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Abstract

Infectious diseases, exceeding political and geographical boundaries, persist as significant health
threats that burden populations globally. Since ancient times, they have consistently challenged
the growth and welfare of all living organisms, including humans. Additionally, the emergence
of antimicrobial resistance complicates disease management, diminishing the efficacy of con-
ventional treatments and presenting notable challenges in prevention and control. Recent viral
pandemics, such as COVID-19, highlight the urgent need for effective worldwide preparedness
and new therapeutic strategies. In response to these challenges, computational systems biol-
ogy and in silico modeling have emerged as powerful assets in combating infectious diseases.
Genotype-driven prediction of cellular phenotypes is essential to understand how genetic vari-
ations influence disease outcomes, guide personalized treatments, and identify potential drug
targets. In this regard, constraint-based modeling methods have evolved to facilitate a mech-
anistic understanding of metabolic physiology based on imposed constraints and experimental
data. This thesis uses systems biology to study the genotype–phenotype relationship of cellular
metabolism. More specifically, it explores the applications of constraint-based modeling across
multiple projects, aiming to address different infections and antimicrobial-resistant pathogens.

The primary focus of the first project is the antiviral target prediction, leveraging systems
biology and constraint-based modeling. This project involves the reconstruction and analysis
of cell-specific host-virus metabolic models to detect exploitable inhibitory pathways. The in-
hibitory efficacy of the identified compounds was also computationally validated across multiple
known variants. Nevertheless, the rise in complexity of mathematical models raises problems
in quality control and reproducibility. The second project focuses on model standardization and
documentation, aiming to enhance the reusability and interoperability of computational models.
It presents a Python-based annotation software to automate the assignment of systems biol-
ogy ontology terms by inferring expert knowledge from model structures. The third project
explores the metabolic modeling of human nasal microbiota by focusing on a particular noso-
comial pathogenic member named Acinetobacter baumannii. The construction of the first col-
lection of metabolic networks for various multidrug-resistant A. baumannii strains is presented.
Their analysis yields valuable insights into strain-specific metabolic capabilities and vulnera-
bilities, that could guide the development of novel antimicrobial strategies targeting metabolic
pathways. Finally, the last project investigates the metabolic phenotypes of Rothia mucilagi-
nosa, an opportunistic pathogen with a multifaceted role in health and disease. The integration
of experimental data alongside the construction of the first manually curated metabolic network
aim to unravel potential metabolic aspects that could serve as focal points for future research
endeavors.

The research presented in this thesis signifies meaningful strides in infectious disease inter-
vention via computational systems biology and metabolic modeling. Through a combination of
modeling, data analysis, experiments, and software development, this thesis effectively offers
comprehensive insights into previously unexplored areas, thereby advancing the understanding
and application of systems biology principles in various fields.





Zusammenfassung

Infektionskrankheiten, die politische und geografische Grenzen überschreiten, stellen nach
wie vor eine erhebliche Gesundheitsbedrohung dar und belasten die Bevölkerung weltweit.
Seit der Antike stellen sie immer wieder eine Herausforderung für das Wachstum und Wohl-
ergehen aller lebenden Organismen, einschließlich des Menschen, dar. Darüber hinaus er-
schwert das Auftreten antimikrobieller Resistenzen das Krankheitsmanagement, verringert die
Wirksamkeit herkömmlicher Behandlungen und stellt die Prävention und Kontrolle vor große
Herausforderungen. Neueste virale Pandemien, wie COVID-19, unterstreichen die dringende
Notwendigkeit wirksamer weltweiter Bereitschafts- und neue Therapiestrategien. Als Reak-
tion auf diese Herausforderungen haben sich die computergestützte Systembiologie und die
In-silico-Modellierung als leistungsstarke Hilfsmittel zur Bekämpfung von Infektionskrank-
heiten erwiesen. Die Vorhersage zellulärer Phänotypen auf der Grundlage von Genotypen ist
unerlässlich, um zu verstehen, wie genetische Variationen den Krankheitsverlauf beeinflussen,
personalisierte Behandlungen anleiten und potenzielle Angriffspunkte für Medikamente identi-
fizieren. In diesem Zusammenhang haben sich einschränkungsbasierte Modellierungsmethoden
herausgebildet, die ein mechanistisches Verständnis der Stoffwechselphysiologie auf der Grund-
lage vorgegebener Einschränkungen und experimenteller Daten ermöglichen. In dieser Arbeit
wird die Systembiologie eingesetzt, um die Genotyp-Phänotyp-Beziehung des Zellstoffwech-
sels zu untersuchen. Insbesondere werden die Anwendungen der einschränkungsbasierten Mo-
dellierung in mehreren Projekten zur Bekämpfung verschiedener Infektionen und antimikrobiell
resistenter Krankheitserreger untersucht.

Der Hauptschwerpunkt des ersten Projekts ist die Vorhersage antiviraler Ziele, wobei System-
biologie und einschränkungsbasierte Modellierung zum Einsatz kommen. Dieses Projekt um-
fasst die Rekonstruktion und Analyse von zellspezifischen Wirts-Virus-Stoffwechselmodellen,
um ausnutzbare Hemmungspfade zu ermitteln. Die hemmende Wirkung der identi-
fizierten Verbindungen wurde auch rechnerisch für mehrere bekannte Varianten validiert.
Die zunehmende Komplexität mathematischer Modelle führt jedoch zu Problemen bei der Qual-
itätskontrolle und Reproduzierbarkeit. Das zweite Projekt konzentriert sich auf die Modell-
standardisierung und -dokumentation, um die Wiederverwendbarkeit und Interoperabilität von
Computermodellen zu verbessern. Es stellt ein auf Python basierende Annotationssoftware vor,
um die Zuordnung von Begriffen der Systembiologie-Ontologie zu automatisieren, indem Ex-
pertenwissen aus Modellstrukturen abgeleitet wird. Das dritte Projekt erforscht die metabo-
lische Modellierung der menschlichen Nasenmikrobiota und konzentriert sich dabei auf einen
bestimmten nosokomialen pathogenen Vertreter namens Acinetobacter baumannii. Es wird die
erste Sammlung von Stoffwechselnetzwerken für verschiedene multiresistente A. baumannii-
Stämme vorgestellt. Ihre Analyse liefert wertvolle Erkenntnisse über stammspezifische meta-
bolische Fähigkeiten und Schwachstellen, die die Entwicklung neuer antimikrobieller Strate-
gien, die auf Stoffwechselwege abzielen, unterstützen könnten. Das letzte Projekt schließlich
untersucht die Stoffwechselphänotypen von Rothia mucilaginosa, einem opportunistischen
Krankheitserreger mit einer vielschichtigen Rolle in Gesundheit und Krankheit. Die Integra-
tion experimenteller Daten sowie die Erstellung des ersten manuell kuratierten metabolischen
Netzwerks zielen darauf ab, potenzielle metabolische Aspekte zu entschlüsseln, die als Schwer-
punkte für zukünftige Forschungsbemühungen dienen könnten.

Die in dieser Arbeit vorgestellten Forschungsergebnisse stellen einen bedeutenden Fortschritt



bei der Bekämpfung von Infektionskrankheiten durch computergestützte Systembiologie und
Stoffwechselmodellierung dar. Durch eine Kombination aus Modellierung, Datenanalyse, Ex-
perimenten und Softwareentwicklung bietet diese Arbeit umfassende Einblicke in bisher uner-
forschte Bereiche und fördert so das Verständnis und die Anwendung systembiologischer
Prinzipien in verschiedenen Bereichen.



Acknowledgments

First and foremost, I would like to extend my sincere appreciation and gratitude to my advi-
sor, Prof. Dr. Andreas Dräger, whose unwavering support has been invaluable throughout my
doctoral studies. His encouragement and expertise have elevated me both personally and aca-
demically, affording me various opportunities to present my work and broaden my skills.

I am also grateful to the members of my thesis advisory committee, Prof. Dr. Oliver
Kohlbacher and Prof. Nathan Lewis, for their insightful feedback and constructive criticism.
Their diverse perspectives enriched and empowered the content of my research.

Furthermore, I am immensely thankful to Prof. Dr. Aurélie Crabbé and the group of the Labo-
ratory of Pharmaceutical Microbiology (LPM) at the University of Ghent for graciously hosting
me, providing training in different experimental protocols, and supporting my envisions. Their
mentorship and guidance have been instrumental in expanding my understanding of microbiol-
ogy. Special thanks should go to Prof. Dr. Simon Heilbronner, PD Dr. rer. nat. Monika Schütz,
and Prof. Dr. Michael Schindler, with whom I had the pleasure of collaborating.

I would also like to express my gratitude to the Interfaculty Graduate School of Infection
Biology and Microbiology (IGIM) for its support, resource provision, and engaging activities,
which have played a crucial role in improving my skills and qualifications. Additionally, I
am thankful to the German Center for Infection Research (DZIF) and the Cluster of Excellence
“Controlling Microbes to Fight Infections” (CMFI) for their financial support, which has enabled
me to pursue and contribute to valuable research in systems biology of infectious diseases.

My final thanks go to my colleagues and peers from the Computational Systems Biology
group at the Eberhard Karl University of Tübingen who have fostered a stimulating working
environment. Over the last three years, we have collected some beautiful memories and had a
lot of fun.

I would like to finish my acknowledgments by expressing my heartfelt thanks and deepest
gratitude to my beloved family. Their unconditional support, boundless encouragement, love,
and belief in me have been instrumental in keeping me motivated throughout this academic
journey.





Contents

List of Abbreviations ix

List of Publications xiii

1 Introduction 1
1.1 Chronicles of infectious diseases . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outbreaks in the 20th and 21st centuries . . . . . . . . . . . . . . . . . . . . . 4
1.3 The looming threat: navigating the next pandemic stemming from bacterial re-

sistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The imperative for pandemic preparedness and global health resilience . . . . . 9
1.5 The crucial role of metabolism in health and disease . . . . . . . . . . . . . . . 9
1.6 Systems biology and mathematical modeling: decoding biological complexity . 10

1.6.1 The power of systems biology in deciphering cellular metabolism . . . 12
1.6.2 Constraint-based modeling and flux balance analysis . . . . . . . . . . 14
1.6.3 Genome-scale metabolic modeling across domains of life . . . . . . . . 16
1.6.4 Computational model language and standardization . . . . . . . . . . . 18
1.6.5 Broad utility spectrum of metabolic models . . . . . . . . . . . . . . . 19

2 Objectives 21

3 Results 23
3.1 Prediction of antiviral drug targets . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Enhancing model standardization and reproducibility . . . . . . . . . . . . . . 29
3.3 Modeling nasal microbiota for infection prevention . . . . . . . . . . . . . . . 32
3.4 Metabolic insights into cystic fibrosis . . . . . . . . . . . . . . . . . . . . . . 39

4 Conclusion 45

Bibliography 47

A Contributions 65

B Paper I: New workflow predicts drug targets against SARS-CoV-2 via me-
tabolic changes in infected cells 67

C Paper II: SBOannotator: a Python tool for the automated assignment of
systems biology ontology terms 101

D Paper III: Exploring the metabolic profiling of A. baumannii for antimi-
crobial development using genome-scale modeling 107

E Paper IV: Genome-scale model of R. mucilaginosa predicts gene essen-
tialities and reveals metabolic capabilities 139

vii





List of Abbreviations

ADP adenosine 5’-diphosphate
AGORA Assembly of Gut Organisms through Reconstruction and Analysis
AIDS acquired immunodeficiency syndrome
AMP adenosine 5’-monophosphate
AMR antimicrobial resistance
API Application Programming transfer Interface
ATP adenosine triphosphate
AUC area under curve
BHI brain heart infusion
BiGG Biochemical, Genetical, and Genomical
BLAST Basic Local Alignment Search Tool
BOF biomass objective function
CAT catalase
CBM constraint-based modeling
CF cystic fibrosis
CFTR cystic fibrosis transmembrane conductance regulator
CoA coenzyme A
COBRA constraint-based reconstruction and analysis
COBRApy constraint-based reconstruction and analysis for Python
COVID-19 Coronavirus Disease 2019
CPEC cyclopentenyl cytosine
CPEU cyclopentenyl uridine
CTP cytidine 5’-triphosphate
CTPS1 cytidine 5’-triphosphate synthase 1
DNA deoxyribonucleic acid
EC Enzyme Commission
ECO Evidence and Conclusion Ontology
EDR energy dissipation reaction
EGC energy-generating cycle
EPSP enolpyruvylshikimate phosphate
FAIR Findable, Accessible, Interoperable, and Reusable
FASTCC fast consistency check
FBA flux balance analysis
fbc flux balance constraints
FC fold change
FDA Food and Drug Administration
FVA flux variability analysis
GEM genome-scale metabolic model

ix



GISAID Global Initiative on Sharing All Influenza Data
GK1 guanylate kinase 1
GMP guanosine 5’-monophosphate
GMPS2 guanosine 5’-monophosphate synthase
GPR gene-protein-reaction association
HBEC human bronchial epithelial cell
HDE host-derived enforcement
HIV human immunodeficiency virus
HMR Human Metabolic Reaction
ICU intensive care unit
ID identifier
IMP inosine 5’-monophosphate
IMPD inosine 5’-monophosphate dehydrogenase
KDPG 2-keto-3-deoxy-6-phosphogluconate
KEGG Kyoto Encyclopedia of Genes and Genomes
LB lysogeny broth
LP linear programming
M9 M9 minimal medium
mAB monoclonal antibodies
mCADRE metabolic Context-specificity Assessed by Deterministic Reaction Evaluation
MDR multidrug-resistant
MEMOTE metabolic model testing
MIRIAM Minimal Information Required In the Annotation of Models
MOMA minimization of metabolic adjustment
mRNA messenger Ribonucleic Acid
MRSA methicillin-resistant strains of Staphylococcus aureus
NAFLD non-alcoholic fatty liver disease
NDPK2 nucleoside diphosphate kinase 2
NDPK3 nucleoside diphosphate kinase 3
NSP non-structural protein
OD optical density
ODE ordinary differential equation
OMEX Open Modeling EXchange format
PATRIC Pathosystems Resource Integration Center
PEP phosphoenolpyruvate
pFBA parsimonious enzyme usage flux balance analysis
PHEIC public health emergency of international concern
PM phenotype microarray
PPI protein-protein interaction
PREDICATE Prediction of Antiviral Targets
RNA ribonucleic acid
ROS reactive oxygen species
RPMI Roswell Park Memorial Institute
SARS severe acute respiratory syndrome



SARS-CoV severe acute respiratory syndrome coronavirus
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SBFC Systems Biology Format Converter
SBGN Systems Biology Graphical Notation
SBML Systems Biology Markup Language
SBO Systems Biology Ontology
SBSCL Systems Biology Simulation Core Library
SCFM synthetic cystic fibrosis sputum medium
SNM synthetic nasal medium
SPODM superoxide dismutase
SQL Structured Query Language
SULFCYS cysteine desulfurase
TSB tryptic soy broth
UMP uridine 5’-monophosphate
UMPK5 uridine 5’-monophosphate kinase 5
UTP uridine 5’-triphosphate
VBOF viral biomass objective function
VMH Virtual Metabolic Human
VOC variants of concern
VZV varicella zoster virus
WHO World Health Organization
XML Extensible Markup Language
XMP xanthosine 5’-phosphate





List of Publications

1. New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in
infected cells
Nantia Leonidou, Alina Renz, Reihaneh Mostolizadeh, and Andreas Dräger
PLoS Comput Biol Volume 19 (2023).
https://doi.org/10.1371/journal.pcbi.1010903

2. SBOannotator: a Python tool for the automated assignment of systems biology on-
tology terms
Nantia Leonidou, Elisabeth Fritze, Alina Renz, and Andreas Dräger
Bioinformatics Volume 39, Issue 7 (2023).
https://doi.org/10.1093/bioinformatics/btad437

3. Exploring the metabolic profiling of A. baumannii for antimicrobial development
using genome-scale modeling
Nantia Leonidou, Yufan Xia, Lea Friedrich, Monika S. Schütz, and Andreas Dräger
PLoS Pathog Volume 20 (2024).
https://doi.org/10.1371/journal.ppat.1012528

4. Genome-scale model of Rothia mucilaginosa predicts gene essentialities and reveals
metabolic capabilities
Nantia Leonidou, Lisa Ostyn, Tom Coenye, Aurélie Crabbé, and Andreas Dräger
Microbiology Spectrum (2023).
https://doi.org/10.1128/spectrum.04006-23

5. Metabolic modeling elucidates phenformin and atpenin A5 as broad-spectrum an-
tiviral drugs
Alina Renz*, Mirjam Hohner*, Maximilian Breitenbach, Jonathan Josephs-Spaulding, Jo-
hanna Dürrwald, Lena Best, Victoria Dulière, Chloé Mialon, Stefanie M. Bader, Raphaël
Jami, Georgios Marinos, Nantia Leonidou, Filipe Cabreiro, Marc Pellegrini, Marcel
Doerflinger, Manuel Rosa-Calatrava&, Andrés Pizzorno&, Andreas Dräger$, Michael
Schindler$, and Christoph Kaleta$

preprints.org (2023). *, &, $ These authors contributed equally.
https://doi.org/10.20944/preprints202210.0223.v3

6. Genome-scale metabolic model of Staphylococcus epidermidis ATCC 12228 matches
in vitro conditions
Nantia Leonidou*, Alina Renz*, Benjamin Winnerling, Anastasiia Grekova, Fabian Grein,
and Andreas Dräger
bioRxiv (2023). * These authors contributed equally.
https://doi.org/10.1101/2023.12.19.572329

xiii

https://doi.org/10.1371/journal.pcbi.1010903
https://doi.org/10.1093/bioinformatics/btad437
https://doi.org/10.1371/journal.ppat.1012528
https://doi.org/10.1128/spectrum.04006-23
https://doi.org/10.20944/preprints202210.0223.v3
https://doi.org/10.1101/2023.12.19.572329




CHAPTER 1
Introduction

The organism is not just a heap of its component parts, but must be regarded as an
organized whole with properties which cannot be predicted from those of the separate parts.

– Ludwig von Bertalanffy

The 21st century has introduced a myriad of challenges and crises that span a broad spectrum,
including environmental, economic, technological, and social domains. Economic inequalities
deepen, contributing to social unrest and unequal resource access, while political instability
and resource scarcity compound these complexities. However, amidst this multifaceted land-
scape, the overarching seriousness lies in the hazards to global health. The Coronavirus Dis-
ease 2019 (COVID-19) pandemic clearly illustrated the interconnectedness of these challenges,
underscoring how environmental degradation, economic imbalances, and scarce global gover-
nance can exacerbate health crises. The rapid spread of infectious diseases, coupled with the
potential for their escalation into pandemics, has become a pressing concern. The rise of antimi-
crobial resistance further complicates disease management, rendering conventional treatments
less effective and increasing the risk of prolonged illness and higher mortality. Simultaneously,
climate change poses an imminent threat, with its cascading effects on ecosystems, weather pat-
terns, and transmission dynamics of infectious diseases1. In the face of a plethora of 21st-century
challenges, there is a shared acknowledgment that interdisciplinary approaches and collaborative
efforts are imperative for protecting global health and cultivating resilience against prospective
threats.

1.1 Chronicles of infectious diseases

Throughout the historical records, diseases and illnesses have persistently afflicted humanity.
From ancient times to the present day, humankind has faced a multitude of infectious diseases,
each leaving a permanent mark on the trajectory of societal and medical development. The
transition from nomadic hunter-gatherer lifestyles to settled agrarian societies (known as the
Neolithic Revolution or First Agricultural Revolution) has facilitated the propagation of infec-
tious diseases within human populations4. This shift provided secured food supplies, promoted
social organization and cultural developments, and initiated trade networks. However, these
Neolithic lifeways, combined with the increasing population density, contributed crucially to
creating environments that favored the transmission and prevalence of various diseases5, 6. New
agricultural practices, including animal domestication, supported interactions between humans
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Figure 1.1: Historical timeline of infectious disease outbreaks. A visual odyssey through ancient
plagues to modern-world diseases. While certain infectious diseases have historical evidence dating
back to earlier times, this figure focuses on their onset and emergence. For instance, leprosy, with
osteo-archaeological evidence traced back to 2000 B. C. in India, reached its zenith during the Cru-
sades and European knights’ era between the 11th and 14th centuries2, 3. In light of the extensive
historical record of pandemics and outbreaks, the future of infectious diseases remains unpredictable.
The lessons learned from the past emphasize the importance of continuous alertness, international
collaboration, and investment in research and preparedness.
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Chronicles of infectious diseases

and animals, spreading vector-borne and zoonotic diseases7, 8. Furthermore, the storage and
surplus of food in agrarian societies attracted pests and rodents, serving as additional vectors
for disease transmission. These interconnected factors highlight how the agricultural evolution
from foraging created conditions conducive to the dissemination of infectious diseases within
human populations9. An extensive visual exploration of infectious diseases spanning prehistoric
to modern epochs is illustrated in Fig. 1.1.

The Athenian Plague of 430 B. C., occurred during the Peloponnesian War and is the earliest
historically recorded pandemic. Thucydides, a survivor of this plague, provided a detailed his-
torical narrative of the outbreak, which originated in Ethiopia and rapidly propagated through
Egypt and Greece10. Centuries later, the Antonine Plague (or the Plague of Galen), weakened
the Roman Empire11, while in the mid-third century, the Plague of Cyprian occurred during
Emperor Carus’ reign12. The causative agents of these historical pandemics remain uncertain,
with possibilities including smallpox, measles, and typhus13–15. In A. D. 541, the Justinianic
Plague, caused by Yersinia pestis, hit the Byzantine Empire with extreme weather and trade-
aiding transmission16. This pandemic, lacking preventive measures, led to widespread mortality
and economic decline17, 18. The medieval Black Death outbreak marked the onset of an al-
most five-century-long pandemic known as the second plague pandemic19. This event ranks
among human history’s most consequential infectious disease disasters, leading to substantial
depopulation. Known as “bubonic plague” due to the swellings on infected bodies, it caused
the death of hundreds of millions and nearly 60 % of the western Eurasian population within
eight years19. Moreover, the pandemic had a substantial and long-lasting influence on demog-
raphy and socioeconomic conditions20. Between the 17th and 18th centuries, a series of “great
plagues” ravaged the European countries (Fig. 1.1). Transmitted by fleas infesting rats, these
events left an enduring mark on history, shaping public health strategies21, 22. It is proposed
that the bacteria might have persisted in rodent reservoirs across Europe, experiencing inter-
mittent re-emergence within the human population over time23. Prior to these plagues, during
the Columbian Exchange, the inadvertent introduction of Old World diseases to the New World
had catastrophic consequences for indigenous populations24. Diseases like smallpox, measles,
typhus, and cholera caused widespread mortality.

Leprosy, caused by Mycobacterium leprae, has been historically documented since 2000 B. C.
in India2, reaching its peak between the 11th and 14th centuries3. Anthropologists in 2009
analyzed a 4,000-year-old Indian skeleton, providing the earliest archaeological proof of M.
leprae infection. Their findings marked a significant milestone in understanding the disease’s
prehistoric presence in India2. Throughout history, leprosy has led to the complete isolation of
affected individuals, with sites like Spinalonga in Crete gaining notoriety as isolation centers
for leprosy patients in Greece25. The WHO recently released alarming data in conjunction with
World Leprosy Day. The report indicates that the disease persists in over 120 countries, with an
annual report of over 200,000 new cases26. Cholera, caused by Vibrio cholerae, is an additional
bacterial infection and an acute gastrointestinal disease transmitted through contaminated water
and food27, 28. The seventh cholera pandemic, originating in Indonesia in 1961, has led to major
epidemics in countries like Haiti and Zimbabwe29, 30.

Nowadays, the exploration of ancient infectious diseases has been revolutionized by techno-
logical progress, particularly through novel palaeogenetic and palaeoproteomic approaches31.
A notable and recent example of this advancement is elucidating the origins of the Black Death,
whose geographical origin has long puzzled scientists, with potential locations spanning from
Western Eurasia to East Asia and China. In 2022, Spyrou et al. identified the Tian Shan region in
present-day Kyrgyzstan as the most likely epicenter of the plague32. Archaeologists unearthed
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numerous graves dating back to 1338–1339, containing inscriptions in Syriac language linking
the cause of death to the plague. Genetic analysis of deoxyribonucleic acid (DNA) from the teeth
of seven skeletons in two cemeteries in the area, coupled with the detection of Y. pestis in three
of them, supported this conclusion. Altogether, integrating molecular evidence with conven-
tional methods enables researchers to reassess established assumptions. This approach allows
for the analysis of patterns within human genomes, yielding valuable insights into prehistoric
populations and opening novel research avenues.

1.2 Outbreaks in the 20th and 21st centuries

From the 19th century onward, following the discovery of the tobacco mosaic virus in 1892,
viral pandemics became increasingly prevalent33. In recent years, the rising trends in global and
regional air travel, trade, and urbanization have intensified the frequent movement of people and
goods. This influx not only favors the emergence of problematic pathogens but also enhances
the likelihood of novel variants evolving, endangering global health34.

The “Russian flu” pandemic spanned five years and was the first well-described respiratory
pandemic35. Two and a half decades later, a series of flu pandemics erupted, with the first being
the “Spanish flu”, caused by the H1N1 subtype of the influenza A virus (A/H1N1) and claim-
ing over 50 million people worldwide36. Further significant flu pandemics that marked the 20th
century include the “Asian flu” (A/H2N2) and the “Hong Kong flu” (A/H3N2), both originat-
ing from genetic reassortment37. A further descendant of the 1918 pandemic virus emerged
in 2009 as a triple reassortment of human, avian, and swine influenza viruses38. Although the
World Health Organization (WHO) reported 18,631 deaths confirmed by laboratory tests, a study
from 2013 re-estimated the mortality rates39. Their calculations revealed a substantial pandemic
mortality burden, attributing between 148,000 and 249,000 respiratory fatalities to influenza in
an average non-pandemic period. The HIV/AIDS outbreak, which first gained recognition in
the early 1980s, elicited considerable public concern as it progressed to acquired immunodefi-
ciency syndrome (AIDS) and eventually resulted in fatalities. In 2022, approximately 630,000
individuals died from AIDS-associated illnesses, and nearly 40 million people were infected40.
The response to HIV/AIDS has since involved extensive research, medical advancements, and
public health initiatives, making it a pivotal chapter in the ongoing pursuit of understanding
and combating infectious diseases41. Moreover, the Ebola virus, originated in 1976 within the
Democratic Republic of Congo and Sudan, causing severe hemorrhagic fever with high death
rates42. The virus, transmitted to humans from wildlife (fruit bats), led to sporadic outbreaks in
Central Africa and a severe public health crisis in 2014, with its epicenter in West Africa43.

In late December 2019, the world witnessed the onset of a significant global outbreak char-
acterized by clustered cases of pneumonia of unknown etiology. These cases were reported in
Wuhan, the capital of Hubei province in China, marking the beginning of a devastating event
with substantial losses. By early 2020, following the exclusion of common respiratory viruses
with similar symptomatology, a novel coronavirus, named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was found to be responsible for this outbreak44. Coronaviruses,
part of the Coronaviridae family, are enveloped viruses categorized into four genera: alpha-,
beta-, gamma-, and delta-coronaviruses45. They consist of positive-sense single-stranded ri-
bonucleic acid (RNA) and can infect humans and various animal species. Their genetic makeup
is composed of non-structural proteins (NSPs) and four structural proteins, namely the spike
(S), nucleocapsid (N), envelope (E), and membrane (M) proteins45. The newly emerged beta-
coronavirus, SARS-CoV-2, exhibits genetic resemblance to severe acute respiratory syndrome
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The looming threat: navigating the next pandemic stemming from bacterial resistance

coronavirus (SARS-CoV), with approximately 80 % similarity in their genomes44. It belongs to
the fourth Baltimore group of viruses, meaning it utilizes a template “-” single RNA antisense
strand to synthesize messenger Ribonucleic Acid (mRNA)46. Since its discovery, SARS-CoV-2
has spread globally, causing millions of cases and deaths47. On March 11, 2020, the WHO de-
clared the pneumonia outbreak a pandemic, terming the resulting disease a COVID-1948. This
led to extraordinary measures worldwide, such as large-scale quarantines, activity suspensions,
and travel restrictions. Notably, the emergence of SARS-CoV-2 has led to re-evaluating histor-
ical influenza outbreaks. For years, it was believed that the “Russian flu” was caused by the
bacterium, named Bacillus influenzae (now Haemophilus influenzae)49, and later by the human
Myxovirus influenzae50. However, scientific investigations from the early 21st century suggested
that the pandemic was likely triggered by the human coronavirus OC43 (HCoV–OC43)51, 52.
Symptoms observed during the “Russian flu”, including the distinctive loss of smell and taste,
resembled more to COVID-19 than to influenza, while genetic comparisons with OC43 strains
supported the observations51, 52. This paradigm shift underscores the dynamic nature of our
understanding of historical pandemics in the light of contemporary viral insights.

SARS-CoV-2 variants of concerns (VOCs) have been a prominent aspect of the COVID-19
pandemic, introducing complexities to disease dynamics, transmission patterns, and public
health strategies53. The last VOCs designated by the WHO included the Alpha, Beta, Gamma,
Delta, and Omicron variants54. Structural protein mutations represent a frequent occurrence,
introducing complications in the pathogenesis pathway55, 56. Another important aspect of the
COVID-19 has been the post-acute sequelae of SARS-CoV-2 infection, or Long COVID. During
this condition, individuals experience persistent and long-term symptoms after the acute phase
of COVID-19 has resolved57. While many people recover within a few weeks, some individuals,
including those with mild or asymptomatic initial infections, experience a variety of symptoms
persistently over an extended period, lasting for months. The symptoms of Long COVID vary
and can afflict multiple organ systems as well as mental health57–60. The WHO declared on May
5, 2023, the end of the public health emergency of international concern (PHEIC) status for
COVID-1961. However, it is crucial to note that this declaration does not signify the elimination
of the virus as a considerable threat to global public health. As of April, 2024, the global impact
of the pandemic includes over 7 million reported deaths and more than 775 million confirmed
cases worldwide62. The virus continues to claim lives worldwide, and the potential emergence of
new variants remains a constant risk. Ongoing surveillance and genomic sequencing are crucial
for promptly identifying emerging variants and assessing their impact on disease dynamics. The
dynamic nature of SARS-CoV-2 evolution underscores the importance of adaptability in vacci-
nation strategies and public health interventions to effectively navigate the challenges posed by
emerging variants throughout the pandemic.

1.3 The looming threat: navigating the next pandemic stemming
from bacterial resistance

The resurgence of infectious diseases once believed eradicated, is a global concern, particularly
impacting vulnerable populations and low- to middle-income countries with limited healthcare
resources63. Additionally, despite being preventable and treatable, numerous bacterial infec-
tions remain a substantial threat to public health around the globe. For instance, tuberculosis
continues to pose a challenge, with approximately 1.6 million deaths reported in 202264. The
infectious diseases spectrum is evolving rapidly in tandem with many shifts influenced by differ-
ent factors. Prominent determinants acting as driving forces for the (re)emergence of infectious
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diseases are social, economic, political, physical, and ecological factors65, 66. Climate change
represents not only an environmental crisis but also a public health emergency67. Another driver
of (re)emerging infectious diseases is the constantly increasing population growth, migration,
urbanization, and worldwide travel63, 68, 69.

Most importantly, the excessive and unnecessary use of antimicrobials has fueled the emer-
gence of antimicrobial resistance (AMR) by weakening the efficacy of treatments worldwide.
The historical timeline of antibiotic development begins in the early 20th century with the dis-
covery of the arsenic-based pro-drug salvarsan70, followed by the breakthrough of penicillin71.
This breakthrough revolutionized bacterial infection treatment, paving the way for new antibi-
otics. The current AMR crisis has been exacerbated by a gradual decrease in the discovery
and development of novel antibiotics, coupled with the evolution of drug resistance among nu-
merous human pathogens. In February 2022, Murray et al. published the first comprehensive
and large-scale evaluation of the global AMR burden72. For 2019, their predictive statistical
models indicated 4.95 million fatalities directly linked to AMR, with a heightened impact ob-
served in low-resource systems. Additionally, pathogen–drug combinations, like the MRSA,
have caused over 100,000 deaths attributable to AMR in 201972. Nonetheless, a recent report
estimates that AMR is anticipated to result in 10 million deaths annually by 205073. Finally,
the increased use of antibiotics as growth-promoting supplements during food-animal produc-
tion heavily impacts the development of resistance mechanisms and the efficacy of bacterial
treatments worldwide74, 75.

The highly virulent ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.)
pathogens have been reported to be responsible for 3.57 million AMR-associated deaths72.
In 2017, the WHO announced a list of bacteria with an urgent need for novel and effective
therapeutic strategies76. Within this catalog, members of the ESKAPE pathogens were assigned
the “critical status”, including Acinetobacter baumannii. Over the years, extensive research
has underscored the threat posed by this Gram-negative pathogen within hospital settings77, 78.
This concern stems from its inherent resistance to antimicrobial agents, including biocides79, 80.
A. baumannii (from the Greek word akínētos, meaning “unmoved”) is a non-motile, rod-shaped,
and strictly aerobic bacterium. This opportunistic pathogen has a highly adaptable genetic
makeup that has led to its endemic presence in intensive care units (ICUs). It primarily affects
patients with compromised immune systems, causing various infections such as pneumonia,
bacteremia, and endocarditis. The carbapenem-resistant A. baumannii is particularly concern-
ing, especially as it poses a serious global threat with high mortality rates81. Moreover, it has a
propensity to target exposed surfaces and mucous tissues, often colonizing the human nose and
showing close associations with infections like those caused by SARS-CoV-282–85. Despite its
adaptability, A. baumannii has shown susceptibility to conventional drugs, like aminoglycosides,
β -lactams, and polymyxins86.

The looming threat of the next pandemic caused by bacteria is a complex concern going be-
yond the direct infectious agents themselves. While infectious bacteria undoubtedly constitute a
significant risk, the danger is compounded by non-infectious conditions that create an environ-
ment conducive to bacterial proliferation. Underlying non-communicable diseases like diabetes,
obesity, and cardiovascular conditions compromise the body’s immune system, rendering in-
dividuals more susceptible to bacterial infections87, 88. Additional factors, such as antibiotic
overuse and insufficient healthcare infrastructure, can exacerbate the spread of bacterial infec-
tions. Cystic fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conduc-
tance regulator (CFTR) gene, is an inherited genetic disorder characterized by autosomal reces-
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Figure 1.2: The dual role of R. mucilaginosa in health and disease. As an opportunistic pathogen,
R. mucilaginosa acts in individuals with compromised immune functions, leading to severe infec-
tions such as endocarditis and sepsis. Concurrently, it produces compounds necessary for P. aerugi-
nosa to synthesize essential primary metabolites like glutamate. On the other hand, R. mucilaginosa
has demonstrated anti-inflammatory properties in the lower respiratory tract, while by producing
enterobactin, it exhibited increased virulence against oral microbiota and four methicillin-resistant
strains of Staphylococcus aureus (MRSA) strains. These findings suggest its potential involvement
in both pathogenic and protective mechanisms within the human microbiome.
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sive inheritance89. This means that the individual inherited two copies of the defective CFTR
gene, one copy from each parent. It is a life-limiting disorder that disrupts the transepithelial
movement of sodium and chloride ions, resulting in the production of thick and sticky mucus
within the airways90. It has been estimated that over 160,000 people live with CF worldwide,
while 19,516 receive a triple combination of drugs (ivacaftor, tezacaftor, and elexacaftor)91. It
is characterized as progressive and multisystemic since it leads to ongoing damage and dysfunc-
tion of various organ systems, particularly the respiratory and digestive systems92. Moreover,
the compromised immune clearance creates a hypoxic environment93, encouraging the coloniza-
tion of opportunistic microbes, fungi, and viruses94. This, leads to the development of persistent
and recurrent infections. Chronic respiratory infections are a significant concern for people with
cystic fibrosis, and managing them is an essential aspect of CF care.

Several key microbial species play significant roles in CF progression. Early in life, CF envi-
ronment often involves bacteria such as S. aureus and H. influenzae95. However, chronic infec-
tions become more prevalent as the disease progresses and are typically caused by bacteria like
P. aeruginosa or species within the Burkholderia cepacia complex95. These microbial species,
along with respiratory viruses, are widely recognized as important CF pathogens, driving inflam-
matory responses and contributing to lung diseases in affected individuals. However, metage-
nomic sequencing analyses have revealed the high prevalence and increased metabolic activity
of a lesser-studied microorganism, called Rothia mucilaginosa, in the lungs of CF patients96, 97.
Guss et al. and Bittar et al. described R. mucilaginosa as a “newly” emerged bacterium among
CF patients98, 99. Additionally, Lim et al. suggested that R. mucilaginosa is frequently encoun-
tered and metabolically active within the CF airways100. R. mucilaginosa is a Gram-positive,
non-motile, encapsulated, and non-spore-forming bacterium of the Micrococcaceae family101. It
typically grows aerobically but can switch to anaerobic growth through fermentation or alterna-
tive pathways, making it an opportunistic microorganism. It is commonly found as a commensal
in the oral, lower and upper respiratory tracts, as well as on the skin101–105.

R. mucilaginosa exhibits a complex role in human health, serving both beneficial and harmful
functions, as illustrated in Fig. 1.2. While generally is a harmless commensal, it can become op-
portunistic, causing infections in immunocompromised individuals. More specifically, it acts as
the etiological agent of serious infections such as sepsis, endocarditis, and meningitis106. More-
over, Gao et al. demonstrated that P. aeruginosa relies on compounds produced by R. mucilagi-
nosa to synthesize essential primary metabolites such as glutamate107. This symbiotic relation-
ship may contribute to the pathogenesis of P. aeruginosa within CF lungs. On the other hand,
Rigauts et al. uncovered the anti-inflammatory characteristics of R. mucilaginosa within the
lower respiratory tract, suggesting a potential impact on the severity of chronic lung diseases108.
Their work explicitly shows how R. mucilaginosa suppresses pro-inflammatory reactions trig-
gered by pathogens or lipopolysaccharides, employing a three-dimensional cell culture model
and in vivo mouse model. Nonetheless, in 2020, Uranga et al. revealed that R. mucilaginosa
produces enterobactin, the strongest Fe3+-binding archetypal siderophore known109. This con-
tributed to its high virulence against various oral microbiota, including cariogenic organisms
like A. timonensis, S. mutans, and Streptococcus sp., as well as against four MRSA strains. En-
terobactin enables scavenging, chelating, and transporting ferric ions from their environment110.
This ability is crucial for bacterial survival, especially in environments with limited iron avail-
ability, as it supports their growth and metabolic processes. Finally, Janek et al. showed that
R. mucilaginosa is prominently present in the nasal microbiome, underscoring its significant
prevalence111. Additionally, the researchers observed its susceptibility to specific staphylococ-
cal bacteriocins, suggesting substantial competition with nasal staphylococci and highlighting
the influential role of bacteriocins in modulating the nasal microbiota.
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1.4 The imperative for pandemic preparedness and global health
resilience

The long history of global pandemics has shaped the healthcare systems, medicine, and research,
highlighting the importance of timely identification and surveillance of emerging threats. More-
over, COVID-19 demonstrated the remarkable progress possible through collaborative research
efforts. This underscores the critical role of sustained investment in scientific research, tech-
nological innovation, and expedited vaccine deployment to protect global populations112. Vul-
nerabilities in healthcare systems worldwide have been revealed, calling for the reinforcement
of healthcare infrastructure. Additionally, the pandemic illuminated existing health disparities,
emphasizing the urgent need for equity in healthcare113. Over the last 20 years, medical advance-
ments and improved healthcare have reduced morbidity and mortality from infectious diseases,
especially associated with infections in the lower respiratory tract and diarrheal diseases34. How-
ever, the burden remains high in low- and middle-income countries, particularly for neglected
tropical diseases, such as human immunodeficiency virus (HIV), tuberculosis, and malaria34.
Notably, in 2017, the WHO estimated that at least half of the world still lacks access to essential
healthcare114. Furthermore, it is crucial to remember that the emergence of COVID-19 was not
entirely unforeseen. Scientific studies and warnings dating back to 2007 had identified China as a
potential hotspot for a virus outbreak. Factors such as animal-related eating habits, the presence
of SARS-CoV-like viruses in horseshoe bats, and the recombination ability of coronaviruses
were identified as potential risk factors115. Despite these warnings, COVID-19 emerged, under-
scoring the importance of heeding signs and indicating how ignoring the warnings can lead to
devastating consequences.

Looking ahead, the concept of “Disease X” reminds us of the unpredictable nature of infec-
tious diseases. The WHO coined this term to represent a hypothetical, unidentified pathogen
capable of triggering a forthcoming epidemic or pandemic116. The future threat lies in the emer-
gence and re-emergence of infections. Once again, urbanization, shifting land-use trends, and
climate change are driving factors expected to promote disease emergence. These factors are
exacerbated by global travel and trade, which facilitate the rapid spread of pathogens. Address-
ing this evolving landscape necessitates a more forward-looking research within a collaborative
global framework dedicated to advancing infectious disease control and research. Measures for
pandemic preparedness involve developing and enhancing early warning systems, strengthen-
ing international collaboration, investing in research and development, building resilient public
health infrastructures, and actively engaging communities. Incorporating the lessons learned
from COVID-19 into future public health strategies will better position us to mitigate the impact
of emerging health threats and protect the worldwide well-being.

While preventing the emergence of novel pathogens present considerable difficulties, it is
possible to effectively confront new diseases or at least decrease the risk of their dissemination.
In this regard, the shared global objective is to develop strategies, treatments, and vaccines that
can be deployed rapidly in response to unexpected health challenges.

1.5 The crucial role of metabolism in health and disease

As described previously, historically and presently, infectious diseases continually threaten pub-
lic health, exemplified by recent viral pandemics like COVID-19. Despite advancements in
healthcare and disease management, these challenges persist, underscoring the need for preven-
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tive measures. Only through a holistic understanding and coordinated efforts can we effectively
address the synergistic impact of infectious diseases, viral pandemics, and AMR on a global
scale.

The metabolism, intimately linked to a cell’s phenotype, stands as the most reliable indicator
of its physiological state117. It refers to a large and complex network of interconnected biochem-
ical conversions called reactions. Enzymes catalyze the majority of reactions in a process called
catalysis. The metabolic network is subdivided into pathways. Each pathway is specialized
in converting nutrients into various essential building blocks such as amino acids, nucleotides,
and lipids required for cellular development and function. As a result, energy is produced to
support various cellular functions, including biomass generation, cell reproduction, maintaining
homeostasis, and facilitating biosynthetic processes. The BioCyc database118 and the Kyoto En-
cyclopedia of Genes and Genomes (KEGG)119 are examples of comprehensive repositories of
metabolic pathways. Metabolism both impacts and is impacted by cellular processes. Numer-
ous studies have underscored its pivotal role in diverse diseases and conditions, such as diabetes,
cancer, and neurodegeneration.

Metabolic alterations in cancer cells influence the development and progression of hemato-
logical malignancies, including leukemia, and contribute to immune evasion120. Targeting the
metabolic vulnerabilities of leukemic cells, such as glycolysis, fatty acid oxidation, and lipid
biosynthesis, could provide promising therapeutic opportunities, considering especially non-
responsive patients121. Furthermore, metabolic reprogramming is crucial in coordinating the
immune response, while targeting metabolism has emerged as a potential therapeutic strategy
in chronic inflammation122. Disruptions in metabolic pathways, such as glycolysis and lipid
metabolism, not only contribute to cancer proliferation but also correlate with conditions like
diabetes, atherosclerosis, obesity, cardiovascular diseases, and Alzheimer’s disease123–128. In
the context of bacterial metabolism, previous studies indicate that the metabolic state of bacteria
not only affects their susceptibility to antibiotics but is also reciprocally influenced by them129.
Metabolomic studies have shown that antibiotic treatment can alter the metabolite abundance and
disrupt bacterial metabolic processes130. Consequently, researchers have explored the potential
of exogenous metabolite supplementation in laboratory, animal, and computational studies to
activate bacterial metabolism, thereby enhancing the effectiveness of antibiotics. Additionally,
deciphering bacterial metabolic modulation can also provide insights into the expression of vir-
ulence genes131, the behavior of bacterial communities132, and the bacterial-host interactions133.

Finally, viruses, being metabolically inert, rely on host cell metabolism for replication and
energy acquisition134. They induce cellular changes and rely on host cells for necessary macro-
molecules, evolving strategies to manipulate host cell metabolism. This genetic manipula-
tion prompts infected cells to produce more virus particles and results in increased metabolic
changes135. Hence, understanding the metabolic alterations upon viral infections is crucial136.
Altogether, a system-wide comprehension of the thousands of reactions and metabolites com-
prising metabolism is paramount for future therapeutic purposes.

1.6 Systems biology and mathematical modeling: decoding biolog-
ical complexity

The definition and origins of systems biology have been a subject of debate for the past two
decades within the research community137–139. While it is often perceived as a relatively recent
field, its roots can be traced back to earlier scientific endeavors. The conceptual framework of
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systems biology emphasizes the study of biological systems as integrated and interconnected
networks. This approach is inspired by various disciplines such as cybernetics, mathematical
biology, and systems theory140, 141. Pioneers in these fields, including Norbert Wiener, War-
ren Weaver, Paul A. Weiss, and Ludwig von Bertalanffy, laid the groundwork for understand-
ing complex systems in biology as early as the mid-20th century. Their insights into feedback
mechanisms, holistic approaches to studying living organisms, and the dynamics of biological
systems have established the foundation for the evolution of modern systems biology. O’Malley
et al. recognizes two classes of systems biology: “systems-theoretic biology” and “pragmatic
systems biology”137. The former emphasizes a holistic approach rooted in developmental biol-
ogy, aiming to understand biological issues through comprehensive system analysis. Conversely,
“pragmatic systems biology” focuses on the post-genomic era, leveraging computational models
and modern technological tools to investigate molecular interactions.

