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On Expressing Lexical Generalizations
in HPSG

W. Detmar Meurers

Meurers, W. D. 2001. On expressing lexical oenerahzanons in HPSG. Nordic Journal
of Linguistics, 24, 161-217.

This paper investigates the status of the lexicon and the possibilities for expressing
lexical venerahzanons in the paradigm of Head-Driven Phrase Structure Grammar
(HPSG). We illustrate that the architecture readily supports the use of implicational
principles to express generalizations over a class of word objects. A second kind of
lexical aenerahzatlons expressing relations between classes of words is often expressed
in terms of lexical rules. We show how lexical rules can be integrated into the formal
setup for HPSG developed by King (1989, 1994), investigate a Iexmal rule specification
language allowing the linguist to only specify those properties which are supposed to
d1ffer between the related classes, and define how this lexical rule spec1f1catlon

language is interpreted. We thereby provide a formalization of lexical rules as used in
HPSG.

W. Detmar Meurers, Department of Linguistics, The Ohio State University, 222 Oxley
Hall, 1712 Neil Avenue, Columbus OH 43210-1298, USA. E-mail: dm@ling.osu.edu

The lexicon plays a prominent role in the paradigm of Head-Driven
Phrase Structure Grammar (HPSG) (Pollard & Sag 1994), a linguistic
framework which assumes information-rich lexical representations and
emphasizes the role of lexical generalizations. Following Flickinger
(1987) one can distinguish two kinds of regularities within the lexicon:
one is sometimes referred to as vertical, the other as horizontal. Vertical
generalizations express that certain properties are common to all words
of a single class or subclass. For example, in Pollard and Sag (1994) all
finite verbs are taken fo lexically assign nominative case to their subject.
Horizontal generalizations, on the other hand, express a “systematic rela-
tionship holding between two word classes, or, more precisely, between
the members of one class and the members of another class” (Flickinger
1987:105). A common example for such a horizontal regularity is the
relationship between active verbs and their passive counterparts (cf.,
e.g., Bresnan 1982, Pollard & Sag 1987).

In this paper, we discuss how these two kinds of lexical generaliza-
tions can be expressed in HPSG as formalized by the Speciate Re-
entrant Logic (SRL) of King (1989, 1994) and show how that formal set-
up can be extended to include lexical rules as a means for expressing
horizontal generalizations. We motivate and specify a lexical rule speci-
fication language and define how it is formally interpreted in terms of
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King’s formal setup, thereby providing a formalization of lexical rules
for the HPSG paradigm.

1. VERTICAL GENERALIZATIONS

1.1. Abbreviations and their theoretical irrelevance

Vertical generalizations are often encoded by some mechanism which
allows the abbreviation of a lexical specification (macros, templates,
frames, etc.). Once an abbreviation is defined, it can be used in the
specification of each lexical entry in a class. By defining an abbreyia—
tion in such a way that it refers to an already defined one, it is possible
to organize abbreviations for lexical specification in a hierarchical
fashion. According to Pollard (p.c.) this is the setup that was assumed to
underlie the so-called lexical hierarchy discussed in Pollard and Sag
(1987: ch. 8.1). Since the method allows for a compact specification of
the lexicon, it is widely used for grammar implementation. Furthermore,
the use of abbreviations in the presentation of a theory or the discussion
of example analyses can serve the expository purpose of focusing the
reader’s attention on those aspects of the theory which are central to. the
discussion.

From a theoretical perspective, macros are far less useful. Starting
with the formalism as such, macros are not part of the formal setup of
HPSG provided in King (1989, 1994). However, in Richter (1997, 1999,
2000) and Richter et al. (1999) the setup of King’s SRL is extended with
relations. The resulting Relational Speciate Re-entrant Language
(RSRL) makes it possible to refer to the argument of a relation mstead
of having to repeat the bundle of spe01ﬁcat10ns used in defining it."! But
even if a formalization of macros were provided, what impact can abbre-
viations have on the adequacy of a theory? Let us first consider the ques-
tion of observational adequacy of a theory, i.e., whether a particular
theory licenses the grammatical signs of a particular language and rules
out the ungrammatical ones. An abbreviation and the set of-descriptions
which are abbreviated describe the same objects. A theory written down
using abbreviations and the same theory written down without them thps
make exactly the same predictions. In other words, the use of abbrevia-
tions makes no difference regarding observational adequacy. While it
could be argued that observational adequacy has been neglected ir_l Fhe
generative tradition, it remains the central empirical criterion distin-
guishing linguistic theories for a particular language. In fact, observa-
tional adequacy has played a central role for the work in the HPSQ
paradigm, which has largely focused on the explicit empirical chargcte_:n—
zation of particular languages as a necessary first step towards achieving
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descriptive or explanatory adequacy. In conclusion, for most of the work
in the HPSG paradigm, abbreviations play no theoretical role.

Regarding more abstract levels of adequacy, the potential role of
abbreviations is less transparent. Descriptive adequacy can be under- .
stood as empirical adequacy of a parameterized core theory across lan-
guages. While Pollard and Sag (1994:14) are explicit in stating that they
“take it to be the central goal of linguistic theory to characterize what it
is that every linguistically mature human being knows by virtue of being
a linguistic creature, namely, universal grammar”, an investigation of
what constitutes the universal core of an HPSG grammar and how this
can be parameterized for a specific language as far as we see has largely
been postponed until more elaborate observationally adequate theories
of particular languages have been established — and we believe this to
be a very reasonable choice. But with the mid-term goal of developing a
descriptively adequate theory in mind, one could use macros in the for-
mulation of current theories as a placeholder abstracting over language
specific realizations. For example, when formulating some principle
restricting finite sentences, one could use a macro S-fin as the antecedent
of a principle to abstract away from the possible realizations of finite
clauses in different languages. Taking descriptive adequacy seriously

‘would, however, require replacing such a use of macro placeholders

with proper parameters as part of a meta-theory® of universals and ’ para-
meters in an HPSG architecture of grammar.

Macros also fail to express vertical generalizations with respect to the
notion of a lexical class that was at the basis of the original idea of verti-
cal generalizations. The problem is that when one uses macros, the cri-
terion determining which elements belong to a specific lexical class over
which some generalization is to be expressed is not part of the grammar.
Whether an abbreviation is used in the specification of lexical entries
and where this is done is decided by the grammar writer on the basis of
personal preference or some kind of meta regime which (s)he follows in
writing the grammar, but it does not follow from anything in the gram-
mar itself.> That no generalization in a theoretically meaningful sense is
expressed can be seen from the fact that no predictions which could
potentially be proven to be incorrect are made by such an encoding.
Assume that some word does not obey the restrictions encoded in the
abbreviation which is intended to capture the properties of its class (and

thus normally is used in the specification of lexical entries licensing the

words in that class). Nothing in the grammar requires us to use the
abbreviation in the lexical entry of the problematic word, i.e., no conflict
arises from providing a lexical entry for the problematic word.

Finally, due to the theory-external role of abbreviations, a possibly
present hierarchical structure of the abbreviations is not reflected in the
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theory either. The hierarchical structure of abbreviations stands in no
formal relationship to the hierarchical organization of types in the lin-
guistic ontology as defined in the type hierarchy of an HPSG grammar.

1.2. Lexical principles
A mechanism for expressing vertical lexical generalization needs to be
able to encode implicational statements of the form: If a word is
described by D, then it also has to be described by E in order to be
grammatical. Crucially, this expresses a generalization over all objects
described by the antecedent that can be falsified if one finds grammatical
linguistic objects which satisfy the antecedent but violate the conse-
~ quent. Such a mechanism is readily available in the HPSG architecture
assumed in Pollard & Sag (1994), where implicational constraints are
the normal method used to express generalizations about phrases, such
as the Head Feature Principle.

But which kind of antecedents are to be used as antecedents of the
principles encoding the vertical lexical generalizations? The antecedent
of a lexical principle can be any description specifying the set of words
to which the generalization is supposed to apply, for example, the con-
junctive description of all words which are verbal and have a finite verb
form. If it turns out that the linguistic ontology on which the. theory is
based is not rich enough to pick out all and only those words which a
generalization is supposed to apply to, the signature4 declaring this
ontology needs to be extended.” The idea to introduce such missing
class-distinguishing properties as ordinary types is already discussed by
Riehemann (1993:56) as an alternative to the ‘lexical types’ of Pollard
and Sag (1987: ch. 8.1) conceived as a hierarchy of abbreviations.

The already present or newly introduced properties which are referred
to in the antecedent in order to single out the relevant class of elements
are an explicit part of the linguistic ontology, i.e., the model. An attempt
to avoid falsification of a generalization encoded in a lexical principle
would therefore have an observable effect on grammar denotation since
it would require changing those properties of an object which cause it to
be picked out as part of the specific class a principle applies to. This
contrasts with the abbreviation setup discussed above, where one can
avoid falsification of a supposed generalization by not using the macro
in the problematic case without changing the denotation of a gramimar.

Let us illustrate the idea of lexical principles with an example. For
English, Pollard and Sag (1994:30) propose to assign nominative case to
the subject of finite verbs as part of their lexical entries. Instead of speci-
fying in the lexical entry of each finite verb with a nominal subject that
the subject bears nominative case, one could formulate a lexical princi-
ple to ensure nominative case assignment as a generalization over all

165

such verbs. To do so, we first need to check whether the ontology
a_ssumed by Pollard and Sag (1994:396 ff. and ch. 9) is rich enough to
single out the set of words which are verbs that have a finite verb-form
and subcategorize for a nominal subject. The type word is introduced as
a subtype of sign, and the different categories of signs are represented |
by subtypes of head. The head subtype verb has the additional attribute
VFORM with finite as one of its appropriate values. Note that these dis-
tinctions are encoded under sead in order to make them subject to the
Head Feature Principle which percolates the head information along the
head projection. Finally, the subcategorization requirements are encoded
by the VALENCE attributes (which are appropriate for category objects to
ensure that they are mediated as part of an unbounded dependency con-
struction). The particular valence attribute SUBJ allows us to refer to the
subject, so that together with the head subtype noun we can single out
verbs with nominal subjects. The independently motivated ontology
defined by Pollard and Sag (1994) thus is rich enough to single out the
relevant subclass of words we want to generalize over. We can therefore
proceed to formulate the simple lexical principle in Fig. 1 to express the
generalization that nominative case is assigned to the subject require-
ment of each finite verbal word which has a nominal subject.®

word

. verb
AD ) -
SYNSEM|LOC|CAT VFORM finite
-LvaL|suss({[Loc|cAT|EEAD noun])

[syNsleLoclchVALlsum ([Locicatisrap|cass nominariveb}

Fig. 1. A lexical principle assigning nominative case.

Complex vs. type antecedents. The sketched approach of expressing
lexical generalizations with lexical principles (Meurers 1997) bears a lot
of similarities to the principles in the work of Sag (1997), who sub-
classifies phrasal types and uses principles to express generalizations
gbopt nonlocal specification. It also is very similar to the lexical general-
1zations expressed in Bouma et al. (2001). One formal difference
between their and our approach is that they only make use of type ante-
cedents, whereas we employ complex descriptions as antecedents of the
!exical principles. This difference deserves some attention since a signif-
icant part of the more recent HPSG literature seems to be limiting itself
to the use of principles with type antecedents — even though, as far as
we are aware, no argument has ever been made as to why such a setup
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would be preferable. Quite to the contrary, as we show below, there are
clear advantages to using complex antecedents. N

From a formal perspective, implicational constraints ' with complex
antecedents and those with type antecedents are both well-formed
expressions of the HPSG description language defined in King (1989,
1994) and they are interpreted in the same way as any other formula of
that language: as the set of objects described by that formula. In particu-
Jar, using implicational statements with complex antecedents does not
require something additional, like a conversion into a disjunctive normal
form, in order to be interpreted.

From a linguistic perspective, we believe that complex antecedents of
jmplicational constraints are advantageous since they make it possible to
use the articulate data structure of HPSG to refer to the relevant subset
of objects for which some generalization is intended to be expressed.
Restricting oneself to type antecedents, one needs to introduce types for
every set of objects to which a generalization applies, which duplicates
specifications in case the information was already encoded under one of
the feature paths for independent linguistic reasons.

Take, for example, the simple lexical principle we defined in Fig. 1 to
express the generalization that nominative case is assigned to the subject
of finite verbs which select a nominal subject. We saw above that each
of the specifications used in the complex antecedent to single out the
relevant subclass of words refers to an independently motivated part of
the already defined ontology. If one instead wants to use a type antece-
dent for this principle, one has to introduce new subtypes of word that
duplicate the ontological distinctions which are already encoded else-
where in the ontology for well-motivated and still applicable reasons.
More concretely, one needs to introduce a type verbal-word as one of
the subtypes of word and this new type must have a type like finite-ver-
bal-word as one of its subtypes. Furthermore, one has to separate those
finite verbal words which have a nominal subject from those ‘which do
not, so that finite-verbal-word has to have finite-verbal-word-with-nom-
inal-subject as one of its subtypes.7 Additionally one has to introduce (at
least) three further subtypes to represent each of the other possibilities,
i.e., non-verbal-word, non-finite-verbal-word, and finite-verbal-word-
without-nominal-subject. Apart from having to introduce these six types
lacking independent motivation, one also has to specify a principle for
each type as shown in Fig. 2 to ensure that the independently motivated
and required ontological distinctions encoded elsewhere in a sign, which
the new subtypes are supposed to duplicate, are actually associated with
the respective new subtype.

