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Zusammenfassung

Die Restaurierung digitaler Bilder ist aufgrund ihrer vielfältigen Anwendung sowohl in der
wissenschaftlichen Bildgebung, als auch im Bereich der alltäglichen Fotografie ein Schlüs-
selbereich der Signal- und Bildverarbeitung. Ein wichtiger Teilbereich ist der Bereich der
Bilddekonvolution, welcher aufgrund seiner theoretischen und praktischen Implikationen
zunehmend Interesse seitens der Wissenschaft als auch der Industrie erfährt. Das Ziel
der klassischen oder nicht blinden Dekonvolution ist die Wiederherstellung eines scharfen
Bildes, unter der Annahme, dass der Unschärfeprozess bekannt ist. Gegenstand dieser Ar-
beit ist das sehr viel schwierigere aber auch realistischere Problem der blinden Bilddekonvo-
lution, bei welchem, im Gegensatz zur klassischen Dekonvolution, keine genaue Kenntnis
über den Unschärfevorgang vorliegt. Das Orginalbild muss allein aus seinen unscharfen und
möglicherweise verrauschten Aufnahmen rekonstruiert werden. Das Ziel der vorliegenden
Arbeit ist es, den Stand der Wissenschaft und Technik im Bereich der blinden Dekonvo-
lution voranzutreiben und dadurch das Spektrum möglicher Anwendungen im Bereich der
Alltagsfotografie, aber auch auf dem Gebiet der wissenschaftlichen Bildgebung, bspw. in
der Astronomie oder Mikroskopie, zu erweitern.

Zu diesem Zweck erarbeiten wir ein mathematisch solides und physikalisch wohl mo-
tiviertes Framework, welches die Beschreibung und effiziente Berechnung von ortsabhän-
giger Unschärfe ermöglicht. Wir leiten unser sogenanntes Efficient Filter Flow Frame-
work als diskrete Approximation der inkohärenten Abbildungsgleichung her und entwick-
eln Formeln zur effizienten Implementierung mittels einer zweidimensionalen Verallge-
meinerung der Kurzzeit-Fourier-Transformation. Unser Framework verallgemeinert das
gemeinhin verwendete Model, welches annimmt, dass die Unschärfe über das ganze Bild
hinweg gleich ist, und erweitert damit den Anwendungsbereich blinder Dekonvolutions-
methoden erheblich.

In einer Reihe anspruchsvoller Anwendungen mit realen Daten stellen wir die Gültigkeit
und vielseitige Anwendbarkeit unseres Ansatzes unter Beweis. Inbesondere wird sich seine
Nützlichkeit bei der Rekonstruktion eines scharfen Bildes aus einer Sequenz von Kurzzeitauf-
nahmen zeigen, deren Qualität durch atmosphärische Luftturbulenzen beeinträchtigt wurde.
Um Nutzen aus der großen Menge an verfügbaren Bilddaten in der astronomischen Bildge-
bung ziehen zu können, entwickeln wir einen Algorithmus zur blinden Dekonvolution,
welcher die hohen Rechenanforderungen bisheriger Methoden umgeht und insbesondere
nicht in der Anzahl verwendbarer Bilder eingeschränkt ist. Darüberhinaus erweitern wir das
bildgebende Modell dahingehend, dass es nicht nur ortsabhängige Unschärfe, sondern auch
den Effekt der Saturierung und Superresolution beschreibt.

Ein weiteres schwieriges Problem, welches den Wert unseres Frameworks unterstreicht,

i



ii ZUSAMMENFASSUNG

ist die Korrektur verwackelter Bilder. Wir erweitern unser Modell, um den spezifischen
Eigenschaften von Kameraverwacklung Rechnung zu tragen, und entwickeln einen leis-
tungsfähigen Algorithmus, welcher bisherige Methoden sowohl in der Qualität der rekon-
struierten Bilder als auch Rechenzeit übertrifft.

Zum Schluss stellen wir einen neuartigen blinden Dekonvolutionsalgorithmus zur Ver-
besserung der Auflösung dreidimensionaler Elektronendichten vor, wir zeigen auf, wie die
blinde Dekonvolution auch im interessanten Feld der Cryo-Elektronenmikroskopie einge-
setzt werden kann. Ergebnisse für sowohl simulierte als auch experimentelle Daten zeigen,
dass unser Ansatz als flexibles und generisches Hilfsmittel zur molekularen Strukturbestim-
mung beiträgt.



Summary

Digital image restoration is a key area in signal and image processing due to its many ap-
plications in both scientific imaging as well as everyday photography. An important sub-
discipline, that is receiving an ever increasing interest from the academic as well the in-
dustrial world, is the field of image deconvolution, which enjoys this interest due to both
its theoretical and practical implications. While classical or non-blind image deconvolu-
tion aims at restoring a sharp latent image assuming the blur is known, this thesis addresses
the much harder but also more realistic problem of blind image deconvolution, where the
degradation is unknown. An estimate of the original image must be obtained using only its
blurred and possibly noise corrupted observations. The aim of this thesis is to advance the
state-of-the-art in the field of blind deconvolution and thereby to broaden the applicability
of blind deconvolution techniques in everyday photography but also in scientific imaging
such as astronomical and microscopic imaging.

To this end, we develop a mathematically sound and physically well-motivated frame-
work, which allows to express and efficiently compute spatially-varying blur. We derive
our “Efficient Filter Flow” framework as a discrete approximation of the incoherent imag-
ing equation and devise expressions for its efficient implementation using the short-time
Fourier transform. By extending the commonly employed invariant blur model, our frame-
work substantially broadens the application range of blind deconvolution methods.

In a number of challenging real-world applications we demonstrate both the validity
and versatility of our approach. In particular, we utilise our model for reconstructing a sharp
latent image from a sequence of short-exposure images degraded by atmospheric turbulence.
To capitalise on the abundance of data available in astronomical imaging, we develop a
blind deconvolution algorithm, which bypasses the computational burden of current blind
deconvolution methods that are restricted in the number of observations they can process.
In addition, we further extend the imaging model to not only include the effect of spatially-
varying blur but also to account for the effects of saturation and super-resolution.

Another challenging application which proves the usefulness of our framework, is the
problem of removing camera shake from a single image. We extend our model to incorporate
the particularities of camera shake and develop an efficient algorithm that outperforms state-
of-the-art methods in both restoration quality and computation time.

Finally, by presenting a novel blind deconvolution algorithm for improving the resolu-
tion of three-dimensional electron density maps, we promote the use of blind deconvolution
in the interesting field of cryo-electron microscopy. Results on both simulated and experi-
mental density maps demonstrate that our approach serves as a flexible and generic tool that
facilitates structure elucidation of macromolecular assemblies.
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Chapter 1

Introduction

In 2009, Williard S. Boyle and George E. Smith received the Nobel Prize for Physics for an
invention that revolutionised our perception of our environment and moreover of the entire
universe: “an imaging semiconductor circuit – the Charged Coupled Device (CCD) sensor”.
Through a photosensitive semiconductor a CCD sensor allows a localised record of photons
resulting in digital images with increased spatial, spectral and dynamic resolution when
compared to traditional photo imaging techniques. Both the possibility to record single
photons as well to integrate light extend the capabilities of the human visual system, which
proved to have tremendous implications on our view of the world. For instance, the CCD
sensor allows deeper views in the universe and thus in our past and has become an essential
implement in astronomical observation for answering some of the most profound questions
of mankind. But not only for elucidating the origin of our mere existence but also for life as
such, the CCD sensor has become indispensable as a key instrument in microscopic imaging
and life sciences in general.

However, since its invention in 1969, the CCD sensor has not only become an integral
part of scientific imaging, but also of our everyday life. The advent of digital photo sensors
heralded the dawn of today’s information society and lastingly affected all areas of social
life and culture: communication, education, entertainment and art, etc. Digital images and
videos are ubiquitous and have become indisputably the main carrier of information over the
last few decades. Undoubtedly, this development is also due to the availability of ever faster
computer technology which has given rise to the establishment of new fields of research
such as digital image processing, computer vision, and computational photography.

The importance of image processing techniques to enhance the quality of digital images
was stressed by George E. Smith in his speech at the Nobel Banquet in the Stockholm City
Hall1 by noticing that “no device is ever perfect”. Sources of image degradation can be
manifold, ranging from manufacturing defects of the CCD sensor, readout noise to blur-
ring stemming from imperfect optics or detrimental imaging conditions, such as unwanted
camera motion or atmospheric turbulence, at the time of recording.

Digital image restoration as a key area of signal and image processing aims at computa-
tionally enhancing the quality of images by undoing the adverse effects of image degradation

1Available from: http://www.nobelprize.org/nobel_prizes/physics/laureates/
2009/smith-speech.html

1

 http://www.nobelprize.org/nobel_prizes/physics/laureates/2009/smith-speech.html
 http://www.nobelprize.org/nobel_prizes/physics/laureates/2009/smith-speech.html
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such as noise and blur and plays an ever important role in both scientific imaging and every-
day photography. An important sub-discipline is the field of image deconvolution, that has
recently attracted much attention due to both its theoretical and practical implications. Clas-
sical image deconvolution aims at restoring a sharp latent image from its noisy and blurry
observation assuming the blur is known.

Probably the most prominent example underpinning the importance of image decon-
volution is the optical aberration problem of the Hubble Space Telescope (Hubble Space
Telescope (HST)) at the beginning of its mission in 1990. Since the primary mirror was
ground to the wrong shape, the resolution obtained was drastically lower than expected, as
revealed by the significant spread in images of point-like stars. This issue triggered consider-
able work in the field and led to the development of novel and effective techniques for image
deconvolution. Since the aberrations of the HST optical system could be well characterised,
image quality could be restored by classical deconvolution techniques to a large extent. For
a detailed overview of this work, we refer to White (1992) and Adorf et al. (1995).

Since then, image deconvolution has proven to be a powerful tool also in many other
imaging applications ranging from medical imaging to remote sensing, microscopy and ev-
eryday photography, thus receiving an ever increasing interest from the academic as well
the industrial world.

While classical or non-blind image deconvolution aim at restoring a sharp latent im-
age assuming the blur is known, this thesis addresses the much harder but also more re-
alistic problem of blind image deconvolution, where the degradation is unknown. Blind
Deconvolution (BD) is a severely ill-posed problem because there exists an infinite number
of solutions and small perturbations in the data lead to large distortions in the estimated
latent image. As such, BD involves many challenging problems, including modelling the
image formation process, formulating tractable priors that constrain the space of admissible
solutions by the incorporation of additional information and prior knowledge, as well as
devising efficient inference and optimisation methods. This renders it an intriguing but also
intricate task, which has recently seen much attention as well as progress in both the image
and signal processing and also the computer vision and graphics community. The overall
aim of this thesis is to advance the state-of-the-art in the field of BD and thereby broaden
the applicability of BD techniques in everyday photography and also in scientific imaging
such as astronomical and microscopic imaging.

1.1 Contributions

Our contributions presented in this thesis are twofold. First, based on the fundamental laws
of physical optics, we develop a novel and generic framework that allows us to express and
efficiently compute spatially varying blur. We derive our EFF framework as a discrete ap-
proximation of the incoherent imaging equation that describes the image formation process
of a linear optical system under incoherent illumination. We discuss its numerical properties
and demonstrate in a number of important real-world applications both the validity as well
as the versatility of our framework. Second, we develop novel solutions to challenging BD
problems in both scientific imaging and everyday photography, that surpass current state-of-
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the-art methods. To this end, we elaborate various imaging models to incorporate the effects
of spatially varying blur, super-resolution, saturation, and camera shake and derive novel
inference methods that are able to recover a sharp latent image given blurred and noise
corrupted image data only. In particular, only generic information about the degradation
process is available without explicit knowledge of the underlying blurring parameters.

1.2 Overview - How to Read This Text
Besides the introduction and conclusion, this thesis can be structured in two parts: the first
part comprises Chapter 2, and lays the theoretical foundations for the remainder of this
thesis by providing a mathematically sound and physically well-motivated derivation of the
EFF framework. The second part consists of Chapters 3, 4, and 5. In a number of interest-
ing real-world applications, we present novel approaches to challenging BD problems, that
surpass current state-of-the-art methods.

Although each chapter of the second part makes use of the findings that are developed
in the first part, efforts have been made to make each chapter self-contained. Hence, readers
who are primarily interested in the algorithmic and application-oriented contributions of this
thesis, may skip Chapter 2.

1.3 Synopsis - About This Text
The first part of this thesis provides a detailed derivation of a novel approximation of the
incoherent imaging equation called EFF, which offers increased expressiveness and enables
the efficient computation of blur that smoothly varies across the image plane. It extends
the well-known and commonly employed invariant convolutional model without sacrificing
its numerical benefits: by employing the short-time Fourier transform, the forward model
of the EFF framework can be computed almost as efficient as an ordinary convolution. As
an approximation of the incoherent imaging equation, it features linearity in both the PSF
and latent image parameters. Furthermore, we derive expressions for transposing the linear
model, which allow efficient computation of the gradients with respect to the PSF and latent
image parameters, respectively. As a consequence, gradient based numerical optimisation
methods (quasi-Newton methods) can be employed, which facilitate and speed up inference.

In the second part of this thesis, we develop various BD algorithms for applications
ranging from astronomical imaging to computational photography and cryo electron mi-
croscopy:

• In Chapter 3, we present a novel approach to the multi-frame BD problem, which
is able to restore a potentially higher resolved latent image given a sequence of blur
and noise corrupted images. By assuming that the underlying scene is static and
by performing deconvolution on a frame per frame basis, it gradually improves the
reconstructed latent image. In other words, the more images have been processed the
better the restoration result. We show how to incorporate the effects of saturation and
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super-resolution, which allows the restoration of a higher resolved image provided that
enough observations are available. We demonstrate the capabilities of our approach
for both invariant and spatially-varying blur on simulated data as well as a number of
real-world astronomical imaging examples comprising stellar and planetary imaging
data.

• In Chapter 4, we address the problem of removing camera shake from a single blurry
image. We extend the EFF framework to account for the particularities of camera
shake and develop a fast single image blind deconvolution algorithm that performs im-
age restoration in two steps: 1) it analyses the image by estimating the latent camera
motion via an efficient multi-hierarchical inference scheme; 2) it restores the underly-
ing sharp image by a non-blind deconvolution with the spatially-varying blur kernel
that corresponds to the camera motion estimated in the first step. To compensate for
the imperfections of the estimated PSF and to counter noise in the blurry photo, we
employ a regularisation term that promotes natural image statistics and effectively
guides the deconvolution process. In a comprehensive comparison on a number of
real-world examples we demonstrate the extended capabilities and improved perfor-
mance of our approach.

• In Chapter 5, we derive a novel algorithm for improving the resolution of intermediate-
and low-resolution three-dimensional density maps of macromolecular assemblies
and large bio-molecular complexes obtained by cryo-electron microscopy. Our ap-
proach models the low-resolution density map as a blurred and noise corrupted version
of a latent high-resolution density map which we seek to recover by BD. By assuming
non-negativity and i.i.d. Gaussian noise we derive multiplicative updates that alternat-
ingly and iteratively estimate the unknown PSF as well as the latent high-resolution
density map and allow the incorporation of additional prior terms while preserving
the non-negativity of the recovered densities. A hierarchical Bayes model that allows
the estimation of latent model parameters renders our algorithm fully parameter-free.
Results on both simulated and experimental density maps demonstrate the improved
performance and versatility of our approach when compared with state-of-the-art so-
lutions.

In a final conclusion in Chapter 6, we summarise the contributions of this thesis, discuss
a few open problems and interesting future directions, and outline some ongoing projects
that are directly related to the work presented in this thesis.

1.4 Supplementary Material
Throughout this thesis we included links to supplementary and multimedia content in the
form of hyperlinked Quick Response (QR) codes. The QR codes can be scanned with any
mobile device such as smart phones or tablet PCs with an appropriate software application
installed. For MacOS and Android based devices we recommend the free app “Scan”2.

2Available from: http://www.qrcodecity.com

http://www.qrcodecity.com
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Given a working internet connection, the scanned QR codes will direct to supplementary
video files hosted by youtube.com. Reading the thesis as a pdf on screen, the links can
be readily accessed by clicking on the QR code images as they are hyperlinked to the cor-
responding files. All videos are encoded with a H.264 codec which is fairly standard on
most modern systems and hence shouldn’t necessitate the installation of any additional soft-
ware. All links have been tested on a PC, Apple iphone4 and a Android based Samsung
GalaxyTab 10.1. However, if a link seems broken, please don’t hesitate to contact the author
of this thesis at michael.hirsch@tuebingen.mpg.de.

mailto:michael.hirsch@tuebingen.mpg.de
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Chapter 2

Incoherent Imaging Equation and
Efficient Numerical Approximations

An integral part in tackling any inference problem in science or engineering is to develop a
good understanding of the underlying physics, with the aim of finding a faithful mathemat-
ical model or representation of the data generation process.

To this end, this chapter discusses the theoretical foundations of the remainder of this
thesis. Starting from first principles, we derive the incoherent imaging equation, which
describes the image formation process of most common optical systems, in Section 2.1.
This will highlight the implicit assumptions that underly the work presented in this thesis.
At the same time, it serves as the starting point for a comprehensive discussion of various
imaging models for both invariant and space-variant point spread functions (PSFs) which we
present in Section 2.2. In this context, we propose a novel approximation of the incoherent
imaging equation for modelling spatially varying blur, which generalises the well-known
invariant convolution model and comprises it as a special case. By discussing the benefits
and shortcomings of existing approaches, we put our work into perspective. Finally, in
Section 2.3, we detail an efficient implementation of our proposed imaging model, which
allows rapid computation and facilitates both image and PSF estimation, both of which is
needed for Blind Deconvolution (BD). A section on related work and a short summary will
conclude this chapter.

2.1 Introduction

In this first introductory section we revise the basics of classical optics with the aim of
deriving the incoherent imaging equation at the end of this section. The incoherent imaging
equation is of utter importance as it describes the image formation process of almost all
optical systems that are considered in the field of image processing. It is widely used and
does also serve as the starting point of the exposition to follow. By doing so, we will learn
about its underlying physical assumptions, understand its range of validity, and not least set
the basis for the material covered in this thesis.

7



8 CHAPTER 2. INCOHERENT IMAGING & EFFICIENT FILTER FLOW

2.1.1 Scalar Theory of Light

Light is electromagnetic radiation and as such governed by Maxwell’s equations – a set of
partial differential equations that form the foundation of classical electrodynamics includ-
ing classical optics. Although electric and magnetic fields are vectorial in nature, in many
situations1 their behaviour can be well described by a single scalar wave equation

(∇2 − n2

c2

∂2

∂t2
) Φ(r, t) = 0, (2.1)

where Φ(r, t) is any of the scalar field components of the electric or magnetic field and
n denotes the refractive index of the medium, within which the light is propagating. In
particular, the scalar theory disregards any polarisation effects, i.e. any coupling between
the electric and magnetic fields. Restricting ourselves to monochromatic light, the solution
to (2.1) are planar waves of the form

Φ(r, t) = <{A(r) exp(−i(2πνt+ kr))} , (2.2)

where A(r) denotes the wave amplitude at position r. The wave number k, frequency ν and
wavelength λ are related via the dispersion relation

k =
2πνn

c
=

2π

λ
.

Since (2.1) is a linear partial differential equation, any linear combination of its solutions
yields another solution to Equation (2.1). The single property of linearity has major implica-
tions for the mathematical treatment of physical systems as it allows us to analyse a system
by studying its response to a single point stimulus. Its effect to a complex input signal can
then be obtained by considering the input signal being composed of point stimuli and adding
up their known responses accordingly.

2.1.2 Linear Systems Theory

A system, defined as a mapping S from an input function Φ to an output function Ψ, is said
to be linear if for any input functions Φ1(r, t) and Φ2(r, t) and any complex constant α, it
obeys the following two properties (Hecht, 2003):

1. Homogeneity: S{αΦ1(r, t)} = αS{Φ1(r, t)} (2.3)

2. Additivity: S{Φ1(r, t) + Φ2(r, t)} = S{Φ1(r, t)}+ S{Φ2(r, t)}. (2.4)

1More precisely, the scalar theory of electromagnetism is valid in linear, isotropic, homogeneous and non-
dispersive dielectric media such as free space or a lens with constant refractive index, where all components
of the electric and magnetic field behave identically (Goodman, 2005, page 35 ff).
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Often, both properties are combined into a single condition known as the superposition
principle. The virtue of linear systems is invoked by the sifting property (Goodman, 2005,
page 20ff) of the delta function which enables the decomposition of an arbitrary signal
Φ(r, t) into

Φ(r, t) =

∞∫∫
−∞

Φ(ρ, τ) δ(ρ− r; τ − t) dρ dτ. (2.5)

This allows us to express the response of a system S in terms of the system’s response to a
point stimulus, since

S{Φ(r, t)} =

∞∫∫
−∞

Φ(ρ, τ) S{δ(ρ− r; τ − t)}︸ ︷︷ ︸
≡h(ρ,τ ;r,t)

dρ dτ, (2.6)

where we introduced the function h(ρ, τ ; r, t), which is called the impulse response of the
system. Hence, we can fully determine and describe a system by studying its response to
point sources located throughout the input domain and over time. By assuming stationarity
in time and/or space, i.e. that the system’s response does not change over time and/or is
independent of the position of the point source, Equation (2.6) can be further simplified.
The study of linear systems and their properties is subject of Linear Systems Theory, which
plays a key role in many technical application domains including image processing.

2.1.3 Image Formation Under Incoherent Illumination
We are now able to mathematically describe the image formation process underlying many
imaging applications including microscopical and astronomical imaging as well as photog-
raphy. For ease of exposition, we consider monochromatic light and stick to the scalar theory
thereby neglecting any polarisation effects, a valid and accurate assumption provided that
the diffracting structures are large compared with the wavelength of light.

As depicted in Figure 2.1, let Σ1 denote the object plane with coordinates (ξ, η) and Σ2

the image plane described by coordinates (u, v). We assume a linear optical system S (e.g.
a lens as shown in Figure 2.1) that is fully characterised by its impulse response or PSF
h(u, v; ξ, η): Σ1 × Σ2 → R. According to the superposition integral (2.6), an object with
a light distribution Φ(ξ, η; t): Σ1 × R → R is mapped via the optical system S to a light
distribution Ψ(u, v; t): Σ2 × R→ R in the image plane via

Ψ(u, v; t) =

∫∫
Σ1

h(u, v; ξ, η) Φ(ξ, η; t) dξ dη. (2.7)

For simplicity, we assume stationarity of the optical system S, i.e. S 6= S(t) thereby ne-
glecting any temporal changes. In this model, the image is formed as the combination of the
system’s impulse responses, where each point in the object being imaged, is itself considered
as a point source of light.
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Figure 2.1: Image formation process of a linear optical system

For ease of exposition and without loss of generality, we will from here on restrict our-
selves to one spatial dimension. The generalisation to two or more dimensions is straight-
forward and doesn’t present any significantly new. Hence, Equation (2.7) becomes

Ψ(u, t) =

∫
Σ1

h(u; ξ) Φ(ξ, t) dξ. (2.8)

As discussed above, Equation (2.8) is valid for any scalar component of the electromagnetic
field. However, optical detectors such as CCD sensors usually record intensities, i.e. the
square of the field amplitude. Since the integration time is much longer than a single period
of oscillation, we must average over time to obtain the measured quantities〈

Ψ(u, t)Ψ̄(u, t)
〉

=

∫∫
Σ1

h(u; ξ) h̄(u; ξ′)
〈
Φ(ξ, t) Φ̄(ξ′, t)

〉
dξ dξ′, (2.9)

where 〈.〉 denotes temporal averaging. Here, we must take the coherence properties of the
light into account and distinguish between coherent and incoherent illumination:

• In the case of coherent illumination , we cannot simplify Equation (2.9) any further
without making any additional assumptions. The square of the complex field can lead
to cancellations or other non-linear interference effects.

• In the case of incoherent illumination, the spatial correlation between any two light
rays emitted from the scene is assumed to be negligible. Hence, the time average in
(2.9) will only contribute to the integral for ξ = ξ′:〈

Φ(ξ, t) Φ̄(ξ′, t)
〉

= |Φ(ξ)|2 δ(ξ − ξ′) ≡ x(ξ) δ(ξ − ξ′) (2.10)
(2.11)
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Plugging expression (2.11) into Equation (2.9) yields the incohorent imaging equation

y(u) =

∫
Σ1

f(u; ξ) x(ξ) dξ, (2.12)

where we introduced y(u) and f(u; ξ) for 〈|Ψ(u, t)|2〉 and |h(u; ξ)|2, respectively. Both x(ξ)
and y(u) correspond to intensities and y(u) is the image of the observed object under the
system S. The impulse response f(u; ξ) is called the point spread function of the imaging
system S as it corresponds to the image of a point light source.

Although we had to make a number of assumptions to derive the incohorent imag-
ing equation (2.12), it has been found to provide an accurate description for most typical
imaging systems including astronomical, microscopical imaging and photography (Barnes,
1971).

2.2 Point Spread Function & Imaging Models
The notion of a point spread function (PSF) is invaluable in the description of optical
systems and directly owes itself to the linearity of the underlying physical equations. As
mentioned above, the PSF of an imaging system describes its response to a point source or
point object. This can be readily seen by replacing x(ξ) in (2.12) with δ(ξ − ξ′), which
describes an ideal point source located at ξ′ in the object plane:

y(u) =

∫
Σ1

f(u; ξ) δ(ξ − ξ′) dξ = f(u; ξ′). (2.13)

The image y(u) is fully determined by f(u; ξ′) alone. Only in an ideal, i.e. aberration-free
imaging system, where

f(u; ξ′) = δ(u− ξ′). (2.14)

each point of the object plane is mapped to a single point in the image plane, yielding a
sharp image of the static scene being captured. However, in reality an ideal system does
not exist and a point in the object plane will be spread or blurred according to the pattern
determined by the point spread function.

