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Chapter 1

Introduction

Exploring autonomy in robotics is a meaningful task. The intuitive definition
of autonomy is the capability of a robot to make a decision based on its own
knowledge, acquired by its distributed sensors, without any human interference.
Throughout this framework we discuss some algorithms and techniques underlying
the subjects of adaptive navigation and motion planning for autonomous mobile
robots.

Mobile Robots will play an important role in many future applications, such as
personal and service robots, handicapped aid, entertainment, space exploration,
medical applications, nuclear industry, surveillance or autonomous transportation.
It is the mobility that distinguishes a mobile platform from robot manipulators
and gives the possibility to actively and adaptively interact with the environment
and humans. In real world environments actual mobile robot platforms will need
increased adaptability and autonomy with better techniques for navigation safety,
map building, obstacle avoidance and path planning. This study will first focus
on sensor integration and adapted interaction that is considered one of the major
basic concepts for mobile platforms.

The contributions of this study arise from a formulation of new methods and
techniques for sensor integration, mapping, motion planning and adaptive navi-
gation instead of previously dominant approaches. By manipulating the manner
in which feature information of sensor data is incorporated into processing, it can
be shown that significant improvements in the performance of the presented algo-
rithms can be attained. Moreover, the simplicity and the efficiency of the applied
techniques succeeded to reinforce the robustness of the overall system in static
and dynamic environments. The key idea of that is to achieve the following tasks
improvement of system autonomy, reinforcement of the overall stability, enhance-
ment of precision, increment of flexibility, reduction of energy consumption and
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more adaptation.

Throughout the practical work, the integration of both laser and sonar suc-
ceeded to inherit advantages of both sensors and to eliminate their drawbacks
by which system safety is assured. Furthermore, the development of the vector
mapping paradigm (VMP), based on laser ranging, is considered one of the most
important contributions of this framework. It preserves the consistency of the
conventional mapping algorithms e.g. occupancy grid, topological graph and inte-
gration of both of them at the same time reduces the size of the map drastically.
Related to the same algorithm, the model reference is employed to correct the
odometric errors relying on a network of central nodes and their corresponding
vectors. Compared with the traditional techniques used to correct map odometric
errors based on neural networks, this algorithm is simpler, faster and generates
high precision maps. Moreover, matching of laser signatures based on spatial,
or spectral analysis and combinations of both of them under wavelets has led to
speeding up matching process thereby the localization capabilities of mobile robots
have been improved. Concerning mapping of a static environment, we employed
not only visible odometric data acquired from laser and sonar sensors but also
electromagnetic fields detected by a digital compass. Employing the invisible ge-
omagnetic signature as a signature by detecting anomalies of compass deviation
is a novel trend that replaces the conventional concept of considering the errors
of geomagnetic compasses as a Gaussian white noise. Also in static environments,
extending the Bug algorithm to our proposed SLN algorithm succeeded to create
a new competitor to the Voronoi diagram, the most famous algorithm in motion
planning.

In dynamic environments, the integration between the universe of discourse in
fuzzy logic and the state space in stochastic Kalman filters provide mobile robots
with reliable adaptive navigation that maintains their stability, robustness and
leads to fine motion.

It is worth mentioning that not all algorithms and planned targets were suc-
cessful. For example, due to a deficit in precise localization data, the adaptive
navigation control has been applied to speed control, and not to position control.
For the same reason, we failed to apply the SLN algorithm in real time and the al-
gorithm is implemented as a simulator. Attributed to the presence of local minima,
which emanates from similarity and affinity in features, the subject of imprecise
localization is still a destructing problem in robotics. Furthermore, the use of a
digital compass as an accurate heading device was faulty due to the presence of
colored and white noise.
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CHAPTER 1. INTRODUCTION

The remainder of the thesis is organized as follows:

Chapter 2 focuses on the concept of sensor integration with its advantages and
disadvantages. Moreover, it clarifies the development guidelines of the whole
project that comprise notes on the hardware and software techniques.

Chapter 3 draws out the design of the sonar laser integration scheme. It intro-
duces the principles of sonar physics, a brief description of transducer types,
the time of flight ranging concept, sonar 3D distribution, strengths, weak-
nesses, sonar mapping capability and fuzzy based fusion of sonar data.

Concerning laser ranging, this chapter explains laser characteristics, laser
ranging modes, benefits, drawbacks, the vector mapping paradigm, using
model reference for odometric error correction and laser signature matching.
Finally, the integration scheme of laser and sonar is presented.

Chapter 4 shows the use of the compass as a heading and localization instrument.
The basics of the natural geomagnetism and the use of digital compasses as
a heading device are explained. Furthermore, the detection and analysis of
geomagnetic signatures are studied.

Chapter 5 introduces motion planning for non-holonomic robots based on the
SLN algorithm. The 5 phases of the SLN algorithm are initialization, seg-
mentation, linearization and relaxation. Furthermore, a comparison between
SLN and both Bug and Voronoi diagram is presented.

Chapter 6 illustrates the development of an adaptive navigation system for mo-
bile robots based on the integration of both stochastic Kalman filters and
fuzzy logic. The main purpose of this is to guide a mobile robot adaptively
in unknown terrain using visual and laser data. So, the canonical structure
of adaptive control systems modeling, identification, visual sensor data ex-
traction and controller design is described in detail. Finally, a comparison
between stochastic Kalman filters and fuzzy logic approaches is presented.
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Chapter 2

Integration of Distributed Sensors

Over the last two decades there has been intensive research to support the sensory
integration in robotics [189, 153, 17]. These efforts were devoted mainly to two
major fields; the first one is the development of high precision sensors1, the second
is the development of an intelligent scheme to integrate homo- and heterogeneous
sensors [105]. Throughout this framework we focus on illustrating the strategies of
sensor integration and their benefits in mapping and adaptive navigation. Also we
explain the characteristics, operation theory and data manipulation of the sensors
under study.

For simple and small size robots, individual sensors are enough to accomplish
their tasks. But recently robot tasks have become more sophisticated and simple
sensor patterns are not adequate to achieve them [97]. Various problems occur
with using individual/homogeneous sensors such as; 1) Individual sensors cover
only a restricted region with limited spatial consistency. Consequently, the phys-
ical measurement maps may be inconsistent. 2) Individual sensors have narrow
bandwidth and limited setup time. 3) Due to several limitations and restrictions,
readings of individual sensors may be imprecise. 4) In spite of using complicated
algorithms to assure the measurements of individual/homogeneous sensors, results
of such systems are still uncertain. Nonetheless, integration of heterogeneous sen-
sors is not an optimal solution. It exhibits different strengths and weaknesses.

2.1 Benefits and Drawbacks of Sensor Integration

On one hand, depending on sensor integration, the integrated system inherits
several potential advantages, which are:

1in general environmental data acquisition systems
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• Integration of heterogeneous sensors enables the system to still provide in-
formation even in case of individual failure, by which the robustness of the
overall system is improved.

• Relying on sensor integration, the measurements are confirmed and draw-
backs of individual sensors could be overcome. Therefore, sensor integration
is essential for safe navigation in known/unknown terrains.

• The use of sensor integration leads to better spatial consistency, whereas
individual sensors cover limited ranges and their readings may be inconsis-
tent. Consequently, integrating heterogeneous sensor readings leads to an
improvement of the overall consistency.

• Applying sensor integration reduces the ambiguity and the vagueness of the
surrounding properties and helps in reaching a higher level of cognition.

• When multiple independent measurements made of the same property are
integrated, the resolution of this value is better than of a single sensor’s
measurement.

• The confidence of multiple sensor systems is higher than of a single ones. The
parallelism and the redundancy are employed to confirm the final results.

On the other hand, integration of heterogeneous sensors is fraught with diffi-
culties:

• Dealing with heterogeneous physical properties of sensors increases the com-
plexity of the applied algorithms.

• The massive use of sensor integration may lead to system instability, espe-
cially if the transmission and computation power is not adequate [197, 23].

• The sparse distribution of sensors increases the computational burden payed
to interpret their measurements.

• Distributed sensors have different time bases and the synchronization of their
control modules is critical.

• Sensor readings are accompanied by noise. The noise factor may multiply
when increasing the number of integrated sensors.

• Processing of multiple sensor data demands higher computation power or
costs more time.

6



CHAPTER 2. INTEGRATION OF DISTRIBUTED SENSORS

2.2 Sensor Classification

Sensors are instruments used as input devices for robots which enable it to de-
termine aspects regarding the robot’s environment, as well as the robot’s own
status. They can also be thought of as devices which convert signals detected in
the environment into an electrical signal that is sent to a robot’s control system.
Sensors are used for robot data acquisition and robot control. Sensors themselves
can be classified into two categories: active or passive. Active sensors, also called
transceivers or radiative sensors, are sensors which send and receive measurement
modulated signals such as sonar, laser, radar and IR signals. Passive sensors mea-
sure and detect physical quantities.

Also, sensors can be classified according to various criteria such as;

Sensor position: internal and external

Measurement bases: time of flight, phase shift, touch, visual and magnetic

Subject of measurement: pose, velocity, acceleration, temperature, etc.

Carrier signal: IR, sonar, laser, radio, audio and video

Biological inspiration: biologically inspired sensors and non-biologically inspired
(synthetic) sensors

Some of these sensor species are:

• Positioning and Ranging Sensors: are used to position mobile robots regard-
ing their surroundings such as ranging sensors (sonar, laser, radar and IR),
digital compass, geometrical vision, global positioning systems (GPS) etc.

• Motion Detection Sensors: detect motion parameters e.g., translation and
rotation (encoders), rotational and longitudinal velocity (speedometers), ac-
celeration (accelerometers), vibration (gyroscopes and inverted pendulums),
etc.

• Vision Sensors: are used in surveillance of robot surroundings using general
and special purpose cameras such as; CCD, CMOS, 3D, 3D laser, panoramic,
IR cameras etc.

• Biologically Inspired Sensors: simulate biologically sensing organs such as;
smelling (electronic nose), touching (artificial skin - tactile sensors), hearing
(sound analyzer - speech synthesizer) and seeing (robot vision).
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• Environmental Sensors: are used to explore robot surroundings and detect
physical phenomena such as; temperature, air pressure, radiation, moisture,
humidity, wind speed and direction, electromagnetic waves, metals, magnetic
fields, etc.

This study focuses on the performance and integration scheme for sensors
mounted on the RWI-B21 robot platform (Colin) including Polaroid 6500 sonar
modules, Sick-LMS-200 laser range finder, vision system and fluxgate digital com-
pass, see figure (2.1).

2.3 Sensor Fusion

Autonomous robots rely on numerous sensors to obtain a consistent and coher-
ent view of the world. This inherently introduces difficulties as different sensors
may react differently to the same stimuli, or may provide incorrect or inconsistent
data. These sensor discrepancies have to be handled in a framework that allows
the robot to visualize a unified view of its surrounding environment. Concretely
speaking, Multi sensor integration refers to the synergistic use of the information
provided by multiple sensory devices to assist in the accomplishment of a task by
the system. Also, it may refer to any stage in the integration process where there
is actual combination (fusion) of different sources of sensory information into one
representation format.

In order to obtain the most accurate estimate of the dynamic system states,
a convenient sensor fusion method is employed to integrate the data provided
by homo- and heterogeneous sensors. Sensor fusion algorithms are particularly
useful in high complexity applications (e.g. robotics, aerospace systems, nuclear
plants, military applications and medical instrumentations) with a limited set of
sensors, where acceptable performance and reliability are desired. The sensor
fusion system can provide: filtered high-rate sensor data for improved performance,
estimates of indirectly measured robot parameters (i.e. input output interaction
parameters), detection of significant changes in robot dynamics (e.g. velocity,
heading, rotational velocity and obstacles histogram changes), and the ability to
replace failed sensor outputs with estimates (graceful degradation). The most
powerful algorithms for sensor data fusion are: Kalman filter, probabilistic
approach and fuzzy inference systems. It would be too simplistic to say
that one of these algorithms is superior to the others because each one them
exhibits distinct properties, strengths and weaknesses. Hence, the optimal solution
is achieved by applying the best suited algorithm to the appropriate application.
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Kalman filter: The Kalman filter is attractive due to its simplicity and its low
computational demand [98, 78, 211, 89, 92]. It is particularly suitable for
dynamic mobile systems since typical plants require safe, smooth and ro-
bust navigation among obstacles, with minimal maneuvering. To be able to
fuse sensor data of a dynamic plant such as a mobile robot under deliber-
ative navigation control of a Kalman filter, first we design a model and an
adaptive controller with multiple sensors for unknown operation conditions.
Then, the Kalman filter estimates the dynamic states of the robot from the
equilibrium-point for that navigation condition and accommodates the con-
troller parameters. The detailed discussion of Kalman filters based analysis
is in section (6.2.4), page (90).

Probabilistic approach: Early research work characterized the sensor fusion
problem as one of incremental combination of geometric information. Most of
these techniques were ad-hoc and did not take the uncertainty in the system
into consideration. Therefore, the probability theory, with its inherent no-
tation of uncertainty and confidence, has found widespread popularity and
has a good reputation in the multi sensor fusion community. Concerning
this matter, several algorithms have been proposed by various researchers
and these algorithms can be classified into major broad categories; Bayesian
networks, Markov chain, Monte Carlo, evidence theory and particle filters.

The first work on incorporating uncertainties in an explicit manner in sensor
fusion was performed by Smith and Cheeseman [183]. They proposed the
use of Bayesian estimation theory and derived a combination function that
resembles an equivalent form of Kalman filter. Since then, the same approach
has been adopted efficiently by many scientists; Burgard, Elfes, Mojaev,
Moravec, Thrun and Zell to underlie mapping and localization capabilities
of mobile robots [53, 54, 129, 144, 55, 198, 139, 140].

Fuzzy logic: The operation of an autonomous mobile robot in an unstructured
real world with unknown terrains requires consideration of multiple issues.
Principally, the sensor fusion system must be able to operate under con-
ditions of imprecision and uncertainty. To cope with these difficulties, the
system must be able to respond reactively to unforeseen events as soon as
they are perceived. This can be achieved by decomposition of the overall
sensor fusion system into a number of simple units, called rules. If we also
want to be able to operate under conditions of imprecision and uncertainty
the intelligence of autonomous robots needs to use fuzzy logic.

The universe of discourse, membership functions, fuzzification and defuzzi-
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fication techniques gives fuzzy logic system surprising facilities to ease ap-
plying them to multi sensor fusion efficiently. Many robotics scientists em-
ployed fuzzy logic to mapping, localization and multi sensor fusion such as;
Surmann, Fukuda, Borenstein, Saffiotti and Zimmer [220, 1, 75, 203, 50].

We combine both fuzzy logic and stochastic Kalman filters to fuse the sen-
sory information underlying the adaptive guidance system. The integration of
both approaches succeeds to provide autonomous mobile robots with more safety,
smoothness, adaptation and robustness. The details of this subject are found in
chapter (6), page (85).

2.4 Integration Scheme Design

2.4.1 Overview

Developing an integration scheme to control multiple sensors and actuators is not
an easy task. Different parameters must be taken into consideration to provide a
robust, stable, reliable performance. Some of these parameters are: 1) Synchro-
nization, 2) Organizing events and callback routines, 3) Emergency precautions,
4) Task priorities, 5) Scheduling of duties, 6) Distribution of local and remote
tasks 7) Noise filtering and 8) Reduction of energy consumption.

2.4.2 RWI-B21 Robot Platform

The RWI-B21 robot platform has been used to achieve the presented research work.
This platform, shown in figure (2.1), incorporates mainly 2 computers, sensors and
actuators. Its sensors include: 24 Polaroid sonar sensors, one 2D Sick-LMS-200
laser scanner, 2 Sony CCD cameras, 52 IR sensor, 52 bumper switches, a KVH-C-
100 fluxgate digital compass, rotational encoder, 4 programmable button switches,
battery charge tester, microphone, speedometer and translation encoder. These
sensors are interfaced to 2 computers via special purpose digital conditioning units.
RWI-B21 actuators include 4 direct current (DC) motors, robot arm and pan-tilt
unit, the translation of the robot is derived by 3 motors while the fourth one is
used to rotate the turret and robot wheels. The software structure is an object
oriented OO based C++ programming. Robot sensors and actuators, mounted on
the system, are programmed using special software servers and libraries (Beesoft),
while robot data exchange obeys local area network (LAN) protocols.
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Figure 2.1: RWI-B21 robot platform

2.4.3 MVC based Software Development

The original Model-View-Controller (MVC) design pattern was developed using
the Smalltalk programming environment for the creation of user interfaces. It is
a popular object oriented (OO) pattern and is often referred to in the literature.
The goal of the MVC design pattern is to separate the application object (model)
from the way it is represented to the user (view) from the way in which the user
controls it (controller) [177, 106, 184].

Throughout this research work we extend the simple idea of the MVC to a
more general and robust conception to design the software for large scale systems
e.g. autonomous mobile robots, see figure (2.2). Therefore, the original definition
of model, view and controller will be accommodated to suit sensor integration and
robot data manipulation. According to the new definition of the MVC rule, its 3
component will be:

Model: represents the analysis of the system under study. In this case the model is
expressed by the ARX paradigm, state space model and universe of discourse.

View: is the graphical user interface (GUI), responsible for man robot interface.
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Controller: is implemented by designing an adaptive controller, communication
facilities and management techniques used to steer the robot autonomously.

Figure 2.2: MVC software structure
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Chapter 3

Sonar Laser Integration

Time of flight (TOF) sensors emit a signal or pulse which is transmitted through a
medium. The transit time through the medium is measured electronically and the
distance traveled can be deduced. Sonar ranging modules and laser range finders
rely on this principle to measure the range between a robot and its surrounding
obstacles. This chapter, therefore, draws out the design of a sonar laser integration
scheme. It introduces the principles of sonar physics, a brief description of trans-
ducer types, the time of flight ranging concept, sonar 3D distribution, strengths,
weaknesses and sonar mapping capabilities. Concerning laser ranging, this chapter
focuses on laser characteristics, laser ranging modes, benefits, drawbacks, vector
mapping paradigm, using model reference for odometric error correction and laser
signature matching. Finally, the integration scheme of both laser and sonar is
presented.

3.1 Sonar Ranging Modules

Sonar is efficiently employed in different applications such as medical imaging,
nondestructive tests and ranging systems. The main purpose of using sonar sen-
sors in robotics is to enhance ranging and environment modeling capabilities of
robots. The acronym SONAR stands for SOund NAvigation and Ranging. Sound
generated above the human hearing range (typically over 20 KHz) is called ultra-
sound or sonar. Although sonar behaves in a similar manner to audible sound,
it has a much shorter wavelength. This means it can be reflected off very small
surfaces. The acoustic spectrum shown in figure (3.1) breaks down sound into 3
ranges of frequencies. The ultrasonic range is then broken down further into 3 sub
sections. There are 3 types of sonar transducers; electrostatic, piezoelectric and
magnetostrictive.
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Figure 3.1: The acoustic spectrum

3.1.1 Relevant Research Work

In Mobile robot mapping and Navigation, there are many examples of research us-
ing sonar ranging systems with good results, e.g. Elfes 1989 [144, 53, 54], Leonard
& Durrant Whyte 1992 [114], Fox et. al. 1997 [55], Borenstein & Koren 1995
[31]. An improvement scheme of mapping using integration of multiple sonar sen-
sors over time based on the Bayesian rule is also done by Thrun 1996 [198] and
(Mojaev, Zell 1998) [140]. Another improvement technique using triangulation
algorithm has been introduced by Wijk, 1998 [56] to get better results using sonar
sensors.

3.1.2 Sonar Transducer Operation Theory

In robotics electrostatic sonar transducers are becoming widely used because of
their suitability for elastic low-density media (air). The advantage of this type
of transducer is that (if designed correctly) it can emit and detect a wide range
of frequencies. Most robotics applications employ the Polaroid sensor which uses
a large electrostatic transducer for its sensing. The major disadvantage of the
electrostatic transducer is the power needed to generate a signal. Electrostatic
transducers require voltages across the plate in the order of hundreds of volts.
Moreover, the instantaneous current needed to produce sound is also large. Figure
(3.2) illustrates the structure and the measurement principle of a common elec-
trostatic sonar transducer, namely a Polaroid 6500 sonar sensor. This sensor is
mounted on the B21 robot platform used throughout this work, also it is already
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mounted on a wide variety of platforms. As with many other sonar devices, this
sensor works as both transmitter and receiver. When transmitting, a sound wave
(mechanical wave) is emitted with a frequency f=49.4 kHz. The wave is gen-
erated from a thin foil, which transforms electrical energy into sound waves and
conversely, transforms sound waves into electric energy when receiving an echo
[135].

