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Abstract

Contrary to static mean-variance analysis, very few papers have
dealt with dynamic mean-variance analysis. Here, the mean-variance
efficient self-financing portfolio strategy is derived for n risky assets
in discrete and continuous time. In the discrete setting, the resulting
portfolio is mean-variance efficient in a dynamic sense. It is shown
that the optimal strategy for n risky assets may be dominated if the
expected terminal wealth is constrained to exactly attain a certain
goal instead of exceeding the goal. The optimal strategy for n risky
assets can be decomposed into a locally mean-variance efficient strat-
egy and a strategy that ensures optimum diversification across time.
In continuous time, a dynamically mean-variance efficient portfolio
is infeasible due to the constraint on the expected level of terminal
wealth. A modified problem where mean and variance are determined
at t = 0 was solved by Richardson (1989). The solution is discussed
and generalized for a market with n risky assets. Moreover, a dynam-
ically optimal strategy is presented for the objective of minimizing
the expected quadratic deviation from a certain target level subject
to a given mean. This strategy equals that of the first objective. The
strategy can be reinterpreted as a two-fund strategy in the growth
optimum portfolio and the risk-free asset.
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1 Introduction

The problem of minimizing the variance of wealth at the end of one period
when the expectation is constrained to a specified goal has been extensively
studied in a static setting since the pioneering papers of Markowitz (1952),
(1959). Surprisingly little has been said about multi-period or dynamic mean-
variance analysis. Tobin (1965) solved for the optimal mean-variance efficient
portfolio in a multi-period setting under the assumption that the portfolio is
not adjusted according to new information over time. Mossin (1968) derived
the optimal strategy by means of dynamic programming for two assets and
two periods to analyze when myopic behavior is optimal. In the seventies,
Hakansson (1971, 1979), Samuelson (1971) and other papers dealt with the
question whether maximizing the average mean or the growth rate of wealth
is consistent with utility theory. Subsequently, there was an extensive liter-
ature on the latter goal since maximizing the growth rate is equivalent to
maximizing the logarithm of final wealth so that risk is also considered in
the optimization problem. However, still many investors regard mean and
variance as the relevant risk measures and managers are judged according to
these portfolio features. The portfolio performance is usually not assessed
after one period or on a day-to-day basis but over a longer time period. Thus,
investors face the problem of minimizing the variance of wealth at the end of
a predetermined investment horizon given that the expected terminal value
meets a certain goal. Until the investment horizon, the portfolio may be
rebalanced in a self-financing way.

In this paper, the latter problem is dealt with in a discrete time and in a
continuous time setting. The dynamic mean-variance efficient self-financing
portfolio strategy is derived for n assets.

In the discrete time discrete space setting, a dynamic programming approach
yields the strategy which minimizes the variance of final wealth every period
while keeping the expected final wealth at the required level. It is analyzed
whether placing a constraint on the lower bound or on the value to be attained
exactly by the expected terminal wealth fundamentally changes the solution.
It is shown that the mean-variance efficient strategy for n risky assets can
be found by decomposing the problem into two parts. At first, the locally
mean-variance efficient portfolio is determined, and then the strategy that
ensures optimum diversification across time is derived.

Unfortunately, in continuous time a dynamically mean-variance efficient port-
folio is infeasible due to the constraint on the expected level of terminal
wealth. However, a strategy that minimizes the variance of final wealth
at the beginning of the investment horizon subject to a predetermined final
wealth expected at time zero is feasible. The dynamic programming approach



is not suitable to this problem formulation. Richardson (1989), Duffie and
Richardson (1991), and Korn (1998) decompose the latter problem into a
static optimization problem and into a martingale representation problem in
the spirit of Pliska (1990). At first, the terminal portfolio value that min-
imizes the variance is identified within all possible terminal values which
attain the required expectation. Then, the admissible strategy that gener-
ates this terminal value is determined using martingale theory. Richardson
applies Hilbert space projection theory to obtain a closed-form solution for
the optimal trading policy and the variance of terminal wealth for a mar-
ket where there is one risky asset and a risk-free bond. A slightly different
approach is taken by Korn (1998) who considers n stocks and places an addi-
tional constraint of non-negativity on final wealth. However, a price is paid
for the latter advantage due to the lack of a closed-form solution. The opti-
mal policy of the modified problem is discussed and generalized for a market
with n risky assets. As time passes, there exist strategies that lead to a lower
terminal variance and higher expected value. However, at time zero, these
strategies do not satisfy the constraint on the terminal expectation.
Alternatively, the optimal strategy for an investor who continuously mini-
mizes the expected quadratic deviation from a target level is derived for n
assets with an optimal control approach. The target level is set so that the
mean terminal wealth achieves a predetermined value. It turns out that this
objective leads to the same optimal policy as minimizing the unconditional
variance. Interestingly, the optimal strategy can be interpreted as a two-
fund strategy, where the two funds are the growth optimum portfolio and
the risk-free asset.

