
Tighter Bounding Volumes for Better
Occlusion Culling Performance

Dirk Bartz1, James T. Klosowski2, Dirk Staneker1

1Visual Computing for Medicine, University of Tübingen, Germany
2IBM, T.J. Watson Research Center, Hawthorne, NY, USA

WSI-2005-13
July 2005

(based on work done 2002 - 2004)

Visual Computing for Medicine
Graphisch-Interaktive Systeme

Wilhelm-Schickard-Institut
Universität Tübingen

D-72076 Tübingen, Germany
e-mail: bartz@gris.uni-tuebingen.de

WWW: http://www.gris.uni-tuebingen.de/areas/vcm

c© WSI 2005
ISSN 0946-3852

Abstract

Bounding volumes are used in computer graphics to approximate the actual ge-
ometric shape of an object in a scene. The main intention is to reduce the costs
associated with visibility or interference tests. The bounding volumes most
commonly used have been axis-aligned bounding boxes and bounding spheres.
In this paper, we propose the use of discrete orientation polytopes (k-dops) as
bounding volumes for the specific use of visibility culling. Occlusion tests are
computed more accurately using k-dops, but most importantly, they are also
computed more efficiently. We illustrate this point through a series of exper-
iments using a wide range of data models under varying viewing conditions.
Although no bounding volume works the best in every situation, k-dops are of-
ten the best, and also work very well in those cases where they are not the best,
therefore they provide good results without having to analyze applications and
different bounding volumes.

CR Categories:

I.3.3 Picture/Image Generation: Viewing Algorithms, Occlusion Culling;
I.3.5 Computational Geometry and Object Modeling: Object Hierarchies;
I.3.5 Three-Dimensional Graphics and Realism: Hidden Line/Surface Re-
moval;

Keyword: Visibility and occlusion culling, bounding volumes, large-scale
data visualization

1

1 INTRODUCTION

Bounding volume hierarchies are a powerful technique for han-
dling complex models. Such hierarchies are used to coherently
organize the model as well as to provide multiple representations
of the model, i.e. levels-of-detail. Furthermore, many visibil-
ity and interference tests are based on these hierarchies to re-
duce the associated costs. These include intersection tests for
ray tracing [40, 22, 12, 28], interference tests for collision detec-
tion [13, 2, 23, 42, 24, 30, 25], and visibility tests for occlusion
culling [15, 43, 3] or radiosity [16, 11].

In most applications, axis-aligned bounding boxes (AABBs)
[12, 15, 39, 3] or bounding spheres [40, 32, 31, 20, 6] are used to
approximate the geometric shape of an object. However, in many
cases this approximation fills a much larger volume in object space,
and a much larger projected area in screen space, than the actual ge-
ometry, resulting in additional (unnecessary) tests. These bounding
volumes have been popular over the years because of their simplic-
ity and effectiveness under the right conditions. A careful analysis
of the situations in which AABBs perform well were conducted by
several researchers [38, 44, 1], while others have extensively stud-
ied how to best create hierarchies of spheres [20, 6].

Alternatively, oriented bounding boxes (OBB) were pro-
posed [33, 13, 2, 21], where the spanning axes of the bounding box
are oriented according to the shape of the object, thus generating
a tighter approximation of the original shape than AABBs. While
OBBs perform better for collision detection than AABBs, the ben-
efits for occlusion culling are significantly smaller. This is mainly
due to the fact that the rasterized screen area of an OBB is almost
the same as for an AABB (see our comparison of surface areas in
Table 5).

Klosowski et al.[18, 23] proposed a collision detection scheme
using discrete orientation polytopes (k-dops) which enabled faster
collision tests than OBBs in many cases. Essentially, k-dops are
an approximation of an object by computing bounding planes of
that object along k/2 directions [22]. An AABB is one example
of a 6-dop, whose bounding planes correspond to the coordinate
axes. Another common k-dop is the 26-dop, which is an AABB
with the twelve edges and eight corners cut to the object’s surface
(6 + 12 + 8 = 26 bounding planes). The tightest (convex) bounding
volume that one could use is the convex hull. While the convex
hull can minimize the number of interference tests, it is much more
expensive to compute and store than most other bounding volumes.

The major contribution of this paper is the introduction of more
complex bounding volumes for occlusion culling. We further
present empirical evidence for the suitability of these bounding vol-
umes. We specifically investigate the tradeoffs between bounding
volumes including query times, construction times, and complex-
ity (rendering and storage). Compared to AABBs and bounding
spheres, k-dops enable a closer approximation of the geometric
shape of an object which in turn generates a smaller number of
necessary occlusion tests. The closer approximation comes at the
expense of a slightly more complex bounding volume to compute
and to store, which could result in more expensive occlusion tests.
To determine the practicality of k-dops for occlusion culling algo-
rithms, we conduct a thorough test of several bounding volumes on
a variety of data models. While in general we cannot guarantee that
any one bounding volume will be the best for all models, we show
that k-dops are an excellent choice that work well in the vast major-
ity of situations, thus eliminating the question of which bounding
volume to use for a given situation.

2 BOUNDING VOLUMES

Many bounding volumes have been used for approximating com-
plex models and accelerating interference and visibility queries.

(a) AABB (b) Sphere

(c) OBB (d) k-dop

Figure 1: Approximations of an object using bounding volumes: (a)
an axis-aligned bounding box (AABB), (b) a sphere, (c) an oriented
bounding box (OBB), and (d) a k-dop (where k = 8).

For example, spheres, AABBs, and OBBs have been popular within
collision detection, ray tracing, and visibility algorithms. Figure 1
illustrates these bounding volumes approximating a space station
model (in 2D). The quality and efficiency of these bounding vol-
umes are measured based upon conflicting objectives including: (a)
approximation quality, (b) rendering complexity, (c) computational
expense, and (d) interference complexity.

