Bayesian Methods for Neural Data Analysis

Dissertation
der Fakultat fur Informations- und Kognitionswissenschaften
der Eberhard Karls Universitat Tubingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Sebastian Gerwinn

aus Munster

Tabingen
2010



Tag der mindlichen Qualifikation: 22.12. 2010

Dekan: Prof. Dr.-Ing. Oliver Kohlbacher

1. Berichterstatter: Prof. Dr. Wolfgang Rosenstiel
2. Berichterstatter: Prof. Dr. Matthias Bethge



Acknowledgments

First of all, I would like especially to thank my supervisor Matthias Bethge, who
has always been inspirational and enthusiastic in guiding my research, as well as
a good friend. I would also like to acknowledge the group of Bernhard Schoélkopf
as a whole; everyone has been extremely receptive, supportive and helpful to me
over the course of my PhD. For many useful discussions, I would like to mention
these people in particular: Peter Gehler, Matthias Hein, Frank Jakel, Wolf Kienzle,
Malte Kuss, Hannes Nickisch, Sebastian Novozin, Florian Steinke and Christian
Walder. Furthermore, I would like to thank Prof. Rosenstiel for his willing review
and support.

I was fortunate enough to work with Matthias Seeger, from whom I learned a
lot, especially about Bayesian analysis.

I would like to thank my office mates Jakob Macke, Fabian Sinz and Ralf Hafner
for many hours of stimulating whiteboard discussions, hours of entertainment and
for their friendship in general. I have very much enjoyed the interaction with all
members of the Computational Vision and Neuroscience Group during my time
here. In particular, I would like to thank Philipp Berens, Alexander Ecker and Jan
Eichorn for discussions, proofreading and again for their friendship.

My special thanks go to my parents and my sister for their caring support and

patience. Finally and above all I would like to thank Laura for everything.






Contents

Abstract
1 Introduction

2 Probabilistic models for neural populations
2.1 The leaky integrate-and-fire neuron model . . . . . . . . .. ... ..
2.1.1 Membrane potential noise . . . . . . . ... ... ... ...
2.1.2 Thresholdnoise . . . . . . . .. ... ... .
2.2 The generalized linear model for spiking neurons . . . ... ... ..

2.3 The maximum entropy model . . . . . . .. .. ... ... ... ...

3 Encoding with generalized linear models
3.1 Imtroduction . . . .. ... ...
3.2  Generalized linear modeling for spiking neurons . . . . . . .. .. ..
3.2.1 Specifying the likelihood . . . . . . . . .. .. .. oL
3.2.2 Extending the computational power of GLMs . . . . . . . ..
3.2.3 Data-dependent discretization of the time-axis . . . ... ..
3.2.4 Using Laplace priors for better regularization . . . . . . . ..
3.2.5 Quantifying the performance . . . . ... ... ... ... ..
3.3 Approximating the posterior distribution using EP . . . . .. .. ..
3.4 Potential uses and limitations . . . ... ... ... ...
3.4.1 Maximum a posteriori vs. posterior mean . . . . .. ... ..
3.4.2 Binning and identifyability . . . .. ... ... ... ... ..
3.4.3 Population of retinal ganglion cells . . . . . . ... ... ...
3.4.4 Modeling complex cells: How many filters do we need? . . . .
3.4.5 Approximating other neuron models . . . . .. ... ... ..

3.0 Discussion . . . . ... e e

10
11
12
14
17



iv Contents

4 Decoding with leaky integrate-and-fire neurons
4.1 Introduction . . . .. ... ...
4.2 Encoding . . . . . ...
4.2.1 Leaky integrate-and-fire neuron with threshold noise . . . . .
4.2.2  Specifying the prior: A model for the stimulus . .. ... ..
4.3 Decoding . . . . . . .
4.3.1 Decoding in the noiseless case . . . . . . . . .. ... ... ..
4.3.2 Decoding in the presence of noise . . . . . . . ... ... ...
4.3.3 Two-dimensional case . . . . .. .. ... ... ... .....
4.4  Alternative methods . . . . . . . ... ...
4.4.1 Relationship to the linear decoder . . . . ... ... ... ..
4.4.2 Maximum a posteriori and Laplace approximation . . .. . .
4.5 Simulations . . . . . . ...
4.5.1 One neuron, one component, many temporal dimensions . . .
4.5.2 Many neurons, many temporal dimensions . . . . . . . .. ..
4.5.3 Heterogeneity across the population . . ... ... ... ...
4.5.4 Encoding of amplitude and phase variables . . ... ... ..

4.6 Discussion . . . . . . ... e

5 Joint modeling of stimuli and population responses

5.1 Introduction. . . . . . . . . . . . .
5.2 Model formulation . . . ... .. ... o L L
5.2.1 An illustrative example . . . . . ... ... oL
5.2.2 Comparison with other models for the joint modeling of bi-
nary and continousdata . . . . . . ... .. ...

5.3 Applications . . . . . . . ...
5.3.1 Spike triggering and feature extraction . . . . . . .. ... ..
5.3.2 Spike-by-spike decoding . . . .. .. ..o
5.3.3 Stimulus dependence of firing patterns . . . . . . ... .. ..
5.3.4 A spike train metric . . . . ... ... ...

5.4 DISCUSSION . . . . . . . e e
6 Conclusion

A Appendix
A.1 Expectation Propagation with Gaussians . . . . . . . .. .. ... ..

A.2 Bayes-optimal point estimate for average log-loss . . . . . ... ...

Bibliography



Abstract

Understanding the computations underlying the information processing in the ner-
vous system is one of the major tasks in computational neuroscience. The amount
of neural data is rapidly increasing. Hence, we need methods to analyze and in-
terpret this data. Main requirements for these methods are that they can account
for the variability observed in the recorded data as well as they can handle uncer-
tainties about the underlying processing. Furthermore, they should be tractable to
be applicable to large data sets. Bayesian analysis provides a principled way for
incorporating these requirements as it explicitly models the involved uncertainties.
In this thesis, we develop feasible Bayesian methods and apply them to simulated
as well as real data. We exemplify the use of these methods on three different
aspects of neural coding. First, we show how state-of-the-art models can be fitted
to recorded data and obtain model based confidence intervals at the same time.
Second, we show how probabilistic models can be used to extract the uncertain
information about the stimulus on the basis of an observed spike train. Finally,
within the framework of maximum entropy modeling, we study joint distribution

of spikes and stimuli.






Introduction

The term ‘neural code’ is widely used to describe the relationship between exter-
nal, sensory inputs to the brain and the internal neural response. Understanding
the transformation of sensory stimuli into neural responses is a central problem in
computational neuroscience. By mapping, for example, the activities of the pho-
toreceptors in the retina into neural activities at higher areas in the visual pathway,
the brain processes information and performs seemingly hard tasks such as object
recognition with a remarkable precision. The purpose of this thesis is to develop
and apply probabilistic methods for the analysis of neural data. By providing these
tools we seek to get a better understanding of the relationship between stimuli and
neural activities.

The voltage of a neuron’s membrane can be observed to elicit stereotypical
signals at certain points in time, which are also called action potentials or spikes
(see also Figure 1.1). It is widely believed that these events are the main carrier
of information between neurons. As the shape of such an action potential does not
change between events, the resulting signal can also be interpreted as a sequence
of discrete points in time which are called spike trains. In this thesis, we aim at
predicting theses spike trains from the stimulus. With stimulus we usually mean
the continuous signal arriving at the sensors. For example a visual stimulus can
be parametrized by a set of pixel at a time, similar to the photoreceptors on the

retina. Importantly, both signals, the neural activity as well as the stimulus can be
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Figure 1.1: Basic setup for analyzing the coding properties of neural populations
for visual input. A stimulus is presented on a screen or projected directly onto the
retina. Then neural activities in form of electrical potentials are recorded. Typical
locations for recording sites along the visual pathway are the retina, the lateral
geniculate nucleus (LGN) and the primary visual cortex (V1). Fixing the stimulus
and trying to predict the neural response corresponds to the encoding step (see also
Chapter 2 and 3). Inferring the stimulus from spike trains is called decoding and is
studied in Chapter 4.

considered to be generated probabilistically. When presenting the same stimulus
twice the neural activity changes from trial to trial [Shadlen & Newsome 1998|. The
reason can either be non-observed inputs to the neuron generated by the neural
networks in the brain or intrinsic noise of the individual neuron.

For the stimulus we use the same probabilistic description as for the neural
response. That is, we say a stimulus is generated according to a probability dis-
tribution p(s(t)). For an experimental setup this distribution can freely be chosen.
However, in a more realistic setting we would like to characterize all possible stimuli,
which could be observed as inputs. The variety of all stimuli is huge. For example
in the visual domain, there are exponentially many different combinations of pixel
values. However, not all combinations are equally likely to be observed as inputs
to the retina. Finding the probabilistic constraints which distinguish ‘natural’ from
‘non-natural’ images is a hard task.

When trying to characterize the relationship between stimuli and neural re-

sponses, we are interested in answering questions like:

e How is a stimulus represented or encoded in a sequence of action potentials?



e Given an arbitrary stimulus can we predict the spike-trains of ensembles of

neurons?

e Can we reconstruct a stimulus which has caused a particular sequence of

spikes?

The link between stimuli and responses cannot be expressed by a one-to-one map-
ping, that is we cannot predict the neural response exactly. However, we can assign
a probability to each possible response. Mathematically speaking, we would like to
have a good probabilistic description for each of the involved signals: the stimulus
s(t), the response r(t) and especially the joint occurrence of a stimulus-response
pair. To analyze the joint occurrence we have three possibilities. (i) We can fix a
stimulus and then try to estimate how likely each of the possible responses is. (ii)
We fix the response and estimate the probability of the stimulus. (iii) Finally, we
can directly try to model the probability of observing a stimulus-response pair.

To estimate these probabilities, neural activity has to be measured in the
response to an external stimulus. The basic experimental setup is illustrated
in Figure 1.1. A stimulus is presented on a screen or directly projected onto
the retina. The neural activity is then recorded in response to that stimulus.
There are several methods for recording spike trains from a population of neu-
rons. These include electrical devices such as tetrodes or multi-electrode arrays
[Tolias et al. 2007, Zeck et al. 2005], but also optical devices which usually mea-
sure the change in fluorescence of certain dyes which are sensitive to the neural
activity [Kerr & Denk 2008]. To build a probabilistic model as mentioned above
from recorded data, we can either try to (a) estimate descriptive statistics such as
the moments of the distributions or (b) fit a generative model to the observed data.
The spike-triggered average for instance is a classic example for the first approach
[De Boer & Kuyper 1968, Marmarelis & Naka 1972]. There, the conditional mean
E[s|r] is estimated, which, in the case of white noise input can also be seen as the
linear predictor for the response being a spike, given a particular stimulus. The
same approach can also be applied in the decoding view leading to the optimal
linear decoder [Bialek et al. 1991] (see also Chapter 4). Such descriptive statistics,
however, cannot be used to predict spike trains. Generative models on the other
hand directly model the encoding distribution p(r|s, ), from which spike trains
can be generated. Due to this ability of predicting spike trains, we will focus on
generative models in this thesis.

In statistics the corresponding probabilistic object to a spike train, a set of
discrete events in time, is a point process. See [Cox & Isham 1980] for a general
introduction and [Daley & Vere-Jones 2005, Daley & Vere-Jones 2008] for a more
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detailed analysis of the subject matter. To fit a point process to recorded data,
the central quantity of interest is the likelihood of observing a spike train for a
fixed set of parameters of the generative model. The likelihood in turn can be
obtained for general point processes purely in terms of the conditional intensity
function! [Barbieri et al. 2001, Brown et al. 2003]. Once the likelihood is calcu-
lated, a well known estimate for the free parameters is the maximum likelihood
estimator [Pawitan 2001]. However, for classic neuron models of Hodgkin-Huxley
type [Hodgkin & Huxley 1952], the computation of the conditional intensity is a
non-trivial problem ([Paninski et al. 2004], also Chapter 2). Therefore, to fit these
models to data, heuristic loss functions are often defined which measure the fitting
quality of a set of parameters, see [Jolivet et al. 2008] and references therein. Due
to the efficient inference and available performance measures, models for which a
likelihood based approach is feasible became very popular for neural data analysis.
A special case is the generalized linear model (GLM) for which the conditional in-
tensity function is specified by a linear-nonlinear cascade (see Chapter 2 and Chap-
ter 3). The first formulation of the maximum likelihood fit for multi-neural recording
can be found in [Brillinger 1988, Chornoboy et al. 1988] and see [Boogaard 1986]
for a non-neuroscience context. Of practical importance are the concavity results
derived in [Paninski 2004], where conditions for the nonlinear part of the cascade
are given to render the estimation problem convex. Goodness-of-fit tests are pre-
sented in [Brown et al. 2002]), although care has to be taken when applying those
tests, see [Pillow 2009]. There are several variants of modeling the conditional in-
tensity function. This includes the GLM with different link functions. For example
[Harris et al. 2003] used an exponential-linear link function, instead of the widely
used exponential link [Okatan et al. 2005, Truccolo et al. 2005, Pillow et al. 2008].
In [Weisberg & Welsh 1994] the link function is fitted jointly with the linear
part in a semi-parametric fashion. In [Paninski 2003] a conditions are presented
when the linear part can be recovered by spike-triggering techniques, i.e. with-
out assuming a specific link function. Another semi-parametric approach in a
non-GLM setting for analyzing the interaction between different point processes
is given in [Cox 1972, Borisyuk et al. 1985]. There, only the modulation in-
fluence of other point processes are modeled without having to assume a spe-
cific form of the complete shape of the generating conditional intensity func-
tion. The conditional intensity function can also be fitted non-parametrically, see
[Truccolo & Donoghue 2007, Coleman & Sarma 2010]. For a recent review on stat-
of-the-art methods see [Brown et al. 2004].

Instead of classic maximum likelihood point estimation, a common theme of this

'The intensity function is also called hazard function in survival analysis.



thesis is to develop Bayesian inference techniques to fit generative neuron models
to experimentally recorded data.

As the neural signals reflect encoding of the stimulus variables, influences of
other neurons and internal dynamics, it is likely that we need complex models to
explain the statistical link between stimuli and spike trains. In terms of parametric
models this corresponds to a large number of parameters. Although the amount
of data is increasing, the parameters are still often underconstrained by the data.
That is, we have to deal with large uncertainties, not only in terms of noisy data but
also in terms of uncertainty over parameters. To prevent models to fit to spurious
aspects of the data — also called overfitting — an obvious way to avoid this problem
is to restrict the number of parameters and hence favoring simpler models. In a
Bayesian context, instead of estimating a single set of parameters a full distribution
over parameters is estimated. Therefore, there is far less danger of overfitting, as
the complete uncertainty over parameters is considered. Hence, there is no good
reason to limit the complexity except for computationally tractability [Neal 1996].
By systematically representing the uncertainty we can make predictions based on
this uncertainty which then can be tested in order to reduce the uncertainty further.
We think that following a Bayesian approach can help understanding the complex
computations underlying the information processing in nervous systems.

This thesis can be divided into three parts.

Part I The first part deals with modeling the encoding distribution
p(spikes|stimulus). In Chapter 2 we introduce three popular parametric mod-
els for describing the encoding distributions which are used in this thesis. In
Chapter 3 we present probabilistic methods for identifying the free parame-
ters of the generalized linear model. In particular, we present an approxi-
mate Bayesian inference technique to estimate the uncertainty over the encod-
ing parameters. This part is based on joint work with Jakob Macke, Matthias
Seeger and Matthias Bethge and was orally presented at the Neural Informa-
tion Processing System Conference 2007. It is published in two peer reviewed
conference papers and in the journal ‘Frontiers in Computational Neuroscience’
[Seeger et al. 2007, Gerwinn et al. 2008, Gerwinn et al. 2010].

Part II The second part deals with deriving the decoding distribution
p(stimulus|spikes) while fixing the encoding distribution. In Chapter 4 this is ex-
emplified by the leaky integrate-and-fire neuron model. This part is based on joint
work with Jakob Macke and Matthias Bethge and was published in ‘Frontiers in

Computational Neuroscience’ [Gerwinn et al. 2009b].
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Part IIT1 Finally, in Chapter 5 we present a model which characterizes the joint
distribution of stimuli and spikes. The work was jointly conducted with Philipp
Berens and Matthias Bethge and was published as a paper at the Neural Information

Processing System conference 2009 [Gerwinn et al. 2009a].



Probabilistic models for neural

populations

Empirically one finds that the neural activity varies from trial to trial, even if the
stimulus is constant [Shadlen & Newsome 1998]. The underlying causes for this
variability may originate either from intrinsic unreliabilities of the biophysics of the
neurons, which cannot be avoided by the system or from unobserved inputs to the
neuron which are difficult to control experimentally. A third possibility which has
been proposed is that the variability is purposely used by the system to encode
the uncertainty about the causes underlying the current stimulus [Ma et al. 2006].
From a modeling perspective irrespective of the source of this variability, we would
like to describe the statistics of the neural activity as accurate as possible. One
typically distinguishes two different classes of models: (i) mechanistic and (ii) phe-
nomenological. The first one tries to capture specific mechanisms involved in the
process of mapping the input to a neural output. The latter aims at explaining the
output on a more abstract level by allowing for neglecting some of the details. There
is no clear distinction between the two categories, they merely reflect different levels
of abstraction. Our goal is to predict spikes as accurate as possible. Therefore, we
model biophysical properties to the extend to which they are needed to improve

the prediction performance. The spike generation process is usually modeled by
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a two step process. The first one is a deterministic computation on the inputs,
while the second is modeling random fluctuations. While we are usually interested
in the deterministic computation carried out by a neuron, we need a model for
the neural noise as well in order to explain the variability around the deterministic
component embedded in the neural response. We follow a parametric approach for
analyzing neural data, i.e. we assume a specific functional model to describe the
generation of a spike in response to a presented stimulus. In this chapter we give
a brief overview over the parametric models used in this thesis with the goal to
illustrate the basic differences. As we are interested in modeling the neural output,
we will focus on the effect of using different noise sources on the spike-generation.
The models included in this chapter are the leaky integrate-and-fire model (LIF)
[Tuckwell 1988, Gerstner & Kistler 2002] (see also Chapter 4), the generalized lin-
ear model (GLM) [Brillinger 1988, Paninski 2004, Okatan et al. 2005](Chapter 3)
and the Ising model [Schneidman et al. 2006, Tang et al. 2008, Roudi et al. 2009c]
(Chapter 5). We have ordered the models according to their degree with which
they are guided by biophysical mechanisms. For instance the leaky integrate-and-
fire model can be considered more mechanistic as it tries to model the membrane
potential of a neuron, while the Ising model is build up by only using statistics of

the neural firing.

2.1 The leaky integrate-and-fire neuron model

A popular and simple model to describe the spike generation process is the leaky
integrate-and-fire neuron model [Tuckwell 1988, Gerstner & Kistler 2002]. We first
describe the noiseless case consisting of the deterministic computation. Afterwards
we show how neural noise can be incorporated. The noiseless model consists of
a membrane potential V; which accumulates the effective input I;. Here, V; and
I; are scalar functions if a single neuron is modeled, or vectors if a population is
considered. Whenever the membrane potential of neuron n reaches a pre-specified
threshold 6™ a spike is fired and the membrane potential is reset to its resting
potential, i.e. lim.0(V¢,4e)n = Vo. In addition to the input I, there is a leak
term which drives the membrane potential back to V,. when no input is present.
Correspondingly, the sub-threshold dynamics of the membrane potential can be

described by the following ordinary differential equation (ODE):

AV, = Ldt — A (V; — V) dt. (2.1)
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The time constant A specifies the time scale of the neural dynamics. Assuming
the time of the last spike is ¢y, the membrane potential at any time ¢ before the

next spike is given by

Vi=exp(=A(t —t9)) V,+
. (2.2)
exp (= (¢ — to)) /t exp (A (s — o)) T ds = Fiy, (1),

Flyy,1)(I) is a linear functional of the stimulus I depending on the time of the last
spike tg and the current time point . Due to the additional spiking nonlinearity that
governs the dynamics when the membrane potential reaches the threshold, the LIF
neuron performs a complex mapping of continuous signals to spike patterns. Note
that if the threshold 6 of neuron is known each observed inter-spike interval defines
a linear constrain on the stimulus. This is studied in more detail in chapter 4.

To include neural noise in this model, there are at least two possibilities. First,
the modeled membrane potential can be subject to random fluctuations. Secondly,
a possibly simpler way is to model the threshold as a random variable which is
drawn every time a spike is fired. A priori it is not clear which one is better suited
for modeling spike trains. Which one should be preferred, has to be decided on the

basis of their prediction performance.

2.1.1 Membrane potential noise

The first possibility to model neural noise in an integrate-and-fire neuron, is to allow
for fluctuations of the underlying membrane potential. The cause of this random
fluctuations can be thought of as the sum of independent external random effects, or
as the sum of Poisson spikes arriving at the synapse resulting in a shot-noise effect
on the membrane potential, see [Burkitt 2006, Paninski et al. 2004]. Consequently,
the ODE (2.1) turns into a stochastic differential equation (SDE):

where B; is a Brownian motion and models the random fluctuations as Gaussian®.

The threshold 6™ for neuron n is assumed to be fixed here. If one neglects the
threshold for a moment, the dynamics is purely linear resulting in a Gaussian process
V; with mean and variance given by [Oksendal & Karsten 1998, Allen 2007]:

Note, that the random effects modeled by the Brownian motion are different to the ones
resulting from finitely many Poisson inputs. However, due to the central limit theorem, this
approximation becomes better the more Poisson inputs arriving at a synapse.
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t

BIV) = exp (<A (¢~ t0)) (Vi + [ exp (s — t0)) L, ds

t 0_2
Var[V] :/ exp (~A(t — 5))% 2ds = T (1 — exp (~2\(t — to)))

to

to

(2.4)

We see, that the mean obeys the same dynamics as the noiseless integrate-and-
fire model. Furthermore it is worth noting, that the variance of the membrane
potential saturates due to the leak term. We can further generalize this model by
assuming that the effective stimulus I; is the result of linear filtering the actual
stimulus s(¢). That is, it is assumed that the effective stimulus I; can be written

as:

I, = (r«xs)(t)

o
_ / v(t — 7)s(r)dr (2.5)
—0o0
t
= r(t — 7)s(7)dr, (2.6)
— 0o
where r(t) is a linear filter acting on the recent past of the stimulus s(¢). Equation
2.6 follows, because the linear filter is assumed to be causal, i.e. it only acts on the
past of the stimulus. The filter r is also called a receptive field.

To illustrate the encoding, we plotted a sample spike train in Figure 2.1 (black
vertical bars) together with the effective stimulus I; (blue) and the corresponding
membrane potential (red). The random fluctuations in the membrane potential
cause non-deterministic spiking.

A problematic aspect of this neuron model is that the computation of the likeli-
hood p(spike|stimulus) is a hard problem as the corresponding Fokker-Planck equa-
tion has to be solved, see [Paninski et al. 2004, Paninski et al. 2008]. Also it should
be noted, that the model neglects some basic biophysical properties such as ion

channels and spike waveforms.

