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1 Introduction 

 

1.1 Dendritic cells in innate and adaptive immunity  

 

Immune responses are mediated by a variety of cell types and soluble factors that are 

generally assigned to the innate or the adaptive immune system, although there is a broad 

overlap area of both parts of the immune system. Adaptive immunity serves to detect and 

identify “non-self” particles via cell surface receptors  such as T cell receptor (TCR) and B 

cell receptor (BCR) on T and B lymphocytes, respectively. Receptor engagement results in 

clonal lymphocyte expansion to respond to a wide range of potential antigens [1,2]. The 

innate immune system, in contrast, represents the bodys’ first barrier against pathogens [3]. 

Besides cellular components, it also includes the complement system and acute phase 

proteins, and serves to limit infection in the early hours after exposure to pathogens [1]. The 

innate immune system is phylogenetically conserved and senses pathogens via pattern 

recognition receptors such as Nod-like receptors [4], C-type lectin receptors [5], and Toll-like 

receptors (TLRs) [2]. TLRs are expressed on leukocytes (e.g. mast cells, natural killer (NK) 

cells, eosinophils and basophils) and phagocytes (e.g. dendritic cells (DCs), macrophages 

and neutrophils) and recognize specific microbial patterns that are common to many 

pathogens. TLR engagement results in the activation of both innate and adaptive immune 

responses [1,2].  

 

Dendritic cells (DCs) are immune cells that originate from myeloid and plasmacytoid 

progenitor cells in the bone marrow. They belong to the innate immune system, but are also 

main players in the induction of adaptive immunity. DCs are resident in different tissues like 

epidermis, intestine or blood vessel walls. Upon tissue damage, DC precursors circulating in 

the blood are also attracted and enter the respective tissues as immature DCs (Figure 1). 

They can incorporate pathogens directly by receptor-mediated endocytosis, 

macropinocytosis or phagocytosis (of apoptotic and necrotic cells, viruses, bacteria, 

intracellular parasites such as Leishmania), which leads to cytokine production and further 

activation of eosinophils, macrophages and natural killer cells. DCs can also encounter 

pathogens indirectly through pathogen effects on stromal cells [6,7]. Following antigen 

capture and processing, activated DCs migrate to lymph nodes via lymph and blood, where 

they arrive as mature DCs and present antigenic fragments along with MHC class I and II 

molecules on their cell surface [6,8,9]. Furthermore, self and microbial glycolipids are 

presented in context with CD1 molecules to effector T lymphocytes [7,10,11]. This allows the 

selection of rare circulating antigen-specific lymphocytes. In this stage, DCs are termed 
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antigen-presenting cells (APCs). Antigen presentation by DCs subsequently leads to 

activation of naϊve T lymphocytes, which  migrate to the site of infection and eliminate 

microbes and/or microbe-infected cells. Helper T lymphocytes (Th) further activate 

eosinophils, macrophages and NK cells. Cytotoxic T lymphocytes (CTLs) serve to lyse 

infected cells. B lymphocytes become activated by interaction with T lymphocytes and DCs 

and migrate into various areas, where they mature into plasma cells that produce antibodies 

that neutralize the initial pathogen [6-9]. 

 

 

Figure 1. The life cycle of dendritic cells (DCs) 

B – B-cell, CTL – cytotoxic T-cell, DC – dendritic cell, MF – macrophages, NK – natural killer cells, 

NKT – natural killer T-cells, T – T-cell. Taken from [7]. 

 

 

Effector Th lymphocytes derive from naϊve CD4+ T lymphocytes in response to antigenic 

stimulation, and their differentiation into various subsets depends on interaction with APCs 

and is further directed by costimulatory molecules and the production of polarizing cytokines. 

The Th1 subset is primarily involved in recognition of intracellular pathogens, and is 

characterized by a cytokine profile including interleukin (IL) -2, IL-3, interferon gamma (IFNγ) 

and tumor-necrosis-factor (TNF) β, thereby supporting cellular immunity against bacterial and 
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viral infections [3,12]. In addition, IL-12 is secreted by DCs in response to TLR activation, 

and induces Th1 polarization. IFNγ-producing cells such as activated NK cells induce DCs to 

produce IL-12 and further promote Th1 polarization [3]. In contrast to Th1 cells, the Th2 

subset is directed against extracellular pathogens and supports humoral immunity by 

producing cytokines such as IL-4, IL-5, IL-6, IL-10, IL-13, and IL-25 [3,12]. The Th2-

polarizing cytokine IL-4 is further provided by IL-4-secreting cells such as mast cells [3]. In 

2005, another Th subset was discovered [13], termed Th17 cells, according to their secretion 

of IL-17; but these cells also produce IL-21 and IL-22. Th17 cells show strong 

proinflammatory effects, and are involved in fighting Gram-negative bacteria, fungi, and 

some protozoa [12]. Their development is promoted by cytokines such as IL-1, IL-6, and IL-

23. In contrast, the development of Th17 is inhibited by IL-4 and IFNγ [12-14]. In addition to 

the Th lineages, CD4+ effector T lymphocytes can further evolve into the lineage of regulatory 

T lymphocytes (Tregs), which has immunomodulatory functions. Tregs are important 

regulators of immunological self tolerance and can occur either naturally or induced. 

Naturally arising CD25+CD4+ Tregs are characterized by expression of forkhead box P3 

(Foxp3), which is a key regulator of their development and function, since dysfunction or 

deficiency of Foxp3 is sufficient to overcome self tolerance [12,15,16]. Activation of Tregs is 

initiated by low amounts of antigen presented by immature DCs [16].  

 

 

 

1.2 Pattern recognition via TLRs  

 

The expression of TLRs by DCs is a key feature enabling them to respond to many 

extracellular signals. TLRs belong to the family of pattern recognition receptors (PRRs) and 

respond to a wide range of conserved structures within microbes, called pathogen-

associated molecular patterns (PAMPs) [17,18]. Their involvement in innate immune 

responses was first described in Drosophila in 1988 [19]. The mammalian homologue was 

identified some years later. TLRs are type I transmembrane proteins consisting of a leucine-

rich repeat (LRR) extracellular domain and a cytoplasmic domain homologuous to the human 

interleukin-1 receptor (IL-1R) cytoplasmic domain. While the extracellular portion is 

necessary for recognition of different agonists, the cytoplasmic domain connects the receptor 

to the intracellular signaling machinery [20,21].  
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Table 1. Toll like receptors and their ligands 

Modified after [2,22]. 

 ligands originated from 

TLR1 Tri-acyl lipopeptides 

Lipoprotein 

bacteria, mycobacteria 

Borellia burgdorferi 

TLR2 Lipoprotein/ lipopeptides 

Peptidoglycan (PGN) 

Lipoteichoic acid (LTA) 

Lipoarabinomannan 

A phenol-soluble modulin 

Glycosylphosphatidylinositol anchors 

Glycolipids 

Zymosan 

Atypical lipopolysaccharide (LPS) 

 

variety of pathogens 

Gram-positive bacteria 

Gram-positive bacteria 

mycobacteria 

Staphylococcus epidermidis 

Trypanosoma Cruzi 

Treponema maltophilum 

Fungi 

Leptospira interrogans,  

Porphyromonas gingivalis 

TLR3 Double-stranded RNA virus 

TLR4 Lipopolysaccharide (LPS) 

Taxol 

HSP60 

HSP70 

Extra domain A of fibronectins 

Oligosaccharides of hyaluronic acid 

Heparan sulfate 

Fibrinogen 

Gram-negative bacteria 

Taxus brevifolia 

Chlamydia pneumoniae, host 

host 

host 

host 

host 

host 

TLR5 Flaggelin bacterial flagella 

TLR6 Di-acyl lipopeptides mycoplasma 

TLR7 Imidazoquinoline 

Loxoribine 

ssRNA 

synthetic compound 

synthetic compound 

viruses 

TLR8 Imidazoquinoline 

ssRNA 

synthetic compound 

viruses 

TLR9 CpG DNA bacteria, viruses 

TLR10 ? ? 

TLR11 unknown components uropathogenic bacteria 

 

 

The family of human TLRs consists of 10 members, TLR1-10, while twelve TLRs have been 

found in mice (TLR1-9 and TLR11-13). Each of them signals the presence of one or more 

PAMPs as illustrated in Table 1. Expression of TLRs in DCs varies between different 

subsets. Myeloid DCs express high levels of TLR1, 2, 4, 5 and 8, and low levels of TLR6, 
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while TLR 3, 7, 9 and 10 are not detectable in these cells. In contrast, plasmacytoid DCs 

express high levels of TLR7 and 9, as well as low levels of TLR1, 6 and 10. TLR2, 3, 4, 5 

and 8 are absent in this DC subset [23]. While TLR1, 2, 4, 5 and 6 are located on the cell 

surface, TLR3, 7, 8 and 9 are expressed on endosome membranes [24].  

 

TLR2 recognizes the broadest range of bacterial compounds (Table 1). Furthermore, TLR2 

forms complexes with other TLRs such as TLR1 and TLR6 to recognize microbial 

lipoproteins and lipopeptides. The TLR1/TLR2 complex detects triacylated lipoproteins, while 

the TLR2/TLR6 complex recognizes acylated lipoproteins and peptidoglycans (PGN) [25,26]. 

PGN is a very well known ligand of TLR2 and a major component of the bacterial cell wall. It 

consists of a glycan backbone with alternating β1-4-linked residues of muramic acid and N-

acetyl-D-glucosamine [27,28]. The structure of PGN differs between Gram-positive and 

Gram-negative bacteria. For example, the PGN layer in Gram-positive bacteria is much 

thicker and more cross-linked as compared to Gram-negative bacteria [29]. PGN includes a 

minimal motif, muramyl dipeptide (MDP), common to both Gram-positive and Gram-negative 

bacteria [30] that allows recognition of both types of PGN via TLRs. Recently, involvement of 

TLR2 in PGN recognition has become a matter of debate: although it has been described 

that PGN sensing through TLR2 is lost after removal of lipoproteins or lipoteichoic acid (LTA) 

from cell walls [31], this finding could not be confirmed by another group [32].  

 

Besides TLR2, other PGN-binding PRRs have been identified, such as PGN recognition 

proteins (PGRPs). The Gram-negative binding protein 1 (GNBP1) and PGRP-SA serve to 

recognize Gram-positive bacteria upstream of TLRs [33,34]. Additionally, PGRP-SD 

enhances the interaction between GNBP1 and PGRP-SA and therefore the binding of 

GNBP1 to Gram-positive bacteria [34]. Other sensors of bacterial infection are the cytosolic 

proteins Nod1 and Nod2. They belong to the family of NBS-LRR (nucleotide-binding site and 

leucine-rich repeat) proteins and are involved in the intracellular recognition of microbes and 

microbial products [35,36].  

 

 

 

1.3 TLR signaling pathways 

 

1.3.1 MyD88-dependent pathway 

Signaling pathways activated by TLR engagement are similar to signaling pathways induced 

by IL-1R activation. The adaptor protein MyD88 has been identified as a component of both 
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IL-1R and TLR signaling pathways [2,37]. All TLRs except for TLR3 signal through MyD88 

and their engagement activates NFκB and JNK [24]. MyD88 is characterized by a C-terminal 

Toll/IL-1 receptor-like domain (TIR) and a N-terminal death domain (MyDN). Both TLR and 

IL-1R interact with MyD88 via their TIR domains. Upon stimulation, the serine-threonine 

kinase IL-1R-associated kinase (IRAK) is recruited to the complex and activated by 

phosphorylation. This is followed by an association of IRAK with TRAF6 protein and 

subsequent activation of either MAP-kinases, such as JNK and p38, or the NFκB pathway 

[1,38,39], as illustrated schematically in Figure 2. The activity of NFκB is regulated by 

association with inhibitory molecule κB (IκB) that traps NFκB in the cytoplasm. 

Phosphorylation of IκB by IκB-kinase (IKK) leads to dissociation of the complex, nuclear 

translocation of NFκB [2,39], and subsequent gene expression.  
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Figure 2. TLR dependent and independent recognition of LPS and PGN 

Modified after [22,24,40].  
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1.3.2 MyD88-independent pathway 

Investigation of MyD88-deficient mice revealed the existence of another, MyD88-

independent signaling pathway [38,41], that still leads to activation of either MAP-kinases or 

NFκB. On the one hand, LPS-induced cytokine production from DCs is dependent on 

MyD88, pointing to an essential role for MyD88 in LPS signaling. However, DCs derived from 

MyD88-deficient mice still showed LPS-induced activation of NFκB and MAP-kinases, 

although with delayed kinetics, indicating that LPS still induced functional maturation of these 

cells via a MyD88-independent pathway downstream of TLR4. On the other hand, bacterial 

DNA, which signals through TLR9, did not induce maturation of MyD88-deficient DCs, 

showing that MyD88 is differentially required for TLR signaling [41,42]. MyD88-independent, 

LPS-induced up-regulation of co-stimulatory molecules CD80, CD86 and CD40 in 

macrophages was shown to be dependent on another adaptor molecule, called TIR-domain-

containing adapter-incucing interferon-β (TRIF) (Figure 2) [24,43,44]. It was further shown 

that Nod1 is required for sensing bacterial LPS and is involved in LPS-induced, MyD88-

independent activation of transcription factor NFκB [45], while Nod2 senses PGN through 

detection of MDP [30]. 

 

 

 

1.4 Role of TLR signaling in DC function 

 

1.4.1 Cytokine production 

TLR signaling-induced activation of transcription factor NFκB results in expression of NFκB-

controlled genes for inflammatory cytokines [20]. The membrane-permeable peptide SN-50 

is known to inhibit translocation of NFκB to the nucleus and therefore NFκB-controlled gene 

transcription. In bone marrow-derived DCs (BMDCs), the presence of SN-50 led to a reduced 

production of TNFα and IL-12 in response to parasites [39]. Both PGN and LPS, ligands for 

TLR2 and TLR4, respectively, led to increased levels of TNFα and IL-6, and a decreased 

level of IL-12, by different subsets of human DC precursors [23]. Langerhans cells (LCs), a 

DC subset located in the skin, are not able to produce IL-12p70 or type I interferons. Instead, 

LCs were shown to produce the pro-inflammatory cytokines IL-6 and IL-8, as well as the anti-

inflammatory cytokine IL-10, in response to TLR2-stimulation by PGN. Double-stranded 

RNA, an activator of TLR3, increased production of IL-6, IL-8 and TNFα by LCs [18]. In 

BMDCs, stimulation with PGN induced production of IL-6, IL-10, TNFα, IL-12p40 and IL-
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12p70, whereby cytokine production was markedly impaired in DCs derived from TLR2 

deficient mice [46,47].  

 

 

1.4.2 Cell surface marker expression 

Activation of TLR signaling in DCs also leads to NFκB-controlled expression of co-stimulatory 

molecules required for activation of naϊve T lymphocytes [20]. Together with the antigenic 

peptide presented by MHC I and II proteins, co-stimulatory molecules serve to activate T 

lymphocytes and thereby activate adaptive immunity [42]. Stimulation of TLR4 by LPS was 

shown to induce expression of CD80 and CD86 in APCs such as macrophages [44]. In 

BMDCs, stimulation with PGN induced cell maturation, indicated by an increased expression 

of CD25, CD40 and CD86, as well as MHC I and MHC II [46,47]. This effect was markedly 

impaired in TLR2 deficient DCs [47]. In contrast, BMDCs derived from mice deficient for 

either TLR4, TLR9, or MyD88, showed impaired up-regulation of CD40, CD86 and MHC II 

expression in response to parasite-induced stimulation. Furthermore, nuclear translocation of 

NFκB in response to parasites was abolished in BMDCs derived from the respective knock-

out mice. Inhibition of NFκB translocation by SN-50 peptide resulted in reduced up-regulation 

of CD80, CD86 and MHC II after stimulation of the cells with parasites [39].  

 

 

1.4.3 Phagocytic capacity 

A characteristic feature of immature DCs is their high phagocytic activity, which is 

measureable by the uptake of different particles such as FITC-dextran [48], latex 

microspheres [49], stained bacteria [50], or zymosan [49]. Phagocytosis induces DC 

maturation [48], which subsequently leads to a decrease of DC phagocytosis [6,51]. In 

mouse DCs derived from tlr2-/- mice, PGN stimulation did not reduce their phacocytic activity, 

indicating that loss of TLR signaling results in a functionally immature phenotype [47]. 
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1.5 Regulation of intracellular calcium concentration 

 

The calcium ion (Ca2+) is an important second messenger that regulates multiple cellular 

functions. In addition, many key processes require a controlled regulation of the intracellular 

calcium concentration ([Ca2+]i) [52]. Under resting conditions, [Ca2+]i is maintained in the 

order of 50-100 nM in almost all cells [53,54]. In consequence of an extracellular free Ca2+ 

concentration in the millimolar range, a concentration gradient of about 104 between the 

intracellular and extracellular compartment results [54,55]. Energy-consuming pumps and ion 

exchangers are needed to build up this transmembrane Ca2+ gradient, while ion channels 

spend this energy and lead to a rapid influx of extracellular Ca2+ when needed [56]. 

 

 

1.5.1 Removal and storage of Ca2+ 

Increases in [Ca2+]i during stimulation of the cell are temporarily and locally restricted. 

Following raises in [Ca2+]i, the cell uses different strategies to reduce the cytosolic Ca2+ levels 

again in order to avoid a permanent activation of cellular mechanisms. In particular, Ca2+ can 

be chelated by Ca2+-binding proteins, compartmentalized, or extruded [55]. 

 

 

1.5.1.1 Ca2+-ATPases and Ca2+ exchangers 

Two mechanisms with different affinities and capacities operate in parallel to export Ca2+ 

from cells (Figure 3). Ca2+-ATPases have a high affinity, but low capacity for Ca2+. Plasma 

membrane Ca2+-ATPases (PMCA) serve to extrude Ca2+ across the plasma membrane by 

exchanging protons for one Ca2+. In contrast, sarco/endoplasmic reticulum Ca2+-ATPases 

(SERCA) transport two Ca2+ in exchange for protons from cytosol into the endoplasmic 

reticulum (ER) [55,57]. Although the ER serves as an intracellular store for Ca2+, its storage 

capacity is limited and has to be refilled after depletion [52]. Therefore, the main function of 

SERCA pumps is to charge up intracellular Ca2+ stores, which in turn can release an internal 

Ca2+ signal. 
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Figure 3. Ca
2+

 extrusion mechanisms in DCs 

Cytoplasmic Ca2+ levels are kept low in resting cells by extrusion via plasma membrane Ca2+-ATPase 

(PMCA) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). K+-dependent Na+/Ca2+ 

exchangers (NCKX) exchange one Ca2+ and one K+ for four Na+, K+-independent Na+/Ca2+ 

exchangers (NCX) exchange one Ca2+ for three Na+ (modified after [55]).  

 

 

A second mechanism of Ca2+ extrusion is accomplished by Na+/Ca2+ exchangers (Figure 3). 

Their affinity to Ca2+ is lower compared to Ca2+-ATPases, but show a much higher turnover 

rate [57,58]. Two families of Na+/Ca2+ exchangers have been identified, K+-independent 

(NCX) and K+-dependent (NCKX) Na+/Ca2+ exchangers [55,57,59,60]. NCX exchange three 

Na+ for one Ca2+, while NCKX co-transport one K+ and one Ca2+ in exchange of four Na+ [59]. 

Three NCX and five NCKX isoforms have been identified by molecular cloning [58,60]. Both 

exchanger families are electrogenic bidirectional transporters and translocate Ca2+ either out 

of or into cells. Direction of transport depends on the dominant electrochemical driving 

forces, determined by the Na+ and Ca2+ concentrations and the membrane potential [61,62]. 

The expression and function of K+-independent Na+/Ca2+ exchangers NCX1 and NCX3 has 

recently been demonstrated in human lung macrophages and blood monocytes. In these 

cells, the Ca2+ signals generated by the activity of NCX1 and NCX3 resulted in the production 

of TNFα [63]. So far, the function and regulation of Na+/Ca2+ exchangers in DCs have not 

been described. 
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1.5.1.2 Ca2+-sensing mechanisms 

Ca2+ sensing or Ca2+ buffering is another important cellular mechanism to modulate changes 

in [Ca2+]i and their effects on cell physiology. Under resting or non-activated conditions, Ca2+ 

buffering proteins are present in the Ca2+-free form. Following a rise in [Ca2+]i due to Ca2+ 

influx or Ca2+ release from intracellular stores, these proteins modulate the spatial and 

temporal aspects of Ca2+ signaling [53].  

