Graph Separators:
A Parameterized View

Jochen Alber
Henning Fernau
Rolf Niedermeier

WSI-2001-8

Wilhelm-Schickard-Institut fir Informatik
Universitat Tiubingen

Sand 13

D-72076 Tubingen

Germany

E-Mail: alber,fernau,niedermr@informatik.uni-tuebingen.de

Telefon: (07071) 29-77569/5/8
Telefax: (07071) 29-5061

(© Wilhelm-Schickard-Institut fiir Informatik, 2001
ISSN 0946-3852






Graph Separators: A Parameterized View*

Jochen Alber’ Henning Fernau  Rolf Niedermeier
Wilhelm-Schickard-Institut fiir Informatik, Universitat Tibingen
Sand 13, D-72076 Tiibingen, Fed. Rep. of Germany

{alber,fernau,niedermr}@informatik.uni-tuebingen.de

Abstract

Graph separation is a well-known tool to make (hard) graph problems
accessible to a divide and conquer approach. We show how to use
graph separator theorems in combination with (linear) problem kernels
in order to develop fixed parameter algorithms for many well-known
NP-hard (planar) graph problems. We coin the key notion of glueable
select&verify graph problems and derive from that a prospective way
to easily check whether a planar graph problem will allow for a fixed
parameter algorithm of running time VF 00 for constant c.

Besides, we introduce the novel concept of “problem cores” that
might serve as an alternative to problem kernels for devising parame-
terized algorithms. One of the main contributions of the paper is to
exactly compute the base ¢ of the exponential term and its dependence
on the various parameters specified by the employed separator theo-
rem and the underlying graph problem. We discuss several strategies
to improve on the involved constant c.

Our findings also give rise to studying further refinements of the
complexity class FPT of fixed parameter tractable problems.
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terized complexity, graph separators, separator theorems, divide and conquer
algorithms.
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1 Introduction

It is a common fact that algorithm designers are often faced with problems
which, when viewed from classical computational complexity theory, are “in-
tractable.” More formally speaking, these problems can be shown to be
NP-hard [24]. In many applications, however, a certain part (called the pa-
rameter) of the whole problem can be identified which tends to be of small
size k when compared with the size n of the whole problem instance. This
leads to the study of parameterized complexity [5, 18, 22].

Fixed parameter tractability. Formally, a parameterized problem is a
(two-dimensional) language L over ¥* x N, where ¥ is some alphabet. The
second coordinate of an element (I, k) € L is called the parameter. We say
that L is fixed parameter tractable if there exists an algorithm that decides
the word problem on input (7, k) running in time f(k)n°"), where n = |I|
and f is an arbitrary function that captures the inherent combinatorial ex-
plosion of the problem and that only depends on k. The number £ is also
called the parameter of the problem (instance).! The associated complexity
class is called FPT. We will also term such algorithms “f(k)-algorithms” for
brevity, focusing on the exponential part of the running time bound. Typ-
ically in the literature, such functions f for fixed parameter problems are
f(k) =¥, f(k) = k¥, or f(k) = . Of course, designing fixed parameter
algorithms with a “small” function f is desirable. To our knowledge, so far,
only one non-trivial fixed parameter tractability result where the correspond-
ing function f is sublinear in the exponent, namely f(k) = ¢V is known 1] :
DOMINATING SET on planar graphs. Similar results hold for closely related
problems on planar graphs such as FACE COVER, INDEPENDENT DOMINAT-
ING SET, WEIGHTED DOMINATING SET, etc. [1]. In a companion paper,
we improved this result to apply to a much broader class of planar graph
problems, presenting a general methodology based on concepts such as tree
decompositions and bounded outerplanarity and introducing the novel so-
called “Layerwise Separation Property” as a key unifying tool [3]. Here,
we will also discuss a rather general approach for obtaining parameterized
graph algorithms running in time O(c**)-¢(n)) for sublinear functions e, i.e.,
e(k) € o(k). By way of contrast, however, we investigate the usefulness of
(planar) separator theorems in this context, yielding a new, alternative and
conceptually rather different framework in comparison with [3].

Scope of the paper. Up to now, several interesting but specialized fixed-

'Tn the applications encountered in this paper, the parameter will always be a number.
This number is encoded in unary, so that we need not distinguish between the parameter
and its size.



parameter algorithms have been developed. The thrust has been to improve
running times in a problem-specific manner, e.g., by extremely sophisticated
case distinctions as can be seen in the case of VERTEX COVER and its vari-
ants [12, 23, 31, 32, 33, 39]. It is a crucial goal throughout the paper not to
narrowly stick to problem-specific approaches, but to try to widen the tech-
niques as far as possible. More specifically, we show how to use separator
theorems for different graph classes, such as, e.g., the well-known planar sep-
arator theorem due to Lipton and Tarjan [28], in combination with known
algorithms for obtaining linear size problem kernels (such “small” kernels
are known, e.g., for VERTEX COVER, see Subsection 2.1), in order to obtain
fixed parameter algorithms.

Our approach can be sketched as follows: We will apply the problem
kernel reduction and, then, use (planar) separator theorems as already Lip-
ton and Tarjan [29] do in order to pursue a divide and conquer strategy on
the set of reduced instances. We do, however, take much more care for the
dependence of the “graph separator parameters” on the recurrences in the
running time analysis. In addition, we obviously consider a broader class
of problems that can be attacked by this approach (namely, in principle, all
so-called glueable select&verify problems such as, e.g., DOMINATING SET?).
Doing so, we exhibit the importance of a special form of separators, so-called
cycle separators and their influence on the running time analysis. Moreover,
we show how to employ different separator-finding strategies in order to get
divide and conquer algorithms with constants which are better than those
corresponding to a direct use of the best known (planar) separator theo-
rems. Finally, we discuss possible combinations of separator techniques with
other solving methods (like search tree based algorithms), typically leading
to ckZ/B—algorithms for problems with linear kernels. The running time of our
algorithms is mostly bounded by ¢V*¢(n) or by ¢***¢(n) for some constant
¢ > 1 and some polynomial ¢(-).> Although the constants achieved in our
setting so far seem to be too large in order to yield practical worst case al-
gorithms, it provides a general and sound mathematical formalization of a
rich class of problems that allow for divide and conquer solutions based on
separators and it provides a strong link to fixed parameter tractability. Also,
our methodology seems to leave much room for improvement in many direc-
tions. For instance, we introduce the novel concept of “problem cores” that
can replace problem kernels in our setting. Furthermore, our findings em-

2Lipton and Tarjan only describe in details a solution for the structurally much simpler
INDEPENDENT SET.

3 Actually, whenever we can construct a so-called problem kernel size k°(!) in polyno-
mial time, then we can replace the term ¢V*¥nO®) by VO 4 00



phasize the importance of small (linear size) problem kernels, and they give a
push to the study of subclasses of the parameterized complexity class FPT.
In this sense, our work might serve as a starting point for more algorith-
mic (including graph theory with respect to separator theorems), as well as
more structural complexity-theoretic lines of future research in parameterized
complexity.

2 Basic definitions and preliminaries

We start with some basic notation used throughout the paper assuming famil-
iarity with elementary concepts of algorithms, complexity, and graph theory.
We consider undirected graphs G = (V, E), where V' denotes the vertex set
and FE denotes the edge set. In our setting, all graphs are simple (i.e., with
no double edges) without self-loops. Sometimes, we refer to V' by V(G) in
order to emphasize that V is the vertex set of graph G; by N(v) we refer
to the set of vertices adjacent to v. G[D] denotes the subgraph induced by
vertex set D. For graphs G; = (V4, E}) and Gy = (V3, Ey), by G1 N Gy, we
denote the graph with vertex set V; N V5 and edge set Fy N Ey. A graph
G' = (V', E') is a subgraph of G = (V, E), denoted by G’ C G, if V' C V and
E' C E. The radius of a graph G is the minimal height of a rooted spanning
tree of G.

In this paper, we only consider graph classes, denoted by G, that are
closed under taking subgraphs. The most important among the graph classes
considered in this paper is that of planar graphs, i.e., graphs that have a
drawing in the plane without edge crossings. A plane graph, or a planar em-
bedding, is any drawing of a planar graph in the plane without edge crossing.

A parameterized graph problem is a language consisting of tuples (G, k),
where GG is a graph and k is an integer. A parameterized graph problem on
planar graphs is a parameterized graph problem, where the graph G of an
instance (G, k) is assumed to be planar.*

If G = (V, F) is a planar graph, a triangulation G = (V, E), where E C E,
of G is a planar graph such that, for any additional edge {v,v'} ¢ E with
v, €V, (V, EuU {v,v'}) is not planar. The faces of a plane graph are the
maximal regions of the plane that contain no point used in the embedding.
Among others, we study the following “graph numbers” ve(-), is(+), and ds(-):

e A wvertex cover C of a graph G is a set of vertices such that every edge

4If the instances of a parameterized graph problem on planar graphs were of the form
((G, ¢), k), where ¢ is an embedding of G, we would speak of a parameterized graph problem
on plane graphs. However, in our setting, the planar graph G needs not be given with an
embedding.



of G has at least one endpoint in C'; the size of a vertex cover set with
a minimum number of vertices is denoted by ve(G).

e An independent set of a graph G is a set of pairwise nonadjacent ver-
tices; the size of an independent set with a maximum number of vertices

is denoted by is(G).

e A dominating set D of a graph G is a set of vertices such that each
of the rest of the vertices in G has at least one neighbor in D; the
size of a dominating set with a minimum number of vertices is denoted

by ds(G).

The corresponding problems are denoted by VERTEX COVER, INDEPENDENT
SET, and DOMINATING SET.

Finally, to simplify notation, we write A+ B to denote the disjoint union
of sets A and B.

2.1 Linear problem kernels

Compared with other definitions of problems kernels, we seemingly have to
be a bit more restrictive and precise in the following definition.

Definition 1. Let £ be a parameterized problem, that is, £ consists of
pairs (I, k), where problem instance I has a solution of size k£ (the parame-
ter). Reduction to problem kernel, then, means to replace instance (I, k) by
a “reduced” instance (I, k') (which we call problem kernel) such that

K <c-k, 1I'l < p(k)
with a constant ¢,® some function p only depending on %, and
(I,k)e Liff (I'K') € L.

