
Automatic Layout of
UML Class Diagrams:

A Topology-Shape-Metrics Approach

Dissertation

der Fakultät für Informations- und
Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Markus Eiglsperger

aus Wangen am Bodensee

Tübingen
2003

Tag der mündlichen Qualifikation: 26. November 2003
Dekan: Prof. Dr. Martin Hautzinger
1. Gutachter: Prof. Dr. Michael Kaufmann
2. Gutachter: Prof. Dr. Wolfgang Küchlin
3. Gutachter: Prof. Dr. Ulrik Brandes

Zusammenfassung der Arbeit

In dieser Arbeit werden Verfahren zum automatischen und interaktiven Er-
stellen hochqualitativer Zeichnungen von UML Klassendiagrammen vorge-
stellt. Da Klassendiagramme auf Graphen zurückgeführt werden können,
verwenden wir dazu Methoden und Techniken aus dem Bereich des Gra-
phenzeichnens, und konzentrieren uns in dieser Arbeit insbesondere auf das

”Topology-Shape-Metrics“ Paradigma zum Zeichnen von Graphen.
Klassendiagramme sind ein weitverbreitetes Hilfsmittel in der Modellie-

rung und Analyse von objekt-orientierten Softwaresystemen. Ursprünglich
in den sechziger Jahren entwickelt, erlebten objekt-orientierte Techniken in
den neunziger Jahren eine Renaissance und sind heutzutage aus der moder-
nen Softwareentwicklung nicht mehr wegzudenken. Zur Beschreibung von
objekt-orientierten Softwaresystemen hat sich die Unified Modeling Lan-
guage (UML), welche eine Vereinheitlichung verschiedener Modellierungs-
sprachen darstellt, als lingua franca durchgesetzt. Die UML definert ein se-
mantisches Modell eines objekt-orientierten Softwaresystems und eine Reihe
von Diagrammarten, welche Teile eines semantischen Modells visualisieren.
Klassendiagramme sind dabei die mit Abstand am meisten verwendete Dia-
grammart und beschreiben die statischen Beziehungen von Klassen und Ob-
jekten in dem Softwaresystem. Man unterscheidet dabei zwischen drei Arten
von Beziehungen: Abhängigkeiten, Assoziationen und Vererbungen.

Im klassischen Anwendungsfall werden Klassendiagramme interaktiv von
einem Benutzer mit Hilfe eines Werkzeugs erstellt, wobei die Anordnung der
einzelnen Bestandteile des Diagramms vom Benutzer vorgegeben wird. Es
gibt allerdings auch Anwendungsfälle, in denen zwar der Inhalt des Dia-
grams bekannt ist, aber nicht die Anordnung der einzelnen Elemente. Dies
ist der Fall wenn ein Diagramm nicht von einem Benutzer erstellt wurde,
sondern aus einer anderen Quelle stammt. Mögliche Quellen sind Programme
zur automatischen Dokumentation oder Analyse-Werkzeuge zum Reverse-
Engineering. Will ein menschlicher Benutzer aus diesen Diagrammen Er-
kenntnisse ziehen, ist es in diesen Fällen notwendig, eine übersichtliche An-
ordnung der Diagrammelemente zu bestimmen.

Um eine solche übersichliche Anordnung zu berechnen, entwickeln wir
neue Verfahren, die auf dem ”Topology-Shape-Metrics“ Paradigma zum
Zeichnen von Graphen basieren. Bisher werden für praktische Anwendun-

iv

gen des Graphenzeichnens hauptsächlich zwei andere Ansätze verwendet:
der kräfte-basierte Ansatz für ungerichtete Graphen und der hierarchische
Ansatz für gerichtete Graphen. Beide lassen sich in den Grundvarianten rela-
tiv einfach implementieren und sind sehr robust in Bezug auf Eingabedaten
und Erweiterungen. Da die Vererbungsbeziehung eine gerichtete Substruk-
tur in Klassendiagrammen bildet, basieren die meisten existierenden Ver-
fahren zum automatischen Zeichnen von Klassendiagrammen sowohl in der
wissenschaftlichen Literatur wie auch in der Implementierung von Software-
Werkzeugen auf dem hierarchischen Ansatz.

Im Gegensatz dazu steht das Topology-Shape-Metrics Paradigma im
Schatten dieser beiden dominierenden Ansätze. Es erfreut sich zwar in der
Forschung großer Beliebtheit, konnte sich in praktischen Anwendungen aber
bis jetzt noch nicht durchsetzen. Die Algorithmen, die auf diesem Paradig-
ma basieren, gelten weder als leicht zu implementieren, noch als ausgespro-
chen robust oder erweiterungsfähig. Um diese Behauptungen zu widerlegen,
wollen wir anhand einer Beispielanwendung zeigen, dass auch der Topology-
Shape-Metrics Ansatz für praktische Probleme einsetzbar ist. Wir haben da-
zu das automatische Zeichnen von Klassendiagrammen ausgewählt, da trotz
der großen praktische Bedeutung des Problems die meisten verfügbaren Im-
plementierungen für automatisches Zeichnen von Klassendiagrammen nur
sehr schlechte Ergebnisse liefern. Am Beispiel dieser Anwendung entwickeln
wir den Topology-Shape-Metrics Ansatz zu einem praktisch nutzbaren Ver-
fahren weiter, welches, wie unsere Experimente zeigen, für diese Anwen-
dung den bisherigen Verfahren weit überlegen ist. Die Erweiterungen des
Verfahrens sind dabei so allgemein gehalten, dass sie auch für andere An-
wendungsgebiete relevant sind und somit die Anwendbarkeit des Topology-
Shape-Metrics Ansatzes stark erweitern.

Die Komplexität des automatischen Zeichnens von Klassendiagrammen
wird maßgebend von den Konventionen bestimmt, die für ihre Darstellung
existieren und die zu berücksichtigen sind, damit ein durchschnittlicher Be-
nutzer eine Zeichnung als übersichtlich erachtet. Die Vererbungsbeziehung
nimmt aufgrund ihrer strukturbildenden Eigenschaft eine Sonderstellung in
Klassendiagrammen ein. Um die von der Vererbungsbeziehung definierte
Hierarchie zu verdeutlichen, sollen alle Kurven, die diese Beziehungen re-
präsentieren, monoton in eine Richtung gezeichnet werden, normalerweise
im Diagramm von unten nach oben zeigend. Zusätzlich werden oft mehrere
Kurven an einem Punkt zu einer Kurve zusammengefasst um die Übersicht-
lichkeit im Diagramm zu erhöhen. Diese Notation ist auch unter dem Namen

”Hyperkanten-Notation“ bekannt. Weiterhin ist es üblich, Beziehungen als
orthogonale Kurven darzustellen, d.h. als Linienzug, der alternierend aus
horizontalen und vertikalen Segmenten besteht.

In Kapitel 2 werden diese Konventionen sowie weitere Ästhetikkriterien,
welche die Lesbarkeit eines Diagramms beeinflussen, diskutiert. Dies ermög-
licht es uns, das Problem des automatischen Zeichnens von UML Klassendia-

v

grammen zu formalisieren und auf eine mathematische Grundlage zu stellen.
Es werden die existierenden Verfahren für dieses Problem beleuchtet und ih-
re Stärken und Schwächen analysiert. Aufbauend auf diese Analyse werden
die Grundzüge eines neuen Verfahrens für das automatische Zeichnen von
Klassendiagrammen vorgestellt. Das Verfahren basiert auf dem Topology-
Shape-Metrics Paradigma und besteht aus den drei Phasen Planarisierung,
Orthogonalisierung und Kompaktierung. Die oben beschriebenen speziellen
Anforderungen von Klassendiagrammen haben die Entwicklung neuartiger
Algorithmen für alle drei Phasen notwendig gemacht, welche in den darauf-
folgenden Kapiteln behandelt werden.

Kapitel 3 beschreibt die Planarisierungsphase des Zeichnenalgorithmus.
In der Planarisierungsphase wird für einen gegebenen Graphen eine planare
Einbettung berechnet. Um Kantenrichtungen behandeln zu können, wurden
die Konzepte Planarität und Aufwärtsplanarität zu dem neuen Konzept der
gemischten Aufwärtsplanarität erweitert und ein neuer Planarisierungsalgo-
rithmus entworfen.

In Kapitel 4 werden neue Orthogonalisierungsalgorithmen vorgestellt.
Diese Algorithmen sind Erweiterungen des bekannten Kandinsky Algorith-
mus. Zuerst stellen wir eine Variante des Kandinsky Algorithmus vor, wel-
che bestimmte Nebenbedingungen für Knicke und Winkel behandeln kann.
Die speziellen Anforderungen von Klassendiagrammen, insbesondere das
Richtungskriterium und die korrekte Behandlung von Hyperkanten, können
mit Hilfe dieser Nebenbedingungen formuliert werden, was uns zu einem Or-
thogonalisierungsalgorithmus für Klassendiagramme führt. Zusätzlich ana-
lysieren wir die Komplexität verschiedener Knickminimierungsprobleme im
Kandinsky-Modell und präsentieren neue heuristische Verfahren für diese
Probleme.

In Kapitel 5 stellen wir einen neuen Kompaktierungsalgorithmus vor, der
in der Lage ist, feste Knotengrößen zu respektieren. Dies ist eine der grundle-
genden Anforderungen für das automatische Zeichnen von Klassendiagram-
men. Der Algorithmus hat lineare Laufzeit, was eine drastische Verbesserung
gegenüber existierenden Algorithmen für dieses Problem bedeutet.

Der in den bisherigen Kapiteln vorgestellte Algorithmus errechnet eine
Zeichnung vollautomatisch, ohne Interaktion mit dem Benutzer. In Kapi-
tel 6 wird ein Algorithmus vorgestellt, welcher interaktiv mit dem Benutzer
eine Zeichnung erstellt. Der Algorithmus kann sowohl neue Elemente in ein
Diagramm integrieren, ohne es allzu stark zu verändern, als auch auf Be-
nutzerwünsche reagieren.

In Kapitel 7 wird die Implementierung der vorgestellten Algorithmen
besprochen und ihre experimentelle Evaluierung vorgenommen. Wir ver-
gleichen hierzu die Implementierung unseres Algorithmus mit SugiBib, der
Implementierung eines Algorithmus zum automatischen Zeichnen von Klas-
sendiagrammen, welche dem hierarchischen Paradigma folgt.

Wir beenden die Arbeit mit Kapitel 8, welches die Ergebnisse dieser

vi

Arbeit zusammenfasst und einen Ausblick auf die weiteren möglichen Ent-
wicklungen in diesem Feld gibt.

Preface

Class diagrams are among the most popular visualizations for object oriented
software systems and have a broad range of applications. There is a variety
of tools available for creating and manipulating class diagrams, they all use
the Unified Modeling Language as graphical notation. In many settings
it is desirable that the placement of the diagram elements is determined
automatically, especially when the diagrams are generated automatically.
This is usually the case in reverse engineering. For this reason the automatic
layout of class diagrams gained importance in the last years. However,
current available tools perform the task of automatic layout only poorly,
the results of the automatic layout algorithms of commercial or free case-
tools are in the best case mediocre, but normally totally unacceptable. For
this reason the automatic layout of UML diagrams was cited as one of the
top challenges for automatic graph drawing at the last two graph drawing
conferences, GD2001 in Vienna and GD2002 at Irvine.

We propose in this work a new algorithm for automatic layout of class
diagram. The algorithm is an adaption of sophisticated graph drawing algo-
rithms which have proven their effectiveness in many applications. The algo-
rithm produces significantly better results and is more robust than state-of
the art layout algorithms which are based on the hierarchical graph drawing
paradigm.

The research would not have been possible without the support of the
Deutsche Forschungsgemeinschaft (DFG), which contributed financial sup-
port by the grant Ka 812/8-1 and Ka 812/8-2. In the first place I want
to thank Michael Kaufmann for initiating the research project and for all
the support he gave to me, ranging from improving my personal fitness by
cross-country skiing to giving me the possibility to attend various interna-
tional workshops and conferences to meet other researchers. Especially the
warm and productive atmosphere in his working group inspired me. Many
other people contributed to this work, directly or indirectly, to whom I want
to express my thanks. I want to thank Roland Wiese with whom I had
endless discussions about the implementation and whom I want to thank
that he gave me the opportunity to contribute to yFiles, which made the
implementation of the presented algorithms possible. I want to thank Ul-
rik Brandes and Dorothea Wagner who initiated my work on sketch-driven

viii

graph-drawing and GraphML. Further I want to thank Holger Eichelberger
for providing me with the implementation of SugiBib and the adaptions he
made which made it possible to compare it to our algorithms. Many of the
implementation work was done by Frank Eppinger and Martin Siebenhaller,
without their help this work would not have been possible. Furthermore
I want to thank Thomas Behr and Bernhard List for the work they have
put in our testing environment, which I used for testing and evaluating the
algorithms.

I want to thank the rest of the working group, namely Martin Schmollinger
and Nina Lehmann for their supply of coffee and the nice hours drinking it,
Marcus Schiesser for keeping the systems running, and Renate Hallmayer
for proofreading this work. Finally I want to thank my parents for their
support of my studies and my wife Claudia for her patience with me.

Contents

1 Introduction 1

2 Automatic Layout of Class Diagrams 7
2.1 Preliminaries and Notion . 8

2.1.1 Strings . 8
2.1.2 Graphs . 9
2.1.3 Drawing of Graphs . 10
2.1.4 Planarity . 10

2.2 A Graph Based Model for Class Diagrams 14
2.2.1 Semantic Entities Mapping to a Vertex 16
2.2.2 Semantic Entities Mapping to an Edge 17
2.2.3 Complex Symbols . 18
2.2.4 Other Model Elements 20

2.3 The CLASS DIAGRAM LAYOUT Problem 21
2.4 Applying the Topology-Shape-Metrics Approach to Class Di-

agrams . 24
2.5 UML-Kandinsky . 28
2.6 Related Work . 29

2.6.1 Automatic Layout in UML-Tools 29
2.6.2 The Seemann Algorithm and its Enhancements 30
2.6.3 GoVisual . 32

3 Mixed Upward Planarization 35
3.1 Mixed Upward Planarity . 36
3.2 Maximum Mixed Upward Planar Subgraph 38

3.2.1 The Goldschmidt/Takvorian Planarization Algorithm 39
3.2.2 The Algorithm for Mixed Graphs 41

3.3 Edge Insertion . 44
3.3.1 Insertion of Undirected Edges 44
3.3.2 Insertion of Directed Edges 46

3.4 Rerouting . 51
3.5 Complete Algorithm . 52

x CONTENTS

4 Orthogonalization 55
4.1 Tamassia’s Algorithm . 56
4.2 Generalizations of Tamassia’s Algorithm Using Reduction . . 61
4.3 Kandinsky . 63

4.3.1 The Kandinsky Model 63
4.3.2 The Network Flow Formulation 67

4.4 Solving the Kandinsky Network Flow Problem 70
4.4.1 Complexity of Solving Arc Partition Minimum Cost

Flow Networks . 70
4.4.2 The Negative-Cycle Approach to Solve the KANDIN-

SKY BEND MINIMIZATION Problem 74
4.4.3 A 2-Approximation Algorithm 78
4.4.4 An Improved Heuristic 80

4.5 Constraints in Kandinsky 81
4.6 Orthogonalization of UML Class Diagrams 89

4.6.1 Mixed Upward Orthogonal Drawings 89
4.6.2 Orthogonalization of the Upward Subgraph 90
4.6.3 The Complete Algorithm 94

5 Compaction 97
5.1 Previous Work . 98

5.1.1 Compaction of Orthogonal Shapes 98
5.1.2 Compaction in the Kandinsky Model 99
5.1.3 Label Placement . 100

5.2 The Compaction Algorithm 100
5.2.1 Label Placement . 101
5.2.2 One-Dimensional Compaction 102

5.3 The Shape Graph Approach 102
5.4 A Linear Time Compaction Algorithm 106

5.4.1 Compaction Shape . 106
5.4.2 Complete Shape Extensions of Kandinsky Shapes . . 109
5.4.3 Computing the Length Complete Shape Extension . . 113
5.4.4 Coordinate Assignment 114
5.4.5 Arbitrary Number of Edges at One Side 116

6 Interactive Layout 119
6.1 The Algorithm . 123
6.2 Interactive Planarization . 124

6.2.1 The Straight Line Segment Intersection Problem . . . 125
6.2.2 Valid Drawings . 126
6.2.3 Determining the Valid Subgraph 127

6.3 Interactive Orthogonalization 128

CONTENTS xi

7 Experiments 131
7.1 Implementation of UML-Kandinsky 131
7.2 Data and Experimental Setting 133

7.2.1 Class Diagrams . 133
7.2.2 Rome Graphs . 133
7.2.3 Directed Rome Graphs 135
7.2.4 Upward Planar Graphs 135
7.2.5 Graphs With Limited Height 135

7.3 Comparing UML-Kandinsky to SugiBib 135
7.3.1 Tests on Diagrams with up to 80 Classes 136
7.3.2 Tests on Diagrams with more than 80 Classes 139

7.4 Planarization . 140
7.4.1 Class Diagrams . 140
7.4.2 Directed Graphs . 140

7.5 Orthogonalization . 145
7.6 Compaction . 146
7.7 Examples . 147

8 Conclusion 153
8.1 Results . 154
8.2 Directions of Future Research 155

8.2.1 Improvement of the Presented Algorithms 156
8.2.2 Advanced Modeling Constructs 156
8.2.3 New Application Domains 158

xii CONTENTS

Chapter 1

Introduction

In the last two decades graph drawing emerged as a new field in the area
of information visualization. The central question this field tries to answer
is: Given a set of entities and a set of binary relationships between these
entities (this is usually referred to as a graph), find a ”good” visualization of
this data. What a good visualization is depends of course on the semantics
of the data as well as on the beholder, but there are some principles which
proved to work for a large set of different types of data almost independently
of the spectator. The most common type of visualization found for graphs
is the node-link model, in which the entities are represented as shapes and
the relationships as paths between the shapes.

Two approaches for drawing graphs in this model have been extraordi-
narily successful in practice: the force directed approach and the hierarchical
approach. The reason for their success is that they provide fairly good re-
sults while being robust with respect to the input, extensible with respect
to special constraints in the resulting drawing and are nevertheless not too
hard to implement.

Another approach, called the topology-shape-metrics approach, has been
studied extensively in the research community and although it seems to
be very promising it has never attracted the same attention in practice as
the force-directed and the hierarchical approach. While it shares the first
property of the other two approaches, providing fairly good results, it has
the reputation to lack the robustness and the extensibility of the other two
approaches while being hard to implement.

In this work we show that the topology-shape-metrics approach has this
reputation wrongly by applying it to a complex real-world scenario: the
automatic layout of UML class diagrams. UML class diagrams arise in
object-oriented software engineering and because of their complexity are
perfectly suited as a benchmark application for graph drawing algorithms.
This is emphasized by the fact that the automatic layout of UML class
diagrams was cited as one of the top challenges for automatic graph drawing

2 Introduction

at the last two graph drawing conferences, GD2001 in Vienna and GD2002
at Irvine.

Class diagrams are used to describe the static structure of an object-
oriented system. According to the authors of the UML class diagrams are
the most common diagram found in modeling object-oriented systems [12].
Object-oriented techniques are ubiquitous in software engineering today.
Although introduced in the late 1960s object-oriented techniques became
increasingly important in the 1990s and are today one of the most impor-
tant tools in software engineering. Our presentation of class diagrams and
object-oriented methods is based on [11].

The fundamental concept shared by all object-oriented techniques is the
object model. The main parts of the object model are objects and classes.
An object can be defined informally as a tangible entity that exhibits some
well-defined behavior. Booch gives the following definition for an object [11]:

An object has state, behavior, and identity; the structure and
behavior of similar objects are defined in their common class;
the terms instance and object are interchangeable.

Whereas an object is a concrete entity that exists in time and space, a class
represents only an abstraction. Booch gives the following definition for a
class [11]:

A class is a set of objects that share a common behavior and a
common structure.

A single object is simply an instance of a class.
A class diagram depicts in a visual language a set of classes of an object-

oriented system and the relationships between them. We distinguish be-
tween mainly three different types of relationships between classes: general-
izations, associations and dependencies:

A generalization is a relationship between a general thing (called the
superclass) and a more specific kind of that thing (called the subclass). Gen-
eralization is sometimes called an ”is-a-kind-of” relationship: one thing is-
a-kind-of another thing.

An association is a structural relationship that specifies that objects
of one thing are connected to objects of another. Given an association
connecting two classes, you can navigate from an object of one class to an
object of the other class, and vice versa.

A dependency is a relationship that states that a change in specification
of one thing (called the supplier) may affect another thing that uses it (called
the client).

If we assume that all relationships are binary in a class diagram it can be
seen mathematically as a drawing of a graph. Figure 1.1 shows an example
for a class diagram.

3

Figure 1.1: An example for an UML class diagram from [95].

If we have a closer look at the definition of class diagrams we discover
that there is no one-to-one correspondence between the graph elements and
the semantic entities of the diagram. There is a more complex mapping of
semantic entities to graph elements: some semantic entities map not to single
graph elements, they map to a collection of graph elements in the diagram.
For example a class diagram may contain n-ary relationships and not only
binary relationships. However binary relationships have no correspondence
in graphs since a graph models only binary relationships. In section 2.2 we
will discuss the graphical notation of the semantic entities and their mapping
to graph elements in detail.

Object-orientation may play a role in each stage of a software engineering
process, from analysis to implementation, and class diagrams may be used
in each stage of this process, too. Prior to an implementation usually a
design of the system is performed which provides the proper and effective
structuring of the system and serves as a blueprint for the implementation.
Object-oriented design (OOD) is a design method based in the object model.
Booch gives the following definition for object-oriented design [11]:

Object-oriented design is a method of design encompassing the
process of object-oriented decomposition and a notation for de-
picting both logical and physical as well as static and dynamic
models of the system under design.

The main philosophy of OOD is that every complex system is best ap-
proached through a small set of nearly independent views of a model. The

4 Introduction

model itself is an object-oriented decomposition of the system. It is be-
lieved that no single view is sufficient. Different views visualize different
abstractions of the model. Therefore in OOD a model is defined by a set of
consistent views, each focussing on another aspect of the system.

Each view should be described by a formal language to avoid ambigui-
ties. The Unified Modeling Language is such a language. In our description
of the UML we follow the UML specification [95]. For an introduction to
the UML we point to [1, 12, 58]. According to the authors [95] the Unified
Modeling Language (UML) is a graphical language for visualizing, speci-
fying, constructing, and documenting the artifacts of a software-intensive
system. The UML offers a standard way to write a system’s blueprints, in-
cluding conceptual things such as business processes and system functions as
well as concrete things such as programming language statements, database
schemas, and reusable software components. The UML is not intended to
be a visual programming language, in the sense of having all the necessary
visual and semantic support to replace programming languages. Further-
more it is process independent, i.e., it is not defining a standard process for
software engineering.

Prior to the definition of the UML there were various different modeling
languages, among them Booch, OMT, and OOSE. Each of them had a
different focus and a different notation. UML was designed to unify these
languages and to overcome weaknesses in the definition of them. The UML
should be rather seen as a natural evolutionary step of Booch, OMT, and
OOSE, than a radical departure of them. The UML 1.1 was adopted in
November 1997 as an OMG standard and has become a defacto standard in
software industry since then.

The UML follows the OOD paradigm that every complex system is best
approached through a small set of nearly independent views of a semantic
model. Each view visualizes a different abstraction of the model. UML
supports the following views of a model:

• structural view (class diagram, object diagram)

• user view (use case diagram)

• implementation view (component diagram)

• behavioral view (sequence diagram, collaboration diagram, statechart
diagram, activity diagram)

• environment diagrams (deployment diagram)

Each view defines a set of diagrams, which provide multiple perspectives of
the system under analysis or development. The underlying semantic model
integrates these perspectives so that a self-consistent system can be ana-
lyzed and built. To support this concept the UML specification is divided

5

into UML Semantics and UML Notation Guide. The UML Semantics part
contains the semantic definition of an UML Model. It defines the building
blocks to define a model of a system. The UML Notation Guide defines the
visualization of these building blocks.

But what are the benefits of an automatic layout algorithm for class
diagrams, why is automatic visualization important ? In a first attempt one
might say that automatic layout of class diagrams is not needed, since class
diagrams are crafted by hand in an object-oriented design step. Since these
diagrams stem directly from the designer who has already a rough sketch of
it in his mind an automatic layout method is not needed. Automatic layout
seems not appropriate since the algorithm can not guess this sketch.

However, we often have a different setting. Assume that a diagram is
generated by a reverse engineering tool. In this case the diagram elements
have to be placed by some algorithm since they are created automatically.
Of course alternatively this can be done by hand by the user, but obviously
this solution scales not very well with growing size of the reverse engineered
project. Especially if one wants just to have a quick look at the system this
does not seem to be the method of choice. Another example is the automatic
documentation of software. In this scenario diagrams should be generated
automatically and added to the documentation of a software project. Au-
tomation is desired since this ensures that the documentation is synchronized
with the current state of the software.

Even when the diagram had been created by hand, automatic layout
may play an invaluable role. Applying an automatic layout algorithm to a
given diagram yields a new view of the diagram and may reveal properties
of the model which had not been exhibited well in the original diagram. In
the human creation process of diagrams it is also often observed that the
user starts with a small diagram which grows over time. At a certain point
the diagram becomes more and more unreadable, because the new elements
do not fit well in the existing diagram. In this setting interactive layout can
help to improve the drawing.

As the title of the work suggests we concentrate on the main diagram
type the UML provides for structural views of a model, class diagrams. An
algorithm for the automatic layout of class diagrams takes a class diagram
as input and calculates a geometric representation for the elements of the
diagram. It has to consider some constraints for the geometric representa-
tions, for example that classes are represented by rectangles of prescribed
size or that some relationships must be drawn as a sequence of vertical and
horizontal segments. Each graph drawing algorithm which can handle these
constraints is therefore a potential layout algorithm for class diagrams. But
not all graph drawing algorithms are equally suited for automatic layout of
class diagrams since they may not consider the special conventions used in
drawing class diagrams.

In Chapter 2 we will present a sound mathematical model for class dia-

6 Introduction

grams and discuss the constraints, aesthetic criteria and conventions which
apply for class diagrams. We will review the topology-shape-metrics ap-
proach, which consists of the three phases planarization, orthogonalization
and compaction and discuss how the requirements of the layout of class dia-
grams affect the single phases. Based on these observations we give an out-
line of our new automatic layout algorithm UML-Kandinsky . We compare
our approach to existing algorithms, most of them are based on the hierar-
chical approach. To meet the special requirements of class diagrams we have
developed new algorithms for all three phases of the topology-shape-metrics
approach. These new algorithms are discussed in the subsequent chapters.

In Chapter 3 we present a new planarization algorithm, which creates
mixed upward planarizations of mixed graphs. To best of our knowledge this
is the first time that planarization of directed and mixed graphs is discussed.

In Chapter 4 we present a new orthogonalization algorithm which can
consider the special requirements of class diagrams, notably upward di-
rected edges and hyperedges. We modified and adapted the very successful
Kandinsky algorithm for this purpose.

In Chapter 5 we present a new compaction algorithm for orthogonal
drawings with vertices of prescribed size, a constraint essential in class dia-
grams. Our algorithm is the first linear time algorithm for this problem and
improves the running time for this problem drastically.

In Chapter 6 we discuss interactive layout of class diagrams. All algo-
rithms covered so far do only allow very limited user interaction. We will
present a new paradigm for interactive layout, the sketch-driven approach,
and show how it can be applied to class diagrams.

In Chapter 7 we provide experimental results proving the efficiency of
our new automatic layout algorithm UML-Kandinsky . We give a short
description of the implementation of UML-Kandinsky and compare it to
SugiBib, an automatic layout algorithm for class diagrams based on the
hierarchical approach. Further we evaluate the algorithms for the three
phases of UML-Kandinsky in detail.

We finish with Chapter 8, which contains a discussion of the presented
work and an outlook to future directions of research related to the topics of
this work.

All algorithms discussed in this work are implemented and example out-
puts in form of drawings are provided in many places of the work. Results
of this work have already been published in [16, 47, 49, 50, 51, 118, 119].

Chapter 2

Automatic Layout of Class
Diagrams

In this chapter we define the automatic layout problem for class diagrams
and propose an algorithm based on the topology-shape-metrics approach
to solve it. We will show why this approach is promising and discuss the
challenges which arise when we want to apply the topology-shape-metrics
approach to the automatic layout of class diagrams. This chapter follows
partly [51] and is organized as follows:

We first review in Section 2.1 the basic mathematical concepts which we
will use in this work before we propose in Section 2.2 a graph-based model
for class diagrams.

There are several factors which influence the readability of class dia-
grams. In Section 2.3 we will review how the readability of class diagrams
can be measured using aesthetic criteria. We will identify the relevant aes-
thetic criteria for class diagrams and define the CLASS DIAGRAM LAYOUT
problem.

In Section 2.4 we review the topology-shape-metrics approach and dis-
cuss how this paradigm can be used for the visualization of class diagrams.
We will especially examine how the different phases of the approach are
affected by the special requirements for the layout of class diagrams.

In Section 2.5 we present an outline of UML-Kandinsky, our new algo-
rithm for the automatic layout of class diagrams.

In Section 2.6 we review existing algorithms for the automatic layout of
class diagrams. Most current automatic layout algorithms for class diagrams
are based on the hierarchical approach for drawing graphs. Applying the
hierarchical approach to the automatic layout of class diagrams has several
drawbacks notably in the absence of generalizations in the diagram. We will
see that our approach overcomes this and other drawbacks of the hierarchical
approach and works well for all types of diagrams.

8 Automatic Layout of Class Diagrams

2.1 Preliminaries and Notion

In this section we will review the main mathematical concepts that we will
use in the remainder of this work: strings, graphs, drawings of graphs, and
planarity.

2.1.1 Strings

Let Σ be a finite set. We will refer to Σ as alphabet and to the elements of Σ
as symbol. A string over an alphabet Σ is a sequence of symbols of Σ. The
empty sequence is denoted by ε. The length of a string s is denoted by |s|.
For a string s and a ∈ Σ we denote with #as the number of a in s.

The result of appending a string s2 to a string s1 is denoted by s1 + s2.
If the resulting string should carry the name s1 after the concatenation, we
denote it with s1+ = s2.

A bit-string is a string over the alphabet {0, 1}. The bit-wise complement
of a bit-string s is denoted by s. The reverse of s is denoted by ←−s .

The edit distance between two strings is defined as the smallest number
of simple edit operations (insert, delete, and substitute) required to change
one string into another.

We denote with edit(ci,cd)(s1, s2) the version of the edit distance, which
allows only the operations insert and delete, where ci denotes the cost for an
insert operation and cd the cost for a delete operation. Note that the costs
must be non-negative. The following properties of this type of edit distance
will be useful in the remainder of this work:

Lemma 2.1 For two strings s1 and s2 and a, b > 0 holds:

1. c · edit(a,b)(s1, s2) = edit(ca,cb)(s1, s2)

2. edit(a,b)(s1, s2) = edit(a,0)(s1, s2) + edit(0,b)(s1, s2)

Proof: Each sequence o of operations which leads to an edit distance of
edit(a,b)(s1, s2) has the same number of insertions i(o) and deletions d(o).
Assume that there are two sequences of operations o1 and o2 leading to
the same edit distance with different number of operations. Since |s2| =
|s1| + i(o1) − d(o1) and |s2| = |s1| + i(o2) − d(o2) it follows i(o1) − d(o1) =
i(o2)−d(o2). If i(o1) > i(o2), then also d(o1) > d(o2) and therefore a ·i(o1)+
b ·d(o1) > a · i(o2)+ b ·d(o2) which is a contradiction to the assumption that
they have the same edit distance.

Let o be a sequence of operations which leads to edit distance edit(a,b)(s1, s2).
Then the first claim follows from c · (i(o) + d(o)) = c · i(o) + c · d(o) and the
second claim from a · i(o) + b · d(o) = (a · i(o) + 0 · d(o)) + (0 · i(o) + b · d(o)).

2

2.1 Preliminaries and Notion 9

Lemma 2.2 Let s1 and s2 be two strings, then

a · edit(s1, s2) + b · (|s1| − |s2|) = edit(a+b,a−b)(s1, s2) .

Proof: With |s1| − |s2| = edit(1,0) − edit(0,1)

a · edit(s1, s2) + b · (|s1| − |s2|) =
edit(a,a)(s1, s2)− b(edit(1,0)(s1, s2)− edit(0,1)(s1, s2)) =
edit(a+b,a−b)(s1, s2)

2

2.1.2 Graphs

In this section we introduce basic concepts from graph theory. For a com-
prehensive overview of graph theory we refer to [38].

A graph G is denoted by a pair (V,E), where V is the set of vertices and
E ⊆ V × V is the set of edges. A graph element is either a vertex or an
edge. Sometimes we use the notion V (G) for the vertices, resp. E(G) for
the edges, of a graph G = (V,E). We denote with adj(v) the set of edges
adjacent a vertex v ∈ V . The degree δG(v) of a vertex v ∈ V is the number of
edges in E adjacent to v. A graph is called 4-graph if each vertex has degree
smaller or equal 4. We say that G′ = (V ′, E′) is a subgraph of G = (V,E)
if V ′ ⊆ V and E′ ⊆ E. In this case we write G′ ⊆ G. A graph isomorphism
f : V (G) → V (H) is a bijection between the vertices of two graphs G and
H with the property that any two vertices u and v from G are adjacent
if and only if f(u) and f(v) are adjacent in H. If an isomorphism can be
constructed between two graphs, then we say those graphs are isomorphic.

We call a graph directed if all pairs in E are ordered and undirected if
all pairs in E are unordered. We call the first entry in a directed edge the
source and the second target. Ignoring for every directed edge the order of its
vertices, we get an undirected graph, which is called the underlying graph.
For a vertex v ∈ V , we denote with in(v) the set of edges in E which have
target v, and with out(v) the set of edges with source v. The in-degree δ−G(v)
denotes the number of edges in in(v), and the out-degree δ+

G(v) the number
of edges in out(v). We call a vertex with in-degree 0 a source, and a vertex
with out-degree 0 a sink. A directed acyclic graph is called an st-graph if it
has exactly one sink and one source.

If a graph contains both, directed and undirected edges, we call it a mixed
graph. In this case we denote the set of directed edges with Ed(G) and the
set of undirected edges with Eu(G). Often the shorter terms digraph, resp.
migraph, are employed instead of the terms directed graph, resp. mixed
graph.

An ordering π : V −→ IN of a directed graph G = (V,E) is called a
topological ordering if for every edge e = (v, w) ∈ E holds π(v) < π(w).

10 Automatic Layout of Class Diagrams

A (simple) path P = (v0, e1, v1, . . . , ek, vk) in a directed graph G = (V,E)
is an alternating sequence of vertices V (P) = {0, . . . , vk} ⊆ V and edges
E(P) = {e1, . . . , ek} ⊆ E such that {vi−1, vi} = ei, 1 ≤ i ≤ k, and vi 6= vj

for 0 ≤ i 6= j ≤ k. The length of P is k.
We denote with v

∗−→G w if there is a path between two vertices v and
w in a graph G.

2.1.3 Drawing of Graphs

As already noted class diagrams can be modeled as drawings of graphs. In
this section we will cover some basic definitions for drawings of graphs. For
an introduction to graph drawing we point to [33, 81].

A point drawing Γ of a graph G = (V,E) maps each vertex v ∈ V to a
point p(v) in the plane and each edge e = (v, w) ∈ E to an open Jordan
curve c(e) such that c(e) connects p(v) with p(w). A rectangle drawing Γ
of a graph G = (V,E) maps each vertex v ∈ V to a rectangle r(v) in the
plane and each edge e = (v, w) ∈ E to an open Jordan curve c(e) such
that c(e) connects r(v) with r(w). An orthogonal drawing of a graph is a
point drawing in which the curve for each edge is a sequence of horizontal
and vertical segments. In an orthogonal grid drawing the vertices and the
bends along the edges have integer coordinates. Note that a graph admits an
orthogonal grid drawing if and only if it is a 4-graph. An orthogonal rectangle
drawing of a graph is a rectangle drawing in which the curve for each edge
is a sequence of horizontal and vertical segments. In the corresponding grid
drawing the boundaries of the rectangles and the bends along the edges have
integer coordinates. For an illustration see Figure 2.1.

2.1.4 Planarity

We call a point drawing Γ of a graph G planar if no two edges in the drawing
intersect except at common endpoints. A graph is planar if it has a planar
point drawing.

The above definition of planarity is based on geometric properties of
the graph. Kuratowski found a pure combinatorial description of the class
of planar graphs. To understand this description we need the concept of
subdivision.

Definition 2.1 A subdivision of an edge e = (v, w) in a graph G = (V,E)
can be obtained by adding a vertex u to V , removing the edge e from E and
adding the two edges e1 = (v, u), e2 = (u, w) to E. A graph G′ = (V ′, E′) is
called a subdivision of a graph G = (V,E) if G′ can be obtained by a series
of subdivisions of edges of E.

Thus, a subdivision of a graph is another graph where some edges of the
original graph have been replaced by paths. For planar graphs the following
theorem holds:

2.1 Preliminaries and Notion 11

2

2 3

4

56

(a) Point drawing

2

2 3

456

(b) Orthogonal point drawing

(c) Orthogonal rectangle drawing

(d) Orthogonal grid rectangle drawing

Figure 2.1: Examples for different types of drawings.

12 Automatic Layout of Class Diagrams

Theorem 2.1 ([87]) A graph G is planar if and only if it contains no sub-
graph that is isomorphic to or is a subdivision of K5 (the complete graph
with 5 vertices) or K3,3 (the complete bipartite graph with 3 vertices in each
set).

Whether a graph is planar or not can be tested in linear time [13, 73].

1

2

3

4

5

(a)

1

2 3 4

56

(b)

Figure 2.2: The two minimal non-planar graphs K5 (a) and K3,3 (b).

If Γ is a planar drawing, the set IR2 \Γ is open and its regions are called
the faces of Γ. Since Γ is bounded, exactly one of the faces is unbounded.
This face is called the outer face of Γ. The boundary of each face is a cycle
in the graph.

A convenient encoding of a planar drawing is a planar representation. A
planar representation F of a planar graph G = (V,E) defines for each edge
(v, w) ∈ E, which might be directed or undirected, two darts e = (v, w) and
eR = (w, v). We say that eR is the reverse of e and vice versa. We denote
with ē the reverse of a dart e. We denote with Ē the set of darts defined by
E. The planar representation F contains one cyclic list for each face, which
contains the darts encountered by walking in clockwise ordering around the
face. The first face in F is by convention the outer face and is denoted by
fout. When we use the term face in the remainder of this work, we refer to
the list of darts describing the face. For a dart e we denote with face(e) the
face which contains e.

An embedding E of a graph is defined as the counter-clockwise cyclic
ordering E(v) of the adjacent edges of each vertex v of the graph. Each edge
e = (v, w) ∈ E appears twice in E , namely as (v, w) in E(v) and as (w, v)
in E(w). An embedding is planar if there is a planar drawing of the graph
which preserves this ordering.

It is easy to obtain the planar representation from an embedding and vice
versa. Given an embedding E we denote the planar representation induced
by E with FE , and given a planar representation F we denote the embedding
induced by F with EF . A graph with a given planar representation F is called
a plane graph and is denoted with G = (V,E, F). We will omit the index F
in EF and write just E if it is clear to which planar representation we refer.

2.1 Preliminaries and Notion 13

1

2

3

4

5

6

1

2

3

4

5

6

Figure 2.3: Example for a planar embedding.

Figure 2.3 illustrates the definition of planar representation on an exam-
ple. The plane graph is defined by the planar representation F = (f0, f1, f2)
where

f0 = {(1, 3), (3, 5), (5, 6), (6, 2), (2, 1)},
f1 = {(1, 2), (2, 3), (3, 1)},
f2 = {(5, 3), (3, 4), (4, 3), (3, 2), (2, 6), (6, 5)} .

In Figure 2.3 (b) the face f0 is denoted by the solid darts, the face f1 by
the dashed darts and the face f2 by the pointed darts. The corresponding
embedding E is:

E(1) = {(1, 2), (1, 3)},
E(2) = {(2, 1), (2, 3), (2, 6)},
E(3) = {(3, 2), (3, 1), (3, 4)},
E(4) = {(4, 3)},
E(5) = {(5, 6), (5, 3)},
E(6) = {(6, 2), (6, 5)} .

The following famous theorem for planar graphs was first discovered by
Euler around 1750:

Theorem 2.2 Let G be a connected planar graph with n vertices, m edges,
and l faces. Then

n−m + l = 2.

