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Abstract

Implementing brain functions like vision, memory and cogni-

tion requires billions of cells of diverse types to work together.

Thus, one important goal in neuroscience is to comprehensively

map which cell types exist. These cell types differ in factors such

as physiology, morphology and location. Those factors are deter-

mined by the transcriptome, the entirety of RNA molecules ex-

pressed in each cell. Measuring this “RNA fingerprint” for brain

cells with single-cell RNA sequencing therefore became a popu-

lar route to understand neural systems. In the last years, large

transcriptomic atlas datasets were published, containing the gene

expression of ten thousands of genes for millions of brain cells.

However, data from single-cell sequencing is subject to strong

technical noise, and thus requires special preprocessing: cell-to-

cell variability in sequencing, unequal variances between genes of

different expression level, and noise from PCR amplification. Cur-

rently, computational biologists often address those noise sources

with heuristics for normalization and variance stabilization, but

these methods have intrinsic limitations and are poorly motivated

by theory.

In addition, single-cell data is high-dimensional and therefore

hard to visualize. Many practitioners use PCA followed by non-

linear embedding methods like UMAP or t-SNE to reduce single-

cell data to two dimensions. This practice has received substantial

criticism, as it is impossible to preserve all aspects of the origi-

nal data, e.g., high-dimensional distances. As a result, the field

currently debates if UMAP and t-SNE should be used at all.

In this thesis, we address challenges in both preprocessing and

visualization. For preprocessing, we present a model-based strat-

egy to normalize single-cell RNA sequencing data: Null model

Pearson residuals. In this approach, we model the expected tech-

nical and statistical noise from the data generation process. Con-

sequently, the residuals of this null model will contain the biologi-

cally meaningful signal, and can be used for downstream process-

ing. We show that this approach leads to fast, scalable and effec-
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tive normalization, and additionally allows for theoretical insights

into the data generation process of single-cell RNA sequencing.

For visualization, we investigate the claim that 2D embeddings

of single-cell data are generally arbitrary and misleading. We show

that this claim is false and misleading itself, as it was based on

inadequate and limited metrics of embedding quality. More ap-

propriate metrics quantifying neighborhood and class preservation

reveal that while t-SNE and UMAP embeddings of single-cell data

do not preserve high-dimensional distances, they can nevertheless

provide biologically relevant information.

Finally, we reflect on future directions for the field of single-cell

data preprocessing and visualization, sketch out how neuroscience

can build on top of the exciting single-cell work from the last

decade, and how this might change how we think about brain cell

types in the future.
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1 Motivation

In the human brain, roughly 100 billion neurons form the biological cir-

cuits (Von Bartheld et al., 2016) that create a continuous experience and

control behavior. As neuroscientists, it is our task to better understand

the mechanisms in this unimaginably complex system. This is only pos-

sible if we first identify the functional building blocks the system is made

of. However, we are still missing a comprehensive parts list of the brain:

It is even unclear which parts — types of cells — exist in the brain, and

what these different parts are good for, i.e., what function a certain type

of brain cell is serving in its local circuit. Therefore, we first need to

obtain such a parts list, for example by sorting brain cells into cell types

that can be defined by function, anatomy or molecular genetics (Ecker

et al., 2017; Zeng and Sanes, 2017).

To determine the cell type of neurons experimentally, a multitude of

high-throughput methods have been developed that can assess the func-

tion and shape of many single cells at the same time. Two-photon imag-

ing with special fluorescent indicator dyes can track voltage-, Calcium- or

transmitter levels in living neurons on sub-second to millisecond timescales

(Lin and Schnitzer, 2016; Kulkarni and Miller, 2017; Hao and Plested,

2022; Villette et al., 2019; Aggarwal et al., 2023; Zhang et al., 2023),

and modern multi-electrode probes directly measure electrical responses

of neurons with sub-millisecond resolution (Jun et al., 2017; Hong and

Lieber, 2019; Steinmetz et al., 2021). Serial block face electron mi-

croscopy (Denk and Horstmann, 2004) and automated transmission elec-

tron microscopy (Yin et al., 2020) can reconstruct neurons’ morphology

and connectivity with nanometer precision (Helmstaedter et al., 2013;

MICrONS Consortium et al., 2021).

These methods capture neural activity and how neurons are shaped

and connected to each other. However, as all cellular processes, neu-

ral function and anatomy are eventually determined by the proteins in-

side each cell (Hyden, 1967; Matus, 1988; Prasad and Alizadeh, 2019).

These complex molecules govern the intra- and intercellular signaling
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1 MOTIVATION

that neuroscientists are interested in: Proteins and peptides form trans-

membrane channels and transmitter receptors, serve as intracellular sig-

naling molecules, or even as neurotransmitters. How quickly a neuron

will be ready to fire an action potential, or if it is likely to form a new

synapse with a neighboring cell is directly reflected by its protein con-

tents. Therefore, assessing the molecular composition of neurons pro-

vides neuroscientists with another “view” of each cell’s state that is

complementary to function and anatomy and allows an even finer cell

typing.

With new tools for the molecular characterization of neurons, re-

searchers can now routinely profile every step in single cells’ protein

production: This process starts from the DNA sequence, which can be

assessed by single cell DNA sequencing (Gawad et al., 2016). Which

parts of the DNA are transcribed into RNA molecules is regulated by

the epigenome, which can be measured, e.g., as the DNA’s methylation

status (Karemaker and Vermeulen, 2018), its open chromatin accessibil-

ity (Buenrostro et al., 2015; Klemm et al., 2019) or histone modifica-

tions (Rotem et al., 2015). The transcriptome of a cell — all its RNA

molecules — can be assessed with single cell RNA sequencing (scRNA-

seq, Kolodziejczyk et al. (2015)). Finally, a subset of RNAs, the mes-

senger RNA (mRNA), is translated into the cell’s proteins. Directly

counting these proteins is possible with with mass spectrometry meth-

ods adapted for single-cell processing (Vistain and Tay, 2021; Specht

et al., 2021), but this technology is still in its infancy and relatively

low-throughput (e.g., ∼ 200 cells per day with SCoPE2, Petelski et al.

(2021)). Therefore, instead of measuring proteins directly, researchers

that seek to identify cells and their types often resort to scRNA-seq

measurements as a readily available proxy for protein levels. Although

simultaneous measurements of RNA and protein have shown that this

proxy is far from perfect (Koussounadis et al., 2015; Darmanis et al.,

2016; Stoeckius et al., 2017), scRNA-seq experiments have led to a mul-

titude of discoveries in neuroscience (reviewed in detail in Section 2.1):
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For example, from scRNA-seq atlases we now know that the mammalian

retina — the first part of the visual system — has more than twice

as many cell types than commonly thought in the pre-scRNA-seq era,

and many of the previously known types could be validated by scRNA-

seq (Masland, 2012; Shekhar and Sanes, 2021). Similar atlas studies

of the cortex have revealed how inhibitory and excitatory neurons de-

velop their regional specificity very differently (Zeisel et al., 2015; Tasic

et al., 2018). Subsequent studies of whole-brain preparations aimed to

provide a comprehensive description of all transcriptomes in the mouse

nervous system (Yao et al., 2023), describing a taxonomy of thousands

of cell types. Building on these foundations, very recent work investi-

gated how this taxonomy changes in human diseases like Alzheimer’s,

hoping for insights into disease pathways and new treatments (Mathys

et al., 2024). Especially these recent studies have presented overwhelm-

ingly large datasets, raising questions on how to make sense of this vast

neural diversity.

Handling and analyzing scRNA-seq data is challenging in itself: After

sequencing RNA transcripts and mapping them to the genome, scRNA-

seq data comes as counts for each gene in each profiled cell — with tens of

thousands distinct genes in typical mammalian data, and up to millions

of cells in large experiments. These counts are typically sparse (i.e., in

any given cell, only a minority of genes expressed and many counts are

zero), and often relatively small for most genes, leading to low intrinsic

signal-to-noise levels. In addition, technical noise source factors that

vary between cells (like sequencing efficiency) further complicate the

situation.

To handle this kind of noisy, high-dimensional data, the field has con-

verged on three major best best-practice steps for preprocessing scRNA-

seq count data (Luecken and Theis, 2019; Amezquita et al., 2020): First,

a set of normalization steps filters out noise from the raw counts. Sec-

ond, dimensionality reduction with, e.g., PCA removes redundant genes.

Finally, the normalized and dimensionality-reduced data is inspected

16



1 MOTIVATION

with a non-linear 2D visualization tools like t-SNE or UMAP (van der

Maaten and Hinton, 2008; McInnes et al., 2018; Kobak and Berens, 2019)

to check for processing artifacts and to form first scientific hypotheses

about the data.

However, this default pipeline is not without problems: some of the

most common data normalization practices rely on ad-hoc heuristics with

little theoretical motivation (Warton, 2018; Lun, 2018; Ahlmann-Eltze

and Huber, 2023) and have underperformed in benchmarks (Cole et al.,

2019; Tian et al., 2019). Also, the use of 2D embeddings for single-

cell data visualization has received substantial criticism, as these em-

beddings can introduce substantial distortions (Wattenberg et al., 2016;

Wang et al., 2023b), and allegedly lead to “arbitrary” shapes (Chari and

Pachter, 2023).

This thesis will address both of these problems in the preprocessing of

single-cell data. First, we will present two new, theory-based methods

for normalizing scRNA-seq data: analytic Pearson residuals for UMI

count data and compound Pearson residuals for non-UMI counts. Both

methods are derived from a simple data generation model and provide

a fast and effective normalization of the data. Second, we will present a

re-analysis of the Chari and Pachter (2023) claim that 2D embeddings

are “arbitrary” and hence should not be used. We found that this claim

is flawed, and offer more nuanced recommendations on how to use 2D

embeddings for single-cell data analysis. In all chapters, we apply the

methods in questions to heterogeneous neural datasets to demonstrate

their performance in real-world applications.

The rest of this thesis is structured as follows: the Background Chap-

ter showcases how single-cell transcriptomics data has enriched neuro-

science and changed how we think about the brain (Section 2.1, briefly

describe how scRNA-seq data are generated practically (Section 2.2),

and review common practices in scRNA data processing and identify

shortcomings and open questions (Section 2.3.1. In Chapters 3-4, we

present two theory-based preprocessing methods that circumvent short-
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comings of commonly used heuristics. Chapter 5 addresses recent crit-

icisms of 2D embeddings, and offers a more nuanced view on their

strengths and weaknesses. Finally, the Discussion chapter provides an

outlook into the future of single-cell processing methods and their impact

on neuroscience.
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2 BACKGROUND

2 Background

2.1 What did scRNA-seq contribute to Neuroscience?

Before scRNA-seq technologies were established, neuroscientists inter-

ested in gene expression had to resort to microarrays or bulk RNA-seq.

In both technologies, the total RNA from all cells in a sample is extracted

at once. To identify the RNA molecules collected, they are either cap-

tured on an microarray (by probe molecules that bind selected RNA

sequences of interest), or the RNA is converted to cDNA and then se-

quenced by next-generation sequencing (for bulk RNA-seq). Both tech-

nologies thus measure the average gene expression in a tissue.

Neuroscientists used average gene expression data, e.g., to better

understand brain diseases: For example, one microarray study on exper-

imentally induced strokes in rats investigated which genes are involved in

neuronal cell death after stroke, and which genes protect neurons against

it (Kawahara et al., 2004). Similarly, a study on rat models for multiple

sclerosis screened RNA expression data from diseased animals for highly

expressed genes and thereby identified the pro-inflammatory signaling

molecule osteopontin as a potential target to slow down the progres-

sion of the disease (Chabas et al., 2001). These examples highlight the

potential of RNA data for clinical neuroscience, but such studies of av-

erage gene expression suffer from several limitations: Observed changes

in RNA levels can not definitely be attributed to actual changes in gene

expression, but are often due to changes in cell type proportions rather

then actual up- or downregulation of individual genes in individual cell

types (Srinivasan et al., 2016). Also, if one observes a gene with low

expression, this gene could either be equally low expressed in all cells

in the sample or be not expressed in most cells but highly active in the

few cells of a rare cell type—two indistinguishable scenarios with very

different implications for the role of that gene. Generally, the regulatory

effects in genes that are specific to subpopulations are hard to observe

in average gene expression data.
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2.1 What did scRNA-seq contribute to Neuroscience?

Single-cell RNA-seq (scRNA-seq) addresses these problems by bar-

coding all RNA from the same cell with a shared RNA tag before se-

quencing RNA from all cells in parallel (see Section 2.2 for a review

of the experimental details). By using the cell barcode, RNA molecule

counts can later be attributed to the single cells they originated from.

This allowed neuroscientists to acquire transcriptomes of single cells and

explore their diversity within and across brain areas. The following sub-

sections will showcase how scRNA-seq studies took stock of the cell types

in increasingly complex tissues: We start from a cell type census in the

mouse retina, then move on to the more complex areas in mouse cortex

and hippocampus, and eventually attain a census of the whole mouse

nervous system.

2.1.1 Local brain cell census: Retina

The retina converts the visual world around us into electrical signals,

compresses them, and sends them to the brain. Studying how the retina

accomplishes this task has been a fruitful field in neuroscience, because

the retina itself can be considered a small model of the brain (Dowling,

1987): It is organized in layers, contains most major brain cell classes

(like excitatory and inhibitory neurons with a diverse set of neurotrans-

mitters) and solves a complex and interesting information processing

task. At the same time, the retina is easy to study as a system: Exper-

imental access is easy, and there is only one input path (light-sensitive

photoreceptors), one output path (the optic nerve) and therefore simpler

circuits than, e.g., in the cortex. This simpler structure makes it more

likely to understand general principles of neural processing when study-

ing the retina (Ames III and Nesbett, 1981). Also, the retina is strongly

conserved across vertebrate species in many ways, such that neural prin-

ciples in the retina are likely to generalize across species (Baden et al.,

2020).

The vertebrate retina receives light input at the rod and cone pho-

toreceptors. The signal then travels through a layer of bipolar cells (BCs,

20



2 BACKGROUND

Franke et al. (2017)) and a layer of retinal ganglion cells (RGCs, Baden

et al. (2016)). BCs and RGCs are heterogeneous: They consist of many

cell types, each of which processes the input signal differently, thereby

forming “channels” that process different features. These features are

further sharpened by interneurons (horizontal cells and many types of

amacrine cells, ACs) before they are eventually sent to the brain via

the optic nerve. To understand how these feature channels arise, it is

important to decipher the heterogeneity of all the BC-, AC-, and RGC

types that are involved and catalog them.

Single-cell RNA sequencing is the perfect tool to build such atlas

datasets, as it can quantitatively profile many cells at once. scRNA-seq

is also less laborious than morphology reconstruction and less context-

dependent than functional measurements (Shekhar and Sanes, 2021).

Macosko et al. (2015) were the first to apply scRNA-seq to the whole

mouse retina, recovering all major cell classes. However, as they sampled

cells without restriction from the retina, their atlas is dominated by

rod photoreceptors, the most numerous cell type in the retina. This

motivated future studies to use enrichment sampling via FACS1, i.e., to

sequence only cells with certain markers present. For example, Shekhar

et al. (2016) enriched BCs and found all 13 previously known BC types

and two new ones. Among the newly discovered was the unusual type

BC1B: It has a monopolar morphology, which likely led previous studies

to misclassify it as amacrine cell (Shekhar and Sanes, 2021). However,

the Shekhar et al. (2016) atlas confirmed that transciptomically, it was

indeed closely related to BC type BC1A, and showed no similarity to

amacrine cells.

Similar studies revealed 46 RGC types (Tran et al., 2019) and 63

AC types (Yan et al., 2020) — substantially more than previously de-

scribed with functional or morphological methods. These types were

usually identifiable with single or at most 2–3 marker genes. Espe-

cially for ACs and BCs, the cell types formed a meaningful hierarchy:

1Fluorescence-activated cell sorting (FACS) allows to separate cells based on pre-
defined, fluorescent surface markers.
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2.1 What did scRNA-seq contribute to Neuroscience?

groups of cell types with similar transcriptome mapped to previously

known subclasses, i.e., ON and OFF BCs, or GABAergic and glyciner-

gic ACs (Shekhar and Sanes, 2021). This corroborates the hope that

a transcriptomic taxonomy of retinal cell types rather extends and re-

fines previously known subclasses (e.g., by dividing them in finer, new

types and even subtypes), rather than behaving orthogonal to previous

knowledge.

What are these taxonomies useful for? Shekhar and Sanes (2021)

lists three applications: First, starting from the cell type atlas datasets

introduced above, one can study how these cell types arise during indi-

vidual development (Clark et al., 2019). Second, one can combine such

atlas datasets across species to study the evolutionary convergence and

divergence of individual cell types. Hahn et al. (2023) has attempted this

and found unexpected homology between the most important RGCs in

primate retinae, midget and parasol cells, and a set of RGC types in the

mouse retina, the alpha RGCs — a result that might have direct implica-

tions on how mouse retina research is translated to primate and human

applications. For example, one could now specifically target mouse al-

pha RGCs if one aims at treatment of human eye diseases that impact

midget or parasol RGCs, e.g., in human glaucoma (Tribble et al., 2019).

A third application beyond individual and evolutionary emergence of

cell types is to develop a mechanistic understanding of eye diseases by

combining retina scRNA-seq atlas data with genome-wide association

studies (GWAS) (Shekhar and Sanes, 2021). GWAS yields risk genes

for a certain disease from population-wide comparisons of genomic mu-

tations, but does not tell in which cells the risk genes are expressed.

scRNA-seq atlases can fill this gap, and were able to reveal that some

disease risk genes are expressed in cell types that were not previously

linked to the disease. For example, Yi et al. (2021) showed that a risk

gene for age-related macula degeneration (AMD, known to affect mainly

cells of the retinal pigment epithelium) is also expressed in horizontal

cells and Mueller glia, potentially implicating these cell types in still
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2 BACKGROUND

unknown disease mechanisms of AMD.

In summary, scRNA-seq atlases have significantly advanced the un-

derstanding of the retina as a model system of the brain. They mapped

out the cell type diversity in the retina, and showed how retinal cell types

are connected across development stages and conserved across species.

First results on eye diseases raise hopes that this atlas knowledge might

eventually contribute to better understanding and treating these dis-

eases.

2.1.2 Local brain cell census: Cortex and hippocampus

In contrast to the retina, the cortex areas of the mammalian brain are

much less understood. The hippocampus is crucial for memory and

navigation, and has been a major target to study learning and plas-

ticity. The neocortex is involved in most cognitive functions, including

processing of sensory inputs, planning motor activity and executive func-

tions like decision making. This makes these areas exciting targets for

neuroscientists—and single-cell transcriptomics.

In one of the first larger-scale scRNA-seq studies of the brain, Zeisel

et al. (2015) performed a “cell census” in mouse primary somatosen-

sory cortex (S1) and mouse hippocampus area CA1, profiling roughly

3 000 cells in total. The authors first clustered the cells into nine ma-

jor groups, six non-neuronal and three neuronal. Already these major

neuronal groups revealed an interesting pattern: While pyramidal neu-

rons from cortex and hippocampus formed separate groups, interneurons

from both brain areas appeared as a single cluster. This could mean that

while projection neurons are highly area-specific, the local processing by

interneurons can be similar between cortex and hippocampus. Zeisel

et al. (2015) then further clustered each group into subclasses, revealing

that indeed the majority of interneuron subclasses appear in both cor-

tex and hippocampus. In contrast, the subclasses of the two pyramidal

groups from cortex and hippocampus were not only area-specific, but

also specific to layers or hippocampal subregions. With all non-neuronal
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subclasses included, Zeisel et al. (2015) report a total of 47 subclasses.

Importantly, both the major groups and all subclasses could be identified

from a unique combinatorial code made of a small set of transcription

factor genes2, that in some cases were directly related to the function of

the subclass in question. Thus, Zeisel et al. (2015) suggest such tran-

scription factor codes as potential mechanism of how the adult brain

maintains functional differences between cell types.

Tasic et al. (2016) performed a similar scRNA-seq study in mouse

primary visual cortex (V1), using a different sampling strategy: They

used multiple Cre mouse lines that fluorescently mark known neuronal

cell classes in V1, allowing the authors to enrich these cells of interest

with FACS. This lead to a neuron-biased sample of ca. 1 7000 cortical

cells from mouse V1. Tasic et al. (2016) clustered these cells into 49 core

clusters: 23 GABAergic, 19 glutamaterigic and seven non-neuronal. In

contrast to Zeisel et al. (2015), Tasic et al. (2016) allowed “intermediate”

cluster memberships between core clusters, revealing that roughly 15% of

all cells might not conform to discrete clusters in gene expression space,

but instead occupy the space between them.

Harris et al. (2018) followed up on this idea of continua between cell

type clusters: They profiled the transcriptomes of ca. 3 700 GABAer-

gic neurons from mouse hippocampus area CA1 after FACS-enrichment

for Slc32a1, a gene involved in GABA uptake into synaptic vesicles.

The authors then clustered these cells into 49 clusters, most of which

were subtypes of the 23 previously known CA1 interneuron types. In-

terestingly, Harris et al. (2018) showed that while some clusters seemed

discretely separated from all others, most of them showed overlap with

a small set of closely related clusters. The authors interpret these partly

overlapping clusters as dimensions of continuous variation that are tiled

2Transcription factors (TFs) are proteins that regulate the transcription of DNA
to mRNA. Groups of TFs form complex regulatory networks (Babu et al., 2004)
that can turn on and off the production of whole sets of proteins, initiating complex
programs like cell division or cell death. Thus, genes that code for TF proteins are
very influential to the fate of a cell, and it is not surprising they play a role in cell
type differentiation.
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by multiple clusters. Further analysis suggested that one such dimension

in area CA1 could be the preferred synaptic target of interneurons: Har-

ris et al. (2018) report a latent factor in CA1 transcriptomes that places

the interneuron clusters on a continuum that ranges from types targeting

other interneurons to types targeting the distal dendrites, the proximal

dendrites or somata and axons of pyramidal cells. These continuous dif-

ferences in the latent factor were driven by a set of genes involved in

electrophysiological and structural properties of the cell, implying that

the latent factor could indeed be mechanistically meaningful to under-

stand circuits in CA1. The authors conclude that such a continuous axis

of biologically meaningful variation provides a valuable complementary

perspective on gene expression to a discrete clustering.

Tasic et al. (2018) reached a new order of magnitude in terms of

dataset size, by scaling up their previous approach of enriching neurons

for scRNA-seq with transgenic mouse lines and FACS (Tasic et al., 2016).

In Tasic et al. (2018), they focus on two cortical areas with quite differ-

ent function: the “fast” primary visual cortex V1 underlying early visual

processing, and the “slow” anterior lateral motor cortex (ALM) under-

lying higher-level functions such as short-term memory, motor planing

and decision making. In total, the authors sampled almost 24 000 neu-

rons, and were able to cluster them into 133 clusters. Tasic et al. (2018)

report that almost all GABAergic types were present in both V1 and

ALM, while almost all glutamatergic types were area-specific and only

occurred in either one. This confirmed earlier results that hinted at an

area-specific taxonomy for projection neurons, and a more general tax-

onomy of interneurons shared between areas (Zeisel et al., 2015). As

Tasic et al. (2016) did before, Tasic et al. (2018) found a substantial

fraction (ca. 11%) of “intermediate” cells between clusters, which is in

line with continuous variation between cell types. In addition, the au-

thors observed substantial variation within types, sometimes as strong as

the between-cluster variation. This hints at the difficulty of reconciling

the discrete and continuous aspects of transcriptomic types in a single
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Figure 1: Region-of-origin dominates the transcriptomic taxonomy

of the mouse brain neurons. Dendrogram: Hierarchical taxonomy of Zeisel
et al. (2018) scRNA-seq brain cell types. Main branches of the taxonomy are
separated by colored backgrounds in the dendrogram. Middle panel: Neuro-
transmitters used per cell type. Lower panel: Developmental origin per cell
type. Figure reproduced with modifications from Zeisel et al. (2018) Figure
1c, in compliance with the CC-BY 4.0 license.

framework: Tasic et al. (2018) note that depending on sample size and

clustering criteria, types with a lot of continuous within-type variation

might be split into discrete subtypes.

In summary, the above selection of scRNA-seq studies of single cor-

tex areas revealed three major patterns: Similar to the retina studies,

all studies were able to reconcile their results with previous knowledge

about cell types, typically refining existing taxonomies with finer dis-

tinctions. Interestingly, excitatory cell types were often area-specific,

while inhibitory cell types were shared between areas. Finally, all stud-

ies found cases in which cell types were clearly different from each other,

but not cleanly separated. Instead, they showed continuous variation in

their gene expression, sometimes interpolating between multiple types.

This challenges the concept of cell types as discrete entities, and leaves

room for theories that explain what function a cell type with an axis of

continuous variation might serve in cortex.

2.1.3 Whole-brain cell census

For a more holistic understanding of neural systems, recent studies have

attempted to build a comprehensive scRNA atlas of the whole brain or
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even all of nervous system. To show the potential impact of such studies,

this section will introduce two selected studies in more detail.

Zeisel et al. (2018) were the first to attempt whole-brain scRNA-

seq. The authors set out to answer the question which factor mainly

drives the molecular fingerprint of cells in the nervous system: the cell’s

function, its developmental origin or micro-environment. To that end,

they sequenced roughly 500 000 cells from all parts of the mouse brain,

spinal cord and ganglia of the peripheral nervous system (PNS), omitting

only the neural tissue in primary sensory organs like the retina or the

inner ear.

As Zeisel et al. (2018) used mostly unbiased sampling, their data

were dominated by frequent, non-neural cell classes (e.g., spinal oligo-

dendrocytes made up > 40% of all cells). Downsampling such over-

represented cell types left them with 160 000 cells, which the authors

then grouped into 265 hierarchical clusters. This clustering hierarchy

suggested that the most important factor driving transcriptomic dif-

ferences in the nervous system is the difference between neurons and

non-neurons (Figure 1). Thousands of genes showed differential expres-

sion between those classes, reflecting the specialization of either class,

e.g., the ability of neurons to form synapses and axons. Among the

neurons, the dominant factor was developmental origin, as neurons from

the central nervous system (CNS, developed from the neural tube) and

the PNS (developed from the neural crest) separated regardless of func-

tional properties like the type of neurotransmitter used. CNS-neurons

split further into distinct groups of cell types for gross anatomical lo-

cation (and thereby, developmental origin) like telencephalon (including

cortex and hippocampus), diencephalon, hind brain and spinal cord,

each of which further subdivided into excitatory and inhibitory types.

These CNS neuron types were distinguished by genes encoding neuro-

transmitter production, membrane properties, synaptic structures and

region-specific transcription factors, suggesting that these transcriptomic

cell types are indeed relevant to understand neural function.
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In contrast to the highly area-specific neural cell types, Zeisel et al.

(2018) found almost no regional patterning for non-neurons: While CNS

oligodendrocytes do originate from the full length along the anterior-

posterior axis of the neural tube (like neurons), they seemed to “forget”

their origin during development, and did not form region-specific groups.

Astrocytes however were the exception: They formed region-specific cell

types with very sharp borders that coincided with the borders between

neural type regions, suggesting functional coordination between neuron

and astrocyte cell types.

In summary, Zeisel et al. (2018) concluded that the major tran-

scriptomic division in the nervous system is between neurons and non-

neurons. Neurons and astrocytes then further diversify by developmental

origin, while other non-neurons like oligodendrocytes and immune cells

do not show such regional patterning. However, the authors note that

their clustering is rather conservative, and that due to shallow sequenc-

ing (i.e., relatively few RNA molecules sequenced per cell) each of the

265 clusters they described might still contain substantial heterogeneity

to be discovered.

Yao et al. (2023) aimed to map out this remaining heterogeneity:

As part of the BRAIN Initiative Cell Census Network, they performed

microdissections in more than 100 brain areas to collect more than 7

million mouse brain cells for scRNA-seq — a sample size roughly equal

to 5% of the total number of cells in a single mouse brain. Their final

clustering groups ca. 4 million high-quality cells into seven “neighbor-

hoods”, 34 classes, ca. 300 subclasses, ca. 1 200 superclusters and ca.

5 300 clusters.