Furthermore, we require that the reduction from (I,k) to (I',k') is com-
putable in polynomial time Tk (|I], k). The size of the problem kernel is

given by p(k).

SUsually, ¢ < 1. In general, it would even be allowed that k' = g(k) for some arbitrary
function g. For our purposes, however, we need that k and k' are linearly related. We are
not aware of a concrete, natural parameterized problem with problem kernel where this is
not the case.

6 Again, one could allow for a more general definition here (i.e., allowing even an FPT
reduction algorithm), but this would not fit our approach and we are not aware of a
non-polynomial time problem kernelization.



Often (cf. the subsequent example VERTEX COVER), the best one can
hope for is that the problem kernel has size linear in k, a so-called linear
problem kernel. For instance, using a theorem of Nemhauser and Trotter [30],
(also cf. [10, 34]), Chen et al. [12] recently observed a problem kernel of size 2k
for VERTEX COVER on general (not necessarily planar) graphs. According
to the current state of knowledge, this is the best one could hope for, because
a problem kernel of size (2 — )k with constant £ > 0 would probably imply a
factor 2 — € polynomial time approximation algorithm for VERTEX COVER,
which would mean a major breakthrough in approximation algorithms for
VERTEX COVER [27]. More precisely, we can observe:

Remark 2. Consider VERTEX COVER. If the reduction of (G, k) to (G', k')
guarantees that G' C G, k' < k, |V(G")| < dk for some d < 2 and when
the reduction algorithm yields, in addition, a set C' of vertices of G which
belongs to some optimal cover of G, then V(G') UC is a factor d polynomial
time approximation.

This observation was basically exploited by Hochbaum [26] in her factor
2 approximation algorithm which uses the mentioned theorem of Nemhauser
and Trotter, see also Bar-Yehuda and Even for related applications of the
mentioned theorem [10].

Remarkably, for VERTEX COVER on planar graphs, better approxima-
tion algorithms are known [10], as well as a polynomial time approximation
scheme [9].

By making use of the four color theorem for planar graphs and its corre-
sponding algorithm generating a four coloring [36], it easily follows [3] that
INDEPENDENT SET on planar graphs has a problem kernel of size 4k. In
general, however, it is a reasonable and challenging task to try to construct a
linear problem kernel. Ongoing work tries to do this for DOMINATING SET.

Besides the positive effect of reducing the input size significantly and all
obvious consequences of that, this paper gives further justification, in par-
ticular, for the importance of size O(k) problem kernels. The point is that,
once having a linear size problem kernel, e.g., for VERTEX COVER or INDE-
PENDENT SET on planar graphs, it is fairly easy to use our framework to get
c‘/E—algorithms for these problems based upon the famous planar separator
theorem [28, 29]. The constant factor in the problem kernel size directly
influences the value of the exponential base. Hence, lowering the kernel size
means improved efficiency.



2.2 Classical separator theorems

Definition 3. Let G = (V, E) be an undirected graph. A separator S C V
of G divides V into two parts A; C V and A, C V such that”

e A +S+ A, =V, and
e no edge joins vertices in A; and As.

Later, we will write 6A; (or §Ay) as shorthand for A; +S (or Ay + S, respec-
tively). The triple (A;, S, As) is also called a separation of G.

Clearly, this definition can be generalized to the case where a separator par-
titions the vertex set into ¢ subsets instead of only two. We refer to such
separators simply by /-separator. The techniques we develop here all are
based on the existence of “small” graph separators. Here, “small” means
that |S| is bounded by o(|V]).

Definition 4. According to Lipton and Tarjan [28], an f(-)-separator theo-
rem (with constants « < 1, # > 0) for a class G of graphs which is closed
under taking subgraphs is a theorem of the following form: If G is any n-
vertex graph in G, then there is a separation (Aj, S, As) of G such that

e neither A; nor A, contains more than an vertices, and
e S contains no more than 3f(n) vertices.

Again, this definition easily generalizes to (-separators with ¢ > 2. We
will be more concrete on 3-separators in Subsection 5.3.

Stated in this framework, the planar separator theorem due to Lipton
and Tarjan [28] is a y/--separator theorem with constants o = 2/3 and =
2v/2 ~ 2.83. Later, Djidjev [13] showed an improved planar \/--separator
theorem with constants o = 2/3 and 8 = /6 ~ 2.45, which was furhter
improved to o = 2/3 and 3 = V4.5 ~ 2.12 by Alon et.al. [7]. The current
record for a = 2/3 is 8 = \/2/3 + \/4/3 ~ 1.97 [17]. Djidjev has also shown
a lower bound of # ~ 1.55 for « = 2/3 [13]. For o = 1/2, the “record”
of 3 =7+ 1/v/3 ~ 7.58 due to Venkatesan [43] was recently outperformed
by Bodlaender [11], yielding 3 = 2v/6 ~ 4.90. A lower bound of 3 ~ 1.65
is known in this case [38]. For a = 3/4, the best known value for f is

\/27/V/3 - (1 + V3)/V/8 ~ 1.84 with a known lower bound of 3 ~ 1.42,

see [38]. The results are summarized in Table 1.

"In general, of course, 4;, Ay and S will be non-empty. In order to cover boundary
cases in some considerations below, we did not put this into the separator definition.



| ae=F rGO| a=5 rGA a=3  r(5.0)
1

upper 2v/2 [28]| 15.41 ||7+ I [43]] 25.87 2—\/”51%5 [38]| 13.73
bounds V6 [13]] 13.35 || v/24  [11]| 16.73
for 8 V4.5 [7]| 11.56

2+y/3 [17]] 10.74
lower
bounds 1.55 [13]| 845 | 1.65  [38]| 5.63 1.42 [38]| 10.60
for 8

Table 1: Summary of various y/--separator theorems with their constants
« and (3. Here, r(«, ) denotes the ratio r(«, ) = /(1 — \/«), which is
of central importance to the running time analysis of our algorithms, cf.
Proposition 20.

In order to develop a flexible framework, we will do our calculations below
always with the parameters a and [ left unspecified up to the point where we
try to give concrete numbers in the case of VERTEX COVER on planar graphs,
which will serve as a running example. Also, we point out how the existence
of /-separators for ¢ > 2 might improve the running time. In principle, our
results also apply to graph problems for graphs from other graph classes with
\/-separator theorems as listed above. As indicated in [35], separator based
techniques can be also used to solve counting problems instead of decision
problems.

As we will see, for developing efficient fixed parameter algorithms, /-
separator theorems are especially interesting in the case when a linear size
problem kernel is known.

Variants of separator theorems

Cycle separators. In the literature, there are many separator theorems
for planar graphs which guarantee that all the vertices of the separator lie
on a simple cycle, provided that the given graph is biconnected or even tri-
angulated. In fact, the current “record holder” in the case of a = 2/3 yields
a cycle separator, see [17]. From an algorithmic perspective, as explained
below, the requirements of having biconnected or triangulated graphs are
rarely met: even if the original graph was biconnected or triangulated, sub-
graphs which are obtained by recursive applications of separator theorems to
a larger graph are not biconnected or triangulated in general. Therefore, we
consider the following definition appropriate for our purposes:

Definition 5. We will call a separator S of a planar graph G cycle separator



if there exists a triangulation G of G such that S forms a simple cycle in G.

Note that some triangulation of a given planar graph can be computed
in linear time.

Remark 6. It will turn out that it is of special value (concerning the design
of divide and conquer algorithms) to have separators that form simple cycles
(within some triangulation of the given graph G), since then the Jordan
curve theorem applies (for planar graphs), which basically means that the
separator S splits G into an “inside”’-part A; and an “outside”-part A,. If
the graph is a subgraph of a larger planar graph G, then this implies that
each vertex v of G that has neighbors in A; has no neighbors in A, and vice
versa. This observation is important, since it means that a local property
pertaining to vertex v of G (like: v belongs to a dominating set or not) can
only influence vertices in d A; or vertices in 0 A,.

Weighted separation. It is also possible to incorporate weights in most
separator theorems. For our purposes, weights are nonnegative reals as-
signed to the vertices in a graph such that the sum of all weights in a graph
is bounded by one. For weighted graphs, an f(-)-separator theorem with con-
stants a and 3 for graph class G guarantees, for any n-vertex graph G € G,
the existence of a separation (A, S, Ay) of G such that

e neither A; nor A; has weight more than «, and
e S contains no more than 3f(n) vertices.

Remark 7. It might be the case that, for fixed «, good \/--separator the-
orems for weighted graphs have worse constants [ than their unweighted
counterparts. For example, the current record for « = 2/3 is § = 2 for
weighted graphs [17].

Other graph classes with separator theorems. Similar to the case of
planar graphs, \/--separator theorems are also known for other graph classes,
e.g., for the class of graphs of bounded genus, see [15]. More generally, Alon,
Seymour and Thomas proved a /--separator theorem for graph classes with
an excluded complete graph minor [6, 8]. Many comments of this paper apply
to these more general situations, too.

Conversely, to find separators is not possible in general (if arbitrary
input graphs are permitted), as the example of the complete graph K, with
n vertices shows.



3 Glueable graph problems

Based on the notion of separators, we will give a characterization of a whole
class of problems that can be attacked by the approach that will be described
in the subsequent sections. To this end, we coin the notions of select&verify
graph problems and glueability. These notions are central to this paper. In
the companion paper [3], we also introduce select&verify graph problems.
Since the algorithms from [3] are not recursive, only a simplified notion of
glueability (termed “weak glueability”) is needed there.

3.1 Select&verify graph problems

Definition 8. A set G of tuples (G, k), G an undirected graph with vertex
set V.= {v1,...,v,} and k a positive real number, is called a select&verify
(graph) problem if there exists a pair (P, opt) with opt € {min, max}, such
that P. is a function that assigns to G' a polynomial time computable function
of the form Pg = PS5 + Py, where

P {0,1}" — Ry, (also called selecting function)
PZT:{0,1}" — {0, +00}, (also called verifying function) and

OPtzeo,1}n Ps(%) <k if opt = min,

(G? k) S g = { Optfe{o,l}” PG(-'E) > k if opt = max.