A direct consequence of this theorem is that any planar graph has at most
a linear number of edges, moreover:

Corollary 2.1 A planar graph with n ≥ 3 vertices has at most 3n−6 edges.

Every graph can be made planar by replacing edge crossings by dummy
vertices. The planar graph obtained by this replacements is called planariza-
tion, Figure 2.4 shows a planarization of K5.

14 Automatic Layout of Class Diagrams

Definition 2.2 Given a graph G = (V,E), the graph G′ = (V ∪ C,E′, F)
is a planarization of G with crossing number |C| if and only if

• G′ is a plane graph,

• δG′(v) = 4 for all v ∈ C, and

• There is a mapping p̂ from the edges in E to paths in G′ with:

– for each e = (v, w) ∈ E, p̂(e) is a path from v to w with V (p̂(e))\
{v, w} ⊆ C,

– for each edge e′ ∈ E′ there is an edge e ∈ E with e′ ∈ p̂(e), and

– the edges of two paths are pairwise disjoint: E(p̂(e1))∩E(p̂(e2)) =
∅ for e1 6= e2 ∈ E.

1

2

3

4

5

Figure 2.4: Planarization of K5. The white vertex represents a crossing.

2.2 A Graph Based Model for Class Diagrams

In Chapter 1 we gave an informal introduction to class diagrams. In this
section we will discuss class diagrams in greater detail and present a graph-
based model for them.

In the UML specification [95] we find the following definition for a dia-
gram:

Most UML diagrams and some complex symbols are graphs con-
taining nodes connected by paths. The information is mostly in
the topology, not in the size or placement of the symbols (there
are some exceptions, such as a sequence diagram with a metric
time axis). There are three kinds of visual relationships that are
important:

1. connection (usually of lines to 2-d shapes),

2. containment (of symbols by 2-d shapes with boundaries),
and

2.2 A Graph Based Model for Class Diagrams 15

3. visual attachment (one symbol being near another one on
a diagram).

These visual relationships map into connections of nodes in a
graph, the parsed form of the notation. UML notation is in-
tended to be drawn on 2-dimensional surfaces.

The UML Model itself does not distinguish the three types of visual
relationships, it defines only the semantics of the relationships. The visual
notation of the semantic entities of the UML Model is defined in the UML
Notation Guide. It defines the mapping of the relationships in the model to
one of the above visual relationships.

The diagram model, our data model for class diagrams, uses a mixed
graph to model the first kind of visual relationship: connection. The graph
is mixed since some relationships in the diagram are symmetric, for example
undirected associations, while others are directed, for example dependencies.

We model the visual attachment relationship by labels. A label is in
our setting a two-dimensional shape which refers to a graph element. In a
diagram it should be clear from the placement of the label to which graph
element it refers. We assume in the remainder that labels have rectangular
shape.

To denote the semantic differences between the different kinds of se-
mantic entities in a diagram we add type functions, which return for each
element in the graph model the corresponding type in the UML model.

Furthermore the diagram model contains a size function which defines
the size of the vertices and labels in the diagram. The size of these elements
in the diagram normally depends on their content, for example for a class
vertex the size depends on the attributes and operations of the class. How-
ever, we cannot derive the size of these elements directly from their content
because the size in the diagram depends on the font type and font size, bor-
der width, and other parameters which are not defined on the UML model
level. Therefore we have to add this information explicitly to the diagram
model.

We call our diagram model class diagram graph, which is defined as
follows:

Definition 2.3 A class diagram graph is defined as

• a mixed graph G = (V,E),

• a set of labels L,

• a mapping refer : L→ E,

• a mapping vtype : V → {class, interface, package, note,
diamond, dummy},

16 Automatic Layout of Class Diagrams

• a mapping etype : E → {dependency, generalization, association,
connector},

• a mapping ltype : L→ {multiplicity, role, name, stereotype
ordered, constraint},

• a mapping size : V ∪ L→ IN 2.

A drawing of the class diagram graph defines a drawing for the class
diagram. The class diagram layout is defined as follows:

Definition 2.4 A class diagram layout of a class diagram graph C is defined
as a mapping Γ(C) of the vertices and labels to rectangles of size as defined
by the mapping size and the edges to open jordan curves.

In the following we will discuss the visual notation of class diagrams
and define the mapping of the diagram elements to graph elements in the
class diagram graph. We can classify the semantic entities into three classes:
those which map to a single vertex, those which map to a single edge with
labels, and those which map to more complex sub-structures of the class
diagram graph. We will discuss these classes in detail now.

2.2.1 Semantic Entities Mapping to a Vertex

The diagram elements class, interface, object, and package correspond di-
rectly to a vertex in the graph. The type of the vertex is the type of the
diagram element.

Class and Interface

As already mentioned classes are the most important building block of any
object-oriented system. A class is a description of a set of objects that share
the same attributes, operations, relationships, and semantics.

Classes are represented by rectangles consisting of multiple compart-
ments. Each compartment contains different features of the class, for exam-
ple operations, attributes and the name in the first compartment.

An interface is a specifier for the externally-visible operations of a class
without specification of internal structure.

Interfaces are represented as classes with the only difference that the
word interface is printed above the name.

Package

A package is a grouping of model elements. Packages themselves may be
nested within other packages.

Packages are represented as rectangles with the name attached in a small
compartment above the left upper corner.

2.2 A Graph Based Model for Class Diagrams 17

Counter

−state:int

+increment:void

<<interface>>
ICounter

+increment:void

Figure 2.5: Example for a class and an interface in UML notation.

counting

Figure 2.6: Example for a package in UML notation.

2.2.2 Semantic Entities Mapping to an Edge

The diagram elements dependency, generalization, binary link and binary
association correspond directly to an edge in the graph. The type of the edge
is the type of the diagram element. Each of the above diagram elements may
specify a stereotype. Stereotypes map to a label of type stereotype.

Dependency

Dependencies are rendered as dashed lines with an arrow pointing to the
client.

<<use>>Supplier Client

Figure 2.7: Example for a dependency with stereotype use in UML notation.

Generalization

Generalizations between classes are rendered as solid lines having as arrow
head an empty triangle pointing to the superclass. A special type of gener-
alization is the implementation of an interface by a class. Implementation
relationships are rendered as dashed lines.

18 Automatic Layout of Class Diagrams

Subclass Superclass

interface

Interface

Figure 2.8: Two examples for generalization in UML notation.

Association

An association is a structural relationship that specifies that objects of one
thing are connected to objects of another. Given an association connecting
two classes, you can navigate from an object of one class to an object of the
other class, and vice versa. An aggregation is a special kind of association
which models a whole/part relationship. Aggregation is sometimes called a
”has-a” relationship: meaning that an object of the whole has objects of the
part.

Associations may have a name attached. This name maps to a label
of type name. At each side of an association or link there may be a role
specified. This role maps to a label of type role. Additionally associations
may have a multiplicity assigned and have an ordered flag. The multiplicity
maps to a label of type multiplicity, the ordered flag maps to a label
of type ordered. Associations are rendered as solid lines. They may have
arrowheads to indicate the navigability from one object to the other object.
Aggregations have an empty diamond as adornment at the class representing
the ”whole” in the whole/part relationship. Associations may be directed
(like aggregations) or undirected.

1..

employeremployee

Job CompanyPerson

Figure 2.9: Example for association in UML notation.

2.2.3 Complex Symbols

The semantic entities association class, n-ary association, and note cannot
be mapped directly to one vertex or edge.

2.2 A Graph Based Model for Class Diagrams 19

N-ary Association

An n-ary association is a relationship between more than two semantic en-
tities. This is visualized by a diamond connecting to all these semantic
entities. The diamond is modeled as a vertex of type diamond in the graph,
the connections as edges of type connector.

Figure 2.10: Example for an n-ary association in UML notation.

Association Class

An association class is an association that also has class properties (or a
class that has association properties). The notation is that of an association
and a class connected by a dashed line. If the association is binary the
representation of the association is a path of length greater than two and the
class vertex is connected to a dummy vertex of this path with an edge of type
connector. If the association is an n-ary association the class is connected
to the diamond vertex of the representation of the n-ary association with an
edge of type connector.

Figure 2.11: Example for an association class in UML notation.

20 Automatic Layout of Class Diagrams

Note

A note is represented by a rectangle with a ”bent corner” in the upper right
corner. It contains arbitrary text. A note may be associated with each type
of semantic entity by note links. Note links are denoted by dashed lines
linking to these entities. The note itself is modeled as a vertex of type note.
The note links as edges of type connector.

Added in

Version 2.1.

Figure 2.12: Example for a note in UML notation.

2.2.4 Other Model Elements

The UML specification contains much more semantic entities relevant for
class diagrams which have not been discussed yet. Most of them are not
discussed because they do not affect the automatic layout of a class diagram.
There are two reasons why they do not play a role in the automatic layout:

Embedded Elements. These entities do not affect the topology of the
graph and are exclusively rendered in the boundary of another seman-
tic entity. Examples are the entities Operation and Attribute. These
entities are rendered inside the rectangle visualizing the class they are
belonging to. For example in Figure 2.5 the attribute state of the class
Counter is contained in the middle compartment of the rectangle.

Stereotypes. The second types of entities are semantic entities whose visu-
alization is similar to the visualization of one of the entities discussed
and its semantics does not require special treatment in the visualiza-
tion. Examples are the entities Metaclass and Utility. They are just
stereotypes of class. A special role play the semantic entities Object
and Link. Formally class diagrams can contain objects and links. A
class diagram consisting purely of objects and links is called object
diagram and can be seen as a special kind of class diagram. Class dia-
grams containing both, objects and classes, are rarely used, we there-
fore treat objects as classes and links as associations. Although this is
not semantically correct it makes no difference for the visualization.

2.3 The CLASS DIAGRAM LAYOUT Problem 21

2.3 The CLASS DIAGRAM LAYOUT Problem

The problem of automatic layout of a class diagram can be stated as follows:

Given a class diagram graph C, find a class diagram layout Γ for
C, that reveals the information in the diagram best.

Each graph drawing algorithm which can handle labels and respects
prescribed vertex sizes is therefore a potential layout algorithm for class
diagrams. But not all graph drawing algorithms are equally suited for au-
tomatic layout of class diagrams. This is due to the fact that the special
aesthetic criteria of class diagrams are not necessarily covered by a graph
drawing algorithm. In the remainder of this section we will discuss these
aesthetic criteria and derive from them a formulation of the class diagram
layout problem. Since class diagrams are drawings of graphs, we will first
discuss aesthetics of drawings of graphs and then treat the special require-
ments of class diagrams.

There is no mathematical definition of aesthetics for a drawing of a
graph, it can be defined informally that a drawing of a graph is more aes-
thetic than another drawing if it is ”nicer” or ”more readable”. To mathe-
matically describe aesthetics the concept of aesthetic criterion is used. An
aesthetic criterion measures one isolated mathematically defined property
of the drawing and defines rules for the values of this property. Examples
for aesthetic criteria are [33]:

• minimize number of edge crossings (CROSSING),

• minimize number of bends (BEND),

• minimize number of vertex and edge overlap (OVERLAP),

• maximize number of orthogonal edges (ORTHOGONAL),

• maximize angular resolution (RESOLUTION),

• minimize edge length (EDGE LENGTH),

• minimize area (AREA),

• maximize rectangular aspect-ratio (ASPECT RATIO),

• maximize number of edges respecting flow (FLOW),

• maximize symmetry (SYMMETRY).

Some of the above criteria are contradicting, e.g., area and crossing min-
imization [33]. Therefore finding an aesthetic drawing of a graph can be
seen as solving a multi-objective optimization problem, the objective func-
tion being a set of aesthetic criteria. Which aesthetic criteria apply to a

22 Automatic Layout of Class Diagrams

Subclass2

Superclass

Subclass1 Subclass3

(a)

Subclass1Subclass3Subclass2

Superclass

(b)

Figure 2.13: Generalization with distinct paths (a), hyperedge notation (b).

given drawing depends on the semantics of the graph and user preference.
Aesthetic criteria more specific to class diagrams are discussed in [42]:

• use hyperedge notation for the generalization relation (HYPEREDGE),

• center the diamond vertex of n-ary association (CENTER),

• place notes and association classes near to the related model elements
(PROXIMITY).

There are few empirical studies about aesthetic criteria, and how they
affect the readability of a drawing. Purchase performed a series of experi-
ments [102, 104, 105] about the impact of different aesthetic criteria for the
readability of drawings. The first two experiments [102, 104] were performed
for graphs without semantics, the experiment [105] was focused on class di-
agrams. In the experiments students had to answer questions about the
graphs, resp. class diagrams, in a limited amount of time. The hypothesis
is that if a given aesthetic criterion influences the readability in some sense,
this should be reflected by the quality of the answers.

For graphs without semantics the aesthetic criteria BEND, CROSSING,
RESOLUTION, ORTHOGONAL and SYMMETRY have been studied. In the
experiments aesthetic criterion CROSSING was found to be by far the most
important, aesthetic criteria BEND and SYMMETRY having lesser impor-
tance and ORTHOGONAL and RESOLUTION with no significant effect. For
class diagrams, the situation is less clear. In [105] BEND and FLOW are eval-
uated to decrease the readability of a class diagram, ORTHOGONAL having
no influence on the readability.

Another aspect of aesthetics of class diagrams is user preference. User
preference is how an average user of class diagrams ranks aesthetic criteria.
Note that user preference is only linked indirectly to the readability of a
diagram, for example a user may prefer a certain visualization although it

2.3 The CLASS DIAGRAM LAYOUT Problem 23

decreases readability, but in general it is assumed that a diagram is more
readable for a user when it satisfies his personal preferences. In an experi-
ment on user preferences for class diagrams [103] CROSSING ranked highest
followed by BEND and HYPEREDGE.

As a conclusion we can say that it is not clear which is the most impor-
tant aesthetic criterion for class diagrams. The aesthetic criteria CROSSING
and BEND seem to play an important role. Although the importance for aes-
thetic criteria FLOW, HYPEREDGE and ORTHOGONAL is not backed by the
above studies, partially because they have not been investigated, we think
they play an important role for class diagrams and cannot be neglected. Be-
cause the situation is unclear we find it important for an automatic layout
algorithm to be flexible enough to let the user choose the aesthetic criterion
to optimize.

We introduce therefore the concept of style, which defines a mapping
from a class diagram graph C to a layout graph L which is defined as:

• A mixed graph G = (V,E),

• a subset D ⊆ E denoting the directed edges,

• a subset H ⊆ E denoting the edges which are considered to be part of
a hyperedge,

• a set of labels L

• a function T : L → {source, center, target} denoting the preferred
position of a label along the edge,

• a function s : V ∪ L → IN 2 denoting the size of the vertices, resp.
labels, in the drawing.

In a style the semantics is taken away from the graph elements and is
replaced by mathematical constructs. One possible style is to direct all gen-
eralization edges and draw them as hyperedges, while leaving all other types
of edges undirected. In this case all edges e with etype(e) = generalization
are contained in D and H. Edges with different type are neither contained
in D nor in H. Another possibility is to direct the associations and keep
the generalizations undirected. A style can distinguish between interfaces
and classes, which is especially useful for visualizing class diagrams for Java
programs. In a style to each label a preferred placement is assigned, which
is normally the same for all styles: Labels of type multiplicity and role
are always assigned to one end of an association. They receive therefore
either the preferred placement source or target. All other labels receive
the preferred placement center.

The styles described above should be rather seen as an example than as
a definition. Through the use of styles as a intermediate transformation step

24 Automatic Layout of Class Diagrams

we make it easy to integrate further model elements by enhancing the type
table and the style mapping. The style defines the main aesthetic criterion
for the diagram:

Definition 2.5 The CLASS DIAGRAM LAYOUT problem is defined as fol-
lows: Given a class diagram graph C and a style S, find a class diagram
layout Γ(C) in which:

• there are no overlaps (OVERLAP),

• the edges of D in S(C) point upward (FLOW),

• the edges of H in S(C) are drawn as hyperedges (HYPEREDGE),

• the number of crossings is minimized (CROSSING), and

• the number of bends, the total area covered, and the total length of all
edges in the drawing are minimal (BEND, EDGE LENGTH, AREA).

The CLASS DIAGRAM LAYOUT problem is not tractable in general as
we will see in Chapter 3. However, for the applications of automatic layout
of class diagrams it is important to solve the problem in interactive time, in
other words within a few seconds, on a common desktop computer. As typi-
cal size of class diagrams we can assume that the diagram contains less than
50 classes and that the diagrams are sparse. Sparse means that the number
of relations in the diagram is only a constant factor higher than the number
of classes in the diagram. This factor is for class diagrams usually below
two. Diagrams with more classes than 50 are normally considered as too
big by the user and split into multiple diagrams. The number of 50 classes
is already a conservative upper bound, in practice diagrams with more 20
classes are hardly encountered in documentation of software systems. Di-
agrams which are not sparse reflect usually bad design [44] and usually do
not have a good layout, only a not too bad layout.

2.4 Applying the Topology-Shape-Metrics Approach
to Class Diagrams

In this section we review the topology-shape-metrics approach for drawing
graphs and discuss how it can be applied to the automatic layout of class
diagrams. The approach origins from the seminal paper of Tamassia [115],
the name topology-shape-metrics approach was introduced in [33].

The topology-shape-metrics approach is one of the most popular graph
drawing methods, it has been applied successfully to application domains
like the visualization of data flow diagrams [5], database schemas [30, 31]
and industrial plant schemas [37]. In a comparison of four graph drawing

2.4 Applying the Topology-Shape-Metrics Approach to Class Diagrams 25

algorithms for orthogonal drawings, the one following the topology-shape-
metrics approach was the clear winner [34].

The approach is motivated by the fact that for some applications the
number of crossings is one of the most important aesthetic criteria, which is
also true for class diagrams as we have seen in the previous section. The sec-
ond aesthetic criterion in the topology-shape-metrics approach is the number
of bends. Choosing the number of bends as optimization goal might surprise
since it does not rank very high in the list of aesthetic criteria. However,
drawings with a small number of bends tend also to be very compact hav-
ing small total edge length and covering small area. Another advantage of
optimization over the number of bends is, that for some special cases of the
problem we can compute efficiently an optimal solution when the topology
is fixed. For most other aesthetic criteria this is not possible.

The topology-shape-metrics approach is divided into the following three
steps:

Planarization This step determines the topology of the drawing, which
is described by a planar embedding. For non-planar graphs dummy
vertices are inserted which represent crossings. Usually algorithms try
to minimize the number of crossings.

Orthogonalization This step determines the angles and the bends in the
drawing. Only multiples of 90◦ are assigned as angles which ensures
that the drawing is orthogonal. Usually algorithms try to minimize
the number of bends in this step.

Compaction In this step the final coordinates are assigned to the vertices
and to the edge bends. The dummy vertices introduced in the pla-
narization step are removed. In this phase the main goal is to minimize
the sum of the lengths of all edges and/or the area of the drawing.

The topology-shape-metrics approach avoids overlap and produces or-
thogonal drawings, therefore the aesthetic criteria ORTHOGONAL and OVER-
LAP are fulfilled. The algorithm is designed to optimize CROSSING, BEND,
EDGE LENGTH and AREA.

If we want to apply the topology-shape-metrics approach to class dia-
grams we have to devise algorithms for the three phases which integrate the
additional requirements of Section 2.3. We will now analyze these require-
ment with respect to the topology-shape-metrics approach.

FLOW Aesthetic Criterion

To satisfy the flow aesthetic criterion we have to take a look at the first and
second phase. In the first phase an embedding of the graph must be calcu-
lated, which has a drawing in which all edges, for which the FLOW aesthetic

26 Automatic Layout of Class Diagrams

(a) input graph (b) result of planarization

(c) result of orthogonalization (d) result of compaction

Figure 2.14: The topology-shape-metrics approach.

2.4 Applying the Topology-Shape-Metrics Approach to Class Diagrams 27

criterion applies, point upward. The same holds for the orthogonalization
step, it must calculate angles and bends accordingly.

An alternative approach are quasi-upward drawings as described in [7].
In quasi-upward drawings not all edges point upward, but upward directed
edges emit from the upper half of the source vertex and connect to the lower
half of the target vertex. In [7] a topology-shape-metrics approach for quasi-
upward drawings with a minimal number of non-upward pointing edges is
described.

The planarization algorithm we present assumes that the directed sub-
graph induced by the directed edges is acyclic and connected. If the directed
graph induced by D and H contains directed cycles, not all directed edges
can be drawn upward. We can therefore draw only a subset of the edges in
D and H upward. Since the FLOW aesthetic criterion is very important,
we want to minimize the number of edges we cannot draw upward. This
is equivalent to the problem of finding the minimum number of edges we
need to remove from D and H, to make the subgraph induced by D and H
acyclic. Unfortunately this problem, known as the feedback arc set problem,
is NP-complete [80]. However, numerous heuristics have been proposed for
this problem which work fairly well in practice. We use an algorithm based
on depth-first-search as described in [62], and which has linear running time.
If the subgraph induced by D∪H is not connected we add undirected edges
to D until D is connected.

HYPEREDGE Aesthetic Criterion

In order to handle hyperedges we can use a preprocessing technique. We
substitute hyperedges by stars. All incoming edges of a vertex u are removed
from u and connected to a hyperedge vertex d, which itself connects to u. Let
u ∈ V and H(u) =

⋃
e=(v,u)∈E e ∈ H. For H(u) = {(v1, u), . . . , (vk, u)}, we

create a new vertex d, we substitute the edges (vi, u) with (vi, d), 1 ≤ i ≤ k,
and add the edge (d, u). See figure 2.15 for an example.

 Subclass 1 Subclass 2 Subclass 3

Superclass

 Subclass 1 Subclass 2 Subclass 3

Superclass

dummy

Figure 2.15: Substitution of edges forming a hyperedge by a star.

In the orthogonalization phase we must assign the correct angles and
bends to the edges as shown in the example in Figure 2.13.

28 Automatic Layout of Class Diagrams

Prescribed Node Size

To consider prescribed vertex sizes, the orthogonalization and the com-
paction phase must meet special requirements. The only methods that can
guarantee prescribed vertex sizes rely on the Kandinsky model, also called
podevsnef model. In this model the shape must conform to certain rules,
the most important being that only one edge per side of the vertex has no
bend. In the compaction phase the assigned vertex size must be realized.

Labeling

Usually graph drawing systems perform labeling as a separate task after the
drawings have been calculated and use a separate map labeling technique, for
example [117]. Labeling can be integrated into the compaction step which
usually yields better results than using a map labeling algorithm. Labeling
is therefore handled in the compaction step of our algorithm.

Dynamic Layout and Interactivity

The requirements dynamic layout and interactivity are somehow different to
the other issues, and are therefore treated in a separate chapter. Interactiv-
ity requires that the user has some possibility to influence the result of the
automatic layout algorithm to his wishes. The dynamic layout requirement
states that if we have an automatically layouted diagram and change little
of it, for example add an element to it, and then apply the automatic layout
algorithm again, the resulting diagram still resembles the input diagram.
Both requirements affect all three phases of the topology-shape-metrics ap-
proach and we will present a unified approach for this problem.

2.5 UML-Kandinsky

We are now able to outline UML-Kandinsky, our new algorithm for the au-
tomatic layout of class diagrams.

We assume that the directed graph induced by the predicate H is acyclic.
This assumption is justified, since the generalization relationship between
classes is acyclic by definition and the hyperedge notation is restricted to
generalization edges in the UML [95]. We assume furthermore that the
input graph is connected. If this assumption is violated, we can divide the
graph into its connected components and process each connected component
separately by our algorithm. The diagrams of the connected components can
then be arranged by a floor planning algorithm, for example [59].

This algorithm ignores interactivity, for interactive layout the algorithm
for sketch-driven layout from Chapter 6 applies.

2.6 Related Work 29

Algorithm 1: UML-Kandinsky

1. Preprocessing:

(a) Remove edges from D until the edges in D∪H induce an acyclic
subgraph of G.

(b) The edges in H are substituted by stars.

(c) If the edges in D do not induce a connected subgraph add edges
temporarily to D to make this subgraph connected by using a
minimum spanning tree algorithm.

2. Execute algorithm mixed-upward-planarization from Chapter 3 as pla-
narization step.

3. Execute algorithm mixed-upward orthogonalization from Chapter 4 as
orthogonalization step.

4. Execute algorithm class diagram compaction from Chapter 5 as com-
paction step.

5. Postprocessing

(a) Remove all dummy vertices from the graph including: crossings,
label vertices, hyperedge vertices, and artificial bends.

(b) Place edge labels with preferred placement source or target
with a map labeling algorithm.

2.6 Related Work

In this section we give a short overview over existing algorithms for the
automatic layout of class diagrams.

2.6.1 Automatic Layout in UML-Tools

UML Tools, like TogetherJ from TogetherSoft or XDE from Rational, to
mention the most popular ones, sometimes offer the possibility to auto-
matically layout a diagram. Eichelberger evaluated 42 UML Tools in [43],
including the above mentioned market leaders, and concludes that none of
them provides automatic layout facilities which produce satisfactory results.
In [70] some examples for major tools are presented, in which the automatic
layout algorithm perform very badly. It is important to note that these
examples are not some carefully constructed instances especially conceived
to trouble the automatic layout algorithm of a certain tool. The examples

30 Automatic Layout of Class Diagrams

are rather easy real world examples stemming from real world applications.

2.6.2 The Seemann Algorithm and its Enhancements

The Seemann algorithm and its enhancements are based on the hierarchi-
cal graph drawing approach. The hierarchical approach [114], also called
Sugiyama approach, is an algorithmic framework for drawing directed acyclic
graphs. It consists of three phases: layer assignment, crossing minimization
and vertex placement. In the layer assignment phase each vertex v in the
graph is assigned a layer l(v), such that all edges extend from a lower layer
to a higher layer, in other words, l(v) < l(w) for (v, w) ∈ E. In the sec-
ond phase a permutation of each layer is computed, such that the number
of crossings is minimized. The layering of the graph is usually normalized
before this phase, which means that edges spanning more than one layer are
split in a path by introducing dummy vertices, with each edge in the path
spanning a single layer. In the third phase the coordinates for the vertices
are determined. All vertices in a layer get the same y-coordinate and the
x-coordinates are assigned according to the permutation calculated in the
second phase. Coordinates of dummy vertices become bends of the origi-
nal edge. Usually one tries to minimize the number of bends, area and the
length of the edges in this phase.

The hierarchical approach optimizes the FLOW aesthetic criterion in
the first place, and the CROSSING criterion in the second place. Criteria
BEND, AREA and EDGE LENGTH are considered with lower priority. There
are variants of the algorithm leading to orthogonal drawings and generally
the algorithm generates no overlaps. Therefore OVERLAP is fulfilled and
ORTHOGONAL can be fulfilled if desired.

In general in class diagrams not all edges need to be drawn according
to aesthetic criterion FLOW, often only generalization edges are drawn ac-
cording to FLOW. Especially some edges may be undirected, e.g. symmetric
associations or links to association classes and notes. Therefore the hierar-
chical approach cannot be applied directly to class diagrams, modifications
are needed to handle these observations.

The work of Seemann [111] was the first description of an enhanced ver-
sion of the hierarchical approach which distinguishes between association
and generalization edges. The algorithm works as follows: Nodes not adja-
cent to generalization edges are removed temporarily from the graph. Then
the algorithm executes the first two phases of the hierarchical approach on
the subgraph induced by the generalization edges. Then the removed ver-
tices are inserted iteratively in the layers. As a last step vertex positions are
calculated and the edges routed. Generalization edges are drawn as direct
lines while association edges are drawn orthogonal. This algorithm is gen-
eralized by SugiBib [41, 42] to handle additional constraints like aesthetic
criteria HYPEREDGE, CENTER and PROXIMITY and to our knowledge it

2.6 Related Work 31

«interface»
IInformation

«interface»
INodeInformation

«interface»
IEdgeInformation

«interface»
IUMLInformation

UMLAssociationInfo

UMLInheritanceInfo

edgeinfo 0..1

Edge

associationClass 1

UMLEdge

nodeinfo 0..1

Node

UMLNode

Graph

UMLGraph

attributs

methods

associationClass

UMLNodeInfo UMLClassMethodInfo UMLClassAttributInfo

«interface»
IMetaObject

MetaObject

represents 1

MetaNode
represents 1

MetaClassAttribut
represents 1

MetaClassMethod
represents 1

MetaEdge
represents 1

MetaGraph
nodes 1

MetaPackage
nodes 1

MetaCluster MetaStereodefIUMLEdgeInformation

1 1 1

*

1 1 *

Figure 2.16: Example Layout of SugiBib taken from [41].

is the most sophisticated hierarchical layout algorithm for class diagrams
at the moment. Furthermore it supports clustering and the edges denoting
hierarchy are no longer restricted to generalizations. It rather divides the
edges into hierarchical and non-hierarchical edges. Usually generalization
edges are hierarchical and all others are not.

The reason to use the hierarchical approach for the visualization of class
diagrams is based on two assumptions:

1. There is a large set of hierarchical edges in the graph defining a deep
hierarchy, and

2. the users most important aesthetic criterion for the diagram is aes-
thetic criterion FLOW for the hierarchical edges.

These assumptions are often violated in practice. Class diagrams may con-
tain no hierarchical structure at all, for example when the diagram contains
only associations. Note that the extensive usage of inheritance in software
engineering is discouraged. Gamma [61] notes:

Favor object composition over class inheritance.

Even diagrams with a lot of hierarchical edges may be a problem for the
hierarchical approach, since these hierarchies are usually not deep. Software
with deep inheritance hierarchies tend to be difficult to understand and
hard to maintain. Booch [11] reports that as a rule of thumb inheritance
hierarchies in object-oriented software systems have a maximum depth of
7±2. Empirical studies show that the value is even smaller, in [23] it is shown
that a value of three is more realistic in practice. This has as a consequence
that only few layers are allocated by the above algorithms and when the size
of the diagrams grow, the diagrams get wider but not higher resulting in
diagrams with bad aspect ratio violating aesthetic criterion ASPECT RATIO.
This can be avoided by using advanced layering algorithms which take the
aspect ratio of the diagram into account. It is not clear how such a layering
algorithm would look like, there are some approaches solving this problem,

32 Automatic Layout of Class Diagrams

for example [27, 72], but it is not evident how they integrate in the above
layout algorithm for class diagrams.

Even if there are enough hierarchical edges in the diagram, the user might
not want to optimize aesthetic criterion FLOW, therefore assumption 2 is
often violated. As noted in Section 2.3 aesthetic criterion CROSSING might
influence the readability more than aesthetic criterion FLOW, for example
the user might prefer a drawing with less crossings over a drawing with
inheritance edges pointing upward. The hierarchical layout algorithms lack
this flexibility by design.

A more technical argument is that for upward directed drawings the
hierarchical graph drawing algorithm may produce more crossings than the
upward planarization approach we suggest. In a study comparing the two
algorithms [50] the upward planarization approach produced less crossings,
especially for graphs with limited height. Note that we compared in this
study the graph drawing algorithms and not the algorithms for drawing class
diagrams, so these results have to be interpreted with care, but nevertheless
they suggest that the upward planarization approach might be superior to
the hierarchical approach to minimize the number of crossings.

2.6.3 GoVisual

The GoVisual tool for the automatic layout of class diagrams has been pub-
lished in parallel to our work and is also based on the topology-shape-metrics
approach. There is only a superficial description [69, 70] of the algorithm
available. While the planarization phase is described in some detail, the
orthogonalization and compaction phase are only roughly sketched.

The planarization algorithm is based on the concept of mixed upward
planarity we introduced in [47]. The GoVisual algorithm calculates an up-
ward embedding for each connected component of the subgraph induced
by the directed edges. First an upward planarity test [8] for single-source
digraphs is applied. If this test fails, a planarization technique is applied.
The authors refer to our approach [47] and to techniques stemming from
the hierarchical approach. After computing an upward planarization, the
undirected edges between vertices in the same subgraph are inserted. Fi-
nally the edges having vertices in two different subgraphs are inserted using
techniques for planarization of clustered graphs [29]. The algorithms used
in the planarization phase make strong usage of advanced data-structures
like SPQR-trees [36] and PQ-trees [13].

The other two phases use a reduction approach of Tamassia’s algorithm
as described in Section 4.2, but no details are revealed how the HYPER-
EDGE and FLOW aesthetic criteria, prescribed vertex sizes and label place-
ment, are treated in these phases. Only pointers to basic algorithms not
covering the above challenges are given, and it is noted in [70]:

The second step performing the computation of the orthogonal

2.6 Related Work 33

Figure 2.17: Example of GoVisual taken from [70].

layout is more tedious due to complex implementation details,
and we therefore give more room to the first part.

In the GoVisual approach only directed edges which are in the same
connected component point in the same direction. Therefore the FLOW
aesthetic criterion is only adhered locally for each connected component,
but not globally for the entire diagram. However, the approach guarantees
that no two class hierarchies are nested within each other: A class hierarchy
is not enclosed by a circle (in the undirected sense) of arcs of a different
hierarchy.

Figure 2.17 shows the GoVisual layout of the class diagram from Fig-
ure 2.16. The layout is clearly an improvement of the original layout in
terms of crossings, bends, total edge length and area. It underlines that the
topology-shape-metrics approach is promising for the automatic layout of
class diagrams. However, the fact that the GoVisual approach guarantees
only locally consistent directions for directed edges is sometimes a disad-
vantage. In Figure 2.17, for example, there is a single generalization edge
pointing from UMLEdge to Edge. In a zoom level in which the arrow head is
not clearly visible, a user cannot infer the direction of the inheritance rela-
tion. Even worse, if the user assumes that the generalization relationship is
always drawn upward, the user may conclude that the relationship has the
wrong direction.

Apart from this drawback the GoVisual approach is a clear improvement

34 Automatic Layout of Class Diagrams

of the hierarchical approach. However, there are two practical hurdles for
people who want to implement this approach: First the algorithm relies
on sophisticated data-structures which are very complicated to implement.
Second a lot of details important for the implementation of the algorithm
are concealed. A reason for this might be that GoVisual is a commercial
product and the authors have no interest in revealing too many details of it.

Chapter 3

Mixed Upward Planarization

In this chapter we consider the problem of finding a planarization of a mixed
graph for which a drawing exists in which all directed edges are represented
by monotonically increasing curves and which has a low number of cross-
ings at the same time. The edges in the graph are weighted according to
model the difference of importance of different types of edges. Planarization
has been only studied for undirected graphs until now and we present the
first algorithm for the planarization of mixed graphs, which includes the
important special case of planarization of directed graphs.

Our presentation follows partly [47, 50]. We define our problem for-
mally in Section 3.1 which will lead us to the WEIGHTED MIXED UPWARD
CROSSING MINIMIZATION problem. Our algorithm is based on a heuristic
which is a popular technique for the planarization of undirected graphs:

1. Construct an embedded planar subgraph.

2. Insert the edges not contained in the subgraph, one by one.

3. Use rerouting to reduce the number of crossings.

Since the crossing minimization problem is NP-complete [64], we cannot
hope to find an efficient exact algorithm.

In the first step of the heuristic a planar subgraph of the input graph
is calculated. Unfortunately finding a planar subgraph with the maximum
number of edges, which is called the maximum planar subgraph problem,
is NP-hard [63] even in the undirected unweighted case. We will study this
problem for weighted mixed graphs in Section 3.2 and present a heuristic
for it.

In the second step, the edges which are not part of the subgraph are
inserted incrementally into the embedding. In Section 3.3 we will review
algorithms for the insertion of undirected edges into undirected graphs and
present an algorithm for the insertion of directed edges into a directed graph.

36 Mixed Upward Planarization

In the third step some local optimizations on the resulting planariza-
tion are performed to improve the quality of it. This technique, known as
rerouting, is covered in Section 3.4

In Section 3.5 we summarize the results of the preceding sections and
present the complete algorithm for the planarization of mixed graphs.

3.1 Mixed Upward Planarity

In Section 2.1.4 we introduced planar graphs and planarization. These con-
cepts are defined for undirected graphs. In this section we will generalize
these concepts to mixed graphs.

We first review the well-known concept of upward planarity, which de-
fines planarity for directed graphs, before we concentrate on the mixed case.
An upward drawing of a directed graph is a drawing in which each edge is
represented by a curve monotonically increasing in the vertical direction.
Note that such a drawing exists if and only if the directed graph is acyclic.

A drawing of a directed graph is upward planar if the drawing is both,
upward and planar. A directed graph is upward planar if it has an upward
planar drawing. Note that there are graphs which have an upward draw-
ing and a planar drawing but which have no upward planar drawing, see
Figure 3.1 for an example.

Upward planarity has been studied extensively and while it can be tested
efficiently for some special classes of directed graphs, for example single
source digraphs [8, 74], outerplanar graphs [96], or planar bipartite graphs [35],
the problem is not tractable in the general case:

Theorem 3.1 ([65]) The decision problem if a directed graph is upward
planar is NP-hard.

When we look at the cyclic order of the edges around a vertex in an
upward planar drawing we notice that the incoming and the outgoing edges
form an interval. We call an ordering of the adjacent edges of a vertex with
this property bimodal. If all vertices of an embedded directed graph G are
bimodal, then G is bimodal.

An upward embedding of a directed graph is a linear ordering of the
adjacent edges of each vertex of the graph which can be divided into two
parts: the first part consisting of the outgoing edges and the second part of
the incoming edges.

An upward embedding is upward planar if there is an upward planar
drawing of the graph which preserves the corresponding ordering around
each vertex. This means that the linear order is equivalent to the order that
is obtained by ordering the edges according to the angle they form in the
drawing with a ray leaving the vertex in direction of the positive x-axis.

3.1 Mixed Upward Planarity 37

1

2 3

4 5

6

(a)

1

2 3

4 5

6

(b)

1

2 3

4 5

6

(c)

Figure 3.1: An upward planar drawing of a directed graph (a). Adding the
edge (2, 5) makes this graph non-upward planar although it has an upward
drawing (b) and a planar drawing (c).

Planarity for mixed graphs has not been studied until now, previous work
concentrated either on directed or undirected graphs. Since we are interested
in mixed graphs, we introduce the concept of mixed upward planarity as a
generalization of planarity and upward planarity.

Definition 3.1 A mixed upward drawing of a mixed graph G is a drawing
in which each directed edge of G is represented by a curve monotonically
increasing in the vertical direction. A mixed graph G is called mixed upward
planar if it has a planar mixed upward drawing.

It follows directly from the definition that in the special case that all
edges in the graph are undirected, resp. directed, a graph is mixed upward
planar if, and only if, it is planar, resp. upward planar. Therefore mixed
upward planarity is a natural generalization of planarity and upward pla-
narity. Because the decision problem whether a directed graph is upward
planar is a special case of the decision problem if a mixed graph is mixed
upward planar it follows:

Corollary 3.1 The decision problem if a mixed graph is mixed upward pla-
nar is NP-hard.

A mixed upward embedding of a mixed graph G is a linear ordering of
the adjacent edges of each vertex, which is an upward embedding for the
directed subgraph of G. A mixed upward embedding is mixed upward planar
if there is a mixed upward planar drawing of the graph which preserves the
corresponding ordering. A mixed upward planarization of a mixed graph G
is a planarization of G which is mixed upward planar.

38 Mixed Upward Planarization

1

2 3

4

5

6

(a)

1

2 3

4 5

6

C

(b)

Figure 3.2: A mixed upward planar drawing of the mixed graph derived
from undirecting the edges (4, 6) and (5, 6) of the graph from Fig. 3.1 (a).
A mixed upward planarization of the same graph (b).

In a planarization of a weighted graph, the weight of a crossing is the
product of the weight of the crossing edges. The weighted crossing num-
ber of a planarization of a weighted graph is the sum over the weights of
the crossings in the planarization. Determining for a weighted mixed graph
G a mixed upward planarized graph with minimal weighted crossing num-
ber is called the WEIGHTED MIXED UPWARD CROSSING MINIMIZATION
problem.

Definition 3.2 The WEIGHTED MIXED UPWARD CROSSING MINIMIZA-
TION problem for a mixed graph G = (V,Ed ∪ Eu) and a weight function
w : Ed∪Eu → IN is to find a mixed upward planarization of G such that the
weighted sum over all crossings is minimal.

Because the decision problem whether a mixed graph is mixed upward planar
is a special case of this problem it follows:

Corollary 3.2 The WEIGHTED MIXED UPWARD CROSSING MINIMIZA-
TION problem is NP-hard.

