Parameterized Maximization

Henning Fernau

WSI-2001-22

Henning Fernau

Wilhelm-Schickard-Institut fir Informatik
Universitat Tubingen

Sand 13

D-72076 Tubingen

Germany

E-Mail: fernau@informatik.uni-tuebingen.de
Telefon: (07071) 29-77565
Telefax: (07071) 29-5061

(© Wilhelm-Schickard-Institut fiir Informatik, 2001
ISSN 0946-3852

Parameterized Maximization

Henning Fernau
Wilhelm-Schickard-Institut fiir Informatik
Universitat Tiibingen
Sand 13, D-72076 Tiibingen, Germany
email: fernau@informatik.uni-tuebingen.de

December 18, 2001

Abstract

Maximization problems are usually considered as parameterized
problems taking as parameter the entity which has to be maximized.
In contrast, we study here another parameterization, given by the dual
bounding constant in the case of an integer linear program formula-
tion. This way, it makes sense to consider parameterized maximization
problems such that it can be well motivated to expect the parameter
to be small. We give examples of fixed parameter tractable maximiza-
tion problems, as well as of problems which are not expected to be
fixed parameter tractable unless FPT = W/1], a hypothesis which is
generally considered unlikely in parameterized complexity.

1 Introduction

Optimization problems offer a rich source of problems which tend to have no
polynomial-time algorithms, unless P = NP. They can be easily converted
into decision problems by asking, given an integer k, whether the value of
the given instance of the optimization problem lies above the threshold & (in
the case of maximization problems) or below & (in the case of minimization
problems). This is also the usual way of producing so-called parameterized
problems out of optimization problems. Then, the threshold k (defined as
above) is considered as the parameter of the corresponding parameterized
problem. This strategy is elaborated in [4, 6]. The idea of the “good news
section” of parameterized complexity is to design algorithms running in time
f(k)p(n), where k is the parameter of the problem, f is some arbitrary func-
tion, n is the overall size of the problem instance and p is some polynomial.
The corresponding class of problems is usually denoted by FPT. On the
other hand, there is also a notion of parameterized hardness, formalized best
by the notion of W[1]-hardness, corresponding to the notion of NP-hardness
in classical complexity theory. We will not define this notion formally here,

but refer the interested reader to the monograph [6]. The generic W[1]-hard
problem is the question whether a given nondeterministic Turing machine
halts in & steps or not, where k is the parameter. Therefore, the same in-
tuition backs the hypotheses P # NP and FPT # W/{1]: There seems to
be no general method for simulating n steps of a nondeterministic Turing
machine by a deterministic Turing machine running only p(n) steps, where
p is some polynomial.

The modified concept of feasibility—formalized by the class FPT—was
developed in order to claim the polynomial solvability of the problem under
the assumption that & is small (and independent of n). In actual fact, it
sounds quite reasonable to assume that k is small when k is derived as the
threshold of a typical minimization problem. In contrast, it looks a bit
queer to assume that &k is small when k is the threshold of a maximization
problem. One way out would be to re-parameterize the problem by choosing
(n — k) instead of k as the parameter, when some natural upper bound n
on k is known; e.g., in the case of maximum independent set, this would
transfer the original problem basically into a minimum vertex cover problem.
It was observed in various examples that this sort of re-parameterization
usually changes the character of the problem drastically (when viewed as a
parameterized problem). For example, the question, given a graph, whether
there is an independent set of size (at least) k& (where k is the parameter) is
W 1]-hard, while the question of deciding whether a graph contains a vertex
cover of size (at most) k lies in FPT.

By way of contrast, we study here another parameterization, given by
the dual bounding constant in the case of an integer linear program (ILP)
formulation. This way, it makes also perfect sense to consider parameter-
ized maximization problems such that it can be well motivated to expect
the parameter to be small. We give examples of fixed parameter tractable
maximization problems, as well as of problems which are not expected to
be fixed parameter tractable unless FPT = W/1], a hypothesis which is
generally considered unlikely in parameterized complexity.