Typically, this pattern will change with the position of the point source across the object
plane, leading to a spatially varying PSF. Although a spatial variation of the PSF of any real
optical system is the rule rather than an exception, it is only rarely discussed in the literature.
Most often, it is argued that any imaging problem that exhibits a spatial variation of the PSF
can be reduced to the invariant case by splitting it into multiple sub-problems, in each of
which the assumption of an invariant PSF does hold. In contrast to this rather pragmatic
viewpoint, we are aiming at a more formal treatment in the following section. This leads us
to an improved mathematical description of spatially varying PSFs, which goes beyond the
commonly employed approximation of a piecewise constant PSF.
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2.2.1 Space-Invariant Systems
An important type of linear systems are spatially invariant systems, where the PSF is invari-
ant under translations. In the invariant case, each point source of the object plane yields the
same image, however shifted to the corresponding position of the point source, i.e.

f(u; ξ) = f(u− ξ). (2.15)

By plugging expression (2.15) into the incoherent imaging equation (2.12) we obtain

y(u) =

∫
Σ1

f(u− ξ) x(ξ) dξ, (2.16)

which can be readily identified as a convolution such that

y(u) = (f ∗ x)(u). (2.17)

where ∗ denotes the convolution operator. A convolution has a number of favourable proper-
ties, one of which is e.g. symmetry w.r.t. to its arguments, i.e. f ∗x = x ∗ f . Most important
in practice is the convolution theorem:

F (f ∗ x) = F (f) ·F (x), (2.18)

which states that the convolution of two signals can be computed as the product of their
Fourier transforms. This proves particularly useful for its efficient computation via the Fast
Fourier Transform (FFT) (Press et al., 2007). Due to its mathematical and numerical ameni-
ties, invariant linear systems are widely studied and used. In imaging applications in partic-
ular, the convolution model is ubiquitous and modelling inaccuracies are often accepted for
the sake of efficient computation.

2.2.2 Space-Variant Systems
In many real-world imaging applications, the assumption of translational invariance does not
hold. Figure 2.2 shows typical examples exhibiting spatially varying PSFs. The translation-
invariant convolution model is too restrictive and insufficient for the mathematical descrip-
tion of such blur. In the following, we first discuss state-of-the-art approaches for modelling
spatially varying PSFs before we develop a novel approximation in Subsection 2.2.2.3.

2.2.2.1 Piecewise-constant PSF

A common strategy in image processing to deal with the spatial dependence of a PSF is to
divide the image in small enough image regions where the assumption of an invariant PSF
holds true. Mathematically, this approach corresponds to approximating the true PSF with
a piecewise constant or simple function, i.e.

f(u; ξ) =
R−1∑
r=0

f (r)(u− ξ)χ(r)(ξ) (2.19)
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Camera Shake Optical Aberrations Atmospheric Blur

Figure 2.2: Typical examples exhibiting spatially varying PSFs.

where R > 0, f (r)(u− ξ) are local invariant PSFs and χ(r)(ξ) are indicator functions speci-
fying the support or application domain of each local PSF, i.e.

χ(ξ)(r) =

{
1 for ξ ∈ Ω(r)

0 for ξ /∈ Ω(r) (2.20)

where Ω(r) ⊆ Σ1 is the region of influence of the local PSF f (r)(u− ξ).
Inserting expression (2.19) into the incoherent imaging equation (2.12) yields

y(u) =

∫
Σ1

R−1∑
r=0

f (r)(u− ξ)χ(r)(ξ)︸ ︷︷ ︸
f(u;ξ)

x(ξ) dξ

=
R−1∑
r=0

∫
Ω(r)

f (r)(u− ξ) x(ξ) dξ, (2.21)

where we made us of the fact that
∫

Σ1

∑R−1
r=0 χ(r)(ξ) dξ =

∑R−1
r=0

∫
Ω(r) dξ (Königsberger,

2002, 359ff).

Discussion. Approximating a continuous function as a step function is often quite poor
unless the number of support sites is chosen sufficiently high. Blocking artifacts at the patch
boundaries are almost inevitable if the PSF variation involves a relative displacement of
neighbouring PSF samples. An example is shown in Figure 2.3, where despite the smooth
spatial variation of the PSF severe blocking artifacts are visible.

2.2.2.2 Non-stationary Combination

To remedy this shortcoming, Nagy and O’Leary (1997) proposed to split the image into im-
age patches that overlap each other. Each image patch is processed individually assuming a
spatially invariant PSF. The final image is obtained by sewing the individual image patches.
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Mathematically, this imaging model can be described as

y(u) =
R−1∑
r=0

w(r)(u)

∫
Σ1

f (r)(u− ξ) x(ξ) χ(r)(ξ) dξ, (2.22)

where the finite set {w(r)|r = 0, . . . , R− 1} is a partition of the image plane, i.e.

R−1∑
r=0

w(r)(u) = 1 ∀u ∈ Σ2 (2.23)

with each w(r): Σ2 → R being a continuous weighting function with finite support. Note,
that this corresponds to approximating f(u; ξ) as

f(u; ξ) =
R−1∑
r=0

w(r)(u) f (r)(u− ξ). (2.24)

Although originally in (Nagy and O’Leary, 1997) the weighting functions have been chosen
to correspond to piecewise-constant and linear interpolation only, the authors mention in a
subsequent work (Nagy and O’Leary, 1998), that higher-order interpolation could also be
used. Furthermore, the authors show how to efficiently compute (2.22) by making use of the
overlap-add (OLA) and overlap-save (OLS) method of Stockham (1966).

Discussion. The imaging model (2.22) improves the constant-piecewise model and is bet-
ter suited to describe spatially varying PSFs as can be seen in Figure 2.3. Furthermore, it has
been successfully applied for the image restoration of simulated data of the Hubble Space
Telescope (Nagy and O’Leary, 1998; Bardsley et al., 2005). Recently, Šorel and Šroubek
(2009) employed this model for describing motion blur and show an example where they
were able to remove camera shake from a blurry photo by using a noisy/blurry image pair.

It is worth mentioning, that to our knowledge Nagy and O’Leary (1997) were the first
who proposed (2.22) as a global imaging model and stressed the importance of summing
up the individual image patches in each model evaluation. Heretofore, the common practice
has been to perform image restoration on each patch individually and sew the results only
subsequently to obtain the final restored image (e.g. see Trussell and Fogel (1992); Adorf
(1994)). According to Nagy and O’Leary (1998) this approach can lead to “visible discon-
tinuities at the region boundaries”.

Independently, Margrave (1998) proposed a similar approach to time varying filtering in
the field of geophysics. He calls his approach non-stationary combination, a name which we
adopted here. In addition, he discusses an alternative model for time-varying filtering which
he calls non-stationary convolution. Closely related to the latter, is the imaging model we
proposed independently in (Hirsch et al., 2010) and which is subject of the next paragraph.
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2.2.2.3 Non-Stationary Convolution

The incoherent imaging equation (2.12) describes each point in the image plane as a weighted
average of neighbouring points in the object plane. The weighting of each average is de-
termined by the PSF. It tells us how each point of the object plane is being imaged. For
a spatially varying PSF this weighting or pattern changes across the object plane. Often,
we can simply obtain or measure the PSF by placing a point light source at this posi-
tion of interest in the object plane and capturing an image of it. Hence, assume we have
measured the PSF f at a number of discrete positions ξ0, ξ1, . . . , ξR−1 to take the values
f(u, ξ0), f(u, ξ1), . . . , f(u, ξR−1). The upper left panel of Figure 2.4 illustrates this for a
one-dimensional toy model. To evaluate the PSF at intermediate positions we can simply
interpolate between nearby measurements

f(u; ξ) =
R−1∑
r=0

w(r)(ξ) f (r)(u− ξ), (2.25)

where for convenience, we denoted f(u, ξr) as f (r)(u − ξ). Inserting this expression into
(2.12) yields

y(u) =
R−1∑
r=0

∫
Σ1

w(r)(ξ) f (r)(u− ξ) x(ξ) dξ. (2.26)

We can further simplify the integral by choosing the w(r)(ξ) to be a partition of unity, i.e. a
finite set {w(r)|r = 0, . . . , R− 1} with the property

R−1∑
r=0

w(r)(ξ) = 1 ∀ξ ∈ Σ1 (2.27)

with each w(r): Σ1 → R being a continuous weighting function with finite support Ω(r) =
supp(w(r)). Hence, with

f(u; ξ) =
R−1∑
r=0

w(r)(ξ)χ(ξ)(r) f (r)(u− ξ) (2.28)

Integral (2.26) becomes

y(u) =
R−1∑
r=0

∫
Σ1

w(r)(ξ)χ(ξ)(r) f (r)(u− ξ) x(ξ) dξ

=
R−1∑
r=0

∫
Ω(r)

f (r)(u− ξ) x(ξ) w(r)(ξ) dξ. (2.29)

where we again used the fact that we can break up the integral in smaller integration domains
as discussed in (2.21).
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Choice of interpolation functions. By now, our discussion has been fairly general. We
had not to make any restrictive assumptions about the sampling density of the PSF nor about
the functional form of w(r). In particular, the weights can be chosen to be arbitrarily non-
linear functions or can be tailored to a specific problem by minimising some appropriate
error metric as recently shown by Denis et al. (2011). In other cases, the weights might
correspond to image masks that select certain objects in the scene which undergo a different
blur than the remainder of the scene being captured.

As we will show in the following section, choosing the samples equidistantly on a uni-
form grid enables efficient computation via the short-time Fourier transform. For a uniform
sampling of the PSF, different choices of possible interpolation schemes and their effect on
the approximation are shown in Figure 2.4.

Discussion Non-stationary convolution naturally generalises the space-invariant convolu-
tion model to spatially varying PSFs. It models a non-stationary PSF at any location in the
object plane by interpolating between nearby PSF samples. It is intuitively clear, that with
an increased spatial variation, a higher number of support sites or PSF measurements are
necessary to faithfully describe the true underlying PSF. This is verified by the experiment
shown Figure 2.3, where an increased number of support sites indeed reduces the differ-
ence to the continous model. Furthermore, it reveals least artifacts when compared to the
piecewise-constant model and non-stationary combination. We want to note, that in the case
of a constant PSF, where R = 1 and w0(ξ) = 1 for all points within the object plane Σ1, it
reduces to the invariant convolution model.

Despite the formal similarity of the superposition integrals of non-stationary combina-
tion (2.22) and non-stationary convolution (2.29), both approaches compute spatially vary-
ing blur rather differently: non-stationary combination first computes the effect of constant
piece-wise PSFs and interpolates the resulting image patches to yield the final image. In con-
trast, non-stationary convolution interpolates between neighbouring PSF samples to yield a
different PSF for each point of the object plane. Only then, it adds up the resulting convolved
image patches.

While both models are able to express spatially varying blur and have been applied
successfully to image restoration, Denis et al. (2011) argue in their recent work in favour of
non-stationary convolution as it seems better suited for smoothly spatially varying PSF and
exhibits a number of physically favourable properties.
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Figure 2.3: Comparison of various imaging models for spatially varying blur. The true
PSF consists of as many samples as pixels in the sharp image, i.e. 512 × 512, and varies
continously across the image plane. Each PSF sample is 15× 15 pixels in size. The amount
of spatial variation can be assessed by looking at the difference (in a L2 sense) between
neighbouring PSF samples which is shown in the upleft corner. Besides, the top row shows
the blurred image for the piecewise-constant model, non-stationary combination and non-
stationary convolution. Row 2 to 4 show from left to right: the PSF samples used for
computing the blurred images and the difference images between the result of the various
approximations and the continuous model. The scale for the difference image has been kept
constant for all cases to ease visual assessment. The scale refers to the relative error in each
pixel. Please note, that this figure is best viewed on screen rather than in print.
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(a) Sampling of Spatially Varying PSF (b) Constant Piecewise Interpolation

(c) Linear Interpolation (d) Gaussian Interpolation

Figure 2.4: Toy example: Sampling of one-dimensional PSF and various interpolation
schemes for its approximation.
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2.3 Numerical Approximations

In this section, we show how to efficiently implement the non-stationary convolution model
(2.29) by making use of the short-time Fourier transform. Ultimately motivated by facilitat-
ing space-variant BD, we derive expressions for all matrix vector multiplications (MVMs)
that are needed for both image and PSF estimation. We call our approach Efficient Filter
Flow (EFF) framework as it allows rapid MVMs while simultaneously being expressive
enough to provide space-variant filtering.

For simplicity we introduce our framework for vector-valued images. The generalisation
to matrix-valued images is straightforward. We quickly review space-invariant systems; this
sets the notation and lays the foundation of our Efficient Filter Flow (EFF) framework.

2.3.1 Convolution Model

In practice, capturing a picture y with a digital image sensor yields a finite set of intensity
values. In particular, a digital image can be represented by a matrix whose dimensions
correspond to the resolution of the image. As in the previous section and without loss of
generality, we can consider y, x and f to be vectors of length m, n and k with entries yi, xi,
and fi,j , respectively. In the following, we consider only the valid part of the full convolution
so that m = n− k + 1.

Replacing the integral by a summation, Equation (2.16) becomes

yi =
k−1∑
j=0

fi−j xj for 0 ≤ i < m. (2.30)

In digital signal processing f is often called filter, a term which from now on we will use
interchangeably with PSF. Since the transformation (2.30) is linear in x, it can be written as
y = Fx for Fi,i+j = fj for 0 ≤ i < m and 0 ≤ j < k. In other words F contains in each
row a shifted copy of f . For such a structured F , MVMs can be performed in O(n log n)
multiplications using FFTs with appropriate zero-padding (Press et al., 2007). If the signal
is much longer than the PSF, i.e., n � k, then the MVMs can be processed even faster
by chunking the signal into patches and using the overlap-add (OLA) method of Stockham
(1966). If q is the size of the FFT for the patches, then OLA costs O(n log q). We explain
OLA in greater detail below as it forms the basis of our framework for efficient space-variant
linear filters.

2.3.2 Efficient Filter Flow (EFF)

Discretising Equation (2.29) is straightforward and yields

yi =
R−1∑
r=0

k−1∑
j=0

f
(r)
i−j w

(r)
j xj for 0 ≤ i < m, (2.31)
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y = ZT
y

R−1∑
r=0

ET
rFH diag(FZf f

(r))F diag(w(r))Cr x

Figure 2.5: Illustration of the matrix operations involved in the computation of the Efficient
Filter Flow framework.

where we now have an additional sum over the set of localised uniform filters {f (r)|r =
0 . . . R − 1}. Their corresponding weighting functions {w(r)|r = 0 . . . R − 1} must add up
to one for each pixel in the object plane, i.e.

R−1∑
r=0

w
(r)
i = 1 for 0 ≤ i < n. (2.32)

Otherwise, artifacts might show up in the output image y at the overlapping areas of the
patches. Note that in practice, this property can always be enforced by normalising the
window functions.

The key idea behind the efficient computation of (2.31) is to employ and modify the
overlap-add (OLA) method of Stockham (1966), which was originally proposed for fast
computation of convolution and correlations. The idea of the OLA method is to chop a
image into overlapping patches, damp the borders of each patch with some windowing
function, convolve each patch with the same filter, and then add the transformed patches
to obtain the output image. However, if each patch is processed with its own corresponding
filter we perform a non-stationary convolution.

In practice, it is most beneficial if the image patches are chosen to be uniform and a mul-
tiple power of two, as the FFT is fastest in such cases. For fixed patch size and fixed number
of patches, the amount of overlap and the locations of the patches can be easily calculated.
The parameters of the EFF are R local uniform filters f (0), . . . , f (R−1), which equidistantly
sample the PSF on a regular grid. These filters can either be measured (see e.g. Section
6.2, where we measured the space-variant PSF caused by lens aberrations) or estimated by
minimising an appropriate cost function (see e.g. Chapter 4, where we blindly estimate a
space-variant PSF caused by camera shake). For the estimation of the EFF parameters, it is
advisable to resort to gradient-based optimisation techniques due to their improved rate of
convergence. To this end, we need not only to know how to efficiently compute Equation
(2.31), but also its transpose operation, which is the subject of the following paragraph.
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2.3.3 Efficient MVMs for EFF
Now that we have defined the space-variant version of OLA, we come to the most important
part: efficient implementation of the corresponding MVMs.

Since x appears only linearly in Equation (2.31), we can write it as y = Fx. The filter
matrix F is given by

F =
R−1∑
r=0

F (r) diag
(
w(r)

)
, (2.33)

where F (r) is the matrix corresponding to the convolution of f (r) (0 ≤ r ≤ R − 1), and
diag(v) is a diagonal matrix that has vector v along its diagonal. However, this representa-
tion does not describe how MVMs with F , nor with FT, can be computed efficiently. For
that we equivalently express F as the following sum of a product of matrices

y=ZT
y

R−1∑
r=0

ET
r FH diag(FZff (r))F diag(w(r))Cr︸ ︷︷ ︸

F

x. (2.34)

Equation (2.34) looks complicated, but is simple to understand:

(i) Cr is a matrix that chops the r-th patch from a vector of length n

(ii) Zf is a zero-padding matrix that appends zeros to f (r) such that its size matches the
patch size

(iii) F is the Discrete Fourier Transform (DFT) matrix (implemented by FFT)

(iv) FH is the Hermitian of the the DFT matrix (implemented by inverse FFT)

(v) ET
r is a matrix that places the r-th patch back in a vector and

(vi) Zy is the zero-padding matrix that prepends zeros to a vector such that its size matches
the size of the vector resulting from the summation.

Figure 2.5 illustrates the the most important steps of (2.34).

The proof that F in Equation (2.33) is the same as in Equation (2.34) follows directly
from the FFT implementation of convolution. Reading (2.34) from right to left this expres-
sion succinctly describes the steps needed to efficiently compute Fx. We can also read off
FT as

FT =
R−1∑
r=0

CT
r diag(w(r))FT diag(FZff (r))FErZy

=
R−1∑
r=0

CT
r diag(w(r))FHdiag(FZff (r))FErZy, (2.35)
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where F is the component-wise complex conjugate of F . Equation (2.35) follows from (??)
because F is a real valued matrix, whereby F = F . Reading (2.35) from right to left
describes the steps needed to efficiently calculate MVM for FT. In words, we perform
steps similar to EFF on y but with windowing at the end instead of the beginning, and with
complex conjugation of the FFT of the PSFs, resulting in calculating patch-wise correlations
instead of convolutions.

For non-blind deconvolution with spatially varying PSFs, efficient MVMs with F and
FT suffice. But for blind deconvolution we need more. Since Equation (2.31) is also linear
in the PSF parameters, we next define a matrix X such that y = Fx = Xf , where f
denotes the stacked sequence of PSF samples f (0), . . . , f (R−1). Now we rewrite (2.34) using
diag(v)w = diag(w)v and some matrix Br that chops the r-th PSF from the vector f ,

y=ZT
y

R−1∑
r=0

ET
r FH diag

(
F diag(w(r))Crx

)
FZfBr︸ ︷︷ ︸

X

f. (2.36)

This expression is not needed for implementing Xf since we already know how to compute
Fx = Xf quickly. However, it allows us to derive an algorithm for efficient MVM with
XT simply by taking the transpose of the expression for X ,

XT=
R−1∑
r=0

BT
r Z

T
f FT diag

(
F diag(w(r))Crx

)
FErZy,

=
R−1∑
r=0

BT
r Z

T
f FHdiag

(
F diag(w(r))Crx

)
FCrZy, (2.37)

where we again used X = X , as X is real. In words, the algorithm implied by (2.37)
for XTy consists of splitting y into patches, correlating them with the patches from x, and
finally summing up the results.

2.3.4 Computational Complexity
The computational complexity of EFF-based MVMs for F , FT, X , and XT is the same as
the OLA method (Stockham, 1966) for space-invariant filtering which is about O(n log q),
where q is the size of the FFT applied to the image patches. The overlap increases the
computational cost by a constant factor and is thus omitted. Hence, the EFF framework
implements space-variant convolutions which are as efficient to compute as space-invariant
convolutions, while being much more expressive. Being parametrised by the local PSF
samples f (r) that are much smaller than the full image x of the observed scene, the memory
requirement for storing space-variant PSFs is much less than O(mn) needed by a general
linear transformation.

2.3.5 Expressivity
As discussed in Section 2.2.2.3, the non-stationary convolution model yields the uniform
imaging model in the limiting case of a single PSF sample. This is also obvious from
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Figure 2.6: Expressivity of proposed EFF framework: (top to bottom) global
motion blur, expressible by a single filter, atmospheric blur with 3×3 simulated
speckle patterns, rotational transformation approximated by spatially-varying
PSF with 13× 13 filters each 41× 41 pixels in size.

expression (2.31): when all PSFs f (r) = f , using (2.32), we see that (2.31) reduces to (2.30).

At the other extreme, the EFF framework can implement any linear transformation F .
To do so, we need m image patches, one for each row of F . Then, we set all window
functions to constant 1/m, and the PSFs characterising the EFF to the rows of F . This case is
degenerate as patches overlap completely and PSFs, as long as the signal, are only evaluated
once. But it shows that EFF filtering actually covers the entire range from space-invariant
filtering to arbitrary linear transformations, trading computational efficiency for being more
expressive. Figure 2.6 shows further examples what kind of image transformations our
framework is able to express and offers a link to an animated demonstration.

http://www.youtube.com/embed/uMIgjVMFf80?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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2.3.6 Related Work

An idea key to our framework was introduced by Stockham (1966), who presented the
OLA method for fast convolution and correlation. For 1D signals, such as audio, Allen
(1977) used OLA, aka short-time Fourier analysis and synthesis for time varying filtering.
However, he considered Fx only and did not show how to calculate FTx, which is re-
quired for deconvolution. Neither does he show how to calculate XTy, which is required for
blind-deconvolution. For two dimensional signals, Hinman et al. (1984) generalised short-
time Fourier analysis to short-space Fourier analysis, but did not consider synthesis needed
for space-variant filtering. In his non-stationary combination approach to spatially varying
filtering, Nagy and O’Leary (1997) does consider synthesis, but only for rectangular and
triangular windows; he also considers F and FT, thus the case of non-blind deconvolution
only. Margrave (1998) discusses both non-stationary combination and convolution, however
doesn’t derive expressions for efficient numerical implementation.

2.4 Conclusion

In this chapter, we revised the basics of optical imaging under incoherent illumination, there-
with providing the theoretical background for the material covered in this thesis. By ap-
proaching optical imaging via Linear Systems Theory (LST), we first revised the concept of
a PSF as the impulse response of a linear optical system. Subsequently, we derived various
approximations to the incoherent imaging equation and discussed their underlying assump-
tions:

1. Translational invariance of a optical system yields the well-known and widely used
convolution model. Unfortunately, its computational amenities often come at the price
of inaccurate modelling, since many real-world applications exhibit a significant spa-
tial variation of the underlying PSFs.

2. Assuming smooth spatial variation of a PSF enabled us to derive our EFF framework,
a novel approximation of the incoherent imaging equation, which allows increased
expressiveness and efficient computation at the same time. It features linearity in
both PSF parameters and image intensities and includes the convolution model as a
special case. Our framework offers an efficient compromise between the extremes
of space-invariance and full-dense linear transformations. We extended the overlap-
add idea to the space-variant setting, thereby allowing us to compute matrix-vector-
multiplications involving local PSF samples rapidly.

In the following two chapters we address the problems of removing spatially varying blur
due to atmospheric turbulence (Chapter 3) and camera shake (Chapter 4), both of which will
serve as a challenging testing ground for our model.
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Chapter 3

Online Multi-Frame Blind Deconvolution
Beyond The Convolution Model

Astronomical images taken by ground-based telescopes suffer degradation due to atmo-
spheric turbulence. This degradation can be tackled by costly hardware-based approaches
such as adaptive optics, or by sophisticated software-based methods such as lucky imag-
ing, speckle imaging, or multi-frame deconvolution. Software-based methods process a
sequence of images to reconstruct a deblurred high-quality image. However, existing ap-
proaches are limited in one or several aspects: (i) they process all images in batch mode,
which for thousands of images is prohibitive; (ii) they do not reconstruct a super-resolved
image, even though an image sequence often contains enough information; (iii) they are
unable to deal with saturated pixels; (iv) they assume an invariant blur model and thus are
restricted to the isoplanatic patch; and (v) they are usually non-blind, i.e., they assume the
blur kernels to be known. In this chapter, we present a new method for multi-frame de-
convolution called Online Blind Deconvolution (OBD) that overcomes all these limitations
simultaneously. Encouraging results on simulated and real astronomical images demonstrate
that OBD yields deblurred images of comparable and often better quality than existing ap-
proaches.

The following chapter is organised as follows: in Section 3.1 we give a short introduction
to the field of ground-based astronomical observation, followed by an overview of common
approaches for overcoming the adverse effect of atmospheric turbulence. In Section 3.2 we
discuss previous work that is directly related to the work presented in this chapter. After
deriving our proposed OBD algorithm in Section 3.3, we extend our imaging model step
by step to incorporate the effects of super-resolution, saturation and spatially varying blur.
In Section 3.5 we carry out an extensive validation of our algorithm with simulated data
where we have access to the ground truth and thus are able to quantitatively evaluate the
performance of our approach. In Sections 3.7 and 3.8 we do a comprehensive comparison
on both astronomical data but also non-astronomical imagery, followed by a final summary
and conclusion in Section 3.9.

27
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3.1 Introduction

Astronomical observation using ground-based telescopes is significantly degraded by dif-
fraction-index fluctuations caused by atmospheric turbulence. This turbulence arises from
local temperature and density inhomogeneities and results in a time- and space-variant point
spread function (PSF). Often the PSF is assumed to be invariant within a short time-period
and a small region of space, called an isoplanatic patch. The coherence time and the size
of the isoplanatic patch depend on the strength of the turbulence that is usually quantified
by Fried’s parameter ro (Fried, 1978) ranging between 10–20 cm for visible wavelengths
at astronomical telescope sites. The coherence time for atmospheric turbulence is effec-
tively frozen for images with exposure times shorter than 5–15 ms. Longer exposures ef-
fectively perform a time average, and thereby irretrievably wipe out high frequency infor-
mation, making them band-limited to angular frequencies smaller than ro/λ, where λ is the
wavelength of the observed light. In contrast, short-exposures encapsulate information up
to the diffraction-limited upper frequency bound (which is theoretically given by the ratio
D/λ, where D denotes the diameter of the telescope’s primary mirror). Figure 3.1 depicts
this issue for the simulated image of a single star and shows the radial averaged modular
transfer function (MTF) for diffraction-limited, long- and short-exposure imaging.