Figure 3.2: Sonar sensor structure and TOF principle

The foil is plastic with a conductive gold coating on the front side, and is
stretched over a metallic (aluminum) back plate together. The back plate and foil
are functioning as an electric capacitor. When charged with an electric square wave
signal (300 V peak to peak), an electrostatic force is exerted on the foil, forcing
it to vibrate in the same manner, thus a square sound wave with a frequency of
f = 49.4 kHz will be generated. The pulse is 56 cycles long and is transmitted
during 56/49.4 = 1.13 ms.. The emitted sonar propagates through air with the
speed of sound, which varies with local fluctuations in temperature, humidity,
air pressure, and the aerodynamics. In an indoor environment these fluctuations
are negligible, and hence the wave propagation speed is close to a constant of
340 m/s. The transmitted signal power Strans, from a sound wave point source
decreases primarily as 1/r2, where r is the distance of wave propagation. There
is also an exponential loss in signal strength, due to attenuation or absorption of
sound in the transmission medium (air), i.e.

Strans =
e−αr

r2
(3.1)

where α is an absorption coefficient. According to the sonar ranging system
most objects scatter a sound wave randomly, such that the echo power decreases
again with the same factor through the back reflection. To compensate for the
decrement in signal power, the sonar receiver amplifies the echo differently de-
pending on the elapsed time since the sound wave was emitted. The amplification
function is implemented as discrete gain steps that approximate the ideal curve,
namely the inverse of the attenuation function. For echo detection, a simple thresh-
old is applied to the amplified signal. It should be emphasized that the power of
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the transmitted sound wave is not evenly distributed in space. In figure (3.3.a)
a normalized energy beam pattern from a sensor ranging module is presented.
The left hand side graph is the simulation of the characteristic radiation function
and the right hand side graph is typically described in Polaroid sonar manuals.
The pattern in the plot is actually an approximation of the true beam. A pat-
tern obtained from modifying the transducer as a plane circular piston and the
characteristic radiation function I(Θ) can be described by [56]:

I (θ) =

(
2J1 (Krp sin (θ))

krp sin (θ)

)2

(3.2)

(a) 2D distribution of sonar power (b) The characteristic radiation function of
sonar in 3D

Figure 3.3: Sonar 2D and 3D distribution

Where J1 is a Bessel function of the first kind, rp = 19 mm is the piston radius,
and Θ is the azimuthal angle. The wave number k = 2πf/Ss is obtained from
the sound wave frequency f and the speed of sound Ss. Figure (3.3.a) and (3.3.b)
shows a pattern obtained from the transducer as 2D and 3D conic distribution. In
the beam pattern plot figure (3.3.a), it is seen that there is a main lobe about 39◦

wide. In addition to the main lobe there are side lobes, which are much smaller.
In practice, echoes from a sonar sensor have a high probability of originating from
the main lobe. Usually only the closest side lobes are strong enough to trigger
detections in the receiver, but then the reflecting object must be of large size, for
instance a wall. Therefore most attempts to model sonar sound waves interacting
with an object only consider the effect of the main lobe in the beam pattern,
see figure (3.3.a). To minimize the number of false echoes , the sonar ranging
sensors are equipped with a tuned LC-circuit that filters out all frequencies but
those closest to the transmission frequency. By computing the elapsed time ∆t
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between when the sonar is emitted and received, it is straightforward to calculate
the distance r from the sensor device to the object that the wave interacted with:

r =
Ss∆t

2
(3.3)

Figure 3.4: Sonar mapping program

The division by two is because the wave has traveled twice the distance be-
tween the sensor and the obstacle. When understanding the simple principle of
measuring distances to objects with sound waves, the sonar seems to be an at-
tractive sensor. Figure (3.4) displays a representation of a working environment
using sonar sensors mounted on a B21 robot platform. The reflection of the sonar
depends on the nature of the object surface that the sound wave interacts with.
If the surface is rough, i.e. the pattern thereof has a size larger than the sound
wavelength λ = Ss/f = 6.95 mm, then the wave can be reflected back to the sensor
even at a large angle of incidence. However, if the surface is smooth, it will act
as a mirror following the reflection law. In that case the main lobe of the sonar
must be directed not more than 39/2=19.5o off from the surface normal in order
to produce an echo.
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The preceding discussion focuses on Polaroid 6500 sonar sensors mounted on
the RWI-B21 robot used in our experimental work. More information about piezo-
electric sonars can be reviewed in [3].

3.1.3 Weaknesses of Sonar Sensors

Mapping with the sonar ranging system is not sufficiently precise. This is due to
various disadvantages that have given the sonar sensors a bad reputation when
applied in indoor environments:

• With the sonar as a sound wave traveling in the transmission media (air), it
is absorbed and hence the speed goes down. This leads to an increment of
the estimated distance more than the actual value.

• Ideally, the sonar would reflect directly from the surface of the obstacle back
to the receiver. In the real world the sonar reflects multi time or gets specular
reflections before returning back to the receiver, so the estimated distance is
normally larger than the real one.

• Normally, the robot carries multi sensors, so several sonars send out iden-
tical sound waves, hence a cross talk problem emerges. Giving each sonar
a different sound wave signature can solve this problem. This is normally
based on the hardware design of the sonar ranging modules.

• Sonar sensors have a limited measurement range (≈ 0.30:6.5m) and an an-
gular direction (≈ 9 : 39◦). Outside the defined working range the acquired
results will tend to be uncertain.

• Data loss can frequently happen if the reflected sonar is either too weak to
be detected by the receiver or it is reflected out of detection view range.

• The fluctuation of temperature, humidity, and pressure has an influence on
the speed of the sound wave, hence the estimated distance to any obstacle
tend to be imprecise. In the indoor ambient these variations can be neglected.

• Compared with the laser range finder, the sonar ranging module seems too
slow. In a sonar system most of the time is wasted, waiting for the pulse
to return back. This comparison is based on the speed difference between
sound and light.
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3.1.4 Advantages of Sonar Sensors

Despite the mentioned disadvantages, sonar sensors are widely used in mobile
robots because of several positive features; 1) Sonar sensors are relatively cheap
(≈ $10 for each sensor) compared with the laser range finder. 2) Sonar sensors are
light and small, so they can be mounted in a flexible manner on the robot’s body.
3) In some applications the large opening angle is considered as a constructive
factor e.g. in integration of sonar and laser ranging. This feature enables robots
to detect objects which are unreachable by laser scanner [6]. 4) Sonar sensors
consume low power (≈10 mw). So, they are not considered as a load on robot
batteries during navigation.

3.2 Laser Range Finders

Figure 3.5: Sick LMS 200 scanner and
the TOF ranging principle

The term laser stands for Light Am-
plification by Stimulated Emission of
Radiation. Laser light is an unusual
form of light, which does not occur in
nature. It exhibits both high coher-
ence and monochromaticity. The co-
herence of light means that the elec-
tromagnetic oscillations of the photons
are in phase. In practical terms, this
means that laser light behaves like one
big wave and exhibits wave-like proper-
ties such as interference and diffraction.
The monochromaticity of laser light means that the photons have nearly the same
wavelength (or, equivalently, energy). Several methods of laser range finding have
been developed, including; 1) Time of flight (TOF) measurement, 2) Phase shift
measurement, 3) Triangulation, 4) Absolute interferometry. Each method is suit-
able for different measuring ranges and conditions. In the thesis the TOF ranging
is described while the other ranging methods are explained in [3].

3.2.1 TOF Laser Ranging Principles

Even the fastest photon requires a certain period of time to cover the distance
from the sensor to the target and back. This time is directly proportional to
the distance traveled, taking into account the velocity of light in the medium in-
volved, which may be easily derived from the velocity of light in a vacuum. The
cost and complexity of this method depends upon the precision and resolution
required. Data acquisition and analysis electronics must cope with ns and sub-ns
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time scales: decimeter ranges may be easily resolved by nanosecond pulses but
precision in the millimeter and sub-millimeter range requires pulse lengths of a
few tens of picoseconds and the associated electronics. Clearly, a poorly resolved
pulse will lead to uncertainty in the accuracy of the measurement. The stan-
dard deviation in measured distance is proportional to the optical pulse rise time
and is inversely proportional to the signal-to-noise ratio. For example a low-cost
avalanche photodiode (APD) enables a fourfold increase in range compared with
a PIN photodiode, and a high-end APD provides a ten-fold increase for the same
laser power. Suitable emitters are available only in the infrared (e.g. at 850 and
1650 nm). The rotary motion of the mirror does not allow the laser beam to be
condensed on a definite spot for a long time. This means that the beam is invisible
to the eye but also ensures that, using the pulse lengths necessary for good perfor-
mance, the system is eye-safe despite the high peak pulse power. [164, 160, 207]
(in German).

To gather the odometric data of an environment, the laser range finder returns
a set of points corresponding to the intersection points of the laser beam with
the obstacles. The laser beam rotates in a horizontal plane and emanates from
a scanner mounted on the robot. The scan is a 2D slice of the environment.
The Sick LMS 200 laser range finder is mounted on various types of platforms. A
comparison between SICK and AccuRange laser range finders has been introduced
by A. Scott et.al. (2000) [176]. The measurement using laser range finder depends
on TOF measurement system principles. In a TOF system a short laser pulse is
sent out and the time ∆t until it returns is measured. The ranging principle is
thus the same as for the standard sonar sensor.

r =
ls∆t

2
(3.4)

Where ls is the speed of light (3x108 m/s) and ∆t is the round trip time.
In order to realize such a system, a high precision means for measuring time is
needed. Thinking in terms of a robot application a range resolution in the order of
centimeters is desirable. One advantage with the short pulses is that higher levels
of powers can be used, giving better range coverage, but still keeping a high safety
level and low power consumption. Most of the commercial laser range finders
measure the distance in a single direction. By mounting it on a rotating body, a
scanning effect can be achieved. Instead of rotating the whole sensor, there are
now commercially available laser range finders based on a rotating mirror, which
can cover a large field of view up to 180◦ . Many researchers have used this kind
of scanner on different platforms. The Sick LMS 200 laser range finder and the
TOF measurement principle are presented in figure (3.5). Compared to the sonar
sensor, the laser range finder is very expensive and price vs. performance must be
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weighted. It is possible to add one more degree of freedom and let the sensor scan
vertically as well, yielding a 3D scanning device.

3.2.2 Strengths of 2D Laser Range Finders

The 2D laser range finder is efficiently used in several robotics applications due to
the following reasons:

• They are fast (3x108 m/s speed of light and up to 500 kb/s transmission
speed), i.e. the measurement can in most cases be considered as instanta-
neous. This means that, one does not have to think about compensating for
the motion of the platform between sending and receiving. What stops laser
range finders from working even faster is the mechanics. When using laser,
the problem is instead to be able to rotate the scanning device fast enough
and at the same time very accurately.

• The range accuracy is fairly good as reports to have a standard deviation of
the new generation of laser range finders from Sick of 10 mm and the angular
resolution is down to 0.25◦ .

• The angular resolution is far better with the laser range finder than with
sonar sensors. The resolution for the Sick LMS 200 laser range finder has
an angular resolution of 180:0.5◦/1◦ , which is an order of magnitude better
than for the sonar.

• The data from the laser range finder can be interpreted directly from the
range to an obstacle in a certain direction.

Due to these points, the laser range finder is intensively used alone or integrated
with other sensors to improve the mapping, localization and navigation capabilities
of mobile robots. Successful examples of this integration are laser-sonar [6], laser-
compass [7, 152] and laser-vision [2].

3.2.3 Problems of 2D Laser Range Finders

The use of 2D laser range finders has some limitations, they are:

• The scanner provides range information limited to a plane, which means
that only a 2D intersection of the 3D world can be sensed. To be able to
get information about other parts of the environment, the sensor has to be
moved. Another possible solution is to mount the sensor so that it intersects
the world under an angle and instead move the platform. This angle becomes
a design parameter for the system, which will determine the range of the
scanner.
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• The laser range finder consumes more power (17.5 Watts) compared with
other sensors such as sonar.

• The laser range finder is still very expensive. The price will drop and the
scanner will become more widely available if an application is found that will
motivate mass production of it.

• Some materials appear as transparent for the laser, such as glass and others
that can absorb the laser producing no reflection. Therefore, we combine
the laser range finder with a sonar ranging module in order to reinforce the
robustness [6].

In figure (3.6) we define some special marks (denoted from 1 to 6). The marks
1, 5 and 6 are used to sign the position of the glass doors. The laser range finder
failed to detect them due to their transparency. The area marked by 2 is the
downward stairs and should not be entered with the B21 platform. The horizontal
plane laser range finder is not able to detect downward stairs. The area marked
by 3 is a table and the laser range finder was able to identify just the legs of
the table but the table itself wasn’t recognized. The object marked by 4 is a
dynamic object (door) and the presented location is not permanent. Based on the
preceding discussion an intelligent integration between the laser range finder and
the sonar sensors has been developed to avoid such disadvantages. To overcome
disadvantages of both laser range finders and sonar ranging modules an intelligent
integration scheme can be implemented to improve the overall system robustness
[6].

Figure 3.6: Mapping using 2D laser range finder
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3.2.4 Vector Mapping Paradigm (VMP)

Several mapping paradigms have been investigated to model the robot’s working
environment. The most widely used methods are the occupancy grid, the topolog-
ical graph and maps integrating both. Each of these methods has its character-
istics, advantages and disadvantages. Throughout this work the vector mapping
paradigm (VMP) has been used. This technique is suitable for robots equipped
with a laser scanner. The vector mapping is originally based on the occupancy grid
with a reduced map size. The main idea of the vector mapping is to determine an
empty space as a region of cells between the laser range finder (robot’s position)
and the detected obstacles. In other words, these empty cells will be represented
by end points of the laser rays (vectors) and the position of the laser range finder.
The measurements of the vector mapping are given in a polar coordinate system
whose origin is the position of the scanner (robot), while the end of the vectors
are the obstacle boundaries. This map reduces both computer power and memory
requirements. In this method, it is required to record just the start (once per
scan) and the end of the vectors so the region in between is considered free space
that will preserve the consistency of the maps. The laser range finder sends out
180 laser rays per scan with 1◦ angular resolution. The resolution of the vector
mapping can be controlled using either hardware or software techniques. In the
case of VMP, the robot can map its environment from central measurement points
covering all the empty area (visible region). The vector mapping technique can be
easily converted to the traditional map paradigms. For example, the occupancy
grid can be generated by marking all cells included in the vector region by null
(empty) and the remainder cells by one (occupied). Also the topological graph and
integrated form can be estimated through the occupancy grid. Based on vector
mapping the contour-graph can be generated. This graph includes the contours of
the existing obstacles. This graph is used later in the path planning and naviga-
tion based on the SLN-algorithm [6]. Enlarging the obstacle’s boundaries is used
to generate the contour graph. The minimum extension of obstacle boundaries is
the sum of the threshold distance and the robot radius. This extension can be
enlarged to get a contact in the middle of the free space (Voronoi diagram) if the
obstacles are near and can be decreased to the minimum value if the obstacles are
far away. Figure (3.7) presents four different models based on vector mapping:
the first one has been built using 500 measurement points and the last one using
only 10 points. The difference in precision between the two models seems little al-
though the map size difference is clearly large: the laser map (3.7-d) size is about
2% of the first map size (3.7-a). This sort of mapping has a flexible resolution
format depending on the required precision and the computational power of the
system. Adjusting the number of the central measurement points can control the
resolution of the map. The vector mapping has the advantages of the traditional
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mapping techniques: precision, consistency and efficiency with a low storage size
[6].

3.2.5 Model Reference

The acquisition of the odometric data is associated with different types of noise
e.g. non-linear noise (backlash hysteresis, toggle, threshold, saturation, damping
and friction), time based noise (accumulation effect) and white noise. Another
form of odometric errors is generated by the mechanical system from rotation or
due to slippage and drifting, see figure (3.8).

In outdoor applications the global positioning system (GPS) is widely used
as a localization system with a certain (large) tolerance. In indoor applications
similar global positioning systems are not widely used or available, so various
algorithms have been developed to correct the maps and to obtain precise models
of the environment. The model reference method is considered as a plausible
solution to correct these erroneous maps. This method can easily be implemented
and generates high precision maps. The overall map is an assembly of segments
arranged corresponding to a model of nodes and paths (reference model), see figure
(3.9). The model reference method presents an accurate solution for the correction
of odometric data errors based on direct learning. That means a model of nodes
and paths is used to correct the maps. Another technique has been used by Thrun
et. al. 1997, which depends on the training (indirect learning) of neural networks.

3.2.6 Related Mapping Paradigms

Metric maps, topological graphs and The integrated form are the most famous
mapping paradigms. The following is a brief description of these methods.

Metric Maps: Major interest in metric maps was generated with the publishing
of Moravec and Elfes’s 1985 paper, High Resolution Maps from Wide Angle
Sonar. Their approach involved taking range measurements from a fixed
array of sonar sensors arranged in a circular fashion whose position and
angle in relation to each other is known. This range information is then
translated onto a two-dimensional map by making the assumption that one
of the points along the curved end of the arc is occupied by an obstacle, and
incrementing the probability that all points along the curve are occupied.
The model they developed for this map was a tessellated spatial random
field called an Occupancy Grid. Conversely, if it can be assumed that a
certain range reading means that an obstacle is in the beam’s path at that
distance, all points in the body of the beam can be assumed to be free of
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Figure 3.8: Odometric error

Figure 3.9: Model reference

26



CHAPTER 3. SONAR LASER INTEGRATION

obstacles, and their probabilities of occupancy decremented appropriately.
While a single sonar reading yields very little information, each one changes
the map slightly, and with a reading every 100 ms, a strong confidence grid
is quickly generated.

Topological Graphs: Metric and topological maps each have their strengths and
weaknesses. Metric maps are relatively easy to generate, topological maps
are not. Metric path planning is slow, topological planning is fast. Thrun
proposes a 5-step method of generating a topological map from a metric
map. Firstly, it must be decided which cells are occupied and which not.
This is done with thresholding, where all cells whose occupancy values are
below a certain value are said to be empty, and all those above it are said
to be occupied. Secondly a Voronoi diagram is generated. A basis point
is the closest occupied cell to the unoccupied cell. In a simple corridor-like
environment, this would lead to a line being drawn down the center of the
corridor. The next two steps are to identify critical points and critical lines.

Integrated Form: Sebastian Thrun et. al. advise combining the two in order to
maximize the positive attributes of each [199]. These include the grid-based
map’s ease of construction and usefulness in self-localization, and the speed
at which it is possible to plan a path using a topological map allied with its
compactness. This involves building a metric map, then converting it to a
topological map.

3.3 Matching of Laser Signatures

Figure 3.10: Laser signature matching

Pose tracking is a key subject in
robotics. Mobile robot pose tracking is
the process of deducing a robots pose
(location, heading) relative to its envi-
ronment from its sensor data. There-
fore, it has been referred to as the most
fundamental methodology to provide a
mobile robot with autonomous capa-
bilities. Using odometry encoders is
the most widely used method for deter-
mining the position of a mobile robot.
Unfortunately, the acquisition of odo-
metric data is associated with different
types of noise e.g. non-linear noise (backlash, hysteresis, toggle, threshold, satura-
tion, damping and friction), time based noise (accumulation effect) and white noise.
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Another form of odometric errors is generated by the mechanical system from ro-
tation or due to slippage and drifting. Consequently, the odometry needs to be
reset from time to time, as the VMP algorithm [6]. To overcome this problem, ro-
bust and accurate localization of the robot is needed. A variety of algorithms have
been used to solve the problem of robot localization e.g. expectation maximizing,
maximum likelihood, probabilistic approach (Markov, MCL) and concurrent local-
ization and mapping (SLAM, Kalman) [139, 147, 67, 44, 115]. Also, there are many
researchers, who adopted vision systems for the recognition of natural or artificial
landmarks. Those techniques often require high-performance onboard computers
and expensive vision systems as well as computational overhead. Moreover, those
systems incorporate a lot of instability, complexity and noise. Throughout the
coming discussion we will study techniques to estimate the pose based on the spa-
tial domain, spectral analysis, wavelet and the least mean squares (LMS) of laser
signatures, see figure (3.10).