The paper is organized as follows. In Section 2.1 the discrete framework is
presented. After a problem formulation in Section 2.2, Section 2.3 presents
the solution for a market with one risky asset. Section 2.4 generalizes the
analysis for n stocks. In Section 3.1 the basic continuous time model is
presented. The main problem is stated in Section 3.2, followed in Section
3.2.1. by the description of the minimum variance problem, and in Section
3.2.2 by the formulation of the minimum deviation problem. The results for
one risky asset are presented in Section 3.3.1 and 3.3.2, respectively. Section
3.3.3 shows how to decompose the optimal strategy into a two-fund strategy.
The solution for the general case of n assets is given in Section 3.4. Section
3.5 concludes.



2 The Discrete Time Model

2.1 The Basic Model

There exist n correlated assets Sy, .., S, each of which is driven by the same
class of discrete time discrete space processes. The (column) vector of prices
is given by S = (951, ..,5,,) with constant mean rate of return per period
= (py, .., )" and constant o = (0);;. Let ¥ = oo’ be the non-singular
covariance matrix, and ASS—Z“ the vector of the rates of return at time ¢

AS Sit11—S S Snt )’
t+1 it+1—Oit nt+1—Snt . . . . . .
s = ( e, L, T ) . For simplicity, time period At is set equal

to 1.

Furthermore, there exists a risk-free security with interest rate r per period.
The market is complete.

A portfolio strategy is a vector control process (w,,t > 0),w = (w;, .., w,)’
with w;(t) as the total amount of wealth invested in asset ¢ at time ¢ such
that w'l with 1 = (1,..,1)" is the total amount of wealth invested in risky
assets. It is assumed that w is admissible and non-anticipating.

XV denotes the investor‘s wealth at time ¢ under the strategy w. The port-
folio is rebalanced in a self-financing way:

AS
B ow (1055 ) - wi )
t

= w, (A:i“ - r1> + X7 (1+7)

2.2 Problem Statement

The investor’s objective is to find a strategy that minimizes the variance of
wealth at time horizon T subject to the constraint that the expectation of
terminal wealth is never below the goal M:

var(Xr | Xy) = infvar (X7 | X¥) (1)
subject to
E(Xr | X)>M (2)

The optimal strategy is solved for via dynamic programming.
If the initial wealth of the investor X exceeds the present value of the goal
M then X is invested entirely in the risk-free asset so that the investor does
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not face any risk. The portfolio is not rebalanced and the final wealth is
Xo(147)" > M . Since this case is trivial, it is not dealt with in the sequel.

2.3 Casel: n=1

In a market with one stock and a risk-free asset, there is no optimization
problem in a one period model because the constraint determines how many
shares of the risky asset are to be bought. However, in a dynamic framework
there exists an optimization problem due to diversification across time. In
the following, the optimal strategy will be determined for n = 1, such that
p=pu, 3 =02 and w = w. To avoid triviality, it is assumed that u > 7.
The asset follows a multiplicative binomial process.

Recursively solving problem (1) yields the optimal amount to be invested in
the risky asset at time 7" — 1

w (T—1) = (M — Xr_y (1 +7)) (3)

o

where

At all prior dates t < T — 1 the optimal amount is given by

™

1+ 7wo?m

w(t) = (M = X, (14 7)) (14 7) 7700 (4)

The minimum variance conditioned on the information at time 7" — 1 and
t <T — 1, respectively, is

1

var(Xr | Xp4) = — (M —Xp_1 (1+7))° (5)
1 71\ 2
var(Xe | X0) = s (M — X, (1+7) ) . (6)

The optimal amount invested in the risky asset is proportional to the differ-
ence of the present value of the goal and wealth. The conditional variance
and the amount invested in the risky asset increase with decreasing time to
maturity because there is less time left to attain the goal. Furthermore, both



values are the smaller, the nearer the wealth at the goal, and the variance
decreases when the mean rate of return increases.