The paper is organized as follows: In Section 2, we discuss the well-
known 0-1 knapsack problem as an introductory example. In Section 3, we
provide a definition of the central notion of this paper, i.e., (fixed parame-
ter tractable) parameterized maximization problems. In Section 4, we will
see more parameterized maximization problems which are fixed parameter
tractable, whilst in Section 5, we will learn about parameterized maximiza-
tion problems which do not allow for fixed parameter algorithms unless
FPT = WT[1].

2 0-1 knapsack: a first example

One of the classical NP-complete problems is the following knapsack prob-
lem, formulated here as a maximization problem: We are given a set X of
n items, i.e., X = {x1,...,x,}, where each item z; has some size s; € N
and some profit p; € N. We would like to pack our knapsack of maximal
capacity b € N such that the profit we might expect by somewhere carrying
this knapsack is maximized.

More formally, the problem can be formalized by using the following ILP

formulation:
n
max E pix;
i=1

subject to

n
Z siz; < b
=1

(x1,...,2,) € {0,1}"

So, the items z; are here interpreted as boolean variables.

The knapsack problem given above has several peculiarities; in partic-
ular, it has a polynomial-time algorithm when assuming that the numbers
involved in the specification of a problem instance are given in unary. There-
fore, we will assume in the following that all numbers are encoded in binary.

The usual transformation of this maximization problem would yield the
following parameterized problem:

Input: n items with sizes s; and profits p;, the knapsack capacity b, and
the profit threshold k.

Parameter: &

Question: Is there a subset of items which yield a profit larger than k& and
has an overall size of less than b?

Is this parameterization chosen in accordance with the nature of the
problem? 1 think this is not the case. Anyone posing this problem will
be happy to obtain a solution having a profit as large as possible, so the
basic assumption underlying the development of fixed parameter algorithms
is violated if the parameter is chosen to be the threshold value of the profit
(which has to be maximized).

So, it appears to be more reasonable to take the knapsack capacity b as
the parameter of the problem (whose parameterized formulation is identical,
otherwise). This means that we are interested in large profits while carrying
only a backpack of reasonably small weight or size. This seems to be a

comprehensible assumption from the practical point of view. What is even
more intriguing is the fact that one could now afford keeping the original
character of the problem (as a maximization problem). This way, we get
the following parameterized maximization problem:

Input: n items with sizes s; and profits p;, and the knapsack capacity b.
Parameter: b

Question: What is the maximum profit obtainable by choosing a subset
of items which has an overall size of less than b?

The fact that this latter problem is fixed parameter tractable can be
seen by employing two different strategies, as elaborated in the following.
Although the ideas behind the strategies are known from the literature, the
way we use them is somehow special.

Reduction to problem kernel: First of all, one can get rid of all items
whose size is larger than b, because they will never belong to any feasible
solution. Then, there can be at most one item of size b, one item of size
b—1, ..., and at most one item of size [(b+ 1)/2]. Moreover, there can be
at most two items of size [b/2], ..., up to size [(b+ 2)/3], etc. Altogether,
it is not reasonable to have more than

b/2-14b/6-24b/12-3+b/20-4+...+1-be O(blogh)

many items in the problem instance; more precisely, e.g., if there are more
than two items of size |b/2], then we can safely omit all items of this size
of the original problem instance but the two ones yielding the largest and
second largest profit of all items of this size.

Note that this problem kernel reduction does not yield a “problem ker-
nel” whose size (measured in the number of items) is polynomial in the size
of the parameter, but which is exponential, since all numbers are encoded
in binary. After having sorted the original instance according to decreasing
size, braking ties by sorting according to decreasing profit, it is easy to im-
plement the kernelization to run in time O(nlogn) (disregarding the size of
the numbers).

Taking into account that a knapsack problem is specified by n items
and the profit and size of each item (and the knapsack capacity b itself),
one easily sees that the size of a “problem kernel” is bounded by (blogb) *
(Pmaz + Smaz) + b, where ppq,p and sy, denote the maximum profits and
sizes (among the p; and s;, respectively). Since trivially $,,q» < b, we have
now a “kernel” of size f(b)pmqs for some suitable function f. Note that
usually a problem kernel (used for deriving parameterized algorithms) is only
allowed to depend on the parameter and not on other parts of the instance.

