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Abstract

Convolutional Neural Networks (CNNs) have emerged as powerful tools in ophthalmology by ex-
hibiting human-level performance in the classification of various ocular conditions and diseases.
However, the decisions of these models are opaque and hard to interpret, which limits their trust-
worthiness and applicability in clinical settings. In this thesis, we address the challenges through:
an inherently interpretable model architecture called BagNet and counterfactual explanations.
BagNets use small receptive fields to identify local features in an image that contribute signifi-
cantly to the model’s decision. On the other hand, counterfactual explanations show the changes
required on a given input image to alter the decision of the classifier to a particular class. Impor-
tantly, both of these explanation methods share similarities with processes employed by humans
to offer explanations for their decisions.

Intriguingly, CNNs demonstrate remarkable accuracy in predicting gender from retinal fundus
images even though it was previously unknown to ophthalmologists that retinal fundus images
encoded gender information. Here, it would be beneficial to explain the CNN model’s decisions in
order to identify features that the model uses for distinguishing between male and female fundus
images. To this end, we utilized the local feature importance estimates from BagNets to produce
saliency maps that highlight informative patches in fundus images. Our analysis revealed that
patches from the optic disc and macula contribute significantly, with the former favoring detection
of male fundus images and the latter, female. We conclude that BagNets are feasible alternatives to
standard CNN architectures which have the potential to serve as an effective approach to provide
explanations in medical image analysis tasks.

Following our study on explanations from BagNets, we investigated the generation of counter-
factual images from CNN classifiers to provide explanations. Specifically, we assessed various
counterfactual generation techniques across a range of retinal disease classifiers in ophthalmology.
The first technique relied on the generation of counterfactual images solely using the gradients of
a classifier with respect to the input. Here, adversarially robust models offered more interpretable
gradients than a standard classifier although at the expense of reduced accuracy. We combined the
strengths of both approaches by ensembling a standard CNN with an adversarially robust one. Our
ensemble method achieved high accuracies comparable to the standard CNN while also generating
meaningful visual counterfactuals. However, a notable limitation of this classifier-only approach is
a lack of realism of the generated counterfactuals.

To achieve realism, the second technique employed a diffusion model alongside adversarially robust
and plain classifiers trained on retinal disease classification tasks from color fundus photographs and
optical coherence tomography (OCT) B-scans. The gradients of the classifiers guide the diffusion
model effectively, enabling it to add or eliminate disease-related lesions in a realistic manner.
In a user evaluation, domain experts rated the counterfactuals generated using this approach as
significantly more realistic than those produced by the classifier-only method and found them
indistinguishable from real images. We conjecture that such realistic counterfactual explanations
hold significant promise for assisting clinicians in decision-making processes.

To summarize, BagNets provide saliency map based explanations by highlighting image regions
that have a substantial impact on the model’s final decision. In contrast, counterfactuals illustrate
the actual visual features that are relevant to the classifier’s decision making process by generating
varied versions of the input image corresponding to each class in the task. Overall, both of
these methods offer visual explanations pertaining to the model’s decisions albeit through different
mechanisms.
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Zusammenfassung

Faltendes Neuronales Netzwerk (Convolutional Neural Networks, CNN) haben sich in der Augen-
heilkunde als leistungsstarke Werkzeuge erwiesen, da sie bei der Klassifizierung von Augenkrankheiten
eine zu klinischen Experten identische Genauigkeit aufzeigen. Die Entscheidungen dieser Mod-
elle sind jedoch undurchsichtig und schwer zu interpretieren, was ihre Vertrauenswürdigkeit und
Anwendbarkeit im klinischen Umfeld einschränkt. In dieser Arbeit adressieren wir diese Prob-
lematik: durch eine inhärent interpretierbare Modellarchitektur namens BagNet und kontrafak-
tische Erklärungen. BagNets verwenden kleine rezeptive Felder, um lokale Merkmale in einem
Bild zu identifizieren, die wesentlich zur Entscheidung des Modells beitragen. Andererseits zeigen
kontrafaktische Erklärungen, welche Änderungen an einem gegebenen Bild erforderlich sind, um
die Entscheidung des Klassifizierers zu ändern. Wichtig ist, dass beide Erklärungsmethoden
Ähnlichkeiten mit Prozessen aufweisen, die Menschen zur Erklärung ihrer Entscheidungen nutzen..

Erstaunlicherweise zeigen CNNs eine bemerkenswerte Genauigkeit bei der Vorhersage des Geschlechts
aus Netzhautfundusbildern, obwohl Augenärzten bisher nicht bekannt war, dass Netzhautfundus-
bilder Geschlechtsinformationen enthalten. In diesem Fall ist es vorteilhaft eine Erklärung zur
Entscheidung des CNN-Modells zu liefern. Eine mögliche Erklärung bieten Merkmale, die das
Modell zur Unterscheidung zwischen männlichen und weiblichen Fundusbildern verwendet. Zur
Identifikation dieser Merkmale nutzen wir BagNets, welche Auffälligkeiten im Fundusbild mittels
Salienzkarten hervorheben können. Unsere Analyse zeigte, dass der Sehnervenkopf und die Makula
wichtige Merkmalsbereiche waren, wobei der Sehnervenkopf bei Fundusbildern von Männern und
die Makula bei Fundusbildern von Frauen einen größeren Einfluss auf das Klassifikationsergebnis
hatte. Die BagNet Architekturen bieten somit zusammenfassend eine brauchbare Alternative zu
Standard-CNNs, da sie eine fundierte Erklärung für die automatische medizinische Bildanalyse
liefern.

Als nächsten Schritt in Richtung erklärbares maschinelles Lernen, untersuchten wir nach der
Merkmalsextraktion mit BagNets die Erzeugung kontrafaktischer Bilder mit CNN-Klassifikatoren.
Konkret bewerten wir verschiedene Techniken zur Erzeugung kontrafaktischer Bilder für eine Reihe
von Klassifikatoren für Netzhauterkrankungen in der Augenheilkunde. Die erste Technik beruht
auf der Generierung kontrafaktischer Bilder allein anhand der Gradienten eines Klassifikators in
bezüglich der Eingangsbilder. Hier bieten adversarial robuste Modelle besser interpretierbare Gra-
dienten als ein Standardklassifikator, allerdings auf Kosten einer geringeren Genauigkeit. In dieser
Arbeit stellen wir eine Lösung vor, die die Stärken beider Ansätze kombiniert, indem wir ein
Standard-CNN mit einem adversarial robusten CNN kombinieren. Unsere Ensemble-Methode
erreicht hohe Genauigkeiten, die mit denen des Standard-CNN vergleichbar sind, und erzeugt gle-
ichzeitig aussagekräftige visuelle Kontrafakturen. Eine auffallende Einschränkung dieses reinen
Klassifikator-Ansatzes ist jedoch die mangelnde Realitätsnähe der erzeugten Kontrafakturen.

In einem nächsten Schritt adressierten wir daher die realistische Erzeugung von Kontrafakturen
mittels Diffusionsmodellen. Dafür kombinierten wir Diffusionsmodelle mit Klassifikatoren, die zur
Klassifikation von Netzhauterkrankungen auf Farbfundusfotografien und B-Scans der optischen
Kohärenzfotografie (OCT) trainiert wurden. Die Gradienten der Klassifikatoren ermöglichtem dem
Diffusionsmodell krankheitsbedingte Läsionen auf realtische Weise hinzuzufügen oder zu entfernen.
Eine Nutzerbewertung mit klinischen Experten ergab, dass kontrafaktische Bilder die mit diesem
Ansatz erzeugt wurden deutlich realtischer sind als Bilder die mit der reinen Klassifiaktormeth-
ode erzeugt wurden. Dies zeigte sich auch dadurch, dass Experten die Bilder dieser Methode
nicht von echten Bildern unterscheiden konnten. Abschließend vermuten wir, dass solche realis-
tischen kontrafaktischen Erklärungen eine vielversprechende Unterstützung für klinische Entschei-
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dungsprozesse bieten.

Zusammenfassend lässt sich sagen, dass BagNets auf Salienzkarten basierende Erklärungen liefern,
indem sie Bildregionen hervorheben, die einen wesentlichen Einfluss auf die endgültige Entschei-
dung des Klassifikators haben. Im Gegensatz dazu veranschaulichen Kontrafakturen die tatsächlichen
visuellen Merkmale, welche für den Entscheidungsprozess des Klassifikators relevant sind. Auf diese
Weise können sie verschiedene Versionen des Eingabebildes erzeugen, die je nach der betrachteten
Klasse unterschiedliche charakteristische Merkmale abbilden. Obwohl sich die vorgestellten Meth-
oden in ihren zugrundeliegenden Mechanismen unterscheiden, liefern sie beide wertvolle visuelle
Erklärungen für die Modellentscheidungen.
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Boreiko, Kerol Djoumessi, Ziwei Huang, Sarah Müller and all members of the Hertie Institute for
AI in Brain Health. I would like to extend my heartfelt thanks for their camaraderie and support.
Their active engagement in numerous fruitful discussions and collaborative teamwork with me
has enriched my research experience. Special thanks are due to the ophthalmologists Dr. Hanna
Faber, Dr. Focke Ziemssen and Dr. Laura Kühlewein for their time, invaluable contributions and
feedback to my research analysis. Their participation has undoubtedly enhanced the significance
of this research work.

I would like to thank Leila Masri and Sara Sorce for the motivational discussions and creating a
lively atmosphere at the IMPRS-IS doctoral program.

Many thanks to Valeska Botzenhardt for facilitating a smooth onboarding process, assisting with
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Chapter 1

Introduction

1.1 A brief history of Deep Neural Networks

Deep Neural Networks (DNNs) are the game-changers of this century in the field of artificial and
machine intelligence. They are capable of performing a wide variety of tasks ranging from playing
games [1, 2], detecting and recognizing objects [3, 4, 5] , and processing natural language [6, 7].
The foundations of DNNs were laid a century earlier stemming from inspirations of modelling the
biological brain [8]. The fundamental unit of a biological brain is a neuron, which is a highly
complex cell due its various types, physiological properties and morphologies. The most simplified
representation of a neuron [8] consists of a cell body or soma, several branches protruding from
the soma called the dendrites and a long fiber called the axon which extends from a region called
the axon hillock in the soma. The axon further branches into the axonal aborization and the
tips of these branches are the axon terminals which are in contact with other neurons or effector
cells. The dendrites and the soma form the input surface of a neuron. Within a neuron, if the
various incoming signals from other cells or neurons at the dendrites and the soma generate a
potential difference that exceeds a certain threshold then the electrical change yields a spike or
action potential which propagates along the axon and is subsequently transferred to the neighboring
neurons or cells. This highly simplified behavior of a single neuron is computationally modelled as
the McCulloch-Pitts neuron [9] which has multiple binary inputs and a single binary output that is
high when the inputs jointly exceed a certain threshold and is low otherwise (Fig. 1.1). This model
was capable of simulating logical gates such as AND, OR or NOT. Rosenblatt’s perceptron [10]
model extended the McCulloch-Pitts single neuron model to multiple neurons which included a self-
learning procedure to estimate the parameters of the model based on error-correction. However,
this model was shown to fail at learning complex gates such as the XOR gate due to the absence of
any hidden units [11]. This drawback was addressed with the introduction of non-linear activation
functions in multi-layer perceptron [12] model and the backpropagation algorithm [12] for efficient
learning of parameters. Eventually with growing processing power, the number of layers stacked
on an MLP increased forming deeper networks with millions of parameters. It is important to note
however that these models do not exactly replicate the behaviour of biological neurons. In fact,
a single neuron’s behaviour can only be encoded with 5 − 8 layered networks of perceptrons [13]
which shows that biological neurons are far more computationally complex than perceptrons.

In a similar vein, computer vision models drew inspirations from the visual cortex in biological
vision systems [14]. Specifically, the cat’s visual system which consisted of two types of cells called
the “simple” cells and the “complex” cells [15] formed the basis of computational vision models. The
simple cells showed a preference to certain patterns such as vertical lines, edges or corners. On the
other hand, the complex cells showed more spatial invariance and appeared to combine responses
from different regions. The functionalities of these different cells were modelled as different types
of layers in the Neocognitron [16] model which formed the precursor to the modern convolutional
neural network (CNN) architectures [14]. The first layer is the input layer which resembles the raw
input registered on the retina. Following the input layer are several blocks with each consisting
of two different types of layers: the first one which act like simple cells or S-cells are called the
“feature detection” layers and the second one called the “pooling” layer simulates the complex
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Figure 1.1: Artificial Neuron or the McCulloch-Pitt’s neuron which receives a set of inputs and
performs a weighted average of the inputs w1x1 + w2x2 + · · · + wnxn. When this value is greater
than a certain threshold ¹, the output y = 1, otherwise y = 0. This model roughly simulates the
behaviour of a biological neuron. Sketch of this artificial neuron is inspired from Figure 3a in The
Handbook of Brain Theory and Neural Networks [8]

cells or C-cells which account for spatial invariance (Fig. 1.2). Each of the feature detection layers
are modelled mathematically as multiplication with a matrix of weights and the pooling layers
correspond to taking an average of the input patches. At the final layer of the model, only certain
cells “fire” depending on the input pattern and the average of these output cells determined the
final model decision. The Neocognitron model did not have a learning algorithm whereas modern
CNNs used the backpropagation algorithm for learning the weights in the different layers [17].
Similar to MLPs, CNNs became deeper with time which drastically improved their performances
on detection tasks such as handwritten digit recognition [17, 18] and natural image recognition
[4, 19]. In this work, we focus on medical computer vision tasks and all deep networks used are
Convolutional Neural Network models. Hence we will use the terms Deep Neural Networks (DNNs)
and Convolutional Neural Networks (CNNs) interchangeably.

Following the initial architectural advancements of these networks, the algorithms to optimize the
error or loss functions were further fine-tuned and improved. Several purely technical improvements
which had no biological connections such as ReLU non-linearities, dropout, batch normalization,
data augmentation were also made to boost the performance of these models [21]. Hence, the
artificial neural network models eventually drifted apart from the biological neural networks.

1.2 Deep Neural Networks in Ophthalmology

Soon after Deep Neural Networks were shown to be successful in vision tasks, they were also
applied to medical images to study their effectiveness in clinical diagnostics [22]. Among the
various medical fields, ophthalmology was quick to adopt deep neural networks for image analysis
due to two factors. First, the imaging modalities used in ophthalmology were predominantly
digitized by the time of introduction of deep learning models and computer aided detection using
image processing algorithms was already prevalent in the field [23]. Second, population screening
programs for various eye diseases stored retinal images and integrated them to patient electronic
health records through picture archiving and communication systems (PACS) [24]. These well-
established workflows in ophthalmology provided deep learning researchers with convenient access
to extensive medical records and image data and enabled them to train models that demonstrated
impressive levels of accuracy.
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Figure 1.2: Fukushima’s Neocognitron model based on the cat’s visual cortex. The model has a
hierachical structure with alternating S1 cells and C1 cells. While S1 cells are receptive to local
features such as edges or corner, C1 cells ensure spatial invariance. The S1 layers are equivalent to
convolutional layers and C1 layers to pooling layers in modern CNNs. At the final C layer, each
output unit corresponds to one class of the classification task. Architecture figure is reproduced
from Fig 2 in [16] and plotted with PlotNeuralNet[20]

Ophthalmologists commonly use two imaging modalities for diagnosis, namely, color fundus pho-
tographs and optical coherence tomography (OCT) scans. A color fundus photograph is captured
using an ophthalmoscope which records light reflected from the retina on a 2D plane. A typ-
ical fundus photograph of a healthy individual shows the optic disc, macula and blood vessels
(Fig. 1.3). OCT scans are acquired based on the principle of low-coherence tomography [25]. A
high-bandwidth light beam is split into two parts with one part being directed to a mirror and
the other to the retina. The light being reflected from the target tissue in the retina is allowed to
combine with the beam reflected from the mirror resulting in interference patterns. These patterns
are recorded to construct an axial A-scan. Several A-scans are put together to construct a two-
dimensional cross-sectional image of the retina called the B-scan. The same is repeated for different
depths through various methods such as time-domain OCT or spectral domain OCT which results
in a 3D OCT scan [25]. In this work, we use 2D OCT B-scans which show the different layers
on a retina such as: inner retina, outer retina, retinal pigment epithelium (RPE)/Bruch’s mem-
brane and the choroid from top to bottom [26] (Fig. 1.3). Both fundus images and OCT scans are
most commonly used for diagnosing conditions such as Diabetic Retinopathy (DR), Age Macular
Degeneration (AMD), Diabetic Macular Edema (DME) and Epiretinal Membrane (ERM).

