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Abstract

We develop a dynamic stochastic general-equilibrium model of science, education

and innovation to explain the simultaneous emergence of innovation clusters and

stochastic growth cycles. Firms devote human-capital resources to research activi-

ties in order to invent higher quality products. The technological requirements in

climbing up the quality ladders increase over time but this hampering effect is com-

pensated for by an improving qualification of researchers allowing for a sustainable

process of innovation and scale-invariant growth. Jumps in human capital, triggered

by scientific breakthroughs, induce innovation clusters across industries and generate

long-run growth cycles.
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1 Introduction

For a long time, growth and business cycles have been investigated separately in

macroeconomics. While growth theory has focused on characterizing the long-run

growth path, business cycle theory has considered the growth trend as exogenous

and studied the detrended cyclical development. Nowadays it is well-known that

trend and cycles may be influenced by the same explanatory factors and therefore

are closely related to each other. The modern R&D-based growth theory builds

decisively on stochastic innovation processes and hence obviously suggests a unified

treatment of innovation, growth and cycles as it was pointed out by Schumpeter

(1939) nearly 75 years ago.

In their seminal work on R&D-based growth theory Grossman, Helpman (1991a,b),

Aghion, Howitt (1992, 1998), Stokey (1995) and Segerstrom (1998) have pointed

out the role of research and development and stochastic innovation in generating

growth. While the first two generations of the R&D-based growth models, namely

endogenous growth models characterized by a scale-effect of the labor force, and the

semi-endogenous growth models, introduced to eliminate this scale effect, have ne-

glected human-capital accumulation, the endogenous scale-invariant growth models

of the third generation have introduced education and skill acquisition as suggested

by Lucas (1988) in the framework of Schumpeterian growth theory (e.g., Arnold

2002, Stadler 2003, 2012, Strulik 2005). This contemporary framework proves par-

ticularly appropriate to additionally account for scientific discoveries affecting the

human capital of workers and researchers in an analytically tractable way.1 Further-

more, such an augmented model explains the emergence of innovation clusters (e.g.,

Iyigun 2006) and long-run stochastic growth cycles (e.g., Jovanovic, Rob 1990, Cor-

riveau 1994, Stein 1997, Matsuyama 1999, and Francois 1999) in a unified treatment

based on the intertemporal relations between science, education and innovation.

In the Schumpeterian literature, growth cycles are usually triggered by the so-called

general purpose technologies influencing most (or even all) industries of an economy

(see, e.g., Bresnahan, Trajtenberg 1995, Bresnahan 2010). With a few exceptions

(see, e.g., Li 2001) these growth models do not distinguish between science and

technology. However, even if there are no clear borders, it is conventional wisdom

1Carlaw, Lipsey (2006, 2011), for example, present a more complex model which is, however, no

longer analytically tractable and hence can be solved only with the help of numerical techniques.
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that fundamentally new technologies are usually based on some path breaking sci-

entific discoveries: The construction of the steam engine and the locomotive was

not enabled until at least the simplest thermodynamic laws of gases were known.

The internal combustion motor relies decisively on accumulated knowledge in chem-

istry about the oxidation of fuel. The expansion of network electricity, enabled by

dynamos, transformers, and electric motors, was based on applications of the elec-

trodynamic laws of direct and alternating current. The information and communi-

cation technologies of the ongoing electronic revolution build on the knowledge of

electromagnetic waves. Computers are based on fundamental principles of digital

operations developed in the abstract field of mathematical logic. The miniaturizing

transistor technology leading to personal computers, notebooks and smartphones,

and the laser technology leading to the modern audio and video systems were not

enabled until the fundamentals of quantum mechanics have been learned.

This paper takes into account that scientific discoveries, human-capital accumulation

and technological innovations are closely linked to each other in driving economic

growth cycles. Human capital rises continuously as a result of skill acquisition in the

educational sector but discontinuously as a by-product of discoveries in the (natural)

sciences such as mathematics and informatics, physics and chemistry as well as biol-

ogy and medicine. When scientific breakthroughs occur, the abilities of researchers

in many (if not all) industries improve and generate temporarily higher innovation

rates leading to clusters of innovation across industries.2 Following each upturn, the

innovation rates decline again until the next important scientific discovery occurs.