Nevertheless, by cycling through all 20(1080) possibilities of taking or not

taking items into the knapsack, we can easily arrive at an FPT-algorithm
for solving the 0-1 knapsack problem.

Dynamic programming: It is well-known that knapsack admits a
pseudo-polynomial time algorithm.! This means that there is an algorithm
running in time O(n Y_;" ; p;) which solves the 0-1 knapsack problem. This
algorithm is based on dynamic programming. For our needs, we employ a
related dynamic programming strategy leading to an algorithm running in
time O(nblog(pmaz)), which is again a pseudo-polynomial time algorithm
for the dual knapsack minimization problem (see [8]). .

One constructs a table T[-, -] with T[a,j] (with1 <a <band 1 <j <
n) containing the maximum profit of solving the given knapsack instance,
but only putting (some) of the first j items into the knapsack (which now
has maximum capacity of a). Disregarding trivial initializations, we can
compute

Tla, j] = max{T]a,j — 1], Tla — 5;,j — 1] + p;}.

The entries of the tables are each of size ppq, at most, which gives the
claimed running time, taking into account the binary encoding of py,qz-
Hence, we have the following result:

Theorem 2.1 Knapsack maximization (with n items and knapsack capac-
ity bounded by b) can be solved in time O(log(pmaz)(nlogn + b%logbh)). O

Let us remark that the parameterized tractability of knapsack maxi-
mization can be also shown in a third way: The usual way to derive the
fully polynomial time approximation scheme (FPTAS) for knapsack can be
modified so that it yields also an FPTAS of the dual problem (in the sense
of ILP), see [8]. According to the argument proving that every problem
admitting an FPTAS is fixed parameter tractable [4, Theorem 3.2], one can
prove that knapsack maximization is also fixed parameter tractable. In [4],
it was shown in this way that the parameterized knapsack problem is fixed
parameter tractable when taking the obtainable profit threshold as param-
eter. Similarly, the somewhat more general notion of efficient polynomial
time approximation scheme (introduced in [5]) can be exploited for designing
parameterized algorithms for maximization problems.

We observe that in the case of the maximum subset sum problem (which
is just the 0-1 knapsack problem with the restriction that, for all 7, p; = s;),
the size of the “problem kernel” derived above only depends on b (since,
of course, Pmar = Smaz < b). Hence, we get an algorithm running in time
O(n(logn)(logb) + (blog b)?) in this case.

"More details can be found in [3, 8, 9].

3 Parameterized maximization: formalizing notions

Now that we have discussed one example of a parameterized maximization
problem, it is time to define more formally what we mean by the term
“parameterized maximization.” We try to keep this notion close to the one
used for (non-parameterized) optimization problems as included in [3].

A parameterized mazximization problem P can be specified by

[a—y

. the set of instances I» C {0,1}*,
2. for each instance x € Ip, the set of feasible solutions Sp(z),

3. a measure function m yielding the value m(z,y) for any feasible solu-
tion y € Sp(x),

4. a distinguished part of the input instance z called the parameter (of
size) k; k is considered to be independent of |z|.

For technical reasons, we pose some further requirements:

1. Ip and, for each z € Ip, also Sp(z) should be decidable in fixed
parameter polynomial time, the parameter being again k.

2. Moreover, there is a polynomial ¢ and a function f such that

Vo e IVy € Sp(x) : |yl < f(k)q(|z])

?
and Vy € {0,1}* with |y| < f(k)q(]z|), the question y € Sp(z) is
decidable in fixed parameter polynomial time.

3. Finally, m should be computable in fixed parameter polynomial time,
where k is the parameter.

We call a parameterized maximization problem P fized parameter tractable,
or P € FPT —max, if there is some (deterministic) algorithm A which, given
some x € Ip, returns

m*(z) = max{m(z,y) | y € Sp(z)}

if Sp(z) # 0; otherwise, the algorithm may loop forever. The running time
of A should be bounded by f(k) - p(|z|), where f is some arbitrary function
and p is some polynomial.

