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Zusammenfassung

Zielsetzung des Fachgebietes Computational Hydrology ist die Entwicklung und

Verbesserung mathematischer und numerischer Methoden zur Betrachtung na-

türlicher Hydrosysteme. Die Methoden dienen der Verbesserung des System-

verständnisses und machen Prognoseaussagen hinsichtlich des Systemverhaltens

möglich. Ein natürliches Hydrosystem besteht aus den Teilsystemen Grund-

und Oberflächenwasser, die gegenseitiger Wechselwirkung unterliegen. Wech-

selwirkungen werden in einem numerischen Modell durch die Kopplung ver-

schiedener Prozesse berücksichtigt. Die vorliegende Arbeit behandelt zunächst

die Komponenten Grundwasser und Oberflächenwasser als isolierte Systeme, ist

aber in folgendem Kontext zu sehen: Die neu erstellten Programmteile, die nun

Teil des Finiten Elemente Programms GeoSys/ RockFlow bilden, dienen dem

ferneren Ziel ein Programmsystem anzubieten, das eine ganzheitliche Betrach-

tungsweise natürlicher Hydrosysteme mit den beiden Teilsystemen Grund- und

Ober- flächenwasser innerhalb eines integrierenden numerischen Modells möglich

macht.

Hydrogeologische Systeme können aufgrund ihres Schichtaufbaus zumeist gut

mit Dreiecksprismen diskretisiert werden. Ein weiterer Vorteil der Dreieckspris-

men ist, dass eine numerische Quadratur nicht erforderlich ist und die Integra-

tionen geschlossen durchführbar sind. Deshalb wurde der neue Elementtyp unter

Verwendung der analytischen Integration implementiert. Die Prozesse Grund-

wasserströmung und Transport sind dabei berücksichtigt. Eine Überprüfung der

neuen analytischen Methode erfolgte anhand eines Vergleichs der Lösungen mit

dem herkömmlichen numerischen Verfahren sowie teilweise anhand analytischer

Lösungen. Die Leistungsfähigkeit des analytischen Verfahrens wurde mit einem

Transport Rechenbeispiel überprüft. Im Vergleich zu der herkömmlichen nu-

merischen Methode wurde die Berechnungszeit zum Aufbau der Elementmatrizen

auf ein fünftel verkürzt. Da oftmals ungespannte Systeme berücksichtigt wer-

den müssen, wurde die Grundwasserströmung auch im ungespannten Aquifer

modelltechnisch umgesetzt. Dafür wurde die Methode der beweglichen Gitter-

knoten verwendet, die mit Hilfe einer Picard Iteration realisiert wurde. Die Ver-

ifizierung dieser Methode erfolgte ebenfalls anhand einer analytischen Lösung.



Oberflächenabfluss ist eine wichtige Komponente eines Hydrosystems und wurde

deswegen als weiterer Prozess in das bestehende Programm aufgenommen. Die

Strömung wird dabei mit einer Diffusions-Wellengleichung, einer vereinfachten

Form der Flachwassergleichungen, beschrieben. Modellergebnisse wurden wie-

derum anhand einer analytischen Lösung verifiziert oder mit Ergebnissen eines

anderen numerischen Models verglichen.

Anwendungsbeispiele sind die Modellierung eines geringmächtigen Aquifers im

Gebiet um Jericho, die Bewertung von Dichteffekten auf die Ausbreitung einer

Tracerwolke anhand einer Modellstudie und die Modellierung eines 3-schichtigen

Aquifersystems in Jordanien.



Summary

Research in computational hydrology aims at the development and improvement

of mathematical and numerical methods used to understand and predict the

behavior of hydrologic systems. A hydrologic system consists of a subsurface-

and a surface system, both interacting to various degrees. Interaction of different

system components is achieved by process coupling and has received considerable

attention by the modelling community. The issue of process coupling is not

addressed in this work. The work presented here deals with subsurface- and

surface systems as stand alone components, but is to be looked at in a wider

context: The new features incorporated into the finite element (FE) program

GeoSys/RockFlow (Kolditz et al. (2003)) serve to achieve the overall aim to

create a software package to simulate large scale hydrologic systems within one

integrating numerical model by closing some existing gaps of the program version

from 2002.

Due to the layered structure of most subsurface systems they can best be dis-

cretized with triangular prismatic elements. The computationally most efficient

method for the calculation of their element matrices is the analytical integration

of element matrix expressions. Hence triangular prismatic elements were imple-

mented using an analytical integration for the element matrix expressions. The

porous medium processes fluid flow and tracer transport were considered. The

new method was crosschecked using results of the traditional numerical eval-

uation scheme and partly verified with analytical results. The performance of

the new method was evaluated using a transport example. A comparison of the

new analytical method with the traditional numerical method did show that the

computation time required for setting up the element matrices is reduced by a

factor 0.2. Hydrogeological systems are often formed by unconfined aquifers so

that the model must be capable to properly represent unconfined groundwater

flow. A method to calculate unconfined groundwater flow was therefore imple-

mented into the existing simulator GeoSys/RockFlow. The method chosen is

the moving mesh approach realized with a Picard iteration. The implemented

method was also verified using analytical results. The next important process on

the land phase of the hydrological cycle that has been implemented is overland



flow. Based on a literature study a choice has been made in favor of the diffusive

wave approach. Results were compared to analytical solutions and crosschecked

with results from another numerical model.

Application examples are a modelling study of a shallow aquifer in the Jericho

area, the numerical evaluation of density effects on tracer tests and a modelling

study of a multi layer aquifer system in central Jordan.
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1 Introduction

Research in computational hydrology aims at the development and improvement
of mathematical and numerical methods used to understand and predict the be-
havior of hydrologic systems. A hydrologic system consists of a subsurface- and a
surface system, both interacting to various degrees. Interaction of different sys-
tem components is achieved by process coupling and has received considerable
attention by the modelling community recently (eg. Gunduz and Aral (2005), Hy-
drosphere (2004), WASY (2005), HYDROGeoLogic (2005) and IGSM (2005)).
The issue of process coupling is not addressed in this work. The work presented
here deals with subsurface- and surface systems as stand alone components, but
is to be looked at in a wider context: The new features incorporated into the finite
element (FE) program GeoSys/RockFlow (Kolditz et al. (2003)) serve to achieve
the overall aim to create a software package to simulate large scale hydrologic
systems including dynamic coupling of ground- and surface water processes by
closing some existing gaps of the program version from 2001.

Subsurface systems can best be discretized with triangular prismatic elements
and the computationally most efficient method for the calculation of their ele-
ment matrices is the analytical integration of element matrix expressions. Hence
the first aim of the study is to implement prismatic elements using an analytical
integration for the element matrix expressions. As hydrogeological systems can
be formed by unconfined aquifers the model must be capable to properly rep-
resent unconfined groundwater flow. Hence, the second aim of the study is to
implement a method to calculate unconfined groundwater flow. The next process
not considered in the program version of 2001 is overland flow even though it
is an important process on the land phase of the hydrological cycle. It controls
streamflow generation via Horton or Dunne overland flow during rainfall runoff
events and impacts groundwater recharge when flooding occurs. The implemen-
tation of the new overland flow component is therefore an essential step towards
developing a physically based, spatially distributed modelling tool. Following
objectives were identified and pursued in order to accomplish these aims:

• To gain an understanding of the FE Method.

• To gain an understanding of the programming language C and object ori-
ented programming concept.

• To gain an understanding of the existing FE simulator RockFlow.

• To derive the equations for the analytical integration of element matrix
expressions.

• To implement triangular prismatic elements and their analytic evaluation
for the element matrix expressions.

2



• To implement a method to calculate unconfined groundwater flow.

• To implement the process of overland flow.

The first three objectives do not lead to presentable results. However they are
prerequisites for the programming work done and are therefore considered as ma-
jor achievements accomplished during the research. The presentable part of the
work is outlined in this report: Section 2 gives a broad overview of the theory of
linear and non-linear groundwater flow, overland flow and channel flow. Section
3 contains a description of the numerical methods used for the implementation,
the finite element method and the finite difference approach. The chapter is
based on literature, mainly Kolditz (2002), and serves as an introduction to the
programming work done. Section 4 deals with the program concept which con-
stitutes the framework for the implementation of new processes and features. In
section 5 different test examples that were used to verify new program parts are
presented. A variety of program applications are shown in section 6.

Some of the work is also documented in technical reports, publications at con-
ferences and submitted papers. These documents are referred to at places. A
list of publications is given in section 9.8.

3



2 Theory

2.1 Linear groundwater flow

Fundamental to understanding the porous medium processes groundwater flow
and transport is the continuum approach. The concept is described below to-
gether with the processes to be considered and their governing equations.

Porous medium flow and transport

In a porous medium the material parameters change rapidly at a microscopic
scale. It becomes impossible to describe the complex geometry of the solid ma-
trix at a microscopic level. Therefore all material parameters are averaged over
a larger volume performing a transition to the macroscopic scale. The volume
which is sufficiently big to describe the porous medium at that scale is called
representative elementary volume (REV), see Fig. 1. Material parameters such
as porosity, storativity, permeability, dispersivity etc. and the mathematical for-
mulations used in the following sections are based on the REV concept. We
now have created a macroscopic model in a procedure called the continuum ap-
proach. Groundwater flow is the movement of water through the porous medium
as a result of gravity and external pressure counteracted by shear-forces result-
ing from the fluid viscosity. Flow is assumed to be laminar and dominated by
advective transport, i.e. diffusive fluxes can be neglected. The fluid phase may
carry solutes resulting in advective transport of solutes. Also, solutes move via
diffusion forced by concentration gradients. Additional mixing of solutes occurs
as a consequence of dispersion. Details of groundwater flow and transport theory
are given in Bear (1972), Diersch (1985) and Bear and Bachmat (1990).

Mathematical model

Following Hassanizadeh and Leijnse (1988) the simplified form of the mass bal-
ance equation of the fluid phase is given by

Sp0
∂p

∂t
+∇ · q = Qρ (1)

with the specific storativity of the porous medium Sp0 , the Darcy velocity vector q
and a source term Qρ. The simplification consists of introducing the Boussinesq
approximation, i.e. density variations within the mass balance equation of the
fluid phase are neglected, but are included by the buoyancy term of the Darcy
equation (see Diersch and Kolditz (2002) and Kolditz et al. (1998) for details).
Darcy’s equation gives an expression for q and can be written in terms of pressure

4



Figure 1: Representative elementary volume (REV), Bear and Bachmat (1990)

or hydraulic head

q = −K ·

(

∇h−
ρ− ρw

ρw
g

|g|

)

= −
k

µ
· (∇p− ρg) (2)

where k the tensor of permeability, K the tensor of hydraulic conductivity, µ
fluid viscosity, ρ mass density of the fluid, ρw mass density of water, p dynamic
pressure, h hydraulic heads and g the gravity vector.

A corresponding mass balance equation of solute mass conservation written in
terms of mass concentrations is

∂nC

∂t
+∇ · (vnC)−∇ · (nD · ∇C) = QC (3)

where v is the pore velocity vector given by q/n, QC is a source term of the
solute component andD is the hydrodynamic dispersion tensor according to Bear
(1972) given by

D = DdI+Dm

Dm = αL|v|I+ (αL − αT )
v ⊗ v

|v|
(4)
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where Dd is a coefficient of molecular diffusion, I is the identity tensor, Dm is
the tensor of mechanical dispersion, ⊗ denotes the dyadic product and αL and
αT are the longitudinal and transverse dispersivities respectively.

2.2 Non-linear groundwater flow

2.2.1 Unsaturated groundwater flow

The most rigorous approach to model flow through an unsaturated porous medium
would be to represent fluid flow and flow of air in an multiphase model (eg.
Helmig (1993) Thorenz (2001) or Kolditz and de Jonge (2004)). Another method
would be to use the Richards approximation (Richards (1931)) which means es-
sentially a simplified formulation of a multiphase flow problem. Richards equation
is given below

Sp0Sa
∂ρ

∂t
+ n

∂Sa

∂t
+∇ · (

krelk

µ
· (∇p− ρg)) = Qρ (5)

with the relative permeability krel as a function of the saturation Sa. The para-
metric functions used in this approach are based on work of Brooks and Corey
(1964), Haverkamp et al. (1977) and Van Genuchten (1980) and are briefly
described below:

Capillary pressure–pc

The capillary pressure can be defined as the tendency of a porous medium to suck
in the wetting fluid phase or to repel the non-wetting phase. Capillary pressure
results from the pressure discontinuity at the interface between two immiscible
fluids. It depends on the geometry of the void space, on the nature of solids
and liquids and on the degree of saturation. In porous media the geometry
of the void space is idealized. Thus, the dependence reduces to saturation for
any given porous media. Care has to be taken, as capillary pressure is not the
same for drainage and re-wetting. The function connecting capillary pressure and
saturation has to be determined by laboratory experiments for every new porous
medium. As an approximation a linear relationship can be used. There are,
however, analytical functions that can be used, such as given in Van Genuchten
(1980)

Saeff =
Saw − Sawr
1− Sawr

= (1 + (α pc)
n)m , pc > 0 (6)

pc =







0 Saw > Sawmax
ρwg
α
(Sa

−1/m

eff − 1)1/n Sawr < Saw < Sawmax
pc max Saw < Sawr

(7)
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Brooks and Corey (1964) developed another equation to relate capillary pressure
to saturation

Saeff =
Saw − Sawr
1− Sawr

=

(

pb
pc

)λ

, pc ≥ pb (8)

pc =







0 Saw > Sawmax

pb

(

1
Saeff

)1/λ

Sawr < Saw < Sawmax

pc max Saw < Sawr

(9)

where pb is the so-called bubbling pressure, the minimum pressure at which the
gaseous phase exists, λ is the pore size distribution index.

Another model is that of Haverkamp et al. (1977), where the formulas are given in
terms of pressure head h = pw/gρw and moisture content θ = nSaw. Parameters
for that model are summarized in Table 1.

θ =
α(θs − θr)

α+ |h|β
+ θr (10)

h =
(

−
α

θ
(θ − θs + θr)

)1/β

(11)

θ volumetric water (moisture) content [cm3/cm3]
θr residual volumetric water content 0.075 [cm3/cm3]
θs saturated volumetric water content 0.287 [cm3/cm3]
h(θ) soil water pressure head [cm]

relative to the atmosphere
α 1.611× 106 [Pa−1]
β 3.96

Table 1: Model parameters for the Havercamp model
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Relative permeability–krel

For a partially saturated porous medium the concept of relative permeability is
introduced. The relative permeability is used to calculate the effective permeabil-
ity (kγrelSa

γ)k and strongly depends on the saturations. Different relationships
can be specified: user-defined functions, linear functions, potential functions, or
functions found in literature, such as the van Genuchten Model (Van Genuchten
(1980)) as shown in an exemplary graph in Fig. 2.

krel(h) =
1− (αh)n−2 [1 + (αh)n]−m

[1 + (αh)n]2m
(12)

or the relationship developed by Haverkamp et al. (1977)

Figure 2: Relative permeability functions, Van Genuchten (1980)

krel(h) = Ks
A

A+ |h|β
(13)

h =
(

−
α

θ
(θ − θs + θr)

)1/β

(14)

or the Brooks and Corey (1964) model

Saeff =
Saw − Sawr
Sawmax − Sawr

(15)
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kwrel = Sa4eff (16)

2.2.2 Unconfined groundwater flow

A confined aquifer is bounded above and below by impervious formations. The
aquifer is completely saturated. An unconfined aquifer is only partially saturated
and the water table separates the saturated from the unsaturated zone. The
water table or free surface is defined as the region where pore water pressure
equals atmospheric pressure. The most rigorous approach to model an unconfined
aquifer would be to represent fluid flow and flow of air in an multiphase model (eg.
Kolditz and de Jonge (2004)). Another method would be to use the Richards
approximation which means essentially a simplified formulation of a multiphase
flow problem. Both methods are computationally expensive and require difficult-
to obtain data like initial saturation states or a function relating capillary pressure
with saturation. For large areas it becomes impossible to obtain such data so
that in groundwater modelling, especially for regional groundwater models, a
simplified process model is preferred: Only the saturated zone is considered. As
the water table may vary through time the boundary of the modelled domain is
a moving boundary. The same set of equations as for the confined aquifer can
be used only that the boundaries are changing, i.e. we deal with a kinematic
boundary condition. In terms of groundwater modelling the simplified process
model results in two different modelling approaches:

Most groundwater flow modelling is carried out using two-dimensional, vertically
integrated models. The governing Boussinesq equation accounts for changes in
saturated thickness by changes in transmissivity. The mesh can stay fixed during
the process; hence the name ’fixed mesh approach’. In the second approach,
used for three-dimensional models, the elevation of the top of the grid system is
set to be equal to the water table. This is achieved by lengthening or shortening
of elements, i.e. moving of mesh nodes; hence the name moving mesh approach.
Problems associated with the moving mesh approach include the numerical sta-
bility in cells with large aspect ratios. One solution is to adjust element width as
well as element height as proposed by Fenton and Griffiths (1997) or to generate
or delete new elements as the deformation of cells reaches a certain threshold
(Crow et al. (1999)). Another difficulty arises if we deal with stratified aquifers
and mesh distortion results in distortion of the original geometry. The method
proposed by Diersch (2001a) ensures the hydrostratigraphical consistence of mul-
tilayered systems throughout the simulation. The idea is to adapt the moving
mesh as best as possible to the original geometry.

2.2.3 Density dependent flow

Considerable research on variable-density flow in porous media has been done
during the last 30 years. A comprehensive review of the subject and the related
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issue of benchmarking is given in Diersch and Kolditz (2002) and in the textbooks
Nield and Bejan (1999) or Holzbecher (1998) . Oswald and Kinzelbach (2004)
designed the most recent three-dimensional physical benchmark experiment to
test numerical variable-density flow models and Weatherill et al. (2004) suggest
several further test cases. Other examples used as benchmarks to test numerical
models are given in Diersch (2002). The subject of variable-density flow in
heterogeneous porous media is addressed in Simmons et al. (2001).

Density dependent flow is also described by equations 1and 2, but now the density
of the fluid ρ is a function of solute concentration C and can be approximated
by

ρ = ρw + C (17)

Effects of temperature and pressure variations on density can be disregarded.
Variations in fluid viscosity µ do influence both the vertical and the horizontal
flow component and therefore are assumed to be negligible when examining
density effects.

2.2.4 Fracture flow

Based on Forchheimer’s law the following generalization of Darcy’s law for non-
linear laminar fracture flow is used.

q = −K(h,∇h)∇h (18)

This means that the hydraulic conductivity becomes dependent on head and
velocity itself. The non-linearity basically results from inertial effects, e.g. due
to flow channelling in rough fractures (see Kolditz (2001)).

