

in mean-field theories. Remarkably, it also carries infor-
mation about the exact low-dimensional physics of the
considered model, as we demonstrate through estimates
of critical exponents. Moreover, our method should also
be applicable for inferring e↵ective stochastic di↵erential
equations for the evolution of order parameters from ex-
perimental data. In contrast with other machine learning
routines, which learn the stochastic di↵erential equation
by integrating the stochastic dynamics and optimizing
over the probability distribution of the variable, our ap-
proach builds on learning ordinary di↵erential equations
[20–26].

II. MANY-BODY STOCHASTIC PROCESSES

A. The evolution of stochastic observables

For the sake of concreteness, we focus on many-body
lattice systems of N sites, each of which is associated with
a classical spin variable. We denote the system state,
or system configuration, through the vector s contain-
ing the values si of the variables at the di↵erent sites i.
We furthermore assume the system to be subject to a
discrete-time Markovian stochastic spin-flip dynamics.

Relevant information about the above many-body sys-
tem is provided by so-called order parameters, which en-
code properties of the whole configuration. A paradig-
matic example is given by an average of the form Zt ⌘

Z(st) = 1
N

P
i si

t, where st is the time-evolving state of
the system. As a consequence of the stochastic nature
of st, also the e↵ective dynamics of Zt is stochastic. For
large systems and at a continuous coarse-grained time
scale, Zt becomes a continuous random variable that may
be expected to obey an emergent stochastic di↵erential

equation of the form

dZt = µ(Zt, t)dt + �(Zt, t)dWt . (1)

Here, the function µ is referred to as the drift coe�cient,
while � is called di↵usion coe�cient. Wt is a standard
Wiener process [1] and dWt is its increment satisfying
the relations E[dWt] = 0 and E[dW 2

t ] = dt, with E de-
noting expectation over the noise. Despite the simple
form of Eq. (1), understanding the functional form of µ
and � is in general a di�cult task. In the following, we
propose a method to learn an approximation to the ana-
lytical form of the drift and the di↵usion coe�cients by
means of neural networks. We determine two artificial
neural networks µ✓ and �✓ (see sketch in Fig. 1), which
describe the dynamics of Zt, given the network parame-
ters (weights and biases) ✓. We restrict ourselves to the
Markovian case in which µ✓ and �✓ do not depend on
time

dZt = µ✓(Zt)dt + �✓(Zt)dWt. (2)

To approximate the functions µ and � we use a data-
driven method, i.e., the networks µ✓ and �✓ are trained
on a data set composed of trajectories Zt, which we call
ground truth data, see also Fig. 1. Note that restricting
to the Markovian case of Eq. (2) is an assumption since,
even if the dynamics of the system configuration st is
Markovian at the microscopic scale, the emergent dynam-
ics of the order parameters – i.e. macroscopic quantities
– may feature non-Markovian e↵ects.

B. Neural network representation of the drift and
di�usion coe�cients

Our approach consists of training the networks µ✓ and
�✓ with separate routines and not simultaneously. As

Figure 1. Training of the drift coe�cient µ✓ and the di↵usion coe�cient
�✓ from the stochastic trajectories of the order parameter. (a) The network
for the drift coe�cient, µ✓, is trained by minimizing a distance, L[µ](✓) in Eq. (4),
between µ✓(x) and the drift coe�cient µ, cf. Eq. (3). For a given value x of the order
parameter, we consider all the values Zt close to it in the observed trajectories, and
their update Zt+dt. The finite di↵erence Zt+dt �Zt is then used to locally approximate
the drift coe�cient µ. (b) The network for the di↵usion coe�cient �✓ is trained by
minimizing a distance, cf. Eq. (10), between �2

✓(Zt) and the derivative of the quadratic
variation @t[Z]t, see L[�](✓) in Eq. (9). The quadratic variation [Z]t itself, cf. Eq. (6),
is locally approximated from the observed trajectories.

configurations and trajectories. The large-scale dynamics of the order parameter are

instead typically modeled by a stochastic di↵erential equation. The latter contains both

a force term, leading to a deterministic drift, and a noise term yielding di↵usive behavior

‡. However, establishing a connection between fluctuating microscopic stochastic

trajectories and the coarse-grained evolution of the order parameter is a challenging

task that can rarely be accomplished analytically.

In this paper, we develop a machine learning approach [9, 10, 11, 12, 13, 14] to

bridge this gap. To illustrate our method, we consider two paradigmatic classical many-

body systems: the 2D Ising model evolving under Glauber dynamics [15, 16, 17] and the

nonequilibrium contact process in 1D. The dynamics considered for the Ising model obey

detailed balance, which eventually takes the system to a state of thermal equilibrium.

As a function of temperature, this state shows a transition from a paramagnetic to a

ferromagnetic state, characterized by a zero and non-zero value of the order parameter,

respectively. As we will show, this transition manifests in the structure of the learned

drift term cf. Fig. 1(a), from which one can reconstruct an e↵ective potential that

exhibits a characteristic double-well shape below the critical temperature. Both the

paramagnetic and ferromagnetic phases are fluctuating, which is also reflected in the

learned noise term. In contrast to the scenario of the Ising model, the contact process

represents a genuine out-of-equilibrium system [18, 19, 20, 21], i.e., its dynamics does

not obey detailed balance and its stationary state is non-thermal. The model features a

phase transition between a non-fluctuating absorbing state in which the order parameter

‡ The drift and the di↵usion represent the most basic ingredients for a coarse-grained dynamics. More
general forms might include memory kernels or other non-Markovian time dependencies [7, 8].
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Figure 1: The architecture for the dynamical generator L The full quantum state ω(t)

of a spin chain evolves according to the Hamiltonian H . A complete basis of

observables, specifying the reduced state of a two-spin subsystem, is used to

optimize the variational parameters of a “dynamical generator” L.

1.3.1 Inferring quantum master equations in quantum spin chains

The dynamics of open quantum systems is an active area of research, driven by re-

cent advancements in experimental realizations of artificial quantum systems, such as

Rydberg and utra-cold atoms [29, 30, 31, 32]. In this thesis, we investigate how machine

learning techniques can be utilized to infer some of the properties of open quantum

systems [33, 24, 34, 35, 36, 23, 37, 38]. Specifically, we use a single-layer network whose

parameters mimic the form of a dynamical generator L. The functional form and the

properties of this generator will be described in detail in Sec. 2.2.6. We allow each of

the variational parameters in our single-layer model to represent an entry in the gen-

erator L. Our approach is data-driven, training the variational generator to align with

the reduced dynamics of a two-body spin system within a larger environment. The

spins under consideration are spin-1
2 particles which can stay in two states “up” |→↑,

or “down” |↓↑. Their state is described by a “coherence vector” formed by expectation

values of local correlation functions of just two spins — see. Fig. 1 [a], which form a

subsystem S. The degrees of freedom of the other spins are overlooked, and serve as

a source of dissipation, or “bath” B. We obatin data by evolving the quantum state ω

of the entire system S + B according to an Hamiltonian H , (cf. Fig 1): ω̇ = ↔i[H, ω],

using exact diagonalization. This global Hamiltonian comprises both the bath and the

subsystem. At each discrete time step, we trace out the bath’s degrees of freedom and
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calculate the coherence vector from the quantum state of the subsystem. The network

excels at predicting time windows included in the training data, but its accuracy di-

minishes over longer time periods. The learned generator performs best at predicting

dynamics when the coupling between spins in the Hamiltonian is weak, but its accuracy

declines at higher coupling strengths. This decline is not due to a flaw in the network

but rather because the Markovian description of the system becomes invalid at these

higher couplings. The generator is interpretable: for instance, one can obtain the pre-

dicted relaxation time of the system as the smallest (in absolute value) nonzero real

part of the eigenvalues of the generator. This quantity qualitatively predicts the time at

which, after a transient period, the system reaches an almost stationary value. Due to

finite size e!ects, small oscillations are still present in the exact dynamics at all times,

whereas the dynamics predicted by our generator relax to a proper stationary state.

1.3.2 Inferring quantum dynamics via projective measurements

In our scientific paper [28], we used noisy synthetic data from larger spin chains to

train the dynamical generator as in our work [27]. To obtain this data, we used tensor

network methods instead of exact diagonalization. These methods [40, 41] enable the

simulation of slightly entangled spin models [42] for up to tens or even hundreds of

particles. They achieve this by e”ciently storing each coe”cient of the wave function as

a product of tensors, with each tensor associated with a single particle. By truncating

the rank of these tensors during time evolution, the amount of information required

to simulate these quantum systems scales only linearly with the system size. Specif-

ically, we reconstructed the density matrix by first performing the evolution via the

Time-Evolving Block Decimation (TEBD) algorithm [40], which allows us to handle

larger spin systems than in our initial work, storing the wave function of the system as

a tensor network. This is crucial because a Lindbladian description of the subsystem

is expected to be more appropriate for larger baths. Additionally, we did not limit the

network input to exact expectation values as done in our previous work. To validate

our approach in more realistic experimental settings, we selected M random times in

the simulation. At each time, we performed a set of N measurements in each basis, and

from these measurements, we estimated the value of the density matrix (cf. Fig. 2).
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Figure 2: Machine learning the generator L of quantum dynamics subject to projec-

tive noise. In the scientific paper [39], the dynamics are approximated using

the TEBD algorithm, which allows for the simulation of a larger spin chain

[see figure (a)]. At each of a set of M randomly selected times, the system’s

state is estimated by performing a series of N measurements. The results of

these measurements are then used to reconstruct the state (illustrated in his-

togram (b)). For instance, if the observable is the spin correlation function

between two adjacent spins, such as ↗ε1
x
ε2

y
↑, then | →↓↑ indicates that the mea-

surement of the first spin along the x-axis yields an outcome of 1, while the

measurement of the second spin along the y-axis gives an outcome of 0. Fi-

nally, the dynamical generator L [cf. Fig. 1] is trained using synthetic data to

best replicate the system’s dynamics [shown in (c)]. The form of the observ-

ables εx, εy is explained in detail in Sec. 2.2.7.
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FIG. 1. Training of the drift coe�cient µ� and the di�usion coe�cient �� from the stochastic trajectories of
the order parameter. (a) The network for the drift coe�cient, µ�, is trained by minimizing a distance, L[µ](�) in Eq. (4),
between µ�(x) and the drift coe�cient µ, cf. Eq. (3). For a given value x of the order parameter, we consider all the values
Zt close to it in the observed trajectories, and their update Zt+dt. The finite di�erence Zt+dt � Zt is then used to locally
approximate the drift coe�cient µ. (b) The network for the di�usion coe�cient �� is trained by minimizing a distance, cf. Eq.
(10), between �2

�(Zt) and the derivative of the quadratic variation �t[Z]t, see L[�](�) in Eq. (9). The quadratic variation [Z]t
itself, cf. Eq. (6), is locally approximated from the observed trajectories.

in mean-field theories. Remarkably, it also carries infor-
mation about the exact low-dimensional physics of the
considered model, as we demonstrate through estimates
of critical exponents. Moreover, our method should also
be applicable for inferring e↵ective stochastic di↵erential
equations for the evolution of order parameters from ex-
perimental data. In contrast with other machine learning
routines, which learn the stochastic di↵erential equation
by integrating the stochastic dynamics and optimizing
over the probability distribution of the variable, our ap-
proach builds on learning ordinary di↵erential equations
[20–26].

II. MANY-BODY STOCHASTIC PROCESSES

A. The evolution of stochastic observables

For the sake of concreteness, we focus on many-body
lattice systems of N sites, each of which is associated with
a classical spin variable. We denote the system state,
or system configuration, through the vector s contain-
ing the values si of the variables at the di↵erent sites i.
We furthermore assume the system to be subject to a
discrete-time Markovian stochastic spin-flip dynamics.

Relevant information about the above many-body sys-
tem is provided by so-called order parameters, which en-
code properties of the whole configuration. A paradig-
matic example is given by an average of the form Zt ⌘

Z(st) = 1
N

P
i si

t, where st is the time-evolving state of
the system. As a consequence of the stochastic nature
of st, also the e↵ective dynamics of Zt is stochastic. For
large systems and at a continuous coarse-grained time
scale, Zt becomes a continuous random variable that may
be expected to obey an emergent stochastic di↵erential

equation of the form

dZt = µ(Zt, t)dt + �(Zt, t)dWt . (1)

Here, the function µ is referred to as the drift coe�cient,
while � is called di↵usion coe�cient. Wt is a standard
Wiener process [1] and dWt is its increment satisfying
the relations E[dWt] = 0 and E[dW 2

t ] = dt, with E de-
noting expectation over the noise. Despite the simple
form of Eq. (1), understanding the functional form of µ
and � is in general a di�cult task. In the following, we
propose a method to learn an approximation to the ana-
lytical form of the drift and the di↵usion coe�cients by
means of neural networks. We determine two artificial
neural networks µ✓ and �✓ (see sketch in Fig. 1), which
describe the dynamics of Zt, given the network parame-
ters (weights and biases) ✓. We restrict ourselves to the
Markovian case in which µ✓ and �✓ do not depend on
time

dZt = µ✓(Zt)dt + �✓(Zt)dWt. (2)

To approximate the functions µ and � we use a data-
driven method, i.e., the networks µ✓ and �✓ are trained
on a data set composed of trajectories Zt, which we call
ground truth data, see also Fig. 1. Note that restricting
to the Markovian case of Eq. (2) is an assumption since,
even if the dynamics of the system configuration st is
Markovian at the microscopic scale, the emergent dynam-
ics of the order parameters – i.e. macroscopic quantities
– may feature non-Markovian e↵ects.

B. Neural network representation of the drift and
di�usion coe�cients

Our approach consists of training the networks µ✓ and
�✓ with separate routines and not simultaneously. As

Figure 1. Training of the drift coe�cient µ✓ and the di↵usion coe�cient
�✓ from the stochastic trajectories of the order parameter. (a) The network
for the drift coe�cient, µ✓, is trained by minimizing a distance, L[µ](✓) in Eq. (4),
between µ✓(x) and the drift coe�cient µ, cf. Eq. (3). For a given value x of the order
parameter, we consider all the values Zt close to it in the observed trajectories, and
their update Zt+dt. The finite di↵erence Zt+dt �Zt is then used to locally approximate
the drift coe�cient µ. (b) The network for the di↵usion coe�cient �✓ is trained by
minimizing a distance, cf. Eq. (10), between �2

✓(Zt) and the derivative of the quadratic
variation @t[Z]t, see L[�](✓) in Eq. (9). The quadratic variation [Z]t itself, cf. Eq. (6),
is locally approximated from the observed trajectories.

configurations and trajectories. The large-scale dynamics of the order parameter are

instead typically modeled by a stochastic di↵erential equation. The latter contains both

a force term, leading to a deterministic drift, and a noise term yielding di↵usive behavior

‡. However, establishing a connection between fluctuating microscopic stochastic

trajectories and the coarse-grained evolution of the order parameter is a challenging

task that can rarely be accomplished analytically.

In this paper, we develop a machine learning approach [9, 10, 11, 12, 13, 14] to

bridge this gap. To illustrate our method, we consider two paradigmatic classical many-

body systems: the 2D Ising model evolving under Glauber dynamics [15, 16, 17] and the

nonequilibrium contact process in 1D. The dynamics considered for the Ising model obey

detailed balance, which eventually takes the system to a state of thermal equilibrium.

As a function of temperature, this state shows a transition from a paramagnetic to a

ferromagnetic state, characterized by a zero and non-zero value of the order parameter,

respectively. As we will show, this transition manifests in the structure of the learned

drift term cf. Fig. 1(a), from which one can reconstruct an e↵ective potential that

exhibits a characteristic double-well shape below the critical temperature. Both the

paramagnetic and ferromagnetic phases are fluctuating, which is also reflected in the

learned noise term. In contrast to the scenario of the Ising model, the contact process

represents a genuine out-of-equilibrium system [18, 19, 20, 21], i.e., its dynamics does

not obey detailed balance and its stationary state is non-thermal. The model features a

phase transition between a non-fluctuating absorbing state in which the order parameter

‡ The drift and the di↵usion represent the most basic ingredients for a coarse-grained dynamics. More
general forms might include memory kernels or other non-Markovian time dependencies [7, 8].
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Figure 3: Machine learning of the dynamical function for the two-dimensional Ising

model. The stochastic evolution of the order parameter (a) is fed to a neu-

ral network (b) that learns the form of a “dynamical function” (d). Similarly

to a potential in classical mechanics, the minima of this function specify the

stationary values for the order parameter, corresponding to those of the con-

figurations in equilibrium (c). In the case of the Ising model, for sub-critical

temperatures, T < Tcrit, the stationary value of the order parameter is finite,

while in the case of higher temperatures T > Tcrit, the order parameter van-

ishes. This is reflected in the functional form of the dynamical function, which

exhibits two distinct minima at sub-critical temperatures, but shows a single

minimum at zero for super-critical temperatures.

This density matrix was then used to reconstruct “noisy” coherence vectors, where the

noise arises from the probabilistic nature of the measurements. For a spin system, the

measurements involved projections on the spatial axes. Due to the smaller and noisier

dataset used for training, we added an additional regularization term to the loss func-

tion in this case. Similarly to our previous work, we devised an error measure between

the exact and predicted dynamics to determine the regions in time and Hamiltonian

coupling strength where the method can be used reliably.

1.3.3 Machine learning stochastic di!erential equations for order parameters

The dynamics of open quantum systems is closely linked to the Markovian master

equation formalism, which connects the Fokker-Planck equation with the Itô formal-

ism, as described in detail in Sec. 2.1.5. This connection inspired our exploration of
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encoding stochastic dynamics within neural networks. Drawing on the approach of

Kidger et al. [43, 44, 45, 46], we aimed to learn the drift and di!usion terms of an Itô

equation. Unlike their methods, we do not learn these quantities simultaneously; in-

stead, we solve two separate ordinary di!erential equations. One equation represents

the first moment over many trajectories of the random variable of interest, thereby learn-

ing the directed force, while the other equation represents the second moment, thereby

retrieving the form of the di!usion term. The primary focus of this work is the dynam-

ics of order parameters in the dynamical Ising model and the contact process [47, 48].

These paradigmatic models of statistical mechanics are defined in terms of ”digital”

spins on a lattice, meaning that each spin variable can only take one out of two pos-

sible values at each time step. While the Ising model is an equilibrium model, with

the distribution of its stationary configurations dictated by the Boltzmann distribution

(see Fig. 3 (c)), the contact process is defined by a set of dynamical rules for updat-

ing the values of the spins over time and lacks a notion of free energy. We provide the

networks with the average value of the spins, computed from the simulated dynamics

obtained through Monte Carlo simulations. The networks can get a very good result

for the drift term, which allows to use these networks to infer the critical point and the

critical exponent of the order parameter. To evaluate the accuracy of the retrieved dif-

fusion coe”cient, we used it alongside the drift to numerically integrate the dynamics

and compared the result with the original dynamics used for training.

1.4 Structure

The thesis is structured as follows. In chapter 2 we introduce the general class of

physical models we are interested in studying and the tools necessary for their theoret-

ical understanding. The first section of this chapter is devoted to statistical mechanics

and stochastic processes, while the second section deals with the theory of open quan-

tum systems. The theory of stochastic processes in physics is of particular importance

for our third work [20], where the stochastic equations emerging from a few paradig-

matic models of statistical mechanics are retrieved and analyzed using machine learn-

ing methods. The theory of open quantum systems is of main interest in the case of

our first and second work [27, 39], where the objects of study are few-body observables

10



subject to dissipative dynamics. In chapter 3 we present the machine learning tools

employed in the analysis of the physical systems of interest. In particular, we cover

the topics of artificial neural networks, which are used in our works, and describe the

standard tools of stochastic gradient descent and back-propagation, which are used to

optimize our variational trial functions, that we use to retrieve the generators of the dy-

namics. In chapter 4 we summarize the results presented in detail in the papers. Finally,

in chapter 5 we present the conclusion of the thesis and provide some future directions.
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2 Theoretical Background

2.1 Stochastic processes in physics

2.1.1 Introduction

The role of noise in physics is fundamental, theoretically, experimentally and com-

putationally [49, 50, 51]. Experimental data is naturally subject to noise. In many areas

of physics, such as in classical systems, this is due to the fact [49] that any observed sys-

tem is interacting with a large number of discrete particles [52]. These particles interact

deterministically among themselves, but keeping track of their motion is unfeasible,

and their collective e!ect can only be modeled in a probabilistic fashion. This is why

in statistical mechanics the macroscopic dynamics of many-body systems, such as the

one of order parameters, is often modelled by means of “stochastic di!erential equa-

tions”, where a deterministic drift term in the time evolution of a random variable is

complemented by a noisy force, also-called di!usion term, whose value at each point

in space and time is extracted according to a probability distribution. Adding a noisy

term, even small, can have strong consequences on the behavior of macroscopic quan-

tities such as order parameters or fields, with respect to the treatment where only the

deterministic term is considered. For example, “unstable” stationary points of a deter-

ministic dynamics would vanish when adding a stochastic term. Moreover, noise is an

intrinsic feature of an important class of numerical methods used to simulate many-

body systems, namely, Markov Chain Monte Carlo methods. These methods are itera-

tive. At each iteration, an attempt is made to update each degree of freedom within the

system in a probabilistic manner. As a result, the physical quantities computed from

these simulations are influenced by probabilistic fluctuations [53, 54, 55]. In this thesis,

specifically in our paper [20], we develop a method to compute the drift and di!usion

term for data retrieved from Markov Chain Monte Carlo simulations. In this section,

we present the general theory for stochastic processes in physics, with a focus on how

to obtain the di!usion and the drift term from the dynamics itself.
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2.1.2 Markovian master equations

Stochasticity in classical physics arises from the random collisions of a large num-

ber of discrete particles. This is due to the fact that these collisions are discrete events,

causing abrupt changes in, for example, the direction of motion of the particles.

Given that the time interval between two observations is necessarily much longer

than the time interval between two consecutive interactions, the position of the parti-

cle can be modeled as a continuous variable that is e!ectively nowhere di!erentiable.

Moreover, the collisions experienced by the observed particle are modelled as random

events. The position of a particle subject to random collisions is a random process. A

random process in physics [49] is a random variable Zh depending on time th, with an

associated probability distribution P , that in general depends on all previous observa-

tion of the variable at times t1 < t2 < ... < th:

P (Zh, th) = P (Zh, th|Z1, t1; ...; Zh→1, th→1). (1)

When the random variable Zt represents observations of a single particle experi-

encing numerous random interactions within a vast environment, it is reasonable to

assume that the particle’s relaxation time is significantly slower than that of the envi-

ronment. In other words, the dynamics of this single particle are a minor, negligible

disturbance to the noise-generating environment of particles. To model the fact that

the particle is a minor disturbance to the environment, the assumption is made that

this environment “loses memory” on a scale that is much larger then the relaxation

time of the particle. When this fact holds, the process is Markovian. This is to say, the

process can be described by a random variable Z, whose probability distribution has

the Markov property. The Markov property for discrete states that the probability P of

extracting a random variable Z at time t only depends on its current state, and not on its

history, that is, on which variables where extracted at previous times. More precisely,

suppose a random process Zt is measured at times t1 < t2 < ... < tN→1, with outcomes

Zi at each of the times ti. Then the conditional probability of obtaining a value ZN at

time tN > tN→1 is [49]:

P (ZN , tN |Z1, t1; ...; ZN→1, tN→1) = P (ZN , tN |ZN→1, tN→1). (2)
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In particular, for three times t1 < t2 < t3 [49]:

P (Z1, t1; Z2, t2; Z3, t3) = P (Z1, t1)P (Z2, t2|Z1, t1)P (Z3, t3|Z2, t2). (3)

Dividing both sides in last equation by P (Zt1) and integrating over Zt2 one gets the

Champman-Kolmogorov equation for the probability P (Z3, t3|Z1, t1):

P (Z3, t3|Z1, t1) =

∫
dZ2P (Z3, t3|Z2, t2)P (Z2, t2|Z1, t1). (4)

The quantities P (Zi, ti|Zj, tj) in the last equations are called the transition probabilities

of the process.

2.1.3 The Fokker-Planck equation

The form of P (Zi, ti|Zj, tj) in Eq. (4), is a self-convolution, so a natural solution to

it is given in terms of transition probabilities that are Gaussian in Z [49]. A possible

solution is:

PB(Z, t|Z0, t0) =
1√

2ϑ(t ↔ t0)
exp

[
↔

(Z ↔ Z0)2

2(t ↔ t0)

]
. (5)

This process for Z models the position Z in time t of a particle whose motion is purely

chaotic, i.e. a “Brownian particle” [56], [cf. Sec 2.1.4]. For initial conditions P (Y, 0) =

ϖ(Y ) this lead to a probability

PB(Z, t) =
1

↘
2ϑt

exp
[
↔

Z2

2t

]
. (6)

This probability distribution explicitly depends on time. To obtain a probability distri-

bution P (Z, t) that is time independent, P (Z, t) = P (Z), the Gaussian solution of Eq.

(4) must have, thank to a theorem of Doob [57], the following form, for u = t ↔ t0:

PO-U(Z, t|Z0, t0) = Pu(Z|Z0) =
1√

2ϑ(1 ↔ e→2u)
exp

[
↔

(Z ↔ Z0e→u)2

2(1 ↔ e→2u)

]
. (7)

In this case, the probability P (Z) becomes:

PO-U(Z, t) = P (Z) =
1

↘
2ϑ

exp
[
↔

Z2

2

]
. (8)

This means that here, the transition probabilities of the process depend only on the time

di!erence u, like in Eq. (5), but the corresponding probability PO-U(Z, t) is completely

time-independent. This type of process was first invented to describe the velocity of
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a Brownian particle, and it is known as Ornstein-Uhlenbeck process [58]. Processes

of this kind, whose probability P (Z) is time-independent, and whose transition prob-

abilities depend only on the interval of time u, are deemed stationary. A very impor-

tant property of stationary processes is that they are not conditional on time, contrary

to those appearing in the Chapman-Kolmogorov equation (4). In fact, the Chapman-

Kolmogorov equation, being an integral equation for conditional probabilities, is very

di”cult to handle, but for stationary processes, a much simpler di!erential equation,

namely, the Fokker-Planck equation, may be devised. Moreover, stationary processes

are of crucial importance in physics, as one expects a large class of observed phenomena

to reach a stationary state [49, 59]. To get a flavor of how a di!erential equation arises

for stationary processes let us note that at u = ≃, Eq. (7) satisfies the usual di!erential

equation for a Gaussian:

0 = ZPu(Z|Z0) +
ϱ

ϱZ
Pu(Z|Z0). (9)

For nonvanishing values of u, one can check by directly plugging in the expression Eq.

(7), that the di!erential equation satisfied by the transition probability of the Ornstein-

Uhlenbeck process is:

ϱ

ϱu
Pu(Z|Z0) =

ϱ

ϱZ

[
ZPu(Z|Z0) +

ϱ

ϱZ
Pu(Z|Z0)

]
. (10)

This is the Fokker-Planck equation for the Ornstein-Uhlenbeck process. In what follows

we derive the general form of the Fokker-Planck equation starting from the Chapman-

Kolmogorv equation, following the standard treatment of [49].