 

Calmodulin is the primary cellular receptor for Ca2+. Binding of Ca2+ to calmodulin is induced 

by an increase in [Ca2+]i and results in the conformational change of the protein, leading 

subsequently to an interaction of the Ca2+/calmodulin complex with target proteins. Important 

targets downstream of Ca2+/calmodulin signaling are calmodulin kinases (CaMKs). Similar to 

the MAP-kinase pathway, CaMKs are phosphorylated and therefore activated by CaMK-

kinases (CaMKKs) [64,65]. Calmodulin kinase II (CaMKII) has recently been identified as 

important downstream effector of Ca2+ signaling required for DC maturation. It is a 

multifunctional serine/threonine kinase and an important element of Ca2+ signaling in 

mammalian cells. CaMKII is activated upon DC stimulation by diverse soluble antigens. 

Inhibition of CamKII results in suppression of cytokine production [64]. Besides CamKII, DCs 

express another CamK, CaMKIV. Pharmacological inhibition of CaMKIV decreased the 

viability of monocyte-derived DCs stimulated with LPS. These data indicate that CaMKIV 

plays a central role in the pathway linking TLR4 to the control of DC life span. However, DCs 

derived from mice lacking CaMKIV were still able to differentiate and secrete cytokines such 

as IL-6 and TNFα in response to LPS [66]. 

 

Besides calmodulin, the calcineurin/NFAT (nuclear factor of activated T cells) -pathway is 

also activated and stimulates gene expression in response to rises in [Ca2+]i [67]. Calcineurin 

is a calmodulin-dependent serine/threonine phosphatase and contains a catalytic and a 

regulatory subunit. It is activated through binding of the Ca2+/calmodulin complex to the 

calcineurin regulatory subunit and displacement of the calcineurin autoinhibitory domain from 

the enzyme’s active site. Activated calcineurin then dephosphorylates and thereby activates 

NFAT and NFAT-controlled gene expression in response to Ca2+ entry. NFAT plays a crucial 

role in long-term Ca2+ signaling, and thus NFAT-driven gene expression is highly dependent 

on sustained Ca2+ influx and calcineurin activity [68,69]. In addition to the role of calcineurin 

in activating adaptive immune responses, it has been demonstrated to be further involved in 

regulating the TLR pathway in some cell types, such as monocytes and macrophages [69]. In 

BMDCs, treatment with inhibitors of calcineurin resulted in increased production of 

inflammatory mediators like IL-12, TNFα, and IL-1. Furthermore, inhibition of calcineurin led 

to activation of NFκB in these cells [69]. In contrast, a recent study demonstrated that 
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stimulation of BMDCs with LPS resulted in an increase in [Ca2+]i that was linked to activation 

of NFAT in a TLR-4 independent, but CD14-dependent manner [70].  

 

Calbindin-D9K and calbindin-D28K represent two intracellular Ca2+-binding proteins that 

buffer Ca2+ and furthermore facilitate intracellular Ca2+ diffusion. Despite their similar names, 

they belong to different EF-hand protein subfamilies and thus share little sequence homology 

[53,54]. Calbindin-D9K has a molecular mass of 9 kDa and was first discovered in the 

intestinal mucosa of rats [71], while calbindin-D28K, with an apparent molecular mass of 28 

kDa, was first found in the chicken duodenal mucosa [72]. Expression of calbindin-D9K and 

calbindin-D28K is regulated by vitamin D [53]. Pharmacological doses of the active 

metabolite 1,25(OH)2D3 increase the expression of renal calbindin-D28K, while its expression 

is reduced under conditions with low levels of circulating 1,25(OH)2D3. Furthermore, 

calbindin-D28K expression is influenced by the Ca2+ concentration in blood [73]. 

 

 

1.5.2 Entry of extracellular Ca2+  

The huge concentration gradient for Ca2+ across the plasma membrane is accompanied by a 

negative resting membrane potential. Both provide the electrical driving force for Ca2+ entry 

[55,74]. One of the main functions of Ca2+ entry is to charge up intracellular stores, which in 

turn can release an intracellular Ca2+ signal. Ca2+ entry occurs via different Ca2+-permeable 

channels co-existing in the plasma membrane. Voltage-gated channels open in response to 

membrane depolarization or changes in membrane potential. Activation of ligand-gated 

channels occurs by binding of an agonist to the extracellular domain of the channel. 

Receptor-operated channels open upon binding of intracellular second messenger to the 

channel molecule. Mechanically activated channels respond to mechanical stress. Store-

operated channels (SOCs) are activated in response to depletion of intracellular Ca2+ stores.  

 

 

1.5.2.1 Store-operated  Ca2+ channels 

SOCs are characterized by their activation in response to store depletion, even when [Ca2+]i 

is buffered to low levels. Activation of SOCs is mediated by activation of phospholipase C 

(PLC), that triggers the cleavage of phosphatidylinositol-(4,5)-bis-phosphate (PtdIns(4,5)P2) 

into diacylglycerol (DAG) and inositol-(1,4,5)-trisphosphate (IP3) [52,75]. IP3 binds to its 

receptor IP3R in the ER membrane and thus stimulates Ca2+ release from the ER with 

subsequent activation of SOCs [55]. IP3R-mediated store depletion is accompanied by the 

activity of PMCAs, the pumps that release Ca2+ out of the cell and therefore prevent the 
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refilling of ER Ca2+ stores. The process subsequently activates slowly over seconds the entry 

of extracellular Ca2+ and is referred to as store-operated Ca2+ entry (SOCE) [55,74,76]. 

Besides IP3R-mediated store depletion, other mechanisms can lead to lowered ER Ca2+ 

concentration. Blocking of SERCA pumps within the ER membrane, e.g. by thapsigargin, is 

followed by an increase in [Ca2+]i with subsequent store depletion [55,77]. Furthermore, low 

extracellular Ca2+ concentrations activate PMCAs in the plasma membrane to extrude leaked 

Ca2+, depleting ER Ca2+ [55].  

 

SOCE is one of the main Ca2+ entry mechanisms in many non-excitable cells and plays an 

essential role in Ca2+ signaling and a wide range of other cellular processes, e.g. 

proliferation, gene transcription, and apoptosis [52]. Many SOCs with different biophysical 

properties have been described. The best characterized SOCs are the Ca2+ release-

activated Ca2+ (CRAC) channels. CRAC channels represent an ubiquitous signaling 

mechanism in non-excitable and excitable cells. [74]. In DCs, CRAC channels serve as the 

major Ca2+ entry pathway in response to different antigens. Furthermore, activation of CRAC 

was shown to be involved in DC maturation and migration. In contrast to voltage-gated Ca2+ 

channels, which are discussed below, Ca2+ influx through CRAC is enhanced by membrane 

hyperpolarization [78]. The mechanisms how intracellular stores sense their depletion to 

CRAC channels in the plasma membrane have recently become clearer. One of the key 

players in this mechanism is stromal interaction molecule 1 (STIM1). It is located in the ER 

membrane and functions as Ca2+ sensor [79-81]. STIM1 interacts with Orai1 (or CRACM1), 

the pore-forming subunit of the CRAC channel [82-84]. Three mammalian homologous 

CRAC channel proteins have been identified, CRACM1, CRACM2 and CRACM3 [83]. A 

model of STIM1-Orai1-interaction is illustrated in Figure 4. STIM1 possesses an EF-hand 

domain with a Ca2+-binding pocket reaching into the ER. Upon store depletion, STIM1 

releases the bound Ca2+ and forms a junction with the N-terminus of Orai1 in the plasma 

membrane. This interaction is proposed to subsequently activate SOCE [52,85]. However, 

little is known about the exact mechanism of interaction of STIM1 and Orai1. It has recently 

been shown for T lymphocytes that interaction of STIM1 and Orai1 occurs via colocalization 

of STIM1 in so-called puncta near the site of stimulation, and subsequent interaction with 

Orai1-containing CRAC channels [86,87]. Another model of STIM1-Orai1-interaction 

proposes the trafficking of STIM1 to and insertion into the plasma membrane upon store-

depletion, thereby activating CRAC channels [52,81].  
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Figure 4. STIM1-Orai1-interaction activates store-operated calcium entry (SOCE) 

STIM1 is primarily localized in the ER membrane, with a small fraction in the plasma membrane. Orai1 

consists of four domains spanning the plasma membrane, and an intracellular N- and C-terminus. It is 

possible that interaction of Orai1 N-terminus with the ERM-domain of STIM1 activates SOCE. CC – 

coiled-coil domain, ERM – ezrin-radixin-moesin domain, K – lysine-rich domain, SAM – sterile-alpha 

motiv, S/P – serine/proline-rich domain [52]. 

 

 

1.5.2.2 TRP channels 

Transient receptor potential (TRP) channels are a superfamily of cation channels that display 

a greater diversity in activation mechanisms and selectivities than any other group of ion 

channels [88]. The six TRP channel families known so far share less than 20 % sequence 

homology. TRP channels consist of six transmembrane domains and are almost ubiquitously 

expressed [56]. A unifying motif in this superfamily of ion channels is that TRP proteins play 

critical roles in sensory physiology, contributing to vision, taste, olfaction, hearing, touch, as 

well as thermo- and osmosensation. In addition, TRP channels enable individual cells to 

sense changes in their local environment. Many TRP channels are activated by a variety of 

different stimuli and function as signal integrators. Nematodes use TRP channels at the tips 

of neuronal dendrites in their “noses” to detect and avoid noxious chemicals. Male mice use  

pheromone-sensing TRP channels to discriminate between males and females. Humans use 
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TRP channels to appreciate different tastes and to discriminate temperatures. Some TRP 

channels, such as TRPV1, respond to  a variety of stimuli including proinflammatory agents 

and exocytosis [88]. 

 

Most TRP channels are weakly voltage-sensitive, non-selective ion channels [55]. Some of 

the TRP channels are highly selective for Ca2+, such as the TRP-vanilloid receptors TRPV5 

and TRPV6. They are both activated by raises in [Ca2+]i. The classic TRP channels TRPC3, 

6, and 7, are also sensitive to [Ca2+]i, with a relatively low selectivity of Ca2+ over Na+. TRP-

melastatin (TRPM) channels TRPM4 and TRPM5 are the only monovalent-selective ion 

channels of the TRP family and may account for Ca2+-activated, non-selective channel 

activities [56]. In DCs, Ca2+ activates the non-selective cation channel TRPM4, which is 

essential for DC migration [89].  

 

 

1.5.2.3 Voltage-gated Ca2+ channels 

Voltage-gated Ca2+ channels (Cav channels) provide the fastest way of Ca2+ entry into the 

cell. Their opening is triggered by voltage changes and can lead to more than a 10-fold 

increase in [Ca2+]i [55]. They are predominantly expressed in excitable cells like nerve and 

muscle cells [52], but Kupffer cells also have been shown to contain L-type Cav channels [90] 

and thus depolarization of the cell membrane is required for the Ca2+ influx into these cells. In 

human DCs, the L-type Ca2+ channel Cav1.2 was shown to be involved in Ca2+ entry [91]. 

However, in mouse DCs neither Ca2+ currents nor changes in intracellular Ca2+ were 

detected following membrane depolarization, suggesting the absence of functional Cav 

channels in these cells [78].  

 

 

1.5.2.4 Voltage-gated K+ channels 

Voltage-gated K+ channels (Kv channels) are transmembrane proteins selective for K+ over 

other cations. Their activity is sensitive to changes in the cell membrane potential, as they 

are activated by depolarization. DCs were shown to possess functionally active voltage-

gated K+ channels, belonging to Kv1 channel family, namely Kv1.3 and Kv1.5. Furthermore, 

Kv channel activity is involved in LPS-induced DC maturation and cytokine production 

[92,93]. In human T lymphocytes, inhibition of Kv channels impaired intracellular Ca2+ 

signaling and Ca2+-dependent gene expression [94]. A correlation between Kv channels and 

Ca2+ channels in DCs has not been investigated by now. 

 

 



Introduction 

 

16 

1.5.3 Relevance of Ca2+-signaling for DC function 

Ca2+ signaling plays a central regulatory role in DC maturation and function in response to 

diverse antigens, including TLR ligands, intact bacteria, and microbial toxins [64,95]. In 

human monocyte-derived DCs, the PLC-Ca2+ pathway is involved in DC activation and 

maturation induced by different agonists such as LPS, cholera toxin, dibutyryl-cAMP and 

prostaglandin E2. Therefore, inhibition of PLC-Ca2+ signaling blunts DC maturation [96]. 

Furthermore, addition of Ca2+ ionophore to immature DCs results in the acquisition of many 

morphological and functional properties associated with a mature DC phenotype, such as co-

stimulatory molecule expression [77,96,97]. Thapsigargin, which increases [Ca2+]i by Ca2+-

release from intracellular stores, induces a similar phenotype as the Ca2+ ionophore A23187 

[77]. In addition, stimulation of DCs by lysophosphatidic acid resulted in a rapid increase in 

[Ca2+]i  which was not dependent on the presence of extracellular Ca2+ [98]. Similarly, ligation 

of DC-SIGN, a C-type lectin in DCs that mediates capture and internalization of viral, 

bacterial and fungal pathogens, triggered rapid and transient intracellular Ca2+ mobilization 

[99]. In macrophages and Kupffer cells it was further shown that LPS treatment causes an 

increase in [Ca2+]i which was related to TNFα production [100,101]. 

 

 

 

1.6 Immunoregulation by Vitamin D 

 

The nutrient Vitamin D is a secosteroid hormone that plays a major role in the regulation of 

calcium homeostasis and normal bone growth. However, recent investigations demonstrated 

further effects of vitamin D, among which are immunoregulatory properties. Vitamin D 

deficiency is also involved in the development of autoimmune diseases such as inflammatory 

bowel disease, ulcerative colitis, and Crohn’s disease [102]. The physiological active form of 

vitamin D is 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) or calcitriol [102]. It is photochemically 

synthesized in the skin, where the provitamin 7-dehydrocholesterol is converted to previtamin 

D3 in response to sunlight. Previtamin D3 is further converted into cholecalciferol (vitamin D3) 

by isomerization, bound to vitamin D-binding protein (DBP) and transported in the 

bloodstream to the liver. Cholecalciferol is hydroxylated in the liver by 25-hydroxylase [103]. 

The resulting 25-hydroxycholecalciferol (25(OH)2D3) is finally converted to its active form 

1,25(OH)2D3 in the kidney by the mitochondrial cytochrome P450 enzyme 25(OH)2D3-1α-

hydroxylase (1α-hydroxylase), as illustrated in Figure 5 [104,105]. In addition, 1α-hydroxylase 

activity has been described in several other tissues. Immune cells such as B lymphocytes 

[106], activated DCs [107], and macrophages [108,109] have been shown to synthesize 

1,25(OH)2D3. In B lymphocytes, activation of the cells through CD40 and IL-4 signals induce 
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expression of 1α-hydroxylase and therefore 1,25(OH)2D3 production, which in turn enhances 

IL-10 production and inhibits the expression of immunoglobulin E (IgE) [106].  
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Figure 5. Synthesis of Vitamin D3  

Modified after [103]. 

 

 

DCs are primary targets for the immunomodulatory activity of 1,25(OH)2D3, indicated by its 

inhibitory effect on DC maturation and differentiation [110]. In the resting state, DCs show 

low levels of 1,25(OH)2D3 production. Activation of the cells by LPS is associated with 

increased 1α-hydroxylase activity and subsequent increase in 1,25(OH)2D3 production. 

Terminal maturation makes DCs unresponsive to the effects of 1,25(OH)2D3, but enables 

them to suppress differentiation of their own precursor cells by a paracrine loop through the 

production of 1,25(OH)2D3 [107-109]. Furthermore, 1,25(OH)2D3 leads to decreased LPS-

induced production of the Th1-polarizing cytokine IL-12 as well as to down-regulation of co-

stimulatory molecules and MHC II expression. Moreover, 1,25(OH)2D3 increases the 

production of IL-10 and promotes DC apoptosis [110-112]. In addition, myeloid DCs treated 

with 1,25(OH)2D3 show a reduced chemotactic response to inflammatory and lymph node-

homing chemokines [111]. Production of CCL22, a chemokine attracting regulatory T 
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lymphocytes, is up-regulated in myeloid DCs, but not in plasmacytoid DCs, upon 

1,25(OH)2D3 exposure [112]. The effects of 1,25(OH)2D3 on DC maturation and function are 

summarized in Figure 6. 

 

 
 

Figure 6. Effects of 1,25(OH)2D3 on DC maturation and function  

Taken from [8]. 

 

 

1,25(OH)2D3 exerts its function by binding to its receptor, the nuclear vitamin D receptor 

(VDR). VDR was discovered in DCs and other immune cells such as macrophages and 

activated T and B lymphocytes [113]. Moreover, VDR expression is required for normal 

development and function of natural killer T lymphocytes [114]. Immunomodulation via the 

VDR occurs through interference with nuclear transcription factors such as NFAT and NFκB, 

or through direct interaction with 1,25(OH)2D3-responsive elements in the promoter region of 

genes encoding for cytokines [110,115]. In activated B lymphocytes, 1,25(OH)2D3 enhances 

IL-10 expression at least partially through interaction of VDR with the IL-10 promoter region 

[106]. The NFκB family member RelB, which plays an essential role in DC maturation and 

differentiation, is selectively suppressed by VDR ligation and subsequent binding of the 

receptor to the RelB promoter. This mechanism is abolished by LPS-induced DC activation, 

which results in up-regulation of RelB [115]. In addition, 1,25(OH)2D3 has been shown to 

inhibit nuclear translocation of NFκB in myeloid, but not in plasmacytoid DCs [112]. 

Monocyte-derived DCs were further shown to be able to turn on 1,25(OH)2D3-sensitive genes 

in early phases of cell differentiation if the precursor 25(OH)2D3 is present [116]. 

 

Numerous physiological functions require a constant and therefore tight regulation of 

extracellular Ca2+ concentration. Ca2+ homeostasis is mainly controlled by kidneys, intestine, 

skeleton and parathyroid glands. Furthermore, several hormones are involved in its 

regulation, e.g. calcitonin, parathyroid hormone, and 1,25(OH)2D3 [117]. Thus, the in vivo 

effects of 1,25(OH)2D3 depend on the Ca2+ status of the host [102] and, vice versa, 

1,25(OH)2D3 is required for Ca2+ homeostasis by acting on all three processes of Ca2+ 
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homeostasis: Ca2+ entry, diffusion, and extrusion [54]. In epithelial cells, Ca2+ transport is 

regulated by 1,25(OH)2D3 [102]. Furthermore, disturbances in 1,25(OH)2D3-regulated Ca2+ 

homeostasis are involved in autoimmune diseases. In the experimental autoimmune 

encephalomyelitis (EAE) model of multiple sclerosis, 1,25(OH)2D3 was shown to prevent 

clinical signs of disease as well as to suppress disease progression [118,119]. These 

findings suggest a potent immunosuppressive role for 1,25(OH)2D3 in vivo. Moreover, 

1,25(OH)2D3 was effective to prevent EAE in mice on a high-calcium diet, but not in mice on 

a low-calcium diet. The data indicate that the role of 1,25(OH)2D3 in preventing EAE and in 

regulating the immune response to EAE involves Ca2+
 [120]. Nevertheless, the calcemic 

effect of 1,25(OH)2D3 in vivo limits its therapeutic applications [121]. It was shown recently 

that a combination of 1,25(OH)2D3 with calcitonin additively suppressed EAE without causing 

hypercalcemia, thus eliminating a major disadvantage in the use of 1,25(OH)2D3 as a 

therapeutic agent in multiple sclerosis [122].  

 

 

 

1.7 Selective suppression of Th1 immune responses by glucocorticoids 

 

Glucocorticoids belong to the class of steroid hormones and are part of the neuroendocrine 

system. They are small lipophilic molecules that are involved in numerous physiologic and 

pathologic processes, among which are immunological responses [123]. Glucocorticoids as 

well as other steroid hormones (e.g. aldosterone, androgens, and oestrogens) are 

synthesized in the adrenal cortex out of cholesterol via a common precursor pregnenolone. 