Radical technological advancements emerging in the mid-1990s and early 2000s marked mile-
stones in systems biology, impacting our understanding of biological systems. The first bacterial
genome sequencing142 and the completion of the Human Genome Project143 have played a piv-
otal role in shaping the landscape of systems biology. They providing foundational data and
methodologies for studying biological systems at the whole-genome level. More specifically,
the sequencing of the H. influenzae genome in 1995 marked a remarkable breakthrough, offer-
ing insights into the genetic makeup of organisms and catalyzing improvements in sequencing
technologies142. Similarly, the completion of the Human Genome Project in 2003 provided an
extensive catalog of human genes, laying the foundation for studying gene expression, protein
interactions, and genetic variation on a genome-wide scale143. Additionally, the complexity of
biological systems became increasingly apparent, making clear that traditional reductionist ap-
proaches alone were insufficient to fully understand biological phenomena144. These aspects
were the driving forces for the rise of systems biology as a scientific discipline that emphasizes
in studying the biological systems as dynamic and interconnected networks rather than focusing
solely on individual components145.

Despite the different opinions on the definition of systems biology, mathematical modeling,
quantitative determination of dynamic responses within living cells, and globalism are inte-
gral components of a consensus definition145–148. They are commonly acceptable denomina-
tors that are instrumental in elucidating the complexities of biological systems. Nowadays, it
is conventionally endorsed that the systems biology discipline combines mathematical model-
ing and computational approaches to study biological systems149. Defining and understanding
the genotype-phenotype relationships has been a prominent challenge in this field. While in
straightforward instances of monogenic traits where a single gene represents a phenotype, most
phenotypic characteristics result from the interplay of multiple gene products. This compli-
cates the elucidation of the links between genotype and phenotype150. The primary goal is to
contextualize and interpret various large-scale biological data and unravel the mechanisms of
complex systems via an iterative approach. Modeling techniques in systems biology are often
distinguished into two categories: top-down and bottom-up. These two classes complement each
other and are employed depending on the study’s objectives150, 151. Top-down systems biology
relies on data analysis, extracting biological understanding from high-throughput omics data.
Soft models like statistical models or neural networks are often used, with the analysis typi-
cally being inductive, leading to hypothesis formation and subsequently to model generation151.
Conversely, bottom-up systems biology relies on existing knowledge translated into mathemat-
ical representations employed to simulate the system’s behavior150, 151. This approach requires
evaluation and validation of the different model structures due to limited knowledge availability.
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Figure 1.3: Integrated process for the reconstruction and analysis of genome-scale metabo-
lic models. The network reconstruction begins with functional annotation, which involves linking
genes with enzymatic functions. This process results in a preliminary draft mathematically repre-
sented by the stoichiometric matrix S. Constraint-based analysis and linear optimization techniques
explore metabolic flux distributions within the solution space, allowing comprehensive exploration
of metabolic behaviors. The final model has broad applications in bioengineering, biotechnology,
disease understanding, personalized medicine, and drug discovery.

Biological networks are invaluable mathematical tools to represent pairwise connections be-
tween various biological entities. They are utilized to understand the interactions among com-
ponents within a biological system and their collectively functionality is crucial for compre-
hending an organism’s behavior. According to graph theory, biological networks consist of two
basic elements: nodes (or vertices) representing individual components and edges depicting their
interactions152. Depending on the network type, the edges can be directed or undirected. An es-
sential aspect derived from these networks is the degree of a node, which indicates the number of
edges connected to a node (i.e., its adjacent nodes). Biological networks enable the visualization
and analysis of complex biological phenomena, offering insights into the structure, dynamics,
and emergent properties of living systems153. They play a pivotal role in bioinformatics, systems
biology, and network biology, facilitating the elucidation of cellular signaling pathways, regu-
latory networks, metabolic pathways, and disease mechanisms. Five main types of biological
networks can be categorized based on the type of information they represent: gene interaction,
metabolic, protein-protein interaction (PPI), transcriptional (gene) regulatory, and cell signaling
networks154. Additionally, whole-cell models arose aiming to simulate the behavior of an entire
living cell, encompassing its diverse molecular processes and interactions155–157. These models
integrate data from various omics studies, including genomics, transcriptomics, proteomics, and
metabolomics, to capture key cellular functions comprehensively. With this, they simulate the
connection between metabolism and other cellular functions associated with cellular growth.

1.6.1 The power of systems biology in deciphering cellular metabolism

Cellular metabolism, being the sum of all biochemical reactions, can be modeled at a genomic
scale and is the most extensively described biological network that enables the analysis of
genotype-phenotype relationships158, 159. As a surrogate for phenotype, it reveals changes re-
sulting from individual or combined x-omics or physiological factors. The well-studied me-
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tabolic biochemistry and the increasing availability of annotated genomic sequences expedited
the bottom-up assembly of comprehensive biochemical reaction networks. These metabolic net-
works are called genome-scale metabolic models (GEMs) and consist of interconnected path-
ways of all known biochemical reactions involving genes, metabolites, enzymes, and other
molecules within a cell160. Within GEMs, vertices represent chemicals, or metabolites, that
are either produced or consumed by other molecules forming multiple reactions153. These net-
works are structured as directed graphs, wherein each edge signifies a biochemical reaction. In
irreversible reactions, edges have a single direction, while reversible reactions are represented by
edges with double directionality. This organization reflects the flow of metabolites and the direc-
tionality of biochemical transformations within the metabolic network. The iterative bottom-up
reconstruction and analysis of GEMs involves five main steps, as illustrated in Fig. 1.3. It be-
gins with the functional annotation of the genome and the establishment of links between genes
and enzymatic functions. These links are called gene-protein-reaction associations (GPRs) and
facilitate the integration of genetic information into constraint-based metabolic networks. There
are several types of GPRs, each represented in Boolean logic and depicting different scenarios,
including isozymes, protein complexes, multifunctional enzymes, and single enzymes161. The
simplest form is the “AND” rule, where all genes in a set are required for the associated reaction
to occur. Conversely, the “OR” rule dictates that any gene within a set can catalyze the reac-
tion independently. Additionally, more complex rules may involve combinations of “AND” and
“OR” relationships, allowing for intricate representations of genetic dependencies within the
metabolic network162. These rules are crucial for defining the phenotypic outcomes of genetic
alterations, as well as elucidating the mechanisms driving a specific phenotype. The annotated
genome is used to build a preliminary draft reconstruction that is converted into a mathematical
representation called a stoichiometric matrix.

In metabolic modeling, the stoichiometric matrix S serves as a foundational element, encap-
sulating the relationships between metabolites and reactions within a biological system150. This
data matrix entails m rows and n columns, where m is the number of metabolites and n is the
number of reactions in the model. Typically, in a biological network, it holds n > m150. The en-
tries within the stoichiometric matrix, consisting of integers, adhere to chemical principles, thus
facilitating the balance of metabolic networks. These integers, known as stoichiometric coeffi-
cients, quantitatively express the relative amounts of metabolites involved in reactions, thereby
ensuring the preservation of mass and the coherence of reaction equations150. Mathematical
descriptions of concentration changes over time are done using systems of ordinary differential
equations (ODEs) based on reaction rates. Irreversibility or reversibility of reactions is not di-
rectly included in S. However, the signs of coefficients within the matrix denote whether the
metabolite is produced (positive sign) or consumed (negative sign)150. Overall, the S matrix
derived from genomic and bibliomic data embodies diverse attributes (e.g., physicochemical,
genetic, biological, mathematical, systemic), ensuring species-specific metabolic networks and
enabling precise computational analyses of metabolic dynamics150. The dynamic mass balance
equation is a fundamental principle in metabolic network modeling that describes how the con-
centrations of metabolites change over time due to metabolic reactions150, 163. Mathematically,
it is expressed as

d⃗x
dt

= S · v⃗, (1.1)

where x⃗ represents the vector of metabolite concentrations, S is the stoichiometric matrix, and
v⃗ denotes the vector of reaction fluxes150. The stoichiometric coefficients are denoted by si j.
This equation ensures that mass is conserved in the system, meaning that the total amount of
each metabolite remains constant over time. When metabolite concentrations remain constant,
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even though reactions may still have fluxes, the system is considered to be in a steady-state,
characterized by

S · v⃗ = 0⃗. (1.2)

Additionally, the dynamic mass balance equation serves as the foundation for simulating and
predicting the behavior of metabolic networks under different physiological conditions, aiding
in the design and optimization of biotechnological processes.

1.6.2 Constraint-based modeling and flux balance analysis

A frequently utilized powerful approach for analyzing the metabolism is the systems-level
constraint-based modeling (CBM) of metabolic networks. Over the past years, an extensive
array of constraint-based reconstruction and analysis (COBRA) techniques and algorithms for
analyzing GEMs has been developed and encapsulated in computational frameworks164, 165. Un-
like traditional kinetic models, CBM does not rely on detailed kinetic data but instead employs
mass balance principles across the metabolic network. It involves leveraging mathematical con-
straints to explore and analyze the complex interactions within biological systems. At its core,
constraint-based modeling relies on the stoichiometry of biochemical reactions, which is cap-
tured in the stoichiometric matrix (stoichiometric modeling). Within the allowable space defined
by constraints (e.g., such as mass balance, thermodynamic feasibility, and enzyme capacities),
the network can adopt various flux distributions, while any points lying outside it are restricted
by the imposed constraints166, 167. This approach allows the prediction of metabolic flux dis-
tributions and the detection of optimal solutions that maximize or minimize specific objectives,
such as growth rate or production yield. Moreover, constraint-based analysis provides valuable
insights into metabolic network properties, such as robustness, flexibility, and response to ge-
netic perturbations. When no constraints are imposed, the model simulates the uptake or release
of compounds at arbitrary rates that do not reflect real biological systems. Hence, constraints are
necessary to approximate the flux solution space with that of living systems, typically represent-
ing known growth patterns. Constraints are mathematically depicted as balances (represented by
an equation) or bounds (represented by an inequality)150. Balance constraints can be the conser-
vation of mass, osmotic pressure, and conservation of energy, while thermodynamic or capacity
constraints are examples of bound constraints.

Since the late 1990s, the field of COBRA has evolved to analyze allowable phenotypic states
on a genome-scale150. COBRA methods heavily rely on optimization techniques, including lin-
ear programming (LP), which is used when the problem involves linear constraints and a linear
objective function. A widely used computational technique in systems biology to investigate the
behavior of metabolic networks is the flux balance analysis (FBA)167, 168. FBA relies on the as-
sumption of a steady-state condition and employs linear optimization methods to predict the flux
distribution of biochemical reactions within the network. Its objective is to find the best solutions
within the solution space delineated by a convex polytope. This space encompasses all possi-
ble flux distributions that satisfy the specified constraints, enabling a thorough investigation of
metabolic behaviors under different environmental conditions. Linear programming is applied,
as the system is under-determined (n > m) and is algebraically unsolvable169. The underlying
maximization problem is mathematically expressed as follows:

maximize Z = cT v⃗
subject to: S · v⃗ = 0⃗

vmin ≤ vr ≤ vmax for r ∈ {1, . . . ,n}
∀r ∈ I : 0 ≤ vr,

(1.3)
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where S is the stoichiometric matrix, v⃗ is the vector of fluxes within the network, Z is the linear
objective function, I represents an index set containing the indices of all irreversible reactions,
and c⃗ is the vector of coefficients. At its core, FBA relies on optimizing (maximize or minimize)
an objective function168. The objective function is built by a linear combination of fluxes that
quantifies the contribution of each reaction to the phenotype. Therefore, it is vital for comput-
ing the optimal network state and flux distribution, addressing the challenge posed by the large
solution space of genome-scale networks. Different objective functions are used in metabolic
network analysis. These include minimizing adenosine triphosphate (ATP) production to assess
energy efficiency and studying nutrient uptake to understand metabolic function in minimal nu-
trient environments162. Additionally, maximizing metabolite production and biomass formation
are common objectives, aiming to determine a cell’s biochemical production capabilities and
maximal growth rate.

When predicting bacterial cellular growth, the focus is on generating biomass, indicating the
rate at which metabolic compounds transition into biomass components like lipids, proteins,
nucleic acids, and species-specific components168, 170. Biomass production is represented in
silico via incorporating a pseudo-reaction, called biomass objective function (BOF). This is
added as an additional column in the stoichiometry matrix, mimicking the consumption of pre-
cursor metabolites needed for biomass synthesis. By optimizing the objective function subject
to the constraints of the metabolic network, FBA can predict the flux distribution of metabolic
reactions that maximize biomass production under specific environmental conditions. The pa-
rameters of the biomass reaction are derived from experimental data on biomass constituents,
and the reaction is adjusted so that the flux through it is equivalent to the organism’s exponential
growth rate (µ). In essence, FBA enables the determination of metabolic fluxes that best support
cellular growth and viability, providing valuable insights into cellular metabolism and pheno-
typic behavior. Like the maintenance function in eukaryotic models or biomass production in
prokaryotic models, the viral biomass objective function (VBOF) serves as a surrogate reaction
that imitates the generation of virus particles171. The objective function, together with the de-
mand, exchange, and sink reactions, belong to the class of pseudo-reactions. These reactions
are not inferred from the genome and are incorporated within the model purely for modeling
purposes150, 162. Demand reactions irreversibly consume metabolites stored within the system,
while sinks are reversible and supply metabolites to the system that are generated by external
reactions. Similarly, exchange reactions transfer metabolites between the different in silico cel-
lular compartments. Sink and demand reactions influence intracellular metabolites, whereas
exchanges consider extracellular metabolites. Overall, pseudo-reactions enable the modeling of
the metabolites’ exchange between intracellular space and the external environment. Adding
these reactions along with various transporters into the network decreases the amount of or-
phan (those solely consumed) and dead-end (those solely produced) metabolites and improves
network connectivity162.

Flux variability analysis (FVA) complements FBA by evaluating the range of feasible flux
values for each reaction, providing insights into the variability of metabolic fluxes under differ-
ent conditions or constraints150, 172. By systematically perturbing the objective function while
maintaining the constraints, FVA calculates the minimum and maximum flux values each reac-
tion can attain while satisfying the metabolic network’s constraints. Together, FBA and FVA
allow for a comprehensive analysis of metabolic network behavior, from identifying optimal
flux distributions to assessing the flexibility and robustness of metabolic pathways. Further
approaches utilized for genome-scale optimization include minimization of metabolic adjust-
ment (MOMA), which has been developed to predict changes in metabolic flux distributions
when the function of a gene product is lost173. In contrast to FBA, MOMA employs quadratic
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programming. It aims to identify a new flux distribution within a reduced space of solutions
that minimizes the Euclidean distance between the altered solution space caused by the gene
knockout and the wild-type state. Moreover, to address the degeneracy issues of FBA solutions,
parsimonious enzyme usage flux balance analysis (pFBA) is employed assuming that cells use
the minimum amount of energy resources to achieve their metabolic objective174. This method
involves solving two consecutive linear optimization tasks to identify the optimal flux distribu-
tion while reducing the total sum of fluxes. Fong et al. argued that the adaptive evolution of
mutated strains could result in phenotypic characteristics closer to those predicted by FBA175.
Although these methods have been successfully applied in predicting knockouts173, 176, a debate
arises in determining the appropriate wild-type solution for comparison, which has been subject
to further investigation177.

Experimental analysis ensures the accuracy and reliability of predictions generated by the
model, aiding in further refinement of the network through gap-filling procedures (Fig. 1.3).
Model extension via gap-filling is a non-trivial step, particularly for species that are not closely
related to well-studied organisms. Ultimately, the finalized model finds extensive applications
across various fields, including bioengineering, biotechnology, disease research, personalized
medicine, and drug discovery.

1.6.3 Genome-scale metabolic modeling across domains of life

As mentioned previously, GEMs are fundamental resources in systems biology and metabo-
lic engineering, yielding mechanistic links between genotype and phenotype of the cellular
metabolism. Initially reconstructed for individual bacteria, numerous models have been con-
sequently developed for eukaryotes and archaea over time. The reconstruction of GEMs for
bacteria has undergone significant development over the past few decades, leading to a rich his-
torical timeline. In the late 1990s, pioneering efforts emerged with the reconstruction of the
first metabolic model for H. influenzae169. As of today, more than 6,000 metabolic models have
been created utilizing both automated and semi-automated methodologies, encompassing a wide
variety of organisms, including bacteria, archaea, and eukaryotes178, 179. Throughout the 2000s,
the field witnessed a surge in the reconstruction of metabolic models. It started with model
organisms of medical and industrial importance, like Escherichia coli180 and Saccharomyces
cerevisiae, and continued with multicellular organisms, including plants181 and humans182. The
refinement and development of reconstruction techniques, such as manual curation and auto-
mated annotation pipelines, led to the generation of additional GEMs. By the 2020s, the field
had reached a critical mass, with hundreds of GEMs available for diverse bacteria, encompass-
ing both pathogenic and non-pathogenic organisms179. The Assembly of Gut Organisms through
Reconstruction and Analysis (AGORA) resource comprises a set of semi-automatically gener-
ated GEMs and was designed to represent metabolic activities and interactions within the human
gut microbiota183, 184. Additionally, multi-species models integrate the metabolic interactions of
diverse organisms within communities, offering insights into symbiotic relationships and ecosys-
tem dynamics185, 186.

With the continuous advancements in computational biology and the availability of high-
throughput omics data, human GEMs have become essential tools for studying human
metabolism and its implications in health and disease. Over the years, there has been a remark-
able rise in the number of human reconstructions, reflecting the growing interest and efforts
in understanding the complexities of human metabolism (Fig. 1.4). Recon1, the first generic
human metabolic network, was developed through a rigorous reconstruction process, starting
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Figure 1.4: Existing mathematical models representing the human metabolism. Collection of
GEMs built to represent and simulate the metabolism of human cells. Specific models have un-
dergone iterative revisions, while others originated from the integration of existing reconstructions
coupled with omics and other biological datasets.

with the automated extraction of metabolic genes and followed by manual curation of network
components182. Subsequently, further ReconX models were developed, including Recon2187,
Recon2.2188, and Recon3D189. These iterations expanded upon previous versions, incorporating
more reactions, refining gene representation, and enhancing metabolic annotations. The latest
addition, Recon3D, represents the most comprehensive and updated metabolic resource. It offers
a three-dimensional view of metabolism and enables precise predictions of metabolic responses
to various drugs and mutations associated with diseases. Recent curation efforts of the ReconX
and Human Metabolic Reaction (HMR) model lineages190, 191 resulted in the reconstruction of
the latest human metabolic network, Human1192. These advancements underscore the collab-
orative efforts within the scientific community to refine and expand our understanding of hu-
man metabolism continually. The available human GEMs not only function as a foundational
framework but also serve as a versatile platform for integrating and analyzing diverse datasets,
including kinetic and omics data. Several methods have been developed supporting the integra-
tion of different types of omics data into metabolic reconstructions, enabling the construction of
context-specific (tissue- or cell-specific) metabolic models with enhanced biological relevance
and predictive power193, 194. The computational advances throughout the years, along with the
increased availability of omics data and human metabolic models, led to the development of
context-specific reconstructions. For instance, the HMR series laid the foundation for the de-
velopment of several cell-specific GEMs, playing a vital role in studying health conditions like
non-alcoholic fatty liver disease (NAFLD), obesity, and diabetes190, 191, 195. Furthermore, Thiele
et al. employed the generic Recon3D model to reconstruct the first sex-specific and whole-body
metabolic network196. By combining genomic and clinical data, these models provide valuable
understanding of individual health, leading to the advancement of personalized healthcare197, 198.

Various repositories are accessible for storing metabolic models, granting researchers access
to a diverse array of curated models tailored for different organisms and objectives. Among
these, the Biochemical, Genetical, and Genomical (BiGG) Models database199 stands out, hous-
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ing multiple genome-scale metabolic network reconstructions, including Recon1 and Recon3D.
Similarly, the Virtual Metabolic Human (VMH) database200 specializes in human metabolic
models, catering to specific research needs in this domain. Platforms such as BioModels201 and
ModelSEED202 provide extensive collections of curated models spanning various organisms.
The Metabolic Atlas offers access to the HMR series and Human1 models, alongside recon-
structions of metabolic networks for yeast, fly, fruit, rat, mouse, worm, and zebrafish192. These
repositories are invaluable resources, fostering model sharing, collaboration, and reproducibility
across the scientific community.

Currently, the reconstruction of GEMs continues to evolve, driven by advances in omics tech-
nologies, computational algorithms, and integrative systems biology approaches. This will pave
the way for novel insights into metabolism and its applications in biotechnology, medicine, and
environmental science.

1.6.4 Computational model language and standardization

As systems biology gains traction, various biological models are being developed, prompting
endeavors to establish a unified language to tackle interoperability and standardization chal-
lenges. This initiative spurred extensive international efforts and community dialogues, leading
to the development of the Systems Biology Markup Language (SBML)203. SBML provides a
machine-readable and structured representation format for encoding computational models of
biological processes. It facilitates model exchange, dissemination, and reproducibility across
different software platforms and research groups203. It is based on Extensible Markup Lan-
guage (XML) and, since its initial release in 2001, multiple editions (levels) have been published.
Currently, there are three SBML levels, each building upon its predecessor, considering users’
practical experiences. In the latest release introduced in 2019, the SBML Level 3 Version 2204, a
model definition comprises various optional components, including function definitions, species,
parameters, compartments, reactions, and rules. The flux balance constraints (fbc) package en-
hances this level by providing a balanced operation format, supporting the development of inter-
operable constraint-based model coding formats within a collaborative community205. Utilizing
the same model representation reduces translation errors and ensures a shared foundation for
analysis and simulations. Among others, libSBML206 and JSBML207 software libraries have
been developed to build, read, write, and manipulate SBML models. The Systems Biology For-
mat Converter (SBFC)208 and the SBML Toolbox209 enable importing and exporting models in
different formats. Finally, the metabolic model testing (MEMOTE) suite210 and the SBML Val-
idator from libSBML206 were developed to assess the model’s semantic and syntactic quality.

Central to SBML’s effectiveness is the Minimal Information Required In the Annotation of
Models (MIRIAM), a set of guidelines ensuring consistency and comprehensiveness in model
annotation211. MIRIAM-compliant annotations enhance model interpretability and exchange-
ability. They enable researchers to trace the origins and assumptions of model components, such
as reactions and species, fostering transparency and reproducibility in computational studies.
Moreover, SBML facilitates the integration of various ontologies and controlled vocabularies to
enrich model annotations212. By this, SBML ensures that model elements are precisely defined
and semantically linked to relevant biological knowledge, enhancing model interpretability, in-
teroperability, and reproducibility213. The Systems Biology Ontology (SBO) terms provide a
controlled vocabulary for describing the biological meaning and context of model components,
such as reactions, species, and compartments214. By associating SBO terms with model ele-
ments, researchers can convey specific biological semantics, ensuring consistent interpretation
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and exchange of models across different computational platforms and research groups. Simi-
larly, Evidence and Conclusion Ontology (ECO) terms enable the annotation of environmental
conditions and experimental context associated with model simulations, ensuring transparency
and reproducibility in computational studies215. Ultimately, integrating SBO and ECO terms
within SBML models contributes to model standardization efforts, promoting transparency in
computational systems biology research. A further practical approach developed to describe
specific parts of cellular metabolism systematically is the Systems Biology Graphical Nota-
tion (SBGN)216, 217. SBGN is a standardized graphical representation scheme developed to de-
pict biological processes and pathways clearly and intuitively. Existing modeling tools that sup-
port the SBGN standard format include the CellDesigner218, 219 and Newt220. By adopting these
practices, researchers can communicate complex biological information effectively, facilitating
collaboration and comprehension across different domains of systems biology.

1.6.5 Broad utility spectrum of metabolic models

GEMs play a pivotal role in understanding cellular metabolism (mechanistic) and elucidating
the complex genotype-phenotype relationships (predictive). As already mentioned, these mod-
els provide detailed and flexible frameworks for predicting phenotypes under different condi-
tions. By computationally simulating various metabolic scenarios, GEMs considerably reduce
the time and resources typically required for labor-intensive experimental procedures. This em-
powers researchers to prioritize experiments strategically, focusing efforts on those most likely
to yield desired outcomes, and accelerating advancements in fields such as metabolic engineer-
ing and biotechnology. Over the past years, GEMs have been extensively utilized to simulate
biomass production across different growth media and investigate the utilization patterns of var-
ious nutrient sources221, 222. Additionally, they facilitate simulation of auxotrophies, fermen-
tation products, minimal growth media compositions, and gene essentialities under different
environmental conditions162, 178. Nonetheless, constraint-based models have employed in target
prediction and drug discovery223. They have also been used in studying interspecies metabo-
lic interactions224–228, cancer metabolism229 and inborn errors of metabolism187, 230, as well as
host-microbe interactions231, 232 and astrobiology233. Finally, modeling and engineering of mi-
crobial secondary metabolism for the development of natural products using GEMs has gained
interest within the synthetic biology community234.

Altogether, GEMs serve as excellent knowledgebases in which extensive information can be
collected and updated once more evidence is available. Through these multifaceted applications,
they continue to be indispensable tools in advancing our understanding of biological systems and
driving innovation in biomedical research. Therefore, their utility is expected to grow remark-
ably in the future as their applications continue to evolve.
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CHAPTER 2
Objectives

The formulation of the problem is often more essential than its solution, which may be merely a
matter of mathematical or experimental skill.

– Albert Einstein

The overarching purpose of this thesis is to advance our understanding and control of infec-
tious diseases by applying computational methodologies. The primary objectives include the
development of comprehensive computational tools and models representing the dynamics of
infectious agents at the molecular and cellular levels. Additionally, integrating biological data
aims to enhance model accuracy and generate new hypotheses. This cumulative dissertation
systematically examines these objectives, encompassing four distinct research projects and their
associated publications.

The main focus of the first project is the development of a computational workflow to rapidly
predict effective druggable targets against emerging RNA viruses via metabolic perturbations in
infected cells, with a specific focus on COVID-19. For this purpose, a context-specific metabo-
lic model for primary human bronchial epithelial cells related to SARS-CoV-2 infections was
reconstructed. Additionally, a computational tool was developed to facilitate the generation and
analysis of integrated host-virus metabolic models to identify inhibitory pathways. The identi-
fied targets were found to be effective against multiple viral variants, increasing confidence in
their effectiveness.

The second project addresses model standardization and reproducibility by improving and
automating the assignment of SBO terms to various model entities. The tool, developed for this
purpose, enables the integration of expert knowledge-driven classification schemes, ensuring
accuracy and reliability in the annotation process. Particular emphasis is placed on biochemical
reactions for which both top-level terms and the enzyme functionalities are considered to ensure
more accurate annotations.

The third objective underlines the utilization of computer modeling techniques to analyze
and understand the human nasal microbiota comprehensively. The focus is on developing sys-
tems biology models representing various strains within the nasal environment with the ultimate
goal of understanding, combating, and preventing primary infections. This thesis addresses this
objective by studying a specific human nasal microbiota member, A. baumannii. The project
includes model reconstruction and validation using experimental data, identification of com-
pounds promoting A. baumannii’s cellular biomass, and pinpointing putative essential genes for
potential antimicrobial development. Additionally, the project presents the first compilation of
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Figure 2.1: Overview of main research areas presented in this thesis. The distinct research
fields contribute valuable insights into human health and disease complexities, fostering a holistic
understanding of biological processes.

biochemical networks for distinct A. baumannii strains in a standardized format, enhancing us-
ability for multi-strain network analysis. These models were analyzed to identify strain-wide
growth behavior in different nutrients and essential genes.

The final objective is to unravel the molecular complexities of cystic fibrosis, focusing on
studying the metabolic phenotypes of R. mucilaginosa. The project describes the reconstruction
of the first manually curated genome-scale metabolic model aiming to deepen our understanding
of cystic fibrosis and targets capable of altering metabolism. The study explores R. mucilagi-
nosa’s metabolic phenotypes through growth experiments and evaluates the model’s efficacy in
predicting growth behaviors. The model-driven identification of putative essential genes and
potential antimicrobial targets showcases its potential in expediting therapeutic interventions.

The demonstrated skills and expertise developed throughout the three-year doctoral studies
are summarized in Fig. 2.1, offering a comprehensive overview of the multifaceted research
conducted across various aspects of human health.
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CHAPTER 3
Results

Research is to see what everybody else has seen and to think what nobody else has thought.
– Albert Szent-Györgyi

This thesis focuses on analyzing complex biochemical networks using computational systems
biology and modeling techniques to enhance the understanding, prevention, and intervention
strategies against infectious diseases. More specifically, it explores approaches to identify po-
tential drug targets and decipher host-pathogen interactions. The emphasis is on advancing
theoretical insights and facilitating the practical application of novel strategies for managing
and combating infectious diseases across diverse clinical settings. This chapter introduces four
selected projects, while a complete list of publications is available on page xiii.

Firstly, a computational workflow is presented to build context-specific metabolic networks
and predict exploitable targets against RNA viruses and their variants. This workflow acceler-
ates the detection of broad-spectrum antiviral agents by analyzing metabolic alterations within
infected cells. Subsequently, the SBOannotator is described as the first standalone tool automat-
ing the assignment of SBO terms to multiple entities in metabolic models, primarily focusing
on biochemical reactions. It considers top-level terms and the functionality of enzymes for pre-
cise annotations, aiming to enhance the reproducibility, usability, and analysis of biochemical
networks. Additionally, a thorough investigation into bacterial metabolism to address AMR is
undertaken. For this purpose, the reconstruction, curation, and analysis of GEM exemplified by a
new model for A. baumannii is presented. Existing and newly generated experimental data were
employed to evaluate the model’s performance and enhance the network content. This study
goes beyond model creation, curating metabolic networks for multiple A. baumannii strains to
enhance understanding of metabolic diversity and potential therapeutic targets at a species level.
Lastly, the study of CF takes a unique perspective by investigating a less-explored microor-
ganism within the CF lung microbiota, namely R. mucilaginosa. The presented work unravels
substrate utilization patterns of R. mucilaginosa, integrates them into a metabolic network, and
identifies nutrient-variant putative essential genes using mathematical modeling. This research
contributes the first manually curated GEM for R. mucilaginosa, along with high-throughput
experimental data. Altogether, these models facilitate the understanding of the metabolic foot-
print and the advancement of novel therapies. Their high accuracy enables predicting potential
antibiotic candidates, guiding future drug discovery efforts.
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3.1 Prediction of antiviral drug targets

This section presents the article: Leonidou, N., Renz, A., Mostolizadeh, R., & Dräger, A. (2023).
“New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells.”
PLOS Computational Biology, 19(3), e1010903.

The global spread of the novel human coronavirus, SARS-CoV-2, has posed substantial chal-
lenges to the economy, healthcare, and society. Addressing such a crisis necessitates the de-
velopment of new vaccines and therapies to efficiently prevent future pandemics. However,
vaccines entail limitations such as diminishing immunity over time and reduced efficacy against
emerging mutations and variants. Consequently, an essential aspect of pandemic preparedness
involves exploring and identifying broadly acting antivirals with robust resistance barriers. Host-
directed antiviral approaches are of great interest, as viruses depend on host cell machinery to ac-
quire essential macromolecules, altering cellular metabolism according to their requirements136.
Here, a new workflow is presented to accelerate the prediction of drug targets against emerging
viruses via metabolic perturbations in infected host cells. To this end, a tool was designed to con-
struct integrated host-virus metabolic models, simulate cell infections, and identify host-based
pathways that can be targeted to impede SARS-CoV-2 replication.

First of all, cell- or tissue-specific data are collected and undergo a pre-processing procedure.
This involves curation tasks, such as computing confidence scores for reactions, binarizing raw
transcriptomic data, and determining gene ubiquity scores. Subsequently, the previously devel-
oped pymCADRE is employed to construct human cell- and tissue-specific models using gene
expression data and topological information from a generic metabolic network. It serves as an
open-source Python re-implementation of metabolic Context-specificity Assessed by Determin-
istic Reaction Evaluation (mCADRE)235 from the proprietary MATLAB. The tool consists of
three main components: (1) ranking, (2) functionality check, and (3) pruning, and provides two
optimization methods, FVA and fast consistency check (FASTCC)236, to ensure internal model
consistency. Reactions are ranked based on expression and connectivity evidence, and during
pruning, non-core reactions are systematically eliminated while retaining essential metabolic
functionalities. Beyond its core functionalities, pymCADRE also includes scripts for data pre-
processing, such as assigning confidence scores and binarizing transcriptomic data. Addition-
ally, functional tests ensure metabolic capability, with resultant models provided in SBML203

format for compatibility with various computational tools.

To evaluate the functionality of pymCADRE and enhance its applicability, particularly in
the context of the SARS-CoV-2 outbreak, pymCADRE was utilized here to create a context-
specific metabolic network for primary human bronchial epithelial cells (HBECs). The human
metabolic network Recon1 182 served as a generic model to mitigate computational demands.

Table 3.1: Analysis results of the cell-specific reconstructions created using FVA for internal
optimizations. The reaction overlap between both models is 99.5 %.

Pruned Model Removed Reactions

Reactions Metabolites Genes Cores Non-cores

mCADRE 1,977 1,442 1,905 9 487
pymCADRE 1,973 1,442 1,381 9 489
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Remarkably, pymCADRE demonstrated a decreased overall pruning time while preserving the
highest possible content similarity compared to the model generated using mCADRE. The fi-
nal cell-specific model, consisting of 1,973 reactions (1,391 gene-associated; 1,086 metabolic
and 305 transport reactions), 1,442 metabolites, and 1,381 genes, exhibited a 99.5 % overlap
with the model generated by mCADRE (Table 3.1). This convergence set confidence about the
quality of pymCADRE-derived models. Moreover, the final pruned model generated by pym-
CADRE includes a BOF representing cellular maintenance requirements. The BOF parameters
were extracted from a previously published macrophage model231. Furthermore, the model
underwent comprehensive validations, including functional, semantic, and syntactic assess-
ments. Benchmarking tools, including Systems Biology Simulation Core Library (SBSCL)237,
MEMOTE210, and the SBML Validator from libSBML206, were employed in these validations
respectively. In particular, the pymCADRE-derived model exhibited a higher semantic quality
score (MEMOTE score of 70 %) compared to previously existing models235, 238, 239, while it
contained neither blocked reactions (reactions that carry zero flux) nor infeasible cycles. Be-
sides that, the model was refined through the inclusion of subsystems for all metabolic reac-
tions. The majority of reactions in the final cell-specific model were transport reactions, with
the biosynthesis of other secondary metabolites being the least represented subsystem. This
detailed refinement and categorization contribute to more accurately depicting the cellular me-
tabolic landscape.

Nevertheless, inconsistencies in the performance of FASTCC, as implemented in constraint-
based reconstruction and analysis for Python (COBRApy)165, were observed. Multiple iterations
of the function revealed differing counts of blocked reactions, resulting in deviations from the
ground truth model derived from mCADRE. Since the original algorithm was not modified,
discrepancies in the final reactions set suggest variable performance among the built-in func-
tions in Python (COBRApy) and MATLAB (COBRAToolbox240). This issue has already been
reported and is awaiting resolution. Additionally, the varying performance between the tools
may be linked to differences in implementing organic exchange/demand reactions detection. In
pymCADRE, this is accomplished in a more robust and fully automated manner based on the
chemical formula of the participating metabolites, eliminating the need for hard-coding a spe-
cific list of reaction names. This led to the identification of four organic reactions, additionally
to those detected by mCADRE. Lastly, another reason for the divergent performance could lie
in the MATLAB implementation of the FVA, which is restricted to supporting industrial propri-
etary CPLEX versions older than V 12.10241. Consequently, the latest COBRAToolbox release
lacks MATLAB-related binaries for the newest solver release (V 20.1). This limitation is ad-
dressed by pymCADRE, which enables the users to choose between the open-source GLPK242

package and the CPLEX solver for optimization tasks.

Following the main objective to detect potential anti-SARS-CoV-2 targets, the final cell-
specific model was enhanced with a VBOF. Similar to the maintenance function in eukaryotic or
biomass production in prokaryotic systems, the VBOF serves as a pseudo-reaction that imitates
the production of virus particles. This was formulated using established methodologies171, 243

and consisted of amino acids, nucleotides, lipids, and energy-related metabolites. The VBOF
reconstruction considered the viral structure, the genomic reference wildtype sequence, the
subsequently encoded proteins and their copy numbers, as well as the energy requirements
for nucleotide and peptide bonds. The term “reference wildtype sequence” refers to the first
genome that was sequenced and identified as the virus responsible for the COVID-19 pan-
demic (NCBI accession: NC_045512.2). To represent the lipid requirements, phosphatidyl-
choline, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, cholesterol, and
sphingomyelin were added to the viral biomass function. Previous studies examined the impact
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Figure 3.1: Target prediction results upon analysis of the reconstructed cell-specific model us-
ing host-derived enforcement. Potential antiviral targets were considered when the viral growth
with shifted bounds was below 90 % of its initial growth rate. Enzymes with adjusted bounds in-
volved in purine and pyrimidine metabolism led to a remarkable growth reduction, with additional
promising targets identified in carbohydrate metabolism. The dashed line represents the point at
which 50 % of the virus remains.

of lipids with varying stoichiometric coefficients on the viral biomass function and antiviral tar-
get prediction243. However, their final VBOF lacked the incorporation of the lipid composition
of a single virion. In this study, stoichiometric coefficients for the lipids were computed based on
the virion’s surface area, following the method suggested by Nanda et al.244. Subsequent FBA
optimization of the host-virus model to maximize the host cellular maintenance yielded a flux
of 0.2344 mmol/(gDW ·h). Moreover, optimizing the SARS-CoV-2 growth function resulted in
a flux of 0.1575 mmol/(gDW · h). The availability of nutrients considerably impacts metabo-
lic fluxes. Given the primary focus on investigating metabolic changes in infected cells, fluxes
strongly influence the simulation outcomes. The human metabolic models lack constraints on
the growth medium. This allows all extracellular transport reactions to have a minimum flux
value of −1,000.0 mmol/(gDW ·h), enabling unusually high cell maintenance rates. To address
this, the chemically defined medium simulating the human blood245 was incorporated into the
final metabolic network as the default medium for further analysis. Cells in the human body
are exposed to diverse environments, and the blood medium represents the in vivo conditions.
However, a minimal medium is required to study specific aspects of cellular metabolism or to un-
derstand the minimal requirements for cellular maintenance. Hence, a minimal growth medium
for the cell-specific model was defined using COBRApy and considered throughout the anal-
ysis. The detailed media compositions are provided in the supplementary files along with the
published manuscript.

Stoichiometric modeling was applied on the integrated host-virus model to identify ex-
ploitable targets against SARS-CoV-2. The metabolic network was used to detect host-based
reactions, which, when constrained, specifically reduce virus growth. Two techniques were
applied for this purpose: single-reaction knockouts and host-derived enforcement (HDE)171.
The first technique involves systematically adjusting individual reaction bounds to zero. The
second method constrains all reaction fluxes to ranges obtained from FVA, ensuring the main-
tenance of the optimal host state while reducing virus propagation171. Both approaches con-
firmed guanylate kinase 1 (GK1) as a promising target to hinder SARS-CoV-2 growth while
preserving host cell’s maintenance at 100 % (Fig. 3.1). This finding aligns with previous re-
ports of GK1’s inhibitory effects in macrophage and lung models238, 246. When using HDE,
adjusting all reaction fluxes within FVA-determined ranges revealed additional exploitable en-
zymatic targets. The cytidine 5’-triphosphate synthase 1 (CTPS1) from the de novo pyrimi-
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dine synthesis pathway emerged as the most promising hit, demonstrating a 62 % inhibition
of virus growth and no impact on the host’s maintenance. CTPS1 catalyzes the conversion of
uridine 5’-triphosphate (UTP) to cytidine 5’-triphosphate (CTP), hence constraining the activ-
ity of CTPS1 leads to a decrease in CTP production. It is noteworthy that human cells effi-
ciently restore CTP levels by promptly utilizing alternative routes through the salvage pathway,
ensuring the synthesis of the required CTP amounts247. Further 33 host-based targets were
predicted as potential virus-suppressing candidates by HDE. Specifically, inhibitors involved
in carbohydrate metabolism, including the metabolism of amino/nucleotide sugar and sucrose,
as well as glycolysis/gluconeogenesis, along with those in purine and pyrimidine biosynthe-
sis, led to a remarkable reduction in viral production. This decrease ranged from 50 % to
58 % of the initial growth rate. Notably, targets from amino/nucleotide sugar and sucrose
metabolism exhibited higher antiviral effects than those from glycolysis, fructose, and man-
nose metabolism. Interestingly, GK1 is closely interconnected with two reported promising
targets in the purine metabolism: inosine 5’-monophosphate dehydrogenase (IMPD) and guano-
sine 5’-monophosphate synthase (GMPS2). IMPD catalyzes the NAD+-dependent oxidation
of inosine 5’-monophosphate (IMP) to xanthosine 5’-phosphate (XMP), followed by GMPS2
generating guanosine 5’-monophosphate (GMP). Using the minimal growth medium not only
highlighted nucleoside diphosphate kinase 3 (NDPK3) as a potential target, previously unde-
tected with the blood medium, but also reaffirmed nucleoside diphosphate kinase 2 (NDPK2),
uridine 5’-monophosphate kinase 5 (UMPK5), and GK1, all of which are linked within the same
pathway. Adjusting the fluxes of NDPK3 resulted in a 44.6 % reduction in virus propagation,
which is comparable to the effect of GK1 under the same growth conditions. However, NDPK2
and UMPK5 exhibited the highest viral reduction, emerging as the most promising hits under
minimal conditions.

By February, 2022, five SARS-CoV-2 variants, namely Alpha (B.1.1.7), Beta (B.1.351),
Gamma (P.1), Delta (B.1.717.2), and Omicron (B.1.1.529), prevailed and spread since the virus’s
emergence in 2019. The WHO designated them at that time as VOCs248. The Global Initiative on
Sharing All Influenza Data (GISAID) EpiCoV database249, launched in February, 2020, hosts
over 16.6 million SARS-CoV-2 viral sequences as of April, 2024. It serves as a valuable re-
source for scientists to investigate the implications of viral variants on metabolic processes and
potential therapeutic targets. To examine the effectiveness of predicted targets across all VOCs,
multiple VBOFs were created for each mutated sequence retrieved from GISAID employing a
methodology analogous to that used for the wildtype sequence. Creating these functions in-
volved the selection of 20 genomic sequences per variant, resulting in the definition of totally
100 individualized biomass functions by calculating the corresponding stoichiometric coeffi-
cients. Each function was integrated into the HBEC-specific model, which then was subjected to
target prediction. The Prediction of Antiviral Targets (PREDICATE) tool was designed for rapid
and automated analysis of multiple sequences associated with a single variant. It expedites the
VBOF reconstruction and predicts host-based antiviral targets using integrated metabolic mod-
els. Additionally, it provides scripts to modify the reference protein sequences, implementing
amino acid mutations (insertions, replacements, duplications, and deletions). Given the anal-
ogous composition of RNA viruses, encompassing nucleotides and proteins, this methodology
is universally applicable to both single- and double-stranded RNA viruses. Variant-wise com-
parison of stoichiometric coefficients defining the viral biomass functions for the reference and
mutated SARS-CoV-2 sequences revealed differences in the Omicron variant compared to the
wildtype. Notably, the stoichiometric coefficients for ATP and adenosine 5’-diphosphate (ADP)
in the Omicron variant were remarkably increased. This deviation is ascribed to a lower total
viral molar mass and a higher total amino acid count calculated for the Omicron sequences.
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Similar differences were observed across additional coefficients. For instance, the Omicron
variant exhibited a notable increase in lysine, attributed to the frequent replacement of amino
acids by lysine in the spike protein. Conversely, the Delta variant showed a remarkable rise
in asparagine due to mutations replacing other amino acids with asparagine. Literature find-
ings confirm these observations, highlighting higher amounts of charged residues in Omicron
along with the accumulation of hydrophobic residues in its spike protein250. In the next step,
PREDICATE integrates each created VBOF into an input cell-specific metabolic model. The
subsequent target prediction implemented in PREDICATE considers single-reaction knockouts
and HDE, aiming to identify and evaluate the targets’ efficacy across the variants of interest. The
knockout analysis applied to the HBEC model revealed GK1 as the sole potential inhibitor, while
HDE verified the highest inhibitory effect of CTPS1 across all tested variants and the wildtype.
GK1 was predicted by HDE as well, though less effective in reducing virus growth. Moreover,
the wildtype shared 12 hits with the five SARS-CoV-2 variants, while eight targets were found
to be wildtype-specific. Targets associated with carbohydrate metabolism and those involved in
purine and pyrimidine metabolism demonstrated promising inhibitory effects across all studied
variants. Consequently, nucleotide metabolism, specifically targeting one of the reported en-
zymes to inhibit SARS-CoV-2, is a promising approach that warrants validation through in vitro
and cell culture experiments.