2.1.2 Threshold noise

In the previous section we assumed a fixed threshold which has to be reached to
fire a spikes. The membrane potential at onset of spikes, however, varies form spike
to spike [Jolivet et al. 2006]. Therefore, the threshold is not fixed. The Gaussian
noise on the membrane potential of the previous section can equivalently be seen
as a continuously varying threshold. However, instead of continuously varying the

threshold, we can also draw a new threshold every time after a spike has been
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0 50 100 150 200 250 300 350 400
Time [ms]

Figure 2.1: Spike train generation with a leaky integrate-and-fire neuron when
membrane potential noise is used. A white noise stimulus (not shown) is filtered
with a receptive field to obtain the effective input I(¢) (blue trace). White noise
is added to the effective input I(¢) to give the membrane potential (red). Every
time the membrane potential reaches the threshold 6 a spike is released and the
membrane potential is reset to the reset potential V..
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generated. As in the previous section, the time of the next spike only depends on
the time of the last spike, the threshold and the time-course of the driving stimulus.
Hence, conditioned on the stimulus, the resulting point process is a renewal process
as the time of the next spike only depends on the timing of the very last spike. To
illustrate the resulting noisy spike-generation process, we sampled a spike-train from
such a neuron with every other parameter set to the same value as in the previous
section. In Figure 2.2 we see, that the resulting spike-train (green) is similar to
the one generated from the integrate-and-fire model with membrane potential noise
(black vertical bars), however not identical. For example, we see that the first spike
in the membrane-potential noise setting is missing in the threshold noise case, as the
threshold happens to be too large to be reached by the (deterministic) membrane
potential (plotted in red). Because of the leak term the membrane potential is
driven towards zero proportional to its current value. Therefore, larger values for

the membrane potential are unlikely.

2.2 The generalized linear model for spiking neurons

Compared to the two flavors of the leaky integrate-and-fire model the Generalized
Linear Model (GLM) [Brillinger 1988, Paninski 2004, Okatan et al. 2005] is more
phenomenological or abstract as it directly aims at modeling the likelihood of spikes.
It has the main advantage of being computationally efficient yet flexible. In the
simplest form of the GLM, spike-trains are assumed to be distributed according to
an inhomogeneous Poisson process. This special case of the GLM is also known as
the Linear-Nonlinear Poisson model [Simoncelli et al. 2004]. Specifically, the rate

can be written as a Linear-Nonlinear cascade:

A(t) = f(s(t) "ws) (2.7)

First, the stimulus is filtered with a parameter vector w, which is referred to as the
receptive field of the neuron. This linear filtering is similar to equation (2.6) and
hence can be thought of calculating the effective input to the GLM. Subsequently,
the pointwise monotonic nonlinearity f transforms the real-valued output of the
linear filtering into a nonnegative instantaneous firing rate. If the current stimulus

has a strong overlap with the receptive field, that is if s(t) "

w is large, this will yield
a large probability of firing. If it is strongly negative, the probability of firing will
be zero or close to zero. Therefore the spike generation can also be interpreted as a
soft threshold integrate-and-fire model [Koyama & Paninski 2009]. However there

is no reset mechanism in the GLM. The linear filtering step can also be extended
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1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400
Time [ms]

Figure 2.2: Encoding example for the case of threshold noise. The same input as
for Figure 2.1 was used. The threshold, however was drawn from a I'-distribution
whenever a spike was fired. The mean and variance of the I'-distribution were
set such that the resulting spike train roughly resembles the one generated in the
membrane noise setting. For comparison the spikes for the membrane noise are
also plotted in black whereas the spikes generated in the threshold noise setting
are plotted in green. The time constant and the effective input are the same as in
Figure 2.1.
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spikes GLM | | ||I|I||||| || | ||
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Figure 2.3: Encoding example using a GLM for spike generation. A GLM was
stimulated with the same input as the one used in the Figure 2.1 and Figure 2.2.
The receptive field for the stimulus and the linear filter for the spike-history were
chosen such that the resulting spike-train resembles the one generated with the
leaky integrator with membrane potential noise.

to include a linear filter acting on the recent spiking history of the neuron itself. In
this way, neural properties such as refractory periods and bursting can be modeled.
In addition, the spiking history of other neurons can be filtered as well. To adjust
the noise level within the class of GLMs there are two possible ways. First, we can

tune the link function. For example, we could set the link function f to:

0, ifx

M
c, ifx>0

fz) =

where c is a large constant value. This will result in a more deterministic spiking
behavior, as the link function plays the role of a hard threshold. Secondly, we
can allow for filters acting on the own spiking history. Finally, we could allow for

combinations of the two possibilities to tune the degree of determinism.

As an illustration of the encoding, we simulated a GLM with the same stimulus
that was used in the previous section and set the parameters of the GLM such that
the produced spikes roughly matches the ones from the LIF, see also Chapter 3. In
Figure 2.3 we plotted two sample spike trains generated by the GLM and the LIF

respectively.
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2.3 The maximum entropy model

The models in the previous sections can still be interpreted to roughly resemble some
basic biophysical properties of neurons such as the membrane potential for the LIF.
In this section, we further increase the level of abstraction. Instead of constraining
the model by biologically motivated properties, we are here interested in finding a
model which is only constrained by observed statistics. In terms of Occam’s razor
one is interested in finding the least structured model which is consistent with
the data. We can formalize this by using (Shannon-) entropy which is a measure of
structure of a probability distribution; a distribution with much entropy can thus be
thought of as a simple distribution. Therefore, finding a distribution with maximal
entropy which is still consistent with the data, then amounts to finding the simplest

model.

The data consists of spike trains, which are sequences of discrete events in time.
Within a small time bin there can either be a spike or no spike. Specifically, for
n neurons we model the spikes in a time bin with a binary vector b € {1,—1}",
where 1 corresponds to a ’spike’-event and -1 to a ‘no-spike’ event. Suppose, we
have observed mean and (co-) variances of a set of neurons. Under all distributions
p(b) we can then find the one with maximal entropy which has the same observed

moments. The distribution is given by:

p(b|J, h) = %exp (bTJb + th)

Z= 3 exp (bTJb + th) , (28)

be{-1,1}"

where J,h have to be chosen such that the moments of the distribution in equa-
tion (2.8) matches the observed ones. This model is also known as the Ising or
Boltzmann model [Ising 1925]. Historically, the model was designed to model mag-
netic spins s; of atoms. From a neuroscience perspective, atoms are usually inter-
preted as neurons, which can be either in a spiking (spin up) or silent (spin down)
state in a particular time bin. Usually the stimulus dependence of the neurons
is not modeled. However, in Chapter 5 we will show that the maximum entropy
distribution with respect to the second order moments of pairs of binary and con-
tinuous variables can be calculated as well. The corresponding joint distribution

over continuous stimulus variables x and binary neuronal variables b is given by:
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p(x,b|AA) =

7 - 5 exp (Q (x, b|A, A))

T X

Q(x,b|A,\) = +A

b

Z/exp (x,b|A, N)) dx

Fitting the parameters A, X to data is usually a hard problem, as the normaliza-
tion constant Z cannot be evaluated analytically. Even the numerical computation
of Z requires summing over exponentially (2") increasing number of terms. Ana-

lyzing this joint distribution is the subject of Chapter 5.



Encoding with generalized linear

models

3.1 Introduction

In the encoding view, we model the mapping from stimuli to spikes. A clas-
sic description of this mapping can be obtained by the spike-triggered average
[De Boer & Kuyper 1968, Marmarelis & Naka 1972]. Here, every time a spike is
observed the preceding stimuli are collected and then the mean is computed. Theo-
retically, this can be motivated by a Volterra expansion, and therefore is a linear ap-
proximation to the encoding mapping [De Boer & Kuyper 1968, Dayan et al. 2001].
While this gives a good first order approximation of the encoding of a single neuron,
the actual mapping is likely to be non-linear. Furthermore, the interaction between
different neurons might also bias the estimated encoding of the spike-triggered av-
erage. This can be illustrated in the noiseless case: the response of two neurons
with the same stimulus dependence could equally well be explained by one neuron
depending on the stimulus, while the other has no stimulus dependence but is just

copying the spikes of the first neuron.
Mathematically speaking, we would like to describe the probability of observing

a particular response r given that we have presented a stimulus s. More precisely,
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because both the response and the stimulus vary over time, we are interested in
predicting a whole spike-train r; from a series of presented stimuli s;.

To obtain a characterization of this probability, two steps are needed. Firstly,
we have to build a model which is sufficiently complex such that it can model the
nonlinearities which are likely to be present. Secondly, we need tools for identifying
the parameters of these models. In the previous chapter we introduced commonly
used models. As a first step, all these models can include a linear filtering step.
Hence, a primary problem is to find a suitable parametrization or representation
of the stimulus space. For example, complex cells are invariant with respect to the
exact position of the stimulus and only sensitive to the spatial frequency of the
presented stimulus [Hubel & Wiesel 1962]. Hence, if we represent the stimulus in
terms of the power spectrum, we can again predict the neural activity by a linear
operation. However, finding such representations usually requires a non-linear oper-
ation, which is difficult to estimate. The most prominent methods for extracting the
relevant feature spaces or parametrization are spike-triggered covariance techniques
[Van Steveninck & Bialek 1988, Schwartz et al. 2002] or most informative dimen-
sions [Sharpee et al. 2004]. This can also be extended to find features, to which not
only a single neuron but a whole population is sensitive to [Macke et al. 2008].

The difficulty in choosing a model is to find the right trade-off between
flexibility and tractability. Adding more parameters or features to the model
makes it more flexible but also harder to fit, as it is more prone to overfit-
ting. The Bayesian framework allows one to control for the model complexity
even if the model parameters are underconstrained by the data, as imposing a
prior distribution over the parameters allows regularizing the fitting procedure
[Lewicki & Olshausen 1999, Ng 2004, Steinke et al. 2007, Mineault et al. 2009].

From a statistical point of view, building a predictive model for neural responses
constitutes a regression problem. Linear least squares regression is the simplest
and most commonly used regression technique. It provides a unique set of re-
gression parameters, but one that is derived under the assumption that neural
responses in a time bin are distributed according to a Gaussian. This assump-
tion, however, is clearly not appropriate for the spiking nature of neural responses.
Generalized linear models (GLMs) provide a flexible extension of ordinary least
squares regression which allows on to describe the neural response as a point pro-
cess [Chornoboy et al. 1988, Brillinger 1988] without losing the possibility of finding
a unique best fit to the data [McCullagh & Nelder 1989, Paninski 2004].

The simplest example of the generalized linear spiking neuron model
is the linear-nonlinear Poisson (LNP) cascade model [Chichilnisky 2001,

Simoncelli et al. 2004]. In this model, one first convolves the stimulus with a linear
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filter, subsequently transforms the resulting one-dimensional signal by a pointwise
nonlinearity into a nonnegative time-varying firing rate, and finally generates spikes
according to an inhomogeneous Poisson process. Importantly, the GLM model is not
limited to noisy Poisson spike generation: Analogous to the stimulus signal, one can
also convolve the recent history of the spike train with a feedback filter and trans-
form the superposition of both stimulus and spike history filter outputs through the
pointwise nonlinearity into an instantaneous firing rate in order to generate the spike
output. In this way one can mimic dynamical properties such as bursts, refractory
periods and rate adaptation. Finally, it is possible to add further input signals orig-
inating from the convolution of a filter kernel with spike trains generated by other
neurons [Borisyuk et al. 1985, Chornoboy et al. 1988, Brillinger 1988]. This makes
it possible to account for couplings between neurons, and to model data which
exhibit so called noise correlations, i.e. correlations which can not be explained
by shared stimulus selectivity. Although the GLM only gives a phenomenological
description of the neurons’ properties, it has been shown to perform well for the
prediction of spike trains in the retina [Pillow et al. 2005, Pillow et al. 2008], in the
hippocampus [Harris et al. 2003] and in the motor cortex [Truccolo et al. 2009].

In this chapter we seek to explore the potential uses and limitations of the
framework for approximate Bayesian inference for GLMs based on the Expectation
Propagation algorithm [Minka 2001]. With this framework, we can not only ap-
proximate the posterior mean but also the posterior covariance and hence compute
confidence intervals for the inferred parameter values. Furthermore, the posterior
mean is an alternative to the commonly used point estimators, maximum a poste-
riori (MAP) or maximum likelihood. Like the MAP also the posterior mean can
be used with a Gaussian or a Laplacian prior leading to an L2 or an L1-norm reg-
ularization. To establish the approximate inference framework, we compare these
point estimates on the basis of two different quality measures: prediction perfor-
mance and filter reconstruction error. In addition, we investigate different binnings
schemes and their impact on the different inference procedures. Along with the
corresponding paper of this chapter we publish a MATLAB !

toolbox in order to support researchers in the field to do Bayesian inference over
the parameters of the GLM spiking neuron model.

The chapter is organized as follows. In section 3.2, we review the definition of the
generalized linear model and present the expansion into a high-dimensional feature
space. We explain how a Laplace prior can improve the prediction performance in
this setting and how different loss functions can be used to rate different quality

aspects. In section 3.3, we present how the posterior distribution for observed

Ythe code is available at http://www.kyb.tuebingen.mpg.de/bethge/code/glmtoolboz/
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data in the GLM setting can be approximated via the Expectation Propagation
algorithm. Finally in section 3.4 we systematically compare the MAP estimator to
the posterior mean assuming a Gaussian versus a Laplacian prior. In addition we
apply the GLM framework to multi-electrode recordings from a population of retinal
ganglion cells and discuss the potential differences of discretizing time directly or
discretizing the features. Finally, we investigate the potential uses of the non-linear
feature space. This includes finding confidence intervals for features resulting from
a spike-triggered covariance analysis and approximating a leaky integrate-and fire

neuron by using a customized feature space.

3.2 Generalized linear modeling for spiking neurons

3.2.1 Specifying the likelihood

The generalized linear model (GLM) of spiking neurons describes how a stim-
ulus s(t) is encoded into a set of spike trains {t;} generated by neurons i =
1,...,N,57 = 1,...,N; [Chornoboy et al. 1988, Brillinger 1988, Paninski 2004,
Okatan et al. 2005, Truccolo et al. 2005] (See [Stevenson et al. 2008] for a recent
review). More precisely, s(t) is a vector of dimensionality n, which describes the
history of the stimulus signal up to time ¢ according to a suitable parametrization.
For example, in section 3.4 where we apply the GLM to retinal ganglion cell data,
the vector s(t) contains the light intensities of the full-field flicker stimulus for the
last n frames up to time ¢. The GLM assumes that an observed spike train {¢;} is
generated by a Poisson process with a time-varying rate A(¢). In its simplest form
the rate A(t) depends only on the stimulus vector s(t). This special case of the
GLM is also known as the Linear-Nonlinear Poisson model [Simoncelli et al. 2004].

Specifically, the rate can be written as a Linear-Nonlinear cascade:

A(t) = f(s(t) "wy) (3.1)

First, the stimulus is filtered with a linear filter wg which is referred to as the re-
ceptive field of the neuron. Subsequently, the pointwise monotonic nonlinearity f
transforms the real-valued output of the linear filtering into a nonnegative instan-
taneous firing rate. If the current stimulus has a strong overlap with the receptive
field, that is if s(¢) "wy is large, this will yield a large probability of firing. If it is
strongly negative, the probability of firing will be zero or close to zero.

In the classical GLM framework [McCullagh & Nelder 1989], f is also called
“link function”. For the Poisson process noise model, the link function must be

both convex and log-concave in order to preserve concavity of the log posterior
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[Paninski 2004]. Thus it must grow at least linearly and at most exponentially.
Typical choices of this nonlinearity are the exponential f(x) = exp(z) or a threshold
linear function
0, ifz<0
flz) =
z, ifz>0
As the spikes are assumed to be generated by a Poisson process, the log-likelihood

of observing a spike train {¢;} is given by

T
log p({t;}|ws,s( Zlog)\ / A(r)dr

T
_Zlogf )Tw,) — /0 Fs(r) Twy)dr . (3.2)

In this simple form, the GLM ignores some commonly observed properties of
spike trains, such as refractory periods or bursting effects. In order to address this
problem, we want to make the firing rate A(¢) dependent not only on the stimulus
but also on the history of spikes generated by the neuron. To this purpose, an
additional linear filtering term can be added into equation (3.1). For example, by
convolving the spikes generated in the past with a negative-valued kernel, we can
account for the refractory period. The instantaneous firing rate of the GLM then

results from a superposition of two terms, a stimulus and a spike feedback term

A(t) = f(s(t) "ws + 9y, (1) Twn) (3.3)

The m-dimensional vector 4, (t) describes the spiking history of the neuron up
to time ¢ according to a suitable parametrization. A simple parametrization is a
spike histogram vector whose components contain the number of spikes in a set
of preceding time windows. That is, the k—th component (t),(t)); contains the
number of spikes in the time window (t — Agy1,t — Ag] with Ag < A < -+ < Ay,
The linear weights wj, can then be fit empirically to model the specific dynamic
properties of the neuron such as its refractory period or bursting behavior. The

encoding scheme is illustrated in Figure 5.1.

Analogous to the spike feedback just described, the encoding can readily be ex-
tended to the population case, if the vector 1, (t) for each neuron not only describes
its own spiking history, but includes the spiking history of all other neurons as well.

Taken together, the log-likelihood of observing the spike times {t;} for a population
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new spike?
1
receptive feedback
field v filter
{ nonlinearity  f(+) /} _ [)\(t) instantaneous
rate

Figure 3.1: Illustration of the generative encoding model associated with a GLM:
The stimulus s(¢) as well as the spiking history 1, (¢) are filtered with their cor-
responding receptive fields w, and wy. A nonlinearity f is applied to the sum of
the outputs to produce an instantaneous rate, which then is used to generate new
spikes.

of i =1,..., N neurons is given by

logp({t’}|ws,wh Zlog)\Z tZ / Al
—Zlogf Twi 44 (th) Tw},) (3.4)

/f )W+ 4 ()T wh)dr

Although the likelihood factorizes over different neurons ¢, this does not imply
that the neurons fire independently. In fact, every neuron can affect any other
neuron ¢ via the spiking history term ), (¢). Thus, by fitting the weighting term

W;L to the data we can also infer effective couplings between the neurons.

In order to evaluate equation (3.4) we have to calculate the integral
fOT f(s(7)Twt + ap,(7) "wi)d7r numerically. In terms of computation time, this
easily becomes a dominating factor when the recording time 7T is large. Many arti-
ficial stimuli used for probing sensory neurons such as white noise can be described
as piecewise constant functions. For example, the stimulus used for the retinal gan-
glion cells in section 3.4.3 had a refresh rate of 180 Hz. In this case, the stimulus
s(t) only changes at particular points in time. Further, if we use the spike histogram
vector mentioned above to describe the spiking history of the neurons, then also
1, (7) is a piecewise constant function. Thus, we can find time points 7,...,7,

between which neither the stimulus nor the vector describing the spiking history
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changes. We call the 7; “discretization-points”. Also in cases in which the features
are not piece-wise constant such a discretization can be approximately obtained in
a data-dependent manner, which we show in section 3.2.3. By decomposing the
integral over (0,7) into a sum of integrals over the intervals |7y, Tx11) within which

the integrand stays constant, the log-likelihood can be simplified to

log p({t;}|w}, w},) = Zlogf Tw (1) Tw) (3.5)

—Z Tt — 7o) (s(7k) T W+ 4y, (70) "W},

Note that 1, (1) and ¥ 4(7%) are constant, since the features do not change in the

interval [7x, Tkt1).

3.2.2 Extending the computational power of GLMs

To increase the flexibility of a GLM, several extensions are possible. For exam-
ple, one can add hidden variables [Kulkarni & Paninski 2007, Nykamp 2008] or
weaken the Poisson assumption to a more general renewal process [Pillow 2009].
By adding only a few extra parameters to the model these extensions can be very
effective in increasing the computational power of the neural response model. The
downside of this approach is that most of these extensions do not yield a concave
log posterior anymore. Another option for increasing the flexibility of the GLM
which preserves the desirable property of convexity is to add more and more lin-
early independent parameters for the description of the stimulus and spike history
that are promising candidates for improving the prediction of spike generation.
For example, in addition to the original stimulus components s(t); we can also
include their quadratic interactions s(t);s(¢);. In this way, we can obtain an es-
timate of the computations of nonlinear neurons such as complex cells. This is
similar to the spike-triggered covariance method [Van Steveninck & Bialek 1988,
Rieke et al. 1997, Rust et al. 2005, Pillow & Simoncelli 2006] but more general, as
we can still include the effect of the spike history. In principle, one can add arbi-
trary features to the description of both the stimulus as well as the spiking history.
As a consequence, it is possible to approximate any arbitrary point process under
mild regularity assumptions (see [Daley & Vere-Jones 2008]).

Like in standard least squares regression the actual merit of the Bayesian fit-
ting procedure described in this chpater is to have mechanisms for finding linear

combinations of these features that provide a good description of the data. There-
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fore, it often makes sense to use a set of basis functions whose span defines the
space of candidate functions [Pillow et al. 2005]. We should choose a sufficiently
rich ensemble of basis functions such that any plausible kind of stimulus or history
dependence can be realized within this ensemble. We denote the feature space for
the spiking history by 1), and the feature space for the stimulus by 1,. The con-
catenation of both feature vectors is denoted by 1, ;. Together we can write down

the log-likelihood of observing a spike train {t};:

) o T
logp({t}}lws,wh) = Zlog N(t5) — Z/o A'(s)ds (3.6)

=Y log f(wy,(t5) Wi + () Twh)

1,J

T ) ‘
-3 [ s W wdr @)

3.2.3 Data-dependent discretization of the time-axis

If we choose the features 1), 1, such that they do not change between distinct
discretization-points 7y,i.e. 1, is constant in the interval [7y,7x11) the likelihood
can be simplified to:

log p({t: Hwe, W) = Zlog Fp () Twh 4+ 4 () Twh) (3.8)

Z?]
- Z(Tkﬂ - Tk)f(ﬂ’h(Tk)TW;L + '/Js(Tk)Twi)
ik

When approximating the features by describing the spike-history dependence with
a piecewise constant function, this yields a finite number of discretization-points
in time between which, the resulting conditional rate, given the spiking history,
does not change. In order to illustrate this process, consider the following simple
scenario illustrated in Figure 3.2. Suppose there is only one neuron, which receives a
constant input. Accordingly, the feature describing the stimulus is constant ¥4 (t) =
1, which appear as the last entry in the combined feature vectors 1, ((t) in the
Figure. The spiking history H; up to time t is represented by two dimensions,
which are approximated by piece-wise constant functions, changing only at 2 and
10 ms. Note, that the time-axis, labeled with time-parameter s in Figure 3.2 is
pointing into the past and centered at the current time-point ¢t. As long as we
did not observe a spike, the feature values of the two basis functions are zero, i.e.
P, (1)1 =, (t)2 = 0 for t < t1. Once we have observed a spike, this enters in both
features via the first constant value. Hence in this example 4, (t)1 = 5,4, (t)2 = 1

for i =t <t <1 =7 +2ms. When the observed spike leaves the 2 ms window
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and enters the second time-window of the basis functions the feature values change
to ¥, (t)1 = 1,9 (t)2 = 2 for 5 < t < 73 = 79 + 8ms. In order to calculate the
conditional rate, we have to evaluate f (1, (t) wy, +4(t) " ws). For the weights in
Figure 3.2, this gives the qualitative time course of the conditional rate A(¢|Hy,s(t))
as depicted in Figure 3.2.

3.2.4 Using Laplace priors for better regularization

The expansion of the stimulus and the spiking history in high-dimensional feature
spaces comes at the cost of having a large number of parameters to deal with.
As we only have access to a limited amount of data, regularization is necessary
to avoid overfitting. In the Bayesian framework, this can be done by choosing a
prior distribution p(w) = p((ws, wp)) over the linear weights wy and wy. As these
parameters enter the log-likelihood linearly, the prior distribution can be interpreted
as specifying how likely we think that a particular feature is active, or necessary
for explaining a typical data set. The prior distribution becomes more important
as we increase the number of parameters.