This process repeats itself over an infinite time horizon thereby generating long-run

cycles in economic growth. By capturing these intertemporal relations, the presented

model goes far beyond the predecessor models considering only one single cycle in

isolation (see, e.g., Helpman, Trajtenberg 1998, Petsas 2003).

The remainder of the paper is organized as follows. In Section 2 the dynamic stochas-

tic general-equilibrium model of science, education and innovation is presented. In

Section 3 we derive the balanced path of endogenous scale-invariant growth. Section

4 studies the stochastic appearance of innovation clusters and growth cycles. Section

5 concludes.

2For supportive evidence see, e.g., Kleinknecht (1987), for a methodological discussion see, e.g.,

Silverberg, Verspagen (2003).
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2 The Model

According to the latest generation of scale-invariant R&D-based growth models we

consider an economy consisting of a continuum of firms, each producing a differen-

tiated consumer good. The goods are sold to households who have preferences for

quantity and quality. Improvements of product qualities appear stochastically with

intensities increasing in the innovative efforts of firms. Households are endowed with

human capital which accumulates continuously by education and discontinuously

as a by-product of scientific discoveries. Thus, there are three engines of economic

growth which are closely linked to each other: science, education and technological

innovation.

2.1 Consumer Spending and Education of Households

There is a fixed measure of representative dynastic households indexed on the inter-

val [0, 1] which supply human-capital services. They share identical preferences and

maximize discounted utility

U(C) =

∫

∞

0

e−ρt lnC dt , (1)

where ρ > 0 is the constant discount rate and

C =

[
∫ 1

0

q(j)1−αx(j)α dj

]1/α

, 0 < α < 1 , (2)

is a quality-augmented Dixit-Stiglitz consumption index which measures instanta-

neous utility. It reflects the households’ preferences for quantity x(j) and quality q(j)

of the demanded products available in a continuum of industries j on the interval

[0, 1].3 According to these preferences, the elasticity of substitution between any two

products across industries is given by 1/(1− α).

For each household, the utility maximization problem can be solved in two steps.

The first step is to solve the across-industry optimization problem at each point of

3This specification of the consumption index is widely used in the R&D-based growth literature

(see, e.g., Thompson, Waldo 1994, Dinopoulos, Thompson 1998, Li 2003, and Segerstrom 2007).
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time. Maximizing the consumption index (2) subject to the budget constraint

I =

∫ 1

0

p(j)x(j) dj ,

where I is consumer spending and p(j) is the price of product j, yields the individual

demand function

x(j) =
q(j)p(j)−

1

1−α I
∫ 1

0
q(j)p(j)−

α

1−α dj
(3)

for product j. By aggregating expenditure p(j)q(j) over all industries j ∈ [0, 1], the

consumption index (2) can be rewritten as

C = I/pC , (4)

where pC ≡
[

∫ 1

0
q(j)p(j)−

α

1−α dj
]

−
1−α

α

is the price index of the consumer goods.

The second step is to solve the dynamic optimization problem by maximizing dis-

counted utility. Households devote human capital H to education, production and

R&D. By investing the share (1 − θ) ∈ (0, 1) in education, they raise their human

capital according to the stochastic differential equation

dH = κ(1− θ)H dt+ (φH) ds . (5)

The deterministic part of this differential equation corresponds to the well-known

Uzawa-Lucas function where κ (> ρ) denotes the effectiveness of the educational

system. The stochastic part is governed by a Poisson process s with arrival rate k

indicating jumps in human capital from H to (1+φ)H , triggered by scientific discov-

eries. As long as s does not jump, ds = 0, human capital accumulates continuously.

When s jumps, ds = 1, human capital increases at rate φ.4

The dynamic budget constraint of each household is

dA = [rA+ wθH − I]dt , (6)

4In the derivation of our main results, we treat φ and k as exogenously given parameters.