2.3 Overland flow

Overland flow is an important process on the land phase of the hydrological
cycle. It controls streamflow generation via Horton or Dunne overland flow during
rainfall runoff events and impacts groundwater recharge when flooding occurs.
Implementation of the new overland flow component is therefore an essential step
towards developing a physically based, spatially distributed modelling tool that
allows for dynamic coupling between the ground- and surface water component.
This section contains a description of the mathematical model of the overland
flow process.
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Mathematical model

The two dimensional shallow water equations are derived from the Navier-Stokes
equations by integrating over the depth using kinematic boundary conditions.
Underlying assumptions are: pressure distribution is hydrostatic and horizontal
shear stresses are small (see Rijn (1986), Vreugdenhil (1994) or Jain (2001) for
details). As a result we have the fully dynamic unsteady flow equations given by
the mass balance equations

∂h

∂t
+
∂(uH)

∂x
+
∂(vH)

∂y
= Qρ (19)

and the two momentum equations

∂(uH)

∂t
+
∂(u2H)

∂x
+
∂(uvH)

∂y
+ gH

∂h

∂x
+ gHSfx = 0 (20)

∂(vH)

∂t
+
∂(v2H)

∂y
+
∂(uvH)

∂x
+ gH

∂h

∂y
+ gHSfy = 0

︸ ︷︷ ︸

kinematic wave

︸ ︷︷ ︸

diffusive wave

︸ ︷︷ ︸

fully dynamic wave

(21)

, where H is the water depth, h is the hydraulic head (h = H + z), Sfx and
Sfx are the friction slopes in x- and y-direction, g is acceleration due to gravity,
Qρ a source term and v and u are depth averaged flow velocities. Depending on
the simplifications introduced to these equations three different models can be
distinguished. Fully dynamic models solve the complete equation. Neglecting the
acceleration terms leads to a non-linear diffusion equation, also called diffusive
wave or zero-inertia approach. A further simplification consists of neglecting the
gradient of hydraulic head, i.e. setting the bottom slope equal to the friction
slope which results in the kinematic wave approach (eg. Schmitz et al. (2002)).
In the systems to be looked at we deal with slow regional flow dynamics in low
gradient situations so that both the kinematic and diffusive wave approaches
seem appropriate. (The conditions under which complete St. Venant equations
have to be used can be determined using the guidelines proposed by Ponce et al.
(1978)). However, a basic assumption of the kinematic wave approach is that
the downstream boundary condition does not have an effect on overland flow
(Morgali (1970)), so that the method does not allow for backfacing slopes in the
flow field. The limitation of not being able to model backwater effects does not
exist for the diffusive wave approach so that the diffusive wave approach has been
chosen as proposed by Xanthopoulos and Koutitas (1976) and also chosen in the
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studies by (Hromadka et al. (1985), Hromadka et al. (1987) Hromadka and Yen
(1987), Abbott et al. (1987a), Abbott et al. (1987b), Govindaraju et al. (1988),
Zang and Cundy (1989), Giammarco et al. (1996), Feng and Molz (1997) and
VanderKwaak and Loague (2001). As a result of the simplification the equations
are not hyperbolic and the resulting parabolic equations easier and faster to
solve numerically ( Ames (1992)). Using the diffusion approach the momentum
equations (equations 20 and 21) are replaced by

Sfx +
∂h

∂x
= 0 and Sfy +

∂h

∂y
= 0 (22)

so that the friction slopes Sfx and Sfx and the slope of the water surface ∂h
∂x

and ∂h
∂y

become the same. As shown in (Giammarco et al. (1996) and Hromadka
et al. (1985)) applying the Manning-Strickler law which relates water depth to
flow velocity the velocity components u and v can be expressed using

u = −
∂h

∂x

H2/3

n2
1

[(
∂h
∂x

)2
1
n4
+
(
∂h
∂y

)2
1
n4

]1/4
(23)

v = −
∂h

∂y

H2/3

n2
1

[(
∂h
∂x

)2
1
n4
+
(
∂h
∂y

)2
1
n4

]1/4
(24)

where n is the Manning-coefficient. Now the variable keq is introduced with

keq =
H2/3

n2
1

[(
∂h
∂x

)2
1
n4
+
(
∂h
∂y

)2
1
n4

]1/4
=
H2/3

n2
1

Ss1/4
(25)

so that the velocities can be expressed as

u = −
∂h

∂x
keq (26)

v = −
∂h

∂y
keq (27)

Now using these expressions for velocities in the mass balance equation (equation
19) yields the governing equation

∂h

∂t
+

∂

∂x

(

keq
∂h

∂x
H

)

+
∂

∂y

(

keq
∂h

∂y
H

)

= Qρ (28)

which is similar to a flow equation employed to solve 2-dimensional unconfined
flow or unsaturated flow using Richards equation. The equation is therefore easy
to implement in an existing groundwater flow model.
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Chézy-coefficient

Another formula relating water depth to flow velocity is the Chézy-formula which
in addition to the Manning-formula is often being used in open channel flow
calculations. Both involve empirically determined roughness parameters, the
Chézy-coefficient C and the Manning-coefficient n. For open channel flow they
are related with

C = R
1

6 ∗ n−1

where R is the hydraulic radius R = A/P where A is the wetted cross-sectional
area and P is the wetted perimeter. Overland flow resembles a wide channel with
a channel width b much bigger than the water depth H (b >> H). For that
case the hydraulic radius tends toward H so that the ’conductivity equivalent’
Keq in equation 25 can also be expressed in terms of C using

n = H
1

6C−1

Analytical solutions

As overland flow resembles a wide channel with a channel width much bigger than
the water depth we can use an analytical solution derived from 1-dimensional free
surface channel flow. According to Rijn (1986) there is an analytical solution to
the steady state flow equation for the special case of flow over a horizontal bed
given by

x1 = x0 +
C2

g
(H1 −H0)−

C2

4q2
(H4

1 −H4
0 ) (29)

where x0 is the location where the boundary condition H = H0 is known and x1
is the location where the water depth H is equal to H1.

Boundary conditions

A minimum specific energy or specific head is required to maintain a given flow in
a given shape of cross section. The water depth at the minimum specific energy
is called critical depth Hc. If the water depth is bigger than the critical depth
we have a subcritical flow regime. According to Jain (2001) or Rijn (1986) the
critical depth for rectangular channels can be written as

Hc =
3

√

q2

g
(30)

Using that equation we can therefore define a dynamic boundary condition at an
outflow point under the assumption of a subcritical flow regime.
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The flow upstream from control structures such as weirs, spillways and sluice
gates is also subcritical. A unique relation between the elevation of the water
surface at a particular section and the discharge, similar to that between discharge
and critical depth, exists for these structures (see Jain (2001) for details). This
relation can also serve as a boundary condition in channel flow computations.

Due to local irregularities in the land surface elevation a minimum water depth is
required before overland flow is initiated. Hence a minimum water depth, which
reflects local storage, can be specified.

2.4 Channel flow

Channel flow comprises flow of water in rivers, canals, sewers and drains. It
controls surface runoff from rainfall over land, river stage during floods and the
behavior of irrigation networks and therefore constitutes an important part of
the hydrological cycle. This section contains a description of the mathematical
model of channel flow.

Mathematical model

To describe river flow the shallow water equations (see equations 19, 20 and 21)
are used in a one-dimensional form. For channel flow the equations are derived
by averaging the Navier-Stokes equations over the river cross-section (see Rijn
(1986), Vreugdenhil (1994) or Jain (2001) for details). The one-dimensional
shallow water equations can now be written in terms of cross sectional area A
and volumetric discharge Q as primary variables

∂A

∂t
+
∂Q

∂s
= 0 (31)

∂

∂t

(
Q

A

)

+
∂

∂s

(

Q2

2A2
+ gh(s, A)

)

= g(S0 − Sf ) (32)

or in terms of water depth h

∂

∂t
A(s, h) +

∂

∂s
[A(s, h)u] = 0 (33)

A(s, h) = a(s)h+ b(s)h2 (34)

and velocity v, respectively

a
∂h

∂t
+ b

∂h2

∂t
+

∂

∂s
(au h+ bu h2) = 0 (35)
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(a+ 2bh)
∂h

∂t
+

∂

∂s
(au h+ bu h2) = 0 (36)

∂u

∂t
+

∂

∂s

(

u2

2
+ gh

)

= g(S0 − Sf ) (37)

∂u

∂t
+ u

∂u

∂s
+ g

∂h

∂s
= g(S0 − Sf ) (38)

Note that the velocity can be regarded as a scalar function along the river line.
We use the h−v formulation to be consistent with the subsurface flow equations.
For steady state flow the equations can be further simplified, i.e. time derivatives
are zero and discharge is assumed to be constant so that

∂

∂s

(

u2

2
+ gh

)

= g(S0 − Sf ) (39)

The velocity is then simply a function of water depth.

u =
Q

A(h)
(40)

Substituting this relationship into equation 39 an expression for the water depth
can be obtained, which is non-linear with respect to h.

d

ds

(

Q2

2A2(s, h)
+ gh

)

= gS0 − gSf (s, h) (41)

Details of the river flow model can be found in Liedl (2004).
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3 Numerical methods

The governing equations describing the different non-linear subsurface and sur-
face water processes described in the previous section cannot be solved as they
stand. Especially for problems with complex geometry or changing boundary
conditions, exact solutions usually do not exist, and approximate solutions must
be obtained. For such problems the use of numerical methods is advantageous.
Fig. 3 gives an overview on a variety of different approximation methods.

To obtain a numerical approach of the surface- and subsurface processes given
in a hydrosystem a combination of finite element method and finite difference
method is applied. The equations describing the porous medium processes
groundwater flow and transport as well as overland flow (equations 1, 3 and
28) are solved using the finite element method. The equation describing channel
flow (equation 41) is solved using the finite difference method. Both method are
described in the next sections.

Figure 3: Overview of approximation methods
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3.1 Finite element method

Different numerical procedures have been proposed to solve the shallow water
equations. The method used by Xanthopoulos and Koutitas (1976) is based on a
integrated finite difference scheme, Garcia and Kahawita (1989) Zang and Cundy
(1989) Feng and Molz (1997), Fiedler and Ramirez (2000), methods are based
on the MacCormack finite difference scheme, Galand and Hervouet (1991) use
finite elements, Giammarco et al. (1996) and Hydrosphere (2004) use a control
volume finite elements scheme and Zhao et al. (1994) the finite volume method.

3.1.1 Method of weighted residuals

The equations describing the processes are transformed to an equivalent integral
formulation based on the method of weighted residuals (MWR). In the MWR, an
approximate solution to the problem is defined. Let’s assume that the unknown
function within the whole domain can be represented by a trial solution û

u ≈ û(x) =
m∑

i=1

φi(x)Ci

where φi(x) are interpolation functions, Ci are unknown parameters, m is the
number of grid points. If an approximate solution û is substituted into the
original differential equation L(u) = 0 the differential equation is no longer
satisfied exactly and there is a residual R due to the approximation.

R(t, x) = L(u)− L(û) 6= 0

We now force the weighted average of the residuals for each node in the finite
element mesh to equal zero

∫

Ω

ωiR(t, x)dΩ =
∫

Ω

ωiL(û)dΩ = 0

where ωi are weighting functions. This provides us with an integral formulation
of the governing equations. As an example we take the governing flow equation
(equation 1) as an example

∫

Ω
ωi

[

Sp0
∂p̂

∂t
+∇ ·

(

−
k

µ
· (∇p̂− ρg)

)]

dΩ =
∫

Ω
ωiQρdΩ

The unknown function is approximated by a trial solution. Note that in the
following we use Einsteins summation convention for repeating indices.

p̂(t, xα) =
m∑

j=1

φj(xα) pj(t) ≡ φj(xα) pj(t)
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According to the Galerkin method we use identical weighting ωi(x) and interpo-
lation functions φi(x) leading to

∫

Ω
φi

[

Sp0φj
dpj
dt
−

∂

∂xα

(

kαβ
µ
(
∂φj
∂xβ

pj + ρg
∂φj
∂xβ

zj)

)]

dΩ =
∫

Ω
φiQρdΩ

Partial integration φ∇A = ∇(φA)− A∇φ and the Gauss-Ostrogradskian inte-
gral theorem are used to reduce the order of the derivatives (see Appendix 9.2
for details)

∫

Ω

[

φiS
p
0φj

dpj
dt

+
∂φi
∂xα

(

kαβ
µ
(
∂φj
∂xβ

pj + ρg
∂φj
∂xβ

zj)

)]

dΩ

= −
∫

∂Ω
φiq

F
n dS +

∫

Ω
φiQρdΩ

with the outward flux vector

qFn = −
kαβ
µ
(
∂p̂

∂xβ
+ ρg

∂z

∂xβ
)nα

We rearrange the above equation to put the unknowns terms only to the left
hand side.

∫

Ω
φi

[

Sp0φj
dpj
dt

+
∂φj
∂xα

kαβ
µ

∂φj
∂xβ

pj

]

dΩ

= −
∫

Ω
φi
∂φj
∂xα

kαβ
µ
ρg
∂φj
∂xβ

zjdΩ−
∫

∂Ω
φiq

F
n dS +

∫

Ω
φiQρdΩ

The above equation forms a global system of equations where the number of
equations corresponds to the number of grid points.

CF
ij

dpj
dt

+KF
ijpj = rFi i, j = 1, .., np (42)

with

CF
ij =

∫

Ω
φiS

p
0φj dΩ

KF
ij =

∫

Ω

∂φi
∂xα

kαβ
µ

∂φj
∂xβ

dΩ

rFi = −ρgKF
ijzi −

∫

∂Ω
φiq

F
n dS +

∫

Ω
φiQρdΩ

where CF
ij is the fluid capacitance matrix, KF

ij is the fluid advection matrix and
rFi is the right hand side (RHS) vector for fluid flow. Likewise, starting from the
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differential form of the governing equation for mass transport written in terms of
mass fractions ω the method of weighted residuals leads to a system of algebraic
equations given below

CT
ij

dρωj
dt

+ (BT
ij +DT

ij)ρωj = rTi (43)

with

CT
ij =

∫

Ω
φinφj dΩ

BT
ij =

∫

Ω
φi
∂(qαφj)

∂xα
dΩ

DT
ij =

∫

Ω

∂φi
∂xα

(nDαβ)
∂φj
∂xβ

dΩ

rTi =
∫

∂Ω
φiq

T
n dS +

∫

Ω
φi(nRd

A

V
Cs)dΩ

where CT
ij is the tracer capacitance matrix, BT

ij is the tracer advection matrix,
DT
ij is the tracer diffusion matrix, rTi is RHS vector for tracer transport and qTn

is the tracer flux vector

qTn = nDαβ
∂ρωj
∂xβ

nα

Starting with the governing equation for overland flow the MWR yields

CO
ij

dpj
dt

+KO
ijpj = rOi i, j = 1, .., np (44)

with

CO
ij =

∫

Ω
φiφj dΩ

KO
ij =

∫

Ω

∂φi
∂xα

H5/3

n2
1

Ss1/4
∂φj
∂xβ

dΩ

rOi = −
∫

∂Ω
φiq

O
n dS +

∫

Ω
φiQρdΩ

where CO
ij is the overland flow capacitance matrix, KO

ij is the overland flow
advection matrix and rOi is the right hand side (RHS) vector for overland flow.
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3.1.2 Domain decomposition

Decomposition of the computation domain into finite elements means that the
global matrices can be composed by their element contributions. The interpola-
tion functions φ now correspond to individual elements and shape functions N
are used for interpolation at the element level. Now the element matrices for
fluid flow can be written down

CeF
ij =

∫

Ωe
NiS

p
0Nj dΩ

e (45)

KeF
ij =

∫

Ωe

∂Ni

∂xα

kαβ
µ

∂Nj

∂xβ
dΩe (46)

reFi = −ρgKeF
ij zi −

∫

∂Ωe
Niq

F
n dS

e +
∫

Ωe
NiQρdΩ

e (47)

The element matrices for tracer transport are

CeT
ij =

∫

Ωe
φinφj dΩ

e (48)

BeT
ij =

∫

Ωe
φi
∂(qαφj)

∂xα
dΩe (49)

DeT
ij =

∫

Ωe

∂φi
∂xα

(nDαβ)
∂φj
∂xβ

dΩe (50)

reTi =
∫

∂Ωe
φiq

T
n dS

e +
∫

Ω
φi(nRd

A

V
Cs)dΩ

e (51)

The element matrices for overland flow are accordingly

CeO
ij =

∫

Ωe
NiNj dΩ

e (52)

KeO
ij =

∫

Ωe

∂Ni

∂xα

H5/3

n2
1

Ss1/4
∂Nj

∂xβ
dΩe (53)

reOi = −
∫

∂Ωe
Niq

O
n dS

e +
∫

Ωe
NiQρdΩ

e (54)

3.1.3 Evaluation of element matrices

The standard procedure for integration of element matric expressions is the Gauss
quadrature. The procedure is explained in general and applied to evaluate the
overland flow advection matrix in this section. The same method is applied to
the evaluation of element matrices of the prism elements described in section
3.3.2.
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Gauss quadrature

In this method a numerical approximation to the integral over an interval is
obtained by computing the weighted sum of values of the function for specific
points on the interval. The equation for Gauss quadrature is

∫ 1

−1
f(r)dr =

Nr∑

i=1

Wi(ri)f(ri)

where Wi(ri) is the weight assigned to the value of the function f at the Gauss
point r = ri and Nr is the number of Gauss points on the interval. The deriva-
tives of the interpolation functions are given in terms of global coordinates (x,y,z),
but we can use a coordinate transformation of the form

x = f(r) , y = f(s) , z = f(t)

to rewrite the interpolation functions and their derivatives in terms of the local
coordinates(r,s,t). We need the Jacobian matrix of the coordinate transformation
[J3D] and its determinant det[J3D].

For the overland flow advection matrix KO
ij the numerical approximation can now

be written as

KO
ij =

∫

Ω

∂Ni

∂xα

H5/3

n2
1

Ss1/4
∂Nj

∂xβ
dΩ

=
∫ 1

−1

∫ 1

−1

∂Ni

∂xα
[J−1
2D ]

TH
5/3

n2
1

Ss1/4
∂Nj

∂xβ
[J−1
2D ] det[J2D] drds

=
Nr∑

i=1

Ns∑

j=1

Wi(ri)Wj(sj)
∂Ni

∂xα
[J−1
2D ]

TH(ri, sj)
5/3

n2
1

Ss(ri, sj)1/4
∂Nj

∂xβ
[J−1
2D ] det[J2D]

Friction slope Ss(ri, sj) and water depth H(ri, sj) are approximated for each
Gauss point by the expressions

Ss(ri, sj) =
1

n4

(
Ne∑

i=1

∂Ni

∂x
hi

)2

+
1

n4

(
Ne∑

i=1

∂Nj

∂y
hi

)2

and

H(ri, sj) = NiHi

where Ne is the number of element nodes. During the testing procedure this
approximation of H produced non physical oscillations in the solution so that
an upstream weighting was introduced to evaluate H. This lead to a smooth
solution as described in section 5.4.
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Handling nonlinearity

The graph in Fig. 4 displays values of the conductivity equivalent keq for different
water depth and different Manning coefficients. An increase of the water depth
of one order of magnitude leads to an increase of the conductivity equivalent of
almost two orders of magnitude. Hence, we have a highly nonlinear process that
calls for an automatic time stepping scheme (Jaber and Mohtar (2003)) and a
Newton-Raphson iteration in order to reduce computation time. However, as
a starting point we use a simple Picard iteration using fixed time steps. Both
method are described in section 3.5
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Figure 4: Values for the conductivity equivalent keq for different water depth and
different Manning coefficients.