Dexamethasone, or 9α-fluor-16α-methyl-prednisolone, is a synthetic member of the class of 

glucocorticoids and approx. ~30 times more effective as cortisol. It is generated out of 

prednisolone by insertion of a fluor atom at position 9 and a methyl group at position 16 

(Figure 7).  
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Figure 7. Chemical structures of cortisol, prednisolone and dexamethasone  
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Glucocorticoids have been shown to act as powerful regulators of the immune response 

[123-127]. They exert their action directly on T lymphocytes, but are also able to modulate 

DC maturation and function [8,125,128-132]. Therefore, one major approach for the 

pharmacological use of glucocorticoids is to promote the tolerogenic effects of DCs [132]. In 

particular, exposure of DCs to glucocorticoids results in a decreased ability to present 

antigens and to elicit a T cell response. This effect is primarily due to the inhibitory effects of 

glucocorticoids on the up-regulation of MHC II and co-stimulatory molecules such as CD86 

[125,133]. Moreover, glucocorticoids impair the production of several cytokines by DCs in 

response to LPS-treatment, including IL-6, IL-12 and TNFα [124,128,130]. On the other 

hand, glucocorticoid treatment of monocyte-derived DCs increased IL-10 production [131]. 

The endocytic uptake of antigens by DCs is enhanced by glucocorticoids [133,134], further 

demonstrated by an inhibitory effect of glucocorticoids on LPS-induced down-regulation of 

DC endocytosis [128]. These findings are in line with the immature phenotype of 

glucocorticoid-treated DCs with high antigen capture, low antigen presentation and low ability 

to stimulate T lymphocytes. The effects of glucocorticoids on DCs are paralleled by an up-

regulation of the production of cytokines such as IL-4 and IL-10 by Th2 cells. Taken together, 

glucocorticoids are not simply immunosuppressive in general, but selectively suppress 

cellular Th1 immune responses while inducing a shift towards humoral Th2 immunity 

[124,125,131]. In addition, glucocorticoids such as dexamethasone promote antigen capture, 

thereby reducing external antigen concentration and availability and further inhibiting the 

capacity to activate T lymphocytes [134]. The immunomodulatory effects of glucocorticoids 

on DCs are summarized in Figure 8. They show many parallels to 1,25(OH)2D3-induced 

immunomodulation and could at least partially be due to an influence on Ca2+-dependent 

signaling in DCs.  

 

Figure 8. Effects of glucocorticoids on DC maturation and function  

Taken from [8]. 

 

 

Glucocorticoids exert their anti-inflammatory and immunomodulatory effects predominantly 

via genomic mechanisms. Their low molecular mass and lipophilic structure enables them to 
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pass the membrane and bind to cytosolic glucocorticoid receptors (GCRs), which are ligand-

dependent transcription factors. Upon glucocorticoid binding, GCRs are activated and further 

regulate gene expression [123,135]. GCRs are members of a large superfamily that includes 

receptors for other steroid hormones, such as thyroid hormone, vitamin D3, retinoic acid, and 

a number of orphan receptors [123]. To date, the molecular mechanisms involved in the 

glucocorticoid-induced impairment of DC maturation are poorly understood. One possible 

target for glucocorticoid-mediated immunosuppression is the transcription factor NFκB. 

Glucocorticoids have been shown to induce expression of IκB, which traps active NFκB in 

the cytosol, inhibits translocation of NFκB to the nucleus, and thus deactivates NFκB-driven 

gene transcription [136,137]. Since many immunoregulatory genes are activated by NFκB in 

response to pro-inflammatory stimuli, this mechanism is likely to be at least partially involved 

in the immunoregulatory activities of glucocorticoids [136]. Another axis of glucocorticoid 

action is the rapid induction of glucocorticoid-induced leucine zipper (GILZ) gene, which is 

expressed by lymphocytes and APCs such as DCs. GILZ is needed for the induction of 

Tregs by APCs [129,138]. Furthermore, GILZ was shown to contribute to glucocorticoid-

mediated inhibition of NFκB [138]. The immunoregulatory enzyme indolamine-2,3-

dioxygenase (IDO) may act as a bridge between DCs and Tregs [127]. IDO is a key enzyme 

in the metabolism of tryptophan [8] and regulates immune responses through its capacity to 

degrade tryptophan into kynurenine and other metabolites, that suppress the function of 

effector T lymphocytes and favour the differentiation of Tregs. IDO was shown to be 

expressed by DCs, whereby induction of IDO-expression occurs in a NFκB-dependent 

manner [127,139].  

 

 

 

1.8 Aim of the study 

 

Lymphocyte priming and the type of induced T cell immunity is controlled by DCs. Several 

aspects of DC biology are involved in this process, including DC migration and maturation 

[7]. Moreover, Ca2+ signaling plays a major regulatory role in DC maturation and function in 

response to diverse antigens [64,95]. Although CRAC channels have been shown to be the 

major Ca2+ entry pathway in DCs [78], their role in these cells remains ill-defined. Therefore, 

the first aim of the present study was to explore the mechanism of Ca2+ entry into DCs upon 

activation in respect to its importance for DC function. Kv channels serve to maintain the 

electrochemical driving force for Ca2+ entry [140]. Therefore, the second aim of the present 

work was to investigate the role of these channels in the regulation of Ca2+-dependent DC 

functions. Ca2+ entry into a cell is followed by signal termination, which is extremely important 
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for determination of duration, amplitude and intracellular location of a particular Ca2+ signal 

[141]. Signal termination is accomplished by ion pumps and exchangers, such as Na+/Ca2+ 

exchangers in the plasma membrane. Nothing is known about the function of Na+/Ca2+ 

exchangers in DCs. Thus, the third aim of the present study was to investigate if DCs 

express Na+/Ca2+ exchangers and whether they play a role in DC maturation and function. 

The fourth aim of the present work was to explore the pharmacological regulation of Na+/Ca2+ 

exchangers in DCs. Immunosuppressive effects of glucocorticoids could at least partially be 

due to an influence on Ca2+-dependent signaling in DCs. Moreover, since 1,25(OH)2D3 is a 

potent regulator of cytosolic Ca2+ concentration, it seems to be plausible that some 

immunomodulatory effects of 1,25(OH)2D3 in DCs are mediated through Ca2+ transporting ion 

channels and transporters. 

 

New insights into the regulation of Ca2+-dependent DC functions might contribute to the 

development of possible new starting points to modulate immune responses directed against 

different pathogens.   
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2 Materials and Methods 

 

2.1 Materials 

 

2.1.1 Tissue culture 

 

2.1.1.1 Equipment 

Centrifuge RotiFix 32 Hettich Zentrifugen, Tuttlingen, Germany 

Eppendorf pipettes 1000 µl, 100 µl, 10 µl Eppendorf AG, Hamburg, Germany 

Heraeus Incubator Thermo Electron Corporation, Dreieich, Germany 

Neubauer counting chamber Brand, Wertheim, Germany 

Pipetus® pipetting aid Hirschmann Laborgeräte, Eberstadt, Germany 

Syringe BD 10 ml, Luer-Lok™ Tip Becton Dickinson Labware, Franklin Lakes, USA 

Tissue Culture Dishes 60x15 mm  Becton Dickinson Labware, Franklin Lakes, USA 

Vortex Genie Scientific Industries, Bohemia NY, USA 

Eppendorf cups 1.5 ml Eppendorf AG, Hamburg, Germany 

Needles BD Microlance™ 3, 0.55x25 mm Becton Dickinson Labware, Franklin Lakes, USA 

PP-Test tubes 15, 50 ml Greiner bio-one, Frickenhausen, Germany 

Stripette 5, 10, 25 ml Corning Incorporated, Corning NY, USA 

 

 

2.1.1.2 Chemicals 

1,25-(OH)2 Vitamin D3 Sigma, Taufkirchen, Germany 

24,25-(OH)2 Vitamin D3 Sigma, Taufkirchen, Germany 

3’,4’-dichlorobenzamyl Sigma, Taufkirchen, Germany 

Dexamethasone Sigma, Taufkirchen, Germany 

Foetal Bovine Serum (FBS) GIBCO, Carlsbad, Germany 

GMCSF mouse recombinant Peprotech/Tebu, Cölbe, Germany 

ICAGEN-4 Aventis Pharma, Frankfurt, Germany 

KB-R7943 Calbiochem, Schwalbach, Germany 

L-Glutamine GIBCO, Carlsbad, Germany 

Lipopolysaccharide E.coli (LPS) Sigma, Taufkirchen, Germany 

Margatoxin Alomone Labs, Jerusalem, Israel 

MEM Non-Essential Amino Acids Invitrogen, Karlsruhe, Germany 
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Penicillin-Streptomycin Invitrogen, Karlsruhe, Germany 

Perhexiline maleate (PM) Sigma, Taufkirchen, Germany 

PGN from Staphylococcus aureus InvivoGen, San Diego, California, USA 

Phosphate buffered saline (PBS) GIBCO, Carlsbad, Germany 

RPMI 1640 GIBCO, Carlsbad, Germany 

SKF-96365 Sigma, Taufkirchen, Germany 

Trypan blue solution 0,4% Sigma, Taufkirchen, Germany 

β-mercaptoethanol Invitrogen, Karlsruhe, Germany 

 

 

2.1.1.3  Culture medium composition 

Complete medium 

RPMI-1640 

Fetal bovine serum (FBS)  10 % 

L-Glutamine        1 % 

Non-essential amino acids (NEAA)   1 % 

Penicillin/streptomycin (P/S)    1 % 

ß-mercaptoethanol           0.05 % 

 

 

 

2.1.2 Intracellular Calcium Imaging 

 

2.1.2.1 Technical equipment 

Camera Proxitronic Proxitronic, Bensheim, Germany 

Centrifuge RotiFix 32 Hettich Zentrifugen, Tuttlingen, Germany 

Discofix® Stopcock for Infusion Therapy B. Braun, Melsungen, Germany 

Filter Set for Fura-2 AHF Analysentechnik AG, Tübingen, Germany 

Filter tips 10, 100, 1000µl Biozym Scientific, Hess. Oldendorf, Germany 

Filter wheel  Sutter Instrument Company, Novato, USA 

Infusion Regulator Dosi-Flow 10 Dahlhausen, Köln/Sürth, Germany 

Lambda 10-2 Sutter Instrument Company, Novato, USA 

Lamp XBO 75 Leistungselektronik Jena GmbH, Jena, Germany 

Metafluor software  Universal Imaging, Downingtown, USA 

Microscope Axiovert 100 Zeiss, Oberkochen, Germany 
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Microscope cover glasses round,  

 30mm diameter, 0.13-0.16 mm 

Karl Hecht KG, Sondheim, Germany 

 

Neutral densitiy filters 10, 20, 40, 60% AHF Analysentechnik AG, Tübingen, Germany 

Objective fluar 40x/1.3 oil Carl Zeiss, Oberkochen, Germany 

Syringe BD 10 ml, Luer-Lok™ Tip Becton Dickinson Labware, Franklin Lakes, USA 

Syringe BD Perfusion™ 50 ml  Becton Dickinson Labware, Franklin Lakes, USA 

Tissue Culture Dishes 35x10 mm  Becton Dickinson Labware, Franklin Lakes, USA 

Winged Needle Infusion Set Butterfly®-21 Hospira Venisystems, Donegal Town, Ireland 

 

 

2.1.2.2 Chemicals  

Ampuwa Fresenius KABI, Bad Homburg, Germany 

CaCl2 x 2 H2O Carl Roth, Karlsruhe, Germany 

Ethylene glycol tetraacetic acid (EGTA) Sigma, Taufkirchen, Germany 

Fura-2 AM Invitrogen, Karlsruhe, Germany 

Glucose Carl Roth, Karlsruhe, Germany 

HEPES Sigma, Taufkirchen, Germany 

Immersol 518F Carl Zeiss, Göttingen, Germany 

Ionomycin  Sigma, Taufkirchen, Germany 

KCl Carl Roth, Karlsruhe, Germany 

MgCl2 x 6 H2O Sigma, Taufkirchen, Germany 

MgSO4 x 7 H2O Sigma, Taufkirchen, Germany 

Na2HPO4 x 2 H2O Sigma, Taufkirchen, Germany 

NaCl Sigma, Taufkirchen, Germany 

N-methyl-D-glucamine (NMDG) Sigma, Steinheim, Germany 

Poly-L-Lysine Sigma, Taufkirchen, Germany 

Silicone grease Carl Roth, Karlsruhe, Germany 

Thapsigargin Molecular Probes, Leiden, The Netherlands 

 

 

 

 

 

 

 



Materials and Methods 

 

26 

2.1.2.3 Buffer composition 

Standard Ringer 

NaCl    125 mM/l 

KCl        5 mM/l 

MgSO4 x 7 H2O          1.2 mM/l 

HEPES  32.2 mM/l 

Na2HPO4 x 2 H2O           2 mM/l 

Glucose            5 mM/l 

CaCl2 x 2 H2O       2 mM/l pH 7.4 (NaOH) 

 

Ca2+-free Ringer 

NaCl    125 mM/l 

KCl        5 mM/l 

MgSO4 x 7 H2O          1.2 mM/l 

HEPES  32.2 mM/l 

Na2HPO4 x 2 H2O           2 mM/l 

Glucose            5 mM/l 

EGTA     0.5 mM/l pH 7.4 (NaOH) 

 

Standard Na+, high K+ Ringer 

NaCl      90 mM/l 

KCl      40 mM/l 

MgCl2 x 6 H2O              2 mM/l 

CaCl2 x 2 H2O       2 mM/l 

HEPES     10 mM/l 

Glucose          10 mM/l pH 7.4 (NaOH) 

 

Standard Na+, low K+ Ringer 

NaCl    130 mM/l 

KCl        5 mM/l 

MgCl2 x 6 H2O              2 mM/l 

CaCl2 x 2 H2O       2 mM/l 

HEPES     10 mM/l 

Glucose          10 mM/l pH 7.4 (NaOH) 
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Standard Na+, K+-free Ringer 

NaCl    130 mM/l 

MgCl2 x 6 H2O              2 mM/l 

CaCl2 x 2 H2O       2 mM/l 

HEPES     10 mM/l 

Glucose          10 mM/l pH 7.4 (NaOH) 

 

Na+-free, high K+ Ringer 

NMDG      90 mM/l 

KCl      40 mM/l 

MgCl2 x 6 H2O              2 mM/l 

CaCl2 x 2 H2O       2 mM/l 

HEPES     10 mM/l 

Glucose          10 mM/l pH 7.4 (HCl) 

 

Na+-free, low K+ Ringer 

NMDG    130 mM/l 

KCl        5 mM/l 

MgCl2 x 6 H2O              2 mM/l 

CaCl2 x 2 H2O       2 mM/l 

HEPES     10 mM/l 

Glucose          10 mM/l pH 7.4 (HCl) 

 

Na+-free, K+-free Ringer 

NMDG    130 mM/l 

MgCl2 x 6 H2O              2 mM/l 

CaCl2 x 2 H2O       2 mM/l 

HEPES     10 mM/l 

Glucose          10 mM/l pH 7.4 (HCl) 
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2.1.3 Patch Clamp 

 

2.1.3.1 Technical Equipment 

Borosilicate glass filaments Harvard Apparatus, March-Hugstetten, Germany 

DMZ puller  Zeitz, Augsburg, Germany 

EPC-9 amplifier  Heka, Lambrecht, Germany 

ITC-16 Interface  Instrutech, Port Washington, N.Y., USA 

Microscope Axiovert 100 Zeiss, Oberkochen, Germany 

MS314 electrical micromanipulator  MW, Märzhäuser, Wetzlar, Germany 

Pulse software  Heka, Lambrecht, Germany 

 

 

2.1.3.2 Chemicals  

Some of the chemicals mentioned above are also used for Patch Clamp, therefore the 

additional chemicals are listed here only. 

 

CsCl Sigma, Taufkirchen, Germany 

HCl Sigma, Taufkirchen, Germany 

K+-gluconate Sigma, Taufkirchen, Germany 

LiCl Sigma, Taufkirchen, Germany 

MgATP Sigma, Taufkirchen, Germany 

Tetraethylammonium (TEA) Sigma, Taufkirchen, Germany 

 

 

2.1.3.3 Bath solutions 

ICRAC – Standard bath 

NaCl    140 mM/l 

KCl        5 mM/l 

MgCl2             0.1 or 10 mM/l 

CaCl2                 0.1 or 10 mM/l 

HEPES/NaOH    10 mM/l 

Glucose          20 mM/l pH 7.4 
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ICRAC – Na+-free bath 

NMDG-Cl   145 mM/l 

MgCl2                    1 mM/l 

CaCl2                     10 mM/l 

HEPES/NMDG    10 mM/l 

Glucose          20 mM/l pH 7.4 

 

KV – Standard bath 

NaCl    140 mM/l 

KCl        5 mM/l 

MgCl2               1 mM/l 

CaCl2                        2 mM/l 

HEPES/NaOH    10 mM/l 

Glucose          20 mM/l pH 7.4 

 

Na+/Ca2+ exchange – bath I 

NaCl    130 mM/l 

TEA-Cl     20 mM/l 

MgCl2               2 mM/l 

EGTA                 0.5 mM/l 

HEPES/CsOH        10 mM/l 

Glucose          10 mM/l pH 7.2 

 

Na+/Ca2+ exchange – bath II 

TEA-Cl     20 mM/l 

LiCl    130 mM/l 

KCl          0 or 40 mM/l 

MgCl2               2 mM/l 

CaCl2               2 mM/l 

HEPES/CsOH        10 mM/l 

Glucose          10 mM/l pH 7.2 
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2.1.3.4 Pipette solutions 

CsCl/NaCl pipette solution 

NaCl      35 mM/l 

CsCl    120 mM/l 

MgATP               1 mM/l 

EGTA                 10 mM/l 

HEPES/CsOH        10 mM/l pH 7.4 

 

KCl/K+-gluconate pipette solution 

KCl      80 mM/l 

K+-gluconate     60 mM/l 

MgATP               1 mM/l 

MgCl2        1 mM/l 

EGTA                   1 mM/l 

HEPES/KOH        10 mM/l pH 7.2 

 

Na+-based pipette solution 

NaCl    120 mM/l 

KCl      40 mM/l 

MgATP               2 mM/l 

MgCl2        2 mM/l 

TEA-Cl     20 mM/l 

HEPES/CsOH        10 mM/l 

Glucose       8 mM/l pH 7.2  

 

 

 

2.1.4 Immunostaining and phagocytosis 

 

2.1.4.1 Technical equipment 

FACS Calibur Becton Dickinson, Heidelberg, Germany 

FACS tubes, 1.3 ml, PP, round bottom Greiner bio-one, Frickenhausen, Germany 

 

 



Materials and Methods 

 

31 

2.1.4.2 Antibodies and chemicals 

Annexin-V-Fluos Roche Diagnostics, Penzberg, Germany 

FITC-conjugated anti-mouse CD11c,  

          clone HL3 (Armenian Hamster 

          IgG1, λ2) 

BD Pharmingen, Heidelberg, Germany 

FITC-conjugated dextran  Sigma, Taufkirchen, Germany 

PE- conjugated anti mouse ICAM-1  

          (CD-54), clone 3E2 (Armenian 

          Hamster IgG1, κ) 

BD Pharmingen, Heidelberg, Germany 

PE-conjugated anti-mouse CD86, clone 

          GL1 (Rat IgG2a, κ) 

BD Pharmingen, Heidelberg, Germany 

PE-conjugated rat anti-mouse I-A/I-E, 

          clone M5/114.15.2 (IgG2b, κ) 

BD Pharmingen, Heidelberg, Germany 

Sodium azide Sigma, Taufkirchen, Germany 

 

 

2.1.4.3 Buffers 

FACS buffer 

PBS  

0.1 % heat-inactivated FBS 

 

 

2.1.5 Migration and cytokine production 

 

2.1.5.1 Technical equipment 

Magellan™ software Tecan Group Ltd., Männedorf, Switzerland 

multi well plates; 24, 96 well Corning Inc., Corning NY, USA 

Sunrise Microplate Reader Tecan Trading AG, Switzerland 

 

 

2.1.5.2 Chemicals and Kits 

Calcein-AM  Calbiochem, Schwalbach, Germany 

CCL21  Peprotech/Tebu, Cölbe, Germany 

InnoCyte™ Cell Migration Assay Kit Calbiochem, Schwalbach, Germany 

Mouse IL-10 ELISA Set BD Pharmingen, Heidelberg, Germany 
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Mouse IL-12p70 ELISA Set BD Pharmingen, Heidelberg, Germany 

Mouse IL-6 ELISA Set BD Pharmingen, Heidelberg, Germany 

Mouse TNF (Mono/Mono) ELISA Set BD Pharmingen, Heidelberg, Germany 

TMB substrate reagent  BD Pharmingen, Heidelberg, Germany 

 

 

2.1.5.3 Buffers and solutions 

Coating buffer 

0.2 M sodium phosphate  pH 6.5  

 

Assay diluent 

1x PBS  

10 % heat-inactivated FBS         

 

Stop Solution 

2 N H2SO4 

 