However, the analysis can be generalized by treating φ as a random variable. According to some

empirical evidence on scientific progress the arrival rate k is assumed to be constant over time, but

it can easily be endogenized, for example in terms of educational effectiveness κ.
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where A denotes the value of asset holdings, r is the nominal interest rate and w is

the nominal wage rate for each unit of human capital employed either in production

or in R&D. It is convenient to choose human capital as numéraire, i.e. to normalize

the wage rate to w = 1. Thus, each household maximizes its discounted utility (1),

given (4), subject to the human-capital accumulation function (5) and the budget

constraint (6). Dynamic optimization leads to the stochastic Keynes-Ramsey rule

(see equation (A.12) in the Appendix)

dI/I = (κ− ρ)dt + φ ds . (7)

The larger the effectiveness of education κ and the lower the discount rate ρ, the

higher is the continuous growth rate of consumer spending. In the moment of a

scientific discovery, when human capital jumps at rate φ, consumer spending jumps

at the same rate.

2.2 Price Competition of Incumbent Firms

In each industry, the products’ quality grades are arrayed along the rungs of a quality

ladder. Each new generation of products provides a quality level, λ times higher than

the previous one, where the sizes of the technological jumps realized by innovative

firms are independently drawn form a probability distribution on the support λ ∈

[1;∞). Following a suggestion recently made by Minniti, Parello and Segerstrom

(2013), we assume that the random variable λ follows a Pareto distribution with

c.d.f. G(λ) = 1− λ−1/β , β ∈ (0, 1), and p.d.f.

g(λ) = (1/β)λ−(1+β)/β , (8)

where the scale parameter is normalized to 1. The distribution has mean 1/(1− β)

and (in case of β < 1/2) variance β2/[(1− 2β)(1− β)2] such that the inverse shape

parameter β can be interpreted as an indicator of technological dispersion and het-

erogeneity of incumbent firms. Treating λ as a random variable implies asymmetric

industry-specific quality ladders and, hence, a stochastic evolution of the industrial

structure of the economy (see Figure 1). In our view, these industry-specific and

stochastic quality ladders capture the essential characteristics of innovation dynam-

ics and structural change much better than the symmetric and deterministic ladders

used in former R&D-based growth models.
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Figure 1: Stochastic Evolution of Industries
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All consumer goods are produced subject to a constant returns to scale technology

with human capital as single input. In all industries, production of one output unit

requires one unit of human capital, independently of the quality, i.e. x(j) = Hx(j).

Therefore, each firm has a constant marginal cost equal to the normalized wage rate

w = 1, and the supplier of the highest quality of product j maximizes the flow of

profits

π(j) = (p(j)− 1)x(j)

with x(j) specified in (3). The price-setting behavior of the leading firms depends on

the underlying industry structure which is characterized by the quality differences

of products. In case of drastic innovations, the price decisions of the quality leaders

are constrained by competition from the producers of substitute goods supplied in

the other industries. According to the demand functions (3), the price elasticity of

demand is −1/(1−α), implying monopolistic competition where equilibrium prices

are p(j) = 1/α. In case of non-drastic innovations the leading firms charge limit

prices since, as can be shown, each industry leader is exactly one step ahead. With

innovation sizes λ(j) as the realizations of the Pareto distributed random variable

λ, both strategies of price setting will be observed in different industries at the same

time. According to the consumption index (2), industry-specific equilibrium prices
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are

p(j) =

{

λ(j)
1−α

α if λ(j) ≤ (1/α)
α

1−α

1/α if λ(j) > (1/α)
α

1−α .
(9)

Figure 2 illustrates the different price-setting regimes depending on whether the

realized value λ(j) exceeds or falls short of the threshold level (1/α)α/(1−α). Due to

this industry heterogeneity, incumbent firms produce at different price-cost margins

and hence earn different profits.

Figure 2: Price-Setting Regimes Depending on Innovation Size
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2.3 Patent Races between Potential Entrants

The quality of consumer goods can be upgraded by a sequence of product innova-

tions, each building on its predecessors. The opportunity of realizing profits drives

potential entrants to engage in R&D in order to develop higher quality products.

