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ABSTRACT

The analysis of volumetric data is a crucial part in the visualization
pipeline, since it determines the features in a volume dataset and
henceforth, also its rendering parameters. Unfortunately, volume
analysis can also be a very tedious and difficult challenge.

To cope with this challenge, this paper describes a novel infor-
mation visualization driven, explorative approach that allows users
to perform an analysis in a comprehensive fashion. From the orig-
inal data volume, a variety of auxiliary data volumes, the signature
volumes, are computed, which are based on intensity, gradients, and
various other statistical metrics. Each of these signatures (or sig-
natures in short) is then unified into a multi-dimensional signature
space to create a comprehensive scope for the analysis. A mosaic of
visualization techniques ranging from parallel coordinates, to col-
ormaps and opacity modulation, is available to provide insight into
the structure and feature distribution of the volume dataset, and thus
enables a specification of complex multi-dimensional transfer func-
tions and segmentations.

CR Categories: I.3.3 [Picture/Image Generation]: Display al-
gorithms; I.3.6 [Methodology and Techniques]: Graphics data
structures and data types; Interaction techniques I.3.7 [Three-
Dimensional Graphics and Realism]: Color, shading, shadowing,
and texture; I.4.6 [Segmentation]: Edge and feature detection; Par-
titioning; I.4.7 [Feature Measurement]: Feature representation;

Keywords: Volume Data, Parallel Coordinates, Multi-Dimen-
sional Visualization

1 INTRODUCTION

Volumetric data is a data concept for discrete data that is arranged
on a grid structure and which can be from numerous sources. Most
frequently, volumetric data is generated by 3D scanning devices
(usually medical 3D scanners such as CT scanners, MRI scanners,
etc.) or computed by simulations in physics, chemistry, biology,
material sciences, or other engineering fields. If sufficient knowl-
edge on the data is available, this information can be used to derive
feature extraction parameters, segmentations, or the specification
of transfer functions. Unfortunately, this process is not straightfor-
ward and often requires a time-consuming trial-and-error approach
[18].

In most (semi-) automatic approaches to generate transfer func-
tions, gradients of the respective voxels are computed and those
with maximum gradient values (and the second derivatives of the
voxel values) are considered as points of transition between two
different materials [1, 12]. These approaches are basically moti-
vated by a material boundary model in which the gradient magni-
tude value – usually implemented as the absolute value of the cen-
tral difference at local voxels – is (almost) zero along the boundary
and large across the boundary. Another effect that interferes with
voxels along the boundaries is the partial volume effect in medical
scanned data, which at the same time ensures a smooth gradient [9].

Bajaj et al. used next to gradients also the length and surface of a
contour (isosurface), and the included volume confined by the iso-
surface into the contour spectrum. A super-imposed contour tree
was also providing a more global view of changes in the contour
spectrum [1]. In contrast to Kindlmann and Durkin [12], they did
not assume a specific material boundary model, since it is more of
an exploratory tool. In that sense, their approach is somewhat sim-
ilar to our approach (Sections 2 and 3). Fujishiro et al. [4] use

a Reeb-graph data-structure to model the topology of critical iso-
surfaces similar to the contour tree. Pekar et al. [17] also used a
similar approach, where they combined gradient, Laplace-filtered
voxel values (essentially using the second derivative), volume and
surface area confined by the potential isosurfaces into the total gra-
dient curve, and – by dividing the total gradient by the surface area
– into the mean gradient curve.

Tenginakai et al. proposed local higher order moments and de-
rived metrics such as skew and kurtosis to mark areas of material
transition for the specification of isovalues [20, 21]. Again, the au-
thors assumed a local material boundary model that no more than
two materials interface with each other in a w×w×w neighbor-
hood.

He et al. took a stochastic/interaction-based approach to gener-
ate transfer functions. Piecewise function patterns were combined
by a stochastic (genetic) algorithm and the results are evaluated by a
human observer to guide the stochastic search process [8]. Another
approach that combined interaction with a stochastic algorithm was
proposed by Tzeng et al., [23] were interactive painting operations
are used to mark areas of interest, or areas to be omitted from the
final specification. An artificial neural-network algorithm is used as
machine-learning environment to derive rules which voxels should
be included. In their paper, they also consider a multidimensional
classification space, where they look into the voxel value, the gra-
dient magnitude, the neighboring voxel values, and their position in
the volume dataset through the neural-network.