3.3.1 Relevant Research Work

Lu and Milios proposed a solution for laser scan matching of points and tangents
using least squares [120]. Mota and Ribeiro employed the maximum likelihood
algorithm to match 2D laser scans in 3D reconstructed models. Bengtsson and
Baerveldt presented a scan matching algorithm, IDC-S, Iterative Dual Correspon-
dence Sector, which deals with changes in the environment by dividing the scans
in several sectors, which are matched separately [19, 20]. Gutmann and Schlegel
combined the approach with the point to line matching of Cox [115, 81, 79]. Both
are iterative methods, i.e. they need a relatively large amount of processing time.
Therefore, they are used as offline algorithms after all distance data has already
beenacquired. In the method of Weiss et. al., histograms are used as a base of
scan points matching [210]. Röfer (Bremen Autonomous Wheelchair) extended
the method of Weiss et. al. to get faster matching [167].

Concerning the activities of the laboratory for autonomous robots at the Uni-
versity of Tübingen, several pattern matching algorithms have been investigated
for robot self-localization. Feyrer and Zell developed an integration scheme of
visual and laser signatures in real-time for persons pursuing [61, 63, 62, 60, 59].
Mojaev and Zell incorporated scan points into occupancy maps by which these
local grids were matched to generate a global map [140, 139]. Aboshosha, Tamimi
and Zell employed spatial, spectral and wavelet techniques to analyse and match
both laser and geomagnetic signatures [7, 1, 2, 6]. Another technique has been
introduced by Biber and Straßer to match 2D laser scans relying on the normal
distribution transform [24].
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3.3.2 Spatial Analysis (ED - CCA)

Spatial domain analysis is an efficient method for data series matching. This
method can be implemented by deducing the Euclidean distance of two series: xi

and yi (Eq: 3.5) or the cross correlation of both of them (Eq: 3.6 ).

ED(x, y) =

√√√√ N∑
i=1

(xi − yi)2 (3.5)

The correlation between two signals (cross correlation) is a standard approach
to feature detection as well as a component of more sophisticated techniques. It is
well known that cross correlation can be efficiently implemented in the transform
domain, the cross correlation preferred for feature matching applications does not
have a simple frequency domain expression.

Cross correlation is a standard method of estimating the degree to which two
series are correlated. Consider two series xi and yi where i = 1, 2...N . The cross
correlation ρ at delay τ (signature phase shift) is defined as:

ρ(τ) =

N∑
i=1

(xi − mx)(yi−τ − my)√
N∑

i=1
(xi − mx)2

√
N∑

i=1
(yi−τ − my)2

(3.6)

Where mx and my are the means of the corresponding series. If the above is
computed for all delays τ = 1, 2, . . .N then it results in a cross correlation series
of twice the length as the original series. Rewrite the equation (3.6) as a function
of variance and covariance as follows:

ρ =
Cov(x , y)√

V ar(x)
√

V ar(y)
(3.7)

Generally, the expectation of the product of two series x and y is given by

E(xy) =

∞∫
−∞

∞∫
−∞

xyfxy(x, y)dxdy (3.8)

There is a special simplification of equation (3.8) that occurs when x and y are
independent. In this case, f() may be factored. Equation (3.8) then reduces to

E(xy) =

∞∫
−∞

xfx(x)dx

∞∫
−∞

yfy(y)dy = E(x)E(y) (3.9)
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If x and y possess the property of equation (3.9), that is, the expectation of the
product is the product of the individual expectations, they are said to be uncorre-
lated. Obviously, if x and y are independent, they are also uncorrelated. However,
the converse is not true, except in a few special cases.

As a matter of terminology, if E(xy) = 0 then x and y are said to be orthogonal.
the covariance of x and y is also of special interest, and it is defined as:

Cov(x, y) = E[(x − mx)(y − my)] (3.10)

The denominator in the expression (3.6) serves to normalize the correlation
coefficients. Therefore, the correlation coefficient is a normalized measure of the
degree of correlation between two series, and the normalization is such that ρ al-
ways lies within the range −1 ≤ ρ ≤ 1 This will be demonstrated by looking at
three special cases; 1) y = x: maximum positive correlation, ρ = 1, 2) y = −x:
maximum negative correlation, ρ = −1, 3) orthogonality: x and y are uncorre-
lated, ρ = 0.

(a) Euclidean distance (b) Cross correlation

Figure 3.11: Signature matching in spatial domain w.r.t. robot rotation

Figure (3.11) demonstrates laser signature matching using spatial techniques.
The robot rotates and the reference heading is deduced by matching the measured
signature with a stored one. In figure (3.11.a), the best match is the global mini-
mum of the Euclidean distance, while the best match as shown in figure (3.11.b)
is the global maximum of the cross correlation.

There is the issue of what to do when the index into the series is less than 1
or greater than or equal to the number of points. (i − d < 1 or i − d >= N) The
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most common approaches are to either ignore these points or to assume the series
x and y are zero for i < 1 and i >= N . In many signal processing applications the
series is assumed to be circular in which case the out of range indexes are wrapped
back within range, ie: x(0) = x(N), x(N + 5) = x(5) etc. The range of delays d
and thus the length of the cross correlation series can be less than N , for example
the aim may be to test correlation at short delays only. If the laser signature is
continuous there is no need to recycle the signature or to get the delayed portion
to zero. Hence, we can estimate the correlation of both signatures directly.

3.3.3 Spectral Analysis (DCT)

Figure 3.12: Heading deduction based on
DCT coefficients matching

The spectral analysis is a powerful
technique which studies the signatures
based on their frequency components.
It is used to convert a time domain
signal to a signal in the frequency do-
main. So, it transforms a function f()
that depends on time into a new func-
tion F () which depends on frequency.
If the spectral analysis of a signal in
the time domain is taken we obtain a
frequency-amplitude representation of
that signal. The spectral analysis tells
us how much of each frequency exists
in the signal, but it does not tell us
when in time these frequency compo-
nents exist. The spectral analysis is not
a suitable technique for non-stationary
signals i.e., signals with time varying spectra.

Compared with the discrete Fourier transform (DFT), the discrete cosine trans-
form (DCT) is preferred to analyze the laser signature for the following reasons:

• In case of the DFT, the basis sequences are the complex periodic sinusoidal
sequences of the exponential function, and in general the transforms yield a
complex form even if the signal is real.

• DCT is an orthogonal transform representation for real sequences. The DFT
involves the implicit assumption of periodicity, the DCT involves an implicit
assumption of both periodicity and even symmetry.
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• Computationally, the DCT is more efficient than the DFT because it is a
completely real transform and does not require complex variables or arith-
metic.

The distribution of the DCT coefficients within the signature is non-linear.
Coefficients at the lower frequencies have large magnitude, while they have less
magnitude at higher frequencies. The values obtained using DCT are scaled so as
to be represented by 8 bits, this means that it can be implemented in hardware.
A large number of bits are assigned to values corresponding to lower frequencies,
while fewer bits are assigned to higher frequencies.

Compared with the spatial domain analysis, prevalent in signature matching
and robot localization, the frequency domain provides more stability for dealing
with pattern recognition subjects, especially in presence of noise, phase shift and
scaling errors. Consequently, matching of signatures in the frequency domain facil-
itates pose estimation even if signatures are partially distorted or in the presence
of limited changes due to rotation or displacement. The DCT pertains to a group
of algorithms (e.g. DFT, FFT, DST, wavelet, Gabor, etc.) used for the frequency
analysis of patterns. Furthermore, the DCT has a compression capability which
speeds up matching of thousands of patterns, see figure (3.13).

(a) Original laser signature (b) DCT low coefficients (c) Restored laser signature

Figure 3.13: DCT based spectral analysis

The DCT transforms a signal from a spatial representation into a frequency
representation. Lower frequencies contribute more to a signal than higher frequen-
cies, so if we transform a signature into its frequency components and throw away
data about higher frequencies we can reduce the amount of data needed to de-
scribe those signatures without sacrificing too much signature quality. The DCT
transform can be accomplished as follows:
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yi = Λi

N∑
j=1

xj cos
π(2j − 1)(i − 1)

2N
, i = 1, . . . , F (3.11)

where xi is the data series, at time ti, xi ∈ R, i = 1, . . . , N , F is the number of
DCT coefficients, yi are the DCT coefficients and N is the signature length. For all
frequencies (F = N), i varies from 1 to N , there is no compression. To compress
the signature (by omitting high frequencies), i varies from 1 to fl (F = fl), where
fl is the frequency limiter or called the number of DCT coefficients. The inverse
DCT can restore the original signature using a limited number of DCT coefficients,
see figure (3.13).

xi =
F∑

j=1

Λjyj cos
π(2i − 1)(j − 1)

2N
, i = 1, . . . , N and j = 1, . . . , F (3.12)

The spectral analysis has some advantages when applied to pose deduction;
first, it can match the signature even in the presence of noise or if the signature is
partially distorted. In addition, it can detect signature scaling and rotation.

Scaling Property The spectral analysis has the capability to detect scaling, see
figure (3.14).

(a) Laser signature scaling (b) DCT coefficients

Figure 3.14: DCT based spectral analysis in presence of scaling

So, If f (t) ⇔ F (ω), then f (at) ⇔ 1
|a|F

(
ω
a

)
. The value |a| > 1 compresses

the time axis and expand the frequency axis, while the value |a| < 1 expands
the time axis and compress the frequency axis, ω is the frequency, t time
and a, to constants. Figure (3.14) shows the the scaling effect on spatial and
spectral representations.
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Phase Shift Property Second, the spectral analysis can counteract the influence
of limited rotation or displacement. Figure (3.15) shows the effect of rotation
on the spatial and spectral representation of a signature.

(a) Laser signature rotation (b) DCT coefficients

Figure 3.15: DCT based spectral analysis in presence of phase shift

The success of the DCT depends mainly on the nature of the signature. If the
elementary frequency components of a signature are homogeneously distributed
over the spectrum range, the DCT fails to compress the signature. Also, if the
shape of a signature is extremely sharp, Lagrange concept, (e.g. square wave,
sawtooth, etc.) the DCT precision will be drastically decreased. Figure (3.12)
shows how to track a pose under rotation where the best suited pose is the global
minimum of differences between the stored and the reference signatures.

3.3.4 Wavelet Analysis

The wavelet analysis procedure is to adopt a wavelet prototype function, called an
analyzing wavelet or mother wavelet. Temporal analysis is performed with a con-
tracted, high-frequency version of the prototype wavelet, while frequency analysis
is performed with a dilated, low-frequency version of the same wavelet. Because
the original signal or function can be represented in terms of a wavelet expansion
(using coefficients in a linear combination of the wavelet functions), data opera-
tions can be performed using just the corresponding wavelet coefficients. And if
one further chooses the best wavelets adapted to your data, or truncate the co-
efficients below a threshold, the data is sparsely represented. This sparse coding
makes wavelets an excellent tool in the field of data compression. Other applied
fields that are making use of wavelets include astronomy, nuclear engineering, med-
ical applications, signal and image processing, cryptography and sub-band coding,
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acoustics-optics applications, neurophysiology, turbulence, earthquake-prediction,
radar, human vision, and pure mathematics applications.

The Discrete Wavelet Transform

Dilations and translations of the mother function or analyzing wavelet Φ(x),
define an orthogonal basis, our wavelet basis:

Φ(s,l)(x) = 2−
s
2 Φ(2−sx − l) (3.13)

The variables s and l are integers that scale and dilate the mother function
Φ(x) to generate wavelets. The scale index s indicates the wavelet’s width, and the
location index l gives its position. Notice that the mother functions are rescaled,
or dilated by powers of two, and translated by integers. What makes wavelet
bases especially interesting is the self-similarity caused by the scales and dilations.
Once we know about the mother functions, we know everything about the basis.
To span our data domain at different resolutions, the analyzing wavelet is used in
a scaling equation:

W(x) =
N−2∑
k=−1

(−1)kck+1Φ(2x + k) (3.14)

where W (x) is the scaling function for the mother function Φ(x); and ck are
the wavelet coefficients. The wavelet coefficients must satisfy linear and quadratic
constraints of the form

N−1∑
k=0

ck = 2,
N−1∑
k=0

ckck+2l = 2δl,0 (3.15)

where δ is the delta function and l is the location index.

Wavelets versus DCT

To discriminate the DCT from wavelets, the following points have to be taken into
considerations:

• The standard DCT decomposes the signal into individual frequency compo-
nents.

• The DCT basis functions are infinite in extent.

• DCT can never tell when or where a frequency occurs.

• Any abrupt changes in time in the input signal f(t) are spread out over the
whole frequency axis in the transform output F (ω) and vice versa.
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• The wavelet uses a short window at high frequencies and a long window at
low frequencies. It can localize abrupt changes in both time and frequency
domains.

• DCT is signature length independent while the wavelet is a decomposition
of a 2n length signature. Hence, the DCT can be used to compare different
length signatures.

From the preceding discussion we conclude that wavelets is superior to the
DCT in compression because they maintain both frequencies and locations while
the DCT is superior in matching due to its approximation capabilities.

Haar Wavelet Transform HWT

Among many wavelet algorithms, including Daubechies wavelets (DWT), Mexican
Hat wavelets and Morlet wavelets, the Haar Wavelets are especially popular due
to their simplicity and limited support. The HWT enable applying our approach
in online mode on onboard computers of mobile robots. We want to have a decom-
position that is fast to compute and requires little storage for each sequence. The
Haar wavelet is chosen for the following reasons: 1) It allows good approximation
with a subset of coefficients, 2) It can be computed quickly and easily, requiring
linear time in the length of the sequence and simple coding, 3) It preserves Eu-
clidean distance.

The most interesting dissimilarity between the DCT and the HWT is that indi-
vidual wavelet functions are localized in space, while DCT functions are not. This
localization feature, along with wavelets’ localization of frequency, makes many
functions and operators using wavelets sparse when transformed into the wavelet
domain. This sparseness, in turn, results in a number of useful applications such
as data compression, detecting features in patterns, and removing noise from data
series. One way to see the spatial-spectral resolution differences between the DCT
and the HWT transforms is to look at the basis function coverage of the spatial-
spectral domain. The Haar wavelet uses a rectangular window to sample the data
series. The first pass over the time series uses a window width of two. The window
width is doubled at each step until the window encompasses the entire data series.

In order to study the laser signal using the HWT, we expose the signature to a
recursive (multi-resolution) transform. Each time, we extract a set of coefficients,
which deduce the data variation found in the signal at a given sub-band. Figure
(3.16.a) and figure (3.16.b) show a laser sample and the corresponding complete
signature taken from 8 sub-bands. The signal is entailed with the approximate
coefficients found with the highest sub-band. In order to perform compression
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(a) Orignal laser signature (b) Original and restored signatures

Figure 3.16: Haar wavelet transform (HWT) of laser signature

(a) Wavelet approximations (b) Wavelet coefficients

Figure 3.17: laser signature wavelet components
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in the wavelet domain, a given number of the lower sub-bands is being neglected
when defining our signature. The HWT calculates a set of wavelet coefficients and
a set of averages. If the data series d0, d1, . . . dn−1 contains n elements, there will
be n/2 averages and n/2 coefficients. Averages are stored in the lower half of the
n element array and the coefficients are stored in the upper half. The averages
become the input for the next step in the wavelet calculation. The recursive it-
erations continue until a single average and a single coefficient are reached. This
replaces the original data set of n elements with an average, followed by a series of
coefficients. The equations used to calculate HWT averages are ai = (d2i+d2i+1)/2
and coefficients ci = (d2i − d2i+1)/2.

In wavelet terminology, the average is calculated by the scaling function ,
while the coefficient is calculated by the wavelet function . The inverse can
be simply reconstructed using d2i = ai + ci and d2i+1 = ai − ci, where i =
0, 1, 2, . . . (n/2− 1). The first scaling vector (average) can be calculated in the lin-
ear algebra view of the HWT by the product of the signature data [d0, d1, . . . dn−1]
and the vector, of the same size, [0.5, 0.5, 0, 0, . . . , 0]. The first coefficient is cal-
culated by the product of the signature and the vector [0.5,−0.5, 0, 0, . . . , 0], this
is the wavelet vector. The next average and coefficient are calculated by rotat-
ing the scaling and wavelet vectors by two and calculating the products. In the
wavelet literature scaling and wavelet values are sometimes represented by hi and
gi respectively. In the case of the HWT, scaling function coefficients are h0 = 0.5
and h1 = 0.5, while wavelet function coefficients are g0 = 0.5 and g1 = −0.5. The
scaling and wavelet matrix of HWT can be constructed as follows:



a0

a1

.
an/2−1

c0

c1

.
cn/2−1


⇐



a0

c0

a1

c1

.

.
an/2−1

cn/2−1


=



h0 h1 0 0 . . 0 0
g0 g1 0 0 . . 0 0
0 0 h0 h1 . . 0 0
0 0 g0 g1 . . 0 0
. . . . . . . .
. . . . . . . .
0 0 0 0 . . h0 h1

0 0 0 0 . . g0 g1


•



d0

d1

d2

d3

.

.

.
dn−1


(3.16)

The arrow represents a split operation that reorders the result so that the
average values are in the first half of the vector and the coefficients are in the
second half. To complete the HWT the above transform is repeated to reach the
final average and the final coefficient.

38



CHAPTER 3. SONAR LASER INTEGRATION

Signature Restoration

Like the forward HWT, a step in the inverse HWT can be described in linear
algebra terms. The matrix operation to reverse the first step of the HWT for a
signature is as follows:



d0

d1

d2

d3

.

.

.
dn−1


=



1 1 0 0 . . 0 0
1 -1 0 0 . . 0 0
0 0 1 1 . . 0 0
0 0 1 -1 . . 0 0
. . . . . . . .
. . . . . . . .
0 0 0 0 . . 1 1
0 0 0 0 . . 1 -1


•



a0

c0

a1

c1

.

.
an/2−1

cn/2−1


⇐



a0

a1

.
an/2−1

c0

c1

.
cn/2−1


(3.17)

In this case the arrow represents a merge operation that interleaves the averages
and the coefficients.

HWT vs. DWT

The area of wavelet literature covers a wide variety of wavelet algorithms, which
are drawn from an infinite set of wavelet algorithms. The first and most impor-
tant question is "which algorithm should I use?". Unfortunately, this question has
no definite answer, we can simply say that the choice of the wavelet algorithm
depends on the application, the computation power, the required precision etc..
Generally, the wavelet transform generates a "down sampled" smoothed structure
of the signature (calculated by the wavelet scaling function) and a "down sampled"
structure of the signature that includes variations among signal elements. In some
references, the scaling function (smoothing) is sometimes referred to as a low
pass filter and the wavelet function is sometimes referred to as a high pass
filter .

In a comparison of the HWT with the DWT, we notice that the HWT has
no overlap between successive pairs of scaling and wavelet functions, as there is
with the DWT. The HWT high pass filter generates a result that comprises the
difference between even and odd elements, while the difference between odd and
even elements are not comprised in the coefficient band, calculated by a single step
of HWT high pass filter (although this change will be picked up by later steps).
In contrast, there is overlap between successive DWT high pass filters, so change
between any two elements will be comprised in the result.
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The main differences between HWT and DWT are 1) The DWT wavelet trans-
form is more precise, since a change in the input data set is included in the high
pass filter results at each transform step, 2) The cost of using the DWT algo-
rithm is higher computation overhead, twice the number of operations, compared
with the HWT, 3) The DWT is more complicated, the algorithm must properly
consider the edge condition when i = 0.

3.3.5 Notes on the Applied Matching Techniques

Figure 3.18: Comparison signature
matching techniques

To clarify the capabilities of data series
matching algorithms; ED, CCA, DCT
and HWT, some important points must
be considered such as the compres-
sion capability, preserving frequency
and euclidean distance, probability
of local minima, and transition be-
tween levels. Table (3.1) introduces
a brief illusteration of these algo-
rithms.

To understand the presented ap-
proaches deeply, we have performed
some experiments using a Sick LMS
200 laser scanner mounted on our B21-
RWI robot platform (Colin) in the lab-
oratory for autonomous mobile robots.
The laser signature of an arbitrary
landmark has been registered and laser
scan samples from four nearby loca-
tions have been stored. The stored
samples comprise both translation and
rotation. Then we apply HWT and
DCT compression on the scans using
equal compression factor. Finally we
use the selected landmark and search
for it among all samples. To judge the results fairly we use mean square error
in order to match the spatial, DCT, and HWT signatures with the corresponding
ones. Figures (3.18) shows the experimental results. It is worth mentioning that
we use a compression factor of a high rate for DCT and HWT without sacrificing
the nature of the signature.
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These experiments show that neither DCT nor HWT are superior to each
other as their signatures are still capable of embracing the information even with
high compression rates. Figure (3.18) clarifies that both DCT and spatial tech-
niques comprise a unique global reference pose while they incorporate multiple
local minima. Therefore, both DCT and HWT are considered partially invariant
to translation and rotation.