In the case of stationary Markov processes, it is possible to rewrite the Chapman-

Kolmogorov equation (4) as:

Qu+s(Z3|Z1) =

∫
dZ2Qs(Z3|Z2)Qu(Z2|Z1). (11)

In the limit of u going to 0, one expects that no changes occur in the state of the system,

that is, Qu(Z|Z0) approaches a Dirac delta ϖ(Zi ↔ Zj) continuously and in a “di!eren-

tiable” manner. Expanding Qs around the delta ϖ(Zi ↔ Zj) one has:

Qs(Z|Z0) = (1 ↔ ς0s)ϖ(Zi ↔ Zj) + s!s(Z|Z0) + o(s). (12)

Here, !(Z|Z0 represents the part of the time derivative of Qu(Z|Z0) that is not propor-

tional to a delta function and serves as the transition probability per unit time, also
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referred to as the transition density. The term

ς0 =

∫
dZj!(Z|Z0) (13)

is instead the part in the time derivative of Qu(Z|Z0) that multiplies the Dirac delta in

the expansion. Inserting the expansion Eq. (12) and the expression Eq. (13) in the

stationary Chapman-Kolmogorov equation (11), one obtains [49]:

Qu+s(Z3|Z1) ↔ Qu(Z3|Z1) = s

∫
dZ2 [!(Z3|Z2)Qu(Z2|Z1) ↔ !(Z2|Z3)Qu(Z3|Z1)] . (14)

In the limit of s going to zero, one gets a di!erential equation by dividing both sides by

s:
ϱ

ϱu
Qu(Z3|Z1) =

∫
dZ2 [!(Z3|Z2)Qu(Z2|Z1) ↔ !(Z2|Z3)Qu(Z3|Z1)] . (15)

Since Z1 only appears as a condition in the probabilities Qu in this last equation, it is

convenient to write p(Z, t) ⇐ Qt(Z|Z1) and obtain:

ϱ

ϱt
p(Z, t) =

∫
dY [!(Z|Y )p(Y, t) ↔ !(Y |Z)p(Z, t)] . (16)

This equation is an example of master equation, a term used to refer to first order dif-

ferential equations describing the temporal evolution of probabilites. In later sections

we will discuss their importance in the case of dissipative quantum processes. If only

infinitesimal di!erences between Z and Y are allowed in the previous equation, an ex-

pansion in the “jumps” x = Z ↔ Y is possible. It is this expansion that is called the

Fokker-Planck equation, and has the form [cf. (10)]:

ϱ

ϱt
p(Z, t) =

ϱ

ϱZ
[µ(Z)p(Z, t)] +

ϱ2

ϱZ2
[D(Z)p(Z, t)]. (17)

It was derived by Planck [60] from the master equation Eq. (16) under the assumptions

that i) only small jumps Z ↔ Y are allowed by !(Z|Y ) and ii) p(Z, t) varies slowly in

Z. These assumptions lead to the following derivation. If one introduces a jump size

x = Z ↔ Y , it is possible to rewrite !(Z|Y ) as

!(Z|Y ) = w(Y, x). (18)

The master equation (16) then takes the form:

ϱ

ϱt
p(Z, t) =

∫
dxw(Z ↔ x, x)p(Z ↔ x, t) ↔ p(Z, t)

∫
dxw(Z, ↔x). (19)
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The assumption that only small jumps x take place translates [49] in the fact that the

transition density w(Z, x) vanishes fast for jumps x bigger than a threshold φ, and stays

constant for small variations in Z. More precisely, apart for terms of order o(φ), the

quantity w(Z ↔ x, x) is replaced by w(Z, x) in Eq. (19), which becomes:

ϱ

ϱt
p(Z, t) =

∫
dxw(Z, x)p(Z ↔ x, t) ↔ p(Z, t)

∫
dxw(Z, ↔x). (20)

The second assumption is that p(Z, t) varies slowly for small increments of Z. This is

to say, one assumes that p(Z, t) is continuous, and two times di!erentiable with respect

to Z. In this way, a small variation in Z can be Taylor expanded. Then it is possible to

rewrite Eq. (20), apart for terms that are order o(φ2) as:

ϱ

ϱt
p(Z, t) =

∫
dx

[
w(Z, x)p(Z, t)+

x
ϱ

ϱZ
[w(Z, x)p(Z, t)] +

x2

2

ϱ2

ϱZ2
[w(Z, x)p(Z, t)] ↔ p(Z, t)w(Z, ↔x)

]
.

(21)

Since the first and the last term cancel out, and p(Z, t) is not integrated over, one recovers

the Fokker-Planck equation (17):

ϱ

ϱt
p(Z, t) =

ϱ

ϱZ
[µ(Z)p(Z, t)] +

1

2

ϱ2

ϱZ2
[D(Z)p(Z, t)], (22)

where we have defined:

µ(Z) =

∫
dx[w(Z, x)x] (23)

and

D(Z) =

∫
dx[w(Z, x)x2], (24)

as the first and the second moments of x with respect to the transition probability

w(Z, x).

2.1.4 The Langevin equation

The solution Eq. (5) to the Chapman-Kolmogorov equation Eq. (4), corresponds

to the simplest, (yet very important [49]), example of stochastic, Markovian dynamics,

that is, the Brownian motion. This motion is named after the botanist Robert Brown,
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who conducted some of the earliest studies of the motion of a particle of pollen sus-

pended in water. The first mathematical description of such a motion is due to Ein-

stein [52] and Smoluchowski [61]. The pollen particle is much heavier than the fluid

molecules and it collides randomly with them. Each of the collisions changes both the

direction of motion and the velocity v. Since the fluid molecules are much lighter than

the pollen particle, they move much faster, and between each observation, they change

the velocity v many times, such that the two-times correlation function of the velocity

decays much faster than the time scale on which measurements are made. Based on

this, Einstein and Smoluchowski developed a theory for the probability distribution

of the position of the particle as a function of time. Equivalently, Langevin developed

a more direct approach [49, 62, 58], in which the equation of motion of the particle

are explicitly written as function of a directed, deterministic force, or drift term, and a

stochastic, probabilistic force, or di!usion term. The theory reported here follows the

Langevin approach. I restrict to the treatment of the one-dimensional motion, which is

simpler yet allows to highlight the main ideas behind this approach. The starting point

of Langevin’s treatment is that, given the velocity v of a particle of unit mass, its motion

is dictated by a directed force due to Stoke’s law, which is proportional to the velocity

itself, and a random force that changes direction and strength randomly with time:

d
dt

v(t) = ↔↼v(t) + φ(t), v(t = 0) = v0. (25)

Here ↼ is a constant that represents the damping of the motion of the particle. As will

be shown at the end of this section, this equation is the “Langevin” formulation of the

Ornstein-Uhlenbeck process, Eq. (10). The noisy force φ(t) has the following proper-

ties: (i) its expectation value over many realization is zero

E[φ(t)] = 0, (26)

(ii) its two time correlation function is a constant

[φ(t1)φ(t2)] = ”ϖ(t2 ↔ t1). (27)

A third assumption (iii), is that the noise is Gaussian, i.e. all odd moments of the noise

vanish, while even moments reduce to two-point functions:

E[φ(t1)...φ(tN)] = E[φ(t1)φ(t2)]...E[φ(tN→1)φ(tN)] + ... (28)
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The Gaussian assumption (iii) is not required in the discussion that follows, but it is

often needed if one wants to get an approximate description of expectation values in-

volving higher order moments. Moreover, this assumption is required to show that this

process is equivalent to the Ornstein-Uhlenbeck process of Eq. (7). It is worth noting

that a purely Gaussian noise is not expected to exist in nature, and Eq. (28) should be

regarded as an approximation to the actual physical dynamics [49]. The formal solu-

tion of Eq. (25) is:

v(t) = v0e
→ωt +

∫
t

0

duφ(u)e→ω(t→u). (29)

The one-point correlation function at time t is obtained by averaging this last expression

over noise:

E[v(t)] = v0e
→ωt. (30)

The expectation value for the square of the velocity v(t) instead reads:

E[v(t)2] = e→ω2tv2
0 +

”

2↼
(1 ↔ e→2ωt). (31)

At very long times the energy of the particle is given by the equipartition theorem [49],

so that
”

↼
= 3kBT. (32)

Where kB = 1.38... ⇒ 10→23 m2
kg

s2K
is the Boltzmann constant. The velocity v can be inte-

grated in time to obtain the displacement in space x(t):

x(t) =
1 ↔ e→ωt

↼
v0 +

1

↼

∫
t

0

duφ(u)(1 ↔ e→(t→u)). (33)

This implies that the mean square displacement of the particle has the following form:

E[x2(t)] =
(1 ↔ e→ωt)2

↼2
v2

0 +
”

↼2
t ↔ 2

”

↼2
(1 ↔ e→ωt) +

”

2↼2
(1 ↔ e→2ωt). (34)

For long times t ⇑ 1/↼ the mean square displacement is proportional to time, E[x2(t)] ⇓

!
ω2 t, and one recovers the celebrated Einstein’s relation

D = 3
1

↼
kBT. (35)

Here D is the di!usion constant, while 1/↼ is the relaxation time.
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2.1.5 Equivalence with Fokker-Planck equation

To see that the Langevin equation (25) and the Fokker-Planck equation (10) are

equivalent, let us introduce the characteristic function of a stochastic process X , which

is defined as:

↽X(s) = E[eisX ] ⇐

∫
dxeisxPt(x|v0). (36)

For simplicity we consider v0 = 0. By expanding in series the term on the left side, and

plugging in the solution for the velocity v(t) of the Langevin equation (29), one gets:

↽v(t)(s) =
↑∑

n=0

(is)n

n!

∫
t1

0

dt1...

∫
tn

0

dtne
ω(t→t1)...eω(t→tn)E[φ(t1)...φ(tn)]. (37)

Since the noise φ(t) is Gaussian, only terms with an even n = 2k survive in the series.

From (28) one has that the Dirac deltas obtained from taking expectation values of the

product of the noise variable φ(ti), with i = 1, .., n lead to (n ↔ 1)!! = (2k)!
2kk! equal terms.

One thus obtains:

↽v(t)(s) =
↑∑

k=0

(↔1s2)k

(2k)!

(2k)!

2kk!
”k

[∫
t

0

due2ω(t→u)

]k

. (38)

Performing the integration in du leads to:

↽v(t)(s) =
↑∑

k=0

(↔1s2)k

k!

[
”

2↼
(1 ↔ e→2ωt)

]k

. (39)

If one now performs the summation over all terms, the result is a Gaussian distribution:

↽v(t)(s) = exp

[
↔

”

2↼
s2(1 ↔ e→2t)

]
. (40)

To obtain Pt(v|v0) an inverse Fourier transform is needed:

Pt(v|v0) =
1

2ϑ

∫
dse→ivs↽v(t)(s). (41)

Since the Fourier-transform of a Gaussian is still a Gaussian, but with inverse variance,

one is left with:

Pt(v|v0 = 0) =
1√

2ϑ(”/↼)(1 ↔ e→2ωt)
exp[↔

v2

2(”/↼)(1 ↔ e→2ωt)
]. (42)

Having set v0 = 0 at the start of the calculation is equivalent to a shift in Eq. (29) from

v(t) to v(t) ↔ v0e→ωt, by restoring this di!erence in Eq. (42), one obtains:

Pt(v|v0) =
1√

2ϑ(”/↼)(1 ↔ e→2ωt)
exp[↔

(v ↔ v0e→ωt)2

2(”/↼)(1 ↔ e→2ωt)
], (43)

which is identical in form to Eq. (7).
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2.1.6 Itô processes

An important feature of the Langevin equation for the velocity of a Brownian par-

ticle is its linearity. This linearity maintains the equation solvable for the first and the

second moments of the position x, cf. Eqs. (33), (34). In more general scenarios, noth-

ing precludes the force term to be nonlinear, or the noise φ(t) to be multiplied by a

nonlinear function. In this case, the Langevin equation for a time-dependent random

variable Zt is modified and becomes:

d
dt

Zt = µ(Zt, t) + ε(Zt, t)φ(t). (44)

The term µ(Zt, t) is deemed the drift term, while ε(Zt, t) is called the di!usion term.

nonlinearity leads to several di”culties, in fact, given a general form of µ(Zt, t) and

ε(Zt, t) in Eq. (44), a closed-form solution for the moments of Zt is usually an open

question. Moreover, an intrinsic problem associated with nonlinear stochastic di!eren-

tial equations is that since the noise term φ is a sequence of Dirac delta peaks, the term

ε(Zt, t) is either multiplying zero or infinity. When the latter happens it is not clear if

one should keep the random variable Zt at the time t of the arrival of the last delta peak,

or at the time t↓ > t of the current one. In the present work we adopt the assignment

due to Itô, who uses the time of the last peak. This means that for an infinitesimal time

interval #t ⇔ 0, Eq, (44) can be written as:

Zt+”t ↔ Zt = µ(Zt, t)#t + ε(Zt, t)dWt. (45)

where

dWt =

∫
t+”t

t

duφ(u). (46)

In this thesis, we focus on the stochastic dynamics of some “reduced” degrees of free-

dom in a many-body system, such as the average magnetization of an Ising magnet.

No assurance is given that an equation of the form (44) governs the dynamics of such

observables, and even so, the form of both ε and µ is a priori unknown.

2.1.7 The drift and the di!usion terms

In this thesis, a main area of interest [20] is to infer the form of the drift term µ

and the di!usion term ε from stochastic observables of physical systems that evolve in
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time. The underlying assumption is that this data can be modeled with an Itô equation

of the form of Eq. (44). We make use of a closed formula for the drift term. In fact, it

can be proven that the generator of the dynamics is [63, 64, 65].

µ(x) = lim
”t↔0+

Zt=x[Zt+”t] ↔ x

#t
. (47)

In this equation EZt=x[Zt] is the expectation value over the possible trajectories, with

initial conditions Zt = x for a fixed value x of the dynamics. In general, for a twice

di!erentiable function f , the “infinitesimal generator” G of the dynamics is

Gf(x) = lim
”t↔0+

Zt=x[f(Zt+”t)] ↔ f(x)

#t
. (48)

Itô [66] proved that, if the rule for the assignment of the times in the di!usion term is

as in Eq. (45), then the infinitesimal generator takes the form:

Gf(x) = µ(x)
ϱ

ϱx
f(x) +

1

2
ε2(x)

ϱ2

ϱx2
f(x). (49)

One sees that taking this particular Itô choice for the assignment of the time in the noise

term of Eq. (45) leads to a “change” in the usual rules for di!erentiation, with a term

proportional to ε2 appearing in the di!erential Gf(x). Comparing Eqs. (48) and (49)

one notices that the noise has to be proportional to a “square root” of the infinitesimal

increment of time #t. This fact can be used to compute the di!usion term as a sort of

“second moment” of the stochastic process Zt under consideration. In fact, it can be

proven [63, 64, 65] that if one define the quadratic variation [Z]t of the process Zt as:

[Z]t ⇐

∑
lim

”t↔0+
(Zt+”t ↔ Zt)

2. (50)

then the following applies:

[Z]t =

∫
t

0

duε2(Zu). (51)

In our work [20] we use this formula to infer the form of the di!usion term for the

postulated Itô equation that we assume governs the dynamics of the order parameters

of some paradigmatic models of statistical physics.

2.2 Open quantum systems

2.2.1 Introduction

For classical many-body systems, probabilistic approaches such as those described

in the previous section arise because the collisions between a large number of discrete
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Figure 4: Interaction between the environment and the subsystem. The state of the

full system, ω, evolves according to a unitary dynamics given by the solution of

the von Neumann equation, Eq. (56), with Hamiltonian H = HB+HS+⇀H ↓
BS

.

When restricted to the quantum state ωS of the subsystem S, this dynamics

ceases to be unitary, but under certain assumptions, can be made to follow a

so-called Lindblad dynamics, Eq. (69).

particles can be regarded as a probabilistic phenomena. This is to say, collisions can

be modelled as happening with a certain collision rate. From this, a deterministic dif-

ferential equation can be extracted for the probability density of the, say, position of a

given particle. Analogously, in the case of quantum particles, the main object of study

is the wave-function |!↑, which has a definition of a “probability amplitude”. A prob-

ability amplitude acts as the “square root” of a probability density and can take nega-

tive or complex values, giving rise to interference patterns that are not seen in classical

mechanics. Open quantum systems serve as a bridge between classical and quantum

many-body systems, enabling the integration of quantum e!ects, such as noise, and

classical stochastic dynamics within a unified formalism. In open quantum systems,

the primary object of study is the quantum state ω [cf. Fig. 4]. This state represents

the probability distribution of the entire system being in a specific configuration. How-

ever, in the context of open quantum systems, only a subsystem S of the entire “uni-

verse” is experimentally accessible, while the remaining part is referred to as the “bath”

B. The term “open” indicates that there are channels through which information can

be exchanged between the subsystem S and the bath B. Physically, this means that

the total Hamiltonian governing the full system H can be decomposed in three terms:

H = HS + HB + ⇀H ↓
BS

. The terms HS and HB act only on the subsystem S and on the
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bath B respectively, while H ↓
BS

serves as a “coupling term” between the bath and the

subsystem.

2.2.2 Time evolution of open quantum systems

Open quantum systems refer to quantum systems coupled to an environment. The

environment usually consists of a macroscopic collection of degrees of freedom at ther-

mal equilibrium. The coupling between system and environment leads to the exchange

of energy and information between the system and environment, usually resulting in

irreversible e!ects as dissipation and decoherence. This makes the dynamics of an open

system qualitatively di!erent from that of a closed quantum system, which only evolve

unitarily. Their study is important because no quantum system in nature is completely

closed. A coupling with an external environment is not only inevitable but also nec-

essary to observe the system itself, in the sense that an experimental apparatus acts as

an external perturbation to the quantum system under observation [67, 68, 49]. Open

quantum systems are defined as a generalization of closed ones, so it is important to

start defining what a closed quantum system is, and what are its properties. Full in-

formation about a closed quantum system is contained in its wave function |⇁(t)↑. The

time evolution of |⇁(t)↑ is given by Schrödinger’s equation:

d
dt

|⇁(t)↑ = ↔
i

⊋H(t) |⇁(t)↑ . (52)

In the following natural units are used, in which ⊋ = 1. The Hamiltonian operator H is

a quantum observable, and thus it is Hermitian (H† = H), so that its expectation values

↗H↑ = ↗⇁| H |⇁↑ are real. Because of the Hermiticity of H in Eq. (52), the expectation

value ↗H↑ is conserved in time, and has the meaning of the energy of the system. The

formal solution of Eq. (52) is given by the time-ordered exponential:

|⇁(t)↑ = T↗exp
[
↔i

∫
t

t0

dsH(s)

]
|⇁(t0)↑ . (53)

In an experimental setting, access to information is restricted to a system coupled

with an environment. However, one cannot monitor all the environment and inevitably

information is lost. This means that the quantum state associated with the accessible

system does not carry all the existing information.
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The information associated with the larger environment in which the subsystem

is embedded has been “traced out”. The system under investigation is thus not closed

anymore, but one is confronted with an open quantum system. To see how the Schrödinger

equation translates in the case of open quantum systems, it is convenient to phrase the

time evolution in terms of a mixed quantum state, (or density matrix):

ω(t) =
∑

i

pi |⇁i(t)↑ ↗⇁i(t)| . (54)

The density matrix ω(t) is a convex sum of normalized pure states |⇁i(t)↑. By definition,

a convex sum is a weighted sum where the weights pi form a probability distribution,
∑

i
pi = 1 and pi > 0 for all i. Each Pεi = |⇁i↑ ↗⇁i| in the sum in Eq. (54) is a projector to

the pure state |⇁i↑. The requirement that a mixed state ω is a convex sum of projectors

establishes a statistical interpretation to quantum mechanics: the probability p(x) of

making a measurement x on the system, that is, of finding it in state Px = |x↑ ↗x| is:

p(x) = tr
[
Px

∑

i

pi |⇁i(t)↑ ↗⇁i(t)|

]
=

∑

i

pi ↗⇁i(t)| Px |⇁i(t)↑ . (55)

A density matrix ω as in (54) has three important properties: i) it is Hermitian, ii) its

trace sums to one when properly normalized and iii) it is positive (more precisely, semi-

definite positive). This is to say, its eigenvalues are greater or equal to zero. From Eq.

(52), one can obtain the time derivative for ω(t) as:

d
dt

ω(t) =
∑

i

pi

d
dt

|⇁i(t)↑ ↗⇁i(t)| + |⇁i(t)↑
d
dt

↗⇁i(t)| = ↔i[H(t), ω(t)]. (56)

This last equation is known as the von Neumann equation. Again, the formal solution

of the von Neumann equation is a time-ordered exponential but given in terms of a

linear “Liouville generator” L(t). The action of L(t) on ω(t) is given by

L(t)ω(t) = ↔i[H(t), ω(t)]. (57)

The solution ω(t) to Eq. (56), for fixed initial conditions ω(t0) = ω0 is then:

ω(t) = T↗exp
[∫

t

t0

dsL(s)

]
ω0. (58)

The main advantage of working with a quantum state ω(t) is that the unobserved de-

grees of freedom of the environment can be readily taken into account, by means of a

partial trace. This is to say, the density matrix of the observed system ωS is the partial
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trace over the degrees of freedom of the environment (or bath) B, of the full density

matrix in Eq. (56):

ωS = TrBω. (59)

The general dynamical equation for ωS , known as Nakajima-Zwanzig equation, is com-

plicated by the fact that it is an integrodi!erential equation, such that there appear

nonsecular terms, memory e!ects and time dependency in ωB. nonsecular terms appear

as terms in ωS whose evolution has the same time scale of the relaxation to equilibrium

of the bath B. Memory e!ects are encoded by terms in the equation that are nonlocal in

time. When the unobserved environment can be idealized as an infinitely large source

of excitations, the time dependency of ωB can be cured assuming an initial separable

state, that is, a product state ωS ↖ ωB [67]. If the bath is assumed to be infinite, its state

is then already in a stationary state una!ected by the dynamics of the system S, and

that they interact weakly, a regime known as Born approximation. Similarly, nonsec-

ular terms can be eliminated, under the assumption that such a large bath relaxes to

stationarity much faster than the system, a setting known as secular approximation.

Finally, memory e!ects can be neglected if one perform the Markov approximation. In

this approximation, one assumes that the system relaxes exponentially to stationary, on

a time scale that is much longer than the oscillations due to the bath.

A setting where the Born Markov approximation usually works very well is in

quantum optical experiments. This is because the relaxation timescales of the electro-

magnetic environment are extremely short as compared to those of the system [69].

These three approximations, when applicable, lead to a simplified version of the

general dynamical equation, called the Lindblad equation, for the reduced density ma-

trix ωS . In the following, I first present the Nakajima-Zwanzig equation, and then pro-

ceed to apply the mentioned approximations to obtain the Lindblad equation.

2.2.3 The Nakajima-Zwanzig equation

In this section, following the standard treatment of [68, 70], I present the dynam-

ical equation for a reduced density matrix ωS . The result of this derivation, which is

known as Nakajima-Zwanzig equation, makes it apparent the problems outlined in the

previous section. To find this equation, it is convenient to define a projector PS from
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the global density matrix ω, that describes the state of the system S coupled with the

environment B to ωS ↖ ωB, which is instead the product state of the partial trace ωS in

Eq. (59), and a reference state ωB for the bath, e.g. a stationary state. The action of this

projector is:

PSω = TrBω ↖ ωB = ωS ↖ ωB. (60)

Let us also define its complement PB = ↔ PS , such that their sum is the identity:

PB + PS = . One notices that the time evolution for PSω is:
d
dt

PSω = PSL(t)(PS + PB)ω(t), (61)

while the equation for the time evolution of PBω is given by:
d
dt

PBω = PBL(t)(PS + PB)ω(t). (62)

The equation (62) has the form of a nonhomogeneous linear equation like:
d
dt

α(t) = zα(t) + F (t). (63)

Recalling that the solution to such an equation, for fixed conditions at α0 = α(t = 0), is:

α(t) = eztα0 +

∫
t

0

dsez(t→s)F (s), (64)

one can write the equivalent of the exponential term ezt as a forward propagator G↗(t, t0):

G↗(t, s) = T↗exp
[∫

t

s

duPBL(u)

]
, G↗(t, t) = . (65)

This propagator is solution to the linear di!erential equation:
d
dt

G↗(t, s) = PBL(t)G↗(t, s). (66)

then the formal solution to Eq. (62) is, in analogy to Eq. (64):

PBω(t) = G↗(t, 0)PBω(0) +

∫
t

0

G↗(t, s)PBL(t)PSω(s). (67)

Having fixed the initial conditions for ω(t) at t = 0. Plugging in the solution Eq. (67) for

the inhomogeneous equation Eq. (62) into eq. (61) one obtains the Nakajima-Zwanzig

equation:
d
dt

PSω =

PSL(t)

[
PSω(t) + G↗(t, 0)PBω(0) +

∫
t

0

dsG↗(t, s)PBL(t)PSω(s)

]
.

(68)

One can see here the problems highlighted at the end of Sec. 2.2. In particular, the time

dependence of the propagator G↗ on the history of the system, makes it subjects to

memory e!ects.

28



2.2.4 The Lindblad equation

The Nakajima-Zwanzig equation (68) encodes memory e!ects. In many instances,

these e!ects are important and cannot be neglected. This is what often happens in the

case of strongly correlated systems of solid-state physics [6]. However, there are numer-

ous relevant situations where these memory e!ects can be disregarded, particularly in

atomic systems and quantum optics [68]. In these cases, it is crucial to determine when

it is necessary to consider memory e!ects, as opposed to when a simplified, Markovian

description of the quantum system can be used instead of the Nakajima-Zwanzig equa-

tion (68). This simplification is achieved by the “Lindblad equation,” which, unlike Eq.

(68), is local in time. To ascertain whether this description is applicable for a quantum

system interacting with an external bath, it is essential to first establish whether a clear

separation between the bath and the system can be made. Such a separation is often

justified by the fact that correlations in the bath decay on a timescale τB that is much

smaller than the typical time scale τS of the correlations in the system, τS ⇑ τB. In

such a scenario, it makes sense to ask if a linearized version of Eq. (68) can describe

the system, and what is its form. Starting from the latter question, physically, a linear

equation for the evolution of ω(t) must necessarily preserve the trace, Hermiticity, and

positivity of the density matrix. If one performs the Born-Markov and secular approx-

imations described in Sec. 2.2 on the Nakajima-Zwanzig equation, what is obtained is

not simply a map that preserves the previously stated properties, but a map with the

more stringent condition of complete positivity. A completely positive map J does not

simply preserve the positivity of an operator ω, defined on an Hilbert space H1 but is

such that [70, 71], for any Hilbert space H2 also the map J ↖ preserves the positivity

of any operator ▷ on H1 ↖ H2. It can be proved [72, 73, 71] that the general form of

a linear (i.e. Markovian) equation for the density matrix ω, preserving its Hermiticity

and trace has the form:

d
dt

ω = ↔i[H, ω] +
∑

ij

◁ij ([Fi, ωFj] + [Fiω, Fj]) = L[ω], (69)

where {Fi}i in {1,2,..,N} where N = d2
↔ 1 form a basis for the algebra of operators on the

Hilbert space of the system, which here is assumed to be of finite dimension d, while

the matrix H is Hermitian. The matrix ◁ is called the Kossakowsky matrix, and the con-

dition of complete positivity rests on it. It can be proven [72] that the dynamics is com-
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Abbildung 2: Model of the perceptron. In a perceptron, a n�dimensional input vector

s(0) is multiplied element-wise by a vector of weights, each representing

the action of a dendrite in a neuron. The specific action of the neuron’s

body is encoded by a “bias”b.

as the membrane potential.Ïn biological terms, neurons can sense changes in the mem-

brane potential of other neurons through their terminal appendices called dendrites,

and propagate the information to other neurons. In the perceptron model, this feature

is represented by taking an n-dimensional input vector s(0), where the discrete quantity

n represents the number of dendrites. The individual properties of each dendrite are

captured by multiplying each entry s(0)
i

by the weight wi, specific to the i-th dendrite.