Deep learning methods have been used to perform a wide variety of tasks using both of these
imaging modalities. With color fundus photographs, deep neural networks have been developed to
segment the retinal vessels [27] and optic disc [28] from the fundus image. Among diagnostic tasks,
deep learning models are trained to detect diabetic retinopathy [29, 30], Age Macular Degeneration
[30, 31] and glaucoma [30] from retinal fundus images. Notably, deep learning models have also
shown the capability to perform tasks which are hard for clinicians such as detecting gender, age
and other cardiovascular risk factors from retinal fundus images [32]. Miscellaneously, they have
also been used to assess the quality of retinal fundus images [33]. With OCT scans, they have been

12



Visually Explaining Decisions of Deep Neural Network Classifiers in Ophthalmology

Macula Optic Disc

Blood vessels Nerve Fibre Layer Inner Retina

Outer Retina RPE Choroid

a b

Figure 1.3: Imaging modalitites in ophthalmology a.An example of a color fundus photograph from
a healthy subject showing the macula, optic disc and blood vessels. b. An example OCT B-scan
of a healthy subject showing the various retinal layers including the nerve fibre layer, outer retina,
inner retina, Retinal Pigment Epithelium (RPE) or the Bruch’s membrane and the choroid.

used to segment the various retinal layers and predict the thickness of the retina. Diagnostic tasks
performed by DNNs on OCT scans include detection of AMD [34], segmentation of intraretinal
fluids [35, 36], drusen, Choroidal Neovascularization (CNV) [37], Diabetic Macular Edema [37] and
Epiretinal Membrane [38]. In most of these tasks, DNNs are shown to either perform on par with
or better than ophthalmologists and optometrists [29, 34].

One such DNN model which showed outstanding performance at detecting referable Diabetic
Retinopathy from retinal fundus images was embedded in a device called the iDX-DR and used to
conduct clinical trials [22, 39]. This model passed the performance criteria during clinical trials,
leading to its FDA approval for use in the clinics. Recently, it has been shown that devices to
detect Diabetic Retinopathy from retinal fundus images using DNNs are among the most widely
used AI technologies in a real-world clinical setting [40].

1.3 Human and DNN explanations

The example of iDX-DR shows that DNNs will become increasingly popular for decision making
in a clinical setting and will be allowed to determine treatment paths. Any wrong decisions by
the DNN models could result in high costs. Despite their ability to perform comparably with
clinicians, DNNs used in practice are black-box in nature owing to their complex architectures. By
default, these models cannot provide additional information on the cause of the decision to either a
clinician/technician operating the device or a patient who is interested in learning more about the
diagnosis. In order for the different stakeholders involved to gain more insights into the model’s
decision, it would be beneficial to provide “explanations” along with decisions. Explanations help
users to understand model behaviour (Fig. 1.4), diagnose model failures, identify biases that could
have possibly been picked up by the model from training data, enhance the trust of users on deep
learning models [42] and facilitate novel scientific discoveries [43]. Furthermore, the regulations
established by the European Union concerning the ethical use of Artificial Intelligence place a
significant emphasis on ensuring transparency of deep learning algorithms in high-risk scenarios
[44, 45].

An “explanation” is a common day-to-day phenomenon in human behaviour. According to Halpern
and Pearl, “the role of explanation is to provide the information needed to establish causation”
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Figure 1.4: Explanations for understanding model behaviour. a. For clinicians, it is hardly possible
to identify the gender of the subject from their retinal fundus images. b. CNN models, on the
other hand, can predict gender from fundus images with high accuracy. A BagNet [41] model can
provide explanations by highlighting the patches from the image which led to this decision. This
is similar to humans providing explanations by specifying the attributes that define a particular
class.
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Figure 1.5: Counterfactual reasoning by humans vs counterfactual explanations by a CNN model.
a. A clinician explains to another clinician why the color fundus photograph belongs to a subject
diagnosed with Diabetic Retinopathy by providing a counterfactual reasoning. In the reasoning, he
describes the features of Diabetic Retinopathy that appear on the fundus image. b. Explanation
provided by a CNN model. The model also receives as input the same image as in a. and produces
a visual counterfactual explanation. It shows how the image would have looked if it belonged to a
healthy subject. To achieve this, the model removes the features relevant to Diabetic Retinopathy
on the input image.
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[46]. Humans explain their actions and decisions on a regular basis in order to gain common
understanding and meaning, to resolve any contradictions or inconsistencies and to influence other’s
actions and beliefs [47]. The action or decision of interest is the explanandum, the person providing
the explanation is the explainer and the one who receives it is the explainee. Typically human
explanation involves two stages: the first stage occurs cognitively where the explainer uses his/her
mental model of the world and chooses the most relevant set of causes that led to the event. When
humans identify an object to a particular category, they think of the intrinsic properties of the
object as the cause which led to their decision [47, 48]. For instance, a doctor might explain a
patient’s condition by indicating the presence of lesions on the patient’s medical scan. Here, the
lesions constitute the properties of the disease. More often, however, humans derive the causes
for a decision or event through contrastive or counterfactual thoughts [47, 49, 50]. People tend to
explain the cause of an event by imagining an alternative event that did not occur. For example, in
a clinical setting, a doctor might explain why this patient was diagnosed with a certain condition
by mentioning how his/her data would have been different if he/she were healthy (Fig. 1.5). The
second stage in the process of explaining is a social process where the explainer communicates all
of the generated information from the cognitive process to the explainee [47]. Typically, the social
process occurs through natural language conversations and involves several exchanges of dialogues
between explainer and explainee till they arrive at a common understanding.

These qualities of human explanations provide a framework for explaining decisions of DNN mod-
els. We investigated two explainability methods that are closely connected to human explanation
processes for DNN models applied to various classification tasks in ophthalmology. In one method,
the DNN models highlight regions that played an important role in the prediction of a class
(Fig. 1.4). This is roughly equivalent to the specification of the inherent properties of the class by
humans as the DNN typically localizes the regions where it found the properties corresponding to
the class. The second method is based on generation of counterfactual examples which change the
model’s decision to one of the contrastive classes (Fig. 1.5). This method is in principle similar to
counterfactual reasoning by humans. Our methods are focused on Convolutional Neural Network
models specifically trained for visual tasks, devoid of any natural language elements. Consequently,
the outcome of the explanation process is exclusively visual and presented in the form of saliency
maps, image patches, or counterfactual explanations. Hence, in the context of DNNs the social
process unfolds through visual cues.

Independent of human behaviour, DNN explanations can also be classified based on their internal
mechanisms. One class of methods called “inherently interpretable” models introduce modifica-
tions to the architecture such that the final decision of the network is more interpretable. The
explanations from these models are in the form of saliency maps [41, 51], prototypes [52], con-
cepts [53] or local patches of the images which maximally contributed to the final decision of the
network [41, 53]. Another class of methods retain the highly complex model architectures and gen-
erate explanations in a post-hoc manner. The explanations generated from these methods could
be saliency maps [54, 55] or counterfactual explanations [56, 57]. In this work, we investigate an
inherently interpretable model called BagNet and a post-hoc explanation method that generates
counterfactual explanations.
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1.4 Outline

The rest of the Thesis is organized as follows. In Chapter 2 we will introduce the mathematical and
technical aspects of Convolutional Neural Networks, describe the various loss functions used for
their training and the metrics used for their evaluation. Here, we also discuss the different CNN
architectures used throughout this work. We follow this up with a description of the methods
used to achieve explainability from the Convolutional Neural Network models in Chapter 3. In
this chapter, we describe the methods and working principles of an inherently interpretable model
architecture called BagNets [41]. Then we define counterfactual explanations in the context of
CNN decisions. We present two methods used to generate counterfactual explanations: one which
relies solely on adversarially robust classifiers [58] and the other which uses both robust classifiers
and generative diffusion models [59]. Following this, we delve into applications in ophthalmology.
In Chapter 4, we present explanations using BagNets for gender classification from retinal fundus
images. In Chapters 5 and 6, we focus on counterfactual explanations for diagnostic tasks in
ophthalmology. In Chapter 5, we investigate a method for generating counterfactual explanations
using adversarially robust classifiers [56] for the task of detecting diabetic retinopathy from retinal
fundus images. The visual quality of the counterfactual explanations generated in Chapter 5 can
be improved by using diffusion models as shown in [57]. We investigate the effectiveness of this
method in generating realistic counterfactuals for medical tasks such detecting diabetic retinopathy
from retinal fundus images and detecting various retinal disorders from OCT scans in Chapter 6.
Finally, in Chapter 7, we conclude this thesis and discuss future directions of this research work.
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Chapter 2

Theoretical and mathematical
background

Since this work focuses on generating explanations for various medical classification tasks in oph-
thalmology, we will first provide a short description of how CNNs are generally used for image
classification tasks. Here, we will briefly describe the structure of CNN models, the significant
mathematical operations that drive the network, the loss functions and the evaluation metrics for
testing the model. Finally, we describe the core features of two CNNs architectures that we used
in this work namely the Inception-v3 model and the ResNet model.

2.1 Supervised classification with CNNs

We will consider K−class supervised classification tasks with data sets consisting of images x ∈ R
d

and associated labels ŷ ∈ {1, . . . ,K}. The CNN models learns an approximation of the mapping
between the images and their labels. To achieve this, the CNN first maps the images to a real-
valued K-length vector through a parameterized function fϕ(x) : Rd → R

K where ϕ is the set of
parameters that are estimated during the training phase. The values in this vector are commonly
referred to as “logits”. The final classification output y of the CNN model is the class which is
assigned the highest logit value:

ŷi = arg max
c∈{1,...,K}

fϕ(xi)c (2.1)

The input image passes through several layers in a CNN model and undergoes various transforma-
tions before it is mapped into the logit vector. The function fϕ is in fact a chain function of the
functions applied across the different layers of the CNN model [21]. Let fl denote the function at
layer l, then if the CNN has N layers then fϕ(x) = fN (fN−1(. . . f2(f1(f0(x))))). Depending on the
type of the layer, the function applied to the input varies. The two main types of layers in a CNN
are the convolutional layers and the pooling layers. The convolutional layer applies a convolution
to it’s two-dimensional input I:

F (i, j) =
∑

m

∑

n

I(m,n)Q(i−m, j − n) (2.2)

where Q is the convolution kernel and the values in the kernel belong to the set of learnable pa-
rameters ϕ. In practice, a single convolutional layer consists of M convolutional kernels and hence,
the output of the layer has M different channels corresponding to each kernel. A convolutional
layer is typically followed by a non-linear activation function such as the Rectified Linear Units
(ReLU) [60] which is a piecewise linear function:

ReLU(F (m,n)) = max{0, F (m,n)} (2.3)
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This is followed by a pooling layer which combines the values in a particular local neighborhood
by a summary statistic. One type of pooling is the max pooling layer which reduces the size of the
feature maps by replacing the values of a c × c local patch by the maximum value in this region.
For example, a 2 × 2 max pooling layer halves the width and height of the input feature channels.

Typically, these three operations of convolutions, activations and pooling is repeated several times
before the last layer. At the penultimate layer, the two dimensional feature maps are flattened to
obtain a single high-dimensional vector h with size H ranging from 512 to 2048.

This vector h is then passed through a fully-connected layer which results in the desiredK−dimensional
vector of logits:

fϕ(x) = WTh+ b (2.4)

where W ∈ R
H×K is a weight matrix and b ∈ R

K is the bias vector both of which are parameters of
the fully connected layer. The logits are then converted to class probabilities by applying different
activation functions for the binary and multi-class cases. The sigmoid function [21] is used when
the classification task is binary and is given by:

pϕ(yi = 1|xi) = Ã(fϕ(xi)) (2.5)

=
1

1 + exp(−fϕ(xi))
(2.6)

On the other hand, the softmax function [21] is used for multi-class classification tasks:

pϕ(yi = c|xi) = softmax(fϕ(xi))c (2.7)

=
exp(fϕ(xi)c)

∑K
j=1 exp(fϕ(xi)j)

(2.8)

2.2 Training and loss functions

During training, the parameters of the CNN model are fit such that it learns the mapping between
the images and their true labels provided in the data set. In order to obtain the best set of
parameters from all possible model configurations possible, a cost function or a loss function which
minimizes the error rates for the fitting task is chosen and optimized. Often, the chosen loss
function is not the same as the performance measure that is used to evaluate the model on the test
set but a function that is expected to improve the performance measure. The overall CNN loss
function is non-convex in nature due to the non-linearities which makes it difficult to estimate the
global minima. Hence, one usually finds a local minima with a very low value of the loss function.

To achieve this, the Stochastic Gradient Descent (SGD) [21] algorithm is used which updates the
weights by moving in the direction of gradients of the loss function with respect to the model
parameters. The updates occur in a step-by-step fashion with each step performing computations
on a mini batch of examples across the entire dataset. The rate of convergence can be tuned using
the learning rate hyperparameter. It is also possible to vary the learning rates with a schedule
across different epochs during training. Besides this, other update methods based on momentum
[21] and Nesterov momentum [61] could also be used to speed up convergence and obtain better
convergence guarantees.

CNNs like most modern deep learning models are trained using maximum likelihood principle [21].
This means that the loss function is simply the negative log-likelihood, equivalently described as
the cross-entropy between the training data and the model distribution:

J(ϕ) = −Ex,y∼pdata log pϕ(y|x) (2.9)

Therefore, in binary classification tasks where the sigmoid function (Eqn (2.6)) is used to estimate
class probabilities, the negative log likelihood function reduces to:
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J(ϕ) = − log pϕ(y|x) (2.10)

= − log Ã((2y − 1)fϕ(x)) (2.11)

For multiclass tasks, when the softmax function (Eqn (2.8)) is used, the loss function for a single
data point with ground truth label c reduces to:

J(ϕ)c = log softmax(fϕ(x))c (2.12)

= fϕ(x)c − log
∑

j

exp(fϕ(x)j) (2.13)

2.3 Testing and performance measures

During the testing phase, the model’s performance is evaluated on held-out data with examples
previously unseen by the model. The performance measure generally depends on the task carried
out by the model.

For classification tasks, accuracy [62] is the most commonly used performance measure. It is
defined in terms of the true labels ŷ and the predicted labels y as:

accuracy(ŷ, y) =
1

N

N−1
∑

i=0

I(ŷi = yi) (2.14)

where I is the indicator function and N denotes number of samples in the test set.

For classification in medical tasks where class imbalance in data sets is highly prevalent, other
performance measures such as the Receiver Operating Characteristic (ROC) curve and balanced
accuracy are also widely used.

Some of these performance measures rely on values in a matrix with rows corresponding to ground
truth labels and columns to predicted values. This matrix is called the confusion matrix [63] which
we will denote by C. Each element Cij of a confusion matrix denotes the number of observations
with ground truth label i and model prediction j. As an example, for a binary classification task,
the entry in C00 is the True Negatives (TN), C11 is True Positives (TP), C01 is False Positives
(FP) and C10 is the False Negatives (FN).

A Receiver Operating Characteristic [62, 63] is a two-dimensional curve with the true positive rate
on the y-axis and the false positive rate on the x-axis. The different points on the ROC graph
are obtained by varying the decision threshold of the model. The Area Under the ROC curve
(AUC) [62, 63] is a quantitative measure derived from the ROC curve which is used to compare
performances of different models.

For binary classification, balanced accuracy is defined based on entries of the confusion matrix [64]:

balanced-accuracy =
1

2

(

TP

TP + FN
+

TN

TN + FP

)

(2.15)

For multi-class classification with k classes, the class balanced accuracy is defined as follows:

balanced-accuracy =
1

k

k
∑

i

Cii
Ni

(2.16)

where Ni is the number of samples with ground truth label i [64].

Another popular metric for evaluating medical grading tasks, especially Diabetic retinopathy grad-
ing from retinal fundus images is the Cohen’s Kappa metric [65]. The kappa score is intended to
compare labels by different annotators and is a number between -1 and 1. Values f 0 as indicating
no agreement and 0.01−0.20 as none to slight, 0.21−0.40 as fair, 0.41−0.60 as moderate, 0.61−0.80
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as substantial, and 0.81 − 1.00 as almost perfect agreement [66]. Mathematically, Cohen’s Kappa
is defined as:

» =
po − pe
1 − pe

(2.17)

where po is the actual observed agreement and pe is the chance agreement.

The Kappa score has two variants: linearly weighted and quadratic weighted. As the disease
grading task is ordinal in nature, the quadratic variant is more suitable than the linear variant for
evaluating our models. In order to compute the quadratic weighted variant, first a weight matrix
Wk is defined where each element is given by:

Wk(i, j) =
(i− j)

2

(K − 1)
2 (2.18)

Then, a matrix of expected outcomes E is calculated assuming that there is no correlation between
the grades assigned by the clinicians in the data set and grades predicted by the CNN model. This
is equivalent to the outer product between the histogram vector of ground truth grades and the
histogram vector of predicted grades, normalized such that both E and the confusion matrix C
have the same sum. From these matrices Wk and E, the quadratic weighted Kappa » can be
calculated as:

» = 1 −
∑

i,j wijCij
∑

i,j wijEij
. (2.19)

In this work, we use the accuracy, Area under Receiver Operating Characteristic and the balanced
accuracy as performance measures for binary classification tasks. For multi-class classification
tasks, we use accuracy, balanced accuracy and the Cohen’s quadratic Kappa score as the perfor-
mance metric where applicable.

2.4 CNN architectures

We used different CNN architectures for the various classification tasks with ophthalmology data.
The Inception-v3 [5] architecture served as a baseline model for detecting gender from retinal
fundus images owing to the high AUC it achieved on this task [32]. The explainability of this
task was studied with a BagNet [41] model which is a variant of the ResNet [4] model. Other
classification tasks in this study include detection of referable Diabetic Retinopathy from retinal
fundus images, grading Diabetic Retinopathy stages and categorization of OCT scans into the
classes: normal, choroidal neovascularization, drusen and diabetic macular edema. For all these
tasks, we used the ResNet-50 architecture. Below we describe the main features of the Inception-v3
and ResNet architectures.