There are two different options to deal with the critical depth boundary condition.
In the first option the depth is updated in every nonlinear iteration. In the second
scheme, implemented to stabilize the system, the boundary condition is updated,
only after a convergence criterium has been met. In both schemes the head of
the previous nonlinear iteration is used to calculate the flux following the critical
depth equation 30 , which is than assigned as sink terms.

3.2 Finite element library

The finite element library consists of linear elements, triangles, quadrilaterals,
tetrahedrons, hexahedra, and triangular prisms. All elements can be used in
combination within one mesh as shown in Fig. 5. In this way linear elements
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Figure 5: Finite element library and combination of different elements

can be used to model channel flow or the unsaturated zone, triangles for over-
land flow, triangular prisms for saturated groundwater flow and quadrilaterals for
fracture flow.

3.3 Triangular prismatic elements

When selecting an appropriate element type out of the finite element family (see
Fig. 5) the geometry of the problem domain, the required accuracy and the
complexity of the element matrix computation must be taken into consideration.

Modelling regional three-dimensional groundwater problems involves the repre-
sentation of geological systems, i.e. very often layered systems, with varying
thicknesses of different layers with irregular horizontal boundaries. Those sys-
tems can best be modelled using triangular prismatic (or pentahedral) elements:
Layers of these elements represent geological formations so that system bound-
aries can be easily displayed and checked in vertical cross sections. Irregular
horizontal boundaries can easily be formed using triangular shapes without the
need of refining the grid in order to approximate the boundary as would be the
case with hexahedral elements. Rather than using a large number of hexahedral
elements it is more computationally efficient to use triangular prismatic elements.
The required accuracy of the calculation can be met by using the appropriate
horizontal mesh density. If vertical processes need to be modelled accurately a
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prism layer can be further subdivided into more layers, i.e. the vertical resolution
can be improved easily.

If we assume that bottom and top of the triangular prismatic elements are hor-
izontal their element matric expressions (equations 45 to 51) can be integrated
analytically. Hence, the numerical integration is not necessary so that the com-
putational effort is significantly reduced in comparison to hexahedral elements.
If, for example, three Gauss points for the horizontal coordinate direction and
two for the vertical component are used for the numerical approximation of the
element matrix of a triangular prismatic element the expressions have to be eval-
uated 6 times. Clearly the reduction of computational effort in the formulation
of element characteristics is especially an advantage if it comes to large scale
groundwater models or if nonlinearities as unconfined flow or density dependent
flow have to be considered. Both nonlinearities may play a role in the study
described by Beinhorn et al. (2004), see list of publications, section 9.8.

As a first step the routines for numerical integration of element matrix expres-
sions have been implemented thus providing a basis for checking element matrices
calculated analytically at a later stage. The work done with respect to the nu-
merical integration is documented in Beinhorn and Kolditz (2003a), see list of
publications, section 9.8. In a second step the analytical integration has been im-
plemented. The technique in principle has been used as early as 1984 by Huyakorn
and Thomas (1984) there referred to as ’influence coefficient’ technique. Influ-
ence coefficient matrices were presented for linear rectangular elements. At a
later stage Huyakorn et al. (1986) presented coefficient matrices for linear rect-
angular prism elements and linear triangular prism elements for fluid flow. In
Beinhorn and Kolditz (2003b) (see list of publications in the appendix, section
9.8) the matrice expressions are derived in detail for fluid flow as well as tracer
transport.

As a first step the routines for numerical integration of element matrix expressions
have been implemented thus providing a basis for checking element matrices
calculated analytically at a later stage. The work done with respect to the
numerical integration is documented in the following section. Section 3.3.3 deals
with the analytical integration of the element matric expressions.

3.3.1 Element geometry

The geometry of a triangle based prismatic element in three-dimensional space
is displayed in Fig. 6.
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Figure 6: Triangular prismatic element, global and local coordinates, Kolditz
(2002)

3.3.2 Element matrices, numerical approximation

Shape functions The shape functions for three-dimensional prisms based on
triangles are given by (see Diersch (2001b))

N1 =
1

2
(1− r − s)(1 + t) N4 =

1

2
(1− r − s)(1− t)

N2 =
1

2
r(1 + t) N5 =

1

2
r(1− t)

N3 =
1

2
s(1 + t) N6 =

1

2
s(1− t)

Derivatives of shape functions are

∇N =







∂N1

∂r

∂N2

∂r

∂N3

∂r

∂N4

∂r

∂N5

∂r

∂N6

∂r
∂N1

∂s

∂N2

∂s

∂N3

∂s

∂N4

∂s

∂N5

∂s

∂N6

∂s
∂N1

∂t

∂N2

∂t

∂N3

∂t

∂N4

∂t

∂N5

∂t

∂N6

∂t







=
1

2






−(1 + t) (1 + t) 0 −(1− t) (1− t) 0
−(1 + t) 0 (1 + t) −(1− t) 0 (1− t)
(1− r − s) r s −(1− r − s) −r s






Gauss quadrature When the element matrices of a prismatic elements have
to be evaluated we are faced with an integration with respect to a volume. The
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standard procedure is to use the method of Gauss quadrature. In this method a
numerical approximation to the integral over an interval is obtained by computing
the weighted sum of values of the function for specific points on the interval.
The equation for Gauss quadrature is

∫ 1

−1
f(r)dr =

Nr∑

i=1

Wi(ri)f(ri)

where Wi(ri) is the weight assigned to the value of the function f at the Gauss
point r = ri and Nr is the number of Gauss points on the interval. In three
dimensions the equation for Gauss quadrature is

∫ 1

−1

∫ 1

−1

∫ 1

−1
f(r, s, t)drdsdt =

Nr∑

i=1

Ns∑

j=1

Nt∑

k=1

Wi(ri)Wj(sj)Wk(tk)f(ri, sj, tk)

Locations of Gauss points and values of weights were chosen as given in Ratke
et al. (1996)

GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8

r 1/3 3/5 1/5 1/5 1/3 3/5 1/5 1/5
s 1/3 1/5 3/5 1/5 1/3 1/5 3/5 1/5

t
√

1/3
√

1/3
√

1/3
√

1/3 −
√

1/3 −
√

1/3 −
√

1/3 −
√

1/3

WiWj −9/32 25/96 25/96 25/96 −9/32 25/96 25/96 25/96
Wk 1 1 1 1 1 1 1 1

Coordinate transformation The derivatives of the interpolation functions are
given in terms of global coordinates (x,y,z), but we can use a coordinate trans-
formation of the form

x = f(r) , y = f(s) , z = f(t)

to rewrite the interpolation functions and their derivatives in terms of the local
coordinates(r,s,t). We need the Jacobian matrix of the coordinate transformation
[J3D] and its determinant det[J3D].

Fluid capacitance matrix The capacitance matrix is a matrix of the type
C-type integral:

∫

Nf(ui)NdΩ. Using coordinate transformation and Gauss
quadrature as outlined above one obtains

Cij =
∫

Ω
NiS0Nj dΩ = S0

∫ 1

−1

∫ 1

−1

∫ 1

−1
NiNj det[J3D] drdsdt

= S0
Nr∑

i=1

Ns∑

j=1

Nt∑

k=1

Wi(ri)Wj(sj)Wk(tk)NiNj det[J3D]
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Tracer capacitance matrix The tracer capacitance matrix is a matrix of the
type C-type integral:

∫

Nf(ui)NdΩ. Using coordinate transformation and Gauss
quadrature as outlined above one obtains

Cij =
∫

Ω
NiNj dΩ =

∫ 1

−1

∫ 1

−1

∫ 1

−1
NiNj det[J3D] drdsdt

=
Nr∑

i=1

Ns∑

j=1

Nt∑

k=1

Wi(ri)Wj(sj)Wk(tk)NiNj det[J3D]

Fluid conductance matrix The conductivity matrix is a matrix of the K-
type integral:

∫

∇Nf(ui)∇NdΩ. Using coordinate transformation and Gauss
quadrature as outlined above one obtains

Kij =
∫

Ω

∂Ni

∂xα

(

krelkαβ
µ

)

∂Nj

∂xβ
dΩ

=
∫ 1

−1

∫ 1

−1

∫ 1

−1

∂Ni

∂xα
[J−1
3D ]

T

(

krelkαβ
µ

)

∂Nj

∂xβ
[J−1
3D ] det[J3D] drdsdt

=
Nr∑

i=1

Ns∑

j=1

Nt∑

k=1

Wi(ri)Wj(sj)Wk(tk)
∂Ni

∂xα
[J−1
3D ]

T

(

krelkαβ
µ

)

∂Nj

∂xβ
[J−1
3D ] det[J3D]

Tracer diffusion/dispersion matrix The tracer diffusion/dispersion matrix is
a matrix of the K-type integral:

∫

∇Nf(ui)∇NdΩ. Using coordinate transfor-
mation and Gauss quadrature as outlined above one obtains

Dij =
∫

Ω

∂Ni

∂xα
(Dαβ)

∂Nj

∂xβ
dΩ

=
∫ 1

−1

∫ 1

−1

∫ 1

−1

∂Ni

∂xα
[J−1
3D ]

T (Dαβ)
∂Nj

∂xβ
[J−1
3D ] det[J3D] drdsdt

=
Nr∑

i=1

Ns∑

j=1

Nt∑

k=1

Wi(ri)Wj(sj)Wk(tk)
∂Ni

∂xα
[J−1
3D ]

T (Dαβ)
∂Nj

∂xβ
[J−1
3D ] det[J3D]

Tracer advection matrix The advection matrix is a matrix of the B-type
integral:

∫

Nf(ui)∇NdΩ written as

BeT
ij =

∫

Ω
Nivα

∂Nj

∂xα
dΩ =

∫ 1

−1

∫ 1

−1

∫ 1

−1
Nivα

∂Nj

∂xα
[J−1
3D ] det[J3D] drdsdt

=
Nr∑

i=1

Ns∑

j=1

Nt∑

k=1

Wi(ri)Wj(sj)Wk(tk)Nivα
∂Nj

∂xα
[J−1
3D ] det[J3D]
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Gravity forces Gravity forces are written as a matrix of g-type integral:
∫

∇Nf(ui)dΩ which can be written as

g = K × (z)

3.3.3 Element matrices, analytical approximation

Shape functions The shape functions for three-dimensional prisms based on
triangles can be derived by taking the product of the shape functions for triangles
N∆ with that of line elements N t as outlined in Kolditz (2002)

N1 = N∆
1 N

t
1 , N2 = N∆

2 N
t
1 , N3 = N∆

3 N
t
1

N4 = N∆
1 N

t
2 , N5 = N∆

2 N
t
2 , N6 = N∆

3 N
t
2

where the shape functions for linear elements are as follows in local coordinates

N t
1(t) =

1− t

2
, N t

2(t) =
1 + t

2

Triangles are isoparametric elements so that their shape functions can be given
in physical coordinates

N∆
1 (x, y) =

1

2A
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y]

N∆
2 (x, y) =

1

2A
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y]

N∆
3 (x, y) =

1

2A
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y]

Integration When the element matrices of a prismatic elements have to be
evaluated we are faced with an integration with respect to a volume. The cal-
culations are performed following the procedure given below

The volume integral of the product of the two functions f1 and f2 is separated
into an area integral and a line integral

∫

Ω
f1(N

∆
1 , N

∆
2 , N

∆
3 )f2(Nz)dV =

∫

Ω
f1f2dAdz =

∫

∆
f1dA×

∫

z
f2dz (55)

The right hand side integral can be solved trivially after a coordinate transfor-
mation according to

∫

z
f2dz =

∫ 1

−1
f2 det[J

z
3D] and

∫

z

∂f2
∂z

=
∫ 1

−1
[Jz3D]

−1f2 det[J
z
3D](56)
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has been performed. The Jacobian [J z3D] for the transition from global to local
coordinates or vice versa is defined as

∂N t

∂t
=
∂N t

∂z

∂z

∂t
=
∂N t

∂z
[Jz3D] or

∂N t

∂z
=
∂N t

∂t

∂t

∂z
=
∂N t

∂t
[Jz3D]

−1

where dz represents the thickness of the element. The element thickness is
approximated using the edge length |zi| in combination with a weighting factor
given by local area coordinates so that [J z3D]

−1 can be written as

[Jz3D]
−1 =

dt

dz
=

2

∆z
=

2A

A1|z14|+ A2|z25|+ A3|z36|
=

2

N1|z14|+N2|z25|+N3|z36|

Written in matrix form:







N1

N2

N3







=
1

2A






x2y3 − x3y2 y2 − y3 x3 − x2
x3y1 − x1y3 y3 − y1 x1 − x3
x1y2 − x2y1 y1 − y2 x2 − x1












1
x
y







(57)

Fig. 7 shows sketches of the plots of these functions as illustration. The deriva-
tives of the shape functions are

∂N

∂x
=







∂N1

∂x
=
y2 − y3
2A

∂N2

∂x
=
y3 − y1
2A

∂N3

∂x
=
y1 − y2
2A







∂N

∂y
=







∂N1

∂y
=
x3 − x2
2A

∂N2

∂y
=
x1 − x3
2A

∂N3

∂y
=
x2 − x1
2A







(58)

The determinant of the Jacobian det[J z3D] is given by

det[Jz3D] =
N1|z14|+N2|z25|+N3|z36|

2
= [Jz3D]

The integration with respect to the triangle area of the left hand side integral of
equation 55 can be done using a formula given in Zienkiewicz and Taylor (2000)

∫

∆
Na
1N

b
2N

c
3dA =

a!b!c!

(a+ b+ c+ 2)!
2A (59)
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Figure 7: Graphical representation of triangle shape functions

Fluid capacitance matrix The capacitance matrix is a matrix of the type
C-type integral:

∫

Nf(ui)NdΩ. Using equations 55 and 56 one obtains

Cij =
∫

Ω
NiS0Nj dΩ

= S0

∫

V
N∆
i N

∆
j N

t
iN

t
j dV = S0 det[J

z
3D]

∫

∆
N∆
i N

∆
j dA

︸ ︷︷ ︸

C∆

×
∫ 1

−1
N t
iN

t
jdt

︸ ︷︷ ︸

Ct

with Ct the linear component and C∆ the triangle component of the capacitance
matrix. The linear component can be integrated trivially

Ct =
1

3













2 2 2 1 1 1
2 2 2 1 1 1
2 2 2 1 1 1
1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2













(60)

The triangle component is given by an 6x6 matrix expressed as

C∆ =
∫

∆

[

c∆ c∆

c∆ c∆

]

dA (61)
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where the 3x3 components c∆ are given by

c∆ij =
∫

∆
N∆
i N

∆
j

Using equation 59 the integration over the triangular region yields

c∆ =






2 1 1
1 2 1
1 1 2






1

12
A

Hence, the element capacitance matrix for a prismatic element can be written as

C = S0 det[Jz3D] C∆ ×Ct

Tracer capacitance matrix The tracer capacitance matrix is a matrix of the
type C-type integral:

∫

Nf(ui)NdΩ. Using equations 55 and 56 one obtains

Cij =
∫

Ω
NiNj dΩ

=
∫

V
N∆
i N

∆
j N

t
iN

t
j dV = det[Jz3D]

∫

∆
N∆
i N

∆
j dA

︸ ︷︷ ︸

C∆

×
∫ 1

−1
N t
iN

t
jdt

︸ ︷︷ ︸

Ct

with Ct the linear component and C∆ the triangle component of the capacitance
matrix as derived above (equations 60 and 61).

Fluid conductance matrix The conductivity matrix is a matrix of the K-type
integral:

∫

∇Nf(ui)∇NdΩ written as

Kij =
∫

Ω

∂Ni

∂xα

(

krelkαβ
µ

)

∂Nj

∂xβ
dΩ

With only the main diagonal of the permeability tensor 6= 0 the expression reduces
to

Kij =

(

krelkxx
µ

)
∫

Ω

∂Ni

∂x

∂Nj

∂x
dΩ

︸ ︷︷ ︸

Kxx
ij

+

(

krelkyy
µ

)
∫

Ω

∂Ni

∂y

∂Nj

∂y
dΩ

︸ ︷︷ ︸

Kyy
ij

+

(

krelkzz
µ

)
∫

Ω

∂Ni

∂z

∂Nj

∂z
dΩ

︸ ︷︷ ︸

Kzz
ij
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The components Kxx
ij , K

yy
ij and Kzz

ij are again evaluated using equations 55 and
56. One obtains

Kxx
ij =

∫

Ω

∂Ni

∂x

∂Nj

∂x
dΩ = det[Jz3D]A

∂N∆
i

∂x

∂N∆
j

∂x
︸ ︷︷ ︸

K∆x

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

(62)

Kyy
ij =

∫

Ω

∂Ni

∂y

∂Nj

∂y
dΩ = det[Jz3D]A

∂N∆
i

∂y

∂N∆
j

∂y
︸ ︷︷ ︸

K∆y

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

(63)

Kzz
ij =

∫

Ω

∂Ni

∂z

∂Nj

∂z
dΩ = [Jz3D]

−1
∫

∆
N∆
i N

∆
j dA

︸ ︷︷ ︸

C∆

×
∫ 1

−1

∂N t
i

∂t

∂N t
j

∂t
dt (64)

with Ct the linear component of the capacitance matrix and C∆ the triangle
component of the capacitance matrix as already given in equations 60 and 61.
The left hand side integral of equations 62 and 63 can be written as

K∆x =

[

k∆x k∆x

k∆x k∆x

]

, K∆y =

[

k∆y k∆y

k∆y k∆y

]

Substituting the derivatives of the shape functions the expressions k∆x and k∆y

yield the 3x3 matrices

k∆x =
1

4A2






(y2 − y3)(y2 − y3) (y2 − y3)(y3 − y1) (y2 − y3)(y1 − y2)
(y3 − y1)(y2 − y3) (y3 − y1)(y3 − y1) (y3 − y1)(y1 − y2)
(y1 − y2)(y2 − y3) (y1 − y2)(y3 − y1) (y1 − y2)(y1 − y2)






k∆y =
1

4A2






(x3 − x2)(x3 − x2) (x3 − x2)(x1 − x3) (x3 − x2)(x2 − x1)
(x1 − x3)(x3 − x2) (x1 − x3)(x1 − x3) (x1 − x3)(x2 − x1)
(x2 − x1)(x3 − x2) (x2 − x1)(x1 − x3) (x2 − x1)(x2 − x1)






Now only the right hand side integral of equation 64 needs to be written down
and there is a complete expression for the conductance matrix.