 

 

2.1.6 Immunoblotting  

 

2.1.6.1 Technical equipment 

Agarose gel electrophoresis chamber BioRad, München, Germany 

Centrifuge 5415R Eppendorf, Hamburg, Germany 

Densitometer Quantity One  BioRad, München, Germany 

Gel tips Alpha Laboratories, Hampshire, UK 

Kodak film Sigma, Hannover, Germany 

 

 

2.1.6.2 Chemicals 

Acrylamide/bisacrylamide Carl Roth, Karlsruhe, Germany 

BenchMark prestained protein ladder Invitrogen, California, USA 

Cell lysis buffer Pierce, Bonn, Germany 

Detection reagent GE Healthcare, München, Germany 

Glycine Sigma, Taufkirchen, Germany 
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Loading buffer (4x) Carl Roth, Karlsruhe, Germany 

Milk powder Carl Roth, Karlsruhe, Germany 

Nitrocellulose membrane VWR, Darmstadt, Germany 

Ponceau S Sigma, Taufkirchen, Germany 

Protease inhibitor  Sigma, Taufkirchen, Germany 

Sodium dodecyl sulfate (SDS) Sigma, Hannover, Germany 

TEMED Carl Roth, Karlsruhe, Germany 

Triethanolamine-buffered saline (TBS) Sigma, Taufkirchen, Germany 

Tween-20 Böhringer Ingelheim, Mannheim, Germany 

 

 

2.1.6.3 Antibodies and Kits 

Anti-α/β tubulin Cell Signaling/ New England Biolabs, Frankfurt 

am Main, Germany 

Anti-phospho-IκBα Santa Cruz Biotechnology, Heidelberg, Germany 

Enhanced chemiluminescence (ECL) Kit Amersham, Freiburg, Germany 

Monoclonal (mouse) anti-calbindin D-28K  Swant, Bellinzona, Switzerland 

Goat anti-mouse Alexa 488 Molecular Probes, Leiden, The Netherlands 

 

 

2.1.6.4 Buffers 

Running buffer 

Tris             25 mM/l 

Glycine   250 mM/l 

SDS           0,1 % 

 

Transfer buffer 

Tris             25 mM/l 

Glycine   192 mM/l 

Methanol           20 % pH 8.3 

 

Wash buffer (PBS-T) 

1x PBS 

Tween-20      0.05 % 
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2.1.7 RNA measurements 

 

2.1.7.1 Technical equipment 

Densitometer BioRad, München, Germany 

LightCycler System Roche Diagnostics, Mannheim, Germany 

Mastercycler® Eppendorf AG, Hamburg, Germany 

 

 

2.1.7.2 Chemicals  

10x reaction buffer  Biolabs, Frankfurt, Germany 

Agarose Sigma, Taufkirchen, Germany 

DEPC water Ambion, Darmstadt, Germany 

dNTP mix  Promega, Mannheim, Germany 

Ethanol 99.7% VWR, Darmstadt, Germany 

Ethidium bromide Sigma, Taufkirchen, Germany 

Master Sybr Green I Mix Roche, Mannheim, Germany 

M-MuLV reverse transcriptase  Biolabs, Frankfurt, Germany 

Primer mix Search LC, Heidelberg, Germany 

puReTaq Ready-To-Go PCR bead  Amersham Biosciences, Freiburg, Germany 

Recombinant RNase inhibitor Roche, Mannheim, Germany 

RLT lysis buffer Qiagen, Hilden, Germany 

 

 

2.1.7.3 Kits 

QIAshredder Qiagen, Hilden, Germany 

Murine MRPS9 Kit Search LC, Heidelberg, Germany 

RNase-free DNase Set Qiagen, Hilden, Germany 

Rneasy Mini Kit Qiagen, Hilden, Germany 
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2.1.8 Animals 

 

The mice (NMRI, female) were obtained from Charles River, Sulzfeld, Germany. Alternatively, 

any wild type mice breeded in the institute could be used because a comparison between cells 

from wild type and knock out animals was not performed. For PGN experiments, DCs were 

additionaly isolated form tlr2-/- mice of C57BL/6 background and their wild-type littermates.   

 

 

 

2.2 Methods 

 

2.2.1 Cell culture 

 

Dendritic cells (DCs) were cultured from mouse bone marrow following an established 

protocol [142] with slight modifications. The cells were isolated from femur and tibias of 7-11 

weeks old mice. After removing skin and muscle mass from the bone, the bone marrow-

derived cells were flushed out off the bone marrow cavity from the femur and tibia with 

sterile, icecold PBS using a small needle fixed on a syringe. The extracted cells were 

centrifuged at 1500 rpm for 5 min at 4°C. The supernatant was discharged and the cells were 

resuspended in complete cell culture medium and centrifuged. Subsequently, the DCs were 

resuspended again and counted using a Neubauer counting chamber. Cells were seeded out 

into 60x15 mm petri dishes at a density of 2 x 106 cells per dish. Finally, GM-CSF (35 ng/mL) 

was added to the culture media. 

 

The cells were cultured for 1 week with changes of the medium on days 3 and 6. For the first 

medium change, fresh medium as well as GM-CSF was added to the culture. On day 6, 

nonadherent and loosely attached cells were harvested and the removed volume of the 

culture medium was replaced by fresh medium and GM-CSF. At day 7, the cells were 

seeded out into several petri dishes in an amount of 5 x 105 cells per dish. For cell treatment, 

the substances of interest were added to the respective dishes for a certain time period 

indicated in the respective experiments. Experiments were performed on mature DCs and 

carried out on days 7-9. The expression of CD11c and maturation markers was monitored by 

FACS analysis. 
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2.2.2 Immunostaining and flow cytometry 

 

Maturation of the DCs was confirmed by flow cytometry using a FACS Calibur. 

Measurements were carried out on day 7 of DC culture as well as after time periods 

indicated in the particular experiments. Cells (4 x 105) were incubated in 100 µl FACS buffer 

containing fluorochrome-conjugated antibodies at a concentration of 10 µg/ml. DCs were 

stained for their surface markers CD11c, CD86, CD54 (ICAM-1), and MHCII (I-A/I-E). The 

amount of apoptotic cells was verified by estimating the amount of Annexin-V binding. After 

incubating with the respective antibodies for 60 minutes at 40C, the cells were washed twice 

and resuspended in FACS buffer for flow cytometry analysis. A total of 2 x 104 cells were 

analyzed for each experiment. 

 

 

 

2.2.3 Intracellular Calcium Imaging 

 

The measurements of intracellular calcium concentration [Ca2+]i were performed using an 

inverted phase-contrast microscope connected to the following accessories: a camera, a light 

source, a filter wheel with different excitation filters, a shutter element, a perfusion system 

inserted into a measuring chamber, a water bath, and a pump to allow a continous exchange 

and removal of the added bath solutions (Figure 9). The cells were continously superfused 

during each experiment. Experiments were performed at 37°C in Ringer solution.  

 

 

 
Figure 9. Intracellular Calcium Imaging Setup  

1 – Microscope, 2 – Camera control panel, 3 – Camera, 4 – Shutter, 5 – Light source, 6 – Xenon lamp 

control panel, 7 – Perfusion system, 8 – Flow heating system, 9 – measuring chamber. 



Materials and Methods 

 

37 

Cells were incubated with 2 µM Fura-2/AM for 30 minutes at 37°C. The chamber was then 

mounted onto the microscope and both inlet and outlet equipment for exchanging the bath 

solution were fixed to the chamber cavity. To generate a Fura-2 fluorescence ratio, cells 

were excited alternatively at 340 and 380 nm and the light was deflected by a dichroic mirror 

into either the camera or the objective. For the latter, an oil-immersion objective suitable for 

fluorescence microscopy was used. When the light was deflected into the camera, the 

emitted fluorescence intensity was recorded at 505 nm and data acquisition was performed 

every 6-10 seconds by using Metafluor computer software. For data analysis, the obtained 

data were converted to Excel for further evaluation. As a measure for the increase of 

cytosolic Ca2+ activity, the slope and peak of the changes in the 340/380 nm ratio in 

response to changing the measurement conditions were calculated for each cell and 

experiment. Though, the deviation between the lowest and the highest point of the increase 

in [Ca2+]i reflected the peak, whereas the ratio change per time represented the slope of the 

reaction. 

 

For intracellular calibration purposes, 10 µM ionomycin was applied at the end of each 

experiment. Adding of ionomycin to the Ca2+-containing Ringer solution yielded a maximum 

value Rmax at saturating free Ca2+ levels. Administration of ionomycin in Ca2+-free Ringer 

solution yielded a minimum value Rmin at zero free Ca2+ levels. The obtained ratios were 

converted into nanomolar Ca2+ concentrations using the equation according to Grynkiewicz 

et al. [143]. The equation describes the interrelationship of the free Ca2+ concentration and 

the fluorescence emission intensity ratio of any experimental sample (Figure 10).  

 

 
 

Figure 10. Calibration Equation for the calculation of intracellular calcium concentrations 

Referring to Grynkiewicz et al. [143]. 

 

 

The dissociation constant of the dye Kd and the instrumental constant Sf were determined 

using a Fura-2 Calcium Imaging Calibration Kit. For Kd, the obtained values were used to 

generate a standard curve, which then allowed to calculate Kd (Figure 11). On the basis of 
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the calibration equation and the obtained Kd value, the free Ca2+ concentration for any 

experimental sample was calculated from the corresponding R value of each sample. 

 

 

 
Figure 11. Standard curve to calculate the dissociation constant Kd of Fura-2 

 

 

 

2.2.4 Patch clamp  

 

Patch clamp experiments were performed at room temperature in voltage-clamp, fast-whole-

cell mode according to Hamill et al. [144]. The cells were continuously superfused through a 

flow system inserted into the dish. The bath was grounded via a bridge filled with NaCl 

Ringer solution. Borosilicate glass pipettes, manufactured by a microprocessor-driven DMZ 

puller, were used in combination with a MS314 electrical micromanipulator. The currents 

were recorded by an EPC-9 amplifier using Pulse software and an ITC-16 Interface.  

 

For ICRAC measurements whole-cell currents were elicited by 200 ms square wave voltage 

pulses from -100 to +80 mV in 20 mV steps delivered from a holding potential of 0 mV. 

Alternatively, the currents were recorded with 200 ms voltage ramps from -120 to +100 mV. 

Kv whole-cell currents were elicited by 200 msec square wave voltage pulses from -90 to 

+90 mV in 20 mV steps delivered at 20 ms intervals from a holding potential of -70 mV. The 

currents were recorded with an acquisition frequency of 10 kHz and 3 kHz low-pass filtered. 

For measurements of Na+/Ca2+-exchanger voltage clamp steps were applied every 2 s to 

potentials between -100 and +50 mV from a holding potential of 0 mV. The currents were 

recorded with an acquisition frequency of 10 kHz and 3 kHz low-pass filtered. 



Materials and Methods 

 

39 

Composition of the bath solution differed depending on whether ICRAC, Kv currents or 

Na+/Ca2+-exchange currents were measured (see section 2.1.3.3). The patch clamp pipettes 

were filled with an internal solution, which composition differed between Kv current (KCl/K+-

gluconate pipette solution), Na+/Ca2+ exchange current (Na+-based pipette solution, 1 µM 

free Ca2+) and ICRAC measurements (CsCl/NaCl pipette solution).  

 

 

 

2.2.5 RT-PCR 

 

Total RNA was isolated from mouse DCs by using the Qiashredder and RNeasy Mini Kit 

from Qiagen according to the manufacturer’s protocol. For cDNA first strand synthesis, 1 µg 

of total RNA in 12.5 µl DEPC-H2O was mixed with 1 µl of oligo-dT primer (500 µg/ml) and 

heated for 2 min at 70°C. A RT mix of 2 µl 10x reaction buffer, 1 µl dNTP mix (dATP, dCTP, 

dGTP, dTTP, 10 mM each), 0.5 µl recombinant RNase inhibitor, 0.1 µl M-MuLV reverse 

transcriptase, and 2.9 µl DEPC-H2O was then added and the reaction mixture was incubated 

for 60 min at 42°C. The reaction was stopped by heating the mixture for 5 min at 94°C. The 

cDNA was stored at -80 °C until PCR analysis. PCR analysis was then performed with 1 µl of 

the reverse transcription product in a total volume of 25 µl of a PCR mix containing 22 µl of 

sterile bi-distilled H2O, 1 µl of sense primer (100 pmol/µl), 1 µl of antisense primer (100 

pmol/µl), and 1 puReTaq Ready-To-Go PCR bead through 40 cycles as indicated in Table 2.  

 

Table 2. RT-PCR protocols 

 denaturation annealing synthesis 

CRACM1 30 s at 95°C 20 s at 58°C 45 s at 72°C 

CRACM2 30 s at 95°C 20 s at 56°C 45 s at 72°C 

CRACM3 30 s at 95°C 20 s at 52°C 45 s at 72°C 

NCKX1 15 s at 95°C 45 s at 56°C 45 s at 72°C 

NCKX2 15 s at 95°C 45 s at 60°C 45 s at 72°C 

NCKX3 15 s at 95°C 45 s at 60°C 45 s at 72°C 

NCKX4 15 s at 95°C 90 s at 52°C 90 s at 72°C 

NCKX5 15 s at 95°C 45 s at 56°C 45 s at 72°C 

NCX1 15 s at 95°C 45 s at 56°C 45 s at 72°C 

NCX2 15 s at 95°C 45 s at 60°C 45 s at 72°C 

NCX3 15 s at 95°C 60 s at 56°C 90 s at 72°C 
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The following primers were used to amplify specific cDNA fragments from mouse DCs. PCR 

products were analysed by agarose gel electrophoresis.  

 

NCX1 (440 bp) sense primer:       5’-GCTTCATTGTCTCCATCCTCATG-3’ 

antisense primer: 5’-GGAAGATGTGAGGAGCTTGGC-3’ 

NCX2 (436 bp) sense primer:       5’-CTTTGGTGTCTGCATCCTGGTC-3’ 

antisense primer: 5’-GGTGGTGGCCAGCTTGGGTC-3’ 

NCX3 (437 bp) sense primer:       5’-CTTCGTGGTCTCCATCCTCATC-3’ 

antisense primer: 5’-ATGTCGTGGCAAGCTTGCAGC-3’ 

NCKX1 (456 bp) sense primer:       5’-CACCTTCCTGGGATCCATCATC-3’ 

antisense primer: 5’-CGATCTTCTAACATCACACTGATC-3’ 

NCKX2 (370 bp) sense primer:       5’-TTATCATGTGGTGGGAAAGC-3’ 

antisense primer: 5’-GCTTTTTCTCTGAACCTCCC-3’ 

NCKX3 (456 bp) sense primer:       5’-GACATTCGCTTCCTCTACGCTAT-3’ 

antisense primer: 5’-AACTCCGTCATGATGGAGAAA-3’ 

NCKX4 (349 bp) sense primer:       5’-ATTCTCAGCTCTAGCCCTCC-3’ 

antisense primer: 5’-ACTTAGCCTTGTCGCCTTTT-3’ 

NCKX5 (410 bp) sense primer:       5’-CAGTTCATTTTAATGGCTGGA-3’ 

antisense primer: 5’-GTTTTCCCGACCTTGGTGTA-3’ 

Mouse CRACM1 sense primer:       5’-CATGGTAGCGATGGTGGAAGTC-3’ 

antisense primer: 5’-TGCTCATCGTCTTTAGTGCCT-3’ 

Mouse CRACM2 sense primer:       5’-ATGGTGGCCATGGTGGAGGT-3’ 

antisense primer: 5’-ATTGCCTTCAGCGCCTGCA-3’ 

Mouse CRACM3 sense primer:       5’-AAGCTCAAAGCCTCCAGCCGC-3’ 

antisense primer: 5’-GGTGGGTATTCATGATCGTTCT-3’ 

 

 

 

2.2.6 Real time-PCR 

 

Isolation of total RNA and cDNA first strand synthesis was performed as mentioned above 

(section 2.2.5). Subsequently, quantitative real time-PCR was performed to determine 

transcript levels of NCX1, NCX2, and NCX3, using a LightCycler System. PCR reactions 

were performed in a final volume of 20 µl containing 2 µl cDNA, 2.4 µl MgCl2 (3 µM), 1 µl 

primer mix (0.5 µM of both primers), 2 µl cDNA Master SybrGreen I mix, and 12.6 µl DEPC-

treated water. The following primers were used to quantify mRNA transcripts:  
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NCX1 (200 bp) sense primer:       5’-TCCGAGTTCTTAAATGGTTAAGGC-3’ 

antisense primer: 5’-TGGGTGGATCACTACTTTCTATAAGGA-3’ 

NCX2 (174 bp) sense primer:       5’-GCCATCCATCTCTGCCCTTA-3’ 

antisense primer: 5’-CCTGGGGGACAGATACTCCA-3’ 

NCX3 (185 bp) sense primer:       5’-TGACAGCTGCTAGCCCACA-3’ 

antisense primer: 5’-CTCAGCCTCCAGAGCTCGAT-3’ 

 

MRPS9 was used as housekeeping gene, and transcript levels were determined for each 

sample using a commercial primer kit. To this end, each PCR reaction for MRPS9 was 

performed in a final volume of 20 µl containing 2 µl cDNA, 2 µl MRPS9 primer mix, 2 µl cDNA 

Master Sybr Green I mix, and 14 µl DEPC-treated water. The target DNA was amplified 

during 50 cycles of 95ºC for 10 s, 68ºC for 10 s, and 72ºC for 16 s, each with a temperature 

transition rate of 20ºC/s, a secondary target temperature of 58ºC, and a step size of 0.5ºC. In 

order to determine the melting temperature of primer dimers and the specific PCR products, 

as well as to confirm the amplified products, melting curve analysis was performed at  

95ºC/0 s, 58ºC/15 s, and 95ºC/0 s. mRNA expression for each signal was calculated using 

the ∆∆Ct method. 

 

 

 

2.2.7 Immunoblotting 

 

To generate samples from mouse DCs for Western Blot analysis, 2 x 106 cells were washed 

twice in PBS and subsequently solubilized in lysis buffer containing a protease inhibitor 

cocktail. The amount of protein was measured using the Bradford method. Samples were 

mixed with 4x loading buffer in a 1:4-ratio. 80 µg of each sample was separated by SDS-

PAGE, using a 5 %-stacking gel and a 12 %-resolving gel. The preparation of one stacking 

gel and one resolving gel is shown in Table 3. The gel was run at 80 V for 15 minutes first, 

then the voltage was increased to 120 V for 1 hour. Subsequently, the separated proteins 

were transferred to a nitrocellulose membrane for 1 hour at 82 V. Transfer was checked by 

Ponceau S-staining. The membrane was blocked with 5 % nonfat-milk in TBS-buffer 

containing 0.1 % Tween-20. The blot was then probed overnight with either anti-phospho-

IκBα, or monoclonal (mouse) anti-calbindin D-28K, diluted 1:1000 in 5 % milk made up with 

TBS-buffer containing 0.1 % Tween-20. Membranes were washed 5 times in PBS-T and 

probed with secondary antibodies conjugated to horseradish peroxidase for 1 h at room 

temperature. After 5 final washes, antibody binding was detected with the enhanced 

chemiluminescence (ECL) kit and densitometer scans were performed.  
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Table 3. Gel preparation 

 Stacking gel (5 %) Resolving gel (12 %) 

H2O 2.7 ml 3.3 ml 

30 % acrylamide 670 µl 4.0 ml 

1.5 M Tris (pH 8.8) - 2.5 ml 

1.0 M Tris (pH 6.8) 500 µl - 

10 % SDS 40 µl 100 µl 

10 % ammonium persulfate 40 µl 100 µl 

TEMED 4 µl 4 µl 

 

 

 

2.2.8 Cytokine measurement 

 

To determine the production of TNFα, IL-6, IL-10, and IL-12p70 by mouse DCs, the enzyme-

linked immunosorbent assay (ELISA) was performed using the respective ELISA Set from 

BD Biosciences (see section 2.1.5.2). Samples were obtained by incubating mouse DCs with 

a certain substance for a certain time point at 37°C and 5 % CO2. Afterwards the cells were 

harvested and centrifuged for 5 min at 1500 rpm. The supernatant was collected and stored 

at -20°C until usage. The amount of the respective cytokines in the supernatant were 

analysed according to the manufacturer’s protocol. Briefly, a 96-well plate was coated with 

100 µl of Capture Antibody diluted in Coating Buffer and kept overnight at 4°C. 