Bounding volumes should tightly fit the underlying geometric
shape of the object to provide good approximations. Tight fitting
bounding volumes can reduce the number of visibility queries by
eliminating false positives, i.e., queries which indicate, based upon
the bounding volume information, that an object is visible when, in
fact, it is not. Bounding volumes are also used for visualization pur-
poses within occlusion culling and level-of-detail algorithms. Thus,
the rendering complexity of a bounding volume can be an impor-
tant factor when selecting which volumes to use within a visibility
algorithm.

A third objective when selecting bounding volumes is the time
required to compute the volumes. When a data set is modified often,
either during the design phase, a rigid-motion animation sequence,
or as the result of using vertex shaders, recomputing a bounding
volume hierarchy, either from scratch or by using the previous hi-
erarchy, must be an efficient operation. If the data is more stable,
this becomes less of an issue. In other applications, the complexity
of determining whether two bounding volumes interfere is impor-
tant. This is true for collision detection algorithms that determine if
models are in contact with one another. However, for image-based
visibility algorithms, this objective is less important, which is why
spheres do not have a specific advantage due to their fast interfer-
ence tests. We therefore refer the interested reader to [13, 23] for
more details on this objective.

As indicated above, the most relevant objectives when choosing
a bounding volume depend upon the application domain. Within
the current context of occlusion culling, objectives (a), (b), and (c)

are the most relevant and are discussed with respect to k-dops in
further detail below.

3 K-DOPS

Klosowski et al. [18, 23] proposed the use of discrete orientation
polytopes, or k-dops, to approximate complex models and acceler-
ate collision detection queries. A k-dop is a convex polytope whose
facets are determined by halfplanes whose outward normals come
from a small fixed set of k orientations. An axis-aligned bounding
box is one example of a 6-dop, since the six facets of the AABB
are determined by the halfplanes whose normals correspond to the
positive and negative coordinate axes. Figure 1d illustrates a 2D
example of a k-dop, where k = 8. k-dops have been designed to
use pairs of parallel planes (defined by pairs of collinear, but op-
positely oriented, vectors), analogous to the AABB. Consequently,
a k-dop can be completely defined by k/2 intervals which describe
the extents of the k-dop along the k/2 fixed directions. One bene-
fit of this is that storing k-dops is very memory efficient, requiring
only k values each, since the orientations are known.

Although the term k-dops was coined in 1996 [18], Kay and Ka-
jiya [22] first used this type of bounding volume in their ray tracing
work in 1986. They described the pairs of parallel planes used to
approximate an object as bounding slabs, and provided an efficient
technique for intersecting a ray and a bounding volume consisting
of multiple bounding slabs. In addition to ray tracing [22] and col-
lision detection [23, 42, 17], several researchers have also used k-
dops for rendering purposes [36, 9]. To date however, k-dops have
never been used for occlusion culling.

3.1 Approximation Quality

k-dops attempt to strike a compromise between the poor approx-
imations of spheres and AABBs and the increased complexity of
OBBs and convex hulls. For larger values of k, k-dops allow ap-
proximations to more closely resemble the convex hull of the ob-
ject, while still maintaining a simple structure. Even for small val-
ues of k (e.g. 14, 18, 26), k-dops can provide a well-distributed
sampling of bounding planes and achieve most of the benefits of
using completely arbitrary planes for each bounding volume. Al-
though the bounding planes of each OBB can be selected to tightly
approximate the geometry, there are still only six planes being used.
The k-dop on the other hand, uses additional planes to eliminate the
empty regions of space typically found in the corners of bounding
boxes (see Figures 2 and 3). Thus, k-dops do not rely on the geom-
etry being oriented in any particular way. The number and distri-
bution of the bounding planes in our k-dops completely determine
the effectiveness of their approximations. Many combinations of
fixed orientations have been experimented with in different areas,
including 14-dops [22, 18, 23] (consisting of the six AABB planes
and the eight corner planes), 18-dops [9, 23] (consisting of the six
AABB planes and the 12 edge planes), and 26-dops [18, 36, 23]
(the combination of all of these planes).

3.2 Bounding Volume Complexity

In some applications, bounding volume hierarchies are used for ren-
dering as well as visibility queries. In both instances, the rendering
complexity of the bounding volume influences the efficiency of the
operations. We typically measure the rendering complexity in terms
of the number of triangles to be rendered or by the bounding vol-
umes size, e.g. surface area or volume, which serves as a good ap-
proximation of the number of pixels that its triangles occupy on the
screen after rasterization. k-dops are again a good compromise be-
tween all of the bounding volumes. They do not require that many
more triangles than AABBs or OBBs, but they usually occupy a

(a) AABBs (b) 26-dops

Figure 2: Piston components of an engine model and their (trans-
parent) bounding volumes. The 26-dops reduce the empty space in
the AABBs and are a significantly tighter approximation.

smaller screen area (see Section 5). Although convex hulls occupy
the least screen area of all convex bounding volumes, they are the
most complex to render in terms of the number of triangles, which
limits their efficiency.

In addition to increasing the rendering complexity, bounding vol-
umes represented by many triangles have a larger storage require-
ment than the less complex bounding volumes. For extremely large
data models, this additional memory usage may become a limiting
factor with respect to the models that can be handled.

3.3 Computational Expense

By design, k-dops are almost as efficient as spheres and AABBs
to compute. To compute an AABB for an object, one needs only
calculate the minimum and maximum x, y, and z values for all of the
vertices in the object. This is equivalent to taking the dot product
of each of the vertices in the object with the three vectors (1,0,0),
(0,1,0), (0,0,1), and then finding the minimum and maximum values
for each of the vectors. The same approach applies to computing
k-dops. For the 26-dop mentioned earlier, the 13 vectors would be
(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,-1,0), (1,0,-1),
(0,1,-1),(1,1,1), (1,-1,1), (1,1,-1), (-1,1,1). It is common practice
when computing AABBs to avoid the dot product (in this case three
multiplications and two additions) and simply compare the current
minimum and maximum x, y, and z values to each of the vertices
in the object. For the 26-dop described above (and all of the other
k-dops that we use), this practice also applies and results in more
efficient computations.