2.4.1 Inceptionv3

The Inception or the GoogLeNet model [19] from Google won the ImageNet Large Scale Visual
Recognition challenge (ILSVRC) [67] in the year 2014. The GoogLeNet architecture introduced an
Inception module which significantly reduced the size and computational costs of deep networks.
For example, this model had 15 times fewer parameters than the AlexNet model. The inception
modules consisted of parallel paths of computation of various filter sizes including 1 × 1, 3 × 3
and 5 × 5 filters. It also contained a path with a pooling layer. Furthermore, the module used
bottleneck layers of 1 × 1 convolutions in order to reduce the number of channels and subsequently
the number of parameters in the layers that followed the bottleneck layers. Additionally, the
network eliminated a large number of parameters by using an average pooling instead of fully
connected layer at the top. The Inception-v3 model [5] was a follow-up of the original Inception
model. This model further improved the computational efficiency by introducing modifications
to the original Inception module such as factorizing convolutions into smaller convolutions and
factorizing convolutions to asymmetric convolutions.
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2.4.2 ResNet

In 2015, deep Residual Network, popularly known as ResNet [4], won the ILSVRC [67] challenge.
This architecture divided the network into several blocks called the residual blocks R and intro-
duced skip connections between these blocks. Each residual block is composed on convolutional
and pooling layers. The residual block takes an input i and learns the residue R(i). The skip con-
nection concatenates the input with the residue to pass on i+R(i) as input to the next block. The
skip connections have been found to be effective in addressing the drawback of vanishing gradients
in several deep architectures. The architecture also relies on a heavy use of batch normalization.
Similar to Inception architectures, this network also eliminates the fully connected layers at the
top. ResNets are the most commonly used networks and default choice of CNNs in most vision
applications.
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Chapter 3

Explaining CNN decisions

In this work, we investigated the applicability of two different explainability approaches to vari-
ous classification tasks in ophthalmology using retinal fundus and optical coherence tomography
images. One class of methods uses specialized model architectures called BagNets [41] which are
adapted to provide explanations in addition to decision probabilities. This method is discussed in
detail in Section 3.1. This section is based on the methods used in [68]. Another class of methods
rely on the generation of counterfactual explanations [56] that visualize the features that the clas-
sifier found to be most important for a given target class by introducing minimal changes on an
input image to alter the decision of the classifier to the target class. We will describe two methods
to generate counterfactual explanations in Section 3.2. These sections are based on the methods
of [69] and [70].

3.1 BagNet based explanations

BagNets[41] are a bag-of-features image classification model which view an image as a collection
of local patches or visual words. The final decision of the model is then obtained by aggregating
the occurrence of patches which contain features that are essential to the classification task. The
BagNet model does not require an explicit splitting of images into patches. Instead it modifies
the ResNet[4] architecture to restrict the field of view such that the penultimate layer implicitly
outputs the feature representation of fixed-size local patches on the image. Concretely, the 3 × 3
filters in some of the convolutional layers are replaced by 1 × 1 filters so that the receptive field
size at the final layer is q × q where q ∈ {9, 17, 33}. For example, when only 5 convolutional
layers consist of 3 × 3 filters across all blocks in the ResNet architecture, the receptive field at the
penultimate layer is 33 × 33. The penultimate layer is 2048 dimensional, hence with a stride of 8
between 33 × 33 patches there are a total of 24 × 24 feature vectors corresponding to each patch.
At the final layer, these features are average pooled to obtain a single 2048 dimensional vector for
the complete image which is then passed to a linear dense layer to produce the final classification
logits.

Since the operations between the penultimate layer until the final logits in a BagNet architecture
are linear, they can be readily swapped without changing final output. When the BagNet is used
for explaining decisions, the 2048-dimensional feature vectors of all patches can be individually
passed through the dense layer to produce a logits for each patch which determines the weight
of this patch in the final classification decision. The weights of all the patches can be aggregated
to final classification decision. This swapping of operations allows to generate visualizations in
the form of heat maps which highlight the contribution of each local patch of size q to the final
decision. Further analysis of these patches and their logit values through visualization methods
such as t-Stochastic Neighborhood Embedding (t-SNE) and density plots can further enable to
globally understand the important features for each class over the entire dataset.
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3.2 Counterfactual Explanations

Visual counterfactual explanations (VCEs) are minimal, realistic and high-confidence changes to
an image x0 by which a classifier’s prediction can be altered to a desired target class [56]. They
show what features are important for the classifier to change the decision to a particular class, and
hence provide insights into what is learned by the classifier.

In this section we will describe two methods for generating visual counterfactual explanations which
rely on using models that are robust to adversarial attacks. The first method solely uses gradients
of an adversarially robust classifier with respect to the input image to generate counterfactuals.
Since the generative capabilities of a classifier are typically limited and it cannot by itself generate
realistic counterfactuals, the second method relies on a diffusion model [71] to achieve realism.
In order to generate diffusion counterfactuals, the reverse diffusion process is modified such that
classifier gradients contribute to this process and guide the diffusion model towards producing
counterfactuals in the desired class [57].

We will first discuss plain and adeversarially robust classifiers in Section 3.2.1 and then introduce
the Sparse Visual Counterfactual Explanations (SVCEs) in Section 3.2.2 We will briefly discuss
about diffusion models in Section 3.2.3 before we introduce Diffusion Visual Counterfactual Ex-
planations (DVCEs) in Section 3.2.4.

3.2.1 Plain and adversarially robust classifiers

The changes that are introduced on a input image to generate a counterfactual explanation are
based on the gradients of the classifier with respect to the input image or pseudo reconstructions
of the input image. A plain classifier does not have gradients that are perceptually aligned with
the features of a particular class and could result in counterfactual explanations that look visually
similar to the original image when the changes are constrained to be minimal. In contrast, the
gradients of adversarially robust models have strong generative properties and are more effective
in generating meaningful features for a target class [72, 57] despite being subjected to a constraint
for producing minimal changes.

This property of adversarially robust models can be attributed to their training procedures which
expose them to adversarial attacks. Consider a K-class classifier fϕ with parameters ϕ, logits
fϕ(x) ∈ R

K and output probabilities pϕ(c|x) ∈ [0, 1]K where x ∈ R
d is the input to the classifier

and c ∈ {1, . . . ,K}. A targeted adversarial attack adds imperceptible perturbations to a starting
image x0 which changes the decision of the classifier from the correct class to a target class k.
More precisely, an ℓp targeted adversarial attack for fϕ at x0 produces a sample x, such that

arg max
c∈{1,...,K}

fϕ(x)c = k, x ∈ [0, 1]d ∩Bp(x0, ε). (3.1)

where Bp(x0, ε) := {x̂ ∈ R
d| ∥x0 − x̂∥p f ε} is an ℓp ball around the original image x0 with radius

ε. One usually maximizes a surrogate loss L for this:

arg max
x∈[0,1]d∩Bp(x0,ε)

L(fϕ(x), k). (3.2)

To defend the classifier fϕ empirically against such attacks, one can perform adversarial training. A
well-known and commonly used algorithm for this is TRADES [58]. Its loss function incorporates
a term for the adversarial examples in addition to the standard cross-entropy loss:

1

n

n
∑

i=1

[

− log
(

pϕ(yi|xi)
)

+ ´ max
x∈B2(xi,ε)

DKL

(

pϕ(·|x) || pϕ(·|xi)
)]

, (3.3)

where DKL denotes the Kullback-Leibler divergence and ´ controls the trade-off between adver-
sarial and plain training schemes. In our experiments, we set ´ to 6 [73, 58]. This process results
in a classifier fÈ which is robust to adversarial perturbations. Plain classifiers fϕ, on the other
hand, are not robust to adversarial attacks and corresponds to training with only the cross-entropy
loss i.e. ´ is 0.
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3.2.2 Sparse Visual Counterfactuals

Generating Sparse Visual Counterfactuals (SVCs) requires an adversarially robust classifier [56]
or at least an ensemble of plain and adversarially robust classifiers [69]. Sparse counterfactuals
are computationally similar to adversarial examples but conceptually different from them due to
the fact that sparse counterfactuals show meaningful changes that are relevant to the target class
instead of the imperceptible noise added to original examples.

For generating sparse counterfactuals, we used the log probability of the target class as a surrogate
loss function (Eqn. (3.2)):

L(fÈ(x), y) = − log pfψ (y|x) (3.4)

The sparsity and degree of realism of the generated counterfactuals can be controlled by changing
the norm used for defining the constrained set Bp(x0, ε). Depending on the norm, either the
adaptive projected gradient descent (APGD) [74] and the Frank-Wolfe [75, 76] based schemes can
be used as optimizers. APGD requires projections onto ℓp-balls which are available in closed form
for ℓ2 and ℓ∞ or can be computed efficiently for ℓ1 [77]. However, for p /∈ {1, 2,∞}, there is no
such projection available and the Auto-Frank-Wolfe (AFW) algorithm [56] was used to solve the
optimization and generate sparse counterfactuals.

3.2.3 Diffusion Models

Diffusion models are generative image models that yield high-quality and realistic images as a
result of two processes [59, 71]: forward diffusion and reverse diffusion. Forward diffusion is a
Markov chain that gradually adds Gaussian noise to a starting image x0:

q(xt|xt−1) = N (xt;
√

1 − ´txt−1, ´tI) , (3.5)

where t ∈ {1, . . . , T}, ´t denotes a noise schedule such that q(xT |x0) ≈ N (xT ; 0, I). Given x0, the
noisy images at any time step t can be also expressed in closed form:

xt =
√
³tx0 +

√
1 − ³tϵ , ϵ ∼ N (0, I), (3.6)

where ³t =
∏t
s=1(1 − ´s).

Then, in the reverse diffusion process, the posterior q(xt−1|xt, x0), when conditioned on x0, can
be estimated using the Bayes Theorem [78]. The unconditioned posterior q(xt−1|xt) is, however,
intractable and has to be approximated by a parameterized distribution p¹(xt−1|xt):

p¹(xt−1|xt) = N (xt−1;µ¹(xt, t),Σ¹(xt, t)). (3.7)

The mean and diagonal covariance of this distribution are predicted by DNNs denoted by µ¹(xt, t)
and Σ¹(xt, t), respectively. Briefly, these models are trained by optimizing a simplified loss function
derived from the Variational Lower Bound (VLB) of the negative log likelihood − log p¹(x0). The
simplification involves learning the residual noise ϵ¹(xt, t) at each time step and then expressing
the mean µ¹(xt, t) in terms of ϵ¹(xt, t). Σ¹(xt, t) is modeled as an interpolation between ´t and
˜́
t = 1−³t−1

1−³t
´t using a vector v that is output by the DNN. For further details about the loss

functions and training, see [71]. Using µ¹(xt, t) and Σ¹(xt, t), one can generate images from
the data distribution p(x) by starting with a sample from the standard normal distribution and
iteratively reconstructing less noisy images at previous time steps from the current noisy image at
time step t.

The sampling procedure from Eqn. (3.7) results in unconditional samples from p(x) whereas coun-
terfactuals must belong to a specified target class, thus requiring conditional sampling from p(x|y).
Classifiers can be used to drive diffusion models towards producing realistic images that belong
to a desired class [71, 79, 80]. More specifically, the gradients of a classifier with respect to the
image shift the mean of the reverse transitions (Eqn. (3.7)) to guide the diffusion model in the right
direction.
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3.2.4 Diffusion Visual Counterfactuals

Here, we describe how to produce realistic Diffusion Visual Counterfactuals (DVCs). Following
[57], we combined an unconditionally trained diffusion model p¹ as described in Section 3.2.3 with
an independently trained classifier fϕ (see Section 3.2.1) so that the diffusion model can generate
class-conditional samples.

In general, classifiers used in conjunction with diffusion models for conditional sampling are noise-
aware, i.e., they are trained on noisy images which occur at various time steps in the diffusion
process [71]. Consequently, the input to these classifiers includes the time step t ∈ {1, ..., T} at
which the image xt ∈ R

d occurred. Since our classifiers are not noise-aware or time-dependent,
that is to say the inputs are only the images x ∈ R

d, we use an estimation of x0 from a given
noisy sample xt as input to the classifier. We denote this estimated x0 by x0,dn(xt, t) and following
Eqn. (3.6) it can be expressed as:

x0,dn(xt, t) → xt√
³̄t

−
√

1 − ³̄tϵ¹(xt, t)√
³̄t

, (3.8)

where ϵ¹(xt, t) can be calculated as a function of the mean µ¹(xt, t) [71]. The reverse process
transitions of a diffusion model guided by an external classifier which is not noise-aware are given
by:

p¹,ϕ(xt−1|xt, y) = Zp¹(xt−1|xt)pϕ(y|x0,dn(xt, t)) (3.9)

where Z is a normalization constant. Exact sampling from this distribution is intractable, however,
it can be approximated by a Gaussian distribution in a way similar to the unconditional reverse
transitions (Eqn. (3.7)) but with shifted mean [71][57].

p¹,ϕ(xt−1|xt, y) = N (µt,Σ¹(xt, t)), (3.10)

µt = µ¹(xt, t) + Σ¹(xt, t)∇xt log pϕ(y|x0,dn(xt, t)) (3.11)

The shift in the mean depends on the gradients of the external classifier which guide the diffusion
model to generate images in a specified target class This, however, does not ensure that the gen-
erated image will stay close to the original image x0 in pixel space, which is one of the qualifying
factors for realistic visual counterfactuals. Therefore, to obtain a counterfactual from p(x|y) that
remains structurally close to the original image, x0, we find it beneficial to add a distance regular-
ization term to Eqn. (3.11). To maintain consistent parameters ¼c, ¼d across different images, an
adaptive parameterization, as discussed in [57], is important. This adaptation changes the mean
of the transition kernel to:

µt = µ¹(xt, t) + Σ¹(xt, t) ∥µ¹(xt, t)∥2 ΓDVC, (3.12)

ΓDVC = ¼c
∇xt log pϕ(y|x0,dn(xt, t))

∥∇xt log pϕ(y|x0,dn(xt, t))∥2

− ¼d
∇xtd(x0, x0,dn(xt, t))

∥∇xtd(x0, x0,dn(xt, t))∥2

(3.13)

As a further measure to avoid generating images that deviate too much from the original, we
start the reverse of the diffusion process from the noisy image at step T

2 instead of the completely
distorted version of the image at the last step T [57]

In Eqn. (3.13), the plain model fϕ can also be replaced by the adversarially robust model fÈ. While
adversarially robust models have stronger generative properties, they suffer from a considerable
drop in accuracy compared to plain models. Hence, it would be advantageous to explain a plain
model with better performance while also utilizing the stronger gradients of the robust model. To
achieve this, we project the gradients of the adversarially robust model ∇xt log pÈ(y|x0,dn(xt, t))
onto a cone centered around the gradients of the plain model ∇xt log pϕ(y|x0,dn(xt, t)). This
procedure is called cone projection [57] and it is done by changing ΓDVC in Eqn. (3.13) to

ΓDVC = ¼c
Γcone

∥Γcone∥2

− ¼d
∇xtd(x0, x0,dn(xt, t))

∥∇xtd(x0, x0,dn(xt, t))∥2

, (3.14)

where
Γcone = Pcone(³,∇xt

log pφ(y|x0,dn(xt,t))

[

∇xt log pÈ(y|x0,dn(xt, t))
]

, (3.15)

¼c and ¼d are positive constants and ³ is the angle of the cone, which we set to 30◦ following [57].

26



Chapter 4

Interpretable gender classification
from retinal fundus images using
BagNets

Author Author
position

Scientific
ideas %

Data % Analysis and
interpretation

%

Paper
writing

%
Indu Ilanchezian 1 20 80 60 60
Dmitry Kobak 2 20 0 10 10
Hanna Faber 3 0 10 5 0
Focke Ziemssen 4 0 10 5 0
Philipp Berens 5 30 0 10 10
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4.1 Abstract

Deep neural networks (DNNs) are able to predict a person’s gender from retinal fundus images
with high accuracy, even though this task is usually considered hardly possible by ophthalmologists.
Therefore, it has been an open question which features allow reliable discrimination between male
and female fundus images. To study this question, we used a particular DNN architecture called
BagNet, which extracts local features from small image patches and then averages the class evidence
across all patches. The BagNet performed on par with the more sophisticated Inception-v3 model,
showing that the gender information can be read out from local features alone. BagNets also
naturally provide saliency maps, which we used to highlight the most informative patches in fundus
images. We found that most evidence was provided by patches from the optic disc and the macula,
with patches from the optic disc providing mostly male and patches from the macula providing
mostly female evidence. Although further research is needed to clarify the exact nature of this
evidence, our results suggest that there are localized structural differences in fundus images between
genders. Overall, we believe that BagNets may provide a compelling alternative to the standard
DNN architectures also in other medical image analysis tasks, as they do not require post-hoc
explainability methods.