Most methods aiming at the (semi-) automatic transfer function
generation deal with some sort of gradient magnitude analysis and
often also take into account a Laplacian or the second derivative
of the voxel values. However, there are situations where gradient-
based methods break down, because they do not depict the material
interface alone. These situations are similar to settings where the
intensity alone does not specify the materials precisely enough, eg.,
in the tooth dataset of the transfer-function bake-off [18], or when
there are problems due to noise sensitivity.

Our observation is that most classification methods can be ap-
plied to a variety of datasets from different sources, but they rarely
succeed with all datasets, since they usually focus on a few metrics.
In contrast, our approach takes into account a manifold of signa-
tures – which we call signatures –, such as intensity, multiple de-
rived (eg., gradient, second derivatives, etc), and statistical metrics
(higher order moments), and derived statistical quantities (skew and
kurtosis) [20]. We also inspect the directions along the gradients,
providing some kind of history of the local voxels1. Furthermore,
any meaningful signature that has not (yet) been integrated into our
variety of signatures, can easily be added, since none is specifically
favored.

All signatures are presented in a modified parallel coordinate
display, which provides a framework to identify meaningful sig-
natures for a specific dataset. In that sense, we combine methods
from information visualization and scientific (volume) visualization
into the SignatureSpace, a notion that has been introduced with the
SimVis system of Doleisch et al. [2]. The WEAVE system is an-
other system, published even earlier, that combines a 4D visualiza-
tion of a heart simulation with parallel coordinates and scatter plots
[5]. Also a somewhat related approach has been presented by Tory
et al. [22], where parallel coordinates are used to represent visual-
ization parameters, such as light parameters, viewing, and transfer
functions.

The remaining paper is organized as follows. We start by pre-
senting our modified parallel coordinate-based display, which is in
particular suited for a large number of data samples – a common
drawback of parallel coordinates – in Section 2. Section 3 focuses
on the different signatures that we are using for the data analysis

1A similar metric has also been explored in parallel by Lum and Ma
[13].



and we discuss results in Section 4. Finally, we draw conclusions
and discuss future work in Section 5.

2 PARALLEL COORDINATES FOR
VOLUMETRIC DATASETS

Parallel coordinates were introduced into data visualization by In-
selberg et al. [10, 11]. In contrast to traditional coordinate systems
like the cartesian coordinate system, the data axes are arranged par-
allel to each other, enabling a representation for many more dimen-
sions than 3D and 4D cartesian systems. Data values are plotted as
polylines over the various coordinate axes, depending on their re-
spective values. However, parallel coordinates are inflicted by two
major drawbacks. First, correlations between different dimensions
can only be easily detected by an observer, if the respective data
axes are located next to each other. Second, while the number of
dimensions can be quite high, parallel coordinates are not very well
suited for a large number of data samples, since they tend to obscure
the view (Fig.1a).

(a)

(b)

Figure 1: Parallel coordinates: (a) A parallel coordinate display is
quickly obstructed if too many samples are visualized. (b) A colormap
(on the left most intensity axis) can maintain the structure of the
data.

A number of techniques have been proposed to address these
problems, such as hierarchical parallel coordinates [3] and brush-
ing functionality [14]. Most important in our view is the application
of colormaps to a specific data axis (Fig.1b), a technique which is
quite well established in Information Visualization [6] and respec-
tive systems, such as the XmdvTool [24], but that we could not trace
back to a specific research paper.

In particular Fua et al. [3] combined the hierarchical display of
data clusters with colormaps. The samples of the child dimensions
in the nested cluster tree are rendered in a variable-width opacity
band, where the opacity is decreasing the farther out of the cluster
center (or the parent node in the tree) the data item is located. Miller
and Wegman proposed density plots for modeling line opacity (al-
ternatively line color saturation) to overcome display obstruction
[15].