Our discussion on the computation of k-dops so far has been lim-
ited to finding the k/2 intervals which bound the geometry. For the
occlusion culling queries that we perform (see below), we need to
determine the boundaries (vertices and triangles) of the k-dops. We
compute this information using geometric duality [29, 10] and a
convex hull algorithm. The basic idea behind duality is that points,
lines, and planes can be interpreted in different ways. For example,
a line y = mx+b (in 2D) can also be specified by two points (m,b).
Thus, each point in the 2D plane could be interpreted as a point,
or as a line whose coordinates correspond to its slope m and inter-
cept b. One of the purposes of using alternative interpretations is
that the structure and relationships between these objects may be-

(a)

(b) (c)

Figure 3: Screw driver: (a) Full dataset with (blue) AABB of a
motor part; the 26-dop is not visible. (b) Motor part with transparent
AABB, and (c) with transparent 26-dop.

come clearer under a different interpretation. In the present context,
to find the intersection of k planes in 3D, we map each plane (re-
spectively edge/vertex) to a vertex (edge/plane) in dual space and
then compute the convex hull of these k vertices in O(k logk) time.
Thanks to the properties of duality [29], we can then map the con-
vex hull in dual space back to find the intersections of the k bound-
ing planes. Again, each vertex (edge/plane) in dual space maps
back to a plane (edge/vertex) from which we now have our bound-
ary representation of the k-dop. Since k is typically a relatively
small constant, this preprocessing step is quite fast.

The complexity of the entire k-dop construction is O(nk) +
O(k logk) (computing the k bounding planes plus the boundary rep-
resentation of the intersection of the bounding planes). Since k is
a fixed constant (typically much less than n, the number of vertices
in the geometry), this reduces to O(n), versus O(n logn) for com-
puting convex hulls. Tight fitting OBBs can also be constructed in
O(n logn) time [13], or in O(n) time at the cost of looser fitting ap-
proximations. As asymptotic complexity can hide large constants
which influence implementations of these construction algorithms,
we have included in Figure 5 the actual computational cost for a
single bounding volume as the amount of geometry increases.

In the experiments described later, the underlying geometry of
the models is not being modified between frames, only the cam-
era is changing. However, if this were the case (see future work
discussion), k-dops can be updated efficiently if the geometry they
approximate undergoes rigid motion. By transforming the bound-
ing vertices of the original k-dop, a new bounding volume can be
recomputed quickly by finding the minimum and maximum val-
ues of these transformed vertices along the k-dops k/2 directions.
This recomputation is considerably faster than the original calcula-
tion as the k-dop will (typically) have significantly fewer vertices
than the geometry being approximated. Please refer to Section 5
for the maximum number of triangles (and hence vertices) in the
k-dops that we discuss.

For the occlusion culling algorithm that we describe below, we
would not need to even recompute the k/2 bounding planes. Once
the initial k-dops have been computed (bounding planes, boundary
triangles, and vertices), the boundary triangles will always be valid

as the model (and its boundary) undergoes rigid motion. We could
simply update the vertices of the original k-dop, and then render
the same triangles (i.e. triples of vertices indices) for the occlusion
culling queries.

4 CULLING ALGORITHM

For our experiments, we have focused on a straight-forward oc-
clusion culling algorithm that allows us to easily interchange sev-
eral bounding volumes and generate interesting statistics regarding
their effectiveness, including overall culling percentage, frame rate,
and triangle complexity of the bounding volumes. We refer the in-
terested reader to an excellent survey on visibility culling [7] for
a more general discussion of culling algorithms and their various
strengths and weaknesses.

In the algorithm used here, we perform two stages of culling,
as described by Bartz, et al. [4]. First, we perform a hierarchical
view frustum culling operation to eventually determine which of
the leaf nodes of the model hierarchy are not visible because they
are outside of the user’s field of view. (We use AABBs for this
first stage because the additional complexity of the other bounding
volumes would increase the view-frustum culling costs signficantly
– in contrast to the occlusion culling costs.) Based upon the im-
plicitly calculated near and far depth values of the leaf nodes, we
arrange the potentially visible nodes in a front-to-back list L. In
the second culling stage, we process L in an interleaved fashion.
After disabling the writing of the depth and color buffers, we test
if rendering the bounding volume of the front-most leaf node in L
would have modified the depth buffer, if it had been enabled. If no
change would have resulted, the bounding volume is determined to
be occluded, and its associated actual geometry does not need to
be rendered. Otherwise, we enable the depth and color buffers for
writing and render the associated actual geometry of the leaf node
and proceed with the next node in the list.

For the detection of the potential change in the depth buffer, we
use the Hewlett-Packard occlusion culling flag (HP flag) [34, 4],
however, any other occlusion culling technique could be used (e.g.
the virtual occlusion buffer [3]). Support for such occlusion queries
has recently become the norm on almost all graphics hardware, in-
cluding the adapters from NVIDIA, ATI, and HP. This functionality
has been very well received because of the greater performance of
the operations in hardware as opposed to software. Most recently
many researchers have taken advantage of these features including
(but not limited to) [4, 5, 19, 26, 8, 37, 14, 41].

The front-most n leaf nodes of L are rarely occluded; we render
the geometry in these nodes without any occlusion test. The param-
eter n is very application dependent. For endoscopic applications,
approximately 10% of the front-most nodes are never occluded. For
mechanical CAD (MCAD) models, n is smaller (roughly 5%), since
case elements are frequently occluding the interior geometry. For
the architectural models, n is typically around 10%, with the ex-
ception of the Manhattan data where n is 15%, due to the viewer’s
perspective being a bird’s eye view of the model and therefore more
geometry is typically visible.