Obviously, the 0-1 maximum knapsack problem considered in the pre-
vious section is fixed parameter tractable in this more formal way. We get
to know more fixed parameter tractable maximization problems in the next
section.

Note: Instead of requiring that the running time of the maximization algo-
rithm A should be bounded by f(k) - p(|x|), one could equivalently require
that the running time is bounded by f(k) + p(|x|). This fact can be proved
as in the case of the class of decision problems FPT, see [6].

4 Other maximization problems which are fixed
parameter tractable

One argument for showing that knapsack maximization if fixed parameter
tractable was based on a pseudo-polynomial time algorithm for the dual
knapsack problem. A similar argument applies to other knapsack-like prob-
lems where also a pseudo-polynomial time algorithm is known, see [3, 8, 9].

The kernelization argument also applies to the general assignment prob-
lem, where we have to fill not only one but m knapsacks of different capacities
b1, ..., by,. The parameter would then be the sum of the b;s. In a similar but
less efficient fashion we can treat variants of the knapsack problem where
the items are not 1-dimensional but 2- or 3-dimensional objects. Many other
variants of knapsack can be treated in this way, too.

Interestingly, I. Aho [1, 2] formulated a graph problem (which can easily
seen to be a generalization of the 0-1 knapsack problem) which can also
be shown to belong to the class of fixed parameter tractable maximization
problems; the mazimum weight-constraint path problem, MWCP, is given as
follows:

Input: A directed acyclic graph G = (V, E), where each edge e has a
length I(e) and a weight w(e), specified vertices s,t € V' and a weight
constraint W.

[All numbers are natural numbers encoded in binary.]

Parameter: W

Question: What is the maximum length of a (simple) path in G from s
to t with total weight of W or less?

Theorem 4.1 MWCP is fixed parameter tractable.

Proof. The assertion can be seen by using dynamic programming: For
each triple (v,v',w) with v,v' € V and 1 < w < W, put into a table T the
maximum length of a path leading from v to v', whose total weight equals w
(if it exists). The running time is obviously a polynomial in V| and in the
number W. a

The same algorithm shows, in addition to the NP-completeness shown
by Aho [2], that MWCP admits a pseudo-polynomial time algorithm.

As a concluding example, observe that typical minimization problems
like vertex cover can be easily and meaningfully enriched by additional
maximization constraints, which then would lead to a sort of parameter-
ized maximization problem we could consider as in the previous examples.
More precisely, let us consider the problem vertex cover mazimization VCM
given as follows:

Input: A graph G = (V, E), profits (natural numbers) p(v) for each vertex
v € V, a natural number k.

Parameter: &

Question: What is the maximum profit p(C) of a vertex cover C C V
with [C] < k72

A motivation for considering this problem is the following: The usual
covering problem instance might correspond to the establishment of a service
center net which should cover all main road connections (modelled by edges).
Although the management, for reasons of limited investment, yielded only
the installment of k& such centers, each of the (potential) centers would have
a peculiar expected profit, e.g., depending on the size and structure of the
local population, and the overall profit should be maximized.

Theorem 4.2 VCM is a fixed parameter tractable maximization problem.

Proof. We consider the following variant of Buss’ kernelization of vertex
cover.

1. Initialize C' := 0.
Use the following two kernelization rules as long as possible:

e If v is a vertex with no neighbours, v can be removed from the
graph, since v will not be part of any minimal vertex cover.

e If v is a vertex of degree greater than k, v must be in any vertex
cover, since otherwise all neighbours would be in the cover, which
is not feasible since we are looking for vertex covers with at most
k vertices. Hence, we can remove v (and its incident edges) from
the graph. Moreover, add v to C.

After having applied these kernelization rules exhaustively, we are left
with a graph G’ with at most k? vertices.

2. As a further preparatory step, we sort the vertices of the originally
given graph according to decreasing profit.

3. mazx :=0;

4. For each of the minimal vertex covers C' in G’ (which can be searched
for exhaustively)? do:

2Recall that a vertex set C is called vertez cover if each edge from E is incident to at
least one vertex from C.