Two commonly used priors are the Gaussian

1 1 -

W)= ——exp| ——||W = exp| —=—=w w 3.9
p(w) = 5 e (—5lIwlE) = 5o e (5 (39)

and the Laplace prior

n

p(w) = (2) e (=rliwlh) = IT 2 exp (sl (3.10)

k=1

Given a prior distribution, one can write down the posterior distribution
p(w|D) o< p(w)p(Dlw)

which specifies how likely a set of weights w is, given the observed data D and the
prior belief over the weights. The data D contains both, observed spike trains as
well as stimuli.

To obtain a particular choice of parameter values a popular point estimate is
maximum a posteriori (MAP) estimate, that is the point of maximal posterior
density argmaxy, p(w|D). The MAP estimate is equivalent to the maximum like-
lihood estimate regularized with the log-prior. As mentioned above, the use of
Laplace priors can yield advantageous regularization properties [Tibshirani 1996,
Lewicki & Olshausen 1999, Ng 2004, Steinke et al. 2007, Mineault et al. 2009]. For

a sparse prior, most of the features are likely to have zero weight, but if they have
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History-feature Weights
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Figure 3.2: Illustration of the data-dependent time-discretization. Two spikes from
one neuron have been observed at time-points ¢ and t9. Since we assume a constant
input (s(t) = 1) the last entry in the combined feature vector 1, ((t) is always 1.
The spiking history up to time ¢, denoted with Hy is described with two basis func-
tions, (¢, (t))1, (1, (t))2. Each of these could have its own discretization, but here
both have the same, namely at 0 ms,2 ms and 10 ms. That is, the basis functions
are approximated with a piecewise constant function with jumps at 0 ms,2 ms and
10 ms. Each spiking history feature has its own weight, as has the stimulus. Thus,
the feature vector describing both, the stimulus as well as the spiking history 1 j,(t)
is a 3-dimensional vector, changing its value at discretization points 7. In each in-
terval [7,Ti41) the rate A(7ix|H,s(7)) can be calculated. In this specific case,
it only assumes 3 different values, exp(i,bsyh(t)Twh’S) = exp(—27), exp(—2),exp(1),
assuming that the weight for the stimulus is wg = 1.
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a non-zero weight, the amplitude is less constrained. In order to favor sparse solu-
tions, the direct approach would be to penalize the number of non-zero parameter
entries. The number of non-zero entries is sometimes referred to as the “L0O-norm”
of the parameter vector (despite the fact that it is not a proper norm). Unfor-
tunately, finding the LO-norm regularized weights is a hard problem. Using the
Ll-norm however, is a useful relaxation which in some cases even gives an equiv-
alent solution [Donoho & Stodden 2006]. The log of the Laplace prior-probability
(see equation 3.10) of a given parameter vector is proportional to the L1l-norm of
this vector. Therefore, using a Laplace prior is equivalent to penalizing the L1-norm
of the parameters. Finally using a Gaussian prior is equivalent to penalizing the
L2-norm of the parameter vector (see equation 3.9).

From a practical point of view, log-concavity is another desirable property of
the prior distribution as it here ensures that the posterior p(w|D) x p(w)p(D|w) is
also log-concave and therefore finding the maximum of the posterior (i.e. comput-
ing the MAP estimator) is a convex optimization problem [Paninski et al. 2004].
For the GLM, log-concavity and convexity of the link-function f is also required to
guarantee log-concavity of the posterior. Both priors, the Gaussian as well as the
Laplacian are log-concave. Although the posterior is log-concave when a Laplace
prior is used, calculating the MAP is still a non-trivial problem. As the Laplace
prior is non-differentiable at zero, the gradient at any point containing a zero in at
least one component cannot be calculated. Thus standard techniques like conju-
gate gradient or iterative reweighted least squares fail. For the case of a Gaussian
likelihood and Laplace prior the LASSO algorithm [Tibshirani 1996] can be used.
For the case of a likelihood originating from a GLM, the posterior is differentiable
in each orthant, and hence subgradients can be calculated. In our implementation,
we use the algorithm of Andrew et al. [Andrew & Gao 2007].

3.2.5 Quantifying the performance

After we have obtained an estimate of the parameters of a GLM, we would like to

evaluate the quality of the estimate.

Prediction Performance To measure the performance of an estimate, we cal-
culated the difference between the estimated model and the ground truth model
with respect to the log likelihoods on a test set. The test set was generated with
the same weights for each trial. In this way we can assess how likely a previously
unseen spike train sampled from the ground truth model is under the estimated
model. The difference between the average log likelihoods yields an estimate of

Kullback-Leibler distance of the estimated model from ground truth.
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N
tw, %) = 1D logp(Difw) —og (D) = [1og (D) p(Djw)dD
i=1

p(D|w) (3.11)

= DKL[p(’W)Hp(‘VAV)]

Here D; is a spike train in the ¢-th of NV trials generated with the true weights w
whereas the estimated weights are w. The more likely the spike trains are, the
better is the weight estimate, which specifies the estimated model. Therefore, the
difference in log likelihood of the different models measures how well the estimated

model predicts the spike times generated by the ground truth model.

In the simplest (LNP) case, the parameters w, w correspond to rates A, A of
a Poisson distribution, i.e. the probability of observing n spikes within a small
time bin dt is proportional to A, \. In this case we can calculate the loss function

explicitly:

(W, %) = Dia, [p(n|))|p(n]3)]
= Z (n log(\) — log(n!) — A — nlog()) + log(n!) + ;\) n;'l exp(—A) (3.12)

= Mog(A) — XA — Alog(\) + A

To illustrate the asymmetry of the loss function the average log-loss is shown in

Figure 3.3. The average log-loss is closely related to the Kullback-Leibler distance:

Dia. [p(nM)Ip(n]3)] = (~log(p(n|3))x — Hlp(n|A) (3.13)

where H is the entropy of the Poisson distribution with rate .

Mean Squared Error Reconstruction A different way of quantifying the per-
formance of an estimation algorithm for synthetic data is to check how closely the
estimated parameters (W) match those that were put into the model as ground
truth (w). In particular for judging the quality of the reconstructed filter shapes a
possible choice is to look at the mean square error between the true and estimated

parameters:

Ww, W) =) |w; —Ww;|° (3.14)

J
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Figure 3.3: Comparison of estimated versus true underlying rate of a Poisson
distribution. Plotted is the average log-loss as a function of the estimated rate A\,
although the true underlying rate is A\. Upper left: The average log-loss is plotted
color-coded as a function of both rates. Upper right: The entropy of a Poisson
distribution is plotted as a function of the underlying rate A. It can also be seen
as a slice of the left plot across the diagonal. Bottom: A vertical cut of panel a
at A = 1 is plotted as a function of the estimated rate \. The minimal loss can be
achieved, if the estimated rate matches the true rate. Furthermore, if the estimated
rate differs from the true rate by a fixed amount, the loss is smaller if the rate is
overestimated.

3.3 Approximating the posterior distribution using EP

It has been shown that the MAP yields a good prediction performance
[Pillow et al. 2008] but there are a couple of reasons why one would like to know
more about the posterior than just its maximum. For example the posterior mean
is known to be the optimal point estimate with respect to the mean squared error
((3.14)). Furthermore, in many cases we are not only interested in a point esti-
mate of the parameters, but we also want to know the dispersion of the posterior.

In other words, we want to have confidence intervals indicating how strongly the
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parameters of a model are constrained by the observed data.

The resulting uncertainty estimate in turn can be used for optimal design
[Lewi et al. 2008, Seeger 2008], that is we can decide which stimulus to present
next, in order to maximally reduce our uncertainty about the parameters. Fur-
thermore, a distribution of the full posterior distribution gives rise to the marginal
likelihood, which is the likelihood of the data under the model, without assuming
specific linear filters. The marginal likelihood can be used to optimize the param-
eters of the prior without performing a crossvalidation [Chib 1995, Seeger 2008].
Mathematically, the uncertainty is encoded in the dispersion of the posterior dis-

tribution over parameters w given observed data D:

p(wID) = _p(Dlw)p(w) (315)

where Z:/p(D|w)p(w)dw.

Taken together there are good reasons why it is useful to investigate the infor-
mation conveyed by the posterior other than just the location of its maximum. The
posterior really is the summary of everything we can learn from the data about the
given model.

Unfortunately, exact Bayesian inference is intractable in our case. Therefore,
we are interested in finding a good approximation to the full posterior. If we can
determine the posterior mean and covariance, this naturally leads to a Gaussian
approximation of the posterior. Furthermore, we note that the true posterior in
our case is unimodal, as both likelihood and prior are log-concave [Paninski 2004].
We employ the Expectation Propagation (EP) algorithm in order to compute a
Gaussian approximation to the full posterior [Minka 2001, Opper & Winther 2000,
Opper & Winther 2005, Seeger 2005] (see [Nickisch & Rasmussen 2008] for alterna-
tive approximations schemes). The key observation is that the likelihood as well
as the Laplace prior factorizes over simple terms, each of which is intrinsically one-

dimensional. We have three types of factors

fi1(wi) = exp(log(f(u;)) — A7 f(wi)) = f(us) exp(=A7; f(u;)) (3.16)
fa(u;) = exp(—7i f(u;)) (3.17)
f3(u;) = exp(—7|ui|) (3.18)

where, u; := 1, (i) T Wy, defines the one-dimensional direction for each of these
factors. 1 j, and w j, denote the concatenation of the feature vectors describing the
spiking history and the stimulus history respectively. Equation 3.16 corresponds to

a factor or individual term in the sum of the log likelihood (5.8) if there was a spike
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at 711 and no spike in the interval (7;, 7;41) of length A7; := (7,41 — 7). Equation
3.17 corresponds to a factor if there was no spike at time 7;4;. Finally equation
3.18 represents the Laplace terms for the prior in the product for the posterior
distribution. The Expectation Propagation algorithm approximates each of those

factors with a Gaussian factor:
1y
filug) = exp { —gmiu; + biu; (3.19)

Thus, if we multiply all of these approximating factors, we obtain a Gaussian dis-

tribution, which is straightforward to normalize:

p(w|D) ~ Qw) i= 5 T exp (-~ miu + bius (3.20)
= e (;w 3 miths () an(m) W+ Y biws,h(mTw) (3.21)
1 1
= e oz P (g ) (3:22)
where (3.23)

-1
C= (Z 7ri1»bs,h(7—i)¢s,h(7—i)—r> (324)
p=C (Z bﬂ%,h(ﬁ)) (3.25)

The task now is to update the parameters 7;, b; for the approximating factors such
that the moments of the resulting approximation are as close to the true moments
as possible. The crucial consistency equation which the EP algorithm tries to attain
is given by[Opper & Winther 2005]:

Q(ui)

exp(—%ﬂ'iu? + bluz)

‘Q(ui)l 20, (3.26)

where Dy, denotes the Kullback-Leibler divergence or relative entropy. Q(u;) is
the marginal Gaussian distribution in the direction of 1, (7;). It is the Gaus-
sian distribution one obtains, when taking the complete approximation Q(w) and
projects it on ) (7). In other words, we require the approximation to be consis-
tent in the sense that, if we replace the approximating factor exp(—%mu? + biu;)
with the true factor fi(u;), the marginal moments in the direction of ), ,(7;)
should not change. To achieve this consistency, EP cycles through the factors

and updates the parameters of each approximating factor such that equation 3.26
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holds. For equation 3.26 to hold, only moments of a one-dimensional distributions
have to be calculated. This can efficiently be done using numerical integration
[Piessens et al. 1983]. We omit the details of this updating scheme here and refer
to the Appendix. The interested reader is referred to our MATLAB code and to
further literature [Heskes et al. 2002, Qi et al. 2004]. The computational cost of
EP is quadratic in the number of parameters (as the posterior covariance has to
be estimated) and linear in the number of factors (in the GLM setting this is the
same as the number of discretization-points) per cycle through the factors. In our
simulations 30 iterations through all factors were sufficient for convergence.
Another frequently used way of approximating the posterior distribution
with a Gaussian, is the so called Laplace approximation or Laplace’s method
[MacKay 2003, Rasmussen & Williams 2006, Lewi et al. 2008]. A second-order
Taylor expansion is calculated around the MAP. As the posterior is unimodal, the
MAP can be found efficiently. Calculating the Hessian at a particular point can
also be obtained analytically, given the posterior is differentiable at that point. The
Laplace prior we use, however, is non-differentiable at zero. Therefore, the posterior
is not differentiable at any point which contains at least one zero in one component.
As we expect the MAP to assign many components zero weight, we cannot calculate
the Hessian at that point. Furthermore, in a different setting it has been shown
that the quality of the Laplace approximation is inferior to the one achieved by
the EP approximation [Kuss & Rasmussen 2005, Koyama & Paninski 2009]. The
Laplace approximation is only sensitive to the local curvature at the point of max-
imal posterior density. As the EP-approximation is based on moment matching it

is influenced by the shape of the full posterior distribution.

3.4 Potential uses and limitations

In the following, we systematically compare the different point estimates, posterior
mean and MAP. We vary the assumed prior distribution as well as the loss function
in terms of which the performance is measured. In particular, we also investigate
cases in which the assumed prior distribution differs from the ‘true’ distribution
used to generate the parameters. Finally, we also look at the possible effects of

data discretization.

3.4.1 Maximum a posteriori vs. posterior mean

Tibshirani [Tibshirani 1996] showed that for Gaussian likelihood and Laplace priors,

the MAP gives sparse solutions and performs best, given the true underlying weights
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are sparse. If the data is assumed to be distributed according to a logistic likelihood,
a similar result has been found by Ng [Ng 2004]. Here, for the case of data generated
by a GLM, we would like to see whether the same holds true, and also compare the
MAP to the posterior mean.

To illustrate the effect of a Laplace prior when increasing the number of features
in the GLM of spiking neurons, we considered the following examples. We made a
series of simulations with GLM neurons for which the space of possible features was
successively increased from 10 to 230 dimensions. The stimulus was Gaussian white
noise discretized into 10 ms bins. The stimulus history s(t) was set to contain the
stimulus values of the last twenty bins describing the stimulus history for a period
of 200 ms. From the 20 dimensional stimulus history s(t) we constructed the full

230 dimensional quadratic feature space

P (1) :=(s(t), ..., s(t — 20A),

(t)2,s(t)s(t — A),...,s(t)s(t — 20A),
s(t— A2, s(t— A)s(t —2A), ...,
.., s(t —20A)?)

S

with A = 10ms, similar as in [Rust et al. 2005]. From this basis of the 230 dimen-
sional feature space a subset of increasing size was selected. That is, the dimen-
sionality of the weight vector increased from 10 to 230, too. For all simulations, a
GLM neuron was simulated until the likelihood consisted of 400 factors, i.e. 400 7
in the sum in equation 3.8 (alternatively one could also fix the time-duration of a
trial or the number of spikes per trial).

We compared three different choices of priors, and use models which either had

matching priors, or different ones:

1. Gaussian weights Each weight was sampled independently from a Gaussian

20
dim(ep,)”

distribution. The variance was set to

2. Laplacian weights Each weight was sampled independently from a Laplace

20
dim(y,)”

distribution. The variance was set to

3. Sparse weights A subset of only 10 dimensions was assigned with non-zero
weights. For the assignment of the 10 weights, we draw 10 samples from a

Laplace distribution with variance 2 and zero mean.

In Figure 3.4 the Kullback-Leibler distance is plotted as a function of the dimen-

sionality of the feature space for each of the generating distributions. In Figure 3.4
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Figure 3.4: Prediction performance in high dimensional feature spaces of increasing
size. The mean across 5000 trials of the differences in the log likelihoods is plotted
as a function of increasing stimulus dimension. The different point estimates are
MAP with Laplace regularization (MAPL1, solid red), MAP with a Gaussian prior
(MAPL2, dashed red) and the posterior mean approximated with EP for the Laplace
(solid blue) as well as for the Gaussian prior (dashed blue). Confidence intervals
indicate standard error of the mean difference. Panel A) shows the performance
when a Gaussian distribution is used for sampling the weights and B) for a Laplace
distribution.  C) shows the prediction performance if the weights are actually
sparse, that is the true dimensionality is constantly 10. The overall variance for the
generation of weights in panel A) and B) were kept fix to the same value as in C).

A) the weights of the ground truth model are sampled from a Gaussian distribution.
Analogously, panel B) shows the results for the Laplace distribution and C) for the
strongly sparse weights. We plot the average KL-divergence over 5000 trials 4+ one
standard deviation. As can be seen, the EP estimate for the Laplace (L1) prior
performs best, if the true underlying weights are sparse. If the weights are sampled
from a Laplace or a Gaussian distributions, the parameter vector of the true model
is non-sparse and the L2 regularized MAP performs best. Interestingly, even for
the case in which the weights are sampled from a Laplace distribution, the MAP
performs best when using an L2-penalty term. Since we know the prior variance
that was used to generate the weights, we did not perform a crossvalidation to set
the regularization parameter, neither for the MAP estimates, nor for the posterior
mean estimates (EPL1,EPL2). (Note that, in cases where the true distribution of
weights is different to the prior used, it is possible that the prediction performance

could be increased by picking a variance which is different to the ’true’ one.)

In cases, in which the parameters are really drawn from the prior distribution,
the posterior mean estimate can be shown to be the optimal parameter estimate, as
it will minimize the mean squared error. Thus, in the two cases, in which we sampled
the weights according to a Gaussian and a Laplacian distribution respectively, we
expect the EP-approximation to be superior to the MAP estimate in terms of the

mean squared error. In the situation where the weights are actually sparse the
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Figure 3.5: Mean squared error as a function of increasing dimensionality of the
parameter space. The same data as in Figure 3.4 is plotted, but instead the per-
formance is measured in mean squared error between the estimated weights and
the true underlying weights as opposed to the differences in log likelihoods shown
in Figure 3.4. A) shows the performance if the underlying weights are sparse, in
panel B) a Laplace distribution is used to sample the weights and in C) a Gaussian
distribution is used. In each panel the mean across 5000 trials is plotted + standard
error of mean. In solid black the prior variance is plotted, which is the expected
mean squared error of the constant estimator.

performance is less clear, as the EP estimates assume a prior which is different to
the one used to generate the weights. Therefore, it is not guaranteed in this case,
that the posterior mean will be the optimal parameter estimate with respect to the

mean squared error.

In general, we expect the MAP estimate to give a sparser solution than the
posterior mean. If we have not seen much data, we expect the prior to dominate
the posterior. In this case the maximum of the posterior will be at zero, resulting
in a zero weight for the MAP. However, as the likelihood factors are not symmetric,
the posterior is also not symmetric in general. Thus, even for weights for which the
MAP is at zero, the probability mass is not symmetrically distributed around that
maximum. Hence, the posterior mean in this case will be non-zero and the solution
less sparse. In Figure 3.5 we plotted the mean squared reconstruction error for the
different estimators. As can be seen the EP approximation to the posterior mean
performs better than the MAP. This is also true for the sparse setting, however the

effect gets less prominent if the dimensionality of the parameter space is increased.

The quality of the different point estimates, quantified by the mean squared
error and by the prediction performance are summarized in Table 3.1. To obtain a
single number for the overall performance, we summed the errors for each individual
dimension of parameter space (integral over each curve in Figure 3.4 and Figure 3.5).
The posterior mean gives a good estimate in all settings when a Laplacian prior is
used. For the prediction performance the MAP with the L2 prior can lead to better

results if the true prior is Gaussian or Laplacian.
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Integrated KL-divergence Integrated MSE
MAP with EP-mean with MAP with EP-mean with
Laplace Gauss Laplace Gauss Laplace Gauss  Laplace Gauss

Gauss 3.93107% 3.3910°% 35321073 351073 195.996 186.095 186.248 185.992

Laplace 3.87 1073 3.46 1072 3.52107% 3.58 1073 194.246  185.52  184.99  185.391

Sparse  3.66 107 3.83107% 3.4110°3% 3.9610°° 188.698 183.685 180.536 183.542

[Ground truth

Table 3.1: Comparison of different quality measures and point estimates. In the
left table integrated KL-divergence is shown for the MAP and the posterior mean
point estimates when either a Laplace or a Gaussian prior is assumed. Each row
corresponds to a ground truth prior which was used to sample the weights. Each
number corresponds to an integral of a curve in Figure 3.4. The right table reports
the same when the mean squared error is used as a loss function. Thus each number
is the integral over one curve in Figure 3.5 and therefore reports the overall perfor-
mance of the different estimators. For each ground truth model and loss function
the best overall estimator is colored in red.

3.4.2 Binning and identifyability

In section 3.2 we specified the log-likelihood in terms of time-discretized fea-
tures. This results in a binning with not necessarily equidistant discretization-
points 7;. Another popular way to simplify the log-likelihood is to bin the
time axis directly. In this section we would like to illustrate the possible ef-
fects of the two discretizations by means of a simple example. For some ar-
eas, for example in the auditory cortex, the precise timing of spikes is important
[Carr & Konishi 1990, Wightman & Kistler 1992]. By binning spikes into a dis-
crete set of bins, one might lose this precise timing. If one discretizes the time
axis directly and wants to keep the precise timing, one needs to specify very small
time bins. This leads to a large number of discretization-points and hence very
many factors for the likelihood. Alternatively, if one discretizes the features, the
discretization is adapted to the spike times and thus could lead to possibly fewer
discretization-points while still achieving a high temporal resolution. However, if
a lot of spike times have been observed, discretization of the basis functions for
the features could lead to a time discretization which is too fine for optimization
purposes. A compromise would be to adaptively add discretization-points when
needed, but constrain the minimal inter discretization-point interval. In general,
the discretization of the features allows one to specify the resolution and (given that
resolution) produces then the minimal number of discretization-points.

To illustrate possible differences between a discretization of features versus a

discretization of the time axis, we considered the following example: Two GLM
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neurons were simulated. One of them had a stimulus filter, while the other one was
only dependent on the spikes from the first neuron. The filters for the stimulus as
well as the spiking history filters are illustrated in Figure 3.6 (black lines). Because
the second neuron was positively coupled to the first one with a small latency, we
expect it to produce spikes which have a small temporal offset with respect to the
spikes of the first neuron. Intuitively, the observed spikes trains could be explained

by two different settings:
1. The weights are exactly as the ones used for simulating the spike trains.

2. The second neuron is not coupled to the first neuron at all, but has the same
stimulus filter as the first one, however with a small latency. Therefore it

responds to the same stimulus but at later times.

If spikes were generated deterministically, these two setting cannot be distinguished.
In the noisy case, however, given a sufficient amount of data, one should be able to
disentangle the two scenarios, as finding the maximum likelihood point is a convex
problem. However, for finite amount of training data and in the presence of binning
noise, the situation is less clear. Therefore, we sampled 3 seconds of spike trains
and estimated the parameters from the data, once when the features are discretized
and once when the time axis is discretized. The time bins were chosen such that at
most one spike fell into a bin.

The estimate for the approximated posterior mean are plotted in Figure 3.6.
If the features are discretized the filter could be recovered. If we discretize the
time directly, we see indeed a slight shift towards the second scenario. That is, the
stimulus filter for the second neuron in that case is slightly elevated, whereas the

strength of the coupling filter is diminished.