Hierarchical Culling Queries An alternative culling algo-
rithm that we have experimented with performs hierarchical occlu-
sion tests in addition to the hierarchical view frustum culling. In
our original algorithm, we are using sequential occlusion tests on
the leaf nodes in L. The alternative algorithm, starting at the root
node, performs occlusion queries for the interior nodes as well in
the hopes that we can quickly eliminate a large portion of the hi-
erarchy (by finding an occluded interior node). While the idea is
quite reasonable, this algorithm may not necessarily produce faster
frame rates than our original algorithm because of the additional
culling tests that are performed. As an example, consider the case

model # frames # triangles # objects

Screw driver 180 156,424 83
Boom box 61 644,268 530
Formula One 41 746,827 306
London 208 864,716 718
City 200 1,403,096 228
Manhattan 132 2,938,836 698
Angiography 1138 1,817,731 278

Table 1: Number of viewpoints (frames), triangles, and objects for
each model used in our experiments.

when a leaf node is visible from the current viewpoint. The bound-
ing volume of this node, as well as every interior node on the path
from the leaf to the root, will be found to be visible and we will
have gained nothing by conducting these occlusion tests. If many
of the interior node tests return false (meaning the node is not oc-
cluded), then we may inadvertently increase our overall rendering
times. This was, in fact, the result presented in the paper describing
the Jupiter toolkit [5]. Our results using this algorithm have been
mixed and are presented in the following section.

5 EXPERIMENTAL RESULTS

We describe several experiments to demonstrate the benefits of us-
ing k-dops as bounding volumes in comparison to AABBs, which
have consistently been the standard approximation for culling. For
completeness, we have also tested other bounding volumes includ-
ing spheres, oriented bounding boxes (OBBs), and convex hulls.
The current tests were computed on a Linux PC with a 3 GHz Pen-
tium 4 CPU and a NVIDIA FX 5600 graphics adapter.

Table 1 shows an overview of the models used for our exper-
iments from MCAD, walkthrough systems, and from a medical
scanner. Each model is stored in a hierarchical tree representation,
where the leaf nodes of these trees contain the actual geometry of
the models, while the interior nodes combine several leaves to pro-
duce higher hierarchy elements. For most of the data, the model
hierarchies were specified by the original component hierarchies
specified during the data creation process. In the cases where the
model hierarchies were not provided with the data (London, City),
we used a triangle clustering algorithm, whose evaluation method
is the distance of the barycenters of the triangles, and generate a
spatial organization of the scene into compact objects [27]. In all of
these cases, the hierarchies do not specifically favor any one bound-
ing volume over any of the others.

For each model, we perform the occlusion culling tests as de-
scribed in Section 4 for arbitrary viewpoints, which represent typ-
ical view situations of the data sets, such as rotations, close-ups,
and walkthroughs of the geometry. Rendering using OpenGL was
not optimized for frame rates; we used display lists of lit triangle
meshes, but not triangle strips or vertex arrays. The models we have
used are described below and illustrated in Figures 3-10. With the
exception of the City and Manhattan models, all of our models are
from real-world data. The models we chose to use provided a good
spectrum of models to test various aspects of the complete render-
ing system.

Screw driver An MCAD model consisting of a deep tree hier-
archy where the screw driver’s case is composed of two parts which
occlude most of the interior geometry (Figure 3a).

Boom box An MCAD model consisting of a deep tree hier-
archy. Most of the geometry is organized in the central unit of the
boom box, which is occluded by the cover components (Figure 9).

Formula One The racing car is a complex MCAD model or-
ganized in a flat hierarchy with tightly fitting outer components
(Figure 4).

Figure 4: Formula One: the cover parts have been removed on the
right side of a clipping plane.

London A model of the Westend of London where some build-
ings contain added interior geometry. The hierarchy is a quadtree-
like structure which is generated using a triangle clustering algo-
rithm from ray tracing [28]. The walkthrough of this model is done
at the pedestrian (street) level (Figure 10).

City An artificial scene generated by a modeling system where
all buildings contain interior geometry. Its quadtree-based hierar-
chical organization is generated using the same triangle clustering
algorithm as above. This walkthrough is also from a pedestrian’s
viewpoint (Figure 8).

Manhattan A generated city model of skyscrapers and
smaller buildings. The model itself is laid out on a checkerboard-
like grid and every building is enriched with additional geometry,
i.e. furniture, which is completely enclosed in the building. Here,
the walkthrough is really a fly-over of the city, i.e. from a bird’s
perspective (Figure 6).

Angiography An extracted isosurface of an arterial blood ves-
sel from a rotational angiography scan of a human head. The hier-
archy is based on an octree decomposition of the original volume
dataset (Figure 7).

5.1 Culling Performance

Table 2 presents the occlusion culling results for all of our data sets.
For all but one of these models, we achieved additional culling us-
ing k-dops in comparison to bounding volumes traditionally used
for occlusion culling (AABBs). As the major reason for the better
performance, we note the tighter approximation of the k-dop-based
bounding volumes. More important than the approximation qual-
ity, the increased culling performance also resulted in an increased
rendering performance as measured by frame rate. Compared to
AABBs, 26-dops provided increases in frame rates of 30% (screw

Model AABB OBB Sphere 14-dop 18-dop 26-dop CH
culling % 56.0 56.1 51.6 63.0 69.8 70.1 74.4

Screw driver fps 59.5 59.1 51.0 65.4 76.2 77.5 82.0
triangles 12 12 320 43(44) 54(60) 77(92) 301(770)
culling % 76.5 74.5 69.7 76.8 77.0 77.1 77.4

Boom box fps 20.8 19.5 15.5 20.2 20.1 20.4 18.0
triangles 12 12 320 44(44) 55(60) 80(92) 578(3264)
culling % 66.0 66.7 51.9 69.3 69.9 69.8 73.9

Formula One fps 19.9 19.9 14.1 21.4 21.7 21.4 22.8
triangles 12 12 320 44(44) 57(60) 85(92) 433(4390)
culling % 97.3 97.1 96.6 97.5 97.7 97.8 98.0

London fps 55.2 50.4 41.5 55.5 57.7 58.8 57.9
triangles 12 12 320 35(44) 45(60) 66(92) 191(1340)
culling % 96.3 96.3 95.7 97.1 97.3 97.4 97.6

City fps 58.6 56.1 46.9 64.7 66.8 67.0 68.8
triangles 12 12 320 44(44) 56(60) 83(92) 75(1340)
culling % 92.8 92.4 91.6 93.4 93.4 93.5 93.9