Spatial(ED-CCA) Spectral(DCT) Wavelet(HWT)
Compression no yes yes
Frequency no yes yes
Spatial yes no yes
Transition sharp smooth smooth
Local minima + ++ ++
Data length dependent independent dependent
Model no no no
Learning no batch batch
Convergence abrupt gradual gradual

Table 3.1: Comparison of signature date matching algorithms

3.4 Laser Sonar Integration

Figure 3.19: Spatial laser sonar itegration

The integration of both laser and sonar
sensors has a meaningful role in map-
ping and navigation. It leads to gener-
ating high consistent maps that cover
the area detected by both of them. The
integration of open angle sonar and the
2D planner laser is capable of ensur-
ing robot’s safety as it navigates in
unknown terrains with randomly dis-
tributed obstacles. This spatial fu-
sion is essential in some environments
whereas the laser penetrates through
glass doors, it gets no reflection back from mat black or specular objects, or it
is unable to detect the obstacles because of its 2D planner scanning. In that case,
the open angle sonar is considered as an advantage.
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The disadvantages of sonar can be eliminated by using a simple fuzzy member-
ship function that returns the minimum range value from multi ranges acquired by
sonar and laser sensors. This membership function excludes the error emanating
from multi reflections of sonar waves, 2D limitations of laser scanning (tables) or
from penetration of laser ray through transparent materials. The formulation of
the AND fuzzy rule is as follows:

dr = µs∩l = min(s1, s2, . . . , sns, l1, l2, . . . , lnl
) (3.18)

where d is the distance to the nearest obstacle in the front free space, si is the
range acquired from front panel sonar sensor no. i, and li is the length of laser
ray no. i of a registered scan. This function returns the minimal displacement to
the nearest obstacle in the front free space and that achieves more safety. More
details about this subject are found in chapter (6), page 85.
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Chapter 4

Compasses

In this chapter we concentrate on employing a digital compass in mapping and
localization of indoor terrains. In mapping, we use the geomagnetic field distri-
bution along with the traditional visible odometric maps acquired by laser range
finders and sonar ranging modules to model the environment. The most important
idea of this approach is that we allow the robot to use non-biomemtic sensors, or
at least sensors that humans don’t normally possess. The second benefit of using
compasses is the possibility of detecting geomagnetic signature peaks that remark
the poses of the central nodes of the VMP discussed in chapter (3), page (23). In
contrary to the dominant idea of considering the disturbances of compass measure-
ments as white noise [152, 139], we could clearly detect and analyze a geomagnetic
signature of the VMP vector [192, 7].1

We used 2 compasses: a KVH-C100 fluxgate compass and a vector compass
mounted on RWI-B21 and Pioneer Active Media robot platforms, see figure (4.3).

4.1 Natural Magnetic Field

The earth acts like a great spherical magnet, in that it is surrounded by a magnetic
field. In general, The earth’s magnetic field resembles the field generated by a
dipole magnet (i.e., a straight magnet with a north and south pole) located at the
center of the earth. The axis of the dipole is offset from the axis of the earth’s
rotation by ≈11◦. This means that the north and south geographic poles and the
north and south magnetic poles are not located in the same place. At any point,
the earth’s magnetic field is characterized by a direction and intensity which can
be measured.

1I would like to acknowledge the technical support of P. Heinemann in the programming of
the Pioneer robot platform, Active Media, to record the presented compass measurements.
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4.1.1 Definition of Magnetic Elements

Figure 4.1: Natural magnetic field

To measure the earth’s magnetism
in any place, we must measure the
direction and intensity of the field.
The earth’s magnetic field is de-
scribed by seven parameters. These
are: 1) declination (D), 2) incli-
nation (I), 3) horizontal intensity
(H), 4) vertical intensity (Z), 5) to-
tal intensity (F), 6) north (X), 7)
east (Y). Where, X and Y are the
components of the horizontal inten-
sity.

The parameters describing the di-
rection of the magnetic field are decli-
nation (D) and inclination (I). D and
I are measured in units of degrees, positive east for D and positive down for I.
In older literature, the term magnetic elements often referred to D, I, and H, see
figure (4.2).

Declination is the angle between north and the horizontal projection of (F). In
other words, magnetic declination is the angle between magnetic north and
true north. This value is measured positive through east and varies from 0◦

to 360◦. D is considered positive when the angle measured is east of true
north and negative when west.

Inclination Magnetic inclination is the angle between the horizontal plane and
the total field vector, measured positive into earth. In other words, the angle
between the surface of the earth and (F). Positive inclinations indicate (F)
is pointed downward, negative inclinations indicate (F) is pointed upward.
Inclination varies from −90◦ to 90◦.

Magnetic Equator The location around the surface of the earth where the earth’s
magnetic field has an inclination of zero (the magnetic field vector F is hori-
zontal). This location does not correspond to the earth’s rotational equator.

Magnetic Poles The locations on the surface of the earth where the earth’s
magnetic field has an inclination of either plus or minus 90◦ (the magnetic
field vector F is vertical). These locations do not correspond to the earth’s
north and south poles.
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4.1.2 Magnetic Units

Figure 4.2: Magnetic field ele-
ments

The intensity of the total field (F) is described
by the horizontal component (H), vertical com-
ponent (Z), and the north (X) and east (Y)
components of the horizontal intensity. These
components may be measured in units of Oer-
sted (1 Oersted= Gauss), but are generally re-
ported in nanoTesla (1 nT * 100,000=1 Gauss).
The earth’s magnetic field intensity is roughly
between 25,000 - 65,000 nT (0.25 - 0.65 Gauss).
The geomagnetic field measured at any point on
the earth’s surface is a combination of several
magnetic fields generated by various sources.
These fields are superimposed on and interact with each other. This portion of
the geomagnetic field is often referred to as the main field. The main field varies
slowly in time and can be described by mathematical models such as the Interna-
tional Geomagnetic Reference Field (IGRF) and World Magnetic Model (WMM).
The main field creates a cavity in interplanetary space called the magnetosphere,
where the earth’s magnetic field dominates in the magnetic field of the solar wind.
The magnetosphere is shaped somewhat like a comet in response to the dynamic
pressure of the solar wind. It is compressed on the side facing the sun to about 10
earth radii and is extended tail-like on the side away from the sun to more than
100 earth radii. The magnetosphere deflects the flow of most solar wind particles
around the earth, while the geomagnetic field lines guide charged particle motion
within the magnetosphere. The differential flow of ions and electrons inside the
magnetosphere and in the ionosphere form current systems, which cause variations
in the intensity of the earth’s magnetic field. These external currents in the ionized
upper atmosphere and magnetosphere vary on a much shorter time scale than the
internal main field and may create magnetic fields as large as 10% of the main
field. It is the main field component that is modeled by the IGRF and WMM.
Other important sources are the fields arising from electrical currents flowing in
the ionized upper atmosphere, and the fields induced by currents flowing within
the earth’s crust.

4.1.3 Field Variations

The magnetic field is different in different places. In fact, the magnetic field
changes with both location and time. It is so irregular that it must be measured
in various places to get a satisfactory picture of its distribution. This is done at
the approximately 200 operating magnetic observatories worldwide and at several
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more temporary sites. However, there are some regular features of the magnetic
field. At the magnetic poles, a dip needle stands vertical (dip=90◦), the horizontal
intensity is zero, and a compass does not show direction (D is undefined). At
the north magnetic pole, the north end of the dip needle is down; at the south
magnetic pole, the north end is up. At the magnetic equator the dip or inclination
is zero. Unlike the earth’s geographic equator, the magnetic equator is not fixed,
but slowly changes. The disturbances of the magnetic compasses could be natural
or artificial.

Natural Sources: emanate from environmental and cosmic phenomena. The
earth’s magnetic field is actually a composite of several magnetic fields gen-
erated by a variety of sources. These fields are superimposed on each other
and through inductive processes interact with each other. The most impor-
tant of these geomagnetic sources are:

• The earth’s conducting, fluid outer core ≈ 90%

• Magnetized rocks in the earth’s crust

• Fields generated outside earth by electric currents flowing in the iono-
sphere and magnetosphere

• Electric currents flowing in the earth’s crust (usually induced by varying
external magnetic fields)

• Ocean current effects

These contributions all vary with time on scales ranging from milliseconds
(micro pulsations) to millions of years (magnetic reversals). More than 90%
of the geomagnetic field is generated by the earth’s outer core. It is this
portion of the geomagnetic field that is represented by the Magnetic Field
Models.

Artificial Sources: are man-made sources affecting the magnetic field locally
such as:

• Large ferro-magnetic structures

• Internal electrical components and robot motors

• Mechanical vibration, see figure (4.5), which can be reduced using me-
chanical dampers and low pass filters.

• Power lines

• Surrounding electrical instruments
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4.1.4 Correction of Compass Bearing

One can compute the true bearing from a magnetic bearing by adding the mag-
netic declination to the magnetic bearing. This works so long as you follow the
idea that degrees west are negative. (i.e. a magnetic declination of 10◦ west is
−10◦ and bearing of 45◦ west is −45◦).

4.2 Robot Compass
Vehicle heading is the most significant of the navigation parameters (x, y, and θ)
in terms of its influence on accumulated dead-reckoning errors. For this reason,
sensors which provide a measure of absolute heading are extremely important in
solving the navigation needs of autonomous robots, the magnetic compass is such
a sensor. One disadvantage of any magnetic compass is that the earth’s mag-
netic field is often distorted near power lines and steel structures. This makes
the straightforward use of geomagnetic sensors difficult for indoor use. The 2
compasses used in this study are shown in figure (4.3). Based on a variety of phys-
ical effects related to the earth’s magnetic field, different geomagnetic sensors are
available. These include: 1) Fluxgate compasses, 2) Magnetoresistive compasses,
3) Hall-effect compasses, 4) Mechanical magnetic compasses, 5) Magnetoelastic
compasses, 6) Magnetoinductive compasses.

The fluxgate compass is best suited for the use of mobile robot applications.
When maintained in a level attitude, the fluxgate compass will measure the hor-
izontal component of the earth’s magnetic field with decided advantages of low
power consumption, no moving parts, tolerance to shock and vibration, rapid
start-up, and relatively low cost. If the vehicle is expected to operate over uneven
terrain, the sensor coil should be gimbal-mounted and mechanically dampened to
prevent serious errors introduced by the vertical component of the geomagnetic
field [152].

4.2.1 Related Work

In 1832 Gauss and Weber began investigating the theory of terrestrial magnetism
after Alexander von Humboldt attempted to obtain Gauss’s assistance in making
a grid of magnetic observation points around the earth. Gauss was excited by this
prospect and by 1840 he had written three important papers on the subject: Inten-
sitas vis magneticae terrestris ad mensuram absolutam revocata (1832), Allgemeine
Theorie des Erdmagnetismus (1839) and Allgemeine Lehrsätze in Beziehung auf die
im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs-
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(a) Vector Magnetoinductive Compass (b) KVH C-100 fluxgate compass

(c) Pioneer, Active Media (d) B21, RWI

Figure 4.3: Digital compasses and the corresponding robot platforms used through-
out our research work
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und Abstossungskräfte (1840). These papers all dealt with the current theories
on terrestrial magnetism, including Poisson’s ideas, absolute measure for magnetic
force and an empirical definition of terrestrial magnetism.

Related to the research work on using compasses in robotics, many researchers
adopted the use of compass as a heading device for autonomous mobile robots e.g.:

A. Schmolke et. al. studied the performance of the path integration without
external reference compared with the performance using a polarization compass.
The experiments were carried out using a Khepera miniature robot. A polarization
compass has been tested for indoor circumstances. Thereby, the robot determines
the E-vector orientation, i.e. the direction of the electric field oscillation of the
polarized light with three sensors which is the minimal number of sensors needed
for this task. An artificial polarization source has been used to substitute the blue
sky [172].

S. Suksakulchai et. al. proposed a method for mobile robot localization
using a digital magnetic compass. They took advantage of the magnetic field dis-
turbances as distinctive place recognition signatures. They employed a sequential
least-squares approximation for matching the electromagnetic signature of a cor-
ridor [192].

L. Ojeda and J. Borenstein published a paper on "Experimental results with
the KVH C-100 fluxgate compass in mobile robots". This paper presents a discus-
sion on the use of electronic compasses in mobile robots. In that way, different
error sources are considered, and solutions are proposed to correct these errors.
Their experimental results show the effectiveness of some of the error reduction
measures. These results also show what performance can be expected from a well-
calibrated compass system. The overall most important result is that errors due
to external magnetic interferences are the most severe and hard-to-correct ones
[152].

L. S. Lopes et. al. published a paper entitled "Intelligent Control and
Decision-Making demonstrated on a Simple Compass-Guided Robot". This pa-
per presents the architecture and algorithms developed for Dom Dinis, a simple
compass-guided robot built by the authors. This includes environment exploration,
task planning and task execution. Environment exploration, based on repeating a
reactive goal search, enables a progressive construction of a grid-based map. Based
on the (possibly incomplete) map, the robot is able to plan its tasks. The exe-
cution capabilities of the robot include exception handling. Essential to all these
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capabilities is the knowledge of the robot’s position in the world. The position is
computed based on tracking traversed distances and followed orientations. Orien-
tation is given by a compass. Dom Dinis did not use wheel encoders at all [119].

Several animals use the bio-compass in their navigation and orientation such as;
loggerhead sea turtles, Spiny lobsters, pigeons, blind mice and humpback whales,
see figure (4.4) [118, 166, 212].

4.2.2 Fluxgate Compass

The fluxgate magnetometer was originally designed and developed during World
War II. It was used as a submarine detection device for low-flying aircrafts. Today
it is used for conducting magnetic surveys from aircraft and for making borehole
measurements. The fluxgate magnetometer is based on what is referred to as
the magnetic saturation circuit. One model of them has two parallel bars of a
ferromagnetic material which are placed closely together. The susceptibility of the
two bars is large enough so that even the earth’s relatively weak magnetic field
can produce magnetic saturation in the bars. Magnetic saturation refers to the
induced magnetic field produced in the bars. In general, as the magnitude of the
inducing field increases, the magnitude of the induced field increases in the same
proportion relating the external to the induced magnetic fields. For large external
field strengths, however, this simple relationship between the inducing and the
induced field no longer holds. Saturation occurs when increases in the strength
of the inducing field no longer produce larger induced fields. Each bar is wound
with a primary coil, but the direction in which the coil is wrapped around the
bars is reversed. An alternating current (AC) is passed through the primary coils
causing a large, inducing magnetic field that produces induced magnetic fields in
the two cores that have the same strengths but opposite orientations. A secondary
coil surrounds the two ferromagnetic cores and the primary coil. The magnetic
fields induced in the cores by the primary coil produce a voltage potential in
the secondary coil. In the absence of an external field (i.e., if the earth had no
magnetic field), the voltage detected in the secondary coil would be zero because
the magnetic fields generated in the two cores have the same strength but are
in opposite directions (their effects on the secondary coil exactly cancel). If the
cores are aligned parallel to a component of a weak, external magnetic field, one
core will produce a magnetic field in the same direction as the external field and
reinforce it. The other will be in opposition to the field and produce an induced
field that is smaller. This difference is sufficient to induce a measurable voltage in
the secondary coil that is proportional to the strength of the magnetic field in the
direction of the cores. Thus, the fluxgate magnetometer is capable of measuring
the strength of any component of the earth’s magnetic field by simply re-orienting
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Figure 4.4: Animals using Bio-Compass
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the instrument so that the cores are parallel to the desired component. Fluxgate
magnetometers are capable of measuring the strength of the magnetic field to about
0.5 to 1.0 nT . Unlike the commonly used gravimeters, fluxgate magnetometers
show no appreciable instrument drift with time.

(a) Compass disturbance w.r.t. speed (b) Compass measurements

Figure 4.5: Compass disturbances and measurements under mechanical vibration

To reduce the high frequency (HF) noise we employed the wavelet decomposi-
tion to extract the original compass measurements, see figure (4.6).

4.2.3 Magnetic Shielding

Magnetic fields can be reduced using high-permeability shielding alloys called µ-
metal. These materials are able to divert the magnetic flux to themselves, so the
magnetic fields around them can be reduced significantly. The deviation produced
by the host platform (motors, wires, etc.) can be reduced with the use of magnetic
shielding made of mu-metal. The magnetic shielding have to provide a complete
path for the magnetic field lines, in order to prevent the magnetic field from causing
interference outside of the shielding. Closed shapes like cylinders with caps around
the motors, boxes with covers on power supplies, tubes around wires, etc. are
the most effective. In addition, some physical separation between the mu-metal
housing and the compass is still necessary to avoid magnetic interference [27, 3,
152]. To keep the compass away from internal fields we mounted it above the
robot.
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(a) Compass measurements (b) Signal reconstruct

(c) Wavelet details at decomposition level 3 (d) Wavelet coefficients at decomposition
level 3

Figure 4.6: High frequency noise reduction using wavelet decomposition
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4.3 Geomagnetic Localization

Odometry is the most widely used method for determining the position of a mobile
robot. Odometry is the only dead-reckoning system available on several mobile
robots. Unfortunately, the acquisition of the odometric data is associated with
different types of noise e.g. non-linear noise (backlash, hysteresis, toggle, thresh-
old, saturation, damping and friction), time based noise (accumulation effect) and
white noise. Another form of odometric errors is generated by the mechanical
system from rotation or due to slippage and drifting [6]. Therefore, the odometry
needs to be reset from time to time. To overcome this problem, robust and ac-
curate localization of the robot is needed. There are many researchers, who have
adopted using vision for natural landmark recognition. Those techniques often
require high-performance onboard computers and expensive cameras.

Figure 4.7: The original signature constructed in repeated 5 trials

Electronic compasses are often used to detect headings of mobile robots in
outdoor terrains. However, electronic compasses have one drawback when used
inside a building: they can easily be disturbed by electromagnetic sources (e.g.
power lines, electromagnetic fields of robot internal components, fields of external
instruments or large Ferro-magnetic structures) [152, 7]. This makes it impossible
to use electronic compasses as reliable heading devices for indoor applications. In-
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(a) Signature reconstruction by using 5% of the DCT coefficients

(b) Signature reconstruct by using 20% of the DCT coefficients

Figure 4.8: Signature reconstruction by using the DCT
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spiration for this investigation arose to investigate error readings of the compass
caused by electromagnetic sources or large ferromagnetic structures.

Figure 4.9: Combination of Laser and magnetic mapping of the corridors at our
Institute WSI, Sand 13 , Tübingen

In figure (4.9) we define some special marks (denoted from 1 to 8). The dis-
turbances of the geomagnetic measurements at positions 3,4,6,7 and 8 are due
to presence of ferro-magnetic structures (glass door frames), disturbances at posi-
tions 1, 5 are due to the electromagnetic field of wireless Ethernet-LAN transceivers
while the disturbance at position 2 has no obvious cause.

While the geomagnetic signature alone is not as good as signatures obtained
by a laser scanner and in our experiments could not be used for navigation alone
by itself it may be used as an additional sensor to remove ambiguities and to help
in global localization together with another sensor like sonar or laser scanner.

With its capabilities to detect steel frames WLAN transceivers which may be
hidden behind wall or ceiling, a digital compass may be used to resolve ambiguities
in probabilistic global navigation and map building or the mapping approach like
the VMP.
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The advantage of the magnetic field disturbances is taken by using them as
recognition signatures to localize distinctive central nodes. The spectrum analy-
sis and reconstruction of the geomagnetic signature, presented in this study, rely
mainly upon the frequency domain convolution of the discrete cosine transform
(DCT). The DCT belongs to algorithms (e.g. DFT, FFT, DST, wavelet, Gabor,
etc.) used for the frequency analysis of signals and patterns. Moreover, the DCT
is used not only for coding but also for signal and pattern compression. Figure
(4.7) shows typical geomagnetic signatures in repeated trials, 5 times, in a ≈ 60
m corridor in our work space and the corresponding reconstructed signatures are
shown in figures (4.8)
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Chapter 5

Motion Planning for
Non-Holonomic Robots

5.1 Introduction
The robot path planning problem, which asks for the computation of collision free
paths in environments containing obstacles, has received a great deal of attention
in the last decades [218, 41, 86, 6]. In the basic problem, there is one robot present
in a static and known environment, and the task is to compute a collision-free
path describing a motion that brings the robot from its current position to some
desired goal position. Variations and extensions of this basic problem statement
are numerous.