∫ 1

−1

∂N t
i

∂t

∂N t
j

∂t
dt =

1

2













1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1












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Tracer diffusion/dispersion matrix The tracer diffusion/dispersion matrix is
a matrix of the K-type integral:

∫

∇Nf(ui)∇NdΩ written as

Dij =
∫

Ω

∂Ni

∂xα
(Dαβ)

∂Nj

∂xβ
dΩ

Dij = Dxx

∫

Ω

∂Ni

∂x

∂Nj

∂x
dΩ

︸ ︷︷ ︸

Dxx
ij

+Dxy

∫

Ω

∂Ni

∂x

∂Nj

∂y
dΩ

︸ ︷︷ ︸

Dxy
ij

+Dxz

∫

Ω

∂Ni

∂x

∂Nj

∂z
dΩ

︸ ︷︷ ︸

Dxz
ij

+Dyx

∫

Ω

∂Ni

∂y

∂Nj

∂x
dΩ

︸ ︷︷ ︸

Dyx
ij

+Dyy

∫

Ω

∂Ni

∂y

∂Nj

∂y
dΩ

︸ ︷︷ ︸

Dyy
ij

+Dyz

∫

Ω

∂Ni

∂y

∂Nj

∂z
dΩ

︸ ︷︷ ︸

Dyz
ij

+Dzx

∫

Ω

∂Ni

∂z

∂Nj

∂x
dΩ

︸ ︷︷ ︸

Dzx
ij

+Dzy

∫

Ω

∂Ni

∂z

∂Nj

∂y
dΩ

︸ ︷︷ ︸

Dzy
ij

+Dzz

∫

Ω

∂Ni

∂z

∂Nj

∂z
dΩ

︸ ︷︷ ︸

Dzz
ij

The 9 components are again evaluated using equations 55 and 56. One obtains

Dxx
ij = det[Jz3D]A

∂N∆
i

∂x

∂N∆
j

∂x
︸ ︷︷ ︸

K∆x

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

= Kxx
ij

Dxy
ij = det[Jz3D]A

∂N∆
i

∂x

∂N∆
j

∂y
︸ ︷︷ ︸

D∆xy

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

Dxz
ij =

∫

∆

∂N∆
i

∂x
N∆
j dA

︸ ︷︷ ︸

D∆xx

×
∫ 1

−1
N t
i

∂N t
j

∂t
dt

Dyx
ij = det[Jz3D]A

∂N∆
i

∂y

∂N∆
j

∂x
︸ ︷︷ ︸

D∆yx

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

Dyy
ij = det[Jz3D]A

∂N∆
i

∂y

∂N∆
j

∂y
︸ ︷︷ ︸

K∆y

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

= Kyy
ij

Dyz
ij =

∫

∆

∂N∆
i

∂y
N∆
j dA

︸ ︷︷ ︸

D∆yz

×
∫ 1

−1
N t
i

∂N t
j

∂t
dt

Dzx
ij =

∫

∆
N∆
i

∂N∆
j

∂x
dA

︸ ︷︷ ︸

D∆zx

×
∫ 1

−1

∂N t
i

∂t
N t
j dt
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Dzy
ij =

∫

∆
N∆
i

∂N∆
j

∂y
dA

︸ ︷︷ ︸

D∆zy

×
∫ 1

−1

∂N t
i

∂t
N t
j dt

Dzz
ij = [Jz3D]

−1
∫

∆
N∆
i N

∆
j dA

︸ ︷︷ ︸

C∆

×
∫ 1

−1

∂N t
i

∂t

∂N t
j

∂t
dt = Kzz

ij

Now only the remaining integrals
∫ 1
−1N

t
i

∂Nt
j

∂t
dt and

∫ 1
−1

∂Nt
i

∂t
N t
j dt have to be

written down and there is a complete expression for the diffusion/ dispersion
matrix.

∫ 1

−1
N t
i

∂N t
j

∂t
dt =

1

2













1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1













(65)

∫ 1

−1

∂N t
i

∂t
N t
j dt =

1

2













1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1













(66)

Tracer advection matrix The advection matrix is a matrix of the A-type
integral:

∫

Nf(ui)∇NdΩ written as

Bij =
∫

Ω
Nivα

∂Nj

∂xα
dΩ

With velocities given in the principal directions the expression reduces to

Bij = vxx

∫

Ω
(N∆

i N
t
i )

∂

∂x
(N∆

j N
t
j ) dΩ

︸ ︷︷ ︸

Bxx
ij

+vyy

∫

Ω
(N∆

i N
t
i )
∂

∂y
(N∆

j N
t
j ) dΩ

︸ ︷︷ ︸

Byy
ij

+vzz

∫

Ω
(N∆

i N
t
i )
∂

∂z
(N∆

j N
t
j ) dΩ

︸ ︷︷ ︸

Bzz
ij

The components Bxx
ij , B

yy
ij and Bzz

ij are again evaluated using equations 55 and
56. One obtains

Bxx
ij = det[Jz3D]

∫

∆
N∆
i

∂N∆
j

∂x
dA

︸ ︷︷ ︸

B∆x

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

(67)
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Byy
ij = det[Jz3D]

∫

∆
N∆
i

∂N∆
j

∂y
dA

︸ ︷︷ ︸

B∆y

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

(68)

Bzz
ij =

∫

∆
N∆
i N

∆
j dA

︸ ︷︷ ︸

C∆

×
∫ 1

−1
N t
i

∂N t
j

∂t
dt (69)

with Ct the linear component of the capacitance matrix and C∆ the triangle
component of the capacitance matrix as already given in equations 60 and 61.
The left hand side integral of equations 67 and 68 can be written as

B∆x =

[

b∆x b∆x

b∆x b∆x

]

, B∆y =

[

b∆y b∆y

b∆y b∆y

]

Integration of expressions b∆x and b∆y over the triangle area using formula 59
yields the 3x3 matrices

b∆x =
∂N∆

j

∂x

∫

∆
N∆
i dA

=






(y2 − y3)
(y3 − y1)
(y1 − y2)











1
1
1






T

1

6
A

b∆y =
∂N∆

j

∂y

∫

∆
N∆
i dA

=






(x3 − x2)
(x1 − x3)
(x2 − x1)











1
1
1






T

1

6
A

Now using equation 65 for the right hand side integral of equation 69 there is a
complete expression for the tracer advection matrix.

Gravity forces Gravity forces are written as a matrix of g-type integral:
∫

∇Nf(ui)dΩ which can be written as

g = K × (z)
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3.4 Finite difference approach for channel flow

According to Jain (2001) the finite difference scheme for the governing equation
(equation 41) using forward differences can be written as

(

Q2

2A2
+ gh

)

i+1

−

(

Q2

2A2
+ gh

)

i

− g
(

S0,i −
Sf,i + Sf,i+1

2

)

(si+1 − si)

= f(hi) = 0

(70)

The non-linearity is resolved by a Newton-Raphson method (see section 3.5.2)

h∗i = hi −
f(hi)

f ′(hi)
(71)

where h∗i and hi denote the result from the current and the previous iterative step,
respectively. Finally the Newton-Raphson scheme yields the following equation
for the determination of the water level.

h∗i = hi −

Q2

2A2
i+1

+ ghi+1 −
Q2

2A2
i

− ghi − g(S0,i −
Sf,i+Sf,i+1

2
)(si+1 − si)

Q2

A3
i

(∂A
∂h
)i − g + gSf,i

[
β
Pi
(∂P
∂h
)i −

1+β
Ai
(∂A
∂h
)i
]

(si+1 − si)
(72)

where P denotes the wetted perimeter and β =2/3 or =1/2, if Manning’s or
Chézy’s friction formula is used. Other forward difference schemes are shortly
presented in the appendix in section 9.7.

3.5 Solving non-linear processes

In this section we present a description of selected iterative methods that are
commonly applied to solve non-linear problems.

• Picard method (fixpoint iteration)

• Newton methods

All methods call for an initial guess of the solution to start with but each algorithm
uses a different scheme to produce a new (and hopefully closer) estimate to the
exact solution. The general idea is to construct a sequence of linear sub-problems
which can be solved with an ordinary linear solver.
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3.5.1 Picard

The general algorithm of the Picard method can be described as follows. We
consider a non-linear equation written in the form

A(x)x− b(x) = 0 (73)

We start the iteration by assuming an initial guess x0 and we use this to evaluate
the system matrix A(x0) as well as the right-hand-side vector b(x0). Thus this
equation becomes linear and it can be solved for the next set of x values.

A(xk−1)xk − b(xk−1) = 0

xk = A−1(xk−1)b(xk−1) (74)

Repeating this procedure we obtain a sequence of successive solutions for xk.
During each iteration loop the system matrix and the right-hand-side vector
must be updated with the previous solution. The iteration is performed until
satisfactory convergence is achieved. A typical criterion is e.g.

ε ≥
‖ xk − xk−1 ‖

‖ xk ‖
(75)

where ε is a user-defined tolerance criterion. For the simple case of a non-linear
equation x = b(x) (i.e. A = I), the iteration procedure is graphically illustrated
in Fig. 8. To achieve convergence of the scheme it has to be guaranteed that
the iteration error

ek =‖ xk − x ‖< C ‖ xk−1 − x ‖
p= ek−1 (76)

or, alternatively, the distance between successive solutions will reduce

‖ xk+1 − xk ‖<‖ xk − xk−1 ‖
p (77)

where p denotes the convergence order of the iteration scheme. It can be shown
that the iteration error of the Picard method decreases linearly with the error
at the previous iteration step. Therefore, the Picard method is a first-order
convergence scheme.

The Picard method is implemented in GeoSys/RockFlow to solve non-linear equa-
tions for unsaturated flow, unconfined flow, density dependent flow, fracture flow
and overland flow.
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y = x

y = b(x)

x1x2 x3x4 x5x6

y

x

Figure 8: Illustration of the Picard iteration method, Kolditz (2002)

3.5.2 Newton-Raphson method

In order to improve the convergence order of non-linear iteration methods, i.e.
derive higher-order schemes, the Newton-Raphson method can be employed. To
describe this approach, we consider once again a non-linear equation.

R(x) = A(x)x− b(x) = 0 (78)

Assuming that the residuum R(x) is a continuous function, we can develop a
Taylor series expansion about any known approximate solution xk. Second- and
higher-order terms are truncated in the following

Rk+1 = Rk +

[

∂R

∂x

]

k

∆xk+1 + 0 (∆x
2
k+1) (79)

The term ∂R/∂x represents tangential slopes of R with respect to the solution
vector and it is denoted as the Jacobian matrix J. As a first approximation
we can assume Rk+1 = 0. Then the solution increment can be immediately
calculated from the remaining terms in equation (79).

∆xk+1 = −J
−1
k Rk (80)

where we have to cope with the inverse of the Jacobian. The iterative approxi-
mation of the solution vector can be computed now from the increment.

xk+1 = xk +∆xk+1 (81)
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x1x2x3x

y

x

Figure 9: Illustration of the Newton-Raphson iteration method, Kolditz (2002)

x1x2x3x

R(x)

xx4x5

Figure 10: Illustration of the modified Newton-Raphson iteration method, Kolditz
(2002)

Once an initial guess is provided, successive solutions of xk+1 can be determined
using equations (80) and (81) (Fig. 9). The Jacobian has to re-evaluated and
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inversed at every iteration step, which is a very time-consuming procedure in fact.
At the expense of slower convergence, the initial Jacobian J0 may be kept and
used in the subsequent iterations. Alternatively, the Jacobian can be updated in
certain iteration intervals. This procedure is denoted as modified or ’initial slope’
Newton method (Fig. 10).

The convergence velocity of the Newton-Raphson method is second-order. It is
characterized by the expression.

‖ xk+1 − x ‖≤ C ‖ xk − x ‖
2 (82)

Overland flow

In order to apply the Newton-Raphson method to the overland flow equation
(equation 28) the expression is written in the finite element notation

∫

Ωe
NiNj dΩ

e

︸ ︷︷ ︸

Cij

dhj
dt

+
∫

Ωe

∂Ni

∂xα
keqH

∂Nj

∂xβ
dΩe

︸ ︷︷ ︸

Kij

hj

= −
∫

∂Ωe
Niq

O
n dS

e +
∫

Ωe
NiQρdΩ

e

︸ ︷︷ ︸

ri

(83)

where Cij is the overland flow capacitance matrix, Kij is the overland flow
advection matrix and r is the right hand side (RHS) vector for overland flow.
The residuum R is given by

Ri = Cij
hj + h0j
∆t

+Kimhm − ri (84)

where h0j is the converged solution of the previous timestep. The tangential slope
of R is given by

J =
dR

dh
:=

∂Ri

∂hj
=
Cij
∆t

+Kij +
∂Kim

∂hj
hm (85)

∂Kij

∂hj
hj =

∫

Ωe

∂Ni

∂xα

∂Nj

∂xβ

d(KeqH)

dh
Nj dΩ

ehj (86)

d(KeqH)

dh
= Keq +H

dKeq

dh

= Keq +H
d

dh

[

H2/3

n2
1

Ss1/4

]

= Keq +H

[

2

3n2
H−1/3 1

Ss1/4
−
H2/3

n2
1

4
Ss−5/4

dSs

dh

]

= Keq
2

3n2
H2/3 1

Ss1/4
+
H5/3

n2
−
1

4
Ss−5/4

dSs

dh
(87)
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and dSs
dh

is evaluated numerically. The new solution vector can now be calculated

hk+1 = hk +∆hk+1 = hk − J
−1
k Rk (88)
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4 Object-oriented approach to process modelling

Object-oriented programming (OOP) methods are becoming more and more im-
portant in scientific computing in order to develop software in teams, and to
be able to extend the code continuously for new applications (Masters et al.
(1997)). The earliest use of OOP was connected with graphical applications and
data visualization. These developments were instigated by natural analogs such
as geometric objects, i.e. circles, triangles, spheres etc., treated as graphic ob-
jects. Another trigger for OOP was the requirement of graphical user interfaces
(GUI) in order to handle more and more complex software. Utilization of OOP in
numerical analysis started in the 1990s (Mackie (1992); Scholz (1992); Zimmer-
mann et al. (1992)). OOP was also successfully introduced in several branches
of computational mechanics, e.g. stress analysis (Dubois-Pelerin and Zimmer-
mann (1993)), structural analysis (Pidaparti and Hudli (1996)), shell structures
(Ohtsubo et al. (1993)), inelastic strain analysis (Mentrey and Zimmermann
(1993)), contact problems (Feng (1995)), fluid dynamics (Peskin and Hardin
(1996), Kolditz (2002)), heat transfer and solidification (Cross et al. (1998)).

In the context of geosystem modelling, we use OOP to face a large variety of
problems in environmental fluid mechanics. These include single or multi phase
phase flow in porous and fractured media, transport of solutes or heat in porous
and fractured media and deformation processes in geotechnical systems. Further-
more, chemical reactions have to be calculated when dealing with contaminated
aquifers.

The purpose of this section is to present an object-oriented design for the imple-
mentation of the finite element method for groundwater resource studies. The
papers Beinhorn and Kolditz (2004a) and Beinhorn and Kolditz (2004b) (see list
of publications, section 9.8) deal also with that issue.

Basic modules of GeoSys (Kolditz et al. (2003)) are the GeoLib, MshLib, and
FEMLib, which can be connected via a Graphical User Interface (GUI). The
modules are described below

4.1 GeoLib

Geometric objects of the GeoLib are points, polylines, surfaces, volumes which
form domains. All these geometric entities are implemented as C++ classes:
CGLPoint, CGLPolyline, CGLSurface, CGLVolume, CGLDomain. Instances
of these objects can alternatively be stored in vectors and lists for convenience
and specific purposes. As an example Fig. 11 shows geometric information of
the hydrogeological system further described in section 6.1 within the framework
of the GUI. A detailed description of the implementation of GeoObjects is given
in Kalbacher et al. (2003b).
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Figure 11: GeoLib containing points,
polylines and surfaces

Figure 12: MshLib containing nodes and
elements

4.2 MshLib

Geometric information forms the basis for mesh generation. For the meshing of
complex geosystems such as fractured and karstified aquifers very flexible mesh
generators are necessary. Currently, following build-in mesh generators can be
used: PrisGen (Kalbacher et al. (2003a)), TetMesh (Manabe et al. (2003)) as
well as open and commercial systems such as gmsh (2004) and gOcad (2004).
Fig. 12 shows the topological information resulting from the geometric data
given in the GeoLib in Fig. 11.

The resulting mesh geometry can be manipulated using mesh operations like the
mapping operation. Here a surface object (SFCObj) is being used to relate mesh
data to a surface data file such as top or bottom of a hydrostratigraphical unit.
An additional operation of the MshLib is vertical mesh refinement. All these
operations of the MshLib are controlled via an GUI as displayed in Fig. 14.

4.3 FEMLib

The FEMLib contains independent units necessary to set up and solve the finite
element problem (see Table 2). As a result of the numerical approximation
method described in section 3, two sets of algebraic equations were derived
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Table 2: RF/RM objects

Acronym Subject Examples

GEO geometric objects points, polylines, surfaces, volumes
ELE elements different finite element types

IC initial conditions ui(t = 0, x)
BC boundary conditions ui(t, x = b)
ST source terms ∇ui(t, x = b)

MAT materials fluid, solid, porous medium properties
NUM numerics parameter of numerical method
TIM time parameter of time discretization

KER kernel finite element matrices
EQS equation system system matrix, solution vector, RHS vector

(equations 43 and 42). The general form of these equation is

Ai(t,x,ui,uj)ui = bi(t,x,ui,uj)

where i, j denote different processes, with Ai system matrix of process i, t time,
x coordinates, ui solution vector (primary variable) of process i, bi RHS vector of
process i. Dependence of process i on process j means coupling, and dependence
of system matrix on solution itself means non-linearity. Now the required data
structure and algorithms can be generalized for every process to be modelled:

1. Initialize equation system and solution vector.

2. Calculate element matrices.

3. Assemble equation system.

4. Incorporate boundary conditions and source terms.

5. Solve equation system.

6. Calculate secondary variables.

7. Store results for next iteration / step.

This approach allows to treat different processes in an object oriented way. Pro-
cesses are implemented as objects (PCS) organized in a class CRFProcess con-
taining all information and data required. Data structures as well as the grid
and time stepping are common for all processes, whereas the parameters, initial
conditions boundary conditions and the type of equations and thus also the solv-
ing techniques used may vary from process to process. Fig. 13 gives a graphical
illustration of the PCS relationships to other objects. Information from these
objects is required to create and solve a process. The most important methods
of the CRFProcess class are:
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Figure 13: Relationships of processes

1 - void CRFProcess:: PCSCreateProcesses(void)

2 - void CRFProcess:: PCSConfigProcess(int pcs_type)

3 - void CRFProcess:: PCSExecuteProcess(EQUATION_SYSTEM *pcs_eqs)

With the first step the data structures of PCS are created: This is basically
the equation system (EQS) and pointers to the basic objects given in Table
2. Depending on the type of process (e.g. flow or tracer transport) the PCS
object is configured in the second function. In this step virtual PCS functions
are overwritten, i.e. a specific function to calculate element matrices is selected.
The processes created are inserted into a list, which is the last step of the pre-
processing part. In the processing part (the third function), PCS instances are
executed with the general steps described above but with specified properties
and methods.

For nonlinear or coupled problems we have to consider process interactions: In
the case of density dependent flow the solution vector for fluid flow p yields
the data for the element resultant advective flux q, which is than needed to
calculate the transport process. The transport process in return delivers mass
fractions ω (or concentrations) which again have an influence on the flow process.
A process must therefore be able to use solution vectors or resultants of other
processes. Hence data access functions to nodes (NOD) and elements (ELE)
were implemented into the CRFProcess class via node and element lists.