The information carried by short exposures was first exploited by Labeyrie (1970), who
proposed the averaging of the power spectra of a sequence of short exposures to retain
diffraction-limited amplitude information. Shortly thereafter, Knox and Thompson (1974)
extended Labeyrie’s idea by suggesting a method for the recovery of the phase information,
which is not preserved by Labeyrie’s so-called stellar speckle interferometric method. These
early works revolutionised ground-based astronomical observation with large telescopes and
have since led to a number of improved signal-processing methods (Lohmann et al., 1983;
Mikurda and Lühe, 2006; Stelzer and Ruder, 2007) widely referred to as speckle imaging
techniques.

An alternative approach was proposed in the seminal work of Ayers and Dainty (1988),
who presented a Blind Deconvolution (BD) algorithm for the problem of atmospherically
degraded imaging. BD recovers object information from a blurry and noisy observation
without any additional measurement of the distortion. The BD of a single observation is
a severely ill-posed problem: there are an infinite number of solutions, and small perturba-
tions of the data result in large deviations in the estimate of the object. The ill-posedness can
be alleviated to some degree by confining the set of solutions to physically plausible ones
by introducing additional constraints or prior knowledge. Another possibility is to use mul-
tiple images or to exploit the partial information about wavefront distortion obtained from
wavefront-sensor data, as used in adaptive-optics based myopic deconvolution algorithms.

Since the work of Ayers and Dainty (1988), BD has grown to be a valuable tool in
astronomical imaging and has been subject of numerous publications. Today a plethora
of algorithms exist that primarily differ in: (i) the data used; (ii) the a-priori knowledge
incorporated while deblurring; and (iii) the algorithmic approaches for estimating the object
and its blur. For a good overview of BD in the domain of astronomical imaging we refer the
reader to (Kundur and Hatzinakos, 1996; Molina et al., 2006; Pantin et al., 2007).

Recently, electron-multiplying CCD cameras have enabled capturing short-time expo-
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Figure 3.1: Imaging a single star through atmospheric turbulence: while the angular res-
olution of a long exposure image (top left) is limited by the strength of the atmospheric
turbulence (commonly quantified by Fried’s parameter ro), a short exposure image (bottom
left) encapsulates information up to the diffraction-limited upper frequency bound which is
proportional to the diameter D of the telescope’s primary mirror. The right panel shows
the radial averaged modular transfer function (MTF) for diffraction-limited, short and long
exposure imaging. While the long exposure MTF falls to nearly zero at r0/λ, the aver-
age short exposure MTF reaches intermediate levels up to the diffraction limited upper fre-
quency bound. The short exposure MTF was averaged over 5000 trials. The simulation was
performed for D/ro = 13.3.

sures with negligible noise (Mackay et al., 2001). This in turn has led to a new method:
lucky imaging, which can to some degree overcome atmospherically-induced resolution lim-
itations of ground-based telescopes (Law et al., 2006; Oscoz et al., 2008; Hormuth et al.,
2008). The lucky imaging idea is based on the work of Fried (1978) (who computed the
probability of getting a lucky frame, i.e., an image recorded at a time instant of exception-
ally good seeing). This idea proposes to collect only the ‘best’ frames available in a recorded
sequence. These ‘best’ frames are subsequently combined to obtain a final image of the ob-
ject. Usually, out of a thousand images, only a few are selected for the final reconstruction
and most of the observed frames are discarded.

This “wastage” can be avoided, and one can indeed use all the frames to obtain an
improved reconstruction as we will see in Section 3.5.

Methods for Multi-frame Blind Deconvolution (MFBD) aim to recover the image of a
fixed underlying object given a sequence of noisy, blurry observations. Each observation
has a different and unknown blur, which makes the deconvolution task hard.
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Previous approaches to MFBD process all observed frames simultaneously. Doing so
limits the total number of frames that can be processed. We show how the computational
burden can be greatly reduced by presenting OBD, our online algorithm that processes the
input sequence one frame at a time. Each new frame helps to gradually improve the image
reconstruction. This simplistic approach is not only natural, but also has several advan-
tages over non-online methods, e.g., lower resource requirements, highly competitive image
restoration (Harmeling et al., 2009, 2010b; Hirsch et al., 2010; Hirsch et al., 2011), low to
moderate dependence on regularisation or a priori information, and easy extension to super-
resolution1, saturation correction and spatially varying blur. In particular, the contributions
presented in this chapter are as follows:

(a) we derive our MFBD algorithm in the framework of stochastic gradient-descent;

(b) we show how to incorporate super-resolution while simultaneously performing blind
deconvolution;

(c) we tackle saturation, a nuisance familiar to anyone who works with astronomical im-
ages;

(d) we extend our imaging model to account for spatially varying blur due to atmospheric
turbulence; and

(e) we present results on both simulated and real-world astronomical imagery taken in a
simple astronomer setup, where one does not have access to sophisticated equipment
(e.g., adaptive optics), and computational resources might be limited.

Before describing further details, let us put our work into perspective by briefly surveying
related work.

3.2 Related Work

3.2.1 Multi-Frame Blind Deconvolution
A multitude of multi-frame (or multiple-image) deblurring papers discuss the non-blind
deconvolution setup, where, in addition to the image sequence the sequence of blur kernels
must be known as well. We do not summarise such methods here because ours is a blind
deconvolution method. Amongst multiple frame blind approaches, the method of Schulz
(1993) is perhaps the earliest. Schulz used penalized likelihood maximisation based on a
generalised expectation maximisation (GEM) framework. Closely related is Li et al. (2004),
who also used a GEM framework, but focused on choosing a good objective function and
regulariser for optimisation. In contrast to our work, both Schulz (1993) and Li et al. (2004)
presented batch algorithms that are computationally prohibitive, which greatly limits the
number of frames they can simultaneously process.

1Here, super-resolution refers to techniques that are able to enhance the resolution of an imaging system by
exploiting the additional information introduced by sub-pixel shifts between multiple low resolution images
of the same scene or object.
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Sheppard et al. (1998) discussed the MFBD problem and presented a procedure that
also processes all frames at the same time. They did, however, mention the possibility
of incremental processing of frames, but gave an example only for the non-blind setup.
Their blind-deconvolution algorithm was based on conjugate-gradients, for which they had
to parametrise (e.g., x→ z2) the variables to enforce non-negativity. This reparametrisation
has a long history in image deconvolution (Biraud, 1969), but numerically, the ensuing non-
linearity can be damaging as it destroys the convexity of sub-problems.

More recently, Matson et al. (2008) also used the same nonlinear (x→ z2) reparametri-
sation for solving MFBD with a parallel implementation of conjugate-gradients. Another
approach is that of Zhang et al. (2009), who incorporated a low-pass filter into the MFBD
process for suppressing noise, but again at the expense of convexity.

Further MFBD work includes: Anconelli et al. (2006) who considered methods for the
reduction of boundary effects; Zhulina (2006) who discussed the Ayers-Dainty algorithm;
and Löfdahl (2002) who permitted additional linear inequality constraints. We refer the
reader to Matson et al. (2008) for even more references—including those to early works—
and a nice summary of blind deconvolution for astronomy. Unlike our algorithm, all the
above mentioned blind deconvolution methods are batch procedures; moreover none of them
performs either super-resolution, saturation correction or spatially varying blur.

3.2.2 Super-Resolution
Numerous papers address the standard super-resolution problem. For good surveys we refer
the reader to (Park et al., 2003; Farsiu et al., 2004). However, most of these works are based
on the assumption that the blur is known, and only a few deal with the harder case of blind
super-resolution.

The work most closely related to ours is Šroubek et al. (2007), who propose a unify-
ing framework that simultaneously performs blind deconvolution and super-resolution. In
Šroubek et al. (2007, 2008) the authors show how a high-resolution image can be obtained
from multiple blurry and noise corrupted low-resolution frames. However, their model as-
sumes a priori knowledge about both the image and the blur, and Šroubek et al. (2008)
themselves note that their method suffers from numerical instabilities for super-resolution
factors larger than 2.5. In contrast, our approach exploits the abundance of available data,
which for moderate noise levels does not require imposing any image or blur prior (except
non-negativity), leading to an overall simpler algorithm. Moreover, our method is computa-
tionally more efficient, since it is online.

3.2.3 Spatially Varying Blur
Early relevant work includes (Lohmann and Paris, 1965), where the authors clearly for-
malise space-variant imaging systems, and discuss basic special cases such as: piecewise
space-invariant systems and geometric distortion. Another early work which presents an
idea that is key to our framework was introduced by Stockham (1966), who presented the
overlap-add (OLA) method for fast convolution and correlation. For one dimensonal signals,
such as audio, Allen (1977) used OLA, aka short-time Fourier analysis and synthesis for
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time-variant filtering. For two dimensional signals, Hinman et al. (1984) generalised short-
time Fourier analysis to short-space Fourier analysis, but did not consider synthesis needed
for space-variant filtering. Nagy and O’Leary (1998) does consider synthesis, but only the
case needed for latent image estimation, thereby limited to the non-blind case. In (Bards-
ley et al., 2006) the approach of Nagy and O’Leary (1998) is extended to the blind setting,
where the authors employ phase-diversity for PSF estimation to perform space-variant blind-
deconvolution. Recently, Zhu and Milanfar (2011) presented a MFBD algorithm, that first
corrects for the geometric distortions induced by atmospheric turbulence and subsequently
performs a non-blind deconvolution with an invariant PSF for latent image reconstruction.

3.3 The OBD Algorithm

3.3.1 Problem Formulation
For simplicity of exposition, our description will focus on one-dimensional images and point
spread functions (PSFs). In Appendix A we cover the generalisation to two-dimensions.
Initially, for the derivation of the MFBD algorithm we will assume an invariant blur model.
In Section 3.4.3 we will extend our approach to non-uniform blur.

Let each observed (blurry and noisy) frame be denoted by yt, the ‘true’ unknown image
by x, and each unknown PSF by ft. Then, we use the observation model

yt = ft ∗ x+ nt, t = 1, 2, . . . , T, (3.1)

where ft ∗ x represents convolution (circular or non-circular), and nt denotes measurement
noise. Further, on physical grounds we assume both the image x and the PSF ft to be
non-negative.

3.3.2 Algorithm
First consider the case where given the next observation yt and the current image estimate
xt, we wish to compute the PSF ft. Assuming the noise nt in equation (3.1) to be Gaussian
distributed with zero mean and incorporating non-negativity, the PSF ft can be determined
by solving a non-negative least-squares (NNLS) problem2. For a given observation frame yt
and a current estimate xt, we define the loss

`(yt;x) = min
ft≥0

∥∥yt − ft ∗ x∥∥2
. (3.2)

For a frame sequence y1, y2, . . . , yT , we aim to minimise the overall loss by computing the
image x that solves

min
x≥0

LT (x) =
1

T

T∑
t=1

`(yt;x). (3.3)

2This NNLS problem may be solved by various methods; we used the LBFGS-B algorithm (Byrd et al.,
1995).
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Problem (3.3) is not easy, because it is non-convex and its optimal solution requires com-
puting both x as well as the PSFs f1, . . . , fT . Nevertheless, given our formulation, sev-
eral methods could potentially be used for minimising LT (x). For example, an ordinary
gradient-projection scheme would be

xt+1 = P+

(
xt − αt∇LT (xt)

)
, t = 0, 1, . . . , (3.4)

where P+ denotes projection onto the non-negative orthant; xt denotes the current image
estimate; and αt is an appropriate step-size. However, when the number of frames T is
large, such an approach rapidly becomes computationally impractical. Hence we turn to a
simpler method that processes the input one frame at a time.

3.3.3 Stochastic Gradient Descent
A simple and often effective method for minimising the overall loss in equation (3.3) is
stochastic gradient descent (SGD). This method does not process all the frames simultane-
ously, but at step t it picks (at random) some frame y and updates the current image estimate
xt as

xt+1 = P+

(
xt − αt∇`(y;xt)

)
, (3.5)

where P+ and αt are as before; computing ∇`(y;xt) requires solving equation (3.19). By
processing only one frame at a time, stochastic gradient descent (SGD) leads to huge com-
putational savings. However, there are two main difficulties: update rule (3.5) converges
slowly; and more importantly, it is sensitive to the choice of the step-size αt; a popular
choice is αt = β/(t0 + t), where the constants t0 and β must be tuned empirically.

We propose a practical modification to the step-size computation, wherein we instead
use the scaled-gradient version

xt+1 = P+

(
xt − αtSt∇`(y;xt)

)
, (3.6)

where St is a positive-definite matrix. Also update rule (3.6) can be shown to converge3

under appropriate restrictions on αt and St (Kushner and Yin, 2003; Bottou, 1998). In
general, the matrix St is chosen to approximate the inverse of the Hessian of LT (x∗) for an
optimal x∗, thereby yielding quasi-Newton versions of SGD. But a more straightforward
choice is given by the diagonal matrix

St = diag
(
(xt + ε)/(FT

t Ftxt + ε)
)
, (3.7)

where the diag operator maps a vector x to a diagonal matrix with elements of x along its
diagonal. Also note that the division in (3.7) is element-wise, Ft is the matrix representation
of the PSF ft (see Appendix A), and ε > 0 is a positive constant which ensures that St
remains positive definite and bounded (both requirements are crucial for convergence of the
method). The choice (3.7) can be motivated with the help of auxiliary functions (e.g., as in
Harmeling et al., 2009),

3One can show almost sure (a.s.) convergence of the objective, and a.s. convergence of the gradient to the
gradient at a stationary point.
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Remark: We note in passing that if one were to use αt = 1, and set ε = 0, then although
convergence is no longer guaranteed, iteration (3.6) takes a particularly simple form, namely,

xt+1 = xt � (FT
t y)/(FT

t Ftxt), (3.8)

where � denotes the Hadamard (element-wise) product of two vectors—this update may be
viewed as an online version of the familiar ISRA (see Daube-Witherspoon and Muehllehner,
1986).

Note that for (3.7) the matrix F corresponds to the PSF f computed via the NNLS
problem (3.19) with y and x = xt. We call the method based on iteration (3.6) online blind
deconvolution (OBD) and provide pseudo-code as Algorithm 1. We further note that by
assuming photon shot noise (Poisson-distributed) in equation (3.1) instead of additive noise,
we can also design a Richardson-Lucy type iteration for solving equation (3.3).

Algorithm 1: Online Blind Deconvolution (OBD)
Input: Stream of images yt for t ≥ 1
Output: Reconstructed image x
initialise x1 with y1;
while another image yt+1 available do

t← t+ 1;
estimate ft by

ft = argminf≥0

∥∥yt − f ∗ xt−1

∥∥2 (3.9)

update xt by
xt = P+

(
xt−1 − αt−1St−1∇`(y;xt−1)

)
(3.10)

end
return last estimate xt

3.4 Extending OBD

3.4.1 Super-Resolution
In the OBD setup an entire sequence of frames is at our disposal. Can we exploit this se-
quence to improve the image reconstruction beyond mere blind deconvolution? The answer
is ‘yes’. With a small increase in computational costs we can augment the basic algorithm
and perform super-resolution. For long-exposures that often lose higher-frequency struc-
ture (finer details) of the image due to averaging, such increased resolution is particularly
desirable.

To incorporate super-resolution into our framework we introduce the resizing matrix

Dm
n = (In ⊗ 1Tm)(Im ⊗ 1n)/n, (3.11)

where In is the n × n identity matrix, 1n is an n dimensional column vector of ones, and
⊗ denotes the Kronecker product. The matrix Dm

n transforms a vector v of length m into



3.4. EXTENDING OBD 35

a vector of length n. The sum of v’s entries 1Tmv = 1TnD
m
n v is preserved (formally verified

by applying identity (A.5) twice). This is a favourable property for images, as the number
of photons observed should not depend on the resolution. Note that even if the sizes n and
m are not multiples of each other, Dm

n will interpolate appropriately. Hence, the super-
resolution factor, i.e., the ratio m/n, is not restricted to be integral. Note that for m ≥
n, i.e. downscaling, the matrix operation corresponds to integrating neighbouring pixels
weighted by their overlap with the new pixel grid. Similarly for m < n, i.e. upscaling,
the operation will take the nearest neighbour, if n is divisible by m, or a weighted linear
combination of close-by pixels.

To avoid double indexing let n = ly be the length of y. For super-resolution by a factor
of s we choose x and f large enough such that the vector f ∗ x has length sn. Then we
replace the loss `(yt;x) by (cf. equation (3.19))

`(yt;x) = min
ft≥0

∥∥yt −Dsn
n (ft ∗ x)

∥∥2
. (3.12)

For this loss, a derivation similar to that for (3.7) yields the diagonal matrix

St = diag
(
(xt + ε)/((Dsn

n Ft)
TDsn

n Ftxt + ε)
)
, (3.13)

where Ft corresponds to ft obtained by solving (3.12).

3.4.2 Overexposed Pixels
For astronomical images a common problem is saturation of pixels due to overexposure,
i.e., some pixels receive so many photons that they exceed the peak intensity permitted by
the hardware. This saturation can be particularly confounding if both bright and faint stars
are present in the same image, especially when some stars are orders of magnitude brighter.
Overexposed pixels impede not only deblurring but also super-resolution and applications
such as estimation of star magnitudes.

However, since we have an entire sequence of observed frames, tackling overexposed
pictures is feasible. Here the atmospheric blurring proves to be helpful, since it creates non-
overexposed margins around a bright star whose centre pixels are overexposed. Our method
is able to fit these margins and can approximate the true star magnitude. Our approach
essentially consists of identifying saturated pixels and excluding them from the computation
of the objective function. This approach might seem to be overly simple, but its success is
deeply tied to the availability of multiple frames. Specifically, since each frame can have
different pixels attaining saturation (different frames are aligned differently), we have to
check at each iteration which pixels in the current image are saturated. To ignore these
pixels we define a diagonal weighting matrix (per frame) with entries,

Σt =

{
1 if yt<ρmax

0 otherwise (3.14)

along its diagonal. Hereby, we assume the value of a saturated pixel to be ρmax (e.g. in the
case of 16 bit images, ρmax = 65535). We can modify the updates to ignore saturated pixels
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by replacing the Euclidean norm with a weighted norm ‖v‖2
Σ = vTΣv. We replace the loss

`(yt;x) by
`(yt;x) = min

ft≥0

∥∥yt − ft ∗ x∥∥2

Σt
. (3.15)

For this loss, following a derivation similar to (3.7) yields the diagonal matrix

St = diag
(
(xt + ε)/(FT

t ΣtFtxt + ε)
)
, (3.16)

where, as before, Ft corresponds to ft obtained by solving (3.12).

Remark. One might ask whether we can recover pixels in x that are saturated in most of
the frames. The answer is yes, and can be understood as follows. The photons corresponding
to such a pixel in x are spread by the PSF across a whole set of pixels in each observed frame.
Thus, if not all these pixels are always saturated, the true value for the corresponding pixel
in x can be recovered.

3.4.3 Spatially Varying Blur
As mentioned above, the uniform or space-invariant imaging model is only valid within an
isoplanatic patch whose size depends on the seeing conditions at the time of recording. In
Section 2 we developed the so-called Efficient Filter Flow (EFF) framework, which allows
the description and efficient computation of a PSF that smoothly varies across the image
plane. The idea is (i) to cover the image with overlapping patches, (ii) to assign and apply
to each patch a different PSF, and (iii) to add the patches to obtain a single large image.
The ith pixel value yi in the blurred image y can be written as a linear combination of the R
differently blurred patches,

yi =
R−1∑
r=0

k−1∑
j=0

f
(r)
j w

(r)
i−j xi−j for 0 ≤ i < n, (3.17)

wherew(r) ≥ 0 is a fixed weighting vector which is non-zero only on the rth patch. Since the
patches are usually chosen to overlap, these weights smoothly interpolate between neigh-
bouring filters f (r). Note that the weighting vectors have to sum up to one, i.e.

R−1∑
r=0

w
(r)
i = 1 for 0 ≤ i < n. (3.18)

Note that this method does not simply apply a different PSF to different image regions, but
instead yields a different PSF for each pixel. The reason is that the patches are usually cho-
sen to overlap at least 50%, such that the PSF at each pixel is a certain linear combination of
several filters. The set of weights {w(r)|r = 0, . . . R−1} are chosen to smoothly interpolate
between neighbouring filters f (r).

Efficient implementation. Evidently, equation (3.17), the EFF is linear in x and in f , where
f is the vector obtained by stacking f (0), . . . , f (R−1). This implies that there exist matrices



3.5. RESULTS ON SIMULATED DATA 37

F and X such that y = Fx = Xf . Using Stockham’s ideas (Stockham, 1966) to speed-up
large convolutions, Hirsch et al. (2010) derive expressions for these matrices, namely

F = ZT
y

R−1∑
r=0

ET
r FH diag(FZff (r))FCr diag(w(r)), (3.19)

X = ZT
y

R−1∑
r=0

ET
r FH diag

(
FCr diag(w(r))x

)
FBrZf , (3.20)

where diag(w(r)) is the diagonal matrix with vector w(r) along its diagonal, Cr, Er and Br

are appropriate cropping matrices, F is the discrete Fourier transform matrix, Zf is a matrix
that zero-pads f (r) to the size of the patch, FH performs the inverse Fourier transform, ZT

y

chops out the valid part of the space-variant convolution.
Reading Eqs. (3.19) and (3.20) forward and backward yields efficient implementations

for F , FT, X , and XT with running times O(n log q) where q is the patch size, see (Hirsch
et al., 2010) or Section 2 for details. The overlap increases the computational cost by a
constant factor and is thus omitted. The EFF framework thus implements space-variant
convolutions which are as efficient to compute as space-invariant convolutions, while being
much more expressive.

Note that each of the matrix vector multiplications (MVMs) with F , FT, X , and XT is
needed for blind deconvolution: F and FT for the estimation of x given f , and X and XT

for the estimation of f .

3.5 Results on Simulated Data
To investigate how our OBD algorithm performs on atmospherically degraded short-exposure
images, we first experiment in a controlled setting with simulated data, firstly assuming in-
variant blur only.

Following Harding et al. (1999), we generate a sequence of 200 PSFs with Kolmogorov
random phase screens at a specified ratio D/ro of the telescope diameter to the atmospheric
seeing parameter (Fried parameter) equal to 13.3. The strength of the turbulence is cho-
sen to create images recorded by a 26-inch telescope through atmospheric turbulence of a
coherence length of approximately ro = 5 cm.

Figure 3.2 shows the original object, one out of the 200 PSFs, and the noise-free short
exposure image obtained by convolving the shown PSF with the object. The object is a
rendered model of the satellite OCNR5 used by Sheppard et al. (1998) and was chosen
because of its high dynamic range and its great level of detail.

Before corrupting the images with noise, we add a constant background b to the blurred
image ft ∗ x. To simulate photon noise we scale the pixel values (ranging between 0 and
255) of each short exposure to varying large numbers of photons, i.e. λ(ft ∗ x + b) and
sample a new image z from the corresponding Poisson distribution, i.e.

zt ∼ Poisson(λ(ft ∗ x+ b)). (3.21)
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Figure 3.2: Simulation: From left to right: Original object image of OCNR5, typical PSF,
blurred image.

SNR = 4.6 SNR = 6.6 SNR = 10.2 SNR = 14.8 SNR = 18.9

Figure 3.3: Simulation: Typical observed frames (top row) and reconstructed images (bot-
tom row) after having processed a sequence of 200 blurred frames for different SNRs.

For differing λwe can hereby simulate differing amounts of photon shot noise. After scaling
down by 1/λ, we add white Gaussian noise with zero mean and a variance σ2 equal to two
percent of the maximal image intensity of the whole sequence to model the readout noise
common to CCD cameras,

nt ∼ Gaussian(0, σ2) (3.22)

yt =
zt
λ

+ nt. (3.23)

To quantify the amount of image noise we define the following SNR,

SNRt = 10 log10

Var(x)

Var(yt − x ∗ ft)
, (3.24)

where x denotes the true satellite image, yt the noise-corrupted atmospherically degraded
observation, and ft the PSF, respectively. Var(x) denotes the variance of the pixel values of
x. For an entire sequence y1, y2, . . . , y200 we average over the computed SNRs of all 200
frames, SNR = 1

200

∑200
t=1 SNRt. Table 3.1 shows the computed SNR for different parameter

settings that we use in our experiments. Note that we use the SNR only to quantify the
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Table 3.1: SNRs for different parameter settings of λ and σ2.

λ (×103) 0.01 0.02 0.04 0.16 10.0
σ2 (%) 2.0 2.0 2.0 2.0 2.0
SNR in dB 4.6 6.6 10.2 14.8 18.9
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Figure 3.4: Simulation: Evaluation of relative reconstruction error for different SNRs.

amount of noise in the simulated data. To measure the quality of the reconstruction we use
relative error (explained below).

Figure 3.3 shows typical frames for different SNRs, each 256 × 256 pixels in size, and
the reconstructed object images of our basic algorithm after having processed all 200 frames
within one sequence. The restored images shown are cropped to the size of the observations.
As initial estimates for the PSFs we chose constant images of size 60× 60 pixels, and as the
initial estimate of the object, an average over the first twenty observed frames embedded in
a 315× 315 array of zeros.

As expected, the quality of the reconstruction suffers as the SNR decreases, which is
also reflected quantitatively in Figure 3.4, where we plot the relative error ‖x − x̂‖/‖x‖ of
the reconstructed image x̂ as a function of observed frames and the corresponding SNR.