The first firm to invent the next higher quality product is granted an infinitely-lived

patent. Competition therefore takes the form of an endless sequence of patent races

between an arbitrary number of potential entrants.5 Each firm may target its R&D

efforts at any of the continuum of top-of-the-line products, i.e. it may engage in any

5It can be shown that incumbent firms have no incentive to engage in R&D activities aimed

at an improvement of the own product. Of course, this property may no longer hold if the quality

leaders have an advantage in doing R&D (see, e.g., Etro 2004 and Denicolo, Zanchettin 2010, 2012).
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industry j ∈ [0, 1]. If a firm undertakes R&D at intensity h(j) for an infinitely small

time interval dt, it will succeed in taking the next step up the quality ladder for the

targeted product j with probability h(j)dt. This implies that the number of realized

innovations in each industry follows a Poisson process with arrival rate h(j). The

innovation rate h(j) is assumed to depend proportionally on the amount of human

capital Hh(j) devoted to R&D activities in order to improve the product quality in

industry j such that

h(j) =
Hh(j)

µq(j)
. (10)

The inverse of the parameter µ relates the productivity of human capital in R&D

relative to its (normalized) productivity in production and is assumed to be equal

across industries. However, the quality variable q(j) in the denominator reflects a

hampering effect of the number and sizes of industry-specific innovations made in

the past by indicating that the realization of further innovations becomes more and

more difficult.

2.4 The Stock Market

The expected discounted profits of an entrant winning the next patent race are rep-

resented by the stock market values V (j). To participate in a patent race, firms

have to employ human-capital resources in their research labs. According to (10),

a firm devoting Hh(j) units of human capital to R&D at a cost of Hh(j) for a

small time interval dt attains the expected stock market value V (j) with probability

(Hh(j))/(µq(j))dt. R&D expenditure is financed by issuing equity claims to house-

holds which pay out nothing in the case that the research effort fails, but entitle the

claimants to the flow of dividend payments π(j) if the effort succeeds. If we ignore

the uninteresting case where firms undertake no R&D at all, free entry into each

patent race implies

V (j) = µq(j) . (11)

As the quality q(j) in industry j increases stochastically over time, the realization

of innovations becomes progressively more difficult and the reward of innovations

must increase correspondingly to induce innovative activities by challengers. Since
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there is a continuum of industries and the returns from participating in patent races

are independently distributed across firms and industries, each investor minimizes

risk by holding a diversified portfolio of stocks. Absence of arbitrage opportunities

implies that the expected return on equities of innovators must equal the return on

an equal size investment in a riskless bond, i.e.

rV (j) = Eπ(j) + V̇ (j)− h(j)V (j) , (12)

where the right-hand side describes the expected rate of return on equities of in-

novators, consisting of the expected dividend rate, the expected capital gains and

the risk of losing the dividends due to another entrant’s quality innovation in the

future. The expected value of the uncertain flow of profits realized by the entering

firm winning the next patent race in industry j is

Eπ(j) = E[(p(j)− 1)λx(j)]

By substituting x(j) from (3), p(j) from (9), and accounting for the p.d.f. (8) of the

random variable λ one obtains

Eπ(j) =
E
[

λp(j)−α/(1−α) − λp(j)−1/(1−α)
]

q(j)I
∫ 1

0
q(j)p(j)−α/(1−α) dj

= ξIq(j)/Q , (13)

where

ξ ≡
(1 + β)β[(1− β) + βαα/[(1−α)β]]

(1− β)(α/(1− α) + β)[1 + βαα(1+β)/[(1−α)β]]

is a constant parameter, depending on the exogenously given parameters α and

β, and where Q =
∫ 1

0
q(j) dj is the average quality of the top-of-the-line consumer

goods. By substituting (11) and (13) in (12) the no-arbitrage equation can be rewrit-

ten as

r = ξI/(µQ)− h(j) ,

implying that the innovation rate is the same across all industries and, hence, in the

aggregate economy, i.e. h(j) = h ∀ j. An important implication of equal innovation
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rates is that the employment levels of workers in R&D vary stochastically across

industries. In industries that have experienced more innovations in the past more

human-capital resources are devoted to R&D. In the aggregate, however, as will be

shown in the Sections 3 and 4, the employment of researchers is constant over time.

This is an appealing feature of our model since it implies that we do not have to

care about intersectoral mobility of workers.

2.5 The Dynamics of Innovation and Quality Growth

Since the quality of product j jumps from q(j) to λq(j) whenever an innovation

occurs, and the innovation rates h are equal across industries, the time derivative of

average quality can be derived, using the law of large numbers, as

Q̇ =

∫ 1

0

(λ− 1)q(j)h dj

=

∫ 1

0

(
∫

∞

1

λg(λ)dλ− 1

)

q(j)h dj

= [β/(1− β)]hQ ,

such that its growth rate

Q̇/Q = [β/(1− β)]h (14)

depends proportionally on the innovation rate h.