For ¥ = (z1,...,2,) € {0,1}", with Pg(Z¥) < k if opt = min and with
Pg(%) > k if opt = max, the vertex set selected by ¥ and verified by Pg is
A vector Z is called admissible if P2 (Z) = 0.

The intuition behind the term P. = P! + PY* is that the selecting
function P counts the size of the selected set of vertices and the verifying
function PY¢ verifies whether this choice of vertices is an admissible solution.
The “numbers” +o0o indicate the non-admissibility of a candidate solution.

Remark 9. Every select&verify graph problem that additionally admits a
problem kernel of size p(k) is solvable in time O(2P®)p(k) 4 Tx (n, k)).

Example 10. We now give some examples for select&verify problems by
specifying the function Py = PS® + P, In all cases below, the selecting
function Pg for a graph G = (V, E) will be

PF(E) =) .

v, €V

Also, we use the convention that 0 - (£o00) = 0.

10



1. In the case of VERTEX COVER, we have opt = min and use

PE@ = Y oo-(1-x)(1-ay),

{’Ui,vj}EE'

where this sum brings P (%) to infinity whenever there is an uncovered
edge. In addition, Pg(%) < k then guarantees a vertex cover set of size
at most k. Clearly, P is polynomial time computable.

2. Similarly, in the case of INDEPENDENT SET, we let opt = max and

choose
ver [ 2\
P (%) = E 00 - T + T
{’Ui,’llj}EE

3. DOMINATING SET is another example for a select&verify graph prob-
lem. Here, for G = (V, E), we have

PE @) = (co-(I—mz)- ] (1-a),

v, EV {vi,v; }EE

where this sum brings Pg(Z) to infinity whenever there is a non-domi-
nated vertex which is not in the selected dominating set. In addition,
Pg(Z) < k then guarantees a dominating set of size at most k.

4. Similar observations as for VERTEX COVER, INDEPENDENT SET, and
DOMINATING SET do hold for many other graph problems and, in par-
ticular, weighted variants of these.® As a source of problems, consider
the variants of DOMINATING SET listed in [40, 41, 42]. In particular,
the TOTAL DOMINATING SET problem is defined by

PEr@) =Y (o J[ (1-u).

v, €V {viw;}eE

Moreover, graph problems where a small (or large) edge set is sought for can
often be reformulated into vertex set optimization problems by introducing
an additional artificial vertex on each edge of the original graph. In this
way, the NP-complete EDGE DOMINATING SET [44] problem can be handled.
Similarly, planar graph problems where a small (or large) face set is looked for
are expressible as select&verify problems of the dual graphs or by introducing
additional “face vertices.”

8In the weighted case, one typically chooses a selecting function of the form PS¢ (%) =
Eviev a;x;, where a; is the weight of the vertex v;.

11



We will also need a notion of select&verify problems where the selecting
function and the verifying function operate on a subgraph of the given graph.

Definition 11. Let P. = P+ P be the function of a select&verify prob-
lem. For an n-vertex graph G and subgraphs G¥ = (VVer Ever), G5 =
(Vsel, Bl C G, we let

PGVS!‘ (l_" | Gsel) = PV%Ie‘r (ﬂ-vver (l_")) + ngll (Trvsel (1_")),

where 7y~ is the projection of the vector & € {0,1}" to the variables corre-
sponding to the vertices in V.

3.2 Glueability

We are going to solve graph problems recursively, slicing the given graph into
small pieces with the help of small separators. Within these separators, the
basic strategy will be to test all possible assignments of the vertices. For
example, in the case of VERTEX COVER, this means that, for a separator S,
all possible functions S — {0,1} are tested, where assigning the “color” 0
means that the corresponding vertex is not in the (partial) cover and assign-
ing 1 means that the corresponding vertex lies in the (partial) cover. In the
case of more involved problems like (variants of) DOMINATING SET, more
sophisticated assignments are necessary, as detailed below. The separators
will serve as boundaries between the different graph parts into which the
graph is split. For each possible assignment of the vertices in the separa-
tors, we want to—independently—solve the corresponding problems on the
remaining graph parts and then reconstruct a solution for the whole graph
by “gluing” together the solutions for the graph parts. In order to do so, all
additional information necessary for solving the subproblems correctly has
to be transported and coded within the separators. It turns out that the
information to be handed on is pretty clear in the case of VERTEX COVER,
but it is much more involved in the case of DOMINATING SET and many oth-
ers. This is the basic motivation for the formal framework we develop in this
subsection. We need to assign colors to the separator vertices in the course
of the algorithm. Hence, our algorithm has to be designed in such a manner
that it can also cope with colored graphs, even though the original problem
may have been a problem on non-colored graphs. In general (e.g., in the case
of DOMINATING SET), it is not sufficient to simply use the two colors 1 (for
encoding “in the selected set”) and 0 (for “not in the selected set”). This
is why the set of colors will be some union of finite sets Cy + C, instead of
{0,1} only. The usefulness of considering a colored version of “normal” graph
problems is also testified in [2], where a colored version of DOMINATING SET

12



on planar graphs was employed for developing a parameterized search-tree
algorithm.

Definition 12. Let G = (V, F) be an undirected graph and Cy, C; be finite,
disjoint sets. A Cy-C1-coloring of G is a function x : V' — Cy + Oy + {#}.

The symbol # will be used for the undefined (i.e., not yet defined) color.
This means that, for V' C V| a function x : V' — Cy+ C; can naturally be
extended to a Cy-C-coloring of G by setting x(v) = # for allv € V' \ V.

Definition 13. Consider an instance (G, k) of a select&verify problem G and
a vector Z € {0,1}" with V(G) = {v1,...,v,}. Let x be a Cy-Cj-coloring
of G. Then, ¥ is consistent with y, written & ~ Yy, if

x(v;) €C; = xj =4, fori=0,1,j=1,...,n.

In the next section, when doing the divide and conquer approach with
a given separator, we will deal with colorings on two different color sets:
one color set CMt := Cint + CIn® 4 L4 of internal colors that will be used
for the separator assignments and a color set C** := C&* 4 Ot + {#} of
external colors that will be used for handing down the information in the
divide-step of the algorithm. The idea is that, in each recursive step, we will
be confronted with a graph “precolored” with external colors. Our algorithm
then finds a new separator and assigns internal colors to the vertices of this
separator. These assignments of internal colors should be, in some sense,
“compatible” with the precolored graph. Moreover, we want to be able to
“recolor” the graph for the next divide-step. That means that we somehow
have to be able to merge an external coloring (from the precolored graph)
with an internal coloring (i.e., an assignment of our current separator) in a
way such that we obtain a new (compatible) external coloring that can be
handed down in the next recursive step. These considerations are formalized
as follows.

Definition 14. Let G = (V,E) be a graph and let Ci*, Cin* and Cg*,
C™* be mutually disjoint, finite sets. Let C'%* := Cint + Cin* 4 {41 and let
Cext e ngt + Cth + {#}

If x is a Cy-Ci-coloring of G and if x' is a Cj-C1-coloring of G, then x is
preserved by x', written y ~» ', if

Yo e VVi=0,1(x(v) € C; = X'(v) € CJ).

Every function @ that assigns to a pair (x®, x®) with x®* : V — O,
XV = Ot & s A g (O8O -coloring ¥ @ x™ is called a
recoloring if '™ ~ y& @ ™.
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From the point of view of recursion, x*** is the pre-coloring which a certain
recursion instance “receives” from the calling instance and ™ represents
coloring which this instance assigns to a certain part of the graph. The
coloring x*** @ x'™ is handed down in the recursion. The notions Y ~ yn*
and x™ ~s x™* @ ¥ express that any vector & € {0, 1}V/ that is consistent
with x*" is also consistent with the colorings ™ and x®* @ y'*.

We now introduce the central notion of “glueable” select&verify problems.
This formalizes those problems that can be solved with separator based divide
and conquer techniques as described above. We apply this rather abstract
notion to concrete graph problems afterwards (Lemma 16). The following
definition is best understood with the help of a concrete example as given in
the proof of Lemma 16.

Definition 15. A select&verify problem G given by (P., opt) is glueable with
o colors if there exist

e a color set ' ;= Ot + Clnt 4 [ of internal colors with |CiF*+(Cint| =
a;

e a color set O := C§** + C7** + {#} of external colors;

e a polynomial time computable function h : (R; U {£o0})® — Ry U
{£oo};

and if, for every n-vertex graph G' = (V, E) and subgraphs G', G C G
with a separation (Aq, S, As) of GV, we find

e recolorings @y for each X € {A4;, S, Ay}, and
e for each internal coloring x'™ : S — C'nt,

Subgraphs G‘;ﬁr (Xint) of GV¢' with Gver[Az_] g G\;ir(xint) g Gver[(SAi]
for e =1,2, and
subgraphs G¥(x™) of G with G¥*(x'™) C GV [9]

such that, for each external coloring x** : V — O,

Opt:&'e{o,l}" PGver (f| Gsel) (1)

Froxext

= 0Pt yint.s,cint 4 oint h (EValAl (Xint) , Evalg (Xint) , Evaly, (Xim)) ]

Xexthint

Here, Evalx(-) for X € {A}, S, Ay} is of the form

EV&]X (Xint) = Opt #€{0,1}1 PGVXer(Xint)(.'f | Gver[X] N Gsel)' (2)

Fro (XD xint)

14



Lemma 16. VERTEX COVER and INDEPENDENT SET are glueable with
2 colors and DOMINATING SET is glueable with 4 colors.

Proof. For VERTEX COVER (see Example 10.1)), we use the color sets Cf :=
{i} for ¢ € {int,ext} and i = 0,1. The function h is h(x,y,2) == +y + 2.
The subgraphs G¥*(x™) for X € {A,S, Ay} and ™ : § — Cint 4 Oint
are G (x'™) := GY[X]. In this way, the subroutine Evalg(x'™) checks
whether the coloring x'™ yields a vertex cover on G'*'[S] and the subroutines
Evaly, (x™) compute the minimum size vertex cover on G¥*[4;]. However,
we still need to make sure that all edges going from A; to S are covered.” If
a vertex in S is assigned a 1'% by x'™, the incident edges are already covered.
In the case of a 0™-assignment for a vertex v € S, we can color all neighbors
in N(v) N A; to belong to the vertex cover. This is done by the following
recolorings @4,. Define

oext  if Xint (U) — Oint,
X 1ext  if Xint (U) — 1int or
ext int _
(X @, X)) = if Jw € N(v) with x'"*(w) = 0,
#, otherwise.