The problem which arises at this point is that even though the princi-
ples in Fig. 2 ensure that, for example, each object of type verbal-word
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verbal-word — word '
SYNSEM|LOC|CAT|HEAD verb

finite-verbal-word — verbal-word
SYNSEM|LOC|CAT|HEAD|VFORM fin

finite-verbal-word-with-nominal -subject — finite-verbal-word
SYNsEM|LOC|CAT|vAL|sUBJ {[LOC|CAT|HEAD noun) )

Fig. 2. Principles needed to ensure the
) new subtypes are properly associat i
duplicated ontological distinctiong. Py clated with the

bears the relevant specification of its head type, mothin:c;r enférces

that i i ek i
every object described by [#3dyiocicarmzan wn] i also described

by the type verbal-word. To enforce this, two things ired:
Flrst.ly, one has to share the (standard SRL) assumptiin taffaet iﬁgurlrr:)i;
specific subtypes partition the entire domain, which is sometimes called
tlhge closed-world assumption (Gerdemann & King 1994, Gerdemann

95)f And second3 one has to define principles associating the sister
types of the newly introduced types with properties which are incompa-
tible with those associated with the newly introduced types themselve]:?s 8

Y N ltl 1 .

non-verbal-word — word
SYNSEM|LOC|CAT[HEAD = verb
non-finite-verbal-word — verbal-word
SYNSEM|LOC|CAT|HEAD|VFORM - fin

finite-verbal-word-without-nominal-subject — Jinite-verbal.-word
synsemLoclcat|vatlsuss - ([Loc|cAT|HEAD noun]y

Fig. 3. Additional principles needed to ens
¢ ure the new subtypes are properly impli
duplicated ontological distinctions. properly fmplied by the

At this point one finally has the t } ]
. ( ‘ > type finite-verbal-word-with-nominal-
subject available to describe the same set of objects as the antecedent of

the principle we saw in Fig. 1. The inci
‘ g 1. same principle can now b
with a type antecedent as shown in Fig. 4. ’ ° cxpressed

nite-verbal- -with- i e ‘
fi al-word-with-nominal-subject — [SYNSEM}LOC|CAT|VAL|SUBJ <[LOC\CAT\HEAD]CASE nominativeD]

Fig. 4. The principle assigning nominative case with a type antecedent.

. Concluding the discussion of the example, we believe it clearly
emonstrates that a setup including principles with complex antecedents
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has significant advantages over one employing only type antecedents. A

restriction to type antecedents entails a substantial duplication of onto-
logical distinctions which for well-motivated reasons are encoded
elsewhere in the ontology, and it makes it necessary to define special
principles correlating the new types with the duplicated properties. '
Surfacing from the discussion of particular encodings of vertical gener-
alizations at this point, we showed that the HPSG architecture readily sup-
plies the formal ingredients necessary to-express vertical generalizations as
implicational constraints. In the main part of the paper we therefore con-
centrate on the formally less developed field of horizontal generalizations.

2. HORIZONTAL GENERALIZATIONS

Lexical rules are a powerful tool for capturing horizontal generalization
in the lexicon (Carpenter 1991) and they are widely used in linguistic
proposals expressed in the HPSG architecture. However, while a formal
foundation for basic HPSG theories is provided by King (1989, 1994),
until recently no such formal basis had been given to lexical rules.'® In
this paper we want to investigate the fundamental question: What are
lexical rules as they are commonly written down in HPSG supposed to
mean? Based on our/previous work (Meurers 1994, 1995, 2000, Meurers
& Minnen 1997), this paper provides an answer to this question.'! '

A second question, which also deserves to be answered if lexical rules
are to play a theoretically interesting role in linguistics concerns the
powerful nature of lexical rules mentioned above: What are linguisti-
cally motivated restrictions on the range of possible lexical rules? Or
more concretely: What generalizations holding across lexical rules are
there and how can they be expressed? While the answers to these two
questions are beyond the scope of this paper, the question of generaliza-
tions across lexical rules and methods for expressing these is closely tied
to the way in which lexical rules are formalized. At the end of introdu-
cing the formal basis of our lexical rule proposal in section 3.2.2, we
therefore show how this formalization of lexical rules makes it possible
to express generalizations over lexical rules in a straightforward way.

Lexical rules in the HPSG literature usually look like the one shown
in Fig. 5, which is modeled after the rule proposed by Pollard and Sag
(1987:215) to relate passive and active verbs. Note that we use the —
operator for lexical rules to distinguish them from the lexical principles
using implication (—) as discussed in the last section.

On an intuitive level, the effect that this rule is supposed to have is
clear: anything in the grammar that corresponds to the AVM on the left-
hand side of the rule should get related to something that corresponds to
the AVM on the right-hand side. So why is this intuitive understanding
not sufficient? To begin with, the rule in Fig. 5 just consists of two
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verb verb
E HEAD
] HEAD [VFORM psp} A {VFORM' pasjl
CATEGORY ) |:SUBJ <NPm> > | CATEGORY SUBJ <NP>
V.
comps (NP | ) M comes Bl <(Pp[by}m)>

Fig. 5. A passive lexical rule.

AVMs separated by an arrow, but a lexical rule is supposed to be some
kind of relation. Is there any systematic way to specify what relation the
notation in Fig. 5 denotes? An answer to this question presupposes a dis-
cussion of the following subquestions: First, what does it mean to “cor-
respond” to the left-hand side of the rule? Is the input required to be as
specific as the AVM on the left-hand side or is it sufficient for the input
not to contain incompatible specifications?

Second, given some input to the rule, what should the corresponding
output be? Intuitively, of course, it is supposed to look something like
the right-hand side of the rule. But most linguists agree that it should
not look exactly like the right-hand side; it is also supposed to retain
some of the properties of the input. Sometimes what is intended is

'explamed informally in the following way: change the input only in
‘ways that the right-hand side of the rule tells us to change it, and leave

everything else the same. But the right-hand side of the rule is not an
algorithm; it’s only a description. How are we supposed to know what
this piece of syntax is telling us to do to the inputs? And, are ordinary
AVMs enough to express intended changes to the input in a compact
and unambiguous way?

Third, what kinds of things are the inputs and outputs to lexical rules?
That is, most linguists agree that a lexical rule is some kind of relation,
but what exactly does it relate? Pollard and Sag (1994) state that lexical
rules are relations between lexical entries, which are descriptions of sets
of words, and this is the line pursued in Calcagno (1995). Meurers
(1995), however, argues that lexical rules are better treated as relations
between the objects that lexical entries denote, i.e., as relations between
words. And indeed some passages in Pollard and Sag (1994) seem only
to be consistent with this latter approach. So which approach captures
the intentions, if any?
~ Finally, assuming that we arrive at satisfactory answers to all of the
above, how can lexical rules be integrated into a grammar in such a way
as to license the desired relationships among lexical elements. That is, if
lexical rules relate lexical entries,then what is (the proper place in the
grammar for meta-rules of this type? And if lexical rules relate word

objects, how can a lexicon including lexical rules be expressed as part
of the theory?
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In the following, we propose one set of answers to the above ques-
tions in the hope that the lexical rule specification language and its inter-
pretation which we define provides a sensible formalization for lexical
riles as they are commonly used in HPSG.

3. THE LEXICON IN THE HPSG ARCHITECTURE

Generally speaking, a grammar in the frameworks of GB, LFG, GPSG,
and early versions of HPSG includes a way to license constituent struc-
ture and a lexicon licensing the words grounding the recursion. The lexi-
con often is highly specified and information-rich, so that the question
naturally arises as to whether the information within the lexicon can be
structured in such a way as to capture generalizations about classes of
words with common behavior or to eliminate redundant specification
across entries. Lexical rules have been used to express such generaliza-
tions.

In the last decade, however, as the logical foundations of HPSG have
been explicated in more detail (King 1989, 1994), the notion of a gram-
mar has been simplified to a point where, from a formal point of view,
no distinction is made between lexical entries, syntactic rules or any
other grammatical statement. An HPSG theory is simply a set of descrip-
tions; some of those descriptions constrain phrases, while others describe
words. In this framework, the lexicon can be thought of as a disjunctive
constraint on objects of a certain sort, usually the sort word. But any
number of principles can be specified in the theory to state generaliza-
tions about word objects. As a result, the lexical entries comprising- the
lexicon as part of the disjunctive constraint on words are less specific
and have lost their unique position in specifying lexical information.
This suggests that the concept of a lexicon and lexical rules as outside
of the theory in the formal sense of King (1989, 1994) are redundant in
that one should be able to provide an interpretation of lexical rules on a
par with other generalizations in the theory, ie., as a relation on word
objects. :

Of course, this does not mean that lexical rules as they existed before,
cannot play any role in current HPSG. Rather, it shows that lexical rules
as specified by the linguist can be interpreted in two ways-as meta-
descriptions relating lexical entries (Calcagno 1995), or as descriptions
relating word objects (Meurers 1995). To distinguish the two approaches
in the discussion, a lexical rule under the former approach.is called a
Meta-level Lexical Rule (MLR), while a lexical rule in the latter setup is
referred to as a Description-Level Lexical Rule (DLR).

3.1. Defining the basic lexicon ,
Corresponding to the two conceptions of a grammar introduced above,

\
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there are two qptions for integrating the lexicon into the HPSG architec-
ture. Th'e first integrates the lexicon as external to the theory and forms
the basis of the MLR approach to lexical rules, whereas the second

de?nes the lexicon as part of the theory as needed for the DLR formali-
zation.

3.1.1. The lexicon as a set external to the theory

Ip a traditional perspective distinguishing a lexicon from other gramma-
tical constraints, the natural move is to extend the notion of az; HPSG
grammar by introducing the lexicon as an extra set of descriptions of
word objects. A lexical entry then is an element of this set.!? More for-
ngally, under this view, a grammar is a triple G = < £,0,L >, with ¥ a
signature (declaring the linguistic ontology), © a the;ory ,(a set of
des-crlptlons that has to be true of every grammatical object), and L a
lexicon (a set of descriptions of objects of type word). The denotation of
a grammar, then, is the denotation of © with the additional restriction
that those elements that are of type word also have to satisfy (at least)

one lex_ical entry. The denotation of a grammar thus is a subset of the
denotation of its theory. ’

3.1.2. The lexicon as part of the theory /A )

The second possibility for expressing a lexicon in the HPSG architecture

is to include it in the theory as an ordinary implicational constraint on

I\;{0de6 objects (Meurers 1994:25; Hohle 1996a) like the one shown in
ig. 6. 4

word — D1VDyV...VD,

Fig. 6. The lexicon defined as part of the theory.

A constraint of this form is sometimes called the Word Principle, with
eac_:h D; (1 <i< n,n finite) a lexical entry, i.e., a description of’ word
object§. Unlike in the first setup, in the Word Principle approach no
extension of the notion of an HPSG theory and its interpretation is
required. The lexicon is a constraint like all other constraints in the theo-
ry and is interpreted in the standard way.

An interesting formal point to note about the Word Principle is that
since the length of a description in SRL, just as in standard first-order
logic, is required to be finite, the word principle formalization restricts
us to a finite set of lexical entries. It is possible to license an infinite

number of word objects, though, since in principle any description can

have an infinite denotation.
Hohle (1996b) remarks that Pollard and Sag (1994:395, fn. 1) con-
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ceive the basic lexicon to be an “exclusive disjunction of descriptions”.
This implies a complication of the word principle of Fig. 6 in order to
make all disjuncts exclusive, for example as shown in Fig. 7.

" word —  (DyA=Dy A=DsA...A=Dy)
\/(Dz/\—\Dl/\—'D;g/\.../\—\Dn)
V (Dp A=Dy A=Da A...A=Dp_1)

Fig. 7. Complicating the lexicon to obtain exclusive disjunctions.

It has, however, never been argued why every word should only be
described by exactly one disjunct. Furthermore, checking whether a spe-
cific word is licensed by a lexicon in such a setup would require consid-
ering all descriptions D or the negation thereof — a highly complex tgsk
which is virtually impossible for any larger lexicon. We therefore follow
Hohle (1996b) in considering such a complication of the word principle
to be unjustified.

3.2. Extending the lexicon with lexical rules

Now that we have a formal characterization of a basic lexicon, we can
turn to the issue of extending this lexicon with lexical rules. We start
with lexical rules under the MLR approach before showing how lexical
rules as DLRs can be integrated into the theory.

3.2.1. Extending the lexicon with MLRs
An MLR is a binary relation between descriptions, which for any descrip-
tion in the domain of the relation (the input entry) will produce a set of
descriptions (the output entries). MLRs expand a finite base lexicon ‘t?y
licensing additional lexical entries much in the same way that meta-rules in
GPSG (Gazdar et al. 1985) were thought of as expanding a basic set of
phrase structure rules by licensing additional phrase structure rules. .
Calcagno and Pollard (1995) provide the following definition whlch
uses a least fixed point construction to define a full lexicon on the basis
of a base lexicon and a set of lexical rules:

DEFINITION 1 (Full Lexicon under MLR approach). We assume a

finite set R = {r1,...,rc} of binary relations between formulas, called
lexical rules, and a finite set of base lexical entries B = {Bi,..., B}
Then the full set of lexical entries is the least set L such that:

® BCL;and

e forall A\ € Landr € R such that r(\, ¢), ¢ € L.
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The full lexicon is defined as the relational closure of the base lexicon
under the set of lexical rules. The base lexical entries in the set B are
specified by the linguist; the full set of lexical entries is obtained by add-
ing each description to the lexicon set which is related to a base or an
already derived lexical entry via one of the lexical rule relations r.

Some consequences of an MLR formalization. As long as the closure
under lexical rule application, the full lexicon set L in definition 1 is finite,
it is possible to formally express the lexicon either as a distinguished set of
descriptions of word objects or as disjuncts on the right-hand side of a
Word Principle. The mentioned meta-rules of GPSG were in fact restricted
so that only a finite number of phrase structure rules were produced. How-
ever, restricting lexical rule application in this way appears to be empiri-
cally inadequate or at least in contradiction to the development of HPSG:
most current HPSG analyses of Dutch, German, Italian, and French make
use of infinite lexica. This is, for example, the case for all proposals work-
ing with verbal lexical entries which raise the arguments of a verbal com-
plement in the style of Hinrichs and Nakazawa (1989) that also use lexical
rules such as the Complement Extraction Lexical Rule (Pollard & Sag
1994) or the Complement Cliticization Lexical Rule (Miller & Sag 1993,

‘Monachesi 1999) to operate on those raised elements. Also an analysis

treating adjunct extraction via lexical rules (Van Noord & Bouma 1994)
results in an infinite lexicon. Finally, Carpenter (1991) provides examples
from the English verbal system for which recursive rule application and
hence a potentially-infinite lexicon seems necessary.