If the weight wi is very small, the intensity of the incoming signal must be large for it

to be propagated. Conversely, for highly sensitive ”dendrites”with very large weights

(relative to the typical value of incoming signals), even a small incoming signal is easily

propagated. These neurons can then propagate the incoming signal to other neurons

by transmitting the change in membrane potential along a wire-like part of the cell cal-

led the axon. Each dendrite in a neuron has an individual threshold for propagating the

incoming signal. This thresholding is modeled in the perceptron by the activation func-

tion f . Therefore, the most commonly used activation functions in machine learning are

of “sigmoid” form, that is, characterized by exactly one inflection point at zero.

The activation function also introduces nonlinearity to the model. Without the ac-

tivation function, s(1) would simply be an inner product multiplication between two
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Figure 5: Disspative dynamics for a driven two level system. An example of Lindbla-

dian dynamics is given in terms of a two-level system. On one side the system

oscillates between the two levels with the so-called “Rabi frequency” ! (a).

On the other, the system is subject to decoherence under the emission of a

photon to the bath with “jump frequency” ↼ (b).

pletely positive if and only if the matrix ◁ is semi-definite positive. The Kossakowski

matrix ◁ can be diagonalized via an unitary transformation U to get its eigenvalues

(↼1, ..., ↼N). By performing a change of basis Ji = U
†FiU Eq. (69) is transformed into

the “canonical” form which is known as the Lindblad equation:

d
dt

ω = ↔i[H, ω] +
∑

i

↼i

(
JiωJ†

i
↔

1

2
{J†

i
Ji, ω}

)
. (70)

Here, the operators Ji are called jump operators, and the (positive) eigenvalues {↼i} can

be interpreted as rates at which quantum jumps occur in the system. A simple example

of such a dynamics —cf. Fig. 5 is provided by a driven two level system. In this case

the state of the system is either “up” |→↑ or “down” |→↑. An Hamiltonian for this kind

of system is the so called “Rabi Hamiltonian”:

H = !εx
⇐ ! (|→↑ ↗↓| + |↓↑ ↗→|) , (71)

which determines the frequency ! with which the system oscillates between one state

and the other. The coupling to the bath is determined by a jump operator of the form:

J = ε→
⇐ |↓↑ ↗→| , (72)

with associated frequency of decay ↼.
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2.2.5 Microscopic derivation

In the following a standard microscopic derivation of the Lindblad equation (69)

based on [68, 70] is reported. This derivation is especially important since it serves as

a physical justification to the use of a completely positive map for the time evolution

of open quantum systems. The first important assumption that is made is that the sys-

tem is weakly interacting with an external environment. This “weak coupling” limit

assumes that the full Hamiltonian governing the bath and the system can be split in

three terms (cf. Fig. 4):

H = HS + HB + ⇀H ↓
BS

. (73)

As already mentioned, the first term HS in Eq. (73) models only the system S, the

second term HN only the bath B and the third H ↓
BS

represents the interaction between

the two, mediated by a coupling ⇀. Assuming that ⇀ is small, a second-order expansion

on it is performed. The coupling Hamiltonian is assumed to be of the form:

H ↓
BS

=
∑

ϑ

Sϑ ↖ B↓
ϑ
, (74)

where the self-adjoint operators Sϑ and B↓
ϑ

act on the system S or on the bath B only,

respectively. It is convenient to redefine the operators B↓
ϑ

to have zero expectation value

on the bath:

Bϑ = B↓
ϑ

↔ TrB[ωBB↓
ϑ
], TrB[ωBBϑ] = 0, (75)

such that the Hamiltonian H in Eq. (73) becomes:

H = HS + HB + ⇀HBS (76)

with:

Hϖ

S
= HS + ⇀

∑

ϑ

Sϑ ↖ Tr[ωBBϑ], HBS =
∑

ϑ

Sϑ ↖ Bϑ. (77)

The Hamiltonian Hϖ

S
has undergone a so-called Lamb shift, that is, its energy levels are

renormalized by a mean field factor accounting for a O(⇀) interaction with the bath. For

simplicity, I consider a time-independent Hamiltonian H . In this case, the commutator

L = [H, ·] splits in three parts:

L = LS ↖ B + S ↖ LB + ⇀LBS, (78)
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with L
ϖ

S
= ↔i[Hϖ

S
, ·], LB = ↔i[HB, ·] and LBS = ↔i[HBS, ·]. It is also convenient to define

the generator for the nonshifted system Hamiltonian LS = ↔i[HS, ·]. Now, to arrive at

the desired Markovian form for the equation governing the dynamics one must first

take the so-called Born approximation. This consists in fixing the action of PS on ω(t)

to be such that:

PSω(t) = ωS(t) ↖ ωB (79)

—-apart from terms that can be neglected in ⇀. Moreover, the reference state ωB is

assumed to be stationary with respect to the bath dynamics:

[HB, ωB] = 0. (80)

The assumption made by Eq. (80) represents the scenario of a large bath that re-

mains una!ected by the dynamics of the system S, while the system itself is influenced

by the presence of the bath. The steadiness of the bath, as described by Eq. (79), causes

the second term in Eq. (68) to vanish, leaving us with the following equation:

d
dt

PS[ωS(t) ↖ ωB] =

PSLPS[ωS(t) ↖ ωB] +

∫
t

0

dsPSLPB exp[(t ↔ s)PBLPB](PBLPS)[ωS(s) ↖ ωB].
(81)

Here the identity of the bath B = P 2
B

has been inserted before and after the propagator:

G↗(s, t) = exp[(t↔ s)PBLPB] in the integral term. Now, the first term on the right hand

side of Eq. (81) is

PSLPS[ωS(t) ↖ ωB] = LS[ωS(t)] ↖ ωB. (82)

This occurs because PSLBSPS = 0, due to the condition Tr[ωBBϑ] = 0, and the

stationarity of ωB with respect to HB. The term PSLPB[ω(t)] becomes:

PSLPB[ω(t)] = ⇀TrB[LBSPB] ↖ ωB (83)

while the term in PBLPS becomes:

PBLPS[ωS(t) ↖ ωB] = ⇀PBLBS[ωS(t) ↖ ωB] (84)

since PB[ωS(t) ↖ ωB] = 0. Plugging this results in Eq. (81), tracing out ωB and using the

commutators of the Hamiltonians, we are left with:
d
dt

[ωS(t)] = L
ϖ

S
ωS(t) ↔ ⇀2

∫
t

0

dsTrB[HBS, e(t→s)PBLPB [HBS, ωS(s) ↖ ωB]] (85)
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This equation still incorporates in ωS(t) terms that are nonlocal in time, given by the fact

that ωB(t) is integrated in time in the last term on the right-hand side of Eq. (85). To

obtain an equation that is local in time, one notices that the appearance of the square

of the coupling constant ⇀2 in front of the integral term in Eq. (85) restricts the inte-

gration to slow time scales t of order O(⇀→2). The approximation made here involves

performing a second-order expansion and retaining terms up to O(⇀2). Hence, if one

takes the formal solution to Eq. (85):

ωS(t) =etLω
SωS(0) ↔ ⇀2

∫
t

0

dse(t→s)Lω
S

⇒

∫
s

0

dwTrB[HBS, e(s→w)PBLPB [HBS, ωS(w) ↖ ωB]],

(86)

one notices that in the propagator ePBLPB , the term in ⇀LBS would lead to terms order

O(⇀3), that can be neglected. This propagator is thus replaced by eLS+LB . Moreover, by

switching the order of integration and introducing the new variable u = s↔w one gets:

ωS(t) =etLω
SωS(0) ↔ ⇀2

∫
t

0

dwe(t→w)Lω
S

∫
t→w

0

duTrBe→uLω
S [HBS, eu(LB+LS) [HBS, ωS(w) ↖ ωB]]

(87)

In the case that most of the dynamics of the system S takes place at slow time scales,

t ⇓ 1/⇀2the e!ects of the system are not negligible only when t↔w is large. Analogously,

since the bath correlation functions decay very fast, integrating them up to large times

will not change the result of the integration. One is thus allowed to substitute t ↔ w

with infinity in the upper limit of the second integral in Eq. (87), to get:

ωS(t) =etLSωS(0) ↔ ⇀2

∫
t

0

dwe(t→w)LS

∫ ↑

0

duTrBe→uLS [HBS, eu(LB+LS) [HBS, ωS(w) ↖ ωB]],

(88)

which is formal solution to

d
dt

ωS(t) = L
ϖ

S
ωS(t) ↔ ⇀2

DBS [ωS(t)] . (89)

Here a dissipation term DBS has been introduced:

DBS[ωS(t)] =

∫ ↑

0

duTrBe→uLS [HBS, eu(LB+LS) [HBS, ωS(t) ↖ ωB]]. (90)
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Equations like Eq. (89) are known as Redfield equations [74]. Although this equation

does guarantee the preservation of the trace and Hermiticity of the density matrix, it

does not preserve its positivity [70, 68]. Nevertheless, it is useful to compute, for ex-

ample, stationary values. To adsorb the propagators euLS and euLB , in the operators

appearing in HBS =
∑

ϑ
Sϑ ↖ Bϑ one introduces the time-evolved operators

Sϑ(t) = eLS [Sϑ] = eitHSSϑe→itHS , Bϑ(t) = eLB [Bϑ] = eitHBBϑe→itHB . (91)

Moreover, in Eq. (89), the degrees of freedom of the bath B are traced out, but there, it

appears a double commutator of the interaction Hamiltonian HBS =
∑

ϑ
Sϑ ↖ Bϑ. It is

thus convenient to consider the two-point function of the bath operators Bϑ(t):

Gϑϱ(s) = TrB [ωBBϑ(s)Bϱ] = TrB [ωBBϑBϱ(↔s)] . (92)

Plugging the definitions in Eqs. (91) and (92) in the dissipation term (90) one gets:

DBS[ωS(t)] =
∑

ϑ,ϱ

∫ ↑

0

ds (Gϑϱ(s)[Sϑ(s), SϱωS(t)] + Gϱϑ(↔s)[ωS(t)Sϱ, Sϑ(s)]) .
(93)

Now, to get rid of non-secular terms in Sϑ(t), that is, terms that oscillate very fast with

respect to the typical (slow) relaxation time of the system S, one needs to decompose

the operators Sϑ on the eigenbasis of Hϖ

S
, to separate between secular terms, whose

modes are slow, and nonsecular ones. To do this, let us introduce the projectors Pςω
,

which project onto the eigenspace of Hϖ

S
associated with the eigenvalue 0ϖ. Then, we

can define operators as follows:

Sϑ(ς) =
∑

ςω→ς
→
ω=φ

Pςω
SϑPς

→
ω

(94)

such that

etLS [Sϑ(ς)] = e→iφtSϑ(ς), etLS [S†
ϑ
(ς)] = eiφtS†

ϑ
(ς). (95)

Inserting this expressions in Eq. (93), one obtains:

DBS[ωS(t)] =
∑

ϑ,ϱ

∑

φ,φ→

∫ ↑

0

dsei(φ→φ
→)s

(
Gϑϱ(s)[Sϑ(s, ς), Sϱ(ς↓)ωS(t)]+

Gϱϑ(↔s)[ωS(t)Sϱ(ς↓), Sϑ(s, ς)]
)
.

(96)

The relaxation time of the system is of the order of the inverse of the typical di!erence

between the modes ς ↔ ς↓. Because this relaxation time is expected to be much larger
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compared to that of the environment, these di!erences are expected to be small. This

results in very rapid oscillations that can be averaged out, leaving us only with terms

where ς = ς↓ in the sum in Eq. (96). Moreover, for very small ⇀ it is safe to assume

that the energy levels 0ϖ do not cross between themselves, and one can substitute the

projectors of Pςω
for Hϖ

S
with the ones Pς for the eigenspaces of HS . One is thus left with:

DBS[ωS(t)] =
∑

ϑ,ϱ

∑

φ

∫ ↑

0

ds
(
eiφsGϑϱ(s)[Sϑ(ς), S†

ϱ
(ς)ωS(t)]

+e→iφsGϱϑ(↔s)[ωS(t)Sϱ(ς), S†
ϑ
(ς)]

)
.

(97)

The time integration now a!ects only the two-point function of the bath which can be

rewritten as: ∫ ↑

0

dteiφtGϑϱ(t) =
◁ϑϱ(ς)

2
+ isϑϱ(ς), (98)

where the quantities sϑϱ(ς) and ◁ϑϱ(ς) are defined as follows:

sϑϱ(ς) =
1

2ϑ
P

∫ ↑

→↑
dz

◁ϑϱ(z)

z ↔ ς
= s↘

ϱϑ
(ς). (99)

The Hermitian matrix ◁ϑϱ(ς) is defined as:

◁ϑϱ(ς) =

∫ ↑

→↑
dte→iφtGϑϱ(t) = ◁↘

ϱϑ
(ς). (100)

This matrix is ensured to be semi-definite positive due to a theorem by Bochner [75,

68], which states that a continuous function f(ς) is definite positive if there exists a

probability measure µ(t) such that

f(ς) =

∫ ↑

→↑
dµ(t)eiφt. (101)

To show that ◁ϑϱ is semi-definite positive, let us notice that for a fixed complex vector

z = (z1, z2, ...) the quantity

∑

ϑ,ϱ

Gϑϱ(t)z↘
ϑ
zϱ =

∑

ϑ,ϱ

Tr
(
Bϑ(t)Bϱ(0)

)
z↘

ϑ
zϱ, (102)

is a valid probability measure µ(t). To see this, let us expand each of the elements Bϑ

on a basis of H , which we assume to be complete:

Bϑ =
∑

i

B̂j

ϑ
, HBBj

ϑ
= EjB

j

ϑ
. (103)
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Then the following applies:

Tr
[
ω

∑

i,ϑ

eitEiBi

ϑ
zϑ

∑

j,ϱ

e→itEjBj

ϑ
zϱ

]
= Tr



ω


∑

i,ϑ

eitEiBi

ϑ
zϑ

 
∑

i,ϑ

eitEiBi

ϑ
zϑ

†


 .

(104)

The last term is manifestly a positive real number, guaranteeing that the hypotheses of

the Bochner theorem are met. Since the vector zϑ is arbitrary, it follows that
∑

ϑ,ϱ
◁ϑϱ(ς)z↘

ϑ
zϱ

is always positive, that is to say, ◁ϑϱ is a semi-definite positive matrix.

Plugging this expression in Eq. (97) one arrives at a formula for the dissipation

term:

DBS[ωS] =i
∑

ϑ,ϱ,φ

sϑϱ(ς)Sϑ(ς)S†
ϱ
(ς)ωS]↔

∑

ϑ,ϱ,φ

◁ϑϱ(ς)S†
ϱ
(ς)ωSSϑ(ς) ↔

1

2
{Sϑ(ς)S†

ϱ
(ς), ωS}.

(105)

The first on the right hand side in Eq. (105) is a commutator of a self-adjoint operator

and can be adsorbed in the Hamiltonian Hϖ

S
while the second gives the dissipating

nature of Eq. (69). Putting them together one has:

d
dt

ωS = ↔iH[ωS] + D[ωS], (106)

where:

H[ωS] = [H ↓
S

+ ⇀
∑

ϑ

Sϑ ↖ Tr[ωBBϑ] + ⇀2
∑

ϑ,ϱ,φ

sϑϱ(ς)Sϑ(ς)S†
ϱ
(ς)]ωS. (107)

The term D[ωS] is instead defined as:

D[ωS] =
∑

ϑ,ϱ,φ

◁ϑϱ(ς)S†
ϱ
(ς)ωSSϑ(ς) ↔

1

2
{Sϑ(ς)S†

ϱ
(ς), ωS}. (108)

acts as a dissipative contribution to the dynamics.

2.2.6 The coherence vector

For systems with a finite d↔dimensional local Hilbert space, such as those com-

posed of spin-1
2 degrees of freedom, which are those that we study in our scientific

papers [27] and [39], the density matrix can be represented as a vector rather than as a

matrix, a representation that takes the name of “coherence vector”. This formulation of
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the density matrix is very amenable to numerical treatment, as it allows to express the

action of the linear super-operator L appearing in the Lindblad equation (69) in terms

of a matrix L. In general, any N ⇒ N density matrix can always be decomposed on a

basis {Fi}
N

2

i=1 of the algebra of operators of the Hilbert space HS . If one fixes FN2 to be

proportional to the identity, the other matrices are traceless, orthogonal, and Hermitian.

The algebra of the basis {Fi} is given by [76]:

FiFj =
2

N
ϖij + i

∑

k

fijkFk +
∑

k

dijkFk (109)

Where the so-called structure constant fijk is the completely anti-symmetric tensor com-

ponents defined by the commutation relations between the matrices Fi:

{Fi, Fj} = 4ϖij
d

+ 2
d
2→1∑

k=1

dijkFk, [Fi, Fj] = 2i
d
2→1∑

k=1

fijkFk. (110)

Since the normalization of Fi is:

Tr(FiFj) = 2ϖij, (111)

one gets:

fijk = ↔
i

4
Tr ([Fi, Fj]Fk) . (112)

Analogously, the completely symmetric tensor dijk is defined as:

dijk =
1

4
Tr ({Fi, Fj}Fk) . (113)

Notice that for self-adjoint basis operators Fi = F †
i
, the structure constants are real. The

expansion on this basis of the density matrix can be written as:

ω =
1

N


+


N(N ↔ 1)

2

∑

i

viFi


, (114)

where the vector n is the expansion on the basis Fi of the density matrix ω. This vector

is known as the coherence vector and as the Bloch vector in the case of single qubit, i.e.

2 ⇒ 2 density matrix. This vector v is given by the expectation values of the operators

Fi on ω:

ni =
1

N
Tr(ωFi), N =


N

2(N ↔ 1)
. (115)

In terms of the structure constants fijk, dijk and the coherence vector v, the Lindblad

equation (69) takes the form:
d
dt

v = Lv. (116)
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The matrix L can be split into an “Hamiltonian” matrix H and a dissipation matrix D:

L = H + D. (117)

For a real vector ω, the skew-symmetric matrix H is given by

Hij =
1

4N

N
2→1∑

k=1

fijkωk, i, j ↙ {1, 2.., N2
↔ 1},

HiN2 = HN2i = 0, i ↙ {1, 2.., N2
}.

(118)

whereas the real valued matrix D id given by:

Dmn = ↔
8

N

d
2→1∑

i,j,k=1

(fmikfnjkRe(◁)ij + fmikdnjkIm(◁)ij) , m, n ↙ {1, 2.., d2
↔ 1},

Dmd2 = ↔
8

N

d
2→1∑

i,j=1

fimjIm(◁)ij, Dd2m = 0, m ↙ {1, 2.., N2
}.

(119)

In the following we report the derivation for the equations of the dynamics of the coher-

ence vector v = (v1, ..., vN2) [cf. (118) and (119)] as it appears in [27], and then apply

them to the concrete case of a single qubit. They can be obtained by directly considering

the time derivative of vh:

d

dt
vh(t) =

1

N
Tr

(
Fh

d

dt
[ωS(t)]

)
=

1

N
Tr (FhL[ωS(t)]) =

1

N
Tr (L↘[Fh]ωS(t)) . (120)

The first equality comes from Eq. (115), while the second comes from (69). In the

previous equation, we introduce the dual map L
↘ was introduced. This map evolves

observables and leaves the state ωS of the subsystem invariant. Its action is obtained

from the one of L by applying the cyclic property of the trace. Substituting

L
↘[Fh] =

d
2∑

k=1

Tr(FkL
↘[Fh])Fk (121)

in Eq. (120), one gets:

d

dt
vh(t) =

1

N

d
2∑

k=1

Tr(L↘[Fh]Fk)Tr(FkωS(t)) = [Lv(t)]
h
. (122)

The matrix L in Eq. (122) is:

Lhk =
1

N
Tr(L↘[Fh]Fk). (123)
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Explicitly, we obtain

Tr(L↘[Fh]Fk) =
d
2∑

h=1

Tr


i[H, Fh]Fk +
1

2

d
2→1∑

i,j=1

◁ij(F
†
j
[Fh, Fi]Fk + [F †

j
, Fh]FiFk)


. (124)

Comparing this equation with Eq. (69), one obtains:

Hkh =
i

N
Tr([H, Fk]Fh),

Dkh =
1

2N

d
2→1∑

i,j=1

◁ijTr

F †

j
[Fk, Fi]Fh + [F †

j
, Fk]FiFh


.

(125)

We expand the Hamiltonian term over the basis Fi as H =
∑

N
2→1

i=1 Fiωi, where

ω = (ω1, ..., ωN2→1) is a N2
↔ 1 dimensional vector, which, for Hermitian basis Fi, is

real. The matrix H is then given element-wise by:

Hmn =
i

N

d
2→1∑

k=1

Tr([Fk, Fm]Fn)ωk. (126)

Given the definition of the structure constants fijk in Eq. (112), the Hamiltonian can be

expanded as:

Hij =
4

N

N
2→1∑

k=1

fijkωk, Hid2 = Hd2i = 0, (127)

with i, j ↙ {1, 2.., N2
↔1}. Thus, the Hamiltonian part is anti-symmetric, as it is expected

for the matrix representation of the commutator of a Hermitian operator [70].

On the other side, the dissipative term D has an expansion over fijk and dijk [cf.

Eqs. (112), (113)]

Dmn = 1
2N

∑
N

2→1
i,j

◁ijTr ([Fm, Fi]FnFj + [Fj, Fm]FiFn)

= ↔
4
N

∑
N

2→1
i,j,k=1(fmikfnjkRe(c)ij + fmikdnjkIm(c)ij) (128)

for 1 ∝ m < N2, 1 ∝ n < N2. In the last line of Eq. (128) it is used the fact that the

real (imaginary) part of a Hermitian matrix like ◁ is (skew-)symmetric. For the matrix

elements of D with 1 ∝ m < N2, n = N2, one has:

DmN2 =
1

2

d
2→1∑

i,j,k=1

◁ijTr (Fi[Fm, Fj] + [Fi, Fm]Fj) = ↔
4

N

d
2→1∑

i,j=1

fimjIm(◁)ij, (129)

where, in the second equality, we made use of the cyclic property of the trace and again

the fact that fimj and Im(◁)ij are anti-symmetric in the indices (ij), but Re(◁)ij is sym-

metric. Lastly, DN2n = 0 for 1 ∝ n < N2.
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2.2.7 The single qubit case

In the case of a two-level systems, the natural choice for Fi is given by the Pauli

matrices, {Fi} = {ε1, ε2, ε3, }, with:

εx
⇐ ε1 =



0 1

1 0



 , εy
⇐ ε2 =



0 ↔i

i 0



 , εz
⇐ ε3 =



1 0

0 ↔1



 . (130)

The algebra of the Pauli matrices is given by:

εiεj = ϖij + i
∑

k

0ijkεk. (131)

Where 0ijk is the completely anti-symmetric Levi-Civita symbol, for which 0123 = 1. The

density matrix for a single qubit can be decomposed in terms of the Bloch vector v as:

ω =
1

2


+

∑

i

viεi


. (132)

Since the Pauli matrices are Hermitian and traceless, a density matrix written as (132)

is naturally Hermitian and with unit trace. The condition of positivity translates in its

determinant being positive, which can be written as

1 ↔ v · v ′ 0. (133)

In particular, the condition that a pure state represents a projector: ω2 = ω, implies that

for a pure state the norm of the Bloch vector is one. Thus the Bloch vector for pure states

lies on a sphere known as the “Bloch sphere”. Since the symmetric structure constants

are zero for a two-level system, the condition that an evolution of the Bloch vector like

Eq. (116)
d
dt

v = Lv = (H + D)v, (134)

is:

v · L · v ∝ 0. (135)

This condition is obtained by observing that condition Eq. (133) must hold after an

infinitesimal step in time [Eq. (116)] even if the initial state is pure. Plugging in Eq.

(135) the expressions in Eqs. (118) and (119), one obtains:

||v||
2Tr(◁) ↔ v · Re(◁) · v ↔

1

2

∑

k

0ikjIm(◁)ijvk ′ 0, (136)
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where the skew-symmetric matrix Hij has vanished because it is contracted with the

symmetric matrix vivj . The inequality (136) must hold independently of the basis {Fi}

of choice, which could be such that in it ◁ is diagonal. Since ◁ is Hermitian its eigenval-

ues are real, and in this situation the last term in the inequality (136) vanishes, since ◁

had been chosen diagonal from the beginning. If ◁ is semi-definite positive the inequal-

ity is automatically satisfied because of Cauchy-Schwartz inequality. One notes that the

condition of ◁ being semi-definite positive is a su”cient, but not necessary condition

for the positivity of the map L. In fact complete positivity is a stricter requirement than

positivity for a linear map. The characterization of simply positive map is in fact a dif-

ficult task [76]. In our works [27, 28], we study completely positive maps, which are

much simpler than generally positive maps and have a direct physical interpretation in

terms of coherent unitary evolution and dissipation e!ects.
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3 Methods and machine learning

Introduction

As outlined in the introduction, this thesis focuses on employing machine learn-

ing methods to simulate the behaviors of various physical systems. Machine learning

encompasses a wide range of computational techniques aimed at training a computer

program to recognize patterns in data or to manipulate it to make predictions based

on those patterns [77]. Machine learning algorithms are variational in nature. A varia-

tional algorithm is designed to adjust the internal parameters of an “Ansatz” function

to achieve a desired result. This means that while the functional form of the Ansatz is

fixed, it has a set of internal parameters that can be varied to optimize the function’s

behavior to closely match the desired outcome. A comparison that is often made to

explain how a variational method works, is with the fitting of the coe”cients of a poly-

nomial to a given curve using the method of least squares [78, 21]. In this routine, for

a fixed degree of the polynomial, the coe”cients are adjusted to obtain the minimum

distance with the data points. Similarly, the optimization of the internal free parame-

ters of a trial wave function, to minimize the energy of a quantum many-body problem

is performed in a method known as “variational Monte Carlo” [79, 80]. Machine learn-

ing algorithms are optimized by minimizing or maximizing a ”loss” function [21]. This

function indicates how well the model performs, reaching its optimal value when the

model provides the most accurate predictions for the given task. This function is usu-

ally approximated via stochastic sampling. Stochasticity translates in the fact that only

a random sample of the entire space of data is handled at a given time. This random

sample is used to estimate the loss function and adjust it by approximating its gradi-

ent. This approach enables machine learning to optimize a large number of variational

parameters and avoids the issue of getting stuck in local minima. These variational

parameters are used as arguments of arbitrary di!erentiable functions (the activation

functions), and thus the routine must come with the tools to automatically compute

gradients of these functions. Artificial neural networks are a widely used model for

variational Ansätze. These functions were initially developed as models for the com-

putational study of neuron behavior in the brain [81], which is why they were named
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as such. However, they were later found to be of computational interest as “universal

function approximators” [26]. This means that, given enough variational parameters,

a neural network can approximate any function on a given interval with arbitrary pre-

cision.

An artificial neural network is built to process vector data, like image pixels, and

generate a vector output, such as another image or a classification label. In general, an

artificial neural network consists of a sequence of linear maps applied to an input, with

each map followed by a nonlinear activation function acting element-wise on the output

vector. Originally, the form of activation functions was chosen to describe the firing

behavior of neurons. A neuron activates and “fires” when it detects a rapid change in

the membrane potential of another neuron to which it is connected. The firing means

that it propagates the sudden change in membrane potential on itself too. This kind

of signal is called “action potential” [82]. Activation functions were hence originally

chosen to be vanishing or “quiescent” for arguments smaller than a certain threshold

and to be nonzero or “firing” afterwards.

3.1 Artificial neural networks

As just mentioned, artificial neural networks are inspired by the way animal brains

process information. Similarly to how brains operate, these networks are composed of

many interconnected functions, each receiving input from the previous one. The role

of these basic functions mimics that of neurons in the brain.