By this recoloring definition, an edge between a separator vertex and a
vertex in A; which is not covered by the separator vertex (due to the currently
considered internal covering) will be covered by the vertex in A;. Our above
reasoning shows that—with these settings—Equation (1) in Definition 15 is
satisfied.

INDEPENDENT SET (see Example 10.2)) is shown to be glueable with
2 colors by a similar idea.

To show that DOMINATING SET (see Example 10.3)) is glueable with
4 colors, we use the following color sets

Cpt = {0, 03, 08}, O = 1)
ngt = {Oext}, Cth - {lext}‘
The semantics of these colors is as follows. Assigning the color 0%, for
X € {A;, Ay, S}, to vertices in a current separation V = A; + S + Ay means
that the vertex is not in the dominating set and will be dominated by a vertex
in X. Clearly, 1™ will mean that the vertex belongs to the dominating set.
The external colors simply hand down the information whether a vertex

9We could have coped with this by letting G'¢" (x™™*) := G¥*'[4; U (x'™) ™' ({0'"*})]. In
this way, the computation of Eval 4, (x**) checks whether all neighbors in A; of a vertex in
(x™)~1({0'"*}) are covered. The disadvantage of this solution is that the graphs G (x™)
that are handed down to the subroutines become unnecessarily big.
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belongs to the dominating set, represented by 1°**, or whether it is not in
the dominating set and still needs to be dominated, represented by 0°xt 10
The function h simply is addition, i.e., h(z,y,2) = x +y + 2. When handing
down the information to the subproblems, for a given internal coloring '™ :
S — Cint + Cint, we define

G‘;leir(xint) — Gver[AZ_ U (Xint)fl({lint, 0151:}})] and
Gger(Xint) — Gver[(Xint)fl({lint, Oglt})]
The recolorings @x for X € {44, S, Ay} are chosen to be

. Oext if X%nt (U) c Cént,
(Xext ®X Xlnt)(,U) — lext lf Xlnt (U) — llnt,
#, otherwise.

Let us explain in a few lines why—with these settings—Equation (1) in Def-
inition 15 is satisfied. If an internal coloring y™ assigns color 0% (X €
{A1, S, As}) to a vertex in S, then this vertex needs to be dominated by a
neighbor in X. This will be checked in Evalx (x™) using the graph G¥*(x'™).
To this end, vertices assigned the color 0'2 (i.e., the set (x'™)~1({0R‘})) are
included in G (x'™). The vertices assigned color 1™ (i.e., (™)1 ({1i"}))
also need to be handed down to the subroutines, since such a vertex may
already dominate vertices in X. The recolorings merge the given external
coloring x*™' with the current internal coloring ™™ in a way that already as-
signed colors from Ci" or Ot (i = 0, 1) become i*'. The terms Evaly, (x'™)
then compute (for each internal coloring x'™) the size of a minimum domi-
nating set in A; under the constraint that some vertices in § A; still need to
be dominated (namely, the vertices in 6 A; N (™" @4, X)L (0°")) and some
vertices in §A; can already be assumed to be in the dominating set (namely,
the vertices in 6A; N (X' @4, ¥'™)~H(1%)). The term Evalg(x™™) checks the
correctness of the internal coloring x'™ of S. O

ext

ext

Note that, from the point of view of divide and conquer algorithms, three col-
ors are enough for DOMINATING SET, since the color 11 already determines
the color 0. This issue is detailed in [3].

We illustrate the ideas of the dominating set algorithm by using an example.

Example 17. Consider DOMINATING SET for the separated graph in Fig. 1.
Beginning with the external coloring x*' = # and G"*" = G**! = G, we need

10A vertex that is not in the dominating set but is already guaranteed to be dominated,
e.g., by a vertex in the current separator, will never be handed down, since these vertices
are of no use in the sequel of the recursion.
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|

Figure 1: A partitioned graph.

to go over all 4> = 16 internal colorings x™ : S — {0}*, 014, 0'*, 1"} (which
trivially satisfy x®* ~» x'1%). As an example, we choose th with vs — 0",
vg — 0%, In this case, we get GY'[\™] = G¥ [{vy,...,v5}], GE'[X™] =
0, and GY'[x™] = G"er[{vg, ...,v11}]. In the recursive steps, we will use
these graphs for the verifying function and the graphs G¥*'[A;], G**"[S], and
GV'[ Ay for the selecting function. Moreover, the external colorings that will
be handed down to the subproblems after the recoloring look as follows: On
the graph GY'[x™'], we have x;(v;) := (X @®a, x™)(v;) = #fori=1,... 4,
and xi(vs) = 0. On the graph G¥'[x™], we have x,(v;) = (Xe"t EBA2
X)) (v;) = # fori =7,...,11, and yxo(vs) = 0. It is easy to see that

Evaly, (x™) =2, Evalg(x™) =0, and Evaly,(x™)=2.

The minimum in Equation (2) for X = A; is obtained, e.g., by choosing the
vertices v; and v, (note that the latter needs to be chosen, since x; (vs) = 0%,
meaning that vs is forced to be dominated in this term). The minimum for
A, is obtained, e.g., by choosing the vertices vg and v1y (again, xs(vg) = 0
forces either vg or vg to be in the dominating set). Hence,

h(Evaly, (x™), Evalg(x'™), Eval g, (x'™)) =2+ 0 +2 = 4.

We obtain an optimal result, e.g., for the choice of the internal color-
ing x™ with " (vs) = x™(v ) 0. Here, we get Evaly, (x'™) = 1,
Evalg(x'™) = 0, and Eval 4, (™) = 2, for the possible choices of v3, vg, v19 as
dominating set vertices.

We want to mention in passing that—besides the problems stated in
the preceding Lemma 16—many more select&verify problems are glueable,
for example, those which are listed in [40, 41, 42]. In particular, weighted
versions and variations of the problems discussed in Lemma 16 are glueable.

Note that TOTAL DOMINATING SET is an example of a graph problem
where a color set Ci"* of more than one color is needed.
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4 Fixed parameter divide and conquer algo-
rithms

In this section, we provide the basic framework for deriving fixed parameter
algorithms based on the concepts we introduced so far. Moreover, we define
problem cores, a potential alternative to problem kernels.

4.1 Using glueability for divide and conquer

The notion of glueable select&verify problems is tailored in a way such that
divide and conquer approaches can be used to solve these kinds of problems.

Fix a graph class G for which a \/--separator theorem with constants o
and [ (cf. Definition 4) is known. We consider a glueable select&verify graph
problem G defined by (P, opt). The evaluation of the term optc g y» Pe(Z)
(cf. Definition 8) can be done recursively according to the following strategy.

Algorithm 18. 1. Start the computation by evaluating

OPtzco,13n Pg(Z) = Optfe{o,l}",fwxg"t Peer (T | Gsel),

where “x§** = #” is the everywhere undefined external coloring and

GV = G5! = @ (also cf. Definition 11).

2. When optze(o1yn, gryest Paver (T | G**) needs to be calculated for some
subgraphs G*!, G C @, and an external coloring x** : V(G) —
C&' + O +{#}, we do the following:

(a) If G™ has size greater than some constant ¢, then find a /-
separator S for G¥*" with V(G"*") = A; + S + A,.

(b) Define ® := {}!" : § — Cint 4 Cint | yoxt s yint]
For all internal colorings ™" € ® do:

i. Determine Eval 4. (™) recursively for i = 1, 2.

ii. Determine Evalg(x'™).

(c) Return optneq h(Evaly, (X™), Evals(x'™), Evala, (x™)).
The sizes of the subproblems, i.e., the sizes of the graphs G‘;ﬁr(xim) which
are used in the recursion, play a crucial role in the analysis of the running

time of this algorithm. A particularly nice situation is given by the following
problems.
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Definition 19. A glueable select&verify problem is called slim if the sub-
graphs GY'(x™™) are only by a constant number of vertices larger than
GY'[A;], i.e., if there exists an 1 > 0 such that [V(GY(x'™))| < |Ail + 1
for all internal colorings x'™ : S — Ot

Note that the proof of Lemma 16 shows that both VERTEX COVER and
INDEPENDENT SET are slim with 7 = 0, whereas DOMINATING SET is not.

The following proposition gives the running time of the above algorithm in
terms of the parameters of the separator theorem used and the select&verify
problem considered. In order to assess the time required for the above given
divide and conquer algorithm, we use the following abbreviations for the
running times of certain subroutines:

e Ts(n) denotes the time to find a separator in an n-vertex graph from
class G.

e Ty(n) denotes the time to construct the modified graphs G¥* (y'™) € G
and the modified colorings (x**@®x x'™) (for X € {4, 5, A»} and each
internal coloring x™ € ® from an n-vertex graph from class G.

e Tp(m) is the time to evaluate Evalg(x™™) for any x'™ € ® in a separa-
tor S of size m.

e T¢(n) is the time for gluing the results obtained by two sub-problems
each of size O(n).

In the following, we assume that all these functions are polynomials.

Proposition 20. Let G be a graph class for which a /--separator theorem
with constants a and B is known and let G be a selectéverify problem de-
fined by (P.,opt) that is glueable with o colors. Then, for every G € G,
optzeqo,1y Pa(T) can be computed in time

e(d!, 8,0)V"q(n), where (o, B,0) = o1V,

Here, o/ = a+ ¢ for any e € (0,1 — «) and q(-) is some polynomial; the
running time analysis only holds for n > ng(e).

If, however, G is slim or the \/--separator theorem yields cycle separa-
tors (and G is the class of planar graphs), then the running time for the
computation is c(a, 3, 0)V"q(n), which then holds for all n.

Proof. Let T'(n) denote the running time to compute
OPtie(o,1)r, gyt Paver(T | G*)
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for G¥* = (V¥r EV*r) with n = [V¥| (where x®™* : V(G) — C&* + CF* +{#}
is some external coloring and G**, G¥* C (7). In general, the recurrence we
have to solve in order to compute an upper bound on 7'(n) for the above
given divide and conquer algorithm then reads as follows:

T(n) < 0"8\/5 -2 T(OZTL + 5\/5) . TM,E,G(”) + TS(TL), where

Tara(n) = Tau(n) + Te(Bvn) + Tolan + Bv/n).