Afterwards, Yao et al. (2023) selected a subset of 500 genes that

optimally distinguished these clusters, and measured their spatial ex-

pression patterns in mouse brain slices with MERFISH (Zhang et al.,

2021), a spatial transcriptomics technique. They then map each cell in

the MERFISH data to its closest cluster in their scRNA-seq data. This

allowed to connect the spatial expression patterns from the MERFISH

28



2 BACKGROUND

data to the high-resolution scRNA-seq clusters, providing a fine-grained

spatial map for each. This allowed a detailed study of how cell types are

distributed in the mouse brain.

The analysis of these spatial maps per cluster revealed that most

clusters were specific to rather small sub-regions of the brain, and tran-

scriptomically similar cell types often occupied the same regions. One

exception to this were non-neurons, which were present throughout the

brain. As previous work found (Zeisel et al., 2015; Tasic et al., 2018),

inhibitory interneurons were less area specific than excitatory neurons.

Yao et al. (2023) also offered additional insights on the continuous types

that previous work reported (Tasic et al., 2016, 2018; Harris et al., 2018):

Such intermediate types were more likely to be prevalent across region

borders.

Finally, Yao et al. (2023) describe two very different patterns for the

evolutionary old and young parts of the mouse brain: The younger pal-

lium with neocortex, hippocampus and thalamus showed cell types that

were transcriptomically very different from all other parts of the brain.

However, within the Pallium regions, cell types were widely distributed

patterns and many of them mixed within subregions. The older regions

(midbrain, hindbrain and hypothalamus) showed a very different pat-

tern: In total, there were more cell types in the older parts than in the

pallium, especially when normalized for volume (the pallium is much

larger). However, these types were extremely specific to their region,

and only mixed with a small number of types. This is consistent with

the highly specialized nuclei in e.g., the brain stem. Yao et al. (2023)

explain these findings with the higher evolutionary pressure on the older

parts of the brain (that are related to basic survival functions like feed-

ing, breathing and homeostasis): this pressure prevented these brain

parts from diversifying their cell types. In contrast, the younger pallium

evolved later and with more tolerance for diversification. Potentially,

it is this diversity of cell types that gave rise to the complex cognitive

functions that the pallium subserves.
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In summary, Zeisel et al. (2018) produced the first whole-brain tax-

onomy for brain cell types based on scRNA-seq. For neurons, this taxon-

omy was dominated by developmental origin i.e., types split up in types

from CNS vs. PNS, and from Pallium vs. hindbrain. Yao et al. (2023)

essentially confirmed these results with an unprecedented sample size

and spatial resolution, providing a data resource that lets a comprehen-

sive taxonomy of all brain cell types seem within reach.

Figure 2: Evolutionary young regions show the highest cell type di-

versity. Spatial distribution and regional diversity of brain cell types. Heat

map: Distribution over brain subregions (y-axis) for each of ca. 300 scRNA-
seq subclasses (x-axis) from the Yao et al. (2023) BRAIN Cell Census. Left

bar: Neurotransmitter diversity per subregion. Bottom bars: Class and
subclass annotations. Right bar: Shannon diversity, a measure of how com-
plex and diverse the cell type composition is per subregion. Low values (blue)
indicate dominance of a few cell types; high values (red) indicate a mixture
of many, equally frequent cell types. Note that thalamus, midbrain, pons,
medulla and cerebellum tend to show less cell type diversity per subregion
than the pallium and cerebral nuclei. Top bar: Gini coefficient, a measure of
how localized a subclass is across regions. High values (red) are very localized,
low values (green) very evenly distributed cell types. Note that only non-
neuron are spread out across all regions (classes 30–34). Figure reproduced
with modifications from Yao et al. (2023) Figure 6a, in compliance with the
CC-BY 4.0 license.
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2.2 How does single-cell RNA sequencing work?

After the previous section introduced some landmark studies of single-

cell transcriptomics in neuroscience, this section will give an overview of

how scRNA-seq data is practically generated in the lab.

In scRNA-seq protocols, the goal is to count all RNA molecules in a

single cell. That is a challenge for several reasons: First of all, most cells

can not be simply sampled in isolation but form tightly connected tissues.

Also, once separated, each single cell contains too little amounts of RNA

to directly sequence it. Even worse, these RNA molecules are short-lived:

the RNA-degrading enzyme RNAse is ubiquitous, and the structure of

RNA makes it also chemically unstable. Finally, most experimental pro-

tocols for quantification and sequencing of nucleic acid molecules with

next-generation sequencing technology are tailored to DNA, not RNA

(although there are exceptions like the Nanopore technology (Garalde

et al., 2018)).

While individual scRNA-seq techniques might address those chal-

lenges in slightly different ways, most high-throughput protocols have

converged towards the same main steps: Tissue dissociation, single cell

isolation, cell lysis, reverse transcription to cDNA and cell-barcoding,

cDNA amplification and finally, cDNA sequencing. This section will

outline those steps along with their shortcomings and particularities for

the study of neural cells, based on a set of reviews (Kolodziejczyk et al.,

2015; Hwang et al., 2018; Tasic, 2018).

Tissue dissociation. First, tissues are dissociated into a cell suspen-

sion3 with the help of proteases and mechanical disruption by repeated

pipetting. Depending on the exact conditions, this step can stress cells

substantially, leading to altered transcription or even cell death in vul-

nerable cell types (Kashima et al., 2020). As a result, the cell suspension

3In early protocols, cells were collected semi-manually by micromanipulation with
micropipettes or laser capture microdissection, sometimes directly from the source
tissue. This was laborious and slow, and the high-throughput methods discussed here
usually rely on dissociating tissues into a cell suspension.
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after dissociation is not perfectly representative of the original tissue. For

example, cell suspensions from cortex often lack parvalbumin-expressing

cell types (Tasic, 2018), such that these types require special care or ar-

tificial enrichment in order to be studied with scRNA-seq. In the special

case of neurons, axons and dendrites will be cut off during dissociation

along with all the RNA in those compartments. As a result, scRNA-seq

of neurons is usually constrained to RNA activity in the nucleus and

soma of the cell, missing the RNA that is located at axonal or dendritic

translation sites. This “dark transcriptome” can sometimes make up as

much as 40% of the whole RNA of a neuron (Cajigas et al., 2012; Ament

and Poulopoulos, 2023).

Single-cell isolation. After dissociation, single cells in the suspension

need to be captured in separate reaction environments. For that, cells

are either sorted into individual wells on a microwell plate, chambers

in microfluidic devices or into separate microdroplets of water within a

lipid suspension. During sorting, cell types of interest can be enriched by

fluorescence-activated cell sorting (FACS), which only allows cells with

certain marker proteins enter the single-cell reaction environments.

Cell lysis and reverse transcription. In their isolated reaction en-

vironments, each cell is dissolved in a lysis buffer. The RNA in the cell

lysate is then reverse-transcribed into cDNA, which is more stable than

RNA and allows to use standard PCR and DNA sequencing downstream.

However, typical protocols only manage to reverse-transcribe 10 − 20%

of all RNA (Kolodziejczyk et al., 2015).

Barcoding. During reverse-transcription, each cDNA sequence that

is produced gets tagged with a barcode. This is a short DNA sequence

that is unique each reaction environment, and will later allow to tell from

the cDNA sequence itself from which single cell each cDNA originated.

In addition to this cell-specific barcode, some protocols attach a second

type of barcode: a unique molecular identifier (UMI, Islam et al. (2014))
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that is unique to every RNA molecule that got reverse-transcribed to a

cDNA. That way, UMI barcodes later allow to identify cDNA duplicates

that arise during the next step: The amplification phase.

Amplification. After the previous steps, the pool of barcoded and

reverse-transcribed cDNA molecules is a too small amount to be se-

quenced directly. Therefore, non-linear amplification with PCR (poly-

merase chain reaction) or IVT (in-vitro transcription) is used to copy

the existing cDNAs. Both amplification technologies can incur biases:

PCR preferentially amplifies certain cDNA sequences, and IVT results

in preferential amplification of reads from the 3’ end of the original RNA

sequence (Kolodziejczyk et al., 2015). If cDNAs were tagged with UMIs

in the previous step, this amplification biases can be avoided, while non-

UMI protocols suffer from additional amplification noise.

Also, to save resources, some protocols fragment cDNAs and only

operate on the 5’ or 3’ end of the molecules. This is sufficient to later

align them to the genome and thereby assign the observed molecule to

its gene of origin. But these short snippets will not allow to detect

alternative splicing, isoforms or mutations. For this, more costly full-

length methods like Smart-seq (Ramsköld et al., 2012) are required.

Sequencing. Finally, the barcoded and amplified cDNA (fragments)

from all reaction environments can be pooled and sequenced efficiently

with next-generation sequencing (Reis-Filho, 2009). The machinery for

sequencing is highly optimized and parallelized, allowing to process large

numbers of cDNAs at once. Often, sequencing is done in standardized

machines like the Illumina platform.

Sequence alignment. Finally, the observed read sequences are aligned

to the genome, thereby mapping transcripts to genes. This step is done

by specialized software like STAR (Dobin et al., 2013). In UMI pro-

tocols, read duplicates that were generated during amplification are re-

moved based on the UMI tag. After postprocessing, and for the purpose
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of basic scRNA-seq experiments, this finally results in the gene expres-

sion matrix: It counts for each cell (based on the cell barcode) how many

transcripts were found for each gene.

2.3 Which open challenges remain in scRNA-seq data

processing?

After reviewing the technical aspects of scRNA-seq data generation, this

section will introduce the two major scRNA-seq data processing tasks

that this thesis addresses: How can we account for sources of noise in the

data (Subsection 2.3.1)? And how can we visualize the high-dimensional

data after appropriate preprocessing (Subsection 2.3.2)? Both subsec-

tions will introduce the problem setting and existing solutions, before we

identify the gaps in current scRNA-seq data processing methods that this

thesis will attempt to fill (Subsection 2.3.3).

2.3.1 Preprocessing for noise removal

Most analyses of scRNA-seq data seek to identify which cell types are

present in the sample, and which differentially expressed marker genes

tell these types apart. From a data science point of view, we start with a

count matrix X with cells as rows or observations, and genes as columns

or features. Finding cell types means to cluster the rows of the data

matrix into groups of cells with similar expression patterns, and finding

marker genes is equivalent to select informative columns or features of

X that show large variance between the cell clusters. However, finding

similar cells and informative genes in scRNA-seq data is hard, as the raw

mRNA counts are contaminated by noise. One reason is that each cell

only contains small amount of RNA starting material, and depending on

the scRNA-seq capture efficiency, only a small fraction of that starting

material will eventually be sequenced. This leads to large variability, as

Brennecke et al. (2013) showed for artificially high amounts of starting

material, even weakly expressed genes could be measured very accurately
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with scRNA-seq technology. In contrast, the less starting material was

used, the higher mean expression was needed to obtain trustworthy es-

timates. To deal with this noise in practice, it is helpful to decompose

it further into its sources: Sampling noise and sequencing depth noise.

Sampling noise requires variance stabilization. One part of the

unwanted variance in scRNA-seq data is intrinsic sampling noise: the

observed mRNA counts X can be considered noisy samples from the

pool of n mRNAs in a cell, following a binomial distribution

X ∼ Binom(n, pg). (1)

Note that the total number of mRNAs in this pool n is large, but the

chance that a mRNA from a specific gene is observed pg is comparatively

small. In this situation the law of rare events allows to approximate

the Binomial distribution with a Poisson distribution (Lopez-Delisle and

Delisle, 2022)

XPoisson ∼ Poisson(µ = npg). (2)

In practice, the Poisson distribution sometimes underestimates the noise

variance (Grün et al., 2014). To account for this additional variance, one

can employ the negative binomial (NB) distribution

XNB ∼ NB(µ = npg, ¹), (3)

where ¹ is the overdispersion parameter of the NB. Generally, overdis-

persion refers to additional variance that occurs relative to some model

with less variance, in this case the Poisson model. In this parametriza-

tion, higher values of ¹ decrease the overdispersion relative to Poisson,

and for ¹ = ∞, there is no more overdispersion and the NB reduces to

the Poisson distribution (see Equation 5 below). The negative binomial

distribution has already been used to model bulk RNA-seq data (An-

ders and Huber, 2010) and can be motivated with transcriptional burst-
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ing (Raj et al., 2006; Grün et al., 2014), i.e., the observation that a cell’s

transcription machinery is not constantly producing a certain mRNA

species, but instead switches genes on and off in an intrinsically random

fashion. This leads to intermittent and irregular periods of very active

transcription, contributing additional variance for which the negative

binomial distribution can account. Following this interpretation around

bursting transcription, some researchers have argued to replace the NB

with beta-Poisson model, as its parameters can be directly interpreted

as burst size and burst frequency (Wills et al., 2013; Vu et al., 2016).

However, most recent work focuses on Poisson and negative binomial

models (Hwang et al., 2018).

Poisson and negative binomial counts exhibit heteroscedasticity, i.e.,

their variance is directly related to the mean

Var[XPoisson] = E[XPoisson] (4)

Var[XNB] = E[XNB] + E[XNB]2/¹. (5)

In practice, this implies that genes with a larger mean expression will also

have higher variance. This leads to problems in downstream analysis,

where we want all informative genes to contribute equally to the analy-

sis task, e.g., the separation of cell types. However, the mean-variance

relationship will cause any high-expression gene to have more variance

than a low-expression gene—even if the latter happens to be more infor-

mative. That is why scRNA-seq preprocessing usually includes variance

stabilization to remove the mean-variance relation from the raw count

data.

Sequencing depth noise requires normalization. Another part

of the noise stems from technical factors that introduce differences be-

tween cells. Even if one runs scRNA-seq on droplets filled with identical

amounts of control mRNA, these artificial cells can differ in their total

mRNA counts over orders of magnitude (Grün et al., 2014; Kharchenko,

2021). This is because the biochemistry for capturing, reverse-transcribing
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and amplifying mRNA can vary greatly in its efficiency between cells (Ste-

gle et al., 2015; Vallejos et al., 2017; Hwang et al., 2018). For real cells,

intrinsic factors like cell size can contribute additional per-cell varia-

tion (Stegle et al., 2015). The literature around this topic uses different

terms for these factors: Both sequencing depth and library size refer to

the total pool of captured molecules that end up being sequenced for

a cell, i.e., its total count across all genes. In this thesis, we call the

sum of these per-cell effects sequencing depth. Raw mRNA counts are

strongly confounded by these cell-to-cell differences in total counts, and

the absolute count values cannot be interpreted without normalization

by sequencing depth.

These two steps, sequencing depth normalization and variance stabi-

lization, are essential for every scRNA-seq preprocessing pipeline4, and

a diverse set of methods has been suggested to perform them. Following

the categorization by Ahlmann-Eltze and Huber (2023), the remainder

of this section will describe three conceptually distinct classes of pre-

processing strategies: (i) global scaling and variance stabilization, (ii)

inferring true expression from Bayesian models and (iii) noise model

Pearson residuals.

Global scaling and variance stabilization. The most simple strat-

egy combines a global scaling normalization with a non-linear, variance

stabilizing transformation (VST) — often the shifted logarithm:

Xcg,normalized =
Xcg

sc
· L (6)

Xcg,VST = log(a+Xcg,normalized) (7)

4Other common tasks include filtering out low-quality cells (e.g., cells that were
damaged already before lysis, or droplets/wells that contained multiple or no cells)
and the removal of confounding “batch effects”, resulting from cells being sampled
in separate sequencing rounds (Luecken and Theis, 2019; Amezquita et al., 2020).
These tasks are important but beyond the scope of this thesis, and therefore not
reviewed in depth here.
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where the raw counts Xcg per cell c and gene g are normalized by size

factors sc, a per-cell measure of sequencing depth (often the total count

per cell (Klein et al., 2015; Luecken and Theis, 2019; Amezquita et al.,

2020)). L is the total count per cell after normalization, and a is the

shifting parameter or pseudocount of the logarithm, often set to a = 1.

Using the log-transform after global scaling is motivated by the obser-

vation that by the Delta method (Dorfman, 1938), the shifted logarithm

approximates the optimal variance-stabilizing transform for data from a

negative binomial distribution with overdispersion ¹ = 4a5 (Ahlmann-

Eltze and Huber, 2023). Another way to justify why log-transformed ex-

pression values make sense is by noting that the log scale emphasizes rel-

ative rather than absolute changes: On the log-scale, the ≈ 10-fold differ-

ence between 10 and 110 mRNA copies is larger (log10(110)−log10(10) ≈

1.05) than the same absolute difference between 1000 and 1100 copies

(log10(1100) − log10(1000) ≈ 0.05) (Amezquita et al., 2024). Therefore,

after log-transform, any downstream analysis will focus on relative dif-

ferences.

In practice, Equations 6-7 are often applied with adjustments specific

to the use-case. E.g., L is typically chosen such that the normalized

counts are on the same order of magnitude as the raw data, i.e., L =

10 000 (counts per 10k) for UMI data, L = 1 000 000 (counts per million)

for read count data, or simply as the median total count per cell L =

median(sc) (counts per median) (Luecken and Theis, 2019).

When the size factors sc are set to the total count per cell, Equa-

tion 6 is known as library size normalization. However, this assumes

that the total count per cell is a good proxy for the true sequencing

depth, and this is only true if most genes in a dataset are not differen-

tially expressed. As this assumption might be violated in heterogeneous

datasets (Lun et al., 2016), more advanced methods have been suggested

to obtain size factors sc: Lun et al. (2016) pooled similar cells to obtain

more accurate size factors per cell pool, and then deconvolved these size

5The common pseudocount setting a = 1 implies quite a strong overdispersion,
which often is a misspecification.
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factors obtained from many pools into per-cell size factors that are also

valid in the presence of many differentially expressed genes. Other meth-

ods normalize based on spike-ins (Jiang et al., 2011; Brennecke et al.,

2013; Ding et al., 2015; Vallejos et al., 2015): equal amounts of control

RNA that is added to each cell. These methods then set the size factors

such that the counts for spike-in RNAs are the same in all cells after

normalization — thereby equalizing between-cell differences in sequenc-

ing depth. However, one cannot easily add spike-ins in all scRNA-seq

protocols, limiting the usability of this strategy (Ofengeim et al., 2017).

Some global scaling methods additionally consider per-gene effects:

For protocols that sequence reads from the whole length of the RNA

transcripts, Li et al. (2010) introduced TPM normalization6 in which

size factors take the transcript length into account (as genes with longer

transcripts will result in more reads in full-length protocols). Bacher

et al. (2017) observed that not all genes showed the same linear relation

to the total counts per cell, i.e., some genes’ counts depend more on

the sequencing depth of the cell. To account for this difference in count-

depth relation, the authors consequently suggested SCnorm, which iden-

tifies K groups of genes with similar count-depth relationship. Within

each such group of similar genes, counts are then separately normalized

by a size factor sck per cell c and gene group k.

Global scaling methods are very common in scRNA-seq data anal-

ysis (Luecken and Theis, 2019), likely because their basic form is sim-

ple and fast to compute (Equations 6–7). However, normalization by

global scaling is not always effective: If too many genes are differentially

expressed across cells, all global scaling methods that do not account

for that will fail (Lun et al., 2016; Vallejos et al., 2017). Also, when

cells vary a lot in their total counts, normalized and log-transformed

counts can still be correlated with sequencing depth (Ahlmann-Eltze

and Huber, 2023), which can introduce spurious differences between

cells (Lun, 2018). Additionally, the variance stabilization can fail: The

6TPM (transcript per million) normalization was originally conceived for bulk
RNA-seq protocols.
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log-transform cannot stabilize the variance of small counts (Warton,

2018), and the common settings of a pseudocount a = 1 and the scaling

factor L = 1 000 000 imply unrealistic amounts of overdispersion (Ahlmann-

Eltze and Huber, 2023). In summary, global scaling methods are useful

and popular heuristics, but their shortcomings result in measurably sub-

optimal performance (Cole et al., 2019; Tian et al., 2019).

Bayesian models for expression inference. Global scaling meth-

ods aim to transform raw count data such that its statistics change to-

wards some desired properties. In particular, preprocessed counts should

have stable variance across genes and be independent of the total counts

per cell. Bayesian models of gene expression take a different perspec-

tive: They consider the observed matrix of mRNA counts X a noisy

measurement of the inherently noisy process of gene expression, which

is governed by some latent variables of biological interest, like true tran-

scription rates T . Inferring these true transcription rates from the noisy

counts is then achieved using Bayes’ theorem

P (T |X) =
P (X|T ) · P (T )

P (X)
, (8)

where P (X|T ) is the likelihood of the observed counts under a mecha-

nistic model that starts from the transcriptions rates, and P (T ) is the

prior distribution of the transcription rates. Thus, Bayesian models can

infer the most likely transcription activity given some observed counts.

Because the model already accounts for sources of technical and biolog-

ical noise during the processes that eventually give rise to an observed

mRNA count, the inferred transcription activity can be considered nor-

malized for all noise sources that were part of the model. Also, depending

on the inference procedure, the Bayesian setup usually allows to obtain

uncertainty estimates for the inferred transcription activities.

Existing gene expression models differ in how much detail of the data

generation they model explicitly, how they set their priors, and how they

perform inference. Normalizr (Wang, 2021) simply assumes that ob-
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served counts kcg for gene g in one cell c are sampled from a Binomial

distribution kcg ∼ Binom(nc, pgc) over nc RNA molecules in the cell.

Normalizr then estimates the log(pgc) as log relative expression for fur-

ther processing. With a slightly more complex model that is aimed at the

analysis of small sets of genes, baredSC (Lopez-Delisle and Delisle, 2022)

models the observed counts be a Poisson sample kcg ∼ Poisson(nc³cg),

where nc are the total counts in each cell. ³cg is the true expression

and follows a Gaussian mixture model prior, where each component

corresponds to a subpopulation of cells with different expression. An ex-

tension to 2D mixtures can account for correlations between two genes.

However, baredSC obtains posterior estimates for the gene expressions

³cg and the number and parameters of the mixture components with

Markov chain Monte Carlo (MCMC) sampling, which makes baredSC

much slower than other methods and infeasible to use for more than a

few genes of interest.

In contrast to these rather simple models, Sanity (Breda et al., 2021)

starts from a mechanistic motivation: The methods summarizes all bio-

logical factors that influence mRNA production or decay into one gene’s

transcription activity acg. It then uses the relative transcription activ-

ities over all genes ³cg = acg/
∑

g acg to describe the transcriptional

state of a cell that one would like to infer. Sanity further assumes that

the number of true mRNAs in a cell are samples from a Poisson distri-

bution that depends on ³cg, and that the observed scRNA-seq counts

are another Poisson sample from the pool of true mRNAs. Effectively,

this chain of Poisson distributions leads to a product-of-Poissons like-

lihood, with genes treated independently. The resulting likelihood for

counts from a single gene is identical to the baredSC model, but as

Sanity assumes a simple Gaussian prior over the transcription activities

alphacg instead of a Gaussian mixture model it cannot infer gene-gene-

correlations and might oversmooth more complex multimodal distribu-

tions (Lopez-Delisle and Delisle, 2022). At the same time, Sanity can

solve for ³cg faster than baredSC, but is still up to 4 500 times slower
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than global scaling.

In summary, Bayesian models of gene expression have the advantage

that they model the biophysical quantity of interest in scRNA-seq data

analysis: the transcription activity. This makes the inferred normalized

expression values directly interpretable. However, Bayesian inference

procedures are computationally expensive, limiting the applicability of

some of the models.

Null model Pearson residuals. A null model of scRNA-seq experi-

ments describes how mRNA counts are distributed when only technical

factors contribute to the data, and no biological factors are active. To

use such a model for normalization and variance stabilization, one can

use its Pearson residuals as normalized values:

Rcg =
Xcg − X̂cg,null
√

vcg,null(X)
, (9)

where Xcg is the observed count for gene g and cell c, X̂cg,null is the

fitted null model count (i.e., the count expected under the null model

given all observed counts X), and vcg,null(X) is the count noise expected

under the null model given all observed counts X. This is equivalent to

z-scoring the observed counts w.r.t. the null model. Consequently, the

residuals will have mean zero and unit variance when the observed counts

follow the null model perfectly. However, when the observed counts for a

certain gene and cell deviate from the null model, the residuals for that

count will have high absolute values. For example, when the null model

assumes perfectly homogeneous counts across cells, data from cells with

differential expression patterns will violate this assumption and lead to

large residuals. In contrast, if the null model correctly accounts for a

technical factor like sequencing depth, spurious differences in the ob-

served counts due to sequencing depth will not lead to high residuals,

as the null model accounts for them. Consequently, Pearson residuals

of a well-chosen null model will (i) no longer contain expected techni-
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cal variance, (ii) emphasize unexpected biological variance, and (iii) by

construction stabilize the variance of all genes that are not differentially

expressed. Both novel normalization methods that this thesis presents

are based on null model Pearson residuals (Chapter 3–4).

Importantly, preprocessing with Pearson residuals is conceptually

different from preprocessing via Bayesian models or via global scaling

heuristics: Global scaling heuristics often have poor theoretical motiva-

tion, while Pearson residuals normalization states explicitly which kind

of noise and expression patterns it expects and removes from the data.

In contrast, when using Bayesian inference, one usually directly infers

biophysically meaningful quantities that can be mapped to the transcrip-

tion machinery of the cell, e.g., high transcription rates that correspond

to very actively transcribed genes. In contrast, a high Pearson residual

is merely a high null model z-score, indicating that some RNA count

pattern significantly outside the null model’s assumptions has occurred

and requires interpretation by the researcher. In this sense, null model

Pearson residuals can be considered an attractive, light-weight compro-

mise between global scaling heuristics and full Bayesian inference: All

assumptions relevant for data preprocessing are made explicit in the null

model, while avoiding the need to model the whole biological system of

interest and infer its parameters.

To set up a null model, one has to formalize its two components: the

expected counts Enull and their variance Varnull given some observed data

X. For the expected counts, one could assume that cells are identical

except for their (observed) sequencing depth, and that genes do not

differ except for their (observed) mean expression. Previous work by

Hafemeister and Satija (2019) has in addition assumed that genes with

similar mean expression should have similar dispersions. To formalize

the variance of the null model, we need to describe the distribution of

intrinsic and technical noise in the data.

Which noise distribution is appropriate for a null model of scRNA-

seq data? The answer depends on the technical details of the sequencing
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protocol that is employed to produce the data: Read counts from non-

UMI protocols are sampled from the pool of cDNA after amplification

with e.g., PCR, and contain amplification noise. In contrast, UMI counts

allow to de-duplicate amplification copies, and therefore are free from

such amplification noise. These protocol-level effects have been studied

empirically: Grün et al. (2014) measured the magnitude of amplification

noise on control data, and found that technical noise in UMI counts

was on average 50% lower than in the non-UMI counts from the same

experiment. Thus, different noise distributions have been established for

UMI- and non-UMI data.

UMI counts are samples from the captured and reverse-transcribed

RNA molecules before amplification. We can recall from above that in

theory, they should follow a Poisson or negative binomial distribution.

To confirm this assumption, Grün et al. (2014) studied UMI count noise

empirically by investigating the variance of UMI counts across artificial

replicate “cells” — samples with identical RNA content — that should

contain only technical noise. They found that while UMI counts for

low expression genes follow Poisson statistics, higher expression genes

showed an additional noise component that required a negative binomial

distribution to explain. Similarly, more recent work found biologically

homogeneous UMI counts could usually be fit with a negative binomial

or Poisson model (Chen et al., 2018; Svensson, 2020; Cao et al., 2021).

Lopez-Delisle and Delisle (2022) suggested that these results in favor of

negative binomial models did not properly take into account the cell-to-

cell variance in sequencing depth, and that simple Poisson models could

be sufficient.