Manhattan fps 17.6 16.2 14.3 18.0 18.5 18.7 19.1
triangles 12 12 320 41(44) 50(60) 73(92) 28(684)
culling % 97.2 97.0 96.9 97.3 97.3 97.4 97.4

Angiography fps 60.0 54.7 51.4 60.6 60.9 61.1 60.6
triangles 12 12 320 43(44) 53(60) 79(92) 209(734)

Table 2: Occlusion culling statistics: For each model, the overall performance of each bounding volume is listed as the average percentage of
geometry culled (culling %) and the frames per second (fps) achieved over a series of viewpoints. The best frame rate is highlighted in bold
for each model. The bounding volumes are the axis-aligned bounding box (AABB), the oriented bounding box (OBB), the bounding sphere,
the 14-dop, the 18-dop, the 26-dop, and the convex hull (CH). We also report the average (maximum) number of triangles for each bounding
volume. For the AABB, sphere, and OBB, the maximum value is always identical to the average. Note that the maximum number of triangles
for the convex hulls is often quite large.

driver), 8% (formula one), 7% (London), 14% (city), 6% (Manhat-
tan), and 2% (angiography).

Although our frame rates increased for all but one model when
using k-dops, the MCAD models produced slightly mixed results.
The screw driver and formula one models were receptive to using
k-dops, while the boom box model was not (26-dops saw a de-
crease of 2% with respect to frame rate). We noticed that the overall
culling percentage did not increase significantly for the boom box
(for any bounding volume), as a result of the many axis-aligned
components of the model. In general, however, the MCAD mod-
els that we have experimented with consist of many interior parts
which are often occluded by outer cover components. The loosely
fitting bounding volumes (e.g. AABBs) used on the interior geom-
etry often protrude through the outer case of the models, while the
tighter k-dops do not (see Figure 3).

In the case of the boom box, since the interior components are
well aligned with the component axes, even the AABBs do a good
job approximating them. However, a benefit of using k-dops is that
you need not rely on the geometry of the model being aligned in
such a manner for the bounding volumes to work well. To illustrate
this point, we took the boom box model and rotated it 45 degrees
around the vector ¡1,1,1¿ so that its components would no longer
be aligned with the coordinate axes. As expected, the efficiency of
AABBs decreases, as can be seen in Table 3. In contrast to the pre-
vious test, bounding volumes less dependent upon the orientation
of the model perform better than the fixed AABBs; even the bound-
ing sphere had a higher average culling percentage than the AABB.
The convex hull continues to have the highest culling rate, followed
by the 26-dop and (in this test) the OBB. Interesting, the OBB was
able to cull nearly the same amount of geometry as the 26-dops and
actually achieved a slightly higher frame rate. The point still re-
mains that bounding volumes that are largely independent upon the
orientation of the underlying geometry that they are approximating
need not assume or rely on such an orientation in order to provide

good approximations and fast frame rates.

BV Culling % fps
AABB 71.3 16.4
OBB 75.8 18.6
Sphere 72.4 15.7
14-dop 74.9 18.1
18-dop 75.1 18.1
26-dop 75.9 18.4
CH 78.7 17.4

Table 3: Occlusion culling statistics for the boom box after under-
going a 45 degree rotation about ¡1,1,1¿

The three architectural models all benefited from tighter bound-
ing volumes with the increase in frame rate ranging from 6% (Man-
hattan) to 14% (City). In the City model, an artificial scene gener-
ated by a modeling system, each of the buildings was modeled as an
individual object including the interior geometry. The other models
had no object distinction, so interior geometry was present in only
a few of the buildings, and the hierarchies created were not as tight
fitting as in the City model. Another significant factor in the City
model benefiting to a larger extent is that the roofs of the building
are not flat (as in the other models), so the tighter bounding volumes
could approximate them better than the AABBs.

The angiography model, which was generated using Marching
Cubes, was largely occluded (due to the endoscopic walkthrough)
and each of the bounding volumes did well to detect this. The slight
improvement in culling performance when using the tighter bound-
ing k-dops resulted in a slight improvement in frame rate of 2%,
compared to AABBs.

The slight culling and frame rate improvements that were

Model AABB 14-dop 18-dop 26-dop
Screw driver culling % 53.7 61.2 68.3 68.5

fps 59.2 59.7 72.4 84.6
Boom box culling % 75.3 75.6 75.8 75.9

fps 21.0 19.3 19.2 21.2
Formula One culling % 65.6 68.8 69.3 69.2

fps 18.0 18.5 19.3 18.8
London culling % 97.2 97.4 97.5 97.6

fps 52.4 54.7 56.4 57.1
City culling % 96.0 96.8 96.9 97.0

fps 50.7 55.9 58.6 59.3
Manhattan culling % 92.6 93.1 93.1 93.2

fps 15.9 16.5 16.7 16.7
Angiography culling % 97.0 97.1 97.1 97.2

fps 57.3 60.0 60.2 60.5

Table 4: Occlusion culling statistics for the hierarchical culling test. The bold numbers indicate where this culling algorithm produced faster
frame rates than the sequential culling algorithm.

achieved on the angiography model illustrate that the additional
rendering complexity of the k-dops is negligible. This is the result
of each occlusion culling query using the HP flag being equivalent
to rendering roughly 190 triangles [35], which is much more than
needed for a 26-dop. There is clearly a limit however, in how com-
plex the bounding volumes can be. For example, each of the convex
hulls for the boom box averaged 578 triangles and resulted in the
convex hull actually being significantly slower than the AABBs. A
similar result occured between OBBs and 26-dops when the boom
box was rotated.

In general, the oriented bounding boxes provided little improve-
ment in occlusion culling performance over AABBs. This is be-
cause their screen space coverage is almost identical (see Table 5).
One of the most interesting things we learned was that the con-
vex hulls were the best bounding volume in four examples for the
occlusion culling algorithm (strictly in terms of frame rates). In
the two MCAD models (screw driver and formula one), there were
significant increases in culling performance as the bounding vol-
umes became more complex. Since the convex hulls are the tightest
bounding volume, their culling rates were the best. In the two archi-
tectural models in which the convex hull produced the best frame
rates, there were only slight increases in culling percentages, but
enough so that the overall frame rate was faster. In these cases, the
average number of triangles of the convex hulls used is quite low
(75 for City and 28 for Manhattan) so the improved culling per-
centage is achieved without any real overhead in terms of occlusion
culling time.