3.4.3 Population of retinal ganglion cells

To compare the different methods for the analysis of real data, we applied the
algorithms to multi-electrode recordings of 7 salamander retinal ganglion cells. Our
goal was to describe the stimulus selectivity of the population by fitting a GLM
with history terms and cross-neuron terms to the recorded data. We used multi-
electrode recordings of salamander retinal ganglion cells generously provided by
Michael J Berry II. The dataset has been published in [Fairhall et al. 2006], where
all recording details are described. We selected a recording of 7 neurons, which
had an average firing rate of 1.1 spikes per second and a minimal interspike-interval
of 2.8 ms. The stimulus used in the experiments consisted of 20 minutes white
noise full-field flicker with a refresh rate of 180 Hz. To illustrate the ability of the
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Figure 3.6: Identifyability in the presence of binning noise. A): Estimated filters,
when the features are discretized (approximated with a piecewise constant function,
see Figure 3.2). B): Estimated filters when the spike times are binned. The binning
was performed such that at most one spike fell into one bin. All spikes were aligned
to the right hand side of their corresponding bins. When the time-axis is binned
directly and hence the precise timing of a spike is lost, the estimated filter for the
spiking history are slightly weaker than the true ones (black), whereas the stimulus
filters are slightly positive at a small latency. For the sake of readability we only
plotted the approximated posterior mean (420).

model to also infer population models from small data sets, we fitted the population

recording to the first 2 minutes of the recording.

For the features describing the spiking history, we used the density function of
the I'-distribution with different parameters as basis functions:
B

fi(t) = to1 exp(—ﬁit)m, (3.27)

% were logarithmically spaced between
1 and 700 ms and 1 and 1000 respectively (A similar basis consisting of raised cosines
was also used in [Pillow et al. 2005, Pillow et al. 2008]). Due to the logarithmic

spacing, we have a finer resolution for small time-lags and coarser resolution for long

where the means % as well as the variances
3

time-lags. For example, we expect the first basis function, which has a sharp peak

at zero to be mainly active or associated with the refractory period. As we discretize
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Figure 3.7: Set of 23 basis functions to span the spiking history as well as the
stimulus dependence. Each function is a density-function of a I'-distribution with
different means and variances, see equation (3.27). The time-axis for the features
describing the spiking history was logarithmically discretized up to 1000 ms.

the basis functions rather than directly the time-axis, each spike generates as many
discretization-points 7; as there are discretization points for the basis functions (see
Section 3.2). For the stimulus we used the same basis function set. As for the spike-
history dependence these functions were approximated with a piecewise constant
function. The discretization for the basis-function time-axis in this case was the
same as for the original stimulus and therefore slightly coarser than the one for the
spike history features. The basis functions are plotted in Figure 3.7.

For this setup we computed the different point estimates and posterior approx-
imations for the weights corresponding to the features describing the spike history
dependence (Figure 3.8) as well as for the weights corresponding to the stimulus
filters (Figure 3.9). For training, only 2 minutes out of the 20 minutes of recording
were used. Another 2 minutes were used for setting hyper-parameters, i.e. prior
variances. Given the posterior variances for each of the weights and the basis func-
tions, we can calculate errorbars on the time-course of the coupling and stimulus
filters. The filters are defined as the weighted sum of the basis functions. For
example, the gamma-functions f; in equation (3.27) are weighted by the weights,
corresponding to the entry in the feature vector 1. Errorbars on the coupling filter

f(t) can then be estimated using the marginal variances:

Var[f(t)|D] = Var[f(t) "w|D]
= £(t)" Cov[w |D]f(t), (3.28)

where f(t) is a vector of the corresponding basis functions f;(t) and Cov{w |D] is

part of the posterior covariance matrix corresponding to the weights for the features
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described by f;(t). In the above equation D represents the dataset used for train-
ing, containing both, stimulus and spike trains. To illustrate this, we also plotted
confidence regions of two standard deviations for the coupling parameters of the
population. The confidence intervals for the Gaussian approximation are plotted in
red when a Laplacian prior is used and in gray when a Gaussian prior is used. Based
on the confidence intervals for the coupling filters, only a few of the connections are
actually significant, as can be seen in Figure 3.8. This cannot be concluded from
the couplings estimated via MAP or MLE. For example, we see that connections to
neuron 1 (first column in Figure 3.8) as well as connections from neuron 1 to any
other neuron (first row) are underconstrained by the data, indicated by the large
uncertainty for those connections compared to those for others. Consequently, the
connections are set to zero by the prior and hence effectively excluded from the
model. The strong negative self-feedback coupling, indicating the refractory period
can be estimated with a much higher degree of certainty. We also find some sig-
nificant couplings between neurons, both negatively coupled (e.g. neuron 2 — 5)
and positively coupled (e.g. 7 — 2). The maximum likelihood estimator assigns a
non-zero filter to almost every coupling between neurons. The EP mean, however,
forces most of the filters to be zero. To quantify the difference in the estimated
filters, we calculated the squared difference between the maximum likelihood and
the EP-mean weights. This squared difference is 1.5 times larger than the average
squared norm of the individual parameter vectors, which indicates that not only the
absolute value of the maximum likelihood estimator is larger but also the qualita-
tive shape is different. On the other hand the differences in prediction performance
as measured by the likelihood is rather small (see Table 3.2). Thus, close in terms
of one quality measure need not necessarily imply close in terms of the other as
well. If the posterior uncertainty is small, the parameter vectors are much more
constrained by the data and the filters estimated by the maximum likelihood esti-
mator are closer w.r.t. the mean squared distance to the EP-mean. For example
this is true for most of the stimulus filters (see Figure 3.9). In contrast, if the
posterior uncertainty is rather large, for example for the stimulus filters of neuron
1 and neuron 3, the estimated weights differ more. This suggests, that we do not
have sufficient information to estimate all parameters, but we are able to extract

some weights from the given data.

To compare the different estimators quantitatively, we used the same perfor-
mance measure as for Figure 3.4, namely the negative log likelihood on a test set.
To obtain confidence intervals on the performance measure we split the part of the
dataset, which was neither used for training nor for validation into 16 different test

sets (10% , i.e. 2 minutes for training , 10% for validation and 80% for testing,
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Figure 3.8: Inferred connectivity in the network of seven retinal ganglion cells.
Plotted are the induced dependencies by the weights, that is the superposition of
basis functions, weighted by the inferred weights from two different estimators:
Maximum likelihood (MLE) and approximated posterior when a Laplace prior is
used (EPL1). For the EP approximation the posterior mean together with two
standard deviations is plotted. Each row corresponds to one output neuron and each
column corresponds to a input neuron. Thus, the entry (i,j) describes the influence
of a spike of neuron j on the firing rate of neuron i. For example on the diagonal
a strong negative coupling on a short time-scale can be observed, representing the
refractory period of a neuron. The maximum likelihood estimate as well as thee
posterior mean agree on the self-feedback but exhibit a large difference on some
couplings, e.g. neuron 1— 4. In general, neuron 1 seems to be less constrained
than other neurons, which is also indicated by the large uncertainty intervals for
the connections from and to neuron 1.

split into 16 sets of 1 minute length). The performance values are summarized in
Table 3.2. By this performance measure the EP estimate with a Laplcian prior
performs significantly better than the MAP estimate with the same prior. The
performance difference to the maximum likelihood estimator is not huge, this in-
dicates, that the weights are not sufficiently constrained by one minute slices of

the data. Especially the coupling terms not well constrained as can be seen by
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Figure 3.9: Statistical dependence of the neural activity of 7 neurons on the stim-
ulus specified by the superposition of the basis functions plotted in Figure 3.7
weighted by the estimated weights. The same colors for the different estimators as
in Figure 3.8 are used. Additionally the posterior mean (420 confidence intervals)
for the EP approximation with a Gaussian prior is plotted in red. Each plot cor-
responds to one neuron in the same order as in Figure 3.8. As can be seen, the
maximum likelihood estimator is overfitting. One sees, that the posterior uncer-
tainty for neuron 1 and also for neuron 3 are much larger as for the other neurons
analog to Figure 3.8.

the difference in the estimated filter by the maximum likelihood and the posterior
mean, see Figure 3.8. By judging from the data, we do not know if the couplings
are needed, hence excluding them from the model, i.e. setting the corresponding
weights to zero, seems to be a safe choice. This can be achieved by using a strong
prior distribution. The difference between a Gaussian and a Laplace prior is not
large for the coupling terms (not shown), for the stimulus filters we see a small
difference for the first three neurons, see Figure 3.9. Note, that in cases where there
is a significant coupling between neurons, the EP and the maximum likelihood fit
agree.

Similarly, we applied the GLM neuron model to another multi-electrode record-
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Estimate neg. log likelihood +2¢

MLE 3.609 - 1072 £ 3.665 - 10~*
MAPLI1 3.521-1072 +2.836-10~*
MAPL2 3.497-1072 £2.592 - 10~

EPL1 3.461-10"2+2459-10%

EPL2 3.716 - 1072 £2.973 - 10~

Table 3.2: Mean prediction performance of different point estimates averaged over
16 test sets of 1 minute length. As we do not have access to the true underlying
model, the prediction performance here is measured in negative log likelihood score
not in differences in likelihoods.

ings of three rabbit retinal ganglion cells. In the previous dataset the stimulus
consisted of a full field flicker, hence the receptive fields can be described by a one
dimensional curve in time. The stimulus for the rabbit retinal ganglion cells, how-
ever, also varied over pixels. Specifically, stimulus consisted of 32767 frames each of
which showing a random 16 x 16 checkerboard pattern with a refresh rate of 50 Hz
(data provided by G. Zeck, see [Zeck et al. 2005]).

First, in order to investigate the role of the Laplace prior, we trained a single
cell GLM neuron model on datasets of different sizes with either a Laplace prior or
a Gaussian prior. The models, which have the same number of parameters, were
compared by evaluating their negative log-likelihood on an independent test set.

As can be seen in Figure 3.10 the choice of prior becomes less important for
large training sets as the weights are sufficiently constrained by the data. For each
training set size a separate crossvalidation was carried out. Errorbars were obtained
by drawing 100 samples from the posterior.

Fig. 3.11 shows the spatiotemporal receptive field of each neuron, as well as
the filters describing the influence of spiking history and input from other cells.
For conciseness, we only plot the filters for 80 and 120 ms time lags, but the fitted
model included 60 and 140 ms time lags as well. The strongly positive weights on the
diagonal of figure 3.11c for the spiking history can be interpreted as “self-excitation”.
In this way, it is possible to model the bursting behavior exhibited by the cells in
our recordings (see also Fig. 3.12). The strongly negative weights at small time lags
represent refractory periods. The red lines correspond to 3 standard deviations of
the posterior. The first neuron seems to elicit "bursts" at lower frequencies. Note
the different scaling of the y-axis for diagonal and off-diagonal terms. By analyzing
the coupling terms, we can see that there is significant interaction between cells 2

and 3, but not between any other pair of cells. As our prior assumption is that
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Figure 3.10: Comparison between a Gaussian and Laplacian prior when using
different proportions of the available data. When more data is available the prior is
less important as the model is well constrained by the data. For the Laplace prior
only 20% of the data is needed to achieve the same performance level as for the
Gaussian prior with 40 % of the data.
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the couplings are 0, this interaction-term is not merely a consequence of our choice
of prior. As a result of our crossvalidation it turns out that the prior variance for
spike history weights should be set to very large values (p= 0.1, variance = 2{—)15)
meaning that these are well determinated by the data. In contrast, prior variances

for the stimulus weights should be more strongly biased towards zero (p = 150).
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Figure 3.11: (a): Stimulus dependence inferred by the GLM for the three neurons
(columns) at different time lags (rows). 2 of 4 time lags are plotted (60, 140 ms not
shown). (b): Spike-triggered average for the same neurons and time lags as in (a).
(c): Causal dependencies between the three neurons. Each plot shows the value of
the linear weight as a function of increasing time lag 7; (in ms). Shown are posterior
mean and three std. dev. (indicated in red). Different scaling of the y-axis is used
for diagonal and off-diagonal plots.

Because of the regularization by the prior the spatio-temporal receptive fields
are much smoother than the spike-triggered average ones, see Fig. 3.11a. The

receptive fields of the STA seems to be more smeared out which might be due to
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Figure 3.12: Predicted rate for the GLM neuron model with and without any spike
history and the predicted rate for the STA for the same neurons as in the other
plots. For the STA the linear response is rectified. Rate for the GLM with spike
dependence is obtained by averaging over 1000 sampled spike-trains. Rates are
rescaled to have the same standard deviation.

STA GLM | GLM with couplings
Neuron 1 || 0.2199 | 0.2442 0.3576
Neuron 2 || 0.1746 | 0.2348 0.3320
Neuron 3 || 0.1828 | 0.3319 0.4202
Mean 0.1924 | 0.2703 0.3699

Table 3.3: Predictions performance of different models. Entries correspond to the
correlation coefficient between the predicted rate of each model and spikes on a test
set. Both rate and spikes are binned in 5 ms bins. The first GLM models neither
connections nor self-feedback.

the fact that it cannot model bursting behavior. The more conservative estimate
of the neuron model should increase the prediction performance. To verify this, we
calculated the linear response from the spike-triggered average and the rate of our
GLM neuron model. In order to have the same number of parameters we neglected

all connections. As a model free performance measure we used the correlation
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coefficient between the spike trains and the rates (each are binned in 5 ms bins).
For the GLM with couplings, rates were estimated by sampling 1000 spike trains
with the posterior mean as linear weights. As our model explicitly includes the
nonlinearity during fitting, the rate is more sharply peaked around the spikes, see
Fig. 3.12. The prediction performance can be increased even further by modeling

couplings between neurons as summarized in Tab. 3.3.

3.4.4 Modeling complex cells: How many filters do we need?

Complex cells in primary visual cortex exhibit strongly nonlinear response proper-
ties which cannot be well described by a single linear filter, but rather requires a set
of filters. A common approach for finding these filters is based on the covariance
of the spike-triggered ensemble: Eigenvectors of eigenvalues that are much bigger
(or smaller) than the eigenvalues of the whole stimulus ensemble indicate directions
in stimulus space to which the cell is sensitive to. Usually, a statistical hypoth-
esis test on the eigenvalue-spectrum is used to decide how many of the eigenvec-
tors e; are needed to model the cells [Simoncelli et al. 2004, Touryan et al. 2002,
Rust et al. 2005, Van Steveninck & Bialek 1988]. Here, we take a different ap-
proach: We use the confidence intervals of our GLM neuron model to determine the
relevant dimensions within the subspace revealed by STC. We first apply STC to
find the space spanned by a set of eigenvectors that is substantially larger than the
expected dimensionality of the relevant subspace. Next, we fit a nonlinear function
n; to the filter-outputs f;(s(t)) = (s(t),e;). Finally, we linearly combine the n;(t),

resulting in the following features describing the stimulus:

(5)i(s(t)) = ni(fi(s(t))) (3.29)

As the model is linear in the weights w;, we can use the GLM neuron model
to fit these weights and obtain confidence intervals. If a filter f;(¢) is not needed
for explaining the cells response, its corresponding weight w; will automatically be
set to zero by the model due to the Laplace prior. This provides an alternative,
model-based method of determining the number of filters required to model the cell.
The significance of each filter is not determined by a separate hypothesis test on
the spectrum of the spike-triggered covariance, but rather by assessing its influence
on the neural activity within the full model.

As in the previous application, we can model the spike history effects with
an additional feature vector 4, to take into account temporal dynamics of single
neurons or couplings.

Before applying our method to real data, we tested it on data generated from an
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Figure 3.13: (a): 24 out of 40 Filters estimated by STC. The filters are ordered
according to their log-ratio of their eigenvalue to the corresponding eigenvalue of the
complete stimulus ensemble (from left to right). Highlighted filter are those with
significant non-zero weights, red indicating excitatory and blue inhibitory filters.
(b) Upper: Posterior mean +/- 3 std. dev. Filter indices are ordered in the same
way as in (a). Lower: Predicted rate on a test set for STC and for the GLM neuron
model with spike history dependence on a test set.
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artificial complex cell similar to the one in [Rust et al. 2005]. On this simulated data
we were able to recover the original filters. We then fitted this GLM neuron model
to data recorded from a complex cell in primary visual cortex of an anesthetized
macaque monkey (same data as in [Rust et al. 2005]). We first extracted 40 filters
which eigenvalues were most different to their corresponding eigenvalues of the com-
plete stimulus ensemble. Any nonlinear regression procedure could be used to fit a
nonlinearity to each filter output. We used a simple quadratic regression technique.
Having fixed the first nonlinearity we approximated the posterior as above. The
resulting confidence intervals for the linear weights are plotted in Fig. 3.13b. The
filters with significant non-zero weights are highlighted in Fig. 3.13a. Red indicates
exitatory and blue inhibitory effects on the firing rate. Using 3 std. dev. confidence
intervals 9 excitatory and 8 inhibitory filters turned out to be significant in our
model. The number of filters is similar to that reportet in Rust et al., who regarded
7 excitatory and 7 inhibitory filters as significant [Rust et al. 2005]. The rank order
of the linear weights is closely related but not identical to the order of eigenvalues,

as can be seen in Fig. 3.13b, top.

3.4.5 Approximating other neuron models

We have seen that inference in generalized linear models can be done efficiently.
Usually likelihood computations for other neuron models, especially neuron models
based on (stochastic) differential equations, imply sampling or solving of integral
equations (see [Risken 1989, Paninski et al. 2008]). Hence, if we could approximate
such a neuron model with a generalized linear model by expanding the stimulus and
the spike-history into a suitable feature space, we could use the efficient inference
techniques available for the GLM and use them for inference in other neuron models
as well. In this section we investigate the approximation ability of a GLM via such
a non-linear feature space for the leaky integrate-and-fire model. In general, if we
knew the likelihood of another neuron model p(t|Hy, s;) for a given spike-history Hy
and stimulus s(t), a simple idea is to discretize the time into small time bins d¢ and
set the intensity function of the GLM to:

A(t|Hy, 8(t))5t = p(spike € [t + 6t)|Hy,s(t)) (3.30)

For the special case of the leaky integrate and fire neuron model, the idea
can be further simplified by approximating the likelihood with a hazard func-
tion which only depends on the noise-free solution of the membrane potential
[Plesser & Gerstner 2000, Koyama & Paninski 2009]. In [Plesser & Gerstner 2000]
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various choices of such hazard functions are discussed. As the hazard function de-
scribes the risk of an escape across the threshold of the membrane potential, such an
approximation is also called escape rate approximation. However, all the proposed
approximations assume, that the receptive field as well as the noise-level and the
leak is known. Here, we investigate how well such an approximation based on the
GLM hazard function can predict spikes from a LIF when the receptive field has to
be inferred from the data.

Recall the basic model for a (single) leaky integrate-and-fire neuron (see also

section 2.1 and 4.2.1) with receptive field r:

AV, = (r*s(t) — 7(V; — V,)) dt + od By (3.31)
Vie =V, itV =90

If we represent the receptive field r(t) as a superposition of several basis functions

fi(t),i=1,..., M with corresponding coefficients R;, we obtain:

dv; = <Z Rif;xs(t) — 7(V; — w)) dt + od B (3.32)

If we now split the membrane potential into individual components correspond-
ing to the basis functions and for simplicity assume the reset potential V,. to be

zero, analogous to equation (2.2), we obtain:

AV = (fixs(t) = 7V} )t
=V = (ot —1) | " exp(r(E — 1) i x s(€)de (3.33)

=V, =) RV} +U,
i

where t_ is the time of the last spike and Uy is a Gaussian noise term with zero mean
and a variance which is evolving according to equation (2.4). Note, that the noise
process U; is temporally correlated due to the leaky integration of the Brownian
motion term. Thus, the mean membrane potential V; can be written as a linear
superposition of time varying features with fixed weightings R. The generation
of spike times is then governed by the additional noise U; and the threshold. To
mimic the reset/renewal property of the LIF neuron within the class of GLMs,

we can set (¢, ,)i(t) := V' including the reset to zero after each spike. We have



3.4. Potential uses and limitations 53

indexed the feature vector ¥ with h and s to emphasize, that it depends on both
the spiking history and the stimulus. In general, the leak term 7 has to be estimated
as well. For the sake of simplicity, however, we assume in the following that 7 is
known?. The noise term U; can equivalently be seen as a temporal modulation of
the threshold. As spikes in a GLM are generated according to the instantaneous
intensity f ('¢h,s(t)TR) ~ f(Vy), it can be interpreted as a soft threshold spike-
generation. If we set the noise o to zero and use f(z) = ¢ 1,59,¢ > 1 as non-
linearity, we obtain an almost deterministic spike-generation which is close to the
deterministic LIF model. Thus, we expect the GLM with such a feature space to
give a reasonable approximation to the leaky integrate-and-fire model for sufficiently
small noise and steep non-linearity. In order to further adjust the probability of a
threshold crossing to the time-varying variance of the noise term, we could also add

another ((n 4 1)-th) feature evolving from the last spike according to:

0
(), ) = log (1 -/ N(ﬂclO,a(t))d:z;)

2

o(t) = ;‘7 (1 —exp (=27(t —t_)))

(3.34)

where ¢_ is the time of the last spike and ¢ is the noise level of the original leaky
integrator. Thus, (¥, (t))n+1 reflects the log probability of the membrane potential
being above threshold in time bin ¢ given that the last spike was at t_. Note, that
this is only an approximation as we do not make use of the fact, that the membrane
potential has not crossed the threshold in the time bins between ¢_ and t. This
features depends only on the time of the very last spike and hence also reflects the
renewal property of the leaky integrator.

To investigate the ability of a GLM to approximate a LIF neuron when using
custom made features, we generated spike trains from a LIF and calculated the
EP approximation to the posterior as in the previous sections. Specifically, we
simulated two different LIFs:

High pass: LIF with a Gabor like receptive field, see Figure 3.14b.
Low pass LIF with a Gaussian receptive field, see Figure 3.14a.

Due to the receptive fields, spikes from the LIF with the Gabor receptive field
are more irregular than the ones generated with the Gaussian receptive field, see

Figure 3.15. For each of these two LIFs we generated 100 seconds of a white noise

2Generally, T could be set via a crossvalidation procedure as it plays the role of a hyperparameter
here.
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Figure 3.14: Receptive fields for the LIF used to generate spikes from a LIF.
Each receptive field is discretized into 20 bins of 0.5 ms length. Left: Gaussian
receptive field, corresponding to a low pass filter. Right: Gabor receptive field,
corresponding to a high pass filter.

stimulus with a refresh rate of 0.5 ms. Other parameters of the LIF were fixed to
o = 0.5 [mV], 77! = 20 [ms]. The threshold for the LIF with the low pass receptive
field was set to 12, whereas the threshold for the high pass case was set to 4, in
order to obtain roughly the same rates in both cases. The spike trains obtained,
were fitted with three GLMs with different feature spaces:

LNP: GLM with 20 features describing the raw stimulus in the last 20 time-bins.

renewal GLM: GLM with 20 features defined as in equation (3.33). The ba-
sis functions for equation (3.33) were set to indicator functions f;(¢) =
L(4—(i+1)0.5,1—i0.5) representing the same set of stimulus time-bins as the pre-
vious LNP.

LNP 4+ GLM: GLM containing features describing the raw stimulus as well as
features from the renewal GLM. Furthermore we added the variance feature
of equation (3.34).