For non-UMI data, the case is more complex. For a low-expression

gene, the density of these models will often include zero, i.e., they pre-

dict that the RNA of such a gene is not observed in some cells (Fig-

ure 3a). Importantly, the amplification step differentially affects zero

and non-zero counts: All non-zero counts get amplified by some (po-

tentially noisy) multiplicative factor, trivially leading to counts that are
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several magnitudes larger than UMI counts and shifting the average non-

UMI count by the average amplification factor. In contrast, zero counts

are not amplified and therefore do not shift (Figure 3c).
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Figure 3: Amplification of Poisson-distributed UMIs leads to zero-

inflated non-UMI counts.

a: Simulated UMI counts from a Poisson with µ = 5, mimicking the pre-
amplification counts for a low-expression gene with some true zeros. b: Simu-
lated noisy amplification factors z from a Poisson with µz = 30 c: Simulated
non-UMI counts: For each UMI count k in (a), we draw k amplification factors
z from (b) and sum them up to arrive at non-UMI counts x =

∑
k

i=1
zi . See

Section 4.2.2 for model details. Note the spike at zero corresponding to zero
UMIs, and the modes at multiples of µz corresponding to the nonzero UMI
counts 1, 2, 3, . . . after amplification. Lines show probability mass functions
for different negative binomial distributions with the correct mean µz ·µ = 150
and different overdispersion, none of which can fit zeros and nonzeros at the
same time. Note that a Poisson distribution (not shown) would fit even worse,
as it is even narrower around the mean than any negative binomial.

The resulting non-UMI counts therefore exhibit zeros and a mixture

of shifted Poisson or negative binomial distributions (Figure 3c), leading

to a characteristic gap in their density between zeros and shifted non-

zeros. Such a gap is not present in Poisson or negative binomial densities,

and the zeros would be unexpected for any Poisson or negative binomial

with the new, shifted mean. As a result, just changing the mean of

these distributions to adjust for the shift will be insufficient because
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of the excess zeros(Figure 3c). That is why non-UMI counts are often

described as zero-inflated. Previous work has attempted to model them

as such, e.g., by combining distribution for the non-zero counts with an

additional probability mass at or around zero (Kharchenko et al., 2014;

Finak et al., 2015; Lopez et al., 2018; Wu et al., 2021). A typical choice

for non-UMI noise is the zero-inflated negative binomial (ZINB), which

is a negative binomial with an additional parameter È for the probability

that a count is not originating from the NB but from a separate point

mass at zero, leading to the PMF:

PZINB(X) =







È + (1 − È) · PNB(0, µ, ¹) for x = 0

(1 − È) · PNB(x, µ, ¹) for x > 0
. (10)

Empirically, Chen et al. (2018) showed that in non-UMI data, a sub-

stantial fraction of genes required a ZINB model to be fit well, and Cao

et al. (2021) confirmed that non-UMI data are zero-inflated regardless

of the technical platform they are obtained from.

In summary, null models of UMI data should use Poisson or negative

binomial noise, while null models for non-UMI data require additional

zero-inflation as in the ZINB model. For UMI data, several residuals-

based approaches exist that turn this knowledge into null models: Hafe-

meister and Satija (2019) use a negative binomial regression null model,

which allows groups of genes with a similar mean expression to behave

similar (i.e., have a similar relation to each cell’s sequencing depth and

a similar overdispersion). Townes et al. (2019) suggest deviance resid-

uals in the framework of generalized PCA, using similar distributional

assumptions at its core. Very recently, Singh and Khiabanian (2024)

suggested a residual-based approach similar to Hafemeister and Satija

(2019), that improved sequencing depth estimation by relying only on

genes that are not differentially expressed. In contrast, for non-UMI

data, a comparable null model residual approach does not yet exist.
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2.3.2 Visualization

Feature selection. Raw single-cell RNA-seq data is high-dimensional,

as typical datasets contain the expression of ten thousands of genes.

However, usually only a small subset of genes is biologically informa-

tive, while the rest is noisy or not differentially expressed (Amezquita

et al., 2020). To remove these genes and reduce the computational cost,

many preprocessing pipelines contain a feature selection step to select

only highly variable genes for further analysis (Yip et al., 2019; Luecken

and Theis, 2019; Heumos et al., 2023). This is often done by selecting

highly variable genes (HVGs) that have high variance after preprocess-

ing, assuming that their variance is mostly due to biologically interesting

causes. This step requires proper variance stabilization because other-

wise only high-expression genes will dominate (Amezquita et al. (2020),

see Section 2.3.1). To avoid this, some HVG selection methods directly

use null model residuals as described above (Townes et al., 2019; Hafe-

meister and Satija, 2019).

Linear dimensionality reduction: PCA. It is best practice to

rather select too many than too few HVGs, often on the order of hun-

dreds to thousands of genes (Luecken and Theis, 2019), so by the num-

ber of features, the dimensionality of the data is still high after feature

selection. Fortunately, Heimberg et al. (2016) showed in an analysis

of hundreds of scRNA-seq datasets that their intrinsic dimensionality

is much lower, as many genes are correlated. This motivates the use of

principal component analysis (PCA) for linear dimensionality reduction.

Informally, one can describe PCA rotating the high-dimensional gene

expression space such that the directions with maximum variance align

with the first cardinal axes. Effectively, this can summarize many corre-

lated dimensions into one principal axis. To reduce dimensionality, one

can now select a small number of these principal axes that explain most

of the variance. This compresses the data into a low-rank representa-

tion that implicitly removes noise by pooling redundant genes (Luecken
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and Theis, 2019; Amezquita et al., 2020). As PCA is a linear method,

the distances in PCA space remain interpretable (Luecken and Theis,

2019), and one can map principal components and their combinations

back to gene space (Chung and Storey, 2014), e.g., for biological inter-

pretations of a principal component as set of genes that act jointly in

gene regulatory networks. While classic PCA implicitly assumes that

the data in the original space follows a multivariate normal distribu-

tion, Townes et al. (2019) proposed to adjust PCA to scRNA-seq data

and introduced GLM-PCA, a variation of PCA that assumes Poisson or

negative binomial count data instead.

Non-linear dimensionality reduction: t-SNE and UMAP. Re-

ducing dimensionality with PCA after preprocessing scRNA-seq data

leads to a useful space for many downstream analyses like clustering (Moon

et al., 2018). However, usually the variance of the data spreads over more

than 2 principal axes (often between 10 and 50), making it hard to visu-

alize even the reduced PCA space directly. To address this problem, non-

linear dimensionality reduction methods like t-SNE (van der Maaten and

Hinton, 2008) and UMAP (McInnes et al., 2018) became very popular

to visualize scRNA-seq datasets in two dimensions (Kobak and Berens,

2019; Becht et al., 2019). These methods are governed by an objective

function that encourages similar cells from the high-dimensional space

(e.g., the PCA space after scRNA-seq preprocessing) to stay close in the

low dimensional 2D embedding. Practically, t-SNE starts by identifying

nearest neighbors among the cells in the high-dimensional space. Then,

all cells are assigned an initial position in 2D space7. These initial cell

positions are then iteratively updated with gradient descent on the ob-

jective function, which moves cells such that similar cells come closer

together. To see how this is achieved, one can decompose the gradient

7Usually, the first two principal components are used for initialization (Poličar
et al., 2024), as they are a good proxy for the global structure in the data. As t-
SNE is an inherently local method that only optimizes nearest-neighbor relations, it
cannot produce such global structure by itself and therefore depends on a meaningful
initialization (Kobak and Berens, 2019).
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forces acting on each cell into attractive and repulsive forces (van der

Maaten and Hinton, 2008): The attractive forces are only between the

original nearest neighbors from the high-dimensional space, i.e., simi-

lar cells attract each other. In contrast, repulsive forces act between

all cells. When these forces are applied many times, similar cells will

usually group into well-separated clusters.

The balance of these attractive and repulsive forces is the defining

feature of UMAP, t-SNE, and related methods. Recent insights by Böhm

et al. (2022) revealed that this perspective unifies many non-linear di-

mensionality reduction methods and explains the differences in the em-

beddings they produce. This can be helpful for scRNA-seq analysis as

well, as different settings highlight different aspects of the data (Dam-

rich et al., 2024): High attraction methods tend to emphasize continuous

structure in the data (like developmental trajectories), while high repul-

sion brings out discrete clusters and local structure.

t-SNE’s ability to resolve high-dimensional clusters is one of its strengths

in practice (Kobak and Berens, 2019) and was studied in a line of theoret-

ical analysis: Linderman and Steinerberger (2017) found hyperparam-

eter settings for which well-separated clusters will always be correctly

recovered. Arora et al. (2018) improved on this result by showing which

kinds of clusters can be fully or partially recovered. More recently, Cai

and Ma (2022) have offered a whole theoretical framework to explain

which parts of the t-SNE algorithm give rise to its good performance

in practice. In particular, they find that t-SNE is inherently related to

spectral clustering (Von Luxburg, 2007), explaining its ability to flexibly

cluster data with an unknown number of classes.

In contrast to these advantages, t-SNE and UMAP embeddings also

have well-known shortcomings (Wattenberg et al., 2016; Nonato and

Aupetit, 2018; Wang et al., 2023b; Chari and Pachter, 2023): The ob-

jective function focuses solely on placing neighboring cells from the high-

dimensional space close to each other in the 2D embedding, and does

not attempt to respect the original distances between points. Thus, the
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cell-to-cell distances in the final embedding will usually not resemble

the original, high-dimensional distances. This partly follows from the

objectives of t-SNE and UMAP that simply not include distance preser-

vation, but also goes back to fundamental problems in the mathematics

of dimensionality reduction: Reducing dimensionality inevitably leads

to loss of information. Specifically, some point configurations that are

possible in high dimensions cannot be accommodated in lower dimen-

sions. For example, consider a k-simplex: It consists of k+ 1 points that

are equidistant to each other in a k-dimensional space, and cannot be

embedded in fewer than k dimensions.8 In practice, five cells that are

approximately equidistant to each other in the high-dimensional gene

expression space form a 4-simplex, and require at least four dimensions

to be embedded without distorting the equidistance. Consequently, a 2D

t-SNE or UMAP would necessarily distort the distances of such equidis-

tant cells. Recently, Chari and Pachter (2023) have shown that such

cases of severe distance distortion exist in real scRNA-seq datasets. As

a result, distances on a t-SNE or UMAP embedding can usually not be

interpreted.

In summary, t-SNE and UMAP are unable to preserve distances, but

have proven useful to recover local information and cluster structure. For

practitioners, the advantages of having a single-plot summary visualiza-

tion of their data seems to outweigh the shortcoming of not preserving

all aspects of the dataset perfectly: t-SNE and UMAP have grown to

be a standard tool in visualizing scRNA-seq data (Luecken and Theis,

2019; Amezquita et al., 2020).

8A closely related result is the curse of dimensionality for distances, stating that
generally, distances between n points grow with the number of dimensions p and
become more and more similar (Aggarwal et al., 2001; Altman and Krzywinski, 2018),
with all points being far away from each other for many dimensions. If one applies
dimensionality reduction to such a space, one cannot ensure anymore that all n

points are far away—especially when embedding large n into very few dimensions.
As a result, one will inevitably need to embed some points closer to each other than
they were in the original dimensions.
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2.3.3 Open questions and outlook

Preprocessing scRNA-seq data. Section 2.3.1 demonstrated the

diversity in preprocessing methods for scRNA-seq data. Users can choose

from a spectrum that ranges from fast and simple heuristics (global

scaling normalization and log-transform) to rather slow Bayesian models

of the scRNA-seq data generation process. Recently, Pearson residuals

of null models emerged as a promising alternative that can be seen as a

compromise between the two.

However, the setup of the most popular residual-based preprocess-

ing approach, scTransform (Hafemeister and Satija, 2019), raises criti-

cal questions: Their null model (Equation 16) is obtained by fitting a

negative binomial regression with a large number of parameters (three

parameters per gene). Even though these fits are regularized (i.e., fitted

parameters are shared between groups of genes with similar mean ex-

pression), this leads to an expensive setting with many free parameters,

and it is unclear if this complexity is really needed. Also, the fitted gene

parameters appear to be correlated with the mean expression and among

each other (Figure 4) — a behavior that is not motivated by theory and

requires investigation. We will explore these open questions about the

scTransform model in Chapter 3 (Lause et al., 2021), and propose a

simpler and faster residual-based preprocessing for UMI data: Analytic

Pearson residuals.

All recent work on residual-based preprocessing is based on null mod-

els for UMI data (Hafemeister and Satija, 2019; Townes et al., 2019;

Singh and Khiabanian, 2024); null models for non-UMI data are cur-

rently not available. As non-UMI data from full-length protocols are

still regularly used to study splicing and gene isoforms, we suggest to

close this gap: Chapter 4 (Lause et al., 2023) develops an appropri-

ate null model for non-UMI counts and extends the Analytic Pearson

residuals from Chapter 3 to non-UMI data.
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Visualizing scRNA-seq data. After preprocessing, researchers usu-

ally want to inspect their data visually. Section 2.3.2 motivated the

de-facto standard pipeline for visualization of high-dimensional single-

cell data : HVG selection and PCA followed by UMAP or t-SNE. While

HVG selection and PCA are undisputed tools that remove uninformative

genes and pooling correlated dimensions, the use of UMAP and t-SNE

has recently been challenged: Chari and Pachter (2023) re-analyzed how

well these 2D embedding methods preserve local, global and distance in-

formation from the high-dimensional space. The authors conclude that

UMAP and t-SNE fail at each one of these tasks and even claim that

the resulting 2D embeddings are “arbitrary” and should not be used at

all.

This conclusion is surprising and in stark contrast to the popular-

ity of 2D embeddings in the field of single-cell biology: While some

shortcomings regarding distance preservation are well known (see above),

Chari and Pachter (2023) themselves note that 2D embeddings are com-

monly used for sanity-checking preprocessing and exploratory data anal-

ysis. Additionally, a line of theoretical results indicates that t-SNE can

even guarantee to recover well-separated ground truth cluster struc-

ture (Arora et al., 2018; Linderman and Steinerberger, 2019; Cai and

Ma, 2022). How can this be true if t-SNE and UMAP are “arbitrary”?

The final Chapter 5 of this thesis resolves this contradiction: We

show that a core part of the Chari and Pachter (2023) argument for “ar-

bitrary” embeddings is flawed, as they evaluate embedding quality only

through distance preservation. Our analysis demonstrates that t-SNE

and UMAP perform well on cluster- and neighborhood preservation, and

we conclude that all things considered, 2D embeddings remain a useful

tool for exploratory single-cell data analysis.
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3 Analytic Pearson residuals for UMI counts

Publication note. This chapter is published in Genome Biology (Lause

et al., 2021) and is available at https://doi.org/10.1186/s13059-0

21-02451-7 under a CC-BY 4.0 license (https://creativecommons.

org/licenses/by/4.0/).

Abstract

Standard preprocessing of single-cell RNA-seq UMI data in-

cludes normalization by sequencing depth to remove this technical

variability, and nonlinear transformation to stabilize the variance

across genes with different expression levels. Instead, two recent

papers propose to use statistical count models for these tasks:

Hafemeister & Satija (Hafemeister and Satija, 2019) recommend

using Pearson residuals from negative binomial regression, while

Townes et al. (Townes et al., 2019) recommend fitting a gener-

alized PCA model. Here, we investigate the connection between

these approaches theoretically and empirically, and compare their

effects on downstream processing.

We show that the model of Hafemeister and Satija produces

noisy parameter estimates because it is overspecified, which is why

the original paper employs post-hoc smoothing. When specified

more parsimoniously, it has a simple analytic solution equivalent

to the rank-one Poisson GLM-PCA of Townes et al. Further,

our analysis indicates that per-gene overdispersion estimates in

Hafemeister and Satija are biased, and that the data are in fact

consistent with the overdispersion parameter being independent

of gene expression. We then use negative control data without

biological variability to estimate the technical overdispersion of

UMI counts, and find that across several different experimental

protocols, the data are close to Poisson and suggest very moder-

ate overdispersion. Finally, we perform a benchmark to compare

the performance of Pearson residuals, variance-stabilizing trans-

formations, and GLM-PCA on scRNA-seq datasets with known

ground truth.
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We demonstrate that analytic Pearson residuals strongly out-

perform other methods for identifying biologically variable genes,

and capture more of the biologically meaningful variation when

used for dimensionality reduction.

3.1 Introduction

The standard preprocessing pipeline for single-cell RNA-seq data in-

cludes sequencing depth normalization followed by log-transformation

(Luecken and Theis, 2019; Amezquita et al., 2020). The normalization

aims to remove technical variability associated with cell-to-cell differ-

ences in sequencing depth, whereas the log-transformation is supposed

to make the variance of gene counts approximately independent of the

mean expression. Two recent papers argue that neither step works very

well in practice (Hafemeister and Satija, 2019; Townes et al., 2019). In-

stead, both papers suggest to model UMI (unique molecular identifier)

data with count models, explicitly accounting for the cell-to-cell varia-

tion in sequencing depth (defined here as the total UMI count per cell).

Hafemeister and Satija (2019) use a negative binomial (NB) regression

model (scTransform package in R), while Townes et al. (2019) propose

Poisson generalized principal component analysis (GLM-PCA). These

two models are seemingly very different.

Here we show that the model used by Hafemeister and Satija (2019)

has a too flexible parametrization, resulting in noisy parameter esti-

mates. As a consequence, the original paper employs post-hoc smooth-

ing to correct for that. We show that a more parsimonious model pro-

duces stable estimates even without smoothing and is equivalent to a

special case of GLM-PCA. We then demonstrate that the estimates of

gene-specific overdispersion in the original paper are strongly biased, and

further argue that UMI data do not require gene-specific overdispersion

parameters to account for technical noise. Rather, the technical variabil-

ity is consistent with the same overdispersion parameter shared between

all genes. We use available negative control datasets to estimate this
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3 ANALYTIC PEARSON RESIDUALS FOR UMI COUNTS

technical overdispersion. Furthermore, we compare Pearson residuals,

GLM-PCA, and variance-stabilizing transformations for highly variable

gene selection and as data transformation for downstream processing.

Our code in Python is available at http://github.com/berenslab

/umi-normalization. Analytic Pearson residuals will be included into

upcoming Scanpy 1.9 (Wolf et al., 2018).

3.2 Results

3.2.1 Analytic Pearson residuals

A common modeling assumption for UMI or read count data without

biological variability is that each gene g takes up a certain fraction pg of

the total amount nc of counts in cell c (Love et al., 2014; Eling et al., 2018;

Lopez et al., 2018; Townes et al., 2019; Svensson et al., 2020b; Sarkar

and Stephens, 2021). The observed UMI counts Xcg are then modelled

as Poisson or negative binomial (NB) (Grün et al., 2014) samples with

expected value µcg = pgnc without zero-inflation (Svensson, 2020; Sarkar

and Stephens, 2021):

Xcg ∼ Poisson(µcg) or NB(µcg, ¹), (11)

µcg = ncpg. (12)

The Poisson model has a maximum likelihood solution (see Methods)

that can be written in closed form as n̂c =
∑

gXcg (sequencing depths),

p̂g =
∑

cXcg/
∑

c n̂c, or, put together,

µ̂cg =

∑
j Xcj ·

∑
iXig∑

ij Xij

(13)

For the negative binomial model this holds only approximately. Using

this solution, the Pearson residuals are given by

Zcg =
Xcg − µ̂cg√
µ̂cg + µ̂2

cg/¹
, (14)
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where µcg +µ2
cg/¹ is the NB variance and ¹ → ∞ gives the Poisson limit.

The variance of Pearson residuals is, up to a constant, equal to the Pear-

son Ç2 goodness-of-fit statistic (Agresti, 2015) and quantifies how much

each gene deviates from this constant-expression model. As pointed

out by Aedin Culhane (Culhane, 2020), singular value decomposition of

the Pearson residuals under the Poisson model is known as correspon-

dence analysis (Hill, 1974; Greenacre and Hastie, 1987; Greenacre, 2007;

Holmes, 2008), a method with a longstanding history (Hirschfeld, 1935).

Hafemeister and Satija (2019) suggested using Pearson residuals from

a related NB regression model for highly variable gene (HVG) selection

and also as a data transformation for downstream processing. In parallel,

Townes et al. (2019) suggested using deviance residuals (see Methods)

from the same Poisson model as above for HVG selection and also for

PCA as an approximation to their GLM-PCA. In the next sections we

discuss the relationships between these approaches.

3.2.2 The regression model in scTransform is overspecified

Hafemeister and Satija (2019) used the 33k PBMC (peripheral blood

mononuclear cells, an immune cell class that features several distinct

subpopulations) dataset from 10X Genomics in their work on normal-

ization of UMI datasets. For each gene g in this dataset, the authors fit

an independent NB regression

Xcg ∼ NB(µcg, ¹g) (15)

ln(µcg) = ´0g + ´1g log10(n̂c). (16)

Here ¹g is the gene-specific overdispersion parameter, n̂c are observed

sequencing depths as defined above, and ´0g and ´1g are the gene-specific

intercept and slope. The natural logarithm follows from the logarithmic

link function that is used in NB regression by default. The original

paper estimates ´0g and ´1g using Poisson regression, and then uses the

obtained estimates to find the maximum likelihood estimate of ¹g. The
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3 ANALYTIC PEARSON RESIDUALS FOR UMI COUNTS

resulting estimates for each gene are shown in Figure 4a–c, reproducing

Figure 2A from the original paper.

The authors observed that the estimates ˆ́
0g and ˆ́

1g were unstable
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Figure 4: Regression model of Hafemeister and Satija (2019) com-
pared to the offset model. Each dot corresponds to a model fit to the
counts of a single gene in the 33k PBMC dataset (10x Genomics, n = 33 148
cells). Following Hafemeister and Satija (2019), we included only the 16 809
genes that were detected in at least five cells. Color denotes the local point
density from low (blue) to high (yellow). Expression mean was computed as
1

n

∑
c
Xcg. a: Intercept estimates β̂0g in the original regression model. Dashed

line: Analytic solution for β̂0g in the offset model we propose. b: Slope es-
timates β̂1g. Dashed line: β1g = ln(10) ≈ 2.3. c: Overdispersion estimates
θ̂g. d: Relationship between slope and intercept estimates (ρ = −0.91). e:
Intercept estimates in the offset model, where the slope coefficient is fixed to
1. Dashed line shows the analytic solution, which is a linear function of gene
mean. f: Overdispersion estimates θ̂g on simulated data with true θ = 10
(dashed line) for all genes. g: Overdispersion estimates θ̂g on the same sim-
ulated data as in panel (f), but now with 100 instead of 10 iterations in the
theta.ml() optimizer (R, MASS package). Cases for which the optimization
diverged to infinity or resulted in spuriously large estimates (θ̂g > 106) are
shown at θ̂g = ∞ with some jitter. Dashed line: true value θ = 10. h: Vari-
ance of Pearson residuals in the offset model. The residuals were computed
analytically, assuming θ = 100 for all genes. Following Hafemeister and Satija
(2019), we clipped the residuals to a maximum value of

√
n. Dashed line in-

dicates unit variance. Red dots show the genes identified in the original paper
as most variable.
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and showed high variance for genes with low average expression (Fig-

ure 4a–b). They addressed this with a ‘regularization’ procedure that

re-set all estimates to the local kernel average estimate for a given ex-

pression level. This is similar to some approaches to bulk RNA-seq

analysis (Love et al., 2014; Eling et al., 2018) but with post-hoc correc-

tion instead of Bayesian shrinkage. This kernel smoothing resulted in

an approximately linear increase of the intercept with the logarithm of

the average gene expression (Figure 4a) and an approximately constant

slope value of ˆ́
1g ≈ 2.3 (Figure 4b). The nature of these dependen-

cies was left unexplained. Moreover, we found that ˆ́
0g and ˆ́

1g were

strongly correlated (Ä = −0.91), especially for weakly expressed genes

(Figure 4d). Together, these clear symptoms of overfitting suggest that

the regression model was overspecified.

Indeed, the theory calls for a less flexible model.As explained above,

a common modeling assumption (Eq. 12) is that µcg = pgnc, or equiva-

lently

ln(µcg) = ln(pg) + ln(nc) = ´0g + ln(nc). (17)

We see that under this assumption, the slope ´1g does not need to be

fit at all and should be fixed to 1, if ln(nc) is used as predictor. Not

only does this suggest an alternative, simpler parametrization of the

model, but it also explains why Hafemeister and Satija (2019) found

that ˆ́
1g ≈ 2.3: they used log10(nc) = ln(nc)/ ln(10) instead of ln(nc) as

predictor, and so obtained ln(10) ≈ 2.3 as the average slope.

Under the assumption of Eq. 17, a Poisson or NB regression model

should be specified using ln(nc) as predictor with a fixed slope of 1, a

so-called offset (Eqs. 15 and 17). This way, the resulting model has

only one free parameter and is not overspecified. Moreover, the Poisson

offset model is equivalent to Eqs. 11–12 and so, as explained above, has

an analytic solution

ˆ́
0g = ln

(∑
cXcg/

∑
c nc

)
= ln( 1

N

∑
cXcg) − ln( 1

N

∑
c nc), (18)
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3 ANALYTIC PEARSON RESIDUALS FOR UMI COUNTS

which forms a straight line when plotted against the log-transformed

average gene expression 1
n

∑
cXcg (Figure 4e). This provides an expla-

nation for the linear trend in ˆ́
0g in the original two-parameter model

(Figure 4a).

In practice, our one-parameter offset model and the original two-

parameter model after smoothing arrive at qualitatively similar results

(Figure 4h). However, we argue that the one-parameter model is more

appealing from a theoretical perspective, has an analytic solution, and

does not require post-hoc averaging of the coefficients across genes.

3.2.3 The offset regression model is equivalent to the rank-one

GLM-PCA

The offset regression model turns out to be a special case of GLM-PCA

(Townes et al., 2019). There, the UMI counts are modeled as

Xcg ∼ Poisson(µcg) or NB(µcg, ¹g), (19)

µcg = nc exp
( k∑

l=0

UclVlg
)

= nc exp
(
V0g +

k∑

l=1

UclVlg
)
, (20)

assuming k+1 latent factors, with U and V playing the role of principal

components and corresponding eigenvectors in standard PCA. Impor-

tantly, the first latent factor is constrained to Uc0 = 1 for all cells c, such

that V0g can be interpreted as gene-specific intercepts. If the data are

modeled without any further latent factors, Eq. 20 reduces to

ln(µcg) = V0g + ln(nc), (21)

which is identical to Eq. 17 with V0g = ´0g. This shows that the pro-

posed one-parameter offset regression model is exactly equivalent to the

intercept-only rank-one GLM-PCA.
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3.2 Results

3.2.4 Overdispersion estimates in scTransform are biased

After discussing the overparametrization of the systematic component of

the scTransform model, we now turn to the NB noise model employed by

Hafemeister and Satija (2019). The ¹̂g estimates in the original paper are

monotonically increasing with the average gene expression, both before

and after kernel smoothing (Figure 4c). This suggests that there is

a biologically meaningful relationship between the expression strength

and the overdispersion parameter ¹g. However, this conclusion is in fact

unsupported by the data.

To demonstrate this, we simulated a dataset with NB-distributed

counts X̃cg ∼ NB(µcg, ¹ = 10) with µcg given by Eq. 13 using Xcg of

the PBMC dataset. Applying the original estimation procedure to this

simulated dataset showed the same positive correlation of ¹̂g with the

average expression as in real data (Figure 4f), strongly suggesting that it

does not represent an underlying technical or biological cause, but only

the estimation bias. Low-expressed genes had a larger bias and only for

genes with the highest average expression was the true ¹ = 10 estimated

correctly.

Moreover, the ¹̂g estimates strongly depended on the exact details

of the estimation procedure. Using the theta.ml() R function with its

default 10 iterations, as Hafemeister and Satija (2019) did, led to multi-

ple convergence warnings for the simulated data in Figure 4f. Increasing

this maximum number of iterations to 100 eliminated most convergence

warnings, but caused 49.9% of the estimates to diverge to infinity or

above 1010 (Figure 4g). These instabilities are likely due to shallow

maxima in the NB likelihood w.r.t. ¹ (Willson et al., 1986).

The above arguments show that the overdispersion parameter es-

timates in Hafemeister and Satija (2019) for genes with low expres-

sion were strongly biased. In practice, however, the predicted variance

µ+µ2/¹ is only weakly affected by the exact value of ¹ for low expression

means µ, and so the bias reported here does not substantially affect the

Pearson residuals (see below). Also, many of the weakly expressed genes

60



3 ANALYTIC PEARSON RESIDUALS FOR UMI COUNTS

may be filtered out during preprocessing in actual applications. We note

that large errors in NB overdispersion parameter estimates have been ex-

tensively described in other fields, with simulation studies showing that

estimation bias occurs especially for low NB means, small sample sizes,

and large true values of ¹ (Clark and Perry, 1989; Lord, 2006; Lord and

Miranda-Moreno, 2008), i.e., for samples that are close to the Poisson

distribution. Note also that post-hoc smoothing (Hafemeister and Satija,

2019) can reduce the variance of the ¹̂g estimates, but does not reduce

the bias.