The optimal strategy ensures that the portfolio value never exceeds the dis-
counted required mean terminal value (M > X, (1 +7)" ") for all t < T

AS
Xt+1 = U)*(t) ( St+1 — T> + Xt (1 + T)
t

ASip1
St

) X (14| (1))
1+ mo?m + X (14r) (1+7)

_ (M X, (1 r)”)

and therefore

X, (14+r) " < M= X (147" < p

due to
AS
il Gt (7)
14 mo2m

for all realizations of % in a complete and arbitrage-free market.
This can be easily checked. Let ¢ be the probability of an up-move, and

let 7%, r¢ be the realizations of % in case of an up-move and down move,

respectively. Since (rd — T) < 0 in an arbitrage-free market ( r* > r >

r?), only 22 = 7 has to be checked. (7) then becomes (1 —r) (r* —r) <

U 2 U U
4 (=77 = r(p—r") < EE) = = rl—q)(rt—r") < (1 -
Qrt (rt—r) =t <. O
Since M > X; (1+r)" " for all t < T, the variance ((5), (6)) is never pos-
itive if the investor is able to meet the goal by investing entirely in bonds.

Furthermore, short-selling is never optimal. The final portfolio value is given
by

Xr = wi(T-1) <%—T>+XT—1(1+T)

_ (M—XT1(1+7"))N£T (%—r) + X (1+7).

It exceeds the required expected value in case of an up-move and is below M
in case of a down move. Hence, the optimal strategy satisfies at time T — 1



constraint (2). At all periods prior to 7" — 1 the minimum variance policy
that leads to the portfolio value at time 7" — 1 is derived.
The optimal strategy ensures that constraint (2) is binding

E(Xr | X)) =M

since this leads to minimum variance in a complete market.

Hence, in a multi-period framework, there is diversification across time for
n = 1. It is optimal to invest less in the risky asset when the portfolio value
is close to the required expected final value and when there is much time left.

2.4 Case 2: n>1

In this section, problem (1) is solved for n risky and one risk-free asset.
The optimal strategy achieves an expected value F (X | X;) > M for some
stock price processes and parameters even if the market is complete. How-
ever, if E(Xr | X;) > M no 'nice’ formula for the optimal portfolio strategy is
obtained. In order to compare the optimal strategy for n assets with the strat-
egy for one asset, only those optimal strategies that result in F(Xr | X;) = M
are dealt with.

The optimal control vectors at time 7' — 1 and ¢ < 1" — 1, respectively are
given by

W;—l = (M — XT,1 (1 + T')) -
T
1+7n'Yrw

w;:(M>g@u+wf”)a+wy@4Hm 8)

where
="' (u—rl).

The corresponding minimum variances conditioned on the information at
time T'— 1 and ¢t <T' — 1, respectively are

1

M— X (1 2
71"271'( 71 (1+7))

UCLT(XT | XTfl) =

1

Xr | Xy) =
T)CLT( T‘ t) 71"271' (1-‘-7\'/27")

(M X, (14 r)“)2 .



For M > Xy (1+7)" the amount invested in each stock is proportional to
the difference of the present value of the goal and the portfolio value. The
optimal strategy implies that wealth never exceeds the present value of the
required mean: M > X; (1+7)" ‘forall t < T.

Interestingly, the above result can also be derived by decomposing the portfo-
lio problem. First, the investor solves for the locally mean-variance efficient
portfolio. The variance of the portfolio rate of return per period is mini-
mized subject to the mean rate of return per period being constrained to a
predetermined value ppp. Let @ = (6;,.., 6,,) denote the vector of portfolio
weights, i. e. the proportion of wealth invested in each asset of the total
wealth invested in the portfolio. The problem to be solved is

0%, = mgin 0'>0
subject to

OST +1r = ppp.
This yields the vector of optimal portfolio weights

« _ Mpp—T
O = ———
Ny

with the corresponding variance of the rate of return per period of the port-
folio with mean rate of return ppp

2 (,UPF - 7")2

O’ g
PE YT

Secondly, optimization problem (1) is solved for just two funds, the portfo-
lio with parameters ppp, 0%, and the risk-free asset. The optimal amount
invested in the risky portfolio is determined by (cf. (4))