2.6 The Market for Human Capital

The labor market is perfectly competitive. The share (1 − θ) of human capital is

devoted to education. The remaining amount of human capital is devoted either to

production or to R&D. It follows from (3), (8), and (9) that the aggregate demand

for human capital in the production sector is

∫ 1

0

Hx(j) dj =

∫ 1

0

x(j)dj =

∫ 1

0
q(j)p(j)−1/(1−α)dj

∫ 1

0
q(j)p(j)−α/(1−α)dj

I =
α(1 + β)

α+ β
I ,
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and from (10) that the aggregate demand in the research sector amounts to

∫ 1

0

Hh(j) dj =

∫ 1

0

µhq(j) dj = µhQ .

Thus, full employment of workers’ human capital implies that

H = (1− θ)H +
α(1 + β)

α + β
I + µhQ . (15)

This labor market clearing condition will be used in Section 3 to analyze the balanced

growth equilibrium for a given level of scientific knowledge and in Section 4 to study

growth cycles in response to scientific breakthroughs.

3 The Balanced Growth Equilibrium

First, we solve the model for a balanced growth path as an equilibrium path, i.e. an

equilibrium path in which all aggregate variables grow at constant rates over time.

In such a setting (5) and (7) together imply a constant steady-state growth rate of

human capital

Ḣ/H = κ(1− θ) = κ− ρ , (16)

so that the share of human capital devoted to education is

1− θ = 1− ρ/κ .

Obviously, this share is constant over time and depends negatively on the discount

rate and positively on the effectiveness of the educational system.6 From (14), (15),

and (16) we derive

Q̇/Q = [β/(1− β)]h = Ḣ/H = κ− ρ , (17)

such that the steady-state innovation rate is endogenized by

h∗ = (κ− ρ)(1− β)/β . (18)

6It can be shown that public expenditure, financed by a lump-sum tax, is appropriate to promote

education, either by subsidizing education or by improving the effectiveness of education (see, e.g.,

Stadler 2012).
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This innovation rate depends neither on the exogenous labor force as in first-generation

endogenous growth models, nor on the exogenously given growth rate of the labor

force as in the semi-endogenous growth models of the second generation, but instead

is endogenously determined in terms of educational and technological parameters.

More precisely, it depends positively on educational effectiveness κ but negatively

on the discount rate ρ and technological dispersion β. The realization of innovations

becomes more and more difficult as technology evolves, but researchers compensate

for this deterioration by increasing their skills in the educational sector.

The consumption index

C = Q1/α−1αI

grows, according to (7), (14), and (18) at the constant rate

Ċ/C = (1/α− 1)[β/(1− β)]h∗ + (κ− ρ) = (1/α)(κ− ρ) ,

where the effectiveness of education is the driving force. This result classifies our

model as an endogenous scale-invariant growth model of the third generation. While

the technological development in any particular industry evolves stochastically, the

economy at the aggregate level experiences smooth and non-random time paths of

the macroeconomic variables.

4 Innovation Clusters and Growth Cycles

We now consider a certain point in time when a scientific breakthrough occurs, i.e.

when H jumps to the level (1+φ)H . Since consumer spending I jumps at the same

rate as human capital does (see the Appendix) and since average quality Q cannot

increase discontinuously, it is clear that the innovation rates h, being equal across

industries, jump at the same rate as well, so that the share of workers employed in

the R&D sector remains constant. A cluster of innovations across industries occurs

since innovation dynamics accelerate economy-wide. Higher innovation rates go along

with faster improvements of product qualities. As argued e.g. by David (1990), it

takes a while before entrants are able to introduce new products which incorporate

improvements based on a scientific discovery. It further follows from the human-

capital market clearing condition (15) that, until the next scientific breakthrough
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occurs, the sum of the growth rates of h and Q must equal the growth rate of H ,

implying that

ḣ/h+ [β/(1− β)]h = κ− ρ .

Rearranging this equation by using the expression (18) for the steady-state innova-

tion rate h∗ leads to the nonlinear first-order differential equation

ḣ/h = (κ− ρ)− [β/(1− β)]h = − [β/(1− β)](h− h∗) < 0 ,

describing a declining time path of the innovation rates, which monotonically con-

verges to the steady-state value h∗. But as soon as the next scientific breakthrough

succeeds, the innovation rates jump again and initialize a new growth cycle. Figure

3 illustrates such a process of stochastic innovation and growth cycles with random

jump sizes.