Hierarchical Culling Queries As discussed in Section 4, we
experimented with two culling algorithms: one in which we exam-
ined in depth order (sequentially) the leaf nodes of the bounding
volume hierarchy, and another algorithm in which we performed
culling queries hierarchically. As can be seen in Table 4, the hier-
archical culling algorithm produced results that were close to the
sequential tests, however, in only two of the cases did it actually
produce faster frame rates (highlighted in bold text). The ratio-
nale for using hierarchical queries is that we may be able to prune
a large portion of the tree away with a single culling query, how-
ever, as can be seen in these results, as well as those in [5], the
hierarchical tests can result in significantly more culling queries
being performed which in turn increases the overall running time
of the algorithm. Overall, hierarchical culling queries realized no
improvements compared to the sequential approach.

5.2 Approximation Quality

To better illustrate the improved approximation quality, we com-
puted the total volume and surface area for all of the bounding vol-
umes of the leaf nodes of our model hierarchies, and presented them
in Table 5 (note the reordered columns). The bounding spheres are
clearly the worst approximation, and the k-dops are better than ev-
erything else, with the natural exception being the convex hulls,
the tightest of all (convex) bounding volumes. It is interesting to
note that the total volume and surface area for a particular model
mimic each other very well as we change bounding volumes: they
are both monotonically increasing as we go from convex hulls, to
26-dops, to 18-dops, to 14-dops, to AABBs, to OBBs, and finally
to spheres. The only exceptions to this occur between AABBs and
OBBs and are highlighted in bold text. In comparing AABBs and
OBBs, we see that these two bounding volumes are very compara-
ble with respect to volume and surface area (and therefore rasterized
screen space), which resulted in similar culling and frame rates (see
above).

It remains an open issue which of these two metrics is better in
the current scenario. While others have favored using the surface
area [21], we have used the volume because there are examples
of tighter (non-convex) bounding volumes that have larger surface
areas than looser bounding volumes. This is not the case when
using the volume criterion.

5.3 Bounding Volume Complexity

The complexity of the bounding volumes effects both the rendering
and storage costs. As the rendering costs of the bounding volume
are really encapsulated in the previous discussion on culling perfor-
mance, we will focus here on the storage costs. The average and
maximum bounding volume complexity are provided in Table 2.
The clear winners here are the AABB and OBB, as they each re-
quire only 12 triangles. The bounding sphere must be tessellated
(during preprocessing only) for the rendering-based, image-space
culling algorithm: the more complex the tessellation, the more ac-
curate it is, but the more expensive it is to store. For the experi-
ments that we report here, we used a triangulated sphere with 320
triangles. The k-dops are quite simple to store. The 14-, 18-, and
26-dops each require at most 44, 60, and 92 triangles respectively.
The convex hulls on the other hand, often required several hundred
triangles each on average, and up to several thousand triangles each
in the worst case.

Model CH 26-dop 18-dop 14-dop AABB OBB Sphere
Screw driver volume 830K 1,033K 1,065K 1,204K 1,307K 1,364K 23M

surface 190K 218K 223K 242K 269K 268K 866K
Boom box volume 45M 52M 54M 57M 63M 71M 291M

surface 2,581K 2,743K 2,893K 3,051 3,363K 3,568K 6,797K
Formula One volume 204M 302M 311M 359M 443M 452M 4,043M

surface 9M 11M 11M 12M 14M 14M 35M
London volume 19M 21M 22M 23M 27M 26M 69M

surface 1,401K 1,534K 1,590K 1,666K 1,930K 2,543K 3,713K
City volume 231K 279K 306K 354K 457K 408K 995K

surface 1,561K 1,782K 1,833K 2,028K 2,618K 2,421K 3,471K
Manhattan volume 413M 525M 549M 572 676M 1,016M 3,426M

surface 30M 33M 35M 35M 40M 51M 83M
Angiography volume 8M 13M 14M 16M 26M 33M 74M

surface 1,360K 1,723K 1,866K 1,952K 2,829K 3,377K 4,473K

Table 5: Total volume and surface area for all of the bounding volumes of the hierarchy leaf nodes for our data models. For each model,
the volume and surface area are monotonically increasing across bounding volumes: convex hulls, 26-dops, 18-dops, 14-dops, AABBs, OBBs,
spheres. The only exceptions to this are between the AABBs and OBBs and are highlighted in bold.

0.0001

0.001

0.01

0.1

1

10

100

1000 10000 100000 1e+06

C
om

pu
ta

tio
n

T
im

e
(s

)

Model Complexity (#Triangles)

CH
OBBs

26-dops
18-dops
14-dops

BS
AABB

Figure 5: Computation times: For each bounding volume, we
recorded how long it took to compute as the number of vertices
increased (note the log-log plot).

5.4 Computational Expense

Figure 5 illustrates the computational expense of computing the var-
ious bounding volumes for increasingly complex geometry (note
the log-log scale). We varied the geometry to consist of only a few
vertices up to one million vertices to see how the construction al-
gorithms scaled. Not surprisingly, the AABBs were the easiest to
compute, followed by the bounding spheres. As the value of k in-
creases, the cost of computing our k-dops also increases, but the
overall cost of building k-dops is clearly linear in the number of
vertices. This is also true for OBBs, although they are more expen-
sive to compute than any of our k-dops. Convex hulls are the most
complex to compute, as shown by the plot.

For our real-world data, we found that in practice the same rela-
tionship held for computing the various BVs: AABBs and spheres
were the fastest to compute, followed by our k-dops, OBBs, and
finally convex hulls (which were 5-7 times slower to compute than
the k-dops (for our models).