As a result we have a very flexible computation scheme concerning the number of
processes and a flexible way to define interaction between processes. An arbitrary
number of processes can be generated, configured and solved so that complex
systems including flow, transport and deformation processes can be modelled
(Kolditz and Bauer (2004)).

Fig. 14 is showing the graphical user interface of GeoSys/RockFlow with the
relationships between the two objects MshLib and GeoLib: A mesh object can be
manipulated using mesh operations like the mapping operation. Here a surface
object (SFCObj) is being used to relate mesh data to a surface data such as top
or bottom of a hydrostratigraphical unit. An additional operation of the MshLib
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is vertical mesh refinement. All these operations of the MshLib are controlled
via the graphical user interface.

Figure 14: Graphical User Interface displaying relationships between GeoLib and
MshLib
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5 Code verification

Model verification concerns the new components included into the GeoSys/RockFlow
software. Tested were the new element type of triangular prismatic elements for
fluid flow, unconfined flow and density dependent flow and also the new over-
land flow component. Where possible the results were compared to analytical
solutions or results calculated using other element types. Results of the overland
flow process were crosschecked with results from the model Hydrosphere (2004)
or solutions given in literature.

5.1 Linear groundwater flow and transport

In the first example groundwater flow through a horizontal bar of 100 m length,
1 m height and 1 m width is considered. A hydrostatic pressure distribution is
assigned on the right hand side, a total flux of 1.157E-06 m3/s is fixed entering
the domain on the left hand side boundary. The conductivity K is 1.00e-12
m2. The resulting pressure distribution meets the result given by Darcy’s law.
Geometry, boundary conditions and the result are displayed in Fig. 15.

In example 2 horizontal groundwater flow is considered. Water is entering the
domain through the hydrostatic pressure distribution assigned on the front right
hand side and leaving the domain through the hydrostatic pressure distribution
assigned on the front left hand side. The resulting pressure distribution meets the
expected results and corresponds to the results given from the example sm2dtri.
Geometry, boundary conditions and the result are displayed in Fig. 16.

Vertical groundwater flow through a bar of 2 m height, 1 m width and 1 m depth
consisting of 4 elements is considered in example 3. The conductivity K is 1.00e-
12 m2. A constant pressure condition is applied at the four nodes at the top. A
total flux of 1.157e-06 m3/s is fixed to enter the domain from below. Care must
be taken to assign the right fluxes considering the number of elements shared
by a node in order to create a homogeneous flow field. Model geometry and
boundary conditions are displayed in Fig. 17. The resulting pressure distribution
meets the result given by Darcy’s law and can be seen in Fig. 18.

The first transport example concerns conservative tracer transport through a uni-
form flow field imposed by assigning appropriate constant head boundary condi-
tion. A constant concentration is set to 100 at the inflow side. The resulting
concentration distribution of the tracer plume is shown in Fig. 19 and has been
tested against an analytical solution. This example has also been tested for flow
along all other coordinate directions and at different angles to the main axis.
This is important to test all 9 components of the tracer diffusion/dispersion ma-
trix given in equation ??. In order to check all components of the transport
equations more efficiently for future software versions the following test example
has been designed:
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In the example shown in Fig. 20 a uniform flow field diagonally through a cube
of 20 m edge length is imposed by assigning appropriate constant heads at the
surfaces. A constant concentration is set to 100 at the right hand side back
corner. The resulting concentration distribution is shown by the isosurfaces in
Fig. 20. As expected a symmetrical plume is pointing diagonally towards the
front bottom left hand side corner.
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5.2 Non-linear groundwater flow

The Henry problem shown in Fig. 23 describes the advance of a saltwater front
in a confined aquifer which was initially saturated with fresh water. The bound-
ary conditions for flow are impermeable boundaries along the top and bottom,
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Figure 20: Tracer transport in a
three-dimensional flow field

hydrostatic pressure along the sea side and a constant flux form the left hands
side. At the left hand side the concentration is zero, at the sea side a normal-
ized concentration of sea water is imposed. Detailed information on simulation
parameters are given in Kolditz et al. (1998). The flow patterns associated with
the standard Henry problem are largely dictated by the boundary forcing and not
necessarily a result of density-dependent effects (Simpson and Clement (2004)
and Simpson and Clement (2003)). However it is often used as a benchmark
for variable density flow and transport and in this study serves to show that the
non-linear iteration works in principle. The resulting concentration distribution
shown in Fig. 23 is in good agreement with work quoted in Kolditz et al. (1998).

The following example was designed to test the new moving mesh approach to
unconfined groundwater flow in an two-dimensional test case displayed in Fig.
21: An earth dam separates two water reservoirs at different piezometric heads.
In addition to the phreatic surface there is a seepage face across which water
may leave the domain at atmospheric pressure. The seepage face is represented
by a conditional fixed pressure boundary condition. The condition is only applied
if flux is negative, i.e. out of the domain. The length of the seepage face is
a priori not known but is determined during the iterative process. The original
mesh in Fig. 21 is light grey in color. After the simulation the head distribution
is represented by the ’deformed’ mesh in black. The red line shows the result
of the analytical solution according to the Dupuit approximation of horizontal
groundwater flow.

The next examples concerns the new process unconfined flow for the new element
types. Flow through a unconfined aquifer of 100 m length, 1 and 2 m width is
taking place. A hydrostatic pressure distribution is assigned on the right- and left
hand side, a recharge flux of 1.0e-08m/s is applied to the upper model boundary.
The conductivity K is 1.00e-12 m2. The resulting pressure distribution meets
the result given by the analytical solution of the problem. Geometry, boundary
conditions and the result are displayed in Fig. 22.
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5.3 Performance

The performance of the analytical method for the element matrix evaluation
was tested using the diffusion/dispersion example shown in Fig. 20. The mesh
contains 160.000 elements. The numerical evaluation of all element matrix ex-
pressions takes 44 seconds. Using the new analytical method the CPU time
reduces to 9 seconds. Hence required computation time is reduced by a factor
0.2. Considering the total CPU time including the solution of the global equation
system (equations 42 and 43) the reduction factor can increase to 0.6.
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5.4 Overland flow

The first example concerns steady state overland flow for the special case of
a horizontal surface. Geometry, boundary conditions and the resulting water
surface curves are given in Fig. 24. There is a fixed head boundary condition
downstream and a constant flux of 1.0e−3m3/s upstream. The Chézy-coefficient
C is set to 10. According to Rijn (1986) there is an analytical solution to the
steady state flow equation for the special case of flow over a horizontal bed given
in equation 29. Results of another numerical solution realized in Excel and the
analytical solutions are also plotted in Fig. 24 and show a good fit.

Geometry and boundary conditions of the overland flow example illustrated in
Fig. 25 are the same as given in the previous example. Only now the channel
or overland flow domain has a slope of 4 cm on length of 100 m. Results of
the new modelling code are plotted along with the numerical solution realized in
Excel in Fig. 25 and show a good fit.
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Figure 24: Overland flow example, steady state with horizontal channel bed

The next example is a simplified version of the ’level V-catchment’ example given
in Giammarco et al. (1996) and concerns a transient flow problem: We have a
domain of 800 x 100 m with a slope of 0.05 and a manning coefficient of 0.015.
Recharge of an intensity of 3e − 6m/s is applied to the whole region for an
interval of 90 minutes. Total simulation time is 180 minutes. A critical depth
boundary condition is assigned at the downstream nodes where x = 800 m. In
this example we used an initial water level of 0.0 m. The resulting water depth
calculated with GeoSys is plotted in Fig. 26. The graphs in Fig. 27 displays
resulting hydrographs for the models GeoSys and Hydrosphere. Small differences
are a result of a minimum depth condition, at which water starts to move. In
hydrosphere that value is fixed and cannot be specified by the user.
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Figure 26: Water surface elevations at different times, GeoSys

6 Applications

6.1 Groundwater flow and transport model of the Jericho
area

6.1.1 Introduction

The shallow aquifer concerned here consists of alluvial deposits, clay silts, con-
glomerate, chalk, marl and gypsum layers of the Lisan formation. Due to the
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high water demand in the area of Jericho and consequently high groundwater ab-
straction rates as well as irrigation back-flow, groundwater quality in the aquifer
has deteriorated considerably. Detailed investigations performed by Marie and
Vengosh (2001) using geochemical data suggest that high chloride contents, par-
ticular in the eastern part of the aquifer, are derived from several sources. They
include:

• upconing of deep brines

• leaching of salts within the aquifer

• anthropogenic contamination of agriculture return flow and waste water
infiltration

Another possible source of salinity is residual waters resulting from formerly higher
Dead Sea water levels: 15,000 years ago the water level reached with about 230
m above the present Dead Sea level its maximum. The Lisan sea, a precursor
of the present sea, covered large areas of the Jordan Valley up to an elevation
of 180 m below sea level at that time (Begin et al. (1974)). The model domain
is located within that elevation range and as a result the underlying rocks and
sediments were saturated with saltwater.
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A hydrogeological model of the area has been developed based on data available
from project partners. A numerical model was used to improve and verify the
hydrogeological model. The work done does not deal with the evaluation of
possible sources of salinity. The aim was to put some constrains on boundary
conditions and hydraulic properties of the aquifer and thus gain an understanding
of the hydrogeology of the area.

Figure 28: Model domain and geolog-
ical and topological map in ArcGIS
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Figure 29: Model domain and ground-
water contour map from 1982

6.1.2 Data availability and data handling

Hard copies of topological and geological maps and satellite images were avail-
able. Relevant information is also taken from a groundwater resources report:
Golani (1972). Additional information was added by personal communication
during project meetings. Altogether the following data set is available for the
modelling study:

• Topological and geological maps: 1:50.000

• Satellite images

• Groundwater abstraction rates from wells of the shallow Plio/Pleistocene
aquifer for the years 1961/63, 1968, 1969/70
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• Yearly spring discharge volumes of the Jericho springs Sultan, Duyuk,
Nueima, Shosha and Uja

• Groundwater contour lines for the year 1982

• Chloride concentration contour maps for the years: 1961/63, 1968, 1969/70

• Pumping test map

Topological and geological maps and satellite images were scanned, georeferenced
and than placed in an ArcGIS project. Contour maps were digitized and than
also placed in an ArcGIS project. Tables of groundwater extractions and spring
discharges were stored and organized using Excel and than partly displayed as
ArcGIS point themes.

6.1.3 Model geometry and model boundaries

The model domain is defined using geological and topographical maps and
groundwater level information. Based on that information displayed as ArcGIS
themes (see for example Fig. 28 and Fig. 29) the following model boundaries
where chosen:

• SW, main rift fault, Upper- and Lower Cenomanian are adjacent to the
Plio-Pleistocene aquifer

• NW, minor fault, Upper- and Lower Cenomanian are adjacent to Plio-
Pleistocene aquifer

• N, boundary flow line

• E, Jordan river area

• SE, Dead Sea, Jordan river area

6.1.4 Model concept

Standard procedures of model calibration can not be adapted here as reliable mea-
surements of groundwater heads remain elusive. As an alternative it is envisaged
to use time series of chloride concentration maps for the model calibration. Con-
centration contour maps are available from Golani (1972) for the years: 1961/63,
1968 and 1969/70. The information available is displayed in Fig. 30 and 31.
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Figure 31: Concentration contours
from 1970 in ArcGIS

6.1.5 Water balance

Recharge

The main recharge in the area is taking place through irrigation measures as
well as through flooding of the wadis during the wet month in winter. Irrigated
land covers an area of ca. 28 km2. Water for the irrigation is taken from the
springs Sultan, Duyuk and Nueima which are located outside the modelled area.
Spring discharge volume are given in Table 3. Only 2/3 of the irrigated area
served from the Duyuk spring are located in the modelled area. Hence only 2/3
of that spring discharge contribute to the recharge estimation. The total yearly
averaged spring discharge and therefore water used for irrigation is 12 MCM. An
estimate of 10 to 15 % of that water contribute to recharge by canal leakage and
irrigation backflow leaving 1.2 to 1.8 MCM per year for recharge. The irrigated
area is determined using a recent satellite image of the area studied (see Fig.
32). Recharge through flooding of the wadis is estimated to reach the order of
2 MCM per year. Recharge due to rain is negligible but additional water enters
the domain at its NE-boundary. The irrigated areas and the location of the wadi
are displayed in Fig. 33.
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Table 3: Yearly discharge volumes of the Jericho springs
year Sultan [1000 m3/a] Duyuk [1000 m3/a] Nueima [1000 m3/a]
79/80 4753 5460 2403
79/81 5536 5672 2555
79/82 5674 5065 2974
79/83 5910 4955 3136
79/84 5833 4885 3136
79/85 5628 4864 3124
79/86 5465 4673 2920
79/87 5569 5115 2645
79/88 5915 4954 2867
79/89 5873 5051 2939
79/90 5837 5079 3047
79/91 5720 4802 2950
79/92 5856 5219 2959
79/93 5980 4819 3141
79/94 5957 4755 3194
79/95 5965 4768 2972
79/96 5939 4477 3123
79/97 5660 4460 2891
79/98 5870 4430 2960
79/99 5463 3954 2950
79/00 5349 4094 2718
total mean 5702 4836 2934
area factor 1 0.66 1
total mean in area 5702 3192 2934

Groundwater abstraction

Groundwater abstraction is taking place at ca. 80 wells in the Jericho area. Total
abstraction rates for the years 1961/63, 1969/70 and 1968 amount to 2.7, 1.3
and 1.6 10e6 m3/a. The last value corresponds to a yearly abstraction of ca. 5
MCM. Well locations are displayed in Fig. 33.

6.1.6 Hydraulic properties

From a map containing well test data the values given in Table 4 could be
extracted. However the data given does not allow for a detailed resolution of
different conductivity zones and the average value of 3.4 m/d is not assumed to
be representative for a regional conductivity value. The first layer of a thickness
of 20 m is allocated a permeability of 1 m/d in the West and 0.5 m/d in the
East as seen in Fig. 34 in accordance to the distribution of coarse deposits in
the West and finer material in the East. The second layer of a thickness of 10
m is assigned a value of 0.5 m/d.
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Figure 32: Satellite image for the de-
termination of irrigated areas
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Figure 33: Wadi and well locations
and irrigated areas in ArcGIS

6.1.7 Model discretization, boundary conditions and source/sink terms

The model domain was discretized using triangular prismatic elements for reasons
given in Beinhorn and Kolditz (2003a,b). 6 layers of 525 elements each form the
total domain. The edge length reaches from 500 m at the model boundaries to
200 in the vicinity of the wadi. The following boundary conditions were assigned
to the model domain:

• SE, main rift fault: no flow boundary condition

• NW, minor fault: constant head boundary condition

Table 4: Transmissivities T, saturated thicknesses Ds and hydraulic conductivities
K extracted from a pumping test map

T Ds K
WELLID WELLNAME CoordX CoordY Top Elevation m2/day m m/d
13819803 19-13/12 198.98 138.31 -350.00 230 90 2.56
13919503 19-13/50 195.81 139.38 -290.00 160 45 3.56
13919601 19-13/15 196.15 139.50 -292.44 25 30 0.83
14019509 19-14/17 195.92 140.31 -290.00 180 20 9.00
14019603 19-14/71 196.87 140.09 -302.00 120 125 0.96
14219701 19-14/81 197.06 142.31 -302.07 430 ???
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Figure 34: Material groups in the first
layer displayed as ArcGIS themes

Figure 35: Elements of the GeoLib dis-
played in the GeoSys GUI

• NE, boundary flow line: no flow boundary condition

• E, Jordan river area: constant head boundary condition

• SE, Dead Sea, Jordan river area: constant head boundary condition

The medium abstraction rates of the years 1961/63, 1969/70 and 1968 were
assigned to nodes close to active well locations. Along the polyline of the Wadi
a source term with 2MCM over the total Wadi length is defined.

6.1.8 Modelling software

The numerical model used for the simulations is the FE Simulater GeoSys/RockFlow
(Kolditz et al. (2003)) which is programmed in C and C++ according to object
oriented software concepts (Beinhorn and Kolditz (2004a) and Kolditz and Bauer
(2003)). The numerical approach is based on the Galerkin finite element method
using governing equations given above. Time derivatives are evaluated by a fi-
nite difference scheme. The iterative coupling between the discretized flow and
transport equations is realized by a Picard iteration scheme, i.e. actual densities
of a new iteration step are calculated from the field variables of the previous
iteration step. The code has been tested against benchmarks given in (Kolditz
et al. (1998)).
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Figure 36: Resulting concentration distribu-
tion after 8 years of pumping

Basic modules of GeoSys/ RockFlow are the GeoLib, MshLib, and FEMLib,
which can be connected via a Graphical User Interface (GUI). The modules are
described below in the context of this application example.

GeoLib

Geometric objects of the GeoLib are points, polylines, surfaces, volumes which
form domains. All these geometric entities are implemented as C++ classes:
CGLPoint, CGLPolyline, CGLSurface, CGLVolume, CGLDomain. Instances
of these objects can alternatively be stored in vectors and lists for convenience
and specific purposes. A detailed description of the implementation of GeoOb-
jects is given in Kalbacher et al. (2003b). As an example Fig. 35 shows geometric
information of the hydrogeological system described in previous chapters within
the framework of the GUI. The recharge area seen in the GeoSys GUI (Fig. 35)
stems from the shape file displayed in Fig. 33. The surface object can now be
used to define source/sink terms or boundary conditions. The same is valid for
the polylines WADI, BCSOUTH and BCNORTH.
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MshLib

The geometric information seen in Fig. 35 also forms the basis for mesh gen-
eration. Currently, the following build-in mesh generators can be used: PrisGen
(Kalbacher et al. (2003a)), TetMesh (Manabe et al. (2003)) as well as open and
commercial systems such as gmsh (2004) and gOcad (2004).

The resulting mesh geometry can be manipulated using mesh operations like the
mapping operation. Here a surface object (SFCObj) is being used to relate mesh
data to a surface data file such as top or bottom of a hydrostratigraphical unit.
An additional operation of the MshLib is vertical mesh refinement. All these
operations of the MshLib are controlled via an GUI.

FEMLib

The FEMLib contains independent units necessary to set up and solve the finite
element problem. As a result of the numerical approximation method described,
two sets of algebraic equations were derived. The general form of these equation
is

Ai(t,x,ui,uj)ui = bi(t,x,ui,uj)

where i, j denote different processes, with Ai system matrix of process i, t time,
x coordinates, ui solution vector (primary variable) of process i, bi RHS vector of
process i. Dependence of process i on process j means coupling, and dependence
of system matrix on solution itself means non-linearity.