- (T— TpF
w*(t) = (M—X 1+7"Tt) 1+ 7))
() L L e
— (M-Xx,(1 T—t) 14 ) -T=@+0)__TPE_
( t(1+) (147) 1+7'Ym
where
Upp —T 'y
Tprp = 3 = .
9pF Kpp —T



Consequently, the amount invested in each asset w*(¢)@" is given by (8).
Hence, problem (1) for n assets can be reduced to a diversification-across-
time and a diversification-across-assets subproblem: First, the locally mean-
variance efficient portfolio is solved for, such that the variance of the rate of
return is minimized for a given mean rate of return. Thereafter, the optimal
strategy for the minimum variance of wealth at the investment horizon sub-
ject to a predetermined mean terminal wealth is obtained for an investor who
invests in two funds: The locally mean-variance efficient portfolio and the
risk-free asset. The required mean rate of return pppr does not enter the op-
timal solution and can be chosen arbitrarily. The amount of wealth invested
into the locally mean-variance efficient portfolio is, however, determined by
the required expected terminal wealth.

As stated above, strategy (8) is only optimal if E(Xr | X;) always exactly
equals its lower bound M. A prerequisite for this is that there are no realiza-
tions of stock prices such that 7’ (% — rl) > 14+ 7w'Yn. Otherwise, strategy
(8) solves the modified problem

inf var (X7 | X}) 9)
subject to
E(XT ’ Xt) = M. (10)

Since this modified problem constrains the conditional expected terminal
value to exactly match goal M, the portfolio value X; is above the present
value of the goal M (1 + T)f(Tft) for some stock price paths. Hence, in these
cases the variance is positive even though rebalancing the portfolio such that
everything is invested at the risk-free rate leads to a deterministic final wealth
that is above M. This strategy is clearly counter-intuitive. There exists a
strategy which results in a deterministic final value above the required mean
final value. However, this strategy is not pursued but a strategy that involves
some risk in order to meet the goal exactly. Hence, the optimal strategy
throws money away on average.

Consequently, while solving problem (9) subject to the equality constraint
(10) for n = 1 results in the same optimal portfolio as solving (9) subject to
the inequality constraint (2), the optimal strategy may differ for n > 1 risky
assets. If 7’ (% — T].) < 1+ w'¥m for all stock price realizations, then the
solutions of both problems coincide. Otherwise, the equality constraint (10)
is clearly not appropriate for investors who prefer more wealth to less since
for some stock price paths a risky strategy is followed in order to give money
away on average. Hence, in the general case, it is inevitable to solve problem
(1) with constraint (2) to obtain a policy which is not dominated.
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3 The Continuous Time Model

3.1 The Basic Model

There exist n correlated stocks generated by n independent Brownian mo-
tions. The prices of these stocks are assumed to evolve as

j=1

where p; and o;; are constants for ¢,7 = 1,..,n and W; is a standard inde-
pendent Brownian motion. The market is frictionless.
Furthermore, there exists a risk-free bond whose price evolves according to

dB = pBdt

where p denotes the constant risk-free interest rate.

The self-financing portfolio strategy is an admissible and non-anticipating
vector control process (w,,t > 0),w = (w;, ..., w,) with w;(t) as the total
amount of wealth invested in asset ¢ at time ¢. Under the strategy w, the
investor’s wealth X} follows the process

o dS; n dB
dXW = w; : ;
i:zl Sz =1 B

= (W (u—p1) + pX¥)dt + w'oedW
where o = (tq, ..., 1t,)", @ = (0);5, and W = (W, .., W)’ denotes a standard
n dimensional Brownian motion defined on the complete probability space.

Let ¥ = oo’ be the non-singular covariance matrix, and let the vectors 7
and 7 be defined by

y=0""(n—pl)
7 =%""(p—pl) =o' v.

According to Itd’s Lemma, a function W(t,z) that is at least twice differen-
tiable in x and once in ¢ evolves as
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1
dV = U, dt + U, (WEm + pz) dt + w'oedW) + §\Ilww'det.

The generator of the wealth process can therefore be written as

1
DYV =V, + VU, (WXr + pz) + E\Ilmlewdt. (11)

3.2 Problem Statement

In the discrete time discrete space setting, the terminal variance is dynam-
ically minimized subject to a specified conditional expected terminal value.
Solving this problem results in unbounded strategies in continuous time. If
the portfolio value an instant before 1" is below the desired conditional mean
M then the optimal portfolio must consist of an unbounded number of risky
assets. This leads to unbounded variance. Consequently, as long as the in-
vestor desires a certain expected level of wealth and not a certain expected
rate of return, a policy that ensures a conditional expected value M 1is in-
feasible. Due to this infeasibility, the continuous time solution cannot be
derived by the limiting case of the discrete time solution and the problem
posed is different.