Let us illustrate one of these examples in which an infinite number of
lexical entries (not the words .described) arises in an MLR setup: the
interaction of argument raising with the Complement Extraction Lexical
Rule. In Fig. 8 we see the essential aspect of the lexical entry for the
German auxiliary haben, namely the argument raising specification
introduced by Hinrichs and Nakazawa (1989) and used in most current
HPSG analyses of Germanic and Romance languages. The idea behind
the argument raising specification is that such verbs are supposed to
combine in a head cluster with the head of their verbal complement.
Essentially incorporating the idea of functional composition from cate-
gorial grammar (Geach 1970), the unrealized arguments of the selected

complement are taken over by the selecting head.

PHON  <haben>

HEAD verb
CcoMmPS VFORM psp | || [

COMPS
Fig. 8. Argument raising in the lexical entry of a German auxiliary.

/
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In Fig. 8, one of the complements which this perfect auxiliary haben
subcategorizes for is its past participle verbal complement. The rest of
the comps list (after the | operator in the figure) is specified to be identi-
cal to the list of complements which are subcategorized for by the verbal
complement. The exact number of complements thus is not fixed in the
lexical entry. Note that this property is not just an artefact of ignoring
that somewhere down the line of even the longest chain of auxiliaries in
a sentence, there will be a full verb serving as verbal complement which
has a fixed number of complements. Certain argument raising verbs sub-
categorize for a nominal object in addition to the verbal complement, in
particular the so-called Accusativum-cum-Infinitivum (Acl) verbs such as
see, hear, or let. Since Acl verbs can embed each other, regarding the
generative potential of the language there thus is no upper limit on the
number of complements subcategorized for by a verb.

The Complement Extraction Lexical Rule (CELR) as provided by
Pollard and Sag (1994:378) is shown in Fig. 9.'3 The essential effect of
the rule is that it removes the element tagged [ from the COMPS list of
the input in order for this element to be realized non-locally, e.g., as‘a
topicalized constituent. The output of the lexical rule thus has one less
clement on the COMPS list and can again serve as input to the CELR.
The question we are interested in is: How many lexical entries result
from the application of the CELR to the entry of the auxiliary we saw in
Fig. 87 Given that we showed above that the length of the COMPS list of
an entry is not fixed, at least when argument raising verbs are included
in a grammar, the answer has to be that the CELR under the MLR per-
spective produces an infinite number of lexical entries when applied to
the lexical entry of an argument raising verb.

ARG-ST <> ARG-ST <...,[Loc INHER|SLASH {}]>
CoMPS (... Blroc @.... )} 7 | comes (e ) B
INHER|SLASH INHER|SLASH {}U

Fig. 9. The Complement Extraction Lexical Rule (Pollard & Sag 1994).

A consequence of such theories licensing infinite lexica is that it com-
mits the MLR approach to a view of the lexicon as a set outside of the
theory. This is the case since in SRL it is not possible to specify an infi-
nite disjunction as a description.14 .

Another important consequence of the MLR approach arises from the
fact that it is undecidable whether a description is grammatical with respect
to an HPSG theory. In the MLR setup it therefore is not possible to restrict
the input of lexical rules to those lexical entries describing only grammati-
cal word objects, i.e., words which satisfy the principles expressed in the
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theqry. Adding a test for grammaticality to definition 1 would amount to
adding an undecidable precondition to grammar denotation. Expressed dif-

ferently, the consequence of this is that in an MLR setup the lexical entries

in the basic lexicon set are the only part of the grammar that constrains the
possible inputs of a lexical rule ~ it is not possible to require other princi-
ples to hold of the inputs to lexical rules, be it to restrict what can constitute
a possible base lexical entry or a possible “intermediate” entry, i.e., an
entry which is the output of one lexical rule and the input of another one.

A related consequence develops from the fact that not only the lexical
entries but also the lexical rules in an MLR approach are introduced as
entities separate from the rest of the linguistic theory. It therefore is not
possible 'to use the existing architecture, i.e., principles in the theory, to
express generalizations over possible lexical rules. Similarly, there are
no mechanisms for encoding a hierarchical organization of lexical rules
to organize them in classes with common properties.

3.2.2. Introducing DLRs into the theory

A DLR is a binary relation between word objects. While this departs
from the more traditional view, in which lexical rules are formalized as
meta-relations, it makes it possible to integrate lexical rules at the level

‘at which the other grammatical constraints in the HPSG architecture are

expressed. An SRL description denotes a set of objects so that a formula
describing both an object and the value of one of its appropriate attri-
butes can be thought of as relating two objects. In the grammar defined
in Pollard and Sag (1994), for example, a description of a functional
head object and its SPEC value expresses such a binary relation holding
between a head object and its SPEC value.

Perhaps the simplest way to formalize lexical rules as part of the
description language would be to introduce two subtypes of word, say
simple-word and derived-word and give derived-word an additional
appropriate attribute IN with word as appropriate value. Fig. 10 shows
the relevant portion of the signature. The implicational constraints in
Fig. 11 then define the lexicon including lexical rules.

T
{Worﬁ\
. derivedword
simple-word [IN word :l

Fig. 10. The signature for the word-in-word encoding.
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simple-word — Ly V ...V Ly
derived-word — ([N D1i] A B1)V ...V ([N D) A Bum)

Fig. 11. The theory for the word-in-word encoding.

In this encoding, the in-description D; of a DLR j(1 <j < m) is speci-
fied on the IN-attribute, while the out-description E; is specified directly
on the derived-word. B ,

The disadvantage of this encoding, however, is that if a specific lin-
guistic theory introduces subtypes of word, “paralle]l” subtypes will have

to be introduced for derived-word. Furthermore, to refer to the output of -

a lexical rule when we discuss and define the interpretation of lexical
rule specifications below, one always has to distinguish between the
special attribute IN of words and all its other attributes. To avoid these
problems we propose a more modular encoding which clearly separates
the lexical rules from the words. Fig. 12 shows an implicational con-
straint on word defining an extended lexicon including lexical rules.

word —+ (Ll/\[STORE ()])\/ LV (L,,,/\[STORE v [STORE <[];i;ﬂ]>}

Fig. 12. A Word Principle for an extended lexicon.

The typé word is assumed to have an additional appropriate feature STORE,

which is list valued. Furthermore, a new type lex_rule is introduced, hav-

ing IN and OUT as appropriate features with word values. The relevant part
of the signature is shown in Fig. 13. The different lexical rules are speci-
fied in a constraint on lex_rule like the one shown in Fig. 14.

T

word lex_rule
.. e IN  word
STORE list(lex_rule) ouUT word

Fig. 13. A signature for the modular lexical rule encoding.

““ lexrule dex_rule
i . lexrule N Dyl V...V |IN Dm

ouT E1 OUT Em

Fig. 14. Defining lexical rule objects in the modular encoding.

Each disjunct on the right-hand side of the implication encodes a lexical
rule. We will refer to each such disjunct as a description-level lexical
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rule (DLR) and to the in- and out-descriptions D; and E; (1<j<m)as
DLR-In and DLR-Out.

So how does this encoding work? The constraint in Fig. 12 says that
every object of type word is either described by a base lexical entry
L; (1 <i<n)oritis the value of the OUT attribute of a lex_rule object.
The implicational constraint on lex_rule ensures that only a certain set
of words are possible values of its OUT attribute, namely those which
satisfy one of the out-descriptions E; in the consequent. The correspond-
ing D; also has to be consistent and, since the appropriateness conditions
for lex_rule ensure that the value of an IN feature is of type word, it also
has to satisfy the constraint on word, ie., one of the lexical entries of
Fig. 12. Naturally the lexical entry satisfied can again be the last dis-
junct, i.e., the output of a lexical rule. Even though the disjunction is
finite, we therefore still can license an infinite number of non-isomorphic
grammatical word objects via the last disjunct in the Word Principle of
Fig. 12.

Finally, we turn to a somewhat different alternative for expressing
lexical rules as a binary relation on word objects. This alternative con-
sists of expressing relations by constructs which are part of the relational
extension of the description language. This would formalize lexical rules

/parallel to relations like append, or more accurately a binary relation like

member. If we chose a formal language for HPSG which allows us to
use definite relations within the description language, such as the system
defined in Gotz (2000) which extends King (1989) with ideas from Hoh-
feld and Smolka (1988) and Dorre (1994), it is possible to represent a
lexicon including lexical rules in the formal language without extending
the signature. The Figs. 15 and 16 illustrate this possibility.

word — L1V ...V L,V lexorule(word)

Fig. 15. A lexicon with added lexical rule relations.

lexoule(D1) = Ei.

lexule(D,,) = En.

Fig. 16. Defining the lexical rule relation.

Note that a functional notation for relations is used. Just as before, D; is
the in-description of lexical rule j and E; its out-description. What is dif-
ferent in this encoding is that now the lexical rules are defined on a dif-
ferent level than the word objects. As a result, the linguistic ontology
does not have to be complicated by book-keeping features like STORE or
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special types like lex_rule. Which word objects satisfy our theory is
defined using the description language, while the lex_rule relation is
defined using the relational extension of that description language.

Some consequences of a DLR formalization. Before turning to the
consequences of the DLR formalization, we need to pick one of the pos-
sibilities discussed above for introducing DLRs into the theory. Since a
discussion of how a formal language for HPSG can be extended with
relations and which extension is the most appropriate one is-a highly
complex topic on its own (see, for example, Gétz 2000, Richter 1997,
1999, Richter et al. 1999), we avoid this largely orthogonal issue by
basing the formalization of DLRs in section 5 on the modular encoding
with the lex_rule type. Note that the use of STORE and the lex_rule type
in the modular encoding is quite traditional in that it is an instance of
the so-called junk-slot encoding of relations as introduced by Ait-Kaci
(1984) and employed by King (1992) and Carpenter (1992).

The key motivation for formalizing lexical rules in HPSG as DLRs
develops from the already mentioned fact that in the formal language for

HPSG of King (1989, 1994) the notion of an HPSG grammar has been

simplified to a point where, from a formal point of view, no distinction

is made between lexical entries, syntactic rules or any other grammatical
statement. This simple, uniform notion of an HPSG grammar can be

maintained if one introduces lexical rules on a par with the other gram- -
matical constraints, i.e., as a description-level mechanism like the DLR '

encoding described above. Such a tight integration of the lexicon with
the rest of the theory is also supported by linguistic phenomena such as

idioms, which exhibit a wide range of properties, from purely lexical to

productively syntactic.

A formalization of lexical rules as part of the theory differs, however,
from a more traditional view of the lexicon where lexical entries are
defined in a separate lexicon set and lexical rules as relationships
between lexical entries (and not the words described by the entries). We
therefore need to investigate, whether it is conceptually sensible to con-
sider DLRs as a formalization of lexical rules in the HPSG framework.
That is, apart from being able to express the same generalizations, the
important conceptual question is whether properties which were claimed
to distinguish lexical rules from other mechanisms, in particular syntac-
tic transformations, still hold for lexical rules in their reincarnation as
DLRs. ‘

Lexical vs. structural information and mechanisms. Hohle (1978: 9 ff.)
discusses the differences between lexical rules and syntactic transforma-
tions based on the setup of a grammar along the lines of Chomsky

)
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(1965) (henceforth: ATS). Syntactic transformations operate on (repre-
sentations of) sentences, which are lexically fully specified. All words in
the sentence which the transformation does not explicitly change thus
have to occur in the same form in the output. Lexical sules on the other

hand, operate on single lexical entries. Words occurring in the syntactic '

environment of a word licensed by a lexical entry which is the input of
a lexical rule thus do not stand in a direct relationship to the words
which occur in the syntactic environment of a word licensed by the out-
put of a lexical rule. ‘

In the HPSG architecture of Pollard and Sag (1994), the lexical and
the syntactic level of explanation are more difficult to separate. Syntactic
structure transformations have never been proposed in this architecture,
so that a direct comparison between a syntactic and a lexical mechanism
within HPSG is not possible. But one can investigate how a DLR incar-
nation of lexical rules in HPSG is situated with respect to the classifica-
tion into lexical and syntactic mechanisms of Hohle (1978).

One relevant difference between ATS and HPSG concerns the status
of lexical specification. Contrary to ATS, a word in HPSG has an expli-
cit internal structure, which among other things includes the word’s

_valence requirements. Each valence requirement is a description of those
/" elements which the word must combine with. When a word occurs as

the head of an utterance, the valence requirements of a word are identi-
fied with the realized arguments.’® Following Pollard and Sag (1994)
most HPSG proposals assume that not the entire information about the
realized argument, the sign, but only the synsem part of an argument is
represented in the valence requirements of a word and identified with
the arguments realized in an utterance. Properties of signs which are not
part of synsem are therefore not accessible by looking at the valence
requirements as part of the lexical representation of a word: The particu-
lar phonological and morphological realization of the arguments (as
encoded under the PHON and similar attributes of signs), the information
whether an argument is realized as a word or a phrase, or the constituent
structure of the argument in case it is realized as a phrase."®

Summing up, this means that in the HPSG setup of Pollard and Sag
(1994) one has a clear separation of lexical and syntactic information
loci in the sense that a word does not contain information on whether
and how its arguments are syntactically realized.!” Formalizing lexical
rules in such an architecture therefore provides us with a lexical
mechanism in which — parallel to the characterization of lexical rules by
Hohle (1978) mentioned above — words occurring in the syntactic envir-
onment of a word which is the input of a lexical rule do not stand in a
direct relationship to the words which occur in the syntactic environment
of a word licensed by the output of a lexical rule.
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The problematic status of the input 10 lexical rules. Afte}'.establishing
that a formalization of lexical rules as DLRs in a traditional HPSG
architecture remains a truly lexical mechanism, we can twmn to anothg:r
issue which in Calcagno and Pollard (1995) is claimed to pe problemfmc
for a DLR formalization of lexical rules, the status of the input to lexical
mléilcagno and Pollard (1995:6) base their di.scussion on a word-in-
word encoding like the one we introduced in Fig. 113 using SOURCE as
attribute name instead of IN, and they point out that this encpdmg can be
equated to that of a unary phrasal schema. The argumentation then runs
as follows:

But this [lexical rule encoding] is problematic. To see why, let’s sup- .

pose we have a token of a grammatical agentless-passive English
sentence such as (1).