3.2.5 Negative control datasets suggest low overdispersion

To avoid noisy and biased estimates, we suggest to use one common

¹ value shared between all genes. Of course, any given dataset would

be better fit using gene-specific values ¹g. However, our goal is not

the best possible fit: We want the model to account only for technical

variability, but not biological variability, e.g., between cell types; this

kind of variability should manifest itself as high residual variance.

Rather than estimating the ¹ value from a biologically heterogeneous

dataset such as PBMC, we think it is more appropriate to estimate the

technical overdispersion using negative control datasets, collected with-

out any biological variability (Svensson, 2020). We analyzed several such

datasets spanning different droplet- and plate-based sequencing proto-

cols (10x Genomics, inDrop, MicrowellSeq) and compared the ¹̂g esti-

mates to the estimates obtained using simulated NB data with various

known values of ¹ ∈ {10, 100, 1000,∞}. For the simulations, we used

the empirically observed sample sizes and sequencing depths. We found

that across different protocols, negative control data were consistent with

overdispersion ¹ ≈ 100 or larger (Figure S1). The plateau at ¹ ≈ 10 in

the PBMC data visible in Figure 4c could reflect biological and not

technical variability. At the same time, negative control data were not

consistent with the Poisson model (¹ = ∞), but likely overdispersion

parameter values (¹ ≈ 100) are large enough to make the Poisson model
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acceptable in practice (Kim et al., 2015; Wang et al., 2018; Sarkar and

Stephens, 2021). Parallel work reached the same conclusion (Lopez-

Delisle and Delisle, 2022).

3.2.6 Analytic Pearson residuals select biologically relevant

genes

Both Hafemeister and Satija (2019) and Townes et al. (2019) suggested

to use Pearson/deviance residuals based on models that only account

for technical variability, in order to identify biologically variable genes.

Indeed, genes showing biological variability should have higher variance

than predicted by such a model. As explained above, Pearson residuals in

the model given by Eqs. 11–12 (or, equivalently, offset regression model

or rank-one GLM-PCA) can be conveniently written in closed form:

Zcg =
Xcg − µ̂cg√
µ̂cg + µ̂2

cg/¹
, µ̂cg =

∑
j Xcj ·

∑
iXig∑

i,j Xij

, ¹ = 100. (22)

For most genes in the PBMC data, the variance of the Pearson resid-

uals was close to 1, indicating that this model predicted the variance of

the data correctly and suggesting that most genes did not show biologi-

cal variability (Figures 4h). Using ¹ = 100 led to several high-expression

genes selected as biologically variable that would not be selected with a

lower ¹ (e.g., Malat1 ), but overall, using ¹ = 10, ¹ = 100, or even the

Poisson model with ¹ = ∞ led to only minor differences (Figure S2). Us-

ing analytic Pearson residuals for HVG selection yielded a very similar

result compared to using Pearson residuals from the smoothed regression

presented in Hafemeister and Satija (2019), with almost the same set of

genes identified as biologically variable (Figures 4h, S2). This suggests

that our model is sufficient to identify biologically relevant genes.

It is instructive to compare the variance of Pearson residuals to the

variance that one gets after explicit sequencing depth normalization fol-

lowed by a variance-stabilizing transformation. For Poisson data, the

square root transformation
√
x is approximately variance-stabilizing,
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and several modifications exist in the literature (Bar-Lev and Enis,

1988), such as the Anscombe transformation 2
√
x+ 3/8 (Anscombe,

1948) and the Freeman-Tukey transformation
√
x +

√
x+ 1 (Freeman

and Tukey, 1950). Normalizing UMI counts Xcg by sequencing depths

nc (and multiplying the result by the median sequencing depth ïncð
across all cells; ‘median normalization’) followed by one of the square-

root transformations has been advocated for UMI data processing (Wag-

ner, 2019, 2020).

Comparing the gene variances after the square-root transformation

(Figure 5a) with those of Pearson residuals (Figure 5b) in the PBMC

dataset showed that the square-root transformation is not sufficient for

variance stabilization. Particularly affected are low-expression genes

that have variance close to zero after the square-root transform (Warton,

2018). For example, platelet gene markers such as Tubb1 have low av-

erage expression (because platelets are a rare population in the PBMC

dataset) and do not show high variance after any kind of square-root

transform (another example was given by the B-cell marker Cd79a).

At the same time, Pearson residuals correctly indicate that these genes

have high variance and are biologically meaningful (Figure 5c). For the

genes with higher average expression, some differentially expressed genes

like the monocyte marker Lyz or the above-mentioned Malat1 showed

high variance in both approaches. However, the selection based on the

square-root transform also included high-expression genes like Fos, which

showed noisy and biologically unspecific expression patterns (Figure 5c).

Similar patterns were observed in the full-retinal dataset (Macosko et al.,

2015) (Figure S3).

The gene with the highest average expression in the PBMC dataset,

Malat1, showed clear signs of biologically meaningful variability: e.g.,

it is not expressed in platelets (Figure 5c). While this gene is selected

as biologically variable based on Pearson residuals with ¹ ≈ 100 as we

propose (Figure 5b), it was not selected by Hafemeister and Satija (2019)

who effectively used ¹ ≈ 10 (Figures 4c,h, S2). This again suggests that
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¹ ≈ 100 is more appropriate than ¹ ≈ 10 to model technical variability

of UMI counts.

Pearson residuals may even be ‘too sensitive’ in that genes that are

only expressed in a handful cells may get very large residual variance.

Hafemeister and Satija (2019) suggested clipping residuals to [−√
n,

√
n].

We found that this step avoids large residual variance in very weakly

expressed genes (Figure S2 see Methods for more details). The variance

of unclipped Pearson residuals under the Poisson model (¹ = ∞) was

very similar to the Fano factor of counts after median normalization

(Figure S2) and less useful for HVG selection compared to the clipped

residuals.

Lastly, gene selection by the widely-used log(1+x)-transform as well

10 3 10 2 10 1 100 101

expression mean

10 4

10 3

10 2

10 1

100

101

va
ria

nc
e

a

Tubb1

Lyz

Fos
Malat1

sqrt(CPMedian)

selection by Pearson residuals

10 3 10 2 10 1 100 101

expression mean

100

101

b

Tubb1

Lyz

Fos

Malat1

Pearson residuals ( = 100)

selection by sqrt(CPMedian)

c Tubb1

Lyz

Fos

Malat1

Figure 5: Selection of variable genes. In the first two panels, each dot
shows the variance of a single gene in the PBMC dataset after applying a
normalization method. The dotted horizontal line shows a threshold adjusted
to select 100 most variable genes. Red dots mark 100 genes that are selected
by the other method, i.e., that are above the threshold in the other panel.
Stars indicate genes shown in the last panel. a: Gene variance after sequenc-
ing depth normalization, median-scaling, and the square-root transformation.
b: Variance of Pearson residuals (assuming θ = 100). c: t-SNE of the entire
PBMC dataset (see Figure S4), colored by expression of four example genes
(after sequencing depth normalization and square-root transform). Platelet
marker Tubb1 with low average expression is only selected by Pearson resid-
uals. Arrows indicate the platelet cluster. Fos is only selected by the square
root-based method, and does not show a clear type-specific expression pattern.
Malat1 (expressed everywhere apart from platelets) and monocyte marker Lyz
with higher average expression are selected by both methods.
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as by the variance of deviance residuals as suggested by Townes et al.

(2019) led to very similar results as described above for the square-

root transform: many biologically meaningful genes were not selected,

as all three methods overly favored high-expression genes (Figure S2).

In conclusion, neither of these transformations is sufficiently variance-

stabilizing. In practice, many existing HVG selection methods take the

mean-variance relationship into account when performing the selection

(e.g., seurat and seurat v3 methods (Satija et al., 2015; Stuart et al.,

2019) as implemented in Scanpy (Wolf et al., 2018)). We benchmarked

their performance in the next section.

3.2.7 Analytic Pearson residuals separate cell types better

than other methods

Next, we studied the effect of different normalization approaches on PCA

representations and t-SNE embeddings. The first approach is median

normalization, followed by the square-root transform (Wagner, 2019,

2020). We used 50 principal components of the resulting data matrix

to construct a t-SNE embedding. The second approach is computing

Pearson residuals according to Eq. 22 with ¹ = 100, followed by PCA

reduction to 50 components. The third approach is computing 50 com-

ponents of negative binomial GLM-PCA with ¹ = 100 (Townes et al.,

2019). We used the same initialization to construct all t-SNE embed-

dings to ease the visual comparison (Kobak and Berens, 2019).

We applied these methods to the full PBMC dataset (Figure S4),

three retinal datasets (Macosko et al., 2015; Shekhar et al., 2016; Tran

et al., 2019) (Figure 6), and a large organogenesis dataset with n = 2

million cells (Cao et al., 2019) (Figure 7). For smaller datasets, the

resulting embeddings were mostly similar, suggesting comparable per-

formance between methods. Hafemeister and Satija (2019) argued that

using Pearson residuals reduces the amount of variance in the embed-

ding explained by the sequencing depth variation, compared to sequenc-

ing depth normalization and log-transformation. We argue that this
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effect was mostly due to the large factor that the authors used for re-

scaling the counts after normalization (Figure S5): large scale factors

and/or small pseudocounts (ϵ in log(x+ ϵ)) are known to introduce spu-

rious variation into the distribution of normalized counts (Lun, 2018;

Townes et al., 2019). For the PBMC dataset, all three t-SNE embed-

dings showed similar amount of sequencing depth variation across the

embedding space (Figure S4g–i). Performing the embeddings on 1000

genes with the largest Pearson residual variance did not noticeably affect

the embedding quality (Figure S4).

However, on closer inspection, embeddings based on Pearson resid-

uals consistently outperformed the other two. For example, while the

Pearson residual embeddings clearly separated fine cell types in the full-

retina dataset (Macosko et al., 2015), the square-root embedding mixed

some of them (we observed the same when using the log-transform). For

the same dataset, GLM-PCA embedding did not fully separate some

of the biologically distinct cell types. Furthermore, GLM-PCA embed-

dings often featured Gaussian-shaped blobs with no internal structure

(Figure 6), suggesting that some fine manifold structure was lost, possi-

bly due to convergence difficulties.

Embedding the organogenesis dataset (Cao et al., 2019) using Pear-

son residuals uncovered a strong and surprising batch artifact: hitherto

unnoticed, several genes were highly expressed exclusively in small sub-

sets of cells, with each subset coming from a single embryo. These sub-

sets appeared as isolated islands in the t-SNE embedding (Figure 7),

allowing us to uncover and remove this batch effect (Figure S6), leading

to the final, biologically interpretable embedding (Figure 7). In con-

trast, embeddings based on log-transform or GLM-PCA did not show

this batch artifact at all. GLM-PCA took days to converge (Table 1)

and could recover only the coarse structure of the data. Interestingly,

the final embedding based on Pearson residuals was broadly similar to

the embedding obtained after log-transform and standardization of each

gene, as expected given that Pearson residuals stabilize the variance by
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construction (Figure 7). Together, these qualitative observations suggest

that analytic Pearson residuals can represent small, distinct subpopula-

tions in large datasets better than other methods.
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Figure 6: t-SNE embeddings of three retinal datasets. Panels in each
column are based on a different data transformation method with PCA or
GLM-PCA reduction to 50 dimensions (see Methods), and each row shows a
different retinal dataset. We did not perform any gene selection here. Colors
correspond to cell type labels provided by the original papers. a–c: Full-
retina dataset (DropSeq) (Macosko et al., 2015), containing all retinal cell
types (including glia and vascular cells). 24 769 cells. d–f: Bipolar cell dataset
(DropSeq) (Shekhar et al., 2016). 13 987 cells. g–i: Retinal ganglion cell
dataset (10X v2) (Tran et al., 2019). 15 750 cells.
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To quantify the performance of dimensionality reduction methods,

we performed a systematic benchmark using the Zhengmix8eq dataset

a log(CPMedian+1), PCA b
log(CPMedian+1),

 standardization, PCA c GLM-PCA (fitted = 0.55)

d Pearson residuals ( = 100), PCA e

Endothelial

Hepatocyte

HAEMATOPOIESIS

NEURAL CREST

NEURAL TUBE

Epithelial

LensMESENCHYMAL

Pearson residuals ( = 100), PCA
(after artifact removal)

Figure 7: t-SNE embeddings of the organogenesis dataset. All pan-
els show t-SNE embeddings of the organogenesis dataset (Cao et al., 2019)
(2 058 652 cells), colored by the 38 main clusters identified by the original au-
thors. All panels use 2 000 genes with the largest Pearson residual variance.
Each panel shows a total of 2 026 641 cells, excluding 32 011 putative doublets
identified in the original paper. All t-SNE embeddings were done with exagger-
ation 4 (Kobak and Berens, 2019; Böhm et al., 2020). a: Depth-normalization,
median scaling, log-transformation and PCA with 50 principal components.
b: Same as in (a), but with an additional standardization step that scales the
normalized and log-transformed expression of each gene to mean zero and unit
variance, as in the original paper (Cao et al., 2019). c: GLM-PCA with 50
dimensions (NB model with shared overdispersion as a free parameter, esti-
mated to be θ̂ = 0.56). d: Analytic Pearson residuals with θ = 100 and PCA
with 50 principal components. The scattered small islands do not belong to
single clusters but instead are spuriously enriched in single embryos. e: Same
as in (d), but after removing batch-effect genes (Methods). Text labels corre-
spond to the developmental trajectories identified in the original paper (Cao
et al., 2019) (uppercase: multi-cluster trajectories, lowercase: single-cluster
trajectories).
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with known ground truth labels (Duò et al., 2018) (Figure 8). This

dataset consists of PBMC cells FACS-sorted into eight different cell types

before sequencing (Zheng et al., 2017), with eight types occurring in

roughly equal proportions. To make the setup more challenging, we

added 10 pseudo-genes expressed only in a group of 50 cells, effectively

creating a ninth, rare, cell type (see Methods). We used six methods

to select 2000 HVGs (and additionally omitted HVG selection) and ten

methods for data transformation and dimensionality reduction to 50

dimensions. We assessed the resulting (6 + 1) · 10 = 70 pipelines using

kNN classification of cell types. We used the macro F1 score (harmonic

mean between precision and recall, averaged across classes) because this

metric fairly averages classifier performance across classes of unequal

size. Together, the F1 score of the kNN classifier quantifies how well

each pipeline separated cell types in the 50-dimensional representation

(Figure 8c). We did not include approaches that use depth normalization

with inferred size factors (Lun et al., 2016) in this comparison.

The pipeline that used analytic Pearson residuals for both gene selec-

tion and data transformation outperformed all other pipelines with re-

spect to cell type classification performance. In contrast, popular meth-

ods for HVG selection (e.g., seurat v3 as implemented in Scanpy (Wolf

et al., 2018; Stuart et al., 2019)) combined with log or square-root trans-

formations after depth normalization performed worse and in particular

were often unable to separate the rare cell type (Figure 8a,b; see Fig-

ure S7 for additional embeddings). The performance of GLM-PCA was

also poor, likely due to convergence issues (with 15-dimensional, and

not 50-dimensional, output spaces, GLM-PCA performed on par with

Pearson residuals; data not shown), in agreement with what we reported

above for the retinal datasets. Finally, deviance residuals (Townes et al.,

2019) were clearly outperformed by Pearson residuals both as gene se-

lection criterion and as data transformation. This is due to the reduced

sensitivity of deviance residuals to low- or medium-expression genes (Fig-

ure S2). Note that in terms of the overall classification accuracy no
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pipeline outperformed Pearson residuals but many pipelines performed

similarly well; this is because overall accuracy is not sensitive to the rare

cell type, unlike the macro F1 score.

For this dataset, not using gene selection at all performed similarly

well to HVG selection using Pearson residuals (Figure 8c), but in gen-

eral HVG selection is a recommended step in scRNA-seq data analysis

(Luecken and Theis, 2019; Amezquita et al., 2020) and here Pearson
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Figure 8: Benchmarking the effect of normalization on cell type
separation in reduced dimensionality. We used the Zhengmix8eq dataset
with eight ground truth FACS-sorted cell types (Zheng et al., 2017; Duò et al.,
2018) (3 994 cells) and added ten pseudo-genes expressed in a random group of
50 cells from one type. All HVG selection methods were set up to select 2 000
genes, and all normalization and dimensionality reduction methods reduced
the data to 50 dimensions. For details see Methods. a: t-SNE embedding after
the seurat v3 HVG selection as implemented in Scanpy, followed by depth-
normalization, median scaling, square-root transform, and PCA. Colors denote
ground truth cell types, the artificially added type is shown in red. b: t-SNE
embedding after HVG selection by Pearson residuals (θ = 100), followed by
transformation to Pearson residuals (θ = 100), and PCA. Black arrow points
at the artificially added type. c: Macro F1 score (harmonic mean between
precision and recall, averaged across classes to counteract class imbalance) for
kNN classification (k = 15) of nine ground truth cell types for each of the 70
combinations of HVG selection and data transformation approaches.
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residuals performed the best. Also, log-transformed counts that were

standardized performed similarly well to Pearson residuals (Figure 8c),

in agreement with the above observations on the organogenesis dataset

(Figure 7b). Nevertheless, the same organogenesis example showed that

Pearson residuals can be more sensitive (Figure 7b, d).

3.2.8 Analytic Pearson residuals are fast to compute

The studied normalization pipelines differ in both space and time com-

plexity. UMI count data are typically very sparse (e.g., in the PBMC

dataset, 95% of entries are zero) and can be efficiently stored as a sparse

matrix object. Sequencing depth normalization and square-root or log-

transformation do not affect the zeros, preserving the sparsity of the

matrix, and PCA can be run directly on a sparse matrix. In contrast,

Pearson residuals form a dense matrix without any zeros, and so can

take a large amount of memory to store (4.5 Gb for the PBMC dataset).

For large datasets this can become prohibitive (but note that a smart

implementation may be able to avoid storing a dense matrix in mem-

ory (Irizarry, 2021)). In contrast, GLM-PCA can be run directly on a

sparse matrix but takes a long time to converge (Table 1), becoming

prohibitively slow for bigger datasets.

Computational complexity can be greatly reduced if gene selection

is performed in advance. After selecting 1000 genes, Pearson residuals

do not require a lot of memory (0.3 Gb for the PBMC dataset) and

so can be conveniently used. Note that the Pearson residual variance

can be computed per gene, without storing the entire residual matrix in

memory. GLM-PCA, however, remained slow even after gene selection

(4 h vs. 4 s for Pearson residuals for the PBMC dataset; 2 days vs. 4 m

for the organogenesis dataset; Table 1).

3.3 Chapter Discussion

We reviewed and contrasted different methods for normalization of UMI

count data. We showed that without post-hoc smoothing, the negative
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binomial regression model of Hafemeister and Satija (2019) exhibits high

variance in its parameter estimates because it is overspecified, which is

why it had to be smoothed in the first place. We argued that instead of

smoothing an overspecified model, one should resort to a more parsimo-

nious and theoretically motivated model specification involving an offset

term. This made the model equivalent to the rank-one GLM-PCA of

Townes et al. (2019) and yielded a simple analytic solution, closely re-

lated to correspondence analysis (Greenacre, 2007). Further, we showed

that the estimates of per-gene overdispersion parameter θg in the orig-

inal paper exhibit substantial and systematic bias. . We used negative

control datasets from different experimental protocols to show that UMI

counts have low overdispersion and technical variation is well described

by θ ≈ 100 shared across genes.

We found that the approach developed by Hafemeister and Satija

(2019) and implemented in the R package scTransform in practice yields

Pearson residuals that are often similar to our analytic Pearson residuals

with fixed overdispersion parameter (Figure S2). We argue that our

model with its analytic solution is attractive for reasons of parsimony,

theoretical simplicity, and computational speed. Moreover, it provides

an explanation for the linear trends in the smoothed estimates in the

original paper. We have integrated Pearson residuals into upcoming

Scanpy 1.9 (Wolf et al., 2018).

Following our manuscript, scTransform was updated to scTrans-

form v2 and now uses the offset model formulation (Choudhary and

Satija, 2021). At the same time, the authors argue that the dependence

of the overdispersion parameter θg on the gene expression strength is not

entirely explained by the estimation bias. To reduce the bias, scTrans-

form v2 uses glmGamPoi (Ahlmann-Eltze and Huber, 2020) to estimate

the offsets β0g and the overdispersion parameters θg (which are then

smoothed). The authors also refer to the bulk RNA-seq literature, where

it has been observed that the overdispersion parameter grows monoton-

ically with gene expression (Anders and Huber, 2010; Law et al., 2014;
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Love et al., 2014). Given the difficulties with estimating overdispersion

for low expression means (see above), we believe that this question re-

quires further investigation. However, as argued above, whether θ is

assumed to be constant or is allowed to vary between genes, has very

little effect on the resulting Pearson residuals.

A parallel publication (Breda et al., 2021) suggested a Bayesian pro-

cedure named Sanity for estimating expression strength underlying the

observed UMI counts, based on Poisson likelihood and Bayesian shrink-

age. Importantly, Pearson residuals are not aiming at estimating the

underlying expression strength; rather, they quantify how strongly each

observed UMI count deviates from the null model of constant expression

across cells. These two approaches can have opposite effects on gene

markers of rare cell types: the Bayesian procedure shrinks their expres-

sion towards zero whereas our approach yields large Pearson residuals.

We argued here that this emphasis on rare cell types is useful for many

downstream tasks, but if the interest lies in true expression, approaches

like Sanity may be more appropriate. Future work should perform com-

prehensive benchmarks on a variety of tasks (Ahlmann-Eltze and Huber,

2023).

On the practical side, we showed that Pearson residuals outperform

other methods for selecting biologically variable genes. They are also

better than other preprocessing methods for downstream analysis: in a

systematic benchmarking effort, we demonstrated that Pearson residuals

provide a good basis for general-purpose dimensionality reduction and

for constructing 2D embeddings of single-cell UMI data. In particular,

they are well suited for identifying rare cell types and their genetic mark-

ers. Applying gene selection prior to dimensionality reduction reduces

the computational cost of using Pearson residuals down to negligible.

We conclude that analytic Pearson residuals provide a theory-based,

fast, and convenient method for normalization of UMI datasets.
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Sqrt(CPMedian)
+ PCA

Pearson residuals
+ PCA

GLM-PCA

33k PBMC 31 s 35 s 15 h
33k PBMC
1000 HVGs

3 s 4 s 4 h

2M organogenesis
2000 HVGs

166 s 224 s 52 h

Table 1: Runtimes for different normalization pipelines. The datasets
are: the full 33k PBMC dataset, the PBMC dataset after selecting 1 000 HVGs,
and the organogenesis dataset (Cao et al., 2019) after selecting 2 000 HVGs.
Genes with largest Pearson residual variances were selected, which took 9
seconds (PBMC) and 15 minutes (organogenesis), respectively. See Methods
for details. All runtimes measured on a machine with 256 Gb RAM and 30
CPU threads at 2.1 GHz.

3.4 Chapter Methods

Code and data availability All software needed to reproduce the

analysis and figures presented in this work are published under GNU

Affero General Public License v3.0 on Github at https://www.gith

ub.com/berenslab/umi-normalization (Lause, 2021). The state of

the repository at submission of this manuscript is archived at https:

//zenodo.org/record/5150534.

All datasets used in this work are publicly available and listed in the

following Table 2. Detailed download instructions can be found at our

Github repository.

3.4.1 Mathematical details

Analytic solution The log-likelihood for the model defined in Eqs. 11–

12

Xcg ∼ Poisson(ncpg) (23)

can be, up to a constant, written as

L =
∑

cg

[

Xcg ln(ncpg) − ncpg

]

, (24)
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where we used the Poisson density p(x) = exe−µ/x!. Taking partial

derivatives with respect to nc and pg and setting them to zero, one

obtains

n̂c =

∑

gXcg
∑

g p̂g
, p̂g =

∑

cXcg
∑

c n̂c

. (25)

This is a family of solutions. Setting
∑

g p̂g = 1, we obtain Eq. 13 and

the formulas for n̂c and p̂g given in Section 2.1.

This derivation does not generalize for the negative binomial model

with density

p(x) =
Γ(x+ θ)

x! Γ(θ)

( θ

θ + µ

)θ( µ

θ + µ

)x

, (26)

where the log-likelihood (for fixed θ), up to a constant, is

L =
∑

cg

[

Xcg ln(ncpg) − (Xcg + θ) ln(ncpg + θ)
]

. (27)

This does not have an analytic maximum likelihood solution. However,

for large θ values Eq. 13 can be taken as an approximate solution.

Deviance residuals Deviance is defined as the doubled difference be-

tween the log-likelihood of the saturated model and the log-likelihood of

the actual model. The saturated model, in our case, is a full rank model

with µ̂∗

cg = Xcg. For the Poisson model, the deviance can therefore be

obtained from Eq. 24 and is equal to

D = 2
∑

cg

[

Xcg ln
Xcg

µ̂cg

− (Xcg − µ̂cg)
]

, (28)

where the terms with µ̂cg = Xcg are taken to be zero.

Deviance residuals are defined as square roots of the respective de-

viance terms, such that the sum of squared deviance residuals is equal to

the deviance (note that for the Gaussian case this already holds true for

the raw residuals, because the saturated model has zero log-likelihood,

and the deviance is simply the squared error). It follows that for the
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Poisson model deviance residuals (Townes et al., 2019) are given by

Zcg = sign(Xcg − µ̂cg)

√

2
[

Xcg ln
Xcg

µ̂cg

− (Xcg − µ̂cg)
]

(29)

Similarly, for the negative binomial model with fixed θ, the deviance

residuals follow from Eq. 27 and are given by

Zcg = sign(Xcg − µ̂cg)

√

2
[

Xcg ln
Xcg

µ̂cg

− (Xcg + θ) ln
Xcg + θ

µ̂cg + θ

]

(30)

It is easy to verify that this formula reduces to the Poisson case when

θ → ∞. When computing deviance residuals, we estimated µ̂cg using

Eq. 13.

Clipping Pearson residuals Clipping Pearson residuals to ±
√
n as

suggested by Hafemeister and Satija (2019) is needed to avoid large

residual variance in rarely expressed genes (Figure S2d). The intuition

behind this heuristic is as follows. Consider a UMI dataset with n cells

containing a biologically distinct rare population P of size m j n. Let

this population have a marker gene with expression following Poisson(λ)

for the cells from P , and zero expression for all n −m remaining cells.

For simplicity we assume the Poisson model here, and further assume

that all cells have the same sequencing depth.

The expected average expression of this gene is λm/n and so the

expected Pearson residual value for this gene for the cells from P is

(λ− λm/n)/
√

λm/n = (n−m)
√

λ/(nm) ≈
√

λn/m.

With the clipping threshold
√
n, clipping will happen whenever λ >

m, i.e., when the population P is either very small or has very large UMI

counts. For example, a population of 10 cells having a marker gene with

the within-population mean expression of 20 UMIs, will result in clipped

residuals, as if the within-population mean expression were ∼10 UMIs.

This may have a large effect on the leading principal components (even

PC1) if the data contain a very small number of cells with strong marker
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gene expression.

Pearson residuals of biologically variable genes It is instructive

to observe the effect Pearson residuals have on genes that have the same

variance of log-expression but different expression means. Consider a

gene that has expression µ in half of the cells and is upregulated by a fac-

tor of two in the other half of the cells. Then its expression mean is 1.5µ,

and the Pearson residuals are close to ±0.5µ/
√

1.5µ ≈ 0.4
√
µ, i.e., the

variance of Pearson residuals grows linearly with µ. This makes sense be-

cause for higher-expressed genes there is more statistical certainty about

over-Poisson variability, but at the same time highlights that Pearson

residuals do not aim to estimate the underlying (log-)expression, unlike

e.g., Sanity (Breda et al., 2021).