The presented workflow and subsequent analyses unveiled enzymatic targets with inhibitory
potential in HBECs against SARS-CoV-2. Approved drugs targeting these enzymes were iden-
tified by utilizing publicly available resources and databases, including inhibitors for promising
candidates such as CTPS1. Virus-infected cells rely on regulated nucleotide metabolism, mak-
ing it a crucial target for antiviral strategies. This can be achieved through purine and pyrimidine
analogs, i.e., modified nucleosides used to stop DNA or RNA polymerase, or by directly inhibit-
ing the enzymes involved in DNA and RNA synthesis. Cyclopentenyl cytosine (CPEC) and
acyclovir are known inhibitors CTPS1 and GK1, respectively, acting as analogs that disrupt nu-
cleotide synthesis251, 252. Literature findings confirm the antiviral effect of CPEC against a wide
range of viruses in vitro253, 254. Additionally, the therapeutic effect of CPEC has been inves-
tigated in cancer studies. In more detail, it has been examined most extensively in leukemic
cell lines, and has also been investigated in relation to colorectal carcinoma, brain tumors,
and neuroblastoma255. Although dose-related hypotension events were observed in patients
with colon carcinoma during Phase I trials of CPEC treatment256, cardiotoxicity could not be
replicated in established rat models257. Studies have indicated that the deaminated product of
CPEC, cyclopentenyl uridine (CPEU), along with cytidine, may serve as potential modulators
of CPEC’s cytotoxic activity258, 259. Therefore, further in vivo studies are required to ascertain
how it is feasible to establish antiviral effects using CPEC without inducing harmful side effects,
whether used alone or in conjunction with other medications. Acyclovir, an approved drug tar-
geting GK1 from the purine synthesis pathway, is used to fight the herpes virus and varicella
zoster virus (VZV) infections260, 261. In the context of SARS-CoV-2, acyclovir has emerged as
a potential antiviral agent against coronaviruses262, especially in cases where there are indica-
tions of VZV reactivation263. The authors assumed that this reactivation is linked to the abnor-
mally low lymphocyte count (lymphopenia) observed in COVID-19 patients’ blood. Notably,
acyclovir’s mechanism of action, akin to molnupiravir and remdesivir, involves inhibiting viral
replication by mimicking ribonucleosides and causing mutagenic effects. Both molnupiravir and
remdesivir belong to the class of carbohydrate-based antiviral drugs and have been studied as
therapeutic targets approved by Food and Drug Administration (FDA) to treat SARS-CoV-2264.
However, acyclovir leads to immediate chain termination, while molnupiravir continues incor-
porating nucleobases until a mismatch occurs, resulting in an error catastrophe265. Remdesivir
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functions akin to an ATP analog that causes delayed chain termination266. Hence, acyclovir’s
mode of action suggests a high potential for successful use against SARS-CoV-2 infections.
While ritonavir-boosted nirmatrelvir (Paxlovid) and monoclonal antibodiess (mABs) are autho-
rized for COVID-19 and administered intravenously, acyclovir stands out due to its oral ad-
ministration, offering convenience for self-use. It is essential to note that Paxlovid has been
found to have severe implications in patients taking antiarrhythmics, blood thinners, and further
medications267, while mABs (e.g., bamlanivimab-etesevimab, bebtelovimab, and tocilizumab)
have undergone revision upon the emergence of the Omicron variant268. Under direct enzyme
inhibition, fall compounds, like merimepodib and ribavirin, with known pharmacological action
that inhibit the predicted host-based target IMPD and have already been tested against emerging
viruses269, 270.

Altogether, the presented workflow, summarized in a four-step process, is designed to con-
tribute to the advancement of effective therapies against emerging viruses and their mutations. It
aims to establish the design of broad-spectrum antiviral treatments, serving as a crucial resource
for pandemic preparedness. Additionally, the approach focuses on metabolic fluxes within in-
fected cells. This allows for a hypothesis-driven identification of exploitable antivirals, espe-
cially considering the time-consuming nature and complex readouts of laboratory tests. The
computational workflow introduced herein not only stands to reduce costs significantly but also
accelerates the pre-clinical phase, offering applicability to any host cell and RNA virus with
outbreak potential. The described software is user-friendly and readily available along with
test scripts and a test dataset in a git repository at https://github.com/draeger-lab/pymCADRE.
The final host-virus model (iHBEC-BOFVBOF-2023) is accessible at https://www.ebi.ac.uk/
biomodels/MODEL2202240001 as an SBML Level 3 Version 2204 file with the fbc package205

distributed as Open Modeling EXchange format (OMEX) archive271 including annotations272.

3.2 Enhancing model standardization and reproducibility

This section presents the article: Leonidou, N., Fritze, E., Renz, A., & Dräger, A. (2023). “SBO-
annotator: a Python tool for the automated assignment of systems biology ontology terms.”
Bioinformatics, Volume 39, Issue 7, btad437.

Over the past years, the quantity and size of computational models in biology have increased
remarkably, driven by technological advances and increased computational power. Interdisci-
plinary collaboration among biologists, bioinformaticians, and computational scientists fosters
the creation of large-scale models to integrate diverse expertise and comprehend complex bi-
ological phenomena. The abundance of biological data, including omics data, provides a rich
source for model development, motivating further their widespread inclusion in research. Even
though the problem of quality control and quality assurance has already been addressed210, the
increasing prevalence of large-scale metabolic models has drawn attention to challenges related
to their reproducibility and clear interpretability273. This would necessitate the establishment
of a standardized encoding of model-related information, a task frequently hindered by a lack
of appropriate tools to assist researchers. Employing precisely defined ontologies facilitates
encoding domain-specific expertise and linking disparate data types. In computational mod-
eling, SBO terms facilitate the explicit and unambiguous description of entities, elucidating
their roles and characteristics. This section introduces the SBOannotator, the first standalone
tool, for the automatic assignment of SBO terms to multiple entities within an SBML203 model.
The tool addresses the laborious step of adding precise descriptions to biochemical reactions
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Figure 3.2: Workflow overview for the automated assignment of SBO terms. The SBOannotator
enables the automated assignment of SBO terms to multiple model entities within an SBML file.
First, the pseudo- and transport reactions are detected and annotated. Then, the biochemical re-
actions are classified into 19 classes according to their enzymatic function. Finally, further model
elements are annotated with their corresponding SBO annotations before saving the final model in
SBML format. The SBOannotator is publicly accessible as a web application or a stand-alone tool.

in constraint-based models. The implementation extends beyond top-level terms by consider-
ing the functionality of the underlying enzymes to allocate precise and highly specific ontology
terms.

The SBOannotator workflow encompasses six main steps, as illustrated in Fig. 3.2. Initially,
all reactions within the model are labeled as either (a) transporters, facilitating the movement
of molecules across various compartments, (b) simple biochemical reactions, occurring solely
in the cytosol, or (c) pseudo-reactions, designed for importing or exporting metabolites to serve
modeling purposes. In systems biology modeling, pseudo-reactions do not represent any actual
physical process and should not be confused with the pseudo-first-order reactions in chemical
kinetics. Pseudo-reactions are classified into exchange (SBO:0000627), sink (SBO:0000632), and
demand (SBO:0000628) reactions, while the biomass reactions also belongs to this class. They
are incorporated into metabolic models for simulation purposes. The BOF (SBO:0000629) is
usually the optimization target in modeling bacterial metabolism and simulates the organism’s
growth. The SBOannotator further examines the transport reactions and applies advanced clas-
sification strategies. In more detail, the categorization mechanism relies on transport properties
like the consumption of ATP or phosphoenolpyruvate (PEP) (active transport) or lack thereof
(passive transport). Subsequently, the total number of reactants’ and products’ cellular compart-
ments allows for identifying symporters/antiporters and co-transporters. Symporters transport
molecules in the same direction, while antiporters facilitate movement in opposite directions.
Co-transporters simultaneously transport two or more substances across a membrane. The re-
maining biochemical reactions are analyzed in the next step to enable more detailed labeling.
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Subsequent steps involve processing remaining biochemical reactions, utilizing an Structured
Query Language (SQL) database for efficient mapping between Enzyme Commission (EC) num-
bers and SBO terms (Fig. 3.2). This pre-established database enhances computational efficiency,
particularly when dealing with larger models, streamlining the annotation process.

The SBOannotator assigns the general SBO term of a biochemical reaction (SBO:0000176) if
the reaction has multiple EC numbers assigned and all belong to different classes resulting in
an unambiguous description. Otherwise, the ontologies are accredited based on the respective
enzyme’s class (e.g., oxidoreductases; SBO:0000200, transferases; SBO:0000402, hydrolases;
SBO:0000376). It is important to note that a proper term that describes the ligases (EC class 6)
was missing from the SBO graph. This would be necessary to describe reactions involving the
formation of DNA, RNA, and protein fragments. After personally contacting the developers
of the SBO vocabulary, a new term was introduced (May 16, 2023) for ligases that describes
the formation of a covalent bond (SBO:0000695). Metabolic reactions falling outside the afore-
mentioned cases and do not have any EC number assigned are given the general SBO term of a
biochemical reaction (SBO:0000176). The tool can process models with or without pre-existing
EC numbers, but it requires the utilization of BiGG199 identifiers. If the input model lacks EC
numbers, the tool initiates an integrated Application Programming transfer Interface (API) call
to retrieve the associated data from the BiGG database and subsequently incorporates all missing
annotations into the model. Notably, the computational time for this step may vary based on the
model’s size. Therefore, prior use of an annotation tool, such as ModelPolisher274, is recom-
mended to optimize performance. Utlimately, the SBOannotator assigns terms to the remaining
model entities, including metabolites, genes, cellular compartments, rate laws, and defined pa-
rameters. If subsystem groups are declared, the tool allocates the term SBO:0000633, while
the respective modeling framework (e.g., constraint-based, logical, hybrid) is also assigned an
appropriate term (Fig. 3.2).

Evaluation of the SBOannotator’s effectiveness in assigning accurate and detailed terms
to biochemical reactions involved analyzing 108 metabolic models obtained from the BiGG
database. Initially, all models featured five types of SBO terms, representing only top-level
terms (biochemical, translocation, demand, sink, and exchange), along with an additional SBO
annotation for the biomass reaction. Notably, the SBOannotator assigned 31 specialized terms
considering the underlying enzymatic properties. Biochemical reactions constituted the pre-
dominant group before and after the application of the SBOannotator. The second most common
term in the downloaded models described translocations, while the SBOannotator assigned more
specific terms based on transport mechanisms. Consequently, passive transporters were predom-
inantly present across all annotated models, while decarbonylations were the least frequent.

Overall, the SBOannotator stands as a freely available and user-friendly Python tool. Its
straightforward usage allows for the rapid annotation of systems biology metabolic networks,
focusing on providing accurate and descriptive terms for all chemical reactions. The only pre-
requisite for utilizing the SBOannotator is a valid SBML203 format of the input model(s). The
SBO terms are directly assigned to SBML model elements, creating a direct one-to-one mapping
indicating each element’s function. By this, the SBOannotator helps to define more clearly which
role individual elements play within a model. Remarkably, the tool takes into account scenarios
where a single model entity may have multiple distinct identifiers. SBOannotator is hosted at
the TueVis Visualization Server as a web application available at https://sbo-annotator-tuevis.cs.
uni-tuebingen.de. Its stand-alone version, all related data, and a demo script to run the code are
available in a git repository at https://github.com/draeger-lab/SBOannotator.
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3.3 Modeling nasal microbiota for infection prevention

This section presents the article: Leonidou, N., Xia, Y., Friedrich, L., Schütz, M. S., & Dräger, A.
(2024). “Exploring the metabolic profiling of A. baumannii for antimicrobial development using
genome-scale modeling.” bioRxiv. Manuscript under review in PLOS Pathogens.

The nasal cavity serves as a primary reservoir and gateway for microbial colonization, play-
ing a vital role as a link between the interior of the human body and the external environment.
Understanding the dynamics of nasal bacteria is particularly crucial in light of the global rise
of multidrug-resistant (MDR) bacteria, exemplified by the emergence of carbapenem-resistant
Acinetobacter baumannii. The urgent need for new antibiotics, emphasized by the WHO, un-
derscores the interconnectedness of nasal microbiota and the broader AMR problem, highlight-
ing the significance of targeted research and preventive therapeutics. A. baumannii, known
for causing severe infections79, 81, holds a “critical” status and acquires immense attention275.
Genome-scale metabolic modeling reveals the complex interaction between metabolites, pro-
teins, and genes and has revolutionized the understanding and analysis of complex microbial
metabolism. Therefore, it offers valuable insights into the development of targeted therapeutic
interventions and prevention of primary infections276. Herein, the exploration of the metabolic
profiling of this critical human nasal microbiota member using genome-scale modeling is pre-
sented. Specifically, a new metabolic network for the nosocomial A. baumannii ATCC 17978
(referred to as iACB23LX) is introduced, adhering to Findable, Accessible, Interoperable, and
Reusable (FAIR) data principles and community standards. The model’s predictive capabil-
ity and accuracy were validated through experimental assessments of nutrient utilization and
gene essentiality data. Furthermore, existing models for diverse A. baumannii strains under-
went systematic refinement and evaluation, resulting in the development of the first curated and
standardized strain-specific collection of metabolic models.

Over a decade has passed since the initial release of the first mathematical simulation rep-
resenting the metabolism of A. baumannii, followed by subsequent models tailored to specific
strains183, 277–281. Despite these efforts, the existing metabolic networks exhibit deficiencies,
such as a lack of standardization and identifiers, limiting their utility. A literature search re-
vealed one metabolic model of the well-studied strain ATCC 17978, named iJS784. By the time
of writing, it is exclusively accessible in the form of a dissertation and lacks formal publica-
tion in a scientific journal or deposition in a database for mathematical models282. Notably, this
model has a remarkable limitation as it fails to generate biomass even when all uptake reactions
are open and all medium nutrients are available. This deficiency hampers its usability and re-
producibility. Therefore, there is a need for a new network that addresses these limitations and
provides a comprehensive and well-documented representation of its metabolism. For the con-
struction of a high-quality model the systematic workflow illustrated in Fig. 3.3 was employed,
adhering to established community protocols and standards162, 283. The newly reconstructed
network, named iACB23LX, follows a nomenclature convention where i stands for in silico,
ACB represents the organism- and strain-specific three-letter code from KEGG119, 23 denotes
the reconstruction year, and LX denotes the modelers’ initials. The protocol, applicable to all
organisms across the tree of life (Eukarya, Bacteria, and Archaea), encompasses eight major
stages, ensuring the model’s quality and accuracy from the annotated genomic sequence acqui-
sition to validation. CarveMe284 was utilized for the initial draft model reconstruction, which
was subsequently extended and curated manually. Syntactical issues and imbalances in mass and
charge were resolved during manual refinement, while missing metabolite charges and chemical
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Figure 3.3: Reconstruction workflow of the metabolic network iACB23LX. The workflow con-
sists of eight main steps: extraction of the annotated genome, draft model reconstruction, model
refinement, gap-filling, investigation of energy-generating cycles, model annotation, quality control,
quality assurance (QC/QA), and model validation using experimental data. The growth simulations
consider the examination of growth phenotypes under various conditions.

formulas were accurately defined. The most intensive phase of the workflow involved model ex-
tension and gap-filling, encompassing the detection and integration of missing metabolic genes
along with their associated reactions and metabolites. Non-biologically occurring dead-end and
orphan metabolites were identified and resolved where possible, as their existence implies know-
ledge gaps in metabolic networks. This step ensured the network’s connectivity. Modifications
in the model structure, as well as the inclusion of cross-references to multiple functional databa-
ses, were implemented using the libSBML206 library, while all simulations were conducted with
COBRApy165. With this, the draft model was expanded by 138 reactions, 77 genes, and 110
metabolites distributed across three compartments (cytosol, periplasm, and extracellular space).
Overall, iACB23LX comprises 2,321 reactions, 1,660 metabolites, and 1,164 genes (Fig. 3.4).
It stands out as the most comprehensive model among previously published ones, maintaining a
stoichiometric consistency of 100 %. Over 1,800 reactions have a GPR assigned, while 149 are
catalyzed by enzyme complexes.

Additionally, the model was checked for the potential existence of thermodynamically infea-
sible internal loops, known as energy-generating cycles (EGCs), that could inflate the maximal
biomass yields and bias the final predictions285. Unlike futile cycles, EGCs have not been ex-
perimentally observed. These cycles charge energy metabolites such as ATP and UTP without
external nutrient sources, resulting in erroneous energy increases. Therefore, their elimination is
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Figure 3.4: Properties of existing strain-specific metabolic networks for A. baumannii. The left
ordinate shows the counts, the right ordinate represents the MEMOTE scores, while abscissa labels
are annotated with the corresponding strains. The reconstruction process is categorized into manual
(M, accomplished without the aid of computational tools) and semi-automated (S, draft obtained
using an automated reconstruction tool, while subsequent extensions were done manually). Each
model is associated with its respective publication year. The iACB23LX exhibits the highest quality
score and is more extensive than preceding reconstructions.

crucial in rectifying energy metabolism, as they can render predictions unreliable. For this pur-
pose, energy dissipation reactions (EDRs) were (1) incorporated within the network according
to the following scheme:

X[c]+H2O[c]−−→ X+[c]+H[c]+Pi[c], (3.1)

where X is the metabolite of interest and (2) were maximized individually while blocking all
influxes285. In the final model, none of the tested metabolites could be produced; thus, no EGCs
were contained. Thereafter, a multitude of database cross-references was embedded into the
model, with SBO terms assigned to every reaction, metabolite, and gene286. Additionally, every
reaction was linked to an ECO term that conveys the confidence level and the assertion method.
The model’s semantic and syntactic quality was evaluated using the MEMOTE framework210

and the SBML Validator from libSBML206. The metabolic network, iACB23LX, achieved a
MEMOTE score of 89 %, with successful resolution of all syntactical errors. However, the
testing algorithm exclusively considers the parent nodes of the SBO directed acyclic graph,
disregarding their respective children. Therefore, the assignment of more precise SBO terms
wrongly diminishes the quality total score by 2 %. Despite this, the model still outperforms its
predecessors, as depicted in Fig. 3.4, securing the highest quality score.

A. baumannii is strictly aerobic and, unlike most Acinetobacter species, it is not considered
ubiquitous in nature80, 287. As a nosocomial pathogen, it is highly prevalent in hospital settings,
particularly within intensive care units (ICUs), as well as in the human nasal microbiota288–290.
Various growth conditions were examined to ensure that iACB23LX accurately recapitulates the
growth in well-established growth environments. Initially, the model’s capability to simulate
strictly aerobic growth was assessed. An accumulation of periplasmic oxygen guided by reac-
tions with high fluxes led to growth when oxygen import was disabled. Individual examination
and removal of reactions lacking genetic evidence were performed, including the removal of
the periplasmic catalase (BiGG ID: CATpp), a hydrogen peroxide scavenger usually active in
the cytosol291. This enzyme was either absent in precursor A. baumannii GEMs or exclusively
present in the cytosol. To enable periplasmic hydrogen peroxide utilization, the model was
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Table 3.2: Simulated and empirical growth rates of ATCC 17978 in various growth media. The
computationally-defined minimal medium (iMinMed), the lysogeny broth (LB) medium, and the
synthetic nasal medium (SNM)294 were tested. Growth rates are given in mmol/(gDW · h), while
doubling times are computed in minutes.

Growth Rates Doubling Times
in silico in vitro in silico in vitro

iMinMed 0.2097 0.5402 198.32 76.70
LB 0.5926 0.7369 70.18 56.44
SNM 0.5099 0.3592 81.56 115.78

augmented with the inclusion of phenethylamine oxidase (BiGG ID: PEAMNOpp). The minimal
amount of metabolites required for A. baumannii growth was determined using iACB23LX and
M9 minimal medium (M9) as a reference. The minimal medium (iMinMed), includes essen-
tial carbon (C2H3O2

– ), nitrogen (NH4
+), sulfur (SO4

2 – ), and phosphorus (HPO4
2 – ) sources, in

addition to nine transition metals (Ca2+, Cl– , Cu2+, Fe3+, Co2+, K+, Mg2+, Mn2+, and Zn2+) cru-
cial for cellular processes. Previous studies have emphasized the significance of nutrient metals
for A. baumannii’s survival within the host. In particular, the bacterium utilizes these metals
as co-factors for vital cellular processes292. Notably, manganese and zinc are identified as key
elements in the host defense against A. baumannii-acquired pneumonia, where calprotectin se-
questers them through chelation293.

The successful bacterial growth utilizing the predicted medium iMinMed was experimen-
tally confirmed through a positive empirical growth rate (Table 3.2). To ensure the robustness
of the model predictions across diverse environmental conditions, experimental validation and
model verification were conducted using the LB and SNM294. Computational growth rates be-
low 2.81 mmol/(gDW · h) were considered realistic based on the doubling time of the fastest
organism Vibrio natriegens210. Predicted and experimentally derived growth rates in various
culture media are presented in Table 3.2. The highest rate was observed in LB medium, both
in silico and in vitro, with the model-predicted growth rates in all tested media were exper-
imentally confirmed through positive empirical growth rates. In a nutrient-rich medium, the
model demonstrated the highest biomass production flux [2.1858 mmol/(gDW · h)], although it
remained below the growth rate of the fastest-growing organism. Initially, iACB23LX could
not simulate realistic growth rates in the examined media. Utilizing the gap-filling function of
CarveMe284, three enzymes were identified (BiGG IDs: PHPYROX, OXADC, and LCYSTAT) whose
addition enabled successful growth across all tested media.

The functional validation and refinement of iACB23LX involved high-throughput phenotypic
data obtained from two studies published in 2013 and 2014, focusing on the nutrient utilization
phenome and gene essentialities of A. baumannii ATCC 17978 295, 296. These data served as
invaluable resources to assess the model’s predictive accuracy across a spectrum of metabolic
phenotypes. The model’s capability to predict carbon and nitrogen utilization was assessed by
examining 80 compounds as sole carbon and 48 compounds as sole nitrogen sources. For the
remaining metabolites, either no identifier mapping was possible, or they were not part of the
metabolic network. Discrepancies between experimental results and model simulations were
carefully examined to refine and augment the model. Resolving false negative and false positive
predictions entailed the identification of reactions requiring removal or addition to the network.
The primary objective was to enhance model accuracy by eliminating reactions lacking genetic
evidence, i.e., lacking GPRs. Reactions inaccurately included in the automated draft model

35



Chapter 3 Results

generated by CarveMe284 were subsequently removed to mitigate false positive predictions. Ad-
ditionally, missing reactions were identified and incorporated into the network to rectify false
negative predictions. The reaction directionality was also reviewed and corrected, based on ev-
idence from the organism-specific BioCyc database118. The overall accuracy of iACB23LX for
the nutrient utilization tests was 86.3 % and 79.2 % for carbon and nitrogen sources, respectively.
In more detail, the final model recapitulates 69 and 38 experimentally-derived phenotypes, re-
spectively. Altogether, improved predictive performance was observed in iACB23LX compared
to its predecessors. The model’s precision in predicting growth phenotypes of various carbon
sources surpassed the accuracy of iATCC19606 (84.3 %) and iLP844 (84 %), while it was com-
parable to that of iAB5075 (86.3 %).

In the second validation stage, in silico single-gene deletions were conducted to identify es-
sential genes. The results were compared to the strain-specific gene essentiality dataset pub-
lished by Wang et al. in 2014296. These knockouts were simulated using the LB and the rich
growth medium (i.e., all import reactions activated). To assess the impact of individual gene
deletions on the bacterial biomass production, the fold change (FC) between the model’s growth
rate before (grWT ) and after (grKO) a single knockout was computed. This is formulated as
follows:

FCgr =
grKO

grWT
. (3.2)

To this end, when FCgr = 0, indicating that its absence hinders the network’s ability to generate
at least one vital biomass metabolite, resulting in no growth. Correspondingly, if FCgr = 1, the
gene’s removal does not influence the growth phenotype (deemed non-essential), whereas when
0< FCgr < 1, the gene’s absence partially affects biomass production (referred to as partially es-
sential). Additionally, the impact of gene deletions was examined using two different optimiza-
tion approaches: FBA168 and MOMA173. In contrast to FBA, MOMA relies on quadratic pro-
gramming, with the optimization problem centered around minimizing the Euclidean distance
within the flux space. Furthermore, MOMA provides an approximation of the metabolic pheno-
type and relaxes the assumption of optimal growth flux for gene deletions173. Utilizing FBA, the
model predicted 97, 75, and 991 genes as essential, partially essential, and inessential, respec-
tively, with the LB medium defined. Conversely, optimization with MOMA resulted in 110, 85,
and 968 genes with similar classifications. The pathways mainly linked to these genes involved
the co-factor and vitamin biosynthesis, amino acid/nucleotide metabolism, energy metabolism,
and terpenoid and polyketide metabolism. A detailed examination of the nutrient availability im-
pact on gene essentiality was conducted by performing single-gene knockouts in a rich medium.
Both optimization algorithms resulted in more essential genes when the model was subjected
to alterations in metabolic behavior due to nutrient absence, i.e., with the LB growth medium,
compared to the rich medium. In general, FBA revealed a broader range of genes considered
dispensable for growth in both nutritional conditions. In contrast, MOMA categorized more
genes as essential or partially essential, with the essential genes identified by FBA constituting
a subset of those identified by MOMA. Validation of the in silico simulation results against
strain-specific gene essentiality data296 demonstrated an overall accuracy of 87 % using both op-
timization methods. This exceeded the performance of all GEMs constructed for A. baumannii
(e.g., 80.22 % for iCN718 and 72 % for iLP844), except iAB5075, which performed comparably.
Further investigation into false negative genes involved analyzing their proteomes to identify hu-
man orthologs. This analysis aimed to eliminate potential cross-linkages with proteins similar
to those found in the human host. The absence of certain metabolic pathways or enzymes in the
human host is considered a valuable resource for identifying druggable targets against infectious
diseases297. Among the 37 genes identified as essential by the model contradicting the experi-
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Table 3.3: List of existing genome-scale metabolic models for A. baumannii that underwent
curation. Default growth rates (i.e., model simulated as downloaded), the cellular compartments
(C: cytosol, E: extracellular space, P: periplasm, and ER: endoplasmic reticulum), and the database
used for the identifiers are listed in the table. MEMOTE scores both pre- and post-manual cura-
tion are given in the last column. Brown highlights the newly reconstructed model for the strain
ATCC 17978.

Availability Used
Identifiers

Growth by default
mmol/(gDW ·h) Compartments MEMOTE

AbyMBEL891277 BioModels Customized 119 Cell 20 % + 17 %
AGORA183 VMH VMH 134 C, E 42 % + 37 %
iLP844278 Suppl. Mat. ModelSeed 15.88 C, E, P 37 % + 21 %
iCN718279 BiGG BiGG 1.31 C, E, P, ER 70 % + 3 %
iATCC1906280 Suppl. Mat. KEGG 46.34 C, E 14 % + 44 %
iJS784282 GitHub ModelSeed 0.0 C, E, P 41 % + 18 %
iAB5075281 Suppl. Mat. BiGG 1.729 C, E, P 17 % + 50 %
iACB23LX BioModels BiGG 0.1677 C, E, P 89 %

mental data, 17 were found to have no human orthologs, as determined using the NCBI Basic
Local Alignment Search Tool (BLAST)p tool298. For instance, the enolpyruvylshikimate phos-
phate (EPSP) synthase (A1S_2276) and the chorismate synthase (A1S_1694) from the shikimate
pathway exhibited no similarity to the human proteome. The shikimate pathway is particularly
interesting due to its absence in the metabolome of the human host, while it is important in bacte-
rial metabolism and virulence299. Numerous knockout studies have emphasized the importance
of enzymes from the shikimate metabolism as promising targets against pathogenic microorgan-
isms such as Mycobacterium tuberculosis300, Plasmodium falciparum301, and Yersinia enteroco-
litica302. In an in vivo investigation, Umland et al. identified these two gene products as essential
using a clinical isolate of A. baumannii and a rat abscess infection model303. Additional essen-
tial genes found to have no human counterparts involved the riboflavin synthase (A1S_0223),
phosphogluconate dehydratase (A1S_0483), and 2-keto-3-deoxy-6-phosphogluconate (KDPG)
aldolase (A1S_0484). Previous studies have suggested these candidates and their associated
metabolic pathways as potential agents against various microorganisms304–307. However, their
effectiveness against Acinetobacter species remains unexplored, presenting an avenue for novel
therapeutic strategies. This literature evidence supports the credibility of the results and implies
that the genes identified as essential in the computational simulations presented here could be
considered potential targets for antimicrobial intervention.

The druggability of the candidate proteins was assessed using the DrugBank database308.
For instance, the database listed flavin mononucleotide and cobalt hexamine ion as known in-
hibitors of chorismate synthase with yet unknown functions. Conversely, glyphosate, shikimate-
3-phosphate, and formic acid were experimentally determined to interact with EPSP synthase.
Additionally, six non-homologous genes were annotated as hypothetical or putative in the
KEGG119 database and/or lacked enzyme-associated information. Aligning their sequences with
the DrugBank unveiled two potential drug leads: A1S_0589 matched the phosphocarrier protein
HPr of Enterococcus faecalis, and A1S_0706 resembled sugar phosphatase YbiV of Escherichia
coli. Despite experimental confirmation of the binding of dexfosfoserine and aspartate beryl-
lium trifluoride to these enzymes, their pharmacological action remain unknown308. Overall,
iACB23LX reports high agreement with all validation tests, establishing its suitability for sys-
tematically elucidating connections between genotypes and phenotypes.

Initiated in 2010 by Kim et al., the first GEM for A. baumannii AYE set the foundation for
the development of additional metabolic networks (Table 3.3). However, subsequent GEMs
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lacked consistency and contained outdated or syntactically invalid information. Here, these
issues were systematically addressed, evaluating and debugging seven existing strain-specific
models to create a curated, standardized, and updated collection for improved drug development
strategies and metabolic engineering. To accomplish this, a workflow was developed with cu-
ration steps applicable to all models, focusing on standardizing and enhancing their usability
within the community. This workflow closely aligns with the community-driven efforts for re-
constructing reusable and translatable models283. The curation procedure involves changes in
the format, amount, and quality of the included information. Computational determination of
minimal growth media addressed inflated growth rates, and growth capabilities were assessed
against experimentally-derived media, with LB medium used to identify lethal genes across all
examined strains. However, a holistic strain-wise comparison was not possible due to strain-
specific identifiers, unsuccessful growth, or absent genes in certain models. Consequently, only
the essential genes across all models with identifiers that could be mapped with the Pathosys-
tems Resource Integration Center (PATRIC) ID mapping tool309 were considered for this anal-
ysis. Syntactical correctness and internal consistency were verified using the SBML Validator
from libSBML206. Additional debugging steps involved addressing warnings, resolving issues
related to nomenclature and the fbc extension, declaring missing model attributes, and annotat-
ing reactions, metabolites, and genes following MIRIAM guidelines310 with ModelPolisher274

and SBOannotator286. The final debugging steps included converting all models to the latest
SBML203 format and quality control using MEMOTE210. It is essential to highlight that no
contextual modifications were made that could impact the models’ prediction capabilities. Addi-
tionally, common metabolic phenotypes were predicted using the curated models, and the results
were compared among the strains. The investigated models represent five different A. baumannii
strains that are publicly available through databases and online repositories or can be acquired
directly from the publications. However, the use of different identifiers hampers the comparison
of metabolic networks. More specifically, iLP844 and iJS784 use ModelSEED202 identifiers,
iCN718 and iAB5075 use BiGG199 identifiers, AbyMBEL891 has distinct identifiers not sup-
ported by any database, and iATCC1906 utilizes KEGG119 identifiers. Most models exhibited
unrealistic growth rates compared to the doubling time of the fastest-growing organism V. na-
triegens210, with iJS784 showing zero growth even with enabled imports, leading to its exclusion
from further analysis (Table 3.3).

To validate the models’ reflection of A. baumannii metabolic and growth capabilities, the flux
through the models’ biomass reactions was examined in growth media known to enable A. bau-
mannii growth. The majority of models exhibited zero biomass flux in iMinMed, while the
AGORA model additionally could not simulate growth in LB and SNM. To address these inaccu-
racies, minimal medium supplementations were identified to enable biomass production in these
media. As already mentioned, iJS784 was excluded from further examination, together with
AbyMBEL891, which hindered the analysis due to its non-standardized identifiers and miss-
ing genes. Positive growth rates were achieved for iATCC1906 and iAB5075 when iMinMed
was supplemented D-alanine and D-glucose 6-phosphate as well as GMP, respectively. The
AGORA model simulated positive biomass production when meso-2,6-diaminoheptanedioate,
menaquinone-8, niacinamide, heme, siroheme, and spermidine were added to LB. Similarly,
this analysis revealed compounds that led to positive growth rates when added to SNM and
iMinMed. Lastly, like with iACB23LX, the LB medium, together with FBA and MOMA, were
applied to detect lethal genes in all models. Despite significant efforts, a mapping scheme could
not be derived between the strain-specific gene identifiers of iLP844 and iATCC1906 to resolve
gene identifiers. The following strains were excluded from the analysis due to data limitations,
including the absence of strain AB5075 in KEGG119 and difficulties in mapping gene identifiers
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in iLP844 and iATCC1906. Moreover, only two models were available for ATCC 17978: the
newly created model previously described and presented in this thesis and iJS784 that simulated
continuously zero growth and was excluded from the analysis. Consequently, an examination
was carried out to identify genes necessary for growth among the remaining models across three
different strains: AB0057 (AGORA), ATCC 17978 (iACB23LX), and AYE (iCN718). More
specifically, from totally 392 genes predicted as essential, 34 occurred in all strains. For in-
stance, genes encoding for dephospho-coenzyme A (CoA) kinase, phosphopantetheinyl trans-
ferase, shikimate kinase, and chorismate synthase were essential across all strains. As already
mentioned, chorismate synthase has no human-like counterpart. This, coupled with its crucial
role in supporting growth across three strains, enhances the enzyme’s prospects as a potential
drug candidate for future therapeutic interventions. These findings highlight potential drug can-
didates in purine metabolism, transferases, pantothenate and CoA biosynthesis, and amino acid
metabolism for future therapies.

The presented metabolic reconstruction and the curated set of strain-specific models facili-
tate the generation of new model-driven hypotheses concerning A. baumannii. These resources
are indispensable in exploring the variations in metabolic behavior among different species,
elucidating their responses to genetic and environmental changes. The assembled collection
of curated and standardized models paves the way for subsequent studies, providing new in-
sights and promoting the development of therapeutic approaches tailored to specific strains and
species. This, in turn, facilitates the definition of the entire species and the formulation of new
hypotheses. Furthermore, these models advance precision antimicrobial control strategies de-
signed explicitly for A. baumannii strains. In summary, the presented workflows and models
are multi-purpose tools that can further augment this collection by incorporating additional stan-
dardized, strain-specific metabolic reconstructions. This aims to extensively delineate the core
and pan metabolic capabilities of A. baumannii. The model iACB23LX, along with all cu-
rated models, are available at BioModels201 as an SBML Level 3 Version 1311 file distributed as
OMEX archive271 including annotation272.

3.4 Metabolic insights into cystic fibrosis

This section presents the article: Leonidou, N., Ostyn, L., Coenye, T., Crabbé, A., & Dräger, A.
(2023). “Genome-scale model of Rothia mucilaginosa predicts gene essentialities and reveals meta-
bolic capabilities.” Microbiology spectrum.

The CF environment promotes the growth of diverse microorganisms, some of which lead
to acute and chronic lung infections, while others may positively influence the disease
progression.95. R. mucilaginosa is notably prevalent in the lungs of CF patients, attracting
remarkable attention within polymicrobial CF environments96, 312. Recent studies have un-
veiled its anti-inflammatory properties using in vitro three-dimensional lung epithelial cell cul-
tures and mouse models mimicking chronic lung diseases in vivo108. Additionally, it has been
linked to severe infections within the human body106. However, its metabolic capacity and
genotype-phenotype connections in isolated monoculture conditions are poorly known. This
study presents the first manually curated and high-quality GEM of R. mucilaginosa DSM20746
(referred to as iRM23NL), offering a foundation for exploring metabolic phenotypes. The bac-
terium’s substrate utilization behavior was experimentally analyzed, and the results were em-
ployed to validate and refine the metabolic reconstruction. Putative essential genes were identi-
fied utilizing computational approaches. Their metabolic impact was evaluated under different
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Figure 3.5: Growth behavior of R. mucilaginosa DSM20746 in different nutrient environments.
(A) The bacterium’s metabolic response under anaerobic stress as represented in iRM23NL. (B)
Experimentally-derived growth curves in various liquid growth media, along with the corresponding
FCs defined in Eq. (3.3). The data shown here are an average of three biological replicates (n = 3).
The correctness of the threshold was verified by performing statistical analysis, whose significance
levels are represented by asterisks. (C) In silico-simulated growth rates using iRM23NL.

nutritional conditions, yielding new hypotheses for future antimicrobial strategies.

The pipeline described in the previous section was employed to construct the metabolic net-
work. Utilizing the bacterium’s protein sequence containing more than 1,700 proteins and the
Gram-positive-specific template from CarveMe284, the preliminary model was reconstructed.
This template provides a more accurate reconstruction by incorporating details about the pep-
tidoglycan layer for the biomass reaction. The initial network comprised 1,015 reactions (141
pseudo-reactions), 788 metabolites, and 265 genes. The reaction list was expanded in the first
gap-filling stage using the annotated genome and growth kinetics data in multiple growth en-
vironments. This resulted in incorporating 50 new GPRs into the model. High-throughput
nutrient screenings and model validation led to the inclusion of further metabolic reactions and
genes. More specifically, 79 reactions, along with 71 novel GPRs, were added, increasing the
genetic coverage. Altogether, over 60 % of transport reactions have GPR, and at least one gene
is assigned to 63 % of all enzymatic reactions. Missing exchange reactions for extracellular me-
tabolites were added, while the strain-specific BioCyc database118 was used to adjust reaction
reversibility and eliminate duplicates. In cases where organism-specific information was un-
available, data from closely related species was employed. Using the ANIclustermap v.1.1.0313,
the genome of DSM20746 was compared against 12 Rothia species (e.g., R. aeria, R. dento-
cariosa, and R. terrae). The analysis revealed similarity with six tested Rothia genomes, par-
ticularly exhibiting a closer relationship with R. aeria and R. dentocariosa. R. mucilaginosa
primarily employs aerobic respiration for ATP generation but shifts to anaerobic metabolism in
oxygen-depleted conditions, adapting to microaerophilic environments like CF lungs100. The
initial model could not simulate growth under anoxic conditions, prompting systematic incor-
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poration of missing enzymes, including superoxide dismutase (SPODM) and catalase (CAT),
responsible for radical reactive oxygen species (ROS) breakdown. Such scavenging enzymes
help mitigate the negative effects of ROS during anaerobic respiration314. Additional scaveng-
ing enzymes, such as glutathione and thioredoxin reductases, necessary for preserving redox
equilibrium315 were already included in the draft model. Altogether, the final iRM23NL com-
prises 1,162 reactions, 171 exchange and sink reactions, 874 metabolites, and 372 genes. The
model entities were enriched with database cross-references274, assigned precise SBO terms
using the SBOannotator286, and checked for EGCs285.

Growth kinetics data were employed to validate the performance of the reconstructed meta-
bolic network. The assessment began by evaluating the model’s accuracy in simulating biomass
production under various environmental conditions and growth media formulations. To achieve
this, the growth ability of R. mucilaginosa was experimentally and computationally tested in
five different media: three general nutrient media and two defined media. The general media
included brain heart infusion (BHI), LB, and tryptic soy broth (TSB), whereas the defined me-
dia consisted of M9 pure and the Roswell Park Memorial Institute (RPMI) medium. The BHI
was chosen as a baseline for the experimental tests since it is a recognized and well-established
environment for the bacterium’s proliferation. The FCOD defined as follows:

FCOD =
OD t=48h

590nm

OD t=0h
590nm

(3.3)

was used to qualitative compare the in vitro to in silico results. An FCOD < 1.4 represents no
growth, while FCOD > 1.4 indicates a growth increase over time. Statistical tests were per-
formed to validate the correctness of this threshold and detect potential significant differences
between measurements at initial and final time points, indicating growth. The Student’s t-test,
applied to three biological replicates, assessed whether there was a significant difference in op-
tical density (OD) values between initial and final time points. Pre-testing assumptions for data
normality and variance homogeneity were conducted using the Shapiro–Wilk and Levene’s tests,
respectively. Both experimental and computational results demonstrated positive growth across
all tested media, excluding the M9 pure (Fig. 3.5). Notably, the highest growth rates were consis-
tently observed in TSB, while M9 pure exhibited the lowest growth, as corroborated by both in
vitro and in silico analyses. The RPMI medium ranked the second-highest in supporting in vitro
growth, offering a defined medium suitable for R. mucilaginosa’s cultivation. Moreover, in con-
trast to the empirical results, iRM23NL, simulated a lower biomass flux with RPMI compared
to LB. Interestingly, six metal ions were supplemented to facilitate a positive simulated growth
in RPMI. These included cobalt (Co2+), copper (Cu2+), manganese (Mn2+), zinc (Zn2+), ferric
iron (Fe3+), and ferrous iron (Fe2+). These metals have also been confirmed as essential for the
in silico growth of S. aureus in RPMI221. Transition metals, while potentially highly toxic, play
a vital role in the survival of all living organisms when present in controlled levels316. Notably,
these compounds were not listed in the medium formulation provided by the suppliers, raising
questions about its accuracy. In all cases, the potential metal co-factor promiscuity in R. mu-
cilaginosa, as suggested by iRM23NL, should be further investigated to determine whether the
bacterium can survive without any of the proposed metabolites. Furthermore, iRM23NL was
employed to examine the bacterium’s growth capabilities within the human nasal environment
and CF lungs. For this purpose, the synthetic cystic fibrosis sputum medium (SCFM)317 and
the SNM294 were used (Fig. 3.5). The computational model successfully demonstrated posi-
tive growth in both environments, exhibiting growth rates of 0.43 mmol/(gDW ·h) in SNM and
0.45 mmol/(gDW ·h) in SCFM. These findings correlate with R. mucilaginosa’ established me-
tabolic behavior in CF lungs96, 312 and its frequent presence in the human nasal cavity104. Ad-
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ditionally, the model accurately represented R. mucilaginosa’s facultative anaerobic respiration
capacity, demonstrating successful growth through alternate metabolic routes across all tested
nutritional media in the absence of oxygen. Overall, the results emphasize R. mucilaginosa’s
adaptability to diverse nutritional environments, showcasing optimal growth in nutrient-rich con-
ditions and highlighting specific growth requirements in nutrient-deficient environments.

The second validation step involved defining the complete nutrient utilization phenome of
DSM20746. The strain’s ability to assimilate and utilize various carbon, nitrogen, phosphorus,
and sulfur sources was experimentally determined using high-throughput phenotypic microarray
assays, while the results were subsequently compared to the model simulations. Four 96-well
Biolog phenotype microarray (PM) microplates were assessed in duplicates, while independent
tests confirmed the results. The attained transmittance (T ) was converted to absorbance employ-
ing the following formula:

Absorbance = 2− log10(%T ). (3.4)

The area under curve (AUC) was used as a metric to distinguish between growth (AUC ≥ 50)
and no growth (AUC < 50). The computation of AUCs involved the utilization of the linear
trapezoidal rule for interpolating between data points, as expressed by the following equation:

AUC(ti+1−ti) =
∫ ti+1

ti
f (x)dx ≈ (ti+1 − ti) ·

1
2
(ODti+1 +ODti). (3.5)

Here, ti represents the respective measured time point and i ∈ {0, . . . ,e}, with e being the final
measured time. The trapezoidal rule was iteratively applied to adjacent data points defined
along the curve whose summation resulted in the final AUC value. Hence, the final AUC value
is defined as follows:

AUCte =
e−1

∑
i=0

AUC(ti+1−ti). (3.6)

Among the 190 experimentally tested carbon substrates, R. mucilaginosa demonstrated the ca-
pability to utilize 61, including carboxylates, saccharides, and amino acids, while 10 out of 95
nitrogen sources were found to be viable. Additionally, out of 59 and 35 tested phosphorus and
sulfur sources, R. mucilaginosa exhibited a loss of metabolic activity for 28 and 10 compounds,
respectively. Subsequently, the predictive performance of iRM23NL in utilizing various C-, N-,
P-, and S-containing substrates was evaluated. Among the 286 Biolog compounds successfully
mapped to the BiGG database199 and then to iRM23NL, 126 were identified as extracellular me-
tabolites within the model and considered for further analysis. Discrepancies between the model
and phenotypic microarray results were used as a foundation for additional model refinement and
were addressed through extensive literature mining and iterative gap analysis. In cases where
experimental results suggested the utilization of an undefined compound, missing transporters
or enzymatic reactions were added based on strain-specific and gene-related information. If no
organism-specific evidence was available, data from genomically identical species were consid-
ered. For instance, 3-sulfino-L-alanine was initially missing from the model. To achieve the
expected positive utilization phenotype in iRM23NL, a BLAST298 search identified cysteine
desulfurase (SULFCYS) and associated transport reactions (proton-mediated; SULFCYSpp, dif-
fusion; SULFCYStex, and ABC transport; SULFCYSabc), showing similarity exceeding 80 % with
R. dentocariosa.

Furthermore, false negative or false positive predictions often result from missing or inaccu-
rate transporter information. Corrections were made by removing transport reactions lacking
gene evidence or adjusting reversibility for export. For example, corresponding irreversible
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Figure 3.6: Predictive accuracy performance of iRM23NL using nutrient utilization data. Only
substrates mapped to both BiGG and model identifiers could be analyzed. Multiple registered BiGG
identifiers for compounds were also considered during analysis. Positive growth is labeled as “+”,
while “-” denotes the non-growth phenotype. The overall prediction accuracy of iRM23NL was
computed using Eq. (3.5).

transporters were added when initial predictions contradicted Biolog assays for L-cysteate and
adenosine 5’-monophosphate (AMP). Over 50 transport reactions were added during this re-
finement step, and 37 erroneous enzymatic functions were removed. However, resolving addi-
tional inconsistencies required incorporating metabolic reactions without associated gene evi-
dence, highlighting gaps in the DSM20746 metabolism that necessitate in-depth investigation.
Fourteen carbon and nitrogen sources failed to promote the experimentally observed growth
in iRM23NL, despite the existence of corresponding transport reactions within the network
(Fig. 3.6). Further information on their transport or metabolic mechanisms was absent in the
genome annotation and the literature. In summary, iRM23NL achieved prediction accuracies of
77 % for carbon sources, 94.4 % for nitrogen sources, 100 % for phosphorus, and 92.3 % for sul-
fur sources (Fig. 3.6). This performance represents a 40 % increase post-comprehensive curation
compared to the initial draft model. The refinement notably reduced false positive predictions
by 17, leaving only three unresolved mismatches. A remarkable enhancement was observed in
predicting nitrogen and phosphorus sources. This high predictive accuracy underscores the ac-
curate reconstruction of core metabolic routes within iRM23NL, enabling successful predictions
of the catabolism of various compounds like sugars and amino acids.