L

(1) Carthage was destroyed.

If the passive lexical rule is indeed a unary schema as we are sup-
posing, then the passive verb destroyed must hgve as its SOURCE
some token of the active verb destroy. Now consider the SUBJ value
of that active verb. It must be a grammatical synsem opject. _But
which one? For example, the category of this synsem object might

be some form of NP, or it might be a that-S. If it is an NP, then what

kind of NP is it? A pronoun? An anaphor? A nonprqnqun? And if it
is a that-S, what species of state-of-affairs occurs in 1ts CONTENT:
run? sneeze? vibrate? Of course there is no reasonable answer to
these questions; or to put it another way, all answers are equally rea-
sonable. The conclusion that is forced upon us 1s'that the sentence in
(1) is infinitely structurally ambiguous, depending on the deFalled
instantiation of the subject of the active verb. This reductio ad
absurdum forces us to reject the view of lexical rules as unary sche-
mata. :

The basis of this argumentation is of course correct: The passive verbal
word is related by the lexical rule to an active verbal word. For the pas-
sive verbal word to be grammatical, every substructure of the WOI'd,' such
as the active verbal word which is housed under its SOURCE attribute,
to be grammatical.

als"?‘hhea;ﬁsconcgeption in the argumentation creeps ip from the focus on a
particular foken of a grammatical agentless-passive sentence. Tq see
what is involved here, let us take a step back and cons1d§r an ordinary
lexical entry like that for the base form verb laugh shown in Fig. 17.
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[PHON  <laugh> E 9]
HEAD verb
VFORM bse
Cat SUBJ <NP>
SYNSEM VAL fspr ()

COMPS ()

c laugh’
L ONT |\ rG1
Fig. 17. A lexical entry for laugh.

This description will license an untold number of word objects. These
tokens will all have the phonology <laugh>, the head value verb, and
bear all other specifications required by the entry. But since objects are
total representations, they will also include values for all of the other
appropriate attributes and paths. Assuming a traditional HPSG signature,
for our example this means that some of the objects described by the
lexical entry in Fig. 17 will have a SUBJ value with nominative case,
others with accusative case, etc. For some this subject will be a pronom-
inal, for others a non-pronoun. Some of the word objects will have an
empty set as CONTEXT|BACKGROUND value while others have a set with,

- for example, four elements. And so on. Note that this is not just the

question of a lexical entry describing words that can be used in different
syntactic configurations. The same syntactic configuration can be used
in different utterance situations which regarding their grammaticality are
not distinguished by the grammar. For example, when the sentence I
laugh is uttered by me, the CONTEXT|BACKGROUND|SPEAKER index of
that sentence will refer to a different person than when the same words
are uttered by someone else.

This situation appears to be exactly parallel to the one described as a
problem of the DLR approach by Calcagno and Pollard (1995). But is it
really? Take the issue of the case of the subject. It cannot be fixed in the
lexical entry of laugh, since in the utterance I see him laugh, the subject
bears accusative case, whereas in the occurrence of laugh in I laugh, it
bears nominative case. At this point, one could argue that the problem
only arises if one looks at single words instead of complete sentences.
In a complete phrase there will be a subject, so that the case value of the
subject is fixed. This will, however, not work as a general solution: On
the one hand, one would presumably want a linguistic theory to function

“properly for grammatical signs in general and not only for fully satu-

rated, sentential phrases. On the other hand, even in a fully saturated,
sentential phrase not all of the paths are required to have a specific value
by the grammar. Returning to the case of the subject of the word laugh,
consider the utterance I try to laugh. Even though it is a fully saturated
sentential phrase, the subject of laugh is not (overtly) realized. The con-

i
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trol relation between the subject I of try in the standard HPSG analysis

(Pollard & Sag 1994: ch. 3) is established by coindexing, i.e., by specify-

ing in the lexical entry of try that the semantic index of the subject of
try'is token identical with that of the subject of laugh. As a result, the
other attributes of the subject of laugh are not fixed by a particular overt
syntactic realization and therefore to a large degree arbitrary. As before,
one could remedy part of the situation by being more explicit in the
specification of the lexical entry of try. For example, as shown by
Hohle (1983: ch. 6) there are empirical reasons for assuming that the
case value of controlled subjects in German is nominative. It is unclear,
though, whether one can find similarly well-founded reasons for fixing
every attribute value of unrealized controlled subjects. Rather than fixing

grammatical attribute values which happen to be unobservable with sti- .

pulated values, it seems to be preferable to permit these values to vary
freely, i.e., to not use the grammar to distinguish between them if we do
not have grammatical evidence for doing so. That a grammar has to per-

mit the values of certain attributes to vary freely becomes particularly .

clear for features like the CONTEXT value already mentioned above, the

value of which is dependent on the particular utterance context and thus

cannot be fixed by the grammar alone.

In sum, the formal setup of HPSG is such that for every grammatiéal '

token there can be an untold number of other grammatical tokens which

differ only with respect to attribute values not distinguished by the theory. .

Not only is this a consequence of the setup, this state of affairs is actually
intended, since it uses the grammar only for its task of singling out the
classes of grammatical objects. If certain values of attributes are irrelevant
of the grammaticality of a sentence, different uses of this sentence in actual
utterances should be allowed to differ with respect to these attribute values.
Moreover, there will also be an untold number of exactly identical tokens,
which is needed in order to distinguish between accidental identity of
objects and identity of objects required by path equalities. :

Let us now return to the discussion of the lexical rule example pro-
vided by Calcagno and Pollard (1995). By expressing a lexical rule relat-
ing a passive verb to an active one, one relates the occurrence of destroy
in (1) not to a particular instance of the active destroy, but to all the
instances which allow the lexical rule application. These active instances
of the word destroy will include some which cannot construct as a
daughter in any phrase, it will include some which specify their subject
to match a that-S argument, and any other possible occurrence of the
active verb in any possible utterance.'®

The interesting status of the input to lexical rules. So far, we have only
discussed the potential problems which were argued to arise from the
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fact.that under a DLR formalization of lexical rules, the word which is
the input of the lexical rule also has to be grammatical, i.e., be licensed
by a 1§x1cal entry and satisfy the other grammatical principles. Turning
the coin around, the positive side is that under a DLR formalization we
can be sure that only those words which satisfy the theory can be the
input of a lexical rule. We believe that this property is of central impor-
tance since this property makes it possible to express generalizations
over th.e entities which are lexical rule inputs. If this were not possible
the lexical entry would be the only locus of information which is inpu%
Fo a lexical rule. As a result, all information would have to be repeated
in each. and every lexical entry, even though — as a whole industry on
this topic shows — a significant amount of lexical information is identical
for'the members of different lexical classes. Not checking the input of a
lexical rule for grammaticality would either render lexical rules useless
or ban all work on vertical lexical generalizations to outside the cur-
rently available formal setup for HPSG.

Let us illustrate the interaction of vertical lexical generalizations and
lexical rules with an example taken from the approach to partial fronting
phenomena presented in De Kuthy and Meurers (2001). At the heart of

- the proposal is a lexical principle (i.e., an implicational statement

expressing a vertical generalization) which introduces argument raising
as a generallo.ptlon for non-finite verbal words. The basic version of this
argument raising principle is shown in Fig. 18.

suss ()
COMPS raised () ®
ArG-sT (MIE) A (B O indep)

SYNSEM|LOC|CAT|VAL

word
SYNSEM|LOC|CAT|HEAD [‘Wb ﬂ -

VFORM bse
Fig. 18. The basic lexical argument-raising principle.

This principle applies to base form verbal words and defines how the
elerpents on the argument structure ARG-ST are mapped onto the valence
attributes SUBJ and COMPS. The details are not relevant here, but one can
note that as part of this mapping, complement requirements of one of
the: arguments can be raised and added to the COMPS list (via the binary
relation raised).

Ag an example for a lexical entry in this setup, consider that of the
transitive verb ausleihen (borrow/lend) in Fig. 19.

PHON (ausleihen)

verb

SYNSEM|LOC|CAT|HEAD
VFORM bse

ARG-5T{[LOC|CAT|HEAD noun][LOC|CAT|HEAD noun )

Fig. 19. Lexical entry of a transitive verb.
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The base form entry specifies the ARG-ST list, but not t.he valence attri-
butes SUBJ and comps. The principle of Fig. 13 appheg to the wqrds
described by the entry in Fig. 19 and only.those words wh1chv also satisfy
the consequent of the principle, i.e., identify the valence attrﬂ?ute values
with the relevant parts of the argument structure, are grammatical.
Coming to the crucial point of this example.:, finite verbs are agsumed
to be derived from their base forms by the lexical rule shown in Fig. 20.

word
PHON pHoN  bse2fin([DZ)
verb HEAD|VFORM fin
HEAD —
VFORM bse " |sywsemjrocieat | fsuB O
SYNSEM|LOC|CAT suBs comrs B1®
COMPS .

Fig. 20. A simple finitivization lexical rule.

If the inputs to lexical rules were not checked for grammaticality, this

would mean that a base form verb feeding this ﬁnitiv.ization lexical rule
would not have to be grammatical. The principle of Fig. 18 wogld ﬂlel_re-
fore not ensure that the valence attributes of the input are 1dent1ﬁeq with
the relevant parts of the argument structure so thgt the valenc; attributes
of the inputs to the lexical rule would be entirely unspe¢1ﬁed. As 3_
result, the COMPS list of the finite verbsdenyed by thg lexical rule woul
be equally unconstrained — which naturally is not the .mten'ded resulF.
Concluding the discussion of this example, we 'bﬁzheve it clearly illus-
trates that a theory including principles general%zmg over words qnly
interacts in a reasonable way with lexical rules if the inputs of lexical
e required to be grammatical. o ‘
mlg\sfeazlrea?iy saw in se%tion 3.2.1, though, that upder thg MLR formgh—
zation of lexical rules it is not possible to restrict the input pf lexical
rules to those entries which describe grammatical. words. A meta—lev§1
lexical rule therefore can derive grammatical entne?gfrom ungrammati-
cal lexical entries as well as from grammatical ones.~ An MLR-.forn}al}—
zation of lexical rules therefore cannot be §epsibly used for linguistic
proposals which include principles generahu.ng over words, at 1§ast
when these words are described by lexical entries that can feed a lexical
rulgarl Pollard and Gosse Bouma (p.c.) mentioneq that .one_m@ght yvant
to exploit the fact that ungrammatical 1exica1 rule 'mput is possﬂ?le m ain
MLR setup to encode that such entries o_bhgatonly feed a lexical fuhe
and thereby (possibly) become grammatical. For example, one mig t
want to derive the passive form of the verb rumour frgom the inexistent
and therefore supposedly ungrammatical active form.” However even
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under a description-level formalization, where the input of a lexical rule
has to be grammatical, it is possible to express that some word cannot
be used unless it has undergone some lexical rule. Such ‘phantom’
words only have to bear a specification which makes them unusable in
any syntactic construction. Ideally, this would be a specification of inde-
pendently motivated attributes; if this is not possible, a new attribute
would have to be introduced for this purpose. In any case, this specifica-
tion would not keep them from being lexical entries which satisfy the
grammatical constraints. In a DLR setup, we can thus exclude these

entries from surfacing in phrasal structures without making them
ungrammatical. :

;

Expressing constraints on lexical rules. Parallel to the issue of the rela-
tionship between the input to a lexical rule and the rest of the linguistic
theory, the relationship between the lexical rule itself and the rest of the
linguistic theory deserves some attention. The central question here is
whether principles in the theory can be used to express generalizations
over lexical rules. In the DLR setup, lexical rules are encoded by ordin-
ary linguistic objects. One can therefore restrict the range of possible

- lexical rules and express generalizations over subclasses of them with

the help of ordinary principles. In the MLR setup, lexical rules do not
interact with the theory at all; they only serve to extend the lexicon set
located outside of the theory. Without extending the setup of HPSG it
therefore is not possible to express generalizations over MLRs.

As an example, take the case of an adjuncts-as-complements
approach. Ivan Sag (p.c.) suggested that instead of formulating a lexical
rule adding the adjuncts onto the complement-list directly (Van Noord
& Bouma 1994), or introducing an additional attribute DEPENDENTS to
eliminate the lexical rule with a principle adding adjuncts onto this new
attribute (Bouma et al. 2001), one could express the addition of adver-
bials by a constraint on all lexical rules mapping lexemes to words. A

sketch of such a constraint in a DLR formalization of lexical rules is
shown in Fig. 21.

I:Iex-rule } {INl ARG-ST

IN  lexeme | — R .
SUT word OUT|ARG-ST [T} @ list(adverbial)

Fig. 21. A constraint on lexical rules.

Working out a proposal along these lines would clearly require more
argumentation and most likely result in a more complex version of such
a constraint. The simple constraint in Fig. 21 is, however, sufficient to
illustrate how the DLR formalization can in principle be used to express
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constraints on lexical rules in exactly the same way that principles are
used to express generalizations over other linguistic objects. :
The example illustrates a further property of the DLR approach,
namely that it does not have to be restricted to word-to-word mappings.
To license lexeme-to-word mappings as assumed in this example, one
only has to modify the appropriate value for the attribute IN of type lex-

rule in the signature shown in Fig. 13 to be a common supertype of

word and lexeme. The advantage of using lexical rules to express such a
mapping would be that only those properties which change have to be
explicitly included in the lexical rule specification (at least as far as the
feature geometry of lexemes corresponds to that of words). The interpre-
tation of the lexical rule specification language introduced in section 4
will make sure that all unchanged properties are carried over.