3In fact, a search-tree technique shows that there are no more than 2* many minimal
vertex covers in G, see [7].

(a) If |CUC| < k then add the most profitable k—|CuU C| vertices
of G (which are not already included in C' U C) to C.

(b) If p(C UC) > maz then maz := p(C U C).
5. Return maz.

Obviously, the running time of this algorithm is O(n(log(n) + k) + f(k)) for
some function f. a

Alternatively, one could prove the statement of the previous theorem by
giving a search-tree algorithm of the following form:
search-tree(G = (V,E),G' = (V' E'), k,C,p)

1. If k=0 and E' = () then return C
2. else if k>0 and E' # () then

(a) Choose some e = {v1,v2} € E.

(b) Cy :=search-tree(G,G’ —vi,k—1,C U{vi},p);
(c) Cy:=search-tree(G,G" — vy, k —1,C U{v2},p);
(d) If p(Ci) > p(Cs) then return C; else return Cs.
4. else if k>0and E =10

5. then let C” contain the k£ most profitable vertices from V' \ C;
return C U C’

6. else if k=0 and E # () then return {.

Since the empty set has the lowest possible profit, namely zero, we could
afford returning the empty set indicating that there was no valid vertex
cover found at the corresponding search path. In order to obtain the desired
result, we call the procedure as follows:

1. C :=search-tree(G,G,k, D, p).

2. If C # () then return p(C).

Theorem 4.3 VCM € FPT — max. O

5 Hard maximization problems

In the previous two sections, we presented several parameterized maximiza-
tion problems which are fixed parameter tractable. Here, we will show that
there are also parameterized maximization problems which are at least as

hard as W[1]-hard parameterized decision problems, so that these problems—
under the assumption that W[l]-hard decision problems are not fixed pa-
rameter tractable—do not admit efficient parameterized algorithms.

Consider the following variant of the independent set problem, called
maximum weight-constrained independent set problem MWCIS:

Input: A graph G = (V,E), weights (natural numbers) w(v) for each
vertex v € V, a natural number W.

Parameter: W

Question: What is the size of a maximum independent set I C V with
w(l) <W?

Theorem 5.1 If FPT # W{1], then MWCIS ¢ FPT — max.

Proof. According to [6], the (usual) independent set problem on general
graphs, where the parameter is an upper bound on the size of the wanted
large independent set, is W[1]-hard. Consider some graph G = (V, E). If
MWCIS were fixed parameter tractable, then surely also the simplified ver-
sion with w(v) = 1 for all v € V would be, too. Hence, if this restricted
MWTCIS version with parameter W = k would return k£ as maximum size
of some solution, then the an algorithm for the usually parameterized inde-
pendent set problem could return YES, whilst it should return NO if the
MWCIS algorithm returns a value less than k£ as maximum size of some
solution. a

Similarly, the non-existence of a fixed parameter algorithm for the anal-
ogously defined mazimum weight-constrained clique problem MWCC can be
backed:

Corollary 5.2 If FPT # W{1], then MWCCS ¢ FPT — max. O

The two problems considered up to this point in this section had a some-
what artificial flavour. Let us therefore investigate now two maximization
problems (found in the literature) which already possess a natural parameter
in their original formulation.

The mazimum edge subgraph problem MES (see [3, GT35]) is defined as
follows:

Input: A graph G = (V, E), weights (natural numbers) w(e) for each edge
e € E, a natural number k.

Parameter: £
Question: What is the maximum weight of the set of edges in a subgraph

induced by some vertex set V! C V with |V'| = k?

10

Theorem 5.3 If FPT # W|1], then MES ¢ FPT — max.