Given the increased proportion of gene-associated reactions and the high predictive accuracy
of the metabolic network, iRM23NL was used to predict single gene knockouts. Each metabo-
lic gene was removed from the network, and iRM23NL was optimized for biomass production
using FBA. The FBA simulation was repeated 100 times to account for the inherent variability
of optimization algorithms. Additionally, pFBA was employed, involving two sequential linear
optimization problems to determine the optimal flux distribution while minimizing the total sum
of flux. Predicted growth rates before and after gene deletions, as defined in Eq. (3.2), served as
a measure of gene essentiality. Moreover, different growth conditions (M9 supplemented with
glucose, LB, SNM, and SCFM) in both oxic and anoxic environments were considered. Under
nutrient-limited conditions, the model consistently predicted a higher number of genes as essen-
tial for growth, while these numbers were consistent between oxic and anoxic conditions. In
total, four metabolic genes [TrkA family potassium uptake protein (WP_005506372.1), ribulose-
phosphate 3-epimerase (WP_005507411.1), glucose-6-phosphate isomerase (WP_005508482.1),
and transaldolase (WP_005509117.1)], exhibited partial essentiality across all tested media, con-
tributing to cellular fitness. Most essential genes were involved in nucleotide metabolism, pep-
tidoglycan biosynthesis, and energy metabolism, highlighting their importance in supporting
bacterial respiration. Notably, under nutrient-poor conditions, critical genes for survival were
associated with the biosynthesis pathways of leucine, valine, and chorismate.
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Following that, a protein sequence homology analysis using BLAST298 against the human
proteome was conducted to identify potential targets that could be considered in future thera-
peutic targets. Only genes deemed essential in both laboratory and synthetically-defined media
were considered. In both LB and M9, there were 35 common essential genes, with 20 of them
having homologous counterparts in the human genome. Further analysis showed that five genes
had over 50 % sequence similarity with homologous proteins, but none exceeded 80 % similar-
ity. Analogously, under aerobic and anaerobic conditions with SCFM and SNM, 45 shared genes
were predicted as essential, with 25 having homology to the human genome, and seven showing
over 50 % sequence similarity. Examples of these genes include phosphopyruvate hydratase,
CTP synthase, and adenylosuccinate synthase, consistently exhibiting human counterparts with
over 50 % similarity across all tested conditions. Among the common essential genes in LB
and M9, 15 had no homologous hits. Similar observations were made for 20 common essential
genes in SCFM and SNM, including orotate phosphoribosyltransferase, type I pantothenate ki-
nas, dihydroneopterin aldolase, and pantetheine-phosphate adenylyltransferase. The main goal
in studying R. mucilaginosa as a pathogen is to determine essential genes, especially those lack-
ing human counterparts. Identifying these essential genes is crucial and aims to incapacitate
the pathogen while ensuring the safety of the host. Simultaneously, R. mucilaginosa is being
explored as an agent with anti-inflammatory properties. In this context, the focus is on pro-
moting the bacterium’s growth by enhancing specific environmental conditions known to sup-
port its proliferation. The gene essentiality analysis aims to propose enhancing the production
of enzymes encoded by essential genes, as they play a pivotal role in the bacterium’s benefi-
cial functions. Nevertheless, knowing the R. mucilaginosa-specific essential genes is crucial to
avoid inadvertently targeting them during treatments, guaranteeing the bacterium’s growth and
its anti-inflammatory functions. This dual perspective highlights the therapeutic versatility, en-
compassing methods to fight Rothia when it is harmful, while promoting cell biomass production
when its anti-inflammatory effects are advantageous.

Overall, this study investigates R. mucilaginosa’ metabolism, a less-explored member of the
microbial community and CF patients. The first high-quality and manually curated GEM for
R. mucilaginosa was reconstructed to enhance the systems-level understanding of its cellular
metabolism. Experimental assessments of the bacterium’s growth behavior under diverse envi-
ronmental conditions and the determination of its high-throughput nutrient utilization phenome
were determined for the first time. Integrating these in vitro findings within the metabolic net-
work led to model’s refinement, as well as the inclusion of novel metabolic reactions and genes,
suggesting new avenues for research. Ultimately, the study explored the effects of condition-
specific single-gene deletions. The in silico transposon mutant library created with iRM23NL
could serve as a foundation for future research and practical applications, offering a robust ap-
proach for identifying potential antimicrobial targets and avoiding labor-intensive screening pro-
cedures. These applications include the development of rational and condition-specific drug tar-
gets and utilization in biotechnology and metabolic engineering. The final metabolic network
has a MEMOTE210 score of 89 % and is available at the BioModels database201 as an SBML
Level 3 Version 1311 file wrapped in an OMEX archive file271 together with a metadata file272.
Finally, a step-by-step tutorial video on how to run simulations with iRM23NL is available at
https://www.youtube.com/watch?v=Mcgov5H1kq0.
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CHAPTER 4
Conclusion

An ounce of prevention is worth a pound of cure.
– Benjamin Franklin

Systems biology is imperative for enhancing our understanding of biological systems and ad-
vancing disease intervention. By considering the complex interactions within biological net-
works, these methodologies offer a holistic perspective crucial for personalized medicine and
drug discovery. The predictive capabilities of metabolic modeling facilitate the prediction of cel-
lular responses and behaviors under different conditions. This aids in identifying potential drug
targets and optimizing treatment strategies. Additionally, it substantially reduces the time and
resources required for traditional experimental processes, particularly during the initial phase of
the drug discovery pipeline.

This thesis focuses on computational biology and modeling approaches to analyze biochem-
ical networks at the systems level. It explores methods to identify antiviral drug targets, de-
code host-pathogen interactions, and optimize future therapeutic methodologies for managing
infectious diseases in diverse clinical settings. The conducted research encompasses software
development, data analysis, computer modeling, and experimental validation, providing a mul-
tifaceted approach that integrates theoretical insights with practical applications.

The first goal of this thesis was to accelerate the prediction of exploitable host-based antiviral
targets in the pre-clinical phase. This was accomplished by developing a computational work-
flow. The workflow is accompanied by software designed to calculate the metabolic stoichiome-
try of virus production and investigate virus-host interactions. While the workflow application
was showcased using SARS-CoV-2 and its variants, its versatility allows for its transfer and uti-
lization to known and emerging RNA viruses. Targeting host cell metabolic pathways offers ad-
vantages in robustness and evolutionary stability, leading to the identification of broad-spectrum
putative therapeutics. Overall, this approach aims to enhance preparedness for future pandemics
involving diverse viruses and host cell types, contributing to effective prevention strategies.

Following the FAIR principles, model standardization and reproducibility are crucial for the
transparent and effective dissemination of scientific knowledge. Compliance with these prin-
ciples enhances the accessibility of models, fosters collaboration, and promotes the reuse of
computational tools, contributing to scientific research’s overall robustness and reliability. Rec-
ognizing this need in systems biology, the tool presented in this thesis, called SBOannotator,
successfully enables the automation of the assignment of SBO terms. More specifically, it ad-
dresses challenges in accurately annotating biochemical reactions, ensuring adherence to top-
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level terms and enzyme functionality. Consequently, the second goal of establishing a system-
atic and standardized framework for model representation is achieved, thereby contributing to
enhanced clarity and consistency in computational biology research.

The human nose serves as an infectious site due to its interface with the external environ-
ment, creating a direct link with the internal human body. Moreover, the nasal milieu can act as
a reservoir for various bacteria, including those carrying antibiotic resistance determinants, like
A. baumannii. Tackling the AMR challenge requires a comprehensive understanding of bacterial
metabolic capacities. This goal was achieved in the third project by utilizing systems biology
and computer modeling techniques to analyze multiple A. baumannii strains comprehensively.
By creating and analyzing models that simulate the metabolic processes, scientists can acquire
knowledge about the nutritional needs and metabolic pathways under various conditions. Ex-
ploring the metabolic profiling of A. baumannii in diverse growth environments holds clinical
importance by providing insights into potential vulnerabilities for targeted interventions. Over-
all, these insights aim to enhance measures against A. baumannii-associated infections and could
enable the implementation of personalized decolonization strategies.

Expanding beyond the investigation of nasal microbiota and AMR, this thesis explores the
molecular complexities of cystic fibrosis. It focuses on the dual role of R. mucilaginosa in
health and disease, a microorganism that remains understudied compared to other members of
the human microbiota. The presented research endeavors to examine R. mucilaginosa’s meta-
bolic processes in depth. This goal is accomplished by constructing the first manually curated
GEM to unravel insights into the bacterium’s metabolism and identify potential essentialities.
The presented study addresses the experimental exploration of R. mucilaginosa’s phenotypes
through high-throughput experiments, which were subsequently utilized to refine the metabolic
network. The model-driven identification of condition-specific essential genes and exploitable
antimicrobial targets underscores the bacterium’s potential for expediting future therapeutic in-
terventions. Therefore, the metabolic characteristics presented in this research are imperative
for both fundamental comprehension and practical applications.

Integrating various data, including genomics and metabolomics, within the systems biology
framework holds promise for a broader outlook in personalized interventions and preparation
for future pandemics. As we envision the future, these integrated findings open new avenues
for research, emphasizing the need for ongoing exploration and collaboration to harness the
potential of systems biology in advancing human health. However, it is crucial to recognize
that computational-driven hypotheses necessitate rigorous experimental validation and testing
in both in vitro and in vivo settings to ensure their translational impact and clinical applicability.
The continuous progress in omics technologies and the ongoing commitment to data integration
and standardization efforts will play pivotal roles in shaping the future of systems biology, fos-
tering advancements that hold great potential for improving human health in personalized and
precision medicine. Ongoing research proves GEMs as excellent scaffolds for big data analysis,
showcasing a distinctive strength in their adaptable nature. These inherently open-ended models
allow for continuous expansion with novel biological knowledge, augmenting their predictive
capabilities.

The continuing global challenges underscore the critical importance of pandemic prepared-
ness and prevention, emphasizing the need for forward-looking and interdisciplinary approaches
to safeguard public health. The research presented in this thesis advances infectious disease
intervention through computational systems biology and in silico modeling. It offers compre-
hensive insights into unexplored areas, thereby advancing the application of systems biology
principles.
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Abstract

COVID-19 is one of the deadliest respiratory diseases, and its emergence caught the phar-

maceutical industry off guard. While vaccines have been rapidly developed, treatment

options for infected people remain scarce, and COVID-19 poses a substantial global threat.

This study presents a novel workflow to predict robust druggable targets against emerging

RNA viruses using metabolic networks and information of the viral structure and its genome

sequence. For this purpose, we implemented pymCADRE and PREDICATE to create tis-

sue-specific metabolic models, construct viral biomass functions and predict host-based

antiviral targets from more than one genome. We observed that pymCADRE reduces the

computational time of flux variability analysis for internal optimizations. We applied these

tools to create a new metabolic network of primary bronchial epithelial cells infected with

SARS-CoV-2 and identified enzymatic reactions with inhibitory effects. The most promising

reported targets were from the purine metabolism, while targeting the pyrimidine and carbo-

hydrate metabolisms seemed to be promising approaches to enhance viral inhibition.

Finally, we computationally tested the robustness of our targets in all known variants of con-

cern, verifying our targets’ inhibitory effects. Since laboratory tests are time-consuming and

involve complex readouts to track processes, our workflow focuses on metabolic fluxes

within infected cells and is applicable for rapid hypothesis-driven identification of potentially

exploitable antivirals concerning various viruses and host cell types.

Author summary

The recently emerged human coronavirus SARS-CoV-2 spread worldwide, causing severe

challenges in health care, the economy, and society. Developing new vaccines and thera-

pies is essential to prevent the next pandemic efficiently. However, vaccines have the dis-

advantage of decreased immunity over time, while they lose their efficacy against
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Dräger A (2023) New workflow predicts drug

targets against SARS-CoV-2 via metabolic changes

in infected cells. PLoS Comput Biol 19(3):

e1010903. https://doi.org/10.1371/journal.

pcbi.1010903

Editor: Pedro Mendes, University of Connecticut

School of Medicine, UNITED STATES

Received: July 27, 2022

Accepted: January 30, 2023

Published: March 23, 2023

Copyright: © 2023 Leonidou et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The computational

host-virus model Recon1-HBEC, as well as the

source code of pymCADRE and PREDICATE, test

scripts, and test dataset are available in a git

repository at https://github.com/draeger-lab/

pymCADRE/. Supplementary tables in Microsoft

Excel format are available along with this article.

Access the model at https://www.ebi.ac.uk/

biomodels/MODEL2202240001.

Funding: This work was funded by Federal Ministry

of Education and Research (BMBF) and the Baden-



subsequent mutations and variants. Hence, effective pandemic preparedness requires dis-

covering broadly acting antivirals with high resistance barriers. Here, we accelerate the

detection of antiviral drug candidates against RNA viruses by analyzing metabolic changes

in infected cells. Viruses rely on the host to acquire all macromolecules needed for their

replication, re-programming the cellular metabolism according to their needs. For this

reason, host-directed approaches are of great importance. We develop software to recon-

struct constraint-based models, simulate infections of a cell, and identify host-based meta-

bolic pathways that can be inhibited to suppress viral replication. We identify promising

targets with inhibitory effects across multiple variants facilitating further in vitro and in
vivo experiments. Our workflow can be applied to any RNA virus and aims to rapidly

identify antiviral targets to better prepare for the next pandemic.

Introduction

In a study published in October, 2007,, scientists studying coronaviruses characterized the situ-

ation in China as a ticking “time bomb” for a potential virus outbreak [1]. They had three

strong indications to worry: the animal-related eating habits in southern China, the previous

appearance of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-like viruses in

horseshoe bats, and the ability of coronaviruses to undergo recombination. Since the first

major pandemic of the new millennium in 2002, over 4,000 publications on coronaviruses

became available, giving insights and leading to the discovery of 36 SARS-related coronavi-

ruses in humans and animals. Eighteen years later, the whole world experiences the realization

of this prophecy with the emergence of the Coronavirus Disease 2019 (COVID-19) to be one

of the deadliest respiratory disease pandemics since the “Spanish” influenza in 1918 [2]. Scien-

tists globally try to understand the host’s immunopathological response, how the novel virus

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) adapts, and how it spreads.

Viruses, being infectious agents, replicate only within the cells of a living organism and re-

program them to form other virus particles and accelerate their own reproduction. Their life

cycle is divided into four main steps: host cell attachment, penetration, reproduction within

the host cell (uncoating, gene expression, replication, and assembly), and release [3]. To

increase their mass production, they consume energy from the host cell. This dependency is

proved by experimental findings showing considerable metabolic flux alterations in host cells

upon infection [4]. To this end, engineering the host metabolism to govern viral infections is

of great interest. In fact, one of the largest classes of small-molecule antiviral drugs, the nucleo-

side and nucleotide analogs, target metabolic enzymes in the nucleotide synthesis resulting in

a nucleotide pool imbalance [5]. Examples of such analogs that are already used against RNA

viruses are ribavirin [6], acyclovir [7], and remdesivir [8]. Systems-level analysis of gene

knock-outs upon bacterial infection with bacteriophage lambda also revealed metabolic genes

that, when knocked-out, prevented the phage from replication [9], confirming the engineering

of host metabolism as a virus growth regulator.

These laboratory findings highlight the impact of viral biosynthesis on host metabolism and

the importance of metabolic alterations in the virus growth minimization. Hence, finding a

suitable Virus Biomass Objective Function (VBOF) that reflects the functions of the infected

cell is of immense interest. The VBOF is a pseudo-reaction simulating the production of the

different virus particles and is analogous to the biomass function used for the metabolic mod-

els of prokaryotes and eukaryotes. It consists of energy metabolites, nucleotides, and amino

acids, essential for the replication and production of genetic material and proteins. In 2018,
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Württemberg Ministry of Science as part of the

Excellence Strategy of the German Federal and

State Governments within the project “identification

of robust antiviral drug targets against SARS-CoV-

2” as well as by the Deutsche

Forschungsgemeinschaft (DFG, German Research

Foundation) under Germany’s Excellence Strategy

– EXC 2124 – 390838134 and supported by the

Cluster of Excellence ‘Controlling Microbes to Fight

Infections’ (CMFI). R.M. and A.D are supported by

the German Center for Infection Research (DZIF,

doi: 10.13039/100009139) within the Deutsche

Zentren der Gesundheitsforschung (BMBF-DZG,

German Centers for Health Research of the BMBF),

grant No 8020708703. The authors acknowledge

the support by the Open Access Publishing Fund of
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Aller et al. present a computational approach to create viral objective functions and predicted

critical host reactions of the human macrophages against epidemic viruses, like the Zika virus

[10]. The applicability of their method was verified by recovering antecedent antiviral targets

and predicting new ones.

Notwithstanding the recent therapeutic advances and the approval of multiple vaccines,

COVID-19 remains a substantial global health threat. Currently, great efforts are initiated to

detect effective antiviral treatments for this pathogenic agent. Like all viruses, SARS-CoV-2

continuously evolves over time as modifications in its genome occur during replication. Such

alterations are typical for viruses that encode their genome in RNA, as enzymes that copy the

ribonucleic acid are prone to making errors leading to the presence of copying mistakes during

viral replication [11]. It has been reported that SARS-CoV-2, along with all coronaviruses, has

relatively low mutation rates (�10-6 per site per cycle) compared to other RNA viruses, like the

Human Immunodeficiency Virus (HIV)-1 or influenza viruses [12, 13]. This is ascribed to the

presence of proofreading and error-correcting enzymes that recognize and repair copying mis-

takes hindering the development of anti-CoV drugs and vaccines [14]. SARS-CoV-2 encodes

an Exonuclease (ExoN) in the Non-structural Protein 14 (NSP14), which participates in the

genome proofreading mechanism and results in low mutation rates (or high viral fidelity) [15].

The 5’ region of the SARS-CoV-2 genome encodes for two open reading frames (ORF1a/

ORF1ab and ORF1b) which include 16 Non-structural Proteins (NSPs) [16]. These are fol-

lowed by four structural proteins: nucleocapsid (N), envelope (E), the spike (S) and the mem-

brane (M), and nine accessory proteins (NS) [16].

At the time of writing, five variants of SARS-CoV-2 have been designated as Variants of

Concern (VOC) by the World Health Organization (WHO). These are the Alpha (14 Decem-

ber, 2020, United Kingdom (UK), lineage B.1.1.7), Beta (18 December, 2020, South Africa,

lineage B.1.351), Gamma (2 January, 2021, Brazil, lineage P.1), Delta (24 March, 2021, India,

lineage B.1.617), and Omicron (24 November, 2021, South Africa/Botswana, lineage B.1.1.529)

variants [17]. These differ from the conventional virus in terms of their pathogen properties

(e.g., transferability, virulence, or susceptibility to the immune response of recovered or vacci-

nated people). Mutations on the structural proteins occur most frequently and issue complica-

tions en route to pathogenesis. The most common mutation of the S protein is the non-

synonymous replacement of aspartate by glycine (D614G), which is found to decrease the

virus effectivity [18]. Mutations in the E protein have not been reported in any variants, except

the Beta and Omicron. These are the substitution of proline by leucine (P71L) [19], and the

exchange of the hydrophilic threonine by the hydrophobic isoleucine (T9I) [20].

Identifying potential targets and druggable compounds is of vast concern, and one way to

detect them is by analyzing metabolic changes in infected cells. This can be achieved with the

help of systems biology and the reconstruction of cell-specific Genome-scale Metabolic Models

(GEMs) that recapitulate the metabolism of particular cell types [21]. Targeting the host

metabolism has already been suggested as a prospective novel antiviral approach, given the rel-

evance of metabolism in virus infection [22]. Since the emergence of SARS-CoV-2 and within

a year several studies have been published trying to identify antiviral targets using constraint-

based metabolic modeling and utilizing various approaches and resources [23–28]. For

instance, a recent study by Bannerman et al. employs a draft model of the airway epithelial

cells built from Recon1 [29], refines it using Recon3D [30], and predicts drug targets against

SARS-CoV-2 [27]. However, they used pre-existing reconstruction tools and models to obtain

a representation of the tissue metabolism.

In 2012 Wang et al. publish the metabolic Context-specificity Assessed by Deterministic

Reaction Evaluation (mCADRE) algorithm to construct metabolic models based on human

gene expression data and network topology information [31]. This tool is implemented in
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MATLAB [32], and its functionality is based on the first version of the human model, namely

Recon1 [29]. This resulted in its limited usability in the last few years since MATLAB is a com-

mercial and closed-source software.

Here, we present pymCADRE, a re-implementation of mCADRE in Python striving for a

more accessible and updated version of the reconstruction tool. Additionally, we implemented

scripts for data pre-processing facilitating relevant curation tasks, such as assigning confidence

scores to reactions, binarizing raw transcriptomic data, and calculating gene ubiquity scores.

Pathological studies already pointed out that SARS-CoV-2 targets the airways and the lungs.

The entry and infectivity of enveloped viruses are strongly regulated by proteolytic cleavage of

the viral envelope glycoproteins [33]. In the case of SARS-CoV-2, the S protein, when bound

in the cell surface, is susceptible to airway protease cleavage, which results in conformational

change favoring the entry of the virus into human bronchial epithelial cells [33]. Further sin-

gle-cell analyses provided insights into the virus replication and the cell tropism, confirming

that infection with SARS-CoV-2 is also localized in the bronchial epithelial cells [34, 35].

Hence, we applied pymCADRE to create a novel tissue-specific model of primary Human

Bronchial Epithelial Cells (HBECs) based on the already available human metabolic network,

Recon1. We updated the model by including a biomass maintenance function that Bordbar

et al. published in 2010 [36].

We subsequently infected this model in silico with the novel SARS-CoV-2 virus by con-

structing a viral biomass reaction derived from its structural information. Therefore, we cre-

ated a fully automated computational tool in Python, called Prediction of Antiviral Targets

(PREDICATE), which applies the stoichiometric approaches introduced by Aller et al. on a

metabolic network, constructs a single VBOF, and creates an integrated host-virus model [10].

Subsequently, our tool predicts exploitable cellular metabolic pathways that can be inhibited to

suppress virus replication with minimal or no effect on the cell. This is attained using two

approaches: the host-derived enforcement (HDE) [10] and single-reaction knock-outs. We

applied our automated script to our tissue-specific model Recon1-HBEC and detected poten-

tial host-based targets for future COVID-19 therapeutic strategies. We further used PREDI-

CATE and validated the robustness of our predicted targets against all five variants of concern.

We underline the identified metabolic reactions as experimentally exploitable drug targets for

suppressing SARS-CoV-2 replication in human bronchial epithelial cells. We syntactically vali-

dated our model and compared it against the corresponding model reconstructed using

mCADRE.

Altogether, our novel workflow can be summarized in a four-step process, as shown in Fig

1, which is fully transferable to any existing RNA virus and any host cell. With this, we aim to

support further the development of effective therapies against emerging viruses and their

mutations and create a library of drugs to design broad-spectrum antiviral therapies as an

essential resource for pandemic preparedness.

Materials and methods

Overview of pymCADRE

The tool can be executed via the command line using:

python pymcadre.py
or using the provided Jupyter notebook named:

main_pymCADRE.ipynb
The package can also be found on the Python Package Index [37] (https://pypi.org/project/

pymCADRE/) and can be installed using:

pip install pymcadre
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Ranking of reactions. The first step in the pymCADRE pipeline is the ranking of all reac-

tions found in the generic model, as Wang et al. proposed [31]. The ranking relies on three cri-

teria: expression-based evidence, connectivity of reactions within the model, and confidence-

based evidence. The assignment of evidence scores to reactions aims their division to cores

and non-cores.

After binarizing the gene-expression data, the frequency of a gene’s expression across all

experiments of the same tissue is computed; this is the ubiquity score U(g) for each gene g:

8g 2 G : UðgÞ ¼
1

j N j

X

n2N
Xg;n ð1Þ

where N is the total number of samples and Xg,n 2 {0, 1} denotes the absence or presence of the

gene g in sample n 2 N. For instance, if a gene is expressed in three of five samples, its ubiquity

Fig 1. Workflow overview to reconstruct integrated host-virus genome-scale models and detect promising compounds with an antiviral activity.

After collecting and curating the required data (the gene expression data and the human metabolic network), pymCADRE reconstructs a tissue-specific

model using information from the network topology. The reconstructed metabolic network is then infected in silico with the virus of interest and is

used to detect promising antiviral targets in an automated process. Detailed description of the process and the respective algorithm, called

PREDICATE, is provided in Materials and Methods. Reaction knock-outs and the host-derived enforcement are used to detect exploitable enzymatic

targets that keep the host maintenance at 100%, while suppressing the virus replication. The resulted top hits are further inspected manually in terms of

already existing drugs and compounds in different databases, such as BRENDA and DrugBank.

https://doi.org/10.1371/journal.pcbi.1010903.g001
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score will be 0.6. These scores are mapped to the corresponding reactions based on Gene-Pro-

tein-Reaction associationss (GPRs). That is the expression-based evidence Ex(r) and can be

either the minimum or maximum of two ubiquity scores depending on the respective GPRs

rule: AND or OR. The expression-based evidence ranges from zero to one, indicating how

likely a reaction is present in the selected tissue. More specifically, a score of zero represents a

non-active reaction, while reactions with Ex(r) > 0.9 define the core set.

Afterwards, non-core reactions are ranked based on the connectivity-based evidence Ec(r),
using the network topology information of the generic model. This score defines in which

order the reactions should be removed during pruning. The stoichiometric relationships in

matrix S are applied to determine whether two reactions are connected. A pair of reactions are

considered to be linked if they share at least one metabolite. For this purpose, a so-called

weighted influence WI(r) is calculated as the ratio between Ex(r) and the outgoing influence of

each reaction, i.e., the number of reactions connected to it. Then, the actual connectivity-

based evidence is determined by the sum of the weighted influences of all reactions adjacent to

reaction r. In the supplementary file S2 Fig we graphically illustrate the computation of each

score using a toy metabolic network comprising six reactions and four genes coming from

four samples. Lastly, the confidence level-based evidence El(r) is the third measure of evidence

for non-core reactions and indicates the level of biological evidence for the generic model.

Check model function. After classifying the reactions into cores and non-cores,

pymCADRE tests the model’s ability to produce key metabolites from glucose. These include

compounds in the Tricarboxylic Acid Cycle (TCA) and glycolysis, non-essential amino acids,

and more. Totally, 38 metabolites were tested based on previously described criteria and used

to evaluate similar models by the authors of mCADRE [31]. This list can be expanded and

modified utilizing metabolomics data to include tissue-specific metabolites or known abilities

of the tissue of interest.

Model pruning. The last step of pymCADRE is to sequentially remove each non-core

reaction in a reversed order, i.e., beginning from those with the lowest calculated evidence

[31]. The respective reaction will be removed if, and only if, its elimination does not prevent

the model from producing key metabolites and the set of core reactions remains consistent.

This consistency is tested by determining each reaction’s minimum and maximum flux while

ensuring that at least one is zero.

More specifically, firstly, the production of precursor metabolites is checked. If this test

fails, there is no need to check for model consistency with Flux Variability Analysis (FVA) or

FASTCC (time-saving step). If the test leads to successful results, the set of inactive cores and

non-cores is determined, and the algorithm moves on with the removal of reactions. Reactions

with zero expression will be removed with their corresponding inactive core reactions if suffi-

ciently more non-cores are pruned. On the other hand, if the reaction has expression evidence,

pymCADRE only attempts to remove inactive non-cores.

Integration of transcriptomic data in a human genome-scale metabolic

model

The functionality of pymCADRE was tested using gene expression data of primary Human

Bronchial Epithelial Cell (HBEC) downloaded from the Gene Expression Omnibus (GEO)

database (accession number: GSE5264) [38]. All data obtained from GEO underwent manual

curation and pre-treatment with scripts that we provided together with the pymCADRE

source code. Firstly, the expression data were binarized based on the associated RMA signal

intensity values and an absolute call value (i.e., P = present, A = absent, and M = on the border-

line detection) was defined. This indicates whether messenger Ribonucleic Acid (mRNA) has
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been detected for that specific gene or not, meaning whether it is expressed or not. The second

curation step involved collecting confidence scores from the Virtual Metabolic Human

(VMH) database, assigned to all reactions in the model. Then, the raw sample transcriptomic

data was enhanced with two new information, gene symbol and Entrez identifiers. During

binarization, genes present in the sample took the value of one, while marginal and absent calls

were assigned to zero. Lastly, the essential ubiquity scores were calculated to represent a single

gene’s expression frequency across all samples.

The literature-based Recon1 [29] was obtained from the Biochemical, Genetical, and Geno-

mical (BiGG) database [39] and was used as a generic host human model. It consists of 3,741

reactions, 2,766 metabolites, 1,905 transcripts, and 1,497 unique genes. We also incorporated a

Biomass Objective Function (BOF) to Recon1 since it does not include one. For this purpose,

we used the objective function from the human alveolar macrophage model published by

Bordbar et al. in 2010 [36]. The biomass reaction with the identifier biomass_hbec repre-

sents the cellular maintenance requirements such as the ATP maintenance.

In the Recon1 model, there is no constraint growth medium defined; thus, all extracellular

transport reactions have a minimum flux value of −1000.0 mmol gDW−1 h−1. This means that

all exchanges are allowed to carry a flux (rich medium), resulting to unusually high cell growth

rates. We have defined here a minimal growth medium using the Constraints-Based Recon-

struction and Analysis for Python (COBRApy) built-in function [40], which contains only

essential components for growth. Since the availability of nutrients has a major impact on the

metabolic fluxes, we re-ran our simulations using the blood medium [41]. The exact composi-

tions of both media are provided in the supplementary file S5 Table.

We manually expanded our model by adding missing exchange reactions to all extracellular

metabolites. We also updated all reaction annotations in our tissue-specific model, Recon1-H-

BEC, by assigning Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs [42] and retriev-

ing the corresponding pathways using the KEGG REST Representational State Transfer

(REST) Application Programming transfer Interface (API). These subsystems were incorpo-

rated into the model as additional annotations to each reaction with the biological qualifier

type BQB_OCCURS_IN. The reaction pathways were merged into main classes based on the

KEGG classification system (https://www.kegg.jp/kegg/pathway.html). Additionally to the

functionality checks incorporated into the mCADRE and consequently into pymCADRE, we

examined the presence of futile cycles in our final tissue-specific model. As Fritzemeier et al.
propose, we tested the production of energy-generating compounds by including energy dissi-

pation reactions and disabling the external uptake of all metabolites [43]. Our final model

could not produce any of the tested metabolites, meaning no futile cycles were included. The

tested compounds are listed in the supplementary file S1 Table.

The reconstructions were conducted using a 3.3 GHz processor and 16 GB Random-access

Memory (RAM), while Metabolic Model Testing (MEMOTE) [44] and the Systems Biology

Markup Language (SBML) Validator from the ibSBML [45] were employed to assess the mod-

el’s quality.

Stoichiometric reconstruction of SARS-CoV-2 biomass objective function

Similar to the biomass production function used for microbial metabolic models, the VBOF is

a single pseudo-reaction imitating the production of different virus particles. It consists of

nucleotides, amino acids, and components necessary for energy supply. The SARS-CoV-2

virus biomass objective function was created as proposed by Aller et al. and as extended by

Renz et al. The approach considers the viral structure and its genome sequence, the subse-

quently encoded proteins, and their copy number, as well as the energy requirements for
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nucleotide and peptide bonds [10]. The viral genome and protein sequences were downloaded

from the National Centre for Biotechnology Information (NCBI) nucleotide database [46]

(accession number: NC_045512.2, accessed in May, 2020). The genome copy number (Gg)

and the number of copies of each of the non-structural proteins (Cnp) was assumed to be one

[10]. Moreover, the copy number of structural proteins was set to 1,000 for membrane proteins

(Cm), 456 for nucleocapsid phosphoproteins (Cn), 120 for spike proteins (Cs), and 20 for enve-

lope proteins (Ce) [47].

The SARS-CoV-2 falls into the fourth Baltimore group of viruses (Group IV, positive-sense

single-stranded RNA viruses) [48], i.e., it synthesizes mRNA with the help of a template “-”

single RNA antisense strand. Thus, the count of nucleotides in the positive strand equals the

number of nucleotides in the complementary negative strand. The total moles of each nucleo-

tide in a mole of virus particle were obtained by summing up the nucleotides in the positive

and negative strand and multiplying this by the genome copy number. The moles were then

converted into grams of nucleotide per mole of the virus by multiplying them with the respec-

tive molar mass of the nucleotides [10]. Similar calculations were conducted for the amino

acids, as well. Eventually, the stoichiometric coefficients of each nucleotide and amino acid in

the VBOF were calculated using the total viral molar mass [10].

For the estimation of the energetic requirements, the ATP requirement per amino acid

polymerization and the pyrophosphate liberation during the polymerization of nucleotide

monomers were considered. As proposed by Aller et al., four ATP molecules and one pyro-

phosphate molecule are participating in the formation of nucleotide and amino acid polymers,

respectively [10]. Subsequently, the total molar mass of the virus was calculated as the sum of

all genome and proteome components.

Finally, to account for the lipid requirements we included phosphatidylcholine

(pchol_hs_c), phosphatidylethanolamine (pe_hs_c), phosphatidylinositol

(pail_hs_c), phosphatidylserine (ps_hs_c), cholesterol (chsterol_c), and sphingo-

myelin (sphmyln_hs_c) into the viral biomass function. Renz et al. examine the influence

of lipids with various stoichiometric coefficients in the viral biomass function and the predic-

tion of antiviral targets. However, they did not incorporated the lipid composition of a single

virion into their final viral function [23]. We computed stoichiometric coefficients for these

lipids from the surface area of a virion as suggested by Nanda et al. [25].

The generated final VBOF was appended into Recon1-HBEC, with a lower bound of zero

and an upper bound of 1,000. The individual VBOF components and their stoichiometric

coefficients are listed in S1 Table.

Prediction of host-based antiviral targets

Subsequent analysis of Recon1-HBEC allowed us to identify metabolic targets for antiviral

therapies. As proposed by Aller et al., Flux Balance Analysis (FBA) and FVA can be used to

predict essential host reactions, especially in cases of novel emerging viruses [10]. This can

be computationally achieved in two different ways: via single knock-out analysis or via

HDE.

The single-reaction knock-out analysis investigates the effect of individual reactions with

no flux. Both lower and upper bounds were systematically set to zero once with BOF as the

objective function and once with the VBOF. Metabolic targets were reported when the host

growth rate was higher than the virus growth rate and when more than 99% of the initial host

growth rate was maintained.

A less harmful approach for the cell is the host-derived enforcement. As Aller et al. suggest,

herein method, the reaction fluxes are constraint to FVA-derived ranges so that the

PLOS COMPUTATIONAL BIOLOGY New workflow predicts drug targets against SARS-CoV-2

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010903 March 23, 2023 8 / 32



maintenance of the optimal host state is achieved while reducing the virus propagation [10].

For our analysis, we used an updated version of this method as modified by Renz et al. [47].

The re-calculated flux ranges for every reaction were then utilized, and the model was opti-

mized for the VBOF. The resulting optima for the virus production were compared to the orig-

inal optimal value. Hence, potential antiviral targets were reported when the virus growth rate

with altered bounds was beneath the threshold of 90% of the initial growth rate. Additionally,

to ensure a reduction of the virus replication, we keep only targets that had a non-zero flux

when the VBOF was optimized. Our Recon1-HBEC model was examined for potential antivi-

ral targets using both methods.

Testing targets’ robustness against all known variants of concern

To test our targets’ robustness, we examined the consequences of concerning SARS-CoV-2

mutations on our predicted metabolic targets. As of February, 2022, five SARS-CoV-2 VOC

are known to differ from the conventional virus in terms of their pathogen properties (e.g.,

transferability, virulence, or susceptibility to the immune response of recovered or vaccinated

people). These are the Alpha, Beta, Gamma, Delta, and Omicron variants [17]. Genomic

sequences of patients infected with SARS-CoV-2 were retrieved from the Global Initiative on

Sharing All Influenza Data (GISAID)’s EpiCoV database [49]. For each variant, we randomly

selected 20 sequences adjusting only the location and variants filters as follows: (i) Europe/

United Kingdom for VOC Alpha GRY (B.1.1.7+Q.�), (ii) Africa/South Africa for VOC Beta

GH/501Y.V2 (B.1.351+B.1.351.2+B.1.351.3), (iii) South America/Brazil for VOC Gamma GR/

501Y.V3 (P.1+P.1.�), (iv) Asia/India for VOC Delta GK (B.1.617.2+AY.�), and (v) Africa/

Botswana and Africa/South Africa for VOC Omicron GRA (B.1.1.529) We investigated 100

sample sequences in total. To calculate the amino acid investment per virus, we used the anno-

tated protein sequence of the SARS-CoV-2 reference genome (NCBI accession:

NC_045512.2) and the mutation information extracted from GISAID. All used datasets and

tested mutations are provided in the supplementary material S3 Table.

We calculated the stoichiometric coefficients of growth-related constituents for each

mutated sequence and reconstructed for each one a VBOF as described in the previous sec-

tions. To speed up the calculations, we implemented PREDICATE, an automated script,

which takes as input one or more genome sequences and computes the metabolic stoichi-

ometry using information from the viral genome, the encoded proteins and their copy

numbers, and the energetic requirements. The amino acid coefficients are calculated using

the reference protein sequence, which our algorithm mutates by introducing all reported

mutations (replacements, insertions, deletions, and duplications) extracted from the meta-

data. Afterwards, each VBOF is integrated into a given cell-specific metabolic network, in

our study Recon1-HBEC, to create a host-virus model. Lastly, PREDICATE applies single-

reaction knock-outs and HDE to the integrated model resulting in experimentally testable

and robust metabolic virus-suppressing targets. Our script also generates different plots,

providing insights into the dataset and a better understanding of the results. To evaluate

the mutations’ effect on the viral biomass, we computed the mean of all estimated coeffi-

cients across all mutated sequences and compared them against the wildtype (WT)

coefficients.

PREDICATE can be applied to either one or more nucleotide sequences and all existing

RNA viruses. This makes it particularly advantageous and time-saving to simultaneously study

multiple viruses and variants.
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Results

Tissue-specific reconstruction using pymCADRE

The pymCADRE tool was developed to reconstruct tissue-specific metabolic models based on

human gene expression data and topological information from the metabolic network. Like

mCADRE, pymCADRE leverages gene expression microarray data, literature-derived evi-

dence, and information from the network topology to build context-specific metabolic models.

More accurately, it uses a fully automated way to determine core reactions by setting a thresh-

old to expression-based evidence. Therefore, reactions with scores above this threshold are

characterized as core reactions, while the rest constitute the non-core set (more details in the

Material and methods section). To test the functionality of pymCADRE and increase its ability

to create multiple models of human cells, specifically related to the current outbreak of SARS-

CoV-2, we applied pymCADRE to a microarray expression profile dataset of the primary

HBEC. Prior to reconstruction, we incorporated a BOF to the first version of the human meta-

bolic network, Recon1 [29], and used it as a generic host human model.

The objective function originates from the human alveolar macrophage model published

by Bordbar et al. in 2010 (supplementary file S1 Table) [36]. We updated the resulting model

by adding subsystems to all the missing metabolic reactions from Recon1. A subsystem-wise

classification in Fig 2 indicates that most reactions in the final Recon1-HBEC model belong to

the class of transport reactions, while the biosynthesis of other secondary metabolites is the

least represented subsystem. Moreover, in Recon1, there is no growth medium defined, and all

Fig 2. Subsystem-wise classification of all reactions included in Recon1-HBEC. The reaction pathways are merged based on metabolic

pathways and according to KEGG. The biomass reaction was assigned to “Miscellaneous.” The majority of reactions in the final

Recon1-HBEC model are transport reactions, while the least amount of reactions is assigned to the biosynthesis of other secondary

metabolites subsystem.

https://doi.org/10.1371/journal.pcbi.1010903.g002
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extracellular transport reactions are open, i.e., lower fluxes equal −1000.0 mmol gDW−1 h−1.

Hence, we used the already-defined blood medium [41], and we computationally specified a

minimal growth medium using the COBRApy [40] package. SBSCL [50] was used to indepen-

dently evaluate the FBA problem and confirmed the solution. The exact medium compositions

are provided in the supplementary file S5 Table.

The new integrated tissue-specific model Recon1-HBEC contains 1,973 reactions, 1,442

metabolites, and 1,381 genes (Table 1). Almost 70% of all reactions is associated to a gene-pro-

tein-reaction rule (1,391; 1,086 metabolic and 305 transport reactions), while 391 metabolic

and 264 transport reactions are not related to any gene. To perform internal consistency

checks, the user can choose between two COBRApy’s [40] tailored optimization functions,

FVA [51] and FASTCC [52]. Both methods detect blocked reactions and deliver consistent net-

works by resolving linear programming problems. Hence, the final pruned model does not

contain any blocked reactions. We observed that pymCADRE reduces the pruning time while

maintaining the highest possible accuracy compared to the model created with mCADRE

(Table 1). With a 3.3 GHz processor and 16 GB RAM on a local computer, mCADRE with

FVA demanded�6 CPU-hours, while pymCADRE�5 CPU-hours. Totally 1,272 blocked

reactions were eliminated from Recon1 during the consistency check. Furthermore, 498 reac-

tions (9 core and 489 non-core) were inactive in the cell type of interest and removed from the

generic model during pruning. Inconsistencies were encountered in the performance of FASTCC

as implemented in COBRApy. After multiple runs, the function detected a variable number of

blocked reactions. This affected the final pruned model, which differed from the ground truth.

However, internal optimizations with FASTCC were executed faster compared to FVA. Duplicat-

ing the available RAM can reduce the computational time of the pymCADRE twofold.

After the tissue-specific reconstruction, we refined the model using Recon3D [30] and

HumanCyc [53]. We further extended the models by adding missing exchange reactions to all

extracellular metabolites (71 in the mCADRE and 73 in the pymCADRE model). The final

reconstructions shared over 2,040 reactions, meaning an overlap of over 99.5% of all reactions

in each model. Hence, we have a considerable convergence between the tools, indicating the

high quality of models generated with pymCADRE. Table 2 lists the symmetric difference

between both models.

Table 1. Analysis results of the HBEC-specific reconstructions using FVA for internal optimizations. The reaction overlap between both models is over 99.5%.

Pruned Model Removed Reactions

Reactions Metabolites Genes Cores Non-cores

mCADRE 1.977 1.442 1.905 9 487

pymCADRE 1.973 1.442 1.381 9 489

https://doi.org/10.1371/journal.pcbi.1010903.t001

Table 2. Symmetric difference of reactions in the models created by mCADRE and pymCADRE.

mCADRE

ARTPLM1 R group to palmitate conversion

ARTPLM2 R group to palmitate conversion

PE_HStm Phosphatidylethanolamine scramblase

RETFA Retinol acyltransferase

pymCADRE

Htx Peroxisomal transport of hydrogen

LRAT Lecithin retinol acyltransferase

https://doi.org/10.1371/journal.pcbi.1010903.t002
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Additional analysis using FBA allowed us to study the flux dispersion between the host and

virus and conclude which reactions are vital for both host maintenance and virus growth.

Explanatory Data Analysis (EDA) showed that non-zero fluxes are mostly fluctuating above

zero (Fig 3a). Totally 12 numerically distant values (outliers) were observed (Fig 3b). Inspec-

tion of the flux distribution vector showed higher viral flux through transporters of essential

metabolites, like K+ and Na+, and Adenosine 5’-triphosphate (ATP)-binding cassette (ABC)

transporter. Furthermore, the bicarbonate transporter (2HCO3_NAt) and the bilirubin beta-

diglucuronide transporters (BILDGLCURt and BILDGLCURte) are used remarkably more

by the host and virus to maintain its optimal state, compared to the virus.

Similar to mCADRE, pymCADRE encompasses functionality tests to ensure the fulfillment

of the resulting models’ basic cellular metabolic capabilities. These tests include the production

of various metabolites, such as amino acids and compounds from the TCA when the uptake of

glucose is enabled [31]. Additional to this, we tested our model for internal cycles that result in

erroneous energy production by testing the production of different energy metabolites when

no nutrients are available. [43] Our final model did not include any futile cycles since none of

the metabolites could be generated.

The new tissue-specific model created with pymCADRE was converted into SBML Level 3

Version 2 [54] format using the Systems Biology Format Converter (SBFC) [55] and passed

the syntactical validation using libSBML [45]. Additionally, the MEMOTE suite Version 0.11.1

was used to assess the GEM quality [44]. MEMOTE reports for a given GEM an independent

and comparable score along with a comprehensive overview. This test reported a score of 70%

for our integrated model, which indicates a well-annotated model of high quality. Metabolic

networks of the same or different tissue possess lower quality scores. For instance, the inte-

grated model of macrophages has a MEMOTE score of 44% [23], while the model of airway

Fig 3. Flux dispersion among host and virus in the Recon1-HBEC model. Distribution of host and virus fluxes as derived from FBA. (a) The flux

distributions were computed based on a five-number summary (S7 Table). Remarkable outliers with a flux value greater than 1.0 mmol gDW−1 h−1 or

less than −1.0 mmol gDW−1 h−1 were investigated separately (b). (b) The fluxes through 2HCO3_NAt, BILDGLCURt, and BILDGLCURte are

remarkably higher when the model is optimized for both the host and the virus. Overall, all displayed reactions are essential for host maintenance and

virus growth.

https://doi.org/10.1371/journal.pcbi.1010903.g003
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epithelial cells from Bannerman et al. has a score of 51% [27]. While these models contain a

wide range of reactions and metabolites annotations, the mass and charge imbalances are still

high resulting in lower scores. Nevertheless, they contain over 1, 800 blocked reactions, while

the integrated macrophage-virus model contains over 140 dead-end and orphan metabolites.