Evidently, for high SNRs the reconstruction error decreases the more observations that
have been processed and saturates to a certain value dependent on the SNR. The error
is higher the lower the SNR of the available observations. The error does not decrease
strictly monotonically from frame to frame, but more in a (long-term) stochastic gradient
manner. As expected, for lower SNRs, the unregularised reconstruction process can even
diverge. In this noisy regime, additional prior knowledge about the object is necessary and
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regularisation in the restoration process is inevitable.
Figure 3.5 illustrates that enforcing smoothness by employing Tikhonov regularisation

on the gradients of the reconstructed image (i.e. a prior term η
∥∥∇x∥∥2 is added to the loss

in (3.19)) is capable of suppressing noise amplification and stabilising the deconvolution
process, even for low SNRs. As expected, when the regularisation parameter η is too small,
the reconstruction error still diverges (red dotted curve); similarly, when it is too large, the
error is increased due to over-smoothing (blue dashed curve). A reasonable choice of the
regularisation parameter may be obtained by setting it proportional to the noise variance.
The colour framed image stamps show the reconstruction results for different values of the
regularisation parameter.

To study the influence of the initialisation and the order of frames within one sequence,
we reversed and randomly permuted the processing order of the input frames. Figure 3.6
shows restored object images and the corresponding error curves for a fixed SNR of 18.9 dB,
respectively. As can be seen, the error evolution of the deconvolution process is almost
independent of the particular ordering of the input frames. All curves converge to a similar
value with small variance, and visually, only little (if at all) difference is discernible.

To numerically appraise the quality of our results, we did a quantitative comparison with
various state-of-the-art reconstruction methods. Figure 3.7 shows the visually best observed
frame, a reconstruction with AviStack (Theusner, 2009), a popular Lucky Imaging soft-
ware. AviStack partitions the images into small image patches of variable sizes, evaluates
the quality of all observed frames for all image patches and then aligns and stacks those
image patches, that fulfil a certain quality threshold. For the final reconstruction only the
best percent of observed frames was taken. Next to it, a Knox-Thompson reconstruction is
shown, which was obtained using Speckle1, a reconstruction software by Stelzer (2009). For
the reconstruction, 300 Knox-Thompson and 100 triple correlation phase pairs were used.
Finally, the rightmost image shows the result of our basic algorithm without any additional
regularisation. In all cases no further post-processing was performed.

For a single isoplanatic patch the reconstruction with AviStack is not substantially better
than the visually best observed frame, which is also reflected in the relative error overlayed
in white. In comparison, both the Knox-Thompson reconstruction and the result by the ba-
sic algorithm of our proposed method reveal much greater detail and higher spatial resolu-
tion. Subjectively, our result is comparable in quality and resolution to the Knox-Thompson
reconstruction, which is quantitatively confirmed by the negligible difference in the recon-
struction error. Regarding run-time, the C implementation of Stelzer (2009) takes about 15
minutes (when invoked carefully by an expert user) for the entire reconstruction on a single
core of an Intel(R) Core(TM) i5 processor with 2.67 GHz. Our Matlab implementation that
is however not optimised for speed and logs large quantities of intermediate results, takes
about thrice as long. A Python implementation using PyCUDA (Klöckner et al., 2009) for
GPU enabled computation of the discrete Fourier transform (see equation (A.2) and (A.3))
achieves a run-time of less than 10 minutes on a low-cost NVIDIA(R) GeForce(TM) GT
430.

Our final set of experiments with simulated data evaluates our algorithm’s super-resolution
abilities. We generated three sequences of atmospherically blurred, differently downsampled
and noisy observations at a fixed SNR of 18.9 dB. Panel A of Figure 3.8 shows typical input
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Figure 3.5: Simulation: Evaluation of the relative reconstruction error for different values
of the regularisation constant η at a fixed SNR of 4.6 dB.
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Figure 3.6: Simulation: Evaluation of the relative reconstruction error and final recon-
structed images after having processed 200 frames in chronological, reverse and various
random orders at a fixed SNR of 18.9 dB. The relative reconstruction error is overlayed in
white.
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0.3309 0.3257 0.1825 0.1810
Visually best frame Avistack Knox-Thompson Our approach

Figure 3.7: Simulation: Final reconstructed images after having processed 200 frames at
a fixed SNR of 18.9 dB with Avistack, Knox-Thompson and our proposed method. The
relative reconstruction error is overlayed in white.
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Figure 3.8: Simulation: Final reconstructed images (Panel B) after having
processed 200 frames for differently downsampled input images (Panel A)
and various super-resolution factors at a fixed SNR of 18.9 dB. The downsam-
pling and super-resolution factor is abbreviated with DF and SR respectively.
The displayed number corresponds to the relative reconstruction error. The
corresponding video linked by the QR code shows the downsampled input
sequence, the estimated PSFs and the result of our approach with 4x super-
resolution.

images of these sequences together with their corresponding downsampling factors (DF in
Figure 3.8). On each of these three simulations we ran our algorithm with various super-
resolution factors. The results are shown in Panel B of Figure 3.8. The relative errors over-
layed in white are computed by linearly interpolating the reconstructed images to the size
of the ground truth image. The numbers suggest that incorporating super-resolution does
improve the results beyond mere interpolation, which validates the merits of our approach.

http://www.youtube.com/embed/oVeopgtRgUs?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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3.6 Controlled Lab Experiments
To verify and evaluate our approach in the case of spatially varying blur, we recorded several
image sequences under controlled conditions. For these experiments we mounted a Canon
EOS 5D Mark II camera equipped with a 200 mm zoom lens on a tripod on a platform roof
and captured a static scene through hot air exhausted by the building’s vent, which could
be closed to take sharp images of the same scene. The sequences consist of 100 frames
degraded by spatially varying blur (each with an exposure time of 1/250s).

...
...

...

Chimney Building Books

Our approach Ground truth

Figure 3.9: Controlled Experiments: The left
column shows typical recorded frames, the
righ column compares the results from the
OBD reconstruction to the ground truth im-
ages. The linked video shows the raw se-
quences and the result of our approach com-
pared with the ground truth data.

http://www.youtube.com/embed/Dz2N-S4XYLc?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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Figure 3.9 shows typical frames, the reconstructed images as well as the ground truth
images. The images of the chimney and the building sequences have size 237× 237 pixels,
the images of the books sequence have size 109 × 109 pixels. For all three sequences we
choose a Bartlett-Hanning window with 50% overlap. We modelled the space-variant PSF
with 3×3 local filters. The right panel of Figure 3.9 compares our reconstructed images (left
column) with the sharp ground-truth images. For all three image sequences the reconstructed
images reveal great faithfulness in detail and high-frequency structure confirming both our
image model and the presented blind deconvolution algorithm.

3.7 Results on Astronomical Data
We now present results of our algorithm on a variety of actual astronomical data. Some
of the images were taken with an off-the-shelf 12-inch f/10 MEADE LX200 ACF Schmidt-
Cassegrain telescope, some with the 24-inch f/8 Hypergraph Cassegrain telescope “Ganymed”
of the Capella Observatory located on Mount Skinikas in Crete, Greece. The data consists of
short-exposure imagery of star constellations, the lunar Copernicus crater, as well as long-
exposure deep-sky images. We compare our results against state-of-the-art methods used by
both amateur and professional astronomers, and show that our method yields competitive if
not superior results in all case studies.

3.7.1 Binary Star

The first dataset is an image sequence of the binary star system Epsilon Lyrae 2 of the
constellation Lyra with an angular separation of 2.3” and a relative magnitude of 1.08. As
we know precisely what to expect, our results on this dataset serve as an additional proof of
concept. The sequence consists of 300 frames, each 132× 112 pixels in size, taken with

Figure 3.10: Binary star system Epsilon Lyrae 2: typical observed image y300 (left), re-
construction x after 300 iterations (middle), estimated PSFs f300 for each colour channel.
Note the subtle differences in the PSFs due to wavelength dependent diffraction. Hence, the
colour channels are not perfectly aligned.
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t yt = ft ∗ xt

1 =

2 ≈ ∗

3 ≈ ∗

4 ≈ ∗

...
...

...
...

39 ≈ ∗

40 ≈ ∗

Figure 3.11: Binary star system Epsilon Lyrae 2: schematic illustration of the
temporal evolution. From left to right: observed image yt (left), estimate of
the corresponding PSF ft and reconstruction xt after t time-steps. The linked
video shows the original image sequence.

http://www.youtube.com/embed/MzVMrmWWgYU?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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a 24-inch Cassegrain telescope at the Capella Observatory and an Imaging Source DFK
31BU03 CCD camera; the image scale was 0.06” per pixel. The seeing was estimated to
FWHM ≈ 0.8”, corresponding to a Fried parameter of ro ≈ 20cm at a wavelength of
λ = 500nm.

Figure 3.11 shows in three columns the first four and the last two of the first 40 frames
of the processed sequence and illustrates schematically how our method works. Each row
shows from left to right the observed image yt, the corresponding PSF ft estimated by our
algorithm and the current estimate xt of the true image we want to recover. The PSF is
chosen to be of 30× 30 pixels.

The image x is initialised by the first observed frame y1. Then f2 is estimated from the
second observed frame y2 and the current estimate of x. After that we improve the estimate
of x by means of (3.10) and proceed with the next observed frame. Figure 3.11 shows nicely
that already after 40 frames we obtain a good reconstruction.

Figure 3.10 shows an enlarged version of the result of our algorithm after 300 iterations
along with the estimated PSFs for each colour channel. Note how blurry the observed image
yt is (left), while our estimate of x is almost free of any degradation (middle). Furthermore,
we see that both stars have almost identical diffraction patterns which strongly resemble
the estimated PSFs (shown on the right for each colour channel). This finding justifies our
assumption about a constant PSF for the whole image. From the final reconstructed image
we determined a separation of 2.28” and a magnitude ratio of 1.08, which is in excellent
accordance with the literature.

3.7.2 Copernicus Crater
To evaluate our algorithm on an extended celestial object, we applied it to a sequence of short
exposures of the Copernicus crater, a prominent lunar crater located in eastern Oceanus
Procellarum. The original recording was taken with a 14-inch f/10 Celestron C14 and a
DMK 31 AF03 CCD camera from Imaging Source at a frame rate of 30fps near Frankfurt,
Germany (courtesy Mario Weigand). It consists of 2350 frames in total, where each frame
is 1024 × 768 pixels in size. To begin with we focus on an isoplanatic patch. To meet our
assumption of a constant PSF, we processed only a small image patch of 70 × 70 pixels,
which corresponds to a angular size of 0.92”. In this field of view the PSF is assumed to be
constant, which is a valid assumption for the seeing conditions at the time of recording.

The top row of Figure 3.12 shows the selected region of the central peak in the Coper-
nicus crater and typical observed frames. The image patches were aligned on a pixel scale
before processing to reduce computational costs4. For reconstruction all 2350 observed
frames were taken into account.

The bottom row of Figure 3.12 shows a comparison of different reconstruction methods.
Panel (a) of Figure 3.12 shows the visually best observed frame, Panel (b) a reconstruction
with AviStack (Theusner, 2009), for which the best ten frames were taken into account. In
Panel (c) a Knox-Thompson reconstruction is shown, which was done with Stelzer (2009)
using 300 Knox-Thompson and 100 triple correlation phase pairs. Finally, Panel (d) shows

4Note, that a PSF can account for translational motion but necessitates a PSF size as large as the translation
amplitude, which might increase the computational cost for severe motion.
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overview example sequence of 12 observed frames

(a) best frame (b) AviStack (c) Knox-Thompson (d) our approach (e) our approach
2x super-resolved

Figure 3.12: Copernicus Crater: Top panel: Full frame with extracted image patch marked
by white square (left) and example sequence of 12 observed frames. Bottom panel: com-
parison of results of different reconstruction algorithms (from left to right): visually best
frame, AviStack (best, Knox-Thompson, our approach and our approach with two times
super-resolution. All image results are shown without any image enhancement. This figure
is best viewed on screen, rather than in print.

the result of our basic algorithm and Panel (e) the result two times super-resolved. In all
cases no further post-processing was performed.

As before, within a single isoplanatic patch the result of AviStack does not to seem to be
considerably better than the visually best observed frame. In contrast, the Knox-Thompson
reconstruction reveals greater detail and higher spatial resolution. Subjectively, our result is
comparable in quality and resolution to the Knox-Thompson reconstruction. The two times
super-resolved reconstruction seems to reveal even more detail.

Beyond the isoplanatic patch. To investigate the capabilities of our approach assuming
a non-uniform imaging model, we extended the field of view to 227 × 227 pixels in size,
which corresponds to an angular size of approximately 16”. Despite the good seeing con-
ditions at the time of recording, this field of view is beyond the isoplanatic patch and thus
a spatially varying PSF is needed to describe the image deformation caused by the atmo-
sphere. Again, the bottom row of Figure 3.13 shows from left to right the subjectively best
observed frame, a reconstruction with AviStack (Theusner, 2009), a Knox-Thompson recon-
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struction (Stelzer, 2009) (using 300 Knox-Thompson and 100 triple correlation phase pairs),
the result of our approach assuming an invariant imaging model (with PSF size 31×31 pixels
and Tikhonov regularisation for PSF estimation), and the result of our approach assuming a
non-uniform imaging model. We modelled the recorded frames as an EFF with 3× 3 local
filters of size 31 × 31 pixels and a Bartlett-Hanning window of size 128 × 128 with 50%
overlap to model the spatially varying blur. For none of the method further post-processing
was performed.

Not surprisingly, the reconstruction with AviStack is only slightly better than the visually
best observed frame. By comparison, the result of the Knox-Thompson method reveals
greater detail and higher spatial resolution. Despite the violated assumption of isoplanacity,
the reconstructed image modelled by a single PSF is comparable in quality to the Knox-
Thompson reconstruction. Compared to the previous images, our estimated image under
the assumption of a spatially varying PSF shows even more detail and reveals structure
unresolved in the previous images.

Visually best AviStack Knox-Thompson OBD with OBD with EFF
frame invariant PSF

Figure 3.13: Copernicus Crater: top row shows typical observed frames; the
bottom row shows from left to right: the visually best frame, result of AviStack,
a Knox-Thompson reconstruction, OBD with uniform PSF and non-uniform
PSF. The linked video shows the input sequence as well as the result of our
approach together with the estimated PSFs.

3.7.3 Orion Trapezium
In this experiment, we used a 12-inch f/10 Meade LX200 ACF Schmidt-Cassegrain tele-
scope and a AVT PIKE F-032B uncooled CCD camera to record a short video (191 frames
acquired at 120 fps) of the Trapezium in the constellation Orion. The exposure time of the in-
dividual frames was sufficiently short to “freeze” the atmospheric turbulence and thus retain
the high-frequency information which is present in the atmospheric PSF–see Figure 3.14a
for sample frames.

The Orion Trapezium is formed by four stars ranging in brightness from magnitude 5 to
magnitude 8, with angular separations around 10” to 20”. Here it should be mentioned that

http://www.youtube.com/embed/z0zE6f-BN2M?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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Figure 3.14: Orion Trapezium Cluster: example sequence of observed frames, y1, . . . , y6.
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Figure 3.15: Orion Trapezium
Cluster (from left to right): (a)
the first observed frame, (b) x191

for basic algorithm, (c) x191

for saturation corrected, and (d)
x191 for saturation corrected and
four times super-resolved. Top
row shows the overall trapezium;
bottom row shows the brightest
star enlarged. Panel (e) shows
the stellar profiles at the posi-
tions indicated by the coloured
lines in plots (a)-(d). The linked
video shows the original image
sequence with a closeup of the
overexposed image region.
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http://www.youtube.com/embed/NfvTvKvGMT8?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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our assumption of a constant PSF throughout the field of view is strongly violated. How-
ever, by resorting to early stopping in this case, we avoid over-fitting the PSF. The first row
of Figure 3.15 shows from left to right (a) an enlarged unprocessed frame, (b) the decon-
volution results obtained by our basic algorithm, (c) the result using the proposed method
to handle saturation, and (d) the results if we additionally apply the proposed method for
four times super-resolution. The bottom row shows a closeup of the brightest star within the
Trapezium. Panel (e) of Figure 3.15 shows the star profiles obtained by slicing as indicated
by the coloured lines in the image stamps (a)–(d).

An important application in astronomy is the measurement of the brightness of stars
and other celestial objects (photometry). To this end, a linear sensor response is required
(for our purposes, the used CCD sensor may be assumed linear). The intensity counts can
then be translated into stellar magnitudes. Clearly, this is not directly possible for stars
that saturate the CCD (i.e., where so many photons are recorded that the capacities of the
pixels are exceeded). However, we can use the proposed method for deconvolution with
saturation correction and reconstruct the photon counts (image intensities) that would have
been recorded had the pixels not been saturated; then we convert these into ratios between
star intensities, i.e. differences between stellar magnitudes. For the difference between two
star magnitudes, we use the formula m1 −m2 = −2.5 log10 p1/p2 where p1 and p2 are the
pixel values of two stars in the reconstructed image. We do this for all Trapezium stars
relative to the brightest star C and obtain encouraging results (see Table 3.2).

Star C (ref.) A B D
True magnitude 5.1 6.7 - 7.5 8.0 - 8.5 6.7

A-C B-C D-C
True magnitude differences 1.6 - 2.4 2.9-3.4 1.6
Est. diff., deconv. w/o sat. cor. 0.2936 1.4608 -0.0964
Est. diff., deconv. w. sat. cor. 1.1955 2.7718 0.8124

Table 3.2: True star magnitudes (note that stars A and B have variable magnitudes), true
differences to star C, and estimated difference values estimated after deconvolution without
and with saturation correction. Note that the results with saturation correction are closer to
the true differences.

3.7.4 Globular Cluster M13
M13 is a globular cluster in the constellation Hercules, around 25,000 light years away, with
an apparent size of around 20’. It contains several 100,000 stars, the brightest of which has
an apparent magnitude of 12. Such faint stars cannot be imaged using our equipment for
short exposures; however, long exposures with budget equipment typically incur tracking
errors, caused by telescope mounts that do not perfectly compensate for the rotation of the
earth. In our case, the tracking errors induced a significant motion blur in the images, which
we attempted to remove using the same algorithm that we used above on short exposures. All
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Figure 3.16: Globular cluster M13: (left) example observed frame, (right) result of satura-
tion corrected, two times super-resolved multi-frame blind deconvolution; (top) overview,
(bottom) closeup. For better display the images have been automatically gamma corrected.

raw images were recorded using a 12-inch f/10 MEADE LX200 ACF Schmidt-Cassegrain
telescope and a Canon EOS 5D digital single lens reflex (DSLR) camera. The whole se-
quence consists of 26 images with an exposure time of 60s each. The top row of Figure 3.16
displays a long exposure with motion blur (left panel and the twice super-resolved result of
our algorithm (right) applied to 26 motion degraded frames. In the bottom row we clearly
see details in our reconstructed image (right) which where hidden in the recorded frames
(left). However, note that in the bottom right panel there appear also some JPEG-like arti-
facts which might suggest that 26 frames were not enough for two times super-resolution.
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3.8 Results on Non-Astronomical Data
In the following section, we show some results on non-astronomical imagery. First, we
apply our algorithm to some benchmark data for MFBD with incorporated super-resolution
and compare against state-of-the-art in the field. Secondly, we apply our proposed algorithm
to medical imaging data, where we enhance a sequence of MRI images.

3.8.1 Benchmark Datasets
The method most closely related to ours is the state-of-the-art blind super-resolution ap-
proach of Šroubek et al. (2008). We compare their method against ours by showing results
on some datasets of S. Farsiu and P. Milanfar5. We show Šroubek et al.’s results as reported
in Šroubek et al. (2008). For brevity we consider only the text dataset (20 frames of size
57× 49) and the disk dataset (20 frames of size 57× 49).

The top rows of Figure 3.17 and Figure 3.18 show typical frames of these sequences. The
bottom rows show the result of our method with increasing super resolution factors (one,
two, four, and eight times). We used the results corresponding to lower super-resolution
factors to initialise for the next higher factor. Already with a factor of two, our results com-
pare favourably with Šroubek’s, which is surprising because our method does not depend
on any detailed image or blur priors like Šroubek’s method. The image obtained using a
factor eight super-resolution is clearly superior to the result of Šroubek et al. (2008), whose
method could not super-resolve beyond a factor of two because of algorithmic instability as
reported in (Šroubek et al., 2008).

3.8.2 MRI of Objects in Motion
The second application addresses the common problem of object motion in Magnetic Reso-
nance Imaging (MRI). MRI is a medical imaging modality for visualising the internal struc-
ture and function of the human body and animals used in preclinical studies. Compared to
Computed Tomography (CT), MRI provides much greater contrast between different soft
tissues, that makes it especially useful in neurological (brain), musculoskeletal, cardiovas-
cular, and oncological (cancer) imaging.

Figure 3.19 shows typical frames of two image sequences of a mouse’s thorax in a pre-
clinical study for contrast MRI. The sequences correspond to two transverse slices at differ-
ent height. Both were taken with a 7 Tesla ClinScan of Bruker and consist of 200 frames,
each 128 × 128 pixel in size. As can be seen from these frames, object motion produces
large blurs and leads to a significant loss in image quality. Besides global object motion also
the heart beat causes local distortions. Both global and local deformations can be described
by our framework for space-variant filtering. Thus we applied our space-variant blind de-
convolution algorithm with 4× 4 PSFs of size 20× 20 pixels (choosing a Bartlett-Hanning
window of size 64 × 64 pixels with 50% overlap). For kernel estimation we imposed ad-
ditional Tikhonov regularisation. Figure 3.19 shows the estimated images of our method.

5Available from: http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.
html.

http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html


3.8. RESULTS ON NON-ASTRONOMICAL DATA 53

(a)

(b) (c) (d)

Figure 1. (a) Shown are three LR frames. (b) The BSR result. (c) The SR result. (d) Optical
zoom reference.

ten corresponding to the ”Text” sequence and Fig. 2(d) the BSR result. Finally, Fig. 2(e) shows
one frame out of ten corresponding to the ”Car” sequence and Fig. 2(f) the BSR result. In all
the cases the SR factor used was 2.

(a) (b) (c) (d) (e) (f)

Figure 2. Superresolution with registration. (a) Shown is one ”Disk” LR frame from the Farsiu
& Milanfar dataset. (b) BSR result. (c) Shown is one ”Text” LR frame from the same dataset.
(d) BSR result. (e) Shown is one ”Car” LR frame from the same dataset. (f) BSR result.

5. Conclusions
This paper presented a SR method which proved to be meaningful for cases when an insufficient
number of input LR images is available to perform SR with only integer factors, such as
two or three. To achieve truly robust methodology applicable in real situations, we adopted
the regularized energy minimization approach, which we solve by an alternating-minimization
scheme. The fundamental improvement on previously proposed SR methods is the notion of
estimating PSFs in the HR scale, which indirectly aligns LR images with subpixel accuracy.
Using registration parameters inside the algorithm instead of registering input images gives
better results and paves the way for including methods of making registration parameters more
accurate during reconstruction of the HR image [31, 36]
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Figure 3.17: Text sequence: typical example frames (top row), results of our
method for blind deconvolution with increasing super-resolution factor com-
pared with Šroubek’s results taken from Šroubek et al. (2008) (bottom row
from left to right). Already at 2x our results appear to be better than Šroubek’s.
Note that Šroubek’s pictures seem to be postprocessed as their background ap-
pears to be darker than that of the input sequence. The linked video shows the
input sequence along with our reconstruction results and the estimated PSFs.
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Figure 1. (a) Shown are three LR frames. (b) The BSR result. (c) The SR result. (d) Optical
zoom reference.

ten corresponding to the ”Text” sequence and Fig. 2(d) the BSR result. Finally, Fig. 2(e) shows
one frame out of ten corresponding to the ”Car” sequence and Fig. 2(f) the BSR result. In all
the cases the SR factor used was 2.
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Figure 2. Superresolution with registration. (a) Shown is one ”Disk” LR frame from the Farsiu
& Milanfar dataset. (b) BSR result. (c) Shown is one ”Text” LR frame from the same dataset.
(d) BSR result. (e) Shown is one ”Car” LR frame from the same dataset. (f) BSR result.

5. Conclusions
This paper presented a SR method which proved to be meaningful for cases when an insufficient
number of input LR images is available to perform SR with only integer factors, such as
two or three. To achieve truly robust methodology applicable in real situations, we adopted
the regularized energy minimization approach, which we solve by an alternating-minimization
scheme. The fundamental improvement on previously proposed SR methods is the notion of
estimating PSFs in the HR scale, which indirectly aligns LR images with subpixel accuracy.
Using registration parameters inside the algorithm instead of registering input images gives
better results and paves the way for including methods of making registration parameters more
accurate during reconstruction of the HR image [31, 36]
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Figure 3.18: Disk data: typical example frames (top row), results of our
method for blind deconvolution with increasing super-resolution factor com-
pared with Šroubek’s results taken from Šroubek et al. (2008) (bottom row
from left to right). Already at 2x our results appear to be better than Šroubek’s.
The linked video shows the input sequence along with our reconstruction re-
sults and the estimated PSFs.

http://www.youtube.com/embed/EJVlcxDf2e0?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
http://www.youtube.com/embed/ZrQE9U5Ulr8?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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More interestingly, our method can be used for effective motion correction, as at each time
step the estimated object image remains at the same position. Dropping the energy con-
straint on the kernel, the estimated PSFs give not only information about the object motion,
but also about the intensity change, which is of mayor interest in contrast or functional MRI.
The right panel of Figure 3.19 compares our results with a state-of-the-art method for non-
rigid registration of Friston et al. (1995). It is clearly evident, that our method recovers more
image details.

Friston et al. OBD reconstruction

Figure 3.19: Typical frames of transverse
slices of a mouse thorax. MRI of objects in
motion: comparison to the non-rigid regis-
tration method of Friston et al. (1995) versus
our approach. The linked video shows the
input sequences and the result of OBD com-
pared with Friston et al.