3.2 Maximum Mixed Upward Planar Subgraph

In this section we cover the problem of finding a mixed upward planar sub-
graph of a weighted mixed graph with the maximum edge-weight. This
problem is defined as follows:

Definition 3.3 The WEIGHTED MAXIMUM MIXED UPWARD PLANAR
SUBGRAPH problem for a mixed graph G = (V,Ed ∪ Eu) and a weight

3.2 Maximum Mixed Upward Planar Subgraph 39

function w : Ed ∪ Eu → IN is to find sets E′
d ⊆ Ed and E′

u ⊆ Eu with the
property that the mixed graph G = (V,E′

u ∪E′
d) is mixed upward planar and

the sum
∑

e∈E′
d∪E′

u
w(e) is maximal.

The WEIGHTED MAXIMUM MIXED UPWARD PLANAR SUBGRAPH
problem is a natural generalization of the well studied maximum planar
subgraph problem. Unfortunately already the maximum planar subgraph
problem is NP-complete [63], and therefore also the WEIGHTED MAXIMUM
MIXED UPWARD PLANAR SUBGRAPH problem.

Corollary 3.3 The WEIGHTED MAXIMUM MIXED UPWARD PLANAR SUB-
GRAPH problem is NP-hard.

Several heuristics have been proposed for the solution of the maximum
planar subgraph problem: [68, 76, 77, 79, 107]. One of them, [77], can also
compute the optimal solution when no time limit is specified. Cimikowski
[25] compared some of these algorithms empirically. In his comparison the
algorithm of Jünger and Mutzel (JM) [77] performed best in solution quality,
followed by the algorithm of Goldschmidt and Takvorian (GT) [68]. The
fastest algorithm was the one based on PQ-trees [68], but its performance
in terms of the solution quality was significantly lower than JM and GT.
Resende and Ribero give a randomized formulation of GT in [107] . They
show on the same test set as [25] that their formulation achieves better
results as JM with the same running time performance, except for one family
of graphs where JM performs better. Both algorithms, JM and GT, are able
to consider edge weights.

However, the algorithm of GT is much easier to implement compared to
the algorithm of JM, which is a branch-and-cut algorithm and is based on
sophisticated algorithms for linear programming for this reason. Because
of its performance and its implementation issues, we use GT as a starting
point. We first review the GT algorithm and then show how it can be
modified to calculate mixed upward planar subgraphs.

3.2.1 The Goldschmidt/Takvorian Planarization Algorithm

In this section, we review the main components of GT, the two-phase heuris-
tic of Goldschmidt and Takvorian [68]. Our description follows the one
in [107]. The first phase of GT consists of devising an ordering Π of the set
of vertices of V of the input graph G. This ordering should possibly infer a
Hamiltonian path. The vertices of G are placed on a vertical line according
to the ordering Π obtained in the first phase, such that as many edges as
possible between adjacent vertices can also be placed on the line. All other
edges are drawn as arcs either right or left of the line.

The second phase of GT partitions the edge set E of G into subsets L
(left of the line), R (right of the line), and B (the remainder) in such a way

40 Mixed Upward Planarization

1

2

3

4

5

6

7

(a)

12 34 567

(b)

12 34 567

(c)

12 34 567

(d)

Figure 3.3: The above figures illustrate a run of the GT algorithm on an
example input. The input graph G is shown in Figure (a). The order-
ing Π computed in the first phase of GT is (7, 2, 1, 6, 4, 3, 5). Figure (b)
depicts the corresponding drawing of G for Π. The first independent set
L = ((7, 4), (7, 2), (2, 1), (1, 6), (6, 4), (4, 3), (3, 5), (2, 4), (1, 4), (4, 5)) is de-
fined by the arcs above the line defined by the vertices in Figure (c). The
second independent set R = ((2, 3), (1, 3)) is defined by the solid arcs below
this line in Figure (d). The remaining edges B = ((7, 6), (6, 5)) are dashed.

3.2 Maximum Mixed Upward Planar Subgraph 41

that |L+R| is large (ideally maximum) and that no two edges both in L or
both in R cross with respect to the sequence Π devised in the first phase.

Let π(v) denote the relative position of vertex v ∈ V within vertex
sequence Π. Furthermore, let e1 = (a, b) and e2 = (c, d) be two edges of G,
such that, without loss of generality, π(a) < π(b) and π(c) < π(d). These
edges are said to cross if, with respect to sequence Π, π(a) < π(c) < π(b) <
π(d) or π(c) < π(a) < π(d) < π(b).

The conflict graph has a vertex for every edge in G and two vertices
are adjacent if the corresponding edges cross with respect to Π. It follows
directly from its definition that the conflict graph is an overlap graph, i.e.
a graph whose vertices can be represented as intervals, and two vertices are
adjacent if, and only if, the corresponding intervals intersect but none of the
two is contained by the other.

An induced bipartite subgraph of the conflict graph represents a valid
assignment of the edges in G to the sets L, R and B. Since finding a max-
imum induced bipartite subgraph is NP-complete, even for overlap graphs,
GT uses a heuristic. This heuristic calculates two disjoint independent sets
of the conflict graph which, together, are a bipartite subgraph of the conflict
graph. Figure 3.3 shows an example execution of the GT algorithm.

With the algorithm of Asano, Imai and Mukaiyama [3] a weighted maxi-
mum independent set of an overlap graph can be calculated in time O(NM),
where N is the number of different interval endpoints and M is the number
of edges in the overlap graph. In our setting, N ≤ n and M ≤ m, which
leads to a running time of O(nm). We refer to this algorithm as MIS. Since
the above algorithm computes a weighted maximum independent, the GT
algorithm can compute weighted planar subgraphs.

The performance of the whole algorithm can be improved by using ran-
domization and local search techniques, as described in [107]. The random-
ization takes place in the first phase of the algorithm, where the vertex order
is computed. Instead of calculating the planar subgraphs for only one order-
ing, we calculate planar subgraphs from a whole set of orderings and return
the largest of them.

3.2.2 The Algorithm for Mixed Graphs

We now present our variant of the GT algorithm for mixed upward planar
subgraph calculation. We call this variant mixed GT (MGT) to distinguish it
from the original formulation.

In order to ensure that the planar subgraphs computed by the GT algo-
rithm are mixed upward planar it suffices to consider the first step of GT,
the construction of the vertex order. If no directed edge has a target ver-
tex which is in the order before the source vertex, the resulting subgraph is
upward planar.

42 Mixed Upward Planarization

Lemma 3.1 Let G be a mixed graph. If the vertex order Π in the first phase
of the GT algorithm is a topological order of the subgraph (V,Ed) of G, the
result of GT is a mixed upward planar subgraph of G.

Proof: Placing the vertices on a vertical line according to the ordering used
by GT and drawing the edges in L as arcs on the left side of the line and
the edges in R on the right side of the line yields an upward planar drawing
of the subgraph calculated by GT. 2

Algorithm 2: MVO
Input: A mixed graph G = (V,Ed ∪ Eu)
Output: An ordering Π on the vertices
d̄ = min{v∈V |δ−G(v)=0}{δG(v)}
CAND = {v ∈ V |δ−G(v) = 0 and δG(v) = d̄}
v1 = random(CAND)
V = V \ {v1}
G1 = mixed graph induced on G by V
for k = 1, . . . , |V | − 1 do
U = {v ∈ V|δ−Gk

(v) = 0}
CONN = adj (vk−1) ∩ U
if CONN 6= ∅ then

d̄ = minv∈CONN {δGk
(v)}

CAND = {v ∈ CONN |δGk
(v) = d̄}

else
d̄ = minv∈U{δGk

(v)}
CAND = {v ∈ U|δGk

(v) = d̄}
vk+1 = random(CAND)
V = V \ vk+1

Gk+1 = mixed graph induced on G by V
return Π = (v1, v2, . . . , v|V |)

The original version of GT [68] uses the following deterministic heuristic
to find a Hamiltonian cycle, denoted by the ordering Π, in the input graph:
The first vertex in Π is a vertex with minimal degree in G. After the first
k vertices of the ordering have been determined, say v1, v2, . . . vk, the next
vertex vk+1 is selected from the vertices adjacent to vk in G having the least
adjacencies in the subgraph Gk of G induced by V \{v1, v2, . . . , vk}. If there
is no vertex in Gk adjacent to vk in G, then vk+1 is selected as a minimum
degree vertex in Gk.

To use this algorithm for the mixed case we have to modify it in a way
such that the resulting ordering is a topological ordering on the directed

3.2 Maximum Mixed Upward Planar Subgraph 43

subgraph. We propose algorithm mixed vertex order (MVO), which uses an
idea of a standard topological sorting algorithm to solve this problem: As in
the original algorithm the ordering is constructed incrementally. After the
first k vertices of the ordering have been determined, say v1, v2, . . . vk, we
select a vertex vk+1 with no incoming edge from a vertex in Gk. Again, as
in the original algorithm, we prefer vertices, which are connected to vk and
have minimal degree.

The algorithm sketched above adds the first vertex which fulfills the
requirements to the sequence. We randomize the algorithm by first creating
a set of candidate vertices which fulfill the requirements, and then choosing
randomly one vertex from the candidate set.

Algorithm MGT computes MaxIterations vertex-orders and computes for
each vertex order a mixed-upward-planar subgraph. The mixed-upward-
planar subgraph with the greatest weight is returned as result. MaxIterations
is a constant and therefore the randomization does not increase the running
time of the algorithm.

Lemma 3.2 The vertex order Π calculated by algorithm MVO is a topological
order of the subgraph (V,Ed) of G.

Proof: For each vertex u ∈ V holds that u ∈ V until iteration Π(u) − 1
and u ∈ U in iteration Π(u) − 1 of the for loop. Assume that there is an
edge e = (v, w) ∈ Ed with Π(v) = l, Π(w) = k, and l > k. Then v, w ∈ V
at iteration k − 1 of the for loop and it follows (v, w) ∈ Gk−1. But then
δ−Gk−1

(w) > 0 and it follows that w /∈ U which is a contradiction to our first
statement. 2

From the sets L and R and the ordering Π, we can now easily obtain the
mixed upward embedding: For each vertex v ∈ V we sort the edges with
source v in R decreasing according to Π and the edges with source v in L
increasing according to Π and concatenate these two ordered lists to one.
For the incoming edges, we first sort the edges with target v in L increasing
according to Π and the edges with source v in R decreasing according to Π
and append the result to the list of outgoing edges.

node order

Figure 3.4: The order of the edges at a vertex can be derived directly from
Π and the sets L and R.

We conclude the section with the following theorem:

44 Mixed Upward Planarization

Algorithm 3: Algorithm MGT
Input: Mixed graph G = (V,Ed ∪ Eu), weight w : Ed ∪ Eu → IN
Output: Mixed upward planar subgraph G′ = (V,E′

d ∪ E′
U) of G,

ordering Π
Lmax = ∅;
Rmax = ∅ ;
for i = 0, . . . ,MaxIterations − 1 do

Π = MVO(G) ;
L = MIS(V,Ed ∪ Eu, w) ;
R = MIS(V, (Ed ∪ Eu) \ L, w) ;
if |L+R| > |Lmax +Rmax| then
Lmax = L ;
Rmax = R ;

E′
d = {Lmax ∪Rmax} ∩ Ed;

E′
u = {Lmax ∪Rmax} ∩ Eu;

Theorem 3.2 Algorithm MGT computes an embedded mixed upward planar
subgraph of a mixed graph in time O(nm).

3.3 Edge Insertion

In this section we cover the problem of inserting an edge into an embedded
graph. We first consider the well-known problem of inserting a single edge
into an undirected plane graph and review a folklore algorithm for its so-
lution. We then present our algorithm for inserting directed edges into an
upward planar graph.

3.3.1 Insertion of Undirected Edges

In this section we treat the problem of inserting a single, undirected edge into
a plane graph. There are two variants of the problem: in the first variant the
embedding of the input graph is allowed to change, in the second variant the
embedding is not subject to change. The first variant is more difficult and
only recently a complicated linear time algorithm for this problem has been
proposed [71]. However we cannot use this variant to insert an undirected
edge into a mixed upward planar graph since it is not guaranteed that the
resulting embedding is still mixed upward planar. This is not a flaw of
the insertion algorithm, this results from the NP-completeness of the mixed
upward planarization problem.

Therefore the second variant applies to us. It is well known that insert-
ing a single undirected edge in a plane graph with the minimal number of

3.3 Edge Insertion 45

1

2

3

4

5

6

7

(a)

12 3 4567

(b)

12 3 4567

(c)

Figure 3.5: Example for MGT. Figure (a) shows the input graph, which is the
example graph from Figure 3.3 with some edges oriented. The result of MGT
with high edge weights for directed edges is depicted in Figure (b). If we
use uniform edge weights, the result is different, only two edges are in B as
shown in Figure (c).

46 Mixed Upward Planarization

crossings can be done in linear time, when the embedding is not allowed to
change. We call the algorithm to solve this problem undirected edge insertion
(UEI).

The algorithm is based on the dual graph of the input graph. The dual
graph G∗ of a plane graph G = (V,E, F) has a vertex for each face of G,
and an edge d(e) = (f, g) between two faces f and g for each edge e that is
shared by f and g. It follows directly from the construction that the dual
graph of a planar graph has linear size.

To insert an edge (a, b), we construct from G∗ the extended dual graph
G∗

(a,b). This is done by adding two vertices a′ and b′ to G∗ and inserting
an edge from (a′, f), resp (b′, f), into G∗ for each f which contains an edge
adjacent to a′, resp. b′. We assign to each edge d(e) in the dual graph the
product of the weight of edge e and edge (a, b).

From each path e0, . . . , ek from a′ to b′ in G∗
(a,b) we can obtain a pla-

narization of G by subdividing the edges in G corresponding to e1, . . . , ek−1

and adding a path from a to b which uses the vertices introduced by the
subdivision. A shortest path from a′ to b′ induces therefore a planarization
of G ∪ (a, b) with minimal weighted crossing number without changing the
embedding of G. The algorithm is illustrated in Figure 3.6.

3.3.2 Insertion of Directed Edges

In this section we treat the problem of inserting directed edges into an
upward embedded directed graph, which is a much harder problem than
inserting undirected edges in a plane graph. This is due to the fact that
in the undirected case the edges which are not part of the planar subgraph
in the first step can be inserted independently of each other. This does
not hold for the directed case. Here, we cannot insert an edge into the
drawing without looking at the remaining edges which have to be inserted
later. The reason for this is that the dummy vertices added to the graph in
a planarization step introduce changes in the ordering of the vertices of the
graph. Although the graph remains acyclic, this may introduce a directed
cycle with an edge which will be added later. Then this edge can no longer
be inserted.

For example assume that in Figure 3.7(a) the dashed edges have to be
inserted, and we start by inserting edge (5, 9). If we insert edge (5, 9) as in
Figure 3.7, we produce a crossing C with edge (1, 3). Then, it is no longer
possible to introduce edge (3, 4) without destroying the upwardness property
because of the new directed cycle 5− C − 3− 4− 5.

For the remainder of the section, G = (V,E, F) is an upward embedded
directed graph, R ⊆ V ×V denotes a set of edges to be inserted into G, and
w : E∪R→ IN a weight function of the edges. Furthermore we assume that
the graph (V,E ∪R) is acyclic and that G is an st-graph.

Since G is an upward embedded st-graph, each face f has exactly one

3.3 Edge Insertion 47

12

3

4

56

7

(a)

12

3

4

56

7

(b)

12

3

4

56

7

(c)

12

3

4

56

7

C1 C2

(d)

Figure 3.6: Insertion of edge (7, 6) into the plane graph shown in (a). The
dual G∗ is depicted in (b) and the extended dual G∗

(7,6) in (c). The shortest
path from vertex 7 to vertex 6, illustrated by the thick dashed edges. The
resulting planarization is shown in (d).

48 Mixed Upward Planarization

1

234

5

6 7 8

9

10

(a)

1

2

3

4

5

6 7 8

9

10

C

(b)

Figure 3.7: Critical configuration for the insertion of a directed edge.

vertex with two outgoing edges in f , called the source of f , or shorter s(f).
Analogously f has exactly one vertex with two incoming edges in f , called
the sink of f , or shorter t(f). All remaining vertices which are adjacent to
edges in f have one incoming and one outgoing edge. Since each edge is
represented by a monotonically increasing curve, the face on the left side,
resp. right side of e is the same in all upward drawings of the embedding.
We denote with lf(e), resp. rf(e), the face on the left, resp., right side of
e. We consider the outer face as two faces, the left-outer face, resp. the
right-outer face, which denote the left, resp. right part, of the outer face.

As shown above, we have to avoid cycles when we insert edges. We avoid
this by layering the graph. We define a valid layering l as a mapping of V
to integers such that l(v) > l(u) for each edge (u, v) ∈ E ∪ R. Computing
a layering for a directed acyclic graph is the first phase of the hierarchical
graph drawing approach and has been studied extensively, for an overview
see for example [4]. We use for our algorithm the longest path layering
method, which calculates a layering of minimal height in time O(n + m).
Figure 3.8(a) shows a valid layering of the example in Figure 3.7, in which
the y-coordinates of the vertices denote the layer numbers.

From the layered graph we construct the routing graph R(a,b) for the
insertion of a directed edge (a, b). The routing graph contains, for each
face f and for each layer i that f spans, a vertex v(f, i). Two vertices
lying in neighboring layers and representing the same face are connected
by a directed edge of weight 0 in increasing layer order. Additionally, two
vertices at the same layer i of adjacent faces are connected by an edge if the
source vertex of an edge separating these two faces is less than or equal to i

3.3 Edge Insertion 49

and the layer of the target vertex is greater than i. We assign to this edge
the product of the weight of the edge separating the faces and the weight of
edge (a, b).

In this graph, there are no edges in decreasing layer order, in other words
for each edge (v(f, i), v(g, j)) holds i ≤ j. Each edge of positive weight
represents one crossing. A shortest path in the routing graph represents,
therefore, an insertion of an edge with minimal weighted crossing number
with respect to the given layering.

We add a vertex v(a) to the routing graph and connect it to faces which
are adjacent to outgoing edges of a. Analogously we add a vertex v(b) to
the routing graph and connect it to faces which are adjacent to incoming
edges of b. A path from v(a) to v(b) corresponds to a valid routing of the
edge (a, b). Figure 3.8(b) shows an example for a routing graph.

Algorithm directed edge insertion (DEI) summarizes the construction. It
takes as input an upward embedded graph G, the set of remaining edges R
and one edge e ∈ R. The output G′ is a planarization of (V,E ∪ {e}). It
uses the subroutine subdivide(G, e) which splits an edge e = (a, b) into two
edges (a,w), (w, b), adds the vertex w to G and returns the created vertex
w.

Lemma 3.3 The resulting graph G′ = (V ′, E′) of algorithm DEI is an st-
graph and upward planar.

Proof: First we show that G′ is an st-graph. In the edge insertion step
we do not decrease the in-degree or the out-degree of any vertex existing
already in the input graph. Therefore, we only have to show that none of
the inserted vertices is a sink or a source. But this is true, since each of these
vertices has in-degree two and out-degree two. It remains to show that G′

is upward planar. Since the graph G′ is planar by construction, it remains
to show that it is upward planar. We can define the y-coordinates of the
vertices of G′ by assigning each vertex v ∈ V ⊆ V ′ the value 2l(v), and each
dummy vertex w introduced by the subdivision of an edge (w, u) the value
2l(w) + 1. In the resulting drawing, each edge is pointing upward. 2

Lemma 3.4 Algorithm DEI has time complexity O(|V |2),

Proof: The faces of the graph can be computed in linear time from the
embedding. A valid layering with a minimal number of layers can also be
computed in linear time using a longest path algorithm. The maximum
number of layers is linear, since a topological sorting is an upper bound for
the number of layers. Hence, the number of vertices in the routing graph
is O(|V |2) and, since each vertex has constant degree, the total size of the
routing graph is O(|V |2). Because the graph is planar, we can compute the
shortest path in linear time [86]. The insertion of the edge can also be done
in linear time. 2

50 Mixed Upward Planarization

1

23

4

5

6 7 8

9

10

(a)

1

23

4

5

6 7 8

9

10

(b)

1

23

4

5

6 7 8

9

10

(c)

1

23

4

5

6 7 8

9

10

C

(d)

Figure 3.8: Example for algorithm directed edge insertion. Figure (a) shows
a valid layering of the input graph. The routing graph R(5,9) for the insertion
of edge (5, 9) is depicted in Figure (b). The shortest path is highlighted
by the thick edges in Figure (c). The resulting planarization is shown in
Figure (d).

3.4 Rerouting 51

Algorithm 4: DEI
Input: Embedded upward planar st-graph G = (V,E, F),

R ⊆ V × V , e = (a, b) ∈ R, w : E ∪R→ IN
Output: Embedded upward planarized st-graph G′ of (V,E ∪ {e})
determine valid layering l of (V,E ∪R)
Let R be an empty directed graph
for every face f in F do

create vertices v(f, i) for l(s(f)) ≤ i < l(t(f)) in R
for l(s(f)) < i < l(t(f)) do

create edge of weight 0 from v(f, i− 1) to v(f, i) in R

for every edge e′ = (c, d) of E do
for l(c) ≤ i < l(d) do

create edge of weight w(e)·w(e′) from v(rf(e′), i) to v(lf(e′), i)
in R
create edge of weight w(e)·w(e′) from v(lf(e′), i) to v(rf(e′), i)
in R

create vertex v(a) and v(b) in R representing a resp. b
Insert edge of weight 0 from v(a) to v(f, l(a)) in R if f is adjacent to
a and such a vertex exists
Insert edge of weight 0 from v(b) to v(f, l(b)−1) in R if f is adjacent
to b and such a vertex exists
Calculate shortest path p from v(a) to v(b) in R
E′ = E, V ′ = V , G′ = (V ′, E′)
Let e0, . . . , en be the edges of weight > 0 in p
for 0 ≤ i ≤ n do

wi =subdivide(G′, ei)

Add an edge between a and w0, wn and b, and wi and wi+1 in E′

return G′

The following theorem summarizes the lemmas above.

Theorem 3.3 Let G = (V,E) be an upward embedded st-graph, R ⊆ V ×V ,
e ∈ R, and the graph (V,E∪R) acyclic. Algorithm DEI computes an upward
planarization G′ = (V ′, E′) of G = (V,E ∪ {e}) in time O(|V |2) so that
the graph (V ′, E′ ∪ {R \ {e}}) is acyclic. The planarization G′ is again an
st-graph.

3.4 Rerouting

In this section, we review a local optimization method for reducing the
number of crossings in a planarization. The method works for planarizations

52 Mixed Upward Planarization

and upward planarizations.
One step of the method removes a path p representing an edge from

the planarization, and tries to route the edge with fewer crossings. Testing
whether the edge can be routed with fewer crossings reduces again to a
shortest path problem in the corresponding routing graph. We use the same
routing graphs as for edge insertion, but instead of removing the edges in p
physically, we just give them weight zero. The advantage of this approach is
that we do not have to change the planarization and in the case of upward
planarizations the input graph remains an st-graph. If we succeed to find
a better routing, we change the planarization according to the new routing,
otherwise, we do not change the planarization.

We iterate this local optimization until we either do not make any fur-
ther improvements, in other words there is no edge for which we can find
a routing with less crossings. This is realized by defining a set of edges
Cand which contains all edges of the original graph which have crossings
in the planarization. In each iteration we choose an edge in Cand with
maximum number of crossings and perform the local optimization step for
the path defined by this edge. If the planarization has been improved we
recalculate Cand and start again. We stop when Cand is empty. Since the
local optimization is time consuming, we bound the total number of local
optimizations steps by a constant.

3.5 Complete Algorithm

In this section we put the results of the previous sections together and
present the complete algorithm for mixed upward planarization.

The first step of the algorithm consists of executing MGT to compute a
maximum mixed upward planar subgraph G′ of the input graph. Next we
want to execute algorithm DEI to insert the directed edges into the pla-
narization, but this may not be possible since this algorithm assumes that
the input graph is an st-graph. In general this condition is not fulfilled by
G′, and we need to perform two additional steps after executing MGT to en-
sure this property. First we direct the undirected edges in G′ temporarily,
so that the resulting planarization is upward planar. This is achieved by
directing these edges according to the ordering Π computed by algorithm
MVO. Then we augment the graph to an upward planar st-graph. Again we
use the ordering Π for this task. Assume there is a sink v in the graph with
Π(v) = k < n. Then we insert a directed edge (v, w) with Π(w) = k +1 into
G′. Analogously we insert a directed edge (w, v) with Π(w) = k − 1 into
G′ if v is a source with Π(v) > 1. Clearly G′ is an st-graph after this step.
We need to perform the st-completion only once before the edge insertion
process since Lemma 3.3 guarantees that the graph remains an st-graph
after inserting an edge. Note that this augmentation does not affect the

3.5 Complete Algorithm 53

worst-case running time of the algorithm, since it follows from Euler’s theo-
rem that the number of edges in the graph remains linear in the number of
vertices.

After the augmentation we are ready to invoke algorithm DEI for each di-
rected edge removed from G in MGT. Edges in the routing graph representing
an edge added in the augmenting step are assigned weight 0, because they
do not introduce a real crossing. The removed directed edges are inserted
in random order. After the routing the artifacts, which were introduced to
make the input graph an st-graph, are removed and the temporarily directed
edges are marked as undirected.

As a last step we insert the undirected edges into the planarization. We
insert them one-by-one with algorithm UIE. After all undirected edges have
been inserted, we perform rerouting on the undirected edges to improve the
quality of the planarization.

Algorithm mixed upward planarization (MUP) summarizes the above de-
scription of the planarization algorithm for mixed graphs.

Theorem 3.4 Let G = (V,Ed ∪ Eu) be a mixed graph. Algorithm MUP cre-
ates an embedded mixed upward planarized graph of G in time O(|V |(|Ed|+
|Eu|) + (|V | + |C|)2|Ed \ E′

d| + (|V | + |C|)|Eu \ E′
u|), where C is the set of

crossings in the planarized graph.

The running time of algorithm MGT depends therefore heavily on the
input graph, especially on the size of the mixed-upward-planar subgraph
found by algorithm MGT and the number of crossings in the planarization.

For the application of automatic layout of class diagrams we will see
in Chapter 7 that we can safely assume that |C| is O(|V |) and the input
graph is sparse. The above running-time formula evaluates then to O(|V |2+
(|V |)2|Ed \ E′

d|+ (|V |)|Eu \ E′
u|), which is O(|V |3).

In our tests on automatically generated class diagrams in Chapter 7 we
experienced small values for |Ed \E′

d|, too. The value of |Ed \E′
d| was never

greater than 16 for class diagrams with up to 80 classes. Therefore one can
expect that on real world data for class diagrams algorithm MGT performs
with quadratic running time.

54 Mixed Upward Planarization

Algorithm 5: MUP
Input: Mixed graph G = (V,Ed ∪ Eu), weight w : Ed ∪ Eu → IN
Output: Mixed upward planarization Γ′ of G.
MGT(G, w,G′ = (V,E′

d ∪ E′
u),Π)

Id = Ed \ E′
d

Iu = Eu \ E′
u

// Direct undirected edges
for {v, w} ∈ E′

u do
if Π(v) < Π(w) then E′

d = E′
d ∪ {(v, w)}

if Π(v) > Π(w) then E′
d = E′

d ∪ {(w, v)}
E′

u = E′
u \ {v, w}

// Augment G′ to an st-graph.
T = ∅
for i = 0, . . . , n do

v = Π−1(i)
if (δ+

G′(v) = 0) and i < n then
T = T ∪ {(v,Π−1(i + 1))}
E′

d = E′
d ∪ {(v,Π−1(i + 1))}

if δ−G′(v) = 0 and i > 0 then
T = T ∪ {(w,Π−1(i− 1)}
E′

d = E′
d ∪ {(w,Π−1(i− 1))}

// Insert directed edges
Compute embedding of G′ from Π
for e ∈ Id do

G′ = DEI(G′, Id, e, w)
Id = Id \ {e}

Reroute directed edges
// Remove artefact
for e ∈ T do

remove representation of e from G′

// Undirect temporarily directed edges
for e ∈ Eu \ Iu do

p(e) is the representation of e in G′

E′
d = E′

d \ p(e)
E′

u = E′
u ∪ p(e)

// Insert undirected edges
for e ∈ Iu do

G′ = UEI(G′, e)

Reroute undirected edges

Chapter 4

Orthogonalization

In this chapter we describe an orthogonalization algorithm which tries to
minimize the number of bends while not violating the special requirements
of UML diagrams, notably that vertices have prescribed size, directed edges
point upward and some marked subgraphs are layouted as hyperedge. The
result of the algorithm is an absolute Kandinsky shape which is computed
from a mixed upward planarization.

Our orthogonalization algorithm is based on the Kandinsky algorithm,
introduced by Kaufmann and Fößmeier. The Kandinsky algorithm [54,
56] is an extension of Tamassia’s algorithm, which computes bend-minimal
point drawings of plane 4-graphs [115]. Tamassia’s algorithm is reviewed in
Section 4.1.

The Kandinsky algorithm removes the severe limitation of Tamassia’s
algorithm that it is restricted to point drawings and therefore limited to
4-graphs. This restriction is prohibitive for use in many real world appli-
cations, especially for UML class diagrams. UML class diagrams are or-
thogonal rectangle drawings and vertices may have arbitrary degree. The
Kandinsky algorithm is chosen since other orthogonalization algorithms
which produce rectangle drawings cannot guarantee prescribed vertex sizes.
The latter algorithms use Tamassia’s algorithm as subroutine to produce or-
thogonal rectangle drawings of graphs with non-bounded degree. We review
these algorithms in Section 4.2.

The Kandinsky approach is discussed in Section 4.3. We first review
the different Kandinsky models and then define the KANDINSKY BEND
MINIMIZATION problem. To model this problem we introduce arc partition
minimum cost flow networks as a natural generalization of minimum cost
flow networks. The core of the Kandinsky approach is a generalization
of the Tamassia’s minimum cost network flow formulation for 4-graphs to
graphs of arbitrary degree using arc partition minimum cost flow networks.
We call the generalized network the Kandinsky network.

We will show in Section 4.4 that solving arc partition minimum cost flow

56 Orthogonalization

networks to optimality is NP-hard in general even in very restrictive settings.
Fößmeier and Kaufmann proposed an optimal algorithm for the KANDIN-
SKY BEND MINIMIZATION problem which exploits the special structure
of the Kandinsky network to compute an optimal solution. We will show
that this algorithm has a flaw and that for some special input instances the
algorithm does not yield an optimal solution. On instances with vertices
of high degree it may not even terminate correctly. We show how we can
modify the algorithm such that it terminates always with a valid solution.
Unfortunately the modified algorithm may return sub-optimal solutions and
it is unclear if there is an optimal polynomial time algorithm. However, we
present an approximation algorithm for the problem, with approximation
factor two and a heuristic based on this approximation algorithm which
yields nearly optimal solutions in practice.

As already mentioned we have to consider the upwardness property of
directed edges and the hyperedge layout of marked subgraphs if we want
to use the Kandinsky algorithm for the automatic layout of class diagrams.
We will use a two phases approach to solve this problem. In Section 4.5
we present the CONSTRAINED KANDINSKY BEND MINIMIZATION prob-
lem which is a generalization of the KANDINSKY BEND MINIMIZATION
problem. The CONSTRAINED KANDINSKY BEND MINIMIZATION problem
takes besides a planarization a set of low-level constraints as input. These
low level constraints can define target values for the number and types of
bends at edges and for the angles formed by intervals of neighboring edges
around a vertex in the embedding. We will present an extended version of
the Kandinsky network in which we can specify low level constraints for the
resulting shape. Until now it was only possible to specify such constraints
using integer linear programming.

In Section 4.6 we will use these low level constraints to define our appli-
cation specific constraints, the upwardness property of directed edges and
the hyperedge layout of marked subgraphs, which leads to an orthogonal-
ization algorithm for UML class diagrams. This two level approach has
the advantage that it makes our algorithm reusable in the sense that we
can model other constraints as the one specified by class diagrams with low
level constraints. We will for example use this approach for dynamic graph
drawing in Chapter 6.

4.1 Tamassia’s Algorithm

In this section we will review Tamassia’s algorithm [115], which computes a
bend-minimal orthogonal point drawing of a plane 4-graph with respect to
an input embedding. The algorithm does not change the input embedding.
If we allow that the embedding can be changed the problem turns out to be
NP-hard [65]. In the remainder of this section we assume that graphs have

4.1 Tamassia’s Algorithm 57

maximal degree 4.
Given a bend b on an edge {v, w} in an orthogonal drawing Γ of a plane

graph G, and let e = (v, w) be a dart of the edge {v, w}. The bend b is
adjacent to two line segments. We denote with l1 the segment which is first
traversed when we follow the path Γ({v, w}) from v to w, and with l2 the
second segment. The bend b is called convex with respect to e if the angle
between l1 and l2 is 90◦, and it is called concave with respect to e if the
angle is 270◦.

Definition 4.1 Let G = (V,E, F) be a plane 4-graph. An orthogonal shape
H is a mapping from the set of faces in F to clockwise ordered lists of tuples
(e, b, a). The first entry in the tuple corresponds to the dart in the face. The
second entry is a bit string denoting the bends of the dart. A 0 in the bit
string denotes a convex bend, a 1 a concave bend. The third entry is an
integer denoting the angle formed with the preceding dart in the face, stored
as multiple of 90◦. Note that in a planar orthogonal drawing 1 ≤ a ≤ 4
holds.

2

3

4

6

5

1 2

3

4

61

5

Figure 4.1: Example for an orthogonal shape of a planar graph. The or-
thogonal drawing of the graph is shown left. On the right the orthogonal
shape of this drawing is sketched. Darts with the same line style belong to
the same face.

We will illustrate the definition of orthogonal shape on the example
shown in Figure 4.1. The plane graph is defined by the planar representation
F = (f0, f1, f2) where the face f0 is denoted by the solid darts, the face f1

by the dashed darts and the face f2 by the pointed darts. The orthogonal
shape of the drawing in Figure 4.1 is defined as follows:

H(f0) = {((1, 3), 1, 2), ((3, 5), 1, 0), ((5, 6), ε, 2), ((6, 2), 11, 1), ((2, 1), ε, 0)},
H(f1) = {((1, 2), ε, 0), ((2, 3), ε, 0), ((3, 1), 0, 0)},
H(f2) = {((5, 3), 0, 0), ((3, 4), 1, 0), ((4, 3), 0, 3), ((3, 2), ε, 0), ((2, 6), 00, 1),

((6, 5), ε, 1)} .

58 Orthogonalization

A planar orthogonal point drawing Γ of a graph G defines a unique
orthogonal shape, which we denote with H(Γ). However, there does not
exist an orthogonal point drawing for every orthogonal shape. An orthogonal
shape H of a plane graph G for which a planar orthogonal point drawing
Γ(G) with H(Γ(G)) = H exists, is said to be valid. The following theorem
characterizes the valid orthogonal shapes for a given plane graph:

Theorem 4.1 ([115]) Let G = (V,E, F) be a plane 4-graph with embedding
E, and H an orthogonal shape of G. We define the rotation rot(f) of a face
f ∈ F as:

rot(f) =
{

2|f | − 4 f ∈ F, f 6= fout

2|f |+ 4 f ∈ F, f = fout

H is valid if, and only if, the following conditions hold:∑
e∈E(v)

Ha(e) = 4 ∀v ∈ V (4.1)

∑
e∈f

(Ha(e)−#0Hb(e) + #1Hb(e)) = rot(f) ∀f ∈ F (4.2)

Hb(e) =
←−−−
Hb(ē) ∀e ∈ Ē (4.3)

Computing a drawing from a valid orthogonal shape is called compaction
and is discussed in Chapter 5.

The number of bends #bends(Γ) in an orthogonal drawing is defined by
its orthogonal shape H. It holds

#bends(Γ) = #bends(H) :=
1
2

∑
f∈F

∑
(e,a,b)∈H(f)

|b| .

Definition 4.2 The BEND MINIMIZATION problem for a plane 4-graph G
is to find a valid orthogonal shape H of G with a minimal number of bends.

The BEND MINIMIZATION problem can be solved using minimum cost
flow network algorithms. For each plane graph G there is a minimum cost
flow network NG in which there is a one-to-one correspondence between
valid flows in the network and valid orthogonal shapes of G. The cost of a
network flow corresponds to the number of bends in the induced orthogonal
shape, and therefore a bend-minimal orthogonal shape can be computed
with a minimum cost flow network solving algorithm.

We first review minimum cost flow networks and then give a description
of NG. For a comprehensive overview over minimum cost flow networks see,
for example, [2].

Definition 4.3 (Minimum Cost Flow Network) Let N = (N,A) be a
directed graph with a cost cij and a capacity uij associated with every arc

4.1 Tamassia’s Algorithm 59

(i, j) ∈ A. We associate with each node i ∈ N a number b(i) which indicates
its supply or demand depending whether b(i) > 0 or b(i) < 0. The minimum
cost flow problem can be stated as follows:

Minimize z(x) =
∑

(i,j)∈A

cijxij

subject to ∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) ∀i ∈ N,

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

The vector x is called flow. A flow which satisfies all equations and in-
equalities is called feasible. A minimum cost flow network must satisfy∑

i∈V b(i) = 0 in order to be feasible. If we require that there is at most
one node with positive and at most one node with negative supply, we call
the network an st-minimum cost flow network. In such a network the node
with positive supply is called source, or shorter s, and the node with positive
demand sink, or shorter t.

We can transform every minimum cost flow network to an st-minimum
cost flow network by a standard transformation: We add two nodes s and
t to the network and connect all nodes i with b(i) > 0 to the source with
an arc of capacity usi = b(i) and all nodes i with b(i) < 0 to the target
with an arc of capacity uit = −b(i). All newly introduced arcs have zero
cost. We set b(s) =

∑
(s,i)∈A usi and b(t) =

∑
(i,t)∈A uit. Clearly the set

of feasible solutions of the transformed network is the same as the set of
feasible solutions of the original network, and the cost of two corresponding
feasible flows is the same.

The BEND MINIMIZATION flow network NG = (N,A) for a plane 4-
graph G = (V,E, F) is a minimum cost flow network and is defined as
follows: The set of nodes N is defined as

N = NV ∪NF

with

1. The set NV contains a node for each vertex in V : NV = {nv|v ∈ V }.
The supply of a vertex-node is defined as b(nv) = 4− δ(v).

2. The set NF contains a node for each face in F : NF = {nf |f ∈ F}.
The supply of a face-node is defined as b(nf) = −rot(f).

The set of arcs A is defined as:

A = AV F ∪AFF

with

60 Orthogonalization

0

0

1���
�

���
�

���
�

���
�

(a)

3

5
���
�

���
�

0

1

(b)

Figure 4.2: In (a) the network arcs around vertex 2 of the plane graph from
Figure 4.1 is shown and in (b) the network arcs between the faces of edge
(3, 5). Arc labels indicate flow values according to the depicted shape

1. The set AV F connects every vertex v with its adjacent faces:
AV F = {aV

e = (nv, nf)|v ∈ V, e ∈ E(v), f = face(e)}.
Arcs in AV F have cost zero and capacity three.

2. The set AFF connects two faces which share an edge:
AFF = {aF

e = (nf , ng)|e ∈ Ē, f = face(e), g = face(ē), f 6= g}.
Arcs in AFF have cost one and capacity ∞.

The angle defined inside a face f between two consecutive edges (u, v),
(v, w) is determined by the flow on the network-edge aV

(v,w) = (nv, nf) in
AV F that connects the vertex-node nv of v with the face-node nf of f . A
flow of 0 defines an angle of 90◦, a flow of 1 an angle of 180◦ and so forth. A
flow unit on an edge aF

e = (nf , ng) ∈ AFF between two face-vertices denotes
a bend on edge e, which is convex in f and concave in g. See Figure 4.2 for
an illustration. We can summarize the above discussion as follows: Given a
plane graph G and a feasible flow x in the bend-minimization network NG

then we can define the orthogonal shape Hx by:

Hx
a (e) = x(aV

e) + 1 ∀e ∈ Ē

Hx
b (e) = 0x(aF

e)1x(aF
ē) ∀e ∈ Ē

Since the arcs in AFF are the only ones with non-zero cost, and every unit
flow on such an arc corresponds to a bend, the value of a feasible flow
corresponds to the number of bends in the orthogonal shape. Therefore an
optimal flow of NG corresponds to a bend-minimal orthogonal shape of G.
Figure 4.3 illustrates the network NG for an example.