4.2 Introduction

In recent years, deep neural networks (DNNs) have achieved physician-level accuracy in various
image-based medical tasks, e.g. in radiology [81], dermatology [82], pathology [83] and ophthalmol-
ogy [29, 34]. Moreover, in some cases DNNs have been shown to have good performance in tasks
that are not straightforward for physicians: for example, they can accurately predict the gender
from retinal images [32]. As this task is typically not clinically relevant, ophthalmologists are not
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Figure 4.1: A sketch of the gender prediction via BagNet33. (a) Example fundus image from the
UK Biobank. The optic disc is the bright spot on the right, the macula is the slightly darker
spot in the middle and the blood vessels are extending from the optic disc in darker red. (b)
The BagNet33 extracts 2048-dimensional feature vectors from 33 × 33 patches and stores them
in the penultimate layer. Via spatial average pooling and a linear classifier, it then forms the
final predictions for the gender. The same linear classifier can be applied directly to the feature
representation in the penultimate layer to compute the local evidence, which can be visualized as
a saliency map. Plotted with PlotNeuralNet [20].

explicitly trained for it. Nevertheless, the comparably poor performance of ophthalmologists at
this task suggests that gender differences in fundus images are not obvious or salient. Even though
saliency maps used by [32] and follow-up studies [84, 85] have tentatively pointed at the optic disc,
the macula, and retinal blood vessels as candidate regions for gender-related anatomical differences
in fundus images, conclusive evidence is still lacking. Therefore the high gender prediction per-
formance of DNNs has created lots of interest in the medical imaging community as one hope for
DNNs is to unravel biomarkers that are not easily found by humans. Here, we performed a proof of
principle study to make progress on the question of how DNNs are able to detect gender differences
in retinal fundus. Our contribution is twofold: we (1) introduced BagNets [41] — a ‘local’ variant
of the ResNet50 architecture [4] — as an interpretable-by-design architecture for image analysis in
ophthalmology and (2) used them to narrow down the hypothesis space for question at hand.

We trained the BagNets on a large collection of retinal fundus images obtained from the UK
Biobank [86] (Fig. 4.1a). BagNets use a linear classifier on features extracted from image patches
to compute local evidence for each class, which is then averaged over space to form the final
prediction, without considering any global relationships. Thus, BagNets resemble ‘bag-of-features’
models popular before deep learning [87]. Despite this simple bag-of-features approach, the BagNet
performed on par with an Inception-v3 network in terms of gender prediction accuracy, indicating
that gender can be determined from the local characteristics of the fundus image. Also, the BagNet
architecture naturally allowed to construct saliency maps to highlight the most informative regions
for gender prediction in the retina (Fig. 4.1b). We found that the macula contained most distinctive
female patches, while the optic disk contained male ones. In addition, we showed that the decision
of the BagNet was not simply caused by some exclusively female or male patches in the images,
but rather by a change in both frequency and the degree of ‘femaleness’ or ‘maleness’ of individual
patches. Overall, we argue that BagNets can be useful in medical imaging applications including
both disease diagnosis and biomarker discovery, thanks to interpretability provided by their local
architecture. Our code is available at https://github.com/berenslab/genderBagNets.

4.3 Related Work

Previous work on gender prediction from fundus images have used either standard DNN archi-
tectures or simple logistic regression on top of expert-defined features. For example, [32] trained
Inception-v3 networks on the UK Biobank dataset to predict cardiovascular risk factors from fundus
images and found that DNNs were also capable of predicting the patient’s gender (AUC = 0.97).
A similar network was used by [84]. In both studies, the authors computed post-hoc saliency maps
to study the features driving the network’s decisions. In a sample of 100 attention maps, [32] found
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Table 4.1: Gender prediction performances of DNNs

Training Validation Test Clinical

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

InceptionV3 92.99 0.98 83.87 0.92 82.97 0.91 62.07 0.78
BagNet33 93.44 0.98 85.48 0.93 85.26 0.93 72.41 0.70
BagNet17 86.66 0.94 82.30 0.90 82.11 0.90 37.93 0.51
BagNet9 82.41 0.92 79.95 0.89 80.57 0.90 41.38 0.45

that the optic disc, vessels, and other nonspecific parts of the images were frequently highlighted.
However, this seems to be the case for almost all the dependent variables and it is very hard to de-
rive testable hypotheses for gender specific differences. Likewise, [84] manually inspected a sample
of occlusion maps and concluded that DNNs may use geometrical properties of the blood vessels
at the optic disc for predicting gender. More recently, [85] demonstrated that DNNs can predict
gender not only from retinal fundus images but also from OCT scans, where the foveal pit region
seemed most informative based on gradient-based saliency maps. Taking a different approach, [88]
used expert-defined image features in a simple logistic regression model. Although the performance
of their model was worse (AUC = 0.78), they found various color-intensity-based metrics and the
angle between certain retinal arteries to be significant predictors, but most effect sizes were small.

BagNets provide a compromise between linear classifiers operating on expert-defined features [88]
and high-performing DNNs [32, 84, 85], which require complex post-hoc processing for inter-
pretability [89, 90]. In BagNets, a saliency map is also straightforward to compute by design, and
it has been shown to provide more information about the location of class evidence than aux-
iliary interpretability methods [41]. Such native evidence-based maps returned by BagNets are
interpretable as is, while standard saliency maps require fine-tuning and post-processing for com-
pelling visualizations [90]. Thanks to these benefits, BagNets have also been used in the context
of histopathological microscopy [91].

4.4 Methods

4.4.1 Data and preprocessing

The UK Biobank [86] offers a large-scale and multi-modal repository of health-related data from
the UK. From this, we obtained records of over 84, 000 subjects with 174, 465 fundus images from
both eyes and multiple visits per participant. Male and female subjects constituted 46% and 54%
of the data, respectively. As a substantial fraction of the images were not gradable due to image
quality issues (artefacts, high contrast, or oversaturation), we used the EyeQual networks [33] to
filter out poor images. 47, 939 images (47% male, 53% female) passed the quality check by the
EyeQual ensemble. We partitioned them into the training, validation and test sets with 75%, 10%
and 15% of subjects, respectively, making sure that all images from each subject were allocated to
the same set.

Additionally, we obtained 29 fundus images from patients (11 male, 18 female, all older than 47
years) at the University Eye Hospital with permission of the Institutional Ethics Board. We used
these additional images as an independent test set. For all images, we applied a circular mask to
capture the 95% central area and to remove camera artifacts at the borders.

4.4.2 Network architecture and training

We used BagNets [41] (Fig. 4.1b) and standard Inception-v3 [5] network as implemented in Keras
[92]. In a BagNet, neurons in the final layer have a receptive field restricted to q × q pixels, where
we used q ∈ {9, 17, 33}. The convolutional stack in the network extracts a 2048-dimensional feature
vector for each q×q image patch. Patches were implicitly defined, with a stride for convolutions of
8 pixels for q = 33. Therefore local features were extracted for each patch on a 24 × 24 grid (Fig.
4.1b). A linear classifier combined these 2048 features to obtain the local class evidence which was
then averaged across all image patches (average pooling layer).
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Figure 4.2: Saliency maps obtained by BagNet showing class evidence for each of the image patches
on a 24 × 24 grid. Top row shows exemplary test images along with their saliency maps. Middle
row shows the average saliency maps for correctly classified male and female patients. Bottom row
shows the average fundus images corresponding to the middle row.

All networks had been pretrained on ImageNet [67] by their respective developers. For our binary
classification problem, we replaced the 1000-way softmax output layer with a single logistic output
neuron (Fig. 4.1b). We initially trained only the output layer using the fundus images for 10 epochs.
This was followed by fine-tuning all layers for 100 epochs. We used stochastic gradient descent
(SGD) with the learning rate set to 0.01 and the batch size to 16. We used data augmentation
via random rotations and flips, width and height shifts, random brightness, and random zooming
operations. We picked the best epoch from the [95, 100] range based on the validation performance.
We evaluated the final performance on both the test set and the data from the University Eye
Hospital.

4.4.3 Generation of saliency maps

To compute saliency maps, we applied the weights w in the final classification layer of BagNet33 to
the feature vectors, e.g. x, in its penultimate layer (Fig. 4.1b), yielding the local evidence (logits)
for each patch via w · x =

∑

i wixi. We clipped the resulting values to [−75, 75] for visualization
purposes. The resulting saliency maps were 24 × 24 (Fig. 4.2).

4.4.4 Embedding of image patches

To explore which image patches were informative for classification, we used t-Stochastic Neigh-
borhood Embeddings (t-SNE) [93], a non-linear dimensionality reduction method. To embed the
feature representations of >1, 000, 000 image patches extracted from the fundus images, we used
FIt-SNE implementation [94] with uniform affinity kernel in the high-dimensional space across 15
nearest neighbours. We used PCA initialization to better preserve the global structure of the data
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Figure 4.3: Visualization of image patches and associated class evidence via t-SNE. 213,696 patches
extracted from 371 correctly classified test images (using training set images yielded a similar
embedding; not shown). Four patches with high evidence (two male, two female) are shown from
each of the four highlighted clusters. The fraction of male patches in each of these clusters is given
below the corresponding exemplary patches. The colors show the logit class evidence. Note that
the color does not indicate the correct label of each patch.

and improve the reproducibility [95]. We used a heavy-tailed kernel k(d) = 1/(1 + d2/³)³ with
³ = 0.5 to emphasize cluster structure [96].

4.5 Results

We trained BagNets with three different receptive field sizes to predict patient’s gender from retinal
fundus images based on the UK Biobank data. We evaluated their performances using prediction
accuracy and the Area Under the Receiver Operating Characteristic curve (AUC) and compared
to an Inception-v3 network (Table 4.1). BagNet33 and Inception-v3 performed on par with each
other, while BagNet17 and BagNet9 performed worse. BagNet33 and Inception-v3 also generalized
better to a new clinical dataset, albeit with a substantial drop in performance. Together, this
suggests that the 33 × 33 patches captured the relevant information for gender prediction better
than smaller patches. Thus, for the remainder of the paper, we will focus our analysis on the
BagNet33 (referring to it simply as BagNet).

We inspected saliency maps for gender prediction computed by evaluating the classifier on each
feature representation in the penultimate layer (Fig. 4.2, top). In a typical male example, we found
that the optic disc provided high evidence for the male class, along with more scattered evidence
around the major blood vessels. For a typical female example, high evidence was found for the
female class in the macula. Averaging the saliency maps across all correctly classified male/female
test images confirmed that the BagNet relied on the optic disc and the blood vessels to identify
male images and on the macula to identify female ones (Fig. 4.2, middle).

Interestingly, the individual and the average saliency maps also showed that the optic disc patches
tended to always provide male evidence, to some extent even in correctly classified female images.
Similarly, the macula patches tended to provide female evidence, even in correctly classified male
images. The BagNet could nevertheless achieve high classification performance after averaging the
class evidence across all patches.

As a sanity check, we show the averaged fundus images across all correctly classified male/female
images in the bottom row of Fig. 4.2. These average images are nearly identical across genders,
demonstrating that it is not the location, the size, or the shape of the optic disc or macula that
drive the BagNet predictions.

To further explore the structure of local image features informative about gender, we embedded
the 2048-dimensional feature representation of each image patch into 2D using t-SNE and colored
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Figure 4.4: Two factors determine the gender predictions of the BagNet: the maximal strength of
evidence and the frequency of strong evidence. (a) Kernel density estimate of all male (red) and
female (blue) test set images. Horizontal axis: fraction of male patches, defined as having logit
values above 50. Vertical axis: the absolute logit value of the most male patch. (b) The same for
patches providing female evidence (logit values below −50).

them by the provided class evidence (Fig. 4.3). We found that most image patches provided only
weak evidence for either class, but some distinct clusters of patches had consistently high logits.
We further explored these clusters and found that they consistently showed the optic disk with
blood vessels (a and c) or the macula (b and d), in line with the saliency maps computed above
(Fig. 4.2). However, even though the clusters a and b consistently provided evidence for the male
class, patches in these clusters occurred in true female and male fundus images alike (67% and
62% patches from male images, respectively). Similarly, clusters c and d provided evidence for the
female class but yet came from male and female fundus images (39% and 45% patches from male
images, respectively).

This raised the question of whether the BagNet’s decisions were mostly driven by (i) male/female
images having individual patches with stronger male/female evidence; or (ii) male/female images
having a larger number of patches with male/female evidence (Fig. 4.4). We found that both
factors played a role in determining the final gender predictions, but the fraction of male/female
patches seemed to be a stronger factor: Cohen’s d = 1.82 and d = 1.63 for the difference in fraction
of male (logit value >50) and female (logit value < −50) patches between genders, vs. d = 0.77
and d = 0.76 for the difference in the logit value of the most male and the most female patch.
Thus, female images contained more patches providing strong female class evidence, and vice versa
for male fundus images.

4.6 Discussion

In summary, we argued that the BagNet architecture is particularly suitable for medical image
analysis, thanks to its built-in interpretability. Here we used BagNets to investigate the high accu-
racy of DNNs in gender prediction from retinal fundus images. BagNet33 achieved a performance
similar to Inception-v3 despite having a much simpler architecture and using only local image
features for prediction. This suggested that local features are sufficient for gender prediction and
the global arrangement of these features is not essential for this task.

In BagNets, saliency maps can be readily computed without auxiliary gradient-based methods or
layer-wise relevance propagation [89]. We used the native saliency maps of BagNets and a two-
dimensional t-SNE embedding of image patches to identify the most informative regions for the
gender prediction task in fundus images. This allowed us to go beyond the previous reports [32,
84] and for the first time to provide conclusive evidence that the optic disk region contains features
used to inform a male prediction and the macula region for a female prediction. We found that
both the frequency of informative male/female patches and — albeit to a lesser degree — the
strength of the most informative male/female patches were important factors for gender prediction
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by BagNets.

It is, however, not the case that the optic disc in males is substantially larger than in females, as
can be seen in the average fundus images shown in Fig. 4.2. The relative optic disc and macula
sizes, shapes, brightness levels, etc. seem all to be roughly the same for both genders. Instead, our
results suggest structural but localized differences in the male and female retinas, mainly within the
optic disc and macula regions. This is supported by the previous findings showing that the retinal
nerve fibre layer in the optic disk is slightly thicker in females [97] and that the macula is slightly
thinner [85] and wider [98] in females. However, these previously reported gender differences have
small to moderate effect sizes (Cohen’s d = 0.11, d = 0.52, and d = 0.17 respectively for the
comparisons referenced above; computed here based on reported means and standard deviations)
and it is unclear if they alone can explain the BagNet performance.

Therefore, future work is needed to understand what exactly it is that allows the network to assign
high male evidence to the optic disc patches from male patients and high female evidence to the
optic disc patches from female patients. In this sense, the results presented here do not provide
the final solution to the gender prediction mystery. Nevertheless, we believe that our results make
a step in the right direction as they demonstrate structural but localized gender differences and
reduce the problem complexity down to specific small patches of the fundus image that can be
further analyzed separately.

We believe that BagNets may also be more widely applicable for clinically relevant diagnostic
tasks involving medical images in ophthalmology and beyond, provided that they are coupled with
reliable uncertainty estimation [99]. In many cases, pathologies often manifest in localized regions,
which can be readily picked up by BagNets. For example, BagNets could be used to further
explore clinically relevant changes underlying progressive diseases such as diabetic retinopathy.
The interpretable architecture of BagNets may increase the trust of clinicians and patients, which
is a critical issue for adoption of deep learning algorithms in medical practice [42].
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5.1 Abstract

In medical image classification tasks like the detection of diabetic retinopathy from retinal fundus
images, it is highly desirable to get visual explanations for the decisions of black-box deep neural
networks (DNNs). However, gradient-based saliency methods often fail to highlight the diseased
image regions reliably. On the other hand, adversarially robust models have more interpretable
gradients than plain models but suffer typically from a significant drop in accuracy, which is
unacceptable for clinical practice. Here, we show that one can get the best of both worlds by
ensembling a plain and an adversarially robust model: maintaining high accuracy but having
improved visual explanations. Also, our ensemble produces meaningful visual counterfactuals
which are complementary to existing saliency-based techniques. Code is available under https:

//github.com/valentyn1boreiko/Fundus_VCEs.

5.2 Introduction

In many medical domains, deep learning systems have been shown to perform close to or even bet-
ter than domain experts in detecting disease from images [100]. For clinicians and patients to trust
such systems in practice, they need to be interpretable [101, 42]. Current techniques for interpret-
ing model decisions, however, have critical shortcomings. For instance, post-hoc interpretability
techniques such as saliency maps are often used to generate explanations for a classifier’s decision.
These have been evaluated for clinical relevance, e.g. in ophthalmology [102, 103, 104], with some
methods producing more meaningful visualizations than others. As DNNs can rely on spurious
features and are not necessarily learning all class-relevant features [105, 106], saliency maps may
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Model Orig.(GT:DR) T-GBP T-IG l1.5-VCE, ϵ=30 T-VSM

Plain

DR:1.00 0.10 0.12 →DR: 1.00 0.10

Robust

DR:0.99 0.19 0.20 →DR: 1.00 0.20

Ensemble
(proposed)

DR:1.00 0.20 0.22 →DR: 1.00 0.21

Figure 5.1: Visual explanations of decisions are better for robust and ensemble models than for
plain models, as shown by intersection over union (IoU) between saliency maps (P) and ground

truth (GT) masks (IoU(P,GT ) := |P∩GT |
|P∪GT | ) (in bold). We show an image correctly classified as DR

(left), post-hoc explanations for the decision using thresholded Guided Backprop (T-GBP), Inte-
grated Gradients (T-IG) and visual counterfactual examples (VCEs) for enhancing the classifiers’
confidence into DR as well as the corresponding saliency map: thresholded VCE Saliency Map
(T-VSM). Numerical evaluation of these maps in comparison to the ground truth segmentation
can be found in Tab. 5.2.

also have limited usefulness in clinical settings [107, 104]: for standard classifiers they sometimes
just highlight high-frequency components of an image [103]. Especially for healthy cases, these are
often hard to interpret during screening for timely intervention.