3.9 Conclusions and Future Work
In this chapter, we proposed a simple, efficient, and effective multi-frame blind deconvolu-
tion algorithm. This algorithm restores an underlying static image from a stream of degraded
and noisy observations by processing the observations in an online fashion. For moderate

http://www.youtube.com/embed/0UD0m-YxYPI?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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signal-to-noise ratios our algorithm does not depend on any prior knowledge other than non-
negativity of the PSFs and the images. Thus, in a sense our reconstruction is unbiased since
no specific image model is enforced. Moreover, our formulation exploits the availability of
multiple frames to incorporate super-resolution and saturation-correction.

We showed results on both simulated and real world astronomical data to verify and
demonstrate the performance of our algorithm. We experimented with not only short-
exposure images where the degradation is caused by atmospheric turbulence, but also with
long exposures that suffer from saturation and additional blur arising from mechanical inac-
curacies in the telescope mount. Our method yields results superior to or at worst compara-
ble to existing frequently used reconstruction methods.

Future work includes further building on the simplicity of our method to improve it to
work in real-time. This goal might be achievable by exploiting fast graphical processing unit
(GPU) based computing. First attempts already yielded promising results (see Section 3.5.
Beyond computing improvements, two other important aspects are: (i) to explore the spatio-
temporal properties of the speckle pattern; and (ii) to incorporate and investigate additional
regularisation within the reconstruction process.
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Chapter 4

Fast Removal of Non-Uniform Camera
Shake

Motion blur due to camera shake is one of the predominant sources of degradation in pho-
tographic imagery. With a few exceptions such as panning photography, camera shake is
unwanted, since it often severely limits the image quality by destroying details. Modelling
camera shake as a space-invariant convolution simplifies the problem of removing camera
shake, but it often insufficiently models actual motion blur as any camera rotation and mo-
tion outside the sensor plane will cause motion blur that spatially varies. Therefore, state-
of-the-art methods for removing camera shake model the blur as a linear combination of
homographically transformed versions of the true underlying image. While this is concep-
tually interesting, the resulting algorithms are computationally demanding. In this chapter,
we develop a fast forward model based on the Efficient Filter Flow (EFF) framework de-
veloped in Section 2, that incorporates the particularities of camera shake. We derive an
efficient algorithm for motion blur removal and show in a comprehensive comparison on a
number of real-world examples that our approach is not only substantially faster, but also
leads to better deblurring results.

This chapter, which is based on material contained in (Harmeling et al., 2010a) and
(Hirsch et al., 2011) is organised as follows: we first give an introduction to the problem
of single image blind deblurring and survey related work in Section 4.1. We start by sum-
marising recent developments of single image Blind Deconvolution (BD) algorithms that
assume uniform motion blur. By analysing real camera shake, we point out their limitations
and stress the need for more sophisticated imaging models that are able to express non-
uniform motion blur. Subsequently, we show results for a straightforward approach to the
problem: we extend a state-of-the-art algorithm for removing uniform camera blur to being
capable of expressing non-uniform blur through the incorporation of the EFF framework
(Harmeling et al., 2010a). Despite being able to deblur real-world images, we demonstrate
the limitations of this approach and point out its shortcomings. Other recent approaches,
which remedy some of these shortcomings are based on the so-called Projective Motion
Path Blur (PMPB) model, which was first proposed by Tai et al. (2009, 2010) and subse-
quently refined by Whyte et al. (2010) and Gupta et al. (2010). We give a quick review
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of the PMPB model and discuss its benefits, but also work out its drawbacks. Before we
show how to combine both of these recent developments in Section 4.2, we conclude the
introduction by summarising other relevant work in the field. Afterwards by starting from
first principles, we derive a fast image formation model, which unites the strengths of both
the EFF framework as well as the PMPB model. Based on our fast forward model, we
propose an efficient and robust deblurring algorithm in Section 4.3 and validate our method
in a comprehensive comparison in Section 4.4. To objectively evaluate the performance of
our algorithm, we present a novel experimental setup that allows both the capture of images
with real camera shake and the simultaneous recording of the space-variant point spread
function corresponding to that blur. Details on the implementation and the computational
resources are given in Section 4.5. After a discussion of the presented results and its current
limitations in Section 4.6, we conclude this chapter by giving an outline of future work in
Section 4.7.

4.1 Introduction
Camera motion during exposure is a common problem in handheld photography, as it causes
motion blur that destroys details in the captured photo. Especially images taken under low-
light conditions without flash suffer from motion blur due to the necessity of longer exposure
times.

Single image blind deconvolution or motion deblurring aims at restoring the sharp latent
image from its blurred picture without knowing the camera motion that took place during the
exposure. Blind deconvolution involves many challenging problems, including modelling
the image formation process, formulating tractable priors incorporating generic image statis-
tics, and devising efficient methods for optimisation. This renders it an intriguing but also
intricate task, which has recently seen much attention as well as progress in the computer
vision and graphics community.

4.1.1 Uniform Blur Models

Efforts focusing on the incorporation of prior terms that better model natural image statistics
(Levin, 2006; Levin et al., 2009), as well as the refinement of inference methods (Fergus
et al., 2006; Shan et al., 2008), paved the way for fast and robust deconvolution of motion
blurred images yielding high-quality restoration results (Cho and Lee, 2009; Xu and Jia,
2010). These works assume a stationary or spatially invariant blur model, i.e. the image
of any point source in the object plane is identical. In this case, the point spread function
(PSF) is assumed to be translational invariant and the blurring process can be described
mathematically by a convolution.

Making use of the convolution theorem, which states that a spatial convolution corre-
sponds to a multiplication in Fourier space, a forward operation can be computed efficiently
via the Fast Fourier Transform (FFT) in O(n log n) where n denotes the length of the sig-
nal. The inverse operation, i.e. a deconvolution of the convolved image with a known PSF
for the estimation of the sharp latent image corresponds to a division in Fourier space, be-
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Figure 4.1: Photos taken by a handheld camera exhibiting typical blur due to camera shake
during exposure. Point-like cues reveal a significant spatial variation of the unknown PSF.

ing of the same complexity as the forward model. However, noise in the observed image
renders deconvolution even an ill-posed problem, for perfect knowledge of the PSF, lead-
ing to unwanted noise amplification and ringing artifacts in the reconstructed image (Levin,
2006). Nevertheless, recent works that presented fast algorithms for image and PSF estima-
tion make heavy use of deconvolution via division in Fourier space and effectively suppress
reconstruction artifacts by employing powerful nonlinear filtering techniques (Cho and Lee,
2009; Xu and Jia, 2010) or sophisticated prior terms (Krishnan and Fergus, 2009).

4.1.2 Real Camera Shake

Despite its computational amenities, the assumption of an invariant blur model is also a
common drawback of these methods, as it has been demonstrated to be quite restrictive
(Levin et al., 2009): the blur caused by camera shake usually involves a significant amount of
rotational motion, rendering it non-stationary across the image plane as evident in typically
blurred photos taken by a handheld camera in Figure 4.1.

To illustrate the variation of the PSF across the image plane, we built a device consisting
of light fibres equidistantly affixed on a black hard plastic board (see left panel of Fig-
ure 4.2). A picture taken from front with a handheld camera under typical indoor conditions
depicts the response of the camera to point-like objects which exactly corresponds to the
PSF sampled at discrete sites. The middle and right panel of Figure 4.2 show typical images
obtained with our experimental setup. Evidently, the common assumption of a stationary
PSF is not true. However, what can also be seen is that the PSF varies smoothly across the
image plane.

4.1.3 Non-Uniform Blur Models

The fact that camera shake causes non-uniform blur motivated other works focusing on more
comprehensive image generation models that go beyond the spatially invariant convolution
model and are able to describe space-variant motion blur.
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Figure 4.2: Left panel: Device for illustrating the PSF arising from motion blur caused by
camera shake. Middle and right panel: Typical blur due to camera shake.

4.1.3.1 Efficient Filter Flow Model

Our EFF framework presented in Chapter 2 has been proposed as an imaging model for
expressing PSFs that vary smoothly across the image plane. Therefore, it seems well suited
for the description of motion blur caused by camera shake. The idea is to describe a spatially
varying PSF at discrete sites by a set of localised uniform filter kernels {f (r)|r = 0 . . . R −
1}, which are then – depending on the particular pixel position – linearly combined to yield
a smoothly varying blur. The weighting coefficients for the interpolation of neighbouring
filters can follow arbitrary nonlinear functions, being only restricted by the requirement that
the sum of weights at each pixel has to be one.

For efficient computation the image is first partitioned into p overlapping patches of size
q, each of which is then modulated by its corresponding weighting function w(r). After hav-
ing applied the assigned filter kernel f (r) at each image patch, the blurred image fragments
are combined according to the overlap and add method of Stockham (1966), i.e.

yi =
R−1∑
r=0

k−1∑
j=0

f
(r)
j w

(r)
i−j xi−j for 0 ≤ i < n (4.1)

with w(r) ≥ 0 and
∑R−1

r=0 w
(r)
i = 1 for 0 ≤ i < n.

Although the interpolation weights w(r) can be arbitrary non-linear functions, the trans-
formation itself is still linear in its parametrising filters f (r) and the image x, i.e. there exist
matrices F and X such that y = Fx = Xf in agreement with the linear system theory
of incoherent imaging. Here, f denotes the column vector obtained by stacking all filter
kernels {f (r)|r = 0 . . . R − 1}. In (Hirsch et al., 2010) or Section 2.3.3 also expressions
for efficient implementation of F and X and their transpose matrices are derived that allow
computation in O(n log q) with n and q denoting the number of pixels in the image and each
patch respectively. In summary, the EFF framework implements space-variant convolutions
which are almost as efficient to compute as space-invariant convolutions, while at the same
time being much more expressive.

Discussion. As demonstrated in Figure 4.3, the EFF framework is able to approximate real
camera shake with as few as 3 × 3 filters. As we would expect, an increase in the number
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Figure 4.3: A small set of sampling sites or localised filters can parametrise smoothly vary-
ing blur: (left) grid photographed with real camera shake, (middle) regular point grid blurred
by the EFF framework parametrised by 4× 5 (top right) and 3× 3 filters (bottom right).

of local support sites or filters used for parametrising the EFF improves the quality and
accuracy of the approximation. Evidently, the higher the spatial variation of the motion
blur, the more filters are needed to describe the corresponding PSF. Although only a single
instance of a PSF due to camera shake is shown, the EFF model seems well suited for
describing real motion blur.

In (Harmeling et al., 2010a), we extended the method of Cho and Lee (2009), who pre-
sented a very efficient and robust BD algorithm for uniform blur, by incorporating the EFF
framework for being able to describe non-uniform motion blur. Although we succeeded
in removing motion blur due to camera shake from several real-world images, our method
performs poorly in cases where the spatial variation of the blur is too severe. This is due to
the fact, that there is no global constraint on the estimated filters that parametrise the motion
blur describing EFF. Despite the employment of a smoothness constraint on neighbour-
ing filters and the introduction of a propagation step, that replaces bad estimates by their
neighbouring filters, image regions with little structural information inevitably spoil PSF
estimation. Another shortcoming of this approach is that the parameters of the EFF have to
be adjusted manually. Admittedly, the method only works if a good trade-off between the
patch size and overlap can be found, making it vulnerable and less robust.

Therefore, although being able to express camera shake, the EFF framework is too gen-
eral in the sense that the space of admissible PSFs is too large. Enforcing similarity (in a L2
sense as in Harmeling et al. (2010a)) between neighbouring filters is not sufficient to rule
out unphysical PSFs and to capture the smooth shape variation of real motion blur.
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4.1.3.2 Projective Motion Path Blur Model

The PMPB model tailored for capturing motion blur due to camera shake was first proposed
in (Tai et al., 2009, 2011) and subsequently refined in (Whyte et al., 2010) and (Gupta
et al., 2010). In this model, the observed blurred image is viewed as an integration of all
images seen by the camera during exposure time. Under the pinhole model of a camera,
all of these views can be obtained from the sharp scene by a 2D projective transformation
(homography), each of which corresponds to a particular camera pose. Each camera pose is
parametrised by a six-dimensional vector with three entries defining its position in space and
three entries specifying its orientation. The space of possible camera poses has been named
Camera Pose Space by Gupta et al. (2010), which we will denote by P in the following.
While the shutter is open, the camera undergoes a sequence of different camera poses, which
corresponds to a one-dimensional trajectory in Camera Pose Space (CPS). Discretising P ,
the captured image y is a summation of all the projectively transformed versions of the sharp
image x, each weighted by µθ corresponding to the proportion of time the camera spent in
that pose, i.e.

y =
∑
θ∈P

µθ x(Hθu). (4.2)

Here, Hθ denotes the projective transformation that warps the sharp latent image x to the
image seen by the camera in pose θ. The coordinates in the image and object plane are
related by the corresponding homography

Hθ = C
(
Rθ + Tθ

n

d

)
C−1, (4.3)

where C denotes the parameter matrix of the camera intrinsics and Rθ and Tθ the rotation
matrix and the translation vector for camera pose θ, respectively; n and d define the normal
vector of and the distance to the object plane. The set of all possible projective transforma-
tions {Hθ|θ ∈P} constitutes a basis which has been named the Motion Response Basis by
Gupta et al. (2010) and which we abbreviate as B. The Motion Response Basis (MRB) does
not need to cover the entire six-dimensional CPS, but might consist of a lower dimensional
subset. Whyte et al. (2010) restrict themselves to rotations only, while Gupta et al. (2010)
consider in-plane translations (instead of pitch and yaw) and in-plane rotations (roll). Given
a particular MRB, the weighting vector µθ uniquely defines the motion blur by encoding the
sequence of camera poses the camera passed through during exposure. Therefore, Whyte
et al. (2010) calls it blur kernel analogue to the space-invariant case, while Gupta et al.
(2010) refer to it as a Motion Density Function, a term which we will adopt in the following
exposition.

Discussion. The PMPB model offers an intuitive and compact representation for space-
varying motion blur due to camera shake. By modelling the camera motion explicitly, only
physically meaningful blur is attained. PSF estimation is equivalent to finding the latent
Motion Density Function (MDF) in camera pose space.

Despite its allure from a physical modelling point of view, this approach suffers from
high computational cost. With each update of the latent image during kernel estimation as



4.2. FAST FORWARD MODEL FOR NON-UNIFORM CAMERA SHAKE 63

many projective transformations as allowed camera poses (i.e. elements in the MRB) have
to be computed, each of the order O(n2). Even for medium sized images, a computational
time of several hours is reported in (Whyte et al., 2010) and (Gupta et al., 2010) for image
deblurring, rendering these approaches practically unattractive especially when compared to
the recently proposed fast motion deblurring algorithms for stationary motion blur (Cho and
Lee, 2009; Xu and Jia, 2010), which operate in a few minutes even for Mega-pixel images.

4.1.4 Other Related Work

The problem of removing blur caused by space-invariant convolution, i.e. uniform blur has
been studied extensively for a long time. Early works include those of e.g. Richardson
(1972) and Lucy (1974), which date back to the early 70s. See (Kundur and Hatzinakos,
1996) for an overview of related methods.

For BD of single photographs, Fergus et al. (2006) combined the variational approach of
Miskin and MacKay (2000) with natural image statistics (Field, 1994). Shan et al. (2008),
Cho and Lee (2009) and Xu and Jia (2010) refined their approach using carefully chosen
regularisation and fast optimisation techniques, see also (Levin et al., 2009) for a compre-
hensive overview of these and related approaches.

However, all these methods assume a uniform blur model based on space-invariant con-
volution, which is a severe limitation as discussed above. This motivated work on non-
uniform blur models which we already discussed in detail in the previous section (Tai et al.,
2009, 2011; Whyte et al., 2010; Gupta et al., 2010; Harmeling et al., 2010a).

Other generalisations of the uniform blur model consider object motion instead of cam-
era motion: Levin (2006) is able to deblur objects that move linearly, such as a bus that
drives from left to right. Shan et al. (2007) focus on blurs in the image due to rotating
objects, such as propellers.

Hardware approaches to obtain sharper images are based on manipulating the way im-
ages are taken, exemplary we mention: Yuan et al. (2008) reconstruct a single sharp image
from a pair of blurred and noisy images. While Raskar et al. (2006) encodes the movement
of objects by “fluttering” the shutter, Cho et al. (2010) is able to remove linear object motion
by capturing two images of the scene with a parabolic motion in two orthogonal directions .
Joshi et al. (2010) exploit inertial measurement sensor data to recover the true trajectory of
the camera during exposure.

4.2 Fast Forward Model for Non-Uniform Camera Shake
Is there a way to combine the strengths of both approaches, i.e. the computational efficiency
of the EFF framework and the benefit of the PMPB model arising from modelling the camera
motion explicitly? In other words, is it possible to constrain the EFF such that the space of
admissible PSFs corresponds to physically meaningful motion blur only?

Actually, the solution to this issue is directly related to the superposition principle of in-
coherent imaging: by knowing the impulse response of the optical system to point objects,
the system is fully determined. Hence, by knowing how individual point objects transform
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PMPB model applied to latent image PMPB model applied to regular point grid

Figure 4.4: The effect of the PMPB model (Equation 4.10) applied to a latent image (left
panel) and a regular point grid (right panel) is visualised. Here we restricted the camera
motion to pitch and yaw only. In this case, the Motion Density Function that specifies how
much time the camera spent in a certain pose is two dimensional, depicted in the lower left
corner of each panel. The result is obtained as a weighted sum of the different projections.

under motion blur, we can fully describe the imaging process. As we demonstrated in Fig-
ure 4.3, knowing the PSF at a few equidistant sites suffices for the EFF framework to model
real motion blur. For this reason, all we have to study is how a point grid behaves under
all possible projective transformations of the MRB, which the PMPB model readily tells us.
Once we know this, we can compose the filters that parametrise the EFF as a weighted sum
of the projectively transformed point grids, where the weighting corresponds to the MDF.
Figure 4.4 visualises this idea and contrasts the effect of the PMPB model on both a latent
image and a regular point grid. The weighted composition of the projectively transformed
point grids forms the spatially varying PSF (upper left corner in right panel of Figure 4.4),
whose effect on the latent image can then be computed by the EFF framework. Figure 4.5
provides a schematic overview of the proposed forward model. In other words, the set of
projectively transformed point grids serves as a basis for the filters of the EFF, which allows
globally consistent motion blurs only. We call this basis Reduced Motion Response Basis,
as each of these projectively transformed point grids parametrises via the EFF an element
Hθ of the MRB. Another view point on this is that each projective transformation can be
approximated by an EFF transformation. In the extreme, where we choose the patch size
of the EFF to be a single pixel and take as many filters as pixels in the latent image to
parametrise the EFF, we yield the MRB of Gupta et al. (2010). With having outlined the
idea of our proposed fast forward model, we will provide a more formal derivation in the
following section.
4.2.1 Derivation
The starting point of our derivation is the incoherent imaging equation that describes how
an image x(ξ, η) : Σ1 ⊂ R2 → R is transformed by an optical system characterised by the
impulse response or PSF f(u, v; ξ, η): Σ1 × Σ2 → R, yielding an image of the observed
scene y(u, v): Σ2 ⊂ R2 → R in the image plane:

y(u, v) =

∫∫
Σ1

f(u, v; ξ, η) x(ξ, η) dξ dη. (4.4)
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Figure 1: The values of the Motion Density Function (bottom left, plotted with plot nonuni kernel.m from Oliver Whyte;
exemplarily, rotation around the optical axis (roll) and in-plane translations are depicted only) correspond to the time spent
in each camera pose. Linearly combined with the blur kernel basis (bottom right), it yields a non-uniform PSF (top middle)
which parametrises the EFF transformation allowing fast computation. By construction, our forward model permits only
physically plausible camera motions. The blur kernel basis has to be computed only once and allows a memory saving sparse
representation. The dimensionality and size of the blur kernel basis depends on the motion considered. For translational
motion only, the model reduces naturally to the uniform blur model. In this case the Motion Density Function equals the
invariant PSF.

basis (with Eq. (2)) and then run the fast implementation of
EFF detailed in Hirsch et al. [7]. Similarly we can obtain
fast implementations of the MVMs with MT and AT.

The homography calculations on the point grid p are pre-
computed, and neither required after updating the blur pa-
rameters µθ nor after updating the estimate of the sharp im-
age estimate. This fact is essential for our method’s fast run-
time. Fig. 2 compares the run-time of our forward model
in dependence of both the image and blur size for camera
shake to Whyte et al. [24]. There, the computation of a
forward model consists of making d homographies on an
image with n pixels, which means a complexity ofO(n ·d).
Since our model uses the EFF, the complexity isO(n·log q)
with the number q of pixels in a patch [6], which depends on
the image and PSF sizes. The disadvantage in log q is eas-
ily outweighted even for a small number of homographies.
Furthermore, Fig. 3 shows that our fast forward model can
approximate the non-stationary blur of Whyte and Gupta
almost perfectly with as little kernels as 16× 12 for an im-
age of size 1600× 1200 pixels. We mention in passing that
the blur kernel basis can be represented as sparse matrices

which require less memory than storing large transforma-
tion matrices as done by Gupta et al. [5].

4. Deconvolution of non-stationary blurs
Starting with a photograph g that has been blurred by

camera shake, we recover the unknown sharp image f in
two phases: (i) a blur estimation phase for non-stationary
PSFs, and (ii) the sharp image recovery using a non-blind
deconvolution procedure, tailored to non-stationary blurs.
In the following, we will describe both phases in detail and
where appropriate we explicitly include the values of hyper-
parameters that determine the weighting between the terms
involved. These values were fixed during all experiments.

4.1. Blur estimation phase

In the first phase of the algorithm, we try to recover the
motion undertaken by the camera during exposure given
only the blurry photo. To this end, we iterate the following
three steps: (i) prediction step to reduce blur and enhance
image quality by a combination of shock and bilateral filter-

Figure 4.5: Illustration of our unified approach for modelling motion blur due to cam-
era shake. The values of the Motion Density Function (bottom left, plotted with
plot_nonuni_kernel.m from Whyte et al. (2010)) correspond to the time the camera spent
in each pose. Linearly combined with the blur kernel basis (bottom right), it yields a non-
uniform PSF (top middle) which parametrises the EFF transformation allowing fast com-
putation. By construction, our forward model permits only physically plausible camera
motions. The blur kernel basis has to be computed only once and allows a
memory saving sparse representation. The dimensionality and size of the
blur kernel basis depends on the motion considered. For translational motion
only, the model reduces naturally to the uniform blur model. In this case the
Motion Density Function equals the invariant PSF.

The pairs (u, v) and (ξ, η) denote the coordinates in the image and object plane, Σ1 and
Σ2, respectively. For ease of exposition, we will abbreviate (u, v) by u and (ξ, η) by ξ in
the following discussion. This equation is known as the superposition integral (Goodman,
2005), which states that the image of a static scene can be computed as the integral or
weighted sum of point objects, i.e. as the weighted superposition of the object intensity x
and the PSF of the optical system.

Model assumptions. Since we want to focus on modelling the effect of camera shake on
the PSF, we assume an ideal imaging system and disregard any effects of magnification and
lens aberrations on the PSF in the following. In particular we assume that the PSF of a
perfectly steady camera is translation invariant and a delta function, i.e.

f(u; ξ) = δ(u− ξ) ≡ δ(x− ξ, y − η). (4.5)

In addition to the assumption of an ideal optical system, we assume that the underlying scene
is static, i.e. x 6= x(t) where t denotes time. In other words, we consider no object motion

http://www.youtube.com/embed/9DoANi_o0s0?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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but restrict ourselves to ego or camera motion only. For such an ideal, i.e. aberration-free
optical system, the object and the image are identical, because

y(u) =

∫ ∞
−∞

δ(u− ξ)x(ξ) dξ = x(u). (4.6)

Hence, each point in the object plane is mapped to a single point in the image plane, yielding
a sharp image of the static scene being captured.

Derivation of PMPB model. When taking a photo, we expose the image sensor of the
camera to the light emitting scene only for a certain period of time. Typically, if we take a
photo under low light conditions or want to capture faint objects as e.g. in astronomy, we
will choose a longer exposure time T 1. While the shutter is open during exposure, each
photosensitive element of the sensor or pixel accumulates photons arriving from the object
plane through the optics on the camera sensor. However, if the camera and therewith the
image sensor undergoes any motion during that time, a light ray emitted from a single point
from the object plane will not converge to a single point in the image plane any more.
Instead, its photons will hit and activate a trace of neighbouring pixels yielding a blurred
image.

In general, camera shake can be viewed as moving the camera along some three-dimen-
sional trajectory in space during exposure. Since at each position the camera can point in
any direction, the full camera motion is described by a six-dimensional curve as already
mentioned above. At each instance in time t with 0 ≤ t ≤ T , each point u in the object
plane is mapped by some homography H(t) to a point ξ(t) = H(t)u in the image plane.
By integrating along that trajectory we obtain the PSF that describes the camera shake, i.e.

f(u; ξ) =

∫ T

0

δ(H(t)u− ξ) dt. (4.7)

Note, that (4.7) is no longer spatially invariant in contrast to (4.5). Plugging expression (4.7)
into Equation (4.4), integrating out the delta function w.r.t. ξ, and discretising we obtain

y(u) =

∫ T

0

x(H(t)u) dt ≈
T∑
t=0

x(Htu), (4.8)

which is the forward model of Tai et al. (2009).

Derivation of time-agnostic model. The Riemannian integral in Equation (4.7) can be
equivalently expressed as a Lebesgue integral,

f(u; ξ) =

∫
P

δ(H(θ)u− ξ) dµ(θ), (4.9)

1Of course, another option would be to increase the sensitivity of the sensor by choosing a higher ISO
setting. However, this often leads to a undesirable noise in the recorded photo. There is a subtle trade-
off between having to accept noise or blur when taking a photo under low light conditions. For a detailed
discussion we refer to (Hasinoff, 2008).
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where all (now pair-wise different) homographies H(θ) are parametrised by θ (and not by
a time index t) and the Lebesgue measure dµ(θ) weights the contributions of the different
homographies according to the amount of time the camera spent in the corresponding pose
during exposure. The integration domain is the entire CPS. Plugging Equation (4.9) into
Equation (4.4), integrating the delta function w.r.t. ξ, and discretising we obtain

y(u) =

∫
P

x(H(θ)u) dµ(θ) ≈
∑
θ∈P

µθ x(Hθu), (4.10)

where we discretised CPS and µθ is the weight of the corresponding homography. This is
the forward model of Whyte et al. (2010) and Gupta et al. (2010). Whyte et al. (2010) calls
the imaging model Equation (4.10) time-agnostic since all temporal information has been
eliminated.