Proof. According to [6], the clique problem is W[l]-hard, where the pa-
rameter is an upper bound on the size of the wanted large clique. Consider
some graph G = (V, E). If MES were fixed parameter tractable, then surely
also the simplified version with w(e) =1 for all e € E would be, too. MES
on (G,w, k) would yield k(k — 1)/2 iff G contains a clique of size k. O

The mazimum minimum metric k-spanning tree problem MMMST (see
[3, ND5]) is defined as follows:

Input: A graph G = (V, E), lengths (natural numbers) £(e) for each edge
e € E satisfying the triangle inequality, a natural number k.

Parameter: &

Question: What is the maximum weight of the set of edges in a minimum
spanning tree of a subgraph induced by some vertex set V' C V with
|\V'| = k?

Theorem 5.4 If FPT # Wl], then MMMST ¢ FPT — max.

Proof. We again reduce to the clique problem. Consider some graph G =
(V,E). If MMMST were fixed parameter tractable, then surely also the
simplified version with £(e) € {0,1} for all edges e would be, since the
triangle equality would be satisfied. Consider the complete graph G’ =
(V,E') with £(e) =1 ife € F and £(e) = 0 if e ¢ E. If G contains a k-clique,
then MMMST on (G', ¢, k) would yield £ — 1 (by choosing a vertex set V'
inducing a clique). If G contains no k-clique, MMST would yield at most
k—2. |

There is also a kind of generic parameterized maximization problem
which is not fixed parameter tractable unless FPT = W{[1], namely mazi-
mum profit short Turing machine computation MPSTM:

Input: A nondeterministic Turing machine TM with profits p(¢) and weights
(natural numbers) w(t) for each transition ¢, a natural number W.

Parameter: W

Question: What is the maximum profit of any path in the computation
graph of TM, corresponding to a terminating computation with weight
less than W7

Theorem 5.5 If MPSTM were a fixed parameter tractable maximization
problem, then FPT = WT1].

11

Proof. As mentioned in the introduction, the problem of determining
whether a given nondeterministic Turing machine TM halts within & steps is
the generic Wl]-complete problem. So, take some nondeterministic Turing
machine TM and modify it as follows:

(1) every transition of the original TM gets profit 2 and weight 1, and

(2) add a new state and transitions of profit 1 and weight 0 from every
original state to this new state.

It is easy to see that an MPSTM algorithm, when given this new Turing
machine and k£ as weight parameter, answers 1 if and only if there was
no halting computation path of length of at most & of the original Turing
machine TM. a

Actually, MPSTM could be used as generic problem to define a class of
parameterized maximization problems W[l] — max corresponding to W[1],
as shown in the following. The following theorem shows that all problems
considered in this section belong to W[1] — max.

Theorem 5.6 MWCIS, MWCC, MES and MMMST are solvable with the
help of MPSTM.

Proof. The graph (as instance of MWCIS) is coded within the transi-
tion relation of the Turing machine. A transition step of profit 1 and of
weight w consists in choosing a vertex v of the graph with w(v) = w to
be included in the independent set I which is going to be constructed. A
unique letter is reserved for each vertex, and each chosen vertex is written
onto the (otherwise empty) tape. This can be done within k& steps. Then,
there are further p(k) steps of zero weight and zero profit of the Turing ma-
chine which check whether there are no edges connecting the chosen vertices.
Hence, in p'(k) steps, the nondeterministic Turing machine (k of them being
nondeterministic steps) will find an independent set of size k, if such a set
exists.*

A similar argument applies for MWCC.

In the case of MES, after guessing a vertex subset V' in (at most) k
steps each of weight 1 and of zero profit, the TM checks all connections of
the graph induced by V' (these connections are stored in the finite memory
of the TM): each checking step has zero weight; if an existing edge of weight
w is checked, than the corresponding checking transition has profit w.

In the case of MMMST, the Turing machine first guesses a vertex subset
V' in k steps each of weight 1 and of zero profit, then it computes a minimum
spanning tree, and finally the weight of this tree is computed (using non-zero
weights on the transitions). O

Note: MPSTM is quite similar to MWCP, in the sense that both problems

“Although this is of no importance in the general mnotion of fixed parameter
(in)tractability employed here, note that the functions p and p’ are polynomials of low
degree.