Interestingly, models trained to provide inherent robustness against adversarial attacks [108, 74],
have also been shown to yield better saliency maps [109, 110]. Also, these robust models allow
to generate visual counterfactual explanations (VCEs) [111, 56], an alternative image-wise inter-
pretability technique that shows the minimal changes necessary to maximize the confidence of the
classifier in a desired class (Fig. 5.1). But, the gain of these models in adversarial robustness comes
at the price of a loss in accuracy [112, 113] which is unacceptable especially in medical applications.
Thus, adversarially robust models have not seen widespread use in practice.

Here we show that an ensemble of a plain and an adversarially robust model yields improved
saliency maps and allows for the computation of VCEs to further explore the basis of the model’s
decision. Further, it achieves almost the same accuracy as the plain model. We demonstrate this
new approach to explainability for medical image classifiers for the case of diabetic retinopathy
(DR) detection from retinal fundus images and propose a new type of the saliency map.

5.3 Methods

5.3.1 Datasets

We used three publicly available datasets of retinal fundus images for which DR grades were
available: the Kaggle DR detection challenge data [114] for method development and main results,
the Messidor dataset [115] for additional external validation, and a portion of the Indian Diabetic
Retinopathy Image Dataset (IDRiD) [116] for quantitative evaluation of visual explanations, as
these data additionally had DR lesion annotations at pixel level. We pre-processed the images
using contrast limited adaptive histogram equalization (CLAHE) [117], and by tightly cropping
the circular mask of the retinal fundus, which was detected by iterative least-squares fitting of a
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circular shape to image edges. For the Kaggle dataset, we filtered out poor quality images using an
ensemble of EfficientNets [118] trained on the ISBI2020 challenge dataset1. This quality filtering
model achieved 87.50% accuracy for image gradability. After quality filtering, the resulting dataset
contained 45, 923 images (at a final resolution of 224×224 pixels): 33, 783 in class ‘no DR’, 3, 598 in
‘mild DR’, 6, 765 in ‘moderate DR’, 1, 186 in ‘severe DR’ and 591 in ‘proliferative DR’. The Messidor
dataset contained 1200 retinal fundus images, and the IDRiD 81 images along with annotations
for microaneuryms, haemorrhages, hard and soft exudates. We combined the annotations of these
lesion types to obtain a single ground truth mask.

5.3.2 Plain, robust and ensemble models

As mild DR is a transitional stage between no DR and moderate-to-advanced stages of DR [119],
these images lead to high uncertainty in decisions of both DNNs and clinicians [120]. Therefore,
to obtain a clear separation of ‘no DR’ and DR classes, we excluded the ‘mild DR’ cases. We then
trained binary classifiers fµ : Rd → R

2 to predict whether a fundus image x was in the ‘no DR’
class or belonged to moderate-to-advanced stages of DR, with pµ(y = 1|x) indicating the predicted
probability of disease. We used 75% of the Kaggle data for training, 15% for validation, 4% for
temperature scaling [121] and 6% for testing.

For the plain model fϕwe used a ResNet-50 [122] which was trained with cross-entropy loss. We
used batch size of 128, with oversampling of the DR cases to account for class imbalance. We first
trained the model for 500 epochs with learning rate of 0.01 and a cosine learning rate schedule.
This model was further fine-tuned for 3 epochs with a cyclic triangle schedule for one cycle. We
chose the model with the best balanced accuracy on the validation set.

The robust model fÈ used the same architecture but was trained using TRADES [113] for ℓ2-
adversarial robustness, where one minimizes for the given training set (xi, yi)

n
i=1 the objective:

1

n

n
∑

i=1

[

− log
(

pÈ(yi|xi)
)

+ ´ max
x∈B2(xi,ϵ)

DKL

(

pÈ(·|x) || pÈ(·|xi)
)]

, (5.1)

where DKL denotes the Kullback-Leibler divergence, pÈ(·|x) is the predicted probability distribu-
tion over the classes at x, ´ controls the trade-off between adversarial and plain training schemes,
and Bp(x, ϵ) := {x̂ ∈ R

d| ∥x− x̂∥p f ϵ}. For training we used p = 2 and ϵ = 0.25 and set ´ = 6.

In our experience, tuning ´ down during training can increase accuracy but negatively affects
interpretability. Hence, we built the following ensemble of plain and robust models, which preserves
both accuracy and interpretable gradients for the given ´:

pensemble(k|x) :=
1

2
[pϕ(k|x) + pÈ(k|x)], k = 0, 1. (5.2)

As saliency methods often require logits f instead of probabilities, we defined logits for the ensemble
as fk := log

(

pensemble(k|x)
)

. All models are calibrated via temperature scaling by minimizing the
expected calibration error [121].

Experiments were done on an Nvidia Tesla V100 GPU with 32GB RAM, using PyTorch. Code for
pre-processing and training as well as the trained models will be available upon acceptance.

5.3.3 Generating visual counterfactual explanations (VCEs)

Following [56], a VCE x̃ should have high probability pµ(k|x̃) in a chosen class k (”validity”). It
should be similar to the starting image x0 (”sparsity”) and close to the data manifold (”realism”).
For generating an ℓp-VCE x̃ for a classifier µ ∈ {ϕ, È, ensemble} we solved

x̃ = arg max
x∈Bp(x0,ϵ)∩[0,1]d∩M

log
(

pµ(k|x)
)

(5.3)

where M is the mask for the region of the eye obtained by our pre-processing. The formulation
of VCEs suggests that some “robustness” is required as Eq. 5.3 is similar to the formulation of
adversarial examples [56]. Compared to saliency maps the advantage of VCE is that the generated

1https://isbi.deepdr.org/challenge2.html
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Table 5.1: Evaluation of plain and robust classifier and their ensemble in terms of standard, bal-
anced and ℓ2-robust accuracy. The ensemble maintains the accuracy but gains sufficient robustness
required for better interpretability (see Tab. 5.2).

Kaggle Messidor
acc. bal. acc. rob. acc. acc. bal. acc. rob. acc.

Plain 89.5 85.8 15.2 89.5 89.5 20.6
Robust 78.4 71.6 66.6 66.1 66.5 60.9

Ensemble 89.7 85.2 19.4 87.9 87.9 24.4

images are purely based on the behavior of the classifier. We used adaptive projected gradient
descent (APGD) [74] and Frank-Wolfe [75, 76] based schemes as optimizers. APGD requires
projections onto ℓp-balls which are available in closed form for ℓ2 and ℓ∞ or can be computed
efficiently for ℓ1 [77]. However, for p /∈ {1, 2,∞}, there is no such projection available and thus we
used for the generation of ℓp-VCEs the Auto-Frank-Wolfe scheme of [56].

5.3.4 Saliency maps

We used Guided Backprop (GBP) [54] and Integrated Gradients (IG) [55] from a public repository
[123] to generate saliency maps for the models’ decisions. GBP and IG are among the best saliency
techniques for DR detection [102, 103]. Based on our VCEs, we also introduced the VCE Saliency
Map (VSM) as the difference between VCE and the original image. For all saliency methods, we
used absolute saliency values summed over color channels in order to better cover salient regions
[103]. Then, saliency scores were normalized to [0, 1] via min-max normalization and thresholded
at the Ä -quantile for sparsity. The threshold Ä was optimized for each method on 40 out of 81
images in the IDRiD dataset by computing the intersection over union (IoU) with respect to the
pixel-wise annotation of DR lesions. This yielded Ä = 0.98 for GBP, Ä = 0.96 for both IG and
VSM. For the VSMs we additionally optimized over the norm p ∈ {1.5, 2, 4} and different ϵ per
norm and found p = 1.5, ϵ = 30 to be the best.

5.3.5 Model evaluation

We evaluated the performance of models on the Kaggle test set and Messidor images using accuracy
(acc.), and balanced accuracy (bal. acc., mean of TPR and TNR). Additionally, we reported ℓ2-
robust accuracy (rob. acc.) for a perturbation budget of ϵ = 0.1 which we evaluated using 9
restarts of 100 iterations of APGD [74] maximizing the confidence in the wrong class. The robust
accuracy is the fraction of test inputs where the decision could not be changed by the attack.

For a quantitative evaluation of our visual explanations, we used the 41 images on which Ä had not
been optimized from the IDRiD dataset. Tab. 5.2 shows the mean IoU for all models and saliency
techniques (including T-VSMs for different p-norms) with the pixel-level DR lesion annotations.

This evaluation indicates that the saliency maps derived from VCEs are on par with state-of-the-
art techniques, such as GBP and IG. However, VCEs go beyond those techniques as they can be
used to generate images and even animations that illustrate how an image would have to change
to affect the prediction of the classifier.

5.4 Results

First, we analyzed the properties of the plain and robust classifiers, and the ensemble introduced in
Eq. 5.2. Then, we explored VCEs as an alternative for explaining classifier decisions and studied the
sparsity-realism trade-off for VCEs. Finally, we show the effect of different perturbation budgets
on VCEs.

5.4.1 Ensembling plain and adversarially trained DNNs

We found that the plain model achieved good standard and balanced accuracy for classifying DR
from fundus images (Tab. 5.1), but with comparably low robust accuracy (see Sec. 5.3.5). In
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Table 5.2: Evaluation of saliency maps and T-VSMs on IDRiD. The IoU-score of the ensemble is
higher than for the plain model for all interpretability methods including VCEs (higher is better,
mean ± std).

GBP IG ℓ1.5, ϵ = 30 ℓ2, ϵ = 6 ℓ4, ϵ = 0.2
Plain 0.09 ± 0.03 0.08 ± 0.03 0.07 ± 0.03 0.07 ± 0.03 0.07 ± 0.03

Robust 0.15 ± 0.06 0.14 ± 0.06 0.13 ± 0.06 0.12 ± 0.06 0.12 ± 0.05
Ensemble 0.15 ± 0.06 0.14 ± 0.06 0.13 ± 0.06 0.12 ± 0.06 0.12 ± 0.05

Orig.(GT:DR) l1.5-VCE, ϵ=30 l2-VCE, ϵ=6 l4-VCE, ϵ=0.2

DR:0.97 →DR: 1.00 →DR: 1.00 →DR: 1.00

→healthy: 0.99 →healthy: 1.00 →healthy: 0.92

Figure 5.2: VCEs for the ensemble with varying degree of sparsity: p ∈ {1.5, 2, 4}. For a correctly
classified DR image, we show VCEs when transformed further into the DR or the healthy class.
Below VCEs, T-VSMs are shown. The VCE radius was adapted to the sparsity condition. In
addition, the confidence of the classifier is reported above the image.

contrast, the robust classifier achieved high robust accuracy, but suffered a large drop in accuracy
of more than 10-20%. Interestingly, and in line with the literature [109, 110], the saliency maps
of the robust model were much better than those of the plain model (Tab. 5.2, Fig. 5.1) for both
of the tested saliency methods, Guided Backprop (GBP) and Integrated Gradients (IG). In fact,
the saliency maps of the plain classifier were of rather low quality, focusing on less prominent
disease-related regions of the image (Fig. 5.1).

We found that an ensemble of the plain and robust models (Eq. 5.2) combined their advantages: It
had about equal standard and improved robust accuracy compared to the plain model (Tab. 5.1)
and its saliency maps were as good as those of the robust model (Tab. 5.2, Fig. 5.1).
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Orig.(GT:DR) l4-VCE, ϵ=0.1 l4-VCE, ϵ=0.2 l4-VCE, ϵ=0.3 l4-VCE, ϵ=0.4

DR:0.95 →DR: 1.00 →DR: 1.00 →DR: 1.00 →DR: 1.00

→healthy: 0.74 →healthy: 0.95 →healthy: 0.99 →healthy: 1.00

Figure 5.3: VCEs show increasingly strong modification for different radii. For one correctly classi-
fied DR image, we show for the ensemble the ℓ4-VCEs for ϵ ∈ {0.1, 0.2, 0.3, 0.4} when transforming
into the DR and healthy class, respectively.

5.4.2 VCEs as an alternative to saliency maps

We next explored VCEs (Eq. 5.3) as an alternative for explaining classifier decisions. The properties
of the VCEs depend on the chosen model for the perturbation, which in this paper was always an
ℓp-ball, and the perturbation budget in form of the radius of ℓp-ball. Small values of p close to one
lead to sparse changes whereas for larger p one can realize much more outspread changes affecting
larger parts of the image. As discussed in Sec. 5.3.4 we chose ℓ1.5-VCEs of radius ϵ = 30 as they
produced the best quality of T-VSMs. We found that the robust model and the ensemble allowed
for the computation of realistic VCE (Eq. 5.3, Fig. 5.1). T-VSMs (see Sec. 5.3.4) also provided
good explanations for the classifiers’ decision (Tab. 5.2), highlighting exudates and haemorrhages.
In contrast, the VCE of the plain model was not very meaningful as its main changes were only
vaguely related to the diseased regions.

5.4.3 Sparsity versus Realism of VCEs

We then analyzed the effect of different perturbation models in terms of different ℓp-balls (Fig. 5.2).
We first studied the VCEs for enhancing the correct decision for a DR image. We found that the
changes of ℓ1.5-perturbation model were sparser and thus looked more cartoon-like than for ℓ4. The
VCEs of the ℓ4 model appeared much more natural although they even introduced new diseased
regions not present in the original image. Thus the classifier seems to have picked up certain
disease signs very well and can integrate even new disease patterns in a natural fashion into fundus
images. We next studied the VCE for changing the decision of the classifier to ‘no DR’. Here,
all ℓp-perturbation models attempted to ”smooth out” the main lesions as well as the exudates.
This provides complementary evidence that the classifier picked up the right disease signal in the
data. Note that the artefact around the optic nerve was not changed in the VCE, showing that
the classifier has correctly identified it as a feature which is not discriminatory for the disease
decision. Not all VCEs, however, provided by our method are perfectly realistic: for example, the
algorithm often tried to cover lesions with vessels when creating a VCE turning a diseased image
into a healthy one. Further failure cases are shown in Appendix A.1 and A.2.

5.4.4 VCEs for different budgets

Finally, we investigated how the VCEs changed with increasing budget parameterized with ϵ
(Fig. 5.3). We found that an increasing number of new lesions were introduced for both the
sparse ℓ1.5-VCE as well as the realistic ℓ4-VCE, when increasing the budget for more DR evidence.
Here, the difference between the two models — that ℓ4-VCEs appeared more realistic — became
even more clear. When generating VCEs for turning the diseased image into an healthy one, also
increasingly large regions of lesions were covered, e.g. through artificial vessels. Such VCE with
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different budgets could be useful to generate gradual changes in either directions, providing good
intuitions for a classifiers decision.

5.5 Discussion

We showed that the ensemble of plain and robust models can preserve accuracy of plain models,
yet provide better visual explanations. In agreement with the literature [109, 110], the resulting
saliency maps highlight clinically relevant lesions more reliably. Therefore, the explanations ob-
tained for diseased images are often satisfying, while those for healthy images are less so — showing
the absence of lesions is difficult in this framework. The ensemble model allowed us to compute
also realistic VCEs [56], to yield interpretable explanations of the classifier’s decision, pinpointing
the features in the image the classifier picks up on.

In related work, iterative augmentation of saliency maps has been used to improve saliency-based
visual explanations [124]. Also, VCEs have been generated using GANs [125] (no models/code is
available) but the advantage of our VCE is that they depend only on the classifier and thus there
is no danger that the prior of the GAN “hides” undesired behavior of the classifier. Finally, models
interpretable-by-design such as BagNets [68] have been advocated for medical imaging tasks [126].
As many high-performing DNNs do not fall into this category, we view our work as complementary.

We believe realistic VCEs and derived T-VSMs will be a useful tool to better understand the
behavior of DNN-based classifiers in medical imaging, in particular when gradually morphing an
image from one class to the other which is the main complementary strength of VCEs compared
to saliency maps. As the sparseness and the degree of changes allowed can be precisely controlled,
it is straightforward to yield more or less natural VCEs. Even extreme and therefore less natural
VCEs can be useful, as they provide a ”cartoon” version of what the classifier believes the disease
looks like.
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6.1 Abstract

Counterfactual reasoning is often used in clinical settings to explain decisions or weigh alternatives.
Therefore, for imaging based specialties such as ophthalmology, it would be beneficial to be able
to create counterfactual images, illustrating answers to questions like ”If the subject had had
diabetic retinopathy, how would the fundus image have looked?”. Here, we demonstrate that using
a diffusion model in combination with an adversarially robust classifier trained on retinal disease
classification tasks enables the generation of highly realistic counterfactuals of retinal fundus images
and optical coherence tomography (OCT) B-scans. The key to the realism of counterfactuals is
that these classifiers encode salient features indicative for each disease class and can steer the
diffusion model to depict disease signs or remove disease-related lesions in a realistic way. In a
user study, domain experts also found the counterfactuals generated using our method significantly
more realistic than counterfactuals generated from a previous method, and even indistinguishable
from real images.

