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Abstract

Optimization by probabilistic modeling is a
growing research field in evolutionary com-
putation. An example is the compact ge-
netic algorithm (cGA), in which the popu-
lation of a genetic algorithm (GA) is repre-
sented as a probability distribution over the
set of solutions. Both cGA algorithm and the
order-one behavior of a simple GA with uni-
form crossover are operationally equivalent.
The cGA is much easier to implement and
requires less memory.

In this paper, memetic algorithms (MAs) are
investigated in which the population is re-
placed by a probability vector analogously to
the cGA. The resulting compact memetic al-
gorithms (cMAs) hence require less memory,
are easier to implement and require fewer pa-
rameters than other MAs. It is shown that
cMAs with and without additional recombi-
nation perform comparable to or better than
population-based MAs on a set of bench-
mark instances of the unconstrained binary
quadratic programming problem.

1 Introduction

Recently, several optimization techniques have been
proposed in which probability distribution is utilized
to represent the state of the search. Examples of such
approaches are Bit-Simulated Crossover (BSC) [1],
Population-based Incremental Learning (PBIL) [2, 3],
the Ant System (AS) [6], and the Compact Genetic Al-
gorithm [7]. In these algorithms, a probabilistic model
is used to generate solutions for a given optimization,
which are, in turn, used to update the model. Thus,
these algorithms repeatedly generate solutions with

the model and update the model based on the solu-
tions generated. They differ mainly in the learning
rules that are applied to update the model. In this
work, we concentrate on the learning rules used in the
cGA. Other learning rules can be utilized with slight
modifications of the proposed algorithms. Since the
cGA as well as several others of the algorithms above
have been proposed for a binary representation, we fo-
cus our studies on the binary quadratic programming
problem (BQP). In the BQP, a symmetric n × n ma-
trix Q = (qij) is given, and a binary vector x of length
n is desired, which maximizes the objective function

f(x) = xt Qx =
n∑

i=1

n∑
j=1

qij xi xj , xi ∈ {0, 1} ∀ i (1)

This problem is also known as the (unconstrained)
quadratic bivalent programming problem, the (uncon-
strained) quadratic zero–one programming problem, or
the (unconstrained) quadratic (pseudo-) Boolean pro-
gramming problem [8]. Since it belongs to the class
of NP-hard problems, effective heuristics are required
for solving large problem instances.

In this paper, compact memetic algorithms (cMAs)
are proposed which utilize a probability distribution
instead of a population of solutions analogously to the
compact genetic algorithm (cGA). In experiments it is
shown that for hard instances of the BQP, the cMAs
perform better or comparable to previously proposed
population-based MAs.

The paper is organized as follows. In section 2, the
compact memetic algorithm for binary representations
is introduced. Population-based MAs and new cMAs
for the BQP are discussed in section 3. In section 4,
results from various experiments with the cMAs are
presented. Section 5 concludes the paper and outlines
areas of future work.



2 The Compact Memetic Algorithm

In the compact memetic algorithms for binary-coded
problems, a single probability vector p ∈ P = IRl

is maintained which represents the current state of
the search and replaces the population in population-
based MAs. For each of the l bits in a solution vector
x ∈ X = {0, 1}l, there is a real value in the probability
vector p indicating the probability for assigning a 1 to
that bit. For example, if p[i] = 0.9, the probability of
assigning 1 to x[i] is 0.9, and the probability of assign-
ing 0 to x[i] is 1.0 − p[i] = 0.1. Hence, a new vector
x is sampled from the probability model according to
the formula

x[i] =

{
1 if random[0, 1) < p[i]
0 otherwise

(2)

where random[0,1) represents a uniformly distributed
random number between 0 and 1 exclusively. The
pseudo–code is simply the following few lines:

function generate(p : P) : X

begin
for i:=1 to l do

if random < p[i] then x[i] := 1.0
else x[i] : = 0.0;

return x;
end;