Note, that the dimensionality of the first two GLMs are the same, whereas
the dimensionality of the last GLM is twice as large. To analyze the effect of
custom made feature spaces including the reset property, we generated spike trains
for each of these fitted models and compared them to the ones generated from the
original LIF, see Figure 3.15. To sample those spike trains we first sampled a weight
vector according to the posterior distribution. Given the sampled weights we then

generated the spike trains from the corresponding GLM. In this way we can draw
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Figure 3.15: Comparison of mean and variance of a PSTH for the different GLM
approximations to the LIF. In the top two panels the mean spike count is plotted
for the different approximating GLMs: LNP, renewal GLM, and black
for the LIF. In the bottom two panels the variance of the spike count is plotted. The
left two panels correspond to the low-pass setting whereas the two right panels show
the results for the high-pass setting. In addition sample spike trains (vertical bars)
are plotted in the top two panels with the same colors as used for the PSTHs. Both
GLMs including features for the reset property and the variance feature capture the
sharp onset for the spike counts as indicated by the variance of the spike counts.
Due to the nonlinearity used, the onset of the PSTH of the renewal GLM is slightly
earlier than the others (see text).

samples from the predictive distribution. To illustrate the predictive distribution,
we repeated the simulations 10000 times and calculated the peri stimulus histograms
(PSTHs) for the different models, see Figure 3.15.

To quantify the prediction performance, we calculated the average log-loss of
the predictive distributions for the different GLMs in Table 3.4. Specifically, the

average log-loss is given by (see also equation (3.11)):

(~1ogpl{HGLM) =  ~log [ p({t:}w. GLM)p(w|D, GLAM)dw ), (335

where D is data set used for inference and the average () has to be taken over
spike trains {¢;}, generated from the original LIF. As the integral cannot be per-
formed analytically, we estimated the average log-loss by sampling weights from the
posterior and spike trains from the LIF. In Table 3.4 we see, that the performance
of the predictive distribution for the GLM including only the renewal features is

significantly better than the GLM including only stimulus features. In terms of
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low pass LIF high pass LIF

LNP 122.03 + 0.69 170.85 £ 0.6
renewal GLM 76.63 + 0.44 162.46 + 0.56
LNP+GLM  75.47 +0.44  168.39 4+ 2.72
Constant rate  161.844 + 0.8  231.32 £+ 0.82

Table 3.4: Prediction performance of different GLMs when using different feature
spaces. The prediction performance is measured in average log-loss of the predictive
distributions of the different GLMs. In the first row the prediction performance for
the GLM using only stimulus features is shown. The second row shows the average
log-likelihood for the GLM which only uses the renewal features. At least for the
high-pass case, the performance for the GLM which combines all features and has
the additional variance feature as shown in the third row does not improve the
prediction performance significantly. As a reference we also show the average log-
likelihood for the constant rate estimator in the last row.

average log-loss the more complex model including both types of features and the
additional variance feature (equation (3.34)) does not improve the performance sub-
stantially, at least in the high pass case. However, in terms of predicted PSTH using
both types of features leads to a better match between the predicted PSTH and the
PSTH from the original LIF. Furthermore, when sampling from the renewal GLM
the onset of the resulting PSTH is slightly earlier than the PSTH from the LIF, see
Figure 3.15. As we used an exponential non-linearity the GLM sometimes predicts
spikes, when the membrane potential has not reached the threshold yet. Due to the

reset of the membrane potential this results in a small latency shift in the PSTH.

3.5 Discussion

Bayesian inference methods are particularly useful for system identification tasks
where a large number of parameters need to be estimated. By specifying a prior
over the parameters a full probabilistic model is obtained that provides a principled
framework for regularizing the model complexity. Furthermore, knowledge of the
posterior distribution allows one both to derive point estimators that are optimized
for loss functions that are suitable to the problem at hand and to quantify the
uncertainty about such estimates.

A major hurdle for using a Bayesian approach is that computing the posterior
distribution is often intractable. Even for numerical approximation techniques of
the posterior distribution there is usually — a priori — no guarantee how well they

work. Therefore, it is important to perform careful quality control studies if such
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methods are to be applied to a new estimation problem. In this chapter, we pre-
sented such control studies for approximate Bayesian inference in the generalized
linear models of spiking neurons using Expectation Propagation (EP) and compared
it to standard methods like maximum likelihood and MAP estimates. Expectation
Propagation provides both a posterior mean and a posterior covariance approxima-
tion. These first and second-order moments are sufficient to obtain a rough sketch
of the location and dispersion of the posterior distribution. The posterior mean,
in particular, can be used as a point estimator which is known to minimize the
mean squared error loss. This loss function is an expedient choice if one aims at
reconstructing the filter shapes. As we have shown in this work, the posterior mean
estimate obtained with EP yields a smaller mean squared reconstruction error of
the parameters than maximum likelihood or MAP estimation.

It should be noted, however, that the filter shapes represent statistical couplings
only. Clearly, the existence of a statistical coupling does not necessarily imply the
existence of a physical coupling as well. Statistical dependence could, for example,
also be a consequence of common input, or other indirect couplings. In fact, it
is known that noise correlations between retinal ganglion cells are mainly due to
common input, and not direct synaptic couplings [Trong & Rieke 2008]. In the
model an inferred coupling simply indicates that there is a dependence between
the neurons which cannot be explained by the stimulus filters or the neural self-
couplings.

Receptive field estimation aims at a functional characterization of neural re-
sponse properties. Therefore, it is natural to compare different estimates by asking
how well they can predict spike trains generated in response to new test data. Eval-
uating the performance of predicting a particular spike train usually involves the
use of a spike train metric [Victor & Purpura 1997], as the predicted spike trains
have to be compared to the observed spike trains. In general, one wants to compare
models, and not only particular spike trains, and therefore averages the prediction
performance across very many samples from the two models one wants to compare.

The Bayesian framework offers a principled way to obtain an optimal point esti-
mate which minimizes the loss function averaged across the posterior distribution.
Although it is unlikely that this optimization problem can be solved analytically,
one can sample weights from the posterior and then sample several spike trains
for these given weights. In other words we can generate samples form the pre-
dictive distribution. For the prediction performance measure specified by the loss
in equation 3.11, for example, an optimal point estimate would be given by those
weights which on average yield the largest likelihood for the ensemble of spike trains

drawn from the predictive distribution. Neither the MAP nor the posterior mean
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is optimal with respect to this criterion. Theoretically, the MAP is optimized for
the zero-one-loss, whereas the posterior mean is optimized for the squared error
loss [Lehmann & Casella 1998]. In Appendix A.2, we demonstrate on a simple,
concrete example (estimation of the probability of a coin flip and log-loss as loss
function) that an optimized predictor will perform better (on average) than the
MAP-estimate, irrespective of what data was observed. Clearly, this approach is
only possible if one has at least an approximate model of the posterior, as we have

presented here.

For a single GLM this will yield a set of parameters, which are guaranteed
to be optimal on average. The optimality of course only holds if the model is
correct (i.e. the observed spike trains are indeed samples from a GLM), the prior
is appropriately chosen, and the posterior distribution can be calculated precisely.
In practice, it is not clear how justifiable each of the the three assumptions is going
to be. Therefore, it is an interesting open question of how much better point-
estimates which are optimized using this approach will perform when compared
to other optimization methods. Empirically, we observed that the posterior mean
estimate obtained with EP is always better then the MAP with respect to squared
error loss. With respect to the prediction error, the MAP performed slightly better
than the EP posterior mean estimate if the weights were drawn from a Gaussian
or Laplacian distribution, while the EP posterior mean was better than the MAP
estimator if the weights were drawn from the truly sparse distribution. Of course
one could also directly use the predictive distribution as it will in general assign
higher likelihood to unseen spikes than any point estimate. However, the predictive
distribution cannot be described by a single GLM as it is an average over many

models.

Our study also provides some insights about the effect of different kinds of prior
distributions on the estimation performance. The choice of prior in the Bayesian
framework offers a principled way of regularization. Here, we compared specifically
a Gaussian and a Laplacian prior. While there was almost no difference in perfor-
mance between the EP posterior mean estimator for the Laplacian and the Gaussian
prior if the true prior was Gaussian or Laplace, the assumption of a Laplacian prior
led to a substantial advantage when the true weight vectors had only a few non-zero
components. This confirms the intuition that one can profit from using a Laplacian
prior if one sets up a large number of candidate features of which only a few are
likely to be useful in the end. Interestingly, for the MAP estimator, the use of a
Laplacian prior almost always led to a substantial impairment and resulted in a
relatively small improvement only w.r.t the prediction performance if the weights

were sampled from a sparse distribution for which almost all coefficients are zero.



3.5. Discussion 59

While the posterior mean, and even more so the MAP estimator can strongly
depend on the particular choice of prior distribution, this indeterminacy is a prob-
lem only if the dispersion of the posterior distribution is not taken into account
appropriately. This is a strong case for the use of EP as the MAP estimator does
not provide any control to what extent the result is actually constrained by the
data. By also computing the posterior covariance rather than just a point estima-
tor, we obtain confidence intervals which can serve exactly to this purpose. For the
retinal ganglion cell data analyzed in section 3.4.3, for example, it allowed us to
distinguish between neuronal couplings, that are significant and others which were
not (see neuron 1 in Figure 3.8). Also, in the context of spike-triggered covariance
analysis, we used our method to determine the relevant stimulus subspace within
the space spanned by the eigenvectors. Our subspace selection method is directly
linked to an explicit neuron model which also takes into account the spike-history
dependence of the spike generation. Whenever the confidence intervals were large,
the maximum likelihood estimator deviated substantially from the Bayesian point

estimators, hence indicating overfitting.






Decoding with leaky integrate-

and-fire neurons

4.1 Introduction

In the previous chapter we have considered the encoding problem. There, we were
aiming at predicting spikes given a particular sequence of stimuli. The nervous
system on the other hand has to solve at least implicitly the inverse problem. That
is, given an observed spike-train, what stimulus is likely to have produced this
particular neural response. Understanding how stimuli and other inputs to neurons
can be decoded from their spike patterns is an essential step towards understanding
neural codes.

If the encoding mapping was one-to-one this would be an easy task. However,
due to internal noise and common input, predicting a stimulus given a spike train
is a nontrivial problem. As a first approximation, a similar technique as the spike-
triggered average can be used. That is, the optimal linear decoder can be calculated
[Bialek et al. 1991]. For orientation tuning, another popular method is the popula-
tion vector method which reconstructs the stimulus by a weighted superposition of

the preferred orientations [Georgopoulos et al. 1982].

Instead of searching for an explicit decoder a commonly studied ques-
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tion is: what is the best reconstruction any decoder could possibly achieve,
given an explicit encoding model. Along these lines Fisher Information is a
widely used tool for accessing the quality of an encoding scheme [Paradiso 1988,
Seung & Sompolinsky 1993, Abbott & Dayan 1999]. Another approach is to ask
how well any two given stimuli can be discriminated on the bases of the neural
responses [Shadlen et al. 1996, Berens et al. 2009].

Most of the existing studies have focused on static encoding models based on
spike counts only. Many sensory inputs, however, change continuously in time and
have variations across a large range of different time scales. Similarly, the occurrence
of spikes can depend on continuous electrophysiological signals such as local field
potentials [Montemurro et al. 2008, Rasch et al. 2008]. In this chapter, we seek to
achieve a better understanding of how such continuous signals can be decoded from
neuronal spike trains, and how the basic biophysical dynamics of individual neurons
affect the encoding process.

We will investigate these questions using leaky integrate-and-fire neurons (LIFs)
[Stein 1967, Tuckwell 1988]. Leaky integrators constitute a natural choice as they
capture basic dynamical properties of neurons, yet are still amenable to analyt-
ical studies of dynamic encoding. In this model, a spike is emitted as soon as
the integrated input reaches a threshold. Thus, the relative timing of spikes will
contain information about the stimulus in the recent past. In the noiseless case,
an elegant solution has been proposed for decoding a time-varying stimulus from
a population of integrate-and-fire neurons based on computing the pseudo-inverse
[Seydnejad & Kitney 2001].

Here, we seek to generalize from the noiseless to the noisy case. Specifi-
cally, we study decoding rules for reconstructing time-varying, continuous stimuli
from populations of leaky integrate-and-fire neurons with noisy membrane thresh-
olds. Incorporating noise into the model does not only make the model more
realistic, but also naturally leads to a Bayesian approach to population coding
[Rao et al. 2002, Huys et al. 2007, Natarajan et al. 2008]. Each spike constitutes a
noisy measurement of the underlying membrane potential and, using the Bayesian
formalism, this relationship can be inverted in order to infer the posterior distri-
bution over stimuli [Lewi et al. 2008, Paninski et al. 2007]. While many studies
have addressed Bayesian population codes and the representation of uncertainty in
neural populations [Pouget et al. 2000, Rao et al. 2002, Rao 2005, Ma et al. 2006],
the question of how posterior distributions can be decoded from the spike-times
of LIFs has not been studied in detail. Natarajan and Huys [Huys et al. 2007,
Natarajan et al. 2008] analyzed probabilistic decoding of continuously varying stim-

uli, but they did not use the LIF neuron model but an inhomogeneous Poisson point
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process.

A Bayesian decoding rule does not only return a point estimate of the stimulus,
but also an estimate of the posterior covariance, representing the residual uncer-
tainty about the stimulus. This uncertainty estimate is of critical importance for
a “spike-by-spike” decoding scheme [Wiener & Richmond 2003], as it allows one to
appropriately weight each observation by its reliability. In addition, the uncertainty
directly relates to the accuracy of the neural code. By inspecting the posterior vari-
ance of different stimulus features, one can gain insight into the accuracy with which
different features are represented by the population.

For the sake of clarity, we choose a simple threshold noise model, which does not
affect the dynamics of the integration process but only sets the threshold to a new
random value whenever a spike has been elicited [Gerstner & Kistler 2002]. The
generation of spikes in this model class can be described by a renewal process, see
also chapter 2. A Gamma point process is obtained as special case in the limit of a
large membrane time constant when the threshold values are drawn from a Gamma
distribution. In particular, when the exponential distribution is chosen, the spike
generation process constitutes an inhomogeneous Poisson process. The Gamma dis-
tribution is a computationally convenient distribution which ensures positiveness of
the threshold. Therefore, this choice of noise model is conceptually simple, but nev-
ertheless can be used to model a wide range of different spiking statistics. However,
even for this simple noise model, the exact shape of the posterior distribution over
stimuli can not be obtained in closed form in general and approximations have to
be used. Here, we derive three decoding rules based on Gaussian approximations
to the posterior distribution. We show that the simple decoder which originates
from the noiseless case is biased when introducing threshold noise. We then derive
an expression for the bias length and state conditions under which this leads to an
improved estimator of the stimulus. Furthermore, we show how this estimate can
be updated iteratively every time a new spike is observed.

The chapter is organized as follows: In section 4.2 we describe the basic
encoding model as well as the stochastic description of the time-varying input.
The decoding in the noiseless case can be extended to include threshold noise
as well. This leads to an approximate likelihood, from which we derive several
approximations to the full posterior distribution in section 4.3. In section 4.4
we compare the resulting Bayesian decoding schemes to alternative reconstruc-
tions, such as the linear decoding [Bialek et al. 1991] and the Laplace approxi-
mation [Paninski et al. 2007, MacKay 2003, Rasmussen & Williams 2006] based on
the likelihood approximation. Finally, in section 4.5, we apply the decoding schemes

to different scenarios which illustrate different aspects of neural population coding.
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4.2 Encoding

The encoding process is split up into two parts: The first one is the neural encoding
part, which characterizes the spike generation process for a given stimulus. The

second part describes the stimulus ensemble.

4.2.1 Leaky integrate-and-fire neuron with threshold noise

We start with the classic leaky integrate-and-fire neuron model [Tuckwell 1988,
Gerstner & Kistler 2002]. It consists of a membrane potential V; which accumu-
lates the effective input I;. Here, V; and I, are scalar functions if a single neuron
is modeled, or vectors if a population is considered. Whenever the membrane po-
tential of a neuron n reaches a pre-specified threshold 6" a spike is fired and the
membrane potential is reset to zero, i.e. lim.0(Vy, 4c)n = 0. In addition to the
input I, there is a leak term which drives the membrane potential back to zero when
no input is present. Correspondingly, the sub-threshold dynamics of the membrane

potential can be described by the following ordinary differential equation (ODE):

Tth = Itdt — tht. (41)

The time constant 7 specifies the time scale of the neural dynamics. Assuming
the time of the last spike is t,—, the membrane potential at any time ¢ before the

next spike is given by

V, = exp (—i (t — tk)) i/j exp (i (s tk)) Lds=Fy_ (D). (4.2)

.

Fiy, 1) (I) is a linear functional of the stimulus I depending on the time of the last
spike t,- and the current time point ¢. Due to the additional spiking nonlinearity
that governs the dynamics when the membrane potential reaches the threshold, the
LIF neuron performs a complex mapping of continuous signals to spike patterns.
A simple way of incorporating noise into our model is to vary the threshold from
spike to spike in a stochastic fashion. Every time a spike is fired, the threshold is
drawn from a known distribution with density pg. Thus for every given (constant)

stimulus, the resulting point process is a renewal process.

With these assumptions we can write down the likelihood of observing a spike



4.2. Encoding 65

train of one neuron for a given stimulus I;:

n

plto,t1, - - talTe) = p(tolLio.10)) ] PCtalti—1.Ttp s 10))
k1

tO‘IOto H F[tk 1,t )|tk 1’I(tk 1,%))‘

dF[tk—l k) (I)
dtg

Y

(4.3)

with Fy, ;, ) defined as in equation (4.2) and I ) denotes the stimulus between

te—1,tk
tr—1 and tg. The first equality holds because of the renewal property of the spike
generation process. In other words, the time of the next spike only depends on the
time of the previous spike and the stimulus since then. Subsequently, we change
variables from ty to Fj;, ,4)(I). Note that Fj, 4 (I) is only a function of t
because we condition on ¢;_; and I. As the value of the linear functional at the
time of a spike equals the threshold 6, we plug in the density for the threshold pyg.
The change of variables ¢ to Fj, _, 4,)(I) is only one-to-one, if one uses the fact,
that t is the first time F};, |, )(I) equals the threshold. Therefore, plugging in
the threshold distribution without accounting for the problem, that F(I) may have
been super-threshold turns the last equation into an approximation. If we consider

a whole population, the likelihood reads:

3

p(tout].)"'atn‘]:t) t0|IOt0 H tk’tk 7 tk))
k=1
L dFy (1)
p(tolL(0,t0) H (Fit, - 00 Dt L, 1)) |H

dity,

)

(4.4)

where ;- denotes the time of the previous spike of the neuron, which fired a spike
at time t;. The threshold distribution pg might be different for different neurons.
For notational simplicity, however, we do not indicate this. In the following the
spike times t; are ordered and indexed by the subscript k. Which neuron fired
the spike t; only enters the calculation in the computation of the linear functionals

Fy,_ 1, (I). Therefore we drop the dependency of the neuron.

There is no simple way how the sub-threshold condition can be incorporated.

However, we can include the condition that at the time of reaching the threshold, the
dFyy ., (D)
>

membrane potential V; must be increasing by adding the requirement I

0 [Pillow & Simoncelli 2002, Arcas & Fairhall 2003].

For the threshold noise we assume a Gamma distribution with shape parameter
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o and scale parameter [3:

L, e B

po(0) = 0% BT (o) (4.5)
As a special case, if the input is non-negative and if the time constant goes to
infinity, the resulting point process is an inhomogeneous Gamma-renewal process.
In this way we obtain an approximate likelihood, when the threshold is var-
ied at the time of spikes. The case of white input noise and fixed threshold is
described in [Paninski et al. 2004]. This can equivalently be seen as varying the
thresholds continuously according to an Ornstein Uhlenbeck process. For the case
of soft-threshold based likelihoods from the family of Generalized Linear Models,

see [Jolivet et al. 2006, Paninski et al. 2007].

4.2.2 Specifying the prior: A model for the stimulus

The prior distribution specifies the assumption about the range and relative fre-
quency of different stimuli. A common approach is to use a maximum entropy
prior. In particular, the normal distribution is a maximum entropy distribution for
given mean and covariance. As stimuli are functions of time, we have to specify
a distribution over functions. We choose a finite set of basis functions {f;} and
then specify a distribution over the coefficients from which all possible functions

are generated by a linear superposition:

M
I; = Z cifi(t). (4.6)

The coefficients ¢; are drawn from the Gaussian prior distribution. We denote the
mean and the covariance matrix by u. and X. , respectively. For stationary pro-
cesses, a natural choice of basis functions is the Fourier basis. Any superposition of
such basis functions will result in a smooth function. Defining a covariance struc-
ture for the coefficients directly translates into the structure of the power-spectrum.
Thus, I; is a finite-dimensional Gaussian process. Using a finite number of basis
functions poses a potential difficulty for the spike generation process described in
the previous section. If one uses basis functions which are bounded, so will be
any sample from the input process. Therefore, there is a non-zero probability that
a threshold is drawn which could never be reached by the membrane potential.
However, if we use a flat power-spectrum, i.e. isotropic covariance for the coeffi-
cients, and increase the number of Fourier basis functions the process will converge

to a Brownian motion. For Brownian motion as input, the membrane potential is
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an Ornstein-Uhlenbeck process and therefore will eventually exceed any threshold.
For the simulations in this chapter, we never observed an infinitely long inter-spike
interval.

Using this model for the stimulus we can rewrite the linear functional of the

stimulus as an inner product with the stimulus coefficients:
F[tk_,tk)(Is) = F[tk_,tk)(CTf(s))
=cy(t)-,tr), with (4.7)
y(tr-sti)i = Fpe, 1) (£i(s))

Ignoring the likelihood term of the first spike time tg, we can write down the

approximate log-likelihood (equation (4.3)) as follows:

+
c ti, tp—
logp(D = {110t }I) = 3 = Dloge y(on, ) - Yt
k
deTy (te, t-) (48)
+log (yk’lc) + const,
dtg
where the constant does not depend on tg,I;. As Paninski pointed out

[Paninski et al. 2007], this model is a Generalized Linear Model (GLM). The re-

sulting encoding process is illustrated in figure 4.1.

4.3 Decoding

In the previous section, we have seen that the encoding process can be described
by a conditional distribution p(r|s), the probability of observing a neural response
r, given that a stimulus s was presented. For the task of decoding, an important
conceptual distinction can be made between point estimation and probabilistic in-
ference. The latter consists of inferring the full posterior distribution p(s|r): the
probability of stimulus s, given that we observed a specific neural response r. Point
estimation in contrast requires to make a decision for one particular stimulus as a
best guess. Typical point estimates are the posterior mean E[s|r] or the stimulus
s* for which the posterior distribution takes its maximum (maximum a posteriori,
MAP). These choices are optimal for different loss functions. A loss function speci-
fies the ‘cost’ of guessing stimulus § if the true stimulus was s. The posterior mean
is optimal for the squared error loss ||s — 3||?, whereas the MAP is optimal under
the 0/1 loss. Although the 0/1 loss, which has a constant loss for arbitrarily small
errors, is an arguably unnatural choice for continuous stimuli, MAP decoding is still

popular and often performs well also with respect to other loss functions. Further,
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Figure 4.1: Tllustration of the encoding process. We simulated a leaky (r = 10)
integrate-and-fire neuron with threshold noise (mean 1.0, variance 0.05). The input
is a pink noise process consisting of 80 basis functions, 40 sine and 40 cosine,
frequencies equally spaced between 1 and 500 Hz. The stimulus is plotted in shaded
gray, the membrane potential in black. The threshold is drawn randomly according
to a gamma distribution every time a spike (vertical lines) is fired.
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the posterior mean together with the posterior variance can also be regarded as a

Gaussian approximation to the full posterior distribution.