6.2 Introduction

Humans naturally use counterfactual thoughts, deliberations and statements to reason about the
causal structure of the world, understand the past and prepare for the future [49]. For example,
counterfactuals are used in medicine to explain decisions or weigh alternatives: “If we had treated
the patient with drug X, she might have experienced severe side effects.”[127]. In a similar way,
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when medical images are available for diagnosis, it might be useful to create counterfactual images
that visualize the answer to the question: ”For a given subject who we believe is healthy, how
would the imaging data have looked for the same subject to be identified as the diseased class?”.

In ophthalmology, for instance, clinicians regularly use imaging modalities such as retinal fundus
photography and Optical Coherence Tomography (OCT) for diagnosing sight-threatening diseases
like Diabetic Retinopathy (DR) and Age-Related Macular Degeneration (AMD). Counterfactual
images as described above can be generated from Deep Neural Networks (DNNs) that are trained
to detect the presence of these diseases. In this context, counterfactuals are artificially generated
images that contain minimal, realistic, meaningful and high-confidence changes to an input image
such that the DNN classifier alters its decision to a desired target class [56]. For them to look
realistic and meaningful, the models used to create them need to have outstanding generative
abilities. The resulting images can then also be viewed as explanations of the DNN’s decisions
as they enable the user of a DNN model to visualise the features that the classifier relies on for
detecting the disease [69, 128].

Previously, different strategies for generating counterfactuals have been proposed [129, 56, 69, 128,
130, 131, 132, 133]. For example, DNN-based counterfactuals can be generated by iteratively
superimposing the input image with the gradients of an adversarially robust classifier, which has
more informative gradients than a plain model [56, 69, 72]. While these so-called sparse counter-
factuals show meaningful features, they appear to modify the original image in unexpected and
unnatural ways. On fundus images, they cover lesions with unnatural blood vessels in order to
generate healthy counterfactuals [69]. In a similar vein, when StyleGANs are used to generate
counterfactual retinal fundus images for a Diabetic Macular Edema classifier [129], the counter-
factuals generated with this procedure begin to show features relevant to target class even before
the decision of the classifier changes, despite their highly realistic appearances. Counterfactuals
of OCT scans have also been generated using GANs to study retinal aging, but domain experts
were easily able to identify the generated images [131], suggesting that they are not sufficiently
realistic. Finally, in other medical domains such as brain tumor detection from MRI images and
chest X-ray interpretation, counterfactuals based on diffusion models have been used to generate
healthy counterfactuals from diseased images [132, 133], but not for generating images showing a
disease from healthy ones.

Here, we show that we can generate realistic counterfactual generation within the context of reti-
nal disease detection from two ophthalmic imaging modalities, funduscopy and OCT, by relying
on deep generative models known as diffusion models [134]. These diffusion models have been
shown to outperform GANs in realistic image generation, while also overcoming their drawbacks
by producing diverse samples and covering a broad range of the image distribution in tandem with
a stable training process [59, 71]. We use classifiers trained to detect several eye diseases from
retinal images and then show how to combine these with a generative diffusion model to result in
realistic counterfactual retinal images that explain classifiers’ decisions in both directions: from
healthy to diseased and vice versa. Importantly, we show that domain specialists – ophthalmolo-
gists and AI experts – view the resulting images as realistic when probed in an odd-one-out task.
This indicates that our methods generates images that fulfill the criteria for counterfactual images
to be used in medical reasoning as outlined above.

6.3 Methods

We first describe the ophthalmic imaging datasets used in this study and then review the relevant
methods for the generation of counterfactuals for such images. Lastly, we describe our design of a
user study in order to evaluate the clinical relevance of counterfactuals.

6.3.1 Datasets

We used retinal image data sets from two common ophthalmic imaging modalities: (1) color fundus
photography (CFP) and (2) Optical Coherence Tomography (OCT).

Fundus images were obtained from EyePacs Inc. through a Diabetic Retinopathy (DR) screening
program1. Initially, this collection contained over 180, 000 retinal fundus images from over 42, 000

1https://www.eyepacs.com/blog/over-750-000-patients-screened

42



Visually Explaining Decisions of Deep Neural Network Classifiers in Ophthalmology

Table 6.1: Summary of the retinal image collections used for model development and evaluation.

Training Validation Test
C

F
P

EyePacs

subjects 15,827 5,324 6,775

images all 46,921 15,658 30,166
healthy 38,502 12,748 24,627
mild 3,244 1,163 2,378
moderate 4,695 1,572 2,907
severe 238 121 127
proliferative 242 54 127

Benitez

images all 789 - -
healthy 94 - -
mild 6 - -
moderate 102 - -
severe+ 587 - -

FGADR

images all 1,842 - -
healthy 101 - -
mild 212 - -
moderate 595 - -
severe+ 934 - -

O
C

T

Kermany

subjects 3558 712 474

images all 71,231 14,714 10,496
normal 34,340 6,813 4,464
CNV 23,133 5,091 3,738
drusen 5,393 1,221 1,288
DME 8,365 1,589 1,006

subjects along with meta data such as age, sex, race and blood pressure. Image quality was
indicated as ”Insufficient for Full Interpretation”, ”Adequate”, ”Good” or ”Excellent” per image as
annotated by Eyepacs Inc. Some DR labels were missing. We used ”Good” and ”Excellent” quality
images with DR labels only, resulting in 92, 745 retinal fundus images from 27, 926 participants.
Then, we created training, validation and test splits subject-wise (see Table 6.1). The training set
was augmented with 789 images from the Benitez data set [135] and 1842 images from the FGADR
data set [136] in order to strengthen the representation of diseased samples for the diffusion models.
All images were cropped to square dimensions of 224 × 224 pixels using a circle fitting procedure
(https://github.com/berenslab/fundus_circle_cropping/tree/v0.1.0,[137]).

For OCT B-scans, we used a data set consisting of a total of 108, 309 images belonging to one of
four categories [138] : normal, choroidal neovascularization (CNV), drusen and Diabetic Macular
Edema (DME) (Table 6.1). In order to obtain a square center crop including the macular region,
we used only the images with size 496 × 512 and 496 × 768 (96, 441 scans). We created training,
validation and test splits again subject-wise with 75% subjects in training, 15% in validation and
10% in the test set, respectively (see Table 6.1).

6.3.2 Generating realistic counterfactual retinal images

As mentioned above, we define visual counterfactuals as minimal, realistic and high-confidence
changes to an image x0 by which a classifier’s prediction can be altered to a desired target class [56].
They show what features are important for the classifier to change the decision to a particular class,
and hence provide insights into what is learned by the classifier. Since the generative capabilities
of a classifier are typically limited and it cannot by itself generate realistic counterfactuals, we
rely on a diffusion model [71] to achieve realism. In order to generate counterfactuals, the reverse
diffusion process is modified such that classifier gradients contribute to this process and guide the
diffusion model towards producing counterfactuals in the desired class [57].

We will first discuss diffusion models in Section 6.3.3 and the various types of classifiers used here in
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Section 6.3.4 before we introduce Diffusion Visual Counterfactuals (DVCs) in Section 6.3.5. Then,
in Section 6.3.6, we briefly describe Sparse Visual Counterfactuals (SVCs) as a baseline method
for counterfactual generation with retinal fundus images. Finally, in Section 6.3.7, we present the
details of a user study conducted with clinicians and AI experts to evaluate the realism of generated
counterfactuals.

6.3.3 Diffusion Models

Diffusion models are powerful generative models which can produce highly realistic images and are
found to be comparable to GANs. Hence, diffusion models are an essential ingredient which ensure
realism of the generated counterfactuals. See Chapter 3, Section 3.2.3 for an overview of diffusion
models.

For both fundus and OCT data sets, we trained a diffusion model p¹ for 300, 000 minibatch
iterations unconditionally with 1, 000 time steps and a linear noise schedule for the diffusion process.
The diagonal covariance Σ¹ are also learned by the model during training. For the fundus data
set, classes are balanced by oversampling the diseased classes to have a equal representation as
that of the healthy class.

6.3.4 Plain and adversarially robust classifiers

It is beneficial to use adversarially robust models rather than plain models to guide the diffu-
sion models to generate realistic and meaningful counterfactuals. For more details on plain and
adversarial classifiers, see Chapter 3, Section 3.2.1.

For retinal fundus images, we trained both plain and adversarially robust classifiers in binary and
multi-class settings. In the multi-class setting, the task is a 5-way classification among the classes
“healthy”, “mild”, “moderate”, “severe” and “proliferative”. In the binary setting, disease onset is
considered from the “moderate” class, hence, “healthy” and “mild” are grouped into the normal
category and the other classes to the diseased category. For OCT scans, we trained both plain and
adversarially robust classifiers in the multi-class setting to classify among the classes “healthy”,
“choroidal neovascularization (CNV)”, “drusen” and “diabetic macular edema (DME)”.

All plain and robust classifiers were ResNet-50 models trained for 100 epochs with an SGD opti-
mizer with a learning rate of 0.01 and a cosine learning rate schedule. The fundus plain classifiers
were initialized with weights from ImageNet pre-trained models and the fundus robust classifier
with weights from a robustly pre-trained ImageNet model [139]. All OCT classifiers were initial-
ized with random weights. We used the cross-entropy (CE) loss as objective function for the plain
model and the TRADES loss [58] with ε = 0.01 for the fundus robust classifiers and ε = 0.5 for
the OCT classifier. For both cases, we used p = 2.

6.3.5 Diffusion Visual Counterfactuals

Here, we describe how to produce realistic Diffusion Visual Counterfactuals (DVCs). Following
[57], we combined an unconditionally trained diffusion model p¹ as described in Section 6.3.3 with
an independently trained classifier fϕ (see Section 6.3.4) so that the diffusion model can generate
class-conditional samples. This is done by shifting the mean of the reverse transition probabilities
by a value which depends on the gradients of external classifiers. More specifically, this value is the
projection of the gradients of a robust classifier on a cone around the gradients of the plain classifier
(Fig. 6.1). This, however, does not ensure that the generated image will stay close to the original
image x0 in pixel space, which is one of the qualifying factors for realistic visual counterfactuals.
Therefore, to obtain a counterfactual that remains structurally close to the original image, x0,
we find it beneficial to add a distance regularization term to the sampling process. As a further
measure to avoid generating images that deviate too much from the original, we start the reverse of
the diffusion process from the noisy image at step T

2 instead of the completely distorted version of
the image at the last step T [57](Fig. 6.1). For a complete description of the generation of diffusion
visual counterfactuals, see Chapter 3, Section 3.2.4.

Our code was based on https://github.com/valentyn1boreiko/DVCEs and will be available at
https://github.com/berenslab/retinal_image_counterfactuals .
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Figure 6.1: a. Original retinal fundus image, b. Visualization of counterfactuals with the healthy
counterfactual on the left, DR counterfactual on the right and original image in middle, c. Method
to generate diffusion counterfactuals. Top shows the forward and reverse diffusion for an original

image x0. Bottom shows generation of a DR DVC starting from the T
2

th
time step. The mean of

distributions in reverse diffusion is shifted using projected gradients (shown in dark orange) of an
adversarially robust classifier (shown in brown) on a cone around the gradients of a plain classifier
(shown in light orange), d. Images from the actual forward diffusion corresponding to the time
steps shown in c.

6.3.6 Prior work: Sparse Visual Counterfactuals

Previous studies on generating retinal counterfactuals either use StyleGANs [129] or adversari-
ally robust classifiers [69]. While the StyleGAN approach is closer to our approach as it uses a
generative model, the code or model information is not adequately provided for reproducing the
results presented. Hence, for comparison, we used a previously suggested method for generating
Sparse Visual Counterfactuals (SVCs) requiring an adversarially robust classifier [56] or at least
an ensemble of plain and adversarially robust classifiers [69]. For an overview of methods used to
generate sparse visual counterfactuals, see Chapter 3, Section 3.2.2.
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Table 6.2: Evaluation of plain and robust classifiers in terms of standard and balanced accuracy

Binary fundus 5-class fundus OCT
acc. bal. acc. acc. Quad. » acc. bal. acc

Plain 92.39 80.67 86.65 0.67 96.35 95.87
Robust 90.03 74.35 83.69 0.51 95.03 93.29

The main drawback of sparse counterfactuals is that visual inspection showed that healthy coun-
terfactuals from the DR class using retinal fundus images covered up the lesions on the fundus
image with artificial looking blood vessels in a previous study [69]. Although this achieved the
effect of removing the lesions to make the image look healthy, these changes do not appear realistic
(e.g. see Fig. 2, second row in [69]). A more realistic change would have been to cover up the
lesions with the background colors instead of adding artificial structures.

6.3.7 User study

To evaluate the realism of the generated counterfactuals, we performed a user study with AI
experts as well as trained ophthalmologists. We built a web-based image evaluator based on
the Python web framework Django (v. 4.2.1) with a PostgreSQL (v. 15.3) backend database,
available at https://github.com/berenslab/retimgtools/tree/v.1.0.0. On the front-end, we
used custom JavaScript to modify various presentation parameters (e.g. hiding the images after a
certain number of seconds) .

Seven ophthalmologists who had a clinical experience of 2, 4, 5, 9, 9, 10 or 14 years participated in
the study (including author LaK). In addition, 4 AI experts working on applying deep learning
for clinical tasks in ophthalmology took part and provided their input (including authors PB and
LiK).

All participants were given a three-way odd-one-out task where they had to identify the generated
counterfactual among three images. This task design is recommended for this type of study as it
is highly sensitive for detecting the odd-one-out category [140, 141]. Each trial thus consisted of
two real images from the data sets and one counterfactual generated by a model. Images were
displayed for a maximum of 20 seconds and then hidden. All 3 images in any question belonged to
the same class. For example, for a question showing DR images, we show two real DR images and
one generated counterfactual with DR as the target class. The latter is generated from an image
which is labeled as healthy in the data set and classified as healthy by the classifier.

For retinal fundus images, a total of 80 trials were performed with a randomly chosen set of 40
questions showing sparse counterfactuals and the remaining half showing diffusion counterfactuals
as the generated image. Within each group, 50% questions belonged to the healthy class and
the rest to DR. For OCT scans, on the other hand, only diffusion counterfactuals were shown
as the generated images in all 80 questions as study time was a limiting factor with four disease
categories. Questions were equally split across the four disease categories with 20 questions for
each class. Similar to the fundus scenario, OCT counterfactuals for questions belonging to the
healthy category are generated from any of the three disease classes and vice-versa.

Ethical approval for the study was obtained from the ethics commission at the University Clinic,
Tübingen (Ref No. 250/2023BO2). Statistical analysis was performed using R.

6.4 Results

Our goal was to show that the counterfactuals based on diffusion models guided by the gradients of
robust classifiers can generate minimal, meaningful and high-confidence changes to an input image
such that the DNN classifier alters its decision to a desired target class and that domain experts view
the resulting images as realistic. To this end, we first report the result of a user study with domain
experts in order to evaluate the realism of our counterfactuals generated with the chosen parameters
(Section 6.3.5). We then go into the technical factors necessary for achieving this result, establish
that robust classifiers are indeed necessary and illustrate the effect of regularization strength on
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a GT: DR b DR SVC DR DVC c Healthy SVC Healthy DVC

d GT: Healthy e f

Figure 6.2: DVCs show clinically meaningful changes and appear more realistic than SVCs. a.
Image with DR and classifier confidence pϕ(DR) = 0.99. b. DR SVC (left) and DVC (right)
with pϕ(DR) = 1.00 for both images. c. Healthy SVC (left) with pϕ(healthy) = 1.00 and healthy
DVC (right) with pϕ(healthy) = 0.99. DVCs show realistically emphasized lesions (light green
arrow) and new lesions (dark green arrow). DVC shows more realistic removal of disease related
lesions whereas SVCs introduce artifacts (yellow arrow). d.-f., as a.-c., but for a healthy fundus
image pϕ(healthy) = 0.90. DR SVC: pϕ(DR) = 0.98; DR DVC: pϕ(DR) = 1.00; Healthy SVC:
pϕ(healthy) = 1.00; healthy DVC: pϕ(healthy) = 0.99. All SVCs were generated with ℓ4 norm and
ϵ = 0.3. DVCs were generated with ℓ2 norm and regularization strength ¼ = 0.5.

the generated images. Finally, we demonstrate multi-class counterfactuals and counterfactuals for
retinal OCT scans, for which we also evaluate the realism in a user study.

6.4.1 Fundus diffusion counterfactuals are realistic

We trained binary plain and robust DNN classifiers for DR based on fundus images with high
accuracy on a large and diverse fundus image dataset (Table 6.2). For details of the dataset, see
Table 6.1; for details of training procedure, see Section 6.3.4). As expected, the robust classifier
had lower accuracy than the plain one. In addition, we also trained a diffusion model on the
same dataset augmented by additional datasets to add more diseased examples (for details of the
training procedure, see Section 6.3.3). We used the diffusion model with cone projected gradients
in order to generate realistic diffusion counterfactuals such that if an image showed signs of DR,
the counterfactual could either remove these signs (“healthy diffusion counterfactual”) or reinforce
them (“DR diffusion counterfactual”). Likewise, the diffusion counterfactual could either add signs
of DR to a healthy original image or strengthen its healthy appearance. Thus, the model was able
to generate images that illustrate what the fundus image of a patient might have looked like, had
he or she been more or less progressed in their disease (the definition of a counterfactual). We
compared the diffusion counterfactual method to the previously published sparse counterfactuals
method [69].