Artificial neural networks accept an n↔dimensional vector as input, such as an

image, and map it to an output, like a label (e.g., ”cat” or ”dog”). They consist of

various linear transformations and nonlinear ”activation” functions. The linear trans-

formations roughly correspond to synaptic connections between neurons, while the

activation functions represent the threshold for firing action potentials in a neuron.

Just as neurons in actual brains can be ”trained” by experience to perform tasks, the

parameters in the linear transformations of the networks can be trained using a varia-

tional principle. This training process optimizes the network to perform specific tasks

e!ectively. In the following sections, we describe two important models of neural net-

works [83, 22]. The first is the perceptron, which models a single neuron. The second is
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the fully connected feed-forward neural network, of which the perceptron is the funda-

mental component. Despite their relative simplicity, these models are crucial for under-

standing the general functioning of neural networks and serve as a foundation for more

sophisticated architectures. Moreover, in this thesis, the only kind of neural networks

that are used are feed-forward architectures. Even if we presented artificial neural net-

works by making an analogy with the biological form of the neuron and the brain, the

analogy must be taken with caution [22]. Modern neuroscience incorporates elements

way beyond the scope of this thesis, and the form of neural networks should not be

confused with the very sophisticated models used to actually gain understanding on

the functioning of the brain. Moreover, modern machine learning, while originating in

computational neuroscience, does now encompasses and is largely associated with the

fields of statistics, physics and mathematics.

3.1.1 The perceptron

The fundamental unit of artificial neural networks is known as the “perceptron”

[81]. The functional design of the perceptron is influenced by the biological structure

of a single neuron in the brain. For an incoming signal s(0) the perceptron computes a

weighted sum of the entries of s(0) with weights w, adds to it a parameter b known as

the bias, and applies to this quantity a nonlinear activation function f . Given an input

vector s(0), the mathematical expression for a perceptron is:

s(1) = f


n∑

i=1

wis
(0)
i

+ b


. (137)

The rationale for this functional form is that like all animal cells, neurons have

a di!erence in voltage between the interior and the exterior of their cell membrane,

known as the ”membrane potential.” In biological terms, neurons can sense changes

in the membrane potential of other neurons through their terminal appendices called

dendrites (cf. Fig. 6 (b)), and propagate the information to other neurons. In the

perceptron model, this feature is represented by taking an n-dimensional input vector

s(0), where the discrete quantity n represents the number of dendrites. The individual

properties of each dendrite are captured by multiplying each entry s(0)
i

by the weight
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Abbildung 2: Model of the perceptron. In a perceptron, a n�dimensional input vector

s(0) is multiplied element-wise by a vector of weights, each representing

the action of a dendrite in a neuron. The specific action of the neuron’s

body is encoded by a “bias”b.

as the membrane potential.Ïn biological terms, neurons can sense changes in the mem-

brane potential of other neurons through their terminal appendices called dendrites,

and propagate the information to other neurons. In the perceptron model, this feature

is represented by taking an n-dimensional input vector s(0), where the discrete quantity

n represents the number of dendrites. The individual properties of each dendrite are

captured by multiplying each entry s(0)
i

by the weight wi, specific to the i-th dendrite.

If the weight wi is very small, the intensity of the incoming signal must be large for it

to be propagated. Conversely, for highly sensitive ”dendrites”with very large weights

(relative to the typical value of incoming signals), even a small incoming signal is easily

propagated. These neurons can then propagate the incoming signal to other neurons

by transmitting the change in membrane potential along a wire-like part of the cell cal-

led the axon. Each dendrite in a neuron has an individual threshold for propagating the

incoming signal. This thresholding is modeled in the perceptron by the activation func-

tion f . Therefore, the most commonly used activation functions in machine learning are

of “sigmoid” form, that is, characterized by exactly one inflection point at zero.

The activation function also introduces nonlinearity to the model. Without the ac-

tivation function, s(1) would simply be an inner product multiplication between two
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Figure 6: Model of the perceptron. In a perceptron (a), a n↔dimensional input vector

s(0) is multiplied element-wise by a vector of weights, each representing the

action of a dendrite in a neuron. The specific action of the neuron’s body is

encoded by a bias b. The general functional form of this model is inspired by

the biological structure of neuron cells in animal brains (b). These cells are

formed by a main body connected to various dendrites which receive infor-

mation and transmit it along a wire-like part of the cell called axon.
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wi, specific to the i-th dendrite. If the weight wi is very small, the intensity of the in-

coming signal must be large for it to be propagated. Conversely, for highly sensitive

”dendrites” with very large weights (relative to the typical value of incoming signals),

even a small incoming signal is easily propagated. These neurons can then propagate

the incoming signal to other neurons by transmitting the change in membrane poten-

tial along a wire-like part of the cell called the axon. Each dendrite in a neuron has an

individual threshold for propagating the incoming signal. This thresholding is mod-

eled in the perceptron by the activation function f . Therefore, the most commonly used

activation functions in machine learning are of “sigmoid” form, that is, characterized

by exactly one inflection point at zero.

The activation function also introduces nonlinearity to the model. Without the ac-

tivation function, s(1) would simply be an inner product multiplication between two

vectors s(0) and w plus a bias b, which would be insu”cient to capture the nonlinear

behavior necessary for representing functions of arbitrary complexity. In the percep-

tron model, the primary purpose of the bias b is to adjust the output along with the

weighted inputs, allowing the activation function to shift to the left or right. For activa-

tion functions that have inflection points at zero, such as sigmoids, this shifting enables

the perceptron to model functions beyond those that pass through the origin. More-

over, during the training process, the bias helps the perceptron to learn and adapt to

the data more e!ectively [22].

3.1.2 Feed-forward neural networks

When m perceptrons (s(1)
1 , ..., s(1)

m ) act in parallel on an incoming vector s(0) they

form a “layer”. The i-th perceptron in the layer applies element wise an activation func-

tion f (1) to the linear application of the weights and biases, to obtain:

s(1)
i

= f (1)


n∑

j=1

wijs
(0)
j

+ bi


(138)

The action of the weights and biases is that of a linear map W acting on the vector

x ⇐ (1, s(0)), and for simplicity, this notation is adopted in what follows. The element 1

at the beginning of the vector is multiplied by the biases (b1, ..., bm) of the layer. These

biases form the first row of of the matrix W . The other entries of W are given by the
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Figure 7: Fully connected feed-forward neural network. In the depicted neural net-

work, there are N = 5 layers of perceptrons [cf. Eq. (141)]. Arrows incoming

to the perceptron sl

m
and originating from a perceptron sk

l
indicate a multipli-

cation by a specific weight and summation by the respective bias. The i↔th

layer has a number n(i) of perceptrons, with i = 0 for the input layer, and

i = N for the output layer. Deep neural networks have large representational

power due to the combinatorially large number of possible paths that infor-

mation can take in the networks. This is reflected in the figure by the number

n(0)...n(N) of possible paths that one can take staying on the arrows and only

moving from left to right.
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weights w. In total, the linear transformation W in terms of the biases and the weights

reads as:

Wij =






1 for i = 1, j = 1,

0 for i = 1, j > 1,

Wi1 = bi for i > 1,

Wij = wij for j > 1, i > 1

(139)

Since the same function f is applied by all perceptrons in the layer, Eq. (138) can be

made simpler by introducing the Hadamard product notation “∞” for the element-wise

application of an activation function f :

s(1) = f ∞ W · x, (140)

Having computed s(1) from s(0), nothing prevents continuing this procedure to obtain

successive perceptron layers s(2) from s(1) and so on. When many layers of percep-

trons are “fed” one to the other they form a very important model of machine learning,

namely, the feed-forward fully connected network [22]. Its importance rests in its ease

to train, and also in its versatility. The label “feed-forward” means that there is no recur-

rence, i.e. the same perceptron is used only once in the computation of the output. This

contrasts with another family of neural networks called “recurrent neural networks”

[84] in which the flow of information in the neurons can occur recursively. We will not

discuss this latter class of neural networks in the present work, as the results reported

were achieved using only feed-forward neural networks. These networks, being sim-

pler than their recurrent counterparts, allow for greater interpretability from a physical

standpoint, thereby enabling more direct inference of the properties of the physical sys-

tem under study.

Let us call all the entries of the various weights and biases in an N layers network

as 1. The output s(N) of a feed-forward network F↼ is given by:

F↼(x
(0)) ⇐ f i

∞ W i...fN
∞ WN

· x(0), (141)

where the input of the network is intended to be s(0), and x(0) = (1, s(0)).
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3.2 Universal approximation theorem

The reason why neural networks are widely adopted in machine learning is jus-

tified by a series of results that go under the name of “universal approximation the-

orems” [26, 25]. These theorems ensure that both single-layer and multi-layer feed-

forward neural networks, provided with enough perceptrons, are able to approximate

any function on a closed and bounded interval in an n-dimensional real space, within

any nonzero error interval1. On one side, this theorems are of great theoretical impor-

tance, as they give confidence that neural networks have in principle enough represen-

tational power to approximate any function, and can thus serve as variational Ansätze

for an extremely wide class of functions. On the other, the theorems proved in [25] and

[26] do not provide an upper bound on the number of variational parameters needed

for the network to be able to approximate the objective function within the desired error

bound. Results on the number of the width of the layers, and the depth of the network

needed to achieve universality in the power of representing functions exist [85, 86, 87],

but often require assumptions on the regularity of the loss function, which are not al-

ways possible to satisfy. In practice, the number of layers and their width is still man-

ually adjusted, and treated as a free parameter of the problem. There are instances

of functions, that one wants to approximate, where there is enough knowledge of the

problem and a precise bound on the number of variational parameters needed is avail-

able. In particular, in one of the papers of the present thesis [27], the network employed

was e!ectively one-dimensional, and this also made the results largely interpretable

from a physical standpoint. In [20] instead more representational power was needed

to learn the desired functions, and deep feed-forward neural networks were used. Deep

neural nets [22, 88] have high power in representing functions with a limited number of

perceptrons. In such networks many layers of perceptrons that act in parallel on each

of their inputs are fed forward one to the other. To intuitively understand why deep

networks are highly capable of representing functions, consider that if only one per-

ceptron is active in each layer at any given time, there is an exponentially large number

of possible activation paths. For example, if the input layer has n(0) perceptrons, per-

ceptrons, the first hidden layer has n(1) and so on, the number of possible activation

paths is n(0)n(1)...n(n) [cf. Fig. 7], where an activation path is a possible selection of
1More generally, for any Borel measurable function.
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perceptrons that got activated for a given input. As highlighted in [22], while neural

networks theoretically possess su”cient representational power to approximate the ob-

jective function accurately, the practical implementation of an algorithm that achieves

this is a delicate matter. Di!erent tasks in machine learning require specific neural net-

work architectures and appropriate training procedures to achieve e!ective results. A

good practice is to use fewer internal parameters in neural networks. This approach

not only reduces computational time and resource requirements but also helps mini-

mize overfitting. Overfitting occurs when a neural network learns specific details and

noise in the training data rather than the general features and functional forms that it

should ideally learn [22, 21, 89]. This leads to poor generalization where the model

performs well on training data but fails on unseen data. Overfitting can be likened to

fitting a dataset with a high-degree polynomial. While such a polynomial can perfectly

fit noisy training data points, it often fails to generalize to new data points from the

same dataset that were not part of the training process.

In [27], the neural network was deliberately designed to be one-dimensional and

constrained with minimal parameters. This choice was made to ensure the model fo-

cused on capturing the essential physical aspects of the problem, thereby reducing the

risk of overfitting and improving its ability to generalize to new data.

3.3 The loss function

The variational optimization of the parameters of a neural network is achieved by

minimizing a “loss” function. A very common choice for a loss function L is a distance

d(·, ·) between the output s(N) = F↼(s(0)) of the neural network F↼, with variational

parameters 1 and an objective y:

L[1] = d(F↼(x), y). (142)

The general task of machine learning algorithms is to minimize this loss. A typical ex-

ample is a classification task, such as one where the object x to be classified are photos

of cats and dogs, according to the animal that is represented. The desired output y of

the network is a label, for example, 0 for cats and 1 for dogs. Since F↼ is a composition of

continuous maps, the output of the network will be continuous, but it can be restricted,
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with an appropriate choice of the last activation function, to be bounded, F↼(x) ↙ [0, 1].

After a successful training, the network can correctly classify unseen images, if the la-

bels it assigns them are nearer to 0 in the case of cats, and to 1 in the case of dogs. For

this case of tasks, what one is looking for is a generalization property, that is, to enable

the network to correctly classify previously unseen photos of cats and dogs.

3.4 The gradient descent algorithm

A tool that makes variational algorithms particularly compelling, and has wide

application beyond machine learning, is the gradient descent method [90, 21]. Gradient

descent is an iterative algorithm used to minimize an objective function L[1], whose

arguments are a set of variational parameters 1. The algorithm requires a suitable choice

of a ”learning rate” 2. At each iteration h + 1, h + 2, ..., the computation of the gradient

∈L[1h] is needed. This gradient is employed to update the parameters 1h by varying

them as:

1h+1 = 1h ↔ 2∈L[1h]. (143)

If the learning rate 2 is small enough so to justify a first-order Taylor expansion in it,

one has:

L[1h+1] = L[1h] ↔ |2∈L[1h]|
2, (144)

meaning that one is left with a monotone sequence L[1h+1] ∝ L[1h] ∝ ... ∝ L[11]. Initial-

ization 1 ∋ 11 is extremely important for the gradient descent method to converge, and

its order of magnitude should match the features of the loss at hand. Various schemes

have been developed to initialize weights and biases in neural networks. A common

approach is to initialize them with random numbers, typically drawn from either a

uniform distribution over the interval [0, 1] or a normal distribution centered around

zero with unit variance. A general caveat of this method is that there is no guarantee

of reaching a global minimum (or maximum). This is due to the fact that the conver-

gence of the gradient descent algorithm is only ensured in the case of a convex function
2 [90, 21] . The algorithm may seem to converge, in the sense that no change is made

in the value of L[1i] and L[1i+1]; but only because it is stuck in a local minimum of the

2If the line segment connecting any two distinct points on the graph of the function lies above or on the

graph between those two points, then the function is convex [90]
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loss L[1], or in a saddle point. However, in practical scenarios, the adoption of a stochas-

tic version of gradient descent, makes the algorithm more susceptible to saddle points

than local minima [91, 88]. A significant issue about using gradient descent methods

in machine learning is the impact of the learning rate on the overall performance. In

principle, a larger learning rate implies faster convergence, because one is taking “large

jumps” towards a minimum in the loss function’s. The fact of taking very large steps

in the optimization process makes the algorithm more prone to overlook finer details

and fail to reach the true minimum, getting stuck on plateaus. Conversely, a smaller

learning rate can provide a finer resolution of the loss landscape but leads to longer

convergence times and might be too small to overcome barriers in the loss. Parameters

like the learning rate, denoted as 2 in Eq. (143), which are not adjusted during training,

are referred to as hyperparameters in the machine learning community. Other exam-

ples of hyperparameters include the number of layers in a fully connected feed-forward

network and the number of perceptrons in each layer.

To improve the convergence of the loss, alternative methods involving second-

order derivatives can be employed [92]. The predominant optimization algorithms in

this category draw inspiration from the Newton-Raphson method for locating function

zeros [90, 93]. These techniques generally o!er quicker convergence and enhanced

stability. In the case of multivariate functions, their second-order derivatives form Hes-

sian matrices. In these algorithms, it is often necessary to invert the Hessian matrices.

This poses a significant challenge because diagonalizing large matrices is computation-

ally intensive. In many practical machine learning applications, gradient descent-based

methods are powerful enough to achieve the desired outcomes, rendering second-order

derivative approaches unnecessary.

3.5 The back-propagation algorithm

An important feature of feed-forward neural networks is that after the element-

wise application of an activation function, the output vector is manipulated linearly by

the successive layer. This enabled the creation of an e”cient algorithm known as back-

propagation [94], to compute the derivatives of the loss function L[1]. Specifically, for
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a feed-forward neural network of N layers:

F↼(x) = fN ∞ WN · ... · f1 ∞ W1 · x, (145)

the loss between the objective y and the input x has the form:

L[1](x, y) = L̃[1](F↼(x), y). (146)

The total derivative with respect to the argument x of L[1](x, y) or the parame-

ters 1 can be e”ciently computed by repeated application of the chain rule. In the

following we describe more in detail this routine, which is called “the back propaga-

tion algorithm”. Let us first consider the case where the loss function is just the Eu-

clidean distance between the output computed by the neural network from the input

s(0) and the desired output y. Moreover, consider a neural network with just one layer:

F↼(x) = f ∞ W · x, and as before x = (1, s(0)). Then the loss function has the form:

L[1](x, y) = ||f ∞ W · x ↔ y||
2. (147)

Here the Euclidean norm of a vector u is intended as ||u||
2

⇐
∑

i
u2

i
. The total derivative

of the expression in Eq. (147) with respect to x is:

d
dx

L[1](y, x) = 2(f ∞ W · x ↔ y) ∞ (f̂ ↓) · W, (148)

while the total derivative with respect to W is:

d
dW

||f ∞ W · x ↔ y||
2 = 2(f ∞ W · x ↔ y) ∞ (f̂ ↓) ↖ x. (149)

Here we introduced the outer product of two vectors as [x ↖ y]ij ⇐ xiyj . The derivative

f ↓ of f is evaluated at Wx, that is, I write f̂ ↓
⇐ f ↓

∞ Wx. The derivative of the loss
↽

↽z
L̃↓(z, y) = 2(z ↔y) is evaluated at z = f ∞W ·x. The gradient, which has the interpre-

tation of the direction of highest variation in the loss function, is the dual of the total

derivative, that is, its transpose. Calling the transpose of the vector 2(f ∞ W · x ↔ y),

simply as ∈L, one gets that the gradient of the loss with respect to x is:

∈xL = [2f ∞ (Wx ↔ y) ∞ f̂ ↓
· W ]T = W T

· f̂ ↓
∞ ∈L. (150)

For feed-forward networks, the argument of the loss is a neural network of N layers,

evaluated at the input x. Each of the layers 1, 2, ..., N can be passed to a di!erent acti-

vation function f 1, f 2, .., fN as:

L[1](x) = L(fN
∞ WN ...f 1

∞ W 1
· x, y). (151)
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Let now f̂ l be the “activation” of the l↔th layer:

f̂ l
⇐ f l

∞ W l
· f l+1

∞ W l+1...fN
∞ WN

· x, (152)

Notice that at the zeroth layer f 0
⇐ x. Now, let us define gl as the gradient of L with

respect to f̂ l:

gl
⇐

(
ϱ

ϱf̂ l
L

)T

= (W l)T
· (f̂ l)↓...(WN)T

· (f̂N)↓
∞ ∈L. (153)

This “relative error” at the layer l serves as a generalization of the gradient of L with

respect to x in Eq. (150). Since the transpose of the external product of two vectors x

and y is simply [x↖ y]T = xT
↖ yT , by comparing Eqs. (153) and (149) one notices that:

∈W lL[1](x) = gl
↖ (f̂ l→1)T . (154)

From the definition of gl in Eq. (153), the quantities gl can be computed in a recursive

manner as

gl→1 = (W l→1)T
· (f̂ l→1)↓

∞ gl. (155)

This gradients gl→1 are computed in descending order of l, that is starting from gN→1 =

(WN)T
·(f̂N)↓

∈L and then successively multiplying by the vector (W l→1)T
·(f̂ l→1)↓ on the

left. This fact justifies the name “back-propagation”: the gradients are computed in re-

verse order with respect to the succession of layers. Moreover, back-propagation is done

after a forward pass, which means it is performed after the computation of F↼(x) has been

completed. What makes the algorithm e”cient is that during the forward pass, also the

activation functions f̂ l and their derivatives (̂f l)↓ are computed and stored in memory.

These derivatives will be successively used to compute the gradients ∈W lL[1](x). These

gradients are then utilized for updating the weights W (cf. Eq. (143)).

3.6 Stochastic gradient descent

When training a neural network with large datasets, computing the gradients nec-

essary for minimization of the loss function can pose significant challenges. To address

this issue, a stochastic version of the gradient descent algorithm was introduced [95].

This stochastic gradient descent (SGD) algorithm is applicable in scenarios where the
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sample space is extensive and can be sampled. Specifically, for a loss function of the

form:

L[1] = L[1](x, y), (156)

stochastic gradient descent operates by using only a subset (or mini-batch) of the sam-

ple space at each iteration. The sample space can represent a dataset, but it can also

extend to a probability space. The latter case is particularly relevant in areas such as

reinforcement learning, where neural networks are often employed as probability dis-

tributions and sampled accordingly. In our current context, we focus solely on scenarios

where the sample space consists of a given dataset. The utilization of a random subset

from the entire sample space introduces stochasticity into the gradient computation,

resulting in potentially noisy gradients. To mitigate this variability, a family of opti-

mization algorithms known as “optimizers” has been developed. These optimizers aim

to stabilize the training process by computing a moving average of the steepest descent

direction and using it to regularize the behavior of the loss function during training.

These moving averages are called “momentum terms”, because they give ”momen-

tum” to the gradient direction, helping to minimize the loss even when it encounters

sudden increases.

Optimizers like Adam [96], RMSprop 3, and Adagrad [97] are examples of such

techniques that enhance the e”ciency and stability of gradient descent in deep learning.

They achieve this by adjusting learning rates adaptively and incorporating momentum

terms. To elucidate the fundamental concept behind optimizers like Adam, as adopted

in the present work in [27], we briefly review its core principles. The objective of the

Adam optimizer is to minimize the loss function L[1](x, y) iteratively. At each step t of

the iteration, the gradient

Gt = ∈↼L[1](x, y). (157)

is computed. The gradient is computed with stochastic sampling of the data, meaning

that the values y vary randomly at each iteration. The loss function itself thus fluctu-

ates randomly, resulting in a noisy gradient. The random fluctuations in the gradient

3Unpublished. First explained in a Coursera course by G. Hinton at https://www.cs.toronto.edu/

~tijmen/csc321/slides/lecture_slides_lec6.pdf
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can cause it to point in suboptimal directions within the loss landscape. To address

this issue, adaptive optimizers replace the gradient with a form of moving average. In

Adam, this is achieved by computing the first moment Mt of the gradient Gt, weighted

to prioritize recent gradients:

Mt ⇓ E[Gt], Mt = 31Mt→1 + (1 ↔ 31)Gt. (158)

Here, 31 is a hyperparameter controlling the exponential decay rate of gradient esti-

mates that were computed previously. Additionally, Adam computes a moving average

of the second moment of the gradient, referred to as the uncentered variance $t. This

quantity is defined such that $t ⇓ E[G2
t
], where G2

t
denotes the element-wise square of

Gt:

$t = 32$t→1 + (1 ↔ 32)G
2
t
. (159)

Both Mt and Vt are initialized as vectors of zeros. Without correction, Mt would be

biased towards Gt, essentially mimicking standard gradient descent. To correct this

bias, Adam [96] introduces bias-corrected estimates of the first and second moments:

M̂t =
Mt

1 ↔ 3t

1

, $̂t =
$t

1 ↔ 3t

2

. (160)

The parameters 1t are updated using these corrected moment estimates, normalized by

the square root of the second moment estimate:

1t = 1t→1 ↔ 2
M̂t

$̂t→1 + 0
. (161)

Here 2 denotes the learning rate, and 0 is a small constant added to make the algorithm

less prone to numerical instability. This normalization constrains the size of parame-

ter updates by bounding them within the learning rate 2, since |M̂t/$̂t| ∝ 1, ensuring

stability during optimization. As detailed in the original publication [96], Adam estab-

lishes a region around the current parameter values 1t within which the update based

solely on raw gradient estimates cannot be used (as it is not trustworthy) and should

not be used.
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4 Results and publications

In this thesis, we aim to describe two classes of di!erent, yet related, dynamics: the

dynamics of open quantum systems and the dynamics of stochastic order parameters.

To this aim, we employ machine learning techniques, which o!er a powerful avenue for

studying these problems due to their significant representational capacity. A primary

drawback of machine learning techniques is their “black box” nature, which means

there is no clear understanding of the physical interpretation that can be applied to

these models. Our goal was to maintain the model’s architecture as simple as possible

and to ensure it was physically motivated, allowing for an understanding of the models

in terms of physical quantities.

In our first work [27], building on the work [35], we employed a variational algo-

rithm that heavily draws from machine learning to optimize the parameters of a dynam-

ical generator for an open quantum system. The open quantum system under consid-

eration is composed of two 1
2↔spins immersed in a spin chain. The spin chain evolves

according to a few paradigmatic models of condensed matter physics and quantum op-

tics. The dynamics we aim to learn are highly constrained by physical considerations.

Specifically, we manually restrict the set of dynamical generators that the algorithm can

learn to those that exhibit Lindbladian dynamics. This ensures that the generator of

the dynamics is completely positive, and thus the quantum state preserves its physical

properties during the time evolution. The restriction to a Lindbladian generator allows

for a direct interpretation of the parameters in the network. We use this approach to

investigate the parameter regime in the Hamiltonian of choice for the time evolution,

where a Markovian approach dictated by a Lindbladian generator can correctly pre-

dict the dynamics. At higher coupling strengths of the Hamiltonians, as expected, the

Markovian approximation needed for a Lindbladian description of the dynamics breaks

down. We adopt an error metric between the exact dynamics and those predicted by

the network to investigate where this breakdown occurs. The interpretability of the

learned parameters in physical terms allows us to compare the stationary state pre-

dicted by the learned generator (which corresponds to the eigenstate with a vanishing

eigenvalue of the generator) with the average value of the observables of the dynamics

at higher times. Surprisingly, even in cases where the Markovian approximation does
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not appear to hold, the predicted stationary state does not di!er too much from the

time averaged observables. We note that time averaging is needed because of small os-

cillations remaining at long times due to finiteness of the systems under consideration.

Additionally, we examine the relaxation time of the dynamics to equilibrium, which is

dictated by the smallest nonzero eigenvalue of the learned generator, known as the gap.

In experimental settings, the expectation values of local observables are inevitably

a!ected by noise due to the limited number of measurements possible. Surprisingly,

even when using synthetic data subject to this kind of projective noise, our method

provided robust results, as reported in our second work [28]. In that study, we de-

velop further the methods designed in our first work, such that they can be applied to

synthetic data that more accurately simulate actual experimental conditions. Specifi-

cally, we developed a more suitable machine learning routine to train the dynamical

generator, allowing it to learn the reduced quantum dynamics from simulated noisy

projective measurements. We applied the developed method to the one-dimensional

quantum Ising model with both longitudinal and transverse fields. The data provided

to the network correspond to the evolved coherence vector measured via N projective

measurements at M random points in time. Surprisingly, even though the training

dataset is much smaller and noisier than the one used in our first work, when the hy-

potheses justifying the use of a Markovian dynamical generator are met, the method

consistently reproduces the original dynamics. We demonstrate the applicability of the

method across a wide range of parameters in the Hamiltonian. This work not only

demonstrates the method’s accuracy in reproducing the dynamics of local quantum

degrees of freedom but also shows its applicability in inferring the mechanisms of de-

coherence that a!ect devices used for quantum computation and quantum simulation.

The handling of noise by neural networks sparked our interest in scenarios where

noise is naturally present, and whose source di!ers from the projection noise of quan-

tum measurements. Hence, we turned our attention to classical systems both in and out

of equilibrium and studied the capabilities of machine learning techniques to encode

and analyze systems whose evolution at the microscopic level is probabilistic. We fo-

cused on two paradigmatic models of statistical physics both in and out of equilibrium.