Garg and Tamassia [66] proposed an algorithm for solving minimum cost
network flows which is optimized for the BEND MINIMIZATION problem.
The algorithm has running time O(χ

3
4 |A| ·

√
log |N |) where χ is the cost

of the flow. Since for every plane 4-graph there is always an orthogonal

4.2 Generalizations of Tamassia’s Algorithm Using Reduction 61

Figure 4.3: The network NG for the plane graph from Figure 4.1. The nodes
in NV have gray color in the drawing while the nodes in NF have black color.
Arcs in AV F are pointed while arcs in AFF are dashed.

drawing with linear number of bends, it holds χ = O(n). Furthermore it
follows from Euler’s theorem and the definition of NG that |A| = O(|N |) and
|N | = O(n). We summarize the above discussion in the following theorem:

Theorem 4.2 ([115, 66]) Given a plane 4-graph G and a flow x in the
BEND MINIMIZATION network NG. The orthogonal shape Hx is valid if,
and only if x is feasible. For a feasible flow x holds z(x) = #bends(Hx). The
BEND MINIMIZATION problem can be solved in running time O(n

7
4 ·
√

log n).

4.2 Generalizations of Tamassia’s Algorithm Us-
ing Reduction

One possibility to generalize Tamassia’s algorithm to orthogonal rectangle
drawings of graphs with arbitrarily degree is to use the reduction approach.
The idea behind this approach is not to change the algorithm, rather change
the input. The reduction approach is based on the observation, that we can
often overcome the limitations of an algorithm which requires a special type
of input by transforming the input, so that it fulfills these requirements, and
then perform the algorithm on the transformed input. We can then obtain
a solution for the original input by interpreting the algorithms result. In an
object-oriented sense this is captured by the Algorithmic Reduction design
pattern proposed by Gelfand and Tamassia [67]. In our setting the algorithm

62 Orthogonalization

Figure 4.4: Transformation of a high-degree vertex into a face.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

Figure 4.5: A drawing generated with Klau’s approach.

is Tamassia’s bend minimizing algorithm and the special requirement is that
the input graph must have maximum degree 4.

The first algorithm using reduction to generalize Tamassia’s algorithm
is GIOTTO [5]. It creates a rectangle-face for every vertex. Each edge is
assigned to a side of the rectangle by a heuristic. Then the bend minimiza-
tion algorithm is applied to this graph, with a modification which assures
that the rectangle-faces have rectangular shape.

The algorithm of Klau described in [83] creates also rectangle vertices,
but does not, unlike GIOTTO, assign the edges to vertex sides before the
orthogonalization step. The rectangle-faces created by the algorithm are
rings, and by modifying the bend-minimization algorithm it is assured that
these rings have rectangular shape.

In both cases the reduction is applied before the orthogonalization phase
and is reversed not until the compaction phase has finished. Both approaches
have the huge disadvantage that vertices may be arbitrary big in the final
drawing. Therefore these algorithms are not suitable for diagrams which
require prescribed vertex sizes like UML class diagrams.

4.3 Kandinsky 63

4.3 Kandinsky

The Kandinsky algorithm was introduced by Fößmeier and Kaufmann [54,
56]. It is an extension of Tamassia’s algorithm and removes two severe
limitations of Tamassia’s algorithm: the restriction to point drawings and
the restriction to graphs with degree less than five.

The Kandinsky algorithm is motivated by the geometric properties of
the original Kandinsky model for orthogonal drawings of graphs. From the
original Kandinsky model a series of other Kandinsky models for orthogo-
nal drawings of graphs is derived. We will present these Kandinsky models
and the KANDINSKY BEND MINIMIZATION problem in Section 4.3.1. We
discuss a network flow formulation of the KANDINSKY BEND MINIMIZA-
TION problem in Section 4.3.1.

4.3.1 The Kandinsky Model

In the original Kandinsky model all vertices are represented by squares of
equal size, arranged on a coarse vertex grid [56]. Edges are routed on a finer
edge grid. Later, the big-node model [57] was proposed, in which the size
of a vertex is determined by the number of edges attached to the different
sides of the vertex. In the big-node model there is only one grid for vertices
and edges. In [32] the podavsnef-model is introduced in which vertices have
prescribed size. This model has, like the big-node model, only one grid.
We refer to this model as the prescribed-size Kandinsky model in this work.
When we use the term Kandinsky model, we refer to the original Kandinsky
model.

All Kandinsky models define special types of orthogonal rectangle draw-
ings. Although the vertex sizes in the drawings differ, all these models share
common properties, which are motivated by the geometric properties of the
original Kandinsky model.

Before we investigate these properties we first generalize the concept
of orthogonal shape to describe orthogonal rectangle drawings. Since in
rectangle drawings the angle between two consecutive edges at a vertex is
no longer well defined in a traditional sense, we have to introduce a new
angle definition which fits our needs.

Definition 4.4 Let r be a rectangle and l1 and l2 be line segments which
are either horizontal or vertical. Both, l1 and l2, have one endpoint on
the boundary of r, which must not be a corner of r. The rectangle-angle
between l1 and l2 is defined as the number of corners between l2 and l1 in
counter-clockwise order.

This definition is a natural extension of the angle definition in point
drawings in the sense that if we take a point drawing and replace the points
by rectangles of infinitesimal size ε and clip the edges adjacent to the point

64 Orthogonalization

1

2

3

4

5

6

7 8

9

10

11

12

13 14

15

16

17

18

19

(a)

1

2

3

4

5

6

7 8

9

10

11

12

13 14

15

16

17

18

19

(b)

1

2

3

4

5

6 7 8

9

10

11

12

13 14

15

16

17

18

19

(c)

Figure 4.6: Example for a drawing in the original Kandinsky model (a), in
the Kandinsky big-node model (b), and in the prescribed-size Kandinsky
model (c).

4.3 Kandinsky 65

against this rectangle, then the rectangle-angle corresponds to the original
angle in the point drawing. With this new angle definition we can now define
the generalization of orthogonal shapes to orthogonal rectangle drawings:

Definition 4.5 Let G = (V,E, F) be a plane graph. A quasi-orthogonal
shape Q is a mapping from the set of faces F to clockwise ordered lists of
tuples (e, b, a). The first entry in the tuple corresponds to the dart in the
face. The second entry is a bit string denoting the bends of the dart. A 0 in
the bit string denotes a convex bend, a 1 a concave bend. The third entry is
an integer and denotes the rectangle-angle formed with the preceding dart in
the face, stored as multiple of 90◦. Note that in a planar orthogonal rectangle
drawing 0 ≤ a ≤ 4 holds.

Analogously to orthogonal shapes, we define a valid quasi-orthogonal
shape as a quasi-orthogonal shape for which an orthogonal rectangle drawing
exists. Surprisingly theorem 4.1 holds also for quasi-orthogonal shapes [54].
However, the bend minimization problem turns out to be fairly simple:
for every plane graph there is a quasi-orthogonal shape with no bends.
This follows immediately from the fact, that every plane graph has a one-
dimensional visibility representation [108, 116]. However, like in the previous
section, the vertex size in the drawing can grow arbitrarily.

This is where the Kandinsky model enters the stage. In the original
Kandinsky model, vertices are represented by squares of equal size. Al-
though for every valid quasi-orthogonal shape exists an orthogonal rectan-
gle drawing, not for every valid quasi-orthogonal shape exists an orthogonal
rectangle drawing in the Kandinsky model !

But we can define two sufficient properties for a quasi-orthogonal shape
which guarantee that a drawing in the Kandinsky model exist. These two
properties are the bend-or-end property and the non-empty face property.

Definition 4.6 (Bend-Or-End Property) Let G=(V,E, F) be a plane
graph. A quasi-orthogonal shape Q of G has the bend-or-end property if
for every two darts (u, v) and (v, w) following each other in a face f ∈ F
either the last bend of the dart (u, v) or the first bend of the dart (v, w) is
concave.

Bends which exists because of the bend-or-end property are called vertex-
bends, all other bends are called face-bends.

Definition 4.7 (Non-Empty Face Property) Let G=(V,E, F) be a plane
graph and Q a quasi-orthogonal shape of G. Let f be a face with three edges
f = ((u, v), (v, w), (w, u)). The face f is called:

L-triangle if Q(f) = {((u, v), 1, 0), ((v, w), ε, 0), ((w, u), ε, 1)}.

T -triangle if Q(f) = {((u, v), 1, 0), ((v, w), 1, 0), ((w, u), ε, 0)},

66 Orthogonalization

Figure 4.7: A vertex with the bend or end property.

A quasi-orthogonal shape Q has the non-empty face property if it contains
no T - and L-triangles.

(a) (b)

Figure 4.8: An example for an L-triangle (a) and a T -triangle (b).

We are now able to define Kandinsky shapes:

Definition 4.8 A valid quasi-orthogonal shape is a Kandinsky shape if it
has the bend-or-end property and the non-empty face property.

While the bend-or-end property is not only sufficient, but also necessary,
for a quasi-orthogonal shape to have a drawing in the Kandinsky model
the non-empty face property is kind of artificial. That the L triangle is
excluded can be motivated from the fact that it cannot be represented in the
Kandinsky model without overlap (which is still possible in the Kandinsky
big-node model). But the exclusion of the T -triangle is of pure technical
nature, and is not necessary for the existence of a drawing in the Kandinsky
model. A motivation to exclude them is that they are the only type of
faces which cannot be drawn in the Kandinsky model with positive area
(this explains the name of the property). In [54] it is argued that faces
which cover no area are not desirable in a drawing because, for example,
they cannot be labeled properly. A more technical motivation to postulate
this property is that it yields an alternative characterization of Kandinsky
shapes:

Theorem 4.3 ([56]) A quasi-orthogonal shape Q has the non-empty face
property if, and only if, every 0◦ angle has a unique corresponding vertex-

4.3 Kandinsky 67

bend. For a Kandinsky shape always exists a drawing in the original Kandinsky
model.

Definition 4.9 Let G = (V,E, F) be a plane graph. The KANDINSKY
BEND MINIMIZATION problem is to find a Kandinsky shape Q of G which
minimizes #bends(Q).

4.3.2 The Network Flow Formulation

In this section we will present a network flow formulation for the KANDIN-
SKY BEND MINIMIZATION problem. An alternative way to solve the KANDIN-
SKY BEND MINIMIZATION problem is to use integer linear programming
as described in [46].

We will base our network flow formulation on Tamassia’s algorithm.
Because zero is allowed as angle value in quasi-orthogonal shapes we have
to change the minimum cost flow network construction. Since zero flow
represents an angle of 90◦, an angle of 0◦ corresponds to negative flow which
is not possible in the original network. In the Kandinsky network, this
problem is solved by introducing additional nodes and arcs which allow flow
coming from a face-node to enter a vertex-node. Before a unit of flow can
enter a vertex-node, the flow must cross an edge and thus create a bend.
The arc which represents this bend is called the vertex-bend arc. To avoid
negative angles only one vertex-bend arc adjacent to an angle is allowed to
carry flow. This is achieved by introducing a helper node to which all vertex-
bend arcs of an angle connect and an arc of capacity one which connects
this helper node with the vertex-node. It follows that each 0◦ angle has the
associated bend required by Theorem 4.3. Note that vertex-nodes may have
negative supply in this network since for a vertex v with degree greater than
four b(nv) = δ(v) − 4 is negative. The above changes to the network are
illustrated in Figure 4.9.

However, the network defined this way contains feasible flows which do
not correspond to a valid Kandinsky shape. For an edge (v, w) there are two
vertex bend edges entering v, one for a 90◦ vertex bend and one for a 270◦

vertex bend. A flow saturating both vertex bend edges defines two vertex
bends at an endpoint and does therefore not induce a valid Kandinsky shape
since an edge can only have one vertex bend at an end node. We cannot
model this requirement directly in the minimum cost flow network, we have
to use a generalization of minimum cost flow networks.

Definition 4.10 (Arc Partition Minimum Cost Flow Network) Let
N = (N,A) be a directed graph with arc cots cij and with a partition D =
{di|0 ≤ i ≤ k, di ⊆ A} of A. The elements of D are called devices. A
capacity ud is associated with every device d ∈ D. We associate with each
node i ∈ N a number b(i) which indicates its supply or demand depending

68 Orthogonalization

Figure 4.9: Kandinsky flow network for a vertex adjacent to five edges. The
red lines depict edges of the input graph, black lines depict network arcs.
All arcs have capacities one except pointed arcs which have capacity three.
Arcs adjacent to face nodes have cost 1, all others cost zero. The white
nodes are the introduced helper nodes.

whether b(i) > 0 or b(i) < 0. The arc partition minimum cost flow problem
can be stated as follows:

Minimize z(x) =
∑

(i,j)∈A

cijxij

subject to ∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) ∀i ∈ N,

0 ≤ xij ∀(i, j) ∈ A.∑
(i,j)∈d

xij ≤ ud ∀d ∈ D.

A device d ∈ D with |d| = 1 is called a trivial device. Arc partition minimum
cost flow networks are a generalization of minimum cost flow networks, since
an arc partition minimum cost flow network with only trivial devices is a
minimum cost flow network.

In Kandinsky minimum cost flow networks we use the devices to avoid
that both vertex-bend arcs of an edge at a vertex carry flow. We put them
together in one device and set the device capacity to one. We call these
devices Kandinsky devices. Note that they are arranged in a cyclic way

4.3 Kandinsky 69

around each vertex v ∈ V . In Figure 4.9 the arcs represented by solid lines
crossing each other are a Kandinsky device.

We will give now a formal description of the KANDINSKY BEND MINI-
MIZATION network NK

G of a plane graph G, whose feasible solutions corre-
spond to valid Kandinsky shapes. First we need the following definition to
shorten the notation: Let e = (v, w) ∈ E(v) for a vertex v ∈ V , then

h(e, 0) = e and h(e, 1) = succE(v)(e)

Let G = (V,E, F) be a plane graph. The set of nodes N of the network NK
G

is defined as
N = NV ∪NF ∪NH

with

1. The set NV contains a node for each vertex in V : NV = {nv|v ∈ V }.
The supply of a vertex-node nv is defined as b(nv) = 4− δ(v).

2. The set NF contains a node for each face in F : NF = {nf |f ∈ F}.
The supply of a face-node nf is defined as b(nf) = −rot(f).

3. The set NH contains a node for each dart in Ē: NH = {ne|e ∈ Ē}.
The supply of a helper-node ne is defined as b(ne) = 0.

The set of arcs A of NK
G is defined as

A = AV F ∪AFF ∪AFE ∪AEH ∪AHV .

If not stated otherwise, each arc of the network forms a trivial device. The
sets are defined as follows:

1. The set AV F connects every vertex v with its adjacent faces:
AV F = {aV

e = (nv, nf)|v ∈ V, e ∈ E(v), f = face(e)}.
Arcs in AV F have cost zero and capacity three.

2. The set AFF connects two faces which share an edge:
AFF = {aF

e = (nf , ng)|e ∈ Ē, f = face(e), g = face(ē)}.
Arcs in AFF have cost one and capacity ∞.

3. Arcs in AFH are vertex-bend edges connecting the face to the helper
node and form the only non-trivial devices:
AFH =

⋃
e∈Ē de where de = {aL

e = (nf , ne′)|f = face(e), e′ = h(e, 0)}∪
{aR

e = (nf , ne′)|f = face(ē), e′ = h(e, 1)}.
Arcs in AFF have cost one and each device has capacity one.

4. The set AHV connects the helper nodes with vertex-nodes:
AHV = {a0

e = (ne, nv)|v ∈ V, e ∈ E(v)}.
Arcs in AHV have cost zero and capacity one.

70 Orthogonalization

For a valid flow x of the Kandinsky network NK
G of a plane graph G =

(V,E, F) we define the quasi-orthogonal shape Qx as follows:

Qx
a(e) = x(aV

e)− x(a0
e) + 1 ∀e ∈ Ē

Qx
b (e) = vb(e, x)fb(e, x)vb(ē, x)

with

vb(e, x) = 0x(aL
e)1x(aR

e)

fb(e, x) = 0x(aF
e)1x(aF

ē)

for e ∈ Ē.

Theorem 4.4 ([56]) Given a plane graph G and a flow x in the KANDIN-
SKY BEND MINIMIZATION network NK

G . The quasi-orthogonal shape Qx

is valid if, and only if x is feasible. For a feasible flow x holds z(x) =
#bends(Qx).

4.4 Solving the Kandinsky Network Flow Problem

In the last section we modeled the KANDINSKY BEND MINIMIZATION prob-
lem as an arc partition minimum cost flow problem. In this section we will
discuss how we can solve this problem.

We will first show that solving arc partition minimum cost flow prob-
lems is hard in general. Then we discuss the algorithm of Fößmeier to solve
Kandinsky networks to optimality and show that this algorithm is not cor-
rect, it may even fail to return a feasible flow. We present a modified algo-
rithm that at least returns a feasible solution. This solution is not optimal
in general which has as consequence that the complexity of the KANDIN-
SKY BEND MINIMIZATION problem is unknown. Finally we present a new
approximation algorithm for the minimum cost flow problem in Kandinsky
networks which computes a 2-approximation of the optimal solution.

4.4.1 Complexity of Solving Arc Partition Minimum Cost
Flow Networks

While minimum cost flow networks have always an optimal integral solution
if an optimal solution exists, this is not true for arc partition minimum cost
flow networks. We call the difference between the optimal integral solution
and the optimal fractional solution the integrality gap. See Figure 4.10 for
a network with positive integrality-gap.

While an optimal fractional solution of an arc partition minimum cost
flow network can be found in polynomial time using linear programming,
the problem of finding an optimal integral solution is NP-hard, even in the
case of small devices and low device capacities.

4.4 Solving the Kandinsky Network Flow Problem 71

C

b c d e

gf h i j k l

n

s

o

t

(a)

C

b c d e

gf h i j k l

n

s

o

t

(b)

C

b c d e

gf h i j k l

n

s

o

t

(c)

Figure 4.10: Arc partition minimum cost flow network which has only non-
integral optimal solution. The network is shown in (a), all network arcs have
cost zero, except arc (b, f) which has cost C > 0. The black arcs are each
a trivial device. Each set of green, red and blue arcs define a device. All
devices have capacity one. In (b) an optimal integral flow is shown, with
cost C. The solid arcs are saturated while the pointed arcs are empty. In
(c) an optimal non-integral flow is shown. The solid arcs are saturated, and
the dashed arcs carry flow 0.5. The cost of the flow is C/2 < C.

72 Orthogonalization

Theorem 4.5 Finding an optimal solution of an arc partition minimum
cost flow network is NP-hard, even in the case that the maximal number of
arcs in a device is bounded by two and the maximal capacity of devices is
one.

Proof: We will reduce 3-SAT to the integral arc partition minimum cost
flow problem to show that this problem is NP-hard. Let {yi|0 ≤ i < n}
be a set of literals and C = {Cj |0 ≤ j < m} a set of clauses with Cj =
{cj1 ∨ cj2 ∨ cj3 |0 ≤ ji < n, cji ∈ {yji , ȳji}, 0 ≤ i < 3}. We describe an arc
partition network N = (V,A) which has an integral minimum cost flow of
zero, if, and only if, the clause C1 ∧ C2 ∧ . . . ∧ Cm is satisfiable.

We create for each literal yi, 0 ≤ i < n a node nyi which is connected
with capacity one to the network source. Additionally we create two vertices
n0

yi
and n1

yi
, both connected to yi with an arc of capacity one. We call these

nodes the input layer. In the input layer the assignment of the values to the
literals is done. A flow entering a node n0

yi
denotes that literal yi has value

0 and a flow entering a node n1
yi

denotes that literal yi has value 1. From
the construction of the input layer follows that a flow of value one enters
either n0

yi
or n1

yi
.

For each clause Cj we create a clause-network with six input nodes
{alk

Cj
|0 ≤ l ≤ 2, 0 ≤ k ≤ 1} and six output nodes {blk

Cj
|0 ≤ l ≤ 2, 0 ≤ k ≤ 1}.

A clause-network has the property that there is outgoing flow on an output
node blk

Cj
if, and only if there is incoming flow on an input node alk

Cj
.

We connect the clause-networks the following way: For each alk
Cj

we
create an arc from the output node blk

Ci
of a subgraph which represents the

last clause Ci, i < j which contains literal yjl
, to alk

Cj
. If no such output

node exists, because it is the first occurrence of literal yjl
in a clause, we

create an arc from nk
yjl

to alk
Cj

. Additionally we connect each output node
which has no outgoing arc to the network sink. See Figure 4.11 (c) for an
illustration.

At the clause-network of clause Cj there is flow on the incoming arc
of exactly one node of each pair al0

Cj
, al1

Cj
for 0 ≤ l ≤ 2. Therefore for

each literal there is a flow from the source to the sink passing through the
clause-networks of clauses in which the literal occurs.

Assigning the correct value to one literal in the clause causes the whole
clause to evaluate to true. Therefore a clause has one combination of input
values for which it evaluates to false, while all other combinations of input
values evaluate to true. For the one combination of input values, for which
the clause evaluates to false, the only flow through the clause-network has
cost C, while for all other combinations of input values, there is a zero cost
flow through the clause-network.

We achieve this the following way: Input nodes corresponding to lit-
eral values satisfying the clause are connected directly to the corresponding

4.4 Solving the Kandinsky Network Flow Problem 73

(a) (b)

(c)

Figure 4.11: A 3:1 filter which allows only one of the three input/output
pairs to send flow is shown in (a). Black arcs are trivial devices, the other
colors define the remaining devices. In (b) a clause-network is depicted.
The dashed lines have positive costs. The boxes on the left and on the
right represent a sub-network like shown in (a). The global structure of the
network of the reduction is shown in (c). On the top we see the input layer
followed by the clause networks and then the network sink.

74 Orthogonalization

output node with an arc of cost zero. Input nodes not-corresponding to lit-
eral values satisfying the clause are connected directly to the corresponding
output node with an arc of cost C. These input nodes are additionally con-
nected to a small subnetwork which lets a flow of two pass with zero cost.
This subnetwork is composed of two 3:1-filter which have three input/output
node pairs. A 3:1 filter has a maximum flow of one and lets only pass flow
from one input node to the corresponding output node. See Figure 4.11 (a)
for an illustration. The third must take an arc with positive cost.

Assume that clause Cj has the form yj0∨ ȳj1 yj2 . Then the nodes a01
Cj

,a10
Cj

and a21
Cj

are connected directly by an arc of cost zero to b01
Cj

,b10
Cj

and b21
Cj

.
Then the nodes a00

Cj
,a11

Cj
and a20

Cj
are connected to b01

Cj
,b10

Cj
and b21

Cj
through

and arc of cost C. Additionally the nodes a00
Cj

,a11
Cj

and a20
Cj

are connected to
b01
Cj

,b10
Cj

and b21
Cj

through two 1:3 filters.
The network described above has maximum-flow n, its size is linear with

respect to the input clause and it can be computed in polynomial time.
It follows from the construction of the network that it has a minimum

flow of cost 0 if, and only if, the corresponding clause C1 ∧C2 ∧ . . . ∧Cm is
satisfiable. 2

4.4.2 The Negative-Cycle Approach to Solve the KANDIN-
SKY BEND MINIMIZATION Problem

Although solving arc partition minimum cost flow networks is NP-hard, the
complexity of solving the KANDINSKY BEND MINIMIZATION problem is
unknown. In [56] the authors propose to replace each non-trivial device in
the Kandinsky network by a subnetwork containing a negative cost cycle,
and then to solve the transformed network. The transformation is shown in
Figure 4.12. A solution of the network is only valid if for every saturated
negative cycle one of the two arcs with cost 2C + 1 is also saturated. The
cost C is chosen, such that it is an upper bound of the optimal solution of
the network. Therefore an optimal solution of the network can use only one
of the 2C+1 arcs, which is exactly the behavior which we want. The authors
propose to use the successive shortest path (SSP) network flow algorithm to
solve the transformed network.

We will review the SSP algorithm now, for the rest of the section we
assume that the arcs in a minimum cost flow network have non-negative
costs. The residual networkN (x) of minimum cost flow networkN = (N,A)
for a given flow x is defined as N minus the saturated arcs in A plus for every
arc (i, j) ∈ A with xij > 0 an arc (j, i) with cji = −cij . The residual capacity
rij of an arc (i, j) in N (x) is uij − xij if (i, j) ∈ A and xji otherwise. The
SSP algorithm starts with a zero flow and then computes in every iteration
a shortest path from the source to the sink in the residual network. Along
this shortest path it augments the flow until all flow is sent or one arc in the

4.4 Solving the Kandinsky Network Flow Problem 75

2C+1 2C+1−C

−C
1 1

Figure 4.12: Transformation of a device into two paths connected by a
negative cycle.

residual network is saturated. Then the new residual network is computed
and the next iteration takes place. The algorithm stops when a feasible flow
is found.

For a flow x the residual arcs of all arcs in A with positive flow have
non-positive costs in the residual network. Therefore computing a shortest
path in the residual network with respect to the cost function would require
to solve a shortest path problem with negative arcs, a problem for which the
best known algorithm has running time O(|N ||A|). The SSP algorithm uses
reduced costs to avoid negative cost arcs which enables us to use Dijkstra’s
algorithm which has complexity O((|N |+ |A|) + |N | log |N |). We define for
each node in i ∈ N a potential π(i). The reduced cost cπ

ij of an arc (i, j)
is defined as cπ

ij = cij − π(i) + π(j). The SSP algorithm starts with zero
potential for each node and updates the potential after each augmentation
step. The update for a node v consists of subtracting the shortest path
distance of v in the current step from π(v).

Since finding a shortest path in a network with negative cycles is NP-
complete, there is no generic algorithm to solve the transformed Kandinsky
network. The authors propose to use the SSP algorithm with a modified
version of the Dijkstra’s shortest path algorithm: When in the Dijkstra’s
algorithm the distance to a node is updated and this node is adjacent to
a negative cycle, then we walk one time around this negative cycle, collect
the negative costs and add them to the distance. In the case of Kandinsky
networks this method computes indeed the shortest paths and the authors
claim that therefore the modified SSP algorithm finds a minimum cost flow
for Kandinsky networks. This would yield an O(n2 log n) algorithm for the
KANDINSKY BEND MINIMIZATION problem. However, this is not true
since the proposed modification works only on the original network but not
on the residual network. The reason for this is that we cannot assign po-
tentials to nodes adjacent to saturated negative cycles such that all reduced
costs are non-negative. As a consequence for arcs which are adjacent to such
nodes we can not define residual arcs in the residual network and therefore
it is not possible to cancel flow which is sent along such an arc. Translating

76 Orthogonalization

Algorithm 6: Successive Shortest Path Algorithm
Input: Network N = (N,A), s, t ∈ N , costs c, residual capacities r

Output: Minimum cost flow x

x = 0 ;
π = 0 ;
flow = 0 ;
while flow < b(s) do

determine shortest path distances d(i) from node s to all other
nodes in N (x) with respect to the reduced costs cπ

ij ;
Let P denote a shortest path from s to t ;
update π = π − d ;
δ = min[flow,min{rij : (i, j) ∈ P}];
augment δ units of flow along path P ;
flow = flow + δ ;
update x, N (x) and reduced costs cπ;

this algorithm to the original arc partition minimum cost flow network for-
mulation, it can be seen as the SSP algorithm with the modification that the
residual network does not contain residual arcs of devices with more than
one arc. In Figure 4.13 we show an example in which this algorithm leads
to sub-optimal solution.

Even worse the algorithm may not even yield a feasible flow. For a vertex
v with degree δ(v) > 4 in the input graph the node nv in the Kandinsky
network is connected to the sink with an arc of capacity δ(v) − 4. In a
feasible flow this arc must be saturated. The only possibility for a flow to
enter this arc is to pass through a Kandinsky device at the node v. Since
there are δ(n) Kandinsky devices, at most 4 Kandinsky devices may be not
saturated.

The SSP algorithm may execute such that more than 4 Kandinsky de-
vices are not saturated. Assume that after some iterations of the SSP algo-
rithm, for a vertex v with degree δ(v) ≥ 15 there may be five configurations
as shown in Figure 4.14 in the list of Kandinsky devices of v. Each configu-
ration forces one Kandinsky device to be non-saturated. Therefore the arc
from nv to the network sink t cannot be saturated and the algorithm fails
to send the total amount of supply through the network.

We can repair the modified SSP algorithm the following way: After each
augmentation of flow along a path we count at each vertex v of the input
graph the number of changes in the bend direction in the cyclic list of the
Kandinsky devices. A change in the bend direction is counted if between
two edges e1 and e2 in the embedding on v all edges have no vertex-bend and
aL

e1
= 1 and aR

e2
= 1 or aL

e2
= 1 and aR

e1
= 1. A flow in a Kandinsky network

cannot be completed to a feasible flow if the number of bend changes is

4.4 Solving the Kandinsky Network Flow Problem 77

s

1 1

t

32

0 1

(a)

s

1 1

t

32

0 1

(b)

s

1 1

t

32

0 1

(c)

s

1 1

t

32

0 1

(d)

Figure 4.13: Example for a non-optimal solution computed by the SSP
algorithm. Figure (a) shows a part of a Kandinsky network. Straight lines
depict edges, arcs depict paths in the network. All arcs and paths have
capacity one. The cost is placed near the arcs, if no cost is placed the cost
is zero. All arcs are trivial devices except the two green one which are in
one device. In Figure (b) we show the first shortest path calculated by the
SSP algorithm and in (c) the second which then yields a solution with value
5. Figure (d) shows the optimal solution which has value 4.

Figure 4.14: Example for a flow which blocks a device (red arcs) without
sending flow through one of its arcs. The arcs which are represented by
dashed lines have flow one, the arcs represented by solid lines flow zero.

78 Orthogonalization

greater than eight. If we count eight bend changes at a vertex, we remove
all arcs from the network which could generate a new bend change. These
are arcs in a device which define a left, resp. right, bend and which are
in the embedding between two devices for which the current flow defines a
left , resp. right bend. We can implement the counting and updating in
linear time, such that the asymptotic running time of the algorithm does
not change.

4.4.3 A 2-Approximation Algorithm

The SSP algorithm we presented in the previous section has the disadvantage
that we cannot give any performance guarantees for it. In this section we
present an algorithm which computes a feasible flow in a Kandinsky network
which has at most twice the cost of an optimal solution.

We define the minimum cost flow relaxation of an arc partition minimum
cost flow network as the corresponding minimum cost flow network in which
to each arc the capacity of its device is assigned. Clearly an optimal solution
of the minimum cost flow relaxation is a lower bound for the arc partition
minimum cost flow problem.

Let x be a feasible flow of the minimum cost flow relaxation, and d be a
non-trivial device. We call d over-saturated with respect to x if

∑
e∈d x(e) >

ud. A solution x of the relaxation is a feasible flow of the Kandinsky mini-
mum cost flow network if, and only if, it contains no over-saturated device.
We denote with D(v) the cyclic list of the Kandinsky devices around v for
each vertex v of the input graph. Each sub-list in D(v), which consists of
non-empty devices contains at most one over-saturated device. Let I(v)
denote the set of maximal sub-lists of D(v) which consist of non-empty de-
vices and one over-saturated device. For I ∈ I(v), we denote with l(I), resp.
r(I), the number of devices before, resp. after, the over-saturated device in
I. We can transform x to a flow x̂ such that I does not longer contain this
over-saturated device at cost either 2 · (l(I) + 1) with a left-transformation
or cost 2 · (r(I) + 1) with a right-transformation. See Figure 4.15 for an
illustration.

Our approximation algorithm, called the transformation algorithm, for
solving a Kandinsky network first computes an optimal solution x of the
relaxation. Then it determines the sets I(v) for all vertices v in the input
graph. We partition set of vertices in the input graph into two sets Vl

and Vr. For the vertices in Vl holds that
∑

I∈I(v) l(I) ≤
∑

I∈I(v) r(I), Vr

contains the remaining vertices. Then we transform x into a flow x̂ by
applying left transformations to each over-saturated device of v ∈ Vl and
right-transformation to each over-saturated device in v ∈ Vr.

Theorem 4.6 The transformation algorithm computes a 2-approximation
for the KANDINSKY BEND MINIMIZATION problem in running-time O(n

7
4 ·

4.4 Solving the Kandinsky Network Flow Problem 79

(a) An example for an maximal sub-list which consist of non-empty devices and one
over-saturated device. The arcs in the network represented by dashed lines have
flow one, the arcs in solid lines flow zero.

(b) Example for a left-transformation.

(c) Example for a right-transformation.

Figure 4.15: Illustration of left- and right-transformations.

80 Orthogonalization

√
log n).

Proof: We define

Vl = {v ∈ V |
∑

I∈I(v)

l(I) ≤
∑

I∈I(v)

r(I)},

Vr = {v ∈ V |
∑

I∈I(v)

l(I) >
∑

I∈I(v)

r(I)} .

Let x̂ be the flow resulting from the transformation. The objective value of
x̂ is the objective value of x plus the cost of the transformation. It holds
z(x) ≥

∑
v∈V

∑
I∈I(v)(|I|+ 1) since every device in a sub-list I contributes

with one to the objective function and one device is over-saturated which
counts for two. Since |I| = l(I) + r(I) + 1 it holds 2 · (l(I) + 1) ≤ |I|+ 1 for
l(I) ≤ r(I), and 2 · (r(I) + 1) ≤ |I| + 1 for r(I) ≤ l(I). For the cost of the
transformations follows then∑

v∈Vl

∑
I∈I(v)

2 · (l(I) + 1) +
∑
v∈Vr

∑
I∈I(v)

2 · (r(I) + 1) ≤

∑
v∈Vl

∑
I∈I(v)

(|I|+ 1) +
∑
v∈Vr

∑
I∈I(v)

(|I|+ 1) =

∑
v∈V

∑
I∈I(v)

(|I|+ 1) ≤ z(x).

Let x̄ be an optimal solution of the Kandinsky minimum cost flow network,
then for the cost of transformed flow holds

z(x̂) ≤ 2 · z(x) ≤ 2 · z(x̄) .

Because the transformation can be done in linear time, the running time
is dominated by the running time of the algorithm to solve the minimum
cost flow relaxation, which is O(n

7
4 ·
√

log n) with the same arguments as in
Theorem 4.2. 2

4.4.4 An Improved Heuristic

The approximation algorithm of the previous section transformed the opti-
mal solution of the minimum cost flow relaxation of a Kandinsky network
into a valid solution of the Kandinsky network. It changes explicitly the
flow values in intervals which contain over-saturated Kandinsky devices.

We can improve the performance of the algorithm by changing the flow
implicitly. We again compute an optimal solution of the minimum cost flow
relaxation. Instead of transforming the flow, we change the capacities in
the network and solve the relaxation again. We set capacities of all the arcs
which have positive flow in the solution of the relaxation and zero flow in

4.5 Constraints in Kandinsky 81

the transformed solution to zero. We repeat until we obtain a solution from
the relaxation which contains no over-saturated devices.

Since in each iteration we remove at least one arc from a Kandinsky
device, the algorithm terminates after n iterations with a solution without
over-saturated devices. The total running time of the algorithm is therefore
O(n

11
4 ·
√

log n).
In practice the number of iterations is very low and more iterations than

3 are hardly encountered.

4.5 Constraints in Kandinsky

In this section we present the CONSTRAINED KANDINSKY BEND MIN-
IMIZATION problem which is a generalization of the KANDINSKY BEND
MINIMIZATION problem. The CONSTRAINED KANDINSKY BEND MIN-
IMIZATION problem takes besides a planarization a set of low-level con-
straints as input. These low level constraints can define target values for
the number and types of bends at edges and for the angles formed by inter-
vals of neighboring edges around a vertex in the embedding. We will present
an extended version of the Kandinsky network in which we can specify low
level constraints for the resulting shape. Until now it was only possible to
specify such constraints using integer linear programming [46].

We will now define the two type of low-level constraints: angle-constraints
and bend-constraints:

Definition 4.11 Let G = (V,E, F) be a plane graph. An angle-constraint
is a tuple (I, v, a, c). The first entry I is a list of darts, which is an interval
inside E(v) for v ∈ V . The entry a is an integer with 0 ≤ a ≤ 4 denoting the
target-value for the sum of the angles defined by the darts in the interval,
and the last entry c is a non-negative integer, denoting a cost-factor for
derivations of the target-value of the angle.

Let AC be a set of angle-constraints for a plane graph G, then AC is
called complete if for each dart in e ∈ Ē there is exactly one angle-constraint
(I, v, a, c) ∈ AC with e ∈ I. In a complete set of angle-constraints each angle
in a quasi-orthogonal shape Q of G is part of exactly one constraint. When
we have a set of angle-constraints AC in which each angle is contained in at
most one constraint we can easily construct an equivalent complete angle-
constraint set AC ′ by adding an angle-constraint with cost zero and arbitrary
target-angle for each angle not covered by AC. We assume therefore for the
remainder of this chapter that sets of angle-constraints are complete. The
set of all angle constraints for a vertex v is denoted by ac(v).

Definition 4.12 Let G = (V,E, F) be a plane graph. A bend-constraint is
a tuple (e, b, ci, cd). The first entry denotes a dart in Ē, therefore e ∈ Ē.

82 Orthogonalization

The second entry b, a bit-string, defines the bends of the dart. The third
entry ci is the cost of inserting a new bend into the dart, and cd defines the
cost for a bend in b which is not considered.

Let BC be a set of bend-constraints for a plane graph G, then BC is
called complete if for each edge e ∈ E there is exactly one bend-constraint
(e, b, ci, cd) ∈ BC, for one of the two darts of e. When we have a set of bend-
constraints BC in which one dart of each edge is contained in at most one
constraint we can easily construct an equivalent complete bend-constraint
set BC ′ by adding a bend-constraint with bit-string ε, arbitrary deletion
cost and insertion cost one for a dart of each edge not covered by BC.
We assume therefore for the remainder of this chapter that sets of bend-
constraints are complete. For a bend constraint (e, b, ci, cd) ∈ BC we denote

with bc(e) = (e, b, ci, cd) and bc(ē) = (ē,
←−
b , ci, cd).

Definition 4.13 Let G = (V,E, F) be a plane graph, AC be a complete set
of angle-constraints and BC a complete set of bend-constraints. The CON-
STRAINED KANDINSKY BEND MINIMIZATION problem consist of finding
a Kandinsky shape Q which minimizes z(Q,AC,BC) where

z(Q,AC,BC) = z(Q,AC) + z(Q,BC)

with
z(Q,AC) =

∑
(I,v,a,c)∈AC

c · |a−
∑
e∈I

Qa(e)|

z(Q,BC) =
∑

(e,b,ci,cd)∈BC

edit(ci,cd)(b, Qb(e)).

To solve the CONSTRAINED KANDINSKY BEND MINIMIZATION prob-
lem we modify the original Kandinsky formulation.

We define for each angle-constraint ac = (I, v, a, c) on a vertex v an
angle-node nac. We create two arcs, one from nac to the vertex-node nv

of v and one in the opposite direction. Both arcs have unconstrained ca-
pacity and cost c. We denote with NA the set of angle-constraint nodes.
Angle-constraint nodes are the only nodes connected to vertex-nodes for
constrained angles. All arcs which were connected to vertex-nodes in the
original formulation are connected to the corresponding angle-nodes. The
supply of an angle node is its target value a minus the number of edges in
the interval, since zero degree angles correspond to a flow of -1 in the node.
We remove a−|I| from the supply of the vertex-node to keep the maximum
flow in the network constant. We define the supply of a vertex-node as

b(nv) = δ(v)− 4−
∑

(I,w,a,c)∈ac(v)

(a− |I|) .

4.5 Constraints in Kandinsky 83

This construction is illustrated in Figure 4.16.
The second modification concerns the modeling of bends. We treat each

bend in a bend constraint (e, b, ci, cd) as a node of degree two. We distinguish
between two types of bends: bends in the middle of the edge, in other words
bends which have a predecessor and successor on the edge, and bends at the
end of an edge. A bend of the first type is a face-bend in all cases, while
a bend of the second type may be a vertex-bend or a face-bend. For each
bend, that is for each 0 ≤ i < |b| we create two nodes n(e,i,0) and n(e,i,1) in
the network. The node n(e,i,0) has supply two and has an edge of cost zero
and capacity one to n(e,i,1). A demand of one is added to both faces incident
to the edge. Let f1 be the face for which the bend is a concave bend, and f2

the face for which the bend is a convex bend. Then we add an edge of cost
zero and capacity two between n(e,i,0) and the face-node f1, and an edge
with cost cd and capacity one between n(e,i,1) and f2. This construction is
shown left in Figure 4.17. The effect of the construction is that either the
resulting quasi-orthogonal shape contains the bend at zero cost or the bend
is removed at cost cd. Bends of the second type are treated like bends of
the first type, except that we introduce an additional arc which connects
n(e,i,1) to the helper node on the side of f2 with zero cost. This edge ensures
that vertex-bends can be confirmed at zero cost. This construction is shown
right in Figure 4.17. Additionally we assign arcs between faces node defined
by e the cost ci. Since we add for each bend in a bend constraint supply to
the face nodes we have to redefine the supply of a face-node as

b(nf) = rot(f) +
∑

e∈f,bc(e)=(e,b,ci,cd)

|b| .