Principles restricting lexical rules could also be used to express that a
more restricted set of lexical rules shares some properties. Since differ-
ent principles can restrict and interact on different sets and subsets of
lexical rule mappings, this allows for a hierarchical organization of con-
straints on lexical rules. Here hierarchical is intended to mean that when
one principle restricts the properties of a set of lexical rules, another
principle can restrict further properties of a subset of these lexical rules.

4. A LEXICAL RULE SPECIFICATION LANGUAGE

Having discussed the different possibilities to integrate relations between
words or lexical entries into the formal setup of an HPSG grammar, we
can now turn to the question how such lexical rule relations can be spe-
cified. We believe the answer to this question is independent of a parti-
cular formal basis for lexical rules. That is, regardless of whether lexical
rules relate word objects as in the DLR approach, or lexical entries as in
the MLR approach, they are intended to capture the same class of gener-
alizations and a precise language to specify these generalization can be
defined independently. To emphasize this point, and to facilitate discus-
sion, we introduce the term lexical element as an intentionally neutral
term meaning the entitiés related by a lexical rule.

4.1. What needs to be expressed?

So what kind of relation needs to be expressed by a lexical rule? Consid-
er two lexical elements related by a lexical rule. We can distinguish
three parts: a) Certain specifications of the input are related to different
properties of the output. b) Certain specifications of the input are related
to identical properties of the output. And finally, c), certain specifica-
tions of the input have no relation to specifications of the output, either
because i. the linguist intends those specifications to be unrelated, or ii.
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because those specifications are appropriate for one lexical element but
not the other. v

For example, a lexical rule relating German base form verbs to their
ﬁnite.: forms, among other things needs to a) relate the base verb form
specification and the base morphology to a finite verb form and the cor-
responding finite morphology, b) ensure that the semantic predicate
expressed is the same -for both objects, and c-i.) ensure that the finite
yerb can appear in inverted or non-inverted position regardless of the
inversion property of the base verb (which in fact can only occur in
non-inverted position). An example for the case c-ii.), where certain
properties cannot be transferred, could occur in a nominalization lexical
mle which relates verbs to nouns. Since a verb form specification is
1na1;propriate for nouns, that specification cannot be transferred from the
verb.

In standard practice, lexical rules in HPSG are written down as two
AVMs. eparated by an arrow, as exemplified by the lexical rule in Fig.
5. At first sight, the AVMs, or more precisely the description language
§xpressions which they stand for, clearly and explicitly express the
intended relationship between lexical elements: the AVM to the left of

© the arrow specifies the domain, while the AVM.to the right specifies the

range. However, as we will motivate in the following, closer inspection
reveals a fundamental unclarity: lexical rules as traditionally specified
rely on implicit specifications and the ordinary description language
does not allow unambiguous specification of certain relationships. We
therefore distinguish the language used by the linguist to write down a
1§xical rule, the lexical rule specification language, from the actual rela-
tion intended to be captured. Lexical rule specifications (LRS) are writ-
ten as “LRS-In + LRS-Out”. The input- and the output-specification
LRS-In and LRS-Out will be specified in an extended version of the
description language introduced below, which is designed to provide an
unambiguous notation for specifying lexical rule relations.’

So in what way is implicit specification used in an LRS? Tradition-
ally, an input to a lexical rule is understood to be minimally altered to
obtain an output compatible with LRS-Out: the lexical rule in Fig. 5
“(like all lexical rules in HPSG) preserves all properties of the input not
mentioned in the rule.” (Pollard & Sag 1994:314, following Flickinger
1987). Therefore, no specifications expressing identities (i.e., case b dis-
cussed above) are included in an LRS. Interpreting the two AVMs as
ordinary descriptions would therefore miss part of the intended effect.
This idea to preserve properties can be considered an instance of the
well-known frame problem in Artificial Intelligence (McCarthy & Hayes
1969). We will refer to the additional restrictions on the elements in the
range of the rule which are left implicit by the linguist and thus have to
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be inferred on the basis of the lexical rule specification and the signature
as frame specification or simply the frame of a lexical rule. The activity
of establishing the identities consequently is referred to as framing.

The second claim made above was that the standard description lan-

guage does not allow unambiguous specification of the relationships
intended to be expressed. The reason is that no notation is available to
distinguish between intended unrelatedness (case ¢) and mere change of
specifications (case a). -

4.1.1. Type specifications and type flattening in LRS-Out

Take, for example, the signature in Fig. 22, which will serve as the basis
for the non-linguistic examples in the following (unless indicated other-
wise). )

T

v [E Zzzﬂ e
d AN

Y a
b c + -

Za
f
{;{ b [} N bool
00 0 bool
Fig. 22. The signature for the non-linguistic examples.

What kind of X value do we want for the output of the relation speci-
fied by the lexical rule specifications in Fig. 23? One possible interpreta-
tion is to understand the rule as requiring the output value of X to be ¢
if the input’s value was incompatible with this assignment, but to keep
the value of the input in the output in case it is compatible and more
specific.

word [X c:l
Fig. 23. An example for ambiguous type assignment.

The other possibility is to say that every output of this rulé is intended
to have ¢ as value of X. In other words, the value of X of the output is
intended to be unrelated to the value of X in the input. We will refer to
this second interpretation as flattening of a type assignment.

Since the first, non-flattening interpretation is closer to the intuition of
minimally altering the lexical element to obtain an output, we will adopt

189

this as the standard interpretation of type assignment. To still be able to
specify a flattening type assignment, we introduce the new symbol b (flat)
and Fig. 24 shows the LRS of Fig. 23 with a flattening type assignment.

word +— [X bc]

Fig. 24. A lexical rule using flat.

To get a better feel for the interpretation of the two Motations, we take
a detailed look at the precise mappings expressed. Fig. 25 illustrates the
relation expressed with the LRS of Fig. 23, i.e., without flat.*'

{0 b Dx Al A e Ml A )}

Fig. 25. The mapping for (non-flattening) type assignment.

Note that it only shows the mapping for the most specific subtypes, the
so-called species or varieties. One obtains the result for a supertype by
taking the mapping for each of its most spe\éiﬁc subtypes and interpret-
ing the result disjunctively, as illustrated by Fig. 26.

L [xd =[x 2. [xB] =[x 30 [xe]=[x c]
4. [xd]=>[xe:| 5. [xe]=[xd 6. [xA=[x1

Fig. 26. Lexical entries and what they license via the LRS of Fig. 23.

In the first three cases the value of X of the input is compatible but less
specific than the value specified for X in LRS-Out. For these inputs the
lexical rule therefore requires the output to have c¢ as value for X. The
same requirement is made for the output of case four, this time because
d as value of X of the input is incompatible with the LRS-Out specifica-
tion. Finally, in cases five and six, the specification of the input is com-
patible and more specific than the assignment in LRS-Out so that the
input’s value for X can be carried over to the output..

Taking another look at the second mapping in Fig. 26, one might wonder
whether the value of X in the output should not be restricted to e, i.e., the
common subtype of b and ¢, instead of the more general ¢ which seems to
violate the intuition of minimal alteration. To obtain this interpretation
though, we would also have to map d into e (and not into fVe), since b
denotationally is equivalent to dVe and we would like to maintain that two
denotationally equivalent lexical entries result in equivalent lexical rule
outputs. Since restricting the mapping of d to e in this way is not a sensible
interpretation, the mapping of b to e is undesirable.

Turning to the second lexical rule specification, the LRS with the flat-
tening type assignment shown in Fig. 24, one obtains the mappings in
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Fig. 27. Using the flat symbol, the value of X was specified as unrelated

to the input and c is assigned as value. Therefore every X value is- .

mapped to both species of c.
‘ Loxd=xd 2 [xe=[xd 3 [xqd=[xd

X ]

~
—
>
a8
B
4
—
®
2
w
—
»®
i
4
—_—
>
O,
o
—
B3
Sy
4
—

Fig. 27. Applying the flattening type assignment LRS.

The way in which type specifications in an LRS-Out are interpreted is
summed up below.

DECISION 1 (Interpretation of type specification in LRS-Out). A
type specification t on path T in LRS-Out is interpreted as expressing the
following relation: '

® The value of path T in the output is t’ if

— type t’ assigned to path T in the input is a subtype of t, and
— path 7 is not specified as flat in LRS-Out

® Else, the value of path t in the output is t.

Indirect type specifications and normalization. So far, so good; but
what about the cases in Fig. 287

1. word — [x

N+]

2. word — [x|L —-:l
3. word {X ‘:f _ﬂ
Fig. 28. Lexical rule specifications with implicit type assignments.

The problem is that in those examples even though no type is speciﬁed]
directly in LRS-Out for X, only certain types as values for X in LRS-Ogt
will yield a consistent description. In the first LRS in Fig. 28, the attri-
bute N is only appropriate for objects of type £, in the second LRS the
attribute L with value “~” is not appropriate for elements of type d, and
in the third LRS the attribute L is structure shared with K and, since X
has “~ as value, again d is not a possible value for X.

The solution to this class of problems is to infer all type values of the
nodes in LRS-Out which are compatible with the descriptions in LRS-
Out and the signature. The task of inferring the compatible species as
value of each attribute in a description has already been dealt with: The
normalization algorithm of G&tz (1994) and Kepser (1994) discussed in
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detail in section 5 can be used to transform a description into a normal
form representation in which (among other things) every attribute is
assigned every species consistent with the rest of the description. Based
on this normalized representation, the ordinary interpretation for LRS-
Out type specifications defined in decision 1 is sufficient.

A related complication can be illustrated with a linguistic example
based on the signature of Pollard and Sag (1994). The lexical rule shown
in Fig. 29, which we proposed for expository purposes only, licenses
predicative versions for all words. o

word + [SYNSEM|LOCAL|CAT|HEAD[PRD +]

Fig. 29. PRD-Lexical Rule Specification (for exposition only).

e
While the PRD value is to be set to +, the usual intention is that the dif-
ferent HEAD types of the input are to be preserved, e.g., if the input of
the lexical rule has a HEAD of type verb, the output is intended to have a
verb HEAD as well. As before, normalizing first and then applying the
ordinary interpretation for LRS-Out type specifications produces the

‘right result: Normalizing the LRS-Out infers the type substantive as

HEAD value and by decision 1 a subtype of substantive, such as verb will
be mapped to itself.

Summing up this last part, normalizing LRS-In and LRS-Out allows
us to capture rather complex type assignments with the simple interpre-
tation for LRS-Out type specifications defined in decision 1.

Negated type specifications in LRS-Out. Having discussed the effect
of positive type specifications in LRS-Out, we can now turn to the inter-
pretation of negated type specifications. It turns out that the SRL setup
with its closed world interpretation and a finite set of species allows us
to replace all negated type assignments by positive ones. Eliminating
negation for negated path equalities does introduce path inequalities,
which are dealt with in section 4.1.5 below. But no special treatment of
negated type assignments in LRS-Out needs to be defined — the discus-
sion of the positive type assignments above carries over.

Interaction with framing of path equalities. Until now, we have only
discussed the effect of type specifications in LRS-Out on typing of the
input. So we still need to discuss what effect LRS-Out type specifica-
tions are intended to have on the framing of the input’s path equalities.
There are two possible interpretations here. The first possibility is to
argue that a type specification of a path in LRS-Out is a specification of
that path and therefore no framing of path equalities takes place. The
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second possibility is to still ensure framing of those paths even though .

in some cases this will result in inconsistent outputs.
Consider the LRS and the two possible mappings in Fig. 30.

word ~ [x[x -] {x {f H = 1 |:X {f l:oolﬂ 2 [x l:f —H
Fig. 30. Type assignment in LRS-Out and path equality in the input.

For the first mapping, the specification of a type for K in LRS-Out is
understood as assigning a new value for K and therefore no framing of
path equalities takes place. The second case shows the mapping under
the second interpretation, where a type specification in LRS does not
exclude framing of path equality.

While the second interpretation in this example succeeds in preserving
more specifications, this second strategy becomes increasingly complex
when looking at more cases. Consider Fig. 31 showing a slightly differ-
ent mapping with the same LRS but this time with an input with a type

specification.
word [x]x —] {x {K +ﬂ = 1 [x 2. |x ;—
L L

F1<r 31. Type assignment in LRS-Out conflicting with path equahty plus type assignment in
the input.

K —
L+

In this example, the type assignment in LRS-Out conflicts with the path
equality and type assignment of the input. Applying the first strategy is
straightforward, since the specification of K means that the path equality
between K and L holding in the input will not be transferred. To obtain a
result for the second strategy, an additional decision needs to be taken
which decides how to resolve the conflict between the assignment of L
to + and the path equality between K and L. One possibility would be to
decide that the specification in LRS-Out always has priority, and that
path equalities in the input have priority over type assignments in the
input. Such a strategy would then result in the second mapping result
shown as part of Fig. 31 above.

However, a very similar conflict can arise where it is not possible to
eliminate the input’s type specification since it is the appropriate value
of the attribute as in the example in Fig. 32.

ot [g] - obE]

Fig. 32. Type assignment in LRS-Out, path equality and conflicting appropriate types in the
input.
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The first strategy works as in the previous example: since K is specified
in LRS-Out the path equality with K is not transferred to the output. The
second strategy assumed for the last example fails this time, since
objects of type d allow only + as appropriate value of L. Therefore the
conflict between the path equality and the type specification in the input
cannot be resolved by eliminating the type specification.

The above discussion shows that the idea to preserve some input path
equalities for attributes specified in LRS-Out results in a highly complex
problem, basically that of belief revision involved in the task of elimi-
nating a minimal number of facts from a database that has become
inconsistent in order to obtain a consistent one. We believe that basing
the interpretation of lexical rules on the highly complex strategies
needed to successfully deal with such belief revision tasks conflicts with
the idea of providing a clear mechanism for expressing horizontal gener-
alizations. We therefore settle for the less expressive but straightforward
interpretation which is summed up in decision 2. Lo

DECISION 2 (Framing of path equalities). Only path equalities hold-
ing between paths in the input which are not mentioned in LRS-Out are
transferred to the output.