3.4.2 Experimental details

Analyzed datasets and preprocessing Used datasets are listed in

Table 2. For the organogenesis dataset and the FACS-sorted PBMC

dataset, we applied no further filtering. In all remaining datasets we

excluded genes that were expressed in fewer than 5 cells, following Hafe-

meister and Satija (2019). The data were downloaded following links

in original publications in form of UMI count tables. Direct links to all

data sources are given in our Github repository https://github.com

/berenslab/umi-normalization.

HVG selection For gene selection using sqrt(CPMedian), Pearson

residuals, and deviance residuals, we applied the respective data trans-

formation and used the variance after transformation as selection crite-

rion. For Seurat and Seurat v3 methods, we used the respective Scanpy

implementations. In brief, these two methods regress out the mean-

variance relationship, and return an estimate of the ‘excess’ variance for

each gene (Satija et al., 2015; Stuart et al., 2019). For scTransform we

used the corresponding R package (Hafemeister and Satija, 2019). The
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Fano factor was computed after normalizing by sequencing depth and

scaling by median sequencing depth.

Data transformation and dimensionality reduction We used the

following abbreviations to denote data transformations: sqrt(CPMedian)

— normalization by sequencing depth, followed by scaling by the median

depth across all cells (‘counts per median’), followed by the square-root

transform; log(CPMedian + 1) — normalization by sequencing depth,

followed by scaling by the median depth across all cells, followed by

log(x+1) transform; log(CPMedian + 1) + standardization — same

as log(CPMedian + 1), but followed by centering each gene at mean zero

and unit variance; log(CPM + 1) — normalization by sequencing depth,

followed by scaling by one million (‘counts per million’), followed by

log(x+ 1) transform. Pearson residuals were computed with Eq. 22 and

then clipped to ±
√
n. Deviance residuals were computed with Eq. 30.

All of these methods were typically followed by dimensionality reduc-

tion by PCA to 50 dimensions using the Scanpy implementation (Wolf

et al., 2018), unless otherwise stated.

Further, we used three variants of GLM-PCA to transform raw counts

and reduce dimensionality down to 50 in a joint step: Poisson GLM-

PCA, negative binomial GLM-PCA with estimation of single overdisper-

sion parameter θ shared across genes, and negative binomial GLM-PCA

with fixed shared θ. In Townes et al. (2019), the authors only used the

former two methods. Whenever possible, we used the glmpca-py imple-

mentation with default settings. When we reduced the PBMC dataset

to 1 000 genes for Figure S4f, GLM-PCA did not converge with default

penalty 1, so we increased it to 5, following the tuning procedure used in

the authors’ R implementation. Similarly, negative binomial GLM-PCA

with estimation of θ did not converge on the benchmark dataset (Figure

8) when we used gene selection by either Deviance residuals (θ = 100)

or Pearson residuals (θ = 10). For these two cases, we had to increase

the penalty to 10. On the organogenesis dataset, the Python imple-

mentation did not converge within reasonable time, so for this dataset,
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we resorted to the R implementation. It uses a different optimization

method and employs stochastic minibatches. All reported GLM-PCA

results for this dataset are for batchsize 10 000 as batchsizes 100 and

1 000 (default) resulted in considerably longer runtimes. Because the R

implementation does not support NB GLM-PCA with fixed theta, for

this dataset we used GLM-PCA with jointly fit θ̂.

Unless otherwise stated, all residuals and GLM-PCA with fixed θ

used θ = 100. Whenever gene selection was performed prior to a data

transformation that required sequencing depths, we computed those

depths using the sum over selected genes only.

Benchmarking cell type separation with kNN classification We

used the Zhengmix8eq dataset with known ground truth labels obtained

by FACS-sorting of eight PBMC cell types (Zheng et al., 2017; Duò

et al., 2018). There were 400–600 cells in each cell type. We created a

ninth, artificial population from 50 randomly selected B-cells (marked

blue in Figure 8). To mimic a separate cell type, we added 10 pseudo

marker that had zero expression everywhere apart from those 50 cells.

For those 50 cells, UMI values were simulated as Poisson(nip), where ni

is the sequencing depth of the i-th selected cell (range: 452–9697), and

expression fraction p was set to 0.001.

We then applied the 70 normalization pipelines shown in Figure 8 to

this dataset. Each pipeline either used one of the six methods to select

2000 HVGs or proceeded without HVG selection, followed by one of the

ten methods for data transformation and dimensionality reduction to 50

dimensions. To assess cell type separation in this output space, we used a

kNN classifier with a leave-one-out cross-validation procedure: For each

cell, we trained a kNN classifier on the remaining n−1 cells. This resulted

in a class prediction for each cell based on the majority vote of its k =

15 neighboring cells. We quantified the performance of this prediction

by computing the macro F1 score (harmonic mean between precision

and recall, averaged across classes to counteract class imbalance). We

used the sklearn implementations for kNN classification and the F1
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score (Pedregosa et al., 2011).

Measuring runtimes All runtimes given in Table 1 are wall times

from running the code in a Docker container with an Ubuntu 18 system

on a machine with 256 GB RAM and 2 × 24 CPUs at 2.1 Ghz (Xeon

Silver 4116 Dodecacore). The Docker container was restricted to use

at most 30 CPU threads. To reduce overhead, we did not use Scanpy

for timing experiments, and instead used numpy for basic computations

and sklearn for PCA with default settings. Note that we used different

implementations of GLM-PCA for the PBMC and organogenesis dataset

(see above for details).

t-SNE embeddings All t-SNE embeddings were made following rec-

ommendations from a recent paper(Kobak and Berens, 2019) using the

FIt-SNE implementation (Linderman et al., 2019). We used the PCA

(or, when applicable, GLM-PCA) representation of the data as input.

We used default FIt-SNE parameters, including automatically chosen

learning rate. For initialization, we used the first two principal compo-

nents of the data, scaled such that PC1 had standard deviation 0.0001

(as is default in FIt-SNE). The initialization was shared among all em-

beddings shown in the same figure, i.e., PCs of one data representation

were used to initialize all other embeddings as well. For all datasets

apart from the organogenesis one, we used perplexity combination of

30 and n/100, where n is the sample size (Kobak and Berens, 2019).

For the organogenesis dataset embeddings we used perplexity 30 and

exaggeration 4 (Böhm et al., 2020).
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Publication note. This chapter is published as a preprint on bioRxiv

(Lause et al., 2023) and is available at https://doi.org/10.1101/20

23.08.02.551637 under a CC-BY-NC-ND 4.0 license (https://creati

vecommons.org/licenses/by-nc-nd/4.0/). At the time of writing, a

revised version is under review at Genome Biology.

Abstract

Recent work employed Pearson residuals from Poisson or neg-

ative binomial models to normalize UMI data. To extend this ap-

proach to non-UMI data, we model the additional amplification

step with a compound distribution: we assume that sequenced

RNA molecules follow a negative binomial distribution, and are

then replicated following an amplification distribution. We show

how this model leads to compound Pearson residuals, which yield

meaningful gene selection and embeddings of Smart-seq2 datasets.

Further, we suggest that amplification distributions across several

sequencing protocols can be described by a broken power law.

The resulting compound model captures previously unexplained

overdispersion and zero-inflation patterns in non-UMI data.

4.1 Introduction

Single-cell RNA sequencing (scRNA-seq) data are affected by count noise

and technical variability due to the total number of sequenced molecules

varying from cell to cell. Removing this technical variation by normaliza-

tion and variance stabilization is an important step in common analysis

pipelines (Luecken and Theis, 2019; Heumos et al., 2023). The standard

approach for this has been to use the log(1+x/s) transformation, where

s is a size factor of the cell. While the log-transform often performs

well in practice (Ahlmann-Eltze and Huber, 2023), it has well-known

theoretical limitations and can produce biased results (Lun, 2018).

Recently, a number of count modelling approaches like sctrans-

form (Hafemeister and Satija, 2019), GLM-PCA (Townes et al., 2019),
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4 COMPOUND MODELS FOR NON-UMI COUNTS

z
1 = 2

z
2 = 3

z
3 = 3

z
4 = 1

Read counts:    Xcg = 9

UMI counts:    kcg = 4

PCR-amplified molecules Sequenced molecules Unique sequenced 

molecules

Original molecules

UMI tags

original sequences

Figure 9: Important quantities in single-cell RNA sequencing. A cell
c contains some number (here, 5) of RNA molecules of gene g. In UMI-based
protocols, the original molecules are tagged by unique molecular identifiers
(UMIs) before PCR amplification and sequencing. Both processes are imper-
fect, such that not all original molecules get amplified by the same factor,
and not all amplified molecules get sequenced. In the end, each of the unique
molecules may get sequenced one or several times, which is its copy number

(zi). Here zi values are 2, 3, 3, and 1, and one original molecule (green) is
not detected at all. The sum of all copy numbers gives the observed read

count Xcg (here, 9). UMIs allow to compute a UMI count kcg by only count-
ing unique sequenced molecules (here, 4). In non-UMI protocols, amplification
and sequencing work the same, but the final de-duplication step is not possible,
meaning that only Xcg is observable. Note that the shown numbers are not to
scale: A typical cell might contain on the order of 105 RNA molecules across
all genes (Ziegenhain et al., 2022); yielding on the order of 1010 molecules
after amplification; and producing on the order of 106 sequenced reads.

Sanity (Breda et al., 2021), and analytic Pearson residuals (Lause et al.,

2021) have been suggested for preprocessing scRNA-seq data. These

methods are based on explicit statistical models of the count genera-

tion process, rather than on heuristics such as the log-transform. One

limitation of all of these methods is that they are tailored to data ob-

tained using sequencing protocols based on unique molecular identi-

fiers (UMIs), and are not appropriate for non-UMI technologies such

as Smart-seq2 (Picelli et al., 2013). In this paper, we develop a count

model and corresponding analytic Pearson residuals (Lause et al., 2021)

for non-UMI sequencing data.

Single-cell sequencing protocols usually require an amplification step

by polymerase chain reaction (PCR) to obtain enough starting mate-
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4.1 Introduction

rial for sequencing (Figure 9). The process is imperfect, and different

molecules will get amplified to a different extent. As a result, the num-

ber of sequenced molecules of a given gene (called read count) does not

reflect the original number of RNA molecules in the cell.

In UMI protocols, a random DNA sequence called UMI is appended

to each original reverse-transcribed RNA molecule prior to the amplifica-

tion, and is then amplified and sequenced together with it (Islam et al.,

2014). Because the UMI uniquely identifies each original molecule, one

can later remove amplification duplicates by counting each UMI only

once (‘de-duplication’), giving rise to the UMI counts instead of read

counts (Figure 9), effectively reducing amplification noise (Grün et al.,

2014). Note that the UMI count does not necessarily equal the number

of original RNA molecules present in the cell, as some molecules can

get lost during sample preparation for the sequencing (‘library prepara-

tion’) or fail to get sequenced due to low capture rate (‘depth’) in the

sequencing step (Figure 9).

While UMI protocols are popular in the scRNA-seq community, non-

UMI technologies remain important. Indeed, UMIs only mark one end

of the original molecules, so UMI counts are not available for the inter-

nal reads (most protocols involve a fragmentation step that cuts each

molecule into small fragments prior to sequencing). Full-length sequenc-

ing methods, such as Smart-seq2 (Picelli et al., 2013), are typically more

sensitive than UMI protocols (Ziegenhain et al., 2017; Ding et al., 2020),

and are often used to detect rare cell types (Tasic et al., 2018; Yao et al.,

2021) or splicing variants (Feng et al., 2021), or in low-throughput ex-

periments such as Patch-seq (Lipovsek et al., 2021). In the resulting

datasets, UMI counts are not available, and computational analysis has

to be based on the read counts that still contain amplification-induced

variability.

Only few normalization methods have been developed specifically to

account for the amplification noise in read counts. The Census (Qiu

et al., 2017) and quasi-UMIs (Townes and Irizarry, 2020) methods are
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4 COMPOUND MODELS FOR NON-UMI COUNTS

two transformations that are designed to make the shape of the read

count distribution approximately match the shape of the UMI count

distribution. Afterwards, the transformed data still requires a UMI-like

normalization. However, neither Census nor quasi-UMIs derive their

transforms from a principled statistical model and rather rely on heuris-

tics.

Here, we develop a new theoretically motivated method for normal-

ization of non-UMI data that explicitly accounts for the amplification

noise: compound Pearson residuals. We do so by extending the null

model behind the analytic Pearson residuals (Lause et al., 2021) from

UMI counts to read counts, based on an explicit statistical model for the

amplification step. This yields a generative model for read counts that

reproduces characteristic patterns of non-UMI data. We demonstrate

that our compound Pearson residuals can efficiently normalize complex

read count datasets.

4.2 Results

4.2.1 Analytic Pearson residuals for normalization of UMI

data

In this section we briefly summarize the normalization approach based

on Pearson residuals, originally developed by Hafemeister and Satija

(2019) for UMI data. Pearson residuals compare the observed data to

a null model that captures only technical variability due to count noise

and variations in sequencing depth. The null model assumes perfect

biological homogeneity, and so any deviation from it suggests biological

variability.

Under the null model (Lause et al., 2021), a gene g takes up a certain

constant fraction pg of the total nc RNA molecules sequenced in cell

c, and the observed UMI counts kcg follow a negative binomial (NB)
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4.2 Results

distribution:

kcg ∼ NB(µcg, θ), (31)

µcg = ncpg, (32)

where θ is the inverse overdispersion parameter. Higher values of θ yield

smaller variance, and for θ = ∞, the NB distribution reduces to the

Poisson distribution. Note that θ in this formulation is shared between

all genes; based on negative control UMI data, Lause et al. (2021) argued

that θ can be set to θ = 100, which is close to Poisson. Sarkar and

Stephens (2021) even suggest pure Poisson as measurement model.

Given an observed UMI count matrix, the maximum likelihood esti-

mate of µcg is given by:

µ̂cg =

∑

j kcj ·
∑

i kig
∑

ij kij
, (33)

which is exact in the Poisson case and holds only approximately in the

NB case (Lause et al., 2021). This yields the analytic formula for UMI

Pearson residuals (difference between observed UMI count values and

model prediction, divided by the model standard deviation):

RUMI
cg =

kcg − µ̂cg
√

µ̂cg + µ̂2
cg/θ

, (34)

where µ̂cg + µ̂2
cg/θ is the variance of the NB distribution with mean

µ̂cg and overdispersion parameter θ. The variance of Pearson residuals

does not depend on pg, and in a homogeneous dataset is close to 1 for

all genes. This ensures variance stabilization across all levels of gene

expression.

This algorithm is similar to the one implemented in sctransform

(Hafemeister and Satija, 2019; Choudhary and Satija, 2021) and is equiv-

alent to a rank-one GLM-PCA (Townes et al., 2019), but it is simpler

and faster to compute than either of these methods. When followed by
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4 COMPOUND MODELS FOR NON-UMI COUNTS

singular value decomposition (SVD), the Poisson (θ = ∞) version of

UMI Pearson residuals is also known as correspondence analysis (Hsu

and Culhane, 2023).

4.2.2 Compound Pearson residuals for non-UMI read count

data

To apply Pearson residuals to scRNA-seq data without UMIs, we need

to change the null model, because read counts do not follow the NB

distribution (Svensson, 2020; Cao et al., 2021). As in the UMI case, we

assume that the number of unique sequenced RNA molecules kcg follows

a Poisson or a NB distribution. However, during the amplification step,

each of these kcg unique molecules could have been duplicated multiple

times before sequencing (Figure 9). For the i-th unique molecule, we call

the number of its sequenced duplicates its copy number zi. We assume

that copy numbers follow some distribution Z, which we call amplifica-

tion distribution. Our assumption is that the amplification distribution

is the same for all genes and all cells, and only depends on the details of

the PCR amplification and the sequencing protocol (see the note below

about the variable gene length).

The read count Xcg of a given gene g in cell c is thus modeled as

the sum of kcg independent and identically distributed (i.i.d.) positive

integer copy numbers drawn from Z:

Xcg =

kcg
∑

i=1

zi, (35)

zi ∼ Z with zi ∈ N
+, (36)

kcg ∼ NB(µcg, θ), (37)

µcg = ncpg. (38)

For example, kcg = 4 means that four unique RNA molecules of gene

g were sequenced in a cell c; if their copy numbers were 2, 3, 3, and

1, this would yield the read count value Xcg = 2 + 3 + 3 + 1 = 9 (c.f.
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4.2 Results

Figure 9). The resulting distribution of Xcg can be called compound NB

distribution (see Methods).

In the above formulation, our model does not explicitly account for

gene length. In most sequencing protocols, longer transcripts are cut

into more fragments before amplification. This will result in more unique

sequenced fragments kcg for longer molecules (Phipson et al., 2017). In

our model, this increase amounts to a constant length factor lg per gene,

which can be absorbed by our per-gene expression fraction pg. The

variance of Pearson residuals does not depend on pg (see above), so for

simplicity, we do not explicitly put gene lengths into the model.

To obtain Pearson residuals for this null model, we need to obtain

expressions for its mean and variance. The mean of a compound NB

distribution is equal to the product of the NB mean µcg and the mean

of the amplification distribution Z:

E[Xcg] = E[Z] · E[kcg] = E[Z] · µcg. (39)

We can use the observed read count matrix X to estimate the means of

the maximum likely null compound model as follows:

Ê[Xcg] ≈ E[Z] · µ̂cg =
E[Z]2

E[Z]
·
∑

j kcj ·
∑

i kig
∑

ij kij
≈

∑

j Xcj ·
∑

iXig
∑

ij Xij
.

(40)

Note that this expression has the same form as Equation 33: the outer

product of the row and the column sums of the count matrix, normalized

by its total sum.

The mean-variance relationship of the compound NB distribution

takes the form (see Methods):

Var[Xcg] = αZE[Xcg] +
E[Xcg]2

θ
, (41)

where αZ = E[Z] + FF[Z] = E[Z] +
Var[Z]

E[Z]
. (42)
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4 COMPOUND MODELS FOR NON-UMI COUNTS

This expression is similar to the mean-variance relationship of the NB

distribution but contains a scaling parameter αZ equal to the sum of

the mean and the Fano factor (denoted FF[Z]) of Z. Note that in the

compound Poisson case (θ = ∞), the compound variance is proportional

to the compound mean.

Using these equations, we can compute the Pearson residuals of the

compound NB null model, which we call the compound Pearson residu-

als:

Rcg =
Xcg − Ê[Xcg]

√

αZÊ[Xcg] + Ê[Xcg]2/θ
. (43)

Following the UMI case and the arguments in Lause et al. (2021), we set

the overdispersion parameter to θ = 100. The scalar αZ is a function of

the mean and variance of the amplification distribution and remains as

the only free parameter of the model. Following Hafemeister and Satija

(2019) and Lause et al. (2021), we clip the residuals to [−
√
n,

√
n], where

n is the number of cells in the dataset.

This formalism naturally generalizes the UMI Pearson residuals. In-

deed, in the UMI case, each sequenced molecule is counted only once,

thanks to the UMIs, meaning that the Z distribution is a delta peak

δ(1) with E[Z] = 1 and Var[Z] = 0, and hence αZ = 1. In this case,

Equation 43 reduces to Equation 34.

Conveniently, compound Pearson residuals are equivalent to UMI

Pearson residuals of the read count matrix scaled by 1/αZ :

Rcg(Xcg;αZ , θ) =
(Xcg − Ê[Xcg])/αZ

√

(

αZÊ[Xcg] + Ê[Xcg]2/θ
)

/α2
Z

= RUMI
cg (Xcg/αZ ; θ).

(44)

Importantly, the necessary scaling factor is not equal to E[Z], as could

be näıvely expected, but rather to αZ = E[Z] + Var[Z]/E[Z].

Compound Pearson residuals have the same computational complex-
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Figure 10: The compound NB model captures statistics of homo-
geneous read count data. The data are a homogeneous subset of a mouse
visual cortex dataset (Tasic et al., 2018) sequenced with Smart-seq2 (L6 IT

VISp Penk Col27a1 cluster; 1 049 cells, 33 914 genes). Each dot represents
a gene. Brighter colors indicate higher density of points. Dashed lines show
the behavior of the compound negative binomial model (θ = 10). a: Mean-
variance relationship. Gray line illustrates the Poisson case where mean equals
variance. b: Relationship between mean expression and Fano factor (vari-
ance/mean). c: Relationship between mean expression and fraction of zero
counts.

ity as UMI Pearson residuals, and can be computed in seconds even

for large datasets with >10 000 cells. The matrix of Pearson residu-

als is dense and will thus require more memory than the sparse matrix

of raw counts. For very large datasets it may be prohibitive to hold

the full matrix in memory, but memory demand can be reduced by ad-

vanced implementations (Irizarry, 2021) or by subsetting to highly vari-

able genes (Lause et al., 2021), allowing to process datasets with millions

of cells.

4.2.3 Compound model can fit homogeneous read count data

The compound model introduced above is designed to capture only tech-

nical, but not biological variance in non-UMI read count data. Therefore,

it should provide a good fit to data that contain little biological varia-

tion. To test this, we took scRNA-seq data from adult mouse neocortex

sequenced with Smart-seq2 (Tasic et al., 2018), and focused on a subset

of cells corresponding to one specific cell type, assuming that there is

little biological variability within a cell type. We chose the L6 IT VISp
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4 COMPOUND MODELS FOR NON-UMI COUNTS

Penk Col27a1 type (as annotated by the authors of the original study),

containing 1 049 excitatory neurons (Figure 10).

The mean-variance relationship across genes (Figure 10a) showed

that most genes exhibited overdispersion compared to the Poisson model

(gray line, αZ = 1 and θ = ∞). Most genes also showed more vari-

ance than expected from a NB model without amplification (black line,

αZ = 1 and θ = 10). In contrast, compound models accounting for

amplification with αZ ∈ [10, 100] (colored lines) were able to approxi-

mate the mean-variance relationship for the majority of the genes. Note

that we used θ = 10 for illustrations in Figure 10 because this value

fit the within-cell-type data better than θ = 100, in agreement with

the idea that even biologically homogeneous data can show some addi-

tional variability on top of the purely technical variability (Lause et al.,

2021). Cell-to-cell variation in sequencing depth also contributed to this

increase in overdispersion (Supplementary Figure S8).

The relationship between the mean and the Fano factor across genes

(Figure 10b) allowed us to further constrain the amplification parameter

αZ . Indeed, for genes with low average expression, the Fano factor of the

read counts is approximately equal to αZ (Equation 41 and Equation 63

in the Methods). The Fano factors of most genes were bounded by

models with αZ = 1 from below (black), and by models with αZ = 100

from above (red). The bulk of the genes followed a model with αZ = 50

(orange).

While knowing αZ is sufficient to compute Pearson residuals, we can

obtain separate estimates of E[Z] and Var[Z] by studying the relation-

ship between the average expression and the fraction of zeros. This

relationship only depends on E[Z] (see Methods, Equation 64), allowing

to estimate this term directly. We observed that in the Smart-Seq2 data,

the fraction of observed zeros decreased with increasing mean expression

(Figure 10c). There were more observed zeros than expected from a NB

model with αZ = 1 (black), hinting at why read count data have in the

past often been modeled using a zero-inflated negative binomial (ZINB)
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distribution (e.g. Lopez et al., 2018; Chen et al., 2018). Our compound

NB model with E[Z] ≈ 30 (orange) provided a good qualitative fit to

the observed data, without any explicit zero-inflation terms. From here

we can compute FF[Z] = αZ − E[Z] ≈ 20 and hence Var[Z] ≈ 600.

The compound NB model with αZ = 50 and E[Z] = 30 described

the majority of genes well. However, some genes were instead following

the model without any amplification (black line in Figure 10), as if their

transcripts were not amplified by the PCR. To understand this pattern,

we obtained gene type annotations from mygene.info. This revealed

that protein-coding genes generally followed our best-fitting compound

model (Supplementary Figure S9a–c), while most of the seemingly non-

amplified genes were pseudogenes (Supplementary Figure S9d–f). This

observation was not limited to the Smart-seq2 data, but also occurred

for all sequencing protocols studied in Ziegenhain et al. (2017) (Supple-

mentary Figure S10). Exonic transcript lengths from the mygene.info

database were shorter for the non-amplified genes (Supplementary Fig-

ure S11).

In summary, we showed that our compound NB model fits a biolog-

ically homogeneous example dataset. In particular, our model matched

the main statistical properties of protein coding genes (mean, variance,

and fraction of zeros).

4.2.4 Compound Pearson residuals for normalization of het-

erogeneous read count data

Next, we computed compound Pearson residuals with αZ = 50 (Equa-

tion 43) to preprocess the entire dataset from Tasic et al. (2018), which

is highly heterogeneous and includes both neural and non-neural cells

from two areas of the mouse neocortex.

For highly variable gene (HVG) selection, we used the variance of

compound Pearson residuals for each gene (Figure 11a). Most genes

had residual variance close to 1, indicating that they followed the null

model. The interpretation is that those genes did not show biological
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variability and were not differentially expressed between cell types. In

contrast, genes with residual variance k 1 had more variability than pre-

dicted by the null model, implying nontrivial biological variability. For

downstream analysis, we selected the 3 000 HVGs with highest residual

variances. Among those were well-known marker genes of specific corti-

cal cell types (Figure 11a, red dots). In particular, the four genes with

highest residual variance (star symbols in Figure 11a) marked different

groups of inhibitory neurons (Npy, Vip, Sst) and astrocytes (Apoe). As

before, we confirmed that genes with very low residual variances j 1

were mostly pseudogenes (Supplementary Figure S12).

Next, we used PCA and t-SNE to visualize the single-cell compo-

sition of the mouse cortex using compound Pearson residuals of the

selected HVGs. The resulting embedding showed rich structure that

corresponded well to the cell type annotations originally determined by

Tasic et al. (2018) (Figure 11b): individual cell types formed mostly

clearly delineated clusters, while related cell types (having similar col-

ors) mostly stayed close to each other. The expression of most variable

genes according to the residual variance was typically localized in one

part of the embedding space (Figure 11c).

Calculating compound Pearson residuals requires to set the amplifi-

cation parameter αZ . To investigate the influence of this parameter, we

computed compound Pearson residuals for a range of αZ values cover-

ing three orders of magnitude (Supplementary Figure S13). We found

that for α k 1, the exact value did not lead to large differences in the

HVG selection or t-SNE representation. In contrast, when we used UMI

Pearson residuals of the null model without amplification (αZ = 1),

the HVG selection failed to include some of the most important marker

genes (Supplementary Figure S13a) and the embedding quality visibly

degraded (Supplementary Figure S13b). This shows that it is not ap-

propriate to apply the original formulation of UMI Pearson residuals

(Lause et al., 2021) to non-UMI data, and that it is important to explic-

itly account for the PCR-induced variance. Reassuringly, the exact value
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of the αZ parameter did not have a large influence on the downstream

performance.

We compared our approach to existing methods for read count nor-

malization: qUMI (Townes et al., 2019) and Census (Qiu et al., 2017).
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Figure 11: Compound Pearson residuals work well for preprocessing
a heterogeneous Smart-seq2 dataset. Here, we used the raw counts of
a mouse visual cortex dataset sequenced with Smart-seq2 (Tasic et al., 2018)
(23 822 cells, 38 510 genes). We used a compound NB model with amplification
parameter α = 50 and overdispersion parameter θ = 100. a: Highly variable
gene (HVG) selection by largest residual variance. Each dot is a gene; genes
above the red line were included in the selection of 3 000 HVGs. Stars indicate
the top four HVGs shown in panel (c). Red dots and stars correspond to the
following well-known marker genes taken from Tasic et al. (2016), from left to
right: Itgam (microglia), Bgn (smooth muscle cells), Pdgfra (oligodendrocyte
precursors), Aqp4 (astrocytes), Flt1 (endothelial cells), Foxp2 (layer 6 exci-
tatory neurons), Mog (oligodendrocytes), Rorb (layer 4 excitatory neurons),
Pvalb (subset of inhibitory neurons), Slc17a7 (excitatory neurons), Gad1 (in-
hibitory neurons), Sst (subset of inhibitory neurons), Vip (subset of inhibitory
neurons), Snap25 (neurons). b: t-SNE embedding on compound Pearson
residuals following HVG selection (to 3 000 HVGs) and PCA (down to 1 000
PCs). Each dot is a cell, colored by the original cluster assignments from Tasic
et al. (2018). Warm colors: inhibitory neurons. Cold colors: excitatory neu-
rons. Brown and gray colors: non-neural cells. c: t-SNE embeddings as
in panel (b), colored by expression strength of the four most variable genes
according to compound Pearson residual variance. For expression, we show
square-root-transformed, depth-normalized counts.