We will give now a formal description of the network NCK
G,AC,BC whose

feasible solutions correspond to valid Kandinsky shapes and whose opti-
mal solution solves the CONSTRAINED KANDINSKY BEND MINIMIZATION
problem.

Let G = (V,E, F) be a plane graph, AC a complete set of angle con-
straints and BC a complete set of bend constraints. The set of nodes N of
the network NCK

G,AC,BC is defined as

N = NV ∪NF ∪NH ∪NA ∪NB

with

1. The set NV contains a node for each vertex in V : NV = {nv|v ∈ V }.
The supply of a vertex-node is defined as
b(nv) = δ(v)− 4−

∑
(I,v,a,c)∈ac(v)(a− |I|).

2. The set NF contains a node for each face in F : NF = {nf |f ∈ F}.
The supply of a face-node is defined as
b(nf) = −rot(f)−

∑
e∈f,bc(e)=(e,b,ci,cd) |b|.

84 Orthogonalization

Figure 4.16: Modifications in the Kandinsky network modeling an angle
constraint.

f

s

g f

s

g
(2,0)(1,c) (1,c) (2,0)

(2,0)

(1,0)

(2,0)

(1,0)

(1,0)

Figure 4.17: Modified Kandinsky network for modeling a bend constraint.
The left figure shows a face-bend, the right figure a vertex-bend. Newly
introduced arcs are labeled with capacity and cost. Newly introduced nodes
are gray. The cost c is the deletion cost specified in the bend constraint,
and node s denotes the source of the network.

4.5 Constraints in Kandinsky 85

3. The set NH contains a node for each dart in Ē: NH = {ne|e ∈ Ē}.
The supply of a helper-node is defined as b(ne) = 0.

4. The set NA contains a node for each angle constraint in AC:
NA = {nac|ac ∈ AC}. The supply of a node of an angle constraint
ac = (I, v, c, a) ∈ AC is defined as b(nac) = a− |I|.

5. The set NB contains two nodes for each bend in a bend-constraint:
NB = {n(e,i,0), n(e,i,1)|(e, b, ci, cd) ∈ BC, 0 ≤ i < |b|}.
The supply of each bend-constraint-node is defined as n(e,i,j) = 2 for
0 ≤ i < |b|, 0 ≤ j < 2, bc(e) = (e, b, ci, cd).

The set of arcs A of NCK
G,AC,BC is defined as

A = AFF ∪AFH ∪AAF ∪AHA ∪AAV ∪AV A ∪ABF ∪ABB ∪ABH

with

1. The set AHA connects the helper nodes with the corresponding angle-
node:
AHA = {a0

e = (ne, nac)|ac = (I, v, a, c), e ∈ I}.
Arcs in AHA have cost zero and capacity 1.

2. The set AAF connects every angle node with its adjacent faces:
AAF = {aV

e = (nac, nf)|ac = (I, v, a, c), e ∈ I, f = face(e)}.
Arcs in AAF have cost zero and capacity 3.

3. The set AAV connects angle-constraint nodes with the vertex-node:
AAV = {(nv, nac)|ac = (I, v, a, c) ∈ AC}.
Arcs (nv, nac) in AAV have cost c and capacity∞ for an angle-constraint
ac = (I, v, a, c).

4. The set AV A connects vertex-nodes with angle-constraint nodes:
AV A = {(nac, nv)|ac = (I, v, a, c) ∈ AC}.
Arcs (nac, nv) in AV A have cost c and capacity∞ for an angle-constraint
ac = (I, v, a, c).

5. The set AFF connects two faces which share an edge:
AFF = {aF

e = (nf , ng)|e ∈ Ē, f = face(e), g = face(ē), f 6= g}.
Arcs aF

e in AFF have cost ci where bc(e) = (e, b, ci, cd) and capacity
∞.

6. Arcs in AFH are bend-vertex edges connecting the face to the dummy
node:
AFH = {aL

e = (nf , ne′)|e ∈ Ē, f = face(e), e′ = h(e, 0)} ∪ {aR
e =

(nf , ne′)|e ∈ Ē, f = face(ē), e′ = h(e, 1)}.
Arcs aL

e , aR
e in AFH have cost ci where bc(e) = (e, b, ci, cd) and capacity

∞.

86 Orthogonalization

7. The set ABF connects bend-nodes to face-nodes of adjacent faces:
ABF = {aB

(e,i,bi)
= (n(e,i,bi), nf), aB

(e,i,b̄i)
= (n(e,i,b̄i)

, ng)|(e, b, ci, cd) ∈
BC, f = face(e), g = face(ē), 0 ≤ i < |b|}.
Arcs in AFB connecting to a n(,,0) node have cost zero and capacity
two, arcs connecting to a n(,,1) node have cost cd.

8. The set ABB connects the two vertex-bends:
ABB = {(n(e,i,b0), n(e,i,b1))|(e, b, ci, cd) ∈ BC, 0 ≤ i < |b|}.
Arcs in ABB have cost zero and capacity one.

9. The set ABH connects bend-nodes to helper nodes:
ABH = {aC

e = (n(e,0,1), ne′)|(e, b, ci, cd) ∈ BC, |b| > 0, e′ = h(e, b0)} ∪
{aC

ē = (n(e,|b|−1,1), ne′)|(e, b, ci, cd) ∈ BC, |b| > 0, e′ = h(ē, b|b|−1}.
Arcs in ABH have cost zero and capacity one.

The only non-trivial devices in the network are

de =
{
{aR

e , aL
e , aC

e } |b| > 0
{aR

e , aL
e } |b| = 0

for e ∈ Ē and bc(e) = (e, b, ci, cd),
For a valid flow x of the Kandinsky network NCK

G,AC,BC of a plane graph
G = (V,E, F) with a complete set of angle constraints AC and a complete set
of bend-constraints BC we define the quasi-orthogonal shape Qx as follows:

Qx
a(e) = x(aV

e)− x(a0
e) + 1 ∀e ∈ Ē

Qx
b (e) = vb(e, x)fb(e, x)vb(ē, x)

with

vb(e, x) =

{
0x(aL

e)1x(aR
e)b

x(aC
e)

0 |b| > 0
0x(aL

e)1x(aR
e) |b| = 0

fb(e, x) = 0x(aF
e)1x(aF

ē)Π0≤i<|b|b
x(aB

(e,i,0)
)−1

i

for e ∈ Ē, bc(e) = (e, b, ci, cd). The number of nodes in the Kandinsky
network NK

G,AC,BC is

|N | = |NV |+ |NF |+ |NH |+ |NA|+ |NB|
= |V |+ |F |+ 2|E|+ |AC|+

∑
(e,b.ci,cd)∈BC

|b|

≤ 10|V |+ |AC|+
∑

(e,b.ci,cd)∈BC

|b| .

4.5 Constraints in Kandinsky 87

For the number of edges holds:

|A| = |AFF |+ |AFH |+ |AAF |+ |AHA|+ |AAV |+ |AV A|
+|ABF |+ |ABB|+ |ABH |

= 2|F |+ 4|E|+ 2|E|+ 2|AC|+ 3
∑

(e,b.ci,cd)∈BC

|b|+ 2|E|

≤ 30|V |+ 2|AC|+ 3
∑

(e,b.ci,cd)∈BC

|b| .

Thus the size of the network NK
G,AC,BC is still linear with respect to the

size of the planarization, the number of angle constraints and the size of the
bend-constraints.

Theorem 4.7 Given a plane graph G with a complete set of angle con-
straints AC and a complete set of bend-constraints BC and a flow x in the
CONSTRAINED KANDINSKY BEND MINIMIZATION network NK

G,AC,BC .
The quasi-orthogonal shape Qx is valid if, and only if, x is feasible, and
for a feasible flow x holds z(x) = z(Qx, AC, BC).

Proof: Observe that the original Kandinsky network is modified in two
parts. The first change is in the neighborhood of the vertex-nodes. The
total amount of demand/supply in the neighborhood of a vertex-node nv

for v ∈ V remains unchanged since in the original network the supply of
nv is δ(v) − 4 and b(nv) +

∑
(I,w,a,c)∈ac(v)(a − |I|) = δ(v) − 4. Because for

a vertex v every node in ac(v) can reach every other node in ac(v) by a
path of infinitive capacity, the changes in the network do not affect the set
of feasible solutions, only the costs of it. The second changes are nodes
and arcs introduced to model bend constraints. For each bend in a bend
constraint the changes in the network do not affect the sum of supplies and
demands since a node with supply two is added and to the face-nodes of the
faces adjacent to the edge of the bend constraint demand one is added, and
there is a path of capacity at least one from the new node to both face nodes.
Therefore the set of quasi-orthogonal shapes corresponding to a feasible flow
in the network is the same as in the original formulation, namely the set of
all valid quasi-orthogonal shapes.

It remains to show that z(x) = z(Qx, AC, BC). There are three types of
arcs in the network with positive cost: arcs of cost c in the sets AV and V A
between angles nodes and vertex-nodes for an angle constraint (I, v, a, c),
arcs of cost ci between face-nodes in the set FF and FH, and arcs of cost cd

between bend-nodes and face-nodes in the set BF . We will relate the flow
on these arcs to z(Qx, AC, BC).

Consider an angle constraint ac = (I, v, a, c) ∈ AC. Because of flow
conversation it holds at the angle-node nac representing an angle constraint

88 Orthogonalization

ac: ∑
e∈I

(x(aV
e)− x(a0

e)) + x(nac, t) + x(nac, nv)− x(nv, nac) = 0 .

Since x(nac, t) must be saturated it follows with the definition of Qx
a(e) that

the above formula is equivalent to:

x(nac, nv)− x(nv, nac) = a− |I| −
∑
e∈I

(Qx
a(e)− 1) = a−

∑
e∈I

Qx
a(e) .

We assume that either x(nac, nv) = 0 or x(nv, nac) = 0, otherwise the flow
would not be optimal.
If x(nac, nv) > 0 then

x(nac, nv) = a−
∑
e∈I

Qx
a(e) = |a−

∑
e∈I

Qx
a(e)|

If x(nv, nac) > 0 then

x(nv, nac) =
∑
e∈I

Qx
a(e)− a = |a−

∑
e∈I

Qx
a(e)|

Therefore z(x|AV ∪V A) = c · |a−
∑

e∈I Qx
a(e)| = z(Qx, AC) .

Let (e, b, ci, cd) ∈ BC. We define an alignment of b with Qx
b (e) the

following way: If x(aB
(e,i,1)) = 1 for 0 ≤ i < 0 we insert a dash in Qx

b (e) after
position i, we insert x(aL

e) + x(aR
e) dashes at the beginning of b, we insert

x(aL
ē)+x(aR

ē) dashes at the end of b, and we insert x(aF
e)+x(aF

ē) dashes at
position a in b. This alignment is optimal, and therefore the weighted sum
of dashes in the alignment is the edit distance between b and Qx

b (e).

edit(ci,cd)(b, Qx
b (e)) =

cd(
∑

0≤i<|b| x(aB
(e,i,1))) + ci(x(aL

e) + x(aR
e) + x(aF

e) + x(aF
ē) + x(aL

ē) + x(aR
ē))

Therefore z(x|FF∪FH∪BF) =
∑

(e,b,ci,cd)∈BC edit(ci,cd)(b, Qb(e)) = z(Qx, BC) .
It follows z(x) = z(x|AV ∪V A)+z(x|FF∪FH∪BF) = z(Qx, AC)+z(Qx, BC) =
z(Qx, AC, BC). 2

Since it is unknown if there is a polynomial time algorithm to solve
the KANDINSKY BEND MINIMIZATION problem, it is also unknown if
there is a polynomial time algorithm to solve the CONSTRAINED KANDIN-
SKY BEND MINIMIZATION problem. Unfortunately the approximation al-
gorithm from Section 4.4 does not yield an approximation for the CON-
STRAINED KANDINSKY BEND MINIMIZATION problem. It seems to be
hard to devise an approximation algorithm for this problem in general, but
this is not as bad as one might think, since we will use only special classes of
CONSTRAINED KANDINSKY BEND MINIMIZATION problems in this work.
For these special classes we will provide approximation algorithms as they
arise in the work.

4.6 Orthogonalization of UML Class Diagrams 89

4.6 Orthogonalization of UML Class Diagrams

In this section we present the orthogonalization algorithm for UML class
diagrams. The input for the algorithm is:

• a mixed upward planarization G = (V,Ed ∪ Eu, F), and

• a map type: V → {vertex , crossing , hypervertex} .

We assume that the subgraph induced by the directed edges is connected.
Furthermore we assume that the hypervertices have exactly one directed
outgoing edge, a positive number of directed incoming edges, and no adja-
cent undirected edges. The output of the algorithm is a Kandinsky shape
for which a drawing exists in which all directed edges point upward and
the hypervertices are centered. Centered means in this case that the same
number of predecessors of a hypervertex are on the left side and on the right
side of the hypervertex.

The algorithm uses an orthogonalization algorithm for upward planariza-
tions as subroutine. In a first phase it calculates the orthogonalization for
the directed edges using this algorithm. Then the orthogonalization of the
undirected edges is calculated while not changing the orthogonalization of
the directed edges. This is done by creating constraints from the shape of
the directed subgraph and then solving the corresponding CONSTRAINED
KANDINSKY BEND MINIMIZATION problem.

This section is organized a follows: We investigate first the properties
which a quasi-orthogonal shape of a mixed upward planarization must fulfill
to have a mixed upward drawing. Then we present an algorithm for the
orthogonalization of upward planarizations. Finally we present the orthog-
onalization algorithm for UML class diagrams.

4.6.1 Mixed Upward Orthogonal Drawings

In this section we will characterize the quasi-orthogonal shapes of a mixed
upward planar graph for which a mixed upward drawing exists. The question
can be stated formally as: Given a mixed upward planarization G = (V,Ed∪
Eu, F) and a quasi-orthogonal shape Q of G: Is there an upward orthogonal
rectangle drawing Γ of G with quasi-orthogonal shape Q ?

One property of a quasi-orthogonal shape Q of a drawing Γ is, that
it is invariant under rotations. This stems from the fact, that the quasi-
orthogonal shape contains only relative but no absolute angles. When deal-
ing with undirected graphs, this is not important since the orientation of the
edges in the drawing is not important. This does not hold for mixed graphs.
For mixed graphs the orientation of the directed edges in the drawing is very
important. To remove this ambiguity we define an absolute quasi-orthogonal
shape which contains absolute values rather than relative values.

90 Orthogonalization

Definition 4.14 Let G = (V,E, F) be a plane graph. An absolute quasi-
orthogonal shape S is a mapping from the set of faces F to clockwise ordered
lists of tuples (e, b, a). The first and last entries are defined as in the defini-
tion of quasi-orthogonal shape. The second entry is a string over the alphabet
{←, ↑,→, ↓} denoting the segments of the edge. A ← denotes a horizontal
segment with decreasing x-coordinates, a → denotes a horizontal segment
with increasing x-coordinate, A ↓ denotes a vertical segment with decreasing
y-coordinates, a ↑ denotes a vertical segment with increasing y-coordinate.
The quasi-orthogonal shape induced by an absolute quasi-orthogonal shape is
denoted by Q(S).

From a quasi-orthogonal shape we can derive four absolute quasi-orthogonal
shapes, each representing one rotation of the quasi-orthogonal shape. The
above definition will help us to characterize the quasi-orthogonal shapes of
a mixed upward planar graph for which a mixed upward drawing exists.

Lemma 4.1 Given a mixed upward planarization G = (V,Ed ∪Eu, F) and
a valid quasi-orthogonal shape Q for G. There is a mixed upward orthogonal
rectangle drawing Γ of G with quasi-orthogonal shape Q if, and only if, there
is an absolute quasi-orthogonal shape S with Q(S) = Q and for every edge
e in Ed holds #↓Sb(e) = 0 and #↑Sb(e) ≥ 1

Proof: Let Γ be a mixed upward orthogonal rectangle drawing with Q(Γ) =
Q. Assume that #↓Sb(e) > 0 for an edge e ∈ Ed. Then, according to the
definition of ↓, Γ contains a vertical segment with decreasing y-coordinates
for a directed edge, which is a contradiction to the fact, that is a mixed
upward drawing. Assume that #↑Sb(e) = 0 for an edge e ∈ Ed. Then the
edge e has no upward pointing segment in Γ which is a contradiction to the
fact, that Γ is a mixed upward drawing. 2

4.6.2 Orthogonalization of the Upward Subgraph

In this section we describe an orthogonalization algorithm for upward planar
graphs which centers hyperedges. We assume that the graph is connected
and that the hypervertices have exactly one directed outgoing edge, a posi-
tive number of directed incoming edges, and no adjacent undirected edges.
The output of the algorithm is an absolute quasi-orthogonal shape in which
all incoming edges of a vertex connect to the same side of the vertex and
all outgoing edges of a vertex connect to the same side. The sides for the
incoming edges and outgoing edges are opposite to each other.

The algorithm works as follows: For each edge a tail- and a head-shape
is calculated. The two shapes are concatenated yielding the shape for the
edge. The algorithm picks one vertex at a time and assigns the head-shape
to the incoming edges of the vertex and the tail-shape to the outgoing edges.
According to the bend-or-end property of the Kandinsky model only one

4.6 Orthogonalization of UML Class Diagrams 91

incoming edge and one outgoing edge may not bend. We choose the non-
bending edge according to the following rules: If there are edges which con-
nect to a hypervertex, choose the median edge according to the embedding
of these edges. If there are no edges which connect to a hypervertex, choose
the median edge according to the embedding if the number of edges is even,
choose no non-bending edge if the number is odd. The assignment of the
shapes is illustrated in Figure 4.18. The tail- and head-shapes can always
be concatenated since the assignment of the shapes has the invariant that
each tail-shape ends with a ↑ and each head-shape starts with a ↑. For the
assignment of shapes at crossings we provide two alternative configurations
which are symmetric. In both cases one edge bends while the other remains
straight. We choose the configuration such that if there is one edge which
connects to a hypervertex, this edge has no bends.

Class

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

hypervertex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

crossing

.

.

.

.

.

.

.

.

.

.

.

.

crossing

tailshape

headshape

Figure 4.18: Shapes assigned to directed edges and hyperedges.

After this assignment we perform bend stretching transformations to re-
duce the number of bends. A bend stretching transformation removes su-
perfluous bends from an edge by assigning a new shape with less bends to it
without changing the first and last direction in the shape. Table 4.1 shows
all bend-stretching transformations.

Figure 4.19 shows how the two bend stretching transformations 2 and 3
on the edge (C1, C7) reduce the number of bends in the graph by 4.

Lemma 4.2 The above algorithm runs in linear time and the result has the
following properties:

1. There is an upward orthogonal rectangle drawing of the input graph
with quasi-orthogonal shape Q(S).

2. Q(S) is a Kandinsky shape.

3. On vertices of type vertex the edges leave the source vertex at the top
and enter the target vertex on the bottom.

92 Orthogonalization

Algorithm 7: Upward-Orthogonalization. We assume that the
edges in in(v) and out(v) are ordered from left to right according
to the mixed upward embedding.
Input: Upward planarization G = (V,E, F),

Mapping type : V → {vertex , crossing , hypervertex}
Output: Absolute quasi-orthogonal shape S

// tail-shape
for v ∈ V do

l = out(v), m = median(l), Ss(lm) = ” ↑ ”
if type(v) = crossing then

if m = 0 then Ss(l1) = ”→↑ ”
else Ss(l0) = ”←↑ ”

else
for 0 ≤ i < m do Ss(li) = ” ↑←↑ ”
for m < i < |l| do Ss(li) = ” ↑→↑ ”

// head-shape
for v ∈ V do

l = in(v), m = median(l)
if type(v) = crossing then

if m = 0 then Ss(l1)+ = ”← ”
else Ss(l0)+ = ”→ ”

else
if type(v) = hypervertex then

for 0 ≤ i < m do Ss(li)+ = ”→ ”
for m < i < |l| do Ss(li)+ = ”← ”

else
for 0 ≤ i < m do Ss(li)+ = ”→↑ ”
for m < i < |l| do Ss(li)+ = ”←↑ ”

// Assign shapes to reverse edges
for e ∈ E do if Ss(e) = ε then Ss(e) = Ss(ē)
// Assign angles
for v ∈ V do

for 0 ≤ i < |out(v)| − 1 do Sa(out(v)i) = 0
if δ−(v) = 0 then Sa(out(v)|out(v)|−1) = 4)
else Sa(out(v)|out(v)−1|) = 2
for 1 ≤ i < |in(v)| − 1 do Sa(in(v)i) = 0
if δ+(v) = 0 then Sa(in(v)0) = 4)
else Sa(in(v)0) = 2

4.6 Orthogonalization of UML Class Diagrams 93

shape v is crossing w is crossing new shape
↑→↑→↑ ↑→↑
↑→↑→ X ↑→
→↑→↑ X →↑
→↑→ X X →
↑←↑←↑ ↑←↑
↑←↑← X ↑←
←↑←↑ X ←↑
←↑← X X ←

Table 4.1: Table of bend-stretching transformations that apply to an edge
e = (v, w).

C1 C2

C5C4 C6 C7

C3

C1 C2

C5C4 C6 C7

C3

Figure 4.19: Example for a bend stretching transformation.

4. Vertices of type hypervertex are centered.

5. The number of bends per edge is at most 2c + 4 where c is the number
of crossings of the edge.

Proof: First we show that Q(S) is valid. For each upward planar graph
there is an upward drawing where vertices are represented as horizontal
straight lines and edges as vertical straight lines, called visibility representa-
tion, see, e.g., [33]. We denote the quasi-orthogonal shape of this drawing
by QV . The quasi-orthogonal shape Q(S) can be obtained from QV by
replacing the bend and angles fields in QV by the configurations shown in
Figure 4.18. The sum of the angles in a face is not changed by these re-
placements. Since S fulfills the conditions of Lemma 4.1 the first property
is proved.

The other properties follow directly from the assignment of the shapes.
2

94 Orthogonalization

4.6.3 The Complete Algorithm

In this section we present the orthogonalization algorithm for UML class
diagrams. The input of the algorithm is a mixed upward planarization of
a mixed graph and a mapping assigning the vertices of the input graph
to a type. We assume that the subgraph induced by the directed edges
is connected. The algorithm consist of two phases: In the first phase it
calculates the orthogonalization for the directed edges. This is done by
removing temporarily all undirected edges from the graph and calculat-
ing an upward drawing of the remaining directed subgraph using algorithm
Upward-Orthogonalization.

In the second phase the orthogonalization of the undirected edges is
calculated while not changing the orthogonalization of the directed edges.
This is done by creating constraints from the layout of the directed subgraph
and then solving the corresponding CONSTRAINED KANDINSKY BEND
MINIMIZATION problem. We extract from the shape of each directed edge
the bends and create a bend constraint for it. Furthermore we create for
each pair of directed edges following each other in the embedding on a vertex
an angle constraint with the angle they form in the upward drawing. To all
these constraints a cost C is assigned which is an upper bound on the number
of bends in orthogonalization of the entire graph in which all constraints are
fulfilled.

We use a modified version of the approximation algorithm from Sec-
tion 4.4 to solve the corresponding CONSTRAINED KANDINSKY BEND
MINIMIZATION network. Note that no Kandinsky device of a directed
edge can be over-saturated in an optimal solution of the minimum cost
flow relaxation, otherwise it would have cost greater than C. If we apply
a transformation to a sublist with an over-saturated Kandinsky device, we
first check if in one of the two sides of the list are Kandinsky devices which
are defined by directed edges. In this case we apply a transformation which
does not change this side. Note that it is not possible that such devices
are on both sides, otherwise the angle-constraints would be violated. Since
we may be forced in this modified algorithm to apply a transformation on
the longer side of the sub-list we no longer can guarantee an approximation
factor of 2, but since each side is still shorter than the entire sub-list we
get an approximation factor of 3. The above discussion is summarized in
algorithm Mixed-Upward-Orthogonalization.

Theorem 4.8 Given a mixed-upward planarization G = (V,Ed ∪ Eu, F),
and a map type, algorithm Mixed-Upward-Orthogonalization computes
in time O(n

7
4 ·
√

log n) an absolute Kandinsky shape S with the following
properties:

1. There is an upward orthogonal rectangle drawing of G with quasi-
orthogonal shape Q(S).

4.6 Orthogonalization of UML Class Diagrams 95

Algorithm 8: Mixed-Upward-Orthogonalization.
Input: Mixed upward planarization G = (V,E, F),

Mapping type : V → {vertex , crossing , hypervertex}
Output: absolute Kandinsky shape S

Remove all directed edges temporarly
QD = Upward-Orthogonalization(G)
Reinsert temporarily removed edges
Construct set of angle constraints AC from QD

Construct set of bend constraints BC from QD

Q = Constrained-Kandinsky(G, AC, BC)
Compute S from Q

2. On vertices of type vertex the edges in Ed leave the source vertex at
the top and enter the target vertex on the bottom.

3. Vertices of type hypervertex are centered.

4. The number of bends in a directed edge is at most 2c + 4 where c is
the number of crossings of the edge.

5. The number of bends on undirected edges is not more than 3 times
the minimal number of bends in a Kandinsky shape with the same
quasi-orthogonal shape for the directed edges.

96 Orthogonalization

Chapter 5

Compaction

In this chapter we consider the problem of computing a prescribed vertex-size
drawing from a given absolute Kandinsky shape, including the placement of
labels, while minimizing the sum of the length of all edges and the area used
by the drawing. Since it is NP-hard to optimize one of the above criteria [99]
we will present a heuristic for solving his problem. We start with giving a
formal definition of the problem:

Definition 5.1 Let G = (V,E, F) be a plane graph with absolute Kandinsky
shape Q, L a set of labels with reference mapping r : L → E, and s :
V ∪ L → IN 2 denote the size of vertices and labels. A drawing Γ is called
valid compaction if

1. Γ is an orthogonal rectangle drawing

2. Q(Γ) = Q,

3. Γ(o) is a rectangle of size s(o) for o ∈ V ∪ L,

4. Γ(l) ∩ Γ(r(l)) 6= ∅ is a part of the boundary of Γ(l) for l ∈ L.

The MINIMUM EDGE LENGTH KANDINSKY COMPACTION problem is to
find a valid compaction in which the sum of the edge length is minimal.

We propose a two-step algorithm for the MINIMUM EDGE LENGTH
KANDINSKY COMPACTION problem. In the first step a low quality valid
compaction, called the start solution, is calculated which is then improved
in the second step by a post-processing algorithm. Our approach is moti-
vated by empirical tests comparing compaction algorithms for 4-graphs in
the orthogonal point-drawing model [82]. In these tests the above approach,
with using one-dimensional compaction as post-processing, has yield nearly
optimal solutions. Interestingly the quality of the start solution had no sig-
nificant impact on the final result. Therefore the most important property
for the algorithm which computes the start solution is to be fast, the quality

98 Compaction

of the solution is not of primary concern. However, until yet the fastest
algorithm for this problem has at least quadratic runtime. The main result
presented in this chapter is a linear time algorithm for providing a start
solution. Our algorithm combines two compaction methods for orthogonal
shapes and generalizes them to Kandinsky shapes. The insight that we gain
in combining these two algorithms is a result on its own and may lead as a
starting point to develop new compaction algorithms.

This chapter partly follows [49] and is organized as follows: In Section 5.1
we review previous work for compaction and label placement. Section 5.2
contains an overview over our compaction algorithm and describes how
we can reduce the MINIMUM EDGE LENGTH KANDINSKY COMPACTION
problem to the problem of finding a valid compaction of an absolute Kandinsky
shape without considering labels. The shape graph approach, which will lead
us to a linear time algorithm for finding valid compactions, is presented in
Section 5.3, while the algorithm itself is presented in the main Section 5.4.

5.1 Previous Work

In this section we review algorithms for compaction and label placement. We
first discuss compaction of orthogonal shapes before we turn our attention
to the compaction of Kandinsky shapes. Finally we discuss label placement
and its connection to compaction.

5.1.1 Compaction of Orthogonal Shapes

The first approach for the compaction of orthogonal shapes was rectangular
decomposition [115]. The starting point for the rectangular decomposition
strategy is the observation that if all faces in an orthogonal shape are rectan-
gles, we can easily solve the compaction problem by applying longest path or
network flow algorithms to it. Rectangle Decomposition exploits this obser-
vation and subdivides those faces which are not rectangular into rectangles.
Then it solves the compaction problem on the subdivided orthogonal shape.
This induces a valid compaction on the original orthogonal shape. The sub-
division of complex faces into rectangular faces can be performed efficiently
by searching certain patterns of angles on the face. We denote 90◦ angles
on a face with a 0 and 270◦ angles with a 1. Every time we find the pattern
100, we cut a rectangle from the face and continue to search the pattern on
the remaining face. See Figure 5.1 for an illustration. We terminate if there
are no more patterns in any face. Using a list, rectangle decomposition can
be done in linear time.

The rectangle decomposition method leads often to drawings which are
not satisfactory since the decomposition chosen by the algorithm leads often
to suboptimal drawings, even if better solutions are obvious for the user.
Therefore two new approaches have been developed which do not rely on

5.1 Previous Work 99

1

0 0

(a)

0

(b)

Figure 5.1: The decomposition of a face (a) into a rectangular face and a
remaining face (b).

decomposing the faces into rectangles: the turn-regularity approach [20] and
the shape graph approach [85]. With the help of both approaches we can
describe the set of orthogonal shapes, for which optimal compactions can be
calculated in polynomial time, and actually compute them. We will give a
detailed description of the shape graph approach in Section 5.3.

5.1.2 Compaction in the Kandinsky Model

The first compaction algorithm for Kandinsky shapes was presented in [56].
It is based on the rectangle decomposition method and produces drawings
in which all vertices have uniform size. The algorithm has been extended
to drawings in which the size of the vertices is determined by their degree
in [57]. A detailed description of these algorithms can be found in [54].

Di Battista et. al. [32] presented the first compaction algorithm which
creates drawings with prescribed vertex size. It creates in a first step a
drawing of the graph where the vertices are represented as points and edges
overlap if they are adjacent to the same vertex at the same side using the
original compaction algorithm described above. Then each vertical and each
horizontal grid-line is expanded individually, i.e., each grid-line is replaced
by a set of grid-lines such that the vertices can be assigned their prescribed
sizes and the edges can be routed without overlap. This expansion is done by
solving a minimum cost flow problem for each horizontal and each vertical
grid-line. The authors do not give any bounds on the time complexity
of their algorithm. Since the algorithm is based on minimum cost flow
computation it has at least quadratic running time. The authors experienced
up to 50 seconds computation time on graphs in the Rome graphs test
suite [34].

Klau et al. suggested in [84] that their compaction approach originating
from graph labeling can also be used to solve the compaction problem for
drawings with prescribed vertex size. The approach relies on branch-and-
cut and has, therefore, exponential worst case running time. The authors
give neither a detailed description of how the algorithm can be used in the

100 Compaction

prescribed vertex size setting nor experimental results.

5.1.3 Label Placement

The work of Klau and Mutzel [84] was the first one integrating compaction
and label placement into one algorithm. Before the two problems have been
treated individually. The usual approach was to apply map labeling tech-
niques on the compacted drawing. This approach has the disadvantage that
it cannot be guaranteed that all the labels can be placed without overlaps,
especially if the labels have non-negligible size, which is often the case in
class diagrams. The algorithm described in [84] is designed for vertex labels.
It has been extended to edge labels in [10]. Both algorithms calculate op-
timal solution using integer linear programming techniques, which leads to
exponential worst case running time since the problem is NP-hard. Since we
require algorithms which can be used in an interactive setting, this makes
it prohibitive for us to apply these algorithms.

In [9] various heuristics for integrating edge labeling into compaction
have been proposed. They all base on the idea of inserting the edge labels one
by one into the compaction. If a label cannot be inserted without overlap,
the compaction is changed accordingly so that the label can be included in
the drawing. Their approach works on point drawings of 4-graphs and is
based on slicing to expand the drawing if a label cannot be placed. Slicing
is a technique developed originally in VLSI design, see [89] for details. It is
not trivial to generalize their algorithm to rectangle drawings with vertices
of prescribed size since slicing is much more difficult in this model. Slicing
curves must not intersect rectangles in this model because this would result
in changing the size of vertices which is not allowed.

5.2 The Compaction Algorithm

In this section we outline our algorithm, for the MINIMUM EDGE LENGTH
KANDINSKY COMPACTION problem. The algorithm first removes in a pre-
processing step all labels from the input and then computes a low quality
valid compaction, called the start solution. This start solution is improved
by applying iteratively an one-dimensional compaction algorithm. Finally
the labels are placed. Our approach is summarized by algorithm Com-
paction.

We call an orthogonal shape simple if it has no bends. Note that every
orthogonal shape can be reduced to a simple orthogonal shape by replacing
the bends by dummy vertices. We assume for the rest of this chapter that
the input is simple. We denote the set of vertices in a simple shape which
have been inserted to represent bends with B. Note that we distinguish
between vertex-bends and face-bends in Kandinsky drawings. Each vertex-
bend b can be uniquely assigned to a zero degree-angle at a vertex v. In

5.2 The Compaction Algorithm 101

a simple Kandinsky shape, b and v are connected by two darts (v, b) and
(b, v). We define a function vertexbend : E −→ {true, false} which returns
true if a dart connects a vertex-bend to the vertex at the zero-degree angle
to which it is assigned, or false otherwise.

Algorithm 9: Compaction
Input: Valid Kandinsky shape Q, size function s,

labels L, refer function r.
Output: Valid compaction Γ
Preprocess labels L
Calculate start solution Γ of Q and s
Perform one-dimensional compaction on Γ
Postprocess labels L
return Γ

The computation of the start solution is the subject of the subsequent
sections, in the remainder of this section we will first discuss label placement
and then one-dimensional compaction.

5.2.1 Label Placement

We will use a simple method for label placement which is based on the
reduction approach. Our method has no negative effect on the running time
and yields sufficient results for our case. We assume that edge labels with
preferred placement source or target have been removed from the input
and that they are placed by a map labeling algorithm after compaction.
This approach works for class diagrams since these labels are fairly small,
i.e., multiplicity labels have the form ”1..n” or ”∗”. Therefore L contains
only labels with preferred placement center. Before the compaction phase,
the edge, to which the label is attached, is a path of segments. We choose
a segment in the middle and split it in two parts by introducing a dummy
vertex. We take care that the edge which is split is not an edge defining
a zero degree angle, therefore vertexbend must evaluate to false for this
edge, otherwise Q would be no longer a Kandinsky shape. We assign to the
dummy vertex the size of the label. Then after the compaction the labels are
placed on the position of the corresponding dummy vertex and the dummy
vertex is removed from the graph. See Figure 5.2 for an example.

Class 1 Class 2 Class 1 Class 2
RelationRelation

Figure 5.2: Labels with preferred placement center are treated like vertices
in the compaction.

102 Compaction

5.2.2 One-Dimensional Compaction

One-dimensional compaction is a technique known from VLSI layout which
aims to reduce area and total edge length of a drawing. Either path based
or flow based one-dimensional compaction can be used. The path based
algorithm has linear running time, whereas the flow based algorithm has
quadratic running time. However, the flow based algorithm produces better
results than the path based algorithm. We will not cover one-dimensional
compaction in this work, for an extensive overview see for example [89].
Empirical tests on 4-graphs [82] have shown that using a heuristic for com-
paction together with flow based one-dimensional compaction yields nearly
optimal solutions.

5.3 The Shape Graph Approach

In this section we discuss the shape graph approach for the optimal com-
paction of orthogonal shapes which was originally proposed by Klau and
Mutzel [85]. We will first review the basics of the approach and then derive
a linear time algorithm for the compaction of orthogonal shapes from it.

Given a plane graph G with absolute orthogonal shape H. We denote
with G→ = (V,E→) the subgraph of G which contains only darts pointing
in positive direction of the x-axis, i.e., E→ = {e ∈ E|Hd(e) =→} and
with G↑ = (V,E↑) the subgraph of G which contains only darts pointing in
positive direction of the y-axis, i. e., E↑ = {e ∈ E|Hd(e) =↑}.

The connected components of G→, resp. G↑, are directed paths and
form a line in a drawing of G with orthogonal shape H. We denote with
S→, resp. S↑, the set of connected components of G→, resp. G↑, and call the
elements of it horizontal segments, resp. vertical segments. For a segment s
the direction d(s) is →, resp. ↑, if the segment is horizontal, resp. vertical.
We say that two segments are adjacent if they share a point. We denote with
α(s) the start vertex of the path which forms a segment s and with ω(s),
the endpoint of this path. We further denote with Es the edges in a segment
and with Vs the vertices. Every edge e is contained in exactly one segment
seg(e) and each vertex v is contained in exactly one vertical segment vert(v)
and one horizontal segment hor(v). We define seg(v, d) : V × {→, ↑} as

seg(v, d) =
{

hor(v) if d ∈ {→,←}
vert(v) if d ∈ {↑, ↓}.

The ordering of the segments of one type is defined by a shape graph.
The edge sets of the shape graphs D↑ = {S→, A↑}, resp. D→ = {S↑, A→},
are defined as:

A↑ = {(hor(v), hor(w)) : (v, w) ∈ E↑}, and
A→ = {(vert(v), vert(w)) : (v, w) ∈ E→}

5.3 The Shape Graph Approach 103

v v1 2

v

v

v

v5

3 4

6

v7

s

s

s3

2

1

s

s

4 s5

6

s7

Segment Nodes Edges
s1 {v1, v2} {(v1, v2)}
s2 {v3, v4} {(v3, v4)}
s3 {v5, v6} {(v5, v6)}
s4 {v1, v3, v5} {(v1, v3), (v3, v5)}
s5 {v4, v6, v7} {(v4, v6), (v4, v7)}
s6 {v2} ∅
s7 {v7} ∅

Figure 5.3: Examples of horizontal and vertical segments.

The shape description S = (D→, D↑) combines two shape graphs.

s6

s4 s5

(a)

s2

s7

s1

s3

(b)

Figure 5.4: Shape graph D→ (a) and D↑ (b) of graph in Figure 5.3.

We define the linear program (LP) as:

xb − xa ≥ 1 ∀(a, b) ∈ A→

yb − ya ≥ 1 ∀(a, b) ∈ A↑

xs ≥ 0 ∀s ∈ S↑

ys ≥ 0 ∀s ∈ S→

We can find a feasible solution (x, y) of (LP) in linear time by solving a
longest path problem [89]. From the solution (x, y) we can construct a
drawing Γ : V → IN × IN from G with Γ(v) = (xvert(v), yhor(v)). However,
there may be feasible solutions of the (LP) which induce non-valid orthog-
onal drawings.

Definition 5.2 Let s→ be a vertical segment and s↑ be a horizontal segment
which are not adjacent. We call s→ and s↑ to be separated if one of the
following conditions hold:

104 Compaction

1. s↑
∗−→D→ vert(α(s→)) 2. vert(ω(s→)) ∗−→D→ s↑

3. s→
∗−→D↑ hor(α(s↑)) 4. hor(ω(s↑))

∗−→D↑ s→

A shape description is called complete if every pair of segments with opposite
direction is separated.

In Figure 5.4 the segments s4 and s7 are separated, while the segments
s6 and s5 are not separated. Adding the edge (s7, s1) into A↑ makes the
shape description complete.

Lemma 5.1 ([85]) If S is complete a feasible solution (x, y) of the linear
program (LP) induces an orthogonal drawing Γ : V → IN × IN with Γ(v) =
(xvert(v), yhor(v)) of G with orthogonal shape H.

In [85] it is shown that there always exists a superset of S which is a com-
plete shape description. We call such a superset S̄ a complete extension of S.
In the original work the authors propose a branch and cut algorithm which
finds the complete extension such that the resulting drawing has minimal
edge length [85]. This approach has the disadvantage that it has exponen-
tial worst-case running time. We cannot hope to do better when we try to
optimize the edge length, since this problem is NP-hard [100].

If we drop the goal to achieve optimality, we can get a much faster
algorithm by searching a complete shape extension by a heuristic. We use
rectangular decomposition [115] to find such a complete shape extension.

For each face we perform the following: First we build a list containing
all segments of the face in the order as they occur in it. In addition we store
for each segment, as in the original rectangular decomposition algorithm,
the angle which the segment forms with its predecessor in the list. Then
we put the elements of the list one-by-one on the stack. Every time a ’100’
pattern of angles is at the top of the stack we perform decomposition as
shown in Figure 5.5. Instead of introducing a dummy vertex and a dummy
edge in the graph, as in the original rectangle decomposition algorithm, we
add edges to the shape graphs. In the example in Figure 5.5, we insert the
edge (a, c) into D↑ and the edge (b, d) into D→.