4.1.2. Path independence specifications in LRS-Out

We decided in the previous section that a type or type-flattening specifi-
cation of a path in LRS-Out prevents framing of a path equality with
that path. This brings up the question of how one can make a specifica-
tion which prevents framing of a path equality for an attribute, without
having to specify or flatten its type. For this purpose one could introduce
a binary operator f (sharp) to be used to express that no framing of a
path equality between the two paths is intended. The notation with dif-
ferent subscripts, i.e., f;, could then be used if multiple pairs of path
equalities are to be eliminated. There is a problem with such a notation
though, which is illustrated by the LRS in Fig. 33.

word — [x {K ﬂ2ﬂ
L f2

Fig. 33. An LRS with the binary # notation.

The sharps in LRS-Out specify that in the output we don’t want to force
attributes K and L to be token identical. For certain inputs there are sev-
eral possibilities for eliminating the path equality restriction on K and L,
though, which is shown in Fig. 34.

The problem is that because of the transitivity of path equality, elimi-
nating the path equality between K and L also entails altering the rela-
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x @ [ rx @] [ e B K

X ; = 1. Xl:; 2. x[; 3. Xl:;

o[l | Lol L Lo 2] o [1]

' [ 2] [ e EN]
L L @
4.X[N S.X[N
| Lo O] L Lol

Fig. 34. Five possible results.

tionships of X and L to N and z. To obtain a unique interpretgtion of the
binary # notation one would need to complicate the § notation furth@.
Instead of complicating matters in this way, we introduce path equality
elimination 1 as a unary operator eliminating all path equalities with one
ath.

’ To specify an LRS resulting in the five possibilities of Fig. 343 the
path equalities which are intended to be kept for an attribute for which §
was used to eliminate some path equalities need to be restated. As
shown in Fig. 35 it is necessary to repeat certain path equalities because
it is only possible to eliminate all path equalities with an attribute ar}d
not only those holding between two attributes leaving the others as in
the binary notation.

SN T AR S|

4. word +— [x [K ﬁ]:l 5. word {X k gﬂ
Fig. 35. LRSs using unary § to specify the results in Fig. 34.

Proceeding to a slightly more complex case, consider the LRS and the
- example mapping in Fig. 36. : :

g
ATx T X d XL} L 14
word»—»[xﬁ] 1.[le$[Y1 2. = YK
z [ z [ Z L2
z [0

Fig. 36. A more complex example using §.

The LRS specifies that the attribute X is independent of the path equal-

ities which held on X in the input. The interesting question is what
value is supposed to be assigned to X in the output. Following the i.ntui—
tion that the output should be the minimal alteration of theA input
required by the specifications in LRS-Out, we interpret the LRS in Fig.
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36 to require only that the structure sharing with X is not present in the
output. As shown in the first mapping, the type assigned to X is pre-
served, and the second mapping illustrates that path equalities in a sub-
structure and between substructures is preserved as well. If no framing
is intended for the type assignment of X, an additional flat specification
has the desired effect. If the attributes of the value of X are intended to
also be independent of the input’s path equalities, they also have to be
specified as sharp. This also highlights that the interaction of sharp and
flat specifications is straightforward in that the two do not interact: sharp

only has an effect on path equalities whereas flat only effects type
values.

4.1.3. Path equality specifications in LRS-Out

Turning to the second kind of basic specification in LRS-Out, path
equalities, we need to decide on whether any framing is intended for
paths specified with a path equality in LRS. This question was already
partly answered in section 4.1.1, where we decided to not assume fram-
ing of the input’s path equalities for attributes which are specified in
LRS-Out. The remaining question is whether type values of the input

+ should be transferred to paths in the output, for which a path equality is

defined in LRS-Out.

Recall that the motivation for restricting framing of path equalities to
unspecified LRS-Out paths came from the insight that highly complex
strategies are needed to decide how to resolve a conflict resulting from
framing of a path equality in the input and an incompatible type specifi-
cation to one of the paths in LRS-Out. The situation we are faced with
now is a mirror image of this problem: how should one resolve a conflict
resulting from framing of a type specification in the input and a path
equality in LRS-Out. While it might be possible to develop a strategy to
answer this question, it will in all likelihood be equally complex as the
answers to the mirror-image problem discussed in section 4.1.1. Rather
than engage in this traditional problem, we therefore follow the same
strategy as in the earlier section and propose to avoid these conflicts all
together by not framing type specifications of the input for paths which
occur in a path equality in LRS-Out.

DECISION 3 (Interpretation of path equalities in LRS-Out). A path
equality between two paths t; and t, in LRS-Out is.interpreted as pre-
venting framing of the input’s type values of t; or .

4.1.4. Specifying identities between LRS-In and LRS-Out

In a useful lexical rule specification language it must be possible to express
that an attribute in the output is supposed to be assigned the value which
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another attribute has in the input. Traditionally, the notation for specifying
structure sharing between two paths of an object has been carried over fgr
this use, as illustrated for example by the use of the tags [T, 2, and @ in
© LRS-In and LRS-Out of the passive LRS shown in Fig. 5.

Under a DLR approach, the use of path equalities for this purpose

makes sense since DLRs are represented just like other linguist objects.

Path equalities between parts-of the IN and the OUT attribute of lex_rule
objects (or whatever DLR representation one chooses) can therefore
receive the ordinary structure sharing interpretation. We will therezfzore
not complicate the specification language for DLRs for this purpose.

For the MLR approach, one cannot use ordinary path equaht.y to ?elate
input to output of a lexical rule. Path equality denotes token 1dent1ty of
objects, but an MLR relates descriptions of objects, not the objects
themselves. A specification language for MLRs would therefore have to
introduce meta-variables for this purpose.

4.1.5. Path inequality specifications in LRS-Out

As the final kind of specification that can occur in LRS—Out we now dis-
cuss path inequalities. Consider the example shown in the left half of

Fig. 37.
K X bool
L L bool
X N = X [N
0 0

Fig. 37. Path inequalities in LRS-Out.

word [X[K 5% XIL]

The"case of path inequality specifications in LRS-Out is very similar to
the case of the binary sharp notation discussed above. The problem is
that because of the transitivity of path equality, requiring a path inequal-
ity to hold of two paths in the output of a lexical rule cannot be accom-
plished by adding the path inequality and removing a possibly o_ccurrmg
path equality between those paths. One additionally has to decide what
happens with other path equalities in which those two paths occur.

The decision 2 restricting framing of path equalities to paths not men-
tioned in LRS-Out therefore also appears to make sense for path
inequalities specified in LRS-Out. An example mapping for th;s interpre-
tation is shown in the right half of Fig. 37. Note that in case one does
want to keep the path equalities in the output which hold with one qf the
inequated paths, one can include a meta variable between that attribute
in LRS-In and LRS-Out to obtain the desired effect.

4.2. Is automatic framing reasonable?
After this long discussion of the specification language, one might won-
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der whether it is not an artifact of assuming automatic framing that a
special specification language is needed. After all, when writing down a
lexical rule, the linguist only needs to express two of of the three cases
(relating differing properties, relating identical properties, unrelated
properties). When the linguist specifies those properties which are
intended to differ (a) and one more case (b or c), the third kind can be
deduced; i.e., it does not have to be expressed explicitly and could be
called the “default” specification of lexical rules (in a non-technical
sense).

So there really are two possibilities here, of which we have only pur-
sued one above: We discussed an LRS notation in which we explicitly
have to mention those properties which are intended to be unrelated in
the elements described by LRS-In and LRS-Out (case c-i.). For this we
had to introduce additional notation, but the positive side of this was that
no explicit specifications are needed for the case in which specifications
are intended to remain unchanged, i.e., automatic framing takes place.
The other possibility, however, would be to not have automatic framing
and instead have an LRS notation in which those properties. which are
intended to be identical in the elements described by LRS-In and LRS-

© ~ Out (case b) are explicitly mentioned. The non-related properties can

then remain unexpressed — which eliminates the need for the extra nota-
tion introduced above.

At first sight, it does indeed seem natural to ask the linguist to express
in an LRS those specifications which relate properties, i.e., cases a) and
b), and keep unexpressed which parts of the objects are unrelated (case
¢). However, in highly lexicalized theories like HPSG, a lexical entry
contains many specifications of which only few are relevant in a specific
lexical rule. Asking the linguist to explicitly specify that all those speci-
fications without relevance to the lexical rule are identical in the ele-
ments related (in case they are appropriate) would thus amount to asking
for a lexical rule with many specifications which are of no direct impor-
tance to what the lexical rule is intended to do.

Furthermore, as discussed in Meurers (1994: sec. 4.1.3), specifying all
identities by hand in many cases can only be achieved by splitting up a
lexical rule into several instances. This is the case whenever one needs
to specify the type of an element an attribute of which gets specified in
the lexical rule output.*® A second case which requires splitting up the
LRS is when one has to specify framing of the value of those attributes
which- are only appropriate for some of the elements in the domain.
Finally, a significant problem can arise from having to explicitly specify
framing of the different path equalities which can occur in inputs to a
lexical rule.

So, while for simple lexical rules one could specify framing of identi-
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cal specifications by hand and the ordinary specification language would
not have to be extended, for most cases it seems well motivated to
assume automatic framing and specify the lexical rules with the
extended specification language introduced above.

Summing up, we have argued that additional notation needs to be
introduced to obtain a precise specification language. Additional notation
is introduced for the case in which non-relatedness is intended, i.e., to
mark those linguistic specifications which should not be altered by fram-
ing. Two new symbols b and § are introduced and b is used to mark a
type specification as independent of framing, while § marks an attribute
as independent of path equality framing.

5. A DLR FORMALIZATION OF THE LEXICAL RULE
SPECIFICATION LANGUAGE

After exploring the lexical rule specification in the previous section, we
now turn to a particular formalization of this specification language in
terms of description-level lexical rules (DLRs), which were introduced
in section 3. We start with a review of the formal setup of HPSG on
which our approach is based, before turning to the lexical rule related
definitions in section 5.2 and an example in section 5.3.

5.1. A mathematical foundation for HPSG: SRL

As the formal basis of our approach we assume the logical setup of King
(1989) which in King (1994) is shown to provide the foundation desired
for HPSG in Pollard and Sag (1994). The formal language defined in the
following is a version of the one proposed by King.

5.1.1. Syntax
Definition 1 (Signature). A signature ¥ is a triple (S, A, approp) s.t.

e A is a finite set of attribute names

® S is a finite set of varieties (also called species or most specific
24
types)

® approp : S x A — Pow(S) is a total function from pairs of varieties
and attribute names to sets of varieties

Everything which follows is done with respect to a signature. For nota-
tional convenience we will work with an implicit signature (S,.A,
approp). This is possible since at no point in our proposal do we have to
alter the sigrature. '
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Definition 2 (Term). Let : be a reserved symbol, the root symbol of a
path. A term is a member of the smallest set T s.t.

e :cT and

o racTifreTandac A

Definition 3 (Description). Ler (,),~,~,—, A,V and — be reserved
symbols. A description is a member of the smallest set K. s.1.

¢T~¢pek ifreT andp €S
*rnpek ifr,meT
o -fc K iféek

L4 (61 /\52),(51 \/62), (51 — 52) eKifé,6 ek

- Definition 4 (Theory). A theory © is a subset of K(© CK).

Definition 5 (Set of Literals). A set of literals ¥ is a proper subset of
the set of descriptions IC, i.e., ¥ C K, s.t. each § € ¥ has one of the four
forms (t,7, 7 € T; 9 € 8):

® T ~ ¢

L] T~ T

[ ] '—ITN¢

® —T7y ~ T

5.1.2. Semantics -

Definition 6 (Interpretation of a Signature). An interpretation I is a
triple (U, S, A) s.t.

® U is a set of objects. the domain of 1,

® S U — S is a total function from the set of objects to the set of vari-
eties, the variety assignment function,
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e A:A— {U—U} ® is an attribute interpretation function s.t.
foreachu € U and o € A:

- if A(w)(u) is defined then S(A(o) (w)) € approp(S(w), o), and
- if approp(S(u), &) # 0 then A()(u) is defined.

Deﬁmtlon 7 (Interpretation of Terms). [}/ : 7 — {U — U} is a term
interpretation function over interpretation I = (U, S, A) s.t. |

o [ is the identity function on U, and
e [ra) is the functional compositioﬁ of [7) and A(®).

Definition 8 (Interpretation of Descriptions). D;() : K — Pow(U) isa
description interpretation function over interpretation 1= (U, S, A)
st.(r,m,m€T;¢€S8;6,6,6 €K):

o Dy(r ~ ¢) ={u € U|[r)/(u) is defined and S([7]' () = 6}
Im) (u) is defined,
Di(nm=mn)=ucU| [n](u)is defned and
]! (u) = [l ()

Di(~6) = U\D1(6)

D[((51 A 52)) = D1(51) ﬁD[((Sg)

Di((61V 62)) = Dr(61) U Dr(62)

D;((6; — 62)) = (U\Dr(é1)) U Dr(62)

Definition 9 (Interpretatlon of a Theory). A theory is interpreted con-
junctively. [ : Pow(KC) — Pow(U) is a theory interpretation function
over interpretation 1= (U, S, A) s.t. [0]' = n{D;(6)|6 € K} '

Definition 10 (Satisfiability). A theory © is satisfiable iff there is an
interpretation 15.1.[0]" # 0

Definition 11 (Model). An interpretation 1 = {U, S, A) is a model of a
theory © if [O] =

The definitions above define a class of formal languages which can be
used to express HPSG grammars. We only list these definitions here to
make it possible to follow the formal definition and interpretation of the
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lexical rule specification language in the next sections. The reader inter-

ested in a discussion of the formal language of SRL is referred to King
(1994).

5.2. The lexical rule specification language
5.2.1. Syntax

Definition 12 (Lexical Rule Signature). Every signature L for which
the following condition holds is a lexical rule signature ¥;,.