PSF basis. Despite its plausibility from a physical modelling point of view, the PMPB
model (Tai et al., 2009; Whyte et al., 2010; Gupta et al., 2010) suffers from high computa-
tional cost since as many homographies as considered camera poses need to be computed for
each forward modelling, as discussed above and sketched in the left panel of Figure (4.4).
For realistic PSF sizes, the number of projective transformations is in the order of ten thou-
sands, leading to a computation time in the order of minutes for realistic image sizes, even
with compiled C code2, which renders this approach practically unattractive. As outlined
above, one possible solution to this issue is to decouple the image from the costly compu-
tation of its projectively transformed versions by studying the effect of the camera shake on
a regular point grid. To this end, we first decompose the sharp image x(ξ) into overlapping
patches

x(ξ) =
R−1∑
r=0

w(r)(ξ)x(ξ), (4.11)

where the finite set {w(r)|r = 0, . . . , R − 1} is a partition of unity, i.e.
∑R−1

r=0 w
(r)(ξ) = 1

and each w(r) : Σ1 → R is a weighting function. In particular, we choose the partition
to be a regular tiling over the integration domain such that the centre of each weighting
mask w(r) lies on a regular grid and selects a small image region of x only, thereby setting
everything else to zero. Furthermore, we choose thew(r) to be smooth functions without any
discontinuities or abrupt changes. To each image patch we can apply a convolution with a
local delta function δ(r)(ξ−ξ′) centred at the support of each w(r) without actually changing
anything. Hence, we obtain the identity:

x(ξ) =
R−1∑
r=0

∫
Ωr

δ(r)(ξ − ξ′)w(r)(ξ′)x(ξ′) dξ′, (4.12)

where Ωr denotes the support of w(r), i.e. Ωr = supp
(
w(r)

)
3. Plugging this identity and

expression (4.9) into Equation (4.4), then swapping integrals and summation, and integrating
2The blurring of an image of size 1200× 1600 pixels with a PSF size of 21× 21 pixels, takes about 180s

with the compiled C code of Whyte et al. (2010).
3See (Königsberger, 2002, 359ff) for integration by using a partition of unity.
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the delta peaks w.r.t. ξ we get

y(u) =

∫
Σ1

∫
P

δ(H(θ)u− ξ)dµ(θ)︸ ︷︷ ︸
=f(u; ξ)

R−1∑
r=0

∫
Ωr

δ(r)(ξ − ξ′)w(r)(ξ′)x(ξ′) dξ′︸ ︷︷ ︸
=x(ξ)

dξ

=
R−1∑
r=0

∫
Ωr

∫
P

δ(r)(H(θ)u− ξ′) dµ(θ) w(r)(ξ′)x(ξ′) dξ′

=
R−1∑
r=0

∫
Ωr

∫
P

δ(r)(H(θ)u− ξ′)︸ ︷︷ ︸
≡b(r)θ (u;ξ′)

dµ(θ) w(r)(ξ′)x(ξ′) dξ′

=
R−1∑
r=0

∫
Ωr

f (r)(u; ξ′)w(r)(ξ′)x(ξ′) dξ′, (4.13)

where the newly introduced function b
(r)
θ (u; ξ′) form the basis for PSFs due to camera

shake. Linearly combined according to the measure dµ(θ), they constitute the local filters
f (r)(u; ξ′) that are patch-wise convolved with their corresponding image patches. Equa-
tion (4.13) allows efficient computation via the EFF framework, which will become more
evident after discretising the involved quantities.

Discretisation and EFF. In practice, a picture y taken with digital cameras is a matrix of
sensor values, i.e. it is a discrete object. Without loss of generality we can consider y, x, f ,
and w(r) as vectors with entries yi, xj , fi,j and w(r)

j , where we replaced u by i and ξ by j.
Similarly, discretising CPS will yield a vector µ with entries µθ. Assuming the PSF to have
locally bounded support, we can also represent b(r)

θ as finite-length vectors with entries b(r)
θ;i,j .

This allows us to rewrite Equation (4.13) in its discrete form:

yi =
∑
θ,r,j

µθ b
(r)
θ;i,j w

(r)
j xj. (4.14)

We note that this equation is linear in x and also in µ, i.e. we can define matrices M and F ,
such that

y ≡ µ � x = M x = F µ, (4.15)

where we introduced the symbol � for denoting our proposed fast forward model.
Equation (4.14) is an instance of an EFF. Therefore, analogously to Section 2.3.3, the

forward model in Equation (4.14) can be written in matrix notation as

y = ZT
y

∑
r

ET
r FH diag

(
FZbB(r)µ

)
FCr diag(w(r))︸ ︷︷ ︸

M

x, (4.16)

where B(r) is the matrix with column vectors b(r)
θ for varying θ, i.e. B(r)µ =

∑
θ µθb

(r)
θ . Cr

andEr are cropping matrices, F a Fourier transform matrix, and Zb and Zy are zero-padding
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matrices. We see that as a linear map of the sharp image x, we can sum up the basis blur
kernels b(r)

θ for each r and then apply the overlap-add trick for fast computation. Similarly
we can write y as a linear function of µ,

y = ZT
y

∑
r

ET
r FH diag

(
FCr diag(w(r))x

)
FZbB(r)

︸ ︷︷ ︸
F

µ. (4.17)

Similarly to Eqs. (4.16) and (4.17), we can obtain fast implementations of the MVMs with
MT and FT which are needed for employing gradient-based optimisation techniques. All
formulae for vector-valued images can be straightforwardly generalised to matrix-valued
images.

4.2.2 Discussion
We succeeded in combining the structural constraints of the PMPB models and the efficiency
of the EFF framework to obtain a fast forward model that is able to describe non-uniform
blur caused by camera shake in a globally consistent way.

Its benefit becomes evident when inspecting Figure (4.6), where we compare the run-
time of our forward model in dependence of both the image and blur size to Whyte et al.
(2010). There, the computation of a forward model consists of making d homographies on
an image with n pixels, which means a complexity of O(n · d). Since our model uses the
EFF, the complexity is O(n · log q) with the number q of pixels in a patch (Harmeling et al.,
2010a), which depends on the image and PSF sizes. The disadvantage in log q is easily
outweighed even for a small number of homographies, leading to a speedup of up to several
magnitudes.

Furthermore, Figure 4.7 shows that our fast forward model can approximate the non-
stationary blur of Whyte and Gupta almost perfectly with as little kernels as 16× 12 for an
image of size 1600× 1200 pixels.

In summary, the advantage of our approach is twofold:

• The Reduced MRB corresponds to a set of projectively transformed point grids that
serves as a basis for the filters that parametrise the EFF instead of transformation
matrices as required for the MRB in Gupta et al. (2010). The basis can be computed in
advance, which Gupta et al. (2010) also does. However, instead of having to save |B|
transformation matrices of the size n2 (n being the size of the image), we only have to
save |B| images of the size R× k where R is the number of filters to parametrise the
EFF and k the size of a single filter. Furthermore, our basis lends itself to a memory-
saving sparse representation.

• Instead of computing the effect of each projective transformation and then adding
the resulting images to form the blurred image, we first sum up the elements of the
Reduced MRB to form the filters that parametrise the EFF and then compute its effect
on the image by a single EFF transformation which can be done almost as efficiently
as an ordinary convolution.
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Figure 4.6: Run-time comparison of our forward model with the blurring model of (Whyte
et al., 2010; Gupta et al., 2010) as a function of PSF (top) and image size (bottom). For an
image of size 1600 × 1200 pixels our Matlab implementation is a factor 40 faster than the
compiled C code of Whyte et al. (2010). Note that for fair comparison computation was
performed on a single core machine as our Matlab implementation is able to take advantage
of a multicore architecture by parallel computation while the implementation of Whyte et al.
(2010) does not. A factor of 1000 can be gained by our Python implementation supporting
GPU computation.

Figure 4.7: The curve shows the relative er-
ror of a homographically transformed im-
age (1600 × 1200 pixels) using the for-
ward model of Whyte et al. (2010) and
our fast forward model which approximates
the homography by the camera motion con-
strained EFF framework. For some data
points closeups of the difference images are
shown. The relative error decreases the
more kernels are used. With as little as
16× 12 kernels the error is negligible.
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4.3 Two-Phase Motion Deblurring
Given a blurred photograph taken with a handheld camera, we recover the unknown sharp
image in two steps: (1) we analyse the motion blur and its corresponding non-uniform PSF,
and (2) we recover the latent image by non-blind deconvolution that is tailored for spatially
varying blur and promoting natural image statistics. First, we will give a brief overview of
our algorithm, followed by a detailed description of both the blur estimation and the sharp
image recovery phase.

4.3.1 Overview
1. Blur estimation phase:

Initialising x with the blurry image y, the estimation of the camera shake blur param-
eters µθ, is performed by iterating over the following three steps from a coarse to fine
image scale:

(i) Prediction step:

• remove noise in flat regions of x by edge-preserving bilateral filtering and
enhance edges by shock filtering following Cho and Lee (2009).
• compute gradient selection mask via rmap approach of Xu and Jia (2010)

to use informative edges for motion blur estimation only. In particular, it
neglects structures that are smaller in size than the local filters, which could
be misleading for the blur parameter estimation.

(ii) Blur parameter estimation step:

• update the blur parameters given the blurry image y and the current estimate
of the predicted x̃ obtained by the prediction step (i).
• for a preconditioning effect use the gradient images of x only (Cho and Lee,

2009).
• enforce smoothness of camera trajectory∥∥∂y −mS � ∂(µ � x̃)

∥∥2

2
+ λ
∥∥µ∥∥2

2
+ η
∥∥∂µ∥∥2

2
, (4.18)

where ms is a mask (computed by rmap approach), that weights gradients
according to their information content (see previous step). The regularisa-
tion constants λ and η balance the likelihood against the prior terms. The
above optimisation problem is efficiently solved by gradient-based optimi-
sation techniques (e.g. lbfgsb of Zhu et al. (1997) or Barzilai and Borwein
(1988)).

(iii) Latent image estimation step:

• update the current deblurred image x by solving a least-squares cost func-
tion using a smoothness prior on the gradient image via direct deconvolution

‖y − µ � x‖2
2 + α‖∂x‖2

2 (4.19)
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Blurry input Predicted image Gradients with r-map Motion Sharp image

Figure 4.8: Overview of the blur estimation phase at a fixed image scale: the prediction step
yields an enhanced version of the blurry input image by non-linear filtering. Via the rmap
approach of Xu and Jia (2010) only informative edges are selected for the blur estimation
step. After an estimate of the spatially varying PSF has been obtained, a latent image is
computed via direct deconvolution. See text for details.

2. Image Recovery Phase
Non-blind deblurring (following Krishnan and Fergus, 2009): given the EFF parametrised
by µ, we yield the final image estimate by alternating between the following two steps:

• Latent variable estimation: estimate latent variables regularised with a sparsity
prior that approximate the gradient of x. This can be efficiently solved with look-
up tables as well as analytically, referred to as “w sub-problem” by Krishnan and
Fergus (2009).

• Image estimation step: update the current deblurred image x by directly solving
a least-squares cost function while penalising the Euclidean norm of the gradient
image to the latent variables of the previous step, referred to as “x sub-problem”
by Krishnan and Fergus (2009).

4.3.2 Blur Estimation Phase

In the first phase of the algorithm, we try to recover the motion undertaken by the camera
during exposure given the blurry photo only. To this end, we iterate the following three steps:
(i) prediction step to reduce blur and enhance image quality by a combination of shock and
bilateral filtering, (ii) blur parameter estimation step to find the MDF, which best explains
the blurry picture from the predicted image of step (i), and (iii) latent image estimation via
non-blind deconvolution.

To avoid local minima and make the blur estimation in the first phase more robust, we
employ a coarse to fine approach (over several scales). In the beginning, the resolution of
the recorded image y is reduced and the blur estimation phase is performed. Then the lower
resolved estimate of the spatially varying PSF initialises the next scale, and so on, up to the
full resolution of the recorded image. At the coarsest scale we initialise the unknown sharp
image x by a down-sampled version of the blurry image y. For a fixed scale we iterate steps
(i)-(iii), which are visualised in Figure 4.8 and will be detailed in the following, five times.
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(i) Prediction step: The prediction step emphasises edges in x by shock filtering (Osher
and Rudin, 1990) and lowers the importance of flat noisy regions by edge-preserving bilat-
eral filtering (Tomasi and Manduchi, 1998). This preprocessing step was first proposed by
Money and Kang (2008) and subsequently refined by Cho and Lee (2009). It is a clever
trick to replace expensive nonlinear optimisations which would otherwise be necessary if
the same image features emphasised by the nonlinear filtering (i.e. shock and bilateral fil-
tering) would have to be implemented by some image prior on x. Our blur estimation phase
makes also use of this trick and we set all hyper-parameters exactly as Cho and Lee (2009).

Based on the blurred image y, we compute for each scale a weighting mask mS that
selects only edges that are informative and facilitate kernel estimation. In particular, it
neglects structures that are smaller in size than the local kernels, which could be misleading
for kernel estimation as pointed out by Xu and Jia (2010). For computing mS we employ
their r-map approach detailed in (Xu and Jia, 2010).

(ii) Blur parameter update step: The blur parameters µ are updated by minimising∥∥∂y −mS � ∂(µ � x̃)
∥∥2

2
+ λ
∥∥µ∥∥2

2
+ η
∥∥∂µ∥∥2

2
, (4.20)

where we write the discrete derivative of y symbolically as ∂y, i.e. ∂y = [1,−1]T ∗ y. For
matrix-valued images we consider the horizontal and vertical derivatives. Furthermore, x̃
denotes the outcome of the bilateral and shock filtering and mS is the r-map computed in
the previous step (i).

The terms in Equation (4.20) can be motivated as follows: The first term is proportional
to the log-likelihood,

∥∥∂y −mS � ∂(µ � x̃)
∥∥2

2
if we assume additive Gaussian noise. Con-

sidering the derivatives of y and µ � x brings several benefits: First, Shan et al. (2008) have
shown that such terms with image derivatives help to reduce ringing artifacts by putting
weight on edges. Secondly, it lowers the condition number of the optimisation problem
Equation (4.20) and hence leads to faster convergence (Cho and Lee, 2009). The second
summand

∥∥µ∥∥2

2
penalises the L2 norm of µ and helps to avoid the trivial solution by sup-

pressing high intensity values in µ. The third term
∥∥∂µ∥∥2

2
enforces smoothness of µ, and

thus favours connectedness in camera motion space, see also Gupta et al. (2010).

(iii) Sharp image update step: The sharp image estimate x that is repeatedly updated
during the blur estimation phase does not need to recover the true sharp image perfectly.
However, it should guide the PSF estimation during the alternating updates, i.e. steps (i),
(ii), and (iii). Since most computational time is spent in this first phase, the sharp image
update step should be fast. This motivates to employ L2 based regularisation terms for the
sharp image, even though the resulting estimates might show some ringing and possibly
other artifacts (which are dealt with in the prediction step). Thus we would like to minimise∥∥y − µ � x∥∥2

2
+ α

∥∥∂x∥∥2

2
(4.21)

with respect to x.
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Cho and Lee (2009) gained large speed-ups for this step by replacing the iterative optimi-
sation in x by a pixel-wise division in Fourier space. They showed that such a non-iterative
update step despite its known restoration artifacts is sufficient to guide the PSF estimation.
We call such a pixel-wise division in Fourier space Direct Deconvolution (DD) and provide
a similar update for our fast forward model for camera shake.

First, we adapt the matrix expression given in Hirsch et al. (2010) to obtain an explicit
expression for M introduced in Section 4.2,

y = ZT
y

∑
r

ET
r FH diag

(
FZbB(r)µ

)
FCr diag(w(r))︸ ︷︷ ︸

M

x, (4.22)

where B(r) is the matrix with column vectors b(r)
θ for varying θ, i.e. a(r) = B(r)µ =∑

θ µθb
(r)
θ , see also Equation (4.16). Matrices Cr and Er are appropriately chosen crop-

ping matrices, F is the discrete Fourier transform matrix, and Zb and Zy are appropriate
zero-padding matrices. Furthermore, we denote by diag(v) the diagonal matrix with vector
v along its diagonal.

The basic idea for a direct update step of the image estimate is to combine the patch-
wise pixel-wise divisions in Fourier space with reweighting and edge fading to minimise
ringing artifacts. We use the following expression to approximately “invert” our forward
model y = Mx:

x̂ ≈ diag(v)
∑
r

diag(w(r))1/2CT
r FH FZbB(r)µ� (FEr diag(w(r))1/2 Zyy)

|FZbB(r)µ|2 + 1
2
|FZll|2

(4.23)

where |z| for a vector z with complex entries calculates the entry-wise absolute value, and z
the entry-wise complex conjugate. The square root is taken pixel-wise. The term diag(v) is
some additional weighting which we experimentally justify in the next paragraph. The frac-
tion has to be implemented pixel-wise. The term |FZll|2 in the denominator of the fraction
originates from the regularisation in Equation (4.21) with l = [−1, 2,−1]T corresponding
to the discrete Laplace operator.

Note that the update formula in Equation (4.23) approximates the true sharp image x
given the blurry photograph y and the blur parameters µ and can be implemented efficiently
by reading it from right to left. The image rightmost in Figure 4.9 demonstrates how well
Equation (4.23), i.e. direct deconvolution, without the additional weighting term (i.e. v = 1)
approximates the true image, but also reveals artifacts stemming from the windowing. By
applying the additional weighting term v, these artifacts can be suppressed effectively, as
can be seen in the middle panel of Figure 4.9. The weighting v is computed by applying
Equation (4.23) without the additional weighting term to a constant image of the same size as
the blurred image g. The deconvolved constant image reveals the same artifacts as present in
the rightmost image of Figure 4.9. By taking its inverse pixel-wise, it serves as a corrective
weighting term, which is able to remove most artifacts caused by the windowing and at the
same time is fast to compute.
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True image DD with corrective weighting DD w/o corrective weighting

Figure 4.9: Direct Deconvolution with and without corrective weighting for the blurred
image shown in Figure 4.5. Note the artifacts stemming from improper treatment of over-
lapping parts which can be minimised by appropriate corrective weighting.

4.3.3 Sharp Image Recovery Phase

After having estimated and fixed the blur parameters µ, we recover the final sharp image x
by replacing the L2 image prior of the sharp image update step (4.21) by a natural image
prior that is based on sparsity of the gradient images (e.g. Fergus et al. (2006)), i.e. we
minimise ∥∥y − µ � x∥∥2

2
+ ν
∥∥∂x∥∥α

α
, (4.24)

where the Lα term represents a natural image prior for some α ≤ 1.
To minimise Equation (4.24), we adapt the approach of Krishnan and Fergus (2009) for

stationary non-blind deconvolution in the non-stationary case: after introducing the auxiliary
variable v we alternatingly minimise

min
∥∥y − µ � x∥∥2

2
+ 2t

∥∥x− v∥∥2

2
+ ν
∥∥v∥∥2/3

2/3
(4.25)

in x and v. Note that the weight 2t increases from 1 to 256 during nine alternating updates
in f and v for t = 0, 1, . . . , 8. Choosing α = 2/3 allows an analytical formula for the update
in v, see Krishnan and Fergus (2009) for details.

4.4 Empirical Evaluation

In this section, we will first present a method for simultaneous capture of a blurry image
taken with a handheld camera as well as its corresponding motion blur. This will allow us
to evaluate the accuracy of our proposed blur estimation method. Subsequently, we will
evaluate the performance of our proposed algorithm in numerous real-world examples and
compare against state-of-the-art in the field. Technical details about the experiments such as
run-time, problem size and parameter settings will be given in Section 4.5.
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4.4.1 Controlled Experiments

4.4.1.1 Experimental Setup

To validate our BD algorithm on real-world data we followed the approach of Levin et al.
(2009) who collected blurred data with ground truth for the case of uniform blur. In (Levin
et al., 2009) it is already demonstrated that the spatially uniform blur model of most algo-
rithms is an unrealistic assumption, a finding that we found confirmed in our own experi-
ments. Since our approach drops this assumption, we are not restricted to in-plane trans-
lations. Hence, we were able to take pictures with a hand-held camera without the need
of constraining the camera’s motion. To obviate the effects of depth variation we captured
images of a planar scene. For the reconstruction of the blur kernel, Levin et al. (2009) used
a sharp version of the scene (captured by mounting the camera on a tripod) and solved a
non-negatively constrained least-square problem to retain the invariant PSF of the underly-
ing camera motion. Since in the case of non-uniform blur this optimisation problem is no
longer well-defined, we pursue a different strategy to take record of the image blur.

Instead, we take advantage of the information capacity of colour images. We overlay a
high-resolution gray-scale image that we store in the red colour channel of a RGB image by
an equi-spaced grid of delta peaks embedded in the blue colour channel of the same image.
The green colour channel is filled with zeros. Since a printout would destroy information of
the gray-scale image at the locations of the delta peaks due to subtractive colour mixing, we
display the image on a 20” computer monitor. To prevent the presence of Moiré pattern in
the captured photo, the image scale has to be chosen such that the discrete structure of the
computer screen cannot be resolved by the (discrete) image sensor of the camera. We also
verified that the spectral characteristics of the screen and the camera’s Bayer array filters are
such that there is no cross-talk, i.e. the blue PSFs are not visible in the red colour image.
Figure 4.10 shows the whole process.

→

→

⇒

→

→

(a) (b) (c) (d)

Figure 4.10: How to simultaneously capture an image blurred with real camera shake and
its space-varying PSF; (a) the true image and a grid of dots is combined to (b) an RBG
image, that is (c) photographed with camera shake, and (d) split into blue and red channel
to separate the PSF depicting the blur and the blurred image.
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4.4.1.2 Experiments

We applied our method to three examples shown in Figures 4.11, 4.12 and 4.13, for which
we captured the blurred image in the red channel, and true spatially varying PSFs in the
blue channel, as explained in the previous subsection. For all experiments, photos were
taken with a hand-held Canon EOS 1000D digital single lens reflex camera with a zoom
lens (Canon zoom lens EF 24-70 mm 1:2.8 L USM). The exposure time was 1/4 seconds
and the distance to the screen was about 2 meters. The input to the deblurring algorithm was
the red channel of the RAW file only which we treat as it were a captured gray-scale image.

To validate and assess the accuracy of estimating the camera constrained EFF (i.e. of
step (i) in Section 4.3) we compare our estimated PSFs evaluated on a regular grid of dots to
the true blur which has been recorded in the blue colour channel of the RAW image during
the camera shake.

Our experiments show that our approach is able to estimate and remove non-uniform
motion blur from a single photo. The close similarity of the estimated PSFs to the ground
truth is striking and provides strong validation for our approach. Furthermore, the recovered
images reveal much greater detail and the high quality of the reconstructions is reflected by
the fact that only little restoration artifacts are present in the final deconvolved images.

To appreciate the benefit of our non-uniform blur model, we compare with the method of
Cho and Lee (2009) which we consider a state-of-art method for single image BD for space-
invariant blurs. It is evident that the assumption of uniform motion blur is too restrictive for
most real world camera shake as discussed in Section 4.1, experimentally verified with our
hardware setup, and also discussed by Levin et al. (2009).

The advantage of constraining our EFF based forward model to physically plausible
camera motions only, will be discussed in the following section when comparing the results
of the proposed method with Harmeling et al. (2010a).

4.4.2 Comparative Evaluation

In the following, we show results on several challenging example images taken from the
literature and do a comprehensive comparison against state-of-the-art algorithms for single
image blind deblurring. We compare against both algorithms assuming uniform as well as
non-uniform blur.

4.4.2.1 Comparison with Harmeling et al. (2010a)

The benefit and gain in both restoration quality and modelling accuracy that is obtained by
constraining the EFF to physically plausible camera motions only, is evident from Figs. 4.11,
4.12 and 4.13. While the local estimation of the EFF filters as suggested in Harmeling et al.
(2010a) faces difficulties in regions with little edge information (as e.g. sky), the camera
motion constrained EFF framework is able to use the textural information within the entire
image to infer a globally consistent PSF. The benefit is not only apparent in the Elephant
example, where structureless image regions (sky) impede motion blur estimation, but also
in the subsequent example of the Vintage Car (paving in the bottom left image part). The



78
C

H
A

PT
E

R
4.

FA
ST

R
E

M
O

VA
L

O
F

N
O

N
-U

N
IFO

R
M

C
A

M
E

R
A

SH
A

K
E

Uniform Blur Model Non-Uniform Blur Models

E
lephant–

Im
age

E
lephant–

PSF

Blurred image Cho and Lee (2009) Harmeling et al. (2010a) Proposed approach

Figure 4.11: Controlled experiment: The left column shows the red and blue colour channels of a photo taken of a LCD screen with
a handheld camera. While the red colour channel of the image that was displayed on the screen encoded a normal gray-scale image
(top), the blue colour channel contained a point grid (bottom), which captured the motion blur during exposure and serves as a ground
truth. Cho and Lee (2009) assume a uniform blur model which fails to describe the spatial variation of the PSF. In contrast, the EFF
based method presented in Harmeling et al. (2010a) is able to do so, however fails in regions with little edge information (sky). The
approach proposed in this thesis surpasses this limitation by constraining the EFF to allow for physically plausible motion blur only.
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Figure 4.12: Controlled experiment: The left column shows the red and blue colour channels of a photo taken of a LCD screen with
a handheld camera. While the red colour channel of the image that was displayed on the screen encoded a normal gray-scale image
(top), the blue colour channel contained a point grid (bottom), which captured the motion blur during exposure and serves as a ground
truth. Cho and Lee (2009) assume a uniform blur model which fails to describe the spatial variation of the PSF. In contrast, the EFF
based method presented in Harmeling et al. (2010a) is able to do so, however fails in regions with little edge information (paving).
The approach proposed in this thesis surpasses this limitation by constraining the EFF to allow for physically plausible motion blur
only.
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Figure 4.13: Controlled experiment: The left column shows the red and blue colour channels of a photo taken of a LCD screen with
a handheld camera. While the red colour channel of the image that was displayed on the screen encoded a normal gray-scale image
(top), the blue colour channel contained a point grid (bottom), which captured the motion blur during exposure and serves as a ground
truth. Cho and Lee (2009) assume a uniform blur model which fails to describe the spatial variation of the PSF. In contrast, the EFF
based method presented in Harmeling et al. (2010a) is able to do so. The approach proposed in this thesis even improves on the their
result by constraining the EFF to allow for physically plausible motion blur only.
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Figure 4.14: Comparison on real-world photos taken with a handheld camera. While Fergus
et al. (2006) assume a uniform blur model and estimate an invariant PSF, Whyte et al. (2010)
and our approach account for the spatial variation of the PSF. While Whyte et al. (2010)
considers rotational camera motion, we take translations and in-plane rotations into account.

improvement in motion blur estimation can also be appraised by inspecting the PSF plots in
Figures 4.11, 4.12 and 4.13.