Specifically, in our third work [20], we employed deep neural networks to learn the

form of the drift (the directed force) and the di!usion term (the noise) in the stochas-

59



tic dynamics of two di!erent classical dynamical systems. Specifically, we focused on

the Ising model with Metropolis Hasting sampling and Glauber dynamics [47], and

the classical contact process [48]. The Ising model is an equilibrium model, as it in-

herently possesses an energy functional, that is, its Hamiltonian. Glauber dynamics

involves flipping individual spins at rates that satisfy detailed balance, ultimately lead-

ing the system to reach the canonical equilibrium state at stationarity. We “choose” a

dynamics, because the Ising model is not inherently dynamical, it is just provided with

a Hamiltonian. The stationary points of this model are thus dictated by the “minima”

of its free energy functional. For the contact process, which simulates the infection

spread in a non-immunized population, the model isn’t defined by a Hamiltonian. In-

stead, it relies on a set of dynamic rules governing the probabilistic evolution of the

spins. Consequently, there is no energy functional involved, making the model inher-

ently a nonequilibrium system. In both cases, the devised machine learning techniques

were able to accurately recover the original dynamics, when integrated via an Euler-

Maruyama scheme [98]. Moreover, the drift term gave valuable information about the

stationary values of the dynamics, as its zero correspond to a steady state. Using this

information, we were able to give an estimate of the critical point and the critical expo-

nent for the order parameter. In the following section, we report the full publications.

60



61



First publication

62



New J. Phys. 24 (2022) 073033 https://doi.org/10.1088/1367-2630/ac7df6

OPEN ACCESS

RECEIVED

4 February 2022

REVISED

13 June 2022

ACCEPTED FOR PUBLICATION

4 July 2022

PUBLISHED

21 July 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Inferring Markovian quantum master equations
of few-body observables in interacting spin chains

Francesco Carnazza1,∗ , Federico Carollo1, Dominik Zietlow2, Sabine Andergassen1,
Georg Martius2 and Igor Lesanovsky1,3,4

1 Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen,Auf der Morgenstelle 14, 72076 Tübingen,
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Abstract
Full information about a many-body quantum system is usually out-of-reach due to the
exponential growth—with the size of the system—of the number of parameters needed to encode
its state. Nonetheless, in order to understand the complex phenomenology that can be observed in
these systems, it is often sufficient to consider dynamical or stationary properties of local
observables or, at most, of few-body correlation functions. These quantities are typically studied by
singling out a specific subsystem of interest and regarding the remainder of the many-body system
as an effective bath. In the simplest scenario, the subsystem dynamics, which is in fact an open
quantum dynamics, can be approximated through Markovian quantum master equations. Here,
we formulate the problem of finding the generator of the subsystem dynamics as a variational
problem, which we solve using the standard toolbox of machine learning for optimization. This
dynamical or ‘Lindblad’ generator provides the relevant dynamical parameters for the subsystem
of interest. Importantly, the algorithm we develop is constructed such that the learned generator
implements a physically consistent open quantum time-evolution. We exploit this to learn the
generator of the dynamics of a subsystem of a many-body system subject to a unitary quantum
dynamics. We explore the capability of our method to recover the time-evolution of a two-body
subsystem and exploit the physical consistency of the generator to make predictions on the
stationary state of the subsystem dynamics.

1. Introduction

Artificial neural network methods have established themselves as a versatile tool in many areas of physics
[1–3]. Just to mention few examples, their application ranges from the classification of phases of matter [4]
over scattering and reflectivity analysis [5, 6] all the way to the learning of topological states [7]. Moreover,
neural networks have been effectively employed to encode the quantum state of both closed [1, 8] and open
[9–12] quantum systems.

Recently, machine learning methods have also been applied to obtain effective dynamical generators for
local degrees of freedom of a many-body quantum system [13]. The idea is the following: let us assume that
one is interested in the time-evolution of a subsystem S of a larger quantum system, as depicted in the
sketch in figure 1(a). For convenience, we refer to the complement of S, i.e. the remainder of the quantum
system, as the ‘bath’ denoted by B. The full information about properties of S is contained in the so-called
reduced quantum state ρS, obtained by ‘integrating out’ the bath B. Assuming that the full quantum system
is subject to a Hamiltonian quantum dynamics implemented by the unitary operator Ut this simply means
that the time-evolved reduced quantum state of S is given by ρS(t) = TrB(UtρU†

t ) (see figure 1(b)), where

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. Effective Lindblad generator for the dynamics of a subsystem embedded in a many-body quantum system. The full
quantum state ρS of a many-body system subject to a unitary quantum dynamics evolves according to the unitary (Schrödinger)
operator Ut as ρ(t) = Utρ(0)U†

t . (a) Properties about a subsystem S of such a many-body system are described by the so-called
reduced quantum state ρS, which is obtained by tracing out the remainder of the system (or, as we call it here, the bath),
ρS = TrBρ. (b) The time-evolution of the reduced subsystem state ρS(t) can thus be obtained by tracing out the bath in the
evolved many-body quantum state: ρS(t) = TrBρ(t) (see rightmost arrow in the diagram). If the emergent subsystem dynamics is
Markovian, the time-evolution of any initial state of the subsystem, ρS, can be formulated as an open quantum dynamics,
characterised by a time-independent generator L, which effectively accounts for the presence of the bath (see bottom arrow in
the diagram).

TrB indicates the trace over the degrees of freedom of B. Under certain physical conditions, e.g. weak S–B
coupling and very large bath B, such a subsystem time-evolution is well captured by Markovian open
quantum dynamics [14–16]. Formally, this entails the existence of a time-independent generator L of a
dissipative quantum dynamics such that (see also figure 1(b))

ρS(t) = TrB

(
Utρ(0)U†

t

)
∼= etL[ρS(0)], (1)

where ρ(0) = ρS(0) ⊗ ρB(0) and ρs/B is the initial state of the subsystem/bath, respectively. Interestingly, by
exploiting simple neural network architectures, it was shown that such an approximate generator L can be
found also beyond the typically considered settings, and that it can satisfactorily describe the subsystem
dynamics whenever non-Markovian effects are negligible [13]. These findings are relevant since they allow
one to infer, from the time-evolution of local degrees of freedom, the physical processes underlying the
dynamics of quantum (sub)systems. This can, for instance, deliver insight into the dynamical effects behind
an order-parameter time-evolution in non-equilibrium phase transitions or shed light on relaxation and
thermalization effects in closed systems [17]. Moreover, as we show here, since the neural network provides
the dynamical generator of a Markovian time-evolution, the latter can be used to directly target stationary
properties of the subsystem. However, the generator L learned by the neural network architecture of
reference [13] is not guaranteed to implement a valid, i.e. physical, dynamics (see below for details). This is
a problem since it can lead to physically inconsistent predictions on the dynamics or on stationary
properties of the subsystem state [18–20].

In this paper we use a matrix parametrization of the Lindblad generator, and optimise it using data
generated with exact numerical simulations. One can see this as an encoding of the matrix elements of the
generator into the variational parameters of a simple neural network (see figure 2 below). This
interpretation allows us to ‘learn’ the optimal variational parameters by means of the standard tools of
machine learning. For actual implementation and optimization of the network, we used the automatic
differentiation toolbox Pytorch [21]. Importantly, our parametrization is such that the learned dynamical
generator L is constrained to be physically consistent. Such a generator is meant to approximate the
dynamics of the subsystem state ρS(t) in the sense of equation (1). While the neural network, which is
agnostic to the fact that the dynamics of ρS(t) is a result of tracing out the degrees of freedom of the bath B,
always retrieves a time-independent generator L. How well such an approximation can reproduce the
dynamics of the subsystem S (see equation (1)) clearly depends on the dynamical regime considered, e.g.
strong or weak interactions, determining whether the subsystem dynamics is effectively Markovian or not.
Here, we show how the learned generator L can be used both to extrapolate the subsystem dynamics to
times which have not been used to train the network and to predict stationary state properties of the
subsystem. We illustrate our ideas by applying our neural network architecture to the reduced dynamics of a
two-spin subsystem embedded in a larger quantum spin chain.
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Figure 2. Architecture of the interpretable artificial neural network layer. The network that we exploit takes as an input the
coherence vector at time t, v(t), and outputs its value at the next discrete time step: v(t + dt) = M[θ]v(t). Here
M[θ] = edt(H+D). The goal is to find the optimal parameters θ defining the matrices and D by training the network with exact
simulation data on the input and output coherence vector. The network is parametrized in a way that the learned generator is
automatically guaranteed to be physically consistent. The elements of the matrices H and D are functions of the variational
parameters—the weights of the network—θ = {ω, X, Y} through equations (10) and (11) and must be optimized according to
the loss function, equation (12).

Figure 3. Spin-chain models. We exploit our neural network architecture to learn the reduced dynamics of a two-spin subsystem
(highlighted in the panels) embedded into two different many-body quantum spin chains, one with closed boundary conditions
(model I) and one with open boundaries (model II). In both settings, the global time-evolution is governed by a Hamiltonian, HI

(cf equation (15)) and HII (cf equation (16)), respectively. (a) Quantum spin chain with closed boundary conditions. In this case,
the Hamiltonian HI contains only nearest-neighbour interactions. As free parameters for the model, we consider the inverse
temperature β for the initial state of the bath spins, and the interaction strength of the subsystem within itself and with the bath
V ′. These parameters are varied and the error IErr, between the exact dynamics and the (Markovian) one predicted by the neural
network model is quantified through equation (19). (b) Quantum spin chain with open boundary conditions. The full system
Hamiltonian HII features long-range interactions, which decay with a power-law with exponent α. This exponent and the
coupling strength between the spins V are varied in order to investigate the quality of the approximation of the dynamics
obtained from the generator calculated by the network. The subsystem of interest contains two contiguous spins located at the
centre of a chain of (even) length N .

2. Formulation of the problem

We consider a many-body quantum system partitioned into a subsystem S and the remainder B, which in
our setting plays the role of a bath.

The separation implies that the full Hilbert space H is obtained as the tensor product H = HS ⊗ HB of
the Hilbert space of the subsystem (HS) and of the bath (HB). Here, we work under the assumption that H is
finite-dimensional with dimension m. For instance, for the spin-1/2 models considered later (see figure 3
and equations (15) and (16)) m = 2N , where N is the total number of spins. The quantum state of the full
system is described by means of a density matrix ρ(t), which must be positive semi-definite and must have
trace equal to one in order to comply with the probabilistic interpretation of quantum mechanics. As such,
the space of all possible states of the many-body system is the (convex) subspace of all positive semi-definite
unit-trace matrices, S(H) ⊂ M(m), where M(m) is the algebra of square matrices of dimensions m. Under
the assumptions that the many-body system is subject to a unitary dynamics implemented by the full
system Hamiltonian HS+B, its state at time t is given by ρ(t) = Utρ(0)U†

t , where Ut = e−itHS+B .
The full information about the time-evolution of the degrees of freedom belonging to subsystem S is

contained in the reduced density matrix ρS(t). As mentioned in the introduction, in certain settings the
dynamics of the subsystem state can be approximated through a Markovian open quantum dynamics
implemented by a so-called Lindblad generator L [15, 16], see equation (1). In these cases, ρS(t) would
effectively obey a quantum master equation

dρS

dt
= L[ρS] = H[ρS] + D[ρS], (2)
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where we have dropped the explicit time dependence. The map H accounts for the Hamiltonian
contributions to the dynamics while dissipative effects, uniquely associated with the interaction between S
and B, are encoded in D. The general form of these terms (for finite-dimensional systems) is

H[·] = −i[H, ·], D[·] =
1
2

d2
−1∑

i,j=1

cij
(
[Fi, ·Fj] + [Fi·, Fj]

)
. (3)

The operator H is the Hermitian Hamiltonian of the subsystem only and describes its quantum coherent
evolution. The operators Fi, with i = 1, 2, ..., d2 and d being the dimension of the subsystem Hilbert space,
form an orthonormal basis of the subsystem algebra of operators M(d). Here, without loss of generality, we
choose this basis with the property that all its elements are Hermitian Fi = F†

i and that Fd2 is proportional
to the identity, Fd2 = 1

√

d
𝟙. (Note that this latter term is not included in the double sum appearing in D.)

The orthonormality condition thus reads Tr(FiFj) = δij, where δij is the Kronecker delta, showing that all
elements Fi but Fd2 are traceless. The matrix c, with elements cij is called the Kossakowski matrix, and it
describes dissipative effects on S due to its interaction with B. Such a matrix must be positive semi-definite
in order for the dynamical map implemented by L, Tt = eLt , to be completely positive [15, 16]; we recall
here that a map T : M(d) → M(d) is said to be completely positive if, for any dimension k, the map
T ⊗ 𝟙k : M(d) ⊗ M(k) → M(d) ⊗ M(k) is also positive, that is, it preserves the semi-positivity of the
matrices it acts upon. Since c is semidefinite positive, it can be diagonalized by means of an unitary
transformation h: h†ch = diag(γ1, . . . , γd2−1), with non-negative eigenvalues γi. The Lindblad generator can

then be represented in its ‘diagonal’ form, via the operators Ji =
∑d2

−1
i=1 hijFj equation (3),

dρS

dt
= −i[H, ρ] +

d2
−1∑

i=1

γi

(
JiρJ†

i −
1
2
{J†

i Ji, ρ}

)
, (4)

where the operators Ji are called jump operators. The problem we address in this work is that of
learning—by means of neural network methods—a time-independent physical dynamical generator L for
the dynamics of a subsystem embedded in a unitarily evolving many-body system (see figure 1). We are
moreover interested in investigating in which parameter regimes the dynamics implemented by such a
generator satisfactorily reproduces the time-evolution of the subsystem. From a technical perspective, it is
convenient to pass from a representation of L as a map acting on the density matrix ρS to that of a matrix
acting on a vector representation of ρS itself. We therefore discuss in the following how the information
contained in ρS can be encoded in a vector using the coherence-vector formalism [19], and subsequently
derive the ensuing matrix-representation of the Lindblad generator L. We note that while there are several
ways of such vectorizing a the density matrix, the one adopted here allows us to rewrite the full quantum
dynamical problem in terms of real numbers only (see below), which is convenient for the implementation
of neural network algorithms.

Employing the (Hermitian) orthonormal basis of M(d) introduced above, we can write any density
matrix ρS ∈ M(d) as a linear combination of the Fi. The coherence vector v = (v1, v2, . . . , vd2−1, 1

√
d) is

then the vector in Rd2
that gathers the corresponding expansion coefficients:

ρS =
𝟙
d

+
d2

−1∑

i=1

Fivi. (5)

We note that the trace-normalization condition, Tr(ρS) = 1, implies [v]d2 = 1/
√

d which has been taken
out of the sum. Furthermore, we note that v is a real vector since both ρS and the Fi are Hermitian.
Equation (5) shows the one-to-one correspondence between ρS and the coherence vector v, which we can
exploit to conveniently represent the subsystem’s density matrix. To make this idea more concrete, we
discuss the example of spin-1/2 particle, whose Hilbert space dimension is d = 2. In this case, the basis
{Fi}

4
i=1 can be chosen to be proportional to the Pauli matrices {σx/

√
2, σy/

√
2, σz/

√
2, 𝟙/

√
2} with

σx ≡ σ1 =

(
0 1
1 0

)
, σy ≡ σ2 =

(
0 −i
i 0

)
, σz ≡ σ3 =

(
1 0
0 −1

)
(6)

such that the density matrix takes the form

ρS =
𝟙
2

+
σ1v1 + σ2v2 + σ3v3

√
2

. (7)
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The coherence vector parametrization is then v = (v1, v2, v3, 1/
√

2), which is reminiscent of the usual
Bloch vector (apart for the last unimportant element and the different normalization of the Pauli matrices).
To obtain the coherence vector elements from the density matrix one computes the traces

vi = Tr(FiρS) ≡ ⟨Fi⟩; (8)

as highlighted in the above equation, knowing the coherence vector basically amounts to knowing the
expectation value of all possible observables of the subsystem.

We now need to understand how the quantum master equation (2) translates into an evolution equation
for the elements of the coherence vector. This can be done by taking a generic density matrix ρS as in
equation (5), computing the action of the generator on it, L[ρS], and expanding this matrix into the basis
formed by the operators Fi. This procedure, detailed in appendix A, provides the matrix representation L of
the map L which evolves the coherence vector v through the equation

dv(t)
dt

= Lv(t), L ≡ H + D. (9)

Here, analogously to what done for L, we have decomposed the matrix representation of the generator L
into a coherent Hamiltonian part, H, and a dissipative one, D. We note that, since the generator L is
hermiticity-preserving, the matrices H and D are real-valued. In particular, as shown in appendix A, the
matrix H is given by

Hij = −4
d2

−1∑

k=1

fijkωk, i, j ∈ {1, 2, . . . , d2
− 1},

Hid2 = Hd2i = 0, i ∈ {1, 2, . . . , d2
},

(10)

where ω defines the expansion of the Hamiltonian matrix H in equation (3) over the orthonormal set

{Fi}
d2

i=1: H =
∑d2

−1
i=1 ωiFi. The so-called antisymmetric structure constants fijk are defined as

fijk = −
i
4 Tr([Fi, Fj]Fk). The dissipative part is instead given by (see detailed derivation in appendix A)

Dmn = −8
d2

−1∑

i,j,k=1

(
fmikfnjk Re(c)ij + fmikdnjk Im(c)ij

)
, m, n ∈ {1, 2, . . . , d2

− 1},

Dmd2 = −4
d2

−1∑

i,j=1

fimj Im(c)ij, Dd2m = 0, m ∈ {1, 2, . . . , d2
},

(11)

where the so-called symmetric structure constants dijk are given by dijk = 1
4 Tr({Fi, Fj}Fk), and the matrix c

is the Kossakowski matrix appearing in equation (3).
As we show below, by exploiting a neural network we can learn the matrix representation L, which

propagates the degrees of freedom of a subsystem of a many-body system undergoing unitary quantum
dynamics. The learned Lindblad generator L will by construction be physically valid, i.e. it will implement a
completely positive and trace-preserving dynamics. However—while it is always possible to find L—how
well the learned subsystem dynamics reproduces the exact one depends on how much the latter can be
actually approximated by a Markovian open quantum dynamics.

3. The architecture and the training procedure

In the following we discuss how the matrix L is learned by a neural network through training it with data
obtained from simulating the exact unitary many-body quantum dynamics, see sketch in figure 2.
According to equation (9) we have the decomposition L = H + D. Here, H is defined in terms of the
d2

− 1 unconstrained real parameters ω appearing in equation (10). The matrix D is parametrised by the
complex Hermitian matrix c (see equation (11)), which is constrained to be positive semi-definite. To
enforce this constraint by construction, we express c as c = Z†Z for some complex matrix Z = X + iY ,
where X and Y are real matrices. The parameters of our neural network which are to be found via training
are thus θ = {ω, X, Y}, and our parametrization automatically ensures the complete positivity of the
dynamics generated by L. Note that, since we want to learn a Markovian dynamics, we assume the
parameters θ = {ω, X, Y} to be time independent. Moreover, only the symmetric real matrix
Re(c) = XXt + YYt and the skew symmetric real matrix Im(c) = XtY − YtX appear in equation (11) (see
also equations (A.9) and (A.10)), showing that the network indeed only makes use of real parameters.
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Given an input coherence vector at time t, vin = v(t), the network M (see figure 2), which is a function
of parameters θ, is trained to output vout = M[θ]vin such that vout is close to v(t + dt), that is the
coherence vector after a discrete time step of length dt. In this way, the network learns how to propagate the
coherence vector by an infinitesimal time-step and this information fully specifies the matrix L (cf
equation (9)).

Training data consist of a set of trajectories of the time-evolution of v, starting from an initial state v0

up to a fixed time T.5 Each trajectory is thus a list of snapshots (v0, v(dt), ..., v(T)). These trajectories are
obtained by exactly evolving the full many-body quantum state ρ under the action of the global
Hamiltonian HS+B, tracing out the degrees of freedom of the bath at each time step, and computing v as in
equation (8). For each choice of parameters in the Hamiltonian, n trajectories were used as training data D.
The network parameters θ are optimised through the Adam optimization algorithm6 [22] to minimize the
common mean squared error cost function

l(θ) = Ev(t),v(t+dt)∼D[∥M[θ]v(t) − v(t + dt)∥2]. (12)

Here, the expectation E is taken over the training dataset D.
To summarise, the parameters of the network are θ = {ω, X, Y}, where ω is a real vector defining H(ω)

and X, Y are real matrices defining D(X, Y). In particular, θ = {ω, X, Y} provides the ‘weights’ of the
network. One needs first to use the matrices X and Y to compute the semidefinite positive matrix
c = (X − iY)t(X + iY). After a choice of the basis for the Hilbert space of the subsystem has been made, one
can compute the structure constants and use them to map the variational parameters to the matrices H and
D via equations (10) and (11). Then H(ω) and D(X, Y) are applied to vin as

M[θ]vin ≡ edt(H(ω)+D(X,Y))vin (13)

and the variational parameters are optimized by minimizing the loss function in equation (12). Here dt is
the time step used in the exact integration of the dynamics upon which the network is trained. In general,
in order to learn all the relevant dynamical features of the subsystems one should make sure that dt is
sufficiently small, so that all timescales are captured. We have considered dt = 0.01/Ω, as we observed that
with such a time step the details of the exact evolution were well reproduced. Since creating the artificial
dataset though exact diagonalization was the most time consuming task. Therefore, it not efficient to use a
too small dt. Once the network has been trained, it is possible to retrieve the Hamiltonian part H and the
Kossakowski matrix c, we give a concrete example of this in appendix C, where we also give a brief
explanation of their forms.

4. Many-body models and subsystem of interest

For testing our ideas, we use the above-discussed neural network architecture to learn the generator of the
reduced dynamics for two neighbouring spins embedded in a one-dimensional chain. The spin chain is thus
partitioned into two parts as shown in figure 3. The first one is formed by two nearest-neighbouring sites
which for convenience are labelled as spin 1 and spin 2. This part acts as the ‘subsystem of interest’. The
other part is the remainder of the lattice and is regarded as the bath. We assume that a Hamiltonian HS+B

governs the dynamics of the full system quantum state ρ(t). Training data is computed by evolving this state
according to the unitary evolution operator Ut = e−itHS+B and tracing out the degrees of freedom of the
bath. As initial state, ρ0 = ρ(t = 0), of the unitary many-body dynamics we consider product states of the
form

ρ0 = ρS(0) ⊗ ρB(0). (14)

The reduced density matrix at time t is given by ρS(t) = TrB Utρ0U†

t .
We consider two different quantum spin chain models, as shown in figure 3, and refer to them as model

I and II. Model I has closed boundaries, i.e. the spins form a ring, while model II has open boundaries. For
model I, the full subsystem–bath dynamics is governed by a nearest-neighbour interaction Hamiltonian

HI =
Ω

2

N∑

i=1

σx
i + V

N−1∑

i=3

nini+1 + V ′(nLn1 + n1n2 + n2n3). (15)

5 More specifically, the training data is formed by 50 exactly evolved trajectories, each with the initial conditions as discussed in subsec-
tion 4.1. The batch size is 256 with 512 batches per epoch, over 20 epochs. Of the generated data, 80% is used as training set, while 20%
is employed as validation, to check that the model does not over fit.

6 Hyperparameters used in Adam were learning rate Alpha = 10−3, Beta1 = 0.9, Beta2 = 0.999 and Epsilon = 10−8.
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The operator ni =
1+σz

i
2 denotes the projector onto the spin up state of the ith spin. The constants V and V ′

are the strength of the interaction among neighbouring spins: V is associated with interactions among the
bath spins, while V ′ is associated with interactions between the subsystem sites and between the subsystem
and the bath sites next to it (see also figure 3(a)). The contribution proportional to Ω, which is the same for
all sites, parameterises a transverse ‘laser’ field and drives Rabi oscillations between single spin states. The
motivation behind studying the Hamiltonian HI is that the first and the second spin define the subsystem
and their interaction with the bath is assumed to be controllable.

Model II, which features open boundary conditions, is governed by a Hamiltonian that features
power-law interactions:

HII =
Ω

2

N∑

i=1

σx
i + V

∑

i<j

ninj

|i − j|α
, (16)

where α ! 0 defines the power with which the interactions decay over distance. Note, that unlike in model
I, there is no specific choice for the coupling constant among bath and system spins. In appendix C we
adopt Hamiltonian II to give an example of the form of the retrieved Hamiltonian part and Kossakowski
matrix of the Lindblad generator. There, we deem the restriction of equation (16) to a system of two spins
as H(2)

II , and undertake a brief study of how the bath affects the form of this Hamiltonian. Hamiltonians
(15) and (16) are variants of the Ising model with transverse and longitudinal field as well as to the
so-called PXP model [23, 24]. Experimentally they can be realized, for example, with Rydberg atoms
[25–29].

Given that we focus on a system whose reduced density matrix is that of two spins, the dimension d of
the reduced Hilbert space HS is four, and a natural choice for the basis {Fi}

d2

i=1 is given by the two-spin Pauli
group generators {σx/

√
2, σy/

√
2, σz/

√
2, 𝟙2/

√
2}

⊗2. Hence, {F1, F2, . . . , Fd2} = {𝟙2 ⊗ σx/2, 𝟙2 ⊗ σy/2,
. . . , 𝟙4/2}.If N is the length of the spin chain, the subsystem of interest is identified by the spins at positions
1 and 2, such that each element in v corresponds to either a two-body expectation value ⟨σ1

mσ2
n⟩, or to a

single-body expectation value ⟨σ1
m⟩, (⟨σ2

m⟩), with m, n ∈ {1, 2, 3}, and

σk
l = 𝟙⊗k−1

2 ⊗ σl ⊗ 𝟙⊗(N−k)
2 . (17)

4.1. The initial conditions
For both models, the initial conditions of the system are chosen as the product of a thermal state for the
bath ρBath ∝ e−βHI/II , with β the inverse temperature, and a valid density matrix ρS for the system S. Model
II was studied to investigate whether and how the algorithm is able to capture the dynamics in the presence
of longer-ranged interactions. To be able to focus on this aspect, we decided to take a fixed initial state for
the bath (without changing the temperature) and, for simplicity, we considered the infinite-temperature
ones (β = 0). For the study of both models we choose the initial density matrix ρS in the following way: we
consider two random d × d real matrices M and N whose entries are taken from a Gaussian distribution
centred at zero and with standard deviation one and we construct the density matrix according to

ρS(0) =
(M + iN)†(M + iN)

Tr
[
(M + iN)†(M + iN)

] . (18)

This ensures that ρS(0) is a Hermitian positive semi-definite unit-trace matrix.

5. Results and discussion

In the standard treatment of open quantum systems, the dynamics of the reduced state of a subsystem can
be approximated by means of Markovian open quantum dynamics only when certain conditions are met
[14] (see e.g. reference [30] and references therein for a different derivation of a Markovian quantum
master equations). These include, for instance, a weak subsystem–bath coupling, an infinitely large bath
with a continuous dispersion relation and a large separation of time-scales between the subsystem and the
bath dynamics.

For the models I and II (see equations (15) and (16)), not all of the above conditions are met. For
instance, while it is possible to tune the parameters in a way that the interaction between S and B is weak,
the bath B will always be, in our setting, a finite-dimensional object whose Hamiltonian possesses a discrete
spectrum. Nonetheless, given that our network is capable of retrieving a time-independent generator for the
subsystem from training data, it is natural to ask whether the dynamics implemented by such a generator
can provide an approximate description of the subsystem state also in the considered settings.