Subsequently, the plate was aspirated and washed 3 times. The wells were blocked for 1 

hour at room temperature (RT) with 200 µl Assay Diluent. Afterwards, the plate was 

aspirated and washed again 3 times. 100 µl of the standards and samples were added to 

each well and incubated for 2 hours at RT. The plate was aspirated and washed for 5 times 

and 100 µl Working Detector were added to each well. After incubation at RT for 1 hour, the 

plate was aspirated and washed for 7 times. 100 µl Substate Solution were added to each 

well and incubated for 30 min at RT in the dark. Subsequently, 50 µl Stop Solution was 

added to each well. Absorbance was recorded at 450 nm.  
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2.2.9 Phagocytosis assay 

 

DCs of each experimental condition were suspended in prewarmed serum-free RPMI 1640 

medium in a concentration of 106 cells/ml. The samples were then pulsed with FITC-

conjugated dextran at a final concentration of 1 mg/ml and incubated for 3h at 37°C. Uptake 

of FITC-conjugated dextran was stopped by adding ice-cold PBS. The cells were then 

washed three times with ice cold PBS supplemented with 5% FCS and 0.01% sodium azide 

and analysed by FACS for the uptake of FITC-dextran. 

 

 

 

2.2.10 Migration assay 

 

DCs were washed twice with PBS and resuspended in RPMI 1640 medium. Migration was 

assessed in triplicate in a mulitwell chamber with 8 µm-pore size filter contained in the 

InnoCyte™ Cell Migration Assay Kit. The cells were adjusted to 5 x 105 cells/ml and the cell 

suspension was placed in the upper chamber to migrate into the lower chamber in which 

either 250 ng/ml CCL21 or medium alone as a control for spontaneous migration were 

included. The chamber was placed into an incubator at 5% CO2 and 37°C for 4h. 

Subsequently, the cells that migrated into the lower chamber were detached using the 

provided cell detachment buffer containing Calcein-AM fluorescent dye. The results were 

read using a standard fluorescence plate reader. For data analysis, the mean fluorescence of 

spontaneously migrated cells was substracted from the total fluorescence of migrated cells.  

 

 

 

2.2.11 Statistics 

 

Data are provided as means ± SEM, n represents the number of independent experiments. 

All data were tested for significance using Student’s unpaired two-tailed t-test or ANOVA. 

P<0.05 was considered to indicate statistical significance. 
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3 Results 

 

3.1 LPS- and PGN-induced Ca2+ entry 

 

Intracellular Calcium Imaging was used to assess changes in intracellular free Ca2+ 

concentration ([Ca2+]i) upon treatment of mouse dendritic cells (DCs) with either 

lipopolysaccharide (LPS, 100 ng/ml) or peptidoglycan (PGN, 25 µg/ml). Images of the cells 

stained with 2 µM Fura-2 were taken every 6-10 seconds in a pseudocolor mode. A change 

of the color from blue to red indicates an increase in [Ca2+]i. Figure 12 shows a 

representative experiment using PGN for acute treatment of the cells.  

 

 

 
Figure 12. Pseudocolor images of Fura-2 loaded DCs  

Left panels: pseudocolor images at 340nm excitation. Central panels: pseudocolor images of the same 

cells at 380 nm excitation. Right panels: pseudocolor images resulting from the ratio of both excitation 

wavelengths of the respective cells. Upper panels were recorded before addition of 25 µg/ml PGN. 

Lower panels were recorded after addition of PGN and subsequent influx of extracellular Ca2+. White 

arrows indicate example cells that show a shift from dark blue (low intracellular Ca2+) to red (high 

intracellular Ca2+) upon addition of PGN. 

 

  

Acute stimulation of mouse DCs with either LPS (100 ng/ml, Figure 13A) or PGN (25 µg/ml, 

Figure 13B) resulted in a rapid increase in [Ca2+]i. This increase was due to Ca2+ release from 

intracellular stores and influx of extracellular Ca2+, since the increase of [Ca2+]i was 

significantly blunted but not fully abrogated when LPS or PGN was applied in the absence of 

extracellular Ca2+ (Figure 13C, D). The same effect was achieved when LPS or PGN were 
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applied in the presence of SKF-96365 (10 µM, Figure 13A, B, E, F), a blocker of store-

operated Ca2+ channels.  

 

 

 
Figure 13. LPS or PGN exposure increases [Ca

2+
]i in mouse DCs 

A, B Representative original tracings showing the change in [Ca2+]i in Fura-2/AM loaded control and 

SKF-96365 (10 µM)-pretreated DCs prior to and following acute addition (white arrow) of (A) LPS (0.1 

µg/ml) or (B) PGN (25 µg/ml). For quantification of Ca2+ entry the slope (∆ nM/s) and peak (∆ nM) of 

[Ca2+]i increase following addition of either LPS or PGN were calculated. C, D Representative original 

tracing showing the changes in [Ca2+]i prior to and following acute addition of (C) LPS or (D) PGN in 

the absence of extracellular Ca2+. To yield a Ca2+-free environment, EGTA (0.5 mM) was added to the 

Ca2+-free bath solution. E, F Mean (± SEM) of the peak value (left) and slope (right) of the change in 

intracellular Ca2+ concentrations following addition of (E) LPS (100 ng/ml) or (F) PGN (25 µg/ml) in the 

absence (n=8-11, open bars) and presence (n=8-12, closed bars) of SKF-96365. * (p<0.05) and *** 

(p<0.001) indicate significant difference between treated and untreated cells (two-tailed unpaired t-

test).  
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While the optimum concentration of LPS (100 ng/ml) was already established in the 

laboratory, the ideal concentration of PGN had to be assessed. Figure 14 shows that the 

PGN-induced increase in [Ca2+]i positively correlated with PGN concentration. In order to 

keep the used PGN concentration as low as possible but at the same time to induce a clear 

effect on [Ca2+]i, 25 µg/ml PGN was considered as the optimum concentration for all 

experiments.  

 

 

 
Figure 14. The effect of PGN on [Ca

2+
]i is concentration-dependend 

Concentration dependence of the effect of PGN on [Ca2+]i as calculated from the peak value (A) and 

slope (B) of the change in [Ca2+]i following addition of PGN to the bath solution (n = 6-11). 

 

 

 

3.2 Involvement of TLR2 in PGN-induced effects on [Ca2+]i 

 

It has been well established that PGN binds to TLR2 [145,146]. Since a recent study 

questioned this view [31], DCs were isolated from tlr2-/- mice and their wild-type littermates. 

The PGN-induced increase in [Ca2+]i was markedly impaired in DCs isolated from tlr2-/- mice, 

indicating that TLR2 is one of the main receptors for PGN in DCs (Figure 15).  
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Figure 15. Effect of PGN exposure on [Ca

2+
]i depends on TLR2 

(A) Representative original tracings showing the change in [Ca2+]i in Fura-2/AM loaded DCs from wild 

type and TLR2-/- mice prior to and following acute addition of peptidoglycan (PGN, 25 µg/ml). White 

arrow indicates the timepoint of acute addition of PGN. (B) Mean (± SEM) of the peak value (left) and 

slope (right) of the change in [Ca2+]i following addition of PGN (25 µg/ml) to the bath solution to wild 

type DCs (n=8, open bars) and tlr2
-/- DCs (n=13, closed bars). *** (p<0.001) indicate significant 

difference between two genotypes (two-tailed unpaired t-test). 

 

 

 

3.3 Activation of calcium release-activated calcium (CRAC) channels is 

measurable upon store depletion 

 

To further analyse the above findings, store-operated Ca2+ entry was measured upon store 

depletion by inhibiting vesicular Ca2+-ATPase by thapsigargin (1 µM). Figure 16 shows that 

under Ca2+-free conditions, depleting of intracellular Ca2+ stores leads to a distinguishable 

increase in [Ca2+]i. Subsequent re-addition of extracellular Ca2+ in the continued presence of 

thapsigargin induces a much more pronounced increase in [Ca2+]i, representing influx of 

extracellular Ca2+ and indicating activation of CRAC channels. 
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Figure 16. Activation of CRAC channels in mouse DCs 

Representative tracing showing the changes in [Ca2+]i in Fura-2/AM loaded DCs. Experiments were 

carried out prior to and during exposure to Ca2+-free bath solution. Where indicated, thapsigargin (1 

µM) was added to the Ca2+-free bath solution. Readdition of extracellular Ca2+ in the continued 

presence of thapsigargin reflects the entry of Ca2+ through CRAC channels. 

 

 

 

3.4 CRAC channels are expressed and active in mouse DCs 

 

To ensure that the observed effects are mediated by CRAC channels, RT-PCR was 

performed to confirm that CRAC channels are expressed in mouse DCs and therefore can 

be responsible for the observed changes in [Ca2+]i upon treatment with LPS or PGN. The 

proteins involved in store-operated Ca2+ entry have been identified recently, namely STIM1 

and Orai1. STIM1 is a Ca2+ sensor in the ER [79-81], while Orai1, also called CRACM1, is a 

pore subunit of the CRAC channel [82,84,147]. Moreover, there are three mammalian 

homologous CRAC channel proteins, CRACM1, CRACM2 and CRACM3 [83]. To test if and 

which CRAC channels are expressed in mouse DCs, DNA fragments specific for the cloned 

mouse CRACM1, CRACM2 and CRACM3 channels were amplified by RT-PCR. The RT-

PCR data demonstrated endogenous expression of all three channels in mouse DCs (Figure 

17). 
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Figure 17. All three CRAC channels CRACM1, CRACM2 and CRACM3 are expressed in mouse 

                  DCs 

Agarose gels with PCR products specific for CRACM1, CRACM2 and CRACM3 channels amplified 

from cDNA of mouse DCs. 

 

 

To further validate the hypothesis that LPS or PGN treatment activates CRAC channels in 

mouse DCs, whole-cell voltage clamp experiments were performed in order to study the 

entry of extracellular Ca2+ upon TLR stimulation of DCs. Experiments were exemplary 

performed using 100 ng/ml LPS. LPS addition activated an inward current within 1.5-3 min, 

with properties similar to ICRAC (Figure 18A, B). The typically high selectivity for Ca2+ was 

indicated by the fact that the LPS-stimulated current reversed at > +50 mV, when Ca2+ was 

the charge carrier in the bath (10 mM Ca2+). When extracellular Na+ was replaced by 

NMDG+, neither reversal potential of the current/voltage (I/V) relationship nor current 

amplitude were altered in LPS-stimulated cells (Figure 18A). The I/V curve of the LPS-

stimulated current fraction revealed a prominent inward rectification at negative voltages. A 

reduction in the concentration of extracellular Ca2+ in the continued presence of external Na+ 

and Mg2+ reduced the inward current (Figure 18C, D, F).  
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Figure 18. Entry of extracellular Ca

2+
 upon LPS-stimulation of DCs is mediated by CRAC 

channels 

(A) Original ramp currents recorded with CsCl/NaCl pipette solution under control conditions (NaCl/10 

Ca2+), 2 min after addition of LPS (100 ng/ml) and then upon substitution of Na+ by NMDG+. (B) Mean 

current-voltage (I/V) relationships (± SEM, n=9) of current fraction activated by LPS recorded in 

NaCl/10 mM Ca2+ bath solution. (C) LPS-induced original ramp currents recorded in response to 

voltage ramps in NaCl bath solution containing either 1 mM Ca2+ (and 9 mM Mg2+) or 10 mM Ca2+. (D) 

Mean whole-cell conductance of inward currents (± SEM, n=3) in NaCl bath solution containing either 

10 mM Ca2+ or 1 mM Ca2+. Data were calculated by linear regression of I/V curves between -100 and -

20 mV. * (p<0.05) indicates significant difference (two-tailed paired t-test). (E) I/V curves of the LPS-
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activated current fractions obtained in NaCl/10 mM Ca2+- containing or divalent cation-free bath 

solutions. (F) Original current traces at -100 mV obtained upon LPS stimulation in NaCl bath solution 

containing 10 mM Ca2+ (left), 1 mM Ca2+, 9 mM Mg2+ (middle) or no divalent cations (right). (G) 

Original ramp currents recorded in NaCl bath solution containing 10 mM Ca2+ under control conditions 

(NaCl), 2 min after addition of LPS (100 ng/ml, NaCl+LPS) and then upon inhibition of the current by 

SKF-96365 (10 µM, NaCl+LPS+SKF-96365). (H) Mean membrane potential (± SEM, n=9) in DCs prior 

to (control) and after stimulation with LPS (10 Ca2+ + LPS). 

 

 

One feature of CRAC channels is the so called anomalous mole fraction. It describes the 

property of CRAC channels to exhibit large Na+ currents when external Ca2+ concentration is 

in the submicromolar range and therefore very low [74]. Figure 18E and F show that the 

LPS-stimulated channels exhibited anomalous mole fraction in a Na+-containing but divalent 

cation-free environment, becoming permeable for Na+. The invard current of LPS-stimulated 

cells inactivated fast during hyperpolarizing voltage pulses in the presence of extracellular 

Ca2+, another distinguishable feature of CRAC channels, while this inactivation was missing 

in a divalent cation-free solution (Figure 18F). Furthermore, the current was inhibited when 

the currents were recorded in the presence of 10 µM SKF-96365, a blocker of store-operated 

channels (Figure 18G). In order to analyse changes in membrane potential upon treatment of 

mouse DCs with LPS, the current-clamp mode of the patch-clamp technique was used. As 

shown in Figure 18H, the cell membrane depolarized from -19.5 ± 2.5 mV to 1.8 ± 3.5 mV 

when LPS was applied to the cells. 

 

 

 

3.5 Modulation of Ca2+ entry through CRAC channels by Kv channel 

blockers 

 

It has been shown before that DCs express voltage-gated K+ channels belonging to the 

Shaker (Kv1) family, presumably Kv1.3 and Kv1.5 [92,93]. In patch-clamp experiments 

different Kv channel blockers were tested in order to find an effective combination of blockers 

that could completely inhibite Kv currents in DCs. Figure 19A shows an effect of margatoxin 

(MgTx, 0.1 nM) and ICAGEN-4 (10 µM, [140]) blockers of Kv1.3 and Kv1.5 channels, 

respectively. Alternatively, another Kv1.5 channel inhibitor perhexiline maleate (PM, 5 µM) 

was used in combination with MgTx (1 nM) (Figure 19B). The current fraction sensitive to 

MgTx (0.1 nM) alone was 54.1±11.8 % (n=4, calculated for the current at +60 mV), to 

ICAGEN-4 (10 µM) alone 65.7±3.4 % (n=8), and when MgTx (0.1 nM) and ICAGEN-4 (10 
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µM) were applied together 84.2±3.4 % (n=4) of the current was inhibited. Neither acute 

application of nor incubation with LPS or PGN modified Kv currents in DCs. Thus, the current 

density at +90 mV was 22.1 ± 2.9 pA/pF (n = 13) in control cells, and was not significantly 

changed after acute application of PGN: 22.4 ± 1.5 pA/pF (n = 5) or after a 24 h incubation 

with 25 µg/ml PGN: 22.8 ± 3.0 pA/pF (n = 16).  

 

 

 
Figure 19. Blockers of Kv1.3 and Kv1.5 inhibit Kv-like currents in mouse DCs 

Original Kv current traces recorded at +90 mV with KCl/K-gluconate pipette solution before and after 

application of (A) ICAGEN-4 (10 µM) and then MgTx (0.1 nM) or (B) PM (5 µM) and then MgTx  

(1 nM). 

 

 

To test whether Kv channels can modulate the Ca2+ entry through CRAC channels, 

additional experiments have been performed using intracellular Ca2+ imaging in Fura-2/AM 

loaded DCs. The influence of Kv channel blockers on LPS- or PGN-induced increase in 

[(Ca2+)i] is shown in Figure 20. As can be seen, a combination of MgTx and ICAGEN-4 

(Figure 20A, B) or of MgTx and PM (Figure 20C, D) leads to a significant reduction in LPS- or 

PGN-induced increase in [(Ca2+)i], respectively. Separate application of either MgTx or PM 

similarly resulted in significant inhibition of PGN-induced increase in [(Ca2+)i] (Figure 20E-H). 

However, this effect was more prominent when both blockers were used in combination, 

pointing to an involvement of both Kv1.3 and Kv1.5 channels in maintaining the Ca2+ entry.  
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Figure 20. Blocking of Kv channels attenuates the increase in [Ca
2+

]i upon TLR stimulation of 

                  DCs 

(A), (C), (E), (G) Representative tracing showing [Ca2+]i in Fura-2/AM loaded control DCs and DCs 

preteated with MgTx (1 nM)+ICAGEN-4 (10 µM) (A) or with MgTx (1 nM) + PM (10 µM) (C) or MgTx 

(E) or PM (G) prior to and following acute addition of either LPS (100 ng/ml) (A) or PGN (25 µg/ml).  

(C), (E), (G) to the bath solution. (B), (D), (F), (H) Mean (± SEM, n = 6-8) of the peak value (left) and 

slope (right) of the change in [Ca2+]i for control cells (open bars) and DCs pretreated (closed bars) with 
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either MgTx+ICAGEN-4 (B) or MgTx+PM (D) or MgTx (F) or PM (H) following addition of either LPS 

(B) or PGN (D), (F), (H) to the bath solution. * (p<0.05) and ** (p<0.01) indicate significant difference 

between both groups (two-tailed unpaired t-test). 

 

 

 

3.6 Effect of CRAC and Kv channel blockers on DC maturation and 

function 

 

To further investigate the impact of store-operated Ca2+ and Kv channels on DC functions, 

several parameters, namely cytokine production, maturation and phagocytosis, were 

examined in the absence and presence of the Kv channel blockers MgTx, ICAGEN-4 and 

PM, and the blocker of store-operated Ca2+ channels, SKF-96365. 

 

 

3.6.1 LPS- and PGN-induced cytokine production  

The production of cytokines by LPS- and PGN-treated DCs in the presence or absence of 

channel blockers was assessed by using the ELISA technique. DCs were either pretreated 

with 10 µM SGK-96365 for 30 min or left untreated prior to stimulation with either 25 µg/ml 

PGN or 100 ng/ml LPS. Figure 21 shows that inhibition of store-operated Ca2+ channels by 

SKF-96365 significantly blunted the release of TNF-α and IL-6 or TNF-α and IL-10 from LPS- 

or PGN-stimulated mouse DCs, respectively. 

 

 

 
Figure 21. Inhibition of SOCE impairs LPS- and PGN-induced cytokine production by DCs 

DCs were incubated for 30 min in the presence or absence of 10 µM SKF-96365 prior to stimulation 

with (A) 100 ng/ml LPS or (B) 25 µg/ml PGN. Supernatants were collected after 4 hours to measure 

TNFα, after 24 hours to measure IL-6, and after 48 hours to measure IL-10 by ELISA. The results are 

representative for 3 to 7 independent experiments. Each experiment was performed in duplicates; 

values represent the mean ± SEM of duplicates, * (p<0.05) and ** (p<0.01) indicate significant 

differences between treated and untreated cells (two-tailed unpaired t-test). 
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Next, the relevance of Kv channels for LPS- and PGN-induced cytokine production by DCs 

was considered. To this end, the cells were treated with either a combination of MgTx (1 nM) 

and ICAGEN-4 (10 µM) or a combination of MgTx (1 nM) and PM (10 µM) to block both 

Kv1.3 and Kv1.5 channel activity. As shown in Figure 22, inhibition of Kv1.3 by MgTx 

together with inhibition of Kv1.5 by ICAGEN-4 or PM led to a marked decrease in the 

production of TNFα and IL-6 in response to LPS-stimulation (Figure 22A), as well as to a 

significant reduction in the PGN-induced production of TNFα and IL-10 (Figure 22B). The 

results suggest a critical role of Kv channels in regulating DC cytokine production in 

response to TLR triggering.  

 

 

 
Figure 22. Kv channel blockers attenuate cytokine production by LPS- and PGN-stimulated 

                   DCs 

DCs were incubated for 30 min in the presence or absence of (A) MgTx (1 nM)+ICAGEN-4 (10 µM) or 

(B) MgTx (1 nM) or PM (10 µM) prior to stimulation with (A) 100 ng/ml LPS or (B) 25 µg/ml PGN. 

Supernatants were collected after 4 hours to measure TNFα, after 24 hours to measure IL-6, and after 

48 hours to measure IL-10 by ELISA. The results are representative for 3 to 7 independent 

experiments. Each experiment was performed in duplicates; values represent the mean ± SEM of 

duplicates, ** (p<0.01) and *** (p<0.001) indicate significant differences between treated and 

untreated cells (two-tailed unpaired t-test). 