® lex rulee S and
® IN,OUT € A and
® approp(lex_rule, IN) = {word} and

® . approp(lex_rule, OUT) = {word}.

- Definition 13 (L-Description). Lez b and 4 be. reserved symbols. With

respect to a lexical rule signature ¥, let T be a set of terms, K a set of
descriptions. A L-description is a member of the smallest set Kz s.t.

® dckKz ifdelC and
® :OUTu ~ b € Kz ifpe A" and
® oUTu ~f € K7 ifue A"

Definition 14 (Lexical Rule Specification). With respect to a given lexi-
cal rule signature ¥, a lexical rule speczﬁcatwn LRS is a subset of the

set of L- descrzptzons Kz containing at lédst the following literals
(¢ €Sy, 10 € AT):

® : ~lex_rule and
® :OUTu ~ ¢ or :OUTW; ~=:OUTuy or :OUTp~b or :OUTW ~ f.

There’s nothing complicated going on here. We just add the additional
LRS notation by defining L-formulas with respect to a lexical rule signa-
ture. A lexical rule specification then consists of L-formulas, and for con-
venience sake we ask for an LRS-Out containing at least one specification.
In most HPSG theories proposed in the literature, AVMs are used as
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descriptions instead of the term notation introduced above. AVMs can
be seen as a kind of normal form representation for descriptions. Now
that we’ve introduced the formal lexical rule specification language, let
us illustrate the different ways in which one can write down LRSs with
an example (which is not intended to say much but just show the way
things are written down). We will use the notation shown in figure 38
on the left as shorthand for the AVM shown on the right, which in the
formal notation defined above is expressed as shown below th‘at.26

B -\

X

IN
u
‘fiof

B A b
X B ﬂ
u '—’[wa}
Ylzm x 13 " ;
ouT ulv 5@
L ]

s~ lezrule A INBRINX A GINX®INYZ A (INY~u A

[lex_rule

=)=

——

OUTA~bD A :OUTB~Y A OUTUV~bD A :OUTUVRIOUTX A :OUTX~{

Fig. 38. Three ways to write down LRSs.

A normal form for L-descriptions. In section 4.1.1 we saw that the L-
formulas making up the LRS rieed to be normalized to have a consistent
variety assigned to each defined attribute, which is needed for the map-
ping from LRSs to LRs. This section serves to introduce a normal form
for descriptions. It reports work carried out in Gtz (1994) and Kepser
(1994). Originally, the normalization algorithm is used to determine if a
given description is satisfiable.

The linguist writes down LRSs. So we want to normalize L-formulas,
not simple descriptions. Since L-formulas are a simple extension of
descriptions with two additional statements for type and path equality
elimination, we only need to make minimal changes to the description
normalization algorithm of Gotz (1994) to obtain an algorithm which

transforms an L-formula into normal form. First, we need to introd'uce_

some additional terminology.

Definition 15 (Terms and subterms in X). The set TERM(X) contains
all paths occurring in a-set of literals ¥ and their subpaths (r,7 €T;
e Ay e SU,i}):

TERM(E) = {7 |(~)rr~ 7" € T} U {7 ()7 =T e T}V

{r|()yrm~deX}
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Definition 16 (Clause and Matrix)

® A clause X is a finite (possibly empty) set of literals.
® A matrix I' is a finite (possibly empty) set of clauses.

Definition 17 (Interpretation of a Clause and a Matrix)
® A clause is interpfeted conjunctively.

If ¥ is a clause, then Di(X) = NsesDy(6).
° A matrix is interpreted disjunctively.

If T is a matrix, then D;(I") = UserDy(T).

The conversion from L-formulas to its normal form proceeds in two
steps. First, the L-formula is transformed into disjunctive normal form,
i.e., where all negations are pulled in and the disjuncts are on the top
level. The resulting matrix I' is a finite set, each element of which repre-
sents one disjunct. Each disjunct is a clause which consists of a finite set

- of literals. Since the transformation into disjunctive normal form is a

rather. standard procedure, we just assume its existence here. Second, the
rgsultmg matrix is normalized. We start with a declarative characteriza-
tion of what it means for an L-formula to be in normal form.

Deﬁnition 18 (Normal Clause). A set X of literals is normal iff the fol-
lowing conditions - hold (7,71,7 € TERM(Z); &, ¢, ¢ € S;1p € SU
Do e Ame A

1. :~:eX (root is defined)
2. l'chlﬁTzezthénT2%71€E (symmetry of =)
SifnmmnnrnElthenirkn XL (transitivity)

4 ifrmernelthentrTEYD (prefix closure)

4 S TR, NTR AT, TR T €L then T ~ T € D

(= and path extensions)
6. if T = T € X then for some $ € S, T~ p €T (exhaustive typing)

7. if for some p € SU{bfi}, T~ EDthent~TEX
(~ path is defined)
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8.if’?’]%TzEZ,TquﬁlEE,T2&¢2€Ethen¢1=¢2 (,f:jandw)
9.if T~ ¢ €35, T0e ~ ¢y € X then ¢y € approp(¢y, o)
. (appropriateness 1)

10. if T ~ ¢ € I, Tae € TERM(Y), approp(¢, o) # 0 then
TARTAE L ‘ (appropriateness 2)
1 J . if =6 € T then X (no contradictions)

12. if :0UTwa = :0UTne, :INw ~ ¢ € X, approp(¢, ) # 0 then
(N7 = INTToc € X ‘(corresponding in-paths are defined)

The algorithm which takes an L-descriptions as a DNF matrix and
returns its normal form is given below as a set of rewrite rules on sets of
clauses. I' is used as variable over sets of clauses and ¥ as variable over
clauses. Readers interested in the formal properties of the algorithm and
a discussion of the normal form are referred to Kepser (1994: sec. II).

ALGORITHM 1 (Clause Normalization). The algorithm consists of a
sequence rewrite rule applications. One step of the algorithm is the
application of exactly one rewrite rule. The dlgorithm terminates if no
rule can be applied (any more). A rule applies to a set of clauses T only
if the left hand side of the rule matches I and if the right hand side is a
valid set description under the same variable assignment. The rewrite

rules are (91,92 € S;9 € SU{b, i}, a e A;mre A™):

(1) Tw{E} — T U {Sw{m:))
2) Te{Swi{n ~n}} —TU { Eig‘ : ;i } )

A TR T, swd T }
(3) Pw{zw{ }} —-TuU Ty R T
Ty RT3

H’J{Tl ~ ’7'3} ‘
(4) - TW{Ze{ro~ ro}} = TU {ZW{ro = 70,7 = 7}}
Tl = T2,
nE Y¥¢ Mo R TIo
(5) Twl W o= 7o, —TUu ik 1%
: TO & 7O
ThO R 0
2 i w{ro ~ mo}
TR,
(6) PL‘H{EL‘EJ{T’NT}}—)FU{EH‘J{ ¢}|¢ES},
T ~
YT~ gD
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(7) Tw{Ze{r ~ }} = TU{SW{r ~ ¢, 7~ 7}}

T & T2,
(8) Tw! W 1 ~ ¢, = L,ifé1 # ¢

Ty~ G2

T~ @1, .
o) rufsef b} = Tuesgapmron(sn,)

TG ~ ¢2
(10) Te{Ze{r ~ ¢}} - T U {ZW{r ~ ¢, 7a = 10} },

ifro € TERM(Z) and
approp(¢,c) # 0

(11) Tw{Zw{8,=6}} — T, for any positive literal §
AT
2o OUTra ~ :OUT7rq,
12y Ty OUT7a ~ :OUTro, ~TuU
IN7 ~ ¢, ’
IN7 ~ ¢

IN7o ~ IN7o
if approp(¢,a) # 0

Each rewrite rule corresponds to a line in the definition of a normal

clause. Line 3 of definition 18, for example, demands transitivity of path
equality. The corresponding rewrite rule (3) in algorithm 1 picks out a
clause with two literals expressing path equalities and adds a literal
expressing the path equality resulting from transitivity, if it is not already
part of the clause. Note the use of ordinary (U) and disjoint union (&). The
last occurrence of disjoint union in the rewrite rule (3) ensures that this
rule will only apply if the literal to be added was not part of the original
clause, i.e., if transitivity for the two literals did not already hold in".

The original normalization algorithm of Gotz (1994) consists of rules
(1)~(11). Since we are dealing with L-descriptions, we additionally have
to take care of terms including the new symbols b and #. To do so,
Gotz’s original rule (6) was modified to also define those paths which
bear one of the new specifications. Note that once a path is defined in
this way, the rest of the algorithm will ensure that each subpath is ‘also
defined and that each (sub)path is assigned the possible varieties.

Finally, rule (12) is an addition to the original algorithm that is speci-
fic to lexical rule representations. It ensures that for each path in the
out-description the corresponding path in the in-description is intro-
duced, if it is appropriate.

5.2.2. Semantics
We define an algorithm which realizes a function from lexical rules as
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specified by the linguist (LRS) to enriched descriptions of lexical rule
objects which can be given the standard set theoretical interpretation
defined in section 5.1. The conversion from LRS to ordinary descriptions
proceeds in two steps. First, the LRS is converted into normal form, then
the normal form LRS is enriched with additional path equalities and
variety assignments to encode the framing which is only implicit in the
LRS. As a result of enriching the LRS we obtain an ordinary descrip-
tion, i.e., an LR, which is interpreted in-the normal way.

Enriching an LRS matrix. We saw in section 5.2.1 what it means for
an L-formula to be in normal form. Now we turn to the enriching algo-
rithm.

ALGORITHM 2 (Enriching a normalized lex_rule description). The
input to the ennchzng algorithm is an LRS in normal form. A normalized
LRS is a matrix T, a finite set, each element of which represents one
disjunct. Each disjunct is a clause which consists of a finite set of lit-
. erals. The enriching algorithm consists of the following three steps:

1. For every clause T in the matrix T, define a new matrix T = {2} '

2. With each such T obtain an enriched matrix I'° by applying the fol-

lowing two rewrite rules with respect to & until no rules can be
applied. A rule applies to a matrix I with respect to X iff the matrix
matches the left hand side of the rule and the right hand side is a
valid set description under the same variable assignment.

(pr,02€S,meTae Ame AY)

F’Lﬂ{z’ U { IN7 ~ ¢y, }} .
OUT7 ~ ¢ _ P,U{E,,U{:INWNQS[, }}
{2” U { INm ~ ¢1, }} z OUTT ~ ¢,
k OUTr ~ ¢,
for#¢r and OUTa ~b g X

OUTT ~ ¢,
W o'y — TI'u
2) I‘L+,l{ +{ Do }} S

OUTT ~ ¢, rop(s )ﬁ

: appro , Qo

E/L_H :IN'T(' ~ ¢2, approp(¢1 a) # w Y
IN7mo ~ :OUTno lpp P2,

if OUTno.~:0UTroe ¢ &

&
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3. The frame enriched LRS matrix T is the union of all frame enriched
matrices I'° obtained, from which all inconsistent clauses and literals
of the form v ~ § and © ~ b (7 € T) have been eliminated.

Rule (1) is responsible for framing the species of paths the corre-
sponding out-paths of which are mentioned in the out-specification. It
checks if the type on a certain in-path is compatible with that on the cor-
responding out-path, i.e., it checks if the species of the in-path is
assigned to both the in and the out-path in some disjunct. If that’s the
case, it eliminates the disjunct in which the in-path and the out-path are
not assigned the same species. This rule relating the typing in the out-
specification to the in-specifications is not applied for out-paths Wh1ch
are specified to be flattened, i.e., if :0UTr ~ b € X.

The second rule performs framing of all parts not mentioned in the
out-specification. It introduces structure sharing between DLR-In and
DLR-Out for all attributes « extending a path which is defined in LRS-
Out in case o is appropriate for both the path in LRS-In and the corre-
sponding one in DLR-Out and the path extended by o is not itself
defined in DLR-Out. Note that the path extended by o will be defined in

- DLR-Out in case that path was specified with a flat or sharp instruction,

thus keeping the rule from framing a path equality without requiring a
special treatment for these instructions.

5.3. An example

To illustrate the formalization with a complex case of a lexical rule, let
us take a look at an example taken from Pollard and Sag (1994), the
Complement Extraction Lexical Rule (CELR). There are two reasons for
looking at this example. On the one hand the signature is explicitly
given by Pollard and Sag. This is necessary to understand what goes on
with a lexical rule specification. On the other hand, the CELR is rather
difficult to express without a formalized lexical rule mechanism and can
cause unwanted results under some interpretations as discussed by Héhle
(1995). So this makes it a good test case to see whether we’ve made
things any clearer, even though a lot of the possibilities which we envi-
saged in the design of the lexical rule specification language will natu-
rally play no role in this particular case.

The CELR as provided by Pollard and Sag (1994:378) which we .
already briefly mentioned in the discussion around Fig. 9 is repeated in
Fig. 39 below.

This original specification is written down using a number of short-
hands, such as abbreviated feature paths and the use of “...”. To clarify
the intended interpretation of the rule, Pollard and Sag (1994: fn. 36)
write “The intended interpretation of the lexical rule is that all occur-
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ARG-ST O ARG-ST < - Eroc @ INHER|SLASH{}],‘.V>
[cows (... Broc @]....)| = |comps (o
INHER|SLASH mEr|sLase {D}UE

Fig. 39. The CELR as specified by Pollard and Sag (1994).

rences of [3 in the input (except for the one on the COMPS list, which is
eliminated in the output) are to be replaced in the output by a specifica-
tion [, which is exactly like [3 except that it bears the additional specifi-
cation [INHER|SLASH{[A}]. This will ensure, for example, that in the case
of a raising-to-object verb, the complement subject synsem object
remains token-identical with the SUBCAT element corresponding to the
“extracted” subject (e.g., in who I expected _ to come.).” ,

As a first step towards formalizing this lexical rule specification, we
need to eliminate the informal shorthands. As explicit representation, we
obtain the probably intended lexical rule specification shown in Fig. 40.