4.4.2.2 Comparison with Whyte et al. (2010)

The examples Notre Dame and Pantheon in Figure 4.14 show pictures with real camera
shake taken from (Whyte et al., 2010). Results are shown for Fergus et al. (2006) who
assume stationary blur and Whyte et al. (2010) who model the motion blur as PMPB caused
by rotations only. The image obtained by Whyte et al. (2010) exhibits much more detail
compared to Fergus et al. (2006) which suggests that the camera motion during exposure
involved a significant amount of rotational motion. While Whyte et al. (2010) consider
rotations (roll, pitch, yaw) for describing the motion blur, we took the basis of Gupta et al.
(2010) comprising of translations in x- and y-direction and in-plane rotations. It equally well
captures the motion blur which is verified by the good restoration quality of our approach.

Figure 4.15 is an interesting example, as Whyte et al. (2010) uses a noise/blurry image
pair to estimate the motion blur (Yuan et al., 2008). In contrast, we are able to capture the
blur blindly without using the noisy version of the image and recover a sharp image with
comparative if not superior quality. For comparison, we also show the result of Cho and Lee
(2009) which assume invariant motion blur. Although pursuing a similar strategy for kernel



82 CHAPTER 4. FAST REMOVAL OF NON-UNIFORM CAMERA SHAKE

Uniform Blur Model Non-Uniform Blur Models
St

at
ue

Blurred image Cho and Lee (2009) Whyte et al. (2010) Our approach

Figure 4.15: Comparison on noisy/blurry image pair (only blurry image is shown). While
Whyte et al. (2010) uses both images for motion blur estimation, Cho and Lee (2009) and
our approach use the blurry image only. See text for details.

estimation as Cho and Lee (2009), our deblurring algorithm is able to deal with non-uniform
blur leading to a much better restoration result.

4.4.2.3 Comparison with Gupta et al. (2010)

Figure 4.16 shows two real-world example images from (Gupta et al., 2010). To compare
against a state-of-the-art deblurring method assuming uniform blur, we applied (Xu and Jia,
2010). In the case of the Magazines example, the uniform blur assumption of Xu and Jia
(2010) is insufficient as their method fails to find a meaningful kernel. In contrast, the non-
stationary PMPB model of Gupta et al. (2010) is able to capture and remove the blur such
that the result reveals much more detail. Although using the same basis (in-plane rotations
and translations) as Gupta et al. (2010), we are able to improve image quality even further,
evident by less artifacts and clearly visible in the closeups.

The Petrol Station example image has been reported to be challenging due to the great
variation of depth in the scene (Gupta et al., 2010). Indeed, despite yielding better restora-
tion results compared to (Xu and Jia, 2010), both the method of Gupta et al. (2010) and our
approach fail to fully remove the motion blur present in the up-left part of the image due to
its increased depth compared to the foreground scene which is not covered by our model.

4.4.2.4 Comparison with Joshi et al. (2010)

The Coke example in Figure 4.17 is another interesting example, as Joshi et al. (2010) uses
data from inertial measurement sensors to determine the PSF. In contrast, we are able to
estimate the blur blindly without exploiting the additional sensor data and recover a sharp
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Figure 4.16: Comparison on a real-world photo taken with a handheld camera. While Xu
and Jia (2010) considers translations only, both Gupta et al. (2010) and our approach addi-
tionally take in-plane rotations into account to capture the unknown motion blur. Note the
great variation of depth in the Petrol Station example which limits restoration quality of all
three presented approaches.

image with comparable if not superior quality. For comparison, we also show the result of
Xu and Jia (2010) whose assumption of a invariant motion blur is again too restrictive to
yield a good restoration result.
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Figure 4.17: Comparison on real-world photos taken with a handheld camera. While Joshi
et al. (2010) use additional information recorded by inertial measurement sensors at the time
of image capture, Xu and Jia (2010) and our approach estimate the motion blur blindly.
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4.5 Technical Details

4.5.1 Parameter Setting and Adjustment

Parameter setting. Our presented method is fairly automatic and necessitates little user in-
tervention. Most of the presented results were obtained with the same or similar parameter
settings. In particular, we set the regularisation constants λ and η, in the objective (4.18)
and (4.20) that is minimised for blur parameter estimation to 0.1 and 0.5, respectively. For
non-blind image deconvolution, where we minimise objective (4.19) and (4.21) via direct
deconvolution (4.23) we set the regularisation constant α to 0.5. For the final non-blind de-
convolution we set the exponent α to 2/3 as it allows the use of an analytical solution for the
w-subproblem (see (Krishnan and Fergus, 2009) for details). The regularisation parameter
ν in the objective (4.24) ranged between 10−2 and 10−4 depending on the quality of the PSF
estimation. The image pyramid is constructed by starting on the coarsest scale with flat fil-
ters of size 5× 5 pixels and the correspondingly down-sampled version of the blurry image.
For up- and down-sampling we employ a simple linear interpolation scheme. Both filter and
image sizes are increased by a factor of

√
2 from one scale to the next. For the EFF we use

an overlap of 0.5 and a Bartlett-Hanning window for interpolating between neighbouring
filters. For all experiments we used about 9 × 13 filters with the exact ratio dependent on
the image size ratio.

Basis generation. One important aspect to consider is the choice of basis for motion blur
estimation. Under-sampling the space of possible camera poses will limit our ability to find
an accurate representation of the underlying spatially varying PSF, however sampling it too
finely causes unnecessary computations. In this context, an important issue is which de-
grees of freedom of the camera motion should be taken into account. This aspect is crucial
as the search space increases exponentially with the number of considered dimensions. As
mentioned above, we followed Gupta et al. (2010) who argued that translations and in-plane
rotations are sufficient for the description of motion blur in most cases. The good restoration
quality of our experiments confirms their findings. A free parameter of our model which we
have to specify in advance, is the size of the local filters that parametrise the EFF. This
is similar to the case of uniform blur models where the size of the PSF has to be set man-
ually. The number of translations corresponds to the specified size of a local filter, while
the sampling for in-plane rotations is chosen such that an angular increment corresponds
approximately to a displacement of one pixel at the edge of the image. Since we are fun-
damentally limited by the resolution of our images, setting the resolution higher leads to
redundant rotations, that are indistinguishable from their neighbours which will unneces-
sarily impede numerical optimisation. The frames of the PSF basis are precomputed at the
beginning of each scale and are stored as sparse matrices to reduce memory demands.

Manual parameter adjustment. Finally, we mention a few parameters which were found
to influence restoration quality and whose manual adjustment might improve the outcome
of our algorithm. By default, the basis frames are generated by rotations around a pixel
which is varied within a central image region as large as the size of a local filter. This
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assumes that the camera has undergone rotations around a axis close to the optical axis only.
However, in some cases such as the Petrol Station example it is obvious that this assumption
does not hold. In such cases we set the centre of rotation roughly to the region which
appeared visually sharpest. Another parameter to mention is the regularisation constant
of the final non-blind deconvolution. Its value was chosen dependent on the quality of
the estimated spatially varying PSF with smaller values in the case of poor motion blur
estimation, giving more weight to the prior. Related is the regularisation parameter of the
non-blind deconvolution (4.23) during motion blur estimation, which balances the trade-off
between goodness of fit and the smoothness prior. For noisy images such as the Notre Dame
example it prove beneficial to slightly increase its value to counter noise. One final issue
worth mentioning concerns the regularisation parameter relevant for motion blur estimation.
For images with few strong edges but much detail, it proved useful to put more weight on
the prior terms.

4.5.2 Implementation and Run-time
Our algorithm has been prototyped in Matlab as it allows easy access and good inspection
of intermediate results which eases debugging and studying the code behaviour. The typical
run-time for a 1MP image is about 30 minutes on a single core of an Intel i5 processor with
2.4GHz.

However, the algorithm detailed above lends itself to parallelisation on a Graphics Pro-
cessing Unit (GPU). We reimplemented all steps of the algorithm in PyCUDA (Klöckner
et al., 2009), a Python wrapper to NVIDIA’s CUDA API. To evaluate the speed-up, we

Example Size in pixels Processing time in seconds
GPU CPU

Image Kernel A B C C
Elephant 611× 441 19× 19 8.316 0.132 8.454 613
Vintage Car 441× 621 19× 19 8.306 0.038 8.354 673
Butcher Shop 401× 601 25× 25 13.638 0.036 13.686 724
Notre Dame 265× 354× 3 21× 21 7.388 0.082 7.474 521
Pantheon 274× 366× 3 15× 15 5.078 0.07 5.156 546
Statue 710× 523× 3 21× 21 12.434 0.174 12.618 783
Magazines 512× 768× 3 17× 17 10.3 0.172 10.482 767
Petrol Station 406× 679× 3 17× 17 8.194 0.132 8.338 599
Coke 749× 1123× 3 21× 21 12.776 0.27 13.07 1373

Table 4.1: Run-time of our Matlab and GPU implementation for several deblurring exam-
ples. A: kernel estimation. B: final deconvolution. C: total processing time.

compared the run time of our MATLAB implementation on a single core of an Intel Core i5
against our PyCUDA version on a NVIDIA Tesla C2050 with three gigabytes of memory,
running on a 2.4Ghz Intel Xeon. Tab. 4.1 shows that deblurring real images of realistic sizes
can be performed about 60× faster on GPUs than on usual (single-core) processors and takes
only about 30 seconds for a 2 Mega pixel image. However, note that for GPU computation
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the image size is limited by the amount of available video memory. For example, with 1 GB
RAM, the image size is restricted to 2000× 2000 pixels. Due to implementation issues, our
current GPU-based version is limited to images up to size 3000× 2000 pixels.

4.6 Limitations and Perspectives
Although our presented approach considerably enlarges the regime where handheld pho-
tographs can be taken, there is a number of cases where our method breaks down and will
fail to recover a high-quality image. In particular, current limitations include:

• Saturation. Our proposed method is not able to tackle the adverse effects of over-
exposure as our forward model does not account for saturated pixels. Image regions
that exceed the dynamic range of the image sensor such as those shown in Figure 4.18
cause a non-linear pixel response. Hence, in these regions our linear model assump-
tion is violated, a fact which impedes the inference process and adversely affects
kernel estimation. Extending our model to account for saturated pixel regions similar
to the approach we presented in Chapter 3, may be able to address this issue. Another
approach for tackling the adverse effects of saturation that could be combined with
our method has been proposed by Cho et al. (2011) recently.

• Object motion. Another major limitation of our approach is that it does not deal with
moving or deformable objects. Our proposed image generation model only accounts
for ego motion, i.e. motion of the camera that is more often than not unwanted in
the form of camera shake. In contrast, moving objects in the scene such as shown in
Figure 4.18 that also cause motion blur in the image are currently not modelled. A
preprocessing step to separate moving objects as suggested in (Levin, 2006) might be
one way of dealing with this problem.

• Depth variation. Out-of-focus blur and scenes with significant depth variation as
shown in Figure 4.18 may also result in unsatisfying deblurring results. Both effects
are not explicitly modelled by our approach. In particular, objects in different depths
and partially occluding each other may cause different blurs despite lying in the focus
range of the used lens. In this case, the scene can be segmented into different im-
age regions each corresponding to a certain object that has a different distance to the
camera. The PSF varies smoothly within these segments of the image, but between
segments it may change abruptly. A more detailed discussion on the dependence of
the PSF on depth variation within the scene can be found in (Harmeling et al., 2010a).
Again, a preprocessing step to separate different depth layers may help to make the
deconvolution more robust. For finding a meaningful segmentation, techniques such
as those presented in (Loktyushin and Harmeling, 2011) could be applied.

• Severe blur. If the camera motion during exposure is too large, our method becomes
computationally intractable as the search space of admissible solutions becomes vast
and practically unmanageable by numerical optimisation techniques. Even restricting
the space of possible camera trajectories to translations and in-plane rotations only, the
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Figure 4.18: Example images of current limitations of our proposed algorithm are shown.

search space grows cubically with PSF size. One solution to the problem might be the
use of additional information from inertial measurement sensors such as accelerom-
eters and gyroscopes. These sensors are nowadays standard electronic components
and can be found on most mobile devices as they provide valuable motion and orien-
tation information that is used for interactive control and navigation. In (Joshi et al.,
2010), it has been demonstrated that such sensors are capable of recording the camera
trajectory during exposure precisely enough to yield high-quality deblurring results.
However, their presented system relies on a complicated and subtle calibration step
that renders their approach unstable and vulnerable. As the sensor data is directly
mapped to the PSF, even slight calibration or measurement imperfections lead to no-
ticeable artifacts in the reconstructed image. One way to combine the strengths of both
approaches, i.e. our BD approach and the one presented in Joshi et al. (2010), might
be to use the inertial measurement sensor information to restrict effectively the search
space of admissible solutions, thereby alleviating the optimisation problem especially
for large motion blur.

• Peculiar camera motion. For certain types of motion such as linear uniform or stro-
boscopic camera motion, our kernel estimation fails to infer the corresponding PSF.
Although these types of motion are quite peculiar in the sense that they rarely occur in
real photographs, their study provides valuable insight into the capabilities of our ker-
nel estimation procedure and why it fails sometimes to find a meaningful solution. As
detailed in Section 4.3, at each scale kernel estimation is accomplished by iteratively
estimating the blur parameters of the camera motion constrained EFF, based on the
blurry as well as a predicted image. The predicted image is obtained via bilateral and
shock-filtering. While bilateral filtering is applied to counter noise, shock-filtering
aims at reverting the effect of blur by reestablishing smeared out edges. However, the
latter will fail if an edge is linear uniformly blurred as it will appear as a constant area
without leaving a working point for the shock filter. The same is true in the case of
stroboscopic motion, where there are multiple sharp copies of the same scene overlaid
within the same image as all copies are on equal footing and will be enhanced by the
applied shock filter in the same way. More powerful priors might help to rule out the
trivial solution and help to select a solution which we as humans would favour.
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4.7 Conclusion and Outlook
In this chapter we proposed a single image blind deconvolution algorithm for removing
non-uniform motion blur due to camera shake. By combining the efficiency of the EFF
and the camera motion constraints of PMPB, we derived a fast forward model that outper-
forms recent approaches in computation time at a negligible loss in accuracy. To infer the
unknown camera motion during exposure, we developed an efficient multi-hierarchical in-
ference scheme by combining and adopting recent ideas of state-of-the-art techniques for
uniform motion deblurring. The final image estimate is obtained by a non-blind deconvo-
lution with a spatially varying PSF that corresponds to the estimated camera motion blur.
To compensate for inaccuracies of the estimated PSF and to counter noise in the blurry im-
age, we employ a regularisation term that promotes natural image statistics and helps to
reduce restoration artifacts. Controlled experiments as well as a comprehensive comparison
on a number of real-world examples demonstrated the extended capabilities and improved
performance of our approach.
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Chapter 5

A Blind Deconvolution Approach for
Improving the Resolution of Cryo-EM
Density Maps

Cryo-electron microscopy (cryo-EM) plays an increasingly prominent role in structure elu-
cidation of macromolecular assemblies. Advances in experimental instrumentation and
computational power have spawned numerous cryo-EM studies of large biomolecular com-
plexes resulting in the reconstruction of three-dimensional density maps at intermediate and
low resolution. In this resolution range, identification and interpretation of structural ele-
ments and modelling of biomolecular structure with atomic detail becomes problematic. In
this paper, we present a novel algorithm that enhances the resolution of intermediate- and
low-resolution density maps. Our underlying assumption is to model the low-resolution den-
sity map as a blurred and possibly noise-corrupted version of an unknown high-resolution
map that we seek to recover by deconvolution. By exploiting the non-negativity of both the
high-resolution map and blur kernel we derive multiplicative updates reminiscent of those
used in non-negative matrix factorisation. Our framework allows for easy incorporation of
additional prior knowledge such as smoothness and sparseness, on both the sharpened den-
sity map and the blur kernel. A probabilistic formulation enables us to derive updates for the
hyper-parameters, therefore our approach has no parameter that needs adjustment. We apply
the algorithm to simulated three-dimensional electron microscopic data. We show that our
method provides better resolved density maps when compared with B-factor sharpening,
especially in the presence of noise. Moreover, our method can use additional information
provided by homologous structures, which helps to improve the resolution even further.

The outline of this chapter is as follows: we first give a brief introduction to both cryo-
EM and blind deconvolution. We review state-of-the-art in both fields and motivate our
approach. In Section 5.2 we develop a novel blind deconvolution algorithm by casting
the problem into a set of coupled non-negative quadratic programs and derive multiplicative
updates for both latent map and blur estimation. In Section 5.3 we discuss prior terms which
are compliant with the multiplicative nature of our updates. We validate our approach on
investigating its performance on simulated data in Section 5.4, followed by a presentation

89
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of results on experimental density maps in Section 5.5. A summary and outlook in Section
5.6 concludes this chapter.

5.1 Introduction

Cryo-electron microscopy (cryo-EM) and low-resolution X-ray crystallography are emerg-
ing experimental techniques to elucidate the three-dimensional structure of large biomole-
cular complexes (Frank, 2002; Orlova and Saibil, 2004; Chiu et al., 2005; Brünger, 2005).
A major drawback common to these methods is that the reconstructed density maps are only
of intermediate or low resolution, typically in the nanometre range. In this resolution range,
it becomes difficult to interpret the density maps unambiguously and to fit atomic models.
A method to improve the quality of electron density maps has therefore the potential to
broaden the scope of cryo-EM and low-resolution crystallography.

B-factor sharpening (DeLaBarre and Brunger, 2006; Rosenthal and Henderson, 2003;
Fernández et al., 2008) is often advocated as a method for improving the resolution of den-
sity maps. The method operates in the frequency domain and applies a negative B-factor
to the Fourier coefficients of the density map. This has the effect that high-frequency com-
ponents encoding high-resolution features are amplified. B-factor sharpening has several
limitations: First, the underlying model of the point spread function (PSF) is an isotropic
Gaussian whose width is determined by the magnitude of the overall B-factor (the Fourier
transform of a Gaussian is a Gaussian with inverted width). This assumption may be in-
appropriate for anisotropic data such as 2D crystals. Second, the method suffers from am-
plification of noise: Noise in density maps contributes high-frequency components, which
are weighted up when applying a negative B-factor. Third, it is not possible to incorporate
prior knowledge to regularise the recovered high-resolution density map. For example, the
B-factor sharpened density map is not guaranteed to be non-negative.

In this chapter, we present a novel algorithm to sharpen electron density maps. The al-
gorithm remedies some of the shortcomings of thermal factor sharpening. The underlying
assumption is that low- to intermediate-resolution density maps can be viewed as distorted
or “blurred” versions of high-resolution maps. Mathematically, this blurring process is mod-
elled as a convolution

y = f ∗ x (5.1)

where y denotes the observed blurry and noisy low-resolution map, x the true high-resolution
map, f the linear shift-invariant blur kernel or PSF and ∗ the linear convolution operator.
Our degradation model is illustrated in Figure 5.1 for a simulated density map of a monomer
of the chaperonin complex GroEL-GroES-(ADP)7 (PDB-ID: 1AON). We propose Blind
Deconvolution (BD) to sharpen electron density maps. BD aims to invert the blurring pro-
cess and thereby recover the high-resolution map without any knowledge on the degradation
or blur kernel. It does so by estimating the sharpened density map and the PSF simultane-
ously. In particular, we are interested in BD algorithms that do not assume a particular
structural model and that are in this sense parameter-free. The recovered high-resolution
map will be useful for density map interpretation and model fitting.
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Low-resolution map PSF High-resolution map

≈ ∗

y ≈ f ∗ x

Figure 5.1: Degradation model: Low-to-intermediate resolution maps can be viewed as
blurred versions of high-resolution maps. The point spread function (PSF) determines the
form of blurring. Note that for illustration purposes the PSF is enlarged.

Blind Deconvolution is a severely ill-posed problem because there exists an infinite num-
ber of solutions and small perturbations in the data lead to large distortions in the estimated
true map. The ill-posedness may be alleviated by confining the set of admissible maps to
those which are physically plausible through the introduction of additional constraints. One
such constraint is that electron density maps are inherently non-negative. We show that
Non-negative Blind Deconvolution (NNBD) can be cast into a set of coupled quadratic pro-
grams that are solved using the multiplicative updates proposed in Sha et al. (2007). No
learning rate has to be adjusted and convergence of the updates is guaranteed. By iterating
between an update step for x and f , we obtain an efficient BD algorithm that allows for
straightforward incorporation of prior knowledge such as sparseness and smoothness of the
true map and/or the PSF.

Blind deconvolution is a valuable tool in many image and signal processing applications
such as computational photography, astronomy, microscopy, and medical imaging and thus
has been treated in numerous publications. Many blind deconvolution algorithms have been
proposed in various fields of research, for an overview confer (Kundur and Hatzinakos,
1996; Starck et al., 2002; Sarder and Nehorai, 2006; Levin et al., 2009). However, to our
knowledge it has never been proposed in the field of cryo-EM.

5.2 Blind Deconvolution by Non-Negative Quadratic Pro-
gramming

Our generative model underlying the image formation process is

y ≈ f ∗ x
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where the degraded map y, the PSF f and the true map x are n-dimensional.1 Assuming
additive Gaussian noise with zero mean and variance τ−1, the likelihood of observing y is
given by

p(y|f, x, τ) = Z(τ)−1 exp
{
−τ

2
‖y − f ∗ x‖2

}
where ‖ · ‖ denotes the L2-norm and Z the normalising partition function, which depends
only on the precision τ . As a prior, we constrain f and x to be of finite size and to lie in
the non-negative orthant: p(x) ∝ χ(x ≥ 0) and p(f) ∝ χ(f ≥ 0) where χ is the indicator
function. Computation of the maximum a posteriori (MAP) estimate of f and x is equivalent
to the non-negatively constrained problem of minimising the negative log-likelihood viewed
as a function of the unknown parameters f and x:

min
f≥0, x≥0

L(f, x) =
1

2
‖y − f ∗ x‖2 . (5.2)

Here, the negative log-likelihood L is expressed in units of τ and constants independent of
f and x have been dropped. Because of the interdependence of f and x through the convo-
lution, optimisations problem (5.2) is non-convex and a globally optimal solution cannot be
found efficiently. Fortunately, the objective function L(f, x) is sufficiently well-behaved as
it is convex in each variable separately if the other is held fixed. This observation suggests
a simple alternating descent scheme: instead of manumitting (5.2) directly we iteratively
solve the minimisation’s problems minf≥0 L(f) and minx≥0 L(x), where L(f), L(x) de-
notes L(f, x) for fixed f , x, respectively. If we can ensure descent in each step, we will
obtain a sequence of estimates {f (k), x(k)} that never increase the objective L(f, x). Due to
the symmetry of the convolution operation, f ∗ x = x ∗ f , we can restrict our exposition to
the optimisation of x; equivalent results will hold for f .
Because convolution is a bilinear operation, the problem of epitomising x can be written in
matrix notation :

min
x≥0

L(x) =
1

2
‖y − f ∗ x‖2 =

1

2
xTF TFx− yTFx+

1

2
yTy, (5.3)

where in this formulation y, x and f are zero-padded vectors stacked in lexicographical
order and F is a block-Toeplitz structured matrix. In the following we will use both no-
tations interchangeably; the type of the involved quantities will be clear from the context.
Minimising (5.3) is equivalent to solving a quadratic program with non-negativity constraint

min
x≥0

1

2
xTAx+ bTx (5.4)

with A = F TF and b = −F Ty. Recently, a novel algorithm for solving Non-negative
Quadratic Programs (NNQPs) based on multiplicative updates has been proposed Sha et al.
(2007). In the derivation of the updates, only the positive semi-definiteness of A is required.
In particular, A may have negative entries off-diagonal. The key idea is to decompose A

1The convolution is assumed to be non-circular and its value is taken only on its valid part, i.e. in the one-
dimensional case, if x ∈ Rn and f ∈ Rm, then y is an element of Rn−m+1. For discretized signals, ∗ reads
(f ∗ x)n =

∑
i∈supp(f) fixn−i, where supp(f) denotes the support of f .
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into its positive and negative part, i.e. A = A+ − A−, where A±ij = (|Aij| ± Aij)/2, and
to construct an auxiliary function G(x, x′) for the objective (5.2) such that ∀x, x′ > 0:
L(x) ≤ G(x, x′) and L(x′) = G(x′, x′). Because G(x, x′) is an upper bound on L(x), min-
imisation with respect to x yields an estimate x̂ = argminxG(x, x′) which never increases
the objective L(x′):

L(x̂) ≤ G(x̂, x′) ≤ G(x′, x′) ≤ L(x′).