 

 

Since cytokine production in DCs is regulated by the transcription factor NFκB [148], the 

effect of store-operated Ca2+ and Kv channel blockers on NFκB activation was investigated. 

To this end, DCs were treated with 25 µg/ml PGN for 1 hour in the presence or absence of 

either SKF-96365 or a combination of MgTx and PM and subsequently analyzed for 

phosphorylation of inhibitory molecule IκBα by western blotting. As illustrated in Figure 23, 

the level of phosphorylated IκBα was increased by PGN-stimulation, but was not significantly 

altered upon store-operated Ca2+ or Kv channel inhibition.  

 



Results 

 

56 

 

 
Figure 23. CRAC and Kv channel blockers do not affect IκBα phosphorylation in mouse DCs  

Original Western blot of unstimulated (control) and PGN (25 µg/ml, 60 min)-stimulated DCs untreated 

or treated (60 min) with either SKF-96365 (10 µM) or MgTx (1 nM) + PM (5 µM). Protein extracts were 

analyzed by direct Western blotting using antibodies directed to phosphorylated IκBα. Protein loading 

was controlled by anti-α/β tubulin antibody. One representative experiment out of three is shown. 

 

 

 

3.6.2 LPS- and PGN-induced DC maturation  

Upon maturation, DCs express on their surface antigen-presenting molecules (such as MHC 

class II), costimulatory (CD86) and adhesion (CD54) molecules. Expression of CD86 and 

CD54 was not affected by SKF-96365 (10 µM) or Kv channel blockers MgTx (1 nM), 

ICAGEN-4 (10 µM) and PM (5 µM) upon LPS- or PGN-induced DC maturation. However, the 

up-regulation of MHC class II by LPS was significantly reduced by SKF-96365 and MgTx + 

ICAGEN-4 (Figure 24A), indicating that Ca2+ and Kv channels can be involved in LPS-

induced DC maturation. The same tendency could be observed for PGN-treatment, however, 

this effect was not significant (Figure 24B).  
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Figure 24. SKF-96365 and Kv channel blockers MgTx and ICAGEN-4 reduce LPS- but not PGN- 

                  induced up-regulation of MHC class II 

Mean fluorescence intensity (MFI ±SEM; n=5-6) of MHC class II molecule in (A) LPS (100 ng/ml, 48 

h)-stimulated DCs and (B) PGN (25 µg/ml, 48h)-stimulated DCs incubated in the absence (control, 

open bar) or in the presence of either SKF-96365 (10 µM, grey bar, A,B), MgTx (1 nM)+ICAGEN-4 (10 

µM) (closed bar, A), or MgTx (1 nM)+PM (5 µM) (closed bar, B).* (p<0.05) indicate significant 

difference from control (ANOVA). 

 

 

 

3.6.3 Phagocytic capacity  

The capacity of DCs to phagocytose antigen is one of DC functions in innate immunity and is 

down-regulated during DC maturation [6,49]. Phagocytic capacity of DCs assessed as FITC-

dextran uptake was measured in the presence of Ca2+ and Kv channel blockers. As a result, 

SKF-96365 as well as MgTx in combination with either ICAGEN-4 or PM significantly 

increased the FITC-dextran uptake by LPS- or PGN-stimulated mouse DCs (Figure 25). The 

data indicate that inhibition of CRAC or Kv channels lead to a less mature DC phenotype 

with higher phagocytic activity.  
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Figure 25. SKF-96365 and Kv channel blockers MgTx, ICAGEN-4 and PM enhance phagocytic 

                   activity of LPS- and PGN-stimulated DCs 

(A) Bar diagram representing mean percent (±SEM; n=3) of FITC-dextran uptake by LPS (100 ng/ml, 

48 h)-stimulated DCs incubated in the absence (control, open bar) or in the presence of either SKF-

96365 (10 µM) or MgTx (1 nM)+ICAGEN-4 (10 µM). *** (p<0.001) indicates significant difference from 

control (ANOVA). (B) Bar diagram representing mean percent (± SEM; n=3-6) of FITC-dextran uptake 

by PGN (25 mg/ml, 48 h)-stimulated DCs incubated in the absence (control, open bar) or in the 

presence of either SKF-96365 (10 µM) or MgTx (1 nM)+ PM (5 µM). ** (p<0.01) and *** (p<0.001) 

indicate significant difference from control (ANOVA). 

 

 

 

3.6.4 DC migration  

The migration of DCs to lymphoid tissues is essential for the activation and coordination of 

immune responses [7]. The influence of CRAC and Kv channel blockers on DC migration 

was exemplary analysed in LPS-stimulated DCs. Figure 26 shows that DC migration in 

response to CCL21, a CCR7 ligand, was markedly impaired when the cells were treated for 

24 hours with LPS in the presence of either SKF-96365 or MgTx and ICAGEN-4, compared 

to untreated, LPS-stimulated cells.  
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Figure 26. SKF-96365 and Kv channel blockers MgTx and ICAGEN-4 impair CCL21-dependent 

                  migration of LPS-stimulated DCs 

Mean fluorescence (RFU, relative fluorescence units, ±SEM; n=3-4) of migrating DCs in response to 

CCL21. DCs were stimulated with LPS (100 ng/ml, 24 h) either in the absence (open bars) or 

presence of either (A) SKF-96365 (10 µM, closed bar) or (B) MgTx (1 nM)+ICAGEN-4 (10 µM) (closed 

bar). ** (p<0.01) and *** (p<0.001) indicate significant difference between both groups (two-tailed 

unpaired t-test). 

 

 

 

3.7 1,25(OH)2D3 and dexamethasone impair the LPS-induced increase in 

[Ca2+]i 

 

Incubation of mouse DCs with dexamethasone (10 nM, overnight, Figure 27A, B) or with 

1,25(OH)2D3, the active form of vitamin D (Figure 27C, D, E), resulted in a strong 

impairement of LPS-induced increase in [Ca2+]i. 1,25(OH)2D3 was added exemplary to the 

DC culture for several timepoints and in different concentrations, whereby an effect on [Ca2+]i 

was observed after 16 hours of incubation with concentrations ≥ 25 nM (Figure 27D, E). To 

test whether also vitamin D derivates are capable to modulate cytosolic Ca2+ concentration, 

DCs were incubated with 100 nM 24,25(OH)2D3 for 24 hours prior to addition of LPS. 

24,25(OH)2D3 had no effect on LPS-induced increase in [Ca2+]i (Figure 27F). 
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Figure 27. Effect of dexamethasone and 1,25(OH)2D3 on LPS-induced increase in [Ca

2+
]i in DCs 

(A) Representative tracing showing [Ca2+]i in Fura-2/AM loaded control and dexamethasone (10 nM, 

overnight)-incubated DCs prior to and following acute addition of LPS (100 ng/ml; white arrow). (B) 

Mean (± SEM) of the peak value (left) and slope (right) of the change in [Ca2+]i following addition of 

LPS to control (n=7, open bars) and dexamethasone-incubated (n=7, closed bars) DCs. * (p<0.05) 

and ** (p<0.01) indicate significant difference between two groups (two-tailed unpaired t-test). (C) 

Representative tracing showing [Ca2+]i in Fura-2/AM loaded control and 1,25(OH)2D3 (100 nM, 24 h)-

incubated DCs prior to and following acute addition of LPS (0.1 µg/ml; white arrow). (D) Mean (± SEM) 

of the peak value (left) and slope (right) of the change in [Ca2+]i following addition of LPS to control 

DCs (n=17, open bars) and to DCs incubated for 4, 16 and 24 h with 1,25(OH)2D3 (100 nM, n=5-19, 

closed bars). * (p<0.05), ** (p<0.01) and *** (p<0.001) indicate significant difference from control DCs 

(ANOVA). (E) Mean (± SEM) of the peak value (left) and slope (right) of the change in intracellular 

Ca2+ following addition of LPS to control DCs (n=17, open bars) and to DCs incubated for 24 h with 

different concentrations of 1,25(OH)2D3 (1-100 nM, n=5-23, closed bars). * (p<0.05), ** (p<0.01) and 

*** (p<0.001) indicate significant difference from control DCs (ANOVA). (F) Mean (± SEM) of the peak 
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value (left) and slope (right) of the change in [Ca2+]i following addition of LPS to control DCs (n=21, 

open bars) and to DCs incubated for 24 h with 100 nM 24,25(OH)2D3 (n=9, closed bars).  

 

 

The inhibitory effect of dexamethasone and 1,25(OH)2D3 could have been due to several 

mechanisms, acting alone or in parallel. First, the entry of extracellular Ca2+ itself could have 

been blunted. Second, the extrusion of cytosolic Ca2+ out of the cell could have been 

increased. And/or third, the cytosolic Ca2+ buffering could have been increased. For cells of 

the collecting ducts and connecting tubules of the kidney it has been shown, that 

1,25(OH)2D3 stimulates, rather than inhibits, Ca2+ entry [149]. Therefore, the possibility of 

1,25(OH)2D3 stimulating Ca2+ extrusion, which could be accomplished by Na+/Ca2+ 

exchangers, was investigated first. 

 

 

 

3.8 Expression of Na+/Ca2+ exchangers in mouse DCs 

 

Because it has never been shown before, whether Na+/Ca2+ exchangers are expressed in 

DCs, their expression was determined using RT-PCR. Figure 28A shows that mouse DCs 

express high amounts of all three K+-independent isoforms, namely NCX1, NCX2, and 

NCX3. Regarding the K+-dependent Na+/Ca2+ exchangers, three out of five isoforms: NCKX1, 

NCKX3, and NCKX5 were strongly expressed in mouse DCs. Additionaly, low expression 

levels of NCKX4 could be detected (Figure 28B). 

 

 

 
Figure 28. Expression of Na

+
/Ca

2+
 exchanger isoforms in mouse DCs 

Agarose gels with PCR products specific for NCX1, NCX2, NCX3 and NCKX1, NCKX3, NCKX4, 

NCKX5 exchangers amplified from cDNA of mouse DCs. 
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3.9 Effect of 1,25(OH)2D3 and dexamethasone on Na+/Ca2+ exchangers 

 

The effect of dexamethasone and 1,25(OH)2D3 on Na+/Ca2+ exchanger expression levels 

was investigated by real time PCR. To this end, total RNA was isolated from mouse DCs 

incubated with dexamethasone (10 nM, overnight) or with 1,25(OH)2D3 (100 nM, 24 h) or left 

untreated. Treatment with dexamethasone resulted in significantly enhanced transcript levels 

for two Na+/Ca2+ exchangers, namely NCX2 and NCX3 (Figure 29). There was no effect of 

dexamethasone treatment on expression levels of K+-dependent Na+/Ca2+ exchangers and 

no effect of 1,25(OH)2D3 on any of these exchangers. 

 

In addition to monitoring the expression levels, the activity of Na+/Ca2+ exchangers was 

investigated using intracellular Ca2+ imaging. Activity of K+-independent Na+/Ca2+ exchangers 

was assessed in K+-free environment only. The effect of 1,25(OH)2D3 was tested in the 

presence of either 5 mM K+ or 40 mM K+ to ensure an activation of both K+-dependent and 

K+-independent Na+/Ca2+ exchangers. Activity of Na+/Ca2+ exchangers could be measured by 

assessing changes in [Ca2+]i, since  removal of external Na+ in the presence of external Ca2+, 

leads to inversion of the direction of Na+/Ca2+ exchanger activity and subsequently to a 

carrier-mediated Ca2+ entry [61].  

 

 

 
Figure 29. Effect of dexamethasone on Na

+
/Ca

2+
 exchanger expression 

Total RNA was isolated from control cells and DCs pretreated with 10 nM dexamethasone overnight, 

and NCX 1-3 mRNA levels were assessed by real-time PCR using MRPS9 mRNA as a reference 

gene. Relative mRNA expression of NCX2 and NCX3 is shown as percent of increase in 

dexamethasone-treated versus control cells (100%, dotted line) in comparison to the reference gene 

(n=12). 
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Figure 30. Activity of Na

+
/Ca

2+
 exchangers in mouse DCs is modulated by dexamethasone and 

                  1,25(OH)2D3  

(A) Representative tracing showing [Ca2+]i in Fura-2/AM loaded control and dexamethasone (Dex, 10 

nM, overnight)-incubated DCs prior to and following removal of external Na+ (0 Na+) in the absesence 

of extracellular K+. (B) Mean (± SEM) of the peak value (left) and slope (right) of the change in [Ca2+]i 

following removal of external Na+ in control (n=8-12) and dexamethasone-treated (Dex, 10 nM, 

overnight) DCs. * (p<0.05) indicates significant difference between the two groups (two-tailed unpaired 

t-test). (C) Representative tracing showing [Ca2+]i in Fura-2/AM loaded control and 1,25(OH)2D3 (100 

nM, 24 hours)-incubated DCs prior to and following removal of external Na+ (0 Na+) in the presesence 

of 40 mM K+. (D) Mean (± SEM) of the peak value (left) and slope (right) of the change in [Ca2+]i 

following removal of external Na+ in the presence of either 5 mM K+ (open bars) or 40 mM K+ (closed 
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bars) in control (n=12-14) and 1,25(OH)2D3 (100 nM, 24 h)-incubated (n=10) DCs. # (p<0.05), ## 

(p<0.01) and ### (p<0.001) indicate significant differences between control and 1,25(OH)2D3-treated 

DCs; ** (p<0.01) and *** (p<0.001) indicate significant differences between 5 mM K+ and 40 mM K+ 

(ANOVA). (E) Representative tracing showing [Ca2+]i in Fura-2/AM loaded DCs treated with either 

1,25(OH)2D3 (100 nM, 24 hours) alone or a combination of 1,25(OH)2D3 and 3’,4’-dichlorobenzamyl 

(DBZ, 10 µM), prior to and following removal of external Na+ (0 Na+) in the presence of 40 mM K (F) 

Mean (± SEM) of the peak value (left) and slope (right) of the change in [Ca2+]i following removal of 

external Na+ in the presence of 40 mM K+ (closed bars) in control and 1,25(OH)2D3 (100 nM, 24 h)-

incubated DCs either in the absence (n=8-10) or in the presence (n=13-14) of DBZ (10 µM). # 

(p<0.05) indicates significant differences between control and DBZ-incubated DCs; ** (p<0.01) and *** 

(p<0.001) indicate significant differences between 1,25(OH)2D3 and 1,25(OH)2D3 + DBZ-treated DCs 

(ANOVA).   

 

 

Removal of external Na+ either in the presence or absence of K+ induced an increase in 

[Ca2+]i in mouse DCs (Figure 30A, C). Overnight treatment of the cells with 10 nM 

dexamethasone significantly enhanced Na+/Ca2+ exchanger activity when measured in the 

absence of extracellular K+ (Figure 30A, B). Likewise, 24 hours treatment of mouse DCs with 

100 nM 1,25(OH)2D3 led to a significantly enhanced Na+/Ca2+ exchanger activity compared to 

untreated DCs when extracellular K+ concentration of 40 mM was used upon the 

measurements (Figure 30C, D). These observation suggests an action of 1,25(OH)2D3 on at 

least one K+-dependent Na+/Ca2+ exchanger NCKX in mouse DCs. In human platelets it has 

been shown that the activity of K+-dependent Na+/Ca2+ exchangers was inhibited by 3’,4’-

dichlorobenzamyl (DBZ) [150]. Therefore, mouse DCs were incubated with 10 µM DBZ for 24 

hours either in the presence or absence of 1,25(OH)2D3. In both cases, the increase in [Ca2+]i 

induced by removal of extracellular Na+ in the presence of extracellular Ca2+ was markedly 

impaired compared to sole treatment with 100 nM 1,25(OH)2D3 (Figure 30E, F).  

 

In addition to Ca2+ imaging experiments, Na+/Ca2+ exchanger activity was further assessed 

using the patch clamp technique. An important feature of all Na+/Ca2+ exchangers is that they 

are electrogenic bidirectional transporters and therefore can be measured 

electrophysiologically. Na+/Ca2+ exchange currents can be assessed by patch clamp by 

switching between the Ca2+ influx and Ca2+ efflux mode [61]. Removing of external Ca2+ in 

the presence of external Na+ leads to efflux of intracellular Ca2+, while removing of external 

Na+ in the presence of external Ca2+ triggers an influx of extracellular Ca2+. Whole-cell 

membrane currents were recorded continuously at -80 mV (Figure 31). Negative currents 

were recorded at negative membrane potentials independently of the bath solutions used. 

Removal of external Na+ in the presence of external Ca2+ induced an upward shift, which was 

reversed by removal of external Ca2+ and readdition of external Na+ (Figure 31A). The 
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outward current was estimated as difference in currents (∆I) elicited by the switch from Na+-

containing, Ca2+-free solutions to Na+-free, Ca2+-containing solutions. Treatment of mouse 

DCs with either 100 nM 1,25(OH)2D3 for 24 hours or 10 nM dexamethasone overnight 

enhanced the Na+/Ca2+ exchange currents when measured in the presence or in the absence 

of 40 mM K+ in the bath, respectively (Figure 31B, C).  

 

 

 
Figure 31. Na

+
/Ca

2+
 exchange currents in mouse DCs are enhanced by dexamethasone or 

                    1,25(OH)2D3  

(A) Whole cell currents in DCs recorded at -80 mV during the switch between external solutions that 

contained 40 mM K+ and either 130 mM Na+ and no Ca2+ (130 Na+ 0 Ca2+) or 2 mM Ca2+ and no Na+ (0 

Na+ 2 Ca2+). The internal solution stimulated Na+ overload and Ca2+ plateau levels (1 µM free Ca2+, 120 

mM Na+, 40 mM K+). Cesium and TEA+ were present in the solutions to block K+ channel currents. (B) 

Mean current density changes (∆I, pA/pF) at -80 mV induced by the switch between external solutions 

containing 130mM Na+, 0 Ca2+, 40 mM K+ and 0 Na+, 2mM Ca2+, 40 mM K+ in DCs treated (closed bar, n 

= 13) and untreated (open bar, n = 12) with 1,25(OH)2D3 (100 nM, 24 h). The internal solution was as in 

A. (C) Mean current density changes (∆I, pA/pF) at -80 mV induced by the switch between external 

solutions containing 130 mM Na+, 0 Ca2+ and 0 Na+, 2 mM Ca2+ in DCs treated (closed bar, n = 5) and 

untreated (open bar, n = 5) with dexamethasone (Dex, 10 nM, overnight). The internal solution was as in 

A. * (p<0.05) and ** (p<0.01) indicate significant difference between two groups (two-tailed unpaired t-

test). 
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3.10 Effect of 1,25(OH)2D3 on LPS-induced Ca2+ entry is counteracted by 

NCKX  

 

As shown above, treatment of mouse DCs for 24 hours with 100 nM 1,25(OH)2D3 reduced 

the LPS-induced increase in [Ca2+]i and enhanced the activity of at least one K+-dependent 

Na+/Ca2+ exchanger NCKX. To find out whether these two observations are associated, 

intracellular Ca2+ measurements upon stimulation with LPS were performed in DCs treated 

with 1,25(OH)2D3 (100 nM, 24 hours) and the blocker of K+-dependent Na+/Ca2+ exchanger 

DBZ (10 µM, 24 hours). Figure 32 illustrates that DBZ counteracted the inhibiting effect of 

1,25(OH)2D3 on LPS-induced increase in [Ca2+]i.  

 

 
 

Figure 32. Effect of 1,25(OH)2D3 on LPS-induced increase in [Ca
2+

]i is sensitive to NCKX-

inhibitor 3’,4’-dichlorobenzamyl (DBZ) 

(A) Representative tracing showing [Ca2+]i in Fura-2/AM loaded DCs treated with 10 µM DBZ alone or 

DBZ + 1,25(OH)2D3 (100 nM) for 24 hours prior to and following acute addition of LPS (100 nM). (B) 

Mean (± SEM) of the peak value (left) and slope (right) of the change in [Ca2+]i following acute addition 

of LPS (100 nM) in control and 1,25(OH)2D3 (100 nM, 24 h)-incubated DCs either in the absence or in 

the presence of DBZ (10 µM) (n=4). # (p<0.05) indicates significant difference between control and 

1,25(OH)2D3-treated DCs; * (p<0.05) indicates significant differences between 1,25(OH)2D3 and 

1,25(OH)2D3 + DBZ-treated DCs (ANOVA). 
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3.11 Effect of 1,25(OH)2D3 on Calbindin-D28K expression in DCs 

 

Besides the action of 1,25(OH)2D3 on Na+/Ca2+ exchangers, which leads to a reduction in 

LPS-induced increase in [Ca2+]i, other mechanisms could operate in parallel to keep the 

cytosolic Ca2+ concentration low. For example, calbindin-D28K facilitates Ca2+ diffusion in the 

kidney and lowers the intracellular Ca2+ concentration to avoid Ca2+ toxicity [67,151]. 