12

look for maximum profit minimum weight paths in graphs. The difference
is that the reachability graph of a Turing machine is compactly codified as
a Turing machine, while for MWCP, the graph is explicitly given.

6 Conclusions

We discussed a new and, in our opinion, more natural parameterization
of maximization problems and showed that several problems can be solved
efficiently in the parameterized setting in this way. The corresponding al-
gorithms were based on different techniques, namely:

e reduction to problem kernel,

e dynamic programming (in connection with problems admitting pseudo-
polynomial time algorithms),

e directly using (variants of) FPTAS algorithms,
e search tree techniques, and
e enumeration algorithms.

Our focus here was rather on providing examples for the various algorithmic
techniques than to chase for efficiency. Hence, the most favourite algorithmic
techniques for designing FPT algorithms are also useful for developping pa-
rameterized algorithms for maximization problems. From this point of view,
it is an interesting new observation that pseudo-polynomial time algorithms
can be seen as fixed parameter algorithms.

On the other hand, we also showed examples of problems which do not
allow for fixed parameter maximization algorithms unless FPT = W]l1].
Therefore, our observations raise the natural question of further developping
a theory of parameterized maximization problems.

Note that typical parameterized maximization problems have two dif-
ferent kinds of restrictions: hard ones (formalized by the parameter) and
somewhat weaker ones (formalized by the entity to be optimized) in the
sense that any solution which is going to be considered at all in the process
of seeking an optimal solution has to firstly satisfy the hard restriction. In
the introductory knapsack example, this meant that we are only interested
in finding maximal solutions among those solutions which fit into our small
backpack. Considering this two-stage process more abstractly, it would also
make sense to ponder parameterized minimization problems, where, in a
first stage, those feasible solutions are selected which guarantee a small pa-
rameter, and then a minimal solution is sought for among these feasible
solutions.

As a concrete example, observe that R. Hassin developped a pseudo-
polynomial time algorithm (and, based on this, a fully polynomial time

13

approximation scheme) for the shortest weight-constrained path problem,
see [3, ND43], which is basically the minimization variant of MWCP as dis-
cussed above. Further variants of this problem were studied in [10]. It would
be interesting to see other natural examples for this sort of parameterized
minimization problems.

Finally, it might be interesting to develop parameterized approximation
algorithms for optimization problems which are probably not in F’PT —max.

Acknowledgments:

We are grateful for discussions with I. Aho, J Gramm and K.-J. Lange.

References

[1] I. Aho. Interactive knapsacks. Fundamenta Informaticae, 44:1-23, 2000.

[2] I. Aho. On the approximability of interactive knapsack problems. In L. Pachol-
ski and P. Ruzicka, editors, SOFSEM’01; Theory and Practice of Informatics,
LNCS, pages 152-159. Springer, 2001.

[3] G. Ausiello, P. Creczenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi. Complezity and Approximation; Combinatorial Optimization
Problems and Their Approzimability Properties. Springer, 1999.

[4] L. Caiand J. Chen. On fixed-parameter tractability and approximability of NP
optimization problems. Journal of Computer and System Sciences, 54:465-474,
1997.

[5] M. Cesati and L. Trevisan. On the efficiency of polynomial time approximation
schemes. Information Processing Letters, 64:165-171, 1997.

[6] R. G. Downey and M. R. Fellows. Parameterized Complezity. Springer, 1999.

[7] H. Fernau. On parameterized enumeration. Technical Report WSI-2001-21,
Universitat Tibingen (Germany), Wilhelm-Schickard-Institut fiir Informatik,
2001.

[8] G. V. Gens and E. V. Levner. Computational complexity of approximation
algorithms for combinatorial problems. In L. Bec¢var, editor, Mathematical
Foundations of Computer Science MFCS, volume 74 of LNCS, pages 292-300.
Springer, 1979.

[9] S. Martello and P. Toth. Knapsack Problems; Algorithms and Computer Im-
plementations. John Wiley & Sons, 1990.

[10] C. A. Phillips. The network inhibition problem. In Proceedings of the 25th
Annual Symposium on the Theory of Computing, pages 776-785. ACM, 1993.

14