We found that the diffusion model generated visually realistic counterfactual fundus images from
either DR (Fig. 6.2 a) or healthy starting images (Fig. 6.2 d). For example, a DR diffusion counter-
factual generated from a DR fundus images enhanced the existing lesions and added new lesions
(Fig. 6.2 b right panel). On the other hand, a DR diffusion counterfactual generated from a healthy
image produced diverse lesions including images regions that resembled microaneurysms, haem-
morhages and exudates (Fig. 6.2 e right panel). Further, the structural details in the retina includ-
ing the blood vessels, macula and optic disc were largely preserved on the diffusion counterfactuals
of any given subject’s fundus image. In comparison, baseline sparse counterfactuals appeared more
artificial (left panels in Fig. 6.2 b,c,e,f). Sparse counterfactuals introduced artifacts such as waves
around lesions in DR counterfactuals (Fig. 6.2 b,e) and lines in healthy counterfactuals(Fig. 6.2 c,f).
For more examples, see Appendix B.2.
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Figure 6.3: User study of realism of generated DVCs. We asked n = 4 AI experts and n = 6
ophthalmologists to identify a counterfactual in a odd-one-out task with three images (two real
and one counterfactual). a. Overall fraction of correctly identified counterfactuals with binomial
95%-CI. Baseline at 33% chance level (dashed line). b. As in a. for the healthy and DR classes.
c. As in a. for ophthalmologists and AI experts.

Table 6.3: Generalized Linear Model to assess the influence of factors in Fig. 6.3. n = 800

Predictor Odds Ratio CI p-value
SVC vs. DVC 12.03 8.45 – 17.40 j 0.0001
healthy vs. DR 1.82 1.30 – 2.57 0.0005

Ophthalmologist vs. AI researcher 0.66 0.47 – 0.94 0.0197

To assess whether the generated diffusion counterfactuals are realistic, we performed a user study
with four AI specialists, who worked with ophthalmological data on a regular basis, and six oph-
thalmologists with different levels of experience (see Sec. 6.3.7). In a three-way odd-one-out task,
we asked to identify the image likely to have been generated by an AI model. The shown images
included both healthy and DR diffusion and sparse counterfactuals. Interestingly, all participants
found it challenging to distinguish diffusion counterfactuals from real fundus images whereas they
easily spotted the sparse counterfactuals (Fig. 6.3). In fact, across all images, participants showed
a close to chance level (33%) performance for diffusion counterfactuals as opposed to a significantly
better performance than chance level for sparse counterfactuals (Fig. 6.3 a, DVC vs. SVC: 36.3%
[31.7% – 41.1%] correct, 95% CI), confirmed by statistical analysis (pj 0.0001, see Table 6.3).

We further analyzed if DR or healthy could be more easily identified as artificial. We found
that participants could identify healthy diffusion counterfactuals more easily compared to DR
diffusion counterfactuals (Fig. 6.3 b), potentially because diffusion models appear to smooth the
image during removal of lesions and sometimes fail to remove all traces of lesions (p = 0.0005,
see Table 6.3). Finally, we studied whether trained ophthalmologists were more likely to identify
diffusion counterfactuals than AI specialists. Interestingly, we found that this difference was not
major, with all ophthalmologists independent of experience levels being close to chance level, at a
similar level as AI specialists (Fig. 6.3 c). Ophthalmologists detected sparse counterfactuals at an
average rate of 90.4%, significantly better than AI specialists who detected the same at an average
rate of 80.6% (p = 0.0197, see Table 6.3).

In summary, we found that our diffusion counterfactual model can generate realistic looking fundus
images from both healthy and DR images, emphasizing or removing signs of the disease. We showed
that the images generated by our new model are almost impossible to detect even for highly trained
experts, in contrast to images created by previous techniques.
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Figure 6.4: Comparison of DVCs generated using the plain model (top row), robust model (middle
row) and cone projection of an adversarially robust model onto a plain model (bottom row). a. A
DR fundus image with pϕ(DR) = 1.00 with a zoom in on patches with lesions. b. DR DVCs for
the image from a. for the three different models. c. Difference maps between original DR image
and the DR DVC show robust and cone projection models produce more realistic changes than the
plain model

6.4.2 Realistic counterfactual examples require robust classifiers

Now that we established that we are able to generate realistic looking counterfactuals for fundus
images, we explore the technical ingredients necessary to achieve this. First, as discussed in Sec.
6.3.4, the gradients of the output a standard classifier with respect to the image often do not
represent meaningful changes, but rather lead to the generation of adversarial examples that fool
the classifier but are imperceptible for humans [142]. In fact, for our diffusion model, the gradients
of a ”plain” classifier often were not strong enough to provide guidance towards the target class
and hence, the resulting counterfactuals looked quite similar to the original image (Fig. 6.4 a-c,
top row). This effect was more prominent in DR diffusion counterfactuals generated from healthy
images, where the plain classifier’s gradients induced hardly noticeable lesions, compared to healthy
counterfactuals generated from DR images, where the diffusion model removed lesions even when
guided by the plain classifier (compare Fig. 6.4 top row to Appendix. B.3).

In contrast, the gradients of the output of a robust classifier with respect to the image (see Sec.
6.3.4) supported the generation of high quality DR diffusion counterfactuals, with clearly visible
and highly realistic lesions (Fig. 6.4 a-c, middle row). As discussed, the robust classifier, however,
traded robustness against accuracy, leading to a drop in performance (see Table 6.2). To obtain
high quality diffusion counterfactuals while maintaining high classification accuracy, we combined
the plain and the robust classifier gradients using cone projection (see Sec. 6.3.4). Here, the
gradients of the robust classifier are projected onto a cone around the gradients of the plain
classifier. In this case, the generated DR diffusion counterfactuals were almost as good for the
robust classifier alone ((Fig. 6.4 a-c, bottom row and Appendix B.4), while maintaining a high
balanced accuracy (Table 6.2). Therefore, our final model evaluated in the user study above used
cone projection for generating realistic diffusion counterfactuals. In the sections that follow, all
diffusion counterfactuals are generated using the cone projection method.
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a GT: Healthy λd=0.7 λd=0.5 λd=0.3 λd=0.2

b GT: DR

Figure 6.5: Effect of tuning the regularization strength ¼d on generated DVCs. Decreasing ¼d
allows for more changes on the original image. a. We start with a healthy image and generate DR
DVCs with decreasing ¼d. More lesions are generated as ¼d decreases (light green arrows). b. We
start with a DR image and generate healthy DVCs with different ¼d values. Some traces of the
lesions were still visible for ¼d = {0.7, 0.5} while they were completely removed for ¼d = 0.2 (dark
green arrows) at the cost of some changes to the vessel structure (red arrows). While a higher
¼d = 0.7 is sufficient to generate the minimum number of lesions required to convert a healthy
fundus to DR, it is not sufficient to remove all lesions on a DR image to convert it to a healthy
fundus.

6.4.3 Influence of regularisation strength on diffusion counterfactuals

Next, we explored the effect of the regularization strength ¼d (Eqn. (3.14)), which constrained the
distance of the generated diffusion counterfactual from the original image. This parameter controls
the extent of changes appearing on the diffusion counterfactuals compared to the original image,
with high values indicating that the generated image remains closer to the original. Without
regularization, the diffusion model is not constrained to keep the generated image close to the
original image and guided by the gradients from the classifier/ cone projection it can generate any
image belonging to the target class without necessarily preserving the background of the original
image including color and vessel structure.

We systematically observed the pattern of changes in both DR and healthy diffusion counterfactuals
as we lowered the parameter ¼d. In general, for both DR and healthy diffusion counterfactuals,
more changes were visible on images as ¼d was decreased. For DR counterfactuals, the size,
number and sharpness of lesions increased with decreasing regularization strength. Thus, with a
strong regularization of ¼d = {0.7, 0.5}, fewer lesions appeared on DR diffusion counterfactuals
which were relatively smaller and in some cases not too sharp and distinct (Fig. 6.5 a). As the
strength was decreased to 0.3, more lesions were generated and their sharpness increased compared
to the ones generated with higher regularization values. For all these values of ¼d, almost all
counterfactuals were labeled as DR (see Table 6.4). At 0.2, the diffusion model had the freedom to
make several modifications to the original image and it added various bright and large lesions while
also modifying the blood vessel structure to a larger extent compared to the other regularization
values.

We repeated the above for healthy counterfactuals. Notably, we found that lesions were generally
removed well in mild and moderate DR already at larger regularization strengths of ¼d = {0.7, 0.5},
but some traces of lesions were still visible with for severe, proliferative and a few moderate cases
(Fig. 6.5 b). As regularization was decreased further to 0.3, the sharpness and clarity of those lesions
decreased. At ¼d = 0.2, the lesions were completely removed, however, the blood vessel structure
was also heavily altered. For extreme cases of DR, where the entire retina was affected such as
in a few proliferate cases, even a regularization of 0.2 was not sufficient to remove all the lesions
(Appendix B.5 a-b). Furthermore, with ¼d = 0.7, a third of healthy diffusion counterfactuals

50



Visually Explaining Decisions of Deep Neural Network Classifiers in Ophthalmology

¼d Healthy → DR DR → healthy
0.7 4.1% 27.0%
0.5 1.4% 14.0%
0.3 0% 6.0%

Table 6.4: Fraction of images that do not change the class label depending on the choice of
regularization parameter ¼d. For this analysis, 40 images were chosen from each of the five classes,
such that there were 80 images for the “healthy to DR” direction and 120 for “DR to healthy”. For
73/80 and 100/120, class labels were correctly predicted for the original image. Then we evaluated
the class label of the corresponding counterfactual.

generated from DR fundus images did not change the prediction of the DNN classifier to the
healthy class. In contrast, for ¼d = 0.5 and ¼d = 0.3, 14% and 6% did not convert to healthy class,
respectively (Table 6.4). As we evaluated the classifier at a ”referable DR” scenario, a healthy
diffusion counterfactual may contain small traces of lesions as seen in mild DR fundus images
even when the prediction of the classifier changes to healthy. For more examples of diffusion
counterfactuals with varying ¼d, see Appendix B.6.

Taken together, we found that using values of ¼d such as 0.2 or lower resulted in larger changes
to the original image than necessary for conversion to the target class, producing large changes
to the vessel pattern. While high ¼d such as 0.7 and higher was sufficient for the DR diffusion
counterfactuals to show minimal features required to convert healthy fundus to DR, the same
did not hold for healthy diffusion counterfactuals generated from DR fundus images (Table 6.4).
Therefore, we chose a regularization value of 0.5 where we could qualitatively observe the minimal
changes on the image necessary to alter the decision and confidences of the classifier in both
directions while maintaining image structure close to the original (although within a range of
¼d = 0.3 − 0.5, this is frankly a qualitative judgment).

6.4.4 Diffusion counterfactuals for the multiclass DR grading task

We followed up the counterfactuals for the binary case of healthy versus DR with counterfactuals
for a more fine-grained classification scenario with 5 classes, healthy, mild, moderate, severe and
proliferative. The latter four categories are the various stages of DR in the order of increasing
severity. The mild class often shows only very tiny changes in the form of microaneurysms and
is the hardest to detect. Moderate and severe are characterized by the presence of a relatively
greater number of microaneurysms and larger lesions such as hemorrhages and exudates. The
proliferative class is the most advanced stage with venuous bleeding, large haemmorhages and
neovascularization. Some of the images in the proliferative and severe stages also show scars
resulting from laser treatment. Typically severe and proliferative classes are easier to detect due
to larger lesions however due to rare occurrences they are underrepresented in the data set.

We generated diffusion counterfactuals to the 5 different classes from originally healthy, mild and
moderate fundus images (Fig. 6.6). First, we looked at diffusion counterfactuals to the various
DR stages from a healthy image and found that the diffusion counterfactuals contained mean-
ingful features for both mild and moderate classes. The features included tiny dot-like microa-
neurysms/exudates for mild class and slightly larger and more exudates, microaneurysms and a
few haemmorhages for moderate class (Fig. 6.6 a). However, for the severe and proliferative classes
most often only a couple of scattered haemmorhages were generated and most other features such
as bleeding or the laser scars were not observed (Fig. 6.6 a). This was likely due to the scarcity of
these classes in the data set. Another technical factor could be the choice of parameters such as
the regularization value ¼d and the radius ε which were more suitable for smaller changes.

For healthy diffusion counterfactuals from both mild and moderate classes, all lesions were removed
completely in most cases with a regularization strength of 0.5 (Fig. 6.6 b-c). On a moderate
diffusion counterfactual generated from a fundus image originally belonging to the mild class,
the number of exudates increased and an existing exudate was slightly enlarged (Fig. 6.6 b). The
diffusion counterfactual from moderate to mild interestingly removed the exudates all over the
fundus and added a single microaneurysm (Fig. 6.6 c). Here again, diffusion counterfactuals to
the more advanced stages of severe and proliferative did not exhibit the relevant features for those
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Figure 6.6: DVCs for DR grading task with 5-classes: healthy, mild, moderate, severe and prolif-
erative. Images marked with * are original images with GT as indicated in the headline. DVCs
to the different classes from a a. healthy fundus, b. fundus with mild DR and c. fundus with
moderate DR. Lesions which are originally present in initial image are indicated with light green
arrows while lesions added by DVC are indicated with dark green arrows. In all cases, healthy
DVCs removed all lesions. While the number and types of lesions introduced in mild and moderate
DVCs are consistent with those observed in real-world data, severe and proliferative DVCs did not
reflect the size and intensity of lesions seen in real examples.

classes (Fig. 6.6 b-c).Furthermore, in all cases, the plain classifier achieved high target probabilities
in the range [0.85, 1.00] for diffusion counterfactuals to the healthy, mild and moderate classes while
having only low target probabilities which dropped to below 0.25 for the severe and proliferative
diffusion counterfactuals.

To summarize, the 5-class model could generate meaningful diffusion counterfactuals to the healthy,
mild and moderate classes while it was not as efficient at generating severe and proliferative cases.
Nonetheless, mild and moderate classes are the clinically more interesting stages as they are chal-
lenging to detect and diagnostic decisions are uncertain for not only DNNs but also ophthalmol-
ogists around the boundaries of these early stages [143]. Studying the progression of biomarkers
closely in these stages with counterfactuals can help prevent conversion to the more advanced
stages.

6.4.5 Diffusion counterfactuals of OCT scans are also realistic

Finally, we trained another set of diffusion model and classifiers on a database of 96, 441 OCT
scans, a different image modality which is also predominantly used in ophthalmology (see Table
6.1). While the diffusion model was trained to generate realistic OCT scans, the task of the
classifiers was to detect whether a given scan was healthy or had one among the three conditions:
choroidal neovascularization (CNV), drusen or Diabetic Macular Edema (DME), which both plain
and robust classifiers were able to do with high accuracy (see Table 6.2).

OCT scans can visualize a cross-section of the retina and typically show the different layers of
the retina, from the vitreo-retinal interface, inner retina, outer retina, retinal pigment epithelium
(RPE)/Bruch’s membrane to the choroid from top to bottom. The biomarkers of CNV on OCT
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a GT: healthy CNV DVC

GT: CNV Healthy DVC

b GT: healthy Drusen DVC

GT: Drusen Healthy DVC

c GT: healthy DME DVC

GT: DME Healthy DVC

Figure 6.7: DVCs of OCT images from healthy to various disease classes and vice-versa. a. DVC
from healthy to CNV (top) and from CNV to healthy (bottom). b-c. Same as a for classes
drusen (b) and DME (c). Similar to fundus DVCs, OCT DVCs show meaningful changes which
are consistent with the important features of each class. DVCs from healthy images add features
relevant to the disease (blue arrows). DVCs from diseased images to the healthy class remove the
disease specific features seen on original image (green arrows).
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Figure 6.8: Clinical evaluation of realism of generated OCT DVCs. We asked n = 4 AI experts
and n = 6 ophthalmologists to identify a DVC in a odd-one-out task with three images (two real
and once DVC). a. Overall fraction of correctly identified DVCs with binomial 95%-CI. Baseline
at 33% (dashed line). b. As in a.

scans include subretinal neovascular membrane, subretinal fluid and intra-retinal fluid. These
occur due to abnormal growth of new vessels in the choroid creating a rupture in the retinal layers
above the Bruch’s membrane. Drusen are characterized by a bumpy or irregular RPE layer due
to lumps of deposits under the RPE. OCT scans of subjects with DME contain several cavity-like
structures in the inner and sub retinal layers which represent intraretinal and subretinal fluid that
accumulates due to vascular leakage [26]. Upon visual inspection, we found that the diffusion
counterfactuals seemed to effectively capture salient features of the various classes.
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Table 6.5: Generalized Linear Model to assess the influence of factors in Fig. 6.8. n = 800

Predictor Odds Ratio CI p-value
CNV vs. DME 1.09 0.73 - 1.63 0.6817
CNV vs. drusen 1.72 1.15-2.58 0.0082
CNV vs. normal 2.23 1.49 – 3.37 0.0001

Ophthalmologist vs. AI researcher 0.44 0.33 - 0.60 < 0.0001

We generated diffusion counterfactuals using the cone projection method with the OCT scans
to the three disease categories from healthy and vice-versa. Diffusion counterfactuals contained
meaningful and superficially realistic changes similar to fundus images. Diffusion counterfactual to
CNV from healthy added subretinal fluid below the RPE (Fig. 6.7 a, top row). On the other hand,
the diffusion counterfactual from CNV to healthy removed the subretinal neovascular membrane
and flattened out the portion where it was present (Fig. 6.7 a, bottom row). While diffusion
counterfactual from healthy to drusen class added bumps to the RPE layer(Fig. 6.7 b top row), in
the reverse case the irregularities were removed to make the RPE layer smooth and flat (Fig. 6.7 b
bottom row). DME diffusion counterfactuals generated from the healthy class contained cavities
in the inner retinal layers (Fig. 6.7 c top row). On the other hand, healthy diffusion counterfactual
from a DME OCT scan covered up the cavities with the original tissue reflectivity (color) in those
layers (Fig. 6.7 c bottom row). Hence, in all cases, diffusion counterfactuals generated meaningful
structures associated with the target class.