In continuous time, the investor requires a certain unconditional expected
terminal value specified at date t = 0, i. e. E(Xr | Xy) should meet the
goal M. At time ¢t > 0 there are no constraints on the conditional expected
final wealth. Two different criteria are dealt with in the sequel. The first
objective is to find the self-financing continuously rebalanced portfolio that
minimizes the (unconditional) variance var(Xr | Xj) of terminal wealth
under the constraint that E(Xr | Xo) be equal to M. In the second model,
the expected quadratic deviation of the terminal portfolio value from a target
level T" is continuously minimized. The target level is chosen such that M is
a lower bound for the expected final wealth E(Xr | Xo).

3.2.1 Minimum Variance

The minimum unconditional variance of terminal wealth subject to a prede-
termined unconditional expected terminal portfolio value is the solution of
the optimization problem

var(Xr) = inf var( XY | Xo) (12)
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subject to

E(Xr | Xo) = M. (13)

3.2.2 Minimum Quadratic Deviation From a Target Level

The investor‘s objective is to minimize the conditional expected quadratic
deviation of terminal wealth from a target level I' under the restriction that
M is a lower boundary for the mean final wealth F(Xr | Xy). The optimal
value function of the mean squared deviation and the corresponding strategy
is the solution of problem

U(t,z) =inf E (X} —T)*| X}¥) = inf UV (¢, 2) (14)
subject to

U (0, Mexp(—pT)) = 0
V(t, Texp(=p(T' =) = 0
E(Xr|Xo) > M. (15)

The first boundary condition ensures that all wealth is placed in the risk-
free asset if the initial wealth equals the present value of the goal M. The
second condition guarantees that the quadratic deviation of terminal wealth
from the target level I' is zero as soon as the target level can be reached by
investing in the risk-free asset. This boundary condition presupposes I' > M.
The appropriate optimality equation for U™V (¢, z) is

inf DV (¢, z) = 0. (16)

Assuming that a solution exists that satisfies ¥, < 0, ¥,, > 0, the optimal
control vector is given by

Vs,

rxr

(17)

w* =arginf YV (¢t,z) = —

Equation (17) is placed in (11) and (16). It remains to solve the nonlinear
partial differential equation subject to the boundary conditions.

3.3 Casel: n=1

In this section, the optimal strategy and value functions of the two objectives
are presented for one risky and a risk-free asset with p > p.
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3.3.1 Minimum Variance

Richardson (1989) solved the minimum variance problem (12) for n = 1.
Richardson does not use an optimal control approach but decomposes the
problem: The minimum variance of terminal wealth under the requirement
is explicitly determined with the help of convex programming and Hilbert
space projection theory. Then, the strategy that leads to the terminal wealth
which generates the minimum variance is derived via martingale theory. The
following solution is presented for M > X exp(pT)

(M — Xoexp(pT))*

var(Xr) = exp (12T) — 1
w(t) = (Dexp(—p(T —1)) = X;) 7 (18)
where
& M~ Xoexp(pT) exp(—T)
1 —exp(—*T)
y=0"(n—p)
and

=" (u—p) =01y

The minimum variance and the amount invested in the risky asset increase
with decreasing investment horizon because there is less time to attain the
goal. Furthermore, the variance and w* decrease with increasing drift and
decreasing instantaneous volatility.

With the above solution as a starting point, the conditional variance of final
wealth is obtained

var(Xr | Xy) = (I — X, exp(p(T — t)))2 exp(—7* (T — 1)) (1 — exp(—*(T — t))

and
var(Xr | Xo) = (L — X eXp(pT))QeXp(—VQT) (1 —exp(—*T).  (19)
The wealth process when pursuing strategy (18) evolves according to
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dX = (wEm+ pX)dt +wodW

= (7Z7 (Texp(—p(T —t) — X;) + pX) dt + (T exp(—p(T — t) — X;)dW.