94



4 COMPOUND MODELS FOR NON-UMI COUNTS

Both use heuristics to estimate UMI counts from read count data, and

one can then apply standard UMI methods for further processing. We

found that both methods, when combined with UMI Pearson residu-

als, gave results that were similar to our compound Pearson residuals

(Supplementary Figure S14). This is unsurprising, as Census amounts

to dividing read counts by a cell-specific constant, and compound Pear-

son residuals are equivalent to UMI Pearson residuals after appropriate

scaling of the data matrix (Equation 44). The qUMI transformation is

non-linear but gave similar results for our data. Importantly, both Cen-

sus and qUMI rely on heuristics (see Discussion), while our approach is

based on an explicit statistical model.

We also compared this approach to the default preprocessing imple-

mented in the Scanpy library (Wolf et al., 2018) based on depth nor-

malization, log1p() transform, and Seurat HVG selection. We found

that many high-expression genes did not get selected by this method, in-

cluding known marker genes like Snap25 (Supplementary Figure S15a).

The t-SNE embedding based on the default Scanpy preprocessing was

similar to ours, but arguably showed less local structure (Supplementary

Figure S15b). In the absence of ground truth cell labels, it is impossi-

ble to assess the representation quality objectively; however, based on

the variance of known marker genes, we argue that compound Pearson

residuals provide a more meaningful representation of the data.

As noted above, computing compound Pearson residuals was fast.

For this dataset with ca. 23 000 cells and 38 000 genes it took ∼15 s on

a single CPU. The resulting dense matrix of residuals used 3.4 Gb of

RAM instead of 1.6 Gb for the sparse matrix of read counts. Census

and qUMI had slower runtimes (3 h and 3 min respectively).

4.2.5 Compound Pearson residuals recover ground truth

To confirm that compound Pearson residuals are indeed able to recover

true marker genes and true cell classes, we simulated read count data

with known ground truth based on the Tasic et al. (2018) dataset. In
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our simulations, sequencing depths ns, gene fractions pg, and class iden-

tities were taken from the real data, and we used a compound model

with NB(θ = 100) as UMI distribution and a geometric distribution as

amplification distribution to simulate counts within each class. The true

αZ in this case is equal to 199 (see Methods).

In Simulation I, we allowed only a small set of known marker genes to

vary between classes. Compound Pearson residuals showed high residual

variance only for those ground truth marker genes (even when αZ was

misspecified, Supplementary Figure S16a–b). In contrast, UMI Pearson

residuals (αZ = 1) showed high residual variance for many non-variable

genes (Supplementary Figure S16c).

In Simulation II, we mirrored the full cluster structure of the data by

using cluster-specific pg values for all genes. Using compound Pearson

residuals, we obtained reasonable residual variances and embeddings re-

covering ground truth clusters (regardless of the exact value of α k 1,

Supplementary Figure S16d–e, g–h). At the same time, UMI Pearson

residuals failed to stabilize the variance and incorrectly merged many

clusters (Supplementary Figure S16f,i). In summary, both simulation ex-

periments confirmed that compound Pearson residuals can recover true

marker genes and cell types.

4.2.6 The broken zeta distribution as amplification model

So far, we did not specify the amplification distribution Z. Instead,

we only characterized its mean and variance through the αZ parameter.

While this was sufficient to compute compound Pearson residuals, an ex-

plicit amplification distribution is needed for the complete specification

of the compound model, enabling likelihood calculation or using it as a

generative model. To find an appropriate statistical model, we obtained

empirical amplification distributions from experimental data generated

with several UMI-based protocols: CEL-seq2, Drop-seq, MARS-seq, and

SCRB-seq (Ziegenhain et al., 2017), as well as Smart-Seq3 (Hagemann-

Jensen et al., 2020) and Smart-Seq3xpress (Hagemann-Jensen et al.,
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2022). Together, we analyzed 106.3 million UMIs from 856 cells.

For each UMI barcode, we computed the number of times it occurred

in the sequenced reads (its copy number). The normalized histogram of

these copy numbers provided an empirical characterization of the ampli-

fication distribution Z (Figure 12). Across all sequencing protocols, the

copy number histograms in log-log coordinates showed a characteristic

elbow shape: Higher copy numbers were less frequent, and the distri-

bution followed two separate decreasing trends in two ranges of copy

numbers. This shape can be described by a broken power law, i.e., two

separate power laws for low and high copy numbers. The exact shape of

the distribution differed between sequencing protocols, leading to differ-

ent values of mean and variance (Table 3). These values are influenced

by how deeply a sample is sequenced and how many cycles of amplifica-

tion are employed: e.g., the Smart-seq3 Xpress dataset was sequenced
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Figure 12: Observed amplification distributions follow a similar
shape across protocols. Each panel shows a distribution of UMI copy
numbers for a given UMI protocol. a–d: SCRB-seq, CEL-seq2, Drop-seq,
and MARS-seq data from Ziegenhain et al. (2017). For each protocol two
identical runs were performed (A and B). e: Smart-seq3 protocols. Data from
a single-end experiment (A), a paired-end experiment (B) (Hagemann-Jensen
et al., 2020), and a Smart-seq3 Xpress experiment (Hagemann-Jensen et al.,
2022).
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shallower than the other two Smart-seq3 datasets (ca. 94 000 vs ca.

572 000–806 000 reads per cell) and with fewer PCR cycles, leading to

substantially lower E[Z] values.

To study how stable the amplification distribution was across cells

in the same sample, we computed per-cell estimates of E[Z] and αZ =

E[Z] + FF[Z]. The estimates showed some variability across cells (Sup-

plementary Figure S17), but it was small enough that our assumption of

the shared amplification parameters seems justified in practice. More-

over, the per-cell estimates of αZ were correlated with the total number

of read counts per cell (Supplementary Figure S18), and this between-cell

variability is accounted for in our model in any case.

Note that for all protocols, the empirical distribution of copy num-

bers was monotonically decreasing, meaning that z = 1 was the most

likely copy number, despite many cycles of amplification. This may seem

Protocol Run Cells UMIs E[Z] FF[Z] αZ max(zi)

CEL-seq2 A 34 2 140 365 27.2 107.5 134.8 3 476
CEL-seq2 B 37 4 303 956 24.4 199.8 224.2 11 092
Drop-seq A 42 2 506 244 29.6 284.2 313.8 2 463
Drop-seq B 34 1 272 895 31.1 414.1 445.2 3 718
MARS-seq A 29 1 342 232 24.1 132.1 156.2 1 624
MARS-seq B 36 1 903 673 20.9 107.0 128.0 1 719
SCRB-seq A 39 9 429 371 9.7 218.8 228.5 4 840
SCRB-seq B 45 6 800 371 9.4 159.3 168.7 3 276
Smart-seq3 A 145 21 549 849 5.4 8.0 13.4 1 216
Smart-seq3 B 319 48 073 893 3.8 4.5 8.3 989
Smart-seq3
Xpress

96 6 940 889 1.3 0.3 1.6 173

Smart-seq2 23 822 — — — — —

Table 3: Key statistics of the observed amplification distribution
across protocols. Top part: Each row in the table corresponds to one of
the datasets presented in Figure 12. The number of UMIs shows how many
observed copy numbers zi were used to compute the statistics for that dataset.
Bottom row: The Smart-seq2 dataset analyzed in Figure 11, where UMIs were
not observed.
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counter-intuitive, but previous work (Best et al., 2015) showed that a

mechanistic model of the amplification process followed by Poisson sam-

pling at the sequencing stage can give rise to similar copy number his-

tograms with power law behaviour.

As copy numbers are positive integers, we modeled the distribution

of copy numbers z with a discrete broken power law. The discrete proba-

bility distribution with the mass function following a power law is called

zeta distribution. For the broken power law, we adopted the term bro-

ken zeta distribution, which we define as having the following probability

Figure 13: Broken zeta model can fit observed amplification dis-
tribution. a: Observed amplification distribution for Drop-seq (same as in
Figure 12c) (orange dots) and the PMF of a broken zeta model (black line).
The inset illustrates the parameters of the broken zeta model. b: The heatmap
shows how the two slope parameters affect the mean of the broken zeta dis-
tribution. For each combination of a1 and a2, we sampled from a broken zeta
model with these slope parameters and fixed b = 500. We used the same
sample size as in the observed data in (a). The orange dots highlight the sim-
ulations yielding the sample mean close the observed mean (±10%). The black
square shows the simulation corresponding to the fit shown in (a). c–e: Same
as (b), but showing the sample Fano factor, sample maximum, and sample
αZ .
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mass function (PMF):

p(z) ∝







z−a1 z < b

ba2−a1z−a2 z g b
, (45)

where a1 > 0 and a2 > 0 are negative slopes of the PMF in log-log coor-

dinates, and b ∈ N is the breakpoint between the two slopes. (Figure 13a,

inset). We could choose the values for these three parameters such that

the broken zeta distribution approximately matched the observed copy

number histograms. For example, we obtained a good match for the

Drop-seq protocol using a1 = 1.4, a2 = 4.5, and b = 500 (Figure 13a).

The fitted model could reproduce several key statistics of the ex-

perimental data, such as the mean, the variance, and the Fano factor

(Figure 13b–e). However, the broken zeta distribution produced sam-

ple maxima that were larger than empirically observed maxima (given

the same sample size) (Figure 13d). This is a limitation of the broken

zeta model as it tends to allocate non-zero probability mass to very high

copy numbers that are not observed in practice. A more flexible model

that limits the probability of very large copy numbers could potentially

fit the data even better, but we considered the broken zeta distribution

sufficient for our purposes.

4.2.7 Compound NB model with broken zeta amplification

captures trends in read count data

The compound NB model (Equations 35–38) together with the broken

zeta amplification distribution (Equation 45) provides a generative prob-

abilistic model of the read counts in a biologically homogeneous popu-

lation. To confirm that the model gives rise to realistic data, we used it

to sample read counts and compared them to observed read count his-

tograms in a biologically homogeneous dataset (Figure 14). We used the

same dataset as above in Figure 10. For the amplification distribution,

we used broken zeta parameter settings (a1 = 0.36, a2 = 5.1, b = 56)
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that led to an amplification model with αZ = 50 and E[Z] = 30, as

we showed earlier that these values fit the protein-coding genes in this

dataset well (Figure 10).

We found that the empirical count distributions of real genes (Fig-

ure 14a–f, grey) could be well matched by the compound NB model

(Figure 14a–f, orange). Note that there is only one free parameter per

gene in our simulation: pg, the fraction of RNA molecules taken up by

this gene. The entire mass function is then determined by this single

parameter. While the compound model did not fit every example gene

perfectly (Figure 14b,e), it correctly captured the shapes of the distri-

butions. In particular, for low-expression genes, the compound model

predicted strong zero inflation and monotonically decreasing probabil-

ity of non-zero counts (Figure 14a–b), while predicting a bell-shaped

distribution without excess zeros for high expression genes (Figure 14f).

In order to study these patterns more systematically, we fitted a zero-

inflated negative binomial (ZINB) distribution to the count histograms

of each gene separately. ZINB models have been used to model read

counts before (Lopez et al., 2018), as read count data commonly exhibit

zero-inflation compared to NB (Cao et al., 2021; Chen et al., 2018).

A ZINB distribution has three parameters: the mean µ, the inverse

overdispersion θ, and the zero-inflation parameter ψ. Its mass function

is simply a negative binomial mass function with additional mass ψ on

zero:

p(z) =







ψ + (1 − ψ) · pNB(0, µ, θ) for z = 0

(1 − ψ) · pNB(z, µ, θ) for z > 0
(46)

where pNB is the NB probability mass function (see Methods). The ZINB

distribution reduces to the NB distribution when ψ = 0. As in NB, the

overdispersion parameter θ controls the shape of the distribution: θ = 1

corresponds to the geometric distribution with monotonically decreasing

p(x), while higher values of θ result in more Poisson-like bell shapes

(θ = ∞ corresponds to the Poisson case).
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Figure 14: Broken zeta compound model simulations reproduce
trends in read counts. Using a homogeneous subset (n = 1049) of the
mouse cortex data (from Figure 10), we fitted a zero-inflated negative bino-
mial (ZINB) distribution to each gene individually. We also used the broken
zeta model (a1 = 0.36, a2 = 5.1, b = 56 to sample read counts with a given
mean expression. a–f: Each panel shows the observed read counts for a cer-
tain gene (gray histogram) and the histogram of counts sampled from the
broken zeta model (orange line). Exact zeros are shown in a separate bin (or-
ange dots, dark-gray bar). To show the zero-bin (width 1) and non-zero bins
(width k 1) on the same scale, the y-axis shows the average count per bin.
Genes are ordered from left to right by mean expression. Note that with higher
expression, fraction of zeros decreases, and the histogram shape changes from
a geometric-looking distribution to a Poisson-looking distribution. h: Esti-
mated ZINB overdispersion parameter θ̂ as a function of mean expression.
Each dot is a gene, colored by local density of points. Values θ̂ < 10−1 were
clipped. Only genes with mean expression g 5 are shown. Colored lines show
θ̂ for samples from four different broken zeta models. For each model, we
sampled counts over a range of expression fractions pg for 105 cells, each with
fixed sequencing depth of nc = 100 000. We used overdispersion θ = 10 for
all genes. Broken zeta parameters: see Table 4. The black line corresponds
to a negative binomial distribution (UMI model without amplification). Red
dots highlight genes from panels (a)–(f). i: Estimated ZINB zero-inflation
parameter ψ̂ as a function of mean expression. Otherwise same as (h); values
ψ̂ < 10−3 were clipped.
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By fitting the ZINB model, we obtained independent estimates θ̂g and

ψ̂g for each gene (Figure 14h–i). These estimates exhibited the same two

patterns illustrated above for single genes. First, with increasing mean

expression, genes tended to have a higher θ̂g, corresponding to smaller

variance, and transitioned from a geometric-like to a Poisson-like shape.

Second, with increasing mean expression, genes tended to have a lower

ψ̂g, corresponding to less pronounced zero inflation.

The ZINB model cannot explain these trends, as all parameters θg

and ψg can be chosen independently. In contrast, our compound model

naturally gives rise to both effects. To demonstrate this, we repeated the

ZINB fitting procedure on counts sampled from various compound NB

models (see Methods for the broken zeta parameters), and reproduced

both observations over a wide range of mean expressions (Figure 14h–i,

colored lines). As expected, the model matching this dataset’s amplifi-

cation parameters (αZ = 50 and E[Z] = 30, orange line, cf. Figure 10)

provided the best match to the bulk of the distribution.

As a sanity check, sampling read counts from a NB model without

amplification (αZ = 1) and fitting ZINB distribution to the resulting

samples recovered the original parameters (Figure 14h–i, black lines):

constant overdispersion θ = 10 and absent zero inflation ψ = 0. This

again shows that a NB model without amplification cannot describe the

properties of the read count data. However, our results suggest that it

is not necessary to include explicit zero-inflation like in a ZINB model,

as it is naturally arising through the compound model.

4.3 Chapter Discussion

In this paper, we derived a parsimonious and theoretically grounded

statistical model describing scRNA-seq read count data without UMIs.

Furthermore, we showed that our compound model leads to analytic

compound Pearson residuals, a fast, simple, and effective normalization

approach for non-UMI data.

Despite the popularity of UMI protocols (Svensson et al., 2020a),
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full-length non-UMI protocols such as Smart-seq2 (Picelli et al., 2013)

remain relevant as they have higher sensitivity (Ziegenhain et al., 2017;

Ding et al., 2020) and allow quantification of reads over full transcripts.

This makes read count data indispensable for detection of splicing vari-

ants (Feng et al., 2021) or profiling of complex tissues with rare cell

types (Tasic et al., 2018; Yao et al., 2021). The recently developed

Smart-seq3/Smart-seq3xpress protocols (Hagemann-Jensen et al., 2020,

2022) contain UMIs on the 5’-end reads but do not have UMIs on in-

ternal reads, so our treatment remains relevant for Smart-seq3/Smart-

seq3xpress as well.

While UMI counts can be modeled by a Poisson or a negative bino-

mial (NB) distribution (Grün et al., 2014; Chen et al., 2018; Hafemeister

and Satija, 2019; Townes et al., 2019; Svensson, 2020; Grün, 2020; Sarkar

and Stephens, 2021; Rosales-Alvarez et al., 2023; Neufeld et al., 2023),

read counts can not (Chen et al., 2018; Cao et al., 2021). Instead, they

are often modeled by a more flexible zero-inflated negative binomial dis-

tribution (ZINB) (Pierson and Yau, 2015; Zappia et al., 2017; Chen

et al., 2018; Risso et al., 2018; Lopez et al., 2018). However, this leaves

unexplained what causes zero inflation and why there are relationships

between the gene-specific ZINB parameters, such as less zero inflation

for higher mean expression (Figure 14i).

Our compound model answers these questions. We showed that read

counts in biologically homogeneous data can be well described by a com-

pound negative binomial distribution, arising from simple statistical as-

sumptions about the amplification and sequencing processes. Further-

more, we showed empirically that the distribution of copy numbers ap-

proximately follows a broken zeta distribution. Together, our compound

NB model with amplification modeled by broken zeta yields a generative

model reproducing zero-inflation and overdispersion patterns similar to

what is observed in read count data. Compared to the ZINB model

with three per-gene parameters (Equation 46), our model contains only

one free per-gene parameter (Equations 35–38), and the varying zero-
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inflation and overdispersion naturally emerge as a function of a gene’s

mean expression.

We observed that the distribution of copy numbers in UMI-containing

data followed a similar shape across various protocols (Figure 12), imply-

ing that this is a general property of scRNA-seq data. We argued that

this shape could be described by a broken power law, and hence we mod-

elled it with a broken zeta distribution. This model is phenomenological,

but previous work on mechanistic modelling of PCR amplification fol-

lowed by Poisson sampling showed that these processes can give rise to

similar copy number distributions (Best et al., 2015). We note that fit-

ting parameters for power-law-like data is intrinsically difficult: common

approaches such as least squares often return unstable estimates due to

low-probability events (Clauset et al., 2009), which is why we avoided

automatic parameter fitting. Instead, we qualitatively showed that the

broken zeta model can give rise to realistic read count distributions.

Our compound NB model did not describe all genes perfectly: we

found that a subset of genes, mostly pseudogenes, did not follow the

compound model, but rather behaved as if they were not amplified (Fig-

ures 10 and 11). Similar bimodal patterns in gene variance have been

be observed in previous works (e.g. Brennecke et al., 2013; Ziegenhain

et al., 2017). Pseudogenes are copies of functional genes that contain a

mutation making the copy dysfunctional. We can only speculate about

the reason causing pseudogene read counts to have less variance: they

may behave differently during amplification or sequencing, or perhaps

their counts are an artifact of the alignment algorithm (all datasets we

analyzed used STAR (Dobin et al., 2013)). In practice, such pseudo-

genes have less variance than expected under the compound NB model,

so will be filtered out by the gene selection step in our suggested workflow

(Figure 11a).

On the practical side, we used the compound NB model to derive

a fast and theory-based normalization procedure for read counts: com-

pound Pearson residuals. They constitute an extension of the UMI Pear-
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son residuals normalization, that has proven to be effective for gene se-

lection and normalization of UMI data (Hafemeister and Satija, 2019;

Lause et al., 2021). We showed that compound Pearson residuals work

well for processing complex read count datasets, leading to a biologi-

cally meaningful gene selection and embeddings. Importantly, we also

showed that normalization and gene selection using the non-compound

UMI Pearson residuals leads to suboptimal results on read count data,

underscoring the importance of an adequate statistical model.

Compound Pearson residuals only require to set the αZ parameter

of the amplification distribution. Whereas αZ can be observed directly

from the copy number distribution for UMI-containing data (i.e., reads

per UMI, Table 3), it is unknown in a Smart-seq2 experiment. Reassur-

ingly, we found that the results of compound Pearson residuals do not

strongly depend on the exact value of αZ — as long as it is set within

a reasonable range k 1, such as αZ ∈ [10, 1000]. When working with

Smart-seq2 data, we recommend using αZ = 50 by default. Further-

more, it is possible to empirically adjust αZ to a given dataset from

any sequencing protocol. Indeed, under the common assumption that

most genes are not differentially expressed, the majority of genes should

have residual variance close to one. Thus, adjusting αZ until this condi-

tion is fulfilled will typically lead to a reasonable setting (Supplementary

Figure S13).

Typical approaches to read count data normalization consist of scal-

ing read counts by a size factor to account for sequencing depth (CPM:

counts per million) and sometimes gene length (TPM: transcripts per

million (Li and Dewey, 2011), or RPKM: reads per kilobase per mil-

lion (Mortazavi et al., 2008)), followed by a log-transform (Luecken and

Theis, 2019; Andrews et al., 2021; Slovin et al., 2021). Various meth-

ods have been suggested to estimate the required size factors, going

beyond CPM/TPM/RPKM (Vallejos et al., 2017): via spike-ins (Bren-

necke et al., 2013; Lun et al., 2017), cell pooling (Lun et al., 2016),

housekeeping genes (Andrews et al., 2021), separate scaling for groups
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of genes (Bacher et al., 2017), or a Bayesian approach (Tang et al., 2020).

However, all of these methods depend on the log-transform for variance

stabilization, which is inherently limited (Lun, 2018) and fails to fully

stabilize the variance (Ahlmann-Eltze and Huber, 2023). In contrast, our

compound Pearson residuals use the mean-variance relationship that fol-

lows from simple statistical assumptions, and the resulting residuals are

variance-stabilized by design and do not require any explicit normaliza-

tion by the gene length.

Two existing methods aim to transform read counts so that their

distribution matches the distribution of UMI counts. Census (Qiu et al.,

2017) linearly scales the read counts within each cell to set the mode

of the count distribution to 1, while qUMI (Townes and Irizarry, 2020)

performs quantile normalization within each cell to transform the en-

tire distribution to the typical shape of within-cell UMI counts. In both

cases, the transformations are heuristics not based on any generative

statistical model, and the transformed data still require UMI-specific

normalization. In contrast, our compound Pearson residuals perform

necessary normalization directly on the read counts. In practice, we

observed that qUMI and Census lead to comparable normalization re-

sults as our compound Pearson residuals, but our method follows from

an explicit statistical model that offers theoretical insights into the data

generation process underlying read counts. For example, as described

above, our model captures previously unexplained patterns in the zero-

inflation and overdispersion of read count data.

One limitation of our model is that it assumes that the amplifica-

tion distribution is the same for all genes and cells and uses the single

amplification parameter αZ shared by all cells. This is not the case in

Census and qUMI, which both use cell-specific adjustments. Reassur-

ingly, we did not observe strong cell-to-cell variability in αZ estimates

(Supplementary Figure S17), and furthermore found that αZ correlated

with total counts per cell (Supplementary Figure S18) — a factor which

our model explicitly accounts for.
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In summary, we show that the compound NB distribution is the

appropriate statistical model for read count data, naturally giving rise to

compound Pearson residuals as an effective, convenient and theoretically

motivated way of data preprocessing.

4.4 Chapter Methods

Code and data availability The datasets generated and/or analysed

during the current study are publicly available as described below in

Methods (Section 4.4.1). All analysis code is available under the GNU

General Public License v3.0 at https://github.com/berenslab/rea

d-normalization, and is archived in the Zenodo repository https:

//zenodo.org/doi/10.5281/zenodo.12806891.

4.4.1 Datasets and preprocessing

Our example read count dataset throughout this paper is the mouse

brain dataset from Tasic et al. (2018), GEO accession GSE115746. It

contains cells from the primary visual cortex (VISp) and the anterior

lateral motor area (ALM), and was sequenced with Smart-seq2. We

downloaded the data for both areas from https://portal.brain-map

.org/atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq and

used only the exonic counts and applied the same cell filtering as Tasic

et al. (2018), leading to 23 822 cells and 42 776 genes with at least one

count. We used the Python package mygene to query the mygene.info

database (Wu et al., 2013) for gene type annotations (type of gene

field) with the Entrez gene identifiers. We queried BioMart to obtain

transcript lengths for all Ensemble mouse genes (database GRCm39,

column ‘Transcript length (including UTRs and CDS)’, Cunningham

et al. (2022)).

From these data, we assembled a biologically homogeneous subset

by selecting only cells from one of the largest neuronal clusters (named

VISp Penk Col27a1 by Tasic et al. (2018), 1 049 cells, 33 914 detected
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genes). These data were used without further filtering in Figures 10 and

14 and Supplementary Figures S8 and S9.

To assemble a heterogeneous dataset, we took the full dataset but

filtered out genes that were detected in less than 5 cells as in previous

work on UMI Pearson residuals (Hafemeister and Satija, 2019; Lause

et al., 2021), leading to 23 822 cells and 38 510 genes.

To study copy number distributions across protocols, we used the

following UMI datasets:

• Mouse embryonic stem cells profiled by CEL-seq2, Drop-seq, MARS-

seq, and SCRB-seq (Ziegenhain et al., 2017); GEO accession GSE75790;

• Mouse fibroblasts profiled with Smart-seq3 paired-end (Johnsson

et al., 2022); accession E-MTAB-10148, sample plate2;

• Mouse fibroblasts profiled with Smart-seq3 single-end (Hagemann-

Jensen et al., 2020); accession E-MTAB-8735, sample Smartseq3.

Fibroblasts.smFISH;

• HEK293 cells profiled with Smart-seq3Xpress (Hagemann-Jensen

et al., 2022); accession E-MTAB-11467.

For UMI deduplication, we used Hamming distance correction with a

threshold of 1. See Table 3 for numbers of cells and UMIs per dataset.

The reads-per-UMI tables are available at https://zenodo.org/recor

d/8172702.

We used scanpy 1.9.0 (Wolf et al., 2018) and anndata 0.8.0 (Vir-

shup et al., 2021) for all scRNA data handling in Python 3.8.10, along

with sklearn 1.0.2 (Pedregosa et al., 2011), numpy 1.21.5 (Harris

et al., 2020), and matplotlib 3.5.1 (Hunter, 2007).

4.4.2 Simulation study

To generate a realistic validation dataset with ground truth marker genes

(Simulation I), we simulated read counts based on the Tasic et al. (2018)

read counts Xcg as follows. For each gene g, we computed the average
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expression fractions pg =
∑

cXcg/
∑

cgXcg. For a set G of 14 well-

known brain cell type marker genes (Tasic et al., 2016) and each of the

133 clusters in the Tasic et al. (2018) data, we computed the within-

cluster fraction pig, where i is the cluster index. For each cell c, we

computed its total read counts nc =
∑

gXcg and assumed total UMI

counts per cell nUMI
c = nc/100. We then generated UMI counts as

kcg ∼ NB(µUMI
cg , θ = 100), where

µUMI
cg =







nUMI
c · pi(c)g for g ∈ G

nUMI
c · pg for g ̸∈ G

, (47)

where i(c) denotes cluster assignments of cell c. In words, only the

marker genes from G were allowed to differ between clusters. We then

simulated the amplification of each UMI by drawing copy numbers from

the shifted geometric distribution zi ∼ Z = Geom+(µ = 100), which

corresponds to amplification with E[Z] = 100 and αZ = 199 (see below).

We finally summed the copy numbers for each gene and cell to obtain

read counts Xcg =
∑kcg

i=1 zi (Equation 35). After filtering out genes with

less than 5 cells as above, Simulation I yielded 23 822 cells and 30 652

genes.

To obtain a second validation dataset with a richer cluster structure

and ground truth cell types (Simulation II), we used the same simulation

setup as above, but allowed all genes to have cluster-specific fractions,

i.e.

µUMI
cg = nUMI

c · pi(c)g. (48)

After filtering as above, Simulation II yielded 23 822 cells and 30 576

genes.

Both simulations generated copy numbers zi from the shifted ge-

ometric distribution Z = Geom+(µ = 100), which is equivalent to

Z = NB(µ = 99, θ = 1) + 1, with zi ∈ N+ being positive integers.

The variance of the negative binomial is equal to 99 + 992/1 = 9900 and
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E[Z] = 100, so the Fano factor is 99, leading to αZ = E[Z]+FF[Z] = 199.