The automatically reconstructed models of bronchial and airway epithelial cells from Wang

et al. have a lower MEMOTE score of 19% [31]. It is mainly attributed to lacking database

cross-references and missing Systems Biology Ontology (SBO) [56] terms.

To examine whether pymCADRE functions as expected, we implemented test scripts,

which are available at https://github.com/draeger-lab/pymCADRE/.

Since we purposed to use the model to detect possible anti-SARS-CoV-2 targets, we also

included a VBOF that imitates the production of virus particles from its different constituents.

Following the pipeline developed by Aller et al. and extended by Renz et al., we created this

pseudo-reaction and used it to infect the new model (Recon1-HBEC) in silico. The human

bronchial epithelial cell’s biomass maintenance function (BOF) encompasses amino acids,

DNA and RNA nucleotides, and compounds vital for energy supply, and other macromole-

cules like fatty acids and phospholipids. Similarly, the VBOF contains amino acids, RNA, lip-

ids, and energy-related compounds (S1 Table, S4 Fig), as well necessary lipids. Analysis of both

functions highlights leucine as the most-used amino acid (highest stoichiometric coefficient)

in the SARS-CoV-2 growth and the maintenance of the host bronchial cells, while both host

and virus utilize only a few tryptophan (Fig 4). Moreover, the same amount of asparagine and

phenylalanine is required for the maintenance of the host cell, while the virus needs less phe-

nylalanine. Similar pattern was observed for tyrosine and histidine. Using FBA, optimization

of the Recon1-HBEC for the host resulted in a flux for the biomass maintenance function of

0.2344 mmol gDW−1 h−1, while optimizing the SARS-CoV-2 growth function resulted in a

flux of 0.1575 mmol gDW−1 h−1.

Stoichiometric modeling of the integrated host-virus model predicts

targets against SARS-CoV-2

To analyze the host-virus interactions from a metabolic point of view, we created an integrated

stoichiometric model of human bronchial epithelial cells infected with SARS-CoV-2. We then

used our model to detect host-based reactions, which, when constrained, reduce the virus pro-

duction the most. According to Aller et al., this analysis can be computationally implemented

through systematically setting individual lower and upper bounds to zero (i.e., reaction knock-

outs). Applying this approach, we identified a single target enzyme, which if knocked-out,

completely inhibits the virus while keeping the host maintenance at 100% of its initial growth

rate. This enzyme is called Guanylate Kinase 1 (GK1, EC-Number: 2.7.4.8, KEGG Reaction ID:

R00332) and catalyzes the conversion of ATP and Guanosine 5’-monophosphate (GMP) to

Adenosine 5’-diphosphate (ADP) and Guanosine 5’-diphosphate (GDP) (KEGG Reaction ID:

R00332):

ATPþ GMPÐ ADPþ GDP:

To ensure the maintenance of the metabolic network in a host-optimized state while sup-

pressing the viral growth, we applied the HDE (see Materials and methods) [10, 47]. We con-

strained all reaction fluxes to ranges obtained from FVA, allowing the attainment of host-

optimal state and suppressing the virus production at most. This approach verified the enzy-

matic target GK1 and revealed further possible compounds that could inhibit the viral produc-

tion without harming the host cell. The most promising novel hit was the CTP synthase 1

(CTPS1) from the de novo pyrimidine synthesis pathway that, when constrained, inhibited the
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virus growth by 62% with no effect on the host’s maintenance (100% of the initial rate).

CTPS1 catalyzes the formation of Cytidine 5’-triphosphate (CTP) from Uridine 5’-triphos-

phate (UTP). It is important to note here that when the activity of CTPS1 is constrained, and

therefore the formation of CTP, host cells can use alternative routes through the salvage path-

way using Cytidine 5’-diphosphate (CDP) and/or Cytidine 5’-monophosphate (CMP) to

restore the CTP levels directly. Similar results were observed for GK1 with adapted bounds.

Further 33 enzymatic targets with inhibitory effects on the virus production were reported

using the HDE approach. These concerned, for instance, restricting the extracellular exchange

of L-proline and phosphate (EX_pro__L_e and EX_pi_e) and constraining the enzymatic

activity in the metabolism of purines (PUNP4, IMPD, GMPS2, NDPK8m, and DGNSKm) and

pyrimidines (UMPK5, NDPK2, and DTMPK). Moreover, inhibiting the functionality of enzymes

in carbohydrate metabolism, more specifically in the amino/nucleotide sugar metabolism and

sucrose metabolism (e.g., ACGAMK, UAGDP, and PGMT) as well as in glycolysis/

Fig 4. Amino acid usage between host and virus based on the stoichiometric coefficients. The two panels show the

amino acid composition of the host maintenance function (left) and the virus biomass (right). The amino acids are

annotated using the one-letter code (S6 Table). Both host and virus use mostly leucine (L) for their maintenance/

growth, while tryptophan (W) is needed at least. The same amount of asparagine (N) and phenylalanine (F) is required

for the maintenance of the host cell, while the virus needs less phenylalanine. Similar pattern can be observed for

tyrosine (Y) and histidine (H).

https://doi.org/10.1371/journal.pcbi.1010903.g004
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gluconeogenesis (GAPD, PGK, HEX1, FBA2, PGM, and ENO) led to a remarkable decrease in

the viral production by 50% to 58% of the initial growth. Fig 5 illustrates all antiviral targets

predicted using HDE against the percentage of the remaining virus growth after constraining

the reaction bounds. Detailed information about all reactions is included in the supplementary

material S2 Table.

The GK1 has been recently identified as an essential component for viral propagation and a

potential target for antiviral therapies against SARS-CoV-2 in the human alveolar macrophage

model [23] and further cell lines [24, 28]. Renz et al. showed that GK1 could decrease the virus

production up to 50% without damaging the macrophages’ maintenance (100%) [23]. Our

host-derived enforcement on the bronchial epithelial cells also reported GK1 as a potential

anti-SARS-CoV-2 target, however, with a similar impact on the virus production compared to

CTPS1. Similarly, ENO, PGK, and PGM have been predicted as targets to inhibit the production

of SARS-CoV-2 by Delattre et al..
Interestingly, the already identified robust target GK1 is closely interconnected with two

reported promising targets in the purine metabolism (Fig 6, created with Newt [56] using the

using the Systems Biology Graphical Notation (SBGN) [57]) using the using the Systems Biol-

ogy Graphical Notation (SBGN) [58]). IMPD catalyses the NAD+-dependent oxidation of Ino-

sine 5’-monophosphate (IMP) to Xanthosine 5’-phosphate (XMP) that is subsequently used by

GMPS2 to generate GMP. From this, we suggest that focusing on the purine metabolism, and

more specifically on the action of one of these enzymes to inhibit SARS-CoV-2 is a well-estab-

lished approach that needs to be validated in vitro and in cell culture experiments.

Metabolic fluxes are highly affected by the nutrients’ availability. Since our approaches

mainly focus on studying the metabolic changes in infected cells, fluxes play a major role in

the simulation outcomes. So far, we have focused on a chemically defined medium simulating

the human blood [41]. Additionally, we examined the virus inhibition that our targets could

reach using a minimal growth medium computed with linear optimization [40]. A novel enzy-

matic target was reported from the pyrimidine metabolism with the minimal medium defined,

named NDPK3. Like NDPK2, UMPK5, and GK1, it belongs to the class of phosphotransferases

with a phosphate group as an acceptor and was highlighted as a hit target from the single-reac-

tion deletions and HDE. NDPK3 constrained resulted in a decrease of 44.6% of the virus

growth, which is comparable to the effect of GK1 using the minimal medium. However,

NDPK2 and UMPK5 with adapted upper and lower fluxes led to higher viral reduction and

Fig 5. Enzymatic targets of SARS-CoV-2 from the HDE experiments applied to the Recon1-HBEC model. Potential antiviral targets were reported

when the virus rate of growth with shifted bounds was beneath the threshold of 90% of its initial growth rate. Enzymes with adapted bounds from the

purine and pyrimidine metabolism led to a remarkable virus decrease, while further promising targets were reported from the carbohydrate

metabolism. The dashed line represents the 50% of the virus remaining.

https://doi.org/10.1371/journal.pcbi.1010903.g005
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appeared as the best hits. The HDE-derived metabolic targets using the minimal medium are

shown in S1 Fig and the medium definition is provided in the supplementary file S5 Table.

Altogether, we created a fully automated computer tool, which simulates the virus growth

in target cells with the help of metabolic networks. Subsequently, our tool applies the above-

mentioned host-dependent approaches, HDE, and reaction knock-outs, and predicts enzy-

matic targets with high inhibitory potency against the virus. The SBML model [59] of the

SARS-CoV-2-infected bronchial epithelial cell (iHBEC-BOFVBOF-2023) is available at the

BioModels Database [60] as an SBML Level 3 Version 2 file [54] with flux balance constraints

(fbc) package [61] distributed as Open Modeling EXchange format (OMEX) archive [62]

including annotation [63].

Predicted targets are robust against all known variants of concern

Novel mutations of RNA viruses emerge daily, and as of February, 2020, five SARS-CoV-2 var-

iants have prevailed and spread since its emergence in 2019. These are the Alpha (B.1.1.7),

Beta (B.1.351), Gamma (P.1), Delta (B.1.717.2), and Omicron (B.1.1.529) variants [17] and

have been marked as VOC. Since the beginning of the COVID-19 pandemic, there has been

an exponential growth in the number of stored genome sequences within large databases. The

WHO asked all scientists around the world to upload their data on the GISAID database and

help accelerate the response against health threats to humankind [49]. In January, 2020, the

GISAID’s EpiCoV database launched, becoming the most popular repository for SARS-CoV-2

as it gathers over eight million viral sequences by February, 2022. To examine the variants’

Fig 6. Graphical illustration of the interconnection between promising targets reported from the purine

metabolism (red colored). To annotate reactions and metabolites, BiGG Identifiers were utilized.

https://doi.org/10.1371/journal.pcbi.1010903.g006
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effect on the predicted metabolic targets, sequences for all VOC were downloaded from

GISAID and investigated further.

We reconstructed a SARS-CoV-2 VBOF using the same approaches as with the reference

(wildtype) sequence for each retrieved mutated sequence. We reconstructed 100 individualized

biomass functions and tested each to detect enzymes that inhibit the virus’s growth while keep-

ing the host maintenance at maximum. To speed up the reconstruction and analysis processes,

we developed an automated script to analyze more than one sequence simultaneously (Fig 7).

Additionally, we implemented an algorithm to modify reference protein sequences and intro-

duce amino acid mutations (replacements, insertions, deletions, and duplications) and named

this tool Prediction of Antiviral Targets. Since RNA viruses are composed of similar building

blocks, nucleotides, and proteins, our pipeline can be applied to any single- or double-stranded

RNA virus that could infect any cell or tissue type.

To evaluate the mutations’ effect on the viral biomass, we calculated the mean of all esti-

mated coefficients across all mutated sequences and compared them against the WT stoichi-

ometries. We did this by looking at the variant-wise differences to the WT. Fig 8 shows how

much the variant-wise calculated mean of coefficients deviates from the stoichiometries calcu-

lated for the reference sequence. We observed a remarkable increase in the stoichiometric

coefficients of ATP and ADP between the Omicron variant and the WT. This pattern is mainly

distinct to the ATP and ADP but is observed for the majority of the stoichiometric coefficients.

We analyzed the mathematical calculations that led to the stoichiometric coefficients to explain

this further. All coefficients depend on the total viral molar mass Mv, which is derived from

the sum of the mass of the genome (Gi) and proteome (Gj) [10]. The randomly downloaded

genomic sequences of the Omicron variant contained a higher amount of NNN stretches (i.e.,

nucleotides that could not be determined via sequencing) compared to the other variants.

Consequently, the Omicron variant has a decreased count of nucleotides (Gi) and amino acids

(Gj), thus a lower total molar mass Mv. Moreover, the overall moles of energy (ATOT) needed

to assemble the structural and non-structural proteins strongly influences the stoichiometric

Fig 7. Overview of PREDICATE developed to create viral biomass reactions and predict host-based antiviral targets using host-virus models.

First of all, our algorithm, PREDICATE, modifies the amino acids in the protein sequence according to the defined mutations. The mutated protein

sequence and the nucleotide sequences are further employed to calculate the stoichiometric coefficients for the virus biomass functions. Reaction

knock-outs and the host-derived enforcement are applied to reveal enzymatic reactions that suppress the viral replication. The final step generates

various plots, providing insights into the dataset and a better understanding of the results. This pipeline can be applied to either one or more nucleotide

sequences and all existing RNA viruses. This makes it particularly advantageous and time-saving when studying multiple variants of a single virus. The

number of genomic input sequences equals the number of the calculated VBOF. The Materials and Methods section describes the implemented

approaches to predict antiviral targets. Figure created with BioRender (BioRender.com).

https://doi.org/10.1371/journal.pcbi.1010903.g007
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coefficient of ATP [10]. The ATOT is related to the total amino acids counts (Xj). Overall, the

Alpha variant included more deletions in the spike (H69del, Y144del, and V70del) and

NSP6 (F108del, G107del, and S106del) proteins compared to the Omicron variant. The

same holds for the Beta, Gamma, and Delta variants. This affected the Xj, which was higher for

Fig 8. Variant-wise comparison of stoichiometric coefficients derived directly mutated sequences and the wildtype. The difference between the

average stoichiometric coefficients of the individual variants and the reference sequence was computed. Red color highlights decreased stoichiometric

coefficients in the variants, while increased coefficients are colored by blue. A remarkable increase can be observed in the stoichiometric coefficients of

ATP and ADP between the Omicron variant and the wildtype. The stoichiometries of charged and hydrophobic amino acids were higher for the

Omicron variant. All in all, the variations between mutants and wildtype are very small.

https://doi.org/10.1371/journal.pcbi.1010903.g008
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the Omicron variant. Altogether, a decreased total viral molar mass and a higher total amino

acids count resulted in the apparent rise of the ATP and ADP stoichiometric coefficients for

the Omicron variant. Accordingly, the absolute differences between the WT and the Omicron

variant are higher than the rest.

When looking at the differences between the amino acids and the WT stoichiometric coeffi-

cients, a noticeable increase in the Omicron Variant can be observed for lysine. For this reason,

we inspected the respective amino acid mutations. In more than half of the Omicron-related

genomic sequences, other amino acids were more often replaced by lysine (Spike N440K,

Spike N764K, Spike N856K, Spike N969K, Spike T478K, Spike N679K, Spike T547K, and N

R203K). In contrast, the substitution of lysine by other amino acids is rarely occurred (NSP3

K38R and Spike K417N). This also affected the stoichiometric coefficient of asparagine. As

most of these mutations emerge in the spike protein, which has the highest copy number, their

impact on the amino acid count, and consequently, the stoichiometric coefficient, is consider-

able. Among the variants for which a higher coefficient was computed for asparagine than the

WT, the greatest increase was observed for the Delta variant. This could be justified by the

presence of mutations, in which mostly an amino acid is being replaced by asparagine (Spike

D950N, M S197N, NSP16 H186N, NSP3 K1693N, NSP8 K37N, and NSP3 K902N). A sub-

stitution of asparagine by another amino acid occurs only in three mutation types. Thus, over-

all there is an increase in the total amount of asparagine, and therefore, in the stoichiometric

coefficient for the Delta variant. Lastly, the Omicron variant needs the least glutamine

(−0.013) and the most lysine (0.015) compared to the WT.

To verify the validity of our calculations, we searched in the literature to find evidence

about the amino acid composition of the different variants. For instance, we observed higher

stoichiometric coefficients of charged and hydrophobic residues in the Omicron variant com-

pared to the Delta. Recently, computational analyses indicated in the Omicron variant an

increased amount of arginine, lysine, aspartate, and glutamate that contribute to the formation

of salt bridges [64]. The same study pointed out the accumulation of the hydrophobic residues,

phenylalanine and isoleucine, in the spike protein of same variant.

After investigating the mutations’ impact on the viral stoichiometric coefficients, we tested

the effectiveness of the previously identified targets against the SARS-CoV-2 variants repeating

the single-reaction deletions and HDE experiments. Our single-reaction knock-outs indicated

GK1 to be the only potent antiviral inhibitor. All host-based targets detected from the HDE

analysis to have an inhibitory effect on SARS-CoV-2 for all variants are shown in Fig 9. Targets

were reported as potentially effective when the virus growth rate with altered bounds was

lower than the threshold of 90% of its initial growth rate. The CTPS1 was reported to have the

highest virus inhibitory effect across all Variants of Concern. After its inhibition, the virus

growth dropped to 24.4–37.5% of its initial growth in the host cell. Further possible com-

pounds were found to inhibit the viral production while keeping the host at maximum. Eight

targets in total were detected to be WT-specific: ACGAM2E, DGK2m, DGNSKm, DGSNtm,

HEX1, NDPK8m, PUNP4, and UAG2EMA. Except for CTPS1, GK1 was a common target,

which constraint led to a reduced virus growth, however not as effective as CTPS1. Moreover,

the five SARS-CoV-2 variants shared twelve additional hits with the wildtype (WT) that

reported inhibitory effects (S5 Fig). Our integrated host-virus model suggested the supplemen-

tation of L-proline and phosphate in the host’s environment as potential targets ensuring the

cell’s maintenance. Moreover, four targets from the carbohydrate metabolism (UAGDP,

ACGAMPM, ACGAMK, and PGMT) showed a remarkable inhibitory effect in all studied variants,

while once more targeting the metabolism of purines and pyrimidines seemed promising for

all virus variants.
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Fig 9. Results of the host-derived enforcement applied to all known variants of concern. The range and effect of reaction inhibitions on

the VBOF were calculated while keeping the host’s maintenance at 100%. Only targets predicted across all retrieved sequences for a single

variant were considered robust and were examined further. Empty cells in the heatmap represent targets that were not predicted as potential

inhibitors for the corresponding variant. CTPS1 showed the highest inhibitory effect against the virus at all studied variants, followed by

GK1. Targeting the amino sugar and nucleotide carbohydrate metabolism highlighted to be a robust hit against all studied variants.

https://doi.org/10.1371/journal.pcbi.1010903.g009
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Existing drugs and inhibitors could target predicted enzymes to hinder the

growth of SARS-CoV-2

The computational approaches used here allowed the prediction of diverse enzymatic targets

that could inhibit the SARS-CoV-2 replication in primary human bronchial epithelial cells.

For these targets, we evaluated their corresponded enzymes considering already existing

approved drugs using the BRENDA [65] and DrugBank [66] databases. We found various

hitherto approved drugs and compounds that target some of the predicted reactions and could

inhibit them, including those targeting the very promising enzymes CTPS1 and GK1. Table 3

lists examples of already existing drugs that inhibit our predicted anti-SARS-CoV-2 target

reactions. These compounds and drugs could be used as an indication to validate the computa-

tional predictions made here experimentally.

Like all living cells, virus-infected cells require nucleotides to synthesize deoxyribonucleic

and ribonucleic acid to strengthen their proliferation. Hence, nucleotide metabolism is regu-

lated to establish constant pools of pyrimidines and purines. Various drugs targeting the nucle-

otide metabolism in viral infections represent a therapeutic approach to limit viral replication.

There are two main strategies to rewire the nucleotide metabolism: via purine and pyrimidine

analogs (i.e., modified nucleosides used to stop DNA or RNA polymerase) or directly inhibit-

ing the enzymes involved in DNA and RNA synthesis. The majority of our predicted targets

are involved in the purine and pyrimidine metabolism.

We conducted extensive literature research and highlighted the cytidine analog Cyclopente-

nyl cytosine (CPEC) as an already known competitive inhibitor of the CTP synthetase CTPS1
(Table 3). In CPEC, the ribose is substituted by an unsaturated carbocyclic ring and must

undergo three times phosphorylation to form CPEC-TP that finally acts as an inhibitor of

CTPS1 [71]. A nucleoside analog named acyclovir is an approved drug that acts against GK1
(Table 3). In acyclovir, the sugar in the deoxyguanosine is substituted by an acyclic side chain,

a (2-hydroxyethoxy)methyl substituent, at position nine. The viral DNA polymerase is com-

petitively inhibited by acyclovir which acts as an analog to deoxyguanosine 5’-triphosphate

(dGTP). This results in chain termination since the adherence of further nucleosides is pre-

vented by the absence of the 3’-hydroxyl group [72].

The second approach is the direct inhibition of enzymes related to nucleotide synthesis. In

the past few years, diverse enzyme inhibitors have been known to treat viral infections. One

such antiviral, merimepodib, targets the action of inosine-5’-monophosphate dehydrogenase

(IMPD) and has already been tested against emerging RNA viruses (e.g., Zika, Ebola, Lassa,

Junin, and Chikungunya viruses) [73]. Merimepodib has also been examined in the context of

SARS-CoV-2 and has demonstrated in vitro suppression of viral inhibition [74]. Our methods

reported the IMPD as a promising hit for therapies against all SARS-CoV-2 variants with

49.9% virus reduction. Together with merimepodib, DrugBank and BRENDA list ribavirin as

an inhibitor with known pharmacological action. Several studies have postulated that ribavi-

rin’s mechanism of action lies on various not mutually exclusive pathways [75]. Lastly, with

Table 3. Exemplary selection of already approved drugs and compounds that act against proteins associated with our predicted anti-SARS-CoV-2 target reactions

and could possibly used for antiviral therapies. All listed drugs have known pharmacological action and are sorted based on the predicted percentage of virus reduction

in the wildtype sequence.

Reaction EC-Number Approved drug Reference (PubMed ID) Predicted % virus reduction

CTPS1 6.3.4.2 CPEC 10930994 [67] 62.5

GK1 2.7.4.8 Acyclovir 1316735 [68] 62.5

PUNP4 2.4.2.1 Ganciclovir 24107682 [69] 60.5

IMPD 1.1.1.205 Ribavirin 4197928 [70] 49.9

https://doi.org/10.1371/journal.pcbi.1010903.t003
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our methods, we identified the purine-nucleoside phosphorylase (PUNP4) for which ganciclo-

vir has known inhibitory effects (Table 3).

Discussion

Studying human metabolism guides the understanding of diverse diseases by determining the

cells’ health. The existence of high-quality genome-scale reconstructions facilitates systems-

based insights into metabolism. As complex organisms, humans embody multiple cell and tis-

sue types, each with different functions and metabolisms, leading to the essential use of cell- or

tissue-specific metabolic networks to enable the accurate prediction of the cells’ metabolic

behavior. Here, we presented pymCADRE, a re-implementation of mCADRE [31] in Python

that allows the reconstruction of tissue-specific human models based on human gene expres-

sion data and network topology information. Similar to the original mCADRE algorithm,

pymCADRE consists of three parts: (1) ranking, (2) consistency check, and (3) pruning,

enabling the user to choose between two optimization methods, FVA and FASTCC, to check for

model consistency (S3 Fig). We enriched our implementations with data pre-processing

scripts that simplify multiple data curation tasks.

We used our tool to create a tissue-specific model of primary Human Bronchial Epithelial

Cell (HBEC) to investigate SARS-CoV-2 infections. We used the human metabolic network

Recon1 as a generic model to test our tool to avoid high computational costs. When FVA was

used, pymCADRE proceeded faster than mCADRE, maintaining the highest possible similar-

ity to the ground truth, i.e., the mCADRE-derived model. The two models showed a reaction

overlap of almost 100%, suggesting a substantial similarity between both implementations and

demonstrating confidence about the quality of the pymCADRE models. Since we did not mod-

ify the initial mCADRE algorithm, the varying amount of reactions in the final tissue-specific

models suggests variable performance among built-in functions in COBRA Toolbox [76] and

COBRApy [40]. More specifically, we observed divergent results among the two programming

languages when FASTCC was employed. In both cases, the function is implemented as described

by Vlassis et al. [52]; however the pythonic version detected a varying number of blocked reac-

tions after multiple runs. The bug has already been reported and awaits resolve. Additionally,

the detected inactive reactions were dissimilar compared to the reactions in the mCADRE

model. This was not the case when the COBRApy methods,

flux_variability_analysis()
or

find_blocked_reactions()
from the package cobra.flux_analysis were employed. Moreover, the current ver-

sion of FVA in MATLAB only supports the industrial proprietary CPLEX versions older than V

12.10 [77]. The latest solver release, V 20.1 (released in December, 2020, does not yet include

MATLAB-related binaries, and hence, FVA from the COBRAToolbox is of restricted use. This

problem is resolved by pymCADRE, as the latest version of COBRApy enables the users to

choose among the open-source GLPK package and the CPLEX solver from IBM to perform opti-

mization tasks. Another reason for the divergent performance among both tools could be the

implementation of organic exchange/demand reactions detection. We achieved this in a more

powerful and fully automated script. Thus, pymCADRE detected four additional organic

exchange/demand reactions in Recon1, affecting the result of consistency checks. The utilized

human generic model, Recon1, does not include a BOF. We updated the generic human

model by including a BOF extracted from the macrophage model published by Bordbar et al.
[36].
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Furthermore, we used our model and simulated an infection with the SARS-CoV-2 to bet-

ter understand the host’s impact on the virus and vice versa. For this purpose, we generated a

SARS-CoV-2 VBOF based on the protocol of Aller et al. to create an integrated metabolic

model aiming the analysis of host-virus interactions and the identification of effective targets

for antiviral therapeutic strategies [10]. They recovered already known antiviral targets for the

Chikungunya, Dengue, and Zika viruses within the human macrophage cell, verifying their

approach’s robustness. As Aller et al. suggested, FBA and FVA can be employed to predict

essential host reactions, especially in cases of novel viruses. Two different computational

experiments achieved this: single-reaction knock-outs and host-derived enforcement. Both

approaches verified GK1 as a target to restrict the SARS-CoV-2 growth without harming the

host. GK1 has already been reported to show inhibitory effects in the macrophage and the lung

models [24, 47]. Similarly, our results confirmed enzymatic hits from the glycolysis (ENO,

PGM, and PGK) that have been previously described in the literature [24].

However, our methods revealed further novel targets with promising results. CTPS1 con-

strained, resulted in a remarkable suppression of the viral replication in the cell, similar to

GK1. The pre-print from Rao et al. experimentally describes how the SARS-CoV-2 activates

CTPS1 deploying several proteins to induce the synthesis of CTP, suppressing thus the inter-

feron production and downstream immune response [78]. The authors suggest targeting the

inhibition of the host enzyme CTPS1 as a potential approach to restore the interferon induc-

tion and, therefore, to hinder the SARS-CoV-2 replication. Notwithstanding, CPEC has been

previously described to exhibit antiviral and anti-tumor effects. More specifically, it is known

to be active against a wide range of RNA and DNA viruses (e.g., influenza, herpes simplex, and

yellow fever) in vitro [79, 80]. Similarly, modulating the pyrimidine ribonucleotide levels has

been a widely studied approach in treating cancer. As of today, it has been examined most

extensively in leukemic cell lines, but also in the context of colorectal carcinoma, brain tumor,

and neuroblastoma [81]. Although dosis-related hypotension events occurred in patients with

colon carcinoma treated with CPEC in Phase I trials [82], the cardiotoxicity could not be

reproduced in established rat models [83]. Studies have reported the deaminated product of

CPEC, CPEU, as well as cytidine as potential modulators of the cytotoxic activity of CPEC [84,

85]. It remains to be investigated in vivo to which extent it is possible to establish antiviral

activities with CPEC without toxic side-effects, but also in combination with other drugs.

Most of our hits fall into the purine and pyrimidine metabolism and are tightly coupled.

This implies and verifies that drugs targeting the nucleotide metabolism exemplify a common

therapeutic strategy to restrict SARS-CoV-2 replication. We conducted extensive literature

and database search and found acyclovir that targets GK1 from the purine synthesis pathway.

So far, acyclovir is the standard gold treatment of infections with the herpes virus and the Vari-

cella-Zoster Virus (VZV) [7, 86]. In the context of SARS-CoV-2, acyclovir has been proposed

in studies as a drug with an antiviral potential against coronaviruses [87], more specifically

SARS-CoV-2 concurrently with signs of reactivation of VZV [88]. The authors assumed that

this reactivation is coupled to the unusually low count of lymphocytes (lymphopenia) in the

COVID-19 patients’ blood. Its mechanism of action resembles molnupiravir, which has been

granted the Food and Drug Administration (FDA)-Emergency Use Authorization against

SARS-CoV-2 infections [89]. Both drugs target the viral replication by mimicking ribonucleo-

sides and causing mutagenic effects. Compared to acyclovir, which leads to immediate chain

termination, molnupiravir continues incorporating of nucleobases until a mismatch occurs,

resulting in an error catastrophe. The only FDA-approved drug called remdesivir acts similarly

and is an ATP analog and causes delayed chain termination. Hence, acyclovir’s mechanism of

action indicates a high potential for successful use against SARS-CoV-2 infections. Intrave-

nous ritonavir-boosted nirmatrelvir (Paxlovid) has also received the Emergency Use

PLOS COMPUTATIONAL BIOLOGY New workflow predicts drug targets against SARS-CoV-2

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010903 March 23, 2023 23 / 32



Authorizations by FDA medication used in COVID-19 patients. Antiviral effects occur in an

earlier stage as it prevents viral replication by inhibiting protein synthesis. Its disadvantage is

that it may cause adverse effects upon drug-drug interactions since ritonavir can be dangerous

for patients taking antiarrhythmics, blood thinners, and further medications [90]. Neverthe-

less, several monoclonal Antibodies (mABs), such as bebtelovimab, bamlanivimab-etesevimab,

and tocilizumab, have been authorized for intravenous administration and subsequently

revised with the emergence of the Omicron variant [91]. On the contrary, acyclovir can be

administered orally, making it easier for self-use.

Besides that, we predicted enzymatic candidate targets from the carbohydrate metabolism.

In more detail, reactions from the amino/nucleotide sugar and sucrose metabolism demon-

strated higher antiviral effects than targets from the glycolysis or the fructose and mannose

metabolism. Among others, carbohydrates are essential components of viral particles, with

some playing a crucial role in their attachment and penetration into host cells [92]. They have

been extensively studied as therapeutic targets against viral infections, while two of the already

FDA-approved drugs to treat SARS-CoV-2 [93], remdesivir and molnupiravir, belong into the

class of carbohydrate-based antiviral drugs. Our results demonstrated that targeting the path

leading to the production of the sialic acid N-Acetyl-D-mannosamine (ManNAc), could result

in up to 57.9% SARS-CoV-2 inhibition.

Moreover, we tested two different growth media to validate the robustness of our predicted

targets. GK1 was shown to be more effective against the virus with the blood medium defined,

compared to the minimal defined medium. Using both media, NDPK2 demonstrated the same

inhibitory effect as UMPK5, while nucleoside diphosphate kinase 3 (NDPK3) constrained with

the minimal medium showed a higher effect on virus replication.

We further validated the robustness of our host-based targets against all five variants of con-

cern (Alpha, Beta, Gamma, Delta, and Omicron). To accelerate the VBOF reconstruction, we

developed PREDICATE to analyze multiple sequences for a single variant rapidly and in an

automated way. Within this tool, we also implemented an algorithm to modify reference pro-

tein sequences and introduce amino acid mutations. Our implementations are transferable to

all RNA viruses, as they are composed of the same building blocks. Firstly, we evaluated the

mutations’ effect on the computed stoichiometric coefficients variant-wise for the correspond-

ing mutations. The high stoichiometric coefficients for ATP and ADP are consequences of

decreased total viral molar masses and increased total amino acid counts. We observed

increased use of lysine in the Omicron variant because most mutations replace amino acids

with lysine. The opposite effect was observed in Omicron for asparagine. All single-reaction

deletions across all variants highlighted NDPK1 as a potential robust antiviral inhibitor. The

NDPK1 also proved by HDE to have the highest inhibitory effect against SARS-CoV-2, with-

out harming the host cell. Besides that, supplementation of L-histidine, L-threonine, L-lysine, L-

proline, and L-tryptophan in the host’s environment shown to interrupt the virus’s growth in

all five SARS-CoV-2 variants.

Future improvements need to be done to make pymCADRE computationally feasible with

more complex and more comprehensive models, including Recon2.2 [94] and Recon3D [30].

Currently, pymCADRE and mCADRE need a large amount of computational time to com-

plete the ranking of reactions when a more complex generic model, like Recon3D, is used.

Both tools are automatically killed during pruning as there is no sufficient memory for them to

process further reactions. However, we used Recon3D to fill missing knowledge in our model

Recon1-HBEC. Our targets’ effectiveness needs to be verified in more updated networks that

better represent the human metabolism. So far, we tested the results of our pipeline using gene

expression data from cell lines originating from primary cells that are easier to handle and ana-

lyze. With these, we verified targets already described for SARS-CoV-2 and ensured prediction
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accuracy. Further future target validation step would be to employ RNA-Seq data of primary

cells that retain more traits of living cells and capture the entire transcriptome, consequently,

the gene and transcript abundance. This will enable the detection of further unknown enzy-

matic targets guiding novel antiviral therapies.

Our integrated bronchial-specific metabolic model could be further expanded and investi-

gated regarding the consequences of any upcoming mutation in the predicting antiviral tar-

gets. Models created by pymCADRE could be utilized to simulate the interaction of bacterial

pathogens or symbionts and detect potential antiviral targets for drugs against emerging

viruses on different host cells quickly. This new software provides the basis for systematic stud-

ies of a wide range of integrated computer models for host-pathogen interaction. It reduces

the time for creating such models maintaining the highest possible similarity compared to the

ground truth model. Our methods are based on the metabolic fluxes of infected cells and the

interactions between the host cell and the virus. The latter remain unaffected by evolutionary

changes. This, together with the fact that virus replication generally depends on conserved cel-

lular pathways, drastically increases the likelihood of identifying druggable targets with broad

antiviral activity. In addition, our predicted host-based targets are derived based on human

patient data increasing thus their clinical relevance and their potential to achieve higher effi-

cacy in COVID-19 therapies. Our database-derived drug compounds are experimentally sup-

ported and have already been suggested for other single-stranded RNA viruses, opening up the

potential of experimentally verifying their safety, toxicity, and efficacy in cell culture experi-

ments and in in vitro assays. Moreover, their optimum dosage and route of administration at

different infection stages must be determined, since metabolic approaches do not consider

that.

Altogether, we propose a complete workflow to create constraint-specific models and use

them to predict host-based antiviral targets based on metabolic changes in infected cells. Tar-

geting the host cell metabolic pathways has the benefit of robustness and evolutionary stability

while it enables the re-purposing of already available drugs and leads to broad-spectrum puta-

tive therapeutics. For some viral infections, such as those caused by enveloped viruses, e.g.,

HIV, hepatitis B, or the human papillomavirus, it can be effective to target viral proteins with

enzymatic activity (e.g., the protease or viral polymerase). However, focusing on viral proteins

enhances the evolution of resistance, mainly when used in monotherapy, while new variants

carry underlying resistances. Additionally, these direct-acting antivirals are highly virus-spe-

cific, preventing from pan-viral efficacy and hindering pandemic preparedness. With that, tar-

geting the host’s metabolism using our approaches restrains the emergence of resistance. It

reveals host pathways and enzymes essential for viral replication but dispensable for cellular

maintenance and survival. Our pipeline has the advantage that applies to all RNA viruses that

infect host cells, remarkably reduces the duration of target identification and compound selec-

tion, and accelerates the pre-clinical phase. Focusing on the metabolic changes of infected

cells, we aim to apply our methods for rapid identification of potential antiviral targets to effi-

ciently prevent future pandemics concerning various viruses and host cell types, promoting

pandemic preparedness.

Supporting information

S1 Fig. Results of the host-derived enforcement after defining the minimal growth

medium. After constraining the fluxes of NDPK2 and UMPK5, 49.8% of the initial virus

remained in the host. Compared to the blood medium, these targets proved to have a greater

impact on the virus growth leading to a higher decrease than GK1.

(TIF)
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S2 Fig. Overview of the evidence-based ranking of reactions in pymCADRE. The evidence-

based ranking of reactions in pymCADRE is conducted similarly to mCADRE and consists of

three main parts: (A) After binarizing tissue-specific data, the frequency of a gene’s expression

across all experiments of the same tissue is computed; this is the ubiquity score U(g) for each

gene g. The expression-based evidence Ex(r) is computed for each gene-associated reaction r
from ubiquity scores. Reactions with a sufficiently high Ex(r) value are denoted as core reac-

tions. Non-active reactions have zero expression-based evidence. (B) Non-core reactions are

ranked based on the connectivity-based evidence Ec(r), using the generic models’ network

topology and the weighted influence WI(r). Figure re-created from Wang et al [31].

(TIF)

S3 Fig. Hierarchical organization of the pymCADRE code and its dependencies. The three

main scripts are colored with purple, while intermediate scripts are orange-colored. First of all,

the rank_reactions.py module is executed, followed by prune_model.py. The

module check_model_function.py is connected to main and intermediate scripts

and is used multiple times within a single run. Figure created with yEd [95].

(TIF)

S4 Fig. Categorization of the compounds needed for the growth of SARS-CoV-2. The

VBOF includes totally four nucleotides, five energy-related metabolites, 20 proteinogenic

amino acids, and six fatty acids.

(TIF)

S5 Fig. Hits from the host-derived enforcement with inhibitory effect across all examined

variants of concern. Only hits shared by all virus variants are displayed. The range and effect

of reaction inhibitions on the VBOF were calculated while keeping the host’s maintenance at

100%.

(TIF)

S1 Table. Overview of compounds and their stoichiometric coefficients in the host and viral

biomass functions together with the energy-generating compounds. From the listed metabo-

lites, adp_c, h_c, pi_c and ppi_c are the reaction products, while the rest the reactants.

(XLSX)

S2 Table. Detailed information of all antiviral targets predicted using the host-derived

enforcement (HDE).

(XLSX)

S3 Table. Summary of datasets used for all variants of concern. All variants are listed along

with their GISAID accession number, the associated mutations and submission details.

(XLSX)

S4 Table. The stoichiometric coefficients all the molecules included in the VBOFs created

for all five examined variants of concern.

(XLSX)

S5 Table. Growth media definitions.

(XLSX)

S6 Table. Amino acids and their three-letter and one-letter codes, and their molecular

weight used to construct the SARS-CoV-2 VBOF. The molecular weights were derived from

the Chemicals of Biological Interest (ChEBI) database [96].

(XLSX)
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S7 Table. Five-number summary of reaction fluxes in host and virus. The summary consists

of five values: minimum, first quartile (25th percentile), median (50th percentile), third quartile

(75th percentile), and maximum.

(XLSX)

S1 File. Python script of the PREDICATE tool written in a Jupyter Notebook format.

(IPYNB)

S2 File. The SBML model of the integrated host-SARS-CoV-2 bronchial epithelial cell.

(XML)
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89. Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, et al. Mechanism of molnupira-

vir-induced SARS-CoV-2 mutagenesis. Nature structural & molecular biology. 2021; 28(9):740–746.

https://doi.org/10.1038/s41594-021-00651-0 PMID: 34381216

90. Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C, et al. Recommendations for the

management of drug-drug interactions between the COVID-19 antiviral nirmatrelvir/ritonavir (Paxlovid)

and comedications. Clinical Pharmacology & Therapeutics. 2022. https://doi.org/10.1002/cpt.2646

PMID: 35567754

91. Cavazzoni P. Coronavirus (COVID-19) update: FDA limits use of certain monoclonal antibodies to treat

COVID-19 due to the Omicron variant. US Food and Drug Administration. 2022.

92. Mathez G, Cagno V. Viruses like sugars: how to assess glycan involvement in viral attachment. Microor-

ganisms. 2021; 9(6):1238. https://doi.org/10.3390/microorganisms9061238 PMID: 34200288

93. Cao X, Du X, Jiao H, An Q, Chen R, Fang P, et al. Carbohydrate-based drugs launched during 2000-

2021. Acta Pharmaceutica Sinica B. 2022. https://doi.org/10.1016/j.apsb.2022.05.020 PMID:

36213536

94. Swainston N, Smallbone K, Hefzi H, Dobson PD, Brewer J, Hanscho M, et al. Recon 2.2: from recon-

struction to model of human metabolism. Metabolomics. 2016; 12(7):1–7. https://doi.org/10.1007/

s11306-016-1051-4 PMID: 27358602

95. yWorks GmbH. yEd. 2019.

96. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, et al. ChEBI in 2016: Improved ser-

vices and an expanding collection of metabolites. Nucleic acids research. 2016; 44(D1):D1214–D1219.

https://doi.org/10.1093/nar/gkv1031 PMID: 26467479

PLOS COMPUTATIONAL BIOLOGY New workflow predicts drug targets against SARS-CoV-2

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010903 March 23, 2023 32 / 32



APPENDIX C

Paper II: SBOannotator: a Python tool for the automated assignment of
systems biology ontology terms

101





Systems biology

SBOannotator: a Python tool for the automated
assignment of systems biology ontology terms
Nantia Leonidou 1,2,3,4, Elisabeth Fritze2, Alina Renz 1,2,4, Andreas Dräger 1,2,3,4,*
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Abstract
Motivation: The number and size of computational models in biology have drastically increased over the past years and continue to grow.
Modeled networks are becoming more complex, and reconstructing them from the beginning in an exchangeable and reproducible manner is
challenging. Using precisely defined ontologies enables the encoding of field-specific knowledge and the association of disparate data types. In
computational modeling, the medium for representing domain knowledge is the set of orthogonal structured controlled vocabularies named
Systems Biology Ontology (SBO). The SBO terms enable modelers to explicitly define and describe model entities, including their roles and
characteristics.

Results: Here, we present the first standalone tool that automatically assigns SBO terms to multiple entities of a given SBML model, named the
SBOannotator. The main focus lies on the reactions, as the correct assignment of precise SBO annotations requires their extensive classification.
Our implementation does not consider only top-level terms but examines the functionality of the underlying enzymes to allocate precise and
highly specific ontology terms to biochemical reactions. Transport reactions are examined separately and are classified based on the mechanism
of molecule transport. Pseudo-reactions that serve modeling purposes are given reasonable terms to distinguish between biomass production
and the import or export of metabolites. Finally, other model entities, such as metabolites and genes, are annotated with appropriate terms.
Including SBO annotations in the models will enhance the reproducibility, usability, and analysis of biochemical networks.

Availability and implementation: SBOannotator is freely available from https://github.com/draeger-lab/SBOannotator/.

1 Introduction

Ontologies are used to share common knowledge and its appli-
cation across communities (Stevens et al. 2000). While concepts
in biology are adequately covered by appropriate ontologies,
model-related semantics are encoded by standardized Systems
Biology Ontology (SBO) terms (Courtot et al. 2011). The SBO is
a set of orthogonal controlled vocabulary terms used to explic-
itly and unambiguously describe the semantics of model instan-
ces. They are divided into eight orthogonal vocabularies and can
be employed to annotate a model and describe various entities.
For instance, they may represent the type or role of a single com-
ponent in a model streamlining the understanding and meaning
of this entity. The more specific the SBO term is, the more pre-
cise the description. As of January 2023, they consist of 694
terms, with 24 newly added in the last 3 years. Generally, such
terms ensure model reproducibility and exchangeability as they
record and categorize the semantics of model components. From
the release of SBML Level 2 Version 2 in the fall of 2006 to the
current edition (SBML Level 3 Version 2 Release 2, Hucka et al.
2019), the SBML format has supported annotating its compo-
nents using SBO terms to unambiguously mark their semantics

and extend their scope. At this point, adding general, top-level
SBO terms to a model can be done automatically. However,
adding precise descriptions for biochemical reactions in
constraint-based models, e.g. glycosylation or hydrolysis,
remains a laborious and complicated step. After precise categori-
zation, all terms must be determined and added individually to
each occurrence. A higher-level SBO term specificity in reactions
can enable new model analysis methods. For instance, similar to
the gene set enrichment analysis, by counting the occurrence of
SBO terms, one could easily deduce the types of over-catalyzed
reactions, either for complete models or selected pathways.
Hence, their automated assignment is of great importance. Here,
we implemented an expert knowledge-driven classification
scheme implemented in Python called SBOannotator, which can
be easily used to assign SBO terms in a given SBML model
(Keating et al. 2020) automatically.