Initially, all p[i] are set to 0.5. After two new solu-
tions x, x′ have been generated and a local search has
been applied, the model is updated with the following
method:

procedure update(p : P, x’ : X, x : X, n : N)

begin
for i:=1 to l do
if x’[i] <> x[i] then

if x’[i] = 1 then p[i] := p[i] + 1/n
else p[i] := p[i] - 1/n;

for i:=1 to l do
if p[i] > 1.0 then p[i] := 1.0
else if p[i] < 0.0 then p[i] := 0.0;

end;

In this method, x′ represents the solution with higher
fitness compared to x. In contrast to the cGA, in which
simply two solutions are generated from the model, we
considered four variants of cMAs, which differ in the
generation of new solutions. The pseudo-code of the

function cMA(psize, gens, rec, ub) : X

begin
for i = 1 to l do p[i] := 0.5;
x := generate(p);
x := localSearch(x);
x* := x;
i := 1;
repeat
x: = generate(p);
x: = localSearch(x);
if rec then x’ = recombine(x*, x);
else x’ := generate(p);
x’ := localSearch(x’);
if f(x’) < f(x) then swap(x, x’);
if f(x’) > f(x*) then x* = x’;
if ub then update(p, x*, x, psize)
else update(p, x’, x, psize);
i := i + 1;

until (i > gens);
return x*;

end

Figure 1: The Compact Memetic Algorithm

cMA is shown in Fig. 1. These variants are considered
in our studies since they allow for the investigation
of the influence of the selection pressure as well as
the influence of sophisticated recombination operators
usually employed in MAs.

In the variant analogously to the cGA (rec = false, ub
= false), two solutions x and x′ are generated from the
probability distribution and a local search is applied to
the solutions. Afterwards, the model is updated with
these solutions.

If rec=true, the second solution x′ is generated by re-
combination of the best solution found so far x∗ and
the first solution x.

If ub=true, the model is updated with the best solution
found so far x∗ and the worst of the two generated
solutions x and x′.

Before p is updated, x∗ may be updated and x′ and x
may be swapped, to ensure x′ has higher fitness than
x. The parameters of the algorithm are the number of
generations (gens) and the size of the simulated popu-
lation psize in respect to the equivalent GA as well as
the parameters rec and ub to specify the cMA variants.

Since only the probability vector has to be stored in
memory and not a population of solutions, cMAs are
especially well–suited for solving very large combinato-



function MA(psize, gens, recs) : X

begin
for i = 1 to psize do

P[i] := Initialize();
for i = 1 to psize do

P[i] := localSearch(P[i]);
sort(P);
x* := P[1];
j := 1;
repeat
for i = 1 to recs do begin

x := select(P);
x’ := select(P);
x := recombine(x, x’);
x := localSearch(x);
append(P, x);

end;
sort(P);
reduce(P, psize);
if f(P[1]) > f(x*) then x* = P[1];
j := j + 1;

until (j > gens);
return x*;

end

Figure 2: The (population-based) Memetic Algorithm

rial optimization problems such as graph partitioning
problems with more than 1.000.000 nodes or traveling
salesman problems with more than 1.000.000 cities.
Furthermore, cMAs appear to be well–suited in multi–
agent frameworks where each agent represents a cMA
algorithm. Several agent may be executed on a single
machine due to the low memory profile.

3 Memetic Algorithms for the BQP

The population-based MA as well as the compact MAs
for the BQP used in our studies are described in the
following.

3.1 Population-based MA for the BQP

Recently, MAs have been proposed for the BQP that
are highly effective [9]. A slightly modified algorithm is
considered in this paper as described in the following.
The MA is population-based and utilizes a simple pan-
mictic population. The outline of the MA is provided
in Fig. 2. The selection for reproduction is performed
randomly without bias towards fitter individuals. The
selection for survival is essentially as in the (µ+λ)-ES:
in each generation, recs offspring are appended to the

population. The psize+recs individuals are sorted and
the population is reduced to its original size.

The problem specific components of the MA are:

Representation and Fitness Function:

The solutions are represented simply as binary
vectors. No search parameters for self-adaptation
are part of the individual. The fitness function
utilized in the MA is the objective function shown
in equation (1).

Initialization and Local Search:

The population is initialized by randomly generat-
ing solutions and applying local search. The local
search used in the MA is the k-opt local search
proposed in [10].