4.4.3 Mathematical details of the compound negative bino-

mial model

We use the term compound Poisson/NB distribution to describe a dis-

crete random variable that is constructed as a sum over a random number

of i.i.d. terms. A compound model has an ‘inner’ and an ‘outer’ dis-

tribution: The inner distribution generates the i.i.d. summation terms

(Equation 36), while the outer distribution governs the number of terms

to be summed (Equation 37). This setup is known under various names:

Johnson et al. (2005) uses the term stopped-sum distribution. When the

outer distribution is the Poisson distribution, the compound model is

known as compound Poisson (Adelson, 1966), stuttering Poisson (Kemp,

1967; Moothathu and Kumar, 1995), or generalized Poisson (Feller, 1943)

distribution.

Note that the term compound distribution can also have a different

meaning: for example, in their work on qUMI normalization, Townes and

Irizarry (2020) used the term ‘compound Poisson model’ to describe a

Poisson model with rate parameter λ governed by another distribution.

The expectation of a compound random variable X =
∑k

i=1 zi with

inner distribution zi ∼ Z and outer distribution k ∼ K can be obtained

as follows:

E[X] = EK

[
EX [X | K]

]
(49)

= EK

[
EX [z1 + z2 + · · · + zk | K]

]
(50)

= EK

[
k · EX [Z]

]
(51)

= E[K] · E[Z]. (52)
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The variance can be computed similarly:

Var[X] = EK

[
Var[X | K]

]
+ VarK

[
E[X | K]

]
(53)

= EK

[
Var[z1 + z2 + · · · + zk | K]

]
(54)

+ VarK
[
E[z1 + z2 + · · · + zk | K]

]
(55)

= EK

[
k · Var[Z]

]
+ VarK

[
k · E[Z]

]
(56)

= E[K] · Var[Z] + Var[K] · E[Z]2. (57)

Together, this leads to the following mean-variance relationship:

Var[X] = E[X] · Var[Z]

E[Z]
+

Var[K]

E[K]2
· E[X]2. (58)

We use the negative binomial (NB) distribution as outer distribution

in our compound model. The probability mass function for the NB

distribution can be parametrized in several different ways. We use

pNB(k, µ, θ) =
Γ(k + θ)

k! Γ(θ)

( µ

µ+ θ

)k( θ

θ + µ

)θ

, (59)

where µ is the mean and θ is the overdispersion parameter. The variance

is then given by Var[K] = E[K] + E[K]2/θ = µ+ µ2/θ.

Plugging the mean-variance relationship of K into the mean-variance

relationship of X, we finally get

Var[X] = E[X] · Var[Z]

E[Z]
+

E[K] + E[K]2/θ

E[K]2
· E[X]2 (60)

= E[X] · Var[Z]

E[Z]
+

E[X]2

E[K]
+

E[X]2

θ
(61)

= E[X] ·
(

Var[Z]

E[Z]
+ E[Z]

)

︸ ︷︷ ︸
αZ

+
E[X]2

θ
, (62)

where we used the fact that E[X] = E[Z] · E[K]. The relationship in

Equation 62 yields the lines shown in Figure 10a.
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From here we can obtain the relationship between the mean of X

and the Fano factor of X:

FF[X] =
Var[X]

E[X]
= αZ +

E[X]

θ
, (63)

shown as lines in Figure 10b. For E[X] j θ, this reduces to FF[X] ≈ αZ .

To derive the relationship between the mean of X and the fraction of

zero counts, we note that the inner distribution in our model is strictly

positive (z g 1). Any zero count X = 0 must thus originate from a k = 0

from the outer NB distribution. As a result, we can derive the fraction

of zero counts from the NB probability mass function (Equation 59):

P (X = 0) = pNB(K = 0) =

(

θ

θ + E[K]

)θ

=

(

θ

θ + E[X]/E[Z]

)θ

.

(64)

This relationship is shown as lines in Figure 10c. For θ → ∞, this

converges to the Poisson case P (X = 0) = e−E[K] = e−E[X]/E[Z].

4.4.4 Compound Pearson residuals

For gene selection with compound Pearson residuals, we computed Ê[Xcg]

from the filtered read count matrix X (Equation 40) and then obtained

residuals using Equation 43. We selected 3 000 highly variable genes

(HVGs) with the highest residual variance. To normalize, we then subset

the raw count data matrix to the HVGs, and computed compound Pear-

son residuals again on that subset, and used these re-computed residu-

als for further analysis (consistent with our previous work, Lause et al.

(2021)). Using the residuals computed from the full data matrix and

subsetting them to HVGs led to very similar results.

Unless otherwise stated, we used αZ = 50 and θ = 100 for computing

residuals, and clipped residuals to
√
n where n is the number of cells,

following Hafemeister and Satija (2019) (see Lause et al. (2021) for a

motivation for this heuristic).
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4.4.5 Census counts and qUMIs

We obtained both Census counts and qUMIs via their official R imple-

mentations using R 4.1.3. To obtain Census counts, we used bioconductor-

monocle 2.22.0 (Huber et al., 2015; Qiu et al., 2017). To obtain qUMIs,

we used quminorm 0.1.0 from http://github.com/willtownes/qumi

norm/ (Townes and Irizarry, 2020). As both methods expect TPMs

as input, we subset the (Tasic et al., 2018) data to the 27 841 genes

for which length annotations were available (see above), and computed

TPM from read counts Xcg and gene lengths lg (in kilobase) as

TPMcg =
Xcg/lg

∑

gXcg/lg
· 1 000 000 (65)

Running Census on the full matrix was very slow (>24 h), so we split

the TPM matrix into batches of 1000 cells. This substantially sped up

the computation. Filtering Census counts and qUMIs for genes with at

least 5 cells yielded 23 822 cells and 25 248 genes.

4.4.6 t-SNE visualizations

As basis for all t-SNE embeddings, we computed the first 1 000 princi-

pal components (PCs) of the HVGs residuals with sklearn 1.0.2 (Pe-

dregosa et al., 2011). For all t-SNE embeddings, we used openTSNE

0.6.0 (Poličar et al., 2019) with default settings unless otherwise stated.

To ensure comparability between the t-SNE embeddings in Supplemen-

tary Figure S13, we used the first two PCs of the HVG residuals com-

puted with αZ = 10 (panel C) as shared initialization after scaling them

with openTSNE.initialization.rescale().

To visualize expression strength of a given gene across the t-SNE

map(Figure 11c), we used square-root-transformed depth-normalized counts

Scg =

√

m · Xcg
∑

iXci
, (66)
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where m is the median row sum of X.

4.4.7 Fitting zero-inflated negative binomial (ZINB) models

to single genes

To obtain per-gene estimates of overdispersion θ̂g and zero inflation

ψ̂g in the absence of biological variability, we fitted a ZINB model to

the raw read counts of each gene in the VISp Penk Col27a1 cluster

(n = 1 049 cells). We used the ZeroInflatedNegativeBinomialP.fit -

regularized() function from statsmodels 0.13.2 (Seabold and Perk-

told, 2010) with default parameters. Only the 11 549 genes with within-

cluster mean expression >5 were included because low-expression genes

suffered from unstable parameter estimates. All genes with fitting warn-

ings (n = 2 064), fitting errors (n = 22) or invalid resulting estimates

ψ̂g > 1 (n = 2 359) were excluded, such that 7 104 genes with valid

converged estimates remained for further analysis and are shown in Fig-

ures 14h–i.

We applied the same fitting procedure to the simulated read counts

shown as lines in Figure 14 (see below for simulation details). Here, 62

out of 100 simulated genes had a mean expression >5 and were used for

fitting. 5 of them resulted in invalid ψ̂g > 1 values and were excluded,

such that 57 simulated genes remained for plotting and analysis.

4.4.8 Sampling copy numbers from the broken zeta model to

simulate compound model read counts

The broken zeta model we describe in Equation 45 is the discrete ver-

sion of the broken power law. A continuous probability distribution

with probability density following a power law is called the Pareto dis-

tribution. Its discrete analogue is known under various names including

Riemann zeta distribution (or simply zeta distribution), discrete Pareto

distribution, and Zipf distribution(Johnson et al., 2005). We therefore

refer to the discrete broken power law distribution as broken zeta distri-

bution. While continuous broken power law distributions are commonly
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E[Z] αZ

target observed target observed a1 a2 b

1 1.0 1 1.0 – – –
20 20.1 50 50.4 0.96 15.1 91
30 30.2 50 51.4 0.36 5.1 56
40 37.9 50 50.5 0.01 17.6 71

Table 4: Broken zeta parameters used for compound model read

count simulations. Each row in the table corresponds to one of the four
compound model simulations shown in Figure 14. Observed values refer to
the obtained sample mean and sample variance (n ≈ 2 billion, see text for
simulation details). The model with αZ = 1 corresponds to the UMI case
with constant copy number zi = 1, and thus has no broken zeta parameters.

used in astrophysics (Jóhannesson et al., 2006), we are not aware of

any prior use of discrete broken power law distributions for statistical

modeling.

For the simulations in Figures 13 and 14, we sampled copy num-

bers from a given broken zeta distribution. For that, we computed the

approximate PMF for a limited support z ∈ {1, 2, . . . , 105} with Equa-

tion 45, and normalized the resulting probabilities to sum to 1. This way

we did not need to compute the normalization constant in Equation 45.

For the simulations of the Drop-seq copy number distribution in Fig-

ure 13b–e we used n = 2 506 244 samples per parameter set, which is the

number of UMIs in the Drop-seq A dataset. We extended the support un-

til 106 for this particular simulation, because we observed max(zi) ≈ 105

for some of the more extreme parameter combinations.

In order to sample realistic read counts from four compound models

with different combinations of mean copy number E[Z] and αZ (Fig-

ure 14), we used a grid search over the broken zeta parameters a1, a2,

and b to find parameter combinations that best matched the required

values. Table 4 lists the parameters and amplification statistics of the

chosen models. Across all parameter sets shown in Figure 14, we ob-

served max(zi) = 7 179 which was far below the end of the support.

We first sampled unique sequenced molecules kcg from a negative bi-
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nomial with kcg ∼ NB(pgnc, θ) for 25 genes over a log-spaced range of

expression fractions pg ∈ [10−8, 10−1]. We did this for 105 cells, each

with fixed sequencing depth of nc = 105. We used overdispersion pa-

rameter θ = 10 for all genes. This led to a total of
∑
kcg = 2 047 196 087

simulated UMIs. Then, for each of them, we sampled a copy number zi

from the broken zeta model as described above, and summed over copy

numbers for the same cell and gene to obtain a read countXcg =
∑kcg

i=1 zi.

We used the same set of simulated UMIs for the four compound model

simulations shown in Figure 14 and Table 4.
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Publication note. This chapter is published in PLOS Computational

Biology (Lause et al., 2024) and is available at https://doi.org/10

.1371/journal.pcbi.1012403 under a CC-BY 4.0 license (https:

//creativecommons.org/licenses/by/4.0/).

Abstract

A recent paper in PLOS Computational Biology (Chari and

Pachter, 2023) claimed that t-SNE and UMAP embeddings of

single-cell datasets fail to capture true biological structure. The

authors argued that such embeddings are as arbitrary and as mis-

leading as forcing the data into an elephant shape. Here we show

that this conclusion was based on inadequate and limited met-

rics of embedding quality. More appropriate metrics quantifying

neighborhood and class preservation reveal the elephant in the

room: while t-SNE and UMAP embeddings of single-cell data

do not preserve high-dimensional distances, they can nevertheless

provide biologically relevant information.

5.1 2D embeddings of single-cell data do make sense

In single-cell genomics, researchers often visualize data with 2D embed-

ding methods such as t-SNE (van der Maaten and Hinton, 2008; Kobak

and Berens, 2019) and UMAP (McInnes et al., 2018; Becht et al., 2019).

Chari and Pachter (2023) criticize this practice: They claim that the

resulting 2D embeddings fail to faithfully represent the original high-

dimensional space, and that instead of meaningful structure these em-

beddings exhibit “arbitrary” and “specious” shapes. While we agree

that 2D embeddings necessarily distort high-dimensional distances be-

tween data points (Nonato and Aupetit, 2018; Wang et al., 2023b), we

believe that UMAP and t-SNE embeddings can nevertheless provide use-

ful information. Here, we demonstrate that UMAP and t-SNE preserve

cell neighborhoods and cell types, and that the conclusions of Chari and

Pachter (2023) are based on inadequate metrics of embedding quality.

118



5 THE ART OF SEEING THE ELEPHANT IN THE ROOM

To illustrate their point that t-SNE and UMAP embeddings are

arbitrary, Chari and Pachter (2023) designed Picasso, an autoencoder

method that transforms data into an arbitrary predefined 2D shape,

e.g., that of an elephant. The authors then compared four kinds of

embeddings: the purposefully arbitrary elephant embedding, 2D PCA,

t-SNE, and UMAP (Figure 15). For this, they used two metrics of em-

bedding quality, both requiring class annotations: inter-class correlation

measuring how well high-dimensional distances between class centroids

are preserved in the 2D embedding and intra-class correlation measur-

ing how well class variances are preserved. They found that across three

scRNA-seq datasets, 2D PCA performed the best on those metrics, while

the elephant embedding scored similar to or better than UMAP and t-

SNE. We reproduced and confirmed these results (Figure 16a–b).

According to the authors, this means that t-SNE and UMAP are

as arbitrary and as misleading as the Picasso elephant. Most online

discussions and debates about their paper, including posts by the authors

themselves, have prominently featured this argument and the powerful

elephant metaphor to argue that “it’s time to stop making t-SNE &

UMAP” plots (Pachter, 2021). In this Comment, we focus exclusively

Picasso

Ex Utero

2D PCA t-SNE UMAP

MERFISH Smart-seq

Figure 15: Evaluated embeddings. Large panels: Ex Utero dataset.
Small panels: MERFISH and Smart-seq datasets. Colors correspond to cell
types and are taken from Chari and Pachter (2023). See Chapter Methods for
details.
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on this argument and do not discuss the rest of the Chari and Pachter

(2023) paper.

We believe that this argument is faulty because the metrics used

by Chari and Pachter (2023) are insufficient and only quantify a single

aspect: both metrics focus on preservation of distances, where 2D PCA

was unsurprisingly the best. But there is more to embeddings than

distance preservation. It is visually apparent in the resulting embeddings

that t-SNE and UMAP separate cell types, while 2D PCA and Picasso

elephant lead to strongly overlapping types (Figure 15), but neither of

the two metrics quantified that. Biologists are often interested in cell

clusters, and so preservation of cell neighborhoods and visual separation

of meaningful cell groups are important properties of 2D embeddings.

To quantify these aspects neglected by Chari and Pachter (2023), we

used four additional metrics, commonly employed in benchmark studies

(Espadoto et al., 2019; Huang et al., 2022a; Wang et al., 2023a): k-

nearest-neighbor (kNN) accuracy, kNN recall (Lee and Verleysen, 2009),

the silhouette coefficient (Rousseeuw, 1987), and the adjusted mutual

information (AMI) between clusters and class labels (Vinh et al., 2009).

The kNN accuracy quantifies how often the 2D neighbors are from the

same class, while the kNN recall quantifies how often the 2D neighbors

are the same as the high-dimensional neighbors. In both metrics, UMAP

and t-SNE consistently and strongly outperformed PCA and Picasso

elephant embeddings (Figure 16c–d, >90% vs. <62% accuracy, >15%

vs. <5% recall for all datasets). Even though the kNN recall was below

40% for all methods (Figure 16d), kNN accuracy was always above 90%

for both UMAP and t-SNE (Figure 16c). This means that even though

UMAP and t-SNE are not able to preserve high-dimensional nearest

neighbors exactly, the low-dimensional neighbors tend to be from a close

vicinity in the high-dimensional space, have the same cell type, and hence

allow reliable kNN classification. In contrast, 2D PCA and the Picasso

elephant fail at that.

The silhouette coefficient and the AMI both evaluate to what extent
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cell types appear as isolated islands in 2D. Specifically, the silhouette

coefficient measures how compact and separated the given classes are

in 2D, while the AMI evaluates how well clustering in 2D recovers the

classes. In both metrics, t-SNE and UMAP strongly outperformed 2D

PCA and Picasso elephant embeddings (Figure 16e–f, >0.3 difference in

silhouette score, >0.25 difference in AMI), in agreement with the visual
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Figure 16: Embedding quality metrics. Panels correspond to met-
rics, colors correspond to embedding methods, marker shapes correspond to
datasets. Averages over five runs, error bars go from the minimum to the
maximum across runs. Dotted horizontal lines show the values of the metrics
in the high-dimensional gene space. a–b: The two metrics from Chari and
Pachter (2023), reproducing their Figure 7. c–d: kNN accuracy and kNN
recall (k = 10). e: Silhouette coefficient. f: Maximum adjusted mutual in-
formation between classes and 2D clusters obtained with HDBSCAN using a
range of hyperparameter values.
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impression (Figure 15).

The kNN accuracy and the silhouette coefficient can also be com-

puted directly in the high-dimensional gene space. We found that t-

SNE and UMAP showed similar or higher kNN accuracy and much

higher silhouette coefficient than the original high-dimensional space

(Figure 16c,e). This suggests that high-dimensional distances suffer from

the curse of dimensionality, and that it may in fact be undesirable to pre-

serve them in 2D visualizations. Indeed, single-cell biologists rarely use

multidimensional scaling (MDS), an embedding method explicitly de-

signed to preserve distances, because MDS often fails to represent the

cluster structure in the data. This further underscores why using only

distance-preservation metrics, as Chari and Pachter (2023) did, is mis-

guided.

All presented metrics except kNN recall rely on class labels, and

our analysis, following Chari and Pachter (2023), used labels derived

in original publications via clustering. Therefore, these labels do not

necessarily correspond to biological ground truth, and could potentially

lead to biased comparisons. To address this concern, we used negative

binomial sampling based on the Ex Utero dataset to simulate a dataset

with known ground truth classes. Analyzing this simulated dataset gave

the same conclusions: 2D PCA scored the best in the distance-based

correlation metrics of Chari and Pachter (2023), but only t-SNE and

UMAP could separate the true classes, while Picasso and 2D PCA failed

at that (Figure S19).

Taken together, our results point to the elephant in the room: Even

though they are not designed to preserve pairwise distances, t-SNE and

UMAP embeddings are not arbitrary and do preserve meaningful struc-

ture of single-cell data, especially local neighborhoods and cluster struc-

ture. Claiming that Picasso and t-SNE/UMAP are “quantitatively sim-

ilar in terms of fidelity to the data in ambient dimension” (Chari and

Pachter, 2023) is wrong. They are not.

That said, we do agree with Chari and Pachter (2023) that 2D visu-
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5 THE ART OF SEEING THE ELEPHANT IN THE ROOM

alizations distort distances and should not be blindly trusted. Moreover,

as Chari and Pachter (2023), we do not recommend to use 2D embed-

dings for any quantitative downstream analysis. However, paraphrasing

George Box (Box, 1979), we can say that all 2D embeddings of high-

dimensional data are wrong, but some are useful. Indeed, one can use

2D embeddings to form hypotheses about the data structure, ranging

from data quality control and sanity-checking of any algorithmic out-

put, to more general hypotheses about cluster separability, relationships

between adjacent clusters, or presence of outlying clusters. Of course,

any generated insight should then be validated in the high-dimensional

data by other means. Here, our conclusion differs strongly from that of

Chari and Pachter (2023): while they claim that UMAP and t-SNE are

“counter-productive for exploratory [...] analyses”, we endorse them for

that very purpose.

5.2 Chapter Methods

Code and data availability Our code in Python is available at ht

tps://github.com/berenslab/elephant-in-the-room. All data is

publicly available as described below.

Datasets and preprocessing We used the same datasets as Chari

and Pachter (2023) (Table 5) and followed the same preprocessing steps.

The Ex Utero data was already log-normalized. We filtered empty genes

and cells, and selected the 2 000 most highly variable genes (HVGs)

with scanpy.pp.highly variable genes() with default settings (Wolf

et al., 2018). The MERFISH data was already normalized, and we only

performed the log1p() transform. The Smart-seq data was already

log-normalized and had HVGs selected, so we used it as is. Chari

and Pachter (2023) additionally performed a standardization step on

all datasets, which we omitted for simplicity, as it did not change the

result qualitatively (see our Github repository for a direct comparison).

Despite small differences in preprocessing choices, we obtained qualita-
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5.2 Chapter Methods

tively very similar results in Figure 16a–b to what the original authors

reported in their Figure 7.

Simulation We used negative binomial sampling to obtain a simulated

version of the Ex Utero dataset with known ground-truth classes. For

each cluster and each gene g in the original dataset, we computed the

proportion pg of UMI counts of this gene among all UMI counts in the

cluster. For each cell c belonging to this cluster in the original data, we

then sampled new counts Xcg ∼ NB(µ = ncpg, θ = 10), where nc is the

cell’s original total UMI count. Overdispersion parameter θ = 10 leads

to some additional variance compared to the Poisson distribution. This

procedure preserved the number of genes, the number of cells, and all

class abundances, and ensured realistic marginal distributions of simu-

lated counts per cell and per gene. The counts of each simulated gene in

each class followed an independent negative binomial distribution around

the gene’s mean expression in the original Ex Utero cluster. Finally,

we performed the same preprocessing as above on the simulated counts

(depth normalization, scaling normalized counts to 10 000 counts per

cell, log1p() transform, scanpy default HVG selection).

Embeddings We used the high-dimensional gene space after prepro-

cessing and gene selection as input to all embedding methods. For the

elephant embeddings, we used the original Picasso code by Chari and

Pachter (2023) with minimal adjustments needed to provide the random

seed for reproducibility (https://github.com/berenslab/picasso).

We ran Picasso for 500 epochs with default settings. For PCA, we used

scikit-learn 1.3.0 (Pedregosa et al., 2011) with default parameters.

For t-SNE and UMAP, we followed Chari and Pachter (2023) and first

reduced the preprocessed count matrices to 50 dimensions with PCA

and used that as input to openTSNE 1.0.1 (Poličar et al., 2024) and

umap-learn 0.5.5 with default parameters. The 50-dimensional PCA

was used in no other part of the analysis. In all plots, we used the class

labels and colors from Chari and Pachter (2023), except for minor ad-
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5.2 Chapter Methods

justments to the Ex Utero colors, where we introduced four additional

colors to make all classes discernible.

Embedding quality metrics Following Chari and Pachter (2023),

we computed their intra- and inter-class correlation metrics using both

L1 and L2 distances (see our Github repository for a direct comparison).

As we did not observe qualitative differences between the two variants,

we only showed L2 results here, and also used L2 distances for all other

metrics.

For kNN accuracy, we used the k nearest neighbors in the 2D em-

bedding to predict the class of each cell with a majority vote (this is

essentially a leave-one-out cross-validation procedure). We reported raw

accuracy here, but class-balanced accuracy gave qualitatively the same

results (see our Github repository). For kNN recall, we computed (for

each cell) the fraction of the k nearest neighbors in the 2D embedding

that are also among the k nearest neighbors in the high-dimensional

space. For both kNN metrics, we used k = 10, and averaged over all

cells.

For the maximum AMI metric, we ran HDBSCAN (McInnes and

Healy, 2017) from scikit-learn on each embedding for nine hyper-

parameter values min samples = min size clusters ∈ {5, 10, 15, 20,

30, 40, 50, 75, 100}. All points that HDBSCAN left unclustered (noise

points) we assigned to their nearest clusters. We then computed the ad-

justed mutual information (AMI) between each HDBSCAN result and

the given cell type class labels, and picked the largest AMI. This way,

the best performing hyperparameter was chosen for each embedding and

each dataset.

The silhouette coefficient of each cell is defined as (b−w)/max(b, w)

where w is the average distance to cells from the same class and b is

the average distance to cells in the nearest other class. The silhouette

coefficient is then averaged across all cells. We used scikit-learn to

find kNNs, and to compute AMI and silhouette coefficients.

For all metrics that required a high-dimensional reference space for
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5 THE ART OF SEEING THE ELEPHANT IN THE ROOM

comparison (inter-class and intra-class correlations, kNN recall), we used

the same high-dimensional gene space that we used as input to the em-

bedding methods.
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6 Discussion

This thesis addressed two open challenges in neuroscience single-cell

RNA-seq data: preprocessing and visualization. In the final Chapter,

we will first review the strengths and limitations of the new preprocess-

ing framework we propose, and how scRNA-seq preprocessing methods

in general could profit from improved benchmarks. Then, we will sum-

marize what we learned from the recent debates about 2D visualizations

for scRNA-seq data, and make suggestions on how to ensure 2D embed-

dings do not mislead their users. Finally, we sketch out how neuroscience

can build on top of the exciting scRNA-seq findings from the last decade

— and what all of that means for the concept of cell types.

Strength and limitations of Pearson residual-based preprocess-

ing. In Chapter 3 and 4 of this thesis, we presented two theory-aware

methods to preprocess single-cell RNA sequencing data, both based on

null model Pearson residuals. The concept is simple: We model the ex-

pected technical and statistical noise from the data generation process,

and then fit this null model to observed count data. Our null model

only accounts for non-biological factors, such that ideally, the residuals

of this model will contain no more noise and all the biologically meaning-

ful signal. That is why we propose Pearson residuals — with appropriate

null models for UMI and non-UMI data — as a generic preprocessing

framework for scRNA-seq data.

Even before we started to work on this method, a multitude of

scRNA-seq preprocessing methods already existed. How does our con-

tribution add value to the existing options? As detailed in Section 2.3.1,

the most common preprocessing heuristic — global scaling — is sim-

ple, fast and seems to give acceptable results in many cases. However,

several benchmarks showed that this performance is not optimal (Cole

et al., 2019; Tian et al., 2019). This is likely due to the theoretical

limitations and misspecified implicit assumptions of this method (Lun,

2018; Warton, 2018; Ahlmann-Eltze and Huber, 2023), leading to cases
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in which global scaling does not achieve the desired normalization and

variance stabilization, such that technical noise remains in the prepro-

cessed data.

We showed that normalization by Pearson residuals avoids these

problems both in theory and in practice. At the same time Pearson

residuals are fast to compute and scale to datasets with millions of

cells. Also, we made analytic Pearson residuals for UMI data available in

scanpy (Wolf et al., 2018), the most popular python library for scRNA-

seq processing. That way, Pearson residuals are an easily accessible and

often superior alternative to the common global scaling normalization.

In contrast to other methods like Sanity (Breda et al., 2021) or

scTransform (Hafemeister and Satija, 2019), Pearson residuals require

fewer parameters to be fit and will usually be faster. As a result, Pear-

son residuals can only remove relatively simple noise structure from data:

For example, our method does not allow the mean-variance relationship

(for which the model eventually corrects) to change between genes, while

both scTransform and SCnorm (Bacher et al., 2017) allow for that. This

additional flexibility will lead these models to remove more variance from

the data than our method. It is debatable if that is conceptually desir-

able, because a change in mean-variance relationship between genes has

no obvious theoretical justification, and it can easily happen that bio-

logical variance or unexplained technical noise sources are inadvertently

“explained away” by these flexible models. In fact, our experience with

unexpected technical artifacts (Figures 7 and S6) has shown that sim-

ple models like ours can have the advantage that the data analyst will

immediately notice if the assumptions of the model are violated, while

other methods might just smooth over surprising structure. Also, in the

case of our non-UMI count residuals, we saw that our model was able to

predict and explain statistical patterns in the zero-inflation and overdis-

persion of non-UMI data that were unexplained before. This is another

example of how our rather parsimonious model helped the understanding

of scRNA-seq data in general.
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However, the simple model of our normalization framework comes

with limitations. Some well-known noise sources, like batch effects (Tung

et al., 2017), are not part of the model. This might limit the applicability

of Pearson residuals normalization in its current form for data from large,

multi-sample experiments (although we were successful in using UMI

residuals on such a dataset (Cao et al., 2021)). However, related work

by Hafemeister and Satija (2019) showed that it might be sufficient to

simply add a batch covariate to the null model.

As another drawback of our work, we only ran relatively small-scale

benchmarks to validate our methods: For both UMI and non-UMI resid-

uals, we provided proof-of-concept results on a heterogeneous, real-world

dataset, and validation on more artificial data with known ground truth.