Applying Colors

Colormaps are frequently used with parallel coordinates to high-
light structures in dense datasets. In our SignatureSpace, they
can be applied to every dimension to generate a visual structure

for the voxel polylines in the parallel coordinate display. Further-
more, we can limit the application of the colormap to a specific
subrange of a signature dimension, effectively skipping the non-
selected ranges from the colored display; they remain in their pre-
viously acquired color, which is by default white (on a black back-
ground). This range limitation for the colormapping essentially im-
plements a brushing operation.

The question what colormap should be used is not easy to an-
swer. In many applications a so called rainbow colormap is used
[3], where the full hue range of the HSV color model is mapped to
a selected color range. Unfortunately, hue is not a linearly perceived
range, which can lead to interpretation problems of accordingly col-
ored data [19]. Better are isomorphic colormaps, such as saturation
or luminance maps. However, in SignatureSpace, we only use the
colormapping to reveal how neighboring data samples evolve over
the other signatures and the clear drawbacks of a rainbow/hue col-
ormap do not really have a significant impact here. Hence, we still
use the rainbow/hue colormap, but technically, any other colormap
could be used as well.

In order to take more than one signature dimension into account
for the coloring, we can apply a color to another, secondary signa-
ture dimension range. The colors of the colormap from the primary
signatures are then blended with that color. Alternatively, other sec-
ondary signatures could modulate Saturation and Value in the HSV
color model.

Modulating the Opacity

In order to modify our non-hierarchical version of parallel coordi-
nates for a large number of data samples, we modulate the opacity
of the voxel representation in two different ways. In the first op-
tion, Uniform Opacity Modulation, all data samples are assigned
the same opacity value and are blended in our parallel coordinate
display. Since the opacity value is controlled through a slider, the
user can dynamically adjust the opacity value to the number of data
samples in the volume dataset. This way, the large number of data
samples (voxels of a volume dataset) – which can easily surpass
millions of samples in even small datasets – does not obstruct the
display (Fig.2ac).

The second option, Weighted Opacity Modulation, enables vary-
ing opacities of the voxels projection on all the different signature
axes. If a large number of voxel polylines intersect an axis on the
same value (actually on the same discrete value bucket), the opac-
ity at that point should be higher than for a smaller number of voxel
polylines. We achieve this goal by sorting all voxel values for a sig-
nature into n buckets and assign opacity values based on the number
of voxels in each bucket. The opacity on the section of the polyline
between two neighboring signature axes are linearly interpolated
between the respective opacity values on the axes. This way, poten-
tial clusters on the signature axes are emphasized over more sparse
regions (see Fig.2bd).

During the exploration of the SignatureSpace, we examine only
one volume slice at the time, resulting in approximately 65536 in-
teractively rendered and blended polylines at a time for our tested
datasets. The more complex full volume sample exploration de-
pends on the dataset size takes about 50 seconds. Therefore, all
changes to of the overall opacity are performed interactively on
slice level, and within seconds for the full volume.

Background Noise Removal

In contrast to the typical database query orientation of information
visualization oriented data, typical volumetric data on regular grids
have data samples for every grid position. Consequently, many of
these data samples do not represent interesting information. Very
often, they are only background noise or simply represent empty
regions. Nevertheless, these irrelevant data samples can block the



(a)

(b)
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Figure 2: Unfolding clusters with opacity modulation: (a) shows an
all-white coloring with Uniform Opacity Modulation (UOM), and (b)
shows the same data with Weighted Opacity Modulation (WOM).
UOM and WOM with an applied intensity colormap is shown in (c)
and (d) respectively.

view on the actual data (Fig.3b). To compensate for this effect, we
provided a removal functionality that removes data samples from
the rendering process. After specifying a value range in a signa-
ture dimension, the respective voxels with a polyline intersecting
that value range are removed (Fig.3c). Typically, this operation is
performed in the voxel intensity signature, which represents the
original voxel values (Fig.3d). However, it can also be applied
to any other signature that exposes irrelevant voxels. The lobster
dataset (Fig.4a) for example shows that the background noise re-
moval operation can be easier achieved, without a potential loss of
voxels that are subject to the partial volume effect or are right on the
boundary of non-noise voxels. Figure 4 compares the background
noise removal effects based on the intensity signature (Fig. 4ab) and
noise removal based on the skew signature (Fig. 4cd). While the in-
tensity based noise removal generates a much tighter result, it can
lead to problems if the lobster needs to be segmented, since parts
of the shell might be gone as well.