2 Results

The SBOannotator workflow comprises six main steps
(Fig. 1). At first, all reactions found within the model are la-
beled as either (i) transporters that move molecules across

Received: February 27, 2023. Revised: July 7, 2023. Editorial Decision: July 7, 2023. Accepted: July 13, 2023

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(7), btad437
https://doi.org/10.1093/bioinformatics/btad437

Advance access publication 14 July 2023

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/7/btad437/7224245 by guest on 12 D
ecem

ber 2023



different compartments, (ii) simple biochemical reactions that
only take place in the cytosol, and (iii) pseudo-reactions that
import or export metabolites and serve modeling purposes.
Pseudo-reactions in systems biology modeling do not corre-
spond to any actual physical process and should not be con-
fused with the pseudo-first-order reactions from the field of
chemical kinetics. They are subdivided into demand, ex-
change, and sink reactions. The biomass objective function
also belongs to this class. SBOannotator processes further by
examining the transport reactions and assigning appropriate
SBO terms. The classification mechanism in this step is com-
parably advanced since several types of transporters exist.
The decision relies on the main characteristics of the different
classes, such as the presence of one (passive transport) or
more reaction participants, and the consumption of adenosine
triphosphate (ATP) or phosphoenolpyruvate (PEP) (active
transport). The remaining biochemical reactions are processed
in the next step to enable more detailed labeling. For this pur-
pose, the SBOannotator employs an Structured Query
Language (SQL) database that contains mappings between
Enzyme Commission (EC) numbers and the respective SBO
terms. As the model’s size increases, using an already-defined
database accelerates the computational time needed for their
annotation. Our mappings could be divided into three main
categories: (i) one-to-one mapping; one SBO term represents
EC numbers from a single sub-subclass (e.g. transamination);
(ii) one-to-few mapping; one SBO term maps only a subset of
EC numbers belonging in a single sub-subclass (e.g. myristoy-
lation); and (iii) one-to-many mapping; one SBO term covers
a large subset of EC numbers within one sub-subclass (e.g.

acetylation). Supplementary Table S1 lists all mappings in de-
tail. It is important to note that a proper term that describes
the ligases (EC class 6) was missing from the SBO graph. This
would be necessary to describe, for instance, reactions involv-
ing the formation of deoxyribonucleic acid (DNA), ribonu-
cleic acid (RNA), and protein fragments. After contacting the
developers of the SBO vocabulary, a new term was introduced
(16 May 2023) for ligases that describes the formation of a
covalent bonds (SBO:0000695). The SBOannotator is
designed to handle models with or without EC numbers
assigned. However, they should utilize the Biochemical,
Genetical, and Genomical (BiGG, Norsigian et al. 2020) iden-
tifiers. If the input model provides no EC numbers, an inte-
grated Application Programming transfer Interface (API) call
requests the necessary information from the BiGG database
and adds all missing annotations into the model. Depending
on the model’s size, this step may increase the computational
time. Hence, we recommend the prior use of an annotation
tool, such as ModelPolisher (Römer et al. 2016). We have
tested the performance of SBOannotator in assigning descrip-
tive and more precise terms to biochemical reactions using
108 metabolic models from the BiGG database. All down-
loaded models contained only five types of SBO annotation
representing only top-level terms. The biochemical reactions
made up the largest group before and after the SBOannotator
(see Supplementary Tables S2 and S3). However, their cover-
age was reduced from 57.9% to 18.9%, meaning a large per-
centage of the initial reactions got a more specific term (see
Supplementary Figs S1 and S2). Finally, SBOannotator
assigns SBO terms to the remaining model entities, such as

Figure 1. Overview of SBOannotator’s pipeline. The software enables the automated assignment of SBO terms to multiple model entities in a given

SBML file. First, the pseudo- and transport reactions are characterized and classified. Then, the biochemical reactions are subdivided into 18 classes

based on the underlying enzymatic function. Finally, further model elements are annotated by their respective SBO annotations, and the final model is

stored in SBML format. The main advantage is the detailed categorization of biochemical reactions and the allocation of specialized terms that precisely

capture related and exchangeable information.
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metabolites and genes. The final annotated SBML model is
stored in the current directory with the tag _SBOannotated.

3 Conclusion

Unlike other annotations, like the EC numbers, the SBO terms
are directly assigned in SBML (Keating et al. 2020) as individ-
ual attributes to any model element. This results in a direct
one-to-one mapping that indicates the function of that ele-
ment inside the model. In contrast, numerous EC numbers
and further references may be provided to the same element
to show the link between an annotation and a model element,
each with different qualifiers. For instance, a reaction in
SBML may involve a so-called modifier in addition to reac-
tants and products. This could be an inhibitor, an (enzymatic)
catalyst, or some other stimulator. If multiple EC numbers
link a modifier to a specific enzyme, the SBOannotator can in-
terpret this information and add a precise SBO term for
“enzymatic catalyst”. Without specifying the exact
mechanism of this catalysis, the role of the modifier is now
defined through an “is a”-relationship: this modifier is an
enzymatic catalyst. Once assigned, other software, like the
SBMLsqueezer 2 (Dräger et al. 2015), may interpret this in-
formation to automatically derive suitable reaction rate laws,
where it is of great importance if the modifier is an inhibitor
or an enzyme. With this, the information from the EC num-
bers becomes directly accessible and interpretable: instead of
a potentially extensive list of various annotations, there is a
single attribute with a defined value. By this, SBOannotator
helps to define more clearly which role individual elements
play within a model.

Overall, the SBOannotator is a freely available and user-
friendly Python tool. It can be easily employed to rapidly an-
notate systems biology metabolic networks in SBML format
with appropriate SBO terms, with particular emphasis on al-
locating precise and descriptive terms to all chemical reac-
tions. The minimal requirement for the tool is a valid SBML
format of the input model(s). SBOannotator will then proceed
with the labeling of model components with terms based on
the defined model entities and attributes. The assignment of
enzyme-based SBO terms to reactions is hinged upon the exis-
tence of standardized BiGG (Norsigian et al. 2020) identifiers.
However, expanding the usability of SBOannotator by en-
abling the utilization of further database identifiers to extract
enzymatic information would be of great importance. So far,
SBOannotator is a standalone application. Its integration into
existing software, such as ModelPolisher (Römer et al. 2016),
could be worthwhile, as long as an abstract use of the tool by
the users is possible. Lastly, since the main emphasis of the
tool is the precise annotation of biochemical reactions, it has
been developed on the basis of genome-scale metabolic mod-
els. However, SBO terms may also be useful in other modeling
frameworks, such as, the automated assignment of rate laws
for dynamic simulations. Hence, the SBOannotator could be
extended to assign additional terms specific to different model
types, including dynamic, stochastic, and population models.

Supplementary data

Supplementary data are available at Bioinformatics online.
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Abstract

With the emergence of multidrug-resistant bacteria, the World Health Organization published

a catalog of microorganisms urgently needing new antibiotics, with the carbapenem-resis-

tant Acinetobacter baumannii designated as “critical”. Such isolates, frequently detected in

healthcare settings, pose a global pandemic threat. One way to facilitate a systemic view of

bacterial metabolism and allow the development of new therapeutics is to apply constraint-

based modeling. Here, we developed a versatile workflow to build high-quality and simula-

tion-ready genome-scale metabolic models. We applied our workflow to create a metabolic

model for A. baumannii and validated its predictive capabilities using experimental nutrient

utilization and gene essentiality data. Our analysis showed that our model iACB23LX could

recapitulate cellular metabolic phenotypes observed during in vitro experiments, while posi-

tive biomass production rates were observed and experimentally validated in various growth

media. We further defined a minimal set of compounds that increase A. baumannii’s cellular

biomass and identified putative essential genes with no human counterparts, offering new

candidates for future antimicrobial development. Finally, we assembled and curated the first

collection of metabolic reconstructions for distinct A. baumannii strains and analyzed their

growth characteristics. The presented models are in a standardized and well-curated format,

enhancing their usability for multi-strain network reconstruction.

Author summary

The emergence of multidrug-resistant bacteria, particularly carbapenem-resistant Acine-
tobacter baumannii, has become a severe global health threat. This pressing issue
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necessitated the development of new antibiotics, as highlighted by the World Health

Organization. To address this need, we aimed to create comprehensive metabolic models

to better understand bacterial metabolism and aid in developing novel therapeutic strate-

gies. In this study, we developed a versatile workflow to construct high-quality, simula-

tion-ready genome-scale metabolic models for bacterial pathogens. Applying this

workflow, we constructed a metabolic model for A. baumannii and validated its accuracy

using experimental data. The model successfully replicated observed metabolic pheno-

types and identified essential genes without human counterparts, suggesting potential tar-

gets for new antibiotics. Additionally, we assembled and curated the first collection of

metabolic reconstructions for distinct A. baumannii strains, analyzing their growth char-

acteristics. These standardized and well-curated models enhance usability, facilitating

multi-strain network reconstruction and further research. These findings provide a robust

tool for understanding A. baumannii’s metabolism, guiding the development of new anti-

microbial therapies.

Introduction

In the 21st century, treating common bacterial infections has become a global health concern.

The rapid emergence of pathogens with newly developed resistance mechanisms led to the

ineffectiveness of hitherto used antimicrobial drugs. According to their resistance patterns,

bacteria are classified into three main categories: multidrug-resistant (MDR, resistant to at

least one agent in more than three antibiotic categories), extensively drug-resistant (XDR,

non-susceptible to one or two categories), and pandrug-resistant (PDR, non-susceptible to all

drugs in all categories) [1]. Pathogens from the last two classes are called “superbugs”. In Feb-

ruary 2022, Murray et al. developed predictive statistical models within a large-scale global

study and estimated 1.27 million deaths directly associated with antimicrobial resistance

(AMR) [2]. The same study underlines the highly virulent ESKAPE pathogens (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomo-
nas aeruginosa, and Enterobacter spp.) as the primary cause of AMR-related deaths, while the

World Health Organization (WHO) announced in 2017 the urgent need for novel and effec-

tive therapeutic strategies against these microorganisms, assigning them the “critical status”.

Over the years, numerous studies highlighted the Gram-negative human pathogen Acineto-
bacter baumannii of substantial concern in hospital environments attributable to its high

intrinsic resistance against antimicrobial agents, including biocides [3–6]. A. baumannii (from

the Greek word akínētos, meaning “unmoved”) is a rod-shaped, non-motile, and strictly aero-

bic bacterium. It is an opportunistic pathogen whose adaptable genetic apparatus has caused it

to become endemic in intensive care units (ICUs), affecting immunocompromised patients,

causing pneumonia, bacteremia, endocarditis, and more. Especially the carbapenem-resistant

A. baumannii poses a serious global threat with high mortality rates [7–9]. It targets exposed

surfaces and mucous tissues, colonizes the human nose [10–12], and is frequently associated

with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections [13–16].

The skin has shown to be a community reservoir for A. baumannii in a very small percentage

of samples [17, 18], while its prevalence in the soil is a frequent misconception as species from

the genus Acinetobacter are ubiquitous in nature [5, 19]. Finally, it shows susceptibility to com-

monly used drugs, like β-lactams, aminoglycosides, and polymyxins. The strain ATCC 17978

is a widely studied nosocomial strain notable for its fully sequenced genome that provides a

comprehensive genetic framework for researchers. Historically, it was first isolated in 1951
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from a 4-month-old infant with fatal meningitis [20]. Smith et al. sequenced its complete

genome using high-density pyrosequencing [20]. They reported the presence of putative path-

ogenic islands with virulence genes, including a large island with transposons and integrases,

as well as elements resembling the Legionella/Coxiella Type IV secretion system, crucial for

pathogenesis. Moreover, it is a human-adapted isolate and was the first to be discovered with

an active type VI secretion system (T6SS) encoded on its chromosome [21]. Another remark-

able characteristic is its utilization of microcin Mcc17978 to combat other bacteria such as

closely related Acinetobacter species and E. coli through contact and T6SS-independent com-

petition activity [22]. Previous studies have noted ATCC 17978 for its susceptibility to clini-

cally important antibiotics, serving as a valuable model for studying the basic biology of A.

baumannii, antibiotic susceptibility, and the mechanisms by which resistance can develop

[23–26]. Finally, its lower level of antibiotic resistance makes it valuable for studying the basic

mechanisms of antibiotic action and resistance development, while it is easier to genetically

manipulate [27].

Systems biology, and especially the field of genome-scale metabolic network analysis, is the

key to exploring genotype-phenotype relationships, better understanding mechanisms of

action of such threatening pathogens, and ultimately developing novel therapeutic strategies.

Genome-scale metabolic models (GEMs) combined with constraint-based modeling (CBM)

provide a well-established, fast, and inexpensive in silico framework to systematically assess an

organism’s cellular metabolic capabilities under varying conditions having only its annotated

genomic sequence [28]. As of today, GEMs have numerous applications in metabolic engi-

neering, contributing to the formulation of novel hypotheses towards the detection of new

potential pharmacological targets [29].

It has been more than a decade since the release of the first mathematical model represent-

ing A. baumannii’s metabolism. Kim et al. integrated biological and literature data to manually

build AbyMBEL891, representing the strain AYE [30]. This model was further employed as an

essential foundation for future reconstructions; however, its non-standardized and missing

identifiers limited its use. Following a tremendous increase in the volume of literature and

experimental data on A. baumannii (over 5,670 articles published between 2010 and 2017

according to PubMed), two new strain-specific metabolic networks emerged: the iLP844 [31]

and the AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) model

[32]. Both networks were reconstructed through a semi-automated process and simulated the

metabolism of two distinct strains: ATCC 19606 and AB0057, respectively. With the help of

transcriptomic data of sampled colistin responses and iLP844, it was observed that the type

strain ATCC 19606 underwent metabolic reprogramming, demonstrating a stress condition as

a resistance mechanism against colistin exposure. Alterations in gene essentiality phenotypes

between treated and untreated conditions enabled the discovery of putative antimicrobial tar-

gets and biomarkers. Moreover, the model for AB0057 was part of an extensive resource of

GEMs built to elucidate the impact of microbial communities on host metabolism. The

amount of mass- and charge-balanced reactions in these models is very high; however, they

carry few to no database references. Norsigian et al. improved and expanded AbyMBEL891 to

finally create the high-quality model iCN718 with a prediction accuracy of over 80% in experi-

mental data [33], while Zhu et al. built a GEM for ATCC 19606 (iATCC19606) integrating

multi-omics data [34]. Compared to iLP844, iATCC19606 incorporates metabolomics data

together with transcriptomic data enabling the deciphering of bactericidal activity upon poly-

myxin treatment and the interplay of various metabolic pathways. Last but not least, in 2020,

the first in vivo study on A. baumannii infection was published utilizing constraint-based

modeling [35]. This time, the collection of strain-specific models was enriched with the first

GEM for the hyper-virulent strain AB5075 (iAB5075). The model was validated using various

PLOS PATHOGENS Metabolic modelling of multiple A. baumannii strains

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012528 September 23, 2024 3 / 30



experimental data, while transcriptomics data was leveraged to identify critical fluxes leading

to mouse bloodstream infections. Our literature search revealed one additional metabolic

model of A. baumannii ATCC 17978, named iJS784 [36]. As of the time of writing, this model

has not been officially published in a scientific journal or been deposited in a mathematical

models’ database. Nonetheless, the model cannot produce biomass even when all uptake reac-

tions are open and all medium nutrients are available to the cell, making it unusable and ham-

pering reproducibility.

We expanded the collection of A. baumanniiGEMs by building a high-quality model for

the nosocomial strain ATCC 17978, named iACB23LX. The presented model follows the FAIR

data principles and community standards and recapitulates experimentally-derived pheno-

types with high predictive capability and accuracy scores. We enriched the model with numer-

ous database cross-references and inferred the minimal nutritional requirements

computationally. Moreover, we used this model to investigate the organism’s growth ability in

defined media and a medium simulating human nasal secretions while we assessed its ability

to predict essential genes using different optimization approaches. Among the examined

strains, ATCC 17978 is one of the most well-studied, with a substantial amount of experimen-

tal data available that can be used to direct model refinement and validation. Besides that, we

systematically refined and evaluated all pre-existing reconstructions’ performance to finally

create the first compendium of curated and standardized models for A. baumannii. With this,

we aim to support further studies to give new insights into this pathogen and promote strain-

and species-specific therapeutic approaches.

Materials and methods

Growth curves of A. baumannii
Growth curves for A. baumannii strains AB5075, ATCC 17978, ATCC 19606, and AYE were

recorded in Luria-Bertani (LB), iMinMed supplemented with acetate as sole carbon source

(0.2% weight per volume), and synthetic nasal medium (SNM) [97]. Overnight cultures of the

strains grown in LB were harvested by centrifugation, and the cell pellet was washed once with

5 mL of phosphate buffered saline (PBS). Cells were then re-suspended in the medium used

for the growth curves. The starting optical density (OD)600nm was adjusted to 0.1 and growth

curves were recorded in 2 mL of medium for 12 h in triplicates using a Tecan infinite M200

PRO plate reader and 12-well plates covered with a plastic lid. Plates were incubated with lin-

ear shaking at 37˚C and the OD600nm was measured every 15 min. Growth rates were deter-

mined as the slope of the linear part of the curves plotting the natural logarithm of OD600nm

against time.

Metabolic network reconstruction workflow

Fig 1 illustrates the workflow developed to create the high-quality genome-scale metabolic net-

work iACB23LX, following the state-of-the-art protocol by Thiele et al. [28]. Our workflow

consists of eight major steps starting from the extraction of an annotated genome until the

model validation using experimental data. Modifications in the model structure, as well as the

inclusion of cross-references to multiple functional databases, were done using the libSBML

[46] library, while all simulations were conducted via the constraints-based reconstruction and

analysis for Python (COBRApy)-0.22.1 suite [58] that includes functions commonly used for

simulations.

The individual steps are described below in more detail with respect to the reconstruction

of iACB23LX.
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Draft reconstruction. The draft model was built with CarveMe version 1.5.1 using the

annotated genome sequence of ATCC 17978 [39]. This was downloaded from the National

Centre for Biotechnology Information (NCBI) at https://www.ncbi.nlm.nih.gov and has the

assembly accession number ASM1542v1 [20]. Seven strain-specific assemblies are registered

in NCBI; however, the chosen entry is also registered in Kyoto Encyclopedia of Genes and

Genomes (KEGG) [38], which supports the model extension. The genome is 3.9 Mbp long and

has two plasmids (pAB1 and pAB2). We set the SBML flavor to activate the extension for flux

balance constraints (fbc) version 2 [98]. This extension enables semantic descriptions for

domain-specific elements, such as metabolite chemical formulas and charges, along with reac-

tion boundaries and gene-protein-reaction associations (GPRs). Moreover, the optional

parameter gramneg provided CarveMe was selected to employ the specialized template for

the Gram-negative bacteria. Compared to the Gram-positive template, the Gram-negative

template comes with phosphatidylethanolamines, murein, and a lipopolysaccharide unit. Its

biomass reaction involves membrane and cell wall components resulting in more accurate

gene essentiality predictions in the lipid biosynthesis pathways.

Manual refinement and extension. We started the manual refinement of the draft model

by resolving syntactical errors within the Systems Biology Markup Language (SBML) [40]

Fig 1. Workflow developed for the metabolic network reconstruction of iACB23LX. The created workflow consists of eight main steps: extraction of

the annotated genome, draft model reconstruction, model refinement, gap-filling, investigation of energy-generating cycles, model annotation, quality

control and quality assurance (QC/QA), and model validation using experimental data. Growth simulations include the examination of growth

requirements and the definition of a minimal growth medium. The last six processes are continuously iterated until the model reaches a satisfied quality

and can recapitulate known phenotypes. Figure created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1012528.g001
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model file using the SBML Validator from the libSBML [46]. These errors involve improper

file structure, incorrect or missing tags, missing or improperly formatted attributes, and

invalid values. Missing metabolite charges and chemical formulas were retrieved from the Bio-

chemical, Genetical, and Genomical (BiGG) [70] and ChEBI [99] databases, while mass- and

charge-imbalanced reactions were corrected. The most intense part of the workflow is the

manual network extension and gap-filling. This was done using the organism-specific data-

bases KEGG [38] and BioCyc [100], together with ModelSEED [71]. We mapped the new gene

locus tags to the old ones using the GenBank General Feature Format (GFF) [101] and added

missing metabolic genes along with the respective reactions and metabolites into our model.

The network’s connectivity was ensured by resolving as many dead-end (only produced but

not consumed) and orphan (only consumed but not produced) metabolites as possible. Also,

reactions with no connectivity were not included in the model, while reactions with no organ-

ism-specific gene evidence were removed from the model.

Erroneous energy generating cycles. Energy-generating cycles (EGCs) are thermody-

namically infeasible loops found in metabolic networks and have not been experimentally

observed, unlike futile cycles. EGCs charge energy metabolites such as adenosine triphosphate

(ATP) and uridine triphosphate (UTP) without any external source of nutrients, which may

lead to incorrect and unrealistic energy increases. Their elimination is crucial for correcting

the energy metabolism, as they can inflate the maximal biomass yields and render unreliable

predictions. We checked their existence in iACB23LX applying an algorithm developed by

Fritzemeier et al. [41].

We created a Python script that (1) defines and adds energy dissipation reactions (EDRs) in

the network:

X½c� þH2O½c� � ! Xþ½c� þH½c� þ Pi½c�;

where X is the metabolite of interest and (2) maximizes each EDR while blocking all influxes.

This can be formulated as follows:

max vedrð Þ

subject to

S �~v ¼ 0

8i =2 E : vmin
i � vi � v

max
i

8i 2 E : vi ¼ 0

ð1Þ

where edr is the index of the current dissipation reaction, S is the stoichiometric matrix,~v the

flux vector, E the set of all exchange reactions, and vmin
i and vmax

i the upper and lower bounds.

The existence of EGCs is indicated by a positive optimal value of vedr.
Totally we examined 14 energy metabolites: ATP, cytidine triphosphate (CTP), guanosine

triphosphate (GTP), UTP, inosine triphosphate (ITP), nicotinamide adenine dinucleotide

(NADH), nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleo-

tide (FADH2), flavin mononucleotide (FMNH2), ubiquinol-8, menaquinol-8, demethylmena-

quinol-8, acetyl-coenzyme A (CoA), and L-glutamate. Moreover, we tested the proton

exchange between cytosol and periplasm.

In the case of existing EGCs, we examined the directionality and the gene evidence of all

participated reactions using organism-specific information from BioCyc as reference [100].

Database annotations. In this stage, the model was enriched with cross-linkings to vari-

ous functional databases. Reactions and metabolites were annotated with relevant databases

(e.g., KEGG [38], BRENDA [102], and UniProt [103]). These were included in the model as
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controlled vocabulary (CV) Terms following the Minimal Information Required In the Anno-

tation of Models (MIRIAM) guidelines [104] and the resolution service at https://identifiers.

org/. We used ModelPolisher [105] to complete the missing available metadata for all metabo-

lites and genes. Similarly, metabolic genes were annotated with their KEGG [38], NCBI Pro-

tein, and RefSeq identifiers using the GFF file [101]. Systems Biology Ontology (SBO) terms

were assigned to different model entities using a freely accessible standalone tool called

SBOannotator [43]. The SBO terms are structured controlled vocabularies used in computa-

tional modeling to define and describe model entities unambiguously [106]. The SBOannota-

tor was developed to automatically assign precise SBO terms to SBML models, mainly

focusing on biochemical reactions, thereby enhancing the reproducibility and usability of bio-

chemical networks [43]. In addition, Evidence and Conclusion Ontology (ECO) terms were

added to every reaction to capture the type of evidence of biological assertions with BQB_IS_
DESCRIBED_BY as a biological qualifier. They are useful during quality control and mirror

the curator’s confidence about the inclusion of a reaction. When multiple genes encode a sin-

gle reaction, an ECO term was added for every participant gene. Both terms were incorporated

into the final model.

Finally, reactions were annotated with the associated subsystems in which they participate

using the KEGG [38] database and the biological qualifier BQB_OCCURS_IN. Moreover, the

“groups” plugin was activated [48]. Every reaction that appeared in a given pathway was added

as a groups:member, while each pathway was created as a group instance with sboTerm=
"SBO:0000633" and groups:kind="partonomy".

Quality control and quality assurance. The metabolic model testing (MEMOTE) [45]

version 0.13.0 was used to assess and track the quality of our model after each modification,

providing us with information regarding the model improvement. The Flux variability, Reac-

tion deletion, Objective function, and Gene deletion (FROG) analysis framework was utilized

to assess model reproducibility, ensuring reusability and results verification [47]. The resulting

reports include comprehensive analyses of flux variability, reaction deletion, objective func-

tion, and gene deletion, providing a thorough evaluation of model performance. The final

model was converted into the latest SBML Level 3 Version 2 [48] format using the libSBML

package, while the SBML Validator tracked syntactical errors and ensured a valid format of the

final model [46].

Constraint-based analysis

The most frequently used constraint-based modeling approach is the flux balance analysis

(FBA) that determines a flux distribution via optimization of the objective function and linear

programming [59]. Prior to this, the metabolic network is mathematically encoded using the

stoichiometric matrix S formalism. This structure delineates the connectivity of the network,

and it is formed by the stoichiometric coefficients of all participating biochemical reactions.

The rows and columns are represented by the metabolites and the mass- and charge-balanced

reactions respectively. At steady state, the system of linear equations derived from the network

is defined as follows:

S �~v ¼ 0 ð2Þ

with S being the stoichiometric matrix and~v the flux vector. With no defined constraints, the

flux distribution may be determined at any point within the solution space. This space must be

further restricted since the system is under-determined and algebraically insoluble. An allow-

able solution space is defined by a series of imposed constraints that are followed by cellular

functions. Altogether the FBA optimization problem, with mass balance, thermodynamic, and
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capacity constraints, is defined as:

max or min Z ¼ cT~v

subject to : S �~v ¼ 0

0 � vi 8 irreversible reactions i

vmin � vi � vmax for i ¼ 1; . . . ; n:

ð3Þ

Here, n is the amount of reactions, Z represents the linear objective function, and~c is a vector

of coefficients on the fluxes~v used to define the objective function.

Growth simulations

Strict aerobic growth check. At the time of writing, CarveMe does not include recon-

struction templates to differentiate between aerobic and anaerobic species. The directionality

of reactions that produce or consume oxygen may affect the model’s ability to grow anaerobi-

cally. A. baumannii is defined to be a strictly aerobic species. Hence, we tested whether our

model could grow with no oxygen supplementation. For this purpose, we examined all active

oxygen-producing reactions under anaerobic conditions. We corrected their directionality

based on the organism-specific information found in BioCyc [100] and kept only those with

associated gene evidence.

Defining a minimal growth medium. To determine the minimal number of nutrients

needed for the bacterium to grow, we defined a minimal medium using iACB23LX. We deter-

mined the minimal amount of metabolites needed for growth using the M9 minimal medium

(M9) (S1 Table) as a reference (iMinMed). We modeled growth on iMinMed by enabling the

uptake of all metabolites that constitute the medium. The lower bound for the rest of the

exchanges was set to 0 mmol/(gDW � h). The final minimal medium is listed in Table 1 and in

S1 Table. It consists of nine transition metals, a carbon source, a nitrogen source, a sulfur

source, and a phosphorus source. The aerobic environment was simulated by setting the lower

bound for the oxygen exchange to −10 mmol/(gDW � h).

Table 1. Composition of the computationally defined minimal growth medium, iMinMed. It consists of nine tran-

sition metals, a carbon source, a nitrogen source, a sulfur source, and a phosphorus source. Oxygen was used to repre-

sent aerobic conditions.

Molecular Formula Name

Carbon source C2H3O2
− Acetate

Nitrogen source NH4
+ Ammonium

Sulfur source SO4
2− Sulfate

Phosphorus source HPO4
2− Phosphate

Ca2+ Calcium

Cl− Chloride

Cu2+ Copper

Fe3+ Ferric iron

Transition metals Co2+ Cobalt

K+ Potassium

Mg2+ Magnesium

Mn2+ Manganese

Zn2+ Zinc

Oxygen source O2 Oxygen

https://doi.org/10.1371/journal.ppat.1012528.t001
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Growth in chemically defined media. We utilized experimentally verified growth media

to examine the growth capabilities of iACB23LX. The LB medium serves as a common

medium for the cultivation of A. baumannii. Consequently, we conducted an assessment of

our model’s capacity to accurately simulate growth in this particular medium. Furthermore,

we examined the growth of our model in the human nasal niche, considering that A. bauman-
nii has been isolated from nasal samples within ICUs [10–12]. For this purpose, we utilized the

SNM that imitates the human nasal habitat [97]. In all cases, if macromolecules or mixtures

were present, we considered the constitutive molecular components for the medium defini-

tion. As our model was initially unable to reproduce growth on the applied media, we deployed

the gap-filling option from CarveMe to detect missing reactions and gaps in the network [39].

All growth media formulations are available in S1 Table.

Rich medium definition. To investigate our model’s growth rate when all nutrients are

available to the bacterial cell, we defined the rich medium. For this purpose, we enabled the

uptake of all extracellular metabolites by the model setting the lower bound of their exchange

reactions to −10 mmol/(gDW � h).

Model validation

Evaluation of carbon and nitrogen utilization. We employed the previously published

Biolog Phenotypic Array data by Farrugia et al. for A. baumannii ATCC 17978 to validate the

functionality of our model [26]. According to the experimental guidelines provided by Farru-

gia et al., we utilized M9 for all simulations [26]. The medium was then supplemented with D-

xylose as a carbon source for the nitrogen testings, while ammonium served as the only nitro-

gen source for the carbon tests. As D-xylose was initially not part of the model, we conducted

an extensive search in the organism-specific databases KEGG [38] and BioCyc [100] to include

missing reactions.

The phenotypes were grouped by their maximal kinetic curve height. A trait was considered

positive (“growth”) if the height exceeded the 115 and 101 OmniLog units for a nitrogen and

carbon source, respectively. The prediction accuracy was evaluated by comparing the in silico-

derived phenotypes to the Biolog results. More specifically, the overall model’s accuracy

(ACC) was calculated by the overall agreement:

ACC ¼
TP þ TN

TPþ TN þ FPþ FN
ð4Þ

where true positive (TP) and true negative (TN) are correct predictions, while false positive

(FP) and false negative (FN) are inconsistent predictions. Discrepancies were resolved via iter-

ative manual model curation.

Gene perturbation analysis. We performed in silico single-gene deletions on iACB23LX

to detect essential genes. For this purpose, we utilized the single_gene_deletion func-

tion from the COBRApy [58] package. A gene is considered to be essential if a flux of 0.0

mmol/(gDW � h) is predicted through the biomass reaction after setting the lower and upper

bounds of the associated reaction(s) to 0.0 mmol/(gDW � h).

Additionally, we examined the effect of gene deletions using two different optimization

approaches: FBA [59] and minimization of metabolic adjustment (MOMA) [60]. Contrary to

FBA, MOMA is based on quadratic programming, and the involved optimization problem is

the Euclidean distance minimization in flux space. Moreover, it approximates the metabolic

phenotype and relaxes the assumption of optimal growth flux for gene deletions [60].

The results were compared to gene essentiality data [57]. Wang et al. generated a random

mutagenesis dataset including 15,000 unique transposon mutants using insertion sequencing
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(INSeq) [57]. Four additional transposon sequencing (Tn-seq) libraries of multiple A. bau-
mannii isolates were employed to validate the model and increase confidence [57, 68, 77–79].

In this case only genes with an ortholog in ASM1542v1 were considered. Analogously to the

experimental settings, the nutrient uptake constraints were set to define the LB medium. From

the 453 genes experimentally identified as essential, 191 could be compared to our predictions.

The rest were not part of iACB23LX due to their non-metabolic functions. To measure the

effect of a single deletion, we calculated the fold change (FC) between the model’s growth rate

after (grKO) and before (grWT) a single knockout. This is formulated as follows:

FCgr ¼
grKO
grWT

ð5Þ

To this end, if FCgr = 0, the deleted gene is classified as essential, meaning its removal pre-

vented the network from producing at least one key biomass metabolite predicting no growth.

Similarly, if FCgr = 1, the deletion of the gene from the network did not affect the growth phe-

notype (labeled as inessential), while when 0< FCgr< 1, the removal of this gene affected par-

tially the biomass production (labeled as partially essential). The complete lists of the gene

essentiality results are available in S2 and S3 Tables.

To explore the potential of in silico identified essential genes as new drug candidates against

A. baumannii infections, we probed the queries of predicted false negative candidates against

the human proteome using Basic Local Alignment Search Tool (BLAST) [107]. The protein

sequences were aligned to the human protein sequences using the default settings of the NCBI

BLASTp tool (word size: 6, matrix: BLOSUM62, gap costs: 11 for existence and 1 for exten-

sion). To eliminate adverse effects and ensure no interference with human-like proteins, que-

ries with any non-zero alignment score with the human proteome were not considered. Lastly,

we searched the DrugBank database version 5.1.9 to find inhibitors or ligands known to act

with the enzymes encoded by the non-homologous genes [66].

Curation of existing metabolic networks

Previously reconstructed models of A. baumannii for multiple strains were collected and

curated following community standards and guidelines. For this, we created a workflow that

comprises four main steps and utilizes model validation and annotation tools. This can be

applied to any metabolic network in SBML [40] format and follows the community “gold stan-

dards” strictly, as proposed by Carey et al. [37]. The curation steps involved changes in the for-

mat, amount, and quality of the included information. The context has not been altered in any

way that could impact the models’ prediction capabilities. We employed a combination of

already existing tools to analyze, simulate, and quality-control the models (COBRApy [58],

MEMOTE [45], and the SBML Validator [46]). Different database cross-references were incorpo-

rated in the models using ModelPolisher [105] and following the MIRIAM guidelines [104],

while the libSBML library [46] was used to manipulate the file format and convert to the latest

version. To resolve inflated growth rates, we determined computationally-defined minimal

growth media. The growth capabilities were examined with respect to various experimentally-

derived growth media, while the LB medium was applied to identify lethal genes. A strain-wise

comparison was not feasible due to strain-specific identifiers, no successful growth, or missing

genes. Hence, we investigated the essential genes across all models with identifiers that could be

mapped with the Pathosystems Resource Integration Center (PATRIC) ID mapping tool [108].

To begin with the debugging, we examined the syntactical correctness and internal consis-

tency of the downloaded files using the SBML Validator from the libSBML library [46]. Two

models (iCN718 and iJS784) could not pass the validator check and reported errors since they
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were not in a valid SBML [40] format right after their attainment. We made iCN718 valid by

deleting the reaction DNADRAIN for which neither a reactant nor a product was assigned

since the associated metabolite was not part of the model. Similarly, the empty groups attri-

bute was removed from iJS784, converting the file into a valid format. Warnings were detected

for iATCC19606, and iAB5075 due to missing definition of the fbc extension (available at the

latest Level 3 release [98]) and the non-alphanumeric chemical formulas. We resolved these

issues by defining the fbc list listOfGeneProducts and the species attribute

chemicalFormula. In more detail, we extracted the given GPRs from the notes field and

defined individual geneProduct classes with id, name, and label. The attribute

chemicalFormula was set equal to the species chemical formulas extracted from the notes

and is particularly essential in reaction’s validation and balancing. Following the SBML [40]

specifications regarding its constitution, in case of ambiguous formulas separated by a semico-

lon (;), the first molecular representation was chosen. With this, the genes and metabolites’

chemical formulas became part of the file’s main structure. Since iATCC19606 carried KEGG

[38] identifiers, we could extract the metabolites’ chemical formulas from the database and

add them to the model. Moving on with the file extension, we declared the remaining missing

attributes from reactions, metabolites, and genes that are required according to the SBML [40]

language guidelines. More specifically, we defined the metaid attribute when missing, while

we fixed any errors regarding the identifiers nomenclature. Further extension involved the

annotation of reactions, metabolites, and genes with a plethora of database cross-references

following the MIRIAM guidelines [104]. For this, we employed ModelPolisher that comple-

ments and annotates SBML [40] models with additional metadata using the BiGG Models

knowledgebase as reference [105]. We also defined precise SBO terms with the sboTerm
attribute using the SBOannotator [43]. The final step of debugging involved the conversion of

all models to the newest available format SBML Level 3 Version 2 [48], as well as the quality

control using MEMOTE [45].

Results

Reconstruction process of the metabolic network iACB23LX

To build a high-quality model for A. baumannii ATCC 17978, we developed a workflow, as

depicted in Fig 1, adhering closely to the community standards [37] (see Materials and

methods).

We named the newly reconstructed network iACB23LX, where i stands for in silico, ACB is

the organism- and strain-specific three-letter code from the KEGG [38] database, 23 the year

of reconstruction, and LX the modellers’ initials. Our protocol involves eight major stages

starting from the attainment of the annotated genomic sequence until the model validation,

applies to any organism from the tree of life (Archaea, Bacteria, and Eukarya), and ensures the

good quality and correctness of the final model. CarveMe [39] was used to build a preliminary

model, which was subsequently extended and curated manually. We resolved SBML [40] syn-

tactical issues and mass and charge imbalances during manual refinement while we defined

missing metabolite charges and chemical formulas. Our final model contains no mass-imbal-

anced reactions and only two charge-imbalanced reactions. After extensive efforts, resolving

all charge imbalances was impossible since all participated metabolites are interconnected to

multiple reactions within the network. Hence, any modification in their charge resulted in

newly introduced imbalances. The model extension process involved incorporating missing

metabolic genes considering the network’s connectivity. Dead-end and orphan metabolites do

not exist biologically in the species, implying knowledge gaps in metabolic networks. More-

over, reactions including such metabolites are not evaluated in FBA. Therefore, reactions with
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zero connectivity and no organism-specific gene evidence were omitted from the gap-filling.

We extended the draft model by 138 reactions, 77 genes, and 110 metabolites in three com-

partments (cytosol, periplasm, and extracellular space). All in all, iACB23LX comprises 2,321

reactions, 1,660 metabolites, and 1,164 genes (Fig 2). It is the most comprehensive model,

while its stoichiometric consistency lies at 100% and contains no unconserved metabolites.

Over 1,800 reactions have a GPR assigned, while 149 are catalysed by enzyme complexes (GPR

contains at least two genes connected via a logical AND).

Furthermore, we tested our model for EGCs to prevent having thermodynamically infeasi-

ble internal loops that bias the final predictions [41]. We defined energy dissipation reactions

(EDRs) for 15 energy metabolites, enabling transmission of cellular energy. Each reaction was

individually added to the model and set as the objective function, while all uptakes were con-

strained to zero (see Materials and methods). A non-zero optimization result indicated an

energy-generating cycle, which was then removed. With this, our final model, iACB23LX, con-

tains no EGCs. As shown in Fig 1, a plethora of database cross-references was embedded in

the model, while SBO terms were defined for every reaction, metabolite, and gene [43]. Addi-

tionally, each reaction was mapped to an ECO term representing the confidence level and the

assertion method (Fig 3).

To assess the model’s quality, we utilized the Metabolic Model Testing tool (MEMOTE) [45]

and the SBML [40] Validator from the libSBML library [46]. Our metabolic network,

iACB23LX, achieved a MEMOTE score of 89% with all syntactical errors resolved. Our model

undoubtedly exhibits the highest quality score among its predecessors (Fig 2). Notably, the

MEMOTE testing algorithm considers only the parent nodes of the SBO directed acyclic graph

and not their respective children. Assigning more representative SBO terms does not increase

the final score but reduces it by 2%. Finally, we assessed the model’s reproducibility using

FROG analyses [47] and submitted the reports along with our model to enable verification of

results. The final model is available in SBML Level 3 Version 2 [48] and JavaScript Object

Notation (JSON) formats with the fbc and groups plugins available.

iACB23LX is of high quality and exhibits an increased predictive accuracy

Prediction and experimental validation of bacterial growth on various nutritional envi-

ronments. Constraint-based modeling approaches, such as FBA, estimate flux rates

Fig 2. Properties of all metabolic networks for A. baumannii. Blue highlights the metabolic network for ATCC 17978 presented in this publication.

The left ordinate shows the counts, while the right ordinate represents the MEMOTE scores. The abscissa labels are annotated with the respective

strains, each accompanied by the count of open reading frames (ORFs) and the percentage of model gene coverage. The reconstruction process is

divided into manual (M, nocomputational tool was used to reconstruct and refine the model) and semi-automated (S, draft obtained via an automated

reconstruction tool, while further extension was done manually) and is written together with the publication year. The new model presented in this

work exhibits the highest quality score and is more comprehensive and complete than the preceding reconstructions.

https://doi.org/10.1371/journal.ppat.1012528.g002

PLOS PATHOGENS Metabolic modelling of multiple A. baumannii strains

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012528 September 23, 2024 12 / 30



indicating how metabolites flow through the metabolic network and predict cellular pheno-

types for various growth scenarios. A. baumannii is known to be strictly aerobic and, com-

pared to the majority of Acinetobacter species, it is not considered ubiquitous in nature. As a

nosocomial pathogen, it has been mostly detected in hospital environments, particularly in the

ICUs, and within the human nasal microbiota [10–12]. We examined various growth condi-

tions to ensure that iACB23LX recapitulates these already known and fundamental

phenotypes.

First, we tested our model’s capability to simulate a strictly aerobic growth. For this pur-

pose, we examined the directionality of all active oxygen-producing and -consuming reactions

when the oxygen uptake was disabled (see S1 Fig). We observed an accumulation of periplas-

mic oxygen by reactions that carried remarkably high fluxes, leading to growth even when oxy-

gen import was turned off. We examined each reaction individually and removed those

without gene evidence to correct this. More specifically, we removed the periplasmic catalase

(CATpp), one of bacteria’s main hydrogen peroxide scavengers. This enzyme is typically active

in the cytosol [49] and was not part of any precursor A. baumannii GEM or was found only in

cytosol (iLP844 [31]). To fill the gap and enable the usage of the periplasmic hydrogen perox-

ide, we added the (PEAMNOpp) in the model. Eventually, iACB23LX demonstrated growth

only in the presence of oxygen using a rich medium (all exchange reactions are open).

Furthermore, we determined the minimal number of metabolites necessary for growth

using iACB23LX and the M9 as a reference. Minimal growth media typically consist of carbon,

nitrogen, phosphorus, and sulfur sources, as well multiple inorganic salts and transition met-

als. These metals are crucial for the growth and survival of all three domains of life; however,

they can be transformed into toxic compounds in hyper-availability [50]. The exact composi-

tion of our minimal medium (iMinMed) is shown in Table 1. It comprises nine transition met-

als, acetate as the carbon source, ammonium as a nitrogen source, sulfate as a sulfur source,

and phosphate as a phosphorus source. Previous studies have highlighted the importance of

nutrient metals for A. baumannii to survive within the host. More specifically, the bacterium

utilizes these metals as co-factors for vital cellular processes [51]. Manganese and zinc have

Fig 3. Schematic representation of the SBO and ECO terms mapping. It follows the graphs defined in the repository for biomedical ontologies

Ontology Lookup Service (OLS) [42]. The SBO terms were added using the SBOannotator tool [43]. The ECO terms annotated metabolic reactions and

were declared based on the presence of GPR along with KEGG and UniProt annotations. Providing UniProt identifiers, the Protein Existence Level

guides the mapping to appropriate ECO terms. Figure created with yEd [44].

https://doi.org/10.1371/journal.ppat.1012528.g003
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also been studied as essential determinants of host defense against A. baumannii-acquired

pneumonia through their sequestering by calprotectin via a type of bonding called chelation

[52]. In the computational simulations, growth rates below 2.81 mmol/(gDW � h) were consid-

ered realistic. This threshold corresponds to the doubling time of the fastest-growing organ-

ism, Vibrio natriegens, which is 14.8 minutes [45]. Table 2 displays the predicted growth rates

of iACB23LX in the respective culture media. In LB, our model simulated with the highest

growth rate; 0.6065 mmol/(gDW � h). With our self-defined minimal medium, iMinMed, our

model exhibited the lowest rate; 0.5503 mmol/(gDW � h). Notably, our experimental validation

revealed similarity between the growth rates obtained from the in vitro respiratory curves

(Table 2 and S2 Fig) and those predicted by our in silico simulations. Additionally, we exam-

ined the growth rate of our model in a rich medium, in which all nutrients were available to

the model. With this, the flux through the biomass production was the highest, 2.1858 mmol/

(gDW � h), as expected. This is still less than the growth rate of the fastest organism, increasing

the confidence in our model’s consistency and simulation capabilities. Initially, iACB23LX

could not predict any realistic growth rate for the simulated media. Using the gap-filling func-

tion of CarveMe [39], we detected three enzymes (PHPYROX, OXADC, and LCYSTAT) whose

addition into the metabolic network resulted in successful growth in all tested media.

Functional validation of iACB23LX using nutrient utilization data. Multiple in silico
approaches have hitherto been employed to predict lethal genes and to assess growth metrics

on different carbon/nitrogen sources for severe pathogenic organisms includingMycobacte-
rium tuberculosis [53, 54] and Staphylococcus aureus [55, 56]. In 2013 and 2014, two studies

were published that examined the catabolic phenome and gene essentialities of the strain

ATCC 17978 [26, 57]. We used these datasets to evaluate the overall performance (functional-

ity and accuracy) of iACB23LX.

Our first validation experiment assessed the accuracy of our model’s carbon and nitrogen

catabolism potentials using the large-scale phenotypic data provided by Farrugia et al. [26].

While the authors tested a larger number of compounds overall, we were only able to examine

80 carbon sources and 48 nitrogen sources. For the remaining molecules, either no BiGG iden-

tifier existed, or they were not part of the metabolic network. Following the experimental pro-

tocol by Farrugia et al., we applied the M9 medium and enabled D-xylose as the sole carbon

source for the nitrogen testings. As D-xylose was initially not part of the reconstructed net-

work, we conducted extensive literature and database search to include associated missing

reactions. This improved the prediction accuracy, especially for the carbon sources, where an

amelioration of 19% was achieved. In more detail, despite the comprehensive manual curation,

the first draft model was reconstructed using the automated tool CarveMe [39]. This resulted

in the incorrect inclusion of transport reactions, which were consequently removed to reduce

the number of false positive predictions. In both cases, our main objective was to improve the

accuracy while keeping the number of orphan and dead-end metabolites low and removing

Table 2. Simulated and empirical growth rates of ATCC 17978 in various growth media. The tested media are the

computationally-defined minimal medium (iMinMed), the LB, and the SNM. Computational growth rates are given in

mmol/(gDW � h), while in vitro rates in h−1. Doubling times are calculated in minutes. The media formulations are

available in S1 Table.