7
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Figure 4. Interpolation and extrapolation error. (a) Scan of the error, IErr, defined by equation (19) for different values of the
parameters β and V ′ for model I. The considered spin-chain length is N = 11. The interpolation error IErr is computed from
Tin = 0 to Tfin = 10/Ω, where Tfin is the time up to which the network is trained on the exact trajectories. The extrapolation
error IErr refers to the region in time t where the network is used to extrapolate from Tin = 10/Ω up to unseen times t " Tfin. We
choose Tfin = 20/Ω. The discrete time step used in the calculations is dt = 0.01/Ω. (b) Examples of how the network model
performs, for model I, in predicting the time-evolution of expectation values of quantum observables. We study both single-site
(left panels) and two-site (right panels) spin observables. The top panels show a case taken from the parameter region
characterised by large errors IErr, while the bottom ones show a case taken from a region in which the error is small (see squares
in panel (a)). (c) Scan of the error for different values of the parameters α and V for model II. The considered spin-chain length
is N = 10. (d) Same as in panel (b) but for model II. In panels (b) and (d), the black lines are predictions from the network
model, and coloured lines are showing exact simulation results obtained from the dynamics of the full many-body system state.

To determine whether, and for which parameter range, a Markovian dynamical description is a valid one
for the subsystem and, thus, whether the network can be used to predict the dynamical behaviour of its
observables, we investigate the accuracy of the Markovian approximation obtained through the network by
varying the parameters (β, V ′) and (α, V) for model I and II, respectively. To quantify the error made in the
approximation, we define the error measure

IErr(Tin, Tfin) =
1

Tfin − Tin

∫ Tfin

Tin

dt∥ρexact(t) − ρnetwork(t)∥1. (19)

Here, ρexact is the (time-evolved) quantum state for S obtained from the exact diagonalization of the full
many-body problem, while ρnetwork is the subsystem dynamics as predicted by the network. The trace
norm ∥σ∥1 for a d × d complex matrix σ, with eigenvalues λ1, . . . , λd is given by

∥σ∥1 = Tr
√

σ†σ =
d∑

i=1

|λi|. (20)

In order to remove the dependence of the error from the specific initial condition considered, we consider
the quantity IErr, defined in equation (19), averaged over 10 different trajectories, each with an independent
initial condition (18) (shown in figures 4 and 5).

5.1. Subsystem dynamics
We start our discussion by considering model I, see equation (15). As apparent from figure 4(a), for
relatively low values of the coupling between the subsystem and the bath, the generator learned by the
neural network can provide a good approximation of the reduced subsystem dynamics. This is also manifest
from the bottom panels in figure 4(b); the time-evolution of the expectation values of subsystem
observables, as predicted by the network, is in very good agreement with exact numerical data, both for
single-site observables and for two-site ones. On the other hand, figure 4(a) clearly shows that the neural
network approximation becomes less and less reliable upon increasing the coupling between the subsystem
and the bath. We stress that this is not witnessing an issue occurring in the training of the neural network
for these parameter regimes. The reason for this increase of the error is that, consistently with what

8
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Figure 5. Scaling of the error with the bath size N for model I (a) and model II (b). (a) Scans of the error IErr for different values
of the parameters β, V ′ for model I, produced for different choices of the chain length N = 7, 9, 11. (b) Error IErr for model II, for
different choices of the parameters V, α and different chain lengths N = 6, 8, 10. For both models, the error is computed from
time zero up to time Tfin = 20/Ω. Here, in contrast to figures 4(a)–(c), no distinction is made between extrapolation and
interpolation region. For model II the error is the highest for the smallest of the system sizes investigated, as one may expect. No
dependence on system size is discernible instead for model I.

expected form the weak-coupling approximation, for large enough coupling the reduced subsystem
dynamics becomes non-Markovian and cannot be approximated by the time-independent generator learned
by the network. We also note that a similar worsening of the Markovian approximation of the dynamics can
be observed when lowering the temperature of the bath (increasing β), as becomes transparent from
figure 4(a).

As a first application of the learned generator of the subsystem dynamics, one can use it to extrapolate
the dynamics of the subsystem observables to times which have not been seen during the training
procedure. This is in particular true for the range of parameters for which the error in approximating the
dynamics with the one retrieved by the neural network is relatively small, as shown in figure 4(b). The
rationale is that whenever the subsystem dynamics is Markovian, the dynamical generator is
time-independent and, once this is learned, it can also be used outside the training time-window.

For model II we find that when the interaction between sites decays fast enough (α ! 1) and when the
coupling is low (V/Ω ≈ 0.1), the error IErr remains relatively small (see figure 4(c)). In this regime, just as
before, the learned generator can be used also for making predictions beyond training times, as shown in
figure 4(d). On the other hand, when the power α decreases, we observe an increase in the approximation
error (see figure 4(c)). This is due to the fact that the concomitant increase of the range of the interactions
amounts to increase the interaction between S and B. It is thus reasonable to expect that non-Markovian
effects become more pronounced.

In the following we investigate the behaviour of the error, for both models, when changing the length of
the spin chain, i.e. modifying the size of the bath, see figure 5. For model I, we observe that the error
remains very similar for the different system sizes explored. This may suggest that, in the case of
nearest-neighbour interactions and for the model at hand, the considered sizes can be already considered
sufficiently large for the remainder of the many-body system to act as a proper bath. For model II, instead,
there appears to be an improvement in the approximation upon increasing the size of the bath. This may be
related to the fact that for long-range interactions, revivals in the subsystem dynamics—due to the
back-flow of information from the bath into the subsystem—have stronger effects for smaller system sizes.

For both models, our observations suggest that a Markovian approximation may be indeed justified, also
for a bath formed by discrete degrees of freedom, provided that the latter is sufficiently large. Moreover, we
observe that for all parameter regimes, even in those in which the Markovian approximation is not quite
satisfactory, the error tends to stay bounded. This means that the predicted long-time value of local
observables seems to overall capture the actual behaviour of the subsystem, at least within the considered
time-window (cf figures 4(b)–(d)). This seems to suggest that even for large errors in the interpolation, one

9
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Figure 6. Fraction of variance unexplained (FVU) (a) FVU of the interpolation and extrapolation error for model I and a system
size N = 11 as a function of the system-bath interaction V ′/Ω and the inverse temperature βΩ. (b) FVU of the interpolation and
extrapolation error for model II as function of the interactions strength V/Ω and the power-law exponent α of the interaction
potential.

may find actually a relatively small error in the extrapolation, see figure 4. This effect is seen in several
parameter regimes, where the expectation values of subsystem observables is almost constant, but features
small amplitude oscillations in the extrapolation window, as shown in figure 4.

In order to have a fairer comparison of the error between initial transient regime with large oscillations
and the long-time one in which oscillations have very small amplitude, we introduce a relative error
measure. We consider the so-called fraction of variance unexplained, or fraction of variance unexplained
(FVU). We compute this quantity between the coherence vector predicted by the network vnetwork

i and the
one retrieved from the exact simulation vexact

i , as in the following equation

FVU =
1

d2 − 1

d2
−1∑

i

√
Var(vexact

i − vnetwork
i )

Var(vexact
i )

. (21)

The set over which the variance Var is computed is given by the time snapshots with discrete time step dt,
vi = (vi(t0), vi(t0 + dt), . . .). The fraction of variance unexplained normalises an error to the variance of the
signal (here the exact coherence vector). The results for model I and II are plotted in figure 6 for system
sizes N = 11 and N = 10, respectively, while results for smaller system sizes are reported in appendix B.
Comparing figure 6 with figure 5, we note that considering the FVU provides a smoother behaviour of the
error. In particular, it allows to distinguish between the regions for which the error in the approximation
IErr is small simply because the overall signal has small variance, from those where the error is small because
the neural network dynamics correctly captures the behaviour of the subsystem. The latter situation occurs
for small values of the coupling strength in both models I and II and for fast decaying interactions in model
II (cf figure 6). In this region the Markovian approximation is correct, and the network is able to
reconstruct the dynamics almost exactly.

5.2. Stationary behaviour
Once the network has learned the matrix-representation L of the Lindblad generator, it is also possible to
investigate stationary properties of the system [9, 31]. In our case, we can do this by studying the
stationary-state coherence vector, which is nothing but the eigenvector vst associated with the zero
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Figure 7. Stationary state dynamics. In panels (a) and (d) the error ϵ, defined by equation (22), is depicted for model I with
N = 11 and model II with N = 10, respectively. The error is computed for different parameter combinations (β, V ′) for model I
and (V, α) for model II. For specific parameter choices the dynamics of some two-spin observables is shown in panels (b) and
(c) for model I and panels (e) and (f) for model II. Red and blue lines indicate the same expectation value for two different initial
conditions for the quantum state ρexact. The black line indicates the evolution according to the learned L. The regions in time
where the error ϵ is computed are marked by boxes. As the behaviour of single body observable does not differ much from the
two-body expectation values, we did not report it.

eigenvalue of L: Lvst = 0 = dvst
dt . Such a vector provides the stationary density matrix of the subsystem S,

see equation (23), which in our case is by construction ensured to describe a physically consistent
quantum state. In principle, there is no reason to expect that the long time coherence vector vexact(t) will
converge to vst. This is because (i) we are training the network for a finite time-window and (ii) the bath is
finite, and thus one would expect to observe, for long times, recurrence and revivals in the time-evolution
of system observables. These effects are associated with a re-entering of the information scrambled from the
subsystem into the bath into the subsystem again, and are associated with non-Markovian behaviour.
Nonetheless, what we observe (shown in figure 7), is that in some parameter regimes the agreement
between vst and the long-time behaviour of the exact dynamics is remarkably good.

To be more quantitative, let us define Egap as the smallest, in modulus, among the real parts of the
non-zero eigenvalues of L and let τ be 1/Egap. This latter quantity represents the time-scale of the approach
to stationarity in a Markovian open quantum system. Moreover, in order to circumvent the issue that the
exact subsystem dynamics always presents oscillations (also due to the finiteness of the bath), we define the
following error measure

ϵ = ∥ρ∗

exact − ρst∥1, (22)

where

ρst =
𝟙
d

+
d2

−1∑

i=1

[vst]iFi, ρ∗

exact =
1

(b − a)τ

∫ bτ

aτ
dtρexact(t). (23)

Thus, the error ϵ measures the distance between the stationary behaviour predicted from the network
results and an averaged long-time behaviour of the exact solution. In particular, in order to be sure to
address the stationary behaviour, at least in relation to what predicted by the network, we choose a = 5,
b = 10. Within this time window—provided that the exact dynamics is correctly captured by the
time-independent generator—the expectation value of local observables should have already converged to
their stationary value. Given the finiteness of the bath, these will—as mentioned above—display residual
oscillations around such an average stationary value which would be described indeed by ρ∗

exact. The discrete
time step dt for the exact integration and for the training of the network is chosen to be dt = 0.01/Ω as
before. Once the training was complete, we could retrieve the Lindblad generator L and its eigenvalues, and
in particular Egap and the time scale τ = Egap. In figure 7 the error in equation (23) is shown. It is computed
by averaging over 10 different initial conditions for ρexact. This error is rather different both from the error
of equation (19) and more importantly from the FVU of equation (21). The FVU is indeed used to compare
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the oscillations of the predicted and of the exact dynamics. However, by construction, the predicted
dynamics is bound to reach a stationary state, and the FVU will thus tend to be large. This signals that the
learned dynamics is not able to reproduce the small oscillations around the stationary values. Nonetheless,
we can investigate how well the learned dynamics can capture the average value of this oscillations, which
should provide their stationary value. To this end, a more appropriate error measure is the one given in
equation (22). One notices that while there are observables that approach the learned steady state vst, e.g.
σ1

y σ
2
x in model I, others do not. In certain cases, the exact time-evolution of the expectation of observables

converges towards a long-time behaviour which depends on the initial conditions. This may be related to
the fact that we are considering a finite bath. On the other hand, the learned dynamics always approaches
the same stationary behaviour since, due to the existence of a finite gap Egap, the steady state of the Lindblad
generator is unique.

6. Conclusions

We have introduced a simple neural network whose parameters can be exactly mapped onto those of a
Lindblad generator. Importantly, such a generator which is learned by the network from exact dynamical
data is automatically ensured to be a physically consistent generator of a quantum Markovian dynamics. We
have investigated the applicability of such an architecture to two different classes of spin models. Even
though the considered physical settings are rather different from those known to give rise to Markovian
subsystem dynamics, we find that, in certain parameter regimes, the network model provides a faithful
approximation of the subsystem time-evolution.

Future developments in the same spirit may include the adaptation to architectures capable of encoding
time correlations in time series, such as long short term memory (LSTM) [32] or transformers [33], which
would allow for the learning of a time-dependent generator. A different path to achieve time dependence
would be that of learning the analytical solutions of the differential equations of motion [34], or by
numerically solving them by means of neural networks [35].

We have exploited the time-independent generator learned by the network in order to investigate
stationary properties of the reduced subsystem state. This idea looks promising as a path towards capturing
relevant long-time features such as thermalization effects [17, 36]. Finally, instead of learning the linear
evolution of the density matrix, one may think of directly learning the evolution of an order parameter,
such as the magnetization or particle density [37]. This would entail machine learning of an effectively
non-linear dynamical evolution within the state space of the order parameter. This directly leads to the
question whether and how more involved neural network architectures permit an increased performance in
determining effective generators and possibly allow an improved quantification of time dependence and
non-Markovianity.

The presented results open routes towards the understanding of complex non-equilibrium dynamics
through a reduced number of (collective) degrees of freedom. This may ultimately allow to develop
simplified descriptions of complex dynamical non-equilibrium processes which is not only of interest in
fundamental research but may also be of importance when harnessing many-body phenomena in
technological applications.

Acknowledgments

The authors thank P Mazza and M Klopotek for valuable discussions. We acknowledge financial support
from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy—EXC-Number 2064/1—Project Number 390727645. IL acknowledges funding from
the ‘Wissenschaftler R’́euckkehrprogramm GSO/CZS’ of the Carl-Zeiss-Stiftung and the German Scholars
Organization e.V., and through the DFG Project Number 449905436. The authors thank the International
Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting DZ.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

12



New J. Phys. 24 (2022) 073033 F Carnazza et al

Appendix A. Representation of the matrix L

In this appendix we derive equations (10) and (11) for the dynamics of the coherence vector
v = (v1, . . . , vd2 ). The derivative of vh with respect to t can be written as

d
dt

vh(t) = Tr

(
Fh

d
dt

[ρS(t)]

)
= Tr(FhL[ρS(t)]) = Tr(L∗[Fh]ρS(t)), (A.1)

where in the first equality we used equation (8) and in the second one (2). The map L
∗ indicates the dual

map of L, i.e. the one which evolves observables and not the subsystem state. The action of the
superoperator L

∗ can be obtained from that of L via the cyclic property of the trace. Expanding

L
∗[Fh] =

∑d2

k=1 Tr(FkL
∗[Fh])Fk, one finds

d
dt

vh(t) =
d2∑

k=1

Tr(L∗[Fh]Fk) Tr(FkρS(t)) = [Lv(t)]h, (A.2)

where we the matrix L is defined as Lhk = Tr(L∗[Fh]Fk). Explicitly, we obtain

Tr(L∗[Fh]Fk) =
d2∑

h=1

Tr

⎛

⎝i[H, Fh]Fk +
1
2

d2
−1∑

i,j=1

cij(F†

j [Fh, Fi]Fk + [F†

j , Fh]FiFk)

⎞

⎠. (A.3)

The comparison with equation (3) yields

Hkh = i Tr([H, Fk]Fh), Dkh =
1
2

d2
−1∑

i,j=1

cij Tr
(

F†

j [Fk, Fi]Fh + [F†

j , Fk]FiFh

)
. (A.4)

We can now introduce the structure constants dijk and fijk for the basis {Fi}
d2

i=1. The structure constants
characterise the commutation and anti-commutation relations of {Fi}0!i<d2 as

{Fi, Fj} = 2δij
𝟙
d

+
1
4

d2
−1∑

k=1

dijkFk, [Fi, Fj] =
−i
4

d2
−1∑

k=1

fijkFk. (A.5)

Since Tr(FiFj) = δij, one obtains

dijk =
1
4

Tr({Fi, Fj}Fk), fijk = −
i
4

Tr([Fi, Fj]Fk). (A.6)

As a consequence, dijk is fully anti-symmetric under exchange of two indices, while fijk is fully symmetric.
Moreover, for self-adjoint Fi = F†

i , the structure constants are real.

For the Hamiltonian part, we consider the expansion H =
∑d2

−1
i=1 Fiωi, with ω = (ω1, . . . , ωd2−1) a

d2
− 1 dimensional real vector. Then, the matrix elements of H are determined by

Hmn = i
d2

−1∑

k=1

Tr([Fk, Fm]Fn)ωk. (A.7)

The Hamiltonian part can thus be rewritten as

Hij = −4
d2

−1∑

k=1

fijkωk, Hid2 = Hd2i = 0, (A.8)

with i, j ∈ {1, 2, . . . , d2
− 1}. Thus, the Hamiltonian part is skew-symmetric and can be parametrised by a

single vector ω.
The dissipative part instead takes the form

Dmn =
1
2

d2
−1∑

i,j

cij Tr
(
[Fm, Fi]FnFj + [Fj, Fm]FiFn

)

= −8
d2

−1∑

i,j,k=1

( fmikfnjk Re(c)ij + fmikdnjk Im(c)ij) (A.9)
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Figure B1. FVU in various spin chain lengths for model I. In the upper row (a) is reported the interpolation and in (b) the
extrapolation region.

Figure B2. FVU in various spin chain lengths for model II. In rows (a) and (b) the FVU is shown in the interpolation and
extrapolation regime respectively.

for 1 " m < d2, 1 " n < d2. In the last line we used the hermiticity of the Kossakowski matrix c, i.e. that its
real (imaginary) part is (skew-) symmetric. For the matrix elements of D with 1 " m < d2, n = d2 one has

Dmd2 =
1
2

d2
−1∑

i,j,k=1

cij Tr
(
Fi[Fm, Fj] + [Fi, Fm]Fj

)
= −4

d2
−1∑

i,j=1

fimj Im(c)ij, (A.10)

where we used the cyclic property of the trace in the second equality, and the fact that fimj and Re(c)ij are
antisymmetric in the indices (ij), while Re(c)ij is symmetric. Finally, for 1 " n < d2, one obtains Dd2n = 0.

Appendix B. The fraction of variance unexplained (FVU)

In this appendix we report additional results on the FVU for different system sizes N. In figure B1 we show
results for model I both in the interpolation (see panel figure B1(a)) and in the extrapolation (see panel
figure B1(b)) regimes. In figure B2 we report analogous results for model II.
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Figure C1. Two-spin Hamiltonian with and without bath. (a) Matrix elements of the Hamiltonian II for a system of
two spins H(2)

II with parameters V ′/Ω = 0.1 and α = 0.3. In order to compare this with the learned Hamiltonian, we have

removed the irrelevant contribution proportional to the identity, i.e. we consider H(2)
II → H(2)

II − Tr
(

H(2)
II

)
. (b) Matrix elements

of the Hamiltonian H learned by the generator for same parameters as in (a) and a system of six spins. (c) Difference between the
exact Hamiltonian in (a) and the learned one in (b), which shows the emergence of a term proportional to σz ⊗ 𝟙+ 𝟙⊗ σz .

Figure C2. Real part of the Kossakowski matrix. Real part of the Kossakowski matrix retrieved from a six spin system evolved
according to Hamiltonian II with parameters V ′/Ω = 0.1 and α = 0.3. This shows that the largest values are associated with
combination of operators σz ⊗ 𝟙 and 𝟙⊗ σz with equal weights. This means that the relevant dissipative effect is a dephasing
noise, associated with a jump operator J ∝ σz ⊗ 𝟙+ 𝟙⊗ σz. Note that, in this case, the entries of the Kossakowski matrix are
small. This is due to the fact that we are considering small values of V ′/Ω and, in this regime, dissipation is expected to be of
second-order in V ′/Ω.

Appendix C. Interpretability of the network

We here give an example of how one can extract information about the subsystem dynamics from the
network and interpret it as the Hamiltonian and dissipative part of the Lindblad equation. In particular we
focus here on model II for the parameters V

′

/Ω = 0.1 and α = 0.3. In figure C1(a) we plot the matrix
elements of the Hamiltonian of model II for a chain of only two spins, already discussed below
equation (16). In figure C1(b) is plotted the one retrieved from the network, that is, the Hamiltonian part H
of the Lindblad generator. Their difference is given in figure C1(c). As shown, this difference is proportional
to a term 𝟙 ⊗ σz + σz ⊗ 𝟙.

This contribution can be explained by means of a ‘mean-field’ treatment of the Hamiltonian involving
the density–density interactions between the bath and the subsystem. Indeed, it results from taking terms
like ⟨ni⟩nj, where i is a site of the bath and ⟨ni⟩ stands for expectation value, while j a site of the two-spin
subsystems, once terms proportional to the identity are removed.

For the same system it is possible to also retrieve the Kossakowski matrix. We plot the real part of its
entries in figure C2. The basis of choice for the Hilbert space of subsystem is the same as in the main text,
and it is given by {F1, F2, . . . , Fd2} = {𝟙2 ⊗ σx/2, 𝟙2 ⊗ σy/2, . . . , 𝟙4/2}. This shows that the most relevant
entries are associated with dephasing implemented by a ‘collective’ jump operator (cf equation (4)) of the
form J ∝ σz ⊗ 𝟙 + 𝟙 ⊗ σz .
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To characterize the dynamical behavior of many-body quantum systems, one is usually interested in
the evolution of so-called order parameters rather than in characterizing the full quantum state. In many
situations, these quantities coincide with the expectation value of local observables, such as the magneti-
zation or the particle density. In experiment, however, these expectation values can only be obtained with
a finite degree of accuracy due to the effects of the projection noise. Here, we utilize a machine-learning
approach to infer the dynamical generator governing the evolution of local observables in a many-body
system from noisy data. To benchmark our method, we consider a variant of the quantum Ising model and
generate synthetic experimental data, containing the results of N projective measurements at M sampling
points in time, using the time-evolving block-decimation algorithm. As we show, across a wide range of
parameters the dynamical generator of local observables can be approximated by a Markovian quantum
master equation. Our method is not only useful for extracting effective dynamical generators from many-
body systems but may also be applied for inferring decoherence mechanisms of quantum simulation and
computing platforms.

DOI: 10.1103/PhysRevApplied.21.L041001

a. Introduction. Reconstructing Hamiltonian operators or
dynamical generators from physical properties of a quan-
tum system is a problem of current interest. For instance,
inverse methods can be applied to identify quantum Hamil-
tonians associated with a given ground state [1] and
interacting many-body theories can be obtained from the
knowledge of correlation functions [2,3]. In many settings,
one is merely interested in reconstructing effective equa-
tions of motion for a subsystem S embedded in a larger
“environment” E—as it happens, for open quantum sys-
tems (OQSs) [4–8]. Furthermore, in the framework of
quantum simulation [9–17], it is important to understand
the (effective) dynamical equations under which artificial
quantum systems actually evolve and by how much these
differ from the desired ones [18,19]. This is relevant for
improving state-of-the-art hardware [20,21] and the iden-
tification of noise models. Another interesting instance
concerns the evolution of order parameters, often con-
structed from local observables, such as the particle density
or the magnetization.

*Corresponding author. gcemin@pks.mpg.de

Machine-learning (ML) approaches appear to be partic-
ularly suited for this task [22]. Quantum process tomog-
raphy with generative adversarial methods [23], neural
networks [24], and recurrent neural networks [25,26] have
been developed. These approaches are promising but have
two main drawbacks: they require a great number of mea-
surements and they treat ML algorithms as black boxes,
thus lacking in physical interpretation. Simpler methods
are capable of learning Hamiltonians from fewer local
measurements [27–33], yet they typically rely on a a priori
ansatz for the functional form of the Hamiltonian or of the
dissipation. A more general approach is to fit OQS dynam-
ics by learning the Nakajima-Zwanzig equation [34,35]
through transfer-tensor techniques [36–38] or by learn-
ing convolutionless master equations [39]. However, these
approaches require a full state tomography at different time
steps, which is prohibitive to achieve in experiments. Ulti-
mately, current methods thus either rely on an ad hoc
ansatz or demand data that are not experimentally acces-
sible or that are lacking in physical interpretability (which
is actually becoming highly desirable [40]).

In this work, we use ML methods to infer the effec-
tive dynamical generator of a subsystem from a finite

2331-7019/24/21(4)/L041001(6) L041001-1 © 2024 American Physical Society
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(a)

(b)

(c) (d)

FIG. 1. The system and the measurement protocol. (a) The system is composed of the two-spin subsystem S, which is embedded in
the environment E consisting of L − 2 spins. The Hamiltonian describing the system [cf. Eq. (1)] features a driving field with Rabi
frequency ! and nearest-neighbor (NN) interactions with coupling strength V. (b) Synthetic data generation using the time-evolving
block-decimation algorithm. The time-evolution operator is approximated using Trotterization: Ut = e−iHt ≈

∏
e−iHδt. (c) A sketch of

the measurement protocol. The gray dashed line represents the exact dynamics of the observable. For each trajectory, M random points
are selected in the time window [0,!T] (here,!T = 10). For each point in time, we measure N times in a suitable basis; here, the z (y)
basis for the first (second) spin. The inset shows an example histogram of measurement outcomes: |10〉 means that the measurement
on the first spin along z basis has outcome 1 and the measurement on the second spin along the y basis has outcome 0. From the
histogram, the expectation values (depicted as orange dots) are obtained. (d) The synthetic data are fed to the ML algorithm, namely,
a single-layer perceptron that learns the dynamical generator L. The algorithm is validated by comparison to the exact data, where
the error ε(N , M ) is calculated for different values of N and M . The ML method is interpretable and can be used to “read out” the
underlying dynamical processes.

set of local measurements at randomly selected times,
which inevitably produce noisy data due to projection
noise. To illustrate our approach, we consider a many-
body spin system [cf. Fig. 1(a)], which is ubiquitous in
the context of experiments with trapped-ion or Rydberg-
atom quantum simulators [21,41,42]. By using synthetic
(experimental) data generated with tensor-network-based
algorithms, we infer a physically consistent Markovian
dynamical generator [43,44] governing the evolution of a
small subsystem. Our method, which works reliably across
a wide range of parameters—even, in some instances, out-
side the weak-coupling limit—yields interpretable results
that may be used to infer noise models on quantum sim-
ulators or to study thermalization dynamics in many-body
systems.

b. Setting. The system that we consider is a one-
dimensional (1D) quantum spin chain consisting of L spins
arranged on a circular lattice, as depicted in Fig. 1(a). The
chain is partitioned into a subsystem S, here formed by two
adjacent spins, and the environment E, i.e., the remainder
of the spin chain. We assume that whole system evolves
unitarily, through the many-body Hamiltonian

HS+E = !

2

L∑

i=1

σ x
i + V

( L−1∑

i=1

nini+1 + nLn1

)
. (1)

The first term describes a transverse “laser” field, while
the second one accounts for nearest-neighbor (NN) inter-
actions. Here, σαi denotes the α Pauli matrix for the ith spin
and we have defined the projector n = (1 + σ z)/2. The
above Hamiltonian is of practical interest for experiments

with Rydberg atoms [42] and essentially encodes an Ising
model in the presence of transverse and longitudinal fields.
We simulate the time evolution of the whole system by
means of the time-evolving block-decimation (TEBD)
algorithm [see Fig. 1(b)].