By assumption, a separation (A, S, Ay) of G¥* can be found in time Ts(n).
Since the size of the separator is upperbounded by 3y/n and there are o in-
ternal colors, there are o”v™ many passes through a loop which checks all
possible assignments to separator vertices. In each pass through the loop, two
instances of smaller subproblems have to be evaluated, namely for A; and A,.
This yields the term 2 - T'(an + 3y/n). The time needed for modifying the
graphs and colorings, for evaluating the separator and for gluing the obtained
subproblems is covered by Ty g (). Note that the functions Ty g ¢(n) and
Ts(n) are polynomials by our general assumption. From the definition of
glueability, we have that the size of the two remaining subproblems to be
solved recursively is

V(G (™)) < IV(G™[0A])[an + Byv/n

for each x'™ € ®. For every € € (0,1 — ), there is, of course, an ngy(g) such
that

(a+¢e)n > an+ Bvn (3)

for n > ng(e). Hence, by setting o/ = « + £, we can simplify the above
recurrence to

T(n) <2-0®V"T(a/'n) Tarpa(n) + Ts(n)

for some o/ < 1. Hence, the recursion depth is n’ = log; /., (n), and we get

o iV 2 T (O()) [Ty Taaa(e”™n) + ' Ts(n)

T(n)

IA N

for the polynomial g(n) := 2'°8ve' "T(O(1)) H?;Op(o/in) +10g; /o (n) - Ts(n).
Now, consider the case where G is slim. In this situation the recursive
subproblems have size |V(GY"(x'™))| < |4;| 4+ n. Hence, we have
T(n) < oV 2T(an+n) - Ty pc(n) + Ts(n).
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The size of the problem after r recursion steps obviously is:
r r—1 r 1
ant+aoa n+--tan+n<a n—l—l—n.
-«

Since the recursion will stop after n' = log; ,,(n) recursive calls (leaving us
with subproblems of at most constant size), we can further estimate:

T(n) < o Yo V/aintn/(1-a) 2" T(O(1))

1 Tarpalain +n/(1 = ) +n' - Ts(n)
=0
< gHEEVaint (i) /il(=a) ' 7 (0(1))
1 Twree(ein +n/(1 - a))
=0
+TL, . TS (TL)
< Uﬁ/(lfx/a)'\/ﬁq(n)

for some polynomial ¢(-). More precisely, we can estimate

!

q(n) < o#VMA=)m+9n" 1 (O(1)) ﬁ Typalan+n/(1 —a))+n'Ts(n).

1=0

It remains to prove the claim in the case of the existence of a cycle sep-
arator theorem. Without going into detail, we want to sketch the key idea
in this case. We consider the first recursive step of the algorithm, where
we deal with a separation (A;,S, As) of the input graph G. Suppose now
(A11,S1, Aj2) is a separation of G[A;], then, for v € S, it is possible that
N(v) N Ay; # 0 for both 4 = 1,2. This phenomenon basically forces us to
find the separator in the first recursive step in G4, (x'™) (a possibly larger
graph than G[A]) rather than in G[A;]. In the case of cycle separators,
i.e., if S; were a cycle separator, the above described phenomenon cannot
occur anymore due to the Jordan curve theorem, also see Remark 6. That is
why Algorithm 18 can be modified such that the new separator in step 2a is
computed for G (instead of GV**). The corresponding recurrence equation
for this modified algorithm then reads as

T(n) S U’B\/ﬁ . 2T(om) : TMyEyg(Tl) + Ts(n),

the solution of which is given by T'(n) < o#/(=vV®)v7g(n) for some polyno-
mial ¢(-). O
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Remark 21. A similar proposition holds for graph classes on which an /-
separator theorem is known with constants a and 3. It might turn out that
such separator theorems have better ratio 3/(1 —/a), which, in turn, would
directly improve the running time in Proposition 20.

4.2 How (linear) problem kernels help

If the considered parameterized problem has a problem kernel of size dk,
we can use the considerations we have made up to this point in order to
obtain fixed parameter algorithms whose exponential term is of the form cVE
for some constant ¢. More generally, a problem kernel of size p(k) yields

exponential terms of the form ¢VP®*).
Theorem 22. Assume the following:

e Let G be a graph class for which a +/--separator theorem with con-
stants o and (3 is known,

o let G be a selectEverify problem defined by (P.,opt) glueable with o
colors, and

e suppose that G admits a problem kernel of polynomial size p(k) on G
computable in time Tk (n, k).

Then, there is an algorithm to decide (G, k) € G, for a graph G € G, in time

and o = a+¢ for any e € (0,1 — «), holding only for k > ko(e), where q(-)
1s some polynomial.

If, however, G is slim or the \/--separator theorem yields cycle separators
(on the class G of planar graphs), then the running time for the computation
i

c(a, B,0)VPWg(k) + Ti (n, k),
which then holds for all k.

Proof. The result directly follows from Proposition 20 applied to the problem
kernel. O

In particular, Theorem 22 means that, for glueable select&verify problems
for planar graphs that admit a linear problem kernel of size dk, we can get
an algorithm of running time

O(c(a, 3,0, d)‘/’;q(k) + Tk (n, k)), where ¢(a, 3,0,d) = oV /(1)
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Obviously, the choice of the separator theorem has a decisive impact on
the constants of the corresponding algorithms. In particular, our running
time analysis shows that the ratio r(«, 8) := /(1 — /) has a direct and
significant influence on the running time. In Table 1, this ratio is computed
for the various /--separator theorems. In the following example we use these
ratios explicitly.

Example 23. In the case of VERTEX COVER on planar graphs, we can take

d=2,a=2/3 and f = /2/3 = \/4/3 (see [17]) with the ratio r(a, §) ~
10.74. In this way, we obtain an algorithm with running time 0(2‘/5'10'74"/E+

Vk

nk). Neglecting polynomial terms, we have such obtained a ¢¥*-algorithm

with ¢ = 21519 ~ 3738]1.

Taking d = 2, a = 3/4, and 8 = 1/27/V/3- (1 4+ v/3)/V/8 ~ 1.84 (see [38])
with r(, ) ~ 13.73, we get an algorithm with running time O(2VZ1373Vk 4.
nk). This means, we have a ¢V*-algorithm with ¢ = 21942 ~ 701459.

Even worse, choosing d = 2, a = 1/2, and 8 = /24 ~ 7.58 [11] with
(o, B) &~ 16.73, we obtain a ¢¥*-algorithm with ¢ = 22366 &~ 13254694.

In this place, let us mention that taking known 3-separator theorems
would yield better constants here (at the cost of worse polynomial terms
which we generally neglect in the course of this example). By a result due to
Venkatesan [43] (also see Lemma 36 below), we could obtain 8 = /12 = 3.46
for @ = 1/2 (here, (o, 3) ~ 11.83, which yields a ¢V*-algorithm with ¢ =
21673 2 108701. Observe that this constant is comparable with the constant
obtained via separator theorems for av = 2/3.

The constants obtained by this first approach are admittedly bad. Sec-
tion 5 is dedicated to present new strategies on how to substantially improve
these constants.

Remark 24. Let us make some remarks on the importance of cycle sep-
arator theorems or slim graph problems. Assume that none of these two
conditions is met in a given situation. Then, the claimed bound from Equa-
tion (4) of Theorem 22 is only true for some o/ = a+¢ with ¢ € (0,1 — «).
Now, there is a certain trade-off in the choice of e:

1. The factor 3/(1 —v/a’) in the exponent of c(a’, 3,0) tends to infinity
if o/ tends to one, i.e., if ¢ is as large as possible.

2. The analysis of Theorem 22 is only valid if p(k) > (3/¢)?. This bound
is easily derived from Equation (3) in Proposition 20 when replacing n
by p(k) due to the assumption of a problem kernel of polynomial size.
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Keeping in mind that typical values of p(k) are not very large in practical
cases, the second point means that, since 3 is fixed, € should be comparatively
large, otherwise, 3/ would be greater than \/p(k). This gives us very bad
constants in the analysis due to the first point.

As explained in the following example, Theorem 22 is not only interesting
in the case of planar graph problems.

Example 25. Since VERTEX COVER is a slim problem which has a linear
size kernel, Theorem 22 yields a ¢V -algorithm for Gy, where G, denotes
the class of graphs of genus bounded by g; see [15], where the existence of a
separator of size O(,/gn) for n-vertex graphs from G, was proven. For the
same reason, we get a c¥9%-algorithm for INDEPENDENT SET on Gy.

Note that these are the first examples of fixed parameter algorithms with
sublinear exponents for bounded genus graphs.

4.3 Towards avoiding (linear) problem kernels: the
core concept

We are going to introduce the novel notion of problem cores, which is closely
related to that of problem kernels, but seemingly “incomparable” and tai-
lored towards unweighted minimization select&verify problems.!! The main
distinguishing point between problem kernels and problem cores (the latter
to be defined next) can be sketched as follows. In the case of problem kernels,
we reduce an originally “big” problem instance to a “small” one, where then
the remaining work has to be done exclusively on the small instance without
taking care of the original big instance. The kernel that comes out of such
a preprocessing might be completely unrelated to the original problem in-
stance. By way of contrast, in the case of cores, we also reduce, in a sense, to
a small instance, but we still allow that in order to solve the underlying prob-
lem, the original big instance may still be used for “checking;” the “guessing”
(i.e., the search), however, can be restricted to the core. To make this work,
we have to demand that the core itself really has to be a “sub-instance” of
the original instance, being obtained from the original instance by simply
omitting parts of it. (We make this formal in the rest of this subsection.)
That is why we think that both notions are incomparable and why we hope
that cores might prove useful.

Definition 26. Consider an unweighted select&verify minimization graph
problem G specified by (P.,min). A corer of size p(k) is a polynomial time
computable mapping ¢ : (V, E), k) — V., V. C V, satisfying

n fact, we do not know how to define cores for maximization problems.
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e V.| <p(k), and
o 37 = (z1,..., ) € {0, }VI(Pe(?) < kA {v; €V |2 =1} C V).