6 CONCLUSIONS

We have introduced the use of complex bounding volumes such as
k-dops for the purpose of occlusion culling. In comparison to the
volumes that have typically been used for such purposes (AABBs),
k-dops are more effective at culling occluded geometry and result in
faster interactive rendering. These improvements come at the cost
of a slightly more complex storage requirement for each bound-
ing volume. In comparison to bounding spheres and OBBs, our k-
dops are again more efficient at culling and rendering and slightly
more complex to store. In a few examples, using convex hulls for
bounding volumes resulted in the fastest rendering rates. Convex
hulls do carry an additional overhead as opposed to k-dops: they are
more costly to compute, they are more complicated to compute due
to degeneracies, and they require significantly more storage than do
k-dops.

For our occlusion culling algorithm, the best choice of k is 26.
The additional complexity of the 26-dop provides better approxi-
mations than the other k-dops, but the additional triangles that need
to be rendered do not slow down our frame rates. There is a limit
in the number of triangles that can be used for the tight approxi-
mations; in some cases, the convex hulls are actually slower than
AABBs.

We conclude that in using 26-dops, one can avoid the compli-
cations of trying to determine which bounding volume will work
the best for their particular data model. We have shown that our
k-dops provide a well-distributed sampling of bounding planes and
therefore do not rely on the geometry being oriented in any particu-
lar way. In our experiments, the 26-dop produced the best rendering
frame rates in many of our tests. In those instances where it did not
provide the best frame rate, its results were very close to the best.

Recent trends in graphics hardware allow the dynamic modifi-
cation of object geometry (e.g. vertex shaders, articulated motion).
While our current approach requires a re-computation of the bound-
ing volume, only minor incremental updates of the bounding vol-
ume geometry might be necessary. Consequently, as future work,
we would like to investigate how these incremental improvements
of the bounding volumes for dynamic objects can be achieved.

ACKNOWLEDGEMENTS

This work is supported by the Large Model Visualization project
of the Workstation Systems Lab, Ft. Collins, CO of the Hewlett-

Figure 6: A bird’s eye view of the Manhattan dataset.

Figure 7: Angiography: An extracted isosurface of an arterial blood
vessel from a rotational angiography scan of a human head.

Packard Company and by DFG project CatTrain. The MCAD
datasets are courtesy of IBM, Engineering Animation Inc. and
Hewlett-Packard Company. We would also like to thanks Tommer
Leyvand and Daniel Cohen-Or of the Tel Aviv University for pro-
viding us with their fancy city-generator software.

REFERENCES

[1] P. K. Agarwal, M. de Berg, M. Hammar, H. J. Haverkort, and J. Gud-
mundsson. Box-Trees and R-Trees with Near-Optimal Query Time.
Discrete and Computational Geometry, 28:291–312, 2002.

[2] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and A. Tal. BOX-
TREE: A Hierarchical Representation for Surfaces in 3D. In Proc. of
Eurographics, pages 387–396, 1996.

[3] D. Bartz, M. Meißner, and T. H üttner. OpenGL-assisted Occlusion
Culling of Large Polygonal Models. Computers and Graphics - Spe-
cial Issue on Visibility - Techniques and Applications, 23(5):667–679,
1999.

[4] D. Bartz and M. Skalej. VIVENDI - A Virtual Ventricle Endoscopy
System for Virtual Medicine. In Proc. of Symposium on Visualization,
pages 155–166,324, 1999.

Figure 8: City: An artificial scene generated by a modeling system
where all buildings contain interior geometry.

[5] D. Bartz, D. Staneker, W. Straßer, B. Cripe, T. Gaskins, K. Orton,
M. Carter, A. Johannsen, and J. Trom. Jupiter: A Toolkit for Interac-
tive Large Model Visualization. In Proc. of Parallel and Large-Data
Visualization and Graphics (PVG 01), pages 129–134, 2001.

[6] G. Bradshaw and C. O’Sullivan. Sphere-tree Construction Using Dy-
namic Medial Axis Approximation. In Proc. of ACM SIGGRAPH
Symposium on Computer Animation, pages 33–40, 2002.

[7] D. Cohen-Or, Y. Chrysanthou, C. T. Silva, and F. Durand. A Survey
of Visibility for Walkthrough Applications. IEEE Transactions on
Visualization and Computer Graphics, 9(3):412–431, July 2003.

[8] W. T. Correa, J. T. Klosowski, and C. T. Silva. Visibility-based
prefetching for interactive out-of-core rendering. In Proc. of IEEE
Symposium on Parallel and Large-Data Visualization and Graphics
(PVG 03), pages 1–8, 2003.

[9] A. Crosnier and J.R. Rossignac. Tribox Bounds for Three-
Dimensional Objects. Computers & Graphics, 23(3):429–437, 1999.

[10] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer,
1997. ISBN 3-540-61270-X.

[11] F. Durand, G. Drettakis, and C. Puech. The Visibility Skeleton: A
Powerful And Efficient Multi-Purpose Global Visibility Tool. In Proc.
of ACM SIGGRAPH, pages 89–100, 1997.

[12] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierarchies
for Ray Tracing. IEEE Computer Graphics and Applications, 7:14–
20, 1987.

[13] S. Gottschalk, M. Lin, and D. Manocha. OBBTree: A Hierarchical
Structure for Rapid Interference Detection. In Proc. of ACM SIG-
GRAPH, pages 171–180, 1996.

[14] N. Govindaraju, A. Sud, S.-E. Yoon, and D. Manocha. Interactive Vis-
ibility Culling in Complex Environments Using Occlusion-Switches.
In Proceedings of the 2003 Symposium on Interactive 3D graphics,
pages 103–112. ACM Press, 2003.

[15] N. Greene, M. Kass, and G. Miller. Hierarchical Z-Buffer Visibility.
In Proc. of ACM SIGGRAPH, pages 231–238, 1993.

[16] E. A. Haines and J. R. Wallace. Shaft Culling for Efficient Ray-Traced
Radiosity. In Proc. of the Second Eurographics Workshop on Render-
ing, 1994.