Growth Rates Doubling Times

in silico in vitro in silico in vitro
iMinMed 0.5503 0.5402 75.57 76.70

LB 0.6065 0.7369 68.57 56.44

SNM 0.2914 0.3592 142.72 115.78

https://doi.org/10.1371/journal.ppat.1012528.t002
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only reactions with no gene evidence (lack of assigned GPR). Similarly, missing reactions were

identified and included in the network to eliminate the false negative predictions. For instance,

in accordance with the phenotypic data, ATCC 17978 should not be able to grow when utiliz-

ing D-trehalose as the sole carbon source. Our model initially predicted a growth phenotype

for this carbon source. To overcome this conflict, we deleted the reaction TREP with no organ-

ism-specific gene evidence, i.e., no assigned GPR. However, it was not feasible to resolve all

inconsistencies since adding transport reactions to resolve false positives or false negatives in

the nitrogen testings led to more false predictions in the carbon sources. More specifically,

when adenosine, inosine, L-homoserine, and uridine are utilized as sole carbon sources, the

model should not predict growth, while as sole nitrogen sources they should result in a non-

zero objective value. In this case, adding transporters would resolve false predictions in the

nitrogen tests, while it would have induced more false predictions in the carbon sources tests.

Altogether, iACB23LX exhibited an overall accuracy of 86.3% for the carbon and 79.2% for the

nitrogen sources test (Fig 4c). By adding their corresponding transport reactions, we resolved

discrepancies regarding uridine, inosine, adenosine, and L-homoserine. Our model was able to

catabolize 49 sole carbon and 40 sole nitrogen sources (see Fig 4a and 4b), recapitulating totally

69 and 38 experimentally-derived phenotypes, respectively.

We further assessed the ability of iACB23LX to predict known gene essentialities. First,

1,164 in silico single gene deletions were conducted on both LB and rich growth media, respec-

tively to identify all lethal gene deletions. Subsequently, the ratio between the growth rate after

and before the respective knockouts (FCgr) was calculated, and the genes were classified

accordingly (see Materials and methods). For the optimization, two mathematics-based

approaches from the COBRApy [58] package were deployed: the FBA [59] and the MOMA

[60]. Between the two methods, a similar distribution of the FCgr values was observed (Fig 5a

and 5b). Using FBA, 97, 75, and 991 genes were predicted to be essential, partially essential,

and inessential on LB, respectively. Similarly, optimization with MOMA resulted in 110, 85,

and 968 genes (Fig 5c and S3 and S2 and S3 Tables). These genes were primarily associated

with the biosynthesis of cofactors and vitamins, the amino acid/nucleotide metabolism, the

energy metabolism, and the metabolism of terpenoids and polyketides. Additionally, we exam-

ined in more detail how nutrition availability impacts the gene essentiality by conducting sin-

gle-gene knockouts in the rich medium. Both optimization methods yielded a higher number

of essential genes when the model had to adapt its metabolic behavior due to lacking nutrients,

i.e., with LB, compared to the rich medium (Fig 5c and S2 and S3 Tables). In general, FBA

detected more genes to be dispensable for growth in both nutritional environments. On the

other hand, MOMA classified more genes as essential or partially essential (Fig 5c and S2 and

S3 Tables), while genes from FBA build a subset of the essential genes derived by MOMA. Fur-

thermore, we validated the prediction accuracy of iACB23LX using gene essentiality data.

First, we analyzed the transposon mutant library developed by Wang et al. as it examines the

same A. baumannii genome that we used to build our model [57].

Using this dataset and the LB medium, our model demonstrated a prediciton accuracy of

87% with both optimization methods (Fig 5d). To enhance the robustness and generalizability

of our model across diverse datasets, we compared our model’s predictions to four additional

Tn-seq datasets. A total of 43 genes were labeled as essential in all studied Tn-seq data and

were predicted as essential by our model. The derived predictive accuracies ranged between

86.6% and 88.9% (Fig 5e), underscoring the efficacy of our model across diverse high-through-

put gene essentiality datasets. We further analyzed the predicted false negative genes and

probed their proteomes to investigate the existence of human homologs (see Materials and

methods and S4 Table). Our aim was to remove cross-linkings to human-similar proteins, as

pathways or enzymes absent in humans are valuable sources of druggable targets against
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Fig 4. Model predictions compared to the Biolog experimental measurements for various carbon and nitrogen sources. From the Biolog data, only

substances mappable to model metabolites were included, while the M9 medium was applied. (a) and (b) The model’s ability to catabolize various

carbon and nitrogen sources was assessed using the strain-specific phenotypic data by Farrugia et al. [26]. Grey indicates no growth, and orange

indicates growth. Totally, 80 and 48 compounds were tested as sole carbon and nitrogen sources, respectively. Out of these, 69 and 38 phenotypes were

recapitulated successfully by iACB23LX. (c) Confusion matrices of model predictions and Biolog experimental measurements. The overall accuracy of

iACB23LX is 86.3% for the carbon (left matrix) and 79.2% for the nitrogen (right matrix) testings. Orange represents correct predictions, and grey

represents wrong predictions.

https://doi.org/10.1371/journal.ppat.1012528.g004
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infectious diseases [61]. Out of the 37 genes that our model predicted to be essential using FBA

and MOMA, which contradicted the experimental results, 17 were found to be non-homolo-

gous to human (S4 Table). Genes with a zero similarity score were defined as non-homolo-

gous, while those with a non-zero similarity score were excluded to avoid targeting human-

Fig 5. Gene essentiality analysis using iACB23LX. (a) and (b) Distribution of the FCgr values calculated for all genes included in iACB23LX. Red lines

represent FBA predictions and grey are ratios derived with MOMA. Totally 1,164 knockouts were conducted using each method in LB and rich media.

(c) Classification of gene essentialities in essential, inessential, and partially essential based on their FCgr values. (d) Accuracy of gene essentiality

predictions based on empirical data. The in silico results were compared to the Wang et al. transposon library [57]. The LB medium was applied to

mirror the experimental settings. The metabolic network exhibited 87% accuracy with FBA (left) and MOMA (right). Beige indicates correct

predictions; grey indicates incorrect predictions. (e) Comparative analysis of essential genes predicted by iACB23LX versus those identified in multiple

Tn-seq studies.

https://doi.org/10.1371/journal.ppat.1012528.g005
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like proteins. Some examples are the genes encoding the enolpyruvylshikimate phosphate

(EPSP) synthase (A1S_2276), chorismate synthase (A1S_1694), riboflavin synthase

(A1S_0223), phosphogluconate dehydratase (A1S_0483), dihydrofolate reductase (DHFR)

(A1S_0457), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (A1S 0484). The

EPSP synthase converts the shikimate-3-phosphate together with phosphoenolpyruvate to 5-

O-(1-carboxyvinyl)-3-phosphoshikimic acid. Subsequently, the chorismate synthase catalyses

the conversion of the 5-O-(1-carboxyvinyl)-3-phosphoshikimic acid to chorismate, the seventh

and last step within the shikimate pathway [62]. Chorismate is the common precursor in the

production of the aromatic compounds tryptophan, phenylalanine, and tyrosine, as well as

folate and menaquinones during the bacterial life cycle. The shikimate pathway is of particular

interest due to its absence from the human host metabolome and its vital role in bacterial

metabolism and virulence. Moreover, the enzyme riboflavin synthase catalyses the final step of

riboflavin (vitamin B2) biosynthesis with no participating cofactors. Riboflavin can be pro-

duced by most microorganisms compared to humans, who have to externally uptake them via

food supplements. Also, it plays an important role in the growth of different microbes, espe-

cially due to its photosynthesizing property that marks it as a non-invasive and safe therapeutic

strategy against bacterial infections [63]. Lastly, the phosphogluconate dehydratase catalyses

the dehydration of 6-phospho-D-gluconate to KDPG, the precursor of pyruvate and 3-phos-

pho-D-glycerate [64]. This enzyme is part of the Entner–Doudoroff pathway that catabolizes

glucose to pyruvate, similarly to glycolysis, but using a different set of enzymes [65].

We further assessed the druggability of our essential non-homologous proteins and investi-

gated the existence of inhibitors or compounds known to interact with the enzymes. For this,

we used the online DrugBank database that contains detailed information on various drugs

and drug targets [66]. In all cases, the listed drugs are of unknown pharmacological action,

and there is still no evidence indicating the enzymes’ association with the molecule’s mecha-

nism of action. For instance, the flavin mononucleotide and the cobalt hexamine ion were

listed as known inhibitors of yet unknown function against the chorismate synthase, while

glyphosate, shikimate-3-phosphate, and formic acid have been experimentally found to act

with EPSP synthase. Six non-homologous genes were marked as hypothetical or putative in

the KEGG [38] database and/or lacked enzyme-associated information. We searched for drug

leads by aligning the query sequences against the DrugBank’s database to find homologous

proteins. Two out of six were found to have a protein hit. More specifically, the protein

encoded by A1S_0589 was found to have high sequence identity with the phosphocarrier

protein HPr of Enterococcus faecalis (Bit-score: 48.5), while the translation product of A1S_
0706 resembles the sugar phosphatase YbiV of Escherichia coli (Bit-score: 225.3). According

to DrugBank, dexfosfoserine and aspartate beryllium trifluoride have been experimentally

determined to bind to these enzymes; however, their pharmacological action is still unknown.

The S4 Table lists all non-homologous essential genes reported for iACB23LX.

Overall, iACB23LX exhibits high agreement to all validation tests and can, therefore, be

used to systematically derive associations between genotypes and phenotypes.

A curated collection of A. baumannii metabolic models

In 2010, Kim et al. published the first GEM for the multidrug-resistant strain A. baumannii
AYE [30]. After that, multiple studies provided new data and genomic analyses were pub-

lished, paving new ways towards its update and refinement [26, 57, 67, 68]. Since then, a vari-

ety of GEMs was developed aiming at the empowering of drug development strategies and the

enforcement of metabolic engineering by formulating new and reliable hypotheses (Table 3).

However, the amount and format of information contained are inconsistent, with some being
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syntactically invalid or of older formats. Here, we systematically analyzed the quality of all

seven currently existing GEMs, reporting their strengths and weaknesses and debugging them

to finally build a curated, standardized, and updated collection. To do so, we developed a

workflow with curation steps applicable to all models aiming at the standardization and usabil-

ity of published GEMs by the community (Fig 6a). This closely follows the community-driven

workflow published by Carey et al. for the reconstruction of reusable and translatable models

[37]. The curation procedure includes a series of stages aiming at modifying data format, data

amount, and information quality. It is important to note that no contextual modifications

were conducted that could affect the model’s prediction capabilities (see Materials and

methods).

Five A. baumannii strains have been reconstructed throughout the years, with AYE and

ATCC 19606 having two reconstructions each. All models are publicly stored and can be

downloaded either from a database/repository [BioModels, Virtual Metabolic Human (VMH)

[69], BiGG [70], and GitHub] or directly from the publication’s additional material. The use of

Table 3. List of genome-scale metabolic models curated for A. baumannii, along with information relevant to the manual refinement. Default growth rates (i.e.,

model simulated as downloaded), the cellular compartments (C: cytosol, E: extracellular space, P: periplasm, and ER: endoplasmic reticulum), and the reactions and metab-

olites identifiers are listed in the table. MEMOTE scores before and after manual curation are given in the last column. Dark red highlights our reconstruction for the strain

ATCC 17978. After manual curation, our model developed following our workflow in Fig 1 has the highest quality score and comes along with a minimal medium defined.

Availability Used Identifiers Growth by default mmol/(gDW � h) Compartments MEMOTE BioModels ID

AbyMBEL891 [30] BioModels Customized 119.0 Cell 20% + 17% MODEL2406250010

AGORA [32] VMH VMH 134.0 C, E 42% + 37% MODEL2406250011

iLP844 [31] Suppl. Mat ModelSeed 15.88 C, E, P 37% + 21% MODEL2406250005

iCN718 [33] BiGG BiGG 1.31 C, E, P, ER 70% + 3% MODEL2406250007

iATCC19606 [34] Suppl. Mat KEGG 46.34 C, E 14% + 44% MODEL2406250008

iJS784 [36] GitHub ModelSeed 0.0 C, E, P 41% + 18% MODEL2406250006

iAB5075 [35] Suppl. Mat BiGG 1. 729 C, E, P 17% + 50% MODEL2406250009

iACB23LX BioModels BiGG 0.5503 C, E, P 89% MODEL2309120001

https://doi.org/10.1371/journal.ppat.1012528.t003

Fig 6. Collection of strain-specific A. baumannii metabolic models. (a) Debugging workflow to curate and evaluate already published models.

Following the community standards, the existing A. baumanniimodels were curated and transformed into re-usable, simulatable, and translatable

models. Quality controls and metabolic standardized tests were conducted using MEMOTE, while the validity of the file format and syntax were

examined with the SBML Validator [46]. ModelPolisher enhanced the models with missing metadata. (b) In silico-derived growth rates in various

media. The empirical and predicted growth rates of iACB23LX are listed in Table 2.

https://doi.org/10.1371/journal.ppat.1012528.g006
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distinct identifiers prevents the metabolic networks from being compared to each other. More

specifically, iLP844 and iJS784 carry ModelSEED [71] identifiers for reactions and metabolites,

while iCN718 and iAB5075 BiGG [70] identifiers. AbyMBEL891 uses distinct identifiers not

supported by any database, and iATCC19606 includes identifiers derived from KEGG [38].

Most of the models resulted in an unrealistic and inflated growth rate (reference: doubling

time of the fastest growing organism V. natriegens) in their defined medium, while iJS784

showed a zero growth even when all imports were enabled (Table 3). Hence, this model was

excluded from further analysis. For each of the remaining GEM, we defined the minimum

growth requirements that result in a non-zero and realistic objective value. For instance, the

AGORA model required at least 21 compounds (mostly metal ions), while oxygen was suffi-

cient for AbyMBEL891 to simulate a non-zero growth (S5 Table).

Since these models should successfully reflect the bacterium’s metabolic and growth capa-

bilities (S2 Fig), we examined the flux through their biomass reaction in various growth media

known to induce A. baumannii growth (Fig 6b). The majority resulted in a biomass flux of 0.0

mmol/(gDW � h) in the iMinMed, while the AGORA model could not simulate growth in LB

and SNM as well. Thus, we investigated and identified minimal medium supplementations

needed to enable cellular biomass production. As already mentioned, iJS784 was excluded

from further examination (Table 3), together with AbyMBEL891 that debilitated the analysis

due to its non-standardized identifiers and its missing genes and GPRs. When the iMinMed

for iATCC19606 and iAB5075 was supplemented with D-alanine and D-glucose 6-phospahte as

well as guanosine 5’-phosphate (GMP), respectively, their biomass reactions carried a positive

flux rate of 0.5279 mmol/(gDW � h) and 0.6477 mmol/(gDW � h). Supplementation of meso-

2,6-diaminoheptanedioate, menaquinone-8, niacinamide, heme, siroheme, and spermidine

into the medium of the AGORA model resulted in a positive growth rate of 1.9430 mmol/

(gDW � h). Similarly, when supplementing the SNM with glycyl-L-asparagine, the derived

growth rate was 1.5020 mmol/(gDW � h), while the iMinMed needed to be extended with 12

additional components (resulted growth rate: 1.2789 mmol/(gDW � h)). Lastly, like with

iACB23LX, the LB medium, together with FBA and MOMA, were applied to detect lethal

genes in all models (S6 and S7 Tables). Despite remarkable efforts, we could not derive a map-

ping scheme between the strain-specific gene identifiers of iLP844 and iATCC19606 to resolve

PROKKA or HMPREF identifiers. Similar issues arose with iAB5075. Thus, a strain-wise com-

parison of essential genes would be feasible only for the strain ATCC 17978. Subsequently, we

examined which genes were necessary for growth among the remaining models across three

different strains: AYE (iCN718), ATCC 17978 (iACB23LX), and AB0057 (AGORA). Totally,

392 genes were identified as essential, while 34 occurred in all three strains. For instance, when

the genes encoding for dephospho-CoA kinase, phosphopantetheinyl transferase, shikimate

kinase, or chorismate synthase were deleted from the three strains, no growth could be simu-

lated in the LB medium. As already mentioned, the gene encoding the chorismate synthase has

no human-like counterpart. This, together with the fact that it was detected to be vital for

growth across three distinct strains, increases its potential to be a drug candidate for future

therapies. Generally, most essential genes are members of the purine metabolism and encode

various transferases. Besides this, the pantothenate and CoA biosynthesis and the amino acid

metabolism were found to be a prominent target pathways for further drug development.

Discussion

The historical timeline of past pandemics shows the imposed threat of bacteria in causing

repetitive outbreaks with the highest death tolls [72], such as cholera and plague. By 2050, anti-

microbial-resistant pathogens are expected to kill 10 million people annually [73], while the
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antibiotics misuse accompanied by the ongoing Coronavirus Disease 2019 (COVID-19) crisis

exacerbated this global threat. It is noteworthy that elevated morbidity rates were ascribed to

bacterial co/secondary infections during previous viral disease outbreaks [74–76]. Hence,

developing effective antibiotic regimens is of urgent importance. Here, we present the most

recent and comprehensive ready-to-use blueprint GEM for the Gram-negative pathogen A.

baumannii. For this, we created a workflow that applies to any living organism and ensures the

reconstruction of high-quality models following the community standards. Our model,

iACB23LX, was able to simulate growth in SNM that mimics the human nasal niche, the

experimentally defined medium LB, and the model-derived iMinMed. With iMinMed we

denoted the minimal number of compounds needed to achieve non-zero growth. This

medium contains totally 14 compounds, including transition metals and energy sources. Tran-

sition metals have been shown to participate in important biological processes and are vital for

the survival of living organisms [50]. We confirmed the computationally predicted growth

rates by comparing them to our empirically determined growth kinetics data. With this, we

ensured that our model recapitulates growth phenotypes in media that reflect Acinetobacter-
associated environments.

Furthermore, we validated iACB23LX quantitatively and qualitatively using existing experi-

mental data and observed remarkable improvements compared to precursory models. More

specifically, our model predicted experimental Biolog growth phenotypes on various carbon

sources with an overall agreement of 86.3%. This agreement is higher than the prediction capa-

bility of iATCC19606 (84.3%) and iLP844 (84%), and comparable to that of iAB5075 (86.3%).

Similarly, iACB23LX exhibited 79.2% predictive accuracy on nitrogen sources tests, while this

increases to 87.5% after further refinement. Improving and re-defining the biomass objective

function (BOF) based on accurate strain-specific experimental data would be the next step to

diminish the number of inconsistent predictions and to further improve the network and its

predictive potential. During gene lethality analysis in LB medium, our model predicted 110

genes with MOMA to be essential, while 97 of them were also reported by FBA to impair the

growth. Generally, after enriching the nutritional input with all available compounds (rich

medium), less lethal genes resulted, meaning that A. baumannii undergoes metabolic alter-

ations when nutrients are lacking. Our in silico results, when compared to five different strain-

specific gene essentiality data [57, 68, 77–79], achieved accuracies between 88.60% and

88.92%. The predictive accuracies are remarkably higher than all GEMs built for A. baumannii
(e.g., 80.22% for iCN718 and 72% for iLP844), except iAB5075 which performed comparably.

This comprehensive analysis ensures that our model is well-validated and highly reliable, mak-

ing it a valuable tool for predicting gene essentiality in various biological and experimental

settings.

Subsequently, we examined more carefully our false negative predictions and searched for

putative drug targets that could be employed for future therapeutics. More specifically, we

focused on genes found to be essential for growth and encode proteins with no human coun-

terparts (S4 Table). Our study highlighted EPSP and chorismate synthases from the shikimate

pathway as prominent target candidates with no correlation to the human proteome. Several

knockout studies have highlighted the importance of enzymes from the shikimate metabolism

as potential targets against infections caused by threatening microorganisms, e.g.,Mycobacte-
rium tuberculosis [80], Plasmodium falciparum [81], and Yersinia enterocolitica [82]. Umland

et al. identified these two gene products as essential in an in vivo study using a clinical isolate

of A. baumannii (AB307-0294) and a rat abscess infection model [83]. This increases the confi-

dence of our results and indicates that genes found to be essential in silico should be consid-

ered as potential antimicrobial targets. Moreover, our predicted target DHFR has been
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extensively studied as a primary target for antibacterial and anticancer drug development,

given its pivotal role in nucleotide biosynthesis [84–88].

Trimethoprim (TMP), an antifolate antibacterial agent, selectively inhibits the bacterial

DHFR, a crucial enzyme catalyzing the tetrahydrofolic acid (THF) formation. Sulfamethoxazole

(SMX), a bacteriostatic sulfonamide antibiotic, competitively inhibits dihydropteroate synthase,

responsible for the formation of dihydrofolate (DHF). Together as cotrimoxazole or

TMP-SMX, both compounds effectively treat bacterial infections by collectively inhibiting folic

acid synthesis, essential for bacterial growth and replication [89, 90]. Further studies have

shown that antifolates effectively inhibit A. baumanniiDHFR, demonstrating potent antibacte-

rial activity against multidrug-resistant strains and highlighting their potential for further anti-

biotic development [91, 92]. Finally, targeting folate biosynthesis is a well-established strategy

against infectious diseases due to its absence in higher eukaryotic organisms. Altogether, selec-

tively targeting bacterial proteins vital for key cellular functions, such as cell wall biosynthesis,

translation, and deoxyribonucleic acid (DNA) replication, is a well-established strategy in anti-

biotic development. Similarly, numerous studies have suggested one of our further candidates,

riboflavin, as a potential antimicrobial agent for further investigation [63]. Additionally, the

Entner–Doudoroff pathway, in which our candidate targets phosphogluconate dehydratase and

KDPG aldolase act to produce pyruvate, is similar to glycolysis but involves different enzymes.

This pathway has been firstly discovered in P. saccharophila [65] and later in E. coli [93]. Mean-

while, it is vital for the survival of further pathogenic microorganisms, like Neisseria gonor-
rhoeae, K. pneumoniae, and P. aeruginosa [94–96]. However, these targets have not yet been

examined in Acinetobacter species and could be a source of antimicrobial therapeutic strategies.

Hence, these biosynthetic routes could be a valuable resource for targets to fight bacterial infec-

tious diseases. Finally, we investigated the druggability of our essential non-homologous genes.

We searched the DrugBank database to find compounds known to inhibit these genes and that

are already approved by the Food and Drug Administration (FDA). Our analysis resulted in

drugs that have been found to interact with the gene product of interest; however their pharma-

cological action is yet unknown. We further probed the hypothetical and putative non-homolo-

gous genes against the DrugBank’s sequence database to find homologous proteins and

determine their activity. Also in this case, the resulted drugs were listed with still undetermined

pharmacological action. These putative and yet unexplored targets with inhibitory potential are

of great interest in the context of developing new classes of antibiotics. Overall, our model

reached a MEMOTE score of 89%, which is the highest score reported for this organism.

Moreover, we improved and assessed all previously published models and created the first

curated strain-specific collection of metabolic networks for A. baumannii. We created a debug-

ging workflow consisting of four major steps to systematically analyze and curate constraint-

based models focusing on their standardization and the FAIR data principles. We applied this

workflow and curated a total of seven metabolic models for A. baumannii. In addition, most of

the models simulated growth rates by default that were unrealistic when compared to the fast-

est growing organism [45]. Therefore, we determined the minimal number of components

needed for these models to result in non-inflated biomass production rates. The defined mini-

mal media were mostly composed of metal ions (e.g., cobalt, iron, magnesium) that are essen-

tial for bacterial growth. For the model iJS784, the minimization process was infeasible; thus,

the model was not considered for further analysis. We also examined the growth ability of

these models in three media (SNM, LB, and iMinMed) and compared them to our model,

iACB23LX. When the models simulated a zero flux through the biomass reaction, we contin-

ued by detecting the minimal amount of metabolites supplemented in the medium that

resulted in a non-zero growth rate. These would enable the detection of gaps and assist in

future improvement of the models. It is important to note here that with this curation, we
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opted for a systematical assessment of the previously reconstructed models and the detection

of their assets and liabilities. Consequently, we did not undertake any contextual modification

that could alter the models’ predictive capabilities. Finally, we predicted lethal genes among

comparable and simulatable models of A. baumannii. Our analysis incorporated three strains

(AYE, AB0057, and ATCC 17978), and we examined the effect of genetic variation across

strains in the gene essentiality. We highlighted once again the shikimate pathway, as well as

the purine metabolism, the pantothenate, and CoA biosynthesis, and the amino acid metabo-

lism as candidate routes to consider for future new classes of antibacterial drugs with potential

effect across multiple A. baumannii strains. The curated models, together with our model,

would benefit the future prediction of candidate lethal genes by reducing the considerable

resources needed for classical whole-genome essentiality screenings. All in all, this collection

of simulation-ready models will forward the selection of a suitable metabolic network based

on individual research questions and help define the entire species and new hypothesis.

Our new metabolic reconstruction and the curated collection of further strain-specific

models will guide the formulation of ground-breaking and reliable model-driven hypotheses

about this pathogen and help examine the diversity in the metabolic behavior of different A.

baumannii species in response to genetic and environmental alterations. Additionally, they

can be utilized as knowledge bases to detect critical pathways related to responses against mul-

tiple antibiotic treatments. This will ultimately strengthen the development of advanced preci-

sion antimicrobial control strategies against multidrug-resistant (MDR) A. baumannii strains.

Taken together, our workflows and models can be employed to expand this collection fur-

ther with additional standardized strain-specific metabolic reconstructions to finally define the

core and pan metabolic capabilities of A. baumannii.

Supporting information

S1 Fig. Oxygen-producing and -consuming reactions found in iACB23LX together with

their anaerobic fluxes. All flux rates are written in orange and are given in mmol/(gDW � h).

The reaction abbreviations are as follows: O2tpp, O2 transport via diffusion between peri-

plasm and cytosol; CATpp, periplasmatic catalase; H2O2tex, hydrogen peroxide transport

via diffusion; CAT, catalase; O2tex, O2 transport via diffusion between periplasm and extra-

cellular space; EX_h2o2_e, hydrogen peroxide exchange and EX_o2_e, O2 exchange.

Figure generated with Escher [109].

(TIF)

S2 Fig. Experimentally-derived growth curves of A. baumannii. The growth curves for A.

baumannii strains AB5075, ATCC 73217978, ATCC 19606, and AYE were measured in LB and

SNM. Additionally, the in silico-defined minimal medium (iMinMed) was tested for all strains.

(TIF)

S3 Fig. Comparative analysis of essential genes predicted by iACB23LX versus those iden-

tified in Tn-seq libraries [57, 68, 77–79]. (a) Metabolic subsystems distribution of all essential

genes reported in various Tn-seq studies and predicted using iACB23LX (true negatives). (b)

Venn diagrams of essential genes from five examined Tn-seq datasets compared to essential

genes predicted by the model developed in this study.

(TIF)

S1 Table. In silico formulations of examined media compositions. Metabolites are described

by BiGG [70] identifiers.

(XLSX)
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S2 Table. In silico gene knockout results using FBA. The ratio column describes the growth

rate change before and after the respective knockout.

(XLSX)

S3 Table. In silico gene knockout results using MOMA. The ratio column describes the

growth rate change before and after the respective knockout.

(XLSX)

S4 Table. Metabolic genes found to be essential for growth in iACB23LX and encode pro-

teins with no human counterparts.

(XLSX)

S5 Table. Computationally-defined minimal growth media for previously published mod-

els. Due to inflated growth rates in most published A. baumannii GEMs, we established mini-

mal media supporting non-zero biomass flux.

(XLSX)

S6 Table. Gene lethality predictions using previously published A. baumannii models and

FBA.

(CSV)

S7 Table. Gene lethality predictions using previously published A. baumannii models and

MOMA. This offers a complementary perspective on the essential genes in the organism’s

metabolism.

(CSV)

S8 Table. Summary of essential genes predicted by iACB23LX and confirmed in Tn-seq

libraries [57, 68, 77–79]. Five independent Tn-seq datasets were utilized for the comparison.

Both FBA and MOMA were used with the LB medium defined to predict essential genes. The

table also includes the intersection of essential genes identified by both methods, along with

their associated orthologs in the case of different studied genomes. The computed accuracies

verified the high predictive performance of our model.

(XLSX)
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multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids

Research. 2019; 48(D1). https://doi.org/10.1093/nar/gkz1054 PMID: 31696234

71. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput generation,

optimization and analysis of genome-scale metabolic models. Nature biotechnology. 2010; 28(9):977–

982. https://doi.org/10.1038/nbt.1672 PMID: 20802497

72. Piret J, Boivin G. Pandemics throughout history. Frontiers in microbiology. 2021; 11:631736. https://

doi.org/10.3389/fmicb.2020.631736 PMID: 33584597

73. O’Neill J, et al. Review on antimicrobial resistance. Antimicrobial resistance: tackling a crisis for the

health and wealth of nations. 2014;(4).

74. Chien YW, Klugman KP, Morens DM. Bacterial pathogens and death during the 1918 influenza pan-

demic. New England Journal of Medicine. 2009; 361(26):2582–2583. https://doi.org/10.1056/

NEJMc0908216 PMID: 20032332

75. Sheng ZM, Chertow DS, Ambroggio X, McCall S, Przygodzki RM, Cunningham RE, et al. Autopsy

series of 68 cases dying before and during the 1918 influenza pandemic peak. Proceedings of the

National Academy of Sciences. 2011; 108(39):16416–16421. https://doi.org/10.1073/pnas.

1111179108 PMID: 21930918

PLOS PATHOGENS Metabolic modelling of multiple A. baumannii strains

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012528 September 23, 2024 28 / 30



76. Morris DE, Cleary DW, Clarke SC. Secondary bacterial infections associated with influenza pandem-

ics. Frontiers in microbiology. 2017; 8:1041. https://doi.org/10.3389/fmicb.2017.01041 PMID:

28690590

77. Geisinger E, Mortman NJ, Dai Y, Cokol M, Syal S, Farinha A, et al. Antibiotic susceptibility signatures

identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope. Nature communi-

cations. 2020; 11(1):4522. https://doi.org/10.1038/s41467-020-18301-2 PMID: 32908144

78. Bai J, Dai Y, Farinha A, Tang AY, Syal S, Vargas-Cuebas G, et al. Essential gene analysis in Acineto-

bacter baumannii by high-density transposon mutagenesis and CRISPR interference. Journal of bac-

teriology. 2021; 203(12):10–1128. https://doi.org/10.1128/jb.00565-20 PMID: 33782056

79. Bai J, Raustad N, Denoncourt J, van Opijnen T, Geisinger E. Genome-wide phage susceptibility analy-

sis in Acinetobacter baumannii reveals capsule modulation strategies that determine phage infectivity.

PLoS Pathogens. 2023; 19(6):e1010928. https://doi.org/10.1371/journal.ppat.1010928 PMID:

37289824

80. Parish T, Stoker NG. The common aromatic amino acid biosynthesis pathway is essential in Mycobac-

terium tuberculosis. Microbiology. 2002; 148(10):3069–3077. https://doi.org/10.1099/00221287-148-

10-3069 PMID: 12368440

81. Tapas S, Kumar A, Dhindwal S, Kumar P, et al. Structural analysis of chorismate synthase from Plas-

modium falciparum: a novel target for antimalaria drug discovery. International journal of biological

macromolecules. 2011; 49(4):767–777. https://doi.org/10.1016/j.ijbiomac.2011.07.011 PMID:

21801743

82. Bowe F, O’Gaora P, Maskell D, Cafferkey M, Dougan G. Virulence, persistence, and immunogenicity

of Yersinia enterocolitica O:8 aroA mutants. Infection and immunity. 1989; 57(10):3234–3236.

83. Umland TC, Schultz LW, MacDonald U, Beanan JM, Olson R, Russo TA. In vivo-validated essential

genes identified in Acinetobacter baumannii by using human ascites overlap poorly with essential

genes detected on laboratory media. MBio. 2012; 3(4):e00113–12. https://doi.org/10.1128/mBio.

00113-12 PMID: 22911967

84. Zhang Y, Chowdhury S, Rodrigues JV, Shakhnovich E. Development of antibacterial compounds that

constrain evolutionary pathways to resistance. Elife. 2021; 10:e64518. https://doi.org/10.7554/eLife.

64518 PMID: 34279221

85. Estrada A, Wright DL, Anderson AC. Antibacterial antifolates: from development through resistance to

the next generation. Cold Spring Harbor perspectives in medicine. 2016; 6(8):a028324. https://doi.org/

10.1101/cshperspect.a028324 PMID: 27352799

86. Sadaka C, Ellsworth E, Hansen PR, Ewin R, Damborg P, Watts JL. Review on abyssomicins: Inhibi-

tors of the chorismate pathway and folate biosynthesis. Molecules. 2018; 23(6):1371. https://doi.org/

10.3390/molecules23061371 PMID: 29882815

87. Frey KM, Viswanathan K, Wright DL, Anderson AC. Prospective screening of novel antibacterial inhibi-

tors of dihydrofolate reductase for mutational resistance. Antimicrobial agents and chemotherapy.

2012; 56(7):3556–3562. https://doi.org/10.1128/AAC.06263-11 PMID: 22491688
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ABSTRACT Cystic fibrosis (CF), an inherited genetic disorder caused by mutations in the 
cystic fibrosis transmembrane conductance regulator gene, results in sticky and thick 
mucosal fluids. This environment facilitates the colonization of various microorganisms, 
some of which can cause acute and chronic lung infections, while others may positively 
impact the disease. Rothia mucilaginosa, an oral commensal, is relatively abundant in 
the lungs of CF patients. Recent studies have unveiled its anti-inflammatory properties 
using in vitro three-dimensional lung epithelial cell cultures and in vivo mouse models 
relevant to chronic lung diseases. Apart from this, R. mucilaginosa has been associated 
with severe infections. However, its metabolic capabilities and genotype-phenotype 
relationships remain largely unknown. To gain insights into its cellular metabolism 
and genetic content, we developed the first manually curated genome-scale metabolic 
model, iRM23NL. Through growth kinetics and high-throughput phenotypic microarray 
testings, we defined its complete catabolic phenome. Subsequently, we assessed the 
model’s effectiveness in accurately predicting growth behaviors and utilizing multiple 
substrates. We used constraint-based modeling techniques to formulate novel hypothe
ses that could expedite the development of antimicrobial strategies. More specifically, 
we detected putative essential genes and assessed their effect on metabolism under 
varying nutritional conditions. These predictions could offer novel potential antimicro
bial targets without laborious large-scale screening of knockouts and mutant transposon 
libraries. Overall, iRM23NL demonstrates a solid capability to predict cellular pheno
types and holds immense potential as a valuable resource for accurate predictions in 
advancing antimicrobial therapies. Moreover, it can guide metabolic engineering to tailor 
R. mucilaginosa’s metabolism for desired performance.

IMPORTANCE Cystic fibrosis (CF) is a genetic disorder characterized by thick mucosal 
secretions, leading to chronic lung infections. Rothia mucilaginosa is a common 
bacterium found in various parts of the human body, acting as a normal part of 
the flora. In people with weakened immune systems, it can become an opportunistic 
pathogen, while it is prevalent and active in CF airways. Recent studies have highlighted 
its anti-inflammatory properties in the lower pulmonary system, indicating the intricate 
relationship between microbes and human health. Herein, we have developed the 
first manually curated metabolic model of R. mucilaginosa. Our study examined the 
previously unknown relationships between the bacterium’s genotype and phenotype 
and identified essential genes that impact the metabolism under various conditions. 
With this, we opt for paving the way for developing new strategies in antimicrobial 
therapy and metabolic engineering, leading to enhanced therapeutic outcomes in cystic 
fibrosis and related conditions.

KEYWORDS iRM23NL, Rothia mucilaginosa DSM20746, ATCC 25296, constraint-based 
modeling, flux balance analysis, flux variability analysis, mathematical network, genome-
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scale metabolic model, metabolic engineering, pathway analysis, SBML, Gram-positive, 
nasal microbiome, lung infections, cystic fibrosis, antimicrobial strategies

R othia mucilaginosa is a Gram-positive, encapsulated, non-motile, and non-spore-
forming bacterium of the Micrococcaceae family (1, 2). While it is mainly aerobic, it 

may also grow anaerobically as it can switch to fermentation or other non-oxygen-involv
ing pathways. R. mucilaginosa is a common commensal of the normal oral, upper and 
lower respiratory tract, and part of the skin florae in humans (1, 3–6). This means it 
coexists harmlessly within the host and may even provide benefits. Nonetheless, it can 
also act as an opportunistic pathogen, particularly in individuals with weakened immune 
systems, as an etiological agent of serious infections such as endocarditis, sepsis, and 
meningitis (7). Janek et al. highlighted the high prevalence of R. mucilaginosa within 
the nasal microbiome (8). Moreover, they report its susceptibility to certain staphylococ
cal bacteriocins, indicating its major competition with the nasal staphylococci and the 
substantial impact of bacteriocins in shaping the nasal microbiota. In 2020, Uranga 
et al. revealed that R. mucilaginosa produces the strongest Fe3+-binding archetypal 
siderophore known, called enterobactin (9). This attribute contributes to its competition 
with oral microbiota (the cariogenic S. mutans, A. timonensis, and Streptococcus sp.) as 
well as four methicillin-resistant strains of S. aureus (MRSA). Enterobactin is a type of 
siderophore produced by bacteria to scavenge, chelate, and transport ferric irons from 
their surrounding environment. These are essential for bacteria when iron is scarce as 
they facilitate their acquisition necessary for their growth and metabolic processes.

Prior metagenomic sequencing analyses have unveiled the prevalence of R. 
mucilaginosa at high abundances and its enhanced metabolic activity in the lungs of 
cystic fibrosis (CF) patients (10, 11). CF is caused by the hereditary mutation of the cystic 
fibrosis transmembrane conductance regulator (CFTR) gene that disrupts the transepi
thelial movement of ions, leading to an aberrant accumulation of thick and sticky mucus 
within the airways. The impaired immune clearance creates a hypoxic environment (12) 
promoting the polymicrobial colonization of opportunistic microbes together with fungi 
and viruses, ultimately resulting in persistent and recurring infections (13). Guss et al. and 
Bittar et al. declared R. mucilaginosa as an emerging CF bacterium (14, 15), while Lim et 
al. provided evidence supporting that R. mucilaginosa is a frequently encountered and 
metabolically active inhabitant of CF airways (16). Additionally, a study from 2018 shows 
that the opportunistic pathogen Pseudomonas aeruginosa, which frequently causes 
infections in CF patients, builds essential primary metabolites, like glutamate, by utilizing 
compounds produced by R. mucilaginosa (17). This symbiotic interaction implies that P. 
aeruginosa benefits from its neighboring microbes, which contributes to its pathogenesis 
in the CF lungs. On the other hand, Rigauts et al. revealed the anti-inflammatory activity 
of R. mucilaginosa in the lower respiratory tract, which could impact the seriousness of 
chronic lung diseases (18).

In systems biology, genome-scale metabolic models (GEMs) represent comprehen
sive reconstructions of organisms’ metabolic networks. They are built using genomic 
sequences and comprise all known biochemical reactions and associated genes. These 
models provide systems-level insights into cellular metabolism, allowing researchers 
to simulate and analyze the flow of metabolites through these networks (19). The 
interactions among reactions and metabolites in a metabolic model are mathematically 
represented with a stoichiometric matrix (20). In the past years, an array of in silico 
methods has been developed to analyze GEMs and derive valuable hypotheses. Flux 
balance analysis (FBA) is such a powerful computational technique that operates on the 
principle of achieving a steady state by optimizing the flux (rate) of metabolites through 
reactions while accounting for various constraints such as stoichiometry, thermody
namics, and uptake/secretion boundaries (21). Applying flux balance analysis on a 
GEM provides insights into the intricate biological system interactions. This analytical 
approach facilitates the prediction of cellular phenotypes and identification of promising 
drug targets and contributes to optimizing biotechnological processes (22). Moreover, 
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such models can guide genetic engineering by suggesting genetic modifications that 
could enhance desired product formation or cellular behavior. Further applications 
include ameliorating culture media by incorporating components that increase bacterial 
growth rates. So far, GEMs have been an invaluable resource in the systems biology field 
that helped untangle the metabolism of various organisms and especially of high-threat 
pathogens (23, 24). As described above, R. mucilaginosa has gained great interest 
in the context of polymicrobial CF environments. However, its metabolic capabilities 
and genotype-phenotype relationships in isolated monoculture settings remain largely 
unexplored.

Here, we present the first manually curated and high-quality GEM of R. mucilaginosa, 
iRM23NL, striving to understand its metabolism and unique phenotypes under diverse 
conditions. Our simulation-ready network accounts for thousands of reactions and is 
available in a standardized format following the community guidelines (25). Through 
growth kinetic experiments and high-throughput phenotypic microarray assays, we 
validated iRM23NL’s accuracy in predicting growth and substrate utilization patterns. 
We refined the reconstruction by comparing the in vitro results to in silico simulations, 
resulting in novel metabolic reactions and genes. To our knowledge, this is the first study 
presenting high-throughput nutrient utilization and comprehensive growth data for R. 
mucilaginosa. Finally, we employed FBA to formulate novel gene essentiality hypotheses 
that could expedite the development of antimicrobial strategies. Figure 1 summarizes 
the experimental and computational work presented here.

RESULTS

Reconstruction of a high-quality metabolic model for R. mucilaginosa 
DSM20746

The pipeline we previously developed (26) was used to build the first high-quality 
and manually curated GEM of R. mucilaginosa DSM20746 (ATCC 25296). An initial draft 
metabolic model was derived with CarveMe (27) and is based on the Biochemical, 
Genetical, and Genomical (BiGG) identifiers (28). The translated sequence with over 1,700 
proteins and the Gram-positive-specific template were employed. This enabled us to 
build a more precise reconstruction considering information on the peptidoglycan layer 
for the biomass objective function (BOF). The draft network contained 1,015 reactions 
(141 pseudo-reactions), 788 metabolites, and 265 genes (Fig. 2). In the first gap-filling 
stage (Draft_2), we expanded the list of reactions based on the annotated genome 
and growth kinetics data in diverse growth environments. For this, we extensively 
indexed organism-specific literature and databases and included additional enzymatic 
reactions together with 50 new gene-protein-reaction associations (GPRs). Subsequently, 
high-throughput nutrient utilization assays and model validation incorporated further 
reactions and their associated metabolic genes. Non-metabolic genes, which take part in 
other cellular processes, e.g., signaling pathways or transcription, were not considered. 
In total, 95 reactions, together with their associated metabolites, were newly added into 
the model, along with 121 novel GPRs, increasing the genetic coverage. Over 60% of 
the transport reactions have a GPR assigned, while 63% of the total enzymatic reactions 
have at least one gene assigned. Moreover, missing exchange reactions were added 
to all extracellular metabolites to represent the exchange of substrates between the 
extracellular environment and the model. The strain-specific BioCyc31 database was 
further employed to correct the reversibility of biochemical reactions, while duplicated 
reactions and metabolites were eliminated. In all cases, when no organism-specific 
information was available, we leveraged data from closely related species based on 
our phylogenomic analysis (Fig. 3). According to the calculated average nucleotide 
identity (ANI) matrix, R. mucilaginosa exhibits a similarity to six out of the 12 tested 
Rothia genomes. More specifically, it shares a greater resemblance with R. aeria and R. 
dentocariosa underscoring a closer evolutionary relationship between these species.

R. mucilaginosa is primarily aerobic, efficiently generating ATP through oxic respi
ration; however, in low-oxygen or oxygen-absent conditions, it shifts to anaerobic 
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metabolism to produce energy. This metabolic adaptability enables R. mucilaginosa to 
adapt in microaerophilic environments like the oxygen-restricted conditions in CF lungs 
(16). Our draft model lacked the ability to demonstrate anaerobic growth. Therefore, we 
investigated the metabolic cascade and systematically incorporated missing enzymes to 
ensure that the model can simulate growth even in the absence of oxygen by identifying 
and integrating alternative pathways. This refinement included the incorporation of 
enzymatic reactions, such as the superoxide dismutase (SPODM) and catalase (CAT) that 
are responsible for the breakdown of radical reactive oxygen species (ROS) and shielding 
the cell against oxidative damage (Fig. 4 Panel A). Such scavenging enzymes play an 
integral role in counteracting the harmful effects of ROS during anaerobic respiration 
(31). However, during this process, we found no associated GPRs for CAT within the 

FIG 1 Construction and validation flowchart of the metabolic network for R. mucilaginosa, iRM23NL. The study is divided into the experimental and computa

tional phases. The proteome-derived metabolic reconstruction and curation was done based on the workflow we described elsewhere (26).
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organism-specific BioCyc database. Additional scavenging enzymes like glutathione and 
thioredoxin reductases essential for maintaining the redox balance (32) were already 
present in the initial draft model (GTHOr, GTHRDabc2pp, and TRDR). Altogether, the 
final model, iRM23NL, contains 1,162 reactions (619 gene-associated; 65 catalyzed by 
enzyme complexes, 70 catalyzed by isozymes, and 484 by simple gene association), 
171 exchange and sink reactions, 874 metabolites (558 in cytoplasm, 148 in periplasm, 
and 168 in the extracellular space), and 372 genes (Fig. 2). The model’s metabolic 
coverage is at 3.12%, which indicates a high level of modeling detail regarding reac
tions, enzymes, and their associated genes (33). Additionally, we enriched the model 
elements with numerous database cross-references (34), while appropriate and precise 
Systems Biology Ontology (SBO) terms were assigned to each model entity using the 
SBOannotator package (35). The presence of no energy-generating cycles (EGCs) was 

FIG 2 Properties of the genome-scale metabolic model for R. mucilaginosa DSM20746, iRM23NL. (A) Evolution of metabolic network content from its initial draft 

to the final stage of extensive manual gap-filling. The shifts in the sets’ sizes are also displayed in each stage. The first stage of gap-filling is denoted by Draft_2, 

while the final stage is upon validation with experimental data. (B) UpSet plots comparing sets between three model versions created using the UpSetPlot 

package (29). The numbers indicate the cardinality of the respective set. (C) Subsystem-level statistics within pathways along with the distribution of gene- and 

non-gene-associated reactions. The pathway analysis was limited to reaction identifiers that could be successfully mapped to Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (30) reactions.
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ensured and controlled after each curation stage, and the mass- and charge-imbalan
ces were corrected. With this, the final Metabolic Model Testing (MEMOTE) (36) score of 
iRM23NL is 89%, while with highly specific SBO terms, the score drops by 2%. The final 
curated model, iRM23NL, is available as a supplementary file in Systems Biology Markup 
Language (SBML) Level 3 Version 1 (37) and JavaScript Object Notation (JSON) formats 
with the flux balance constraints (fbc) and groups plugins available.