In the following we will start from the noiseless case, re-deriving
the pseudo-inverse decoding scheme that has been presented before by
[Seydnejad & Kitney 2001]. We show that when introducing noise, the pseudo-
inverse can still be seen as an approximate decoding rule, but suffers from an
asymptotic bias. In order to cope with this problem, we derive a bias-reduced

version as well, which can be applied in an iterative ‘spike-by-spike’ fashion.

4.3.1 Decoding in the noiseless case

In the noiseless case, the problem of inverting the mapping from stimulus to
spike-times can be interpreted as a linear mapping [Seydnejad & Kitney 2001,
Pillow & Simoncelli 2002, Arcas & Fairhall 2003]. Roughly speaking, each inter-
spike interval defines one linear constraint on the set of possible stimuli that could
have evoked the observed spike response. The evolution of the membrane potential
during an interspike interval is obtained via equation (4.2). As the spike times
correspond to threshold crossings of the membrane, we know that the membrane
potential hits the threshold 8 at time ¢j:

1 [t 1
0 = —\/t exp <7_ (S — tk;)) Is dS = F[tk,,tk) (IS) (49)

T e

If we represent the stimulus in terms of a linear superposition of basis functions
(section 4.2.2), we can address the decoding problem within the framework of finding
a linear inverse mapping. Decoding of the stimulus signal I(t) is equivalent to
inferring the coefficients c; from the observed spike trains. Every interspike interval

imposes a linear constraint on the coefficients c;.

6=yt th). (4.10)

where the components of y are defined as in equation (4.7). Note that equation
(4.10) is a necessary condition for the coefficients. The unknown coefficients ¢ can
be uniquely determined if the number of linearly independent constraints is equal
to or larger than the number of unknown coefficients (see also figure 4.2). We can

summarize the constraints compactly in a linear equation:
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y(t()?tl)T 0
Lc = 0, where L:= : , 0:=1] : |. (4.11)

Y(tn— > tn)T 0

In general, a solution to this equation can be found by using the Moore-Penrose

pseudo-inverse [Penrose 1955]:

c=L0 (4.12)

The pseudo-inverse is well defined even if the matrix L is not square or is rank-
deficient. If the number of interspike intervals exceeds the number of coefficients,

the pseudo-inverse is given by

L = (LTL)_1 L. (4.13)

4.3.2 Decoding in the presence of noise
4.3.2.1 One dimensional stimulus: exact inference

We start with a simple case in which exact inference is possible: the stimulus
consists of a constant (one dimensional) input ¢, i.e. f; = 1. In this situation, we

can write down the likelihood exactly. For the observations we have:

= yltgst) = [ e (25— t0) Litas

k=

e (e w)as w1y

k=

= %T (1 — exp (—i (tr, — tk)))

[
0=yrc = E:yk

In this case, we do not have to account for the sub-threshold condition as the
evolution of the membrane-potential since the last spike is a monotonic function and
therefore there is only one possibility to be at the threshold for a given stimulus at

a specific time. In particular, if the threshold is Gamma distributed (as assumed
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Figure 4.2: Example of noiseless decoding for a two dimensional stimulus and its
limitations. The inset illustrates the linear constraints that the first and the second
interspike interval pose on the two coefficients ¢; and ¢3. The driving stimulus
is plotted in blue.Vertical bars at the bottom indicate the three observed spike
times corresponding to threshold crossings of the membrane potential (solid black).
Possible membrane potential trajectories, which obey the linear constraints are
plotted in shaded green and red respectively, darker ones have smaller norm. As
can be seen the linear constraints only reflect that the membrane potential has to
be at zero at the beginning of an interspike interval and at the threshold at the end
of it. They do not reflect that the membrane potential has to stay below threshold
between spike times. Parameters are: 7 = 1 ms, frequency for sine and cosine basis
functions: 32 Hz.
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in section 4.2.1), we see that yi|c is also Gamma distributed with parameters «, %
For now we choose ¢ to be Gamma distributed as well (say with parameters ag, 5)-
This choice deviates from the choice in section 4.2.2, but for this choice, we can

write down the posterior exactly:

et am) <2l 30 T (o 2
et () o ()
o (5 53)

-1
=7 |clna+ a y— l
2575

Having the posterior in closed form we can calculate the posterior mean as well
as the point of maximal posterior probability exactly. Thus, we have in the special
case of a constant one-dimensional input a reference for later use (see also figure
4.3).

4.3.2.2 Gaussian factor approximation

The pseudo-inverse solution of section 4.3.1 has also a probabilistic interpretation
in linear Gaussian models (see also [Bishop et al. 2006]): In this setting, it can be
interpreted as the posterior mean estimate for data with a Gaussian distribution.
In particular, if (for the moment) we assume that the linear functionals y (¢, t)
are observed and that c¢'y(¢,—, ;) is Gaussian distributed around the mean of the
threshold # with a constant variance O'g, the posterior mean of the coefficients ¢
would be the same as the pseudo-inverse described above. However, this setting is
not directly applicable to the context of decoding a stimulus from spike times of
LIFs: In a linear Gaussian model, the observed functionals y (-, tx) would not be
allowed to depend on either ¢ or 6, but they do here. This is most easily explained
for a one-dimensional stimulus: We have that § = cy, and therefore y = 6/c. This
can be highly non-Gaussian even if the distribution of § and ¢ are Gaussian'. We
now derive a probabilistic decoding rule which is analogous to the pseudo-inverse

used in the noiseless case. Each observation defines a linear constraint:

!The coefficient vector ¢ represents the stimulus of interest and can therefore certainly not be
constant.
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0= CTY(tkf ) tk)

We can approximate the distribution of the threshold by a Gaussian term. Each
linear constraint defines one factor of the likelihood. That is, pg in equation (4.3)

is replaced with a Gaussian term of the form

2
-
1 1 (1o — ¢ y(tp—tx)
Do (y(tk*7tk)‘tk*71(tk_,tk)) ~ E €xp _5 ( 0_2 ) ) (415)
%

where 03 = 3% is the variance of the threshold distribution. Additionally, we
have replaced 6 by its mean pg, because we are not observing 6 but t;. FEach of
these factors peaks at pg = ¢! y(t;—,tx), therefore reflecting the linear constraint.
Replacing every term in the likelihood by its corresponding Gaussian approximation
and including one Gaussian factor for the prior p(c) ~ N (p,, X.), the posterior is

approximated by a Gaussian with the following moments:

-1
_ — - Ko
ey = (zc ! + 0y ? Zykyl—lc—> <zc luc + ;g ZYk:) (416)
k

k

—1
2, = (Ecl +o,° Zwﬂ) (4.17)
k

In (4.16) and (4.17), we have abbreviated y(t;-,t;) = yx. In addition to the
pseudo-inverse (equation (4.12)), this approximation takes the prior distribution
over stimuli into account, specified by the mean p, and covariance 3. of the coefhi-
cients c. This can be seen by setting Zc_l = 0, i. e. by using an uninformative prior.
Then the mean of this approximation p, is exactly the pseudo-inverse of equation
(4.12). Our approach of replacing likelihood factors by Gaussians is similar to the
extended Kalman filter, where the dynamics is linearized and therefore results in
a Gaussian update for the hidden states. However, it is known that this approxi-
mation can be biased [Julier & Uhlmann 1997, Minka 2001]. Similarly, in our case,
the mean of this approximation also does not converge to the true coefficient val-
ues for increasing number of observed spikes, as shown in figure 4.3. Fortunately,
under some simplifying assumptions, this bias can be calculated and therefore can

be significantly reduced as will be shown in the following section.
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4.3.2.3 Bias reduction of the Gaussian factor approximation

In this section we calculate the asymptotic length bias for the approximate posterior
mean of equation (4.16), assuming a correct orientation of the coefficient vector. By
fixing a stimulus, i.e. ¢, we define the average over all resulting interspike intervals
Elyk] := p,, and Covly] := 3,. We then find asymptotically for n > 1 and for a
fixed c:

S0 yevi — 070 (Sy + myny ) (4.18)
k
> yw — npy (4.19)
k

Note that we do not know the distribution of the y; and that this distribution
depends on the distribution of the threshold as well as the choice of basis functions.
However, the proportion of y in the direction of ¢ is on average of magnitude pg
and the variance along c on the other hand is ag. Orthogonal to ¢, we assume,
that y has zero mean and finite variance. This assumption is justified in the one-
dimensional case, because there is simply no orthogonal direction. Empirically, it

turns out to reduce the amount of bias substantially; see figure 4.6.

Therefore, we can rewrite

Ky = (Ey + uyu;)_l (uguy) where

Mo N T .
Ky = ”C”2C ¥, =UDU with

2
. % 2 2
U:((C;H cl) D:dlag(HCHQ,UCQ,...,U%)

2

2 are the
n

Here, ¢t denotes the basis for the space orthogonal to ¢ and ng, e, O
variances in the direction of the basis vectors of ¢ which are not important for the

calculation of the bias. We can now compute the asymptotic posterior mean:
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We obtain (4.21) from (4.20) by using the Woodbury matrix identity. By def-
inition of U, all directions orthogonal to ¢ cancel out and equation (4.22) follows.
Equation (4.22) shows that (asymptotically) the norm of the posterior mean approx-
imation is biased. The direction, however, is correct. Therefore, the Moore-Penrose
pseudo-inverse is unbiased only in the noiseless case when 03 = 0. In the noisy
case, however, we can divide the mean by its asymptotic bias in order to obtain an
unbiased estimator for the coefficients. To improve the estimator also in the regime
of few observations, we divide only the likelihood part Z—g > ¥ by the asymptotic

bias. Therefore we have for the bias-reduced posterior mean:

-1 2 2
A - _ _ Uy + 0p o
¢=p," = (20 '+, ZMY}I) (20 "pe + 791% : p Yk> . (4.23)
k k

This bias-reduced version of the Moore-Penrose inverse is also plotted in figure
4.3, which gives an improved estimate also for a small number of observations. The
presented bias-reduced Gaussian approximation can also be rewritten into an online
algorithm. The update equations to incorporate one additional observation yj in

the current posterior are given by

—1
pitt = b — Sbyi (oF +vi Shye) (v el — o) (4.24)

-1
=p = 2F - Shye (o + v Shve) vl Z). (4.25)

Together with equation 4.23 we thus obtain a bias-reduced on-line estimator
which allows one to recursively improve the stimulus reconstruction on a spike-by-

spike basis:
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We can now compare how well the different approximations perform compared
to the exact solution in the one-dimensional case (see section 4.3.2.1). In figure
4.3 the mean squared error is shown as function of the number of observed inter-
spike intervals. Plotted are the error of the MAP estimator (magenta), the exact
minimum mean squared error (blue), the Gaussian-Factor approximation, which
is the equivalent to the Moore-Penrose pseudo-inverse (red) and the bias reduced
Gaussian-Factor approximation (green). Importantly, the solution obtained by the
Moore-Penrose pseudo-inverse does not converge to the true solution, but has a
strong bias. This bias can lead to a solution which is actually worse than the prior
solution. Unfortunately, we do not have access to the exact posterior in general,
especially in higher dimensions. Therefore, we need approximation schemes which
are generally applicable in the general case, but which perform better than the

Moore-Penrose pseudo-inverse.

4.3.3 Two-dimensional case

In section 4.3.2.1, we investigated the accuracy of the different reconstruction
schemes in the one-dimensional case. If the stimulus is two- or higher-dimensional,
the observation of a single spike does not give us full rank information about the
stimulus. In the case of a two-dimensional stimulus, three types of scenarios can

occur after one interspike interval has been observed:

1. The observation of an interspike interval only leads to one important con-
straint on the coefficients of the basis functions, namely that the membrane
potential has to be at the threshold at the time of a spike. For example, if
the observed interspike interval is relatively small, solutions which cross the
threshold twice or hit the threshold from above, are very unlikely under the
prior distribution. Therefore, to stay below threshold, one can neglect con-
straints other than being at the threshold at the time of the observed spike,
see also figure 4.2. In this situation, all approximations should be almost

equally good as they all account for this type of constraint.

2. If the interspike interval is longer, we might get another important constraint
for the posterior, namely by requiring that the threshold is hit from below,

not from above. This possibility is ruled out by the Jacobian term of the
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Figure 4.3: Comparison of the mean squared error (MSE) for different reconstruc-
tion methods in the case of a one dimensional stimulus. The best possible estimate
is the true posterior mean (exact, blue). The error of the maximum a posteriori
(MAP) estimator (magenta) is nearly the same as the error of the exact posterior
mean and therefore cannot be distinguished from the exact one. The red line shows
the error of the Moore-Penrose pseudo-inverse and the horizontal line indicates its
asymptotic bias. The Moore-Penrose pseudo-inverse is called Gaussian Factor ap-
proximation (see section 4.3.2.2). The bias corrected (BC) version of the Gaussian
approximation (green) is explained later and here included for completeness (see
section 4.3.2.3). Parameters were: apior = 20, Bprior = 0.5, 09 = 2, p = 0.5
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pseudo-likelihood (4.32). Therefore the MAP estimate should be closer to
the true posterior mean than the Gaussian or pseudo-inverse approximation,
which does not satisfy this constraint. Here, crossing the threshold twice
before hitting it again from below is still very unlikely according to the prior
and therefore we do not get an effective restriction for the posterior by ruling

out all these solutions which cross the threshold twice.

3. If the interspike interval is sufficiently long, both types of violations of crossing
the threshold between spike times are probable according to the prior. Some
possible stimuli might exist for which the membrane potential would cross the
threshold twice before reaching the threshold again at the time of the observed
spike. These stimuli are neither ruled out by the pseudo-likelihood nor by the
Gaussian approximation. Therefore, both approximations can result in quite

poor estimates of the true posterior mean.

To illustrate the three scenarios, we simulated a single neuron with a stimulus
consisting of two basis functions, one sine and one cosine function. We obtained an
approximation to the true posterior after single observations by rejection sampling.
This true posterior reflects all of the constraints mentioned above. As can be seen

in figure 4.4, indeed three types of situations can be observed.

4.4 Alternative methods

In the following, we will discuss the relationship between our decoding rule and
previously proposed decoding algorithms. In particular, we compare our decoders
with an optimal linear decoder, as well as with a Maximum-a-Posteriori decoder
(MAP) based on the approximate likelihood.

4.4.1 Relationship to the linear decoder

Bialek et al. popularized a linear decoder for reconstructing the stimulus from a
spike train [Bialek et al. 1991, Rieke et al. 1997]. Here the spike train >, §(t — ¢;)
is convolved with an acausal linear filter K in order to obtain an estimate of the

stimulus:

S() =D K(t—t;) =KxY o(t—t;) (4.27)
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Figure 4.4: Log-likelihood approximations in two dimensions for three different
cases of observations and different approximations to the posterior. The first col-
umn is the true log-likelihood, the second is the approximate log-likelihood obtained
by equation (4.32) and the third column is the Gaussian Factor approximation. The
true log-likelihood is not available in higher dimensions and is plotted here for com-
parison and as a reference. It is obtained via rejection sampling. Point estimates
are: true posterior mean (e), MAP (<), Gaussian Factor mean (M) and the bias
reduced version (). For each point estimate a Gaussian prior with unit isotropic
covariance was chosen. Each subplot shows the log-likelihood (or its approxima-
tion) after one interspike interval is observed. The x and y axes indicate the two
dimensions of the stimulus coefficients. Each row corresponds to a different scenario
with different numbers of effective constraints for the posterior. If only one con-
straint is active (first row) the true posterior does not differ much from the other
approximations, and therefore the point estimates perform all almost equally well.
If two constraints are active (the threshold has to be reached from below and the
membrane potential has to be at the threshold at the time of a spike) the MAP
performs better than the Gaussian Factor approximation. If three constraints are
active, the MAP reflects two of the three constraints and therefore is slightly shifted.
As one observation is far away from the asymptotic regime, the Gaussian Factor
approximation and its bias reduced version do not differ much.
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The filter can be calculated by [Rieke et al. 1997]:

E[F(s) (w) Yp expliwty)]
E [|S0) explicts) ]

F(K)(w) = (4.28)

where F is the Fourier transform. The average is taken over the joint distribution of
stimuli and spike times, which can be done via sampling. Additionally, the stimuli
we used are composed by a superposition of sine and cosine functions with discrete
frequencies, which we write here as complex functions f;(t) = exp(iw;t). Hence,
the linear filter has also only non-vanishing power in those frequencies which are
present in the stimulus.

In the noiseless case, the Pseudo-Inverse decoder can be interpreted as a linear
filter, but one that depends on the particular spike train observed, as we will show
in the following. To this end, we replace the stimulus ensemble used to calculate
the linear filter with a single stimulus consisting of the stimulus reconstructed by
the Pseudo-Inverse. That is, we replace F(s)(wi) by >°; L; ;0; see equation (4.12).
If we further assume that there is no neuronal noise, we can neglect the expectation
in the definition of the linear filter (equation (4.28)), and define a linear filter K,

corresponding to the Pseudo-Inverse:

K, >on Lyt
c.?i= -
J Dk eXP(_thk) (4.29)
Y L5 explisty)

| 2o exp(—iw;jty)[?

Although this equivalence is only valid in the noiseless case, we can use equa-
tion (4.29) to illustrate the decoding performed by the Pseudo-Inverse. The linear
filters we obtain for this decoder is different for different spike trains, reflecting the
increased flexibility of the Pseudo-Inverse compared to the optimal linear predictor.

The different reconstructions and associated filters are illustrated in figure 4.5.

4.4.2 Maximum a posteriori and Laplace approximation

By inspecting the approximate likelihood (see equation (4.8)) we see that the model
is a generalized linear model. In this sense it is very similar to the soft-threshold
noise model [Paninski et al. 2007, Jolivet et al. 2006]. However, the threshold noise
there is Poisson-like, whereas here it is Gamma distributed. Further, the soft-
threshold likelihood does not account for the fact that the threshold has to be

reached from below. By ensuring that the Jacobian of the change of variables in
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Figure 4.5: Comparison of the linear decoder and the Gaussian factor approxi-
mation. Upper left: Linear filter obtained via equation (4.28). Upper right:
Average linear filter for the Pseudo-Inverse or Gaussian factor approximation, see
equation (4.29). Bottom: Example of a decoded stimulus for a given spike train
by two decoding schemes. The true stimulus is plotted in dashed black, the Gaus-
sian factor reconstruction in red and the linear decoder reconstruction is plotted in
blue. Shown are a window of the first 10 out of 100 spikes. The stimulus consisted
of 20 sine and 20 cosine functions with frequencies between 10 and 50 Hz. Spikes
are generated with a leaky integrator with time constant 7 = 25ms. The noise is
relatively low: 03 = 0.01, ug = 1. The squared errors for the trial here are: 3.27 for
the linear decoder and 2.11 for the pseudo-inverse.
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equation (4.3) is positive, however, we can take this constraint into account. One
approach for getting a possibly better point estimate is to find the maximum of the
approximate posterior density (MAP). To compute this posterior density, we have
to multiply equation (4.3) by the prior density (which is Gaussian in our case).
In this model, the MAP cannot be determined in closed form, but we may apply
gradient ascent in order to find it numerically. If both likelihood and prior are
log-concave, which is true for the approximate likelihood and the Gaussian prior
used here, the posterior is unimodal [Paninski et al. 2004]. Hence, finding the MAP
point is a convex problem. The gradient and the Hessian of the log posterior are
straightforward to compute. For the sake of clarity, we only write down the gradient

and the Hessian for one spike time #j, in the sum of equation (4.8):
(a—1) 1
ey (te, tr-1) B
-1
<dCTY(tk7tk1)> dVee y(tg, th—1)

Ve(k) = Vee y(te, tr1) Vee y(te, trh1)

dtg dtg
a—1 1
=== — — tr, tr._ 4.30
(CTy(%tk_l) @>y< e tet) (4.30)

+ (T (k) = y(thsten)))  (E(tk) = ¥(ths te1)

Here, f(t)) is the vector consisting of all basis functions evaluated at the spike time

tx. The Hessian is given by:

v?:(k) - —y(tk,tk71> < o1 2) Y(tlmtkfl)—r

(cTy(tr, th-1))
)

— (£(t) =yt i) (T () =yt ti1))) (F(te) = ¥(trti1) "
(4.31)

Applying a gradient ascent scheme yields a point estimate that respects the con-
straint that the membrane potential crosses the threshold from below. Nevertheless,
it does not take into account the sub-threshold condition between spike times: The
solution we get might correspond to a membrane potential that crosses the thresh-
old twice before it hits it again from below. Therefore this point estimate suffers

from the same source of bias as the Gaussian factor approximation.

This point estimate can be extended to give an approximation of the uncertainty

as well by expanding the posterior to second order around the MAP point. The
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posterior we are using here is the likelihood (equation (4.3)) times a prior term p(c):

n

p(cl{to, - .- tan}) = p(c)p(tolLiot,)) H (¥ (s te—1)tr—1, Lty 1)

de Ty (t, tr—1)
dtg

9

(4.32)

which itself is an approximation, see section 4.2.1. Unfortunately, computing the
normalization constant for this distribution with respect to c is not tractable. We
therefore approximate the posterior by a second-order expansion. In other words,
the posterior distribution is approximated by a multivariate Gaussian, where the
mean of the Gaussian is taken to be the MAP, and the covariance is found by

looking at the second-order derivatives of the log-posterior at the MAP:

Cyiap i= argmax p(c|D)

H™':= ~VZlogp(c|D)

1 1
Praplace = N(CMAPy H) = (QW)(M/Q)’HP/Q €xp (_2(0 - CMAP)TH_l(C - CMAP)> .

The MAP and the Hessian are calculated by equation (4.30) and (4.31).
This yields a Gaussian approximation known as the Laplace approx-
imation [Paninski et al. 2007, MacKay 2003, Cunningham et al. 2008,
Rasmussen & Williams 2006].

4.5 Simulations

In this section, we present the results of three different simulations which highlight
different aspects of neural population coding of time-varying stimuli with integrate
and fire neurons. As a general framework, we first specify a generative model
for the stimulus signal x(t) = (z1(¢),..., 2z, (t)) and then we specify a mapping
g : x(t) — I(t), which can be interpreted as the encoding strategy of the neural
population. The dimension of I(t) = (I1(t),...,In(t)) can be different from the
number of spatial stimulus components m. Each I;(t) represents one neuron within
a population of n neurons. Each spatial component x;(t),l = 1,...,m is represented
with a superposition of temporal basis functions fx(t),k = 1,..., M. In the first
simulation we have n = m = 1,M = 80. In the second and third simulation
n>m =1, M = 40. In the last simulation we study the encoding of an amplitude
and phase variable with n = m = 2, M = 40.



84 Chapter 4. Decoding with leaky integrate-and-fire neurons

4.5.1 One neuron, one component, many temporal dimensions

In order to evaluate the accuracy of our Gaussian Factor approximation to the
posterior when the stimulus has several temporal dimensions (not to be confused
with spatial dimensions m), we analyzed the decoding performance as a function
of increasing number of observations. To this end, we simulated a neuron with a
stimulus consisting of a random superposition of 40 sine and 40 cosine functions
with equally spaced frequencies between 10 and 50 Hz. In each trial the neuron
was simulated until 10* spikes were accumulated. We calculated the mean squared
error over 100 repetitions. Interspike intervals taken into account for reconstruction

were randomly selected from the whole time interval of the simulation.