We handle the other three cases symmetrically . They are described in
function define-box. After the insertion of the edges into the constraint
graphs, we remove the second and third top-most elements. We proceed
until we can no longer find a 100 pattern.

Lemma 5.2 Rectangle decomposition yields a complete shape extension of
size O(n) in linear time.

Proof: We first show that the complete shape extension has size O(n).
The initial shape description has linear size by Euler’s formula. Since the
rectangle decomposition introduces O(n) rectangles and we insert two edges
into it per rectangle, the complete shape extension has linear size. The

5.3 The Shape Graph Approach 105

1

0 0

a

c

b
d

(a)

1

0 0

a

c

b
d

(b)

0
a d

(c)

Figure 5.5: Rectangle decomposition revisited in the shape graph approach.
Figure (a) shows a 100 pattern. In Figure (b) the inserted edges in the
constraint graph are shown. Figure (c) shows the subdivided face.

Algorithm 10: define-box
Input: Shape description S = ((S↑, A→), (S→, A↑)), Direction d,

Segments a, b, c, d

if d =↑ then A↑ := A↑ ∪ (b, d), A→ := A→ ∪ (c, a);
if d =↓ then A↑ := A↑ ∪ (d, b), A→ := A→ ∪ (a, c);
if d =← then A↑ := A↑ ∪ (a, c), A→ := A→ ∪ (b, d);
if d =→ then A↑ := A↑ ∪ (c, a), A→ := A→ ∪ (d, b);

linear running time follows immediately from this fact, too. It remains to
be shown that the extension is complete. Take a drawing of G produced
by the conventional rectangle decomposition algorithm and take a vertical
segment s→ and a horizontal segment s↑ which are not adjacent. Because
the drawing is planar, s→ and s↑ do not cross, so one of the four following
cases must hold: s→ is above s↑, s→ is below s↑, s→ is left of s↑ or s→ is
right of s↑. Assume w.l.o.g. that s↑ is above s→ and that s↑ is not to the left
of s→. The other cases are symmetric. Since s↑ is above s→, s′ = hor(α(s↑))
is also above s→. Assume that one of the following cases holds:

1. There is a sv ∈ S↑ such that the intersection of the projection of sv and
s↑ on the y-axis is non-empty and there is a path from vert(ω(s→)) to
s↑ in D→.

2. There is a segment sh ∈ S→ such that the intersection of the projection
of sh and s′ on the x-axis is non-empty and there is a path from s→
to sh in D↑.

If the assumption is true, we are done. To see this, assume that the second
case holds. Then just take a line parallel to the y-axis with x-coordinate in
the intersection of the projections. From the rectangles which are intersected
by the parallel line, we can now easily construct a path from sh to s′ in D↑.

106 Compaction

We give a constructive proof that either sv or sh exists. Start at segment
s→ and go to the lowest rectangle to the right of it, if such a rectangle exists.
In this case, go from this rectangle to the leftmost rectangle above. Iterate
until a segment is found which induces an intersection of the projections.
Because we proceed monotonically increasing in x- and y-coordinates, such
a segment must exist for monotonicity reasons. The existence of the path
follows from how we traverse the rectangles. 2

5.4 A Linear Time Compaction Algorithm

To compute a valid compaction of a Kandinsky shape Q with vertices of
prescribed size we map Q to an orthogonal shape HQ which represents each
vertex with non-zero size in Q by a rectangular face. We call HQ the com-
paction shape of Q. A drawing of HQ induces a valid drawing of Q if the
rectangular shapes have exactly the size of the vertices which they represent.
We will characterize the complete shape extensions of HQ which have such
a drawing in the first section and call them length complete. To compute a
length complete shape extension of HQ we will use a complete shape exten-
sion Q. In the second section we will introduce complete shape extensions
for Kandinsky shapes and show in the third section how we can use them
to derive length complete shape extensions of compaction shapes. In the
fourth section we present a linear time algorithm to compute from a length
complete shape extension of HQ a valid drawing of HQ. The last section
covers extensions of the basic algorithm. Our approach is summarized in
the following algorithm:

Algorithm 11: Compute Start Solution
Input: Absolute Kandinsky shape Q, size function s.
Output: Valid Compaction Γ of Q.
Compute compaction shape HQ from Q
Compute shape description SQ of Q
Compute complete shape extension of S̄Q

Compute shape description S of HQ

Compute length-complete shape extension S̄ of S from S̄Q

Assign coordinates to vertices in HQ

Derive drawing Γ of Q from HQ

5.4.1 Compaction Shape

The compaction shape HQ of a Kandinsky shape Q is an orthogonal shape
in which each vertex of Q which has non-zero size is represented by a rect-
angular face. Let V̂ ⊂ V denote the set of vertices which have zero size,

5.4 A Linear Time Compaction Algorithm 107

in other words V̂ = {v ∈ V |s(v) = (0, 0)}. Let v be a vertex in V \ V̂ .
For each edge adjacent to v, a new vertex p(e, v) is created which repre-
sents the port of e on v. Also, four corner vertices nw(v), ne(v), sw(v) and
se(v) are created. See Figure 5.6 for an example. Each vertex face has four
adjacent vertex-segments: the top segment t(v), the bottom segment b(v),
the left segment l(v), and the right segment r(v). We denote the underly-
ing graph of a compaction shape HQ with GQ = (VQ, EQ). The mapping
simple : E −→ EQ maps every edge in E to the corresponding edge in EQ.
GQ has 4|V \ V̂ |+ 2|E|+ |V̂ | vertices. Since G and GQ are planar it follows
with Euler‘s formula that the above transformation causes a constant blow
up.

p(e,v)

sw(v) se(v)

ne(v)nw(v)

e

Figure 5.6: Transformation of a vertex in the input graph to a rectangular
face in the compaction graph.

A drawing of HQ which induces a valid drawing on Q is called a length
valid drawing of HQ. There are two differences between a valid and a length
valid drawings of HQ.

1. The edges adjacent to a corner vertex may have zero length in a length
valid drawing.

2. The segments of the vertex-faces have prescribed distance in a length
valid drawing.

We refine the shape graph definition of the previous section in order to
be able to express these requirements. We add a length function to the
shape graphs and introduce auxiliary edges which denote the vertex size.
These refinings are similar to the ones in [84]. We define the edge-set of the
shape graph D′

↑ as A′
↑ = A↑ ∪N+

↑ ∪N−
↑ , with

N+
↑ = {(b(v), t(v)) : v ∈ V }, and N−

↑ = {(t(v), b(v)) : v ∈ V }

The shape graph D′
→ is defined analogously, and S ′ = (D′

→, D′
↑) is the

corresponding shape description. Additionally, we define the length function

108 Compaction

length : A′
↑ ∪A′

→ → Z in the following way:

length(e) =


0 if e ∈ A↑, e is induced by an edge adj. to a corner
sx(v) if e ∈ N+

↑
−sx(v) if e ∈ N−

↑
1 otherwise

The values of length for A′
→ are defined analogously. This leads to the

Kandinsky linear program (KLP):

xb − xa ≥ length(e) ∀e = (a, b) ∈ A′
→

yb − ya ≥ length(e) ∀e = (a, b) ∈ A′
↑

xs ≥ 0 ∀s ∈ S↑

ys ≥ 0 ∀s ∈ S→

To characterize those shape extensions whose solution of (KLP) induce
length valid drawings, it is not enough to demand that all segments have
to be separated. The reason for this is that the complete shape extension
may contain edges which induce a positive length cycle which violates the
maximum length condition for vertex faces, see Figure 5.7 for an example.
We have to introduce therefore an additional condition.

−4

Figure 5.7: Rectangle Decomposition of HQ which does not lead to a length
complete shape extension.

Definition 5.3 A shape extension S̄ is length-complete if S̄ is complete
and every cycle in the shape graphs of S̄ has non-positive length.

The following lemma shows that length-completeness describes indeed what
we wanted.

Lemma 5.3 Let S̄ be a complete shape extension. (KLP) has a feasible
solution if, and only if, every cycle in the shape graphs of S̄ has non-positive
length.

Proof: It is shown in [85] that if a shape graph in S has a positive length
cycle, then (KLP) is not feasible. We can transform (KLP) to a system of

5.4 A Linear Time Compaction Algorithm 109

difference constraints by multiplying each constraint by −1. This transforms
every positive length cycle in a negative length cycle and vice versa. A
system of difference constraints is feasible if and only if it has no negative
length cycle, see, i.e., [28] for a proof. 2

5.4.2 Complete Shape Extensions of Kandinsky Shapes

In this section we will refine the concept of shape graph from orthogonal
shapes to Kandinsky shapes and define complete shape extensions for this
case. We will present an algorithm which computes a complete shape ex-
tension in linear time.

In a Kandinsky shape there may be more than one edge adjacent to a
side of a vertex. As a consequence the segments in a Kandinsky shape are
no longer directed paths as this is the case in an orthogonal shape. Segments
in Kandinsky shapes have a more complex structure, see Figure 5.8 for an
example. Therefore the values α and ω are no longer well defined for a
segment of a Kandinsky shape. We define the skeleton sk(s) of a segment
s as sk(s) = {e ∈ Es|vertexbend(e) = false}. It follows directly from the
bend-or-end property of Kandinsky shapes that sk(s) is a directed path.
With the help of sk(s) we can give a new definition of α and ω: we define
α(s) of a segment s of a Kandinsky shape as the first vertex of sk(s) and
ω(s) as the last vertex of sk(s).

1 32
4 6 7 8 9 10 115

Figure 5.8: A segment in a Kandinsky shape. The vertices in B denoting
a vertex-bend are represented by black circles, vertices in B denoting a
face-bend are represented by white circles and the remaining vertices are
represented as yellow rectangles. The α value of the segment is 1 and the ω
value is 11.

Let s ∈ S→ be a horizontal segment. We define

Wα(s) = {s′ ∈ S↑|α(s′) ∈ B and hor(α(s′)) = s},

Wω(s) = {s′ ∈ S↑|ω(s′) ∈ B and hor(ω(s′)) = s}.

The set Wα(s), resp. Wω(s), denotes the set of vertical segments adjacent
to s on a bend which are above, resp. below, s. We define Wα(s) and Wω(s)
analogously for vertical segments.

In a Kandinsky drawing, the coordinates of the segments in Wα and Wω

must be in a specific absolute order to avoid overlap of adjacent segments.
The segments in Figure 5.8 correspond to this ordering. Figure 5.9 shows
what happens if this ordering is violated:

110 Compaction

1
4

5

(a)

1 2
7 6

(b)

2
9

8

(c)

Figure 5.9: Three examples for invalid orderings of the segments in Wω.

We will give now a definition of this ordering, which we denote with �.
We denote the skeleton of s as sk(s) = u1, e1, u2, . . . , ek−1, uk. Let s′ be a
segment in Wα(s), then there is an edge e ∈ Es such that e is incident to
ui and α(s′) for 1 ≤ i ≤ k. We call i the index of s′ or shorter i(s′) and
denote the edge with w(s) = e. The index of a segment in Wω(s) is defined
similarly. The ordering � must fulfill the following properties:

1. The α vertex of the segment has the smallest coordinate value:
∀s1 ∈Wα(s) ∪Wω(s) : seg(α(s), d) � s1

2. The ω vertex of the segment has the greatest coordinate value:
∀s1 ∈Wα(s) ∪Wω(s) : s1 � seg(ω(s), d)

3. All segments adjacent to bends at a vertex ui have smaller coordinate
value than the segments adjacent to bends with a greater index:
∀s1, s2 ∈Wα(s) ∪Wω(s) : i(s1) < i(s2)⇒ s1 � s2.

4. For two segments s1,s2 ∈Wα with index i, s1�s2 if there is no skeleton
edge between w(s1) and w(s2) in E(ui).

5. For two segments s1,s2 ∈Wω with index i, s1�s2 if there is no skeleton
edge between w(s2) and w(s1) in E(ui).

We call a shape extension segment-separated if the relations ∗−→D→ and
∗−→D↑ induce an ordering �.

We employ an idea of the original compaction algorithm of Fößmeier [54]
to compute a segment-separated shape extension of Q and use a modified
version of rectangle decomposition. As in the usual rectangle decomposi-
tion method we consider one face at the time and assign a marker to each
angle in the face. We enhance the usual markers with ’K’ which denotes
a 270◦ vertex-bend and ’-1’ which denotes a zero degree-angle. We search
for configurations as shown in Figure 5.10. These configurations correspond
to ’-1K’ and ’K-1’ patterns on the stack. When we detect one pattern, we
remove the appropriate segments from the stack as in the previous section.
Contrary to the previous section we add only one edge to the shape graph,

5.4 A Linear Time Compaction Algorithm 111

since the second edge would be an selfloop. We stop when there are no more
-1 markers in the face.

���
�

������������������������������

K

−1

���
�

������������������������������

0

���
�

−1

K
���
�0

Figure 5.10: Rules to eliminate zero degree angles. The first row shows the
application of pattern ’-1K’ and the second row the application of pattern
’K-1’.

Definition 5.4 We call a shape extension of a Kandinsky shape complete
if it is segment-separated and each pair of non-adjacent segments with op-
posite direction is separated.

1 32

Figure 5.11: The segment from Figure 5.8 after removal of all zero-degree
angles.

To calculate a complete shape extension of a Kandinsky shape we com-
bine the algorithm to compute a segment-separated shape extension with
the algorithm for rectangle decomposition. For each face we first perform
segment-separation until each zero-degree angle is removed from the face and
then use the traditional rectangle separation algorithm. The completion al-
gorithm is summarized in algorithm calculate shape extension. From the
fact that the original approach to remove zero-degree angles is correct and
because our algorithm for the compaction of 4-graphs is correct, it follows:

Lemma 5.4 Algorithm calculated shape extension has linear running time
and computes a complete shape extension of a Kandinsky shape Q.

112 Compaction

Algorithm 12: calculate shape extension
Input: Kandinsky shape Q

Output: Complete shape extension S
calculate shape description S;
for each f ∈ Q do

List l← ε;
for each (e = (v, w), d, a) ∈ f do

// Let d’ be the direction obtained by rotating d by 90◦.;
if a = 0 then append (−1, seg(e), d) to l;
if a = 1 then append (0, seg(e), d) to l;
if a = 3 then

if vertexbend(e) = true then
append (K, seg(e), d) to l

else
append (1, seg(e), d) to l

if a = 4 then append (1, seg(e), d), (1, seg(w, d′), d′) to l

count = size(l)+2;
// denote with ti = (ai, si, di) the i-th tuple in l;
while count > 0 do

if ((a1 = K) and (a2 = −1)) or ((a2 = −1) and (a3 = K))
then

replace t1 with (0, s1, d1);
remove t2 from l;

else
move t1 to the rear of l

count=count-1;
while size(l) > 4 do

if (a1 = 0) and (a2 = 1) and (a3 = 1) then
define-box(S, d1, s1, s2, s3, s4);
remove t2 and t3 from l;

else
move t1 to the rear of l

define-box(S, d1, s1, s2, s3, s4);

5.4 A Linear Time Compaction Algorithm 113

5.4.3 Computing the Length Complete Shape Extension

In this section we will show how we can derive a length complete shape
extension S̄ of the compaction shape HQ.

For the remainder of this section let S̄Q = ((SQ
→, ĀQ

↑), (SQ
↑ , ĀQ

→)) be a
complete shape extension of Q and S = ((S→, A↑), (S↑, A→)) be the shape
description of HQ. For each segment in S̄Q we define a meta-segment in HQ:

Definition 5.5 Let s be a segment in S̄Q, the meta-segment meta(s) of s
is defined as: ⋃

e∈Es

simple(e) ∪
⋃

v∈Vs

seg(v, d(s))

where

seg(v, d) =


∅ if v ∈ V̂

{l(v), r(v)} if v /∈ V̂ and d =↑
{b(v), t(v)} if v /∈ V̂ and d =→ .

Each segment s of HQ is contained in exactly one meta-segment. We
denote with qseg(s) the segment s′ in S̄Q with s ∈ meta(s′).

To compute a length complete shape extension S̄ of S we first calculate
a complete shape extension S̄Q of the shape description SQ of Q and then
derive S̄ from S̄Q. We add for each vertical, resp. horizontal, segment s
in SQ two vertices i(s) and o(s) into the shape graph D→, resp. D↑, of S
and for each s′ ∈ meta(s) the edges (i(s), s′) and (s, o(s′)). The vertex i(s)
is therefore a predecessor in the shape graph of all segments in meta(s),
and the vertex o(s) a successor of all segments in meta(s). For each edge
e = (v, w) in a shape graph of S̄Q we add an edge p(e) = (o(v), i(v)) to the
corresponding shape graph of S.

Definition 5.6 The shape extension S̄ = ((S̄→, Ā↑), (S̄↑, Ā→)) of the shape
description S is defined as

S̄→ = S→ ∪ {i(s), o(s)|s ∈ SQ
→},

S̄↑ = S↑ ∪ {i(s), o(s)|s ∈ SQ
↑ },

Ā↑ = A↑ ∪ {(i(s), s′)|s ∈ SQ
→, s′ ∈ meta(s)}

∪ {(s′, o(s))|s ∈ SQ
→, s′ ∈ meta(s)}

∪ {(o(s1), i(s2))|(s1, s2) ∈ ĀQ
↑ }

Ā→ = A→ ∪ {(i(s), s′)|s ∈ SQ
↑ , s′ ∈ meta(s)}

∪ {(s′, o(s))|s ∈ SQ
↑ , s′ ∈ meta(s)}

∪ {(o(s1), i(s2))|(s1, s2) ∈ ĀQ
→}.

Lemma 5.5 The shape extension S̄ is length complete and has linear size
according to S̄Q.

114 Compaction

Proof: Let s1 ∈ D↑ be a vertical segment and s2 ∈ D→ a horizontal segment
in S. Let ms1 = qseg(s1) and ms2 = qseg(s2). Since SQ is a complete shape
extension either ms1 and ms2 are separated or adjacent.

We first consider the case that ms1 and ms2 are separated. We as-
sume w.l.o.g. that ms1

∗−→
DQ
→

vert(α(ms2)), the other three cases are
symmetric. We denote the path from ms1 to vert(α(ms2)) with mp =
v1, e1, v2, e2, v3, . . . , ek, vk+1. For each segment s in SQ, the vertices i(s)
and o(s) are connected by a collection of paths of length two. We denote
with p(s) one of these paths. Therefore the path obtained by concatenat-
ing the paths p(e1), p(v2), p(e2), p(v3), . . . , p(ek) defines a path from o(ms1)
to i(vert(α(ms2))). Since ((s1), o(ms1)) ∈ Ā→ and vert(α(ms2))

∗−→
DQ
→

vert(α(s2)) it holds s1
∗−→D→ vert(α(s2)), which proves that s1 and s2 are

separated.
If ms1 and ms2 are adjacent, then the ordering � ensures that s1 and

s2 are separated.
Therefore all segments are separated which shows that S̄ is complete.

The shape graphs do not contain paths in which both endpoints of the edge
belong to the same meta-segment and which contain edges not defined in
the shape description. If this were the case, these edges would have been
induced by edges in SQ which would imply that a shape graph in SQ has
a selfloop, which is contradictory to the assumption that the shape graphs
are acyclic. Therefore the shape extension would contain a negative cycle,
already the shape description would contain this negative cycle which is not
the case. Therefore the shape extension is also length complete.

It remains to show that the size of S̄ is linear according to SQ. We
introduce at most 2|E| segment vertices. Every segment in HQ is contained
in one segment of Q and is therefore connected twice to a segment vertex.
The linear size of S̄ follows therefore directly from the construction. 2

5.4.4 Coordinate Assignment

To assign coordinates to the vertices in HQ we cannot use the standard
longest path algorithm because there are cycles and negative edges in the
shape graphs. We will present therefore a special tailored algorithm for this
problem.

We will present the algorithm to calculate the x-coordinates from a com-
plete shape extension S̄ = ((S̄→, Ā↑), (S̄↑, Ā→)) of the shape description
S = ((S→, A↑), (S↑, A→)) of HQ. The algorithm for the assignment of the
y-coordinates is similar. The algorithm consists of three phases: In the first
phase we calculate the offset of the segments at each vertex, then in the sec-
ond phase, we compute the offset of the segments inside each meta-segment,
and in the third phase we compute the distances between the meta-segments.

In the first phase we first remove the edges with negative length from the
D→. For each vertex u ∈ V we define D→(u) as the subgraph D→ induced

5.4 A Linear Time Compaction Algorithm 115

by the vertices:

S↑(u) = {seg(simple(e))|e ∈ adj (u) and Qd(e) =↑} ∪ seg(u, ↑).

If u has positive size, in other words u ∈ V \ V̂ , we compute the x-value
x1(u, s) of the segments by computing the longest path value from the seg-
ment l(u). If u has zero size, in other words u ∈ V̂ , then there is only one
segment s in D→(u) and we set x1(u, s) = 0.

In the second phase, in which we compute the offset of the segments
inside each meta-segment, we consider one vertical segment at the time. Let
s′ be a vertical segment of Q and s = meta(s′) the corresponding meta-
segment. The x-coordinates x2 can be easily computed by considering the
vertices in s′ from bottom to top: Let sk(s′) = u1, e1, u2, . . . , ek−1, uk be
the skeleton of s′. We start with initializing the x2 value of the segments in
S↑(u1) with the value in x1:

x2(s) = x1(u1, s)∀s ∈ S↑(u1).

Then we compute iteratively the values for the remaining segments in the
meta-segment with the formula:

x2(s) = x1(s, ui)+x2(seg(simple(ek)))−x1(ui, seg(simple(ek)))∀s ∈ S↑(ui).

In the third phase we compute the final coordinates. We compute the re-
duced graph of the horizontal shape graph of S̄: We remove the vertices of
S↑ from the graph, and merge for a meta-segment s the vertices i(s) and
o(s) to one vertex ms(s). For each edge e = (s1, s2) ∈ Ā→, s1, s2 ∈ S→,with
qseg(s1) 6= qseg(s2), we define an edge (ms(qseg(s1)),ms(qseg(s2))) with
length max{length(e) + x2 (s1) − x2 (s2), 0}. Again we apply the longest
path algorithm to this graph and denote the result with x3. We define the
x-coordinate of a vertex v ∈ VH as:

x(v) = x2(vert(v)) + x3(qseg(vert(v))).

Lemma 5.6 The above algorithm calculates a feasible solution of (KLP)
in time O(n).

Proof:
Each edge e = (s1, s2) ∈ D→ with negative length has the form (r(v), l(v))

for some v ∈ V . Since r(v) and l(v) are in the same meta-segment and in
D→(v), it must hold for the distance between r(v) and l(v):

x(r(v))− x(l(v)) = x2 (r(v))− x2 (l(v)) = x1 (r(v))− x1 (l(v)) ≥ length(e)

which is ensured by the first phase of the algorithm.

116 Compaction

Since for every edge e = (s1, s2) ∈ D→ with positive length holds

x (qseg(s2))− x (qseg(s1)) ≥ length(e) + x2 (s1)− x2 (s2)

it follows:

x(s2)− x(s1) = x2 (s2) + x (qseg(s2))
−x2 (s1)− x (qseg(s1)) ≥ length(e).

The proof for the y-coordinates is similar. The algorithm has linear
running time because longest path calculation can be done in linear running
time. 2

5.4.5 Arbitrary Number of Edges at One Side

Until now we assumed that vertices have sufficient size to connect all edges
adjacent to a certain side. However, this assumption may be not satisfied
by the orthogonalization algorithm which provides the input for the com-
paction. In this case, we define in the simplification step the distances be-
tween certain edges adjacent to the same side of a vertex as zero such that
the size constraint can be fulfilled. In the final drawing the edges which
overlap can be separated by a small value. This is illustrated in Figure 5.12.

0 0 1 1 0 0

Figure 5.12: Vertex with not enough width to place all edges on the grid.

Another issue is the centering of edges. Since the coordinate assignment
algorithm proceeds from left to right, all edges adjacent to a vertex tend to
be on the left side and the bottom of the vertex. These drawings have a
very unbalanced appearance, see Figure 5.13 for an example.

We can avoid this effect by changing the length value of the edges adja-
cent to corner vertices in HQ. Consider for example the edges with direction
↑ adjacent to a vertex v. There is one edge e without vertex bend, which we
choose to center. The edges on the left of this edge have a left vertex bend,
the edges on the right of this edge a right vertex bend. Let k1 denote the

5.4 A Linear Time Compaction Algorithm 117

Figure 5.13: Unbalanced (left) and balanced (right) compaction.

number of edges on the left of e, l the leftmost edge on the upper side of v,
k2 denote the number of edges on the right of e, and r the rightmost edge
on the upper side of v. Then we insert an edge (l(v), seg(l)) with length k1

and an edge (seg(r), r(v)) with length k2 into D→. An example for such a
constraint graph is illustrated in Figure 5.14.

l(v) r(v)

l r

2 1 1 1 1 2

Figure 5.14: Shape graph for balanced compaction for the example in Fig-
ure 5.13.

118 Compaction

Chapter 6

Interactive Layout

In this chapter we discuss the interactive layout of UML class diagrams.
The content of this chapter is joint work with Ulrik Brandes and Dorothea
Wagner, the presentation of the algorithms and methods follows partly [16].

The UML-Kandinsky algorithm for automatic layout of class diagrams
presented in the preceding chapters is a static layout algorithm in the sense
that given a diagram as input it computes a drawing only once. In UML
modeling quite often users interact with the diagram, continuously adding
and removing elements. Unfortunately, our static layout algorithm is not
suitable for this scenario. If we compute a new drawing of a diagram after a
small update of the diagram the result may be significantly different from the
previous drawing. This makes it difficult for the user to read the new drawing
because the internal picture of the diagram that the user has in his mind is
disturbed. This internal picture is usually referred to as ”mental map” [40].
A layout algorithm should make only small changes in the drawing when
there are small changes in the diagram structure, which is called preserving
the user’s mental map. Updating a drawing correctly after updates of the
diagram is referred to as dynamic layout.

Another aspect of interactive layout is supporting user preferences. Since
automatic layout algorithms are in general not perfect users often rearrange
parts of the diagram after automatic layout to their personal preference
without changing the content of the diagram. Often this aims to reflect
their understanding of the system modeled by the diagram. An alternative
view is that an existing drawing is to be improved subject to user-supplied
constraints or hints for the algorithm analogously to [39]. Usually the user
changes will not be taken into account by the dynamic layout algorithm.
This has annoying consequences for the user, imagine the following scenario:
In step (a) the user performs automatic layout on a diagram and then re-
arranges in step (b) a small part of the diagram to his personal preference.
Then he adds in step (c) some elements to the diagram and quickly discov-
ers that the diagram gets too crowded and the layout of the diagram must

120 Interactive Layout

GeneralizeableElement

Stereotype

icon:Geometry
baseClass:Name

Constraint

ModelElement

TaggedValue

tag:Name
value:Uninterpreted

(a) input graph

GeneralizeableElement

Stereotype

icon:Geometry
baseClass:Name

Constraint

ModelElement

TaggedValue

tag:Name
value:Uninterpreted

(b) result of UML-Kandinsky

GeneralizeableElement

Stereotype

icon:Geometry
baseClass:Name

Constraint

ModelElement

TaggedValue

tag:Name
value:Uninterpreted

(c) user change

GeneralizeableElement

Stereotype

icon:Geometry
baseClass:Name

Constraint

ModelElement

TaggedValue

tag:Name
value:Uninterpreted

(d) result of applying sketch-driven algorithm

Figure 6.1: Example for interactive improvement of a diagram’s layout.

121

GeneralizeableElement

Stereotype

icon:Geometry
baseClass:Name

Constraint

ModelElement

TaggedValue

dataValue:String[*]

TagDefinition

tagType:Name
multiplicity:Multiplicity

(a) update on the diagram of Figure 6.1

GeneralizeableElement

Stereotype

icon:Geometry
baseClass:Name

Constraint

ModelElement

TaggedValue

dataValue:String[*]

TagDefinition

tagType:Name
multiplicity:Multiplicity

(b) result of applying sketch-driven algorithm

GeneralizeableElement

Stereotype

icon:Geometry
baseClass:Name

Constraint

ModelElement

TaggedValue

dataValue:String[*]

TagDefinition

tagType:Name
multiplicity:Multiplicity

(c) result of applying UML-Kandinsky to the updated
diagram

Figure 6.2: Example for dynamic layout. While the sketch driven approach
keeps the mental map, it is disturbed by applying the static UML-Kandinsky
algorithm.

122 Interactive Layout

be updated. The user can choose now between two alternatives, neither of
them is compelling: Either he uses automatic layout with the consequence
that he has to perform step (b) again or he has to clean up the diagram by
hand, in which case the user might be angry spending money for buying a
tool with automatic layout facilities which fails to work correctly.

There is a fair amount of research on dynamic graph layout (see [19] for
an overview) and on utilizing user interaction for force-directed [109, 75],
quasi-visibility [98] and layered layout [39], there are even attempts to learn
parameters of layout objectives from example drawings [91, 93], but there
are no truly interactive algorithms for orthogonal drawing which support
the scenarios described above.

In dynamic graph drawing, usually it is required that the input drawing
is already drawn by the dynamic layout algorithm or is at least in the same
representation as the target drawing. Often the algorithm keeps the state
of the last run and uses this state information for the next run, see for
example [94]. Keeping the state has many drawbacks, especially it makes
the implementation of the algorithm costly and error-prone. The algorithm
has to be informed about each change in the diagram, and if one change
is missed, the algorithm and the diagram are out of synchronization which
may have fatal consequences.

In this chapter we present a new interactive orthogonal graph drawing
algorithm based on the topology-shape-metrics paradigm that does not keep
state information explicitly and supports as well dynamic changes of the
diagram as well as user preferences. It takes a diagram as input together
with a drawing of a part of the diagram. We call the part of the diagram
for which a drawing exists “sketch”. Our algorithm computes from the
diagram and the sketch a tidy, orthogonal drawing with few bends that
preserves the overall appearance of the sketch. Note that our algorithm
makes no assumptions about the sketch, it is for example not assumed that
the drawing must be orthogonal or planar.

The “sketch” exhibits the main features to be conveyed, but may be
unsatisfactory from an aesthetic point of view or incomplete since not every
element of the diagram may be present in the sketch. The sketch represents
in some sense the state of the previous runs of the algorithm together with
the user preferences. We call therefore our algorithm sketch-driven.

Our method was inspired by SCHEMAP a system generating schematic
maps for communication networks that was demonstrated at the Software
Exhibition [88] of Graph Drawing 2001. This system gradually orthogo-
nalizes a given network layout (“ground plan”) into a schematic map while
preserving the embedding (including crossings). Since it is based on a force-
directed algorithm there is no guarantee that the result is indeed orthogonal,
and running times are apparently far from interactive.

While our algorithm produces an orthogonal drawing with few bends in
the Kandinsky model it also preserves the general appearance of the sketch.

6.1 The Algorithm 123

Although we can devise an interactive layout algorithm for class diagrams
with this approach, there are potential applications for this kind of drawing
algorithm beyond class diagrams including the generation of schematic maps
from geographic networks.

In Section 6.1 we review dynamic layout for orthogonal drawings and we
give an overview over our interactive layout algorithm. The algorithm ex-
tends our automatic layout algorithm for class diagrams according to the
Bayesian paradigm for dynamic layout of [17]. The two main parts of
the algorithm are interactive planarization and interactive orthogonaliza-
tion which are described in Section 6.2 and Section 6.3.

6.1 The Algorithm

Our algorithm for sketch-driven orthogonal graph layout relies on a frame-
work for extending (static) layout algorithms to dynamic graphs proposed
by Brandes and Wagner [17].

In dynamic graph drawing, the input is a sequence of graphs which
represents the states of a single graph that is changing over time. Dynamic
graphs can be visualized, for example, in an animation or in a sequence of
drawings, but it is important to keep changes between consecutive frames to
a minimum in order not to destroy a viewer’s mental map of the graph [40].
Methods for dynamic orthogonal layout are proposed in [97, 21, 18, 26].

The core modeling task of dynamic layout, i.e. the combination of criteria
for good (static) layout with the requirement of small change, is therefore
very similar to that of sketch-driven layout. For layout algorithms based on
the optimization of an objective function, the Bayesian framework [17, 14]
suggests to incorporate a difference metric [22] as a penalty in the objective
function. Optimization of the combined objective function thus naturally
results in a trade-off between static layout criteria and stability.

Since orthogonal drawing algorithms in the topology-shape-metrics frame-
work heavily depend on the angles and bends computed in the shape step,
it seems natural to use the change in angles and bends as a difference metric
for orthogonal shapes [18, 14].

Throughout this section, let Γ be a drawing (a sketch) of a subgraph
GΓ = (VΓ, EΓ) of the input graph G = (V,E). Our objective is to determine
an orthogonal box drawing of G with the following properties:

• the topology of GΓ is preserved,

• the drawing is in the Kandinsky model,

• angles in the drawing deviate little from angles in the sketch (stability),
and

• the drawing contains few bends (readability).

124 Interactive Layout

Our algorithm follows the topology-shape-metrics approach and proceeds
as follows. First, a planarization of GΓ is determined by replacing each
crossing in the sketch by a dummy vertex. Since we do not change the
embedding in the following steps, this ensures that the topology of GΓ is
preserved. The main problem in this phase is that the sketch may contain
degeneracies which make it impossible to determine a planarization for the
entire graph. Therefore we first determine a subgraph Gvalid of GΓ whose
drawing contains no degeneracies and compute the planarization G′ for this
subgraph. Then the edges in E which are not part of Gvalid are inserted
into G′ using algorithms from Chapter 3. This includes the edges which have
not been defined in the sketch as well as the edges which have been removed
from the sketch to remove degeneracies. This algorithm is described in detail
in Section 6.2.

Next, a quasi-orthogonal shape Q̂ of the subgraph of G′ induced by the
edges of Gvalid is determined from Γ by rounding angles in the sketch to
the nearest multiple of 90◦ and classifying each edge bend as either a 90◦ or
a 270◦ bend. Note that the resulting quasi-orthogonal shape Q̂ needs not
be valid. A Kandinsky shape Q of G′ is then determined so as to satisfy
a trade-off between stability and bend-number. Note that an angle in the
sketch corresponds in general to a set of angles in the final drawing. Since
we preserve the topology of the sketch, these sets of angles are intervals.
We can therefore use the Constrained Kandinsky approach from Chapter 4
to compute Q. The details of the algorithm are described in detail in Sec-
tion 6.3.

Finally, a standard compaction algorithm is applied to Q to compute a
drawing of G′, from which the final drawing is obtained by replacing dummy
vertices with edge crossings.

Our algorithm ignores the FLOW and HYPEREDGE aesthetic criteria.
The reason for this is that the user has already defined a direction in the
sketch which may be conflicting with the FLOW and HYPEREDGE criteria
and we value the decision of the user more than these abstract aesthetic
criteria. If we want to consider these criteria we would have to make sure
that the interactive planarization is mixed-upward planar and merge the
user supplied constraints with the constraints defined by the FLOW and
HYPEREDGE aesthetic criteria, where the last ones have higher priority.

Our approach is a fully interactive orthogonal graph drawing algorithm
when it considers the most recent drawing as sketch, which itself does not
contain newly added elements.

6.2 Interactive Planarization

In Chapter 3 an algorithm was presented, which computes a planarization
of a graph from scratch. In our setting the planarization is already given

6.2 Interactive Planarization 125

(a) A graph containing de-
generacies

(b) Valid subgraph.

Figure 6.3: Example for the valid subgraph of a degenerated input graph.

as a drawing of the input graph and the problem consists of extracting it
from the drawing. This problem can be subdivided into two subproblems:
First determine the planarization of the graph by computing the crossings
in the drawing and second computing the embedding by determining the
circular order of the edges around the vertices in the drawing and the outer
face. The problem is made more difficult by the fact that the drawing might
contain degeneracies. Suppose, for example, that all vertices of the graph
are placed at the origin (0, 0). In this case it is not possible to extract
any useful information from the drawing, especially not a planarization of
the input. Therefore we first compute a subgraph Gvalid = (V,Evalid)
of G from whose drawing Γ(Gvalid) we can compute a planarization. See
Figure 6.3 for an example. We additionally determine the angle between
neighbor edges in the embedding and the bends of the edges. This informa-
tion is needed by the orthogonalization algorithm in the next section. After
computing the planarization of Gvalid the edges E \Evalid are inserted into
the planarization using the algorithm undirected edge insertion described in
Section 3.3.

We denote the resulting planarization with G′ = (V ′, E′, F ′). The edges
in Evalid are in general subdivided to paths in G′. We define the set Ê =
{p̂(e)|e ∈ Evalid} ⊆ E′, as the set of edges in E′ which are part of an
subdivision of an edge in Evalid.

6.2.1 The Straight Line Segment Intersection Problem

The main tool for our algorithm for interactive planarization is an algorithm
for straight line segment intersection. The straight line segment intersection
problem consists of finding all crossings between two segments of a set of
straight line segments S. The variant of Näher and Mehlhorn [92] of the
famous Bentley-Ottmann sweep line algorithm [6] does not only report the

126 Interactive Layout

crossings, it further supplies a plane graph G′ as result. The vertices of
G′ are all endpoints and all proper intersection points of the segments in
S. The edges of G′ are the maximal relatively open subsegments in S that
contain no vertex of G′. The algorithm has running time O((n + s) log n),
where n is the number of segments and s is the size of the graph G′. It is
important to note that the algorithm makes no assumptions about the input,
the segments may have arbitrary coordinates. We refer to this algorithm as
algorithm Straight Line Segment Intersection.

6.2.2 Valid Drawings

In this section we present a set of properties for a drawing of a graph that
are sufficient to extract a planarization from the drawing. These properties
are summarized in Definition 6.1:

Definition 6.1 A rectangle-drawing Γ(G) of a graph G = (V,E) is said to
be valid if it has the following properties:

V1 The path Γ(e) of an edge e = (a, b) ∈ E starts at the boundary of Γ(a)
and ends at the boundary of Γ(b).

V2 The rectangles Γ(v) and Γ(w) of two vertices v, w ∈ V do not intersect
nor do they contain each other.

V3 The rectangle Γ(v) and the path Γ(e) of a vertex v ∈ V and an edge
e ∈ E do not intersect nor does Γ(v) contain Γ(e).

V4 Two paths Γ(e1) and Γ(e2) of two edges e1, e2 ∈ E share only a finite
number of points.

V5 No point lies in the interior of more than two paths of edges in E.

A drawing Γ(G) of a graph G is called degenerated if it is not valid.

Let G = (V,E) be a graph with valid rectangle-drawing Γ. We can derive
a planar point-drawing Γ′ of G the following way: First we define for each
rectangle Γ(v) of a vertex v ∈ V a point Γ′(v) in the interior of Γ(v). For an
edge e = (v, w) ∈ E we define Γ′(e) as the composition of a straight line from
Γ′(v) to the starting point of Γ(e), Γ(e), and a straight line from the endpoint
of Γ(e) to Γ′(w). Furthermore we replace each edge crossing by a vertex.
Property V5 ensures that each crossing vertex has degree four, property V4
ensures that each edge has only finitely many crossings. Properties V1, V2,
and V3 ensure that there are no crossings inside the rectangles representing
a vertex. We can now use algorithm Straight Line Segment Intersection on
Γ′ to compute a planarization of G.

6.2 Interactive Planarization 127

6.2.3 Determining the Valid Subgraph

We will now present an algorithm for determining a valid subgraph Gvalid
of a graph GΓ = (V,EΓ) with drawing Γ. We will first compute the line
segment intersections in Γ which will help us to remove the graph elements
from the input which cause degeneracies in the drawing.

Before we determine the subgraph Gvalid for which Γ defines a valid
drawing, we ensure that the path Γ(e) of each edge e ∈ EΓ fulfills prop-
erty V1. For each edge e = (a, b) we connect the first, resp. last, point of
Γ(e) with the center of Γ(a), resp. Γ(b), with a straight line. Then we clip
the resulting path against Γ(a) and Γ(b).

Then we transform our input drawing, which consists of rectangles for
vertices and paths for edges, in a set of line segments S(Γ). The set S con-
tains for each edge e ∈ EΓ the line segments of Γ(e) and four line segments
for each vertex v ∈ V which represent the boundary of Γ(v).

Lemma 6.1 A drawing Γ of a graph GΓ = (VΓ, EΓ) is valid if, and only
if the following holds for the result G′(V ′, E′) of algorithm Straight Line
Intersection:

L1 There are no vertices in the interior of {Γ(v)|v ∈ VΓ}.