However, while we compared to the most common alternative prepro-

cessing pipelines, we could not cover all possible options. Also our evalu-

ations confirmed that variance stabilization worked well, and the Pearson

residuals representation allowed to separate cell populations of interest

— but we did not evaluate on more involved downstream analysis task,

like clustering or differential expression analysis.

The scRNA-seq field lacks task-driven benchmarks of prepro-

cessing methods. This limitation points to the fact that comprehen-

sive benchmarks that shed light on which preprocessing method per-

forms best under certain circumstances remain an open gap in the field.

Two relatively recent benchmarks (Booeshaghi et al., 2022; Ahlmann-

Eltze and Huber, 2023) attempted to fill this gap with very different

approaches: Booeshaghi et al. (2022) defined three desiderata for prepro-

cessing (variance stabilization, sequencing depth normalization, mono-

tonicity of the transform) and created a metric for each. They then

evaluated how well each of ten preprocessing methods fulfilled these

desiderata on > 500 scRNA-seq datasets. While the large number of

datasets and the principled approach to start from desiderata is of value,

the study had severe limitations: nine out of ten methods were global

scaling methods, such that the diversity of available model-based nor-
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malization methods was not well represented here. Also, a benchmark

of desiderata metrics alone does not answer the question if and how

strong the reported differences between methods affect downstream per-

formance. Therefore, both the selection of normalization methods and

the choice of metrics was too one-sided to draw final conclusions on

which normalization methods are best.

In contrast, the benchmark by Ahlmann-Eltze and Huber (2023) se-

lected methods from all major categories of normalization methods, in-

cluding global scaling, null model residuals and Bayesian models. Also,

their metrics focused on how the preprocessing affected the kNN graph

of the data — a view of the data that is often used in downstream anal-

ysis. In that respect, they addressed the problems of the Booeshaghi

et al. (2022) benchmark. Additionally, their metrics were unsupervised

in the sense that they did not require manually annotated cell type la-

bels. However, these metrics seemed to be not very sensitive, as only

one of their metrics showed reliable differences between methods. This

metric measured if the kNN graph was “consistent” across subsets of

genes, i.e., whether the graph showed the same neighborhood structure

irrespective of the gene used to compute it. However, from this met-

ric it is hard to tell if a method is “consistently good” or “consistently

bad”: For example, if a method does not normalize for sequencing depth

properly, its kNN graph might very consistently put cells with similar

sequencing depth next to each other—but that would not be a desired

outcome after normalization for exactly that factor.

In summary, both benchmarks fell short of a conclusive survey of

scRNA-seq normalization method. Such a benchmark is much needed to

inform the choices of practitioners that have to deal with noisy scRNA-

seq data, potentially without being trained as statisticians or computer

scientists. In order to fill this gap, future benchmarks should (i) in-

clude a representative set from all categories of preprocessing methods

(like Ahlmann-Eltze and Huber (2023)), (ii) include a large, diverse set

of real-world data (like Booeshaghi et al. (2022)), and (iii) use at least
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the two following kinds of evaluations: “goal-driven” metrics that mea-

sure if the preprocessing produced normalized, variance-stabilized data

(like Booeshaghi et al. (2022)), and “task-driven” metrics that measure

influence of the preprocessing on downstream task performance, e.g.,

clustering or differential expression analysis. While such an effort was

not in the scope of this thesis, it would be an exciting future work to

advance the field of scRNA-seq data analysis, and to see whether our

proposed Pearson residuals normalization framework will pass such a

comprehensive test successfully.

For better scRNA-seq embedding methods, we need to put

user experience first. With Chapter 5, we contributed to another

ongoing benchmarking debate: how reliably can we visualize the high-

dimensional gene expression space with 2D embeddings based on UMAP

and t-SNE? Chari and Pachter (2023) claimed that these methods pro-

duce arbitrary embeddings, arguing that they preserved distances as well

as a truly arbitrary elephant-shaped embedding. While we replicated

the distance preservation results, we could show that UMAP and t-SNE

performed very strongly and consistently on other relevant metrics like

cluster and neighborhood preservation. Therefore, we could refute the

claim that UMAP and t-SNE produce “arbitrary” embeddings. This set

the records straight for many practitioners that were unsure if and how

t-SNE and UMAP are still “safe to use” for scRNA-seq data.

What can we learn from this exchange of arguments? As in the

discussion about benchmarks for normalization methods, the choice of

metrics are at the heart of this debate. Choosing metrics means to decide

which qualities of a method are important to us, and what we define as

acceptable performance. For example, critics of UMAP and t-SNE have

repeatedly argued that these methods are unacceptably bad, as their 2D

embeddings only recalls 1–3 out of 10 nearest neighbors from high dimen-

sions correctly. In contrast, one could argue that the other 7–9 nearest

neighbors are not bad neighbors, because they are not random: Many of

them are usually from a close vicinity of the correct neighborhood — in
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scRNA-seq data often from the same cell type. Thus, we could interpret

the same performance that the other side rejected as unacceptable as

soft but successful neighborhood preservation (Figure 17).
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Figure 17: Soft vs. exact kNN recall. Left panel shows soft kNN re-
call, i.e., the fraction of the 10 nearest 2D neighbors that are among the 100
nearest neighbors in the original space. Right panel shows exact kNN recall
as Figure 16d.

It is hard to say which perspective is correct here: Is it important

for scRNA-seq analysis that kNN recall is exact, or is a soft notion of

neighborhood preservation sufficient? The scRNA-seq field should try

to address this kind of question for the many embedding quality metrics

currently proposed (Espadoto et al., 2019; Sun et al., 2019; Heiser and

Lau, 2020; Xiang et al., 2021), as they have more potential to move

the field forward than asking once more “if the glass is half full or half

empty”.

That said, despite all benchmarking attempts, some fundamental

limits to faithfully embedding high-dimensional data will remain. If

we accept these limits, how can we still work with such an imperfect

method in practice? One potentially helpful perspective here is that

of the single-cell biologist who might apply UMAP or t-SNE without

extended knowledge about high-dimensional space and the limits of di-

mensionality reduction. If they look at a typical 2D embedding with

all its inevitable distortions — which wrong conclusions about the high-

dimensional data will they draw automatically and involuntarily, simply

based on how humans perceive visual inputs?

There is a long tradition of studying how humans extract informa-

tion from scientific graphs (Quadri and Rosen, 2021), including work

133



on how distortions of various dimensionality reduction methods are per-

ceived (Nonato and Aupetit, 2018). For example, Correll et al. (2018)

tested which simple “data science sanity checks”, like histograms or den-

sity plots, would mislead humans inspecting them. Similar studies on

how 2D embeddings of scRNA-seq data are perceived by real humans

could offer a new target to improve the user experience of these methods:

Then, the criterion for a good “embedding user experience” would be

whether or not a human observer will conclude something objectively

wrong about the underlying high-dimensional data from it. Rather than

trying to further improve the dimensionality reduction algorithms them-

selves, focus on the user experience would probably require work on

which additional information the user needs to avoid falling for mis-

leading distortions, i.e., embedding overlays that highlight suboptimally

embedded points. First attempts to compute and communicate uncer-

tainty estimates for embeddings positions already exist for the scRNA-

seq field (Johnson et al., 2022; Xia et al., 2024), but these methods are

still in their infancy, suffering, e.g., from poorly motivated null models.

Where will the atlases of scRNA-seq lead the neurosciences?

The single-cell transcriptomics methods and atlas datasets presented in

this thesis mapped out uncharted territory in the brain and brought

many insights to the field of neuroscience — but what to do with the

vast amounts of data?

The field of retina research has already shown a few possible direc-

tions (Shekhar and Sanes, 2021): Combining GWAS and scRNA-seq

atlases allows to track where disease genes are active in the brain and

might trigger disease onset (Roselli et al., 2018; Yi et al., 2021). Spa-

tial transcriptomics allows to study, e.g., regional specialization in the

retina (Choi et al., 2023) — and is only possible because of the numerous

scRNA-seq atlas datasets that have been produced over the last decade.

Multimodal approaches like Patch-seq allow connecting knowledge about

transcriptomic cell types back to previously known morphological and

functional cell types (Huang et al., 2022b). Cross-species scRNA-seq
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atlas data comparisons already shed light on how mammalian nervous

systems are related among each other (Hodge et al., 2019; Hahn et al.,

2023) and with, e.g., reptile brains (Tosches et al., 2018). Also, more

generally, scRNA-seq atlases are valuable because they define cell type

markers, leading to much easier genetic access to these types. This will

allow for targeted interventions and causal experiments on the role of

cell types in specific circuits (He et al., 2016), e.g., with optogenetics.

These findings and those still to come have the potential to overturn

the classical concept of brain cell types as discrete, static entities. Yuste

et al. (2020) suggested that instead, the field needs a probabilistic cell

type concept whose hierarchy takes into account the developmental and

evolutionary origins of cell types (Arendt et al., 2019). Such a concept

will hopefully be able to account for the continua between cell types

that have been described in many brain regions already (Tasic et al.,

2016, 2018; Harris et al., 2018). Currently, it is still unclear what these

continua are good for — but it is clear that to find out, we need improved

models and methods to process single-cell RNA sequencing data.
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7 Author Contributions

Statement of contributions according to §9 (2): The presented

thesis covers three projects and publications. The project descriptions

and author contributions for each project are listed below. Contributions

are described both as free text and according to the Contributor Roles

Taxonomy (CRediT) system (Allen et al., 2019).

Analytic Pearson residuals

for normalization of single-cell RNA-seq UMI data

Lause, Berens & Kobak, Genome Biology, 2021

The project originated from investigating unexplained patterns in

parameters of the scTransform method. We ended up simplifying the

scTransform model to our analytic UMI count model, and ran compu-

tational experiments to demonstrate the simpler model works well as a

data preprocessing pipeline. Jan Lause contributed analysis ideas, did

literature research, ran all analyses, contributed the analysis code, and

wrote and revised the manuscript draft. Dmitry Kobak contributed

ideas, analysis directions, and manuscript feedback as the main super-

visor. Philipp Berens discussed ideas for the method, contributed

manuscript and analysis feedback and co-supervised the project.

CRediT: Conceptualization: JL, DK, PB; Methodology: JL, DK;

Software: JL; Validation: JL; Formal analysis: JL; Investigation: JL,

DK, PB; Resources: PB; Data Curation: JL; Writing - Original Draft:

JL; Writing - Review & Editing: JL, DK, PB; Visualization: JL; Super-

vision: DK, PB; Project administration: DK, PB; Funding acquisition:

PB

Compound models and Pearson residuals

for single-cell RNA-seq data without UMIs

Lause, Ziegenhain, Hartmanis, Berens & Kobak, bioRxiv, 2024

The project originated as a follow-up on the above project, and from

ideas and discussions between Christoph Ziegenhain and Dmitry Kobak.
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We extended the UMI count model to non-UMI read counts, using data

from Ziegenhain & Hartmanis to constrain the model. Again, we ran

computational experiments to demonstrate the model works well as a

data preprocessing pipeline. Jan Lause contributed analysis ideas,

derivations, ran all analyses, contributed the analysis code, and wrote

and revised the manuscript draft. Christoph Ziegenhain contributed

domain expertise, manuscript feedback, a reads-per-UMI dataset and

code to reproduce that dataset. Leonard Hartmanis assisted in col-

lecting that dataset. Dmitry Kobak contributed the modeling idea,

analysis directions and manuscript feedback as the main supervisor.

Philipp Berens discussed ideas for the method, contributed manuscript

and analysis feedback and co-supervised the project.

CRediT: Conceptualization: JL, DK, PB; Methodology: JL, DK,

CZ; Software: JL, CZ; Validation: JL; Formal analysis: JL; Investiga-

tion: JL, DK, CZ; Resources: PB, CZ; Data Curation: JL, CZ; Writing

- Original Draft: JL; Writing - Review & Editing: JL, CZ, LH, DK, PB;

Visualization: JL; Supervision: DK, PB; Project administration: DK,

PB; Funding acquisition: PB
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dane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,

Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array

programming with NumPy. Nature, 585(7825):357–362, September

2020.

Kenneth D Harris, Hannah Hochgerner, Nathan G Skene, Lorenza

Magno, Linda Katona, Carolina Bengtsson Gonzales, Peter Somo-

gyi, Nicoletta Kessaris, Sten Linnarsson, and Jens Hjerling-Leffler.

Classes and continua of hippocampal CA1 inhibitory neurons revealed

by single-cell transcriptomics. PLoS Biology, 16(6):e2006387, 2018.

Miao He, Jason Tucciarone, SooHyun Lee, Maximiliano José Nigro,
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lar python library for t-SNE dimensionality reduction and embedding.

bioRxiv, page 731877, 2019.
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Grimaldi, Valentina Bouché, Gennaro Gambardella, and Davide

Cacchiarelli. Single-cell RNA sequencing analysis: a step-by-step

overview. RNA Bioinformatics, pages 343–365, 2021.

Harrison Specht, Edward Emmott, Aleksandra A Petelski, R Gray Huff-

man, David H Perlman, Marco Serra, Peter Kharchenko, Antonius

Koller, and Nikolai Slavov. Single-cell proteomic and transcriptomic

analysis of macrophage heterogeneity using SCoPE2. Genome Biology,

22(1):1–27, 2021.

Karpagam Srinivasan, Brad A Friedman, Jessica L Larson, Benjamin E

Lauffer, Leonard D Goldstein, Laurie L Appling, Jovencio Borneo,

162



REFERENCES

Chungkee Poon, Terence Ho, Fang Cai, et al. Untangling the brain’s

neuroinflammatory and neurodegenerative transcriptional responses.

Nature communications, 7(1):11295, 2016.

Oliver Stegle, Sarah A Teichmann, and John C Marioni. Computational

and analytical challenges in single-cell transcriptomics. Nature Re-

views Genetics, 16(3):133–145, 2015.

Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun,

Marius Pachitariu, Marius Bauza, Maxime Beau, Jai Bhagat, Claudia
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9 Supplementary Figures

9.1 Analytic Pearson residuals for UMI counts
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Figure S1: Overdispersion in negative control datasets. In the lower
panels, each dot corresponds to one gene g. The overdispersion parameter
estimates were obtained with theta.ml() using 100 iterations, using the ex-
pression means predicted by our model. Diverged estimates were clipped as
in Figure 4g. Colors show the 5th to 95th percentile regions of the overdisper-
sion estimates for simulated datasets with a known θ shared across genes. For
each value of θ ∈ {10, 100, 1000,∞}, we simulated 1000 datasets according to
Eq. 15, using means µcg = pgnc with empirical nc and a series of pg values
chosen to cover the entire data range. The upper panels show the fraction
of genes for which the estimate diverged (black: original data, colors: simu-
lated data). a: 10x Genomics Chromium technical negative control dataset
(sample 1), consisting of RNA solution split into droplets (Svensson et al.,
2017). 2 000 cells. b: inDrop technical negative control dataset prepared as in
(a) (Klein et al., 2015). 953 cells. c: microwellSeq biological negative control
dataset from non-differentiating embryonic stem cell culture (E14 line from
strain 129P2/Ola) (Han et al., 2018). 9 994 cells. Biological negative control
datasets have been shown to exhibit larger variability (i.e., lower θ) compared
to technical negative control datasets (Grün et al., 2014).
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9.1 Analytic Pearson residuals for UMI counts
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Figure S2: Comparing gene selection criteria. Each dot shows the
selection criterion for a single gene in the PBMC dataset after applying a nor-
malization method. The 100 genes with the largest criterion values in each
panel lie above the dotted horizontal line. Red dots show the top 100 genes
selected by the variance of Pearson residuals with θ = 100. Black dots show
the top 20 genes selected by scTransform (Hafemeister and Satija, 2019). a:

Reproduced from Figure 5b. b: Analytic Pearson residuals with θ = 10,
roughly corresponding to scTransform. c: Analytic Pearson residuals with
θ = ∞, i.e., a Poisson model. d: Analytic Pearson residuals with θ = 100 but
without clipping of the residuals to ±√

n. This leads to selection of some low-
expression genes. e: Pearson residuals of the Hafemeister and Satija (2019)
model, obtained via the R implementation of scTransform. 87% of the top-
100, and 83% of the top-1000 genes are the same as in the selection by analytic
Pearson residuals with θ = 100. f: Fano factor after sequencing depth normal-
ization and median scaling. g: Variance after sequencing depth normalization,
median-scaling and square-root transform. h: Variance after sequencing depth
normalization, median-scaling and log(1 + x)-transform. Note that here the
variance is a non-monotonic function of the average expression. Note also that
some biologically variable genes (black and red dots) in both (g) and (h) lie
below the main cloud, i.e., have lower variance than the genes with the same
average expression but without biological variability. This happens for genes
that are strongly expressed but only in a small subset of cells. Square-root
and log-transformations act ‘too strong’ on these large counts, yielding lower
overall variance. i: Variance of deviance residuals for θ = 100. Consistent
with Supplementary Figure S7 in Townes et al. (2019), only high expression
genes are selected.
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Figure S3: Selection of variable genes for a retinal dataset. All panels
as in Figure 5, here showing gene selection for the largest batch of the retina
dataset from (Macosko et al., 2015). It consists of replicates p1 and r4–r6,
with a total of N = 24 769 cells. The cone photoreceptor marker Opn1mv

and the bipolar cell marker Gng13 were only selected when the variance of
Pearson residuals was used as criterion. The diffusely expressed gene Mgarp

is present in many cell types, and was only selected based on the variance of
the square-root transformed data. The Müller glia marker Glul was selected
by both methods.
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9.1 Analytic Pearson residuals for UMI counts

Figure S4: t-SNE embeddings based on different data transforma-

tion approaches. Each panel shows a t-SNE of the PBMC dataset, the
different panels in each row show embeddings based on a different data trans-
formation method with reduction to 50 dimensions (see Methods). Colors
correspond to 10 k-means clusters provided by 10x Genomics together with
the PBMC dataset. We annotated eight clusters based on known marker
genes (taken from (Wagner, 2019)). a–c: No gene selection was used for these
panels. d–f: Same as a–c, but using only the 1000 genes with the highest
Pearson residual variance. g–i: Same as a–c, but overlayed with square-root-
transformed sequencing depth. Values above 70 were clipped.
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Figure S5: t-SNE embeddings of the monocyte cluster with down-

sampling. We analyzed the monocyte cluster from the PBMC dataset
(marked orange in Figure S4, n = 6307 cells). Half of the cells (randomly
selected) were downsampled to 50% of their original sequencing depth, by
simulating new counts X̃cg = Binomial(n = Xcg, p = 0.5), following the anal-
ysis in Hafemeister and Satija (2019) (their Figure 6C). We then compared
how well different normalization strategies remove the simulated batch-effect.
PCA and t-SNE were applied after normalization as in Figure S4. a: Depth-
normalized counts, scaled with 104 and then log-transformed, as in Hafemeister
and Satija (2019). Note the strong batch effect due to the large scale factor.
b: Depth-normalized counts, scaled with median depth (≈ 1500) and then
log-transformed. Note that this smaller scale factor was more appropriate and
removed the batch effect shown in (a). c: Depth-normalized counts. At the
cost of not applying a variance-stabilizing transform, no batch effect remains.
d: Depth-normalized counts, square-root transformed. A weak batch effect
remains. e: Pearson residuals, computed with θ = 100. f: Negative binomial
GLM PCA, computed with fixed θ = 100.
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Cao et al. (2019): Artifact gene detection

Figure S6: Artifact genes in the organogenesis dataset. Scatter plot
over the 2 000 highly variable genes that we selected using Pearson residuals.
For each gene and each of the 61 embryos in the data, we computed how many
cells in that embryo have over 10 UMI counts of that gene. The plot compares
the largest number across embryos with the third largest number. For the
majority of the genes, these values were very similar, and therefore lie on the
diagonal of the plot. In contrast, genes with spurious enrichment in one or two
embryos lie below the diagonal. The gray line shows our exclusion criterion:
100 times difference between the largest and the third-largest number of cells
with >10 UMI counts. The red dots mark 249 genes excluded for Figure 7e.
Almost every embryo exhibited some of these spuriously enriched genes.
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Figure S7: t-SNE embeddings of the benchmarking dataset for

selected normalization pipelines. Rows show three HVG selection ap-
proaches, columns show four normalization and dimensionality reduction ap-
proaches. Each panel corresponds to one of the entries in Figure 8c.
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Figure S8: Sequencing depth variation increases the apparent

overdispersion. Both rows are a reproduction of Figure 10, but showing
pure NB models (αZ = 1) that differ in their overdispersion parameter θ. a–

c: Plots based on all 1 049 cells as shown in Figure 10 with total counts per cell
ranging from ∼680 000 (1st percentile) to ∼2.84 million (99th percentile). Note
that the NB model with θ = 10 fits the boundary of the data distributions.
d–f: Plots based on a subset of the 523 cells with total counts within the 25th
and 75th percentiles (from ∼1.54 million to ∼1.90 million reads). Now the
NB model with θ = 20 fits the boundary of the data distributions better than
with θ = 10. In other words, overdispersion is smaller when controlling for
sequencing depth variation.
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Figure S9: Non-amplified genes are mostly pseudogenes. Each row is
a reproduction of Figure 10, but showing only genes from a certain category as
obtained by the mygene.info annotation service. 434 genes without available
annotation are not shown. a–c: Protein-coding genes. d–f: Pseudogenes.
Many of them appear ‘non-amplified’ and do not follow the compound model,
but rather the UMI model without amplification (black). g–i: Other, non-
coding RNA species. Note that the bulk of these low-expression genes did not
follow the compound model either.
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Figure S10: Pseudogenes have low Fano factor of read counts across

protocols. Each panel shows the relationship between the mean and the
Fano factor for all genes in each dataset. Higher density of dots is shown in
brighter gray. Red dots with transparency show pseudogenes. Each row of
panels shows a homogeneous dataset sequenced with a different protocol. All
left-column panels are based on read counts, all right-column panels are based
on UMI counts from the same dataset. Same data as in Figure 12. a–h: Mouse
embryonic stem cells sequenced with various UMI protocols (Ziegenhain et al.,
2017). For all protocols, only run A is shown. i–l: Smart-seq3 data from mouse
fibroblasts (Hagemann-Jensen et al., 2020). SE: Single-end run. PE: Paired-
end run. m–n: Smart-seq3 Xpress data from HEK293 cells (Hagemann-Jensen
et al., 2022).
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Figure S11: Pseudogenes have lower maximum transcript lengths.

Reproduction of Figure 10, but showing each gene colored by the maximum
length across all of its transcripts present in the Ensembl mouse gene database.
11 097 genes without transcript length annotation are not shown. Maximum
lengths were clipped to the 98th percentile (9 849 bp) before plotting.
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Figure S12: Genes with residual variance j 1 are mostly pseudo-

genes. Each panel is a reproduction of Figure 11a, showing only a certain
category of genes, as in Figure S9. Each dot represents a gene and shows its
mean and residual variance in the full mouse visual cortex dataset (Tasic et al.,
2018). Brighter color indicates higher density of points. Red line shows cutoff
for selecting 3 000 HVGs among all genes. Gene type annotations taken from
the mygene.info service. a: Protein-coding genes. b: Pseudogenes. c: Other,
non-coding RNA species. d: Genes without available annotation.
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Figure S13: Influence of the amplification parameter α. Each row
contains a reproduction of Figure 11a–b for various values of αZ . The first row
corresponds to the NB model without amplification, used for UMI data (Lause
et al., 2021). Gray line: indicates residual variance = 1, where most non-
differentially expressed genes should lie if the model is correct. All t-SNEs
used the same shared initialization (see Methods). Right column shows the
first two principal components (PCs) of the compound Pearson residuals.
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Figure S14: Comparing compound Pearson residuals to Census and

qUMI. The same analysis as shown in Figure 11a–b for read counts from
Tasic et al. (2018) processed with qUMIs (Townes and Irizarry, 2020) followed
by UMI Pearson residuals (a, d); Census counts (Qiu et al., 2017) followed by
UMI Pearson residuals (b, e); and compound Pearson residuals (our method)
applied to the same set of genes (see Methods) (c, f).
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Figure S15: Preprocessing Smart-seq2 data with Scanpy default

settings. The same dataset as in Figure S13, processed with scanpy

1.9.0 defaults for normalization (counts per median normalization with
normalize total(), followed by log1p() transform) and gene selection
(flavor=‘seurat’, Satija et al. (2015)) and PCA to 1 000 PCs. a: Seurat
gene selection based on normalized dispersion. Note that two known markers
(Foxp2, Snap25 ) are not among the top 3 000 genes selected by this method.
The genes with highest normalized dispersion are markers of small, non-neural
populations. b: t-SNE embedding of the preprocessed data. c: PCA embed-
ding of the same, preprocessed data.
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Figure S16: Compound Pearson residuals recover ground truth in

realistic simulations. The same analysis as shown in Figure 11 for two sim-
ulated read count datasets that mirror the Tasic et al. (2018) cluster structure.
Both simulated datasets were processed by compound Pearson residuals with
three different settings: αZ = 50 as in Figure 11 (left); αZ = 199 which is the
ground truth amplification factor used in this simulation (middle); alphaZ = 1
corresponding to UMI Pearson residuals (right). a–c: Simulation I. Marker
genes (red) were simulated with cluster-specific expression strengths from the
Tasic et al. (2018) data, all other genes with their average expression strength
across the whole dataset. Horizontal line indicates unit residual variance, ex-
pected for genes without differential expression. d–i: Simulation II. All genes
were simulated with their cluster-specific expression strengths.
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Figure S17: Cell-to-cell variability in αZ and E[Z]. Each panel shows
amplification statistics computed per cell for all sequencing platforms listed in
Table 3. Only run A is shown unless otherwise indicated.
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Figure S18: Total read counts are correlated with αZ . Each panel
corresponds to one of the sequencing platforms listed in Table 3; each dot is a
cell. Only run A is shown unless otherwise indicated.
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Figure S19: Simulated dataset with ground truth labels. Simulation
was based on the Ex Utero dataset and generated 19 classes using negative
binomial sampling (see Chapter Methods for details). Top row: Embeddings
as in Figure 15. Bottom row: Embedding quality metrics as in Figure 16.
The kNN recall values are very low because simulated classes do not have
any internal structure. Dotted horizontal lines show the kNN accuracy and
silhouette score in the high-dimensional gene space (“HD space”) and the 50-
dimensional PCA space (“PCA 50D”).

186


	Motivation
	Background
	What did scRNA-seq contribute to Neuroscience?
	Local brain cell census: Retina
	Local brain cell census: Cortex and hippocampus
	Whole-brain cell census

	How does single-cell RNA sequencing work?
	Which open challenges remain in scRNA-seq data processing?
	Preprocessing for noise removal
	Visualization
	Open questions and outlook


	Analytic Pearson residuals for UMI counts
	Introduction
	Results
	Analytic Pearson residuals
	The regression model in scTransform is overspecified
	The offset regression model is equivalent to the rank-one GLM-PCA
	Overdispersion estimates in scTransform are biased
	Negative control datasets suggest low overdispersion
	Analytic Pearson residuals select biologically relevant genes
	Analytic Pearson residuals separate cell types better than other methods
	Analytic Pearson residuals are fast to compute

	Chapter Discussion
	Chapter Methods
	Mathematical details
	Experimental details


	Compound models for non-UMI counts
	Introduction
	Results
	Analytic Pearson residuals for normalization of UMI data
	Compound Pearson residuals for non-UMI read count data
	Compound model can fit homogeneous read count data
	Compound Pearson residuals for normalization of heterogeneous read count data
	Compound Pearson residuals recover ground truth
	The broken zeta distribution as amplification model
	Compound NB model with broken zeta amplification captures trends in read count data

	Chapter Discussion
	Chapter Methods
	Datasets and preprocessing
	Simulation study
	Mathematical details of the compound negative binomial model
	Compound Pearson residuals
	Census counts and qUMIs
	t-SNE visualizations
	Fitting zero-inflated negative binomial (ZINB) models to single genes
	Sampling copy numbers from the broken zeta model to simulate compound model read counts


	The art of seeing the elephant in the room
	2D embeddings of single-cell data do make sense
	Chapter Methods

	Discussion
	Author Contributions
	Acknowledgements
	Supplementary Figures
	Analytic Pearson residuals for UMI counts
	Compound models for non-UMI counts
	The art of seeing the elephant in the room