The set V. is also called the problem core of G. If p(k) = ak, we call ¢ a
linear corer. In this case, V, is called a factor-a problem core.

Note that weighted minimization problems could also be treated similarly at
the expense of further technical complications. Having a problem core auto-
matically makes a select&verify problem a “simple” one from the viewpoint
of parameterized complexity:

Lemma 27. If an unweighted selectéverify minimization graph problem G
has a core of size p(k), then it is fized parameter tractable.

Proof. For the problem core V., which can be computed in polynomial time,
it is enough to check all k-element subsets, giving fixed parameter tractability.
O

Moreover, Stirling’s formula yields for linear kernels or corers:

Lemma 28. If a selectéverify problem G has a size ak problem kernel or
if the core is factor-a, then there is a “c*-algorithm” for G, where ¢ =
min{ea, 2°}.

Proof. In the case of p(k) = ak, by applying Stirling’s formula, we can exploit
the fact that ak choose k mostly is considerably smaller than 2%, namely

() = o
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for large enough k. (If a is not an integer, we can use general binomial coef-

ficients based on the Gamma function.) Since, by definition of select&verify
problems, P. is polynomial time computable, the claim is shown. O
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It is quite obvious that there is a close intuitive connection between corers
and kernelizations, which, however, seems hard to grasp formally. For exam-
ple, the already mentioned kernel of size 2k for VERTEX COVER based on a
theorem of Nemhauser and Trotter [30] is also a factor-2 core. Unfortunately,
we do not know of any concrete problem having a small core but no (small)
kernel, although we feel that such examples should exist.

Even though there seems to be no general interrelation between problem
kernels and problem cores, for our purposes, the different concepts can be
interchanged. The analogue to Theorem 22 reads as follows. Note, however,
that we now inherently need separator theorems for weighted graphs, even
though the originally given graph problem deals with unweighted graphs.
This might lead to worse constants, see Remark 7.

Theorem 29. Assume the following:

e Let G be a graph class for which a +/--separator theorem for weighted
graphs with constants o and (3 is known,

e let G be a select&verify problem defined by (P.,min) glueable with o
colors, and

e suppose that G admits a corer of size p(k) on G, which can be computed
in polynomial time Te(n).'?

Then, there is an algorithm to decide (G, k) € G, for a graph G € G, in time
c(d, B,0)VPEg(k) + To(n),  where (o, B,0) = o0V,

and o/ = a+¢ for any e € (0,1 — «), holding only for k > ko(e).

If, however, G is slim or the \/--separator theorem yields cycle separators
(on the class G of planar graphs), then the running time for the computation
18

c(a, B,0)VPFg(k) + T (n),
which then holds for all k.

Proof. Basically, the assertion can be proved similar to Proposition 20. Look-
ing at the list of assumptions, the main difference is that we now suppose
the existence of a core (instead of that of a kernel). How can we exploit
the knowledge of a corer within divide and conquer algorithms? We will do

12Qbserve that, due to our definition of a corer, the size of a core depends polynomially
on n, so that the polynomial function T need not include k as an explicit argument, as
it was necessary in the analogous theorem dealing with problem kernels instead of cores.
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this in two ways: firstly, we only need to select vertices from the core V., so
that we can start with the graph G[V.] € G as the graph from which vertices
have to be selected. Secondly, we are now interested in finding separators
which split the graph in parts with “approximately the same number” of
vertices from V., so that log, |V.| < log,(p(k)) upperbounds the depth of the
recursion.

For given graph G = (V, E) € G, the algorithm proceeds as follows:

1. Compute a core V. C V containing at most p(k) vertices in time T(n).

2. Then, the graph G[V.] € G is the graph from which vertices have to be
selected.

3. Find an optimal Z satisfying P (Z | G[V,]) by applying Algorithm 18.
One modification of this algorithm, however, is necessary: we do not
use a separator theorem in step 2a of Algorithm 18 for a separation
of GV, but we add weights to G¥* as follows: V, induces a weight
function w on GV** by letting

. 07 U%‘/Ca
w.V—>R+,Ur—>{1/|VC|, vev

Then, we apply a separator theorem for weighted graphs to GV*" with
the weight function w.

The constants ¢(«, 5,0) and ¢(/, 3, o) are then derived as in Proposition 20.
U

Again, we can specialize the above theorem for the linear case: The ex-
istence of a factor-a problem core for a glueable select&verify problem for
planar graphs implies a solving algorithm running in time

O(c(a, B,0,a)*q(n) + Te(n)), where c(a, 8,0,a) = o?V¥/ 1=V,

As illustrated in [17], for @« = 2/3, we can obtain § ~ 1.97 for a cycle
separator theorem for unweighted planar graphs, and § = 2 for a cycle
separator theorem for weighted planar graphs.

5 Improving constants

In order to improve the constants obtained in Theorems 22 and 29, we will
analyze how separator theorems are proven in the literature. For the ease
of presentation, we will again restrict ourselves to planar graphs. Similar
observations can be made for other graph classes, as well.
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5.1 A brief sketch of separator theorem proofs

As pointed out by Venkatesan [43], a small separator, as obtained by Lipton
and Tarjan’s approach, consists of two ingredients:

e the first ingredient of the separator is composed of all vertices which
have the same distance from the root of an assumed minimal height
spanning tree (modulo some constant s), and

e the second ingredient is found according to a “special separator theo-
rem” for planar graphs with radius of at most s.

The constant s is chosen such that the overall size of the separator is mini-
mized.

Let us discuss the first ingredient in more details. Consider an n-vertex
planar graph G = (V, E), and let a spanning tree 7' of minimal height of G
be given which has root r. A level i of a vertex v of GG specifies the distance
of v from r in the tree T. Choose some integer s “suitably” (this will become
clearer later). Let Ly ; denote the vertices of G which are at those levels i
in T such that ¢ mod s = j. In particular, » € Ly. If s does not exceed the
number of levels in 7', then there exists a level Ly, such that

| Lo | < [n/s]. (5)

It will become clear later that the case when s exceeds the number of levels
of T is an easy one.

The vertex set Lr;, will be the first ingredient of the separator we are
going to construct. Observe that Ly, alone is not a separator of G in general,
since there may be edges not belonging to the spanning tree 7" which connect
vertices of the remaining levels. Nevertheless, the graph G — Lp;, is small
when we look at its radius. Therefore, we will also call the procedure of
cutting out Ly, from G a folding step. More precisely, Venkatesan [43,
Theorem 1] proved:

Lemma 30. Assume that s does not exceed the radius h of G. Let T be a
spanning tree of height h. For any level Ly ; of G, the components of G— Ly ;
form a subgraph of another planar graph G' which contains n — |Ly | + 1
vertices and which has radius no more than s. L

The second ingredient of the separator we are going to construct is ob-
tained via a separator theorem for planar graphs of bounded radius, applied
to G' form Lemma 30; of course, the obtained small separator will also sep-
arate G — Ly ;. Let us quote the needed “special separator theorem” in the
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form of a lemma which is due to Lipton and Tarjan [28]. Observe that weights
are given to vertices of a graph by means of a function w which assigns non-
negative reals to vertices and, hence, to vertex sets. Setting w(v) = 1/|V| for
all v € V yields the unweighted case.

Lemma 31. Let G be a planar graph of radius s, with nonnegative weights on
its vertices adding in total to no more than 1. Then, a separation (A, S, As)
of G can be found in linear time such that neither Ay nor Ay has weight
exceeding 2/3 and |S| < 2s + 1. Moreover, the vertices of S lie on a cycle
when G s triangulated. ]

We remark that a statement similar to Lemma 31 is also valid for graphs
of bounded genus, compare [14, 15], so that our approach can be easily
generalized to these graph classes G,. In addition, if it can be shown that
there is a function h such that A(k) is an upper bound on the radius of any
graph instance (G, k) with G € G, for a select&verify graph problem, then
this problem (restricted to graphs from G,) is fixed-parameter tractable.

It is now possible to derive the classical Lipton/Tarjan result from the
above considerations:

e If the radius of a given n-vertex planar graph G is less than or equal
to v/2n, then we might apply Lemma 31 directly.

e Otherwise, choose s = y/n/2. The first ingredient of the separator,
delivered by the folding step, then contains at most n/s = v/2n vertices
according to Equation (5) and the second ingredient less than 2541 =
V2n + 1 vertices according to Lemma 31 (which is applicable due to
Lemma 30), summing up to at most 2v/2n + 1 vertices within the
separator.

Here, the “magic number” s was determined as to minimize the sum
n/s+2s (6)

of the two ingredients of the separator.

By making more clever use of the sketched ideas, Djidjev and Venkate-
san [17] recently derived the constant § = 2 for « = 2/3 in the case
of weighted graphs. For the unweighted case, they even obtained ( =
V2/3 + /4/3 ~ 1.97. This figure already comes quite close to the lower
bound of § = 1.55 for & = 2/3 due to Djidjev [13] (see Table 1).
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5.2 Optimizing divide and conquer algorithms based
on graph separators

We are now going to improve the constants involved in the proofs of Theo-
rems 22 and 29 considerably by tailoring the use of separator theorems for the
divide and conquer approach. Note that, from a rough algorithmic perspec-
tive, we will still suggest Algorithm 18. The only difference to Proposition 20
is the way separators are obtained in step 2a.

Our main two observations leading to the improvements explained in the
next theorem are the following ones:

1. It is unnecessary to perform the folding step over and over again in
the recursion, since the graph parts which occur after having applied
a classical separator theorem will have small radius. Instead, one can
apply Lemma 30 directly several times in a row in the course of the re-
cursion.'® We cannot expect good results if we only apply Lemma 31,
since the radius (as condition of applying Lemma 31) would not de-
crease in general, which means that the separators we get after several
recursive applications of Lemma 31 will be rather large.!* Therefore,
from time to time, a folding step has to be inserted. The goal is now
to find the optimal number of recursive applications of Lemma 31 in a
row.

2. It is not necessary to minimize a single separator occurring in the re-
cursion, but it might be more reasonable to minimize the sum of all
separators which occur on an arbitrary recursion path. This means
that we could choose a new optimal radius s in a way similar to Equa-
tion (6), which expresses the idea of Lipton and Tarjan.