NLOC|INHER|SLASH {

Loclcar|vaL|comps [6l @[3
NLoc|muEr|sLask {[MjUR]}

[LOC|CAT]VAL]COMPS Be(E[roc ]|
SYNSEM

NLOC|INHER|SLASH SYNSEM {

Fig. 40. An explicit version of the CELR.

113 EX]

In eliminating the notation we, however, had to introduce the
operator & for the append relation and we left the U operator for the set
union relation from the original specification. Since we based our lexical
rule specification language on SRL, which does not provide such rela-
tions as first class citizens, we would need to introduce these relations
into our ontology and refer to them using a so-called junk-slot encoding
of relations (Ait-Kaci 1984, King 1992, Carpenter 1992). Alternatively,
one could redefine the lexical rule specification language and its inter-

pretation to be based on an extension of SRL with relations as provided .

by the Relational Speciate Re-entrant Language (RSRL) (Richter et al.
1999, Richter 1999). Since the different ways to encode relations in
HPSG are a separate issue and we do not want to complicate the exam-
ple further with a junk-slot encoding of the relations append and union,
we base our illustration on a simplified version of the CELR. Instead of
treating any element on COMPS and ARG-ST with any SLASH set, the par-
ticular instance of the CELR we discuss extracts the second element on
COMPS and ARG-ST for entries with an empty SLASH set.

Fig. 41 shows how the simplified CELR can be specified by the lin-
guist using our setup. As usual with lexical rules, only those parts which

{Am.ne(@ >ﬂ ~ ARG'STQBQLOC }]”E> A

ARG-ST|REST|FIRST ARG-ST|REST|FIRST|NLOC|NHER |sLasH { [}
SYNSEM LOC\CAT\VAL|C0MPS]REST<[Loc ]| > — Syxs LOC|CAT|VAL|COMPS|REST
NLOC|INHER|SLASH{ } NLoc|vHER|sLasH { [}

Fig. 41. Lexical rule specification of a simplified CELR.

are intended to be changed need to be mentioned. No type or path equal-
ity elimination is needed for this example. ' \

~ Since no typing information is specified in LRS-Out and those attri-
butes which have types as values that have subtypes (HEAD, NUCLEUS,
RESTIND, DTRS, etc.) are not mentioned in LRS-Out, all the work to map
the CELR into a description is done by the rewrite rule that adds path
equalities between the in- and the out-description. The DLR resulting
from enriching the CELR is shown in Fig. 42.>’ To distinguish the tags
present in the lexical rule specification from the tags representing path
equalities which were added by the enriching algorithm, the latter start
with number 10 and are marked in grey. Also, the attributes that were
part of the original specification are underlined. For each of these
defined paths normalization introduced a specification :7 ~ :7 to mark

"which paths are defined and species specifications :7 ~ ¢. So, the species

along the underlined paths in Fig. 42 are introduced by,normalization.
The path equalities represented by the grey tags are introduced by
enriching: Along the defined paths the appropriate attributes are intro-
duced and path equalities between paths in the in-specification and the
out-specification are added for those attributes which directly extend a
defined path but are not themselves defined, i.e., underlined.

Note that the element on the ARG-ST list of the output which corre-
sponds to the one that is extracted from the COMPS list turns out to be
identical to the element on the input’s ARG-ST list except for the
NLOC|INHER|SLASH specification. This is just what was intended but what
in the absence of a formalized lexical rule mechanism was not formally
expressed in the original formulation of the CELR as discussed by Pol-
lard and Sag (1994:378, fn. 36).

Finally, let us turn to the problem with the CELR discussed in Hohle
(1995). It consists of the apparent need to modify certain path equalities
before ‘copying them over’ from the in-specification to the out-specifica-
tion. More concretely, assume a CELR removing the second element of
a COMPs list applies to an input which includes a path equality involving
the fourth element of the COMPS list, i.e., the path REST|REST|REST|FIRST.
Since the second element is eliminated by the lexical rule, the path
equality in the output has to refer to the third element (REST/REST|FIRST)
instead of the fourth in order to involve the same entity as in the input.
Simply transferring path equalities from the input to the output therefore
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Fig. 42. The explicit DLR resulting from enriching the CELR of Fig. 41.

does not seem to provide the intended result. Looking over the charac-
terization of the problem, it becomes apparent that it is closely tied to
the traditional MLR interpretation of lexical rules as mapping between
descriptions. Under the DLR formalization presented above, path equal-
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ities between the in- and the out-specification ensure the framing of
unchanged properties. This means that path equalities holding in the
input are not transferred as such but as the result of the transitivity of
path equality. Hohle’s problem therefore does not arise under our DLR
approach.

6. SUMMARY

In this paper, we discussed the status of the lexicon and the possibilities
for expressing lexical generalizations in the paradigm of Head-Driven
Phrase Structure Grammar. We showed that the architecture readily sup-
ports the use of lexical principles to express so-called vertical general-
izations, i.e., generaliiations over a class of word objects. We then
turned to horizontal generalizations and investigated a possibility to for-
malize lexical rules based on SRL as a logical basis for HPSG. First, we
defined lexical rules so that they can be constrained by ordinary descrip-
tions. Then we explored and defined a lexical rule specification notation
which allowed us to leave certain things implicit. Finally, we showed
how we can get from the lexical rule spec1ﬁcat10n to the exphc1t lexical
rule constraints.

Even though the two approaches to 1nterpret1n0 an LRS we discussed,
the MLR and the DLR approach, share many aspects, it is important to
understand that the way in which these approaches do the actual inter-
pretation is very different. In the MLR approach, an algorithm is sup-
plied which, independent of the rest of the theory, takes a set of lexical
entries, and constructs a (possibly infinite) set of derived lexical entries
resulting from lexical rule application. In the DLR approach, the inter-
pretation of an LRS is divided into two steps: First, the LRS is trans-
formed into an ordinary constraint which is integrated into the theory.
The real interpretation of the LRS as a relation extending the set of
grammatical word objects is left to the :second step, where the whole
theory is interpreted in the ordinary way.

We believe there are some nice properties of such a DLR approach:
First of all, apart from the mapping from the specification to explicit
constraints, we did not add any additional machinery to the logic. The
semantics of the lexical rule specification after the mapping is provided
by the ordinary definition of the interpretation of an HPSG theory in
SRL. The advantage this has for the linguist is that when it comes down
to seeing exactly what a certain lexical rule specification means, (s)he
can always take a look at the resulting enriched, fully explicit descrip-
tions of lexical rules in the language used to write the rest of the HPSG
theory, instead of having to interpret the lexical rule specification
directly in some kind of additional formal system.

Second, the mapping from lexical rule specifications to explicit con-
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straints is done independent of the lexical entries. It suffices to look at a
lexical rule specification and the signature to determine what remaifle;d
implicit in the lexical rule specification and how it can be made explicit.
This is possible because HPSG is built on a typed feature logic and a
closed word interpretation of a type hierarchy.

Third, the approach presented is highly modular and adaptable to the

linguist’s needs: One can decide on the data structure for lexical rules
one likes best (relations or ordinary descriptions), alter/extend the lexical
rule specification language in a way one likes, and alter/extend t_he
rewrite rules which enrich lexical rule specifications to ordinary descrip-
tions in a way one likes. This is important until a real discussion of pos-
sibilities and linguistic consequences of various setups has shown what
linguists working in HPSG really want to write down and what it’s sup-
posed to mean. .

And finally, taking descriptions of lexical rule objects as underlying
encoding in the way proposed in this paper makes it possible to hie{—
archically group lexical rules and express constraints on (groups of) lexi-
cal rules. This allows us to express general principles every lexical rule
has to obey, and it makes it possible to express that a group of lexical
rules shares certain properties.
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L
NOTES o

1 On the computational side, the idea to express macros just like other kinds of relations is
incorporated in the ConTroll system (Gotz & Meurers 1995., .19.97a,b).‘To be efficient
this requires a dedicated computational treatment of deterministic rel;mons. o

2 That a meta-level is involved here is clearly expressed in the discussion of descrzpfzve
adequacy, where Chomsky (1965:24) states that “a linguistic theory must contal,? a
definition of ‘grammar,’ that is, a specification of the class of potential grammars.

3 The mnemonic names often given to macros can give the impression of non-
arbitrariness to such abbreviations. On formal grounds, however, a macro is nothing but
an arbitrary symbol representing an arbitrary collection of descriptions. A discussion 9f
the parallel misuse of such naming schemes in Artificial Intelligence can be found in

. McDermott (1981). ] o )

4 The signature consists of the type hierarchy specifying vyhat type of objects we will talk
about and the appropriateness conditions declaring which properties of which type of
objects we want to include in our model. The signature thus defines the vocabulary that
can be used when writing down the theory. ) )

5 Where to introduce a new distinction in case the ontology does not yet make it p0§31b1_e
to pick out the relevant class of objects depends on the particular kind of class which is
to be singled out. For example, for lexical classes which are subclasses of categorial
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distinctions, the most appropriate location would be to introduce them as subtypes in the
hierarchy below head, where certain categorial distinctions are already encoded.

6 For space reasons, some of the attribute names are abbreviated in the figure.

7 Note that the mnemonic names given to such types formally have no more meaning than
a simple constant like z. McDermott (1981) discusses the inherent danger of such
naming schemes, which give rise to the fidelity fallacy: an observer believes that what a
symbol actually denotes within a formal system is what the observer expects it to denote
(Murray 1995:8).

8 Alternatively, one could turn the implications (=) in Fig. 2 into biconditionals («).
This would create complex antecedents though, which defeats the original mission to
use only type antecedents.

9 The principles in Fig. 3 make use of negation (=) to compactly single out the
complement of the consequents of Fig. 2. Under the standard closed-world assumption,
these negations can be eliminated by disjunctively enumerating all possibilities.

10 Briscoe and Copestake (1999) provide an interesting discussion of lexical rules in a
typed default feature structure framework (Lascarides et al. 1996, Lascarides &
Copestake 1999), which is an extension of a Kasper-Rounds logic (Rounds & Kasper
1986, Moshier & Rounds 1987, Carpenter 1992). The ontological assumptions and
formal properties of a Kasper-Rounds logic differ in crucial respects from those of an
Attribute-Value logic (Johnson 1988, Smolka 1988, King 1989), and King (1994) shows
that only the latter is compatible with the assumptions of HPSG as proposed in Pollard
and Sag (1994). Since it is unclear how defaults could be integrated into an Attribute-
Value logic and therefore into the setup of HPSG discussed here, a discussion of default
formalizations of lexical rules is beyond the scope of this paper.

11 The question how to process with lexical rules as formalized in this paper is not
discussed here; it is the topic of Meurers and Minnen (1997).

* 12 Please note the terminology used here and throughout the paper: The lexicon is a

collection of lexical entries and each lexical entry is a description of a set of word
objects. Sometimes we will simply speak of words when we mean word objects (but
never for lexical entries).

13 We renamed the SUBCAT attribute of the original lexical rule to the now more common
ARG-ST.

14 One could attempt to extend SRL to allow infinite disjunctions, where each of the
disjuncts can be recursively enumerated, but such an extension is beyond the scope of
this paper.

15 The valence requirement is token-identical to (part of) the realized argument, i.e., it
points to the same object.

16 Note that nothing ensures that the synsem object on the valence attribute of a word is
part of a grammatical sign at all. I

17 As an alternative to the standard HPSG setup, Hinrichs and Nakazawa (1994) propose to
represent and identify the entire sign value of each argument. In their setup, looking at a
single word at the leaf of a tree therefore reveals all information about the word and all
its arguments. To a large degree this eliminates the distinction between a lexical and a
syntactic level of explanation.

18 Note that nothing we have stated here changes the distinction between syntactic
transformations and lexical rules discussed above. In a syntactic transformation a word
has to exist as part of a grammatical syntactic tree, whereas this is not the case for
lexical rules. This is still true here, since we only require that the word that is the input
to the lexical rule is grammatical and not that it constructs in a gra.mmatica'\} syntactic
tree.

19 There is an exception to this statement which arises when one specifies a meta-level
lexical rule which includes the complete input as part of the output, e.g., by introducing
an extra attribute for words which in the output of the lexical rule is specified to be
identical to the complete input. However, since one of the motivations for a meta-level
formalization of lexical rules is to avoid representing the source of the derivation as part

of the model, this possibility is not very attractive and would only amount to specifying
DLRs in an indirect way.
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20 Whether or not such forms should be derived by a lexical rule at all is an independent

issue which we skip here for the sake of the argument.
21 In this and the following figures only the X type values are shown. ’ ]
22 Following a reviewer’s suggestion, we do not generally introduce rqeta-yanables into
. the description language. While it would allow us to keep the specification language
uniform for both a DLR and an MLR approach, the different interpretation of the two

approaches in practice already makes it necessary to chose between them.

23 One could avoid splitting up the LRS by adding type equality as syntactic sugar to SRL.

But as this is only one of several problematic aspects discussed here, we will not pursue
- this possibility. - . ' o
24 For easier comparison with standard HPSG notation, one can introduce a ﬁmte_: join
semi-lattice (Z, <) as type hierarchy with Z D> S. A type assignment is then simply
an abbreviation for a set of variety assignments: T~ 1= V{T ~ ¢|¢p =1} with
Te€T,t€Z, and ¢ €S. In this paper, we assume every type as.signment to be
expanded in that way. Nothing of theoretical importance hinges on this.
25 We write {X — Y} for the set of partial functions from set X to set Y.

26 Since the path equality relation is transitive, there are several possibilities to encode the

example in the formal notation. Normalization (cf., section 5.2.1) introduces all path
equalities which can be inferred due to transitivity. o

27 To take a place in the theory, the description in Fig. 42 is }ncluded as one of the
disjuncts on the right-hand side of the constraint on lex_rul.e which we saw in Fig. 14. ¥n
the figure, the feature names F and R are used as abbreviated notation for the ne_list
attributes FIRST and REST.
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