In figure 4.6 we see that the simple Gaussian approximation (Gaussian Factor,
red, dashed) is indeed biased and the bias is larger for larger noise levels. In the
limit of no noise we expect a sharp drop off for the number of spikes equal to
the number of dimensions for the stimulus. This is weakened in the presence of
noise. For comparison, we also plot the asymptotic error of the Gaussian Factor
approximation as derived analytically in section 4.3.2.3. Additionally the mean
squared errors are plotted for the linear decoder (see section 4.4.1) and the bias-
reduced version of the Gaussian approximation. The mean squared error for the
MAP was obtained by gradient ascent, see section 4.4.2. In order to start with
a feasible solution, we initialized the optimizer with the true stimulus coefficients,

turning the obtained solution in an optimistic estimate of the actual MAP.

4.5.2 Many neurons, many temporal dimensions

In this simulation, a population of n = 30 neurons with different receptive fields
were all driven by the same stimulus, which consisted of a superposition of 20 sine
and 20 cosine functions x(t) = Ziozl Cop—1 Sinwyt + cop coswyt. The frequencies
{wi}72, were equally spaced between 1 and 100 Hz, and the coefficients {cj}?gl

were drawn independently from a Gaussian distribution with unit variance.

Incorporating a receptive field r(¢) for neuron i in our model can easily be done

by pre-filtering the stimulus with the corresponding receptive field:
L= (rlxx(t),...,r"*x(t)"

Because of the linearity of the convolution, the decoding algorithms stay the same

with the exception that the basis functions fi(s) are replaced by 7 « fx. The
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Figure 4.6: Mean squared error (MSE) as a function of the number of spikes used
for the different decoding schemes. The stimulus consists of a superpostion of 40
sine and 40 cosine functions of discrete frequencies equally spaced between 10 and
50 Hz. The time constant of the neuron used for decoding is 7 = 25 ms. The MSE
is calculated as the average over 100 repetitions for three different noise levels.
Horizontal lines indicate the asymptotic bias for the different noise levels. The
prior was an isotropic Gaussian with zero mean and covariance matrix 1 - 25.



86 Chapter 4. Decoding with leaky integrate-and-fire neurons

receptive fields 7¢(t) of each neuron were chosen to be a gamma tone:
r(t) = at" ! cos(27 fit + @) exp(—2mbt)

All parameters except the frequency f were fixed (¢ = 0.01,b = 0.01 [i],n =
2,¢ = 0). The frequencies of each receptive field were drawn from a uniform
distribution ranging between 1 and 100 Hz. The resulting receptive fields are shown
in figure 4.7(a). The stimulus and its reconstruction based on the spike times of this
population are shown in figure 4.7(b). The uncertainty is smaller within periods of
higher firing rates, yet to a smaller extent than in the next setting (see figure 4.9),

because here the receptive fields have a larger temporal extent.
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Figure 4.7: a: Receptive fields of the population, each is a gamma tone with a
different frequency, randomly drawn from a uniform distribution between 1 and
100 Hz. b: A time varying stimulus consisting of a superposition of 20 sine and 20
cosine functions is decoded from spike trains of a population of 30 neurons, each
having a noise level of g¢=0.05.

4.5.3 Heterogeneity across the population

Every new spike contributes new information about the stimulus, and leads to a
reduction in reconstruction error. However, if the resulting linear constraints are
correlated, the reduction can be arbitrarily small. This problem can become partic-
ularly severe for interspike intervals observed at different neurons. For example, if
the parameters of different neurons (e. g. the receptive fields) are the same, spikes of
different neurons tend to synchronize, even in the presence of threshold noise. This

leads to similar interspike intervals, and thus to highly correlated linear constraints.
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In this case, the information conveyed by different neurons can be redundant and
be of limited use for decoding.

It is plausible that efficient population codes should have heterogeneity in their
receptive field properties, to ensure that different properties of the stimulus are
sampled by the population. In our setting, diversity in receptive field parameters
would ensure that the constraints are less correlated and that the reconstruction
error does not saturate with increasing numbers of neurons. As a result, we expect
to get a better reconstruction if we have a larger diversity within the encoding
population.

In this simulation, we extend the previous example by systematically varying the
degree of similarity in the receptive field properties among the different neurons. To
construct heterogeneous populations with different degrees of diversity we sampled
the center frequencies of the receptive field (gamma tone) of each neuron from
a uniform distribution within a frequency interval centered at 50 Hz (the center
frequency of the stimulus used). The degree of diversity was then measured by the
length of this interval, from 0 to 25 Hz. Figure 4.8 shows the mean squared error as
a function of number of neurons as well as the diversity within the receptive fields.
From this plot one can see that the rate with which the error drops with increasing
number of neurons strongly depends on the degree of diversity. This result confirms

the general idea of redundancy reduction as an efficient coding strategy.

4.5.4 Encoding of amplitude and phase variables

In this simulation we consider the case of decoding a two-dimensional, time-varying
stimulus signal. In particular, we want to illustrate how the encoding of angular
variables can be addressed in this framework, as the neural representation of edge
orientations or motion directions are frequently studied in neuroscience. Therefore,
we use the nonlinear polar coordinate transform to obtain an amplitude and phase
variable x(t) = (a(t), ¢(t)) " as our stimulus signal. For simplicity, we consider the
case where this signal is encoded by two neurons with identical temporal receptive
field properties but with 90° difference in the preferred stimulus angle. Specifically,

the encoding model of the two neurons is given by
sin ()
cos p(t)

As temporal basis functions we picked 20 sine and cosine basis functions with

discrete equally spaced frequencies between 1 and 10 Hz. The corresponding coef-



88 Chapter 4. Decoding with leaky integrate-and-fire neurons

(e}
I
80.000

Diversity
=
w
I

16

19}

22|

25 .
1 2 4 6 8 16 32

#Neurons

Figure 4.8: Mean squared error as a function of the number of neurons and their
diversity within their receptive fields. Diversity is measured by the width of the
uniform distribution from which frequencies for the gamma tone receptive fields
were drawn. The average is taken over > 25 repetitions. All other parameters were
as in the previous section.
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Figure 4.9: Decoding of an angular variable. Two neurons were stimulated with
a(t)sin p(t) and a(t) cos p(t), respectively (two bottom panels). Each of those sig-
nals was represented by a superposition of 20 sine and 20 cosine functions. From
the reconstructed signal, the amplitude a(¢) and the phase angle ¢(t) were obtained
by taking the Euclidean norm and the arc-tangent, respectively. The reconstruc-
tion (dashed) of the original stimulus (solid) was obtained by using the Gaussian
approximation with bias correction. Confidence intervals, indicating one standard
deviation of the posterior variance, are plotted in shaded gray. The confidence inter-
vals of a(t) and ¢(t) were calculated by drawing 5000 samples from the approximate
posterior.

ficients ¢, were drawn independently from a Gaussian distribution with variance?

02 = 0.06. The neurons were simulated according to equation (4.1), with parame-
ters 7 = 10, ug = 1, ag = 0.01. As can be seen from figure 4.9, the two dimensional
signal (bottom two panels) can be reconstructed best in those time intervals which
contains spikes (vertical black lines). The reconstruction and uncertainty (obtained

via sampling) are transformed into phase and amplitude in the top two panels.

4.6 Discussion

How to read out spatio-temporal spike patterns generated by populations of neu-

rons is fundamental to the understanding of neural network computation. Most of

2The small variance was chosen such that the resulting signal varies roughly between —% and

[NIE]
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the previous studies on population coding were limited to the static case where only
spike counts for a preset time window are considered. For the encoding of contin-
uously varying signals, however, it is important to understand how the accuracy of
population codes is affected by the dynamics of neural spike generation.

Here, we studied dynamic population codes with noisy leaky integrate-and-
fire neurons. We presented an algorithm for Bayesian decoding similar to the one
presented in [Cunningham et al. 2008]. In addition, we derived an approximate
algorithm which yields a simple spike-by-spike update rule for recursively improving
the stimulus reconstruction whenever a new spike is observed.

The decoding rules can also be applied for decoding the spike trains of popula-
tions of neurons, not just single neurons. Importantly, we do not have to assume
that the neurons are uncoupled, i.e. conditionally independent given the stimu-
lus. In particular, as we assume the encoding model to be known, we would also
know the parameters describing the couplings between neurons. Then, the influ-
ence of one spike of a neuron on the membrane potential of any other neuron is
just a known, given input and can be subtracted. Therefore, the same decoding
framework can also be used for decoding coupled neurons.

The decoding rule is nonlinear and sensitive to the relative latencies between
each spike and its predecessor in the population. However, it is not optimal as it
does not use the information that the membrane potential stays below threshold
between spikes. To incorporate this kind of knowledge one has to integrate the coef-
ficient distribution over the linear halfspace confined by the threshold similar to the
method described in [Paninski et al. 2004, Paninski et al. 2007] but with the addi-
tional complication that, the distribution is not Gaussian. Therefore, the optimal
Bayesian decoding rule would be computationally much more expensive.

The main goal of this work was to derive a simple decoding rule that facilitates
the analysis of neural encoding strategies such as efficient coding, unsupervised
learning, or active sampling. Bayesian approaches are particularly useful for these
problems as they do not yield a point estimate only but also aim at estimating
the posterior uncertainty over stimuli. Having access to this uncertainty allows
one to optimize receptive field properties or other encoding parameters in order
to minimize the reconstruction error or to maximize the mutual information be-
tween stimulus and neural population response. In this way it becomes possible
to extend unsupervised learning models such as independent component analysis
[Bell & Sejnowski 1995] or sparse coding [Olshausen & Field 1996] to the spatio-
temporal domain with spiking neural representations. This seems highly desirable
as comparisons between theoretically derived models and experimental measure-

ments would thus become feasible.
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Furthermore, animals do not receive the sensory input in a passive way but
actively tune their sensory organs to acquire the most useful data, for example by
changing gaze or by head movements. Such active sampling strategies are related
to the theory of optimal design or active learning [Lewi et al. 2008], where the
next measurement is selected in order to minimize the current uncertainty about
the signal of interest. Such active sampling strategies give rise to ‘saliency maps’,
which encode the expected information gain from any particular stimulus.

Maximizing the mutual information between stimulus and neural response is
equivalent to minimizing the posterior entropy. Because of the Gaussian approx-
imation, this can be done in our model by performing a gradient descent on the
log-determinant of the posterior covariance matrix. The gradient can be calculated
from equation (4.17). However, the approximated posterior covariance derived in
this chapter might also be subject to a systematic deviation from the exact co-
variance matrix. Therefore, an important extension of the present work would be
to correct for a bias in the approximate covariance estimate, too. In general the
approximations considered in this chapter usually tend to over-estimate the true
underlying uncertainty, as they wrongly do not cut-off regions in the parameter
space.

In this work, we chose to represent the stimulus by a superposition of a finite
set of basis functions as this has some practical advantages. Alternatively, it is
also possible to start from a full Gaussian process as stimulus model and then
derive a discretization for numerical evaluation. Analogous to the mean vector and
covariance matrix of a finite-dimensional normal distribution, a Gaussian process
prior over the stimulus is specified by the mean and covariance function of the
process. For numerical evaluation it is necessary to choose a grid of time points
yielding a finite dimensional normal distribution again.

Note that for inference, integrals on the grid points have to be evaluated numer-
ically and therefore a fine time resolution for the s; should be chosen. Therefore,
the computational load of decoding a discretized Gaussian process is considerably
higher. For practical reasons, we can restrict the inference procedure to a time
window around the current spikes, provided that the covariance function falls off
quickly. In the non-leaky case with no receptive fields this is the same setting as in
[Cunningham et al. 2008].

The extension to the Gaussian process setting is conceptually important as
it allows one to replace the somewhat artificial threshold noise model by mem-
brane potential noise. The dynamics can then be described by a stochas-
tic differential equation. Although the likelihood is much harder to calculate
[Paninski et al. 2004, Paninski et al. 2007], it still has the renewal property and
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therefore a similar approximation scheme might be applicable. However, it has the
further complication, that the obtained likelihood is only for a given threshold and
therefore the threshold has to be marginalized. We hope that more studies will
be devoted to the problem of decoding time-varying stimuli from populations of
spiking neurons in the future. In particular, it will be crucial to achieve a good
trade-off between the basic dynamics of neural spike generation, the accuracy of

posterior estimates and the computational complexity of the decoding algorithm.



Joint modeling of stimuli and

population responses

5.1 Introduction

In chapter 3 we have modeled the encoding distribution p(r|s) of a neural response r
given the stimulus s was presented. In order to reverse this relationship to obtain the
decoding distribution p(s|r) we had to assume a prior distribution over stimuli p(s).
However, describing the statistics of natural stimuli is a nontrivial task. In general,
both distributions could be calculated if we had access to the joint distributions
of responses and stimuli, that is if we knew how likely a pair of stimuli and a

population response is to be observed.

Not only modeling the response or the stimulus but the distribution of both
variables results in much more degrees of possible variation. To estimate such
high-dimensional distributions requires collecting massive amounts of data. Re-
cent technical advances in systems neuroscience allow us to monitor the activ-
ity of increasingly large neural ensembles simultaneously (e.g. [Buzsaki 2004,
Shlens et al. 2009]). To understand how such ensembles process sensory informa-
tion and perform the complex computations underlying successful behavior also the

use of suitable statistical models for data analysis are needed. What degree of pre-
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cision should be incorportated into such a model involves a trade-off between the
question of interest and mathematical tractability.

Maximum entropy modeling has been successfully applied in a number of dis-
ciplines such as physics, computer vision and natural language processing. The
reasoning behind this principle is that if a probability distribution is underde-
termined by the data one should choose from all distributions which are con-
sistent with the data the one, which has maximum entropy. Recently, several
groups have used binary maximum entropy models incorporating pairwise corre-
lations to model neural activity in large populations of neurons on short time
scales [Schneidman et al. 2006, Shlens et al. 2006, Tang et al. 2008, Yu et al. 2008].
These models have two important features: (1) Since they only require measuring
the mean activity of individual neurons and correlations in pairs of neurons, they can
be estimated from moderate amounts of data. (2) They seem to capture the essen-
tial structure of neural population activity at these timescales even in networks of up
to a hundred neurons [Shlens et al. 2009]. Although the generality of these findings
have been subject to debate [Bethge & Berens 2008, Roudi et al. 2009b], pairwise
maximum-entropy and related models [Macke et al. 2009] are an important tool for
the description of neural population activity [Shlens et al. 2008, Roudi et al. 2009a].

To find features to which a neuron is sensitive spike-triggered average and
spike-triggered covariance are commonly used techniques [Schwartz et al. 2002,
Pillow & Simoncelli 2006]. They correspond to fitting a Gaussian distribution
to the spike-triggered ensemble. If one has access to multi-neuron recordings, a
straightforward extension of this approach is to fit a different Gaussian distribu-
tion to each binary population pattern. In statistics, the corresponding model
is known as the location model [Olkin & Tate 1961, Lauritzen & Wermuth 1989,
Krzanowski 1993]. To estimate this model, one has to observe sufficient amounts of
data for each population pattern. As the number of possible binary patterns grows
exponentially with the number of neurons, it is desirable to include regularization
constraints in order to make parameter estimation tractable.

Here, we extend the framework of pairwise maximum entropy modeling to a joint
model for binary and continuous variables. This allows us to analyze the functional
connection structure in a neural population at the same time as its relationship with
further continuous signals of interest. In particular, this approach makes it possible
to include a stimulus as a continuous variable into the framework of maximum-
entropy modeling. In this way, we can study the stimulus dependence of binary
neural population activity in a regularized framework in a rigorous way. In particu-
lar, we can use it to extract non-linear features in the stimulus that a population of

neurons is sensitive to, while taking the binary nature of spike trains into account.
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We discuss the relationship of the obtained features with classical approaches such
as spike-triggered average (STA) and spike-triggered covariance (STC). In addition,
we show how the model can be used to perform spike-by-spike decoding and yields
a natural spike-train metric [Victor & Purpura 1997, Ahmadian et al. 2009]. We

start with a derivation of the model and a discussion of its features.

5.2 Model formulation

In this section we derive the maximum-entropy model for joint continuous and
binary data with second-order constraints and describe its basic properties. We
write continuous variables x and binary variables b. Having observed the joint
mean p and joint covariance C, we want to find a distribution py which achieves
the maximal entropy under all distributions with these observed moments. Since
we model continuous and binary variables jointly, we define entropy to be a mixed

discrete entropy and differential entropy:
Hlp) = =3 [ plx. b) logp(x, b)dx
b
Formally, we require pyy to satisfy the following constraints:

Ex]=p,  E[b]=p,
Elxx'] = Cyy + popr;  E[bb'] = Cypy+ sy (5.1)

]E[XbT] =Cyu + “x“; E[be} = Cyp, + l"b/'l’;cr =Cy + l‘x“l—)r

where the expectations are taken over pyg. Cuz, Cip and Gy are blocks in the
observed covariance matrix corresponding to the respective subsets of variables.
This problem can be solved analytically using the Lagrange formalism, which leads

to a maximum entropy distribution of Boltzmann type:

1
PME(X7b|Aa)\) = mexp (Q (Xab’A) )\))
T
1 X X X
Q(x,b|AA) = = A + A7 (5.2)
2\ p b b

Z(A ) = Z/exp (Q (x,b|A, N)) dx,
b

where A and A are chosen such that the resulting distribution fulfills the constraints

in equation (5.1), as we discuss below. Before we compute marginal and conditional



96 Chapter 5. Joint modeling of stimuli and population responses

distributions in this model, we explore its basic properties. First, we note that the

joint distribution can be factorized in the following way:
Pue(X, b|A, A) = pue(x|b, A, A)pue(blA, X) (5.3)
The conditional density pyg(x|b, A, A) is a Normal distribution, given by:

1
sl A ) ocexp ( 5x Ao xT (A + Aub) ) (5.4)

oc/\/(x|ux|b,2) ,with
Pojp = 2 (Az + Agpb) %= (_Am)_l

Here, A, App, Ay, A are the blocks in A which correspond to x and b, respec-
tively. While the mean of this Normal distribution dependent on b, the covari-
ance matrix is independent of the specific binary state. The marginal probability

pue(b|A, A) is given by:

Z (A, XN)pus(blA, )
1 1
~ exp <2bTAbbb +b )\b) / exp (2XTAM;X +xT (A Awbb)> dx
%

_1 1 -
= 20 |- Al exp (507 (Aw+ Al (~An) A
- 1 -
+bT (N + AL (—Aue) A + A (—Aw) 1>\x>

To evaluate the maximum entropy distribution, we need to compute the partition

function, which follows from the previous equation by summing over b:

Z(AA) = (27)7 |~ Aol ZGXP( (Abb'i‘A;b(_Aa:m)_l A:Jcb) b
, (5.6)
+bT (N + AL (—Au) A + g (FAwe) )\w)

Next, we compute the marginal distribution with respect to x. From equation (5.5)
and (5.4), we find that pyr(x|A, A) is a mixture of Gaussians, where each Gaussian
of equation (5.4) is weighted by the corresponding pyg(b|A, X). While all mixture
components have the same covariance, the different weighting terms affect each

component’s influence on the marginal covariance of x. Finally, we also compute
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the conditional density pye(b|x, A, A), which is given by:

1 1
Pras(blx, A, A) = — exp (2bTAbbb +b" (N + Abmx))
1 . (5.7)
Z'=> exp <b Apb+b' (X, + Abxx))
- 2

Note, that the distribution of the binary variables given the continuous variables is

again of Boltzmann type.

Parameter fitting To find suitable parameters for given data, we employ a max-
imum likelihood approach [Ackley et al. 1985, MacKay 2003], where we find the

optimal parameters via gradient descent:

1A, ) = log p({x™, bMWY AN

=3 Qx",bM|A,\) — Nlog Z (A, \) (5.8)

B T T

X X X X
= Val=N < > — < >

b b b b

L data PME
X X
b b

L data PME

To calculate the moments over the model distribution py we make use of the

above factorization:
(uxT) = (G b)), = (e ™+ (pappiasy),

(xb7) = (T, = (0xT) ) = (),

Hence, the only average we actually need to evaluate numerically is the one

(5.9)

over the binary variables. Unfortunately, we cannot directly set the parameters
for the continuous part, as they depend on the ones for the binary part. However,
since the above equations can be evaluated analytically, the difficult part is finding
the parameters for the binary variables. In particular, if the number of binary
variables is large, calculating the partition function can become infeasible. To
some extent, this can be remedied by the use of specialized Monte-Carlo algorithms
[Broderick et al. 2007].
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5.2.1 An illustrative example

In order to gain intuition into the properties of the model, we illustrate it in a
simple one-dimensional case. From equation (5.4) for the conditional mean of the
continuous variables, we expect the distance between the conditional means p,,
to increase with increasing correlation between continuous and binary variables
increases. We see that this is indeed the case: While the conditional Gaussians
p(x|b = 1) and p(x|b = 0) are identical if x and b are uncorrelated (figure 5.1A), a
correlation between x and b shifts them away from the unconditional mean (figure
5.1B). Also, the weight assigned to each of the two Gaussians can be changed.
While in figures 5.1A and 5.1B b has a symmetric mean of 0.5, a non-symmetric
mean leads to an asymmetry in the weighting of each Gaussian illustrated in figure
5.1c.

a b c
0.12 0.12 0.12
0.08 0.08 0.08
0.04 0.04 0.04
0.00 . L L /. 0.00 k . L L k ! 0.00
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2-10 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Figure 5.1: Illustration of different parameter settings. a:independent binary and
continuous variables, b: correlations (0.4) between variables, c: changing mean of
the binary variables (here: 0.7) corresponds to changing weightings of the Gaus-
sians, correlations are 0.4. Blue lines indicate p(z|b = 1) and green ones p(z|b = 0).

5.2.2 Comparison with other models for the joint modeling of bi-
nary and continous data

There are two models in the literature which model the joint distribution of con-
tinuous and binary variables, which we will list in the following and compare them

to the model derived in this chapter.

Location = model The location model (LM)  [Olkin & Tate 1961,
Lauritzen & Wermuth 1989, Krzanowski 1993] also uses the same factoriza-
tion as above p(x,b) = p(x|b)p(b). However, the distribution for the binary
variables p(b) is not of Boltzmann type but a general multinomial distribution
and therefore has more degrees of freedom. The conditional distribution p(x|b)
is assumed to be Gaussian with moments (uy, Xy,), which can both depend on
the conditional state b. Thus to fit the LM usually requires much more data to

estimate the moments for every possible binary state. The location model can also
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be seen as a maximum entropy model in the sense, that it is the distribution with
maximal entropy under all distribution with the conditional moments. As fitting
this model in its general form is prone to overfitting, various ad hoc constraints

have been proposed; see [Krzanowski 1993] for details.

Partially dichotomized Gaussian model Another simple possibility to ob-
tain a joint distribution of continuous and binary variables is to take multivariate
(latent) Gaussian distribution for all variables and then dichotomize those compo-
nents which should represent the binary variables. Thus, a binary variable b; is
set to 1 if the underlying Gaussian variables is greater than 0 and it is set to 0
if the Gaussian variable is smaller than 0. This model is known as the partially
dichotomized Gaussian (PDG) [Cox & Wermuth 1999]. Importantly the marginal
distribution over the continuous variables is always Gaussian and not a mixture as
in our model. The reason for this is that all marginals of a Gaussian distribution

are again Gaussian.

5.3 Applications

5.3.1 Spike triggering and feature extraction

Spike triggering is a common technique in order to find features which a single
neuron is sensitive to. The presented model can be seen as an extension in the
following sense.

Suppose that we have observed samples (x”,b") " from a population responding

to a stimulus. The spike triggered average (STA) for a neuron 4 is then defined as

STA; = ij:byl = E[xb,]rs, (5.10)
S by . . . .
where 7; = &% = p(b; = 1) is the firing rate of the i-th neuron or fraction of

ones within the sample. Note, that the moment E[xb;] is one of the constraints we
require for the maximum entropy model and therefore the STA is included in the
model.