Furthermore, studies in several cell models provided evidence that 1,25(OH)2D3 enhances 

calbindin-D28K expression [152]. Therefore, mouse DCs were analysed for calbindin-D28K 

expression under control conditions and in response to 24 hour treatment with 100 nM 

1,25(OH)2D3. As shown in Figure 33, calbindin-D28K was expressed in mouse DCs, and its 

expression was up-regulated by 1,25(OH)2D3. The data indicate that the effect of 

1,25(OH)2D3 on [Ca2+]i is not only due to enhanced Ca2+ extrusion, but also to enhanced Ca2+ 

buffer capacity.  

 

 

 

Figure 33. Calbindin-D28K is up-regulated by 1,25(OH)2D3 in mouse DCs 

(A) Original Western blot of DCs treated or untreated with 1,25(OH)2D3 (100 nM, 24 h). Protein 

extracts were analyzed by direct Western blotting using antibodies directed to calbindin-D28K. (B) 

Arithmetic mean ±SEM (n = 3) of the abundance of calbindin-D28K as the ratio of calbindin-D28K: α/β-

tubulin. * (p<0.05) indicates significant difference between two groups (two-tailed unpaired t-test).  

 

 

 

3.12 Effect of 1,25(OH)2D3 and dexamethasone on DC maturation and 

cytokine production 

 

It has been shown before, that effects of 1,25(OH)2D3 on the immune system include 

inhibition of DC maturation [115]. Furthermore, it has been shown that DC treatment with 

glucocorticoids affects DC maturation and function [128,131]. The data presented above 
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indicate that treatment of mouse DCs with LPS induced expression of maturation markers 

and production of cytokines. To assess whether this LPS-induced effect can be modulated 

by dexamethasone or 1,25(OH)2D3, the cells were treated for 24 hours with 100 ng/ml LPS in 

the presence or absence of either 10 nM dexamethasone or 100 nM 1,25(OH)2D3. As 

illustrated in Figure 34A-C, both dexamethasone and 1,25(OH)2D3 treatment led to a 

reduction in LPS-induced expression of the maturation markers CD86 and/or MHC class II. 

In addition, LPS-induced production of TNFα and IL-12p70 was markedly reduced in the 

presence of dexamethasone (Figure 34D, E).  
 

 

 
Figure 34. Effect of dexamethasone and 1,25(OH)2D3 on maturation and cytokine production in 

                  mouse DCs 

(A)-(C) Representative FACS histograms depicting the expression of MHC class II and CD86 in LPS-

stimulated (100 ng/ml, 24 hours) mouse DCs in the absence (black line) and in the presence (grey 

line) of dexamethasone (10 nM, 24 hours, A,B) or 1,25(OH)2D3 (100 nM, 24 hours, C). (D), (E) DCs 

were incubated with LPS (100 ng/ml) in the absence (open bars) or in the presence of dexamethasone 

(10 nM, closed bars). After 4 hours (C) or 24 hours (D) supernatants were collected to measure TNF-α 

(C) or IL-12p70 (D), respectively, by ELISA. The results are representative for 4-7 independent 

experiments. Each experiment was performed in duplicate; values represent the mean ± SEM of 

duplicates, * (p<0.05) and *** (p<0.001) show differences from untreated (control) group, two-tailed 

unpaired t-test. 
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3.13 The inhibitory effect of dexamethasone and 1,25(OH)2D3 is abolished 

by blockers of Na+/Ca2+ exchangers   

 

Since the inhibition of NCKX by DBZ was shown above to restore the LPS-induced increase 

in [Ca2+]i, it was further tested whether the effect of 1,25(OH)2D3 and dexamethasone on DC 

maturation could be influenced by blocking Na+/Ca2+ exchangers. Treatment of mouse DCs 

with 100 nM 1,25(OH)2D3 in the presence of the NCKX blocker DBZ (10 µM) restored the 

1,25(OH)2D3-induced reduction in CD86 expression (Figure 35A). Similarly, the 

dexamethasone-induced decrease of CD86 expression was significantly blunted in the 

presence of the NCX blocker KB-R7943 (10 µM, Figure 35B). The data indicate that K+-

dependent and K+-independent Na+/Ca2+ exchangers in DCs are at least partially involved in 

1,25(OH)2D3- and dexamethasone-mediated suppression of DC maturation, respectively.  

 

 

 
Figure 35. Effect of dexamethasone and 1,25(OH)2D3 on CD86 expression is sensitive to 

                    blockers of Na
+
/Ca

2+
 exchangers 

(A) Arithmetic means ± SEM (n = 4) of CD86 expression in LPS (100 ng/ml, 24 hours) -stimulated DCs 

cultured without (control, white bar) or with 1,25(OH)2D3 (100 nM, 24 hours) in the absence (black bar) 

or in the presence of 3’,4’-dichlorobenzamyl (DBZ, 10 µM, grey bar). *** (p<0.001) indicates difference 

from control DCs, ### (p<0.001) indicates difference from 1,25(OH)2D3-treated cells (ANOVA). (B) 

Arithmetic means ± SEM (n = 6) of CD86 expression in LPS (100 ng/ml, 24 h) -stimulated DCs 

cultured without (control, white bar) or with dexamethasone (Dex, 10 nM, 24 h) in the absence (black 

bar) or in the presence of KB-R7943 (10 µM, grey bar). *** (p<0.001) indicates difference from control 

DCs, ### (p<0.001) indicates difference from dexamethasone-treated cells (ANOVA). 

 



Discussion 

 

70 

4 Discussion 

 

4.1 DC culture 

 

The described method to culture mouse bone marrow-derived dendritic cells (BMDCs) in the 

presence of GM-CSF as external factor is adopted from Inaba et al. [142] and yields a DC 

culture with a purity of approximately ~80-85%. Cell culture purity is a critical factor for in vitro 

experiments such as the determination of the expression of a new protein. Many different 

methods and approaches exist to generate DC cultures, e.g. generation of DCs out of 

peripheral blood monocytes in the presence of GM-CSF and IL-4 [153], IFNα [154], or IL-15 

[155], additional activation of the cells with anti-CD3-specific antibody after prior cultivation in 

the presence of GM-CSF and IL-4 [156], or usage of Transwell chambers based on a one-

way migration of blood monocytes through a layer of human umbilical vein endothelial cells 

in the absence of endogenous factors [157]. Regarding generation of DC cultures out of 

mouse bone marrow, as it has been done in the present work, protocols are available using 

not only GM-CSF but also IL-4 as external factor [158]. However, all of the stated 

approaches use different external factors and/or progenitor cells as in the present work, 

which may result in altered DC properties. Possible changes in the culturing protocol to 

increase DC culture purity therefore should not affect the external factors or the progenitor 

cells used, but the culturing protocol itself. The method of Lutz et al. [159] describes a 

possibility to generate large quantities of highly pure DCs from mouse bone marrow and 

involves, among other things, an increased starting culture density, a decreasing dose of 

GM-CSF over the culturing, and a culture period extended to 10-12 days [159]. Besides a 

higher purity of the DC culture, which increases the reliability of the data, the yield of mature 

DCs is higher as with the standard method of Inaba et al. [142], allowing a higher 

experimental throughput.  

 

 

 

4.2 Assessment of changes in [Ca2+]i  

 

The present data on changes in [Ca2+]i have been obtained by fluorescence optics. LPS- and 

PGN-induced increases in [Ca2+]i occur transient, which means that cytosolic Ca2+ is 

subsequently extruded by uptake into the intracellular stores and extrusion across the cell 

membrane. However, subsequent localized oscillatory increases in [Ca2+]i can not be ruled 

out, since they may escape detection by determination of bulk cytosolic Ca2+ but may 
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account for long-lasting effects of Ca2+ signaling, such as cell proliferation [160,161] and 

maturation [162]. Ca2+ oscillations require the entry of extracellular Ca2+, whereby Ca2+ 

release from internal stores amplifies the external Ca2+ signal [163]. They have been 

observed in a multitude of cell types and tissues, e.g. kidney [164], neurons [163,165], and 

oocytes [162], and regulate a wide variety of functions, among which are vasoconstriction, 

gene transcription, apoptosis, platelet activation, and neuronal function [160,164,166]. 

 

 

 

4.3 LPS- and PGN-induced Ca2+ entry in mouse DCs 

 

The present work investigated the effects of the TLR ligands LPS and PGN on cytosolic Ca2+ 

activity ([Ca2+]i) in BMDCs. Treatment with the respective compounds resulted in a rapid 

transient increase in [Ca2+]i. The peak and slope of this increase were significantly blunted, 

but not completely abolished, in the absence of extracellular Ca2+ or in the presence of SKF-

96365, a blocker of CRAC channels [74]. These findings indicate that both the LPS- and the 

PGN-induced increase in [Ca2+]i are partially due to Ca2+ influx through Ca2+ channels in the 

plasma membrane and in part due to Ca2+ release from intracellular stores. The activation of 

Ca2+ entry in response to store depletion is a characteristic feature of CRAC channels.  

 

It has been demonstrated that, similar to other immune cells, CRAC channels display the 

major entry pathway for Ca2+ in DCs [78]. Hsu et al. further demonstrated that Ca2+ release-

activated Ca2+ currents (ICRAC) could be activated by store depletion induced by dialyzing the 

cytosol with inositol 1,4,5-trisphosphate (IP3) and with high concentration of the Ca2+ chelator 

BAPTA, which chelates Ca2+ that leaks from the stores and hence prevents store refilling. 

These findings are in line with the data presented here, showing the same effect by blocking 

SERCA pumps in the ER using thapsigargin, thereby preventing store refilling. In addition, 

LPS and PGN have recently been shown to induce PLCγ2 phosphorylation, resulting in 

generation of IP3 and subsequent mobilization of Ca2+ from the ER in BMDCs [167]. In 

addition, the present data show that the effect of PGN on [Ca2+]i is dramatically reduced in 

DCs derived from tlr2-/- mice, revealing that TLR2 is one of the main receptors for PGN in 

mouse DCs. Taken together, the present results indicate that LPS and PGN activate CRAC 

channels and therefore reveal an important mechanism of channel activation by TLR ligands. 

In the present work, SKF-96365 was used to inhibit CRAC channels. However, the blocker 

appears to be equally potent in blocking TRP and voltage-gated Ca2+ channels [74]. 

Therefore, SKF-96365 can not be regarded as a specific CRAC channel blocker. However, 
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this problem may be solved in the nearer future, since the molecules involved in store-

operated Ca2+ entry (SOCE) have been identified recently. The identification of these 

molecules should contribute to the development of potent and specific inhibitors of the CRAC 

channel. Besides CRAC channels, the canonical TRP channels TRPC have also been 

reported to increase [Ca2+]i through coupled plasma membrane receptor stimulation or, 

probably, through store-depletion in different cell types including lymphocytes. But a direct 

participation of TRPCs in SOCE remains controversial, and moreover, there are no obvious 

reports of store-operated TRPC Ca2+ currents in lymphocytes [168]. However, nothing has 

been described so far about the function of TRPC channels in DCs. 

 

Voltage-gated K+ channels such as Kv1.3 are involved in maintaining the membrane 

potential and are activated upon membrane depolarization. Furthermore, they potentiate the 

driving force for CRAC-mediated influx of positively charged Ca2+ and thereby display indirect 

modulators of [Ca2+]i in lymphocytes [168,169]. Thus, the influence of Kv channels on Ca2+ 

entry in DCs was explored by using a combination of Kv1.3 and Kv1.5 channel blockers. The 

presence of Kv1.3 and Kv1.5 in DCs has recently been demonstated in human blood-derived 

DCs [92] and mouse BMDCs [93]. As a result, DC Kv channels sustained the increase in 

[Ca2+]i upon LPS and PGN stimulation, and this effect was most probably due to the 

maintenance of a negative membrane potential [170] and provision of the necessary 

electrical driving force for Ca2+ entry through CRAC channels. To quantify whether either 

Kv1.3 or Kv1.5 alone are sufficient to maintain the membrane potential and thereby the 

driving force for Ca2+ entry in response to TLR activation, blockers of Kv1.3 and Kv1.5 were 

used separately. It could be shown that the inhibitory effect on [Ca2+]i was most prominent 

when both blockers were used in combination. Nevertheless, Kv channels are not the only 

channels maintaining the electrical driving force for Ca2+ entry. The nonselective cation 

channel TRPM4 was shown to control Ca2+ homeostasis in T lymphocytes [171] and mast 

cells [172]. TRPM4 was recently demonstrated to be also expressed in DCs, where it 

controls chemokine-dependent DC migration. It induces membrane depolarization by 

allowing the entry of Na+, a condition decreasing the driving force for Ca2+ entry [89].   
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4.4 Role of CRAC and Kv channels in DC maturation and function 

 

It has been further shown here that CRAC channels are involved in LPS- and PGN-induced 

increase in [Ca2+]i and subsequent production of cytokines. Since the cytokine profile 

produced by a cell depends, among others, on the type of stimuli [23],  the production of 

TNFα and IL-6 was determined following LPS stimulation, while TNFα and IL-10 were 

assessed when DCs were stimulated with PGN. PGN-mediated Ca2+ entry has already been 

suggested to upregulate cytokine production in DCs and macrophages [96]. Furthermore, 

CRAC channels have been suggested to be important for DC maturation, since activation of 

ICRAC with thapsigargin was shown to induce maturation of mouse myeloid DCs [78], human 

peripheral blood monocytes and HL-60 cells [77]. Moreover, addition of calcium ionophore to 

human monocytes or immature DCs leads to acquisition of many properties characteristic of 

activated myeloid DCs [97]. Therefore, the role of CRAC channels in LPS- and PGN-induced 

cytokine production has been investigated. Inhibition of CRAC channels by SKF-96365 

impaired the secretion of TNFα and IL-6 in response to LPS, and of TNFα and IL-10 in 

response to PGN treatment. Moreover, LPS-induced upregulation of MHC class II expression 

and DC migration in response to CCL21 were shown to depend on CRAC channel activity. In 

addition, the phagocytic capacity of DCs stimulated for 48 hours with LPS or PGN was 

increased in the presence of CRAC channel blockers.  

 

Besides CRAC channels, Kv channels have also been reported to play a role in DC 

maturation and cytokine production [92,93]. They are similarly involved in the activation and 

proliferation of leukocytes [140]. Kv1.3 constitutes the dominant K+ conductance of resting T 

lymphocytes [173]. Inhibition of Kv1.3 channels induces membrane depolarization and 

prevents the activation response of human T lymphocytes [140]. Moreover, Kv channels are 

regulated during proliferation and activation of macrophages [174]. Therefore, the present 

work investigated the involvement of Kv channels in LPS- and PGN-induced DC function by 

using Kv channel blockers. Inhibition of Kv channels blunted the secretion of TNFα, IL-6 and 

IL-10 in response to LPS or PGN. Moreover, LPS-induced upregulation of MHC class II 

expression and DC migration in response to CCL21 were shown to depend on Kv channel 

activity. In addition, the phagocytic uptake of FITC-dextran by DCs stimulated for 48 hours 

with LPS or PGN was shown to depend on Kv channel activity. At the sites of pathogen entry 

DCs “sample” their environment by phagocytosis, initiating specific immune responses, when 

they recognize microbes or tissue damage [6]. The efficient uptake of pathogens is thus 

essential for generation of immunity against an infectious agent.  
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Interestingly, both CRAC and Kv channel blockers enhanced antigen uptake only in PGN- 

and LPS-stimulated cells, which upon LPS- or PGN-induced maturation lost part of their 

phagocytic capacity. In immature cells that are efficient in antigen uptake the channel 

blockers did not influence phagocytosis. Ca2+ entry is required for the stimulation of DC 

maturation [77,96,97], and maturation leads in turn to decreased phagocytosis [6,51]. 

 

It was further demonstrated that blocking of both CRAC and Kv channels in DCs has no 

effect on the IκBα phosphorylation, which is in turn known to regulate the transcription factor 

NF-κB. Ca2+ activates opposing nuclear signaling pathways in different cell types and thereby 

may up- or downregulate NF-κB [175-179]. In T lymphocytes and mesangium cells, phorbol-

12-myristate-13-acetate (PMA)-induced activation of NF-κB was stimulated in the presence 

of Ca2+ ionophore [175,178], while Ca2+ channel blockers inhibited this effect [178]. NF-κB 

translocation to the nucleus in osteoblasts was shown to depend on intracellular Ca2+ release 

[176]. Moreover, Ca2+ chelation by EGTA inhibited NF-κB activation in retina and microglia 

[177,179], an effect linked to the production of IL-6 [179]. In contrast, in epithelial cells, NF-

κB is repressed by Ca2+ signaling [175].  

 

The role of SOCE in DCs remains poorly understood, and there are several important 

questions still to be solved. In contrast, the role of SOCE in lymphocytes is well established, 

where it upregulates nuclear factor of activated T-cells (NFAT) [82]. The importance of this 

process is illustrated by patients with a rare form of hereditary severe combined 

immunodeficiency (SCID). T lymphocytes from these patients show multiple cytokine 

deficiency and a selective inability to activate NFAT resulting from a pronounced reduction in 

ICRAC [82]. In calcium ionophore-treated HL-60 cells, which can under certain conditions 

differentiate to monocyte/macrophage-like cells, antagonists of the protein phosphatase 

calcineurin, that renders NFAT active, have been shown to attenuate expression of 

costimulatory molecules [77]. NFAT activation in DCs was demonstrated upon stimulation of 

the beta-glucan receptor Dectin-1, a C-type lectin, by zymosan [180]. Dectin-1, similar to T 

cell receptor (TCR) and B cell receptor (BCR), has an immunoreceptor tyrosine-based 

activation motif (ITAM) in its intracellular tail and thus, it seems likely, that NFAT activation in 

DCs occurs by similar mechanisms to those used in lymphocytes. NFAT activation was 

shown to regulate IL-2, IL-10 and IL-12 p70, but not TNFα production in zymosan-stimulated 

DCs [180]. Moreover, a recent study has demonstrated that LPS-induced Ca2+ mobilization in 

DCs leads to calcineurin-dependent nuclear translocation of NFAT and production of NFAT-

dependent cytokines, such as IL-2 [70]. Moreover, LPS-mediated activation of the NFAT 

pathway was required to induce apoptotic death of terminally differentiated DCs. 
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Consequently, blocking this pathway in vivo causes prolonged DC survival and an increase 

in T cell priming capability [70]. 

 

 

 

4.5 Regulation of Ca2+ homeostasis by 1,25(OH)2D3 and dexamethasone 

 

Physiological Ca2+ signaling occurs through Ca2+ oscillations rather than through a long-

lasting increase or decrease in [Ca2+]i. Therefore, the activity of signal terminators such as 

ER- and plasma membrane-localized Ca2+ pumps (SERCA and PMCA, respectively), 

Na+/Ca2+ exchangers in the plasma membrane, and mitochondrial and cytosolic buffer 

proteins, is extremely important for determination of duration, amplitude and intracellular 

location of a particular Ca2+ signal [141]. A sustained increase of cytosolic Ca2+ would be 

detrimental, as it would induce apoptosis [181,182]. It is shown here that mouse BMDCs 

express Na+/Ca2+ exchangers for rapid extrusion of cytosolic Ca2+. Their expression has 

been reported before in other immune cells such as human lymphocytes [183], mast cells 

[61,184], neutrophils [185], human macrophages and monocytes [61,63]. NCX and NCKX 

have been furthermore reported to be expressed in non-excitable cells such as epithelial 

cells [186] and platelets [187]. Moreover, the carriers have been shown to terminate the Ca2+ 

signal following stimulation of Ca2+ entry in a variety of excitable cells including neurons 

[59,188], the heart [189-192], retinal rod photoreceptors and smooth muscle cells [62].  