L2 Each vertex in the interior of IR2 \ {Γ(v)|v ∈ VΓ} has degree two or
four. If a vertex v′ ∈ V ′ has degree two the adjacent edges of v′ point
to segments that belong to the same edge in the input graph. If v′ has
degree four, the adjacent edges can be partitioned in two pairs of edges
each pointing to segments that belong to the same edge in the input
graph.

L3 Each vertex v′ ∈ V ′ on the boundary of Γ(v), v ∈ VΓ is adjacent to edges
pointing to segments representing the boundary or to the first, resp.
last, segment of an edge adjacent to v.

L4 There are no multiple edges in G′.

Proof: That the above criteria are necessary follows directly from defini-
tion 6.1 and G′. It remains to show that these criteria are also sufficient.
That property V1 is fulfilled follows from our preprocessing step. If prop-
erty V2 had been violated at most one corner of the rectangle would be in
the interior of another rectangle (conflicting with L1) or the two rectangles
would touch (conflicting with L4). If property V3 had been violated, prop-
erty L3 would not be true, and if property V4 had been violated, property L4
would not hold. If finally V5 had been violated again property L2 would
not hold. 2

Our algorithm for computing Gvalid works as follows: We first set Gvalid
to GΓ. Then we determine vertices violating condition V2 by a sweepline

128 Interactive Layout

algorithm and remove them from Gvalid. Next we run the straight line
segment intersection algorithm on S(Γ|Gvalid

) which yields G′ = (V ′, E′).
For each vertex of v′ ∈ V ′ we check conditions L1, L2 and L3. Edges
violating the conditions are removed from Gvalid. Finally we remove edges
violating condition L4.

6.3 Interactive Orthogonalization

In this section we describe an orthogonalization algorithm for the sketch
driven approach. The presented algorithm optimizes a bi-criteria optimiza-
tion function where the two objectives are readability (number of bends)
and stability (change in shape).

The readability of a shape Q is independent of the given sketch and
defined as the total number of bends, namely

#bends(Q) =
1
2

∑
f∈Q

∑
(e,a,b)∈Q(f)

|b| .

To measure the stability of a quasi-orthogonal shape Q we have to com-
pare it with the quasi-orthogonal shape Q̂ of the sketch drawing. However,
Q is defined on G′ while Q̂ is defined on (V ′, Ê). Since (V ′, Ê) is a subgraph
of G′, an angle between two edges e1 and e2 in Q̂ corresponds to a set of
angles in Q, defined by the edges between e1 and e2. We denote with I(e)
for an edge e ∈ Ê the set of edges consisting of e and the edges following e
in the embedding of Q which are not in Ê.

The stability of a quasi-orthogonal shape Q with respect to the quasi-
orthogonal shape Q̂ defined by the sketch is then expressed in terms of the
difference between angles in Q and corresponding angles in Q̂

∆A(Q, Q̂) =
∑
f∈Q̂

∑
(e,a,b)∈f

|Q̂a(e)−
∑

e′∈I(e)

Qa(e′)|

and the difference in edge bends

∆B(Q, Q̂) =
1
2

∑
f∈Q̂

∑
(e,a,b)∈f

edit(Q̂b(e), Qb(e)) .

This is similar to the shape difference metrics used in [22]. From these
components we form a weighted compromise between the degree of change
with respect to the given sketch and the number of bends in the quasi-
orthogonal shape. Our objective function thus reads

D(Q|Q̂) = α ·∆A(Q, Q̂) + β ·∆B(Q, Q̂)︸ ︷︷ ︸
stability

+ γ · (#bends(Q)−#bends(Q̂))︸ ︷︷ ︸
readability

6.3 Interactive Orthogonalization 129

where parameters α, β, and γ control the relative importance of angle or
bend changes and bend number. We are now ready to state our problem
formally.

Definition 6.2 Given a quasi-orthogonal shape Q̂ of a plane graph G′,
the SKETCH ORTHOGONALIZATION problem is finding a valid Kandinsky

shape Q of G′ such that D(Q|Q̂) is minimum.

If we have a closer look at the SKETCH ORTHOGONALIZATION prob-
lem we discover that it is quite similar to the CONSTRAINED KANDINSKY
BEND MINIMIZATION problem defined in Section 4.5. In fact we can re-
duce it to a special instance of the CONSTRAINED KANDINSKY BEND
MINIMIZATION problem.

Let π be an ordering of the vertices V of a graph G = (V,E). The set
Eπ = {(u, v)|{u, v} ∈ E and π(u) < π(v)} contains for each edge E of G
exactly one dart.

Theorem 6.1 Let G′ = (V ′, E′, F ′) denote a plane graph, Q̂ a quasi-orthogonal
shape of the subgraph (V, Ê) of G′, and π an ordering of V ′. We define the
set of angle-constraints AC as

AC =
⋃

f∈Q̂,(e,a,b)∈f

(I(e), Q̂a(e), α)

and the set of bend constraints BC as

BC =
⋃

e∈Êπ

(e, Q̂b(e), β + γ, β − γ) ∪
⋃

e∈Eπ\Êπ

(e, ε, γ) .

A solution Q of the CONSTRAINED KANDINSKY BEND MINIMIZATION
problem for G′, AC, and BC is an optimal solution of the SKETCH OR-
THOGONALIZATION problem for G′ and Q̂.

Proof:
For the stability of angles at vertices holds:

α ·∆A(Q, Q̂) = α ·
∑
f∈Q̂

∑
(e,a,b)∈f

|Q̂a(e)−
∑

e′∈I(e)

Qa(e′)| =

α ·
∑

(I(e),a,c)∈AC

|a−
∑

e′∈I(e)

Qa(e)| =∑
(I,a,c)∈AC

c · |a−
∑
e∈I

Qa(e)|

130 Interactive Layout

while for stability and cost of bends holds:

β ·∆B(Q, Q̂) + γ · (#bends(Q)−#bends(Q̂)) =
β

2
·
∑
f∈Q̂

∑
(e,a,b)∈f

edit(Q̂b(e), Qb(e)) +

γ

2
· (

∑
f∈Q

∑
(e,a,b)∈f

|Qb(e)| −
∑
f∈Q̂

∑
(e,a,b)∈f

|Q̂b(e)|) =

∑
e∈Êπ

(β · edit(Q̂b(e), Qb(e)) + γ · (|Qb(e)| − |Q̂b(e)|)) +

∑
e∈Eπ\Êπ

γ · |Qb(e)|
Lemma 2.2=

∑
(e,b,ci,cd)∈BC

(edit(ci,cd)(b, Qb(e)) .

This yields for the objective function:

D(Q|Q̂) =
α ·∆A(Q, Q̂) + β ·∆B(Q, Q̂) + γ · (#bends(Q)−#bends(Q̂)) =∑
(I,a,c)∈AC

c · |a−
∑
e∈I

Qa(e)|+
∑

(e,b,ci,cd)∈BC

(edit(ci,cd)(b, Qb(e)) .

This corresponds exactly to the definition of the CONSTRAINED KANDIN-
SKY BEND MINIMIZATION problem in Definition 4.13 which finishes the
proof. 2

The algorithms presented in Chapter 4 to solve the CONSTRAINED
KANDINSKY BEND MINIMIZATION problem apply therefore also for the
SKETCH ORTHOGONALIZATION problem. Like the complexity of the
CONSTRAINED KANDINSKY BEND MINIMIZATION, the complexity of the
SKETCH ORTHOGONALIZATION problem is unknown.

Chapter 7

Experiments

In this chapter we provide experimental evaluations of the algorithms pre-
sented in this work. The implementations of UML-Kandinsky is presented
shortly in Section 7.1 The experimental setting and the test data are de-
scribed in Section 7.2.

In Section 7.3 we compare our implementation of the UML-Kandinsky
algorithm to SugiBib, an automatic layout algorithm for class diagrams
based on the hierarchical graph drawing approach. We perform the tests on
a set of automatically generated class diagrams.

In the following we evaluate the algorithms for each phase of the topology-
shape-metrics approach. In Section 7.4 we study the mixed upward pla-
narization in different settings. First we show how the number of iterations
in algorithm mixed GT (MGT) affects the number of crossings in the pla-
narization. Then we consider the important case of the planarization of
directed graphs and compare our algorithm for mixed-upward planarization
to the hierarchical approach. In Section 7.5 we measure the performance
of the improved heuristic for the KANDINSKY BEND MINIMIZATION prob-
lem. We compare it to the optimal solution obtained from a integer linear
program solver and to the SSP heuristic. In Section 7.6 we study the per-
formance of our compaction algorithm, especially we measure the impact of
visibility post-processing.

Finally we present in Section 7.6 some examples drawings produced by
UML-Kandinsky .

7.1 Implementation of UML-Kandinsky

All algorithms presented in this work have been implemented in the pro-
gramming language Java and are based on or part of yFiles, a powerful
Java library for graph visualization. The presentation of yFiles and the
implementation of the algorithms follows partly [118, 119].

132 Experiments

yFiles is a Java-based library for the visualization and automatic lay-
out of graph structures. Conceptually, the yFiles library consists of three
cooperating components:

The yFiles Basic component contains essential classes and data struc-
tures. It provides very efficient implementations of advanced data structures
like graph, trees and priority queues. It furthermore makes available a wide
variety of graph and network algorithms.

The Viewer/Editor component is built upon the Basic component. It
provides a powerful graph viewer component and other Java-Swing based
graphical user interface (GUI) elements.

The yFiles Layout component is also build upon the Basic component.
It provides a large suite of graph layout algorithms. Diverse layout styles
like hierarchical, orthogonal or circular are supported.

The Layout as well as the Viewer/Editor component can be used as
independent building blocks. Based on the single components, extension
packages in different directions are available and can be added, like support
for different data formats or special applications like biochemical networks.
Our implementation of the layout algorithm for class diagrams is such an
extension package.

Currently the layout component of yFiles includes graph layout algo-
rithms for the following styles: Hierarchical, tree, force-directed, circular-
radial and orthogonal. These algorithms are mostly tuned variants of pub-
lished algorithms [106], [114], [56], [60], [113]. Besides layout algorithms
which assign coordinates to edge paths and nodes, yFiles also supports the
automatic assignment of edge and node label coordinates [24].

The orthogonal layout algorithm of yFiles is our implementation of the
Kandinsky algorithm. The parts of the implementation which are of general
interest in graph visualization have been included in the standard yFiles
distribution, this packages have prefix y. The parts more specialized for
the automatic layout of class diagrams have been bundled in an extension
package, these packages have prefix yext. This is illustrated by package
structure of our algorithms:

• The package y.layout.planar contains classes related to planarity.
This includes implementation of a planar representation, the Gold-
schmit/Takvorian algorithm and undirected edge insertion from Chap-
ter 3.

• The package y.layout.orthogonal contains an implementation of the
Kandinsky and Constrained Kandinsky algorithm of Chapter 4 as
well as an implementation of the compaction algorithm of Chapter 5.

• The package yext.layout.upwardplanar contains classes related to
mixed upward planarity. especially an implementation of the mixed
upward planarization algorithm of Chapter 3.

7.2 Data and Experimental Setting 133

• The package yext.layout.orthogonal.mixed contains the implemen-
tation of the orthogonalization algorithm for UML diagrams described
in 4.

• The package yext.uml.layout.orthogonal contains the layout algo-
rithm for UML class diagrams.

7.2 Data and Experimental Setting

All experiments have been performed on a Pentium IV System with 1.8 GHz
and 512 Megabyte main-memory running Redhat Linux 8.0. We used the
Sun JDK 1.4.1 for Linux as runtime-environment. We used five test sets for
our experiments: Class Diagrams, Rome Graphs, Directed Rome Graphs,
Upward Planar Graphs, and Graphs with Limited Height. These tests are
now described in detail.

7.2.1 Class Diagrams

To test the performance of our algorithm on a larger data set we generated
class diagrams automatically from the byte code of Java programs and Java
libraries. For each package in the byte code, a diagram is created which
contains the classes and interfaces of the package. The diagram contains
all generalization relationship between classes/interfaces, and associations
which are defined by a field of a class. Each connected component of the
diagram with more than two nodes defines one problem instance.

Our test set consists of 1324 class diagrams and is generated from the
following data:

• all classes located in the java-archives which ship with JBoss 4.0 De-
veloper Release (835 diagrams). JBoss is an open-source application
server which uses a lot of libraries from the open source community.

• the classes of the runtime-environment of the Java Development Kit
(JDK) 1.4.1 located in the Java-archive rt.jar (407 diagrams)

• the classes defined by batik.jar, a library for treating SVG docu-
ments in Java (82 diagrams).

The average density of diagrams is 1.06 and the average percentage of
generalization edges in the diagram is 0.49.

7.2.2 Rome Graphs

The Rome-graphs test suite [34] contains about 11.000 undirected connected
graphs. The number of nodes in the test suite ranges from 10 to 100, the
average density of the graphs ranging from 1 to 2 with average value of 1.3.

134 Experiments

������� �������	� �
������� �
������� ��������� �������
� ��������� �������	� �
�����
� �
��������� �����
�
�

�����
�����
�����
�
���
�����
�����
�����
�����
�����
�����
� �� �!

"�#$#
! # %�&

" & "�' � (% % " %

)+*-,/.10-2-3+46587 9-:;:�0-:=<�)=>@?A0CBD< 9FE-2G96,

HI
JKMLN
OP Q R
STN
SJU

Figure 7.1: Distribution of the number of class diagrams with respect to
number of classes in the diagram.

������� �����	��� �
�����
� �����
��
�������� �����	��� �
�����
� �����	��� �
���	��� �����������
�

���
���
���

�����
�����
�����
�
���
�����
�����
�����
�����
�
���
�����
�����

�����

���

� � ��!
"$#

!$%�%

!����

� � " !

� � �

&('*),+-'/.10*2(3/4/'/.('/)$5,6 7 895(0�7 2/.:'<;=4>'@?

AB
CD�EF
GH I J
KLF
K
CM

Figure 7.2: Distribution of percentage of fraction of generalization edges in
the diagram.

7.3 Comparing UML-Kandinsky to SugiBib 135

7.2.3 Directed Rome Graphs

This data set is the directed version of the Rome Graphs test suite. We
transformed the undirected graphs form the Rome Graphs test suite to di-
rected acyclic graphs by directing the edges according to an ordering of the
nodes of the graph. As ordering we chose the implicit ordering of the nodes
as defined in the file.

7.2.4 Upward Planar Graphs

There are two test sets consisting of connected upward planar graphs, the
first contains graphs with density 1.3, the second graphs with density 2.6.
Both test sets contain 910 upward planar graphs, the number of nodes rang-
ing in each from 10 to 100, containing 10 graphs for each node count. The
graphs were generated the following way: First a random set of points in
a triangle was generated. For this point set a delauney triangulation was
performed which yields a planar triangulated graph. We deleted edges ran-
domly until we reached the desired density. To assure that the generated
graphs were connected we computed a spanning tree of the triangulated
graph by randomized DFS and ensured that edges in the spanning tree are
not deleted in the previous step. Finally we directed the edges according to
the coordinates of their endpoints.

7.2.5 Graphs With Limited Height

There are two test sets which contain connected directed graphs with max-
imum height three, the first with density 1.3, the second with density 2.6.
Maximum height three means in this setting that they have a layer assign-
ment with at most three layers. Both test sets contain 910 upward planar
graphs, the number of nodes ranging in each from 10 to 100, containing 10
graphs for each node count. The graphs were generated the following way:
First we distributed randomly the nodes in three layers. To assure that a
generated graph was connected we generated a spanning tree for it. Then
we inserted edges randomly between nodes in neighbored layers until the
desired density was reached.

7.3 Comparing UML-Kandinsky to SugiBib

In this section we compare our implementation of UML-Kandinsky to Sug-
iBib, a sophisticated automatic layout algorithm for UML class diagrams
based on the hierarchical layout paradigm. See Section 2.6.2 for a descrip-
tion of SugiBib. We compare the running time of the algorithms, the number
of crossings, the number of bends, the width, the height and the size of the
diagrams.

136 Experiments

We used the following parameters for UML-Kandinsky in the tests. We
use 50 iterations in the MGT algorithm for determining the mixed-upward-
planar subgraph and enabled rerouting as postprocessing. In the compaction
phase we enabled visibility postprocessing.

For SugiBib we used the following parameters communicated by the au-
thors of the implementation:

OrderingStrategy ORDER HIERARCHICAL LATE
CoordinatesStrategy COORDINATES DETERMINISTIC
ImproveLayout false
NodeSubLayout false
HybridNodeSubLayout false
StretchEntireGraph false
LateOrthogonalization true

We performed the tests on the class diagram test set described in Sec-
tion 7.2. Unfortunately SugiBib failed on 35 of the 1324 test instances. We
excluded these instances from the test set for both algorithms.

Both algorithms show a different behavior for small and for large in-
stances in the test set. While both algorithms perform satisfactory for in-
stances of up to 80 classes, the performance of both algorithms degrades
for instances with more than 80 classes. We first present the results of the
comparison for small instances, then cover large instances.

7.3.1 Tests on Diagrams with up to 80 Classes

In this section we compare both algorithms on class diagrams with less than
80 classes.

In terms of running time and number of crossings UML-Kandinsky is
clearly superior to SugiBib. The comparison of the running times of the algo-
rithms has to be interpreted with care since it is not only heavily dependent
on the algorithm but also on the implementation of the algorithm. But nev-
ertheless it is an indication that the topology-shape-metrics approach can
compete with the hierarchical approach in terms of running time on these
types of test instances.

A more significant measure is the number of crossings in the drawing. We
have seen in the introduction that the number of crossings in a drawing has
a tremendous impact on its readability. Looking at the test-results we see
that drawings of SugiBib have a lot more crossings than drawings of UML-
Kandinsky. In terms of crossings UML-Kandinsky outperforms SugiBib
very clearly.

Drawings of SugiBib have a lower number of bends as the drawings of
UML-Kandinsky. This is due to the fact that generalization edges are drawn
straight-line and only association edges are drawn orthogonal and may pro-

7.3 Comparing UML-Kandinsky to SugiBib 137

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50 60 70 80

m
ill

is
ec

.

nodes

UML-Kandinsky
SugiBib

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80

cr
os

si
ng

s

nodes

UML-Kandinsky
SugiBib

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10 20 30 40 50 60 70 80

be
nd

s

nodes

UML-Kandinsky (all edge)
UML-Kandinsky (non-generalization edges)

SugiBib

138 Experiments

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 10 20 30 40 50 60 70 80

si
ze

nodes

UML-Kandinsky
SugiBib

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80

w
id

th

nodes

UML-Kandinsky
SugiBib

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80

he
ig

ht

nodes

UML-Kandinsky
SugiBib

7.3 Comparing UML-Kandinsky to SugiBib 139

duce bends while in the UML-Kandinsky algorithm all edges are drawn
orthogonal. It makes therefore more sense to compare the number of bends
only for association edges, in which case UML-Kandinsky outperforms Sug-
iBib clearly.

Comparing the area used by the drawings of both algorithms, we see
that drawings of SugiBib use significantly less area than drawings of UML-
Kandinsky. While the width of UML-Kandinsky drawings is even a little
smaller on the average, the height of the drawings is significantly greater.

7.3.2 Tests on Diagrams with more than 80 Classes

In this section we compare both algorithms on class diagrams with more
than 80 classes.

In the original test set there are 19 diagrams with more than 80 classes.
For one instance of this test with 96 classes the execution of SugiBib failed.
We therefore consider only 18 diagrams for our comparison of the algorithms
for large class diagrams. The 18 diagrams have the following properties:

Nr Classes Edges Density Upwardness
1 82 81 0.99 1
2 84 93 1.11 0.35
3 84 110 1.31 0.75
4 91 124 1.36 0.6
5 96 126 1.31 0.83
6 103 263 2.55 1
7 107 147 1.37 0.55
8 111 159 1.43 0.85
9 122 200 1.64 0.65

10 132 235 1.78 0.66
11 138 232 1.68 0.52
12 139 288 2.07 0.53
13 159 257 1.62 0.4
14 199 295 1.48 0.57
15 200 298 1.49 0.43
16 213 485 2.28 0.66
17 297 482 1.62 0.39
18 311 413 1.33 0.54

As for the small diagrams, UML-Kandinsky outperforms SugiBib clearly
in terms of running-time, crossings and bends on association edges. And, as
for small diagrams, UML-Kandinsky uses more area than SugiBib which is
mostly due to the fact that the diagrams have a greater height. However,
the running time of UML-Kandinsky is not satisfactory on some of these

140 Experiments

diagrams. This is not mainly caused by the size of the diagrams, it is because
these diagrams have a lot of crossings. SugiBib performs even worse for these
diagrams.

7.4 Planarization

In this section we evaluate the algorithm for mixed-upward planarization
from Section 3. We first study the performance of the algorithm for class
diagrams and then compare it to the hierarchical approach.

7.4.1 Class Diagrams

In this section we study how the algorithm for mixed upward planarization
behaves for the class diagrams test set.

In our experiments on class diagrams rerouting did not affect the number
of crossings in the drawings significantly. However, the number of iterations
of the mixed-upward-planar subgraph algorithm did have an effect on the
number of crossings in the drawing as we can see in Figure 7.4. Choosing
an even higher number of iterations did not further decrease the crossing
number. The number of directed edges removed from the input graph to
obtain a mixed upward planar graph is at most 16 for all graphs with up to
80 nodes.

7.4.2 Directed Graphs

In this section we present the results of an experimental comparison of our
algorithm to the hierarchical approach. For the experiments we used a ran-
domized version of GT which takes the largest subgraph from 150 different
node orderings. In the experiments we did not use rerouting.

We compare our algorithm to the implementation of the hierarchical ap-
proach in yFiles. This implementation uses a randomized version of the
iterated barycenter method for crossing minimization. This method was
the clear winner of an experimental comparison of heuristics for the cross-
ing minimization problem of layered graph [78]. We performed our experi-
ments on three test sets Directed Rome Graphs, Upward Planar Graphs and
Graphs With Limited Height. Figure 7.5 shows the relation between the av-
erage number of crossings and the number of vertices. Figure 7.6 shows the
relation between average running time and the number of vertices. For the
test sets with density 1.3 our algorithm yields better results than the hierar-
chical approach. In the case of limited height graphs, the improvements are
considerable. For the test sets with density 2.6 the hierarchical approach is
the clear winner. In terms of running time, the hierarchical approach clearly
outperforms our approach, however the running time of our algorithm is still
acceptable for interactive use.

7.4 Planarization 141

Nr Time Cross. Bends A Bends T Area Width Height
1 822 0 0 160 170624 688 248
2 1118 0 64 153 44940 321 140
3 1732 49 25 142 59555 215 277
4 2136 21 93 409 56875 455 125
5 4676 78 8 457 134385 465 289
6 112220 2545 0 1164 384930 658 585
7 2382 22 85 341 108962 362 301
8 5175 126 20 287 119600 260 460
9 9153 141 169 759 135120 563 240

10 15656 546 238 991 208278 406 513
11 17908 347 444 917 402476 842 478
12 22831 610 533 1190 697161 827 843
13 13874 278 381 852 337086 549 614
14 20023 669 459 1057 527646 739 714
15 18688 213 295 927 476064 696 684
16 138268 2415 1033 3019 2035500 1380 1475
17 148309 1588 1152 2322 2050353 1489 1377
18 42230 352 167 703 835315 905 923

(a) Results of UML-Kandinsky

Nr Time Cross. Bends Area Width Height
1 5143 0 0 93391 1531 61
2 5178 290 104 21024 438 48
3 7227 359 187 28080 585 48
4 8025 540 148 43575 1245 35
5 6234 433 84 91860 1531 60
6 129709 7032 293 75384 698 108
7 7081 213 141 54675 729 75
8 6127 503 128 30030 455 66
9 8246 938 250 105750 1175 90

10 60237 3767 374 37202 418 89
11 27794 2885 360 139285 1565 89
12 23095 3806 518 138067 1367 101
13 19031 2972 414 248430 1690 147
14 21877 5043 494 200760 1673 120
15 95813 2386 522 242136 2124 114
16 1995719 36179 786 515430 1242 415
17 264264 9721 791 303096 2076 146
18 109391 8066 749 456741 2671 171

(b) Results of SugiBib

Figure 7.3: Test results for diagrams with more than 80 classes.

142 Experiments

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80

cr
os

si
ng

s

nodes

1 Iteration
50 Iterations

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80

di
re

ct
ed

 E
dg

es
 R

em
ov

ed
 fr

om
 In

pu
t G

ra
ph

nodes

1 Iteration
50 Iterations

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

un
di

re
ct

ed
 E

dg
es

 R
em

ov
ed

 fr
om

 In
pu

t G
ra

ph

nodes

1 Iteration
50 Iterations

Figure 7.4: Results of experiments on class diagrams with up to 80 classes.

7.4 Planarization 143

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

cr
os

si
ng

s

nodes

Upward Embbeder
Sugiyama

(a) Directed Rome Graphs

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

cr
os

si
ng

s

nodes

Upward Embbeder (1.3)
Upward Embedder (2.6)

Sugiyama (1.3)
Sugiyama (2.6)

(b) Upward Planar Graphs

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60 70 80 90 100

cr
os

si
ng

s

nodes

Upward Embbeder (1.3)
Sugiyama (1.3)

Upward Embbeder (2.6)
Sugiyama (2.6)

(c) Limited Height Graphs

Figure 7.5: Experiments on directed graphs: Number of crossings.

144 Experiments

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60 70 80 90 100

m
ill

is
ec

.

nodes

Upward Embbeder
Sugiyama

(a) Rome Graphs

0

1000

2000

3000

4000

5000

6000

7000

8000

10 20 30 40 50 60 70 80 90 100

m
ill

is
ec

.

nodes

Upward Embbeder (1.3)
Upward Embedder (2.6)

Sugiyama (1.3)
Sugiyama (2.6)

(b) Upward Planar Graphs

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

10 20 30 40 50 60 70 80 90 100

m
ill

is
ec

.

nodes

Upward Embbeder (1.3)
Sugiyama (1.3)

Upward Embbeder (2.6)
Sugiyama (2.6)

(c) Limited Height Graphs

Figure 7.6: Experiments on directed graphs: Running time in milliseconds.

7.5 Orthogonalization 145

7.5 Orthogonalization

In this section we compare the improved heuristic with the SSP algorithm
and the optimal solution for KANDINSKY BEND MINIMIZATION problem.
We used the Rome graphs as test set. The optimal solutions have been
computed with the help of an integer linear program solver. The running
time of the solver is prohibitive for practical use but nevertheless acceptable
for testing purposes.

The improved heuristic performed very well on the test set, it never
produced solutions with more than 2 additional bends compared to the
optimal solution. On 13 instances it produced exactly 2 additional bends,
on 392 instances it produced 1 additional bend, the remaining over 10000
instances were solved to optimality.

The SSP algorithm performed worse, its average performance relative to
the optimal solution is shown below.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60 70 80 90 100

be
nd

s

nodes

SSP
ILP

Even the running time of the algorithm is worse than the running time
of the improved heuristic. This is partly due to the fact that the imple-
mentation of the improved heuristic had been carefully tuned in our case.
Nevertheless it indicates that the improved heuristic is also competitive with
respect to running time to the SSP algorithm although it has a higher worse
case running time.

146 Experiments

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

m
ill

is
ec

.

nodes

SSP
Improved heuristics

7.6 Compaction

In this section we present the results of an experimental evaluation of the
compaction algorithm. We executed the compaction algorithm with and
without visibility postprocessing on the class diagram test data. The run-
ning time of the algorithm was always below one second. While visibility
postprocessing increases the running time, it improves significantly the total
edge length and the area consumption of the drawings. Since the increase in
time is not huge compared to the total running time of the UML-Kandinsky
algorithm, it is reasonable to use visibility postprocessing.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60 70 80

to
ta

l E
dg

e
Le

ng
th

nodes

with Visibility-Postprocessing
without Visibility-Postprocessing

7.7 Examples 147

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60 70 80

ar
ea

nodes

with Visibility-Postprocessing
without Visibility-Postprocessing

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80

m
ill

is
ec

.

nodes

with Visibility-Postprocessing
without Visibility-Postprocessing

7.7 Examples

In this section we present some example drawings produced by UML-Kandinsky.
The example diagrams are automatically generated. Each of them visualizes
a package of the Batik project as discussed in Section 7.2.

Figure 7.7 shows a diagram with a balanced number of associations vs.
generalizations. It contains a lot of connected components which are ar-
ranged by a floor planning algorithm. Apparently UML-Kandinsky per-
forms very well on this example, it produces no crossings and few bends.
Figure 7.8 shows a diagram with a deep inheritance hierarchy and few as-
sociations. Again UML-Kandinsky performs very well on this example,
it produces no crossings and few bends. The diagram in Figure 7.9 con-
tains no associations and the classes have a rich signature which results
in large rectangles for representing the classes. The example shows that

148 Experiments

value sac

event

parsersvg

HiddenChildElementSupport

AbstractViewCSS

CSSOMReadOnlyValue

CSSOMReadOnlyStyleDeclaration

«interface»

HiddenChildElement

PropertyMap

CSSDOMExceptionFactory

CSSOMValue

CSSOMStyleDeclaration

CSSOMStyleSheet

CSSDocumentHandler

DOMStyleSheetListAbstractViewCSS.ComputedStyleCache.StrongReference

AbstractViewCSS.ComputedStyleCache

AbstractViewCSS.ComputedStyleCache.Entry

DOMMediaList

CSSOMRuleList

«interface»

ElementNonCSSPresentationalHints

«interface»

ExtendedElementCSSInlineStyle

CSSOMStyleRule

CSSOMReadOnlyStyleDeclaration.ValueEntry

CSSOMReadOnlyStyleDeclaration.ImportantUserAgentValueEntryCSSOMReadOnlyStyleDeclaration.UserAgentValueEntry CSSOMReadOnlyStyleDeclaration.ImportantUserValueEntryCSSOMReadOnlyStyleDeclaration.UserValueEntry CSSOMReadOnlyStyleDeclaration.ImportantAuthorValueEntryCSSOMReadOnlyStyleDeclaration.AuthorValueEntry

CSSOMReadOnlyStyleDeclaration.PropertyMap

AbstractStyleSheet

AbstractCSSRule

«interface»

ElementWithID

«interface»

ElementWithPseudoClass

DocumentHandlerAdapter

CSSOMUnknownRule CSSOMImportRule

«interface»

CSSRuleListOwner

CSSOMMediaRule

CSSOMStyleDeclaration.1

CSSOMStyleDeclaration.ValueEntry

CSSOMStyleDeclaration.StyleDeclarationHandler

PropertyMap.Entry

CSSOMImportRule.ImportRuleHandlerCSSOMMediaRule.MediaRuleHandler

CSSOMStyleRule.StyleRuleHandler

CSSOMUnknownRule.UnknownRuleHandler

−viewCSS

−properties

−oldProperties

−styleSheet

−styles

next

−cssRules

−style

value

next

−properties

«implements» «implements»

−cssRules

value

+this$0

next

+this$0

+this$0

+this$0

+this$0

Figure 7.7: Class diagram of the package org.apache.batik.css. A typical
example for an UML-Kandinsky drawing.

UML-Kandinsky handles diagrams with varying class sizes very well. In
Figure 7.10 a diagram is depicted which contains some reflective associa-
tions and multiple relations between two classes. Again UML-Kandinsky
can handle this type of input and produces a layout without crossings. Fig-
ure 7.11 shows a diagram for which UML-Kandinsky does not performs
very well. It contains a complicated inheritance structure which is highly
non-planar and therefore a lot of crossings are produced. For this type of
diagrams the hierarchical approach seems more appropriate.

7.7 Examples 149

AbstractDocument
RESOURCES:java.lang.String−
localizableSupport:org.apache.batik.i18n.LocalizableSupport−
implementation:org.w3c.dom.DOMImplementation−
traversalSupport:org.apache.batik.dom.traversal.TraversalSupport−
eventsEnabled:boolean−

AbstractParentNode
childNodes:org.apache.batik.dom.AbstractParentNode$ChildNodes−

«interface»

ExtendedNode

AbstractNode
EMPTY_NODE_LIST:org.w3c.dom.NodeList−
ownerDocument:org.apache.batik.dom.AbstractDocument−
eventSupport:org.apache.batik.dom.events.EventSupport−

AbstractParentNode.ChildNodes
firstChild:org.apache.batik.dom.ExtendedNode−
lastChild:org.apache.batik.dom.ExtendedNode−
children:int−
this$0:org.apache.batik.dom.AbstractParentNode+

AbstractText

AbstractCharacterData
nodeValue:java.lang.String−

AbstractAttrNS
namespaceURI:java.lang.String−

AbstractAttr
nodeName:java.lang.String−
unspecified:boolean−
ownerElement:org.w3c.dom.Element−

AbstractElement
attributes:org.w3c.dom.NamedNodeMap−

AbstractChildNode
parentNode:org.w3c.dom.Node−
previousSibling:org.w3c.dom.Node−
nextSibling:org.w3c.dom.Node−

AbstractComment

AbstractEntityReference
nodeName:java.lang.String−

AbstractParentChildNode
parentNode:org.w3c.dom.Node−
previousSibling:org.w3c.dom.Node−
nextSibling:org.w3c.dom.Node−

AbstractElement.NamedNodeHashMap
INITIAL_CAPACITY:int−
table:org.apache.batik.dom.AbstractElement$Entry[]−
count:int−
this$0:org.apache.batik.dom.AbstractElement+

AbstractDocumentFragment

AbstractElementNS
namespaceURI:java.lang.String−

AbstractEntity
nodeName:java.lang.String−
publicId:java.lang.String−
systemId:java.lang.String−

AbstractProcessingInstruction
data:java.lang.String−

AbstractNotation
nodeName:java.lang.String−
publicId:java.lang.String−
systemId:java.lang.String−

GenericComment
readonly:boolean−

GenericAttr
readonly:boolean−

GenericAttrNS
readonly:boolean−

GenericDocument
readonly:boolean−

GenericCDATASection

readonly:boolean−

GenericNotation
readonly:boolean−

GenericElement
nodeName:java.lang.String−
readonly:boolean−

GenericDocumentFragment
readonly:boolean−

GenericText
readonly:boolean−

GenericProcessingInstruction
target:java.lang.String−
readonly:boolean−

GenericEntityReference
readonly:boolean−

GenericElementNS

nodeName:java.lang.String−
readonly:boolean−

GenericEntity
readonly:boolean−

«interface»

StyleSheetFactory

StyleSheetProcessingInstruction
readonly:boolean−
sheet:org.w3c.dom.stylesheets.StyleSheet−
factory:org.apache.batik.dom.StyleSheetFactory−

«implements»

−ownerDocument

−firstChild

−lastChild

+this$0

−childNodes

+this$0

−factory

Figure 7.8: Class diagram of the package org.apache.batik.dom. This
example has a deep inheritance hierarchy and few associations.

150 Experiments

«interface»

ExtendedSelector

match+
getSpecificity+

CSSOMSelectorFactory

INSTANCE:org.w3c.css.sac.SelectorFactory#

<init>+
createConditionalSelector+
createAnyNodeSelector+
createRootNodeSelector+
createNegativeSelector+
createElementSelector+
createTextNodeSelector+
createCDataSectionSelector+
createProcessingInstructionSelector+
createCommentSelector+
createPseudoElementSelector+
createDescendantSelector+
createChildSelector+
createDirectAdjacentSelector+
<clinit>+

CSSOMConditionFactory
INSTANCE:org.w3c.css.sac.ConditionFactory#

<init>+
createAndCondition+
createOrCondition+
createNegativeCondition+
createPositionalCondition+
createAttributeCondition+
createIdCondition+
createLangCondition+
createOneOfAttributeCondition+
createBeginHyphenAttributeCondition+
createClassCondition+
createPseudoClassCondition+
createOnlyChildCondition+
createOnlyTypeCondition+
createContentCondition+
<clinit>+

CSSOMBeginHyphenAttributeCondition

<init>+
getConditionType+
match+
toString+

CSSOMAttributeCondition
localName:java.lang.String−
namespaceURI:java.lang.String−
specified:boolean−

<init>+
equals+
getConditionType+
getNamespaceURI+
getLocalName+
getSpecified+
match+
toString+

AbstractAttributeCondition
value:java.lang.String−

<init>+
equals+
getSpecificity+
getValue+
getSpecified+
getLocalName+
getNamespaceURI+
getConditionType+
match+

«interface»

ExtendedCondition

match+
getSpecificity+

AbstractCombinatorCondition
firstCondition:org.w3c.css.sac.Condition−
secondCondition:org.w3c.css.sac.Condition−

<init>+
equals+
getSpecificity+
getFirstCondition+
getSecondCondition+
getConditionType+
match+

AbstractDescendantSelector
ancestorSelector:org.w3c.css.sac.Selector−
simpleSelector:org.w3c.css.sac.SimpleSelector−

<init>+
equals+
getSpecificity+
getAncestorSelector+
getSimpleSelector+
getSelectorType+
match+

AbstractElementSelector
namespaceURI:java.lang.String−
localName:java.lang.String−

<init>+
equals+
getNamespaceURI+
getLocalName+
getSelectorType+
getSpecificity+
match+

AbstractSiblingSelector
nodeType:short−
selector:org.w3c.css.sac.Selector−
simpleSelector:org.w3c.css.sac.SimpleSelector−

<init>+
getNodeType+
equals+
getSpecificity+
getSelector+
getSiblingSelector+
getSelectorType+
match+

CSSOMAndCondition

<init>+
getConditionType+
match+
toString+

CSSOMChildSelector

<init>+
getSelectorType+
match+
toString+

CSSOMClassCondition

<init>+
getConditionType+
match+
toString+

CSSOMIdCondition

<init>+
getConditionType+
getNamespaceURI+
getLocalName+
getSpecified+
match+
getSpecificity+
toString+

CSSOMLangCondition

lang:java.lang.String−

<init>+
equals+
getConditionType+
getLang+
getSpecificity+
match+
toString+

CSSOMOneOfAttributeCondition

<init>+
getConditionType+
match+
toString+

CSSOMPseudoClassCondition

namespaceURI:java.lang.String−

<init>+
equals+
getConditionType+
getNamespaceURI+
getLocalName+
getSpecified+
match+
toString+

CSSOMConditionalSelector
simpleSelector:org.w3c.css.sac.SimpleSelector−
condition:org.w3c.css.sac.Condition−

<init>+
equals+
getSelectorType+
match+
getSpecificity+
getSimpleSelector+
getCondition+
toString+

CSSOMDescendantSelector

<init>+
getSelectorType+
match+
toString+

CSSOMDirectAdjacentSelector

<init>+
getSelectorType+
match+
toString+

CSSOMElementSelector

<init>+
getSelectorType+
match+
getSpecificity+
toString+

CSSOMPseudoElementSelector

<init>+
getSelectorType+
match+
getSpecificity+
toString+

«implements»

«implements»

«implements»

«implements»

«implements»

«implements»

«implements»

Figure 7.9: Class diagram of package org.apache.batik.css.sac. In this
diagram classes have varying size.

7.7 Examples 151

filter

event

font

renderertext

«interface»

GraphicsNode

GraphicsNodeRenderContext

RootGraphicsNode

CompositeGraphicsNode

CompositeShapePainter

ShapeNode

AbstractGraphicsNode

MarkerShapePainter

FillShapePainter

StrokeShapePainter

Marker

ImageNode

RasterImageNode

PatternPaint

CanvasGraphicsNode

TextNode

TextNode.Anchor

«interface»

Selectable

GraphicsNodeRenderContext.1 GraphicsNodeRenderContext.2«interface»

TextPainter

GraphicsNodeRenderContext.3

«interface»

GraphicsNodeHitDetector

CompositeGraphicsNode.Itr

CompositeGraphicsNode.1

CompositeGraphicsNode.ListItr

«interface»

Selector

GVTTreeWalker

«interface»

ShapePainter

«interface»

Mask

ProxyGraphicsNode

PatternPaintContext

«implements»

−parent

−root

+markerGroup

+markerNode

+startMarker

+middleMarker

+endMarker

+node

+gnrc

START

MIDDLE

END

«implements»

−hitDetector

+this$0

+this$0

−gvtRoot

−currentNode

−shapePainter

«implements»

«implements» «implements»

«implements»

+startMarkerProxy

+endMarkerProxy

−source

Figure 7.10: Class diagram of the package org.apache.batik.gvt. In this
diagram the number of associations is dominating the number of generaliza-
tions.