Motion planning algorithms support a wide variety of scientific applications in
different fields, like

Astronomy : Several algorithms have been developed originally to study cosmic
phenomena. Moreover, these algorithms are important to plan manned and
unmanned space missions as well as to design the trajectories of space rovers
[181, 180, 112].

Automation of traffic systems: The main goal of that is to manage the global
traffic system and to plan the motion of individual vehicles autonomously.

Simulators and animators: demand efficient and robust path planning tech-
niques to move the virtual dynamic objects in PC games, digital actors and
virtual reality programs.

Electronics: rely on path planning algorithms to develop short connections au-
tonomously by which the energy consumption and the mutual capacitance
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among connections will be decreased. Therefore, VLSI-design and PCB-
layout are successful applications for such algorithms.

Robotics: is an important area for applying path planning algorithms to different
types of platforms (e.g. indoor, outdoor, micro, mini, underwater, aerospace
robots, manipulators etc.).

Non-holonomic constraints add an extra level of difficulty to the path planning
problem. The desired path must (1) be collision free, (2) describe motions that
are executable for the robot, (3) be as short as possible, (4) be computed in a
limited time and (5) be generated autonomously without any human intervention.
We refer to such paths as desired paths.

To start with, for non-holonomic robots, computation of collision-free paths is
not sufficient. Not only are the admissible robot placements constrained by ob-
stacles and the robot geometry, but also are the directions of motion subject to
constraints. For example, our mobile robots (RWI-B21) moving on wheels have
such non-holonomic constraints, due to the fact that their wheels are not allowed
to slide. Another realistic scenario is that of selecting an appropriate solution
among one of the available possibilities. In this case, apart from the restrictions
imposed by the obstacles, robot geometry, and possible non-holonomic constraints,
one also has to avoid collisions between the robot and dynamic objects mutually.
Moving obstacles, uncertainties in sensing, and inexact control add further lev-
els of difficulty. In order to build robots that can autonomously act in real-life
environments, path planning problems need to be solved. However, it has been
proven that, in general, solving even the basic path planning problem requires
time which is proportional to the number of possible collision to be avoided. In
spite of this discouraging problem complexity, various such complete planners have
been proposed. Their high complexity however makes them impractical for most
applications. And every extension of the basic path planning problem adds to the
computational complexity. Therefore, if we allow for moving obstacles, the prob-
lem becomes exponential in their number. Assuming uncertainties in the robots
sensing and control leads to an exponential dependency on the complexity of the
obstacles. The above bounds deal with the exact problem, and therefore apply
to complete planners. These are planners that solve any solvable problem, and
return failure for each non-solvable one. So for most practical problems it seems
impossible to use such complete planners. This has lead many researchers to con-
sider simplifications of the problem statement. A quite recent direction of research,
which we just want to mention briefly here, deals with the formulation of assump-
tions on the robot environment that reduce the path planning complexity. This
is based on the belief that there exists a substantial gap between the theoretical
worst-case bounds of path planning algorithms and their practical complexity. A
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number of researchers have attempted to formulate assumptions on the obstacles
that prohibit the (artificial) constructions that cause the worst-case bounds. How-
ever, this line of research has been mainly of theoretical nature, and has not yet
resulted in implementations of practical path planners. Moreover, it is currently
not clear whether similar results can be obtained for extensions of the basic path
planning problem.

Instead of assuming things about the robot environment, many researchers
have simply dropped the requirement of completeness for the planner. Heuristic
planners have been developed that solve particularly difficult problems in impres-
sively low running times. However, the same planners also fail or consume pro-
hibitive time on other problems. For autonomous robots in realistic environments
this might be a problem, since one cannot predict the path planning problems
such robots will face. So, on one hand, completeness is a preferred property of
motion planners for autonomous robots, while, on the other hand, only heuristic
algorithms are capable of solving many of the practical problems that people are
interested in. This has lead to the design of path planners that satisfy weaker forms
of completeness, in particular resolution completeness and probabilistic complete-
ness.

In this chapter we deal with our proposed planner called straight line naviga-
tion (SLN) developed to generate a relatively short path autonomously. This idea
is successful if, for a given problem, the estimated path guaranteed to be solved
autonomously, in a definite elapsed time and optimized to a certain limit. More-
over, the planner exhibits high flexibility to deal with different types of obstacles
and has the capability to generate general purpose path data that can be treated
by any platform from any vendor [6, 113].

5.2 Relevant Research Work

For mobile robots, the existence of a desired path between two configurations is
equivalent to the existence of a collision free path, due to the fact that for any
collision free path there exists a desired path lying arbitrarily close to it, e.g. the
linearized and smoothed paths of SLN algorithm discussed later. This fundamental
property has led to a family of algorithms, decomposing the search in two phases.
They first try to solve the geometric problem (i.e., the geometrical description
of the robot platform and its surrounding obstacles). Then they use the obtained
collision-free path to build a desired one. So in the first phase the decision problem
is solved, and only in the second phase are the non-holonomic constraints taken into
account. Such approaches were developed for non-holonomic robots, using optimal
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control to approximate the geometric path. Several path planning algorithms have
been developed to generate a relatively short path for non-holonomic robots, as

5.2.1 Visibility Graph Path Planning

This method produces the shortest path with respect to the metric. A visibility
graph is formed by connecting all visible vertices, the start point and the end point,
to each other. For two points to be visible, no obstacle can exist between them.
Paths exist on the perimeter of obstacles. However, the close proximity of paths
to obstacles makes it dangerous. It starts with a map of the world and draws lines
of sight from the start and goal to every corner of the world and vertex of the
obstacles, not cutting through any obstacles. After that lines of sight are drawn
from every vertex of every obstacle like above. Lines along edges of obstacles are
lines of sight, too, since they don’t pass through the obstacles. If the map is in
configuration space(C-space), each line potentially represents part of a path from
the start to the goal.

Barraquand and Latombe have proposed a heuristic brute-force approach to
motion planning for non-holonomic robots. It consists of heuristically building and
searching a graph whose nodes are small axis-parallel cells in C-space. Two such
cells are connected in the graph if there exists a basic path between two particular
configurations in the respective cells. The completeness of this algorithm is guar-
anteed up to an appropriate choice of certain parameters, and it does not require
local controllability of the robot. The main drawback of this planner is that when
the heuristics fail it requires an exhaustive search in the discretized C-space. Fur-
thermore, only the cell containing the goal configuration is reached, not the goal
configuration itself. Hence the planner is inexact. Nevertheless, in many cases the
method produces nice paths with a minimum number of reversals. For systems of
higher dimension, however, it becomes too time consuming. Ferbach builds on the
approach of Barraquand and Latombe method in his progressive constraints algo-
rithm in order to solve the problem in higher dimensions. First a geometric path
is computed. Then the non-holonomic constraints are introduced progressively in
an iterative algorithm. Each iteration consists of exploring a neighborhood of the
path computed in the previous iteration, searching for a path that satisfies more
accurate constraints. Smooth collision-free paths in non-trivial environments were
obtained. The algorithm, however, does not satisfy any form of completeness
[91, 111].
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5.2.2 Voronoi Diagram

The concept of Voronoi diagrams has been around for at least four centuries. In
his treatment of cosmic fragmentation in "Le Monde de Descartes, ou Le Traite de
la Lumiere", published in 1644, Descartes uses Voronoi-like diagrams to show the
disposition of matter in the solar system and its environment. The first presen-
tations of this concept appeared in the work of G. L. Dirichlet (1850) and G. M.
Voronoi (1908). Although the concept has been around for a long time, algorithms
for computing Voronoi diagrams did not start appearing until the 1970’s.

K.E. Hoff et. al. presented an approach for computing generalized 2D and 3D
Voronoi diagrams using interpolation-based polygon rasterization hardware. He
computed a discrete Voronoi diagram by rendering a three dimensional distance
mesh for each Voronoi site. The polygonal mesh is a bounded-error approximation
of a (possibly) non-linear function of the distance between a site and a 2D planar
grid of sample points. For each sample point, he computed the closest site and
the distance to that site using polygon scan-conversion and the Z-buffer depth
comparison. He constructed distance meshes for points, line segments, polygons,
polyhedra, curves, and curved surfaces in 2D and 3D. Then, he generalized to
weighted and farthest-site Voronoi diagrams, and presented efficient techniques
for computing the Voronoi boundaries, Voronoi neighbors, and the Delaunay tri-
angulation of points. He also showed how to adaptively refine the solution through
a simple windowing operation. His algorithm has been implemented on SGI work-
stations and PCs using OpenGL, and applied to complex datasets. Moreover, he
demonstrated the application of his algorithm to fast motion planning in static and
dynamic environments, to selection in complex user-interfaces, and the creation of
dynamic mosaic effects [208, 86, 66].

5.2.3 Potential Field Method

The potential field method has commonly been used for autonomous mobile robot
path planning in the past decades e.g. Andrews and Hogan (1983), Krogh (1984),
Khatib (1985), Khosla and Volpe (1988), Warren (1989-1990), Borenstein and Ko-
ren (1989-1991), Hussien (1989), Rimon (1990), Canny and Lin (1990), Latombe
(1991), Rimon and Koditschek (1992), Kim and Khosla (1992), Ko and Lee (1996),
Chuang and Ahuja (1998), Veelaert and Bogaerts (1999). The basic concept of
the potential field method is to fill the robot’s workspace with an artificial po-
tential field in which the robot is attracted to its target position and is repulsed
from the obstacles. This method is particularly attractive because of its elegant
mathematical analysis and simplicity. Most of the previous studies use potential
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field methods to deal with mobile robot path planning in stationary environments
where targets and obstacles were all stationary. However, in many real-life imple-
mentations, the environments are dynamic. Not only the obstacles are moving, but
also the target. The most destructing disadvantage of the potential field method
is the presence of local minima.

In an effort to solve the problem of motion planning in a dynamic environment
where the obstacles are moving, one approach is to include time as one of the
dimensions of the modeled world and thus the moving obstacles can be regarded
as stationary in the extended world e.g. Fujimura and Samet (1989), Shih and
Lee (1990), Conn and Kam (1998). Accordingly, the dynamic motion planning
problem is reduced to motion planning in stationary environments. The major
problem in this approach is that it always assumes that the trajectories of the
moving obstacles are known a priori, which is often inapplicable in real applica-
tions. Another approach was proposed in Ko and Lee (1996) and Hussien (1989)
which extended the potential field method to the problems of moving obstacle
avoidance by constructing repulsive potential functions which take into account
the velocity information. In Ko and Lee (1996), though the velocity of the obsta-
cle is considered when building the repulsive potential, the velocity of the robot is
not taken into account. This is inadequate because the possibility of the collision
between the robot and obstacle depends on the relative position and velocity be-
tween them. The repulsive potential function in Hussien (1989) makes fully use of
the velocity information of the robot and the obstacle. However, it was assumed
that the relative velocity of the robot with respect to the obstacle is invariant
irregardless of the position of the robot and its partial derivatives in terms of po-
sition is zero. This assumption is unrealistic as the relative velocity is actually a
function of the position of the robot and its derivatives in terms of position cannot
be considered as zero all the time. Both methods deal with the obstacle avoidance
problem with a stationary target [165, 88, 103, 107, 71].

5.2.4 The Probabilistic Path Planner (PPP)

The probabilistic path planner has been applied to various types of non-holonomic
robots. An advantage of this approach is the fact that a road-map is constructed
just once, from which paths can subsequently be retrieved quasi-instantaneously.
Also, local robot controllability is not required. A critical point of the PPP when
applied to non-holonomic robots is however the speed of the non-holonomic local
planner. For non-holonomic robots very fast local planners have been developed.
Thanks to this, PPP applied to the non-holonomic robots resulted in fast and
probabilistically complete planners for non-holonomic robots that move both for-
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wards and backwards. Moreover, a local planner is integrated into PPP, that uses
exact closed form solutions for the kinematic parameters of a robot [193].

5.2.5 Bug Algorithms

These algorithms pertain to the reactive path planning family. The Bug algo-
rithms were developed mainly by V. J. Lumelsky et. al. [122, 90]. The idea
behind both algorithms (Bug1 and Bug2) is that the robot knows the direction
in which it should head from its initial position toward its goal, but it does not
know anything about the obstacles that lie in between. The basic idea is to start
heading towards the goal (since the correct direction is known) and see whether
any obstacles present themselves. We will call the straight line between the robot’s
initial position and the goal the S-line. If an obstacle is in the way of the robot,
i.e., if it is interposed on the S-line between the starting point and the goal, the
two Bug algorithms deal with that obstacle slightly differently:

Bug1 specifies that the robot should circumnavigate the entire obstacle. As it
does so, it should remember whatever point along the obstacle’s perimeter
is closest to the goal. (The insect analogy would be a scent that grows
stronger with proximity to a nest or meal) Once the robot has returned to
(approximately) the point at which it originally hit the obstacle, it continues
following the perimeter until it returns to that remembered closest point.
Upon reaching that remembered point, it departs the obstacle and continues
along a new line toward the goal. This process repeats if there are other
obstacles in the way.

Bug2 takes sharper approach. If an obstacle presents itself along the S-line, the
robot again wall-follows along the perimeter of that obstacle. Rather than
circumnavigating the obstacle, however, Bug2 specifies that as soon as the
robot reaches another point along the S-line that is closer than the origi-
nal point of contact with the obstacle, the robot should leave the obstacle
perimeter and continue heading toward the goal. This procedure repeats for
any additional obstacles that arise.

Polar Bug This algorithm is proposed by R. D. Schraft et. al. to implement the
Vis-Bug algorithm in real-time using a Sick LMS 200 laser scanner. This
framework has been applied to develop a robot guidance system for Berlin
museum visitors using three mobile robots that interact with the visitors
spontaneously. The polar bug algorithm returns to the perimeter point clos-
est to the goal. In that case, it is preferable to return along the shorter path
[173, 77, 174].
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The Bug algorithms are to be implemented using the wall-following. We can
assume that the obstacles will consist of walls meeting at right angles (an indoor
application). The S-line need not, however, be parallel or perpendicular to the
obstacles’ walls. In implementing these algorithms, there are a number of choices
to make, e.g., which direction to start heading around an encountered obstacle. It
doesn’t matter which direction one chooses, as long as one stays consistent.

5.3 Straight Line Navigation (SLN) Algorithm
We now present our proposed SLN path-planning algorithm used to estimate the
shortest path for non-holonomic robots autonomously. The idea of using the
straight line as a base in estimation of a path is used in several algorithms such as
Bug or ALG. In contrast to these on-line reactive algorithms the SLN algorithm
operates on a previously computed full or partial map of the environment. The
primitive definition of the straight line is "the shortest path between two points".
We try to benefit from this idea in estimating the shortest path autonomously. The
complete solution presented in this framework starts with a map using the vector
mapping paradigm. This map is converted into a contour graph by enlarging the
obstacle’s boundaries. This graph is used as a base to develop the SLN-algorithm.
This algorithm can be implemented in 5 phases [6], see figure (5.1). The 5 phases
of the SLN algorithm can be accomplished as follows:

5.3.1 Initialization Phase

In this phase the parameters of the contour graph are defined, such as the set O of
obstacles oi, the start position S0 and the goal position of the robot Tx,y. Each of
these obstacles is defined by a set of properties: type, location and contour, see the
SLN properties diagram shown in figure (5.1). The initialization phase comprises
the following preprocessing operations:

• convert the irregular obstacles to regular forms (rectangle, circle, polygones).

• calculate the extended margins (safety, robot radius, relaxation).

• find the interposing obstacles on the S-line.

5.3.2 Segmentation Phase

The contours of the obstacles are intersected with a straight line linking the start
with the goal position. Hence, the contour of each obstacle will be split into
two segments and one of them is shorter than the other or equal. If we have n
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Figure 5.2: SLN path planning

obstacles and we start with point S0 then the obstacles divide the line in n+1 line
segments linei =

−−−−−−→
S2i, S2i+1 for 0 ≤ i ≤ n and 2n + 1 points S0, S1, . . . , S2n+1 and

line segments for, and object contour segments conti connecting point S2i−1 with
point S2i over a series of unnamed intermediate points on the shorter side of the
object contour, with 1 ≤ i ≤ n. Line segments linei−1 and linei are connected by
an object contour segment conti. See figure (5.2, 5.9). A question is, how can we
find the intersection between the S-line connecting the start and goal points with
the obstacle boundaries. The following algorithms show how this is done:

Line-Circle Intersection

A line determined by two points (x1, y1) and (x2, y2) may intersect a circle of radius
r and center (0, 0) in two imaginary points, a degenerate single point (correspond-
ing to the line being tangent to the circle), or two real points. Defining:

dx = x2 − x1 (5.1)

dy = y2 − y1 (5.2)

dr =
√

d2
x + d2

y (5.3)
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Figure 5.3: Line-circle intersect

Dc =

∣∣∣∣∣ x1 x2

y1 y2

∣∣∣∣∣ = x1y2 − x2y1 (5.4)

gives the points of intersection as

x =
Dcdy ± dy dx

√
r2d2

r − D2
c

d2
r

(5.5)

y =
Dcdx ± |dy|

√
r2d2

r − D2
c

d2
r

(5.6)

The discriminant

∆ ≡ r2d2
r − D2

c (5.7)

therefore determines the incidence of the line and circle as summarized in the
following table.

∆ Incidence
∆ < 0 no intersection
∆ = 0 tangent
∆ > 0 intersection

Table 5.1: Definitions of intersections

More about line-circle intersection can be reviewed in [84, 157]
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Line-Line Intersection

The intersection of two lines, in two dimensions containing the points (x1, y1) and
(x2, y2) on the first one, while (x3, y3) and (x4, y4) lies on the second line, see figure
(5.4), is given by:

Figure 5.4: Line-line intersect

x =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣
∣∣∣∣∣ x1 1

x2 1

∣∣∣∣∣
∣∣∣∣∣ x3 y3

x4 y4

∣∣∣∣∣
∣∣∣∣∣ x3 1

x4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 1
x2 1

∣∣∣∣∣
∣∣∣∣∣ y1 1

y2 1

∣∣∣∣∣
∣∣∣∣∣ x3 1

x4 1

∣∣∣∣∣
∣∣∣∣∣ y3 1

y4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣ x1 − x2∣∣∣∣∣ x3 y3

x4 y4

∣∣∣∣∣ x3 − x4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x1 − x2 y1 − y2

x3 − x4 y3 − y4

∣∣∣∣∣
(5.8)

y =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣
∣∣∣∣∣ y1 1

y2 1

∣∣∣∣∣
∣∣∣∣∣ x3 y3

x4 y4

∣∣∣∣∣
∣∣∣∣∣ y3 1

y4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 1
x2 1

∣∣∣∣∣
∣∣∣∣∣ y1 1

y2 1

∣∣∣∣∣
∣∣∣∣∣ x3 1

x4 1

∣∣∣∣∣
∣∣∣∣∣ y3 1

y4 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣ y1 − y2∣∣∣∣∣ x3 y3

x4 y4

∣∣∣∣∣ y3 − y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x1 − x2 y1 − y2

x3 − x4 y3 − y4

∣∣∣∣∣
(5.9)

where
∣∣∣∣∣ a b

c d

∣∣∣∣∣ denote determinant. Other treatments are given by Antonio

(1992) and Hill (1994) [10, 72, 85].
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5.3.3 Linearization Phase

In this phase the second path is generated by linearizing the sections of the first
path. We successively try to combine two or more path segments to a larger path
segment by vector addition of their vectors under one condition that the resultant
vector doesn’t intersect with any obstacles. We keep the new combined path
segment if it does not intersect one of the obstacles (except on the contour only).
The points on this second path are denoted by P0, . . . , Pm, where P0 = S0 is the
original robot starting position, Pm = S2n+1 is the target position, and the other
Pi are points on the contour of an object, mostly not identical to any Sj . The
second path may then be described as a sequence of rotations θi and translations
li of the robot at the central control points Pi = (xi, yi) with 1 ≤ i ≤ m.

‖li‖ =
√

(xi − xi−1)2 + (yi − yi−1)2 (5.10)

θi = asin

(
yi−yi−1

li−1

)
−asin

(
yi+1−yi

li

)
(5.11)

5.3.4 Minimization Phase

The maximum number of possible paths between the start and goal position is 2n,
where n is the number of obstacles along the line connecting the start to the goal
position. In real world scenarios n is usually very small. Minimizing the length
of the path can be obtained by selection of the minimum set of segments. The
resulting path is the shortest one.