Figure 3: Stochastic Innovation and Growth Cycles

h

t

h∗

5 Summary and Conclusion

The paper has extended the Schumpeterian growth literature by analyzing the

intertemporal relations between science, education and innovation to explain the
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stochastic emergence of innovation clusters and growth cycles. Compared to the en-

dogenous growth models of the first generation, the scale effect of the labor force

is removed by the assumption that in each industry technological requirements in-

crease from innovation to innovation. Compared to the semi-endogenous growth

models of the second generation, exogenous growth of the labor force is replaced by

an endogenous improvement of worker qualification by education. In our endogenous

scale-invariant growth model of the third generation, human capital and qualifica-

tion improve not only continuously as a result of skill acquisition in the educational

sector, but also discontinuously as a by-product of scientific discoveries. The jumps

in human capital, triggered by scientific breakthroughs, induce clusters of innovation

across industries and generate long-run cycles of R&D-based growth.

The Poisson process of scientific breakthroughs leads to growth cycles similar to

those resulting in the real-business-cycles theory (see, e.g., Stadler 1990). Due to the

inertia of the innovation process, the adjustment of the growth rates is comparatively

slow indicating long swings sometimes referred to as Kondratieff cycles. However,

in contrast to earlier interpretations of such long waves, the cycles triggered in our

model are intrinsically stochastic and therefore hard to predict.
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Appendix: Households’ Dynamic Stochastic Opti-

mization

Consider the intertemporal utility maximization problem

max E0

∫

∞

0

e−ρt ln (I/pC) dt

subject to the dynamic budget constraint

dA = [rA+ θH − I] dt

and to the human-capital accumulation

dH = κ(1− θ)H dt+ (φH) ds ,

where ds is the increment of a Poisson process s(t) with arrival rate k. This implies

that s(0) = 0 and that the random variables s(t + dt) − s(t) ∀ t ∈ [0,∞) are

independent and Poisson distributed with mean k dt. The boundary conditions are

given by

A(0) = A0 , H(0) = H0 .

According to the general procedure as shown, e.g., in Malliaris, Brock (1982, chap.

2.12), the Hamilton-Jacobi-Bellman (HJB) equation of this autonomous optimiza-

tion problem reads

ρJ(A,H) =max
I,θ

{

ln (I/pC) + JA(A,H)[rA+ θH − I] + JH(A,H)κ(1− θ)H

+k[J(Ã, H̃)− J(A,H)]} (A.1)

where J(A,H) is the current-value function and JA(A,H) and JH(A,H) are the

current-value costate variables of A and H . As long as s does not jump (ds = 0), the

state variables A and H evolve continuously. When s jumps (ds = 1 and dt = 0),

however, human capital jumps from H to H̃ = (1+φ)H and assets jump from A to

Ã where the latter jump rate is yet unknown.
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The maximization in (A.1) with respect to θ leads to the first-order condition

JA(A,H) = κJH(A,H) , (A.2)

maximization with respect to consumer spending I to the first-order condition

I = 1/JA(A,H) . (A.3)

To determine the evolution of the costate variables JA and JH , we have to partially

differentiate the HJB equation with respect to the state variables, to derive the total

differentials dJA and dJH by using Ito’s Lemma and to finally insert the partial

derivatives into these expressions.

Partially differentiating the HJB equation (A.1) with respect to A, using the envelope

theorem, gives

ρJA(A,H) =rJA(A,H) + JAA(A,H)[rA+ θH − I] + JHA(A,H)κ(1− θ)H

+ k[JA(Ã, H̃)− JA(A,H)] , (A.4)

partially differentiating it with respect to H gives

ρJH(A,H) =θJA(A,H) + JAH(A,H)[rA+ θH − I] + JH(A,H)κ(1− θ)

+ JHH(A,H)κ(1− θ)H + k[(JH(Ã, H̃)− JH(A,H)] . (A.5)