(a) (b) (c)

(d)

Figure 3: Background noise removal in a slice from the engine
dataset: (a) Original (cropped) slice; (b) Background noise is also
included in the voxel selection. (c) Background noise voxels are re-
moved depending on how they belong to a certain value range in
a specific signature (intensity in this example). The different colors
mark the different materials according to the intensity colormap in
(d). The remaining orange/yellow voxels are due to partial volume
effects. (d) shows the SignatureSpace where the lower (red) intensity
parts (yellow frame) are removed (compared to Fig. 2c)

(a) (b)

(c) (d)

Figure 4: Background noise removal in a slice from the lobster
dataset: (a) Dataset with colormapped intensity signature; (b) Back-
ground noise voxels are removed based on intensity. (c) Dataset
with colormapped skew signature; (d) Background noise voxels are
removed based on skew.

Scatter Plots

Parallel coordinates usually show a projection of the data distribu-
tion on a dimension axis. Although the density of polyline intersec-
tions (or their opacities) at certain values of that axis gives cues how
the data is distributed, often one would like to see a histogram of the



data, possibly together with another signature dimension. Similar
to many other systems (e.g., [7]), our SignatureSpace also provides
this kind of scatter plots of the intensity (first signature dimension)
and any other signature to allow a more detailed view on the data
distribution.

3 ANALYSIS OF VOLUME DATA USING THE
SIGNATURESPACE

Our modified parallel coordinates display consists of nine different
signatures as described below. Almost all of the individual signa-
tures have been used previously in the various approaches for the
analysis of volumetric datasets or for the (semi-)automatic design
of transfer functions. Only two signatures have been added by the
authors of this paper, namely the up and down history, where we
follow the local gradient one unit step forward and backward to
examine the voxel intensity at the new position. This way, the sig-
natures provide some notion of the materials on the other side of
the boundary2 .

Currently, the SignatureSpace consists of the following signature
dimensions:

• Intensity: the actual voxel value in the volume dataset (data
volume)

• Up history of the voxel: we follow the gradient for one unit
step and take the next voxel value as up history.

• Down history of the voxel: similar to the up history, but this
time, we follow the negative gradient direction.

• Gradient magnitude: computed by the central difference at the
voxels [1, 12].

• Second order moment3, which is computed by

m2 =
1
N

N−1

∑
j=0

(x j−M)2 (1)

with mean

M =
1
N

N−1

∑
j=0

x j (2)

where N is the number of voxels and x j is the respective voxel
value [20].

• Second derivative: the central difference at the voxel position
within the gradient field [12, 17].

• Third order moment3, which is computed by

m3 =
1
N

N−1

∑
j=0

(x j−M)3 (3)

with M,N,x j as in m2 [20].

• Skew: a derived statistical value computed from higher order
moments m2, mean M, and voxel value x j [16].

skew =
1

(N−1)m3/2
2

N−1

∑
j=0

(x j−M)3 (4)

2Lum and Ma also used the gradient direction for the specification of
lighting transfer function [13].

3Please note, that we do not use the local higher order moments de-
scribed in [20], but the “regular” higher order moments which consider the
whole voxel context as neighborhood. Therefore, N represents all voxels in
the current context, which can either be the current data slice, or the whole
volume.

• Kurtosis: also a derived statistical value from the higher order
moments m2, mean M, and voxel value x j [16].

kurtosis =
1

(N−1)m2
2

N−1

∑
j=0

(x j−M)4−3 (5)

These signatures span the SignatureSpace, which we use for the
analysis of volume data. However, additional signatures can be in-
tegrated, if one should decide that they convey useful information.
Note that the different signatures are in different data ranges, thus
there is only little range correlation between some of the signatures.
Currently, we map the whole data range onto the respective coordi-
nate axis. However, a sub range could be selected, which is either
computed or selected manually.

(a) (b)

Figure 5: Slice from the tooth dataset, an industrial CT scan of a
human tooth, which was part of the transfer-function bake-off. (a)
shows an original cut slice from the dataset, and (b) shows voxels
that are subject to the partial volume effect are rendered in green,
while the actual feature voxel are rendered in white.