5.3.5 Relaxation Phase

The Linearization phase generates a set of central points of the second path. To
relax/smooth this path, the interpolation function models this set of tabulated
function values or discrete data into a continuous function. We call such a pro-
cess data fitting. The continuous function (smoothed path) may characterize the
relation between variables x and y = f(x) more than their correspondence at the
discrete central points [195]. It can be used to estimate variable y correspond-
ing to a non-nodal point x ∈ [a; b] − {xi} (interpolation) or to a point outside of
[a; b] (extrapolation). For the same set of data, the interpolation changes with the
selection of subspaces. The following are commonly used for interpolations:

a) polynomials (Lagrange)

b) splines (B-spline)
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Throughout this framework we will discuss both approaches and the intercon-
nection between them.

Interpolation with Polynomials

Let’s discuss the theory of Lagrange on interpolations and how could we benefit
from this theory to relax a path for a robot based on our proposed algorithm (SLN)
[58].

There exists only one nth degree polynomial that passes through a given set of
n + 1 central points (xi, yi). It’s form is (expressed as a power series):

y = fn(x) = a0 + a1x + a2x
2 + . . . + anxn (5.12)

where, x = [x0, x1, . . . , xn] and y = [y0, y1, . . . , yn] that passes through all
the central points. The Lagrangian polynomial approach employs a set of nth order
polynomials, Li(x), such that:

fn(x) =
N∑

i=0

Li(x) ∗ yi (5.13)

where Li(x) satisfies:

Li(x) =


1 at x = xi

0 at x = xj , j 
= i
(5.14)

Li(x) =

n∏
j=0
j �=i

(x − xj)

n∏
j=0
j �=i

(xi − xj)
(5.15)

Example:
Let us apply Lagrange interpolation on a dataset of 6 central points, where,
x = [100, 150, 250, 550, 650, 800] and y = [250, 350, 350, 50, 50, 150]. Figure (5.5)
shows the interpolation of the given central points. The same dataset is used later
to show the capability of different B-spline interpolations to smooth the linearized
path of the SLN-algorithm by which the comparison of quality measure among the
presented algorithms will be eased.

From the previous conditions we note:
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Figure 5.5: Lagrange interpolation of SLN linearized path

• The interpolating function is used to replace or simplify the original linear
path with certain smoothness properties preserved at the discrete interpola-
tion central nodes and their neighborhood. To evaluate a complicated func-
tion one may pre-compute the function at certain reference or central nodal
points and evaluate the function at the other points by the interpolating
function. We may call such a process path simplification.

• Polynomial evaluation with the Lagrange representation is of high complexity
when the size n of central nodes dataset is large.

• Since each of the Lagrange polynomials is of degree n − 1, there are cancel-
lations in degree when the data are from a polynomial of a lower degree.

• The evaluation complexity can be reduced for the case that the interpolation
central points are equally spaced, and uniformly distributed.

Lagrange Interpolation Accuracy:
We want to estimate the accuracy of interpolation at a non-nodal point in x. The
following accuracy estimation is based on a smoothness assumption and is in the
sense of L∞ norm.

εx = Li(x)f (n+1)(ξ) x0 ≤ ξ ≤ xN (5.16)
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where f (n+1) = (n + 1)th derivative of f w.r.t. x evaluated at ξ

• The Taylor theorem may be used for the proof of the above theorem.

• The approximation error at the nodal central points is zero.

• The interpolation error at any non-nodal point decreases as the number of
interpolation nodes increases.

Path relaxation based on Lagrange interpolation takes into considerations the
whole segments of the linearized path. Another approach is to relax the path
segments in intervals using basic spline (B-spline) interpolations [43, 57]. Moreover,
the B-spline is used as a membership control function in adaptive systems discussed
in chapter (6).

B-splines Interpolation

B-splines form a truly piecewise basis for the spline family [201, 202, 43] for a
set of infinite data points that represent the central points of the linearized path,
(xi, i = −∞,∞) where xi < xi+1 for any i, the B-splines of degree k are defined
as:

Bk
i (x) =

x − xi

xi+k − xi

Bk−1
i (x) +

xi+k+1 − x

xi+k+1 − xi+1

Bk−1
i+1 (x), k ≥ 1 (5.17)

For any dataset of central points (xi, yi, i = 1, 2, . . . , n), the B-spline is given
by:

f(x) =
n∑

i=1

DiB
0
i (x) (5.18)

where Di are constants determined from the data. Recursive definition is one basic
feature of B-splines, which enables the generation of B-splines of arbitrary orders
with the incremental smoothness for a given set of central nodes. The other most
important properties of B-splines are:

Partition of unity:
n∑

i=1
Bk

i (x) = 1

Positivity: Bk
i (x) ≥ 0 for all x

Local support: Bk
i (x) = 0 for all x /∈ [xi, xi+k]
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1. Linear B-spline
For any dataset of central points (xi, yi, i = 1, 2, . . . , n), the constant B-spline is
given by:

f(x) =
n∑

i=1

yiB
0
i (x) (5.19)

and

B0
i (x) =


1, x ∈ [xi, xi+1)

0, otherwise
(5.20)

where i and k are integers and 1 ≥ Bk
i (x) ≥ 0. Each B0

i (x) is nonzero in exactly
one interval has a discontinuity at xi+1. That simply extends each yi across each
ith interval.

For k = 1, B1
i (x) can be derived from equations (5.17)and (5.18) as:

B1
i (x) = x−xi

xi+1−xi
B0

i (x) + xi+2−xi

xi+2−xi+1
B0

i+1(x)

=



x−xi

xi+1−xi
, x ∈ [xi, xi+1]

xi+2−x
xi+2−xi+1

, x ∈ [xi+1, xi+2]

0, elsewhere

(5.21)

which has two non-zero parts, in intervals x ∈ [xi, xi+1] and x ∈ [xi+1, xi+2].
These intervals are called the support of B1

i (x). On each of its support intervals,
B1

i (x) is a linear function and its location and slope are solely determined by the
distribution of the xi’s. B1

i (x) has a peak value of 1 at xi+1 and is continuous there.

It is interesting to note that B1
i (x) has some connection to the elementary

Lagrange interpolating polynomial. If we write the linear Lagrange interpolating
polynomial for the two-point dataset of (xj , j = i and i + 1), the two elements
would be:

L2
1(x) = x−xi+1

xi−xi+1

L2
2(x) = x−xi

xi+1−xi

(5.22)

which are the second part of B1
i (x) and the first part of B1

i (x), respectively.
This agreement does not extend to higher order B-splines. In general, the 1st order
B-spline is constructed from:
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f(x) =
∞∑

i=−∞
DiB

1
i−1(x) (5.23)

The linear spline on a given data interval is also the Lagrange interpolation
formula for the dataset consisting of the two end points of the same data interval.
So let’s discuss the relationship of B1

i (x) with the linear splines. It turns out that
for any dataset (xi, yi, i = 1, 2, . . . , n, where n can be infinity), the following
function is a linear spline:

f(x) =
n∑

i=1

yiB
1
i−1(x) (5.24)

Figure 5.6: Linear spline interpolation of SLN central nodes

Generally for linear splines, two points are used to draw a straight line for each
interval. Then for each data point, its x and y information will contribute to two
splines. In the case of B1

i (x), this contribution is built into its expression through
its two legs. This is the essence of all B-splines and one reason why they are called
basis splines.

Polynomial splines and Lagrange interpolating polynomials discussed before
can all be viewed as functions over path segment(s). The emphasis here is on the
intervals. A polynomial is set up over the path segment(s), then, we go to its end
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points for help on determining the coefficients of the polynomials.

B-splines, however, should be viewed more as belonging to the central points.
Each point function covers certain path segment(s). To build splines through
B-splines, we will always use the form similar to that in equation (5.23) The y
information is applied to the point function and they are done (almost, anyway)
with the building of the splines. This feature will be more evident in the case for
B2

i (x).

2. Quadratic B-spline
Now for k = 2, the quadratic spline can be estimated from equation (5.17) and
(5.18), we have

B2
i (x) = x−xi

xi+2−xi
B1

i (x) + xi+3−x
xi+3−xi+1

B1
i+1(x)

B2
i (x) = x−xi

xi+2−xi

(
x−xi

xi+1−xi
B0

i (x) + xi+2−x
xi+2−xi+1

B0
i+1(x)

)
+ xi+3−x

xi+3−xi+1

(
x−xi+1

xi+2−xi+1
B0

i+1(x) + xi+3−x
xi+3−xi+2

B0
i+2(x)

)
(5.25)

B2
i (x) =



(x−xi)2

(xi+1−xi)(xi+2−xi)
, x ∈ [xi, xi+1]

1
xi+2−xi+1

[
(x−xi)(xi+2−x)

xi+2−xi
+ (x−xi+1)(xi+3−x)

xi+3−xi+1

]
, x ∈ [xi+1, xi+2]

(xi+3−x)2

(xi+3−xi+1)(xi+3−xi+2)
, x ∈ [xi+2, xi+3]

0, elsewhere

(5.26)

Also, the components of B2
i (x) differ from the quadratic Lagrange polynomi-

als. The L3
1 term of Lagrange interpolation goes negative. Therefore, they are

different, see figure (5.7)

3. Cubic B-spline
The interpolation of cubic spline 3rd B-spline can be accomplished using the same
roles from Equation (5.17) and (5.18), see figure (5.8).

The cubic B-spline gives the minimum interpolation error in almost all cases.
The comparison of figures (5.5), (5.7) and (5.8) reveals this result.
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Figure 5.7: Quadratic spline interpolation of SLN linearized path

Figure 5.8: Cubic spline interpolation of SLN linearized path
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B-Spline Approach versus Lagrange Polynomials

To understand the similarities and differences between Lagrange and B-spline in-
terpolations the following points have to be considered.

• B-Spline functions are defined locally.

• Translation of a central point in B-spline interpolation has only local influ-
ence on the shape of the curve while the central points have global influence
on the shape of the Lagrange curve.

• In B-spline interpolation, additional central points can be inserted without
degree elevation and the smoothness of the junction of adjoining segments
can be influenced easily.

• Lagrange polynomial evaluation with the Lagrange representation is of high
complexity when the size n of the dataset of central nodes is large.

• B-spline functions are extended to be applied to several application tech-
niques e.g. control systems, fuzzy logic etc.

Based on the preceding discussion we conclude that Lagrange interpolation is
suitable for small size set of segments while B-spline based interpolation is useful
if the set of segments is large.

5.4 Notes on the SLN Algorithm
The SLN simulator is a unit of the robot software kit (RSK) that has been de-
veloped to implement this algorithm. This simulator has a map designer and also
accepts the contour graph format of the working environment. This algorithm
provides the autonomous path planning and minimizes the path length. Figure
(5.9) presents a screen shot of the SLN simulator (path designer). The map can
be generated easily using the map designer or can be introduced as contour format
files.

The elapsed time needed for the algorithm depends on many factors:

1. number of obstacles interposing on the S-line connecting the start and the
goal points,

2. complexity of the map even if the number of the obstacles is equal,

3. obstacle distribution over the path,
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Figure 5.9: SLN simulator

No. of intersected objects Total no. of objects Elapsed time [ms]
1 3 7
2 6 18
3 8 38
4 8 49
4 15 27
2 4 32
4 12 29

Table 5.2: Elapsed time of the SLN-Algorithm in 7 different cases of study
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4. size and type of obstacles to be avoided.

Table (5.2) indicates the elapsed time of 7 different cases of study. In general
the elapsed time for 5 obstacles is approximately 35 ms, and we must take into
consideration that the processing time has no linear relationship with the map
construction. But in general the results encourage the implementation of the SLN
algorithm on-line. Figure (5.11) shows two simulators the first one designs the
path based on the SLN algorithm and the second relies on the Bug algorithm.

5.5 SLN versus Voronoi
Compared with the currently popular path planners based on generalized Voronoi
diagrams the SLN algorithm has the following advantages and disadvantages:

• Using a Voronoi diagram, the robot must follow a path centered between the
obstacles during navigation. This minimizes the probability of a collision, but
makes the path longer than necessary. Using the SLN algorithm, the robot
does not need to follow such a path, which can be considerably shorter, if
the space among obstacles is large.

• The path generated by the SLN algorithm is not subject to the following
problem of the generalized Voronoi algorithm: following corridors with open
sideway doors or over hallways, the generalized Voronoi diagram path planner
usually trigger some unexpected sideway robot motion.

• The SLN algorithm might be a bit more complicated to implement than the
generalized Voronoi diagram algorithm.

• The theoretical time complexity of SLN algorithm is exponential in the num-
ber of obstacles along the straight line from start to goal, but not in the
number of obstacles present in the map.

5.6 SLN versus Bug
Initially, the Bug algorithms (Bug1, Bug2, polar Bug and ALG) are classified as
reactive path planning, this means that the robot uses its sensor data to design
a path between two known points, start and goal points. Therefore , there is no
map required to implement these algorithms and that is applicable in the presence
of a single obstacle. In contrary, the SLN algorithm relies mainly on a given map
that defines the obstacle characteristics and the start and goal points.
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Bug specifies that the robot should circumnavigate the entire obstacle (Bug1)
or the robot follows the wall along the perimeter of that obstacle (Bug2) to reach
the goal. This method is repeated in the presence of multiple obstacles. On the
other side, SLN selects the shortest path segments and linearizes the resultant
path to shorten the final trajectory. Moreover, The SLN smooths the path that
helps the motion of the robot not to be jerky as in Bug.

Figure (5.10) shows the difference between our proposed SLN algorithm and
the original Bug algorithm.

Figure 5.10: Bug and SLN generated paths

To span from the pure theoretical geometry of the SLN motion planning algo-
rithm to the practical world, we designed the SLN-simulator which generates the
path between the start and the goal points autonomously. This simulator builds
a map of regular forms of obstacles (Circles, polygons and rectangles) and uses
this map to design a path. We expect that the SLN approach will be extended
in 3D environment under spatial and temporal conditions. A similar approach is
adopted to design the path of mars rovers autonomously. Figure (5.11) shows two
simulators the first one applies the SLN algorithm (Uni. of Tübingen) and the
second one pertains to the Bug algorithms (Harvey Mudd College).
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Chapter 6

Adaptive Navigation

In the past few years it has become imperative for mobile robots to be more au-
tonomous, adaptive, flexible and robust. Mobile robots tasks in indoor and outdoor
terrains are being more complicated and simple fixed gain controls, e.g. PID con-
trollers, do not fit the requirements of such duties. As these systems are conferred
with increased autonomy, their control system must be able to overcome chang-
ing conditions as well as individual failures. We address the problem of designing
robust, flexible control for mobile robots by endowing them with a self-adaptive
control system. Self-adaptive control analyzes its performance and takes action
to bring the performance to a satisfactory level. Using several novel approaches,
our controller can diagnose, overcome, and adapt to adverse and rapidly changing
conditions.

Throughout this chapter, an adaptive control technique is investigated to un-
derlie safe robot navigation. The main objective of that is to preserve the stability,
smoothness, efficiency and robustness of the overall system against fluctuations of
system parameters or set points. The fine motion attained by adaptive behaviors
is highly desirable in dynamic environments. Generally, that leads to strengthen
system safety, reduce energy consumption, improve of precision and shortened
elapsed task time.

In adaptive theory, two main approaches are prevalent, the first one is the
quantitative, parametric, stochastic Kalman filter and the other one is the
linguistic, non-parametric, fuzzy inference system. Both approaches are suc-
cessful and are capable to undertake various tasks of adaptive control systems
professionally. A variety of techniques have been developed to cover the topics of
modeling, estimation, forecasting, controller design, optimization, digital process-
ing and adaptation in both theories.
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Throughout this framework we combine both approaches to benefit from their
advantages as far as possible. The resultant system is an intelligent deliberative
integration that inherits the strengths of both the universe of discourse of fuzzy
logic control (FLC) and the state space of Kalman filter. This fusion of rules leads
to an improvement in the overall quality measure of our mobile robot.

6.1 Related Work

Autonomous robots operating in an unknown and uncertain environment have to
cope with changes in the environment. Traditionally, robot software architecture
has been built up according to deliberative reasoning in the manner of sensing,
planning and action. It is obviously difficult to accommodate the sensory uncer-
tainty and the environmental dynamics [33].

In [12, 13] the reactive or behavior-based architectures are able to handle the
problems appearing in the deliberative architecture. The basic component in this
method is a group of behaviors. Behaviors directly map sensory information into
motor actions without complex reasoning. Behaviors can also operate concur-
rently to produce emergent behaviors for unknown environments. With this ability,
robots become more robust. The key issues raised from behavior-based architec-
tures are the behavior design and behavior co-ordination.

In [50, 21, 26, 204] the authors concentrate on the behavior design in which
problems are caused by uncertain sensor data and imperfect motor action. Re-
cently there is an increasing tendency to build up the mapping of sensory-action
pairs by FLC. The mechanism of a FLC is that the uncertainty is represented
by fuzzy sets and an action is generated co-operatively by several rules that are
triggered to some degrees, and produce smooth and robust control outputs.

In [75, 52, 203] the problems in the design of a FLC are the setting of pa-
rameters of membership functions and the composition of fuzzy rules. They are
classified into two types: structure identification and parameter identifica-
tion. The structure identification of a FLC includes the partition of its input
space, the selection of antecedent and consequent variables, the determination of
the number of IF-THEN rules, and the initial position of membership functions.
The parameter identification determines the parameters of membership functions.

Many learning approaches have been proposed to implement the adaptive con-
trollers, including neural network (NN) based [22, 94], and genetic algorithms
(GA) approaches [95]. The NN-based systems automatically determine or modify
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their structure and parameters with unsupervised or supervised learning by rep-
resenting the controller in a connectionist way. The problem for the NN-based
control is that enough data have to be provided to train the networks. Moreover,
the NN-based controllers are unable to deal with unexpected patterns. The GA-
based and reinforcement learning (RL)-based controllers are two learning schemes
that need a scalar response from the environment to show the action performance.
Although the feedback from the environment for actions is needed, it can be a
scalar value that is easier to collect than the desired-output data pairs in the real
robot application and can be in any form without the differentiable requirement
[143, 145].

6.2 Modeling of Robot Dynamics

Recently the importance of system analysis and modeling have been greatly in-
creasing in several disciplines e.g. economics, biology, medicine, ecology and cer-
tainly in the field of robotics. Especially in technical applications, system analysis
and model building are the most important factors for making the use of different
design and control methodologies and theories. Applications of different kinds of
mathematical models in these fields require more and more precise models of the
system under consideration. Mathematical modeling is widely used to analyze and
model system dynamics of stationary manipulators, but the greatest challenge is
to model mobile system dynamics without any background about its kinematics
and that is what we are going to present in this section.

Mathematical models were classified on a broad scale of aspects in previous
studies. It is still practical to recall model classes, which are the most important
from the perspective of system analysis. Mathematical models can be represented
in the time domain, in the operator domain (e.g. Laplace, Z, etc. transforms) or in
frequency domain. Regarding time domain, the continuous time models are closer
to physical considerations, whereas the discrete-time system behavior is consid-
ered to be defined at a sequence of time instants related to measurements. The
discrete-time models are closely related to implementation problems of digital pro-
cessing. Many models have been defined by a given form but are dependent on
a finite number of real parameters. Such models are said to be parameterized or
parametric models, although there is no clear cut distinction from other mod-
els which are sometimes referred to as non-parametric models. Examples of
parametric models are algebraic equations, differential equations, difference equa-
tions, systems of these equations, transfer functions, etc. In these cases, the model
building consists of the determination of parameters in fixed structures or in flex-
ible structures as what we applied. The theoretical model building always yields
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a parametric model. A non-parametric model is the response obtained directly
from an experimental analysis of the robot’s performance. By various analytical
methods a parametric model can be deduced from a non-parametric model. By
experimental analysis of a parametric model can be obtained directly if the struc-
ture of the system can be defined a priori. Very often, especially in control theory,
systems even if they exhibit non-linear behavior and therefore the use of non-linear
models would be appropriate, the system dynamics is described by linear or quasi
linear models which allows simpler mathematical manipulation and we relied on
this method in modeling of mobile robot dynamics.

6.2.1 Signal and System Modeling

There are two different approaches to the characterization of dynamic systems: In
linear systems theory, one can assume either some structure in the sensor signals
(laser, compass and sonar signatures) or some structure in the system (robot mod-
eling and control). Both techniques can be used for modeling. Attempts have been
made to combine these two approaches e.g. harmonic identification techniques in
the Fourier domain.

1stapproach: Structure on the sensor signal can be found using linear trans-
forms. This approach does not take into account that the system has some struc-
ture. In the time domain filtering is a linear transformation. The Fourier,
Wavelet, and Karhunen-Loeve transforms have compression ability and can
be used to identify some structure in the signals. When we are using these trans-
forms we do not take into account any structure in the system. Filtering a signal
s(t) (either output υ(t) or input λ(t) is essentially finding some structure in the
following vector


s(t)

q−1s(t)
...

q−ns(t)

 (6.1)

where q−1 is the delay or back shift operator in the time domain, where q−1s(t) =
s(t − 1).