[17] T. He. Fast Collision Detection Using QuOSPO Trees. In Proc. of
ACM Symposium on Interactive 3D Graphics, pages 55–62, 1999.

[18] M. Held, J. Klosowski, and J. Mitchell. Real-time Collision Detection
for Motion Simulation Within Complex Environment. In Visual Proc.
of ACM SIGGRAPH, page 151, 1996.

[19] K. Hillesland, B. Salomon, A. Lastra, and D. Manocha. Fast and Sim-
ple Occlusion Culling Using Hardware-based Depth Queries. Tech-
nical Report TR02-039, Technical Report TR02-039, Department of
Computer Science, University of North Carolina, 2002.

[20] P. Hubbard. Approximating Polyhedra with Spheres for Time-Critical
Collision Detection. ACM Transactions on Graphics, 15(3):179–210,
1996.

[21] A. Iones, S. Zhukov, and A. Krupkin. On Optimality of OBBs for
Visibility Tests for Frustum Culling, Ray Shooting and Collision De-
tection. In Proc. of Computer Graphics International (CGI 98), pages
256–263, 1998.

[22] T. Kay and J. Kajiya. Ray Tracing Complex Scenes. In Proc. of ACM
SIGGRAPH, pages 269–278, 1986.

[23] J. Klosowski, M.Held, J. Mitchell, H. Sowizral, and K. Zikan. Effi-
cient Collision Detection Using Bounding Volume Hierarchies of k-
DOPs. IEEE Transactions on Visualization and Computer Graphics,
4(1):21–36, 1998.

[24] S. Krishnan, M. Gopi, M. Lin, D. Manocha, and A. Pattekar. Rapid
and Accurate Contact Determination between Spline Models using
ShellTrees. Computer Graphics Forum (Proc. of Eurographics),
17(3):315–326, 1998.

[25] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast Distance
Queries using Rectangular Swept Sphere Volumes. In Proc. IEEE
International Conference on Robotics and Automation, 2000.

[26] T. Leyvand, O. Sorkine, and D. Cohen-Or. Ray Space Factorization
for From-Region Visibility. ACM Transactions on Graphics (Proc. of
ACM SIGGRAPH), 22(3):595–604, 2003.

[27] M. Meißner, D. Bartz, T. H üttner, G. M üller, and J. Einigham-
mer. Generation of Decomposition Hierarchies for Efficient Occlusion
Culling of Large Polygonal Models. In Proc. of Vision, Modeling, and
Visualization, pages 225–232, 2001.

[28] G. M üller and D. Fellner. Hybrid Scene Structuring with Application
to Ray Tracing. In Proc. of ICVC, pages 19–26, 1999.

[29] J. O’Rourke. Computational Geometry in C. Cambridge University
Press, 1993. ISBN 0-521-44034-3.

[30] C. O’Sullivan and J. Dingliana. Realtime Collision Detection and Re-
sponse using Spheretrees. In Proc. of Spring Conference on Computer
Graphics, pages 83–92, 1999.

[31] I. J. Palmer and R. L. Grimsdale. Collision Detection for Animation
Using Sphere-Trees. Computer Graphics Forum, 14(2):105–116, June
1995.

[32] S. Quinlan. Effcient Distance Computation between Non-Convex Ob-
jects. In Proc. International Conference on Robotics and Automation,
pages 3324–3329, 1994.

[33] S. Rubin and T. Whitted. A 3-Dimensional Representation for Fast
Rendering of Complex Scenes. In Proc. of ACM SIGGRAPH, pages
11–116, 1980.

[34] N. Scott, D. Olsen, and E. Gannett. An Overview of the VISUAL-
IZE fx Graphics Accelerator Hardware. The Hewlett-Packard Journal,
pages 28–34, May 1998.

[35] K. Severson. VISUALIZE fx Graphics Accelerator Hard-
ware. Technical report, Hewlett Packard Company, avail-
able from http://www.hp.com/workstations/support/documentation/
whitepapers.html, 1999.

[36] L. Sobierajski-Avila and W. Schroeder. Interactive Visualization of
Aircraft and Power Generation Engines. In Proc. of IEEE Visualiza-
tion, pages 483–486, 1997.

[37] D. Staneker, D. Bartz, and M. Meißner. Improving Occlusion Query
Efficiency with Occupancy Maps. In Proc. of IEEE Symposium on
Parallel and Large-Data Visualization and Graphics (PVG 03), pages
111–118, 2003.

[38] S. Suri, P. M. Hubbard, and John F. Hughes. Analyzing Bound-
ing Boxes for Object Intersection. ACM Transactions on Graphics,
18(3):257–277, July 1999.

[39] G. van den Bergen. Efficient Collision Detection of Complex De-
formable Models using AABB Trees. Journal of Graphics Tools,
3(5):1–13, 1997.

[40] H. Weghorst, G. Hooper, and D. Greenberg. Improved Computational
Methods for Ray Tracing. ACM Transactions on Graphics, 3(1):52–
69, 1984.

[41] M. Wimmer, J. Bittner, H. Piringer, and W. Purgathofer. Coherent Hi-
erarchical Culling: Hardware Occlusion Queries Made Useful. Com-
puter Graphics Forum (Proc. of Eurographics), 23(3), 2004.

[42] G. Zachmann. Rapid Collision Detection by Dynamically Aligned
DOP-Trees. In Proc. of IEEE Symposium on Virtual Reality (VRAIS),
1998.

[43] H. Zhang, D. Manocha, T. Hudson, and Kenneth E. Hoff. Visibility

Culling Using Hierarchical Occlusion Maps. In Proc. of ACM SIG-
GRAPH, pages 77–88, 1997.

[44] Y. Zhou and S. Suri. Analysis of a Bounding Box Heuristic for Object
Intersection. Journal of the ACM, 46(6):833–857, November 1999.

Figure 9: Boom Box: Cover parts are removed on the right side of the clipping plane.

Figure 10: London: A model of the Westend of London. The yellow line shows the path (from the lower right corner to the upper right corner)
used for the measurements in the paper.