To assess the degree of realism of the generated images, we performed a user study again with
six ophthalmologists and four AI researchers. Similar to the fundus user study, the participants
were assigned a three-way odd one out task here too although they were shown only diffusion
counterfactuals across the four different categories. Ophthalmologists consistently performed better
than chance (33.3%) in all classes (Fig. 6.8, indicated by non-overlapping 95%-CIs). Interestingly,
they detected diffusion counterfactuals to the normal class from the various disease classes with
the highest rate of 66.7%. This could have been due to the normal diffusion counterfactuals
generated from OCT scans with signs of extreme CNV or DME. In such scenarios, the normal
DVCEs generally tended to fill up the cavities or tears with original tissue reflectivities but did
not restore the thickness of the layers (Fig. 6.7 c bottom row) thereby resulting in easier detection.
They found diffusion counterfactuals to the CNV and drusen classes also easier to detect (Fig. 6.8).
This could be due to certain features that looked artificially generated for e.g. the perfect waves on
drusen diffusion counterfactuals. On the other hand, diffusion counterfactuals to the DME class
was the hardest to detect for the ophthalmologists (Fig. 6.8). AI experts performed significantly
worse overall (see Table 6.5) compared to ophthalmologists, this was especially true in the CNV
and DME classes (Fig. 6.8). We attribute this to the relatively low experience of AI experts with
these disease categories such that realistic looking images not showing realistic disease features led
to performance at chance level for AI experts.

Taken together, OCT diffusion counterfactuals were able to generate the primary features asso-
ciated with each class convincingly although with a few imperfections which led to their easier
detection in the user study compared to fundus diffusion counterfactuals.

6.5 Discussion

In conclusion, we showed that diffusion models guided by the gradients of robust classifiers can
be used to generate realistic counterfactuals for retinal fundus and OCT images. We found that
domain experts in ophthalmology including clinicians and AI researchers could hardly distinguish
these images from real images, opening up new opportunities to include counterfactual images in
medical reasoning [127].

While the counterfactuals for retinal fundus images were nearly indistinguishable from real ones
for clinicians, OCT counterfactuals were relatively easier to detect. It is interesting to speculate
what could have caused these differences. Likely, one factor is that lesions for early DR stages
visible in fundus images are mostly localized and not too large, therefore not requiring major
structural changes to large parts of the image, in contrast to what is needed for generating OCT
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counterfactuals. Also, OCT counterfactuals typically looked too regular and symmetric, such as
in the case of drusen counterfactuals. Qualitative feedback after the user study indicated that
raters were quickly able to pick up on these regularities. In addition, healthy OCT counterfactuals
from extremely diseased cases often covered the abnormalities with appropriate texture but did
not alter the thickness of the retina at that stage of the image which is an important factor for
clinicians to classify the image as healthy. Since most cases in the chosen OCT data set also belong
to extreme disease stages, this could have further impacted the overall performance of clinicians
in the detection of OCT counterfactuals. In contrast, fundus images covered the whole disease
spectrum, allowing the model to learn about the gradual changes along the disease trajectory.

It is possible that the different degrees of realism of fundus vs. OCT counterfactuals come either
from the generative capabilities of the diffusion model or what is learned by the classifiers. In fact,
we noticed that supplementing the fundus image dataset with more examples from diseased classes
helped to generate better disease counterfactuals. However, it is also possible that the disease
concepts learned by the classifiers which guide the diffusion model are insufficient. For example,
with the OCT dataset consisting mostly of extreme examples at advanced disease stages and
missing much of the borderline cases in between [138], a classifier might have easily taken a short-
cut towards distinguishing healthy from diseased images, picking up on the most informative feature
(e.g. texture) while ignoring more subtle ones (retinal thickness) [144]. In turn, improved classifiers
based on more realistic and varied datasets may therefore yield even better counterfactuals. In
fact, it would be interesting to study how the generative capacities of the model change with even
larger datasets, such as those used to train retinal foundation models, or based on robust classifiers
derived from such foundation models [145].

Diffusion models have been largely used in combination with plain classifiers for realistic coun-
terfactual generation in the natural image domain using data sets such as ImageNet and CelebA
[134, 146]. The quality and realistic nature of counterfactuals for such images has been shown to
improve when adversarially robust classifiers are used [57]. In the medical setting, diffusion models
have been used primarily for generating healthy counterfactuals [133, 147, 132], which is an easier
task for the diffusion model compared to generating disease related features. We demonstrated
that both diffusion models and adversarially robust classifiers play a major role in generating re-
alistic medical counterfactuals for high-resolution retinal fundus and OCT images. Moreover, our
counterfactuals are bi-directional, i.e. from healthy to diseased and diseased to healthy. In parallel
work, BioMedJourney [148] uses two consecutive Chest-XRay images of a subject and a summary
of their medical reports to generate longitudinal counterfactuals. Here, a latent diffusion model is
trained on embeddings of the textual descriptions and a starting image to obtain an estimate of the
progressing image. This method relies on the availability of detailed medical reports in addition
to longitudinal imaging data.

Realistic counterfactuals have the potential to be used in clinical decision support where the DNN
can provide human-like and human-understandable reasoning for it’s prediction. For example,
decision support is conceivable that illustrates for a given patient with an uncertain diagnosis how
the imaging data might look if it provided less ambiguous evidence for the presence of a disease,
potentially even with more than one sample for a given input image. The clinician could then
use similarity of the present image to judge the presence or absence of disease signs. Realistic
counterfactual images could also be used to synthesize data for training clinicians and augmenting
DNN models, as medical data sets are often imbalanced and diseased samples may be less readily
available. Due to the realistic nature of counterfactuals, diseased data points could then be synthe-
sized based on a preliminary classifier from the more prevalent healthy examples [149, 150]. In fact,
adding a diseased counterfactual for each healthy image and vice versa would effectively create a
paired dataset, where structurally similar images derived from the same base image are contained
in the healthy and diseased class, allowing the classifier to focus more easily on the disease patterns.
In the reverse case of generating healthy examples from diseased, the counterfactuals could help in
anomaly detection and identification of bio-markers [133, 147, 132]. Further, they could be used
as a testing tool to ensure that the classifiers do not use any shortcuts to make the decisions, such
as hospital or device logos instead of disease related features.

A natural extension of this work would be to generate counterfactuals from multi-task DNNs which
learn several attributes simultaneously [151]. With such a DNN, it would be possible to generate
counterfactuals for one attribute keeping another fixed. For instance, a multi-task classifier which
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is trained on both age and disease type can be used to generate counterfactuals for increasing age
keeping the disease fixed or vice-versa. Such counterfactuals could potentially be used in tracking
the progression of a disease with age. Similarly, it would be interesting to study counterfactuals
for longitudinal data or data with interventions, such as the administration of a drug. For example
for OCT images during age-related macular degeneration, treatment effects for the injection of
anti-VGEF drugs might be simulated for the different available drugs, and the most promising
drug chosen.

Acknowledgments

We acknowledge support by the German Ministry of Science and Education (BMBF; 01IS18039A),
the Deutsche Forschungsgemeinschaft through a Heisenberg Professorship (BE5601/8-1) and under
Germany’s Excellence Strategy – Excellence Cluster ”Machine Learning — New Perspectives for
Science” EXC2064/1 —- Project number 390727645), the Carl Zeiss Foundation (project “Certi-
fication and Foundations of Safe Machine Learning Systems in Healthcare”) and Gemeinnützige
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Chapter 7

Conclusion

7.1 Summary and contributions

In the future, clinical workflows are predicted to increasingly rely on the synergy between clinicians
and automated systems that use deep learning algorithms. In such situations, explanations will play
an important role in facilitating co-operation between humans and automated diagnostic systems.
This work is a preliminary step in this direction that illustrates how CNN models can offer visual
explanations for their decisions in diverse clinical diagnostic tasks in ophthalmology through the
use of two distinct methods. One method utilized BagNets, which are inherently interpretable
models, while the other method generated clinically realistic counterfactual explanations.

Human-friendly and easily understandable explanations enhance the trust of human users on deep
learning model decisions [42]. They enable clinicians and other users to visualize errors made by
the model, identify the reason behind the errors and systematically debug the models. They aid
in identifying biases and shortcuts picked up by the model during training. More importantly,
explanations can provide scientific insights, for instance, by highlighting a new biomarker related
to a particular disease that was previously unknown to clinicians. Ideally, explanations can also
provide a mechanism for clinicians to review their decisions and spot any missed diagnostic features
in medical images [43]. Besides, these use cases humans also tend to rely on explanations to learn
the task better and aid developers in building better classification models [152].

The landscape of explanations from CNN models, especially in medical classification tasks, has
been dominated by methods that produce saliency or heat maps such as Integrated Gradients [55],
Guided Backpropagation [54] or GradCAM [153]. Such saliency maps are not found to be human-
friendly and are shown to be ineffective in highlighting features that affect the model’s decision
[154, 104]. For example, some of these methods produce similar maps irrespective of whether a
trained model or a model with random weights is used [154]. Particularly in medical classification
tasks, saliency map methods fail to produce useful explanations for the healthy cases [104]. In this
work, we presented methods that overcome these limitations and provide a step forward towards
producing explanations from CNN models for medical tasks that are closer to the principles of
human explanations.

7.2 Future work

Firstly, both explainability approaches investigated in this work hold considerable promise for
various real-world clinical applications. There is a huge scope for using BagNets to aid clinicians
in medical diagnostic tasks such as the detection of diabetic retinopathy from fundus images.
One example is the Sparse BagNet [155] model which is capable of effectively localizing patches
with disease features in the early stages of diabetic retinopathy. In this case, one could make
the explanations more informative and user-friendly by annotating the identified patches. This
could be achieved by labelling the patches with the help of another CNN model that classifies the
different types of lesions. Likewise, counterfactual explanations show immense potential for use in
clinical decision-making scenarios. They could be generated to answer questions that could help
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in treatment interventions such as: how would a diabetic retinopathy patient’s medical image look
if eye injections were administered? They could also be used to visualize progression of disease
by generating different possibilities of the current medical image instance with respect to varying
ages of the patient. Such applications could be realized with multi-task models with several heads
[151] that are trained to perform different tasks simultaneously such as detecting diseases alongside
factors such as treatment type or age. Furthermore, there are future possibilities to improve the
usability of these methods by combining them together. For example, a BagNet model could help
in localizing the patches on a counterfactual explanation where changes are applied.

Secondly, despite the foundational similarities between the presented methods and human expla-
nation mechanisms, there are still gaps to be addressed. These methods mainly focused on the
cognitive and generative process of explanations and not on the social process of explanations.
Besides, the explanations were derived solely from image classification models. Recently, large
language models (LLMs) based on the Generative Pretrained Transformer (GPT) model [156, 157]
and multimodal neural networks such as Contrastive Language Image Pretraining (CLIP) [158]
have risen to the fore and opened up possibilities to generate natural language explanations sim-
ilar to the human social processes. A concrete approach could be to develop chatbots by pairing
general feature representations from retinal foundational models [159] with large language models
trained on medical data such as the MedPaLM model [160]. Another prospective future extension
of this work is to generate context-specific explanations and explanations specific to the role of the
explainee. For example, the explanations provided to clinicians could include more medical jargon
compared to an explanation provided to a patient.

Finally, in order to reap the benefits of explanations from machine learning models, it is essential
to evaluate the explanations by including clinicians and various clinical stakeholders in the loop.
Although human evaluation of explanations is a time-consuming and laborious process, this will
pave the path for identifying explanations which are most suited to the task and favored by the user
group. For example, on a bird classification task, humans preferred part based explanations such
as prototypes or concepts rather than saliency map based explanations [152]. Similar studies could
prove to be successful at identifying user preferences for explanations in the medical domain. While
we evaluated the realism of generated counterfactual explanations with a clinical study involving
experienced ophthalmologists, evaluation of the presentation formats and usefulness of the various
explanation methods including counterfactual explanations in a clinical context still remains an
open question.
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Supplementary materials to
Chapter 5

Orig.(GT:DR) l1.5-VCE, ϵ=30 l2-VCE, ϵ=6 l4-VCE, ϵ=0.2

DR:0.99 →DR: 1.00 →DR: 1.00 →DR: 1.00

→healthy: 0.99 →healthy: 1.00 →healthy: 0.86

Figure A.1: Failure: when transforming to healthy using ensemble, ℓ2- and ℓ1.5-VCEs have visible
artifacts (yellow spots), unlike ℓ4-VCE.
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Orig.(GT:DR) l1.5-VCE, ϵ=30 l2-VCE, ϵ=6 l4-VCE, ϵ=0.2

DR:1.00 →DR: 1.00 →DR: 1.00 →DR: 1.00

→healthy: 0.99 →healthy: 1.00 →healthy: 0.82

Figure A.2: Failure: when transforming to DR using ensemble, ℓ1.5-VCE has visible artifacts,
unlike ℓ2-,ℓ4-VCEs.

Orig.(GT:healthy) l4-VCE, ϵ=0.1 l4-VCE, ϵ=0.2 l4-VCE, ϵ=0.3 l4-VCE, ϵ=0.4

healthy:0.77 →healthy: 0.95 →healthy: 0.99 →healthy: 1.00 →healthy: 1.00

→DR: 0.95 →DR: 1.00 →DR: 1.00 →DR: 1.00

Figure A.3: For one correctly classified healthy and one incorrectly classified healthy image, we
show for the ensemble the ℓ4-VCEs for ϵ ∈ {0.1, 0.2, 0.3, 0.4} when transforming into the healthy
and DR class, respectively.
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Orig.(GT:DR) l4-VCE, ϵ=0.1 l4-VCE, ϵ=0.2 l4-VCE, ϵ=0.3 l4-VCE, ϵ=0.4

healthy:0.69 →DR: 0.77 →DR: 0.98 →DR: 1.00 →DR: 1.00

→healthy: 0.99 →healthy: 1.00 →healthy: 1.00 →healthy: 1.00

Figure A.4: For one wrongly classified DR and one incorrectly classified healthy image, we show
for the ensemble the ℓ4-VCEs for ϵ ∈ {0.1, 0.2, 0.3, 0.4} when transforming into the DR and healthy
class, respectively.
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Supplementary materials to
Chapter 6

Figure B.1: Web interface for evaluating realism of counterfactuals. Three images are shown on
the page where two are real and one is generated. User is asked to select the generated image
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GT: DR DR SVC DR DVC Healthy SVC Healthy DVC

GT: DR

GT: Healthy

GT: Healthy

Figure B.2: More examples comparing SVCs and DVCs. Top two rows show counterfactuals from
DR fundus images. Bottom two rows show counterfactuals from healthy images. In all cases,
changes in DVCs are more realistic compared to SVCs.
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a

Plain

Original b Healthy DVC c Difference

Robust

Cone

projection

Figure B.3: As in Fig. 6.4 for a DR fundus image. a. Original image with ground truth label
DR. b. DVC to the healthy class. Plain model (top row) removes lesions to a similar extent as
robust (middle row) and cone projection (bottom row). DVCs to healthy class are more easily
generated than to DR class. c Difference maps between the original DR image and generated
healthy counterfactual highlighting lesion locations.
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GT: Healthy Plain Robust Cone Projection

Figure B.4: More examples of DR DVCs generated from healthy fundus images (leftmost column)
using the plain model gradients (second column), robust model gradients (third column) and cone
projected gradients (rightmost column). In all examples, plain models either show no or fewer and
weaker lesions compared to robust and cone projection models.
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a GT: DR λd = 0.7 λd = 0.5 λd = 0.3 λd = 0.2

b

Figure B.5: Effect of regularization strength on retinal fundus images severely affected by DR.
In such extreme cases, even a small regularization of 0.2 is not sufficient to convert the image to
healthy.
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a GT: DR λd = 0.7 λd = 0.5 λd = 0.3 λd = 0.2

b GT: DR

c GT: Healthy

d GT: Healthy

Figure B.6: Effect of regularization strength on retinal fundus images belonging to DR and healthy
class. a-b. Healthy DVCs of DR fundus images with different values of ¼d. With ¼d = 0.5,
examples are converted to the healthy class with either no lesions (a) or very few remaining lesions
(b) such as in the mild DR class. c-d DR DVCs of healthy fundus images with varying ¼d. Here
too, with ¼d = 0.5, the DVC adds enough lesions to change the decision of the classifier to the DR
class with high confidence.

67



Bibliography

[1] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”.
In: Nature 529 (2016), pp. 484–503.

[2] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: (2013). url:
http://arxiv.org/abs/1312.5602.

[3] J. Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer
Society, 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.

[4] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[5] Christian Szegedy et al. “Rethinking the inception architecture for computer vision”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 2818–2826.
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