In the next paragraphs, we discuss the advantages of the Sig-
natureSpace with several datasets, which are described in Table 1.
These datasets represent various features with attenuating boundary
features and typical datasets taken from daily life practice.

The traditional specification of transfer functions was only based
on the intensity histogram of the voxels. Depending on the source
and nature of a volume dataset, different materials could be identi-
fied by peaks and valleys in the histogram, if the intensity range of
these materials were separable. The famous engine dataset – which
is a CT scan of an engine block (see Table 1 and Fig. 3) – is an ex-
ample for these cases. Also CT scans of a patient body provide easy
differentiations between tissue, bone, and air. Even more interest-
ing is the fact that a colormap applied to the intensity signature will
also expose voxels that are subject to the notorious partial volume
effect. With this effect, the sampling rate at volume reconstruction
cannot correctly represent the material transition from a high inten-
sity to a significantly lower one, and results in “voxel halo” of lower
intensity around the high intensity materials (Fig. 5).

In case of an overlap, these materials cannot be differentiated by
intensities alone. Furthermore, if a set of voxels of one material are
adjacent to two different materials, eg., one with higher voxel val-
ues and one with lower voxel values, the traditional transfer func-
tions based on a standard histogram cannot identify all material in-
terfaces between those materials. This differentiation required the
gradient magnitude – since a local maximum in the gradient mag-
nitude exposed one of the respective material interfaces – or a zero
crossing in the second derivative [12]. An example of this situation
can be seen in the tooth dataset (Fig. 5), and in the cones datasets
(see Table 1 and Fig. 6). In the latter dataset, we see three different
quarter cones of different intensity are put into each other, creating
three different material boundaries (background/low, low/middle,
middle/high; high/background is not present here), similar to the



(a) (b) (c)

(d)

Figure 6: Slice from the Cones dataset: (a) shows the original slice,
(b) shows a colormapped slice based on the intensity signature,(c)
shows a colormapped slice based on the gradient signature, and (d)
shows the SignatureSpace with a colormap based on the (yellow
framed axis) gradient signature.

cylinders dataset in [12]. The cones dataset was generated by a
volume modeling system.

Some datasets, however, do not expose a specific isosurface that
could be specified. This frequently happens if a dataset represents
a probability density or other discretized distribution functions. In
these situations, a distinct gradient cannot be found and higher or-
der functions need to be used. Figures 7 and 8 show examples of
such an analysis, where the gradient colormap does not expose any
specifically useful information. The more suitable third order mo-
ment colormap can be used to generate a transfer function.

Another situation is demonstrated with the Plexiglas phantom
dataset (see Table 1 and Fig. 9). This dataset scanned by a rotational
C-arm scanner and it is aimed at measuring reconstruction quality
based on different scanning setups. It consists of three connected
cavities with a Plexiglas boundary, filled with a (exactly measured
quantity of) contrast agent. Due to reconstruction artifacts of the
scanning devices, the reconstructed volume dataset contains an at-
tenuating region in the center of the cavities, in particular of the
main cavity. Regular intensity or gradient-based analysis will inter-
pret the attenuated region as a second boundary, which of course is
only based on the data artifact and is not a real feature (Fig. 9b).
Note that we used two different signatures to classify the dataset;
we used the intensity signature for background noise removal and
the third order moment for the colored classification.

A quite similar effect is shown in Figure 10, where the col-
ormapped second order moment signature generates significantly
more homogenous results than the colormap based on the gradient
signature. Therefore, the second order moment signature enables an
easier classification or segmentation task of the different materials.
Here again, we used two different signatures for removal (intensity)
and colored classification (second order moment).

With higher analysis methods such as second order moments and
in particular the third order moment, shown in Figure 9c, this area is
correctly interpreted as homogeneous region, although the artifacts
in the volume dataset are generated by the attenuation.

(a) (b) (c)

(d)

Figure 7: Colormapped slice from the fuel dataset, which was gener-
ated by a simulation of a fuel injection into a combustion chamber.
(a) shows the original (cropped) slice, (b) shows a colormapped slice
based on the gradient signature, which exposes the attenuation ar-
tifacts, and (c) shows a colormapped slice based on the skew. The
SignatureSpace with a gradient colormap (yellow framed signature
axis) is shown in (d).