In order to keep our analysis within reasonable length, we omit discussing
cycle separators but focus on recursive algorithms for slim select&verify graph
problems in the following. Let us explain in a few lines why this restriction
is not too hard from a practical point of view, which means that the next
theorem will be also applicable even when we are faced with problems which
are not slim.

1. Practical applications of the obtained algorithms will not go into really
deep recursions, since only small parameter values can be tackled.

13This idea has been already used by Venkatesan [43] in another context. We will
analyze the mentioned idea of Venkatesan—in the context where it appeared originally—
more thoroughly in Subsection 5.4.

141t is exactly this situation which was tackled by Venkatesan and which will be analyzed
in Subsection 5.4 from a parameterized point of view.
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2. Lemma 31 (which is applied “most of the time” according to the proof
of the next theorem) yields cycle separators. Moreover, insisting on
cycle separators is only necessary from the second iteration of the divide
and conquer method onwards. Note that, if we want to avoid additional
colors when solving problems which are not slim, these additional colors
are only necessary in steps which are not guaranteed to yield cycle
separators.

Hence, in practical applications, only few (if any) additional colors will be
necessary to solve problems which are not slim with the presented methods.
Since in practice, no really deep recursions are to be expected, the number
of additional colors will be negligible.

In the following, we are specializing the constants o and  as a = 2/3
and f = /8, because the simple proof structure of the planar separator
theorem of Lipton and Tarjan (as sketched in Subsection 5.1) allows for easy
modifications. It remains a challenging future research topic to see which
ideas from other separator theorems could be used in order to obtain better
constants in the next theorem. In fact, the results of Subsection 5.3 indicate
that other separator theorems can be preferable.

The basic idea of the proof of the following theorem is to exploit the fact
that the running time of a divide and conquer algorithm based on separators
in graphs basically depends only on the sum of the sizes of the seperators
accumulated along a fixed recursion path, cf. the discussions preceding Equa-
tion (6). Thus, it can be advantageous to have larger separators at certain
levels of the recursion tree if this buys us smaller separators at the other
levels.

Theorem 32. Let G be a selectéverify problem on planar graphs defined by
(P, opt) which is glueable with o colors, and suppose that G admits a problem
kernel of polynomial size p(k) computable in time Ty (n, k).

Then, there is an algorithm to decide (G, k) € G, for an n-vertex planar
graph G, in time

(o, )V ®Pg(k) + T (n, k), where c(a,0) ~ g-80665/0-Ve),
and o/ =2/3+¢ for any € € (0,1/3), holding only for k > ko(e), where q(-)

s some polynomial.
If G is slim, then the running time for the computation is

c(2/3,0)VP ¥ g (k) + T (n, k),

which then holds for all k.
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Proof. After kernelization, we are left with a graph with at most p(k) vertices.
For this graph G’, we would like to answer the question whether (G, k') € G
for some &' linearly depending on k. We will do this in a recursive manner.

In the first step of the recursion, we will basically use the classical sep-
arator theorem of Lipton and Tarjan. Recall the outline of its proof in
Subsection 5.1. Especially, note that the obtained separator consists of two
ingredients. We will discuss these ingredients once more in the following.

Analogously to the considerations preceding Lemma 30, let Lz ;, be a level
in the vertex set induced by some spanning tree 7" of minimal height in G’
such that |Lz;,| < [p(k)/s], where s is an integer we are going to optimize
in the following. We use Ly, in a folding step. According to Lemma 30, we
are now left with a planar graph with radius upperbounded by s. Therefore,
we can now recurse the next ¢ steps in a row using only Lemma 31. Then,
we will interleave another folding step in order to decrease the radius of
the remaining graph parts, which are again handled by ¢ applications of
Lemma 31 in a row, and so forth.

Within this basic scheme of recursion, let us consider a fixed recursion
path. The time spent in ¢ recursion steps using only Lemma 31 basically is
0?9t since the accumulated size of the separators along the recursion path
is upperbounded by 2sf. Namely, in each of these ¢ recursion steps, a new
separator of size 2s has to be considered. Therefore, the size size, of all
separators along the recursion path after one folding step and ¢ applications
of Lemma 31 is upperbounded by:

sizeg S |LT,i0| + 25t S Lp(k)/SJ + 2s/. (7)

In order to minimize size, (which directly influences the running time of
the recursive algorithm, as noted in the discussion preceding this theorem),
we should choose s = sy := /p(k)/(2¢). This means that we obtain an
optimal total separator size of

size; < \/8p(k). (8)

Let us now compare this new mixed strategy with a direct application
of known separator theorems for obtaining divide and conquer algorithms,
as detailed in Proposition 20. Firstly, observe that, after ¢ recursion steps
according to our new mixed strategy, we are left with a graph whose compo-
nents contain at most (2/3)n vertices, if we started with an n-vertex graph.
This situation is completely the same if we would have repeatedly applied
the currently best separator theorem known for planar graphs, see Proposi-
tion 20. Consider a separator theorem with general constants « and 3. After
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¢ iterations of this separator theorem, along a fixed recursion path, we would
have accumulated separators of total size upperbounded by

B-vn+p-Van--+ 8- Vatin,

if we started with an n-vertex graph. This geometric sum can be rewritten,
yielding the general upper bound
11—«

B G )

Let us compare our approach therefore with Djidjev’s separator theorem
with constants 3 = \/% + \/m ~ 1.97 and a = 2/3, see Table 1. After ¢
iterations of this separator theorem, along a fixed recursion path, we would
have accumulated separators of total size ﬁg, where

/2
size, < (V/2/3+/4/3) - 2\;3)* Vp(k) (10)

according to Equation (9). Comparing this approach with the previously
outlined new mixed strategy can now be done by comparing size, and sizey.
Simple arithmetics shows that size, < size, iff £ € {1,...,12}. Therefore,
our mixed strategy is better than the direct approach for ¢ € {1,...,12}.

Which ¢ € {1,...,12} is the best choice within our mixed strategy? We
answer this question by the following approach. Equating the right-hand side
of Equation (8) and Expression (9) (in the case when ov = 2/3 and n = p(k))
allows us to compute a 3, of a hypothetic separator theorem whose direct use
for divide and conquer matches our mixed strategy. In this way, we obtain
the following formula for f:

1-./2/3
=V8l ——F———.
fe= V8t 1— (2/3)2
Some computations show that (g is the minimum of all such 3, for ¢ €
{1,...,12}. More precisely, we have 5 = 1.80665 as required in the theorem.
U

¢/2

Note that one could replace the requirement of a polynomial size problem
kernel by assuming a polynomial size problem core and obtain similar results
by using Theorem 29, since also weights can be handled in the graph separator
theorems which were used in the preceding proof.

Example 33. For VERTEX COVER on planar graphs, we obtain by the pre-
vious theorem a 213923k ~ 15537k algorithm, which obviously beats the
figures in Example 23.

To further improve our constants, we need a generalized notion of sepa-
ration as introduced in the following subsection.
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5.3 Regular partitions

Djidjev [13] coined the notion of regular vy-partition. We will only need the
following restricted notion (which Djidjev would term regular 1/2-partition):

Definition 34. A regular partition (A;, Az, Az, S) of an n-vertex graph G =
(V, E) is a partition V = A; + Ay + A3 + S such that

e A; and A; are not connected to each other for 1 <7 < j < 3 and
o |[A)|<1/2-nfori=1,2,3.

Hence, in a regular partition, S can be viewed as a separator that splits G
into three parts A;, A, and Az. Therefore, a regular partition is an example
of a 3-separator in our notation introduced after Definition 4.

Djidjev has shown the following analogue of Lemma 31:

Lemma 35. Let G be a planar graph of radius s. Then, a reqular partition
(Ay, Ay, A3, S) exists such that |S| < 3s+ 1. O

With the help of Lemma 35, Venkatesan [43] proved:

Lemma 36. Let G be a planar n-vertex graph. Then, there exists a reqular
partition (A, Ag, Az, S) such that |S| < V12¢/n. O

In principle, the proposition was shown in the same way as the separator
theorem of Lipton and Tarjan. In the folding step, a level Ly ;, of a spanning
tree of G is chosen such that |Lr;,| < n/s; then, Lemmas 30 and 35 are used
to get a regular partition with |S| < n/s+ 3s; finally, s is chosen to minimize
n/s + 3s which yields the claimed constant.

Obviously, we can try the same trick as in Theorem 32 to find an opti-
mal ¢ so that Lemma 35 is used ¢ subsequent times in the recursion. Some
computations lead to:

Theorem 37. Let G be a selectéverify problem on planar graphs defined by
(P., opt) which is glueable with o colors, and suppose that G admits a problem
kernel of polynomial size p(k) computable in time Tk (n, k).

Then, there is an algorithm to decide (G, k) € G, for an n-vertex planar
graph G, in time

c(d,0)VP®g(k) + Tx(n, k), where c(d, o)~ g2 70%6/0-Va"),

and o/ =1/2+ ¢ for any € € (0,1/2), holding only for k > ky(e), where ¢(-)
15 some polynomial.
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If G is slim, then the running time for the computation is
¢(1/2,0)V?Wq(k) + T (n, k),
which then holds for all k. ]

Example 38. For VERTEX COVER on planar graphs, we obtain in this way
a 2130639VE ~ 8564V algorithm, which again beats the figure derived in
Example 33.

Notice that, since there is no analogue of Lemma 35 known for weighted
graphs, we do not know whether Theorem 37 is true when facing a graph
problem for which we only know of a small core instead of a small kernel. To
the contrary, such a “core-analogue” was true for Theorem 32.

Remark 39. In the case that a slim select&verify planar graph problem G,
which is glueable with o colors, admits a kernel of size dk, where the ker-
nelization yields a problem parameter k' = k (for simplicity), two principle
methods are immediately at hand:

e Employ the natural analogue of Lemma 28 in order to obtain a 2%- or
(ed)*-algorithm for G.

e Employ Theorem 37 in order to get a o27056/(—V/1/2Vdk _ ;9.2376\dk_
algorithm.

Taking, e.g., the 2%_algorithm for G and equating 2% with ¢%2376Vék yields

kup(o.d) = (9-2376 - log<a>>2 |

og2) — =177.61- (log(0))*d ™" (11)

d
as break even point of the separator-based algorithm, i.e., whenever k£ >
kg (o, d), then the separator-based algorithm is better than the 2¢*-algorithm.