6.1.9 Results and conclusions

Using the concentration distribution from 1961/63 as initial condition the model
was run for the time interval of 8 years using boundary conditions and source/sink
terms as described in section 6.1.7. Fig. 36 is showing the resulting concentra-
tion distribution after 8 years of pumping. The pattern displayed resembles the
measured pattern given in Fig. 31. Hence the numerical model could be used to
verify the hydrogeological model to some extent.
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6.2 3-D numerical evaluation of density effects on tracer

tests

In this section we present numerical simulations that were carried out to assess
the importance of density dependent flow on tracer plume development. The
model scenario considered in the study is characterized by a short term tracer
injection phase into a fully penetrating well and a natural hydraulic gradient. The
scenario is thought to be typical for tracer tests conducted in the field. Using a
reference case as starting point, different model parameters were changed in order
to determine their importance to density effects. Tracer injections of 0.36 kg per
m saturated aquifer thickness do not cause significant density effects assuming
hydraulic gradients of at least 0.1 percent. Higher tracer input masses, as used
for geoelectrical investigations, may lead to buoyancy induced flow in the early
phase of a tracer test which in turn impacts further plume development. This
also holds true for shallow aquifers. Results of simulations with different tracer
injection rates and durations imply that the tracer input scenario has a negligible
effect on density flow. Employing model cases with different realizations of a log
conductivity random field, it could be shown that small variations of hydraulic
conductivity in the vicinity of the tracer injection well have a major control on
tracer distribution and may mask effects of buoyancy induced flow.

6.2.1 Introduction

A common approach to characterize aquifers is the use of tracer tests. A non
reactive fluid is injected into the ground through a well at a known rate and con-
centration. The developing plume is then assessed by direct or indirect methods.
Direct methods are concentration measurements from water samples taken from
down-gradient wells and multilevel piezometers. Indirect methods involve the
measurement of changes in electrical conductivity using electrical methods (eg.
White (1988), Bevc and Morrison (1991), Morris (1996), Slater et al. (2000),
Kemna et al. (2002), Hoffmann and Dietrich (2004)).

The anions (Br−, Cl−, F−) are commonly used as tracers in both cases because
of their low material and analytical costs. Tracer concentrations used reach from
0.05 to 20 g/l when using direct methods (Istok and Humphrey (1995)). In the
case of electrical methods, a high contrast in electrical conductivity between the
tracer plume and the ambient groundwater is required. Concentrations used are
much higher and range from 10 to 60 g/l (see Table 5). Clearly the tracer-solution
has a higher density than the ambient groundwater. The density variations impact
groundwater flow and therefore tracer plume development.

Considerable research on variable-density flow in porous media has been done
during the last 30 years. A comprehensive review of the subject and the related
issue of benchmarking is given in Diersch and Kolditz (2002) and in the textbooks
Nield and Bejan (1999) or Holzbecher (1998) . Oswald and Kinzelbach (2004)
designed the most recent three-dimensional physical benchmark experiment to
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Table 5: Tracer concentration and masses for electrical investigation methods
from literature
Reference Tracer Conc. [g/l] Mass [kg] Aquifer

thickness
[kg]

Mass per
thickness
[kg/m]

Kemna et al. (2002) Br− 12 23 10 2.3
Morris (1996) Cl− 20 10 6 1.6
Hoffmann and Dietrich (2004) Cl− 60 18-36 5 3.6-7.2
White (1988) Cl− 20 44 20 2.2
Bevc and Morrison (1991) Cl− 35 1460 40 61
Slater et al. (2000) Cl− 40 11 3 3.6

test numerical variable-density flow models and Weatherill et al. (2004) suggest
several further test cases. Other examples used as benchmarks to test numerical
models are given in Diersch (2002). The subject of variable-density flow in
heterogeneous porous media is addressed in Simmons et al. (2001).

Experimental investigations performed to assess the importance of density con-
trasts on plume development were conducted by different authors: Paschke and
Hoopes (1984), Schincariol and Schwartz (1990), Oostrom et al. (1992), Istok
and Humphrey (1995), Jalbert et al. (2000) and Wood et al. (2004). The ex-
periments prove density effects even at small density differences. For example
the flow container experiments of Schincariol and Schwartz (1990) have shown
that tracer concentration of 1 g/l NaCl can produce gravitational instability at
realistic groundwater velocities.

Real world scenarios where density effects are thought to have an influence on
mass migration include contaminant plumes under landfill sites (Kimmel and
Braids (1980), MacFarlane et al. (1983)) and a large scale tracer test conducted
at Cape Cod (LeBlanc et al. (1991)). Both scenarios have been investigated with
numerical methods: The study by Zhang et al. (1998) is related to that particular
tracer test at Cape Cod and Dorgarten and Tsang (1990) could demonstrate a
strong influence of density effects on movement of liquid waste in a deep sloping
aquifer. Koch and Zang (1992) provided a numerical study of the effects of vari-
able density on contaminant plume migration in general. The plumes considered
in their study are generated from impoundments. Time scales considered range
from 3 to 15 years.

In contrast to scenarios examined by Koch and Zang (1992) and the experimental
investigations mentioned above, tracer tests considered here are characterized
by a short term input phase. As concentrations decrease rapidly in that case,
buoyancy induced flow due to density differences is expected to take place only
near the source term. The objective of this study is to numerically evaluate
density effects on tracer plume development during a typical tracer test scenario.
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6.2.2 Numerical model

The numerical model used for the simulations is the FE Simulater GeoSys/ Rock-
Flow (Kolditz et al. (2003)) which is programmed in C and C++ according to
object oriented software concepts (Kolditz and Bauer (2004)). The numerical ap-
proach is based on the Galerkin finite element method using the governing equa-
tions given above. Time derivatives are evaluated by a finite difference scheme.
The iterative coupling between the discretized flow and transport equations is
realized by a Picard iteration scheme, i.e. actual densities of a new iteration step
are calculated from the field variables of the previous iteration step. Details of
the numerical procedure are given in Diersch and Kolditz (2002). The code has
been tested against the classical seawater intrusion problem of Henry, the free
convection problem by Elder and the salt dome problem (Kolditz et al. (1998)).

6.2.3 Model dimensionality

Two-dimensional simulations involve the assumption of an infinitely extending
source width. This assumption does not hold true to a given tracer input into
a well. Fluid flow and dispersion acting in the y-direction during the injection
phase is expected to reduce concentrations and should therefore be considered in
the modelling study. Zhang et al. (1998) studied the issue of dimensionality by
comparing modelling results of three dimensional models using different source
width. They could show that despite the increased dilution due to the additional
dispersion, the rate of downward movement increased as the width of the source
in the y-direction decreased. This effect is attributed to the upward resistance
of the ambient water to plume sinking. The resistance on a narrower plume is
smaller than the resistance on a wider plume. In order to take these effects into
account, all modelling results are based on three-dimensional models.

6.2.4 Theoretical considerations

Assuming constant concentration for a tracer plume the trajectories of the plume
center point can be estimated using Darcys law (equation 2) determining a x-
and z-component of the flow trajectory (qx, qz). The slope of the trajectories is
a measure of the density effects and in this simplified case depends on density
contrast between the density of the fluid and the density of water ρ−ρw control-
ling qz, on the head gradient ∇h controlling qx and on the anisotropy Kx/Kz

controlling the ratio qx/qz.

If a slug of tracer fluid is instantaneously injected over the full thickness of a two-
dimensional flow field, the concentration at point (x, y), at time t after injection
is

C(x, y, t) =
C0A

4πt(αLαT )1/2
exp

[

−
(x− (x0 − vxt))

2

4αLt
−
(y − y0)

2

4αT t

]

(89)
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where C0 is the concentration of the tracer at t0 and A is the area covered
(Fetter (1992)). For the scenario described below concentrations at the center
of the plume are reduced by a factor 10 after 6 days already. Density dependent
flow is therefore expected to take place predominantly in the first few days after
tracer input. If however the tracer injection phase lasts longer, the density flow
phase is prolonged as well. These considerations lead to parameters to be varied
in the numerical study: tracer injection rate, duration of tracer injection, aquifer
geometry and aquifer properties. Effects of parameter variations are assessed
by comparing resulting concentration distributions with those from the reference
case described below.

6.2.5 Model setup, reference case

The model domain of 50x20x10 m is discretized with a mesh containing 25,000
hexahedral elements. The grid size ranges from 0,3 m in the vicinity of the well
to 2 m at the model boundaries. A uniform flow field is induced by a gradient of
0.1 percent defined by fixed constant head boundary conditions at both faces of
the model during the complete simulation time. The injection well is positioned
at a distance of 5 m from the left hand side boundary at the center of the y-
extension. It is screened over the full thickness of the aquifer. A tracer mass
of 3.6 kg is introduced at equal parts over the screened length of the well for
one hour. An injection of a tracer solution is not considered. Related to the
aquifer thickness, the value of 0.36 kg per m saturated aquifer thickness is less
than the tracer masses quoted from literature summarized in Table 5. Due to
the freshwater inflow at the left hand side boundary, the concentration there is
kept at zero. At all other faces we defined Neumann conditions with respect to
the mass transport problem so that tracer may leave the domain at the right
hand side constant head boundary by dispersive and advective fluxes. Model
geometry, discretization and boundary conditions are displayed in Fig. 37.
Hydraulic conductivity of the aquifer is set to Kx = Ky = Kz = 10−3 m/s, the
porosity to n = 0.1. The resulting tracer velocity is v = 0.864 m/d. Longitudinal
and transversal dispersitvities αL and αT are 1 m and 0.1 m respectively. The
effective diffusion coefficient De is set to 10−10 m2/s. Tracer plume development
has been calculated for the first 40 days upon tracer input.

Underlying assumptions of the numerical model are: 1. A circulating pump moves
water around in the well during the input phase so that no density stratification
is taking place during the input phase. 2. The tracer is not actually injected
at high pressure as would be the case in a packed well system, but enters the
system by a relative low head gradient, so that only the tracer mass needs be
considered.

Modelling results of the reference case t6 are displayed in a three-dimensional
mode for demonstration purposes (Fig. 38). The figure shows the 0.025 g/l
concentration isosurfaces at times t = 1 h, 17 d and 40 d and concentration
contours of a section along the xz-plane at the center of the tracer plume (y =
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Figure 37: Model dimensions, discretization and boundary conditions

10 and t = 17 d). The plume is clearly showing the tendency to creep along
the bottom of the aquifer. The same results were obtained using a vertical grid
resolution of 0.1 m in the vicinity of the well so that the chosen grid size was
considered sufficiently fine.

6.2.6 Model variations and results

Now using the reference case as a starting point different model parameters
were changed in order to assess their importance to density effects. Model cases
considered in this study are shown in Table 6 along with a summary of parameters
changed. The model cases are organized in 4 different groups according to the
parameter that is being varied. A detailed description of model cases and their
results is given in the following section.

Visualization of the three-dimensional model results in two-dimensional plots
makes the comparison of the different data sets easier. Results of each of the
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Figure 38: Results of the reference case t6: a: Concentration isosurfaces with
0.025 g/l at t = 1h ,17d and 40d; b: Concentration contours at xz-plane at t =
17d
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Table 6: Summary of model cases and description of parameter variations
Group Name Parameter varied Case Name Description of parameter variation

t8 mass in = 3.6 kg (3.6 kg/h for 1h)
t6 mass in = 36 kg (36 kg/h for 1h)

group 1 Tracer input rate
t7 mass in = 72 kg (72 kg/h for 1h)
t4 mass in = 180 kg (180 kg/h for 1h)

t6vt mass in = 36 kg (3.6 kg/h for 10h)
group 2 Tracer input rate and duration

t6vt2 mass in = 36 kg (0.72 kg/h for 50h)

t6va anisotropy Kx/Kz = 5
t6vg half hydraulic gradient ∇h = 0.05

group 3 Geometry, Properties
t6vz half aquifer thickness z = 5 m
t6vl1 low K layer with K = 1e-4 m/s

s1a realization1
group 4 Heterogeneous K Field s1b realization2

s1c realization3

model cases are shown as concentration contours of a cross section along the
xz-plane at the center of the tracer plume (y = 10). Displayed is the plume
development at the near source and far source region.

6.2.7 Model cases group 1 (Tracer injection rate)

In the first group of model cases the mass of the tracer input is varied by changing
the rate of tracer injection whereas the duration of tracer injection is 1 hour for
those 4 model cases. Tracer input rates are 0.36, 3.6, 7.2 and 18 kg/h. The
objective of these variations is to assess the degree to which buoyancy induced
flow has an impact on concentration distributions.

Fig. 39 shows the results of the first set of model variations in the order of
increasing tracer injection rates. Maximum concentrations shown for model case
t8 have decreased to of 0.011 g/l after 9 days upon tracer input. The cross
sections show almost vertical contour lines at early and late times, i.e. there is
little variation of concentration along the z-axis. Density effects are negligible
during the complete simulation time. Changes in concentration along the z-
axis become more pronounced for the following three cases. For model case
t6 concentrations at the bottom are with ca. 0.16 g/l four times as high as
concentrations at top after 9 days upon tracer input. The relationship of these
values further increases from 6.6 for case t7 to 9 for t4, and stays almost constant
during further plume development. Hence the figures reveal an approximately
proportional increase of concentration variations along the z-axis with increasing
tracer masses and confirm that density flow takes place predominantly in the
early phase of plume development. The movement of the plume centroid shown
in Fig. 40 also confirms the importance of the early phase of plume development.
In order to estimate the vertical displacement as a function of the tracer mass
introduced maximum displacements are plotted versus tracer mass in Fig. 41.
The resulting curve shows an exponential behavior: For lower tracer masses the
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Figure 39: Concentration contours for increasing source masses (group 1), con-
centrations in g/l

curve shows a steep increase of downward movement with increasing masses.
For higher masses the curve flattens out and tends asymptotically towards a
maximum value. The flattening out is attributed to the aquifer bottom which
clearly puts a constrain on the vertical displacement of the tracer plume.

6.2.8 Model cases group 2 (Tracer injection duration)

It is current practice to use highly concentrated tracers for a short tracer injection
interval when the tracer plume is assessed with geoelectrical methods. As density
effects take place especially in the early phase of tracer injection, the question
of an improved tracer injection scheme arises: Is it possible to minimize density
effects and still provide high concentration contrasts needed for a geoelectrical
investigation? The model cases of group 2 are designed to address that ques-
tion. Parameters changed are tracer injection rates and duration of tracer input.
Results of 2 different model cases are presented in Fig. 42. For model case
t6vt the duration of tracer input is 10 hours at an input rate of 0.36 kg/h. The
mass input of 3.6 kg corresponds to the mass input of reference case t6. Results
are therefore compared to those given for model case t6. The different input
rates produce similar concentration distributions, i.e. we see the same density
effects compared to the more rapid mass input of case t6. A similar example is
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Figure 41: Maximum vertical displacement versus tracer mass (Model cases
group 1)

shown to verify that result. Duration of tracer input is set to 50 hours at an
input rate of 0.072 kg/h in model case t6vt2. Total mass input is again 3.6 kg
corresponding to case t6. Again we see a almost identical shape of the contour
lines compared to case t6. Only the maximum concentrations at the bottom of
the plume has decreased slightly i.e. a negligibly small advantage is gained with
respect to minimizing density effects.

6.2.9 Model cases group 3 (Geometry, properties and boundary con-
ditions)

In a third set of calculations different parameters are varied. Variations concern
aquifer properties, boundary conditions and aquifer geometry. The objective
of these variations is to assess in how far certain scenarios enhance or hinder
buoyancy-induced flow. The model cases chosen are described below along with
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a description of observed modelling results. Concentration contours and move-
ments of center of mass are displayed in Fig. 43 and Fig. 44 respectively.

t6va The vertical conductivity Kz is changed to 2 x 10−4 m/s leading to an
anisotropy ratio Kx / Kz = 5. As expected anisotropy reduces the density
effects as the contour lines of case t6va5 are steeper compared to case t6.
Also the center of mass shows a maximum vertical displacement of only
ca. 0.3 m as compared to the displacement of ca. 1.20 m in the reference
case.

t6vg The head gradient is reduced from 0.1 percent to 0.05 percent. Resulting
concentration contours are similar to those of the reference case t6, only
slightly flatter. The impact of reducing the head gradient is more obvious
when comparing positions of center of mass for both cases.

t6vz Aquifer thickness is reduced from 10 m to 5 m. In order to produce
comparable results with respect to the reference case t6, the tracer injection
rate is reduced to 1.8 kg/h. Compared to t6 these variations lead to
similar concentrations at top and bottom of the aquifer. Considering the
reduced aquifer thickness the gradient of changes in concentration along
the vertical axis has increased. The effect is due to the earlier resistance for
vertical tracer movement, as compared to thicker aquifers. Examining the
movement of the mass center the influence of the aquifer bottom becomes
more obvious as the maximum displacement in the case of the reduced
aquifer thickness is smaller than for the reference case.

A striking feature that is not readily made by visual examination of con-
centration contours is that after a short phase of downward movement, the
gravity center is moving upwards again. Among possible reasons for that
are diffusive and dispersive fluxes but also advection with a vertical com-
ponent that is caused by the development of local convection phenomena,
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Figure 43: Concentration contours for different geometries and properties (group
3), concentrations in g/l

i.e. downward movement of water at the plume center must cause upward
movement in other regions due to the law of mass conservation.

t6vl A layer with a reduced conductivity of Kx = Ky = Kz = 10−4 m/s is intro-
duced at an elevation of 4 to 5 meters. The concentration contour plot in
Fig. 43 reveals the development of a two layer system with two asymmetric
tracer plumes. Each layer shows increased changes in concentration along
the vertical axis, similar to the case with reduced thickness. As tracer
transport velocities are smaller in the inserted extra layer, concentration
contours show some distortion towards the injection well in the vicinity of
that layer. This is leading to an inversion of concentration gradients along
the z-axis in front of the plume center in the upper aquifer and behind the
plume center in the lower aquifer, i.e. the effects we would expect from
buoyancy induced flow are masked at these locations. Total concentrations
in the upper part aquifer have increased as seen in the upward shift of the
0.02 g/l concentration contour for 1 m compared to the reference case.
Accordingly, concentrations in the lower part have decreased. Hence, the
low conductivity layer hinders mass to sink from the upper part to the lower
aquifer and reduces density effects.

These features also show in the movement of gravity centers: The maxi-
mum vertical displacement of the complete tracer plume (see line t6vl1 in
Fig. 44) is reduced from ca. 1.20 m in the case without an intermediate
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Figure 44: Movement of center of tracer mass (Model cases group 3)

layer to ca. 0.90 m for the case t6. Looking at the tracer plume centroids
of the top 5 meters of the aquifer separately shown in line t6vl1(top) in the
same figure, we see a similar development as seen in the case of reduced
aquifer thickness. Only the maximum vertical displacement is smaller. In-
terestingly, again we see a slow upward movement of the center of mass.

6.2.10 Model cases group 4 (Heterogeneous conductivity fields)

The presence of heterogeneities in hydraulic conductivity creates variations in flow
velocities. In order to assess if the effects of density induced flow are masked
by these variations three model cases in which the conductivity distribution is
regarded as heterogeneous random field are presented.