(a) (b) (c)

(d)

Figure 8: Colormapped slice from the hydrogen dataset, which was
generated by a simulation of spatial probability of the electron in a
hydrogen atom, residing in a strong magnetic field. (a) shows the
original (cropped and brightened) slice, (b) shows a colormapped
slice based on the intensity signature, and (c) shows a colormapped
slice based on the 3rd order moment. The SignatureSpace with a
3rd order moment colormap (yellow framed signature axis) is shown
in (d).

3.1 Strategies for Using the SignatureSpace

The SignatureSpace provides techniques for an exploratory data
analysis approach for volumetric data. While some of the individ-
ual signatures do assume a data model, others do not. Consequently,
we can use the SignatureSpace without having specific knowledge
about the data to be analyzed.

Nevertheless, there are different characteristics of the Signa-
tureSpace that can be used to examine specific signature dimensions
for the various datasets.

• Clustering: As we know from information visualization, clus-
ters expose similarities or correlation between data samples.

• Color distribution: The color distribution shows how the data
samples move through the different signature dimensions, and
thus expose possible correlations. The color distribution is
also partially compensating the problems arising due to the



(a) (b) (c)

(d)

Figure 9: Colormapped slice from Plexiglas phantom dataset. (a)
shows the original (cropped) slice, (b) shows a colormapped slice
based on the intensity signature, which exposes the attenuation ar-
tifacts, and (c) shows a colormapped slice based on the higher 3rd
moment that depicts the interior successfully. The SignatureSpace
with a 3rd order moment colormap (yellow framed signature axis) is
shown in (d).

(a) (b)

Figure 10: Slice from the tooth dataset, an industrial CT scan of a
human tooth, which was part of the transfer-function bake-off. (a)
shows slice with colormap of gradient signature, while (b) shows slice
with colormap of 2nd order moment signature.

different possible sequences of dimensions in the parallel co-
ordinates.

• Sample distribution: If data samples are represented well in
one signature dimension, they are not mapped into a very
small data range of the respective signature axis.

In short, we are looking for signatures, where the data covers
a significant part of the data range, and possibly has a reasonable
sample cluster. We completely ignore signatures where the data is
projected into a very small range, like in the kurtosis (last signature
axis) in Figures 7 and 8.

The examples we have shown so far, use a variety of different
signatures to extract a meaningful representation. Datasets that
have a good material differentiation, with no intensity (voxel value)
overlap, can be easily analyzed using intensity and gradient signa-
tures, whereas the gradient signature is only necessary, if one ma-
terial has boundaries to more than one other material (eg., datasets
cones, tooth, and engine in Figures 6, 5, and 3).

However, if the boundary is less distinct, or might even suggest
a misunderstanding of the data features (eg., Plexiglas phantom),
intensity and gradient-based analysis will not lead to a successful

Table 1: Dataset overview: The table shows the respective dataset
resolutions, the total number of samples, the actually not-removed
number of samples, and the used pre-processing time to compute
the signatures on a Centrino Laptop running at 1700MHz, with 1GB
of main memory. Some datasets have been cropped (c) and some
datasets have been downsampled (d) to save memory space and (pre-
)processing time.

Datasets # Samples # Relevant Pre-Processing
Resolution Samples Time (s)
Plexiglas Phantomc 5.963M 2,717K 565s
162x172x214
Toothc 2.400M 426K 222
137x113x155
MRI Headd 1.290M 502K 150
127x127x 80
Lobsterd 2.097M 311K 297
128x128x128
Engined 2.097M 172K 258
128x128x128
Hydrogen Atom 2.097M 60K 257
128x128x128
Cones 262K 133K 26
64x64x64
Fuel 262K 8K 33
64x64x64

solution. In this case, the third higher order moment was able to
grasp the true data characteristics (Fig. 9).

Another example are the fuel and hydrogen datasets, generated
by physical simulations (Figs. 7 and 8). Both datasets represent
densities, where a specific boundary – except for a general outside
boundary – cannot be found. Our SignatureSpace provides a frame-
work that allows for an analysis that is not focusing on boundaries
alone. In particular the third order moment signature for the hydro-
gen datasets allows for the identification of the different features
in the dataset, as shown in Figure 8c, where lower density regions
are marked in red, while the hot spot in the center is identified as
a different feature. These marked regions can later be used as seg-
mentation mask in typical segmentation environments.