2ndapproach: Structure on the system can be found by fitting a model to the
system using Gauss, Wiener, Kalman and soft computing techniques.

Throughout this study we employed both approaches to study the robot as a
system equipped with a group of sensors and testify the success of our algorithms.
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First, we applied the signal modeling to analyze sonar, laser and compass signals
and we applied adaptive control techniques based on kalman filter and fuzzy rules
to steer the robot adaptively during free navigation or in visual guidance.

6.2.2 A Priori and A Posteriori Modeling

Mathematical models can be developed in different ways: either purely theoret-
ically based on the physical relationships, which are a priori known about the
system, or purely empirically by experiments on the already existing system, or
by a sensible combination of both. Models obtained by the first method are often
called a priori or first principle or theoretical models, while models obtained in
the second way are called a posteriori or experimental models. In case of theo-
retical analysis, the dynamic properties of the system are primarily taken care of
by the respective balance equations. The laws of conservation supplemented with
the necessary state-equations and phenomenological laws establish these balances.
Theoretical model building becomes unavoidable if experiments in the respective
plant cannot or must not be carried out. If the plant to be modeled does not yet
exist, theoretical modeling is the only possibility to obtain a mathematical model.

6.2.3 Application of A Posteriori Models

In many cases the available knowledge is very limited and it can be very expensive
to elaborate a priori models of robots. System or process identification is the
modeling method based on experimental data. If experimental analysis of a process
is performed, the input and output signals are measured. The measurements are
then evaluated in an analysis procedure yielding a mathematical model of the robot
dynamics. This analysis enables model building for robot dynamics of arbitrary
structure. Analysis methods can be applied to diverse, complicated processes.
By measuring input and output signals one obtains a model for the input-output
behavior of the robot. The input signal can either be operating signals, e.g laser,
sonar and compass, of the robot (usually of stochastic nature), or artificial test
signals. The result of the analysis is an experimental model. Utilizing modern
computers, very efficient analysis and parameter estimation methods have been
developed. The mathematical models developed by these methods can be applied
for a wide variety of diverse cases:

• Prediction or forecasting can serve to obtain better knowledge of the robot’s
performance, to verify theoretical models, to predict new phenomena, etc.
It is important to represent external actions and external disturbances and
using knowledge of statistical characteristics of random variables, as there is
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usually little theoretical or practical possibility of determining such charac-
teristics in advance.

• System analysis and design provide a rich field for the application of modeling
and analysis, since application of models allows quantitative predictions to be
made concerning crucial features of robot systems such as stability conditions
and the development of predefined behavior in unknown terrains.

• Simulation based on mathematical models is widely used for the assessment
of model complexity, for engineering design or for operator training, all of
which require adequate modeling and adequate input.

• Models often serve as the basis of monitoring or supervision, error detection
and process diagnosis in robot systems.

• Robot platforms in continuous operation require system optimization for
their economy, which in turn requires very accurate modeling.

• Soft sensors can provide information on robot status variables which directly
cannot be measured or when measurement is complicated or too slow. These
variables can usually be computed from other measurements based on suit-
able models.

6.2.4 Stochastic Kalman Filter

The Kalman filter, named after Rudolf E. Kalman, is an optimal solution to the
discrete data linear filtering problem [98, 78, 211, 89, 92]. The filter is derived
by finding the estimator for a linear system, subject to additive white Gaussian
noise, that meets the following three criteria: 1) the estimator provides an unbi-
ased estimate of the system state, 2) the estimator provides a minimum variance
estimate of system state, 3) the estimator is a linear function. The Kalman filter
comprises two phases, the first one maps model inputs to system states, while the
second one maps the states to the outputs, see figure (6.1). The Kalman filter
derivation begins with a definition of the system and assumptions. Consider a
process f(υ, λ, ε) given by the state space model defined by its linear difference
equation form

υk+1 = f (υk, λk, εk) = Akυk + Bkλk + εk (6.2)

where υk is the (n × 1) system state vector at time step k and υ ∈ Rn, λk is the
system control vector at time step k and λ ∈ Rl, Ak is the (n×n) state transition
matrix mapping υk to υk+1, Bk is the control matrix mapping λk to υk, εk is the
system noise vector (n × 1) given by an n dimensional Wiener process of known
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covariance C.

Figure 6.1: Standard phases of Kalman Filter

Note that many descriptions of the Kalman filter do not include the control
vector λk. The control vector is included here in anticipation of the application to
the robot kinematics models. The process f(υ, λ, ε) may not be directly observable.
This means that the state υ cannot be completely determined from measurements.
To account for this, an observation model f(υ, ε) is introduced. The observation or
measurement model is a mapping of the actual system state υ to an observed state
o. The observation model is given by the discrete time linear difference equation

ok = f (υk, εk) = Dkυk + εk (6.3)

where ok is the observed state vector at time step k and o ∈ Rm, Dk is the
(n×n) measurement matrix mapping υk to ok at time step k, εk is the measurement
noise vector given by n dimensional Wiener process of known covariance C. Note
that equations (6.2) and (6.3) constitute the normal state space formulation of a
linear system used extensively in control theory. The system and measurement
noise are assumed to be unbiased normally distributed random processes

p (ε) ∼ N (0,C) (6.4)

The covariance matrix of ε is given by

E
[
εkε

T
i

]
=

{
Rk , i = k
0 , i 
= k

(6.5)

where E [υ] =
∑n

i=1 piυi denotes the mathematical expectation of the discrete
random variable υ where pi is the probability of the occurrence event υi. It is
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assumed that the ε are independent random processes and hence have zero cross-
correlation

E
[
εkε

T
i

]
= 0, ∀i, k (6.6)

Given the above definitions, the filtering problem can be defined as arriving at
an optimal estimate of the state υk conditioned by the measurement ok. We wish
to implement a recursive linear estimator which provides the optimal, in the least
squares sense, estimate of system state υk+1 given the measurement ok and the
current state υk.

Transparency Condition: for simplicity, we considered D(q−1) unity, conse-
quently the second phase of Kalman filter will be transparent and both the output
ok and the observed state υk will be equal. This form of modeling is called auto
regressive exogenous (ARX), which will be presented next.

6.2.5 ARX Modeling of Robot Dynamics

The discrete ARX modeling paradigm of robot system dynamics is derived from
Kalman filter as explained in the preceding section. The sequentially recursive
structure of this paradigm is shown in figure (6.2). This structure takes into
account both the observed state υk and the reference control signal λk which is
given by:

υk =
na∑
i=1

aiυk−i+
nb∑
i=1

biλk−i+εk (6.7)

Where εk is a modeling residual, Gaussian white noise, na is the model order of
the observed state (also called the number of poles), while nb is the model order of
the control signal (also called the number of zeros). The operator q−1 is the back
shift operator or delay, where q−1 υk = υk−1, as follows:

A(q−1)υk = B(q−1)λk−1 + εk

A(q−1) = 1 + a1q
−1 + a2q

−2 + . . . + anaq
−na

B(q−1) = b1q
−1 + b2q

−2 + . . . + bnb
q−nb

(6.8)

In this case the observed state υk is the robot’s longitudinal velocity, head-
ing and heading speed. The reference control signal λk is the guide’s range, ac-
quired from distributed robot sensors (vision system, laser scanner and sonar). The
Gaussian distributed noise, associated with the observed output, enables applying
weights (coefficients) identification algorithms such as; maximum likelihood (ML),
least mean square (LMS) and recursive least squares (RLS). The ARX paradigm
is applicable within linear and quasi-linear systems. Therefore, we applied it to
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underlie the navigation control, while it failed to cope with position control due
to the presence of large non-linear odometric errors [6].

Figure 6.2: ARX modeling paradigm of mobile robot dynamics

6.2.6 Matrix Inversion Lemma (MIL) Learning Rule

In general, the weights estimation problem of the ARX paradigm can be treated
as a linear regression problem. The linear regression is the simplest type of para-
metric models. Its origin can be traced back to Gauss (1809), who used such a
technique, equation (6.9), for calculating orbits of the planets.

Now let us explain, how to teach the ARX model to deduce its weights Θ.
The MIL is a stepwise learning algorithm, which means that the estimation of
ARX’s weights yields a gradual convergence. Compared with the LMS and ML al-
gorithms, the MIL needs lower computation and it is reliable to be applied on-line.

For weights estimation purposes, it is convenient to write the ARX paradigm
in a form, which emphasizes the weights vector to be estimated and the data
available. This is achieved by using the backward shift interpolation of (q−1) to
cast the ARX model in the form

υk = φT
k Θ + εk (6.9)

Where Θ is the vector of unknown weights, defined by:

ΘT = [−a1, . . . , −ana , b1, . . . , bnb
] (6.10)
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and φk is a regression vector partly consisting of measured input/ouput vari-
ables and defined by:

φT
k = [υk−1, . . . , υk−na, λk−1, . . . , λk−nb

] (6.11)

LMS: The least squares estimator for the weights vector Θ̂ is directly calculated
as follows:

Batchwise: The LMS algorithm can be employed to estimate model pa-
rameters of mobile robot dynamics. Moreover, the LMS is a successful
method for tracking of dynamic targets such as airborne/space systems
and offshore/onshore vehicles. We can describe the output of the robot
(υk+1) as a time series, which is a function of the past output readings
(υk), ranging data acquired from laser, geometrical vision, and sonar
(λk) and Gaussian noise ε, see model (6.9).

If the system is unknown, however, then the polynomial coefficients are
treated as parameters to be determined by measurement or estimation.
For estimation purposes, it is convenient to write equation (6.9) in a
form, which emphasizes the object to be estimated and the data avail-
able. This is achieved by using the backward shift interpolation of (q−1).

Now we assume that the preceding equations are an exact description
of the robot dynamics, i.e. it is the true data-generating mechanism,
and that we wish to determine from available data the vector (θ) of true
system parameters. In order to do this we further assume a model of
the system of the correct structure:

υk = φT
k θ̂ + ε̂k (6.12)

where θ̂ is a vector of adjustable model parameters and εk is the corre-
sponding modeling or fitting error at time step k. Our aim is to select θ̂
so that overall modeling error is minimized in some sense. εk is defined
by

ε̂k = εk + φT
k (θ − θ̂) (6.13)

so that ε̂k depends on θ̂ and, in some cases, the minimized modeling
errors will be equal to the white noise sequence corrupting the system
output data. Assume that the system described by equations (6.9 -
6.11) has been running for sufficient time to form n conductive data
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vector. The data obtained in this way allows the model (6.12) to be
expressed in the vector/matrix form:



υ(1)
υ(2)

.

.

.
υ(n)


=



φT (1)
φT (2)

.

.

.
φT (n)


θ̂ +



ε(1)
ε(2)

.

.

.
ε(n)


(6.14)

To be able to estimate the parameters uniquely the number n of equa-
tions (6.14) must not be less than m, the number of unknown param-
eters in the vector (θ). In the noise-free case (ek=0), the equations
can be solved as a set of linear equations in n = m unknowns, where
m = na + nb + 1. The resulting modeling errors are identically zero.
When noise is present (and, in practice, even in normally noise-free
systems) we must have n much larger than m and use an alternative
procedure to reduce estimation errors induced by the noise. The tech-
nique most widely used in this connection is linear least squares, which
we now introduce.

Rewrite equation (6.14) in the stacked notation

Υ = Φθ̂ + ε̂ (6.15)

in which

Υ =



υ(1)
υ(2)
.
.
.
υ(n)


, ε̂ =



ε̂(1)
ε̂(2)
.
.
.
ε̂(n)


and Φ =



φT (1)
φT (2)
.
.
.
φT (n)


(6.16)

Rearrange (6.15) in terms of the error vector ε̂:

ε̂ = Υ − Φθ̂ (6.17)

and select an estimate θ̂ of the true vector of parameters which mini-
mizes J , the sum of squares errors:

J =
n∑

i=1

ε̂2
i = ε̂T ε̂ (6.18)
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To find the least squares estimate, rewrite equation (6.18) in terms of
the data vector and the parameter vector:

J = (Υ − Φθ̂)T (Υ − Φθ̂)

= ΥT Υ − θ̂T ΦT Υ − ΥT Φθ̂ + θ̂T ΦT Φθ̂
(6.19)

Setting the derivative of J with respect to θ̂ for a stationary point to
zero

∂J

∂θ̂
= −2ΦT Υ + 2ΦT Φθ̂ = 0 (6.20)

yields the normal equations:

ΦT Φθ̂ = ΦT Υ (6.21)

and these solve for a unique minimum if the second derivative matrix

∂J2

∂θ̂2
= 2(ΦT Φ) (6.22)

is positive definite. Hence the least squares estimator for the parameter
vector is

θ̂ = [ΦT Φ]−1[ΦT Υ] (6.23)

The resulting modeling error ε̂ is denoted by

ε̂T = [ε̂1, ...., ε̂n] (6.24)

whose components are called residuals.

LMS has several attractive features for the purposes of tracking and
identification. First, large errors are heavily penalized. Second, least
squares estimates can be obtained by straightforward matrix algebra.
Third, the least squares criterion is related to statistical variance and
the properties of the solution can be analyzed according to statistical
criteria. On the other side, the LMS algorithm depends on a direct ma-
trix inversion, so applying this technique to some models seems critical.
Moreover, its estimates approach an optimal solution as the number of
weights reaches infinity.
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Stepwise: The Widrow-Hoff learning rule (1967) is widely used for static
pattern classification purposes of linear regression models. It depends
mainly on a stepwise change of the weights to learn the model. This
rule has a limited precision and has a limited processing range. If υi

is the desired output and α is the learning speed constant, then the
adjustment of the weight θi,j linking input i with output j is accessed
as follows:

∆θi,j = α(υi − ΦT Θ)φj, for j = 1, 2, . . . , n (6.25)

ML: The ML method is one of the few generally applicable methods for param-
eter estimation. The basic idea is to construct a function of the data and
the unknown parameters called likelihood function. The estimate is then ob-
tained as the parameter value which maximizes the function. The likelihood
function is essentially the probability density function of the observations.
Thus maximum likelihood identification means that we select the estimate
which renders the given observations most probable.

Suppose that the observations are represented by a random vector variable
Υ = [υ1, υ2, . . . , υn]T and denote the probability density function

f(θ; υ1, υ2, . . . , υn) = fυ(θ; Υ) (6.26)

Here the unknown parameter vector θ that describes the properties of the
observed variable will be estimated using the observations of Υ. Then the
likelihood function for the observed values can be expressed as

L(θ) = fυ(θ; Υ) (6.27)

The likelihood function is a deterministic function of the parameter vector θ
once the numerical value of Υ is inserted; in contrast the probability density
function is function of random variable Υ for fixed parameter vector θ. The
estimate can then be given as

max
θ

L(θ) = L(θ̂) (6.28)

The principle of the maximum likelihood method is simple and it can be
shown that it gives asymptotically (when n → ∞) unbiased and efficient
(minimum variance) estimates. Let us consider the system described by
equation (6.15). And assume that ε is normally distributed and it has n
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elements, furthermore its mean E [ε] = 0 and its covariance E
[
ε εT

]
= Cε

are known. It is equally valid to use the probability density function of the
noise since there is a one-to-one transformation between Υ and ε. Then the
corresponding multivariable Gaussian probability density function of ε takes
the following form

f(ε) = [(2π)n det(Cε)]
−1/2

exp(−1

2
εT C−1

ε ε) (6.29)

Under the assumption of equation (6.15) we get the likelihood function

f(ε) = [(2π)n det(Cε)]
−1/2

exp(−1

2
[Υ − Φ θ]T C−1

ε [Υ − Φ θ]) (6.30)

We may consider equation (6.30) as a function of the parameter vector θ. It
is practical to take the logarithm of the likelihood function

log L(θ) = −1

2
log [(2π)n det(Cε)] − 1

2
[Υ − Φ θ]T C−1

ε [Υ − Φ θ] (6.31)

Then at the maximum of the log-likelihood function we obtain the estimate
θ̂ = θ. In the case when the noise is a normally distributed white noise with
a covariance matrix Cε = σ2I, it is easy to show that the maximization of
the likelihood function (equation (6.31)) is equivalent to the minimization of
the loss function

V ar(θ) =
1

2
[Υ − Φθ]T [Υ − Φθ] = −σ2 log L(θ) + constant (6.32)

If σ is unknown, maximization of equation (6.31) with respect to the pa-
rameters and σ can be done separately. First minimize equation (6.32) with
respect to θ. The maximum of equation (6.31) with respect to σ can be given
in the following form

σ̂2 =
2

n
min V ar(θ) (6.33)

The problem of maximizing equation (6.31) can be solved using suitable nu-
merical tools, like the Newton-Raphson method.
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The ML is applied to a system with noise which is described in the form of
an autoregressive exogenous model defined by equation (6.7). Then, in case
of normally distributed noise the log-likelihood function can be given as:

log L(θ) = −1

2
log [(2π)n det(Cε)] − 1

2
εT C−1

ε ε (6.34)

The problem is that εk−1, . . . , εk−n are not known. It is therefore only feasible
to make approximate solutions by finding successively better estimates of the
covariance matrix Cε and the parameters through an iterative procedure.

MIL: Before going to introduce the MIL algorithm let us explore some common
properties of LMS and ML techniques [151, 92, 89, 211, 188, 150, 45].

1. The LMS and ML estimate of weights approaches the optimum Wiener
solution as the data length n approaches infinity, if the input and the
desired response are jointly stationary ergodic processes.

2. The LMS estimate of the weights vector is unbiased if the error signal εk

has zero mean for all k.

3. The computation of both LMS and ML algorithms is relatively high and
that is cumbersome especially if we apply them to real-time processes.

4. Both LMS and ML are slow learning algorithms and that does not suit
adaptive systems.

Let A and B be two positive definite, m by m matrices related by

A = B−1 + CD−1CT (6.35)

where D is another positive definite, n by n matrix and C is an m by n matrix.
According to the matrix inversion lemma, we may express the inverse of the
matrix A as follows:

A−1 = B − BC
[
D + CT BC

]−1
CT B (6.36)

special case: if n = 1 and for simplicity let D = 1, then we get:

A−1 = B

[
Im − CCT B

1 + CT BC

]
(6.37)
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The MIL is widely used as an estimator in different machine learning algo-
rithms such as Kalman filter, ANFIS fuzzy, recursive least squares (RLS)
etc. We will employ this rule to estimate the weights of the ARX paradigm
which servers as a model of mobile robot dynamics. The estimation process
can be accomplished according to the following:

At time step k:

1. Form Φk using the new data (input-output patterns)

ΦT
k = [υk−1, . . . , υk−na, λk−1, . . . , λk−nb

]

= [φ1, φ2, . . . φna+nb
]

(6.38)

2. Calculate the estimation error εk using

εk = υk − ΦT
k Θ̂k−1 (6.39)

3. Apply the MIL rule as in equation (6.37) to calculate the covariance
matrix Ψk, sometimes called Kalman gain based update matrix. So if
A−1 = Ψk, B = Ψk−1, D = 1 and C = Φk, then the MIL will be

Ψk = Ψk−1

[
Im − ΦkΦ

T
k Ψk−1

(1 + ΦT
k Ψk−1Φk)

]
(6.40)

4. Update weights

Θ̂k = Θ̂k−1 + ΨkΦkεk−1 (6.41)

where

Θ̂T
k = [−â1, . . . ,−âna , b̂1, . . . , b̂nb

]

= [θ̂1, θ̂2, . . . θ̂na+nb
]

(6.42)

5. Wait for the next time step to elapse and loop back to step (1)

MIL parameters have been initialized using an empty vector. Figure (6.3.a) shows
the output of the ARX model w.r.t. the actual output of the robot, while figure
(6.3.b) shows the the capability of the model to predict the output if the system
input is known. Figure (6.4) shows the convergence of model weights and the error
during the learning phase. The output of the ARX model seems smooth due to
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the filtering of high frequencies.

The most important advantages achieved from applying MIL are:

• parameter estimates converge quickly, allowing fast adaptation under un-
known and changing conditions.

• it requires relatively small computational effort, which is crucial for real-time
control of robots, which require high sample rates.

• the high signal-to-noise ratios typical of robotic applications enable MIL to
maintain high quality parameter estimates. The other methods outperform
MIL when there is a low signal-to-noise ratio.