In many cases, as for example in the case of VERTEX COVER, there are
known so-called search-tree algorithms which are much better than the 27-
algorithm. Therefore, the break even point of the separator-based algorithm
tends to be greater than suggested by Equation (11). For example, in the case
of VERTEX COVER, a 1.3*-algorithm beats the suggested 8564*/E—alg0rithm
as long as k£ < 1191. Of course, k =~ 1000 is out of reach of current computer
technology, although one has to keep in mind that we are always talking
about worst case upper bounds. For example, the pieces obtained by the
separator theorems might be much smaller than suggested by the theorems,
which immediately yields an improved running time of these algorithms.
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Nevertheless, in practice, it might be favorable to devise algorithms which
have worse asymptotic behavior (since the exponential term contains a faster
growing function) but smaller constants. We try to capture this sort of trade-
off in the following.

5.4 n/e separation

There are separator theorems which allow for arbitrary small weights (upper-
bounded by ¢) for each of the (many) graph components into which the given
graph is split, at the expense of getting larger separators (of a size depending
also on the chosen ). Venkatesan proved the following result, which is, to
our knowledge, the best of its kind [43]:

Lemma 40. Let G be an n-vertexr planar graph with nonnegative vertex
weights adding to at most one, and let 0 < € < 1. Then, there ezists some
separator S with at most \/ﬂ\ﬂ% many vertices such that G — S has no
connected component of total weight greater than €. The separator S can be
found in O(nlogn) time. O

Let us briefly sketch the proof of Lemma 40: As in the proofs of previously
shown separator theorems, in a preparatory folding step, the graph is sliced
into pieces of bounded radius s by cutting off a layer Ly, with |Lr;,| < n/s.
Then, Lemma 31 is used repeatedly, until all remaining graph pieces are
small enough. Choosing an optimal s then yields the claimed constant.

We want to apply Lemma 40 in order to design algorithms for certain se-
lect&verify planar graph problems that are glueable with ¢ colors. Thinking
about ¢ as a function € : n +— (0, 1] allows us to devise an algorithm of the
following kind:

e Apply Algorithm 18, as long some of the graph pieces such obtained in
the course of the recursion have more than £(n)n many vertices, and

e compute an optimal solution by using the best-known p*(™" algorithm
(for the precolored problem!) on each graph piece. Of course, there are
at most n such graph pieces.

Let us try to determine an optimal £(n), assuming that the constant p is
known. Recall that only the size of the separators on some path of the divide
and conquer recursion tree matters for the calculation of the running time.
This size is upperbounded by

n/s+ 2slog3/2(1/s(n)) (12)
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according to Equation (7), since the depth of the recursion tree is bounded
by logy 5(1/¢(n)). Expression (12) is minimal if

n/s = 2slogy;(1/e(n)). (13)

This means that choosing

~ [log(3/2) n
0=V gty "

would be optimal. Tracing back the meaning of s(n) as a natural number,
it is clear that |[s(n)| or [s(n)] has to be chosen. In the following, we will
nonetheless work with the theoretical real-valued function s(n). Now, the
task would be to determine the optimal function £(n) in order to minimize
the total running time, which is upperbounded by

(0_2n/s(n) . ps(n)n)n (15)

For fixed n, the minimum of Expression (15) is assumed when

g25(m) = pemn
since 2n/s(n) is the overall size of all separators along a fixed recursion
path according to Expression (12) and Equation (13). Unfortunately, we
were not able to determine the optimal function €(n) corresponding to the
s(n) given by Equation (14) analytically. Therefore, we make the following
coarse estimate: Of course, the size of the separators along one recursion
path is upperbounded by the size of all separators which is upperbounded
by v/24y/n/e according to Lemma 40. Therefore, we compute the £(n) given
by

V2 /nf=(n) _ pEn, (16)

This means that £(n) = ©(n~'/?) is the best choice. More precisely, evalu-
ating Equation (16) yields

_ (1ogl0)- v\
6(n)—< o27) ) . (17)

This evaluation is valid if e(n) < 1, since we like to apply Lemma 40, i.e., for

log(o)
n > Toe(0) -\V/24. (18)
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Hence, an algorithm which tries all possible colorings along a recursion
path, applying the best known general algorithm to the remaining graph
pieces, results in the following running time due to Expression (15):

(US(n) . pa(n)n)n,

where we use s(n) = v/24y/n/e(n) and £(n) is given by Equation (17).
This reasoning yields the following statement.

Theorem 41. Let G be a selectéSverify problem on planar graphs, defined by
(P, opt). We make the following further assumptions:

e G is glueable with o colors.
e G admits a problem kernel of linear size dk computable in time Tk (n, k).

e There is an O(p™) algorithm for solving the (possibly precolored) graph
decision problem under consideration for a planar graph with n vertices.

Then, there is an algorithm to decide (G, k) € G, for an n-vertex planar
graph G, in time

2/3 lOg(U) 2/3
O(dk-20 P DK LTy (n, k), where (o, p,d) = 2log(p) (\/ d ( )) .
og(p

According to Inequality (18), this calculation is valid for

log(0)
"2 10g(p) \/_ d

Observe that we indeed need no further assumptions as, e.g. slimness,
since we rely on the cycle separator Lemma 31 from the second step in the
recursion on. The first step of the recursion does not cause any problems.

In the case of VERTEX COVER Robson’s algorithm [37] gives p ~ 1.21, so
that Theorem 41 yields a ¢*” —algorlthm with

¢ — 9(2log 1.21-(2v/24/ log 1.21)2/3) ~ 959 ~ 69 95

Compare this running time with the best known c* algorlthm (¢ = 243
121.79 was shown in [3, 4]).

Similar remarks can be made for INDEPENDENT SET.

Let us reconsider the calculations which led to Theorem 41. In principle,
there were two mutually dependent places where we could optimize:
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1. We can optimize s (given ¢) according to Equation (14); this leads us
to the following simplified equation:

NG

log(e~") 1

Sopt(8,m) = ¢

for some constant c.

2. We can optimize € (given s) in order to minimize Expression (15); this
leads us to the following equation:

Eopt($,1) = - n/s (20)
for some constant ¢’ which depends on ¢ and p.

These two competing requirements naturally lead us to a variational ap-
proach. Unfortunately, the corresponding computations and the resulting
expressions are rather weird; therefore, we refrain from giving more details
here.

6 Refining FPT

The results of this paper give rise to the following observation concerning
the structure of the complexity class FPT. It is known (see [19, 22]) that,
for a parameterized language L which is decidable in time g(n) for an input
instance (I, k) with n = |I|, we have:'®

L € FPT iff L admits a reduction to problem kernel.

More precisely, one can show that the existence of an f(k) - n®M-algorithm
for a parameterized language L € FPT yields a problem kernel of size f(k).
Conversely, a problem kernel of size p(k) easily yields an O(g(p(k), k) +
Tk (n, k)) algorithm, showing membership in FPT. Here, Tk (n, k) is the time
needed for the reduction to the problem kernel. This suggests a refinement
of the class FPT according to the asymptotic behavior of the exponential
term in the running time:

FPT(f) == {L C Y x N‘ 3 an algorithm to decide (z, k) € L in time } .

20(ogf) . pe  for some o € RF

Alternatively, FPT can be refined according to the size of the problem kernel:

FPTx(f) := {L CYxN

L admits a reduction to a problem kernel
of size g(k) for some g € O(f)

n

15Typically, g is a function of the form g(n) = 2".
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Then the above fact can be restated as

JFPT(f) =FPT = | JFPT«(f).
! !

More precisely, for every function f, according to the discussion above, we
have

FPT(f) € FPTk(f). (21)

Moreover, if L € FPTk(f), then L € FPT(go f), where g is the time needed
to decide L.

For select&verify problems, the function g trivially is g(n) = 2" simply
checking all possible vertex assignments. In this sense, our results can be
seen as an improvement of the general relations (derived above) towards

FPT(f) NGP C FPT,(f)NGP C FPT(go0+/f)NGP

for a large class GP of planar graph problems.

It would be interesting to see whether there are other classes of FPT
problems for which similar (or even further improved) relations of this form
can be shown. It is challenging to see whether these (or similar) refinements
of FPT could lead to a reasonable structural complexity theory. To this end,
one has to define also new reduction relations which are more sensible to the
parameter k, a fact which is not reflected in currently used parameterized
complexity reductions. We think that this could indeed give a new impact
on parameterized complexity theory.

7 Conclusion

We exhibited the relations between (planar) separator theorems and their use
in obtaining fixed parameter tractability results based on divide and conquer
algorithms. To this end, we coined the key notion of glueable select&verify
problems that captures intricate graph problems such as DOMINATING SET
or TOTAL DOMINATING SET. We showed that various glueable select&verify
problems allow ¢V"-algorithms on graph classes that admit a \/k-separator
theorem. Then, the constant ¢ is determined in terms of some problem-
specific parameters. By exploiting further ideas on the use of separator the-
orems, we were able to lower these constants substantially. Finally, methods
were presented that allow for ckz/g—algorithms with already reasonable con-
stants c.
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Future research topics stirred by our paper are, among others, to further
investigate the newly introduced concept of cores and to further explore the
structure inside FPT. Finally, we would like to emphasize that our work indi-
cates that (at least for the context of fixed parameter tractability) research on
improving constants in separator theorems with constants o and ( might not
only concentrate on bringing down f for fixed « (as, e.g., done for a = 2/3
in [17]), but more importantly, on minimizing the function 5/(1 —+/«). This
would directly improve the exponential terms in all graph problems captured
by our methodology. Moreover, it is interesting to see whether the constants
in Theorems 32 and 37 can be further improved. The idea behind these two
theorems might also help to overcome the “lower bound barrier” imposed
on the constants of several separator theorems, see [38]. Of course, an im-
provement of the presented algorithms can also be gained by increasing the
number of parameterized problems with (small) linear problem kernel.

Let us finally mention that separator-based techniques for solving graph
problems were also used in other recent papers [16, 20]. Last but not least,
our techniques might be applicable to non-planar graphs, as well. This is
strongly indicated by [6, 8, 21, 25].
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