 

It could be demonstrated that 1,25(OH)2D3 and the glucocorticoid dexamethasone blunt the 

increase of [Ca2+]i following LPS treatment. The present data further reveal mechanisms 

accounting for the altered Ca2+ response, among which are Na+/Ca2+ exchangers. The 

activity of these carriers was measured by assessing changes in [Ca2+]i. It has been shown 

that at least one K+-dependent Na+/Ca2+ exchanger is regulated by 1,25(OH)2D3, while the 

hormone did not act on K+-independent Na+/Ca2+ exchangers. This was indicated by the 

observation that 1,25(OH)2D3 had no effect on Na+/Ca2+ exchanger activity in the absence of 

extracellular K+. Elevating extracellular K+ concentration to 40 mM only slightly increased the 

observed effect on [Ca2+]i in untreated control cells, but dramatically enhanced cytosolic Ca2+ 

concentration in 1,25(OH)2D3-treated cells. In contrast, the effect of dexamethasone did not 

depend on extracellular K+ concentration, indicating an action on K+-independent Na+/Ca2+ 

exchangers. The finding was further confirmed by showing an upregulation of transcription 

levels of NCX2 and NCX3 in dexamethasone-treated DCs. There was no effect of 

dexamethasone on transcript levels of NCX1. The data are in line with recent findings in 
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duodenum, where mRNA levels of NCX1 were not altered by dexamethasone [193]. 

However, in kidney cells, dexamethasone treatment has been shown to increase NCX1 

transcript levels [194], pointing to a cell type-specific action of dexamethasone on Na+/Ca2+ 

exchangers. 

 

The mechanism underlying the immunosuppressive effects of glucocorticoids in T 

lymphocytes has recently been shown to involve modulation of Ca2+ signaling via down-

regulation of IP3 receptors. Upon strong TCR stimulation, dexamethasone converted the Ca2+ 

response from transient increase to sustained oscillations. In contrast, Ca2+ oscillations 

induced by weak TCR stimulation were decreased by dexamethasone, which was associated 

with the inhibition of IL-2 induction. Those effects were rapid and mediated by nongenomic 

inhibition of the Src family kinase Lck [195], whereas the effects of dexamethasone 

presented in this study were largely due to a strong transcriptional activation of NCX. 

 

Enhanced Na+/Ca2+ exchanger activity accelerates extrusion of Ca2+ and thereby blunts the 

increase of cytosolic Ca2+ concentration following stimulation of DCs with LPS. As discussed 

above, [Ca2+]i regulates a variety of DC functions, including maturation and production of 

inflammatory cytokines [61,77,95,167,196], thereby regulating DC-dependent immune 

responses. Previous studies further report an inhibitory effect of 1,25(OH)2D3 on DC 

differentiation and maturation as well as on IL-12 production [110-112,197]. In the present 

study, it has been demonstrated that the NCKX blocker 3’,4’-dichlorobenzamyl reversed the 

effect of 1,25(OH)2D3 on [Ca2+]i and subsequent CD86 expression. The data provide a link 

between 1,25(OH)2D3-induced activity of Na+/Ca2+ exchangers and LPS-induced DC 

maturation. Similarly, the NCX blocker KB-R7943 at least partially reversed the inhibitory 

effect of dexamethasone on DC maturation, which is part of the events underlying the 

immunosuppressive effects of glucocorticoids. However, the remaining, KB-R7943-

insensitive decline of CD86 expression following dexamethasone treatment may be due to a, 

perhaps, more strong K+-dependent Na+/Ca2+ exchanger activity. Another explanation could 

be an incomplete inhibition of the Na+/Ca2+ exchanger by KB-R7943. 

 

It has been shown further that 1,25(OH)2D3 increases the expression of calbindin-D28K in 

mouse DCs, thereby providing another mechanism accounting for the blunted LPS-induced 

increase in [Ca2+]i in the presence of 1,25(OH)2D3. Calbindin-D28K eagerly binds cytosolic 

Ca2+ and thus serves as an intracellular Ca2+ buffer. In Ca2+ transporting epithelia, the 

binding of Ca2+ to calbindin-D28K is critically important for the cytosolic transport of Ca2+ from 

the apical to the basolateral cell membrane [67]. At the present low cytosolic Ca2+ 

concentration the intracellular diffusion of free Ca2+ would not be sufficiently fast for the 
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transepithelial Ca2+-transport. In DCs, calbindin-D28K could serve to weaken the alterations 

of [Ca2+]i following stimulation of Ca2+ entry. Taken together, the effects of 1,25(OH)2D3 on 

the Na+/Ca2+ exchanger and calbindin-D28K blunt the LPS-induced increase of [Ca2+]i. 

Accordingly, following treatment of DCs with 1,25(OH)2D3, LPS leads to an only slight 

increase of [Ca2+]i. As reported in previous studies 1,25(OH)2D3 inhibits the differentiation 

and maturation of DCs as well as IL-12 production [110,111,197,198]. Thus, the suppressive 

effect of 1,25(OH)2D3 could be at least partially due to its effect on cytosolic Ca2+ in DCs.  

 
Effects of glucocorticoids on Ca2+ signaling have previously been reported in other cell types. 

In duodenum, glucocorticoids down-regulate genes encoding for Ca2+ transport proteins, 

resulting in impaired Ca2+ absorption. In particular, treatment of mice with dexamethasone for 

5 days resulted in decreased expression of transient receptor potential vanilloid 6 (TRPV6) 

channels with a subsequent reduction in Ca2+ entry across the apical membrane and thus 

reduces intestinal Ca2+ absorption. In addition, the expression of the Ca2+ binding protein 

calbindin-D9K was decreased, an effect abolishing intracellular Ca2+ transport. However, 

treatment with dexamethasone for shorter timepoints (e.g. 24 hours) induced duodenal 

transcript levels of TRPV6, calbindin-D9K and PMCA. A similar action of dexamethasone 

was reported in kidney cells, with increased transcriptional levels of TRPV5, calbindin-D9K, 

and NCX1 after 24 hours of treatment, while renal transcript levels of TRPV6 were reduced 

following treatment with the glucocorticoid [194]. In contrast, in aortic myocytes, 

dexamethasone was shown to decrease NCX expression and activity [199,200]. This 

different regulation of NCX by glucocorticoids in distinct tissues may be explained by the 

model of Lee et al. [201]. According to this model, expression of the same NCX protein is 

driven by at least three different tissue-specific promoters, allowing the exchangers to 

respond independently to specific demands of different environments [201]. Thus, tissue or 

cell type specific promoter elements may at least partially account for the distinct regulation 

of NCX expression in response to glucocorticoids.  

 

 

 

4.6 Conclusions and future experiments 

 

Regarding the initially determined aim of the present work, the nature of the LPS- and PGN-

induced Ca2+ signal in mouse DCs has been characterized. DCs respond to LPS- and PGN-

stimulation with a fast increase in [Ca2+]i. This increase is accomplished by both Ca2+ release 

from intracellular stores and Ca2+ influx through CRAC channels, with the latter being 

dependent on the activity of Kv channels. Inhibition of either CRAC or Kv channels leads to 
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marked changes in DC functions, including changes in maturation, phagocytosis, migration 

and cytokine production. The data contribute to an increasing body of evidence that Ca2+-

mediated signal transduction pathways serve a central regulatory role in DC responses to 

diverse antigens, including TLR ligands, intact bacteria, and microbial toxins. Moreover, it 

could be demonstrated for the first time that mouse BMDCs express Na+/Ca2+ exchangers, 

and that the carriers are regulated by 1,25(OH)2D3 and dexamethasone. In addition, 

1,25(OH)2D3 further modulates the Ca2+ signal by increasing calbindin-D28K expression. In 

respect to the pivotal role of Ca2+ signaling in the regulation of DC function, the effects of 

1,25(OH)2D3 and dexamethasone on [Ca2+]i are likely to play a critical role in their known 

immunosuppressive effects. However, the effect of 1,25(OH)2D3 and dexamethasone on Ca2+ 

entry through CRAC channels remains to be determined. Entry of extracellular Ca2+ displays 

a third possible mechanism besides Ca2+ extrusion and Ca2+ buffering how the two 

compounds may modulate [Ca2+]i. It is known, however, from chick skeletal muscle cells that 

1,25(OH)2D3 regulates Ca2+ entry into these cells by inducing (and not inhibiting) an initial 

IP3-dependent Ca2+ mobilization from internal stores with subsequent activation of CRAC 

channels [202]. Similar results have been obtained in jejunal enterocytes, where 1,25(OH)2D3 

was shown to promote Ca2+ entry via CRAC channels [203]. 

 

The experiments focussing on the effects of dexamethasone on DC functions could also be 

extended and proved further. For example, the effect of dexamethasone treatment on NCX 

protein expression could be additionaly investigated, since changes in the expression levels 

of NCX2 and NCX3 do not necessarily indicate a production or more abundant production of 

the respective proteins. Furthermore, the precise function of Na+/Ca2+ exchangers in mouse 

DCs is not clear. The data on CD86 expression describing the effect of the NCX blocker KB-

R7943 on dexamethasone-induced suppression of DC maturation and function would be 

further supported by performing additional functional readouts for DC maturation and 

function. The missing link between NCX2/NCX3 and the dexamethasone-induced increase in 

Na+/Ca2+ exchange can be established by either a specific blocker or small RNA interference 

experiments.  

 

 

 

4.7 Clinical Relevance 

 

SOCE has been observed in the majority of both immature and mature DCs, pointing to its 

importance in the regulation of a range of DC functions, e.g. maturation, chemotaxis, and 



Discussion 

 

79 

migration to lymphoid tissues [78]. Since DCs serve as an important link between innate and 

adaptive immune responses [6,132], activation of DC CRAC channels in response to 

bacterial components such as LPS or PGN may play a critical role in a range of immune 

responses by modulating DC function.  

 

Regarding the pivotal role of Ca2+ signaling in the regulation of DC function, the observed 

effects of 1,25(OH)2D3 and dexamethasone are likely to play a critical role in the known 

immunosuppressive effect of the two compounds. Vitamin D-deficiency is linked to several 

autoimmune diseases. DCs express the vitamin D receptor (VDR) and are primary targets for 

the immunomodulatory activity of 1,25(OH)2D3 [110]. Therefore, 1,25(OH)2D3 as well as 

synthetic VDR agonists with immunomodulatory and anti-inflammatory properties could be 

used to modulate DC function and thereby the progression and development of a variety of 

autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type 1 diabetes, or 

inflammatory bowel disease [204]. These considerations are supported by the fact that 

supplementation with 1,25(OH)2D3 not only prevented, but also reduced experimental 

autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, in mice 

[118,119]. 1,25(OH)2D3 alters DC and T lymphocyte function and regulates macrophages in 

EAE [205]. That the effects of 1,25(OH)2D3 may at least partially involve modulation of CRAC 

channel activity is supported by the effects observed in chick sceletal muscle cells [202] and 

jejunal enterocytes [203], as discussed earlier. Regarding glucocorticoids, it has been 

suggested from experiments in Jurkat T lymphocytes, that dexamethasone indirectly 

modulates Ca2+ entry through CRAC channels by inhibiting Kv channels [206]. Therefore, the 

anti-inflammatory and immunomodulatory effects of glucocorticoids may involve modulation 

of CRAC channel activity and play a role in treatment and prevention of rheumatoid and 

inflammatory diseases. Another important field of application could be SCID. It could be 

shown recently that DCs, previously exposed to a combination of dexamethasone and 

1,25(OH)2D3, are able to prevent experimental inflammatory bowel disease in mice suffering 

from SCID [207]. It is likely that this effect is at least partially due to CRAC channel activity, 

since SCID patients were shown to be defective in SOCE and CRAC channel function [82]. 
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5 Summary 

 

Dendritic cells (DCs) are antigen-presenting cells that provide a link between innate and 

adaptive immunity. Ca2+-mediated signal transduction pathways play a central regulatory role 

in DC responses to diverse antigens, including Toll-like receptor (TLR) ligands, intact 

bacteria, and microbial toxins. However, the mechanisms leading to increased [Ca2+]i upon 

DC activation are poorly understood. In the present study, treatment of mouse DCs with 

either lipopolysaccharide (LPS, 100 ng/ml) or peptidoglycan (PGN, 25 µg/ml) resulted in a 

rapid increase in [Ca2+]i which was due to Ca2+ release from intracellular stores and influx of 

extracellular Ca2+ across the cell membrane. In DCs isolated from tlr2-/- mice the effect of 

PGN on [Ca2+]i was dramatically impaired. In whole-cell voltage-clamp experiments, LPS-

induced currents exhibited properties similar to ICRAC. These currents were highly selective for 

Ca2+, exhibited a prominent inward rectification of the current-voltage relationship, an 

anomalous mole fraction and a fast Ca2+-dependent inactivation. Furthermore, the LPS- and 

PGN-induced incrase in [Ca2+]i was dependent on voltage-gated K+ (Kv) channel activity. 

MHC class II expression, CCL21-dependent migration, and cytokine production decreased, 

whereas phagocytic activity increased in LPS- or PGN-stimulated DCs in the presence of 

both Kv and CRAC channel blockers. Activation of the transcription factor nuclear factor κB 

(NF-κB), assessed as phosphorylation of inhibitory molecule IκB, was not affected by CRAC 

or Kv channel blockers. 

 

The activity of DCs is suppressed by glucocorticoids, which induce potent 

immunosuppressive effects. Furthermore, DCs are primary targets of 1,25-dihydroxyvitamin 

D3 (1,25(OH)2D3), a secosteroid hormone, that, in addition to its well-established action on 

Ca2+ homeostasis, possesses immunomodulatory properties. Nothing is known about the 

effects of 1,25(OH)2D3 and glucocorticoids on Ca2+ channels and transporters in DCs. The 

LPS-induced increase in [Ca2+]i in mouse DCs was significantly blunted by prior incubation of 

the cells with either 1,25(OH)2D3 (100 nM, 24 h) or dexamethasone (10 nM, overnight). It 

could be further shown that DCs express both, K+-independent (NCX1-3) and K+-dependent 

(NCKX1, 3-5), Na+/Ca2+ exchangers. The activity of Na+/Ca2+ exchangers was assessed by 

removal of extracellular Na+ in the presence of external Ca2+, a maneuver that triggers the 

entry of extracellular Ca2+ and resulted in a measurable, rapid transient increase in [Ca2+]i 

and an outwardly rectifying current measured in whole cell patch-clamp experiments. Both 

1,25(OH)2D3 and dexamethasone enhanced the increase in [Ca2+]i and the outward current 

following removal of external Na+. While the effect of 1,25(OH)2D3 affected K+-dependent 

Na+/Ca2+ exchangers, the action of dexamethasone was directed against K+-independent 

Na+/Ca2+ exchangers. Furthermore, dexamethasone increased the transcript levels of NCX2 
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and NCX3. Thus, 1,25(OH)2D3 and dexamethasone blunt the LPS-induced increase in [Ca2+]i 

by stimulation of Na+/Ca2+ exchanger-dependent Ca2+ extrusion. In addition, 1,25(OH)2D3 

further modulated [Ca2+]i by upregulating the Ca2+-binding protein calbindin-D28K and 

thereby the Ca2+ buffer capacity of the cells. The NCKX blocker 3’,4’-dichlorobenzamyl 

reversed the inhibitory effect of 1,25(OH)2D3 on LPS-induced increase of [Ca2+]i. Expression 

of the costimulatory molecule CD86 was down-regulated by 1,25(OH)2D3 and 

dexamethasone, an effect reversed by 3’,4’-dichlorobenzamyl and KB-R7943, blockers of 

NCKX and NCX, respectively. 
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6 Zusammenfassung 

 

Dendritische Zellen (DZ) sind Antigen-präsentierende Zellen und stellen ein Bindeglied 

zwischen angeborener und erworbener Immunität dar. Ca2+-vermittelte 

Signaltransduktionswege spielen eine zentrale Rolle bei der Regulation der Immunantwort 

von DZ auf verschiedene Antigene, einschließlich Toll-ähnlichen Rezeptor-Liganden, 

intakten Bakterien und mikrobiellen Toxinen. Die zugrundeliegenden Mechanismen die bei 

Aktivierung von DZ zu einem Anstieg der intrazellulären Calciumkonzentration [Ca2+]i führen, 

sind jedoch noch nicht vollständig aufgeklärt. Behandlung von DZ der Maus mit 

Lipopolisaccharid (LPS, 100 ng/ml) oder Peptidoglykan (PGN, 25 µg/ml) führte zu einem 

raschen Anstieg der [Ca2+]i, welcher sich aus der Freisetzung von Ca2+ aus intrazellulären 

Speichern sowie dem Einstrom von extrazellulärem Ca2+ durch die Plasmamembran 

zusammensetzte. Der Effekt von PGN auf [Ca2+]i war deutlich beeinträchtigt, wenn die DZ 

von TLR2-defizienten Mäusen isoliert wurden. Patch-Clamp-Experimente in der Whole-Cell-

Konfiguration zeigten, dass die durch LPS induzierten Ströme Übereinstimmungen mit ICRAC 

aufweisen. Die Ströme waren hoch selektiv für Ca2+ und wiesen eine deutliche 

Einwärtsausrichtung der Strom-Spannungs-Beziehung, eine anormale Molfraktion sowie eine 

schnelle Ca2+-abhängige Inaktivierung auf. Weiterhin war der LPS- und PGN-induzierte 

Anstieg der [Ca2+]i von der Aktivität spannungsregulierter K+ (Kv) Kanäle abhängig. Die 

Expression von MHC Klasse II-Molekülen, CCL21-abhängige Migration sowie die Produktion 

von Zytokinen durch DZ waren in der Gegenwart von Blockern für Kv- und CRAC-Kanäle 

reduziert, während die phagozytische Aktivität der Zellen erhöht war. Die Aktivierung des 

Transkriptionsfaktors nuclear factor κB (NF-κB), erfasst als Phosphorylierung des 

inhibitorischen Moleküls IκB, war in der Gegenwart von Kv- und CRAC-Blockern nicht 

verändert. 

 

Glucocorticoide haben eine starke immunosuppressive Wirkung und hemmen die Aktivität 

von DZ. Weiterhin sind DZ primäre Angriffspunkte für das Secosteroidhormon 1,25-

Dihydroxyvitamin D3 (1,25(OH)2D3), welches zusätzlich zu seiner gut etablierten Wirkung auf 

den Ca2+-Haushalt immunomodulatorische Eigenschaften besitzt. Über die Effekte von 

1,25(OH)2D3 und Dexamethason auf Ca2+-Kanäle und -Transporter in DZ ist bisher nichts 

bekannt. Der LPS-induzierte Anstieg der [Ca2+]i in DZ der Maus wurde durch 

vorausgegangene Inkubation der Zellen mit 1,25(OH)2D3 (100 nM, 24 h) oder Dexamethason 

(10 nM, über Nacht) signifikant gehemmt. Weiterhin konnte gezeigt werden, dass DZ sowohl 

K+-unabhängige (NCX1-3) als auch K+-abhängige (NCKX 1, 3-5) Na+/Ca2+-Austauscher 

exprimieren. Die Aktivität dieser Na+/Ca2+-Austauscher konnte unter Entfernung der 

extrazellulären Na+-Ionen bei gleichzeitiger Anwesenheit von Ca2+-Ionen erfasst werden. Der 
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Vorgang hatte einen Ca2+-Einstrom zufolge, der zu einem messbaren, vorübergehenden 

raschen Anstieg der [Ca2+]i sowie einem auswärtsgerichteten Strom führte, welcher mittels 

Patch Clamp in der Whole-Cell-Konfiguration erfasst werden konnte. Der durch Entfernung 

des extrazellulären Na+ hervorgerufene Anstieg der [Ca2+]i sowie der resultierende 

Auswärtsstrom wurden sowohl durch 1,25(OH)2D3 als auch durch Dexamethason verstärkt. 

Während 1,25(OH)2D3 einen Effekt auf K+-abhängige Na+/Ca2+-Austauscher hatte, wirkte 

Dexamethason auf K+-unabhängige Na+/Ca2+-Austauscher. Dexamethason führte weiterhin 

zu einer Erhöhung der Transkriptionsrate von NCX2 und NCX3. Folglich hemmen 

1,25(OH)2D3 und Dexamethason den LPS-induzierten Anstieg der [Ca2+]i mittels Stimulation 

des Transports von Ca2+ aus der Zelle durch Na+/Ca2+-Austauscher. 1,25(OH)2D3 

beeinflusste die [Ca2+]i weiterhin zusätzlich durch die Hochregulation des Ca2+-

Bindungsproteins Calbindin-D28K und bewirkte somit eine Erhöhung der Pufferkapazität der 

Zellen für Ca2+. 3’,4’-Dichlorobenzamyl, ein Blocker für NCKX, hob den hemmenden Effekt 

von 1,25(OH)2D3 auf den LPS-induzierten Anstieg der [Ca2+]i wieder auf. Der hemmende 

Effekt von 1,25(OH)2D3 und Dexamethason auf die Expression des co-stimulatorischen 

Moleküls CD86 konnte mithilfe von 3’,4’-dichlorobenzamyl bzw. KB-R7943, Blocker für 

NCKX bzw. NCX, wieder aufgehoben werden.  
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