By applying Itô’s Lemma we derive the costates’ total differentials

dJA(A,H) =JAA(A,H)[rA+ θH − I]dt

+ JAH(A,H)κ(1− θ)Hdt+ [JÃ(Ã, H̃)− JA(A,H)]ds (A.6)

and

dJH(A,H) =JHA(A,H)[rA+ θH − I]dt

+ JHH(A,H)κ(1− θ)H + [JH̃(Ã, H̃)− JH(A,H)]ds . (A.7)

Substituting JAA(A,H) and JAH(A,H) = JHA(A,H) from (A.4) in (A.6) as well as

JAH(A,H) and JHH(A,H) from (A.5) in (A.7) gives

dJA(A,H) =(ρ− r)JA(A,H)
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− k[JA(Ã, H̃)− JA(A,H)]dt+ [JÃ(Ã, H̃)− JA(A,H)]ds (A.8)

and

dJH(A,H) =(ρ− κ(1− θ))JH(A,H)dt− θJA(A,H)dt

− k[JH(Ã, H̃)− JH(A,H)]dt+ [JH̃(Ã, H̃)− JH(A,H)]ds ,

where the latter equation can be rewritten, by using (A.2), as

dJA(A,H) =(ρ− κ)JA(A,H)dt− k[JA(Ã, H̃)− JA(A,H)]dt

+ [JÃ(Ã, H̃)− JA(A,H)]ds . (A.9)

Obviously, the state variables A and H jump at the same rate implying that Ã =

(1 + φ)A. Hence, a comparison of (A.8) and (A.9) shows that the interest rate is

determined by

r = κ (A.10)

and thus remains constant over time. To derive the evolution of consumer spending

I, we apply Ito’s Lemma to (A.3) to obtain

dI =− (1/JA(A,H)2)
{

(ρ− κ)JA(A,H)− k[JA(Ã, H̃)− JA(A,H)]
}

dt

+ [1/JÃ(Ã, H̃)− 1/JA(A,H)]ds .

Substitute JA from (A.3) and divide through by I to find the stochastic Keynes-

Ramsey rule

dI/I =
{

(κ− ρ) dt+ k[(1 + φ)I/Ĩ − 1]
}

dt+ (Ĩ/I − 1) ds . (A.11)

It remains to determine the rate of jump from I to Ĩ. An obvious solution is

J(A,H) = ε + (1/ρ)ln(A + H/κ) with some constant ε implying JA(A,H) =

(1 + φ)JÃ(Ã, H̃) = 1/[ρ(A+H/κ)]. Thus the costate variable jumps from JA(A,H)

to JÃ(Ã, H̃) = JA(A,H)/(1 + φ) and consumer spending from I = 1/JA(A,H) to

Ĩ = (1 + φ)I, respectively, such that (1 + φ)I/Ĩ = 1. This simplifies the stochastic

Keynes-Ramsey rule (A.11) to

dI/I = (κ− ρ) dt+ φ ds . (A.12)

As long as s does not jump (ds = 0), consumer spending grows at the constant rate

κ− ρ. When s jumps (ds = 1 and dt = 0), however, consumer spending jumps from

I to Ĩ = (1 + φ)I.



18

References

Aghion, P., Howitt, P. (1992), A Model of Growth through Creative Destruction.

Econometrica 60, 323-351.

Aghion, P., Howitt, P. (1998), Endogenous Growth Theory. MIT Press, Cambridge,

MA.

Arnold, L.G. (2002), On the Effectiveness of Growth-enhancing Policies in a Model

of Growth without Scale Effects. German Economic Review 3, 339-346.

Bresnahan, T.F. (2010), General Purpose Technologies. In: B. Hall, N. Rosenberg

(eds.), Handbook of the Economics of Innovation 2, North Holland, 761-791.

Bresnahan, T.F., Trajtenberg, M. (1995), General Purpose Technologies: Engines of

Growth? Journal of Econometrics 65, 83-108.

Carlaw, K.I., Lipsey, R.G. (2006), GPT-Driven Endogenous Growth. Economic

Journal 116, 155-174.

Carlaw, K.I., Lipsey, R.G. (2011), Sustained Endogenous Growth Driven by Struc-

tured and Evolving General Purpose Technologies. Journal of Evolutionary Eco-

nomics 21, 563-593.

Corriveau, L. (1994), Entrepreneurs, Growth and Cycles. Economica 61, 1-15.