This stochastic differential equation can be solved by standard methods to
yield

2
(20)

Xy =Texp(—p (T —t)) — (Texp(—p (T —t)) — Xo exp(pt)) exp <_7VVt —~ §72t> :

The conditional expected terminal value at time ¢ > 0

E(Xr| X)) =T — (' — X,exp(p (T —t))) exp(—* (T — t))

does not match the goal M as long as the value at time ¢ differs from its
expected value E(X; | Xy). Hence, the expected final wealth exceeds M if
X > E(X; | Xo).

As stated above, a strategy that continuously minimizes the variance of
terminal wealth subject to a given conditional expected final wealth is in-
feasible. It is striking that the investor does not stop investing in the
risky asset as soon as goal M is attained by investing in the risk-free as-
set (X; = M exp(—p(T —t))). This strategy has zero conditional variance.
Rather, the investor backs out of the risky asset as soon as

X, = Toxp(—p(T — 1)) > M exp(—p(T — ).

This seemingly striking investment policy is caused by constraint (13). If
the portfolio value is invested entirely in the risk-free asset as soon as X; =
M exp(—p(T —t)), then the constraint is never satisfied since terminal wealth
never exceeds M. As soon as X reaches the present value of the goal the
investor opts out of the risky investment so that X = M. Since it is possible
that X; < Mexp(—p(T —t)) for all ¢t < T there exist realizations of X such
that Xp < M. Hence, the expected final wealth E(Xr) is below M when
pursuing a strategy such that wealth is invested risk-free as soon as X; equals
the present value of M.

In fact, X, = Texp(—p(T — t)) which causes no more risky investment ac-
cording to the optimal strategy (18) requires W, = oco. Therefore, (almost)
always some wealth is invested in the risky asset.

14



3.3.2 Minimum Quadratic Deviation From a Target Level

The minimum conditional expected quadratic deviation of X, from a target
level ' given that E(Xy | Xo) > M and the corresponding optimal strategy
is derived for n = 1 using a two step procedure. First, the unconstrained
problem is solved with the dynamic programming approach (16) and then
the target level I' is determined such that constraint (15) with I' > M is
satisfied.

1. The solution of the nonlinear partial differential equation is
U(t, Xi) = (= Xy exp(p (T — 1)) exp(—7* (T = 1)) (21)

and the optimal strategy is given by

w(t) = Lexp(—p (T — 1)) — Xy) . (22)

When this policy is followed, the portfolio value at time ¢ can be ex-
pressed as

Xi = Texp(—p(T'—1)) (23)

~ (Pexp(—p (T — 1)) — Xoexp(pt)) exp (—th - gw) .

2. The constraint on E(X7 | Xo) now determines the target level I':

E(X7r|Xo) = I'— (T — Xoexp(pT))exp (—*T) > M

- M — Xoexp(pT) exp (—7?T)
- 1 —exp (—y*T) '

The optimal value function (21) decreases with decreasing I'. Therefore, T
is set equal to its lower bound such that I' = I'. Hence, a strategy that
minimizes the variance of terminal wealth at time ¢ = 0 is equivalent to a
strategy that continuously minimizes the expected quadratic deviation from
a target level I, if the two strategies are constrained to ensure the same mean
final wealth.
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3.3.3 Two Fund Strategy

Note that the optimal strategy for both objectives can be viewed as a strategy
in two funds: the risk-free asset and the optimal growth fund. The optimal
growth fund maximizes the mean growth rate of wealth if a proportional
strategy is pursued.

Let 7(t)Y; be the amount invested in the risky asset at time ¢ with Y; being
the initial wealth. The wealth process for strategy 7Y; evolves according to

dY™ = Y™ (787 + p) dt + Y RodW. (24)

This stochastic differential equation yields
7 ~ 1 o ~
Y, :Y()exp<<7r27r—|—p—§7r27r)t+7mm> .

The solution of problem

sup £(In Y;")

determines the strategy that maximizes the mean growth rate of wealth:

Tt =
Strategy (18) is equivalent to a strategy in the risk-free bond and an optimal
growth fund. At time ¢ = 0 the amount I'exp(—pT') is invested in bonds,
and the amount — (I'exp(—pT') — Xj) is invested in a risky fund. Since the
latter amount is negative, the fund is sold short. The optimal strategy of
the fund is to invest —7F in the risky asset where Fy = (I'exp(—pT’) — X))
denotes the initial fund value. The fund value then follows the process

dF = F (—n¥m + p) dt — FrodW.