In addition, the model has also similarities to spike-triggered covariance (STC)
[Schwartz et al. 2002, Pillow & Simoncelli 2006]. STC denotes the distribution or,
more precisely, the covariance of the stimuli that evoked a spiking response. Usually,
this covariance is then compared to the total covariance over the entire stimulus
distribution. In the joint maximum-entropy model, we have access to a similar

distribution, namely the conditional distribution p(x|b; = 1), which is a compact
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Figure 5.2: Illustration of the binary encoding with box-type tuning curves. a:
shows the marginal distribution over stimuli. The true underlying stimulus dis-
tribution is a uniform distribution over the interval (—0.5,0.5) and is plotted in
shaded gray. The mixture of Gaussian approximation of the MaxEnt model is
plotted in black. Each neuron has a tuning-curve, consisting of a superposition of
box-functions. b shows the tuning-curve of the first neuron. This is equivalent to
the conditional distribution, when conditioning on the first bit, which indicates if
the stimulus is in the right part of the interval. The tuning-curve is a superposition
of 5 box-functions. The true tuning curve is plotted in shaded gray whereas the
MaxEnt approximation is plotted in black. ¢ shows the tuning curve of neuron with
index 2. d: Covariance between continuous and binary variables as a function of the
index of the binary variables. This is the same as the STA for each neuron (see also
equation (5.10)). e shows the conditional distribution, when conditioning on both
variables (0,2) to be one. This corresponds to the product of the tuning-curves.

description of the spike-triggered distribution. Note that p(x|b; = 1) can be highly
non-Gaussian as all neurons j # i are marginalized out — this is why the current
model is an extension to spike triggering. Additionally, we can also trigger or
condition not on a single neuron but on any response pattern Bgs of a sub-population
S. The resulting p(x|Bs) with Bs = {b : b; = B;Vi € S} is then also a mixture of
Gaussians with 2" components, where n is the number of unspecified neurons j ¢ S.
As illustrated above (see figure 5.1B), correlations between neurons and stimuli lead
to a separation of the individual Gaussians. Hence, stimulus correlations of other

neurons j # i in the distribution p(x, b;;|b; = 1) would have the same effect on the
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spike-triggered distribution of neuron ¢. Correlations within this distribution also
imply, that there are correlations between neuron j and neuron ¢. Thus, stimulus as
well as noise correlations cause deviations of the conditional p(x|Bs) from a single
Gaussian. Therefore, the full conditional distribution p(x|Bs) in general contain
more information about the features which trigger this sub-population to evoke the
specified response pattern, than the conditional mean, i.e. the STA.

We demonstrate the capabilities of this approach by considering the following
encoding. As stimulus, we consider one continuous real valued variable that is
drawn uniformly from the interval [—0.5,0.5]. It is mapped to a binary population

response in the following way. Each neuron ¢ has a square-wave tuning function:
bi(x) = O (sin (27(i + 1)x)),

where © is the Heaviside function. In this way, the response of a neuron is set
to 1 if its tuning-function is positive and 0 otherwise. The first (index 0) neuron
distinguishes the left and the right part of the entire interval. The (i + 1)st neuron
distinguishes subsequently left from right in the sub-intervals of the ¢th neuron.
That is, the response of the second neuron is always 1, if the stimulus is in the right
part of the intervals [—0.5,0] and [0, 0.5]. These tuning curves can also be thought
of as a mapping into a non-linear feature space in which the neuron acts linear
again. Although the data-generation process is not contained in our model class we
were able to extract the tuning curves as shown in figure 5.2. Note, that for this
example neither the STA nor STC analysis alone would provide any insight into the
feature selectivity of the neurons, in particular for the neurons which have multi-
modal tuning curves (the ones with higher indexes in the above example). However,
the tuning curves could be reconstructed with any kind of density estimation, given
the STA.

5.3.2 Spike-by-spike decoding

Since we have a simple expression for the conditional distribution p(x|b, A, \) (see
equation (5.4)), we can use the model to analyze the decoding performance of
a neural population. To illustrate this, we sampled spike trains from two leaky
integrate-and-fire neurons for 1 second and discretized the resulting spike trains
into 5 bins of 200 ms length each. Each trial, we used a constant two dimensional
stimulus, which was drawn from two independent Gamma, distributions with shape
parameter o = 3 and scale parameter 5 = 0.3. For each LIF neuron, this two dimen-
sional stimulus was then projected onto the one-dimensional subspace spanned by

its receptive field and used as input current. Hence, there are 10 binary variables,
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a b C

2.0
1.5
1.0

0.5

0.0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

Figure 5.3: Illustration of a spike-by-spike decoding scheme. The MaxEnt model
was fit to data from two deterministic integrate-and-fire models. The MaxEnt model
can then be used for decoding spikes generated by the two independent deterministic
models. The two green arrows correspond the weights of a two-pixel receptive field
for each of the two neurons. The 2 dimensional stimulus was drawn from two
independent Gamma distributions. The resulting spike-trains were discretized in
5 time-bins, each 200 ms long. A spike-train to a particular stimulus (x' cross) is
decoded. In a) the marginal distribution of the continuous variables is shown. In b)
the posterior, when conditioning on the first temporal half of the response to that
stimulus is shown. Finally in ¢) the conditional distribution, when conditioning on
the full observed binary pattern is plotted.

5 for each spike-train of the neurons and 2 continuous variables for the stimulus
to be modeled. We draw 5 - 10 samples, calculated the second order moments of
the joint stimulus and response vectors and fitted our maximum entropy model to
these moments. The obtained distribution is shown in figure 5.3. In 5.3A, we show
the marginal distribution of the stimuli, which is a mixture of 2!° Gaussians. The
receptive fields of the two neurons are indicated by green arrows. To illustrate the
decoding process, we sampled a stimulus and corresponding response r, from which
we try to reconstruct the stimulus. In 5.3B, we show the conditional distribution
when conditioning on the first half of the response. Finally in 5.3C, the complete
posterior is shown when conditioned on the full response. From a-c, the posterior is
more and more concentrated around the true stimulus. Although there is no neural
noise in the encoding model, the reconstruction is not perfect. This is due to the

regularization properties of the maximum entropy approach.

5.3.3 Stimulus dependence of firing patterns

While previous studies on the structure of neuronal firing patterns in the retina have
compared how well second-order maximum entropy models fit the empirically ob-
served distributions under different stimulation conditions [Schneidman et al. 2006,

Shlens et al. 2006], the stimulus has never been explicitly taken into account into
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the model. In the proposed framework, we have access to p(b|x), so we can ex-
plicitly study how the pattern distribution of a neural population depends on the
stimulus. We illustrate this by continuing the example of figure 5.3. First, we
show how the individual firing probabilities depend on z (figure 5.4A). Note, that
although the encoding process for the previous example was noiseless, that is, for
every given stimulus there is only one response pattern, the conditional distribution
p(b|x) is not a delta-function, but dispersed around the expected response. This is
due to the second order approximation to the encoding model. Further, as it turns
out, that a spike in the next bin after a spike is very unlikely under the model,
which captures the property of the leaky integrator. Also, we compare how p(b|x)

changes for different values of x. This is illustrated in figure 5.4B.
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Figure 5.4: Tllustration of the conditional probability p(b|x) for the example in
figure 5.3. In 5.4A, for every binary pattern the corresponding probability is plotted
for the given stimulus from figure 5.3, where the brightness of each square indicates
its probability. For the given stimulus the actual response pattern used for figure 5.3
is marked with a circle. Each pattern b is split into two halves by the contributions
of the two neurons (32 possible patterns for each neuron) and response patterns
of the first neuron are shown on the x-axis, while response patterns of the second
neuron on the y-axis. In 5.4B we plotted for each pattern b its probability under
the two conditional distributions p(b|x') and p(b|x*) against each other with x =
(0.85,0.72) and x* = (1.5, 1.5).

5.3.4 A spike train metric

Oftentimes, it is desirable to measure distances between spike trains
[Victor & Purpura 1997]. One problem, however, is that not every spike might
be of equal importance. That is, if a spike train differs only in one spike, it
might nevertheless represent a completely different stimulus. Therefore, Ahmadian
[Ahmadian et al. 2009] suggested to measure the distance between spike trains as

the difference of stimuli when reconstructed based on the one or the other spike train
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seems. If the population is noisy, we want to measure the difference of reconstructed
stimuli on average. To this end, we need access to the posterior distribution, when
conditioning on a particular spike train or binary pattern. Using the maximum

entropy model, we can define the following spike-metric:
d(b',b%) = Dict. [pras (X[ [P (x[b?)]
1 T
=3 ((“:pbl - Hx|b2) Agy (Hx|b1 - Hx|b2)>

Here, Dy, denotes the Kullback-Leibler divergence between the posterior densities.

(5.11)

Equation 5.11 is symmetric in b, however, in order to get a symmetric expression for
other types of posterior distributions, the Jensen-Shannon divergence might be used
instead. As an example we consider the induced metrics for the encoding model
of figure 5.2. The metric induced by the square-wave tuning functions of section
5.3.1 is relatively simple. When conditioning on a particular population response,
the conditional distribution p(x|b) is always a Gaussian with approximately the
width of the smallest wavelength. Flipping a neuron’s response within this pattern
corresponds to shifting the conditional distribution. Suppose we have observed a
population response consisting of only ones. This results in a Gaussian posterior
distribution with mean in the middle of the rightmost interval (0.5 — 1g5;,0.5).
Now flipping the response of the “low-frequency” neuron, that is the one shown
in figure 5.2B, shifts the mean of the posterior to the middle of the sub-interval
(—ﬁ, 0). Whereas flipping the “high-frequency” neuron, the one which indicates
left or right within the smallest possible sub-interval, corresponds to shifting the
mean just by the amount of this smallest interval to the left. Flipping the response
of single neurons within this population can result in posterior distribution which
look quite different in terms of the Kullback-Leibler divergence. In particular, there
is an ordering in terms of the frequency of the neurons with respect to the proposed

metric.

5.4 Discussion

We have presented a maximum-entropy model based on the joint second order
statistics of continuous valued variables and binary neural responses. This allows
us to extend the maximum-entropy approach [Schneidman et al. 2006] for analyz-
ing neural data to incorporate other variables of interest such as continuous valued
stimuli. Alternatively, additional neurophysiological signals such as local field po-
tentials [Montemurro et al. 2008] can be taken into account to study their relation

with the joint firing patterns of local neural ensembles. We have demonstrated
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four applications of this approach: (1) It allows us to extract the features a (sub-
)population of neurons is sensitive to, (2) we can use it for spike-by-spike decoding,
(3) we can assess the impact of stimuli on the distribution of population patterns
and (4) it yields a natural spike-train metric.

We have shown that the joint maximum-entropy model can be learned in a con-
vex fashion, although high-dimensional binary patterns might require the use of effi-
cient sampling techniques. Because of the maximum-entropy approach the resulting
distribution is well regularized and does not require any ad-hoc restrictions or reg-
ularity assumptions as have been proposed for related models [Krzanowski 1993].
Analogous to a Boltzmann machine with hidden variables, it is possible to fur-
ther add hidden binary nodes to the model. This allows us to take higher-order
correlations into account as well, although we stay essentially in the second-order
framework. Fortunately, the learning scheme for fitting the modified model to ob-
served data remains almost unchanged: The only difference is that the moments
have to be averaged over the non-observed binary variables as well. In this way, the
model can also be used as a clustering algorithm if we marginalize over all binary
variables. The resulting mixture of Gaussian model will consist of 2V components,
where N is the number of hidden binary variables. Unfortunately, convexity cannot
be guaranteed if the model contains hidden nodes. In a similar fashion, we could
also add hidden continuous variables, for example to model unobserved common in-
puts. In contrast to hidden binary nodes, this does not lead to an increased model
complexity: averaging over hidden continuous variables corresponds to integrating
out each Gaussian within the mixture, which results in another Gaussian. Also
the restriction that all covariance matrices in the mixture need to be the same still

holds, because each Gaussian is integrated in the same way.






Conclusion

In this thesis, we have presented several methods for dealing with certain aspects
of neural coding. This includes the encoding, the decoding and joint modeling
of spikes and stimuli. In each of these subtasks we have consistently followed a
Bayesian approach which explicitly models not only the uncertainty over the data
but also about parameters which specify the generating model. Specifically, we
have presented methods for Bayesian system identification in chapter 3 and for de-
coding of stimuli from spikes in chapter 4. Finally, in chapter 5 we presented a
model based on the maximum entropy principle to estimate the joint probability
of spikes and stimuli. In practice, exact computation of the involved distributions
is often intractable. Therefore, we had to develop approximation schemes to over-
come this obstacle. As the mapping from stimuli to spikes or vice versa is likely to
be complex, we think a Bayesian treatment is of key importance as it provides a
principled way of controlling the complexity of a model in situations where the pa-
rameters are underconstrained by the data. In addition, a quantitative description
of he uncertainty is crucial for rigorous model comparison. Therefore, we believe
that the Bayesian approach to neural coding developed in this thesis improves the

foundations for a quantitative analysis of the neural code.






Appendix

A.1 Expectation Propagation with Gaussians

In the following we will explain the essentials for approximating posterior distribu-

tions with a Gaussian distribution via the Expectation Propagation algorithm.

Suppose the joint distribution of a parameter vector of interest w and n inde-

pendent observations D = {x1,...,x,} factors as:
n
p(D,w) = p(w) [ ] p(ailw), (A.1)
i=1

where p(w) is a chosen prior distribution. Further we assume, that each of the
likelihood factors depends on a linear projection of the parameters w only. That is

a likelihood factor can be written as

p(ilw) = p(xilp] w). (A.2)

Hence, each likelihood factor is intrinsically one-dimensional. Next, we choose an

(un-normalized) Gaussian #; with which we would like to approximate each of those
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factors:
p(ailp] w) ~ exp <_;7Ti (%TW)Q +b; ( IW)) (A.3)
~ exp <—;7rin (6] ) w o+ biw” (%)) —hTw) (Ad)

Plugging this into equation (A.1), we obtain for the approximation Q(w|D) to the

posterior:
Q(w|D) = exp (—;wT (Z mi ] ) Wt w' (z m)) pw)  (A5)

The prior distribution p(w) is allowed to have two different forms. It can either
be a Gaussian in which case the inverse prior covariance has to be added to the
outer products of the features 1,. Another option is, that the prior distribution also
factorizes into intrinsic one-dimensional terms. This would be the case for example,

if a Laplace prior is used.
p(w) x Hexp (—7|wg])
k

= l;Ipp (¢kTW)

(A.6)
with
_ _ T
pp(u) =exp(|ul), = (0,---,0,\%,0,---)

In order to obtain the desired Gaussian approximation to the true posterior, the
problem is now to find the parameters m;, b;. Once these parameters are found, we
get the desired approximation via equation (A.1). If the posterior consists of a single
factor, then the desired parameters 71, b are easily obtained via moment matching.
The moments usually have to be calculated by a numerical one-dimensional inte-
gration along the direction v;. To incorporate a new factor, we fix the parameters
of the first one and try to find suitable by, w9 for the second factor. More precisely,

we want to minimize the Kullback-Leibler distance:

Dy, [QUwl {22 [Q(wl{ar Dplaa ] w)] (A7)
— Do [Qwl{an}) exp (~ 572 (7 w)” + ba(w w) ) Q(wl{ar ) paalp] w)
(A.8)

As both @ distributions are the same and all other factors vary only along one



A.1. Expectation Propagation with Gaussians 111

dimension 1,, the only degree of freedom we have are the moments in that direction
(see [Seeger 2005]). Technical speaking, we can split the integration of the Kullback-
Leibler distance into two parts. One over the direction 15 and one in the orthogonal
direction. Now, for notational simplicity, we denote w;w =: ug. The moments of
the Gaussian side in equation (A.8) can easily be computed by looking at the

exponent. Let p1, 01 be the moments of the ) distribution in the direction of 1),:

1 1

- E(UZ —m)? - §7T2U% + boug (A.9)
1 1 13

= ——u} (—|—7T2> + ug (Ml—l-bz) - A (A.10)
2 o1 o1 201

Thus the moments o, o9 are:

1 —1
o9 = ( + 71'2) (A.ll)
01
Ho = 09 <'ul + bg) (A.l?)
01

Now, these moments have to be matched with the numerically obtained ones p5, o
of Q(uz|{x1})p(z2|uz) by adjusting ma, be. This can be done, by choosing the pa-

rameters according to:

1 1
Ty=— — — (A.13)
1
by = 4 ( + m) - (A.14)
01 01

In this fashion we can incorporate one likelihood factor after another. This pro-
cedure is known as assumed density filtering (see [Minka 2001]). The obtained
approximation to the posterior depends on the order in which we incorporate
the likelihood factors. The idea of Expectation Propagation is not to stop af-
ter one such sweep over the factors. EP rather tries to fulfill the consistency
[Opper & Winther 2005]:

Q(W|{$17 <o ’xn})
esp (< (6T w)’ b (w7 w)

)p(wiw w) EQ(wl{z,. .. 2,})  (A15)

That is, we replace one of the approximating factors with the original one and
require the moments not to change. To achieve this, one usually select an arbitrary
factor 4 and divide it out of the current approximation. The resulting distribution

is called the cavity distribution Q\'(w). If we call the current moments of the
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approximation p, 33, the moments in the direction of 1, are given by:

" (17

Thus, we have for the cavity distribution:

Q(ib;erxlv s 7$n})
exp (—%m <¢3—w)2 + b; (1/J1TW>>

1 )21
= exp (— w + —mu 2 — bzui> (A.19)
2 ; 2

QY% w) =

(A.18)

Where we have abbreviated u; := ¢Z-Tw. By using the same algebra as before, we

have for the moments of the cavity distribution:

o) = (1 - m) B (A.20)

o

ul =l (2 - ) (A21)
Now, we are in the same situation as before, because we want to update the param-
eters m;, b; in order to match the moments of the approximation to the ones of the
cavity distribution times the original factor. These moments have to be calculated
numerically, which can efficiently be computed as the involved integrals are only

one-dimensional. We call these numerical moments pf, o

EQui (wiyp(afus) [l = 4i (A.22)
A.23)

~
—~

Equ(uop(aiun) | (v = 1)) = o}

The moments have to match those of the complete approximation which gives:

1 -1
!
ol = ( v +7r“eW> (A.24)
\i
1 4
i (L) (2 ) o
1
=>mt == - — (A.26)
0’ J\’

\é
1 .
b?ew — M; (\Z + F;ew) _ LZ\Z (A27)
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Now we can plug in the definition of the moments of the cavity distribution to get

an update for the parameters:

Ay = 7" — o (A.28)
Ab; = b — b (A.29)

Together with equation (A.5) this results in a rank one update of the full distribution
over the complete parameter vector w. More precisely we have a rank one update

of the covariance matrix of the approximating Gaussian as well as an update of the

mean:
A .
Sinew _ zold _ ’l,bl'l,b;r T
new old Abl B :ulATrl '
P =t =
1+ 0;Am;

Where we have used the Woodbury identity to obtain equation (A.30). To imple-
ment these equations in a numerically stable manner, one usually represents the

covariance by it Cholesky decomposition:
¥ =LL', (A.31)

where L is a lower triangular matrix. To calculate the moments for the Laplace
factors, we used a technique by [Seeger 2008] as numerical integration of Laplace

factors can unstable.

Marginal likelihood The marginal Likelihood for the hyperparameters 6 is de-
fined by:

L(6,Model) = P(D|0, Model)

_ /p(p,ww, Model)dw (A.32)

= /P(w|0,Mode1) [ P(xilw, 6, Model)dw
=1

When considering only the parameters m;, b;, EP gives us an un-normalized approx-

imation to the likelihood factors #;(w). As long as one is interested in the posterior
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only, this does not matter, because:

P(w|D) P(w|0,Model) [Ti—; t;(w)C;  P(wl6, Model) [Ti-, t:(w)
~ [ P(w|0,Model) [T, t:(w)C;dw [ P(w]|6, Model) [T, t;(w)dw
(A.33)

However, if we want to approximate the marginal likelihood we need the C; explic-

itly:

L(6, Model) /P w|6, Model) HC’t (w]0, Model)dw (A.34)
1=1

The idea is to not only match the moments but the Oth moments as well. We
require the expectation of P(x;|w) and Z;(w) under Q\/(w) to be the same for all

i, from which we obtain:

Zi = EQ\«; [P(a:z\w)} = EQ\«; [C,t](w)]

%{_/
=2

For the ZZ' we have:

</M>m.

\/ﬁ/exp ——mu? 4 biug) exp (— o
. (uz — (m+ U\_f)_ (b: +U\_Z-1M\i)>2
/exp -3 e du;
(7 +o37") (A.36)
exp (gt 5 (mr o) (o))

B 27 (m; + U\_il) ( 1 (U\ib? + 2M\ibi - WiM%Z))
= ——F—€xXp *5

\/2mon mio\; + 1

1
N \/ 27OV

Therefore, we have for the marginal likelihood:
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log C; = log Z; — log Zi

" 1
= log L(0, Model) = log/exp (Z log C; — 57T¢WT’1/11-’![);|—W + bi@b;rw) dw

1
—ZlogC +(27r)2 ]2p|2 exp( 2 up)
i=1

where

-1

(5}

One can also calculate gradients of the marginal likelihood with respect to hyper

(A.37)

parameters (see [Seeger 2005]).

A.2 Bayes-optimal point estimate for average log-loss

In the following we consider a simple example of a coin flip to illustrate the potential
benefit of an optimized point estimate for the expected loss after having observed
the data. Let z be Bernoulli distributed with unkown parameter 6 € [0,1]. If we
observe N data points z; € {0,1} with k¥ ones and assume a uniform prior over

6 ~ U|0, 1], we can compute the posterior distribution for 6:
0‘{531} H 911 . l —x;
7= / [To% (1 —6)' = do,
07

which is a Beta-distribution with parameters o = k + 1,5 = N + 1. The posterior

mean is given by p = % We define the average log-loss to be:

loss(6, 0) = Z —p(x|0) log p(z|0)

z=0,1
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Then, we can calculate the expected average log-loss after having observed the data

{:L‘l}

P = [ [ —p(a]6) log p(10) | p(6]{:})do
= [ |~ 10g(0)6 — log(1 — 6)(1 — 6)] p(8]{x:})d6
) = (1= p)log(1 - )

F can now be minimized with respect to the point-estimate 0. The derivative with

respect to 0 is given by:

dF 1-—
" 1
do 0 1-06
=0=yu

Therefore the posterior mean optimizes the expected prediction performance as
measured by the average log-loss. We can also calculate the difference in expected
performance between the posterior mean and the MAP, which is given by Oy ,p = %

The difference in expected performance is given by:

F(Oyar) — F(p) = —plog(Ouar) — (1 — p)og(1 — Oriar) 4 plog(p)(1 — p) log(1 — p)

Iz L—p
_ 10( )+1_ lo ()
plog (g ) T —mlee {75

The difference in expected log-loss is the Kullback-Leibler divergence between

the distribution corresponding to the optimized estimate (the posterior mean) and
the distribution induced by the MAP estimate. As the Kullback-Leibler divergence
is always nonnegative, this shows that the loss incurred by the MAP estimate is
greater than the optimized estimate, irrespective of the data (k) that was observed.
In the extreme cases, i.e. kK = 0 or k = N, the difference becomes infinite. This sim-
ple example shows that, in principle, an extra gain in performance can be achieved
by optimizing the parameters for the expected performance over the posterior dis-

tribution.
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