We chose a lognormal conductivity distribution y = ln(K), a variance of σ2y
= 0.5 and a median conductivity of 10−3 m/s. This corresponds to a mildly
heterogeneous aquifer with conductivities ranging from 5 x 10−4 m/s to 4 x 10−3

m/s. Spatial variation is represented by an exponential semivariogram with an
integral scale of 3.3 m in the x- and y-direction and 0.6 m in the z-direction in
order to mimic horizontal stratification. For small variances (σ2y < 1) effective
conductivities Keff can be calculated after a formula given in Dagan (1989).
Effective conductivity are Keff

x = Keff
y = 1.2 x 10−3 m/s for the x and y-

direction and Keff
z = 8.2 x 10−4 m/s for the z-direction. Hence we have a

system that compares well with the homogeneous medium given in reference
case t6.

The conductivity fields were generated with Gstat, a program for geostatistical
modelling, prediction and simulation described in Pebesma and Wesseling (1998).
Three different three-dimensional conductivity distributions for the parameter set
given above are used for the flow and transport simulations. Exemplary two-
dimensional sections of the conductivity fields are displayed in Fig. 45. Note the
lenses of low permeability (dark color) in the vicinity of the injection well marked
with the bold line at x = 5 m. In order to generate large density effects a tracer
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Figure 45: Two-dimensional sections of three log conductivity random fields

mass input of 18 kg is chosen. Hence the results are compared to those in model
case t4. All other model parameters are the same as those given in reference
case t6. Again concentration contours of a section along the xz-plane at the
center of the tracer plume are shown (Fig. 46).

Concentration contours calculated with conductivity distributions s1a and s1b
show higher concentrations at the bottom than at top of the aquifer. This
is valid for the near source as well as the far source region. However, in the
case of s1c higher concentrations are observed in the upper part in the near
source region and to a lesser extent in the far source region. Obviously the low
conductivity area in the upper part of the aquifer in the vicinity of the well (Fig.
45) is the reason for the observed concentration distribution. Tracer mass is
introduced into low conductivity areas during the injection phase. During the
following natural gradient conditions velocity of tracer transport decreases and
tracer mass is released with a time lapse into higher conductivity areas. In the
first two cases, low conductivity areas are located in the lower part of the aquifer
so that a retarded tracer transport leads to higher concentrations at later times
in the lower part.

Movements of centers of mass are shown for the model variations with heteroge-
neous conductivity fields as well as for the case with a homogeneous conductivity
field in Fig. 47. In general all curves show a steep downward movement and
reach a vertical displacement of at least 3 m. The biggest vertical displacement
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Figure 46: Concentration contours for different conductivity distributions (group
4), concentrations in g/l

is seen for the homogeneous conductivity field and the other pathlines plot only
slightly above the reference case.

From both the concentration contours and the first moment analysis, it can be
concluded that variations in flow velocities due to heterogeneities may account
for variations in the local concentration distribution but do not mask effects of
density dependent flow.
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7 Summary and conclusions

Numerical simulations were carried out to assess the importance of density de-
pendent flow on tracer plume development. The model scenario is characterized
by a short term tracer injection phase into a fully penetrating well and a nat-
ural hydraulic gradient. The scenario is thought to be typical for tracer tests
conducted in the field. Modelling results were interpreted using concentration
contours and a first moment analysis. The results of the study are summarized
below:

1. In the scenario considered tracer injections of 0.036 kg per m saturated
aquifer thickness did not cause significant density effects in a flow field
with a hydraulic gradient of at least 0.1 percent. Results of model cases
using higher tracer injection masses did show that buoyancy induced flow
takes place in the early phase of the tracer test, which in turn impacts
further plume development. In these cases the concentration distributions
were significantly altered by density effects at early and late times. This
also holds true for shallow aquifers.

2. For a realistic tracer test scenario and an injection of 1.8 kg per m saturated
aquifer thickness the center of tracer mass may sink for more than 2.5
m. Where the aquifer bottom does not put constrains on the downward
movement of the mass center the vertical displacement appears to increase
approximately proportional to the tracer mass introduced. For the given
scenario however, the aquifer bottom hinders downward movement and the
relationship of the vertical displacement and mass can best be described
with an exponential function.

3. Simulations using different tracer injection rates and durations have shown
that the tracer input scenario has a negligible effect on density induced
flow.

4. A thin intermediate layer with reduced conductivity of an order of magni-
tude reduces vertical mass exchange between two layers. Within each layer
density dependent flow takes place and produces similar concentration dis-
tributions as in the case of a shallow aquifer. These density effects are
partly masked at local scale due to reduction of horizontal flow velocities.

5. Employing model cases with different realizations of a log conductivity ran-
dom field, it could be shown that small variations of hydraulic conductivity
in the vicinity of the tracer injection well have a major control on the local
concentration distribution but do not mask effects of buoyancy induced
flow.

Based on the limited number of model runs performed and shown in this paper
the following general conclusions can be drawn from the results:
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For systems with relatively high hydraulic gradients of at least 0.1 percent, den-
sity effects do not have an significant effect on the tracer plume development
for low tracer injection masses due to the rapid dilution of the tracer solution
in combination with high horizontal flow velocities. In cases were higher tracer
masses are introduced, care must be taken to account for density effects despite
high hydraulic gradients. Even in shallow aquifers where plume sinking is nat-
urally limited, the concentration distribution is altered significantly by density
differences. This is also the case in heterogeneous aquifers. The threshold of
tracer masses at which density dependent flow may show significant effects for
a given hydraulic gradient of 0.1 percent is estimated to be approximately 0.03
g/l per m saturated aquifer thickness. A prolonged tracer input duration does
not reduce density effects significantly. Hence the increased logistical workload
necessary for a long tracer input is not justified.

As a wide range of parameters influence density driven flow and there are an
endless number of combinations it is beyond the scope of this paper to derive
further general guidelines. Additional numerical modelling in combination with
laboratory or field experiments could help to define critical parameter combina-
tions for which density dependent flow significantly alters expected concentration
distributions. Particularly interesting would be to further examine effects of dif-
ferent aquifer geometries and thicknesses in order to establish when convection
phenomena can cause a redistribution of mass as seen in the case of a shallow
aquifer examined here. In the meanwhile, if in doubt, a modelling study can help
to decide if density effects need to be considered when interpreting a particular
tracer test.
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7.1 Groundwater flow and transport model of the Zarqa

Ma’in-Jiza area, Central Jordan

7.1.1 Introduction

In this section a model for coupled groundwater and river flow is presented which
is developed based on object-oriented programming concepts. The groundwater
model is fully three-dimensional and accounts for confined as well as unconfined
flow. Additionally density effects resulting from salinity and heat variations can be
taken into consideration. The river model is based on averaged one-dimensional
shallow water equation. The coupling between the two hydraulic systems can be
treated in two different ways. First, in the framework of finite element technol-
ogy, the groundwater body (represented by three-dimensional prismatic elements
for aquifers/aquitards and two-dimensional quad elements for faults) and the
river stream (represented by one-dimensional line elements) are coupled directly,
i.e. having common mesh nodes. Second, groundwater and river systems can
be coupled in the framework of the multi-continuum concept, i.e. each hy-
draulic system is represented by an individual continuum, which are coupled via
transfer functions. The second approach has advantages concerning numerical
stability, but transfer functions must be given for water exchange between both
compartments, which are difficult to obtain experimentally. Here the direct cou-
pling concept is presented. The groundwater-river model is based on data from
the Jordan Valley area. The focus of this application example is the technical
background for coupled hydrosystem modelling, such as data import, consistent
geometric modelling, meshing of heterogeneous systems, object-orientation for
coupled processes and user interfaces.
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Figure 48: Main wadis in the Zarqa
Ma’in-Jiza area
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Figure 49: Main faults in the Zarqa
Ma’in-Jiza area

The governing equations and the numerical approach are presented in sections 2
and 3 respectively.
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Figure 50: Hydraulic conductivities in the Zarqa Ma’in-Jiza area

7.1.2 Data base

The surface system is characterized by a complex topography formed by several
Wadis, see Fig. 48. The subsurface system of the investigation area consists of
two major aquifers which are separated by an aquiclude but connected by a fault
network, as displayed in Fig. 49. Based on a large number of well observations
(more than 100 boreholes) the hydraulic conductivity distribution is estimated
according to Fig. 50. Most of the available information such as topography and
geology, hydrogeological parameters, well positions and pumping rates, wadis
and springs, fault system, water levels and boundary conditions is available in
a GIS project (Sawarieh et al. (2004)). GIS data can be directly imported into
GeoSys (Chen et al. (2004)). The data base for this exemplary application for
the Jordan Valley area was provided by Sawarieh et al. (2004).

7.1.3 Geometrical model

The three-dimensional structural model is established based on available geomet-
ric data. The geometric model consists of polylines (for wadis), plane surfaces
(for faults), curved surfaces (for surface and aquifer topography as well as bound-
ary conditions) and volumes (for the aquifer-aquitard-aquifer system). Fig. 52
displays all volumes (three-dimensional structures) and Fig. 53 highlights the
embedded wadis and faults as well as surface topography (one-dimensional and
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Figure 51: Combination of multi-dimensional finite elements

two-dimensional structures). Consistency of the geometric model is very impor-
tant, in particular, for the meshing procedure. The spatial discretization (finite
elements and differences) is assembled from coupled line (for wadis), triangular
(for surface), quad (for faults) and prismatic (for aquifers) elements as summa-
rized in Fig. 51.

Figure 52: Three dimensional geo-
metric model showing layering and
faults

Figure 53: Three dimensional
showing rivers, fault traces and the
surface topography

7.1.4 Examples

We consider two examples. The first one is a very simple test case to check
the integrity of the river flow model without coupling to the groundwater flow
system. The second one is based on data from the central Jordan Valley area.
Here first preliminary results are presented to show coupling effects between the
surface / subsurface water compartments.

A simple test case is examined to test the river model separately. Figure 54
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Figure 54: Water level along the river

displays the water depth along the river line for steady flow and constant discharge
(Q=const). The boundary condition at left side (s=0) for water depth is h=6m.

Figures 55 and 56 show the hydraulic head distribution in the upper and lower
aquifers, respectively. In the upper aquifer near the surface the influence of the
Wadis can be clearly seen. They act as water divides. In the lower aquifer
hydrostatic conditions dominate but influences of the fractures can be observed.

Figure 55: Hydraulic head in the
upper aquifer

Figure 56: Hydraulic head in the
lower aquifer

Fig. 58 illustrates the three-dimensional head distribution looked from west. The
evidence of fracture influences can be detected. It is important to notice that
the presented results are preliminary. Results of the modelling efforts will be
presented elsewhere upon completion of the study. The intention of this paper is
to give an overview of required methods and tools to develop models for holistic
hydrosystem analysis.
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Figure 57: Geothermal basic process in the area

7.1.5 Geothermal processes

The thermal basic processes are illustrated in figure 57. There is a permanent
heat flow from the base to the system. Through the North groundwater is enter-
ing the upper aquifer and through the East the lower aquifer. This groundwater
has to cool the whole system; otherwise the temperature will increase perma-
nently.

Figure 59 shows a first long-term simulation (30000 years) of the thermal system
based on the hydraulic model presented above. The simulation shows a per-
manent increase of temperatures. The groundwater entering the system is not
equilibrating the base heat flux. This indicates to possible defects in the current
model. First, the outside groundwater recharge to the domain is underestimated.
Second, the base heat flux is overestimated. This means, involving thermal data
to the simulation, the hydraulic model can be improved.

Figure 58: Hydraulic head from
west, influence of the fault system

Figure 59: Temperature distribu-
tion in the model area
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8 Summary and conclusions

The work done and presented in the thesis aims at providing the prerequisits
needed to develop a software package to simulate hydrologic systems including
groundwater and surface water processes. A new element type was implemented
with two options for the evaluation of element matrices, i.e. a numerical integra-
tion and a analytical method. The analytical integration proves to be faster than
the numerical method and thus provides an advantage especially for the simula-
tion of nonlinear systems, where element matrices have to be calculated in every
iteration. With the implementation of a moving mesh method a robust method
for the calculation of unconfined groundwater flow has been implemented. Lastly,
the new overland flow component forms an essential step towards developing a
physically based, spatially distributed modelling tool. In combination with al-
ready existing program components now all relevant processes on the land phase
as illustrated in Fig. 60 can be modelled.
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Figure 60: Integrated hydrosystem modelling

Now, the most important steps toward a integrated modelling concept concern
the coupling of the different processes shown. Interaction of the following pro-
cesses are possible

#CHANNEL_FLOW ↔ #UNSATURATED_FLOW
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#CHANNEL_FLOW ↔ #UNCONFINED_FLOW

#OVERLAND_FLOW ↔ #CHANNEL_FLOW

#OVERLAND_FLOW ↔ #UNSATURATED_FLOW

#UNSATURATED_FLOW ↔ #CONFINED_FLOW / UNCONFINED_FLOW

Closed form analytical solutions do not exist for most of these coupled processes.
Validation of new program components is than best achieved using comprehensive
field data or controlled laboratory experiments. With respect to coupling overland
flow with unsaturated flow laboratory experiments are presented in literature
Smith and Woolhiser (1971), Govindaraju and Kavvas (1991) and Fiedler and
Ramirez (2000). Another form of model testing is to crosscheck results from
different numerical codes using a variety of benchmarks examples. An interesting
issue in this context is to compare the accuracy and performance of different
coupling strategies chosen in the models tested.
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Beinhorn, M., Kolditz, O., 2003b. Triangular prismatic elements PART II: An-
alytical integration. Tech. rep., Nr. 2003-30, Center for Applied Geosciences,
University of Tübingen.
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Kalbacher, T., Wang, W., McDermott, C., Kolditz, O., Taniguchi, T., May
2003b. Development and application of a CAD interface for fractured rock.
GeoSys-Report 2003-05, www.rockflow.net, Center for Applied Geoscience,
University of Tübingen.
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9 Appendix

9.1 Some mathematical notations

The Divergence operator
”Divergence of q” ( div q or ∇ · q) ∇ · q tells us how much a flow rate might
change at any given point. The divergence of a vector is given by

∇ · q =
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

Conservation of mass
The net mass outflow per unit volume per unit time must be equal to the time
rate of change in mass per unit volume within the test volume. Hence:

∇ · (ρq) =
∂(ρn)

∂t

The Gradient
”del operator” ∇ or ”the gradient p of grad p where ∇ is known as the ”del”
operator (or ”that funny upside down triangle”). Partial derivatives are used to
talk about the change of a function with direction in terms of a vector.

∇p =












∂p

∂x
∂p

∂x
∂p

∂z












The Gauss-Ostrogradskian integral theorem
The Gauss-Ostrogradskian integral theorem (or divergence theorem) can be used
to transform surface into volume integrals for the flux term. It states that the
flux of a vector field across a closed surface is equal to the divergence of the
vector field throughout the enclosed volume.

∮

∂Ω

Φψ · dS =
∫

Ω

∇ ·ΦψdΩ

Cyclic permutation

Qρ =
∂

∂xα

(

kαβ
µ
(
∂p

∂xβ
+ ρg

∂z

∂xβ
)

)

, α, β = 1, 2, 3

=
∂

∂xα

1

µ

(

kαx
∂p

∂x
+ kαy

∂p

∂y
+ kαz

∂p

∂z

)
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=
1

µ

(

kxx
∂2p

∂x∂x
+ kyx

∂2p

∂x∂y
+ kzx

∂2p

∂x∂z

)

+
1

µ

(

kxy
∂2p

∂y∂x
+ kyy

∂2p

∂y∂y
+ kzy

∂2p

∂y∂z

)

+
1

µ

(

kxz
∂2p

∂z∂x
+ kyz

∂2p

∂z∂y
+ kzz

∂2p

∂z∂z

)

Conductivity- and permeability tensor (K and k)

K = k
ρg

µ

The determinant of a matrix
detA is the determinant of the matrix A . The determinant is only defined for
square matrices

detA =
n∑

j=1

(−1)1+ja1j detA1j

with A the Matrix of the order (n-1) x (n-1) if line 1 and column j of A are
cancelled.

• If A = a11 . Then detA = a11

• If A =

[

a11 a12
a21 a22

]

. Then detA = a11a22 − a12a21

• IfA =






a11 a12 a13
a21 a22 a23
a31 a32 a33




 . Then detA = a11(a22a33−a32a23)−a12(a21a33−

a31a23) + a13(a21a32 − a31a22)

Coordinate transformation
A coordinate transformation from local to global coordinates is performed using
the Jacobian matrix [J3D]. Using the chain rule the derivative of an interpolation
function ∂N/∂r can be written as

∂N

∂r
=

∂N

∂x

∂x

∂r
=
∂N

∂x
[J3D]

or as the inverse coordinate transformation

∂N

∂x
=

1

∂x/∂r

∂N

∂r
= [J3D]

−1∂N

∂x
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Jacobian matrix [J3D]
For a one-dimensional element the Jacobian matrix [J3D] is given by

[J1D] =
∂x

∂r
=
∂N1

∂r
x1 +

∂N2

∂r
x2 = −

1

2
x1 +

1

2
x2
1

2
(x2 − x1) =

1

2
Le

and

[J−1
1D ] =

1

[J1D]
=

2

Le

and

det[J1D] =
1

2
Le
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9.2 Partial integration and further manipulation of the in-

tegral formulation of the governing groundwater flow
equation

∫

Ω
φi

[

Sp0φj
dpj
dt
−

∂

∂xα

(

kαβ
µ
(
∂φj
∂xβ

pj + ρg
∂φj
∂xβ

zj)

)]

dΩ =
∫

Ω
φiQρdΩ

A =

(

kαβ
µ
(
∂φj
∂xβ

pj + ρg
∂φj
∂xβ

zj)

)

∫

Ω

[(

φiS
p
0φj

dpj
dt

)

−

(

φi
∂

∂xα
A

)]

dΩ =
∫

Ω
φiQρdΩ

φ∇A = ∇(φA)− A∇φ

φi
∂

∂xα
A =

∂

∂xα
(φiA)−

∂φi
∂xα

(A)

so partial integration leads to

∫

Ω

[(

φiS
p
0φj

dpj
dt

)

−

(

∂

∂xα
(φiA)−

∂φi
∂xα

(A)

)]

dΩ =
∫

Ω
φiQρdΩ

∫

Ω

[(

φiS
p
0φj

dpj
dt

)

+

(

∂φi
∂xα

(A)

)]

dΩ =
∫

Ω

(

∂

∂xα
(φiA)

)
∫

Ω
φiQρdΩ

applying the Gauss-Ostrogradskian integral theorem the Fluxes vertically to the
planes can be written as

∂

∂xα
(φiA) =

∂

∂xα
(φiqn)

with the outward flux vector

qn = −
kαβ
µ
(
∂p̂

∂xβ
+ ρg

∂z

∂xβ
)nα
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applying that leads to

−
∫

Ω

∂

∂xα
φiqndΩ = +

∫

∂Ω
φiqndS

substitution leads to

∫

Ω

[(

φiS
p
0φj

dpj
dt

)

+
∂φi
∂xα

(A)

]

dΩ = −
∫

∂Ω
φiqndS +

∫

Ω
φiQρdΩ

Rearrangement yields

∫

Ω

[

φiS
p
0φj

dpj
dt

+
∂φi
∂xα

kαβ
µ

∂φi
∂xβ

pj

]

dΩ

= −
∫

Ω

[

∂φi
∂xα

kαβ
µ
ρg
∂φj
∂xβ

)zjdΩ

]