(a) Model output w.r.t. system output (b) Model in prediction phase

Figure 6.3: ARX model performance in learning and prediction phases

ARX Models have the capability to model mobile robot dynamics and predict
their behavior if the input (i.e. the obstacles histogram or the visual ranging
entries) is known, see figure(6.3).

6.3 Visual Guide Extraction
To adapt the navigation of a robot we have to close the loop between the sensors
and actuators. The direct feedback of ranging sensors such as sonar, IR and laser
is simple to be incorporated in a control system. The most difficult problem in
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(a) Model weights change (b) Model learning error

Figure 6.4: ARX model weights and learning error

control system is the coupling of indirect sensors such as vision system, where
there is no definite scalar feedback. Our goal in the section is to describe how we
could use the vision system as a direct scalar sensor. This means that, the vision
system serves to extract the geometrical features of a specific object (guide).

To resemble human behavior in object tracking, we have to close the loop be-
tween the binocular vision system and the robot’s actuators. The main goal of the
vision system is to extract the object (guide) and to estimate its size and range
geometrically, see figure (6.8).

The process of visual guide extraction includes the following steps: 1) select
the appropriate color model, 2) define the color of the guide, 3) apply a Gaussian
filter to smooth the image, 4) filter the object, 5) deduce the x and y projections
of the guide’s center of gravity COG.

6.3.1 Selection of an Appropriate Color Model

The Universal Color Language classifies colors into color spaces. These three-
dimensional coordinate systems quantitatively define colors. Although many of
defined color spaces exist, RGB and HSV are the most commonly used models.
The RGB color space represents all colors as a mixture of red, green and blue,
which constitute the primary colors used by video cameras, televisions and PC
monitors. When combined, these colors can create any color on the spectrum.
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The HSV color space is spanned by axes into hue, saturation and intensity. Hue
refers to pure color, saturation refers to the degree or color contrast, and intensity
refers to color brightness. Modeled on how human beings perceive color, this color
space is considered more intuitive than RGB.

To analyze and process images in color, robot vision systems typically use data
from either the RGB or HSI color spaces, depending on a given task’s complexity.
For example, in simple applications such as tracking highly saturated homogeneous
colored guides it is enough to use the RGB model, see figures 6.5.c and 6.5.d. With
more complex applications, however, such as persons tracking based on the skin
color under changing illumination, a vision system may require hue, saturation
and intensity information to perform the operation, see figures 6.5.a 6.5.b.

HSV color model

This model is sometimes referred to as HSV instead of HSI. The main advantages
of this model are that chrominance (H, S) and luminance (V) components are
decoupled. In short, the RGB model is suited for image color generation, whereas
the HSV model is suited for image color description. It is related to the RGB
model as follows:

V = 1
3
(R + G + B) (6.43)

S = 1 − 3[min(R, G, B)]

(R + G + B)
(6.44)

H =

{
θ B ≤ G
360 − θ B > G

(6.45)

θ = cos−1

 0.5(2R − G − B)
2

√
(R − G)2 + (R − B)(G − B)

 (6.46)

Taking a look at equations (6.43 - 6.46) we notice that this model is critical
when R = G = B, it returns no definite solution. This is one of the weaknesses of
the HSV color model, another one is the computation time required to estimate
the model which can be eliminated using high speed cameras provided with special
chips to get HSV components as well as RGB.
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Figure 6.5: RGB and HSV based tracking
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Gaussian Filter

Figure 6.6: Gaussian filtering of high fre-
quencies

To reduce the high frequency noise we
used a Gaussian filter which is power-
ful not only in noise reduction but also
in edge detection. Figure (6.6) shows
the 3D Gaussian distribution. The idea
of Gaussian smoothing is to use this
2D distribution as a point-spread func-
tion, and this is achieved by convolu-
tion. Since the image is stored as a col-
lection of discrete pixels we need to pro-
duce a discrete approximation to the
Gaussian function before we can per-
form the convolution. In theory, the
Gaussian distribution is non-zero ev-
erywhere, which would require an in-
finitely large convolution kernel, but in
practice it is effectively zero more than about three standard deviations from the
mean, and so we can truncate the kernel at this point, for simplicity let σ = 1.0.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (6.47)

6.3.2 Deduction of Guide’s COG

To track a guide dynamically its center of gravity is calculated and the results are
delivered to the control system to steer the robot adaptively, see figure (6.7).

Compared with contour detection presented in [61, 62, 63], the COG is more
accurate because the object to be tracked is represented with a single point in 3D
dimensions. Moreover, the elapsed time required to extract the geometrical LUT
of the object is shorter. This representation is easy to be manipulated in control
system as a definite feedback. The COG is calculated according to the following:

xc =

n∑
i=1

xi

n
and yc =

n∑
i=1

yi

n
(6.48)

6.3.3 Geometrical Calibration

According to figure (6.8) we can deduce the distance between the robot and the
guide mathematically using the following form:
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Figure 6.7: Center of gravity

n = e−kΛ (6.49)

Figure 6.8: Range calibration of visual guides
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Figure 6.9: Principles of geometrical vision

whereas Λ is the distance between the robot and the guide, k is a constant
depending on the geometry of the camera’s lens and n is the projection size. To
reject the noise a threshold number is used to delimit the projection size.

From the size of the object n we estimate the distance Λ to the guide while
the horizontal projections x1 and x2 indicate the heading angle to the guide. To
calculate the pose of the guide in 3D dimensions geometrically, first we use the
COG rule to get x and y axes parameters x1, x2, y1, y2. Then, we use the range
calibration method to calculate the z axis parameter, distance Λ.

6.4 Sensor Integration

To resemble the human behavior in control and adaptation, we have to close the
loop between robot’s distributed sensors and its actuators. The main goal of that
is to steer the robot adaptively while chasing a dynamic object or to navigate
safely in unknown terrain without collision, based on multi-sensor integration.

Figure (6.10) shows a scheme of sensor integration. The binocular vision sys-
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Figure 6.10: Multi-sensor integration for adaptive steering of mobile robots

tem uses the projection of a colored object on two CCD cameras to deduce its
horizontal components of the center of gravity x1 and x2 with the number of pro-
jection pixels n1 and n2 [2]. The obstacles histogram, acquired from the laser
scanner, is used to control the robot velocity, heading and heading speed. The
multiplexing unit is a fuzzy membership function which interpolates the control
signal from references (visual and laser ranging modes).

The strategy is to build an integrated system, which enables the robot to pur-
sue a dynamic object using a vision system. Moreover, other distributed sensors
collaborate to support the robustness of the overall system. The control of the
robot’s navigation (heading and translation) relies primarily upon outputs of both
the laser range finder and the binocular vision system. In emergencies, all asso-
ciated distributed sensors such as vision, laser, sonar, tactile and button sensors
collaborate to prevent collisions, see figure (6.10).

6.5 Adaptive Control

The papers of Wellstead [211] and Åstrom [188] were among the first to exploit the
idea of a self-tuning pole placement controller, though the concept of a self-tuning
system was first proposed by Kalman in the late 1950s. The theory developed here
follows these original formulations, and also includes additional concepts relevant
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to practical implementation.

Self-tuning pole placement controllers work on the principle of continually ad-
justing the controller gains, such that the closed loop system poles remain constant,
irrespective of changes in the system’s dynamics. The controller has three com-
ponents; 1) a low-order linear model of the robot under control, 2) an on-line
system identifier and 3) a pole placement controller. Figure (6.11.a) shows these
fundamental components.

Adaptive control, referred to as self-tuning control, utilizes a low order linear
approximation of the robot model, whose parameters are estimated on-line from
past input and output values using the MIL system identification algorithm. The
model structure used can be either single input single output (SISO) or multi in-
put multi output (MIMO), and have joint space or Cartesian space outputs, as
appropriate. The use of a linear autoregressive model allows the use of efficient
recursive identification algorithms, such as LMS, MIL, ML, etc.. The controller
parameters are then designed based on this linear model, so that the closed loop
system meets some prescribed performance criterion. Any variations in the dy-
namics of the system will be tracked by the identification algorithm, and hence
automatically accommodated by the controller.

6.5.1 Adaptive Pole Assignment

The use of pole assignment controller (PAC) controllers can be used when the de-
lays are present, which can be problematic for fixed gain controllers. PAC schemes
work by automatically adjusting the gains so that the poles of the closed loop
system are placed at some specified location. Consequently, the system response
remains constant irrespective of changes in the underlying system. This type of
self-tuning controller has found several applications of robot control compared
with fixed gain controllers, the main reason for this being the significantly higher
flexibility and precision. Moreover, PAC is more intuitive for the designer as it
resembles a classical control design method, rather than using weighting variables
which require careful selection and do not have a clear physical meaning. Pole
placement controllers also yield smoother control signals.

The structure of the ARX paradigm is the most reliable form to implement
adaptive control systems. Figure (6.11.a) shows the structure of an adaptive con-
trol system using linear regressive nets, while (6.11.b) shows how the system output
follows the reference signal precisely.
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(a) The structure of an adaptive control sys-
tem

(b) System response w.r.t. reference signal

Figure 6.11: Adaptive control of autonomous mobile robots

To achieve the adaptability of the system under study, the weights of the con-
troller can be calculated according to the following rules.

υk

rk
= q−d .

B(q−1).Hc

T (q−1)
where Hc = lim

q→1

T (q−1)

B(q−1)
, and d = 1 (6.50)

F (q−1)A(q−1) + B(q−1)G(q−1) = T (q−1) (6.51)

T = 1 + t1q
−1 + . . . + tntq

−nt

G = g0 + g1q
−1 + . . . + gngq

−ng

F = 1 + f1q
−1 + . . . + fnf

q−nf

(6.52)

where, nf = nb, ng = na − 1, and nt ≤ na + nb.

Integrating Fuzzy Systems under Kalman Filters

Sensor measurements are accompanied with uncertainties and noise. Therefore,
applying a Kalman filter directly to such readings is fraught with complications.
Obeying the rule used in (3.4) page (41), the linguistic treatment of Kalman filter
inputs can solve this problem simply. Instead of the traditional form of the Kalman
filter equation (6.2) page (90), it is as follows:

υk+1 = f (υk, λk, εk) = Akυk + Bkµ(λk) + εk (6.53)

Whereas µ is the union (AND) fuzzy logic operation, equation (6.54), applied
to generate the control signal λk as an interpolation between visual and laser
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reference signals. This operation selects the minimum value by which the system
attains more safety, see figure (6.12).

Figure 6.12: Membership function of multi references

λk = µv∩l = min(µv, µl) (6.54)

The controller comprises three parts; the first one is the compensator (H), feed-
back filter G and the preconditioning unit 1/F (q−1). The design of the PAC
controller is shown in figure (6.13).

T (q−1) is the selected poles function, the main job of this function is to preserve
the overall stability of the system. The compensator H corrects the offset error of
the output, while the G(q−1) and F (q−1) components are the controller poles and
zeros that adapt the performance. The controller parameters can be calculated
from equation (6.51).

The F and G parameters of the adaptive controller can be calculated using
equation 6.51. If we consider na = nb = 2 then nf = 2 and ng = 1. Multiplying
out and equating coefficients of q−i for i = 1, 2, . . . , n leads to the following equa-
tion set:
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Figure 6.13: The structure of the PAC controller


1 0 b0 0
a1 1 b1 b0

a2 a1 b2 b1

0 a2 0 b2




f1

f2

g0

g1

 =


t1 − a1

−a2

0
0

 (6.55)

The estimated controller parameters f1, f2, g0 and g1 are shown in figure(6.14).
The selection of the closed loop poles is the most important factor in quality
measuremt. As the assigned poles tend to reach the zero of the Z-domain or -∞ of
the Laplace S-domain, the cross correlation, as in section (3.3.2) page (29), between
the reference signal (Laser histogram, visual ranging or sonar ranging in our case)
and the response reaches unity. In general, that is not too cheap to consume
the system resources and inputs to attain the required quality. The cost function
of a system plays an important role in the definition of task priorities based on
multi-criteria optimization. Figure (6.15) shows the response of the system under
different assigned poles.

6.5.2 Fuzzy Logic Control

In 1965, Zadeh published his paper (Fuzzy Sets). After that scientists worldwide
developed different algorithms to design a fuzzy logic controller (FLC) such as E.
Mamdani 1975, Takagi-Sugeno 1985, B-spline Fuzzy and Tsukamoto fuzzy model.
Fuzzy inference systems (FIS) introduce a considerable solution to the subject of
mobile robots control. The fundamental three phases of FLC are: fuzzification,
inference engine design and defuzzification. These three phases are analogous to
three phases of stochastic control systems: modeling, identification and controller
design. A FLC is an intelligent control system that smoothly interpolates between
rules. A fuzzy set may be represented by a mathematical formulation known as
a membership function. That is, associated with a given linguistic variable (e.g.
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Figure 6.14: Controller parameters

(a) System response at
t1=0.1

(b) System response at
t1=0.3

(c) System response at
t1=0.4

Figure 6.15: System response under different assigned poles (0.1, 0.3, 0.5)
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mobile robot velocity) are linguistic values or fuzzy subsets (e.g. slow, fast, etc.),
expressed as membership functions, which represent uncertainty, vagueness, or im-
precision in values of the linguistic variable, see figure (6.16). This function assigns
a numerical degree of membership,in the closed unit interval, to a crisp (precise)
number. Within this framework, a membership value of zero/one corresponds to
an element that is definitely not/definitely a member of the fuzzy set. Partial
membership is indicated by values between 0 and 1. Implementation of a fuzzy
controller requires assigning membership functions for inputs and outputs. Inputs
are usually measured variables, associated with the state of the controlled plant
that are assigned membership values before being processed by an inference en-
gine. The heart of the controller inference engine is a set of if-then rules whose
antecedents and consequents are made up of linguistic variables and associated
fuzzy membership functions. Fuzzy set intersection, or conjunction, operators in
the antecedent are generally referred to as t-norms. They commonly employ alge-
braic min or product operations on fuzzy membership values. Consequents from
different rules are numerically aggregated by fuzzy set union and then defuzzified
to yield a single crisp output as the control for the plant.

Integrating Kalman Filters under Fuzzy Systems

The most popular FLC algorithm is the discrete Takagi-Sugeno (TS) fuzzy model,
the consequent part of the rules is described by nonfuzzy analytical functions.
The TS fuzzy rule is an indirect interpolation of the traditional Kalman filter.
The Generalized Rule of fuzzy logic is:

IF antecedent Then Consequent

According to the conception of TS, the interpretation of the preceding fuzzy
rule is "if the model is Kalman based (non linguistic) then fuzzify the output
(COG rule)". Hence, the TS fuzzy control is understood as a reformulation of the
Kalman filter. The positive side of TS rule is its capability to damp ripples and
fluctuations of the output signal due to using the COG function. The discrete TS
considered in this thesis is defined by the following implications:

1. The centroid or the center of gravity (COG) defuzzification rule g is expressed
by:

g =

∑n
i=1 ωigi∑n
i=1 ωi

(6.56)

2. Formulating the state representation as follows

gk+1 =

∑n
i=1 ω(i,k)(Ac(q

−1)g(k) + Bc(q
−1)υ(k))∑n

i=1 ω(i,k)

(6.57)
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Figure 6.16: Fuzzy control of robot’s velocity and heading

3. Calculating the robot control signal λ(k)

λ(k) = r(k) − gk+1 = r(k) −
∑n

i=1 ω(i,k)(Ac(q
−1)g(k) + Bc(q

−1)υ(k))∑n
i=1 ω(i,k)

(6.58)

Figure 6.17 shows how the robot’s output follows the reference signal smoothly,
υ and r are highly correlated ρ > 90%. Compared with results of pole assignment
control, shown in figure (6.11.a), ρ ≈ 80%, the FLC exhibits better performance.

Based on the presented results, we can find that the FLC can deal with model
based and behavior based control systems. In collision avoidance, FIS have a
better performance than what has been achieved by Kalman filters. The random
dynamic obstacles have no definite motion model, therefore Kalman filters failed
to cope with them, while FIS succeeded to interact adaptively with those events.
On the other side, the model of robot velocity has a clear modeling scheme, which
can be easily handled using Kalman filters. We must take into consideration that
the COG function fails to deal with some types of membership functions. We
developed a switched mode controller that steers the robot under two control
rules, the first is the PAC and the second is T-S fuzzy controller. The driving
signals are sonar, laser and visual outputs, see figure (6.18). The major differences
between both approaches are explained in detail in the next section.

6.5.3 Comments on Kalman and Fuzzy Approaches

To distinguish between the stochastic based and FIS based control systems, the
following points have to be recognized:
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Figure 6.17: Adaptive regulation of mobile robot velocity using FLC

Figure 6.18: Switched MPC Fuzzy controller
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• Stochastic control systems are applicable only to well-structured problems
such as feedback control of linear or piecewise linear dynamic systems, where
our knowledge about the problems is deep and extensive. FIS do not need
models to control a system.

• Almost all applications of FIS to traditional system problems amount to
nothing more than interpolating or extrapolating among well-known con-
troller designs implemented with stochastic control techniques. However,
the world is full of control problems beyond this narrow confine.

• Most problems are poorly understood and described only in natural language
terms. For these problems, FIS can play a role either by quantifying imprecise
natural language and/or by converting human experience to systematic but
logic if-then rules.

• The difference between a logic and a stochastic system is simply an illustra-
tion of generality versus depth.

• Stochastic control system analysis tends to be sophisticated compared with
the simplicity of FIS.

• Contrary to the stochastic control system, FIS pay a poor reaction to the
full interconnection and to the parallelism (multi I/O).

• Logic computing systems support the independent pattern recognition while
stochastic systems support the behavior learning.

6.6 Conclusion

This chapter presents an adaptive technique to steer mobile robots. The most
important contribution of this technique arises from a formulation of new methods
for system modeling and controller design for mobile systems instead of previously
dominant approaches. By manipulating the manner in which feature information
of system data is incorporated into processing, it can be shown that significant
improvements in the performance of the presented algorithms can be attained.
Moreover, the simplicity and the efficiency of the adaptive techniques succeeds
to reinforce the robustness of the overall system in static and dynamic environ-
ments. It is worth mentioning that the intelligent integration of fuzzy systems and
Kalman filters leads to achieve the following targets: reinforcement of the overall
stability by fusing the sensor data according to fuzzy linguistic rules, enhancement
of precision by employing the COG processing function, increment of flexibility by
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relying on multichannel data processing and reduction of energy consumption due
to eliminating of output fluctuations.
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Chapter 7

Conclusion and Future Work

Throughout the presented research work the autonomy of mobile robots is consid-
ered as the key subject of the study. To reinforce the autonomy of mobile robots,
several novel algorithms are developed to improve the overall system performance.

First of all, the integration of sensor data is the basic tool that underlies robot’s
mapping, localization and navigation capabilities. The integration of both laser
and sonar succeeds to inherit advantages of both sensors and to eliminate their
drawbacks by which system safety is assured. Also, the integration between the
laser range finder and the magnetic compass is a considerable method to detect
features of the natural landmarks. Moreover, the integration between the laser
range finder and the binocular vision system is used successfully to steer mobile
robots adaptively while the integration of all associated sensors is applied to design
the proposed adaptive system.

The development of the vector mapping paradigm (VMP), based on laser rang-
ing, is considered one of the most important contributions of this framework. It
preserves the consistency of the conventional mapping algorithms e.g. occupancy
grid, topological graph and integration of both of them and at the same time re-
duces the size of the map drastically. Related to the same algorithm, the model
reference is employed to correct the odometric errors relying on a network of central
nodes and their corresponding vectors. Compared with the traditional techniques
used to correct map odometric errors based on neural networks and evolutionary
algorithms, this algorithm is simpler, faster and generates high precision maps.

Regarding matching of laser signatures, the spatial, or spectral analysis and
combinations of both of them under wavelets lead to speeding up the matching
process whereby the localization capabilities of mobile robots have been improved.
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Concerning mapping of a static environment, we employ not only visible odo-
metric data acquired from laser and sonar sensors but also electromagnetic fields
detected by a digital compass. Employing the invisible geomagnetic signature as
a signature by detecting anomalies of compass deviation is a novel trend that re-
places the conventional concept of considering the errors of geomagnetic compasses
as a Gaussian white noise. Also in static environments, extending the Bug algo-
rithm to our proposed SLN algorithm succeeds to create a new competitor to the
Voronoi diagram.

In dynamic environments, the integration between the universe of discourse in
fuzzy logic and the state space in stochastic Kalman filters provide mobile robots
with reliable adaptive navigation that maintains their stability, robustness and
leads to fine motion.

For the future work, it is considered that the presented work will be extended
to develop a high precision localization technique.
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