Variation Operators:

The recombination operator used in the MA is the
innovative variation operator proposed in [9]. The
MA considered here does not utilize additional
mutation operators.

3.2 Compact MAs for the BQP

The cMAs proposed in this paper use the same repre-
sentation, fitness function, local search and recombi-
nation operator as the population-based MA described
above. This allows us to concentrate in our studies on
the influence of the different population models on the
overall performance.

4 Experimental Results

In order to compare the performance of the cMA with
the (population-based) MA, we conducted several ex-
periments. To enable a fair comparison, the number of
local searches was kept constantly to 2000. This was
achieved by setting psize=40,recs=20,gens=99 for the
MA and gens=1000 for the cMAs. The set of BQP
instances used in the experiments is denoted by kb-g
and consists of 10 instances of size n = 1000. The ma-
trix Q densities of the instances in the problem set are
between 0.1 and 1.0 [11]. The results are displayed in
Table 1. In the table, the percentage excess below the
best-known solution (excess) and the success rate of
finding the best-known solution (success) is provided
for each instance. Furthermore, the averaged success
rate over all ten problem instances is shown in the
last row of the table. Compared to the cMA with pa-
rameters psize=1000,rec=true,ub=false (denoted cMA
(rec)), the MA appears to be slightly inferior in terms
of robustness: the average success rate is slightly



Table 1: Comparison of an MA four cMA variants

MA cMA cMA (ub) cMA (rec) cMA (rec,ub)

Instance excess success excess success excess success excess success excess success

kb-g01 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 %

kb-g02 0.00 % 96.7 % 0.00 % 86.7 % 0.01 % 53.3 % 0.00 % 66.7 % 0.01 % 50.0 %

kb-g03 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 %

kb-g04 0.00 % 100.0 % 0.04 % 53.3 % 0.01 % 96.7 % 0.01 % 96.7 % 0.02 % 93.3 %

kb-g05 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 %

kb-g06 0.02 % 56.7 % 0.00 % 96.7 % 0.02 % 56.7 % 0.02 % 56.7 % 0.02 % 63.3 %

kb-g07 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 %

kb-g08 0.00 % 96.7 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 %

kb-g09 0.06 % 30.0 % 0.04 % 10.0 % 0.06 % 46.7 % 0.03 % 60.0 % 0.06 % 43.3 %

kb-g10 0.03 % 30.0 % 0.01 % 80.0 % 0.05 % 16.7 % 0.02 % 53.3 % 0.04 % 33.3 %

all 81.0 % 82.7 % 77.0 % 83.33 % 78.33 %

higher. In both cases, the number of instances always
solved to (near-)optimality is five.

To evaluate the performance of the other cMA vari-
ants, we conducted several experiments which are also
summarized in Table 1. Again, percentage excess (ex-
cess) and success rate (success) are provided. In the
table, the cMA variant is specified in parentheses in
the headline: rec denotes rec=true, and ub denotes
ub=true. Clearly, the updating the model with the
best solution is not as a good strategy as updating
with the best of the two newly generated solutions.
Furthermore, using a sophisticated recombination op-
erator as the innovate variation operator improves the
standard cMA only slightly. The standard cMA with-
out update with the best and recombination is superior
to the MA with population. Therefore, in the case of
the BQP instances studied in this work, a sophisti-
cated recombination operator and a population-based
MA, are not required to arrive at high quality solutions
with high probability.

To investigate the influence the remaining parameter
of the cMA – the psize parameter – we performed an-
other experiment on the kb-g10 instance. The results
are summarized in Table 2. The experiments have
shown that the influence of the parameter on the over-
all performance is relatively small and a value of 1000
appears to be superior to the other values tested in the
experiments.