In our setting, the information on the state of S is
obtained by a finite number, N , of projective measure-
ments, taken at randomly selected times t1, . . . tM [see Fig.
1(c)]. From this noisy data, we want to infer the open quan-
tum dynamics of the reduced state ρS(t) of subsystem S.
Formally, these dynamics are obtained as the partial trace
of the evolution of the full many-body state, i.e., ρS(t) =
TrE

(
UtρS+EU†

t

)
, where Ut = e−iHt, ρS+E is the initial state

of the system, and TrE denotes the trace over the environ-
ment. In general, such dynamics are rather involved and
may show non-Markovian effects or they may be nonlin-
ear for generic initial states ρS+E [45]. Here, we restrict
ourselves to learning Markovian dynamics for ρS(t) but
more general approaches are possible [43]. The goal is then
to identify the time-independent generator L, yielding the
Markovian quantum master-equation evolution [45–47]

ρ̇S(t) = L[ρS(t)], (2)

which optimally describes the dynamics of S. This simple
form has the advantage that it is interpretable, i.e., it allows
us to read off the Hamiltonian and decoherence processes
(see further below).

c. Data generation. We simulate the time evolution of
the system for times t ∈ [0,!T] by means of the TEBD
algorithm [48–50] [see Fig. 1(b)], which allows us to

L041001-2
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study systems of up to 50 spins. We generate 30 trajec-
tories obtained by initializing the system in state ψ =⊗L

k=1 |0〉, with σ z |0〉 = − |0〉 and perturbing the sub-
system S through a random two-spin unitary Ûrand dis-
tributed with the Haar measure. As the system evolves in
time, at intervals of !dt = 0.01, we compute the expec-
tation value of the 15 independent observables {11 ⊗
σ x

2 ,11 ⊗ σ
y
2 , . . . , σ x

1 ⊗ σ
y
2 , . . . , σ z

1 ⊗ σ z
2 }/2 of the subsys-

tem S, which uniquely identify the reduced subsystem
state. We then emulate experimental measurements of
these local observables. For each trajectory, we select M
random times in the time window [0,!T] and, for each
of these points in time, we perform N measurements in
all the relevant bases in order to produce a noisy estimate
of the reduced state. Such a procedure is sketched in Fig.
1(c), where the histogram depicts the counting of N = 10
measurement outcomes for a single time point, whereas the
orange dots represent the experimental expectation values.

d. Ml Architecture and training. The generator L defining
the quantum master Eq. (2) can be parametrized as L =
H + D, where

H[·] = −i[H , ·] , with H =
d2∑

i=2

(H
i Fi ,

D[·] = 1
2

d2∑

i,j =2

cij ([Fi, ·F†
j ] + [Fi·, F†

j ]) .

(3)

Here, we have introduced the Hermitian orthonormal basis
{Fi}16

i=1 for the operators of the subsystem S, where we
choose F1 to be proportional to the identity operator, F1 =
1/

√
d. Moreover, we write the Hamiltonian in terms of the

“fields” (H
i and the dissipative contribution D in a nondi-

agonal form, fully specified by the so-called Kossakowski
matrix cij . The latter must be positive semidefinite in order
for the open quantum dynamics to be completely positive.
This constraint can be “hard coded” by setting c = Z†Z,
for a complex matrix Z = (X + i(Y, with (X and (Y being
real valued.

We decompose the reduced state ρS in the basis {Fi}16
i=1

as [51]

ρS = 1

d
+

16∑

i=2

Fivi , (4)

which defines the coherence vector vi = Tr(FiρS). Note
that the condition Tr(ρS) = 1 implies v1 = 1/

√
d, which

we take outside the sum. The coherence-vector represen-
tation is quite convenient, from a numerical point of view,
as it allows us to write the action of the generator on states
as the action of the matrix L on coherence vectors. The

quantum master equation [Eq. (2)] becomes

dv(t)
dt

= Lv(t) = (H + D)v(t), (5)

where Hij = −Tr(H[Fi]Fj ) and Dij = Tr(D[Fi]Fj ) are
real-valued matrices. As explicitly shown in the Sup-
plemental Material [52], the matrix H = H((H

i ) depends
linearly on the parameters (H

i , while the matrix D =
D((X

ij , (Y
ij ) depends quadratically on (X

ij and (Y
ij .

We build a simple neural network [53], here called the
Lindblad dynamics approximator (LDA), as

M(( , t) = et[H((H
i )+D((X

ij ,(Y
ij )], (6)

which is the structure of the Lindblad time propagator.
We train the LDA to learn the Lindblad representa-

tion L from (synthetic) experimental data. In the training
procedure, we feed the LDA with the initial conditions
vin = v(0) and the time of the measurement t and optimize
the parameters ( = {(H

i , (X
ij , (Y

ij } such that vout ' v(t) =
M(( , t)vin [54]. Training over a finite time t is crucial
when working with experimental data. Indeed, training
the LDA to propagate the coherence vector only over an
infinitesimal time step dt [43,44], i.e., vin = v(t) and vout =
v(t + dt), is bound to fail as soon as the noise is larger than
the variation of the coherence vector (for further details,
see the Supplemental Material [52]).

To test the correctness of the learned generator, we pro-
duce r new exact trajectories and compare them with the
LDA prediction. A quantitative measure of the perfor-
mance of the ML algorithm is given by the following error
function:

ε(N , M ) := 1
r

r∑

i=1

1
T

∫ T

0

‖ρ i
ML(t) − ρ i

S(t)‖2
2

‖ρ i
S(t)‖2

2
dt , (7)

where ρ i
ML(t) is the prediction for the state of the sub-

system obtained from our ML algorithm, ρ i
S(t) represents

the synthetic data for a given choice of N and M , and
‖O‖2

2 = Tr
(
O†O

)
.

e. Benchmarking the algorithm. Before training the
algorithm on data for the many-body model in Eq. (1),
we benchmark their ability to learn a Lindblad generator
within a well-controlled setting. We consider a two-spin
Lindblad generator, which in its diagonal form is speci-
fied by the following Hamiltonian and jump operators [cf.
Fig. 2(a)]:

H = !

2
(σ x

1 + σ x
2 ) + Vn1n2,

J1 = √
) σ−

1 , J2 = √
) σ−

2 ,

J3 =
√
κn1 , J4 =

√
κn2.

(8)
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The jump operators effectively describe the effects of
the environment on the subsystem: J1, J2 encode decay
from |1〉 to |0〉 while J3, J4 encode dephasing. The
data-generation procedure follows the protocol described
above, with two exceptions: the initial conditions are given
by a random density matrix ρrand and the data for test-
ing have a doubled time window [0, 2!T]. In this way,
we can also test the ability of the algorithm to extrapo-
late to unseen times. Since the network is, in principle,
able to perfectly learn a Markovian Lindblad generator,
we expect the extrapolation to be accurate. The results are
reported in Figs. 2(b) and 2(c). The color map [Fig. 2(b)]
shows the error, ε(N , M ), averaged over r = 10 test trajec-
tories, for 100 different combinations of N and M . First,
we observe the overall trend of the error to decrease as
N × M increases. However, the plot is not symmetric with
respect to the line M = N . In fact, for higher values of M
(and fixed N × M ), the LDA has a more stable training,
and hence a better performance. This is because the choice
of the M time points is random and a small value of M has
a high probability of yielding data that are not representa-
tive of the dynamics. On the other hand, higher values of
M yield more representative data of the trajectory, despite
relatively small values of N . For high values of N and M ,
as expected, the error becomes small. The ML algorithm
can thus successfully learn a Lindbladian, with a precision
that approximately depends on the product N × M .

e. Many-body setting. Having established the capability of
the LDA to exactly learn Lindblad generators from exper-
imental data, we now address the many-body scenario
described by Eq. (1). In this case, the reduced dynam-
ics of ρS(t) can feature non-Markovian effects. The LDA
will thus, by construction, learn the “optimal” Markovian
description of the system. Whether or not this descrip-
tion will accurately describe the subsystem depends on the
relevance of non-Markovian effects.

In Fig. 3(a), we show results for weak interactions V =
0.1!. Here, the ML algorithm learns a dynamical gener-
ator that faithfully reproduces the time evolution of the
coherence vector. This suggests that the subsystem dynam-
ics is, in this weak-coupling regime, essentially Marko-
vian. Notably, the Lindblad generator can be inferred even
when N and M are small. As already observed during the
benchmarking, the training procedure is less stable for the
models in the bottom-right corner of Fig. 3(a), compared
to the top left, confirming that larger M values are better
than larger N values at fixed N × M .

In Fig. 3(b), we show results for strong interactions,
V = 2!. Quite surprisingly, also in this case, the LDA
learns an effective Lindbladian that reproduces the sub-
system dynamics very well. Also here, the latter has a
Markovian character. A possible explanation for this is that
strong interactions lead to a faster decay of time correla-
tions in the environment, which thus renders the subsystem

(a)

(c)

(b)

FIG. 2. Benchmarking. (a) The OQS used to benchmark the
LDA, described in terms of a Hamiltonian and jump operators
[cf. Eq. (8)]. The Hamiltonian consists of a driving (!) and an
interaction (V). The jump operators describe decay (with rate ) )
and dephasing (with rate κ). (b) The error ε(N , M ), as in Eq.
(7), plotted for different values of N and M . The error is aver-
aged over r = 10 out-of-sample trajectories with a doubled time
window [0, 2!T] (see text for details). (c) Dynamical curves for
two selected observables and different combinations of N and
M . From the plot, one can appreciate how the predicted dynam-
ics are already quite reliable for smaller values of N and M . The
parameters are V = 0.5!, ) = 0.01!, and κ = 0.05!.

dynamics Markovian. Due to the faster oscillations in this
regime, more sampling points in time are needed than the
weakly interacting case [Fig. 3(a)], for a same accuracy.
In both cases, for small N × M , while the model can-
not recover the exact dynamics, it nonetheless provides an
average over the fast oscillations [cf. Figs. 3(a) and 3(b)].
The data for the whole coherence vector are reported in
the Supplemental Material [52], where we also show addi-
tional results for the case V = 0.5!. In the latter case, the
error is higher due to non-Markovian effects, which appear
to be non-negligible [55] in this intermediate regime.

Conclusions. We have presented a simple ML algorithm
able to learn a physically consistent and interpretable
dynamical generator starting from (synthetic) experimen-
tal data. We have shown that it can yield faithful results
for both weak and strong interactions. A wider range of
systems could be included by relaxing the assumed Marko-
vianity of the learned generator, namely, by allowing it to
be time dependent (L(t)). Some approaches already exist
(see, e.g., Refs. [36,39]) but they require an enormous
amount of data and lack physical interpretability.

In this work, we have restricted the study to 1D sys-
tems with NN interactions. However, our ML method
yields physically consistent generators regardless of the
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(a) (b)

FIG. 3. Learning the subsystem dynamics. The error ε(N , M )
as in Eq. (7) for different values of N and M , for two differ-
ent combinations of the parameters. The error is calculated over
r = 10 trajectories with t ∈ [0,!T]. (a) The data for the case
V = 0.1!. Here, the dynamics are slow and the ML algorithm
learns an effective L already for small values of N and M . (b) The
data for V = 2!. In this case, two different regimes can be dis-
tinguished neatly: either the model does not learn the dynamics
(blue squares) or it learns it (yellow squares). In both cases, the
errors are due to the non-Markovianity assumed for the learned
model. The plots beneath the color maps report the time evolu-
tion of an observable for the two different models and different
sets of (N , M ).

dimensionality and the range of the interactions, to which
the model is completely agnostic. Moreover, it is inter-
pretable; hence it can be used to “read out” the underlying
dynamical processes (see the Supplemental Material [52]).
In fact, the learned matrix L gives direct access to the
parameters (H

i , (X
ij , (Y

ij , which represent the Hamiltonian
and the jump operators of the subsystem S. In the future,
it would be interesting to understand whether feeding the
ML algorithm with a sampling of the full coherence vec-
tor is necessary or whether bona fide dynamics can still
be learned when leaving out information about certain
observables.

The code for the generation of the artificial data and the
training of the ML algorithm is available via GitHub [56].
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Abstract
We develop a machine learning algorithm to infer the emergent stochastic equation governing the
evolution of an order parameter of a many-body system. We train our neural network to
independently learn the directed force acting on the order parameter as well as an effective diffusive
noise. We illustrate our approach using the classical Ising model endowed with Glauber dynamics,
and the contact process as test cases. For both models, which represent paradigmatic equilibrium
and nonequilibrium scenarios, the directed force and noise can be efficiently inferred. The directed
force term of the Ising model allows us to reconstruct an effective potential for the order parameter
which develops the characteristic double-well shape below the critical temperature. Despite its
genuine nonequilibrium nature, such an effective potential can also be obtained for the contact
process and its shape signals a phase transition into an absorbing state. Also, in contrast to the
equilibrium Ising model, the presence of an absorbing state renders the noise term dependent on
the value of the order parameter itself.

1. Introduction

Stochastic processes are fundamentally important in physics [1–3]. For instance, random microscopic
fluctuations can strongly impact the evolution of macroscopic physical observables, e.g. order parameters
close to phase transitions. Monte Carlo methods [4–6] are often the ‘benchmark’ for the computational
treatment of classical many-body dynamics, allowing for efficient sampling of stochastic microscopic
configurations and trajectories. The large-scale dynamics of the order parameter are instead typically
modeled by a stochastic differential equation. The latter contains both a force term, leading to a deterministic
drift, and a noise term yielding diffusive behavior7. [7, 8] However, establishing a connection between
fluctuating microscopic stochastic trajectories and the coarse-grained evolution of the order parameter is a
challenging task that can rarely be accomplished analytically.

7 The drift and the diffusion represent the most basic ingredients for a coarse-grained dynamics. More general forms might include
memory kernels or other non-Markovian time dependencies [7, 8].

© 2024 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Training of the drift coefficient µθ and the diffusion coefficient σθ from the stochastic trajectories of the order
parameter. (a) The network for the drift coefficient, µθ , is trained by minimizing a distance, L[µ](θ) in equation (4), between
µθ(x) and the drift coefficient µ, cf equation (3). For a given value x of the order parameter, we consider all the values Zt close to
it in the observed trajectories, and their update Zt+dt. The finite difference Zt+dt − Zt is then used to locally approximate the drift
coefficient µ. (b) The network for the diffusion coefficient σθ is trained by minimizing a distance, cf equation (10), between
σ
2
θ(Zt) and the derivative of the quadratic variation ∂t[Z]t, see L[σ](θ) in equation (9). The quadratic variation [Z]t itself, cf

equation (6), is locally approximated from the observed trajectories.

In this paper, we develop a machine learning approach [9–14] to bridge this gap. To illustrate our
method, we consider two paradigmatic classical many-body systems: the 2D Ising model evolving under
Glauber dynamics [15–17] and the nonequilibrium contact process in 1D. The dynamics considered for the
Ising model obey detailed balance, which eventually takes the system to a state of thermal equilibrium. As a
function of temperature, this state shows a transition from a paramagnetic to a ferromagnetic state,
characterized by a zero and non-zero value of the order parameter, respectively. As we will show, this
transition manifests in the structure of the learned drift term cf figure 1(a), from which one can reconstruct
an effective potential that exhibits a characteristic double-well shape below the critical temperature. Both the
paramagnetic and ferromagnetic phases are fluctuating, which is also reflected in the learned noise term. In
contrast to the scenario of the Ising model, the contact process represents a genuine out-of-equilibrium
system [18–21], i.e. its dynamics does not obey detailed balance and its stationary state is non-thermal. The
model features a phase transition between a non-fluctuating absorbing state in which the order parameter is
strictly zero and a fluctuating active phase with a non-vanishing order parameter. Interestingly, we show that
also for this genuine nonequilibrium process, an effective potential governing the deterministic drift of the
order parameter can be constructed using our machine learning approach. Unlike for the Ising model,
however, where the learned noise is such that both phases are fluctuating, a noise term is inferred whose
strength depends on the order parameter. In particular, the noise strength tends to zero for vanishing values
of the order parameter, see sketch in figure 1(b), signalling an approach to the (non-fluctuating) absorbing
state.

Our method is applicable to a wide range of many-body processes in and out of equilibrium. It provides a
way to determine a stochastic equation for order parameters which is intuitive and directly interpretable, as
in mean-field theories. Remarkably, it also carries information about the exact low-dimensional physics of
the considered model, as we demonstrate through estimates of critical exponents. Moreover, our method
should also be applicable for inferring effective stochastic differential equations for the evolution of order
parameters from experimental data. Our approach is based on learning ordinary differential equations,
which are relatively straightforward to handle. In contrast, alternative methods focus on learning the full
probability distribution governing the stochastic process [22–27]. These approaches often require
assumptions about the functional form of the probability distribution, such as modeling it with a set of
Gaussian distributions. Other techniques learn the stochastic differential equation by integrating the
stochastic dynamics and optimizing over the probability distribution of the variable [28–34], but they
encounter difficulties in the scenarios we focus on, where the data is subject to significant inherent noise. As
background, we explain more in detail what are the physical quantities that we examine. These quantities
describe macroscopic properties of the microscopic spin models, which are referred to as ”order parameters”
in statistical mechanics. Order parameters, as discussed in [35], are named for their role in measuring the
degree of order within a physical system. Typically, they have non-zero values in phases where some form of
order exists, and zero values in disordered phases. The coarse-grained quantities we focus on are the averages
of the binary spin values over the lattice size at each time step. We assume that their dynamics can be
described by a stochastic differential equation of the Itô type whose drift and diffusion coefficient are
time-independent. In figure 2, we present various configurations of the microscopic spin system for the Ising
model. Specifically, in figure 2(a), we illustrate several configurations of the microscopic spin system and the

2



Mach. Learn.: Sci. Technol. 5 (2024) 045002 F Carnazza et al

Figure 2. The stochastic dynamics of the order parameter and its steady state for the dynamical Ising model. In panel (a), the
evolution of the order parameter, specifically the magnetizationmt, for the dynamical Ising model is depicted as a function of
time t at a specific value of the control parameter, namely, the temperature T. The insets show the actual corresponding
configurations of the entire spin system at the initial and final states. In the Ising model, varying the temperature results in three
distinct phases: the ordered phase, the critical phase, and the disordered phase. The critical phase appears at the critical
temperature Tc (see panel (b)). Below the critical temperature, the configurations evolve towards a stationary magnetization per
single spinmstat that is non-zero.

corresponding time evolution of the order parameter. In figure 2(b), we display the stationary values of the
states as a function of the control parameter, which in this case is the temperature.

2. Many-body stochastic processes

2.1. The evolution of stochastic observables
For the sake of concreteness, we focus on many-body lattice systems of N sites, each of which is associated
with a classical spin variable. We denote the system state, or system configuration, through the vector s
containing the values si of the variables at the different sites i. We furthermore assume the system to be
subject to a discrete-time Markovian stochastic spin-flip dynamics.

Relevant information about the above many-body system is provided by so-called order parameters,
which encode properties of the whole configuration. A paradigmatic example is given by an average of the
form Zt ≡ Z(st) = 1

N

∑
i s
i
t, where st is the time-evolving state of the system. As a consequence of the

stochastic nature of st, also the effective dynamics of Zt is stochastic. For large systems and at a continuous
coarse-grained time scale, Zt becomes a continuous random variable that may be expected to obey an
emergent stochastic differential equation of the form

dZt = µ(Zt, t)dt+ σ (Zt, t)dWt . (1)

Here, the function µ is referred to as the drift coefficient, while σ is called diffusion coefficient.Wt is a
standard Wiener process [1] and dWt is its increment satisfying the relations E[dWt] = 0 and E[dW2

t ] = dt,
with E denoting expectation over the noise. Despite the simple form of equation (1), understanding the
functional form of µ and σ is in general a difficult task. In the following, we propose a method to learn an
approximation to the analytical form of the drift and the diffusion coefficients by means of neural networks.
We determine two artificial neural networks µθ and σθ (see sketch in figure 1), which describe the dynamics
of Zt, given the network parameters (weights and biases) θ. We restrict ourselves to the Markovian case in
which µθ and σθ do not depend on time

dZt = µθ (Zt)dt+ σθ (Zt)dWt. (2)

To approximate the functions µ and σ we use a data-driven method, i.e. the networks µθ and σθ are trained
on a data set composed of trajectories Zt, which we call ground truth data, see also figure 1. Note that
restricting to the Markovian case of equation (2) is an assumption since, even if the dynamics of the system
configuration st is Markovian at the microscopic scale, the emergent dynamics of the order parameters—i.e.
macroscopic quantities—may feature non-Markovian effects.

2.2. Neural network representation of the drift and diffusion coefficients
Our approach consists of training the networks µθ and σθ with separate routines, independently from each
other.

As we discuss below, this means that the data sets used for training, despite being derived from the same
sets of trajectories, differ from each other. Specifically, in the case of the drift coefficient, the network is
trained using the first moments of the (infinitesimal) finite differences between adjacent time steps in the
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trajectories. For the diffusion coefficient, the network is trained using the time derivative of the quadratic
variation, which is akin to the second moment of the finite differences between two different times in the
trajectories. In fact, nothing prevents us from training the drift and diffusion terms using completely
different sets of trajectories.

The drift term can be quantified by exploiting averages over trajectories of the infinitesimal increment
dZt in equation (1). More precisely, starting from equation (1) it is possible to show that the function µ at
point x can be obtained as the limit [36–38]

µ(x) = lim
dt→0+

EZt=x [Zt+dt] − x

dt
, (3)

where EZt=x denotes expectation conditional on the process being in x at time t. In the theory of stochastic
processes, the above limit also provides the action of the so-called infinitesimal generator W on the function
x, µ(x) = W[x] [38].

The limit in equation (3) can be estimated from the data set, as sketched in figures 1–3. To this end, we
generate batches Xi = {x1, . . . ,xdbatch} of size dbatch. Each xj in Xi is extracted randomly between the minimum

and maximum values of the trajectories Zt. For each xj, we consider all the nj points Z
j
t, in all trajectories,

which belong to the interval of width δ around xj, see figure 3(a). The value of δ has to be chosen in such a
way that all bins associated with the different xj are sufficiently populated, ensuring the smoothness of the
learned µ(xj). We check a posteriori that the predicted dynamics, learned with such a δ, corresponds to the
ground truth (see appendix A)8.. We optimize µθ by minimizing the following loss function, cf figure 3(b)

L [µθ] (θ) =
dbatch∑

j=1

∣∣∣∣∣∣
µθ

(
xj

)
−

1

nj

∑

Zj
t

∆1Z
j
t

∣∣∣∣∣∣
, (4)

where ∆1Zt ≡ (Zt+dt −Zt)/dt. We consider the coarse-grained adimensional time t to correspond to the
number of discrete-time updates of the system normalized by a suitable factor τ and thus dt = 1/τ .

In our data sets, the observed noise is often larger than the drift, cf figures 3(c) and 7(c), especially near
the stationary state, where the drift coefficient vanishes altogether. This is why computing the targets
1
nj

∑
Zj
t
∆1Z

j
t in equation (4) is essential. In fact, no learning would be possible without taking the targets to

be arithmetic averages, due to the above-mentioned large fluctuations.
Since our task is to understand the order-parameter dynamics, we restrict ourselves to the problem of

learning one-dimensional data. This allows for an efficient estimate of the drift coefficient in equation (2). In
one dimension, the stochastic quantity Zt indeed hits the different intervals sufficiently many times during
the evolution, which is needed for proper sampling and computing µ(x). To reduce over-fitting, we train
ntrain different models µi

θ(x), with the loss function (4). To each of these models, we assign a weight wi equal
to the inverse of the mean square error between the data estimate of µ(x) and the network result µi

θ. As a
reference model µθ, we take the weighted average over this ‘ensemble’ of models:

µθ =
ntrain∑

i=1

wiµi
θ∑ntrain

i=j wj
. (5)

Specifically, the values of ntrain, dbatch,nepochs and δ we adopt for the considered models are reported in
table A1 (see appendix A).

In order to learn the diffusion coefficient, we use the ‘second moment’ of dZt, which is the quadratic
variation [Z]t. For stochastic processes as in equation (1), this is given by [39, 40]

[Z]t =

ˆ t

0
dZ2

s =

ˆ t

0
dsσ2 (Zs) , (6)

which is nothing but the integral version of the differential equation

∂t [Z]t = σ2 (Zt) . (7)

8 This interval is defined as Bδ
j ≡ {All Ztsuch that |Zt − xj| < δ}, and its cardinality is nj ≡ #Bj

δ . We denote the points in this

interval as Zj
t.
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Figure 3. Estimation of the drift and diffusion coefficients µ and σ. In panel (a), some exemplary trajectories Zt for the Ising
model on a 128× 128 square lattice are depicted. Here, the order parameter Zt is the magnetizationmt. These trajectories are
generated using the dynamical rules reported in equation (14) and provide the variablemt. For a givenmt (black solid line), all
the ni intersections (red dots) within the shaded area are used to compute the quantity µ(x)dt. The latter is plotted in panel (c)
(dashed line), while the solid line is obtained from the trained network µθ(m). In panel (c) the network for the diffusion
coefficient σθ(m) is also shown, in order to compare its dependence on the magnetizationm with the one of the drift. This can
also be seen in panel (b), where the values for the finite difference of the quadratic variation ∆α2 [m]t, upon which the network is
trained, are provided together with the values of the corresponding predictions of the neural network σ

2
θ(mt).

To train the network for the diffusion coefficient σθ, we devise a coarse-graining procedure that makes the
spin-flip noise of the stochastic many-body dynamics look like a Wiener process. To this end, we first
compute the quadratic variation from trajectories as

[Z]t
∼=

∑

u∈[0,t]

(Zu+α1du −Zu)
2 . (8)

Here, the integer factor α1 ! 1 may allow one to magnify the variation at the different times. Furthermore,
we approximate equation (7) by

∂t [Z]t ≈ ∆α2 [Z]t =
[Z]t+α2dt

− [Z]t
α2dt

. (9)

The factor α2 ≫ 1 allows one to coarse-grain the noise over many discrete time-steps, which proved
necessary for convergence during the training procedure. This is mainly due to the fact that the finite
difference in equation (9) is stochastic. For this reason we need an average in order to obtain valuable
information for the training. Equation (9) will still be a good approximation of a time derivative if we
consider a time window α2dt much smaller than the time during which relaxation to stationarity takes place.
The optimization of the network parameters is then performed by minimizing the loss function

L [σθ] (θ) =
∑

t

|∆α2 [Z]t − σ2
θ (Zt) |. (10)

Note that this loss function is insensitive to the sign of σθ. This is not a problem since the stochastic
increment dWt is symmetric under a change of sign.

To summarize, we explicitly selected the following hyper-parameters to control convergence: the number
of hidden layers, the learning rate, the number of epochs, the batch size dbatch, and the number of models
used to compute an ‘average model’ ntrain. Additionally, we chose a threshold δ from which to compute finite
increments from a given initial condition, and a time step dt. We also set two constants α1 and α2. The
constant α1 is used in approximating the quadratic variation: [Z]t =

∑
u(Zu+α1du −Zu)2. The constant α2 is

used in computing its finite difference: σ2(Zt) = ([Z]t+α2dt − [Z]t)/α2dt. For further details on the training
procedure, we refer to the appendix A and to table A1.

3. The kinetic ising model

3.1. The model and its dynamics
The Ising model is a paradigmatic model of statistical mechanics. It provides a qualitative description of the
behavior of molecular magnetic dipoles in a metal. The crystalline structure of the metal is modeled as a
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lattice of N sites. At each site i = 1,2, . . . ,N, a magnetic dipole is represented as a spin variable si = ±1. The
spins interact with each other according to the following energy functional (Hamiltonian)

H(s) = −
1

2

∑

⟨ij⟩

si sj. (11)

Here, the notation ⟨ij⟩ restricts the sites i and j in the sum to be nearest neighbors on the lattice. We consider
a two-dimensional square lattice. This Hamiltonian presents a Z2 symmetry since it is invariant under sign
change of every spin variable si → −si. At thermal equilibrium at a given temperature T, each spin
configuration has a probability described by the Boltzmann distribution πB(s) ∝ e−H(s)/kBT, where kB stands
for the Boltzmann constant. Given the magnetization

m =
1

N

∑

i

si, (12)

the order parameter of the model is the expectation of the absolute value ofm in the Boltzmann distribution.
The system undergoes a continuous transition from an ordered phase with finite magnetization at
sufficiently low temperatures, to a disordered one with vanishing magnetization. While in one dimension the
model predicts a finite magnetization only at zero temperature, in two dimensions the critical temperature
Tc corresponding to the phase transition is finite. Close to Tc, the value of the average magnetization m̄
follows a power-law behavior

m̄ ∝ |T−Tc|
β , (13)

where β is a so-called critical exponent.
The Ising model discussed above does not possess inherent dynamics. In order to apply our ML method

to this model we can endow it with Glauber dynamics using Metropolis–Hastings sampling, which is usually
utilized for sampling the Boltzmann distribution of the model. Such a dynamic is defined by the single
spin-flip probabilities P = P(si → −si), updating the spin variables in the lattice according to

P
(
sit → −sit

)
=

{
exp(−∆E/kBT) if ∆E > 0

1 if ∆E " 0
(14)

where ∆E = H(s1t , . . . ,−sit, .., s
N
t ) −H(s1t , . . . , s

i
t, .., s

N
t ) is the energy change associated with the transition. For

the completion of a single discrete time step st → st+1, a single spin-flip is attempted N times at a random
site. For such a dynamical Ising model, the (stochastically evolving) order parametermt is defined as in
equation (12) for an evolving configuration st. We choose each of the spins in the initial configuration to be
up or down with equal probability, so that for large systemsm0 ≈ 0. For further detail about the model and
its field theoretical representation, see appendix B.1.