−
∫

∂Ω
φiqndS +

∫

Ω
φidΩ
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9.3 Derivation of 1-D element matrix expressions for fluid

flow

Conductance matrix

Ke = Ae
∫ +1

−1

[

∂N1/∂r
∂N2/∂r

]

[J−1
1D ]

T

(

krelk

µ

)

[

∂N1/∂r
∂N2/∂r

]T

[J−1
1D ] det[J1D] dr

= Ae
∫ +1

−1

[

−1
2
1
2

] [
2

Le

] (

krelk

µ

)[

−1
2
1
2

]T [
2

Le

]
1

2
Le dr

=

(

krelk

µ

)e

Ae

[
1
4

−1
4

−1
4

1
4

]

2

Le

∫ +1

−1
dr

=

(

krelk

µ

)e
Ae

Le

[

1 −1
−1 1

]

Capacitance matrix

Ce = Ae
∫ +1

−1

[

N1

N2

]

Se0

[

N1

N2

]T

det[J1D] dr

= Ae
∫ +1

−1

[

N1

N2

]

Se0

[

N1

N2

]T
1

2
Le dr

=
AeSe0L

e

2

∫ +1

−1

[

N1

N2

] [

N1

N2

]T

dr

=
AeSe0L

e

2

∫ +1

−1

[
(1−r)2

4
1−r2

4
1−r2

4
(1+r)2

4

]

dr

=
AeSe0L

e

2

∫ +1

−1

[

A B
C D

]

dr

∫ +1

−1
A =

∫ +1

−1

(1− r)2

4
dr =

1

4

∣
∣
∣
∣−
1

3
(1− r)3

∣
∣
∣
∣

1

−1
=
2

3

∫ +1

−1
B =

∫ +1

−1
C =

∫ +1

−1

1− r2

4
dr =

1

4

∣
∣
∣
∣r −

1

3
r3
∣
∣
∣
∣

1

−1
=
1

3

∫ +1

−1
D =

∫ +1

−1

(1 + r)2

4
dr =

1

4

∣
∣
∣
∣

1

3
(1− r)3

∣
∣
∣
∣

1

−1
=
2

3
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Ce =
AeSe0L

e

2

∫ +1

−1

[

A B
C D

]

dr

=
AeSe0L

e

2

[
2
3

1
3

1
3

2
3

]

= Se0
AeLe

6

[

2 1
1 2

]

Gravity forces

ge =
∫

Ωe
∇N

(

krelk

µ
ρg

)

dΩe

= [Ke]× (z)

=

(

krelk

µ

)e
Ae

Le

[

1 −1
−1 1

]

× (z)

=

(

krelk

µ

)e
Ae

Le

[

1 −1
−1 1

]

×

[

0
z2 − z1

]

=

(

krelk

µ

)e
Ae

Le

[

0− 1 (z2 − z1)
0 + 1 (z2 − z1)

]

=

(

krelk

µ

)e
Ae

Le

[

0 + 1 (z1 − z2)
0− 1 (z1 − z2)

]

=

(

krelk

µ
ρg

)

Ae

Le
(z1 − z2)

[

+1
−1

]
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9.4 Some detailed calculations for the analytical evaluation

of element matric expressions for triangular prismatic
elements, fluid flow

Capacitance matrix

Cij =
∫

Ω
NiS0Nj dΩ = S0

∫

V
N∆
i N

∆
j N

t
iN

t
j dV

= S0

∫

∆
N∆
i N

∆
j dA×

∫

z
N t
iN

t
j dz

= S0

∫

∆
N∆
i N

∆
j dA×

∫ 1

−1
N t
iN

t
j det[J

z
3D] dt

= S0 det[J
z
3D]

∫

∆
N∆
i N

∆
j dA

︸ ︷︷ ︸

C∆

×
∫ 1

−1
N t
iN

t
jdt

︸ ︷︷ ︸

Ct

Linear component of the capacitance matrix Ct:

Ct
ij =

∫ 1

−1
N t
iN

t
jdt =

∫ 1

−1













N t
1N

t
1 N t

1N
t
1 N t

1N
t
1 N t

1N
t
2 N t

1N
t
2 N t

1N
t
2

N t
1N

t
1 N t

1N
t
1 N t

1N
t
1 N t

1N
t
2 N t

1N
t
2 N t

1N
t
2

N t
1N

t
1 N t

1N
t
1 N t

1N
t
1 N t

1N
t
2 N t

1N
t
2 N t

1N
t
2

N t
2N

t
1 N t

2N
t
1 N t

2N
t
1 N t

2N
t
2 N t

2N
t
2 N t

2N
t
2

N t
2N

t
1 N t

2N
t
1 N t

2N
t
1 N t

2N
t
2 N t

2N
t
2 N t

2N
t
2

N t
2N

t
1 N t

2N
t
1 N t

2N
t
1 N t

2N
t
2 N t

2N
t
2 N t

2N
t
2













dt

∫ 1

−1
N t
1N

t
1 dt =

∫ 1

−1

(
1− t

2

)2

dt =
1

4

∣
∣
∣
∣−
1

3
(1− t)3

∣
∣
∣
∣

1

−1
=
2

3
∫ 1

−1
N t
1N

t
2 dt =

∫ 1

−1
N t
2N

t
1 dt =

∫ 1

−1

(
1− t

2

)(
1 + t

2

)

dt

=
1

4

∫ 1

−1
1− t2dt =

1

4

∣
∣
∣
∣t−

1

3
t3
∣
∣
∣
∣

1

−1
=
1

3
∫ 1

−1
N t
2N

t
2 dt =

∫ 1

−1

(
1 + t

2

)2

dt =
1

4

∣
∣
∣
∣

1

3
(1 + t)3

∣
∣
∣
∣

1

−1
=
2

3

Triangular component of the capacitance matrix C∆:

c∆11 =
∫

∆
N∆
1 N

∆
1 dA =

2!0!0!

(2 + 0 + 0 + 2)!
2A =

2

12
A

c∆12 =
∫

∆
N∆
1 N

∆
2 dA =

1!1!0!

(1 + 1 + 0 + 2)!
2A =

1

12
A
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c∆13 =
∫

∆
N∆
1 N

∆
3 dA =

1!0!1!

(1 + 0 + 1 + 2)!
2A =

2

12
A

c∆21 =
∫

∆
N∆
2 N

∆
1 dA =

1!1!0!

(1 + 1 + 0 + 2)!
2A =

1

12
A

c∆22 =
∫

∆
N∆
2 N

∆
2 dA =

0!2!0!

(0 + 2 + 0 + 2)!
2A =

2

12
A

c∆23 =
∫

∆
N∆
2 N

∆
3 dA =

0!1!1!

(0 + 1 + 1 + 2)!
2A =

1

12
A

c∆31 =
∫

∆
N∆
3 N

∆
1 dA =

1!0!1!

(1 + 0 + 1 + 2)!
2A =

1

12
A

c∆32 =
∫

∆
N∆
3 N

∆
2 dA =

1!0!1!

(1 + 0 + 1 + 2)!
2A =

1

12
A

c∆33 =
∫

∆
N∆
3 N

∆
3 dA =

0!0!2!

(0 + 0 + 2 + 2)!
2A =

2

12
A

c∆ =






2 1 1
1 2 1
1 1 2






A

12

Conductance Matrix

Kxx
ij =

∫

Ω

∂Ni

∂x

∂Nj

∂x
dΩ =

∫

Ω

∂

∂x
(N∆

i N
t
i )

∂

∂x
(N∆

j N
t
j ) dΩ

=

(

∂N∆
i

∂x
N t
i +N∆

i

∂N t
i

∂x

)(

∂N∆
j

∂x
N t
j +N∆

j

∂N t
j

∂x

)

dΩ =
∫

Ω

∂N∆
i

∂x

∂N∆
j

∂x
N t
iN

t
j dAdz

=
∫

∆

∂N∆
i

∂x

∂N∆
j

∂x
dA×

∫

z
N t
iN

t
j dz =

∫

∆

∂N∆
i

∂x

∂N∆
j

∂x
dA×

∫ 1

−1
N t
iN

t
j det[J

z
3D] dt

= det[Jz3D]
∫

∆

∂N∆
i

∂x

∂N∆
j

∂x
dA×

∫ 1

−1
N t
iN

t
j dt

= det[Jz3D]A
∂N∆

i

∂x

∂N∆
j

∂x
︸ ︷︷ ︸

K∆x

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

Kyy
ij =

∫

Ω

∂Ni

∂y

∂Nj

∂y
dΩ = det[Jz3D]A

∂N∆
i

∂y

∂N∆
j

∂y
︸ ︷︷ ︸

K∆y

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

Kzz
ij =

∫

Ω

∂Ni

∂z

∂Nj

∂z
dΩ =

∫

Ω

∂

∂z
(N∆

i N
t
i )
∂

∂z
(N∆

j N
t
j ) dΩ

=
∫

Ω
N∆
i N

∆
j

∂N t
i

∂z

∂N t
j

∂z
+
∂N∆

i

∂z

∂N∆
j

∂z
N t
iN

t
j dΩ =

∫

∆
N∆
i N

∆
j dA×

∫

z

∂N t
i

∂z

∂N t
j

∂z
dz

=
∫

∆
N∆
i N

∆
j dA×

∫ 1

−1

∂N t
i

∂z
[Jz3D]

−1∂N
t
j

∂z
[Jz3D]

−1 det[Jz3D] dz

= [Jz3D]
−1
∫

∆
N∆
i N

∆
j dA×

∫ 1

−1

∂N t
i

∂t

∂N t
j

∂t
dt
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∫ 1

−1

∂N t
i

∂t

∂N t
j

∂t
dt =

1

4













1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1













∫ 1

−1
1 dt

=
1

2













1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1












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9.5 Some detailed calculations for the analytical evaluation

of element matric expressions for triangular prismatic
elements, mass transport

Diffusion dispersion matrix

Dxx
ij =

∫

Ω

∂Ni

∂x

∂Nj

∂x
dΩ =

∫

Ω

∂

∂x
(N∆

i N
t
i )

∂

∂x
(N∆

j N
t
j ) dΩ

=
∫

Ω

(

∂N∆
i

∂x
N t
i +N∆

i

∂N t
i

∂x

)(

∂N∆
j

∂x
N t
j +N∆

j

∂N t
j

∂x

)

dΩ

=
∫

Ω

∂N∆
i

∂x

∂N∆
j

∂x
N t
iN

t
j dAdz

=
∫

∆

∂N∆
i

∂x

∂N∆
j

∂x
dA×

∫

z
N t
iN

t
j dz

= det[Jz3D]A
∂N∆

i

∂x

∂N∆
j

∂x
︸ ︷︷ ︸

K∆x

×
∫ 1

−1
N t
iN

t
j dt

︸ ︷︷ ︸

Ct

= Kxx
ij

Dxy
ij =

∫

Ω

∂Ni

∂x

∂Nj

∂y
dΩ =

∫

Ω

∂

∂x
(N∆

i N
t
i )
∂

∂y
(N∆

j N
t
j ) dΩ

=
∫

Ω

(

∂N∆
i

∂x
N t
i +N∆

i

∂N t
i

∂x
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9.6 Exemplary source code of the implementation for the

evaluation of element matrices

Numerical scheme

/* Schleife ueber GaussPunkte */

for (i = 0; i < anzgplin; i++) {

for (j = 0; j < anzgptri; j++) {

r = MXPGaussPktTri(anzgptri,j,0);

s = MXPGaussPktTri(anzgptri,j,1);

t = MXPGaussPkt(anzgplin,i);

CalcPrismElementJacobiMatrix(index, r, s, t, invjac, &detjac);

MTranspoMat(invjac, 3, 3, TransInvjac);

/* Wichtung der Gausspunkte */

fkt = MXPGaussFktTri(anzgptri, j) * MXPGaussFkt(anzgplin,i) * detjac;

/*---------------------------------------------------------------------*/

/*---- Capacitance matrix ---------------------------------------------*/

/*---------------------------------------------------------------------*/

/* Omega T * Omega * fkt */

MOmegaPrism(OmPrism, r, s, t);

MMultVecVec(OmPrism, nn, OmPrism, nn, zwi, nn, nn);

for (l = 0; l < nn2; l++) {

capacitance_matrix[l] += (zwi[l] * fkt);

}

/*---------------------------------------------------------------------*/

/*---- Conductance matrix ---------------------------------------------*/

/*---------------------------------------------------------------------*/

/* tkmyt = (J^-1)T * (K/my) * J^-1 */

MMultMatMat(kmmy, 3, 3, invjac, 3, 3, zwa, 3, 3);

MMultMatMat(TransInvjac, 3, 3, zwa, 3, 3, tkmyt, 3, 3);

/* GradOmega T */

MGradOmegaPrism( r, s, t, GradOmPrism); /*3Zeilen 6 Spalten*/

MTranspoMat(GradOmPrism, 3, nn, TransGradOmPrism); /*6Zeilen 3 Spalten*/

/* GradOmega T * tkmyt */

MMultMatMat(TransGradOmPrism,nn,3,tkmyt,3,3, zwi, nn, 3);

/* GradOmega T * tkmyt * GradOmega */

MMultMatMat(zwi,nn,3,GradOmPrism,3,nn,zwu,6,6);

/* GradOmega T * tkmyt * GradOmega * fkt */

for (l = 0; l < nn2; l++) {

conductance_matrix[l] += (zwu[l] * fkt);
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}

} /*Ende Schleife über Anzahl der GaussPunkte im Dreieck */

} /*Ende Schleife über Anzahl der GaussPunkte in z Richtung*/
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Analytical scheme

/*------------------------------------------------------------------------*/

/*---- Capacitance matrix ------------------------------------------------*/

/*------------------------------------------------------------------------*/

Get_NTrinangle_x_NTrinangle(index, Tri_x_Tri);

MMultMatSkalar(Tri_x_Tri,DetJac3Dz,3,3);

GetPriMatFromTriMat(Tri_x_Tri, capacitance_matrix);

MMultMatMat2(capacitance_matrix, 6, 6, Ct, capacitance_matrix);

MMultMatSkalar(capacitance_matrix,storativity,6,6);

/*------------------------------------------------------------------------*/

/*---- Conductance matrix ------------------------------------------------*/

/*------------------------------------------------------------------------*/

/* Calc Kijxx */

fac1 = DetJac3Dz * area;

CalcGradXTri(index, GradXTri);

MMultVecVec(GradXTri,3,GradXTri,3,GradXTri_x_GradXTri,3,3);

MMultMatSkalar(GradXTri_x_GradXTri,fac1,3,3);

GetPriMatFromTriMat(GradXTri_x_GradXTri, Kijxx);

MMultMatMat2(Kijxx, 6, 6, Ct, Kijxx);

MMultMatSkalar(Kijxx,k_xx,6,6);

/* Calc Kijyy */

CalcGradYTri(index, GradYTri);

MMultVecVec(GradYTri,3,GradYTri,3,GradYTri_x_GradYTri,3,3);

MMultMatSkalar(GradYTri_x_GradYTri,fac1,3,3);

GetPriMatFromTriMat(GradYTri_x_GradYTri, Kijyy);

MMultMatMat2(Kijyy, 6, 6, Ct, Kijyy);

MMultMatSkalar(Kijyy,k_yy,6,6);

/* Calc Kijzz */

Get_NTrinangle_x_NTrinangle(index, Tri_x_Tri);

MMultMatSkalar(Tri_x_Tri,InvJac3Dz,3,3);

GetPriMatFromTriMat(Tri_x_Tri, Kijzz);

MMultMatMat2(Kijzz, 6, 6, GradNGradN, Kijzz);

MMultMatSkalar(Kijzz,k_zz,6,6);

for (i=0;i<nn2;i++) {

conductance_matrix[i] = Kijxx[i] + Kijyy[i] + Kijzz[i];

}
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9.7 Finite difference equations for channel flow

explicit FTCS scheme
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∆t

−

ani+1u
n
i+1h

n
i+1 − ani−1u

n
i−1h

n
i−1

2∆s
−

bni+1u
n
i+1(h

2)ni+1 − bni−1u
n
i−1(h

2)ni−1
2∆s

hn+1i = hni

−
ani+1u

n
i+1h

n
i+1 − ani−1u

n
i−1h

n
i−1

ani + 2b
n
i h

n
i

∆t

2∆s

−
bni+1u

n
i+1(h

2)ni+1 − bni−1u
n
i−1(h

2)ni−1
ani + 2b

n
i h

n
i

∆t

2∆s

explicit upstream scheme

un+1i − uni
∆t

+ uni
uni − uni−1
∆s

+ g
hni − hni−1
∆s

= g(S0 − Sf ), uni ≥ 0

un+1i − uni
∆t

+ uni
uni+1 − uni
∆s

+ g
hni − hni−1
∆s

= g(S0 − Sf ), uni < 0

un+1 = uni − uni (u
n
i − uni−1)

∆t

∆s
− g(hni − hni−1)

∆t

∆s
+ g(S0 − Sf )∆t, uni ≥ 0

un+1 = uni − uni (u
n
i+1 − uni )

∆t

∆s
− g(hni − hni−1)

∆t

∆s
+ g(S0 − Sf )∆t, uni < 0

un+1i − uni
∆t

+ uni
uni − uni−1
∆s

+ g
hni − hni−1
∆s

= g(S0 − Sf ), uni ≥ 0

un+1i − uni
∆t

+ uni
uni+1 − uni
∆s

+ g
hni − hni−1
∆s

= g(S0 − Sf ), uni < 0
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un+1 = uni − uni (u
n
i − uni−1)

∆t

∆s
− g(hni − hni−1)

∆t

∆s
+ g(S0 − Sf )∆t, uni ≥ 0

un+1 = uni − uni (u
n
i+1 − uni )

∆t

∆s
− g(hni − hni−1)

∆t

∆s
+ g(S0 − Sf )∆t, uni < 0
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Beinhorn, M., Guttman, J. S., Sauter, M., Toll, M., Kolditz, O., April 2004.
Groundwater modelling of the shallow aquifer in the Jericho area. In 5th Int
Symposium on the Eastern Mediterranean Geology, Thessaloniki, Greece,
pp. 1483-1486

Beinhorn, M., Kolditz, O., June 2004. Object-oriented approach to preprocess-
ing and process modelling in water resources, application to the Jericho
area. In Proceedings of the 15th International Conference on Computa-
tional Methods in Water Resources (CMWR XV), Chapel Hill, NC, USA,
Elsevier, pp. 1067-1077.

Beinhorn, M., Kolditz, O., 2004. Object oriented approach to groundwater
modelling. submitted to Computers and Geosciences.

Beinhorn, M., Dietrich, P., Kolditz, O., 2004. 3-D numerical evaluation of
density effects on tracer tests. submitted to Journal of Contaminant Hy-
drology.

Beinhorn, M., Guttman, J., Kolditz, O., 2004. Groundwater flow and transport
model of the Jericho area. Technical report, Nr. 2004-14, Center for Ap-
plied Geosciences, University of Tübingen.
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