In a final experiment, we were interested in the ques-
tion, whether the results are specific to the local search
used. Therefore, we tested the same algorithms with
1-opt local search [10]. The results are displayed in Ta-
ble 3. For each algorithm, the percentage excess (ex.)
and the success rate (suc.) in percent are displayed.
Here, the cMA variants performing the update with

Table 2: Influence of different population sizes in cMA

cMA (rec,ub)
Instance psize objective excess success

kb-g10 10 274075.3 0.11 % 13.3 %
kb-g10 40 274219.6 0.06 % 23.3 %
kb-g10 100 274185.9 0.07 % 23.3 %
kb-g10 1000 274264.6 0.04 % 33.3 %
kb-g10 10000 274272.1 0.04 % 23.3 %

the best solution found so far, perform better. More-
over, the use of recombination increases the success
rate significantly. The MA performs slightly better
than the cMA with recombination and ’best update’.

Summarizing, the results show that ’best update’ leads
to a premature convergence in the case of a strong
local search, but can increase the selection pressure for
a weak local search. The sophisticated recombination
scheme has the higher importance the weaker the local
search.

5 Conclusions

New memetic algorithms have been presented that
simulate the behavior of previously proposed memetic
algorithms without explicitly maintaining a popula-
tion of solutions. These compact memetic algorithms
(cMAs) are easier to implement, require less mem-
ory, and in their simplest form require only a single
parameter. Focusing on binary coded problems, it
is shown for hard instances of the binary quadratic
programming problem (BQP) that the simple cMA
outperforms the population-based MA if a k-opt lo-



Table 3: Comparison of MA and four cMA variants with 1-opt local search

cMA cMA (ub) cMA (rec) cMA (rec,ub) MA

Instance ex. suc. ex. suc. ex. suc. ex. suc. ex. suc.

kb-g01 0.07 % 0.0 % 0.05 % 23.3 % 0.06 % 13.3 % 0.04 % 20.0 % 0.03 % 16.7 %

kb-g02 0.16 % 0.0 % 0.06 % 10.0 % 0.18 % 0.0 % 0.05 % 30.0 % 0.10 % 3.3 %

kb-g03 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 % 0.00 % 100.0 %

kb-g04 0.30 % 0.0 % 0.24 % 10.0 % 0.28 % 13.3 % 0.15 % 40.0 % 0.09 % 63.3 %

kb-g05 0.01 % 83.3 % 0.05 % 76.7 % 0.02 % 90.0 % 0.07 % 73.3 % 0.03 % 86.7 %

kb-g06 0.16 % 3.3 % 0.14 % 10.0 % 0.29 % 6.7 % 0.14 % 20.0 % 0.22 % 0.0 %

kb-g07 0.35 % 0.0 % 0.16 % 36.7 % 0.40 % 0.0 % 0.18 % 16.7 % 0.06 % 70.0 %

kb-g08 0.08 % 6.7 % 0.07 % 33.3 % 0.14 % 20.0 % 0.09 % 30.0 % 0.06 % 36.7 %

kb-g09 0.48 % 0.0 % 0.27 % 0.0 % 0.54 % 0.0 % 0.25 % 10.0 % 0.53 % 0.0 %

kb-g10 0.19 % 0.0 % 0.14 % 13.3 % 0.19 % 3.3 % 0.09 % 3.3 % 0.24 % 3.3 %

all 19.3 % 31.3 % 24.7 % 34.3 % 38.0 %

cal search is used. For MAs utilizing the weaker 1-opt
local search, the simple cMA can be enhanced by using
a sophisticated recombination operator and a slightly
modified update rule. The results demonstrate that
maintaining a population of solutions can increase the
performance of the MA for the BQP only slightly.

Therefore, the cMA appears to be an alternative for
the standard MA or even more complex MAs with
spatial or tree structured population structures. If a
strong local search such as k-opt local search is used,
the cMA may be at least as good as these MAs. More-
over, in applications in which memory requirements or
the ’time to market’ are a major concern, the cMA is
clearly the better choice.

There are several areas for future research. Firstly, in-
creasing the selection pressure by creating more than
two solutions per generation may increase the perfor-
mance of the cMA. Secondly, time-varying/adaptive
learning rates may also increase the performance of
the cMA. Additional experiments are needed to ver-
ify this. Problems which cannot be binary-coded effi-
ciently, are an issue for future work. Finally, the com-
pact representation of the population allows the evo-
lution of probability vectors in a multiple cMA agent
framework.
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