3.2. Neural network results
Given a set of trajectories formt at temperature T, we learn the corresponding drift term µT

θ using the
approach explained above and the loss function L[µT](θ) in equation (4). The drift term essentially acts as a
directed force on the order parameter and it is thus natural to define an effective potential driving the motion
ofmt via the integral

MT
θ (m) ≡ −

ˆ m

0
dxµT

θ (x) . (15)

Our results reported in figure 4 show that upon increasing T the effective potential undergoes a transition
from a functional form exhibiting a double well to a single well potential. This fact is connected with the
equilibrium Ising phase transition which can be understood as follows. The stationary values of the
expectation of the order parameter m̄stat correspond to the minima of the effective potentialMT

θ , see figure 4,
and thus to zeroes of the drift coefficient, µT

θ(m̄stat) = 0, cf figure 5. Since the considered discrete-time
dynamics samples the Boltzmann distribution at stationarity, one essentially has that the stationary values
m̄stat should approximate the equilibrium order parameter m̄, thus connecting the retrieved potential to the
Ising transition.

To benchmark the results from the trained networks µT
θ , we can thus extract the critical temperature Tc

and the critical exponent β of the order parameter and compare them with the known values for the Ising
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Figure 4. Effective potentialMT
θ of the Ising model. The effective potentialMT

θ in equation (15) is determined by the integral of
the drift µθ with respect to the magnetizationm. One can observe that for increasing temperature this effective potential changes
its functional form from having two distinct minima in the double-well potential to having only one minimum atm= 0.

model. We fit the stationary magnetization m̄stat to the scaling form of equation (13) by minimizing the
function

ϵ
(
c̃1, T̃c, β̃

)
=

∑

T

|µT
θ

(
c̃1|T− T̃c|

β̃
)

|
2. (16)

The positive function ϵ(̃c1, β̃, T̃c) vanishes when c̃1|T− T̃c|
β̃ = m̄stat. We consider the values of c1, Tc and β

that minimize ε in equation (16). To find them, the zeroes of the drift coefficient µT
θ , are computed using the

exact derivatives via automatic differentiation. This is possible since we use differentiable neural networks.
We find the following values: β = 0.156± 0.001, Tc = 2.271± 0.001, and c1 = 1.076± 0.002. Note that the
errors reported are only those related to the fit and do not consider finite-time and finite-size errors. For the
Ising model, the analytical values are β = 1/8 and Tc = 2/ ln(1+

√
2) ∼= 2.269 [41]. Our results are thus in

good agreement with the exact values and show that the networks are able to provide a sound description of
the critical behavior encoded in the data they are trained on.

Close to the critical point, the Ising model with Glauber dynamics is expected to fall in the model A class
according to the Halperin classification [42]. This is a pure relaxation model for a time dependent field in a
double well potential, subject to uncorrelated white noise [43–46]. The latter feature is indeed reflected in
our results on the learned diffusion coefficient σθ, shown in figures 3(b) and (c). There, we present σθ for
T = 2.269, which is in proximity to the critical temperature. As can be seen, the diffusion coefficient σθ is
essentially constant when compared with the drift coefficient, entailing white noise in the dynamics ofmt.

We thus showed how the learned networks are able to encode significant information about the statics,
i.e. the order-disorder phase transition (see figure 5) and the dynamics, i.e. the form of the noise, for the
process under investigation, through a simple equation.

4. The contact process

4.1. The model
We now apply our method to a paradigmatic nonequilibrium process, the so-called contact process [47, 48].
It was introduced to describe epidemic spreading in the absence of immunization. It is not defined via an
energy function but solely via dynamical rules. The contact process shows a nonequilibrium continuous
phase transition which belongs to the directed percolation universality class [49–53].

Within the epidemic spreading interpretation of the model, each lattice site i represents an individual
which can either be found in the healthy state sit = 0 (inactive site) or in the infected state sit = 1 (active site).
We consider here the case of a one-dimensional lattice. The dynamics occur in discrete time as follows: first,
given the configuration st at time t, we calculate the probability that each spin flips through the rules

P
[
0 → 1,nit

]
∝ κdtnit/2 ,

P
[
1 → 0,nit

]
∝ γdt .

(17)
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Figure 5. Neural networks for the drift coefficients µ
T
θ for the Ising model. Due to the Z2 symmetry of the Hamiltonian, only the

behavior form> 0 is shown. Warmer tones correspond to higher temperatures. The higher the temperature, the closer the
non-trivial zero of µT

θ corresponding to m̄stat is to zero. In the main figure, the dashed line at zero intercepts the graph of the
function µ

T
θ , at the stationary value m̄stat for each temperature T. Specifically, these values correspond to points where

µ
T
θ(m̄stat) = 0. In the inset, m̄stat values are shown as a function of their respective temperatures as grey bullets. Additionally, the

inset displays the power law behavior of m̄stat relative to the distance from the critical temperature Tc, derived by minimizing the
function ϵ(̃c1, T̃c, β̃) in equation (16) as a solid black line.

Here, we introduced the healing rate γ, the infection rate κ and nit indicates the number of infected nearest
neighbors of i. Then, according to the above probability, a spin is extracted, and the corresponding flip is
performed. The order parameter is the number density of infected sites

ρt =
1

N

∑

i

sit , (18)

with N being the total number of sites. We here consider ρ0 = 1 as the initial value for the density (all sites
infected).

From the dynamical rules in equation (17), one can see that the state with all healthy sites is a stationary
state. In fact, this is a so-called absorbing state since it can be reached during the dynamics but it cannot be
left. For any finite system, there is always a finite probability of hitting the absorbing state, which is the unique
stationary state of the system. In the thermodynamic limit (N → ∞) and for sufficiently large infection rates,
a phase with a finite density of infected sites, usually called fluctuating phase [52–54], becomes stable. In
finite systems, this phase eventually dies out and only appears within a meta-stable timescale. The absorbing
phase and the fluctuating phase are separated by a continuous phase transition occurring at a finite critical
value of the infection rate κc, above which the system features a nonzero expectation of the stationary density
ρ̄stat. In proximity to the phase transition, the density follows a power-law behavior

ρ̄stat ∝ |κ − κc|
β . (19)

In the following, we focus on a one-dimensional lattice made of 100 sites and measure the infection rate in
units of γ.

4.2. Neural network results
We start by discussing the results for the drift term of the contact process. As for the kinetic Ising model, we
train the network for many data sets of trajectories. For each data set at infection rate κ, we train a model µκ

θ .
The results for learned drifts µκ

θ are shown in figure 6, for different values of κ. Decreasing κ, the zero
crossings µκ

θ (ρ̄stat) = 0 occur at progressively smaller values of ρ̄stat. In the inset, we illustrate how these can
be used to extract the critical infection rate κc and the associated critical exponent β. As for the kinetic Ising
model, we can fit the density of infected sites to the power law of equation (19) by minimizing the function
ϵ(̃c1, κ̃c, β̃):

ϵ
(
c̃1, κ̃c, β̃

)
=

∑

κ

∣∣∣µκ
θ

(
c̃1|κ − κ̃c|

β̃
)∣∣∣

2
. (20)
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Figure 6.Drifts µ
κ
θ as a function of ρ, for different values of the infection rate. In the main figure, the drifts, which are color coded

according to the infection rate κ, are depicted. The zeros of the drift term correspond to the stationary values of the stable
stationary points ρ̄stat, where µ

κ
θ (ρ̄stat) = 0. The dashed line in the figure indicates where these zeros intersect with the drift

coefficient. As the infection rate decreases, the stationary density collapses to ρ̄stat = 0. From these values, represented as grey
bullets in the inset, the critical exponent β can be extracted in the proximity of the critical infection rate κc. The solid black line
shown in the inset represents the power law behavior of ρ̄stat as a function of the infection rate κ. This power law is obtained by
minimizing the function ϵ(̃c1, κ̃c, β̃) in equation (20). The drift terms in the active phase do not vanish when approaching ρ= 0
as one may expect. As discussed in the main text, this is a consequence of the fact that trajectories in the active phase do not visit
sufficiently often values below the stationary values ρ̄stat, which affects the training procedure.

The values c1,κc and β that we find are β = 0.28± 0.03, κc = 3.062± 0.003. These values should be
compared with the values obtained by means of Monte Carlo or series expansion κc = 3.29785(8) [55–57],
β = 0.276486(8) [58, 59].

Albeit this agreement, there is in fact a problem with the shape of the learned drifts µκ
θ , as shown in

figure 6. Given that the contact process features an absorbing state at density ρ = 0, one should expect that
the drift vanishes for this density. This is evidently not the case here. The reason lies in the fact that the
physics actually influences the way in which training data can be produced. In our case, we train the network
considering trajectories starting from the state with all sites infected. For such initial condition and being in
the active phase, the density of infected sites will decrease with time until it reaches a (meta)stable finite value
around which it will fluctuate. This implies that during the learning process values of the density smaller
than the (meta)stable one, including the absorbing-state value ρ = 0, are not visited sufficiently often.
Therefore, it is not possible to appropriately learn the drift term below such values.

In figure 7, we report the results for the learned diffusion coefficient σθ(ρ), together with the network
prediction for µθ(ρ) and the time derivative of the quadratic variation ∆α2 [ρ]t, which the network learns
(details on the network parameters are given in table A1). We consider a value for the infection rate, κ = 3.36,
in the proximity of the critical point κc. In contrast to the Ising model, where both phases above and below
the critical point are fluctuating, the presence of an absorbing phase dictates that the diffusion coefficient
must vanish at zero density. This means that the noise must be multiplicative. In fact, it can be proven that
the diffusion coefficient is proportional to the square root of the density [54, 60, 61], which is a consequence
of the central limit theorem and the fact that only active sites can contribute to fluctuations (for details we
refer to appendix B.2). Both the learned diffusion coefficient σθ and the drift µθ are not constant and
approach zero for small ρ, see figure 7(c). They are not strictly zero at ρ = 0 due to the above-discussed
limitations of the learning procedure.

In figure 7(a) we show a selected trajectory, for which we display ρt , We see that σθ yields a time averaged
value of the (coarse-grained) derivative of the quadratic variation ∆α2 [ρ]t on which it was trained. Moreover,
we also see that the learned noise vanishes as the system enters the absorbing state, i.e. ρt = 0 (cf figure 7(b)).

5. Conclusions

We have shown how to encode a simple stochastic equation in an artificial neural network and applied this
method to two paradigmatic models of statistical mechanics, both in and out of equilibrium. Both studied
systems, the kinetic Ising model and the contact process, exhibit a continuous phase transition which also is
captured by the network. For both models we identified the critical point and retrieved the static critical
exponent β.
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Figure 7. Diffusion in the contact process. (a) A sample trajectory ρt for κ= 3.36. Such trajectories ρt are used to compute the
derivative of the quadratic variation ∆α2 [ρ]t. This time derivative is used to train the network σθ , via the loss in equation (10).
(b) The network takes as input the values of ρt of a given trajectory and outputs the values σ

2
θ(ρt), which approximate the

derivative of the quadratic variation ∆α2 [ρ]t, see equation (6). Unlike in the Ising model, σθ is not a constant function of the
order parameter ρt . The reason is that in the absorbing phase (where the order parameter is strictly zero) no fluctuations take
place, as shown the same trajectory in panel (a). (c) Learned diffusion coefficient σθ as a function of the density ρ. We observe
that σθ indeed goes to zero for vanishing order parameter ρ, signalling multiplicative noise. For comparison, we also provide the
results for the corresponding drift µθ .

It is important to note that within the chosen approach the network does not learn the order parameter
from raw configurations. Rather, it is fed with a one-dimensional average value of an order parameter
(density or magnetization) and outputs the one-dimensional drift and diffusion coefficients for a given order
parameter value. The network thus learns one-dimensional quantities which simplifies the training process.
In the case of the contact process, a multiplicative form of the noise is retrieved, while for the kinetic Ising
model, the network learns a noise form that is approximately constant, i.e. independent of the value of the
order parameter.

A natural future development would be to use the learned drift as a scaling function and to obtain all the
critical exponents. This approach might also prove useful in classifying universal behavior of different
processes, as two models are expected to belong to the same class, not only if they share the same set of
critical exponents, but also if they share the same scaling function. Another point for future exploration is to
go beyond the inherently Markovian assumption in equation (1), as the success of the results reported here,
even under this assumption, could be attributed to the one-dimensional character of the training data.
Future aims include the application of our approach to trajectories of open quantum processes and the
utilization of machine learning methods that automatically infer the relevant order parameter [34].
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Table A1. Details of the networks’ architecture and of the training procedure. All the trained networks are fully connected feed-forward
multi-perceptron networks [63, 64]. In the first column, the number of neurons ni in the ith layer is reported, as n1 × . . . × nout, with i in
{1,2, . . . ,out}. To train each network, the optimizer RMSprop algorithm in the PyTorch implementation is used, where only the
learning rates were modified. The specific activation functions are also displayed. The quantity ntrain refers to how many models are
trained on each dataset, weighted averages of which are taken to compute the reference model. The dimension of the batch use to train is
dbatch, while nepochs is the number of epochs. The width of the interval from which µ is computed (cf figure 3) is δ, while the coarse
graining of the discrete time is τ . The constant α1 is used in computing the approximation for the quadratic variation
[Z]t =

∑
u(Zu+α1du − Zu)2. The constant α2 is instead using in computing its finite difference: σ2(Zt) = ([Z]t+α2dt − [Z]t)/α2dt.

Network details

Model
Layers
architecture

Learning rate
(RMSprop
optimizer)

Activation
function

ntrain, dbatch,
nepochs δ,τ α1,α2

µθ Ising 1× 50× 50×
1

0.3× 10−3 ReLU 10, 100,
7000

0.01, 1000 —

σθ Ising 1× 64× 1 10−3 Tanh
(intra-layers),
Sigmoid (output)

10, 100,
5000

— 1, 500

µθ Contact
process

1× 50× 1 0.5× 10−3 ReLU 10, 100,
2000

0.05, 100 —

σθ Contact
process

1× 64× 1 10−3 Tanh
(intra-layers),
Sigmoid (output)

10, 100,
5000

— 10 100

Appendix A. Neural network details and integration of the learned stochastic equations

Because of the different properties of the two models considered in the present work, the kinetic Ising model
and the contact process, the employed networks and the hyper-parameters adopted to train them are slightly
different. In the following, we specify the details of the networks and how the integration of the Itô equation
is performed. The code we use is available at [62].

A.1. Neural network and training details
We model the drift µθ as a fully connected feed-forward neural network. The network is trained by
employing back propagation methods to optimize the loss function (4) This optimization minimizes the
distance between the function µθ(x) and the drift coefficient µ. The back propagation lets us compute the
gradients used in an optimization routine. This routine requires as input a constant, namely, the learning
rate, which amounts to the optimization step in the gradient descent algorithm. The order of magnitude of
the learning rate should be small enough to learn the data’s essential details yet not too small to avoid learning
the noise effects. Moreover, lower learning rates make the optimization procedure slower. The learning rate
we choose is thus a compromise between the optimization velocity and the accuracy of the results. We
optimize the network to learn ∆1Ztτ . The learned µθ then has to be multiplied with τ to make it comparable
with the training data. For the Ising model, the time scale τ is set to 1000. For the contact process, it is 100.
Similarly, the network σθ is a fully connected feed-forward network. As for µθ, the input and output
dimensions are one-dimensional. Both for µθ and σθ the adopted optimizer is the PyTorch implementation
of the RMSprop algorithm [65]. The architecture and training details for the networks and σθ are reported in
the table A1, both for the kinetic Ising model and the contact process. For both of this processes the power
law for the stationary values m̄stat and ρ̄stat only applies in the vicinity of the critical point, and only in the
ordered and the active phase respectively. For the Ising model, the sum in equation (16) is computed for 15
values of the temperature equally spaced in between a minimum value Tmin = 2.2214 and maximum value
Tmax = 2.2759. Similarly, for the contact process, in the sum in equation (20), we use 31 equally spaced
values of the infection rate κ, from κmin = 2.0 as lowest value to highest value κmax = 2.9831.

To find the best critical values in equations (16) and (20), we use the minimization library [66] that allows
to compute exact gradients on the (differentiable) networks µθ and σθ and minimize them numerically.

A.2. Integration of the Itô equation
In the present work, we extract an approximation to the drift coefficient µ and the time derivative of the
quadratic variation [Z]t from the ground truth data. It is interesting to numerically solve the learned Itô
equation (2) and compare the results with the ground truth Zt. This can be readily done with the machine
learning library Torchsde [67], which we adopt here. The numerical integration of Itô equations requires
small time steps to achieve convergence. The fictitious time scale dt introduced to train the drift µθ thus
comes in handy for the integration. One needs to pay attention to the incrementsWt+u −Wt of the Wiener

11
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Figure A1. Dynamical trajectories for the kinetic Ising model (a) and the contact process (b). We report the ground truth
trajectories (‘Data’, in red) as well as those generated by numerically integrating the learned Itô equation (2) (‘Network’, in blue).
In panel (a), the time evolution of the magnetization of a two-dimensional lattice of size N = 128× 128 is shown for a
temperature T = 2.2214. Some samples for the ground truth trajectories and the ones obtained from the network in lighter colors
are displayed together with their averages over 100 trajectories in darker ones. Analogously, in panel (b), the time evolution of the
density of active sites ρt on a one-dimensional chain of length N = 100 is shown for κ= 3.36, both for the ground truth and for
the data generated by the network together with the respective order parameter estimated from 100 trajectories. The green line
(‘Post-selected data’) represents the order parameter computed only from trajectories which do not decay into the absorbing state
ρ= 0 (for the Ising model, the order parameter is the trajectory average of the absolute value of the magnetizationmt at time t).

process in equation (1), which should be distributed with a probability p following a normal distribution
N (0,u) centered around zero and with variance u such that p(Wt+u −Wt) = N (0,u). The learned σθ, which
is trained without using the time scale dt, has thus to be divided by

√
dt to make it comparable with the

values obtained from the drift.
The results obtained by integrating the learned Itô equation (2) present a similar behavior to the ground

truth dynamics, see figure A1(b).
For the contact process, our goal is to describe the dynamics up to the non-absorbing stationary state.

For this reason, we restrict the training of the drift function µθ to ρt > δ in the data set, neglecting the region
near the absorbing state (ρt = 0). This allows us to consider short trajectories while retaining important
information about how the active (non-absorbing) stationary state ρstat is reached. This implies that the
learned drift function µθ has only one stationary state, that is, a zero, in ρstat, but not in ρt = 0. When
integrating the Itô equation, no trajectory thus goes to the absorbing state, something that instead happens
to the ground truth data. The average of the ground truth data (referred to as ‘Data’ in figure A1) thus slowly
decreases towards zero, while the average of only those trajectories in the ground truth data that do not end
in the absorbing state exhibits a non-zero stationary state (indicated by ‘Post-selected data’ in figure A1). The
latter agrees with the average obtained from integrating the learned Itô equation (indicated by ‘Network’ in
figure A1). In this figure, the first moment of the dynamics is reported in darker tone both for the
magnetization of the Ising model E[mt] and the density of active sites in the contact process E[ρt]. A possible
measure d(mdata

t ,mnet
t ) of the accuracy of the model is the averages difference between the first moment of

the magnetization (density)mdata
t (ρdatat ) and the one predicted by the neural networkmnet

t over the time
window [0,T]:

d
(
mdata

t ,mnet
t

)
=

1

T

ˆ
[0,T]

dt
(
E

[
mdata

t

]
−E

[
mnet

t

])2
. (A.1)

In the reported figure, we find values d(mdata
t ,mnet

t = 0.0013 for the Ising model, and d(ρdatat ,ρnett = 0.0159 in
the case of the contact process.

Appendix B. Field-theoretic formulations

B.1. Kinetic Ising model
The field theory for the kinetic Ising model [42] is introduced by coarse-graining in space the originally
discrete value of the spins si in the critical regime. Averaging over some mesoscopic spatial volume, a
real-valued spin density field ψ is defined over a (d+ 1)-dimensional continuous space-time. Specifically, the
configurations Σt have been coarse-grained so that at each point, a density ψ ∈ R is defined. Then the
stochastic time evolution for the density ψ is provided by

∂tψ (x, t) = −
δF [ψ]

δψ (x, t)
+ η (x, t) , (B.1)
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with an effective potential functional of the form

F [ψ] = Γ0

ˆ
ddx|∇ψ (x, t) |

2 + u0ψ
2 (x, t) + r0ψ

4 (x, t) , (B.2)

and a Gaussian noise with correlations

⟨η (x1, t1)η (x2, t2)⟩ = 2Γ0δ (x1 − x2)δ (t1 − t2) . (B.3)

The diffusion constant Γ0 and the coupling constants in (B.2) are functions of the model parameters.

B.2. Contact process
For the field-theoretic formulation of the contact process, the average over some mesoscopic box in the
lattice defines a coarse-grained density field ρ(x, t) (instead of taking the average over the whole lattice ρ̄).
The Langevin equation for its time evolution can be derived directly from the master equation of the contact
process and reads [54, 60]

∂tρ(x, t) = D∇
2ρ(x, t) + ιρ(x, t) − λρ2 (x, t) + ζ (x, t) . (B.4)

The noise ζ(x, t) exhibits a multiplicative form

⟨ζ (x1, t1)ζ (x2, t2)⟩ = Γρ(x1, t1)δ (x1 − x2)δ (t1 − t2) . (B.5)

D is the diffusive constant, while the coupling constants ι, λ, and Γ are functions of the lattice details and of
the infection rate. The occurrence of a term proportional to ρ and one proportional to ρ2 in equation (B.4)
can be explained heuristically from the mean-field treatment of the transition rates in equation (17). The
number of sites becoming inactive at time t is

∑
i s
i
t ∝ ρt. Instead, the number of sites becoming active is

given by the number of inactive sites next to an active site that can be thus be infected. This number is given
by

∑
i(s

i
t − si+1

t )2 = 2
∑

i s
i
t − 2

∑
i s

i
ts
i+1
t ∝ 2ρt − 2ρ2t . In the mean-field treatment, the master equation thus

reads ∂tρt = (κ − 1)ρt − κρ2t . The form of the noise proportional to
√

ρ, can be justified by observing that
only active sites contribute to the density fluctuations. To see this, let N be the total number of sites, and let n
be the number of active sites at time t. The density of active sites at time t is thus ρt = n/N. Now, let Xi be the
number of active sites at time t ′ > t whose infection can be traced back to the ith active site at time t. Notice
that the sequence {X1, . . . ,Xn} is formed by independent identically distributed random variables, and
ρt′ = 1/N

∑
i Xi. Their expectation value and variance will thus be independent of the site i: E[Xi] = ν,

Var[Xi] = ζ2 for some real number ν and ζ . The relation between ν, ζ2 and the sample average
X̄n = 1/n

∑
i Xi ≡ ρt′/ρt is described by the central limit theorem. This theorem states that for large n, the

probability distribution p of the random variable
√
n(X̄n − ν) converges to a normal distribution centered

around zero and with variance ζ2, N (0,ζ2):

p
(√

n(X̄n − ν)
)
N

(
0,ζ2

)
. (B.6)

Note that for ρt to be finite also N must be large. Substituting
√
n → Nρt and X̄n → ρt′/ρt, one obtains

p
(√

N(ρt′ − ρtν)
)

→
√

ρtN
(
0,ζ2

)
, (B.7)

which means that the expectation value of ρt′ is ρtν, and its variance ρtζ2.
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5 Conclusions and outlook

There are many potential directions for future research. One significant avenue

would be to incorporate time dependency into the generator we have identified. This

generator would still maintain the property of complete positivity, essential for preserv-

ing the physical interpretation of a quantum state, while also extending its capabilities.

Having addressed the e”ciency of the algorithm in handling noisy data in [28, 99], it

would now be natural to use it to model actual quantum noise in an experimental set-

ting, as was done with a related model of open quantum systems in [39]. In the case

of [20], it would be beneficial to apply the same network to data sets obtained at dif-

ferent values of the control parameter. By providing the value of the control parameter

directly to the networks as an external input, we could reduce the amount of training

data required. Allowing the networks to account for the control parameter in both the

drift term and the di!usion term would enable us to potentially infer the dynamics and

properties at unseen values of the control parameters. This approach would enhance

the network’s generalization capabilities across di!erent control parameters, and mak-

ing them less prone to overfitting.

A notable example where noise plays a crucial role is the current simulation of

quantum systems using so-called Noisy Intermediate-Scale Quantum (NISQ) devices,

which are the quantum computers currently available for quantum computations [100,

101]. The method developed in our work can be used to assess the noise in simulations

on these quantum devices, evaluate the form of the noise, and determine the defor-

mation of the directed force. This assessment is feasible because the gates applied on

quantum devices are known.

In this study, we used only classical data as input for the network. A challenging

and interesting extension to stochastic quantum data can be achieved through the sim-

ulation method for the time evolution of the quantum state described in [102, 103]. In

this method, instead of evolving a single quantum state, an ensemble” of wave functions

is evolved. Rather than applying a deterministic Lindblad operator to the entire density

matrix of the system, each quantum wave function evolves according to a “stochastic

Schrödinger equation”, which includes dissipation e!ects through non-Hermitian and

stochastic terms in an e!ective Hamiltonian operator, that act linearly on each of the
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wave functions of the ensemble. The total quantum state is then approximate by the

average of the outer products of this “stochastic” wave vectors. The main advantage of

such an approach is that while the density matrix scales quadratically with the number

of basis elements in the Hilbert space of the system under consideration, due to its in-

trinsic formulation as on outer product, a much smaller number of wave-vectors may

be able to capture the significant information.

In the context of approximating quantum states using ensembles of pure states,

the application of machine learning tools like automatic di!erentiation and optimizers

proves to be intriguing [104]. Specifically, when estimating quantum stationary states

in dissipative dynamics, one can exploit the fact that probability amplitudes, which are

the optimization target, are being directly manipulated. This allows for samples to be

drawn directly from the amplitudes themselves, bypassing the need for external sim-

ulations to generate training data. Since the steady state of the Lindblad equation is

characterized by a vanishing time derivative, a corresponding matrix norm can be em-

ployed as a loss function. This approach, first proposed by Weimer in his paper [105],

aligns with the ensemble representation of quantum states as described in [102]. Such a

method naturally preserves the positivity of the quantum state by expressing it as a sum

of outer products of wave functions. These are just a few examples of how the power of

readily available frameworks for automatic di!erentiation and neural networks can be

harnessed by the physics community to derive consistent and physically interpretable

quantities. We believe that, in the future, such tools will become indispensable to the

working physicist.
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