David, P.A. (1990), The Dynamo and the Computer: A Historical Perspective on

the Modern Productivity Paradox. American Economic Review 80, 355-361.

Denicolo, V., Zanchettin, P. (2010), Competition, Market Selection and Growth.

Economic Journal 120, 761-785.

Denicolo, V., Zanchettin, P. (2012), Leadership Cycles in a Quality-Ladder Model

of Endogenous Growth. Economic Journal 122, 618-650.

Dinopoulos, E., Thompson, P. (1998), Schumpeterian Growth without Scale Effects.

Journal of Economic Growth 3, 313-335.

Etro, F. (2004), Innovation by Leaders. Economic Journal 114, 281-303.

Francois, P. (1999), Innovation, Growth, and Welfare-improving Cycles. Journal of

Economic Theory 85, 226-257.



19

Grossman, G.M., Helpman, E. (1991a), Quality Ladders in the Theory of Growth.

Review of Economic Studies 58, 43-61.

Grossman, G.M., Helpman, E. (1991b), Innovation and Growth in the Global Econ-

omy. MIT Press, Cambridge, MA.

Helpman, E., Trajtenberg, M. (1998), A Time to Sow and a Time to Reap: Growth

Based on General Purpose Technologies. In: E. Helpman (ed.), General Purpose

Technologies and Economic Growth. Cambridge, MA, 55-84.

Iyigun, M. (2006), Clusters of Innovation, Life Cycle of Technologies and Endogenous

Growth. Journal of Economic Dynamics and Control 30, 687-719.

Jovanovic, B., Rob, R. (1990), Long Waves and Short Waves: Growth through In-

tensive and Extensive Search. Econometrica 58, 1391 - 1409.

Kleinknecht, A. (1987), Innovation Patterns in the Crisis and Prosperity. Schum-

peter’s Long Cycle Revisited. London, Macmillan.

Li, C.-W. (2001), Science, Diminishing Returns and Long Waves. Manchester School

69, 553-573.

Li, C.-W. (2003), Endogenous Growth without Scale Effects: A Comment. American

Economic Review 93, 1009-1018.

Lucas, R.E. (1988), On the Mechanics of Economic Development. Journal of Mon-

etary Economics 22, 3-42.

Malliaris, A.G., Brock, W.A. (1982), Stochastic Methods in Economics and Finance.

Amsterdam.

Matsuyama, K. (1999), Growing through Cycles. Econometrica 67, 335 - 347.

Minniti, A., Parello, C.P., Segerstrom, P.S. (2013), A Schumpeterian Growth Model

with Random Quality Improvements. Economic Theory, forthcoming.

Petsas, P. (2003), The Dynamic Effects of General Purpose Technologies on Schum-

peterian Growth. Journal of Evolutionary Economics 13, 577-605.

Schumpeter, J. (1939), Business Cycles. New York, McGraw-Hill.

Segerstrom, P.S. (1998), Endogenous Growth without Scale Effects. American Eco-

nomic Review 88, 1290-1310.



20

Segerstrom, P.S. (2007), Intel Economics. International Economic Review 48, 247-

280.

Silverberg, G., Verspagen, B. (2003), Breaking the Waves: A Poisson Regression

Approach to Schumpeterian Clustering of Basic Innovations. Cambride Journal of

Economics 27, 671-693.

Stadler, G.W. (1990), Business Cycle Models with Endogenous Technology. Ameri-

can Economic Review 80, 763-778.

Stadler, M. (2003), Innovation and Growth: The Role of Labor-Force Qualification.

Journal for Labour Market Research 277, 1-12.

Stadler, M. (2012), Engines of Growth: Education and Innovation. Review of Eco-

nomics 63, 113-124.

Stein, J.C. (1997), Waves of Creative Destruction. Firm-specific Learning-by-doing

and the Dynamics of Innovation. Review of Economic Studies 64, 265 - 288.

Stokey, N.L. (1995), R&D and Economic Growth. Review of Economic Studies 62,

469-489.

Strulik, H. (2005), The Role of Human Capital and Population Growth in R&D-

based Models of Economic Growth. Review of International Economics 13, 129-145.

Thompson, P., Waldo, D. (1994), Growth and Trustified Capitalism. Journal of

Monetary Economics 34, 445-462.