The first validation step of iRM23NL aimed to evaluate its ability to correctly 
simulate biomass production across diverse environmental conditions and growth media 

FIG 3 Phylogenomic all-vs-all analysis between 13 Rothia species. Based on the calculated ANI matrix, R. mucilaginosa is mostly similar to six out of 13 genomes, 

with higher similarity to R. aeria and R. dentocariosa.
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formulations. To elucidate the bacterium’s optimal conditions and metabolic preferences, 
we experimentally tested five commonly used media, including three general nutrient 
media; brain heart infusion (BHI) and Luria-Bertani (LB), and tryptic soy broth (TSB), 
and two defined media; M9 minimal medium (M9) pure and Roswell Park Memorial 
Institute (RPMI) (Fig. 4 Panel B). The BHI medium was used as a baseline for the in 
vitro experiments since it is a known and well-established environment for the growth 
of R. mucilaginosa and enabled us to compare the bacterium’s growth characteristics 
to the newly tested media. For the in silico simulations, we applied FBA and added 
additional constraints to the linear programming problem defined in Equation 5. In more 
detail, we specified the flux constraints such that only extracellular metabolites defined 
in the medium of interest could flow freely through the system (unconstrained, finite 
fluxes), while the remaining fluxes were constrained to zero. We compared the in vitro 
to the in silico observed growth using the FCOD as a qualitative measure of growth 
(see Materials and Methods). Furthermore, we compared the OD at the start and the 
end of the experiment, considering a statistically significant difference between these 
measurements as an indication of growth. Our metabolic network, iRM23NL, simulated 
positive fluxes through the biomass reaction for all tested media except for the M9 pure 
medium, where a zero flux was observed. These findings align with the experimentally 
observed data. More specifically, there is no statistically significant difference in OD 
between the initial and final time-points in M9 pure medium (P-value = 0.1202 and 

FIG 4 Investigation of R. mucilaginosa’s growth behavior in different nutrient media. (A) Metabolic response of R. mucilaginosa under anaerobic stress as 

represented in iRM23NL. Reduction process of oxygen (O2
−) generating ROS is indicated by red arrows, while pathways highlighted in green arrows represent 

reactions governed by ROS scavenging enzymes leading to bacterial cell detoxification. (B) Experimentally-derived growth curves for R. mucilaginosa DSM20746 

in multiple liquid growth media along with the respective fold changes (FCs) of the acquired optical densities (ODs) at 590 nm, as defined in Equation 1. The data 

shown here are an average of three biological replicates (n = 3). Based on the experimental results, a threshold of FCOD = 1.4 was established to qualitatively 

describe bacterial growth. We verified the correctness of the threshold by performing statistical analysis as described in Materials and Methods. All data are 

normally distributed, while there is no significant difference between their variances. The asterisks flag the significance levels. The BHI medium was used as 

a baseline, while the Control line represents blank measurements of pure media. Bacterial growth was aerobically measured by the OD at 590 nm (ordinate) 

at three distinct time points ranging from 0 h to 48 h (abscissa). (C) In silico-simulated growth rates using iRM23NL. Detailed in silico media formulations are 

provided in Table S2.
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FCOD < 1.4) indicating no significant growth. Conversely, in the remaining examined 
media, statistically significant growth was observed (P-value = 0.00006–0.00142 and 
FCOD > 1.4) indicating significant growth in these settings. The highest aerobic growth 
rate was predicted in TSB [1.6 mmol/(gDW · h)], while the lowest biomass production 
flux was recorded for the M9 pure medium containing only essential salts. However, the 
RPMI medium followed as the second-highest in supporting bacterial in vitro cellular 
growth, offering a defined medium suitable for R. mucilaginosa’s cultivation. Although R. 
mucilaginosa increased its biomass after 24 h, it slightly declined after 48 h. On the other 
hand, the simulated network resulted in a contrary outcome compared to the expected 
experimental effect. More specifically, iRM23NL simulated a lower flux through biomass 
[0.44 mmol/(gDW · h)] with RPMI when compared to LB. It is important to note here that 
in order to simulate growth in RPMI medium, six metal ions [cobalt (Co2+), copper (Cu2+), 
manganese (Mn2+), zinc (Zn2+), ferric iron (Fe3+), and ferrous iron (Fe2+)] were supple
mented. These compounds were missing from the providers’ medium formulation. Our 
findings underscored R. mucilaginosa’s adaptability to various nutritional environments, 
growing best in nutrient-rich conditions while revealing specific growth requirements 
beyond minimal settings.

We further employed iRM23NL to examine whether it could generate biomass within 
the human nasal environment and the CF lungs. For this purpose, we performed in 
silico simulations using the synthetic cystic fibrosis sputum medium (SCFM) (38) and 
synthetic nasal medium (SNM) (39) (Fig. 4 Panel C). Our computational model success
fully simulated positive growth in both media, with a growth rate of 0.43 mmol/(gDW · 
h) in SNM and 0.45 mmol/(gDW · h) in SCFM. These results align with the documented 
metabolic activity of R. mucilaginosa in CF lungs and its frequent isolation from the 
human nasal cavity. Notably, the observed growth rates closely resembled the flux 
rate predicted for biomass production in RPMI medium. Additionally, we confirmed 
that iRM23NL accurately represented R. mucilaginosa’s capacity for facultative anaerobic 
respiration. In more detail, when the oxygen uptake was turned off iRM23NL could 
successfully exhibit growth using alternative metabolic pathways across all tested 
nutritional media. When the oxygen level was decreased, the model predicted up to 
68% reduction in biomass yield compared to aerobic conditions. Consequently, the 
remarkably lower anaerobic rates in all tested media mimic R. mucilaginosa’s inherent 
facultative anaerobic capabilities.

Nutrient utilization profile of R. mucilaginosa and predictive performance of 
iRM23NL

We experimentally characterized the metabolic phenotype of R. mucilaginosa DSM20746 
using four 96-well Biolog PM microplates (Fig. 5). These high-throughput assays serve as 
proxies for bacterial growth by measuring cellular respiration across several conditions. 
Active respiration in the minimal medium is detected by the reduction of tetrazolium 
dye over time, indicating the utilization of the provided sole source (40). We cultivated 
our strain in a minimal medium supplemented with various sources, and growth was 
monitored over 48 h to identify suitable nutrients for the bacterium (as described in 
Materials and Methods). The derived OD measurements were normalized according to 
the average growth over replicates per plate and converted to qualitative data represent
ing non-growth (NG) or growth (G). In total, we tested the uptake and utilization of 379 
distinct carbon, nitrogen, phosphorus, and sulfur substrates. R. mucilaginosa demonstra
ted the ability to utilize 61 of 190 tested carbon substrates, including carboxylates, 
saccharides, and amino acids, while 10 of 95 were found to be viable nitrogen sources 
(Fig. 5 Panel B). Furthermore, out of 59 tested phosphorus sources, R. mucilaginosa 
exhibited a loss of metabolic activity for 28 compounds, resulting in a non-viable 
phenotype, while only 71.4% of all analyzed sulfur substrates supported positive growth. 
More specifically, 6 inorganic phosphorus (IP), 14 organic phosphorus (OP), 2 cyclic 
nucleoside monophosphates (cNMPs), and 9 nucleoside monophosphates (NMPs) were 
successfully utilized as sole phosphorus sources (Fig. 5, Panel C). The experimentally 
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defined nutrient utilization phenome of R. mucilaginosa can be found in Fig. S1. An 
overview of all experimentally tested substrates, along with the assay results, can be 

FIG 5 Complete experimentally-derived nutrient utilization phenome of R. mucilaginosa DSM20746. (A) Utilization of individual nutrients by the bacterium 

across four Biolog phenotypic microarrays. Bacterial growth was measured by OD at 590 nm. (B) Numerical summary nutrient sources experimentally tested in 

each Biolog phenotype microarray (PM), classified into those resulting in bacterial growth and those that R. mucilaginosa could not utilize. (C) Categorization 

of all tested phosphorous sources during the high-throughput Biolog assay. Utilization of totally 31 phosphorus sources resulted in positive phenotype (green 

chart), while the cell exhibited an inability to utilize the remaining 28 (orange chart).

Research Article Microbiology Spectrum

Month XXXX  Volume 0  Issue 0 10.1128/spectrum.04006-23 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

24
 A

pr
il 

20
24

 b
y 

20
03

:c
1:

17
15

:2
50

3:
20

f7
:2

c3
0:

f9
97

:8
26

b.



found in Table S3. We independently confirmed the Biolog nutrient utilization data 
by testing the ability of DSM20746 to grow on minimal media in the presence of 10 
compounds (see Materials and Methods, Fig. S2).

Additionally, we evaluated the predictive performance of our metabolic model by 
using various C-, N-, P-, and S-containing substrates. All compounds from the high-
throughput phenotypic data were mapped to BiGG (28) identifiers and subsequently to 
iRM23NL. In total, 286 could be successfully mapped to the BiGG database. From these, 
126 existed as extracellular metabolites in iRM23NL and were considered for further 
analysis. Model simulations were performed under aerobic conditions with the minimal 
medium defined in Table S2 and FBA (see Materials and Methods). An extracellular 
reaction was enabled for each tested substrate to force the model to use its transport
ers. Discrepancies between the Biolog data and the model simulations were utilized 
as basis for hypotheses to further improve and refine the network reconstruction. We 
resolved most inconsistencies via extensive literature mining and iterative gap analysis. 
For this, we used the organism- and strain-specific BioCyc (33) database. Throughout 
this process, we encountered different scenarios regarding incorrect model predictions. 
These included compounds present in all compartments, including the extracellular 
space, as well as substrates defined within the intracellular space and periplasm, with no 
transporter defined toward the extracellular space. If the experimental results indicated 
utilization of an undefined compound, we searched BioCyc (33) to find strain-specific 
and gene-based missing transporters or enzymatic reactions. When no organism-specific 
evidence was available, we sought supporting data from genomically identical species 
(Fig. 3). For instance, the compound 3-sulfino-L-alanine (3sala) was initially absent from 
any compartment in the preliminary draft model. Since no strain-specific information 
was available, we conducted a homology-based search using Basic Local Alignment 
Search Tool (BLAST) (41) to find genes with high similarity (similarity threshold: > 
80%) in related species. Subsequently, we identified cysteine desulfurase (SULFCYS) 
along with three associated transport reactions (proton-mediated; SULFCYSpp, diffusion; 
SULFCYStex, and ABC transport; SULFCYSabc) that displayed a similarity over 80% 
with R. dentocariosa. These components were consequently incorporated into iRM23NL, 
resulting in the expected positive utilization phenotype. Generally, false negative or 
false positive predictions arise from missing or erroneous involvement of transport
ers, respectively. We resolved false positives by removing transport reactions lacking 
supporting gene evidence or adjusting their reversibility to facilitate export solely. 
More specifically, initial model predictions indicated that iRM23NL could not sustain 
growth when supplied with either L-cysteate (Lcyst) or AMP (amp) as sole sources, 
while Biolog assays indicated the opposite. To rectify this, we introduced the correspond
ing irreversible transporters (LCYStex and AMPt) and enabled their in silico utilization 
of these compounds. Moreover, several metabolites (e.g., phosphoenolpyruvate; pep, 
trimetaphosphate; tmp, hypotaurine; hyptaur, and inorganic triphosphate; pppi) which 
were absent from the initial draft model but exhibited positive growth in utilization 
assays were subsequently incorporated into the final network, leading to additional 
true positives predictions. All in all, over 50 transport reactions were added into the 
network, while 37 wrongly added enzymatic functions were removed. We also incorpo
rated novel GPRs encoding over 60 biochemical reactions. Nevertheless, we identified 
approximately 20 instances where the resolution of inconsistencies necessitated the 
inclusion of metabolic reactions lacking associated gene evidence. For instance, to 
enable the utilization of L-aspartate, we introduced a transporter via diffusion from 
extracellular to periplasm (ASPtex), for which no associated GPR was available. Similar 
scenarios arose for other compounds, e.g., D-galactose, D-glucuronate, and acetate. These 
instances underscore knowledge gaps in the metabolism of DSM20746 that require 
in-depth investigation. In total, 14 carbon and nitrogen sources failed to promote growth 
in iRM23NL. Surprisingly, all of these sources had corresponding transport reactions 
iRM23NL but still remained ineffective (e.g., L-fucose, L-arabinose, and L-rhamnose) and 
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nitrogen (L-tyrosin). We could not find further information on their transport or metabolic 
mechanism either in the genome annotation or the literature.

In summary, the final prediction accuracy of nutrient assimilation and utilization 
achieved by iRM23NL was 77% for carbon sources (MCC for PM1 = 0.52 and PM2A = 
0.58), 94.4% for nitrogen sources (MCC = 0.82), 97% for phosphorus and sulfur sources 
(ACC = 100%; MCC = 1.0 and ACC = 92.3%; MCC = 0.82, respectively) (Fig. 6). Our model’s 
performance was notably increased by 40% post-comprehensive curation compared to 
the initial draft model. Our refinement reduced false positive predictions by 17, leaving 
only 3 unresolved mismatches. The most remarkable improvement was in nitrogen 
and phosphorus sources predictions. The high predictive accuracy indicates that core 
metabolic pathways and multiple catabolic routes of DSM20746 have been accurately 
reconstructed within iRM23NL. Consequently, the network can predict the catabolism of 
numerous common compounds, such as sugars and amino acids.

Gene essentiality predictions using iRM23NL

Given the increased percentage of gene-associated reactions (Fig. 2, Panel C) and 
the high predictive accuracy of the metabolic reconstruction, we employed iRM23NL 
further to predict exploitable single gene knockouts. For this purpose, we systemati
cally removed each biochemical reaction from the network and optimized iRM23NL to 
produce biomass using FBA. To mitigate the inherent variability of the optimization 
algorithms, we repeated our FBA simulation 100 times. Additionally, we employed 
parsimonious enzyme usage flux balance analysis (pFBA), which involves solving two 
sequential linear optimization problems to determine the flux distribution of the optimal 
solution while minimizing the total sum of flux. Then, we compared the predicted 
growth rates before and after introducing the simulated gene deletion. The FCgr 
between the knocked-out and wild-type growth rates was employed as a proxy for the 
gene’s essentiality. We proceeded with condition-specific in silico single gene deletions. 
For this purpose, we utilized a minimal and a nutrient-rich medium (M9 supplemented 
with glucose and LB) as well as two growth media that mimic the intra-human nasal 
passages and the lungs of CF patients [SNM (39) and SCFM (38)]. Generally, when 
subjected to nutrient-limited conditions, the model predicted a higher number of genes 
as essential for growth, while the count of essential genes remained consistent among 
oxic and anoxic conditions (Fig. 7, Panel A). In total, 4 metabolic genes exhibited a 
partially essential effect across all tested media. This indicates that these genes promote 
cellular fitness, and their deletion partially impairs the bacterium’s capacity to generate 
biomass. These genes are the Trka family potassium uptake protein (WP_005506372.1), 
ribulose-phosphate 3-epimerase (WP_005507411.1), glucose-6-phosphate isomerase 
(WP_005508482.1), and transaldolase (WP_005509117.1). The majority of essential genes 
are involved in nucleotide metabolism, peptidoglycan biosynthesis, or the energy 
metabolism. These over-represented subsystems among the identified essential genes 
suggest their importance in supporting the bacterium’s respiration (Fig. S4). Neverthe
less, in nutrient-poor conditions (M9 medium) genes from the biosynthesis of leu
cine (2-isopropylmalate synthase; WP_005508679.1 and 3-isopropylmalate dehydratase; 
WP_005507445.1), valine (ketol-acid reductoisomerase; WP_005508646.1 and dihydroxy-
acid dehydratase; WP_005509229.1), and chorismate (shikimate kinase; WP_005508729.1 
and 3-dehydroquinate dehydratase; WP_005504658.1) were found to be critical for the 
organism’s survival. Tables S4 and S5 list in detail the predicted essential genes, each 
corresponding to specific approaches employed in this study.

Subsequently, we conducted a protein sequence homology analysis with BLAST 
(42) against the human proteome to identify potential targets that could be exploited 
in future therapeutic strategies. For this, only genes highlighted as essential in both 
laboratory and synthetically defined media were considered (Fig. 7, Panel B). Overall, 
35 essential genes were common in LB and M9, of which 20 common genes repor
ted homologous counterparts in the human genome. Further analysis revealed that 
among these genes, five genes exhibited over 50% sequence similarity with homologous 
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proteins although none resulted in over 80% similarity. Similarly, when iRM23NL was 
simulated with SCFM and SNM in both aerobic and anaerobic conditions, 45 shared 
genes were predicted to be essential. Homology analysis against the human genome 
yielded 25 genes with exhibited homology in the human genomes, with 7 demon
strating over 50% sequence similarity. For instance, genes encoding proteins such as 
phosphopyruvate hydratase (WP_005506838.1), CTP synthase (WP_044141843.1), and 
adenylosuccinate synthase (WP_005509175.1) consistently exhibited human counter
parts with similarity exceeding 50% across all tested growth media and oxygen levels. 
Among the essential genes shared between both LB and M9, 15 of them did not 
have any homologous hits. The same was observed for 20 common essential genes 

FIG 6 Predictive accuracy performance of iRM23NL using nutrient utilization data. Only substrates that exhibited complete mapping to both BiGG and model 

identifiers could be analyzed. Green represents correct predictions, and orange represents inconsistent predictions. The overall prediction accuracy of iRM23NL 

was computed using Equation 6.

FIG 7 Comparative analysis of novel gene essentialities in iRM23NL across four distinct growth media. (A) Classification of network-derived single gene deletions 

within iRM23NL, classified into essential, inessential, and partially essential genes, when subjected to aerobic (green) and anaerobic (orange) environments. 

Details regarding the classification schema can be found in Materials and Methods. (B) Protein sequence homology analysis of genes predicted to be essential 

in the laboratory media (LB and M9 pure supplemented with glucose) and the synthetically defined SNM and SCFM in both oxygen-rich and oxygen-limited 

conditions. The percentage identity threshold was set to 50% similarity to the human proteome.
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in SCFM and SNM. Some examples of these genes include orotate phosphoribosyl
transferase (WP_005507935.1), type I pantothenate kinase (WP_005505041.1), dihydro
neopterin aldolase (WP_005507619.1), and pantetheine-phosphate adenylyltransferase 
(WP_005508106.1). A more detailed comparison can be found in Table S6.

Our in silico transposon mutant analysis using iRM23NL could serve as a basis for 
several research and practical applications from rational and condition-specific drug 
target development to biotechnological applications and metabolic engineering.

DISCUSSION

The metabolic phenome of R. mucilaginosa, a bacterium with both beneficial and 
pathogenic behavior, remains still largely unexplored. Investigating its metabolic traits 
is of great importance as it holds the potential to unveil unique capabilities, includ
ing substrate utilization, byproduct production, and contributions to host-microbe 
interactions. R. mucilaginosa is a versatile microbe found in humans’ oral, respiratory, and 
skin flora, where it coexists harmoniously. However, in immunocompromised individuals, 
R. mucilaginosa can act as an opportunistic pathogen, causing severe infections. Our 
study focuses on the metabolic aspects of R. mucilaginosa, particularly its behavior in 
isolated cultures. In 2019, a 17-species bacterial community model was reconstructed to 
simulate the polymicrobial community of the CF airways (43). This model accurately 
predicted the abundance of specific bacteria within patients’ CF lung communities 
by linking metabolomics and 16S rRNA gene sequencing data. However, studying a 
bacterium’s metabolism and genotype-phenotype relationships in monoculture provides 
a more controlled knowledge base. This allows for the precise manipulation of varia
bles, enhancing our understanding of its individual traits, genetic makeup, metabolic 
pathways, and responses to stimuli (22, 23). Moreover, one can elucidate the bacterium’s 
unique contributions to nutrient uptake, substrate production, and growth dynamics, 
crucial for understanding its role in a broader ecosystem. Monoculture studies identify 
key genes and pathways, revealing how the bacterium functions autonomously. Such 
analysis serves as a valuable reference, differentiating inherent characteristics from those 
influenced by external interactions. To this end, we empirically analyzed the metabolic 
phenome of R. mucilaginosa DSM20746 and developed the first high-quality strain-spe
cific GEM of R. mucilaginosa, called iRM23NL. We considered literature and database 
organism-specific evidence to manually gap-fill the model and include highly relevant 
biochemical reactions. Phylogenetic analysis of further Rothia species provided insights 
into the relationship and genetic diversity between these species and was utilized to 
extend the metabolic network’s completeness. Our model is simulation-ready, follows 
strictly community standards (25), and exhibits a high content quality MEMOTE score.

R. mucilaginosa is primarily aerobic and can perform oxic respiration by efficiently 
generating energy in the form of adenosine triphosphate (ATP) (1). However, when 
oxygen is limited or absent, R. mucilaginosa switches to anaerobic metabolism, which 
may involve fermentation or other alternative pathways to generate energy. As already 
mentioned, R. mucilaginosa has been previously found to be metabolically active in 
CF lungs where the oxygen levels are notably restricted (16). This indicates that the 
bacterium undergoes metabolic shift and can survive in microaerophilic environments. 
Various ROS products emerge as byproducts in the bacterial response to the fluctuating 
oxygen levels (34). In more detail, the cascade of ROS is initiated by the formation of 
O2

− upon univalent oxygen reduction within the electron transport chain (ETC). Extreme 
oxygen fluctuations may be lethal and can ultimately damage cellular structure. The 
detoxifying pathway includes the enzymes superoxide dismutase (SOD), catalase, and 
peroxidase that break down lethal radicals to water and oxygen enabling the cell to 
neutralize the oxidative stress (44) (see Fig. 4). However, the exact anaerobic respiration 
mechanism of R. mucilaginosa must be thoroughly examined in experimental settings.

Since R. mucilaginosa’s metabolic behavior and adaptability are mainly yet unknown, 
we started by testing its growth behavior in various nutrient media. Exploring 
how bacteria react to various growth conditions within the human body is pivotal 
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for understanding diseases and developing effective treatments. Moreover, they are 
essential for evaluating their evolution and adaptation to different environmental 
conditions, leading to new ecological niches in which the bacterium could be meta
bolically active. We ultimately validated iRM23NL using our growth kinetics data in 
various growth media. Overall, iRM23NL’s predictions were in line with the experimental 
observations. R. mucilaginosa demonstrated higher experimental growth in nutrient-rich 
media. The model successfully simulated growth for most media, while no biomass 
production was achieved in the M9 pure medium. When comparing LB to RPMI, the 
simulated growth rate was higher in LB, while the empirical growth in RPMI was twice 
as high as that in LB. This can be attributed to the fact that computer models cannot 
mimic the entire experimental settings and lack kinetic parameters. As of September 
2023, bacteria like S. aureus, B. subtilis, and E. coli have been extensively researched for 
decades, with hundreds of thousands of PubMed (45) entries since the early 1990s. In 
contrast, R. mucilaginosa’s scientific prominence only began in the 21st century, with only 
423 publications to date, indicating significant knowledge gaps crucial for metabolic 
reconstructions. More specialized BOF would enhance the predictive power and would 
reflect a more organism-specific metabolism. Therefore, this scarcity underscores the 
urgent need for further research efforts to uncover the hidden facets of R. mucilagi
nosa’s metabolism and its significance. Notably, to simulate in silico growth in RPMI 
and SCFM media, six metal ions needed to be supplemented. These metals have 
also been confirmed as essential for the in silico growth of S. aureus in RPMI (41). 
According to the model’s predictions RPMI, supplementation with manganese, zinc, 
and molybdate was required. Transition metals could be highly toxic; however, in 
controlled levels are important in the survival of all living organisms (46). For instance, 
they are involved in redox catalysis, needed for energy production through respiration, 
and in non-redox catalysis, necessary for many biosynthetic and metabolic processes. 
Additionally, transition metals are required for the activity of many enzymes, including 
those involved in genomic replication and repair and nitrogen fixation. However, since 
these compounds were absent from the providers’ medium formulation for RPMI, we 
speculate that the provided medium definition may not be exact. In all cases, the 
suggested metal co-factor promiscuity in R. mucilaginosa by iRM23NL needs to be 
examined to shed light on whether the bacterium could survive in the absence of one of 
the suggested metals.

Moreover, we experimentally characterized the strain’s ability to assimilate and 
utilize substrates using high-throughput phenotypic microarray assays. The utilization of 
various nitrogen sources did not result in active respiration, indicating that the bacterial 
genome lacks genes encoding for respective transporters. We used the phenotypic 
results to validate and extend our metabolic reconstruction, iRM23NL. Inconsistencies 
between the model and the phenotypic microarray results served as a basis for further 
model refinement. We enriched the model with missing transport reactions and their 
respective GPRs by referring to the organism- and strain-specific BioCyc (47) registry 
and the General Feature Format (GFF) annotation file. All in all, characterizing and 
determining the repertoire of nutrient sources a strain can use or assimilate is a critical 
factor of pathogenesis. It provides valuable insights into how pathogens adapt to host 
environments and evade host defenses. Our transporter-augmented model reflects a 
high accuracy degree with the experimental data regarding using carbon, nitrogen, 
phosphorus, and sulfur sources. Discrepancies between computational and empirical 
results highlight areas of current uncertainty knowledge regarding the metabolism of 
R. mucilaginosa. They could be attributed to non-metabolic factors that fall beyond the 
metabolic models’ scope, including regulatory processes, gene expression, and signaling 
pathways. However, targeted experiments are needed to fill the remaining network gaps 
and reveal novel enzymatic processes.

Considering the predictive precision of our metabolic reconstruction, we utilized 
iRM23NL to derive novel hypotheses. We examined the effects of condition-specific 
single gene knockouts on the bacterial capacity to produce biomass. Gene essentiality 
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analysis is inherently contingent upon specific conditions. In the context of constraint-
based metabolic modeling, a plethora of constraints are established, with the availabil
ity of nutrients, often the growth medium, being the most prevalent. By altering the 
availability of these nutrients, the environmental conditions are modified, consequently 
exerting a profound influence on the metabolic state and growth of an organism (48, 
49). However, the true strength and versatility of GEMs lie in their ability to rapidly 
generate condition-specific hypotheses on a large scale, circumventing the need for 
labor-intensive and expensive screenings that may not always yield direct success. 
Various models, spanning organisms like A. baumannii, E. coli, S. cerevisiae, P. falciparum, 
and P. aeruginosa, demonstrated predictive accuracies ranging from 72% to 93% (50–60). 
Additionally, gene essentiality analysis has been instrumental in identifying potential 
drug targets for diseases such as cancer and viral infections, aligning well with both 
in vitro (61–63) and in vivo (64) data. Therefore, we utlized our GEM and created a 
high-throughput in silico-derived transposon mutant library considering two standard 
growth media, LB and M9, along with two growth media formulated to mimic the 
environment within the human body, SNM and SCFM. In this regard, we identified 
putative essential and partially essential genes and assessed their potential vulnerability 
under varying nutritional environments. With this, we opted for detecting candidate 
genes that could be considered in future antimicrobial and anti-inflammatory strategies 
in immunocompromised and CF patients. With this, we opted for identifying candidate 
genes for future research that hold promise for experimental validation. Determining 
which essential genes have human counterparts is of great importance for antibiotic 
drug development, as it helps assess potential side effects and cross-species effects on 
human genes targeted by antibiotics. Moreover, it provides insights into the molecular 
mechanisms of host-pathogen interactions, explaining how pathogens manipulate host 
cells and evade the immune system. Utilizing our GEM offers promising venues for future 
targeted engineering strategies without the need for laborious large-scale screening 
of knockouts and mutant libraries. This methodology would facilitate the rapid design 
of metabolic gene knockout strains by eliminating the associated reaction(s) from the 
model. Finally, CF lungs represent a highly dynamic environment (65, 66). However, GEMs 
are adaptable and can be tailored to reflect the metabolic capabilities of bacteria across 
diverse environmental conditions.

The main objective in our endeavor to combat R. mucilaginosa as an opportunistic 
pathogen causing infections (7) is identifying essential genes, particularly those without 
human counterparts. Determining these essential genes is crucial as we aim to neutralize 
the pathogen without harming the host. Simultaneously, we are exploring R. mucilagi
nosa as an agent with anti-inflammatory properties (18). In this context, we opt for 
promoting Rothia’s growth, focusing on modulating the environmental conditions that 
have been reported to do so. Once the key pathways involved in the beneficial functions 
of R. mucilaginosa are known, our gene essentiality predictions can be exploited to 
boost activation of these pathways. Nonetheless, being aware of R. mucilaginosa-spe
cific essential genes is crucial to avoid inadvertently targeting them during therapeutic 
treatments, ensuring both the bacterium’s growth and its anti-inflammatory activities. 
With this dual perspective, we indicate R. mucilaginosa’s therapeutic variety, including 
developing strategies to combat the bacterium, when it is detrimental while increasing 
cell biomass production when its anti-inflammatory properties are beneficial. The latter 
could benefit human health in the context of cystic fibrosis. However, these model-
driven hypotheses need to be extensively validated via in vitro and in vivo experiments.

Altogether, creating a genome-scale metabolic network for R. mucilaginosa reveals 
insights that would have been resource-intensive to acquire using traditional wet-lab 
means. Understanding the metabolic complexities of R. mucilaginosa is essential for 
expanding our basic understanding of bacterium’s microbiology and would benefit 
various practical applications. In medicine, it could facilitate the development of 
strategies to deal with caused infections, while in biotechnology, it would allow us 
to use its metabolic abilities for bioprocessing and bioengineering purposes. Hence, 
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our high-quality metabolic network, iRM23NL, could provide a systematic and detailed 
framework for analyzing R. mucilaginosa’s metabolism, yielding valuable insights with 
broad-reaching impacts.

MATERIALS AND METHODS

Experimental settings

Bacterial strain and growth conditions

The R. mucilaginosa DSM20746 (ATCC 25296) used for the experimental work in this 
study is a type strain, and it was purchased from the American Type Culture Collection 
(ATCC, US). To create an inoculum, the bacterium was streaked onto nutrient agar (NA, 
Neogen, Heywood, UK) plates from a cryopreserved glycerol stock stored at −80°C using 
a sterile loop. Subsequently, the plates were incubated at 37°C for 48 h to form colonies 
(pure cultures). It is important to note that each biological replicate was conducted 
using pure cultures derived from the initial frozen stock (no sub-culturing). This ensures 
maintaining the genetic and phenotypic characteristics of the strain without introducing 
any potential mutations or adaptations.

Growth kinetics protocol

R. mucilaginosa overnight liquid cultures were prepared by adding bacterial colonies 
from pure cultures to 5 mL BHI (Neogen, Heywood, UK) and were put at 37 mL in a 
shaking incubator for 24 h. The initial OD was assessed and, if necessary, adjusted via 
up-concentration or dilution to achieve OD590nm = 0.25. Then, the bacterial suspension 
was subjected to centrifugation at 10,000 RPM for 5 min, and the resulting pellet was 
re-suspended in the medium of interest at a dilution of 1:10. Ultimately, the inocula
ted growth media were transferred to a sterile 96 well-plate, including three technical 
replicates for each tested condition together with their corresponding control conditions 
(sterile growth media). The outer wells were filled with milliQ water (MQ) to prevent 
evaporation. The respective OD590nm was measured aerobically at three distinct time 
points (0, 24, and 48 h) using an EnVision microplate reader (Perkin Elmer, Waltham, 
MA, USA). The microplates were incubated at 37°C during the interim periods between 
measurements. The final growth curves were generated for three biological replicates (n 
= 3) for the following growth media: BHI (baseline medium), LB (Neogen, Heywood, UK), 
M9 pure, RPMI medium (RPMI-1640 Sigma-Aldrich), and TSB (Neogen, Heywood, UK). In 
the M9 pure medium, only salts were considered. For detailed information regarding the 
constitution of M9, see Table S1. The rest of the media were prepared according to the 
providers’ instructions.

The raw data were normalized by subtracting the blank values from the measured 
ODs and were summarized by calculating the arithmetic mean across all replicates. To 
interpret the growth of bacterial cells in all tested media and compare their growth 
characteristics, we employed the FCOD ratio, which is defined as follows:

(1)FCOD = OD590nm
t  =  48h

OD590nm
t  =  0h

In this context, we define FCOD below 1.4 as no growth, while FCOD ratios greater 
than 1.4 indicate a growth increase over time. This FCOD threshold was chosen by 
analyzing experimental data and growth curves. A value of 1.4 was selected, considering 
the range of calculated growth rates. Statistical tests, as described below, validated the 
threshold’s reliability in accurately discerning growth from no growth in the bacterial 
cultures.
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Phenotypic microarray screenings

DSM20746 was tested for utilizing multiple carbon, nitrogen, phosphorus, and sulfur 
sources. Biolog Phenotype Microarrays (PM, Hayward, CA, USA) were employed to test 
the utilization of 190 carbon (PM1 and PM2A), 95 nitrogen (PM3B), 59 phosphorus 
(PM4A), and 35 sulfur sources (PM4A). These assays use a tetrazolium redox dye to enable 
a colorimetric detection of active cell respiration across different nutrient sources (40). 
Normal cell respiration is indicated by the formation of a purple color as a result of the 
reduction of the colorless dye during incubation.

The PM plates were prepared following the manufacturer’s protocol for Gram-posi
tive bacteria. Table 1 lists the assay set up for of PM plates. However, modifications 
were made during the cell suspension preparation. The strain was grown on nutrient 
agar plates without undergoing sub-culturing. Using an inoculation loop, individual 
colonies were picked and suspended in an inoculating fluid (IF-0) at an absorbance of 
0.0915 at 590 nm. Per the established protocol, 81% of transmittance (T) should be 
achieved. Given our measurement of OD, the subsequent conversion of transmittance to 
absorbance was carried out employing the following formula:

(2) Absorbance  = 2 − log10(%T)
In each well of a 96 well-plate, we introduced 100 μL of cell suspension, followed by 

a 48 h incubation period at 37°C. Bacterial growth was measured by the OD at 590 nm 
using a VICTOR Nivo Multimode microplate reader. Each PM plate was tested in duplicate.

The subsequent analysis of the acquired data included calculating the arithmetic 
mean across all technical and biological replicates for all measured n time points. 
Background noise was also removed, and the data were normalized by subtracting the 
blank values from the actual measurements. The area under curve (AUC) was used to 
distinguish between growth (AUC ≥ 50) and no growth (AUC < 50). The computation 
of the AUCs was carried out by leveraging the linear trapezoidal rule that expresses the 
interpolation between data points:

(3)AUC(ti + 1 − ti) = ti
ti + 1f(x) dx ≈ (ti + 1 − ti) ⋅ 12 (ODti + 1 + ODti)

where ti is the respective measured time point and i ∈ 0, …, e . More specifically, the 
trapezoidal rule is iteratively applied to adjacent data points defined along the curve 
whose summation resulted in the final AUC value. Hence for n measured data points, the 
final AUC value is defined as follows:

(4)AUCte = i = 0

e − 1
AUC(ti + 1 − ti)

Finally, we repeated this across the spectrum of tested compounds within the 
microarray plates.

TABLE 1 Assay configuration for diverse Biolog PM microplates combinationsa

For 1× PM

IF-0a GN/GP (1.2×) 10.0
Dye mix (100×) 0.12
PM additive (12x) 1.0
81%T cell suspension 0.88
Total volume 12.0
aVolumes are expressed in μL. The provided volume quantities are adequate for inoculating the specified number 
of plates in this study, using 100 μL/well with an additional excess.
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Independent confirmatory testings of Biolog data

To independently confirm the Biolog data, we applied the growth kinetics protocol 
described above to 10 compounds. Although the base inoculating fluid (IF) used for 
the metabolic PM plates is proprietary, it is considered to reflect a minimal medium 
composed mainly of salts and buffers (40, 67). Hence, we used the M9 pure medium 
supplemented with different substrates to perform the independent tests (Fig. S2). The 
following compounds were examined: α-D-glucose, D-mannose, adonitol, L-ornithine, 
L-methionine, salicin, succinate, L-alanine, L-malate, and L-histidine. We also included 
negative controls of substrates with the Biolog inoculation fluid zero (IF-0). To ensure 
accuracy, triplicates were carried out for each tested compound. The M9 pure medium 
and the exact concentrations of added substrates are described in Table S1. All bacterial 
cell suspensions were prepared in 1:10 dilutions, and the ODs590nm were measured at 0, 
24, and 48 h using an EnVision microplate reader (Perkin Elmer, Waltham, MA, US) and 
the associated software package.

We computed the arithmetic mean across the three replicates from the collected data 
set for each measured time point. Additionally, we performed a background correction 
to mitigate the influence of background noise or unwanted signal interference present in 
the measured ODs.

Statistical hypothesis analysis

We conducted statistical tests to evaluate the chosen threshold and potential statisti
cally significant differences between measurements at the initial and final time-points, 
thereby indicating the significant growth or no growth. Specifically, we employed the 
Student’s t-test for each experimental condition, taking into account the data from the 
three biological replicates. The null hypothesis is formulated as following: there is no 
significant difference between the measured OD values in starting and end time-points. 
Prior to hypothesis testing, we checked the correctness of associated assumptions. More 
specifically, we assessed data normality through the Shapiro–Wilk test and verified the 
homogeneity of variances using the Levene’s test.

Computational framework and modeling methodology

Phylogenomic analysis

We supported the gap-filling process using evidence of closely related species within 
the Rothia genus. Employing ANIclustermap v.1.1.0 (68), we conducted a comprehensive 
genomic comparison involving R. mucilaginosa DSM20746 and 12 distinct Rothia species: 
R. koreensis, R. kristinae, R. santali, R. halotolerans, R. aeria, R. dentocariosa, R. terrae, R. 
amarae, R. nasimurium, R. mucilaginosa, R. aerolata, R. nasisuis, and R. endophytica (see 
Fig. 3). In brief, ANIclustermap creates an all-vs-all genome ANI clustermap and groups 
microbial genomes based on their genetic similarity. ANI is a pairwise measure to classify 
bacterial genomes according to their genetic similarity. It is defined as the genetic 
similarity across all orthologous genes shared between any two genomes (69, 70). It 
serves as a powerful tool for distinguishing strains of the same species or closely related 
species.

Draft model reconstruction and curation

The proteome of R. mucilaginosa DSM20746 (GCF_000175615.1) served as the basis 
for reconstructing a draft metabolic network. The DSM20746 (ATCC 25296) represents 
a type strain obtained from the throat, and its genetic and proteomic sequences 
were retrieved from National Centre for Biotechnology Information (NCBI) (https://
www.ncbi.nlm.nih.gov). The genome sequence was annotated using the NCBI Prokary
otic Genome Annotation Pipeline (PGAP) (71). An initial draft model was built using 
CarveMe 1.5.1 (27). CarveMe uses mixed-integer linear programming (MILP) to convert 
a universal model into an organism-specific one by deleting metabolites and reactions 
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with low occurrence scores within the specific organism of interest. The universal BOF 
might yield incorrect gene essentiality predictions for biosynthesis pathways that rely on 
precursors unique to Gram-positive bacteria due to the absence of specific membrane 
and cell wall information. Hence, we chose the specialized Gram-positive template 
instead of the universal one to build our model more accurately. This Gram-positive 
template incorporates cell wall and membrane components specific to Gram-positive 
bacteria in contrast to the universal biomass reaction defined in CarveMe (27). Spe
cifically, the BOF developed for iRM23NL includes essential macromolecules such as 
nucleotides and amino acids, co-enzymes, and inorganic ions. Moreover, it encompasses 
cell wall components like lipoteichoic acids, a peptidoglycan unit, and glycerol teichoic 
acids. The growth-associated (GAM) energy requirements are integrated into the biomass 
reaction (labeled as Growth), while non-growth associated maintenance (NGAM) is 
explicitly considered in the model, expressed by the reaction ATPM.

We conducted an extensive two-staged iterative gap-filling to address incomplete 
or missing information in the metabolic model. Gaps or missing reactions can arise for 
various reasons, such as incomplete genome annotations or undiscovered enzymatic 
activities. For this purpose, we leveraged information from both the bibliome and 
biochemical databases, including BioCyc (47). Thus, we ensured that the model could 
support the growth and viability of the organism under specific conditions.

We applied our previously published pipeline (26) to curate further the model based 
on community standards. The pipeline consists of eight steps, from which five (step 
3–step 4) are related to model curation and ensure a high quality of the final model. 
In Summary, ModelPolisher (34) and SBOannotator (35) were employed to enrich the 
model with multiple cross-references, while the mass- and charge-unbalanced reactions 
were fixed. Further annotations integrated into the model encompassed: Evidence and 
Conclusion Ontology (ECO) terms representing the confidence level and the asser
tion method (biological qualifier: BQB_IS_DESCRIBED_BY), KEGG (30) subsystems as 
groups:member (biological qualifier: BQB_OCCURS_IN), and gene annotations. The latter 
was done by mapping the gene locus tags to the old tags using the GenBank GFF (72). 
Finally, we checked the presence of potential EGCs that could bias the final predictions 
(73). To manipulate the model structure, we employed the libSBML library (74).

The SBML Validator from libSBML (74) was used to assure a correct syntax of the 
model, while the quality control was carried out employing MEMOTE (36). However, it is 
worth noting that, as we discussed in our previous publication, MEMOTE considers only the 
parent nodes of the SBO directed acyclic graph excluding their respective children (26). 
Hence, MEMOTE was used carefully and not as an absolute quality indicator.

Linear programming: formulation of assumptions and constraints

FBA is used to determine the flux distribution through optimization of the objective 
function, typically the maximization of biomass production rate, under steady-state 
conditions (21). To address the under-determined nature of the system, constraints are 
imposed to define an allowable solution space that aligns with cellular functions. These 
constraints, encompassing mass balance, thermodynamics, and capacity, contribute to 
the FBA maximization problem. The linear programming problem used to obtain growth 
rates is described as follows:

(5)
maximize Z = cT v→
subject to: S ⋅ v→ = 0vmin ≤ vr ≤ vmax for r ∈ 1, …, n∀r ∈ I :0 ≤ vr

where v→ is the vector of fluxes within the network, S is the stoichiometric matrix, Z 

is the linear objective function, c→ is the vector of coefficients, and I represents an index 

set containing the indices of all irreversible reactions. The dimensionality of vector v→
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matches the number of reactions, denoted as n in the system, and is consistent with the 
n columns in the matrix S.

The unit mmol/(gDW · h) is utilized to denote the predicted growth rates since the 
biomass consistency (rate at which biomass is produced per unit of dry weight in the 
model) of iRM23NL approaches 1 mmol/(gDW · h) (36, 75, 76). Consequently, direct 
comparisons can be made between experimentally observed and predicted growth 
rates. These conversions maintain their validity under the assumptions of constant 
volume and steady-state inherent in constraint-based modeling (75).

Bacterial growth analysis and nutrient utilization assays

Bacterial cell growth within various media and multiple substrate utilization evaluations 
were determined by solving Equation 5. The medium and the nutrient source of interest 
defined additional constraints. To achieve this objective, adjustments were made to the 
upper and lower limits of exchange reactions, as appropriate. We set specific uptake 
rates for key components within the growth medium as follows: the uptake rate of 
transition metals was set at 5.0 mmol/(gDW · h), the uptake rate of oxygen under aerobic 
conditions was established at 20.0 mmol/(gDW · h), and the rest media components 
equal to 10.0 mmol/(gDW · h). As previously mentioned, the M9 pure medium was used 
for the substrate utilization assays. Only substrates present in the metabolic network as 
intra- or extracellular metabolites were considered for the in silico validation. The results 
from the experimental and the in silico growth tests were categorized into “growth” (G) 
or “non-growth” (NG). Here, “growth” indicates the network’s ability to generate biomass 
and, therefore, a positive growth rate. The model’s overall prediction performance was 
assessed using the following statistical parameters: overall agreement (ACC):

(6)ACC = TP + TN
TP + TN + FP + FN

and Matthews Correlation Coefficient (MCC):

(7)MCC = (TP ⋅ TN − FP ⋅ FN)(TP + FP)(TP + FN)(TN + FP)(TN + FN)
where true negative (TN) and true positive (TP) represent accurate predictions, and 

false negative (FN) and false positive (FP) indicate incorrect predictions. Inconsistencies 
were resolved via iterative manual network gap-filling. For all FBA simulations, we 
employed the Constraints-Based Reconstruction and Analysis for Python (COBRApy) (77) 
package. All growth media definitions are listed in Table S2.

Gene lethality analysis

The in silico single-gene knockouts were performed as described in our previous study 
using FBA (26). To address the degeneracy issue of optimization, we additionally ran our 
FBA simulations in a total of 100 independent runs. Furthermore, we utilized pFBA, a 
method that allows us to ascertain the flux distribution of the optimal solution while 
concurrently minimizing the overall flux sum (78). The results were categorized as either 
essential FCgr = 0, inessential (FCgr = 1), or partially essential (0 < FCgr < 1), where FCgr 
denotes the FC bacterial growth rate before and after deletion (27). Shared essential 
genes between FBA and pFBA, as well as all tested conditions, were further aligned 
against the human genome using BLAST (42).
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