152 Experiments

«interface»

ClipRable

«interface»

Filter

ClipRable8Bit

AbstractRable

AbstractColorInterpolationRable

«interface»

AffineRable

AffineRable8Bit

«interface»

PaintRable

ColorMatrixRable8Bit

«interface»

ColorMatrixRable

«interface»

FilterColorInterpolation

ComponentTransferRable8Bit

«interface»

ComponentTransferRable

CompositeRable8Bit

«interface»

CompositeRable

«interface»

FilterResRable

«interface»

ConvolveMatrixRable

ConvolveMatrixRable8Bit

DeferRable

«interface»

DiffuseLightingRable

DiffuseLightingRable8Bit

«interface»

DisplacementMapRable

DisplacementMapRable8Bit

PadRable8Bit

FilterAsAlphaRable.1

FilterAsAlphaRable

«interface»

PadRable

FilterAlphaRable

FilterChainRable8Bit

«interface»

FilterChainRable

FilterResRable8Bit

GaussianBlurRable8Bit

«interface»

GaussianBlurRable

«interface»

FloodRable

FloodRable8Bit

MorphologyRable8Bit

«interface»

MorphologyRable

«interface»

TurbulenceRable

«interface»

OffsetRable

ProfileRableRedRable

SpecularLightingRable8Bit

«interface»

SpecularLightingRable

«interface»

TileRable

TileRable8Bit

TurbulenceRable8Bit

«implements»

«implements»

«implements»«implements»

«implements»

«implements»

«implements»«implements»

«implements»

«implements»

src

«implements»

«implements»

«implements»«implements»

«implements»+chainSource

+filterRes+crop

«implements»

«implements»

«implements»

«implements»

«implements»

«implements»

«implements»

«implements»

Figure 7.11: Class diagram of the package
org.apache.batik.awt.image.renderable. The large number of
generalizations lead to a large number of crossings from which the layout of
this diagram suffers.

Chapter 8

Conclusion

In this work we presented UML-Kandinsky a new automatic layout algo-
rithm for UML class diagrams which is based on the topology-shape-metrics
approach.

An example layout of UML-Kandinsky is shown in Figure 8.1. It is the
same diagram as in Figure 2.16. The drawing computed by SugiBib, the hier-
archical approach of Seemann and Eichelberger, contains over twenty cross-
ings while the drawing computed by UML-Kandinsky contains no crossings.

«interface»

IInformation

«interface»

INodeInformation

«interface»

IUMLInformation

UMLAssociationInfo UMLInheritanceInfo

UMLNodeInfo

UMLClassAttribugInfo

MetaClassAttribut

«interface»

IEdgeInformation

UMLClassMethodInfo

MetaClassMethod MetaNodeMetaEdge
MetaGraph

MetaPackageMetaCluster

IUMLEdgeInformation

MetaStereodef

Edge

UMLEdge Node

Graph

UMLGraph

«interface»

IMetaObject

MetaObject

UMLNode

«implements»

«implements»

«implements»

«implements»

«implements»

Figure 8.1: Example layout of UML-Kandinsky for the example in Fig-
ure 2.16.

From our theoretical results and from our empirical evaluation we can
draw the conclusion that UML-Kandinsky is well suited for the automatic
layout of sparse UML class diagrams of moderate size (up to 80 classes).
We have shown that for these types of diagrams our algorithm is superior
to algorithms based on the hierarchical approach like SugiBib. Diagrams

154 Conclusion

found in documentation of software systems usually fall in this category. In
object-oriented modeling it is encouraged to use multiple small diagrams
instead of using few big diagram to model large systems [11, 12].

While UML-Kandinsky still produces satisfiable results for larger dia-
grams we think that other paradigms than the topology-shape-metrics ap-
proach are better suited for this type instances. The topology-shape-metrics
approach tries to minimize crossings in the first place which usually has the
effect that drawings need more area than drawings optimizing the AREA
aesthetic criterion with higher priority. In our opinion the AREA aesthetic
criterion is among the most important aesthetic criterion for large diagrams.
However, there are no empirical evaluations of aesthetic criteria for large di-
agrams yet, until now only fairly small diagrams have been investigated.

Another aspect becoming increasingly important is the interactive lay-
out of UML diagrams. Especially for the use in case tools it is indispensable
that an automatic layout algorithm is interactive. We have proposed a new
paradigm, the sketch-driven approach, for interactive layout. The advan-
tages of this approach are that it is very robust and flexible since it only
depends on a drawing of a subgraph of the input graph and does not keep
state like conventional dynamic graph drawing algorithms. To our knowl-
edge this is the first interactive orthogonal layout algorithm which supports
dynamic changing graphs and user hints to improve the layout.

We will now give a short overview over the individual results of this work
and discuss directions of future research.

8.1 Results

In this work we presented new techniques for the automatic layout of graphs
using the topology-shape-metrics approach which, summarized in the algo-
rithm UML-Kandinsky yield a new automatic layout algorithm for UML
class diagrams. UML-Kandinsky has proven to be far superior to existing
algorithms in a series of experiments.

The new results can be summarized as follows:

• In order to define the problem of automatic layout of UML class di-
agrams mathematically, we analyzed the structure of UML class di-
agrams, their notation and the aesthetic criteria which influence the
readability of them. We analyzed existing automatic layout algorithms
with respect to these criteria. and showed that these algorithms work
only satisfactory if there is rich and deep structural information in the
diagram, an assumption which is often violated in practise.

• We introduced the concept of mixed upward planarity, a generalization
of planarity and upward planarity to mixed graphs. We presented an

8.2 Directions of Future Research 155

algorithm for constructing mixed upward planarizations. For the spe-
cial case when the input graphs are directed, this is the first algorithm
for constructing upward planarizations.

• We showed that the successive-shortest-path algorithm for the KANDIN-
SKY BEND MINIMIZATION problem is not correct, which opens the
question if there is a polynomial time algorithm for this problem.

• We presented a 2-approximation algorithm with running time O(n
7
4 ·√

log n) for the KANDINSKY BEND MINIMIZATION problem, where
n is the size of the plane input graph. This is the first approximation
algorithm for this problem.

• We extended the Kandinsky algorithm to consider constraints on an-
gles and bends. We showed how we can use this extended version of
the algorithm to formulate the special requirements on the layout of
class diagrams.

• We presented the first linear time compaction algorithm for Kandinsky
shapes which can handle prescribed vertex sizes. The algorithm unifies
two existing algorithms for the compaction of point drawings and gives
additional insight into how they work.

• We presented an algorithm for the interactive layout of orthogonal
graph drawings. The algorithm is based on a new concept, the sketch-
driven graph drawing approach. It produces a drawing which balances
readability and change in the drawing. The sketch-driven approach
has applications beyond interactive graph drawing for example the
creation of schematic maps of ground plans.

All algorithms cited in this list have been implemented and results of exper-
iments have been included proving their effectiveness.

8.2 Directions of Future Research

If we have a closer look on the problems and algorithms discussed in this
work many questions comes to our mind, three of them seem to be especially
important:

• Can we devise theoretical or practical better algorithms for the prob-
lems discussed in this work ?

• Can we include more advanced modeling constructs of the UML in
this approach ?

• Can we apply the results of this work to other problem domains than
UML class diagrams ?

In the following sections we will have a closer look on these questions.

156 Conclusion

8.2.1 Improvement of the Presented Algorithms

From a theoretical point of view there remain several questions open.
For the planarization of mixed graphs we used a layering approach to

avoid directed cycles in the planarization. This layering produces sometimes
artifacts and has a negative effect on the running time, since there may be
a linear number of layers. This leads to an algorithm with running time
|V |2|E| for sparse graphs, while in the undirected case the running time is
|V ||E|. It remains an open question if we can devise a faster algorithm for
this problem, probably without using layering.

Regarding the KANDINSKY BEND MINIMIZATION problem, the main
problem is to determine if it is solvable in polynomial time or NP-complete.
Our conjecture is that there is a polynomial time algorithm, however it is not
clear how it looks like. A promising direction is to analyze the polyhedron
defined by the integer linear program of the Kandinsky network with the
help of polyhedral combinatorics. A polynomial time separation algorithm
for the faces of this polyhedron induce a polynomial time algorithm for the
KANDINSKY BEND MINIMIZATION problem.

In this case it is interesting if the CONSTRAINED KANDINSKY BEND
MINIMIZATION problem is also solvable in polynomial time. In the case
that the KANDINSKY BEND MINIMIZATION problem is NP-hard, the CON-
STRAINED KANDINSKY BEND MINIMIZATION is also NP-hard since it is a
generalization of it. In this case it is of interest if we can devise approxima-
tion algorithms for these problems with either better approximation factors
or better running times.

Regarding the compaction phase it is promising to investigate new post-
processing algorithms or adaptions of known post-processing algorithms, like
the 4M algorithm [55], to prescribed vertex-size drawings. In some cases the
area is used very inefficiently by the algorithm. Often this is an effect of the
planarization created in the first phase of the algorithm and using a slightly
different planarization would yield a much more compact drawing.

For interactive layout an issue we have not addressed in this work is
compaction. In our implementation we use the standard compaction algo-
rithm. However, sometimes it may be helpful to preserve some distances
in the sketch drawing, especially in the user supplied constrained scenario.
Furthermore it would be interesting to study other difference metrics than
the angle and bend difference metrics we have used. For example the rel-
ative positions of nodes are not taken into account in this scenario, but is
nevertheless important for preserving the mental map.

8.2.2 Advanced Modeling Constructs

Although we have tried to model almost all constructs of UML class dia-
grams, two notations of the UML are not captured by the class diagram

8.2 Directions of Future Research 157

3-18 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.13.5 Example

Figure 3-5 Packages and their access and import relationships.

Figure 3-6 Some of the contents of the Editor package shown in a tree structure.

Controller

Diagram
Elements

Windowing
System

Domain
Elements

Graphics
Core

Microsoft
Windows

Motif

WindowsCore

MotifCore

Editor

«import»

«import»

«import»

«import»

«import»

«import»

«access»

«access»

Editor

Controller
Diagram
Elements

Domain
Elements

Figure 8.2: Example for clustering from [95].

graph of Chapter 2 and have not been considered in this work: clustering
and edges between edges.

In clustering parts of the diagram are inside a single vertex. Clustering is
used sometimes to emphasize that some classes or packages belong to a cer-
tain package, see Figure 8.2 for an example. Clustering can be modeled by
adding a containment hierarchy to the class diagram graph. All three steps
of the topology-shape-metrics approach have to be adapted to consider clus-
tering. One possible way to incorporate clustering is to merge the concepts
of c-planarity with mixed upward planarity. The concept of c-planarity [52]
extends planarity to clustered graphs. A c-planarization algorithm together
with a sketch for an orthogonalization algorithm is presented in [29]. In [90]
details for an orthogonalization algorithm can be found. We have chosen to
not consider clustering since it is not supported by most modeling tools and
is therefore used rarely in the context of class diagrams. Most tools do only
allow to manipulate a flat diagram.

Edges between edges, as illustrated in Figure 8.3, can not be modeled
with graphs, therefore a model considering them cannot make use of the
enormous amount of results in this field. Since edges between edges are only
used rarely in the UML, it seems not to be worth to abandon the graph data
model to capture a feature which is seldom used, and besides that, is not
supported by most tools. We recommend to handle edges between edges
in a postprocessing step in a combination of an edge routing and a label
placement algorithm.

158 Conclusion

3-28 OMG-Unified Modeling Language, v1.5 March 2003

3 UML Notation Guide

3.16.3 Example

Figure 3-17 Constraints and comment

3.16.4 Mapping

A constraint string is a string enclosed in braces ({ }).

The constraint string maps into the body expression in a Constraint element. The
mapping depends on the language of the expression, which is known to a tool but
generally not displayed on a diagram.

A constraint string following a list entry maps into a Constraint attached to the element
corresponding to the list entry.

A constraint string represented as a stand-alone list element maps into a separate
Constraint attached to each succeeding model element corresponding to subsequent list
entries (until superseded by another constraint or property string).

A constraint string placed near a graphical symbol must be attached to the symbol by a
hidden link by a tool operating in context. The tool must maintain the graphical linkage
implicitly. The constraint string maps into a Constraint attached to the element
corresponding to the symbol.

A constraint string attached to a dashed arrow maps into a constraint attached to the
two elements corresponding to the symbols connected by the arrow.

A string enclosed in braces in a note symbol maps into a Constraint attached to the
elements corresponding to the symbols connected to the note symbol by dashed lines.

Member-of

Chair-of

{subset}Person Committee

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

∗ ∗

∗

∗

∗ 0..1

1

Represents
an incorporated entity.

Figure 8.3: Example for an edge between edges from [95].

8.2.3 New Application Domains

This work contains various extensions of the topology-shape-metrics ap-
proach which enabled us to apply this approach to the automatic layout
of UML class diagrams. However, the extensions can be used to devise
automatic layout algorithms for other application domains with similar re-
quirements.

One obvious application domain are other types of UML diagrams. The
UML specifies several other diagram types than class diagrams: use case
diagrams, component diagrams, sequence diagrams, collaboration diagrams,
statechart diagrams, activity diagrams, and deployment diagrams. To apply
our methods to these diagram types we have first to analyze the aesthetic
criteria which apply to these diagrams.

An interesting diagram type are activity diagrams. See Figure 8.4 for an
example. As in class diagrams there are directed and undirected edges in
activity diagrams and vertices in the diagrams have prescribed size. There-
fore our new methods can be applied to these diagrams. However, activity
diagrams are often layouted in swim lanes, see Figure 8.5 for an example.
We have to extend our framework to consider swim lanes if we want to apply
it to activity diagrams.

Another interesting application domain is the visualization of metabolic
pathways. Diagrams of metabolic pathways contain also hyperedges and
have direction information embedded, which are issues addressed by our new
algorithms. The vertices in diagrams of metabolic pathways have usually
prescribed size since they contain the name of a chemical compound which
may be very long. Until now the hierarchical graph drawing paradigm is
used to visualize diagrams of metabolic networks [110, 48].

8.2 Directions of Future Research 159

Figure 8.4: Example for an activity diagram for Supply-Chain-Management
from [101].

Figure 8.5: Example for an activity diagram with swim lanes from [101].

160 Conclusion

Figure 8.6: Example for a metabolic pathway diagram from [53].

Bibliography

[1] S. S. Ahir. UML in a nutshell. O’Reilly, 1998.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[3] T. Asano, H. Imai, and A. Mukaiyama. Finding a maximum weight
independent set of a circle graph. IEICE Tranactions, E74:681–683,
1991.

[4] O. Bastert and C. Matuszewski. Layered drawings of digraphs. In
M. Kaufmann and D. Wagner, editors, Drawing Graphs: Methods and
Models, volume 2025 of LNCS Tutorial, pages 104–139. Springer, 2001.

[5] C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data
flow diagrams. IEEE Trans. Softw. Eng., SE-12(4):538–546, 1986.

[6] J. L. Bentley and T. A. Ottman. Algorithms for reporting and counting
geometric intersections. IEEE Trans. Comput., C-28:643–647, 1979.

[7] P. Bertolazzi, G. D. Battista, and W. Didimo. Quasi-upward planarity.
Algorithmica, 32(3):474–506, 2002.

[8] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal
upward planarity testing of single-source digraphs. SIAM Journal on
Computing, 27(1):132–169, 1998.

[9] C. Binucci, W. Didimo, G. Liotta, and M. Nonato. Labeling heuristics
for orthogonal drawings. In Proceedings of the 9th International Sym-
posium on Graph Drawing (GD’2001), volume 2275 of LNCS, pages
139–153, 2001.

[10] C. Binucci, W. Didimo, G. Liotta, and M. Nonato. Computing labeled
orthogonal drawings. In Proceedings of the 10th International Sym-
posium on Graph Drawing (GD’2002), volume 2528 of LNCS, pages
66–73, 2002.

[11] G. Booch. Object Oriented Design and Analysis. Addison-Wesley,
1994.

162 BIBLIOGRAPHY

[12] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, 1999.

[13] K. S. Booth and G. S. Lueker. Testing for the consecutive ones prop-
erty, interval graphs and graph planarity using PQ-tree algorithms.
Journal of Computer and System Sciences, 13:335–379, 1976.

[14] U. Brandes. Layout of Graph Visualizations. PhD thesis, University
of Konstanz, 1999.

[15] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, , and M. S.
Marshall. Graphml progress report: Structural layer proposal. In
Proceedings of the 9th International Symposium on Graph Drawing
(GD’2001), volume 2265, pages 501–512. Springer, 2002.

[16] U. Brandes, M. Eiglsperger, M. Kaufmann, and D. Wagner. Sketch-
driven orthogonal graph drawing. In Proceedings of the 10th Interna-
tional Symposium on Graph Drawing (GD’2002), volume 2528, pages
1–12. Springer, 2002.

[17] U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph
layout. In Proceedings of the 5th International Symposium on Graph
Drawing (GD’97), volume 1353 of LNCS, pages 236–247, 1997.

[18] U. Brandes and D. Wagner. Dynamic grid embedding with few bends
and changes. In Proceedings of the 9th Annual International Sympo-
sium on Algorithms and Computation (ISAAC’98), volume 1533 of
LNCS, pages 89–98, 1998.

[19] J. Branke. Dynamic graph drawing. In M. Kaufmann and D. Wagner,
editors, Drawing Graphs: Methods and Models, LNCS Tutorial, pages
228–246. Springer, 2001.

[20] S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and
L. Vismara. Turn-regularity and optimal area drawings for orthogonal
representations. Computational Geometry Theory and Applications,
1999. To appear.

[21] S. Bridgeman, J. Fanto, A. Garg, R. Tamassia, and L. Vismara. In-
teractiveGiotto: An algorithm for interactive orthogonal graph
drawing. In Proceedings of the 5th International Symposium on Graph
Drawing (GD’97), volume 1353 of LNCS, pages 303–308, 1997.

[22] S. Bridgeman and R. Tamassia. Difference metrics for interactive or-
thogonal graph drawing algorithms. Journal of Graph Algorithms and
Applications, 4(3):47–74, 2000.

BIBLIOGRAPHY 163

[23] S. Chidamber and C. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):467–493,
1994.

[24] J. Christensen, J. Marks, and S. Shieber. An empirical study of al-
gorithms for point-feature label placement. ACM Transactions on
Graphics, 14(3):203–232, 1995.

[25] R. Cimikowski. An analysis of heuristics for the maximum planar
subgraph problem. In Proceedings of the 6th ACM-SIAM Symposium
of Discrete Algorithms, pages 322–331, 1995.

[26] M. Closson, S. Gartshore, J. Johansen, and S. Wismath. Fully dynamic
3-dimensional orthogonal graph drawing. Journal of Graph Algorithms
and Applications, 5(2):1–35, 2001.

[27] E. G. Coffman and R. L. Graham. Optimal scheduling for two pro-
cessor systems. Acta Informatica, 1:200–213, 1972.

[28] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
McGraw-Hill, 1990.

[29] G. Di Battista, W. Didimo, and A. Marcandalli. Planarization of
clustered graphs. In Proceedings of the 9th International Symposium
on Graph Drawing (GD’2001), volume 2275 of LNCS, pages 60–74,
2001.

[30] G. Di Battista, W. Didimo, M. Patrignani, and M.Pizzonia. Drawing
database schema with DBdraw. In Proceedings of the 9th Interna-
tional Symposium on Graph Drawing (GD’01), LNCS, pages 451–452.
Springer, 2001.

[31] G. Di Battista, W. Didimo, M. Patrignani, and M.Pizzonia. Drawing
relational schema. Software Practice and Experience, to appear.

[32] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthog-
onal and quasi-upward drawings with vertices of prescribed size. In
J. Kratochvil, editor, Proceedings of the 7th International Symposium
on Graph Drawing (GD’99), volume 1731 of LNCS, pages 297–310.
Springer, 1999.

[33] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[34] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and
F. Vargiu. An experimental comparison of four graph drawing algo-
rithms. Comput. Geom. Theory Appl., 7:303–325, 1997.

164 BIBLIOGRAPHY

[35] G. Di Battista, W.-P. Liu, and I. Rival. Bipartite graphs, upward
drawings, and planarity. Information Processing Letters, 36(6):317–
322, 1990.

[36] G. Di Battista and R. Tamassia. On-line graph algorithms with
SPQR-trees. In Proceedings of the 17th International Colloqium on
Automata, Languages and Programming (ICALP’90), volume 443 of
Lecture Notes in Computer Science, pages 598–611, 1990.

[37] W. Didimo, M. Patrignani, and M.Pizzonia. Industrial plant drawer.
In Proceedings of the 9th International Symposium on Graph Drawing
(GD’01), LNCS, pages 475–476. Springer, 2001.

[38] R. Diestel. Graph Theory. Springer, 2nd edition, 2000.

[39] H. do Nascimento and P. Eades. User hints for directed graph drawing.
In Proceedings of the 9th International Symposium on Graph Drawing
(GD’2001), volume 2265, pages 124–138. Springer, 2001.

[40] P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental
map of a diagram. Proc. Compugraphics ’91, pages 24–33, 1991.

[41] H. Eichelberger. Automatisches Zeichnen von UML Klassendia-
grammen mit dem Sugiyama-Algorithmus in Tagungsband des GI-
Workshops Softwarevisualisierung 2000. Technical Report A/01/2000,
Universität des Saarlandes, 2000.

[42] H. Eichelberger. Aesthetics of class diagrams. In Proc. of the First
IEEE International Workshop on Visualizing Software for Under-
standing and Analysis, Vissoft 2002, pages 23–31, 2002.

[43] H. Eichelberger. Evaluation-report on the layout facilities of uml
tools. Technical Report 298, Lehrstuhl für Informatik II, Universität
Würzburg, 2002.

[44] H. Eichelberger. Nice class diagrams admit good design ? In Pro-
ceedings of ACM 2003 Symposium on Software Visualization, SoftVis
2003, pages 159–167. ACM, 2003.

[45] M. Eiglsperger, S. Fekete, and G. Klau. Orthogonal graph drawing.
In M. Kaufmann and D. Wagner, editors, Drawing Graphs: Methods
and Models, LNCS Tutorial, pages 121–171. Springer, 2001.

[46] M. Eiglsperger, U. Foessmeier, and M. .Kaufmann. Orthogonal graph
drawing with constraints. In Proc. 11th ACM-SIAM Symposium on
Discrete Algorithms, pages 3–11, 2000.

BIBLIOGRAPHY 165

[47] M. Eiglsperger and M. Kaufmann. An approach for mixed upward
planarization. In Proceedings of the 7th International Workshop on Al-
gorithms and Datastructures (WADS 2001), pages 352–364. Springer,
2001.

[48] M. Eiglsperger and M. Kaufmann. Visualization of biodegradation
pathways in the um-bbd. In Currents in Computational Molecular
Biology, pages 223–224. Les Publications CRM, 2001.

[49] M. Eiglsperger and M. Kaufmann. Fast compaction for orthogonal
drawings with vertices of prescribed size. In Proceedings of the 9th
International Symposium on Graph Drawing (GD’2001), volume 2265,
pages 124–138. Springer, 2002.

[50] M. Eiglsperger, M. Kaufmann, and F. Eppinger. An approach for
mixed upward planarization. Journal of Graph Algorithms and Appli-
cations, 7(2):203–220, 2003.

[51] M. Eiglsperger, M. Kaufmann, and M. Siebenhaller. A topology-
shape-metrics approach for the automatic layout of uml class diagram.
In Proceedings of ACM 2003 Symposium on Software Visualization,
SoftVis 2003, pages 189–198. ACM, 2003.

[52] Q.-W. Feng, R. F. Cohen, and P. Eades. Planarity for clustered
graphs. In Proceedings of the 3rd European Symposium on Algorithms
(ESA’95), volume 979 of LNCS, pages 213–226. Springer, 1995.

[53] M. Forster, A. Pick, M. Raitner, F. Schreiber, and F. Branden-
burg. The system architecture of the biopath system. Silicio Biology,
2(3):415–426, 2002.

[54] U. Fößmeier. Orthogonale Visualisierungstechniken für Graphen. PhD
thesis, Eberhard-Karls-Universität zu Tübingen, 1997.

[55] U. Fößmeier, C. Heß, and M. Kaufmann. On improving orthogonal
drawings: The 4M-algorithm. In S. H. Whitesides, editor, Proceed-
ings of the 6th International Symposium on Graph Drawing (GD’98),
volume 1547 of LNCS, pages 125–137. Springer, 1998.

[56] U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low
bend numbers. In F. J. Brandenburg, editor, Proceedings of the 3rd
International Symposium on Graph Drawing (GD’95), volume 1027 of
LNCS, pages 254–266. Springer, 1996.

[57] U. Fößmeier and M. Kaufmann. Algorithms and area bounds for non-
planar orthogonal drawings. In G. Di Battista, editor, Proceedings of
the 5th International Symposium on Graph Drawing (GD’97), volume
1353 of LNCS, pages 134–145. Springer, 1997.

166 BIBLIOGRAPHY

[58] M. Fowler and K. Scott. UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley, 2nd edition, 1999.

[59] K. Freiwalds, U. Dogrusoz, and P. Kikusts. Disconnected graph lay-
out and the polyomino packing approach. In Proceedings of the 9th
International Symposium on Graph Drawing (GD’2001), volume 2265
of LNCS, pages 378–391. Springer, 2001.

[60] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algo-
rithm for undirected graphs. In Proceedings of the 2nd International
Symposium on Graph Drawing (GD’94), volume 894 of Lecture Notes
in Computer Science, pages 388–403, 1995.

[61] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1995.

[62] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A tech-
nique for drawing directed graphs. IEEE Transactions on Software
Engineering, 19(3):214–230, 1993.

[63] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP–Completeness. W.H. Freeman & Co,
1979.

[64] M. R. Garey and D. S. Johnson. Crossing number is NP-complete.
SIAM Journal on Algebraic and Discrete Methods, 4:312–316, 1983.

[65] A. Garg and R. Tamassia. On the complexity of upward and rectilinear
planarity testing. In Proceedings of the 2nd International Symposium
on Graph Drawing (GD’94), volume 894 of LNCS, pages 286–297,
1995.

[66] A. Garg and R. Tamassia. A new minimum cost flow algorithm with
applications to graph drawing. In Proceedings of the 4th International
Symposium on Graph Drawing (GD’96), volume 1190 of LNCS, pages
201–216, 1997.

[67] N. Gelfand and R. Tamassia. Algorithmic patterns for orthogonal
graph drawing. In Proceedings of the 6th International Symposium
on Graph Drawing (GD’98), volume 1547 of LNCS, pages 138–152.
Springer, 1998.

[68] O. Goldschmidt and A. Takvorian. An efficient graph planarization
two-phase heuristic. Networks, 24:69–73, 1994.

[69] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and
P. Mutzel. Caesar automatic layout of uml class diagrams. In
Proceedings of the 9th International Symposium on Graph Drawing
(GD’2001), volume 2265 of LNCS. Springer, 2002.

BIBLIOGRAPHY 167

[70] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and
P. Mutzel. A new approach for visualizing uml class diagrams. In Pro-
ceedings of ACM Symposium on Software Visualization’2003. ACM, to
appear.

[71] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into
a planar graph. In Proceedings of the Twelfth ACM-SIAM Symposium
on Discrete Algorithms, (SODA ’2001), pages 246–255. ACM Press,
2001.

[72] P. Healy and N. Nikolov. A branch-and-cut approach to the directed
acyclic graph layering problem. In Proceedings of the 10th Inter-
national Symposium on Graph Drawing (GD’2002), volume 2528 of
LNCS, pages 98–109. Springer, 2002.

[73] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of
the ACM, 21:549–568, 1974.

[74] M. D. .Hutton and A. Lubiw. Upward planar drawing of single source
acyclic digraphs. In Proceedings of the 2nd ACM-SIAM Symposium
on Discrete Algorithms (SODA’91), pages 203–211, 1991.

[75] J. Ignatowicz. Drawing force-directed graphs using Optigraph. In F. J.
Brandenburg, editor, Proceedings of the 3rd International Symposium
on Graph Drawing (GD’95), volume 1027 of LNCS, pages 333–336.
Springer, 1996.

[76] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. o(n2) algo-
rithms for graph planarization. In IEEE Trans. on CAD, volume 8
(3), pages 257–267, 1989.

[77] M. Jünger and P. Mutzel. Solving the maximum weight planar sub-
graph problem by branch & cut. In Proc. of the 3rd conference on
integer programming and combinatorial optimization (IPCO), pages
479–492, 1993.

[78] M. Jünger and P. Mutzel. 2-layer straightline crossing minimization:
Performance of exact and heuristic algorithms. Journal of Graph Al-
gorithms and Applications (JGAA), 1(1):1–25, 1997.

[79] G. Kant. An O(n2) maximal planarization algorithm based on PQ-
trees. Technical Report RUU-CS-92-03, CS Dept., Univ. Utrecht,
Netherlands, 1992.

[80] R. Karp. Reducibility among combinatorical problems. In Complexity
of Computer Computations, pages 85–103. Plenum Press, New York,
1972.

168 BIBLIOGRAPHY

[81] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and
Models. LNCS Tutorial. Springer, 2001.

[82] G. W. Klau, K. Klein, and P. Mutzel. An experimental comparison
of orthogonal compaction algorithms. In Proceedings of the 8th Inter-
national Symposium on Graph Drawing (GD’2000), number 1984 in
LNCS, pages 37–51, 2001.

[83] G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar
graphs. Technical Report 98-1-013, Max-Planck-Institut für Infor-
matik, Saarbrücken, 1998.

[84] G. W. Klau and P. Mutzel. Combining graph labeling and compaction.
In J. Kratochvil, editor, Proceedings of the 7th International Sympo-
sium on Graph Drawing (GD’99), number 1731 in LNCS, pages 27–37.
Springer, 1999.

[85] G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid
drawings. In Integer Programming and Combinatorial Optimization
(IPCO’99), number 1610 in LNCS, pages 304–319, 1999.

[86] P. N. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-
path algorithms for planar graphs. In Proceedings ACM Symp. on
Theory of Computing, 1994.

[87] K. Kuratowski. Sur le problme des courbes gauches en topologie. Fund.
Math., 15:271–283, 1930.

[88] U. Lauther and A. Stübinger. Generating schematic cable plans using
springembedder methods. In Proceedings of the 9th International Sym-
posium on Graph Drawing (GD’2001), volume 2265 of LNCS, pages
465–466. Springer, 2001.

[89] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.
Applicable Theory in Computer Science. Wiley-Teubner, 1990.

[90] D. Lütke-Hüttemann. Knickminimales zeichnen 4-planarer cluster-
graphen. Master’s thesis, Universität des Saarlands, 1999.

[91] T. Masui. Graphic object layout with interactive genetic algorithms.
In Proceedings of the 1992 IEEE Workshop on Visual Languages
(VL ’92), pages 74–87, 1992.

[92] K. Mehlhorn and S. Näher. Implementation of a sweep line algorithm
for the straight line segment intersection problem. Technical Report
MPI-I-94-160, Max-Planck-Institut für Informatik, 1994.

BIBLIOGRAPHY 169

[93] X. Mendonça and P. Eades. Learning aesthetics for visualization. In
Anais do XX Seminário Integrado de Software e Hardware, pages 76–
88, Florianópolis, Brazil, 1993.

[94] S. C. North. Incremental layout with DynaDag. In Proceedings of
the 3rd International Symposium on Graph Drawing (GD’95), volume
1027 of Lecture Notes in Computer Science, pages 409–418, 1996.

[95] OMG. Unified Modeling Language v1.4, 2001. http://www.omg.org/
technology/documents/formal/uml.htm.

[96] A. Papakostas. Upward planarity testing of outerplanar dags. In
Proceedings of the DIMACS International Workshop on Graph Draw-
ing (GD’94). Springer Lecture Notes in Computer Science 894, pages
298–306, 1994.

[97] A. Papakostas and I. G. Tollis. Issues in interactive orthogonal graph
drawing. In Proceedings of the 3rd International Symposium on Graph
Drawing (GD’95), volume 1027 of LNCS, pages 419–430. Springer,
1995.

[98] G. Paris. Cooperation between interactive actions and automatic
drawing in a schematic editor. In S. H. Whitesides, editor, Proceed-
ings of the 6th International Symposium on Graph Drawing (GD’98),
volume 1547 of LNCS, pages 394–402. Springer, 1998.

[99] M. Patrignani. On the complexity of orthogonal compaction. Technical
Report RT–DIA–39–99, Dipartimento di Informatica e Automazione,
Università degli Studi di Roma Tre, January 1999.

[100] M. Patrignani. On the complexity of orthogonal compaction. Compu-
tational Geometry: Theory and Applications, 19(1):47–67, 2001.

[101] S. Polyak, J. Lee, M. Gruninger, and C. Menzel. Applying the process
interchange format (pif) to a supply chain process interoperability
scenario. In A. Gomez-Perez and R. Benjamins, editors, Proceedings
of the Workshop on Applications of Ontologies and Problem Solving
Methods, ECAI’98, 1998.

[102] H. C. Purchase. Which aesthetic has the greatest effect on human
understanding ? In Proceedings of the 5th International Symposium
on Graph Drawing (GD’97), volume 1353 of LNCS, pages 248–261,
1997.

[103] H. C. Purchase, J. A. Allder, and D. Carrington. User preference
of graph layout aesthetics: A uml study. In Proceedings of the 8th
International Symposium on Graph Drawing (GD’2000), volume 1984
of LNCS, pages 5–18. Springer, 2000.

http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm

170 BIBLIOGRAPHY

[104] H. C. Purchase, R. F. Cohen, and M. James. An experimental study of
the basis for graph drawing algorithms. ACM Journal of Experimental
Algorithmics, 2(4), 1997.

[105] H. C. Purchase, M. McGill, L. Colpoys, and D. Carrington. Graph
drawing aesthetics and the comprehension of uml class diagrams: an
empirical study”. In Proceedings of the Australian Symposium on In-
formation Visualization, volume 9. Australian Computer Society Inc.,
2001.

[106] E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE
Transactions on Software Engineering, 7(2):223–228, 1981.

[107] M. Resende and C. Ribeiro. A grasp for graph planarization. Networks,
29:173–189, 1997.

[108] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts of planar
graphs and bipolar orientations. Discrete & Computational Geometry,
1(4):342–351, 1986.

[109] K. Ryall, J. Marks, and S. Shieber. An interactive system for drawing
graphs. In S. C. North, editor, Proceedings of the 4th International
Symposium on Graph Drawing (GD’96), volume 1190 of LNCS, pages
387–394. Springer, 1997.

[110] F. Schreiber. Visualisierung biochemischer Reaktionsnetze. PhD the-
sis, University of Passau, 2001.

[111] J. Seemann. Extending the Sugiyama algorithm for drawing UML
class diagrams: Towards automatic layout of object-oriented software
diagrams. In Proceedings of the 5th International Symposium on Graph
Drawing (GD’97), volume 1353 of LNCS, pages 415–424, 1997.

[112] M. Sirava, T. Schfer, M. .Eiglsperger, M. .Kaufmann, O. .Kohlbacher,
E. .Bornberg-Bauer, and H.-P. Lenhof. Biominer - modeling, analyz-
ing, and visualizing biochemical pathways and networks. Bioinformat-
ics, 19(10):219–230, 2002.

[113] J. Six and I. Tollis. Circular drawings of biconnected graphs. In Pro-
ceedings.of Alenex’99, volume 1619 of LNCS, pages 57–73. Springer,
1999.

[114] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual under-
standing of hierarchical system structures. IEEE Transactions on
Systems, Man, and Cybernetics, 11(2):109–125, February 1981.

[115] R. Tamassia. On embedding a graph in the grid with the minimum
number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.

BIBLIOGRAPHY 171

[116] R. Tamassia and I. G. Tollis. A unified approach to visibility rep-
resentations of planar graphs. Discrete & Computational Geometry,
1(4):321–341, 1986.

[117] F. Wagner and A. Wolff. A combinatorial framework for map labeling.
In Proceedings of the 6th International Symposium on Graph Drawing
(GD’98), number 1547 in LNCS, pages 316–331. Springer, 1998.

[118] R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization
and automatic layout of graphs. In Proceedings of the 9th Interna-
tional Symposium on Graph Drawing (GD’01), LNCS, pages 453–454.
Springer, 2001.

[119] R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization
and automatic layout of graphs. In M. Jünger and P. Mutzel, editors,
Graph Drawing Software. Springer, to appear.

172 BIBLIOGRAPHY

Lebens- und Bildungsgang

Name: Markus Eiglsperger
Familienstand: verheiratet

13.06.1973 geboren in Singen am Hohentwiel

1979 - 1983 Besuch der Grundschule in Öhningen

1983 - 1992 Besuch des Ambrosius-Blarer-Gymnasiums in Gaienhofen

05/1992 Abitur (Note: 1.4)

Leistungskurse: Mathematik und Physik

07/1992 - 10/1993 Zivildienst beim Mobilen Sozialen Hilfsdienst

der Arbeiterwohlfahrt in Singen am Hohentwiel

10/1993 - 12/1999 Studium der Informatik mit Nebenfach Mathematik

an der Eberhard-Karls-Universität Tübingen

10/1995 Vordiplom in Informatik, Nebenfach Mathematik

(Note: sehr gut)

09/1996 - 09/1997 Auslandsstudium an der Université de Franche-Comté

in Besançon, Frankreich

06/1997 - 08/1997 Praktikum bei der Hewlett-Packard GmbH in Böblingen:

”Erstellung von Utlities zum Komprimieren von Software“

09/1997 Mâıtrise (Note: bien)

07/1999 Diplomarbeit (bei Prof. Kaufmann) im Fach Informatik (vgl.[46]):

”Constraints im Kandinsky-Algorithmus“

11/1999 Diplom in Informatik, Nebenfach Mathematik (Note: sehr gut)

seit 12/1999 Promotion an der Fakultät für Informatik, Universität Tübingen,

Arbeitsbereich Paralles Rechnen (Prof. M. Kaufmann)

Publikationen: [15, 16, 45, 46, 47, 48, 49, 50, 51, 112, 118, 119]

	Introduction
	Automatic Layout of Class Diagrams
	Preliminaries and Notion
	Strings
	Graphs
	Drawing of Graphs
	Planarity

	A Graph Based Model for Class Diagrams
	Semantic Entities Mapping to a Vertex
	Semantic Entities Mapping to an Edge
	Complex Symbols
	Other Model Elements

	The CLASS DIAGRAM LAYOUT Problem
	Applying the Topology-Shape-Metrics Approach to Class Diagrams
	UML-Kandinsky
	Related Work
	Automatic Layout in UML-Tools
	The Seemann Algorithm and its Enhancements
	GoVisual

	Mixed Upward Planarization
	Mixed Upward Planarity
	Maximum Mixed Upward Planar Subgraph
	The Goldschmidt/Takvorian Planarization Algorithm
	The Algorithm for Mixed Graphs

	Edge Insertion
	Insertion of Undirected Edges
	Insertion of Directed Edges

	Rerouting
	Complete Algorithm

	Orthogonalization
	Tamassia's Algorithm
	Generalizations of Tamassia's Algorithm Using Reduction
	Kandinsky
	The Kandinsky Model
	The Network Flow Formulation

	Solving the Kandinsky Network Flow Problem
	Complexity of Solving Arc Partition Minimum Cost Flow Networks
	The Negative-Cycle Approach to Solve the KANDINSKY BEND MINIMIZATION Problem
	A 2-Approximation Algorithm
	An Improved Heuristic

	Constraints in Kandinsky
	Orthogonalization of UML Class Diagrams
	Mixed Upward Orthogonal Drawings
	Orthogonalization of the Upward Subgraph
	The Complete Algorithm

	Compaction
	Previous Work
	Compaction of Orthogonal Shapes
	Compaction in the Kandinsky Model
	Label Placement

	The Compaction Algorithm
	Label Placement
	One-Dimensional Compaction

	The Shape Graph Approach
	A Linear Time Compaction Algorithm
	Compaction Shape
	Complete Shape Extensions of Kandinsky Shapes
	Computing the Length Complete Shape Extension
	Coordinate Assignment
	Arbitrary Number of Edges at One Side

	Interactive Layout
	The Algorithm
	Interactive Planarization
	The Straight Line Segment Intersection Problem
	Valid Drawings
	Determining the Valid Subgraph

	Interactive Orthogonalization

	Experiments
	Implementation of UML-Kandinsky
	Data and Experimental Setting
	Class Diagrams
	Rome Graphs
	Directed Rome Graphs
	Upward Planar Graphs
	Graphs With Limited Height

	Comparing UML-Kandinsky to SugiBib
	Tests on Diagrams with up to 80 Classes
	Tests on Diagrams with more than 80 Classes

	Planarization
	Class Diagrams
	Directed Graphs

	Orthogonalization
	Compaction
	Examples

	Conclusion
	Results
	Directions of Future Research
	Improvement of the Presented Algorithms
	Advanced Modeling Constructs
	New Application Domains