In our last example, we demonstrate how the SignatureSpace can
be used to classify different materials in MRI head, a downsampled
T1-weighted MRI dataset. For the classification, we use again two
signatures; the intensity signature to identify the background noise
voxels (red in Figure 11b) and the second order moment signature
for the identification of the skin (blue) and of the boundaries of the
main brain fluid filled cavities (green). The respective SignatureS-
pace is shown in Figure 11c. Note the different colormap bands in
the first (intensity) and fifth (second order moment) signatures from
the left. Alternatively, the background noise voxels could have been
identified by the down history signature (at the very bottom of the
axis), or by the skew signature (also at the very bottom of the axis).
The correlation between these signature dimensions becomes obvi-
ous in our modified parallel coordinate approach (Fig. 11c).

The process of removing background samples and finding an ap-
propriate signature for the classification (or a combination of signa-
tures) takes usually less than a minute. If one (or more) signatures
are brushed to select a specific set of data samples, the overall time
increased in the presented examples to less than five minutes4.

4The longest classification time required the MRI head (Fig. 11). It in-
volved an intensity colormap for background voxel removal, and a color



(a) (b)

(c)

Figure 11: Colored slice from the MRI head dataset. (a) shows
an original (cropped) slice, (b) shows a classification based on the
intensity and 2nd order moment signatures. The SignatureSpace
with a color band setting based on the intensity (red background;
1st framed signature axis) and 2nd order moment signatures (blue
and green; 2nd yellow framed signature axis) is shown in (c).

Please note that the objective of this paper is not to propose
higher order moments or their derivates as driving signatures for
the data analysis, but to provide a holistic approach to data analy-
sis, which keeps all available signatures in the focus of the analysis.

3.2 Memory Usage

The major problem of the SignatureSpace is its large memory con-
sumption. Every signature requires a full volume sized data array
to store the signature values for each voxel. To differentiate the
various signatures from the original voxel volume, we call the ad-
ditional volumes signature volumes and the original voxel volume
data volume. Besides the large number of data and signature vol-
umes, the memory consumption is also driven by the float values
that are required by many of the signature volumes.

There are several possible solutions for the memory problem.
Depending on the required accuracy and data range, the float data of
some of the signatures could be downsampled into a single-byte in-
teger representation. Another possibility of saving memory comes
from the observation that the analysis is often based only on a sub-
set of signatures. Hence, we can save the memory of the signatures
that are not required. Finally, suitable compression schemes can
be used to reduce the required memory, but at the same time, this
would reduce the display and interaction time, since the respective
signature volumes need to be decoded first.

Currently, we do not use any of the suggested solutions for the
memory problem, but a downsampling of the dataset dimensions
for large datasets (see Table 1). While there is a loss of accuracy
involved, we believe that this can be neglected for the purpose of
data analysis.

band brushing of the 2nd order movement signature.

4 RESULTS

In this section, we briefly present some rendering results, which
have been generated based on some of the signature volumes. In
Figure 12ab, we show two snapshots from the isosurface rendering
of the Engine dataset. Please note how the gradient isosurface is
bigger and more blurred (Fig. 12b), than the isosurface from the
intensity signature (Fig. 12a). A similar observation can be done
for the MRI head, which is rendered using the 2nd order moment
(Fig. 12cd). These blurring effects are due to the inherent low-pass
filtering of the gradient and 2nd order moment volumes. However,
in a semi-transparent volume rendered image, this blurring would
be less apparent.

(a) (b)

(c) (d)

Figure 12: Isosurface rendering of Engine dataset. (a) shows the
isosurface from the intensity signature, (b) shows the isosurface from
the gradient signature. (c) and (d) show two snapshots from the skin
isosurface of the 2nd order moment signature volume. Note that the
bumps in the surface are fiducial markers attached to the head for
an operation.