Integration leads to

3
F, = Fyexp(pt) exp (—’yVVt — 57275) .

When pursuing the two-fund-strategy the portfolio value at time ¢ becomes
(20):
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Xi = Pexpl(—p(T = ) = (Texp(=p) - Xo)explot)exp (~11¥i — 3% ).

The investor determines initially how much wealth is placed into the risk-
free fund and how much of the risky fund is sold short. Thereafter, he only
rebalances the risky fund. Since the fund is sold short and the fund invests
—mF' in the risky asset, the investor actually pursues the growth optimum
strategy mF'.

This growth optimum strategy not only maximizes the mean growth rate
of wealth but also minimizes the expected time to reach a certain goal as
Merton (1990, Chapter 6) shows. Actually, the investor’s goal to be reached
is a level of wealth that requires no more risky investment and therefore has
zero conditional variance. Pursuing the growth optimum strategy whereby
investing all wealth leads to mean terminal wealth (see (24)):

E(XT|Xo) = Xoexp ((72 + P) T) # M.

Hence, a certain amount has to be invested in the risk-free asset such that the
constraint is satisfied. The remaining part is invested according to the growth
optimum strategy. The amount to be invested turns out to be I'. Obviously,
this mixed strategy leads to a lower variance than the pure growth optimum
strategy.

3.4 Case2: n>1

The problem of continuously minimizing the expected quadratic deviation of
Xp from a target level ' given that E(Xr | Xo) > M is solved for n risky
assets. The two step procedure is the same as for n = 1.

1. The nonlinear partial differential equation (16) yields the optimal value
function

U(t, X)) = (I — Xy exp(p (T — 1)) exp(—n'Sw (T — t))
where
T=Y"(u—pl) =0"4.

The optimal control vector is given by

wi = (Dexp(—p (T — 1)) = Xi) . (25)
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2. In order to determine the minimum target level I' that satisfies the
constraint on E (X7 | Xy), the wealth process is derived:

X, = Texp(—p(T — 1))
/ 3 !
—(Cexp(—p (T —t)) — Xoexp(pt)) exp (—'y W, — o Zmﬁ) .
The optimal target level

M — Xgexp(pT) exp (—7'SnT)

r
1 —exp (—m'EnT)

follows from

E(X7r | Xo) =T — (' — Xgexp(pT)) exp (—n'SwnT) > M.

Since maximizing 7'¥ 7 minimizes the value function, problem (14) for n > 1
can be reinterpreted as two subproblems to be solved sequentially as in the
discrete time setting. In a first step, the instantaneous mean-variance efficient
portfolio is derived. The instantaneous variance of a portfolio is minimized
subject to a given instantaneous drift ppp. Let @ = (60, .., 6,,) be the vector
of portfolio weights. In order to find the efficient portfolio the problem

T n}gin 0'>6
subject to
ppr=0Ym+p

is solved. This leads to the vector of optimal portfolio weights

0" — Hpp —T
T
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In a second step, problem (14) is solved for just two funds, the instantaneous
mean-variance efficient portfolio and the risk-free asset. The optimal amount
invested in the portfolio is

. —r
w'(t) = (Texp(—p (T — ) — X;) FEE =2
OpF
The amount invested in each asset w*(¢)@* is then given by (25).
The general solution for the minimum variance problem (12) can be derived

in an analogous way.

4 Conclusion

In a discrete time setting, the dynamically mean-variance efficient portfolio
is derived. In a model with only one risky asset, placing a lower bound
on the mean terminal wealth yields the same solution as restricting mean
terminal wealth to exactly meet a certain goal. Otherwise, these different
problem formulations matter and may result in different optimal strategies.
Constraining mean terminal wealth to achieve the goal exactly may lead to
dominated policies. It is shown how the mean-variance efficient strategy for n
risky assets can be decomposed into a locally mean-variance efficient strategy
and a strategy that diversifies risk across time.

In a continuous time setting, a dynamically mean-variance efficient portfolio
is infeasible. The solution to the problem of minimizing the unconditional
variance when the unconditional expected terminal wealth is supposed to
exactly match a certain goal is discussed. Furthermore, the optimal strategy
of an investor who continuously minimizes the expected quadratic deviation
from a target level is derived. The target level is set so that the unconditional
expected terminal wealth attains a specified goal. The resulting strategy
turns out to be the same as that of the first objective. Moreover, the strategy
can be reinterpreted as a two-fund strategy whereby the two funds are the
growth optimum portfolio and the risk-free asset.
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