Table 1 gives an overview of the datasets used in our exper-
iments. It also contains the time needed by a Centrino laptop,
equipped with 1GB of memory and one CPU running at 1.7GHz.
Please note that these timings are required only once to compute
the SignatureSpace. Afterwards, it is stored to disk and can be used
at any time.

SignatureSpace offers options to render the polylines of the par-
allel coordinate display based on the current volume slice, or based
on the whole volume. Slice-based rendering is achieved at inter-
active framerates (> 5fps), while full volume rendering of the Sig-
natureSpace took up to 30s for the largest volume (Plexiglas phan-
tom).

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced the SignatureSpace, a novel approach
for the analysis of volumetric datasets by adopting techniques from
information and scientific visualization. In this approach, several



different metrics derived from the original volume datasets are pre-
sented in a parallel coordinate system, which has been improved
to be able to handle volume datasets, since they contain orders of
magnitude more data samples than typical information visualiza-
tion datasets. In contrast to many other approaches for the analysis
of volume datasets, we do not favor a specific data or boundary
model; all signatures are presented equally to the user, who can
quickly determine the most useful signature dimension for her/his
analysis goal. The powerful combination of signatures enables a
data-driven multi-metric classification strategy.

Since the SignatureSpace provides analysis only in the data or
sample space – no spatial relationships are considered, it hence
is a classification approach that provides support for the design of
multi-dimensional transfer functions. However, the presented clas-
sification strategies can be used as a pre-process for any segmenta-
tion task.

In the future, we would like to explore further the exploration of
multi-modal datasets with the SignatureSpace, where each modal-
ity (or data attribute values) is presented next to each other. This
way the similarities throughout the different modalities or attributes
can be observed in one display.

As we have already pointed out, the colormaps applied to the
different signature dimensions can also be used to specify (multi-
dimensional) transfer functions. We would like to explore that op-
tion further, in particular the possibility of automatically specifying
suitable transfer functions.

Finally, the memory problem needs to be addressed in order to
analyze truly large volumetric datasets. Right now, we only use
dimension downsampling to handle medium and large datasets.
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and the tooth dataset is courtesy of General Electric Corporate Re-
search.

This research has been supported, in part, by NSF CAREER
grant ACI-0093157, by the Department of Neurosurgery of the Uni-
versity Hospital Tübingen, and by DFG project VIRTUE of the fo-
cus program 1124. We would like to thank Urs Kanus for proof
reading.

REFERENCES

[1] C. Bajaj, V. Pascucci, and D. Schikore. The Contour Spectrum. In
Proc. of IEEE Visualization, pages 167–174, 1997.

[2] H. Doleisch, M. Gasser, and H. Hauser. Interactive Feature Specifi-
cation for Focus+Context Visualization of Complex Simulation Data.
In Proc. of EG/IEEE VGTC Symposium on Visualization, pages 239–
248, 2003.

[3] Y. Fua, M. Ward, and E. Rundensteiner. Hierarchical Parallel Coordi-
nates for Visualizing Large Multivariate Data Sets. In Proc. of IEEE
Visualization, pages 43–50, 1999.

[4] I. Fujishiro, T. Azuma, and Y. Takeshima. Automating Transfer Func-
tion Design for Comprehensible Volume Rendering Based on 3D Field
Topology Analysis. In Proc. of IEEE Visualization, pages 467–470,
1999.

[5] D. Gresh, B. Rogowitz, R. Winslow, D. Scollan, and C. Yung.
WEAVE: A System for Visually Linking 3-D and Statistical Visual-
ization, Applied to Cardiac Simulation and Measurement Data. In
Proc. of IEEE Visualization, pages 489–492, 2000.

[6] G. Grinstein, D. Keim, and M. Ward. Information Visualization, Vi-
sual Data Mining, and Its Application to Drug Design. In IEEE Visu-
alization, tutorial 1, 2002.

[7] H. Hauser, F. Ledermann, and H. Doleisch. Angular Brushing of Ex-
tended Parallel Coordinates. In Proc. of IEEE Symposium on Infor-
mation Visualization, 2002.

[8] T. He, L. Hong, A. Kaufman, and H. Pfister. Generation of Trans-
fer Functions with Stochastic Search Techniques. In Proc. of IEEE
Visualization, pages 227–234, 1996.
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