As shown in Sha et al. (2007) a valid auxiliary function for (5.4) is given by

G(x, x′) =
1

2

∑
i

(A+x′)i
x′i

x2
i −

∑
i

(A−x′)i x
′
i log

xi
x′i

+ bTx− 1

2
x′
T
A−x′. (5.5)

Minimisation of (5.5) with respect to its first argument yields the update:

x← x� −b+
√
b� b+ 4 (A+x)� (A−x)

2A+x
. (5.6)

The symbol � denotes voxel-wise multiplication, also division and square root are under-
stood voxel-wise. For a non-negative observed map y with A+ = F TF , A− = 0 and
b = −F Ty, update (5.6) reads

x←− x� F Ty

F TFx
. (5.7)

Contrary to previous approaches to NNQP (Johnston et al., 2000), no learning rate is in-
volved that needs adjustment. Furthermore convergence to a global optimum is guaranteed.
Note that as f ∗ x approaches y the multiplicative factor in (5.7) tends to one. The update
rules can be computed very efficiently using the Fast Fourier Transform (Press et al., 2007)
due to the convolution theorem

Fx ≡ f ∗ x = F−1 {F(f) · F(x)}
and

F Tx ≡ f ? x = F−1 {F(f)∗ · F(x)} ,
where F denotes the discrete Fourier transform and ? the n-way correlation between f and
x. Hence, we never have to compute matrices F and X explicitly. Because the objective is
symmetric in x and f , we obtain an equivalent update for f :

f ←− f � XTy

XTXf
. (5.8)

Coming back to a our original problem, namely solving (5.2) jointly in x and f , we propose
to iterate between update steps in x and f . Cycling between (5.7) and (5.8) ensures that
both f and x will remain in the non-negative orthant. Although multiplicative updates guar-
antee convergence to a global optimum in the case of NNQP, the proposed NNBD scheme
only ensures convergence to a stationary point. Therefore, the solution might be sensitive to
the initial values of x and f . In our experiments, however, initialisation was never a prob-
lem: choosing flat maps for the initial x and f always led to good results. Algorithm (3)
summarises our NNBD approach.
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Algorithm 3: Non-negative Blind Deconvolution (NNBD)
Input: Degraded, blurry map y
Output: Sharp map x, blur kernel f

Initialisation of f and x with positive flat maps
while ‖y − f ∗ x‖2

F > ε do
f ← f � x?y

x?x∗f

x← x� f?y
f?f∗x

end
return

Figure 5.2: Illustration of NNBD that
alternatingly updates the latent density
map and the PSF. The QR code below
directs to a video showing the sharp-
ening of a simulated noise-free density
map by NNBD.

5.3 Incorporation of Prior Knowledge

In the absence of noise as well as in the case of high signal-to-noise ratios2 (SNRs) our
algorithm correctly decomposes a blurry observation into the true underlying map and the
corresponding PSF.3

Figure 5.3 shows a simulated one-dimensional toy example, where x is an equispaced
sample of a Gaussian mixture model and f is chosen such that it is irreducible.4 The es-
timated map x̂ and PSF f̂ are close to the ground truth. However, Figure 5.3 shows that
low SNRs raise difficulties in the reconstruction process and lead to noise-fitting and un-
favourable solutions.

2Here, we define the signal-to-noise-ratio (SNR) of a signal as SNR(dB) = 10 log10
var(x)

var(y−x∗f)
3Note that this is true only up to an overall scaling factor, because for each estimate {f̂ , x̂} there exist

infinitely many estimates { 1λ f̂ , λx̂} with λ ∈ R+ that explain the observed data equally well. To rule these
out, we fix the scale by normalising f . In addition to this scale invariance, the solution is also shift-invariant.
Usually this effect can be corrected only by means of further prior knowledge.

4A signal x is irreducible, if it cannot be decomposed into two or more nontrivial components
{x1, x2, . . . , xn} such that x = x1 ∗ x2 ∗ · · · ∗ xn. Note that if either f or x is reducible, NNBD becomes
inherently ill-posed, because y = f ∗ x cannot be decomposed unambiguously without employing additional
prior knowledge.

http://www.youtube.com/embed/D-CTjxHgJCI?HD=1;rel=0;showinfo=0;controls=0;modestbranding=1
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Figure 5.3: One-dimensional toy example. The top row shows the results of NNBD at SNR
of 60 dB, the bottom row for SNR 20 dB. A, E: data y used in NNBD. B, F: true (black) and
estimated (red) PSF f . C, G: true (black), NNBD (red) estimate of the true signal x. D, H:
negative log-likelihood (on logarithmic scale).

To further constrain the space of admissible solutions, additional knowledge about the un-
known map and the PSF has to be utilised. This knowledge will be represented by non-
uniform prior distributions p(f |θ) and p(x|θ) on f and x, respectively, involving hyper-
parameters θ. With p(θ) denoting the prior of the hyper-parameters, the joint posterior is
proportional to:

p(x, f, θ|y) ∝ p(y|f, x, θ) p(x|θ) p(f |θ) p(θ). (5.9)

In the following, we describe prior distributions that are compatible with the multiplicative
updates for f and x derived in the previous section. Again, because of the symmetry of
(5.2) in f and x, we will restrict ourselves to the incorporation of prior knowledge on the
unknown map x.
Incorporating priors on x introduces additional terms in (5.3) that have to be taken into
account in the computation of the MAP estimate. In the derivation of the multiplicative
update rule (5.6), we minimised the auxiliary function (5.5) defining an upper bound on
L(x). A close look reveals that all priors whose negative logarithm comprises terms that
are either linear, quadratic, or logarithmic in x can be incorporated into (5.5) and hence are
compatible with the update (5.6). This includes the following priors:

• Smoothness: A desired property in many imaging applications is smoothness of the
true map, which can be enforced by penalising the norm of its gradient ‖∇x‖. The
corresponding prior is

p(x|λ) ∝ exp
{
−λ

2
‖∇x‖2

}
. (5.10)

Note that ‖∇x‖2 can be rewritten as xT∆x where ∆x ≡ ∇T∇x = −L ∗ x is the
negative Laplace operator, i.e. in the one-dimensional case L = (1,−2, 1).
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• Sparseness: A further assumption commonly made is sparseness, which can be en-
coded in the exponential prior

p(x|λ) ∝ exp{−λ
∑
i

|xi|} = exp{−λ ITx}, (5.11)

where the second equality holds for non-negative maps.

• Orthogonality: In some applications, it is useful to introduce a voxel-wise non-
negative background z, which results in the model y = f ∗ x+ z. Such a background
could, for example, account for the solvent in electron microscopic recordings or a
homologous structure for model refinement (cf. Section 5.4.1). Usually, the back-
ground should be uncorrelated with the reconstructed map which can be enforced by
penalising the overlap between x and z, i.e.

p(x|θ) ∝ exp{−λ zTx}. (5.12)

We treat the background as a variable that we learn along with f and x using anal-
ogous multiplicative updates. In the following, we will refer to this regularisation
term as orthogonality constraint. Of course, z could be constant if such knowledge is
available.

• Entropy: A reasonable assumption, especially for the form of the PSF, is that it
exhibits a bump-like shape. This can be favoured by using the entropic prior

p(x|λ) ∝ exp
{
λ
∑
i

log xi

}
. (5.13)

The Burg entropy
∑

i log xi is compliant with the auxiliary function G(x, x′) and
favours maximum entropy maps, i.e. constant maps. Entropy and sparseness/orthogonality
can be combined into a single prior density: a voxel-wise Gamma distribution.

Table 5.1 summarises the presented prior distributions and the required modifications in
(5.6).

5.3.1 Estimation of Hyper-Parameters
An important aspect is the estimation of the unknown hyper-parameters. Instead of resorting
to heuristics or cross-validation, we use Bayesian inference to estimate the hyper-parameters
θ. For all hyper-priors introduced in the previous section, the Gamma distribution G(θ|α, β)
is a conjugate prior. The ideal approach to hyper-parameter estimation would be to calculate
their marginal posterior distribution

p(θ|y) =

∫
f≥0

∫
x≥0

p(x, f, θ|y) df dx (5.14)

and determine the mean or mode (Mackay, 1996). In our case, however, exact integration
over f and x is infeasible. One would have to resort to computationally intensive methods
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Prior A+ A− b

Smoothness F TF + ∆+ ∆− −F Ty

Sparseness F TF 0 −F Ty + λI

Orthogonality F TF 0 −F Ty + λz

Entropy F TF λ diag{x}−2 −F Ty

Table 5.1: Modifications for the incorporation of prior knowledge in the update of the true
map. ∆+ and ∆− refer to the decomposition of the negative Laplacian ∆ = ∆+ − ∆−.
diag{x} is a diagonal matrix with entries xi.

like Markov chain Monte Carlo or alternatives such as variational (Molina et al., 2006) or
approximate inference (Lin and Lee, 2005). Therefore we pursue the much simpler approach
of computing the MAP estimate of the joint posterior, i.e.

θ̂ = argminθ p(f̂ , x̂, θ|y), (5.15)

where f̂ and x̂ denote the MAP estimate of the PSF and the true map, respectively. Although
it has been argued that this approximation is crude and neglects valuable information (Levin
et al., 2009), the joint MAP approach led to good results in our experiments. The estimates
for the hyper-parameters θ̂ can be derived by solving (5.15) directly. The shape parameters
α and β of the Gamma hyper-prior are not estimated but set to fixed values α = 1 and β
close to zero. According to Jin and Zou (2009) the sensitivity of the results on the shape
parameters is negligible, which was confirmed by our experiments.

5.3.2 Discussion
Let us come back to the one-dimensional toy example at low SNR (cf. Figure 5.3). Figures 5.4
A-D show how enforcing smoothness of the signal using prior (5.10) prevents unfavourable
noise-fitting and effectively helps us to recover the original signal and the PSF from the
blurred and noisy observation. We further investigated the estimation of the regularisation
parameter λ. We tested different fixed values for λ and compared the reconstruction error
of and the correlation with the true signal when applying our hierarchical Bayes approach.
Figures 5.4 E and F show that the Bayes procedure yields a minimal reconstruction error and
a maximal correlation for a wide range of fixed λ values. The evolution of the regularisa-
tion parameter (Figure 5.4 G) reveals an important feature of our deconvolution algorithm.
Starting at a small initial value, the regularisation parameter increases rapidly within a few
iterations after which it gradually converges to a smaller optimal value. This finding may
justify the heuristic regularisation scheme of Shan et al. (2008), which seems to be crucial
for the success of their BD algorithm on natural images (Levin et al., 2009). Shan et al.
propose to start the deconvolution with a large value of λ – a conservative choice that puts
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Figure 5.4: One-dimensional toy example. The top row shows the results of NNBD at
a SNR of 20 dB. A: data y used in NNBD. B: true (black) and estimated (red) PSF f .
C: true (black), NNBD (red) estimate of the true signal x. D: negative log-likelihood (on
logarithmic scale). The bottom row shows the absolute deviation (E)/correlation coefficient
(F) of the reconstructed signal x̂ from/and the true underlying signal x for fixed values of the
regularisation parameter λ (black) and in the case of NNBD with additional hyper-parameter
estimation (red) after 5000 iterations. G: Evolution of the hyper-parameter λwith increasing
number of iterations.

higher weight on the prior than on the data. As the deconvolution improves, the regular-
isation parameter is decreased to put more and more weight on the data. This is similar
to simulated or deterministic annealing which aims to avoid trapping in sub-optimal local
minima. The advantage of our approach is that, contrary to that of Shan et al. (2008), we do
not need to choose a schedule for adjusting λ. Rather our update procedure automatically
balances the influence of the data versus the importance of the prior.

5.4 Results on Simulated Density Maps

To evaluate the performance of our model and verify its validity we applied our algorithm
to simulated three-dimensional density maps with a sampling of 1 Å/voxel. We used the
program pdb2mrc from the EMAN software package (Ludtke et al., 1999) for density map
simulation. First, we use Non-negative Blind Deconvolution to sharpen electron density
maps. In the second application, we demonstrate the capabilities of our approach and the
usefulness of the orthogonality prior by incorporating homologous structure information in
the deconvolution.
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A B C

D E F

Figure 5.5: NNBD for the electron density map of the monomer of the bluetongue virus
outer shell coat protein VP7 (PDB ID: 2BTV): Top row: A: molecular structure, B: simu-
lated density map at 10 Å, C: point spread function. Middle row: D: NNBD reconstruction
with molecular structure fitted into it, E: NNBD reconstruction, F: estimated point spread
function.

5.4.1 Electron Density Maps of Proteins

For validation we used a monomer of the trimer of the bluetongue virus capsid protein
VP7 (PDB ID: 2BTV) (Grimes et al., 1998). Figure 5.5 A shows the molecular structure,
Figure 5.5 B the simulated electron density map at 10 Å resolution and Figure 5.5 C the
corresponding PSF. Figures 5.5 D-F show the density map reconstructed with NNBD, the
molecular structure fitted into it and the estimated PSF, respectively. The sharpened map re-
veals the nature of most secondary structure elements, whereas the original density map pro-
vides ambiguous secondary structure information. Also side chains become visible, which
is important for modelling atomic details. To quantify the gain in resolution, we computed
the correlation coefficient between the sharpened map and density maps simulated at higher
resolutions. Figure 5.6 shows that the correlation coefficient is highest for a density map at
a resolution of 6 Å. Hence, our algorithm is able to sharpen the original map and to improve
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Figure 5.6: Correlation coefficient of
the reconstructed density map shown
in Figure 5.5 (E) with simulated den-
sity maps at various resolutions. The
reconstructed density map peaks at
6 Å suggesting an improvement in
resolution of 4 Å.
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Figure 5.7: Guinier plot of the reconstructed density map shown in Figure 5.5 (E) with
overlayed Guinier curves of simulated density maps at various resolutions. The plot sug-
gests a resolution of about 6 Å which is in good agreement with the peak of the correlation
coefficient in Figure 5.6.
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A B C D

Figure 5.8: NNBD for the electron density map of the monomer of the bluetongue virus
outer shell coat protein VP7 (PDB ID: 2BTV): A: simulated density map at SNR of 6 dB at
10 Å resolution, B: NNBD reconstruction, C: result of embfactor, D: median-filtered result
of embfactor.

its resolution by almost a factor of two. Figures 5.5 C and F depict the true and estimated
PSFs. The overall shape and functional form is determined correctly, however the estimated
bandwidth appears to be smaller. This shrinkage of the PSF is largely due to the smoothness
prior that downweights high-frequency components, which causes a loss of structural details
but, at the same time, prevents amplification of noise. In this sense, underestimation of the
bandwidth is conservative and should be viewed as a feature rather than a shortcoming.

Further insight is obtained by looking at the Guinier plot in Figure 5.7 showing the
radially averaged power spectrum against the squared resolution. In physical terms, the
Guinier plot quantifies the map’s energy content at various spatial frequencies. Blurring
has the effect that the Guinier plot drops off quite rapidly – convolution with a broad PSF
acts as a low-pass filter that deletes all information above a certain cutoff frequency. The
NNBD algorithm is able to recover high-frequency information to a large extent and lifts the
Guinier curve above the curve of the simulated density map at a resolution of 6 Å (orange
line in Figure 5.7).

To study the influence of noise, we corrupted the simulated density maps with Gaussian
noise at different SNRs. We used the program proc3d from the EMAN software package
(Ludtke et al., 1999) for noise corruption. Figure 5.8 A shows a noisy 10 Å-density map
at a SNR of 6 dB. Figure 5.8 B shows the corresponding NNBD reconstruction using a
smoothness prior (5.10). For comparison Figure 5.8 C shows the density map sharpened
with embfactor (Fernández et al., 2008; Rosenthal and Henderson, 2003), the state-of-the-
art method within the field.

5.4.2 Incorporating Homologous Structure Information

We now demonstrate how additional information from homologous structures can be in-
corporated to aid the deconvolution process and to detect secondary structure. We use the
trimeric structure of the bluetongue virus capsid protein VP7 (PDB ID: 2BTV) as an ex-
ample. Figures 5.9 A-C show the molecular structure, a top and side view of the simulated
density of 2BTV at a resolution of 8 Å. The protein is made up of β-sheets and α-helices in
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A B C

D E F

G H I

Figure 5.9: NNBD for the electron density map of the bluetongue virus capsid protein (PDB
ID: 2BTV) using additional structural information from a homologous fold. Top row: A:
molecular structure of trimer 2BTV, B: top view of simulated density map of 2BTV at 8 Å
resolution, C: sideview. Middle row: D: molecular structure of the African horse sickness
virus capsid protein (PDB ID: 1AHS), E: simulated density map of 1AHS at 8 Å resolution,
F: density map of 1AHS fitted into the map of 2BTV by FOLDHUNTER. Bottom row: G:
NNBD of 2BTV without density map of homologous fold, H: molecular structure of 2BTV
fitted into the density map, I: closeup view of H. See text for details.
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A B C

Figure 5.10: Comparison of true PSF (A) and the PSFs estimated by our approach without
(B) and with homologous structure information (C). Note that (C) much closer resembles
the true PSF as evident when comparing the intensity profiles. Hence, the incorporation of
additional knowledge facilitates PSF estimation and improves accuracy.
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4 Å
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Figure 5.11: Guinier plot of reconstructed density maps with (magenta dashed line) and
without homologous structure information (red dotted line). Incorporating additional knowl-
edge in form of homologous structure information improves the resolution of the recon-
structed density map from about 5 Å to 2 Å and therewith yields almost atomic resolution.
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the upper and lower domains, respectively. The African horse sickness virus capsid protein
(PDB ID: 1AHS) is a close structural homologue (RMSD: 1.4 Å) to the all-beta domain
of 2BTV. Figures 5.9 D-F display the molecular structure, the simulated density at a res-
olution of 8 Å and the fit of 1AHS into 2BTV provided by FOLDHUNTER (Jiang et al.,
2001). In B-factor sharpening, information from homologous folds is used to compute the
optimal B-factor for density sharpening. In our blind deconvolution approach, we model
the observed density map as being composed of the homologous structure simulated at a
higher resolution and the remainder density of 2BTV. The density of the homologous fold is
held fixed, only the missing density and the PSF are estimated during the deconvolution. As
initial PSF, we use a Gaussian at 6 Å resolution corresponding to the resolution difference
between the high-resolution density of 1AHS at 2 Å and the experimental density. During
reconstruction, we apply the orthogonality constraint (5.12) to enforce that the 1AHS den-
sity and the unexplained region of 2BTV do not overlap. The result of NNBD is shown in
Figs. 5.9 G-I. As clearly visible in the closeup (Figure 5.9 I), the sharpened density map
reveals sidechains and information with almost atomic resolution. Figures 5.10 A-C com-
pare the true PSF and the PSFs estimated by NNBD with and without homologous structure.
As in the previous example, the width of the PSF is underestimated due to the smoothness
prior. However, the additional structural information facilitates a more accurate estimation
of the PSF (Figure 5.10 C) and thereby allows the restoration of a high-resolution density
map (Figure 5.9 I). The Guinier plot in Figure 5.11 illustrates the improved recovery of
high-frequency information and the increase in resolution.

5.5 Results on Experimental Density Maps

To test our proposed algorithm on real-world data, we downloaded a single particle recon-
struction of GroES-ADP7-GroEL-ATP7 from the EMD database (EMD-ID: 1046), whose
resolution was assessed as 23.5 Å by its authors (Ranson et al., 2001). Figure 5.12 shows
a side and top view of both the original and the reconstructed density map after 1900 itera-
tions. The estimated map reveals much more detail and exhibits structure that is not visible
in the original density map. To assess the quality of the reconstruction we fitted the cor-
responding pdb structure which we downloaded from the PDBe5 database (PDB-ID: 1gru)
into the density map. The result is shown in Figure 5.13. Since the PDB structure was
determined using the original density map at 23.5 Å, we do not expect a perfect fit. How-
ever, close inspection shows good agreement in places and even sidechains become visible,
which suggests that a refinement of the proposed PDB structure with the help of the sharp-
ened density map might be possible. For comparison we also show the results of B-factor
sharpening, where we used the implementation of Fernández et al. (2008). The resulting
density is of poor quality, which is probably due to unwanted noise amplification. Since the
density map looks visually quite scattered, any meaningful structure determination becomes
problematic, if not impossible.

Another example which demonstrates the usefulness of our method is illustrated in Fig-

5http://www.ebi.ac.uk/pdbe/

http://www.ebi.ac.uk/pdbe/
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Figure 5.12: Sharpening of experimental density map: The top panel shows a side and
top view of a single particle reconstruction of GroES-ADP7-GroEL-ATP7 at 23.5 Å down-
loaded from the EMD database (EMD-ID: 1046). The middle panel shows the result of our
approach after 1900 iterations, which is clearly superior to the result of B-factor sharpening
(shown in the bottom panel).
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Figure 5.13: Sharpening of experimental density map: The top panel shows a side and
top view of a single particle reconstruction of GroES-ADP7-GroEL-ATP7 at 23.5 Å down-
loaded from the EMD database (EMD-ID: 1046) with the proposed PDB structure of Ranson
et al. (2001) fitted into it. The middle panel shows the result of our approach after 1900 it-
erations, which is clearly superior to the result of B-factor sharpening (shown in the bottom
panel).
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Figure 5.14: Sharpening of experimental density map and automatic secondary structure annotation via SSEHunter: The top panel
shows a single particle reconstruction of GroEL at 11.5 Å downloaded from the EMD database (EMD-ID: 1080). The bottom panel
shows the result of our algorithm after 150 iterations. The closeup reveals the increased information content, which helps to facilitate
automatic secondary structure annotation. The depicted balls are automatically assigned pseudo-atoms whose colour encodes their
probability for belonging to a helix (red) or a beta strand (blue) respectively.
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ure 5.14. The top panel shows a single particle reconstruction of GroEL with a assessed
resolution of 11.5 Å (Ludtke et al., 2001), which we downloaded from the EMD database
(EMD-ID: 1080). The bottom panel shows the result of NNBD after 150 iterations. Beside
the fitted PDB structure (PDB-ID:1OEL), we also show the intensity profile of a vertical
slice. The aggregation of electron density and the sharper contouring is clearly visible. To
assess the improvement in quality, we ran SSEHunter of Baker et al. (2007) for automatic
secondary structure annotation on both the original and sharpened density maps. SSEHunter
automatically assigns pseudo-atoms to the density to which a probability is assigned for be-
longing to a helix or a beta strand (red and blue balls in upright panel of Figure 5.14, re-
spectively). The closeups in Figure 5.14 demonstrate how our proposed algorithm facilitates
automatic structure determination by improving the resolution of electron density maps.

5.6 Conclusion and Outlook
In this chapter, we proposed a new method for improving the resolution of cryo-EM density
maps by non-negative blind deconvolution. We provided an iterative algorithm for esti-
mating simultaneously the sharpened density map and the blur kernel. We illustrated the
generality of the proposed framework and showed that the derived updates allow for easy
incorporation of prior knowledge such as smoothness and sparseness.The updates are mul-
tiplicative and do not require the adjustment of a learning rate, as opposed to previously
proposed gradient descent techniques. In addition, the updates ensure the non-negativity of
the sharp map and the PSF and guarantee convergence to a stationary point. A hierarchical
Bayesian formulation also allowed us to derive update rules for the hyper-parameters, thus
the method is fully parameter-free. The simplicity of the multiplicative updates allows for
straightforward implementation. By employing the Fast Fourier Transform, we can reduce
the computational complexity to large extent such that even medium and large sized prob-
lems (number of voxels > 107) can be tackled efficiently. Computation time is typically in
the order of minutes to hours for large density maps (> 4003) depending on the number of
iterations one is willing to perform. Since our method allows the inspection of intermediate
results, the user can decide when to stop either by visual inspection or by a user-set threshold
of the monotonically decreasing cost function. We illustrated the performance and versatil-
ity of our algorithm by sharpening simulated electron density maps of the bluetongue virus
capsid protein VP7 and by incorporating homologous structure information into the decon-
volution process. Results on experimental density maps confirm that NNDB is a flexible
and generic tool to improve the resolution of electron density maps.
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Chapter 6

Conclusion and Outlook

In the last chapter, we summarise the contributions and findings of this thesis, discuss open
problems and interesting future directions and conclude by giving a brief outline of some
ongoing projects that are directly related to the work presented in this thesis.

6.1 Conclusive Summary
In this thesis, we developed and discussed an efficient and generic framework for the de-
scription and computation of spatially varying blur and presented novel solutions to chal-
lenging real-world applications in both scientific imaging as well as everyday photography.

6.1.1 Summary of Contributions
This thesis made contributions on three conceptual levels:

• Theory. In Chapter 2, we developed a mathematically sound and physically well-
motivated derivation of our Efficient Filter Flow (EFF) framework, that allows to ex-
press and efficiently compute blur, which smoothly varies across the image plane. We
derived our framework as a discrete approximation of the incoherent imaging equa-
tion, which extends the well-known and commonly employed invariant convolutional
model, without, however, sacrificing its numerical amenities. It proved itself an es-
sential and crucial ingredient in a number of challenging real-world applications (see
Chapters 3 and 4), which demonstrated both the validity as well as the versatility of
our approach.

• Applications. In Chapters 3, 4 and 5, we tackled a number of challenging real-world
applications, for which we developed novel approaches which surpass current limita-
tions and broaden the applicability of deconvolution methods in scientific imaging as
well as everyday photography:

◦ Chapter 3 addresses the problem of recovering a sharp latent image of a se-
quence of atmospherically blurred and noisy images. We developed a Blind
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Deconvolution (BD) algorithm that processes the imagery in an online fashion,
i.e. frame after frame, and is able to handle the effects of spatially varying blur,
super-resolution and saturation correction. Encouraging results on simulated and
real astronomical images demonstrated that our approach yields competitive, if
not superior deblurring results when compared to existing approaches.

◦ In Chapter 4, we proposed a single image BD algorithm for removing non-
uniform motion blur due to camera shake. By incorporating camera motion
constraints into the EFF framework, we derived an algorithm that is not only
substantially faster, but also leads to better deblurring results than existing ap-
proaches.

◦ Chapter 5 develops a novel BD algorithm for improving the resolution of three-
dimensional density maps of macromolecular assemblies and large biomolecular
complexes as obtained by cryo-electron microscopy. Results for both simulated
and experimental density maps demonstrated that our proposed algorithm is a
flexible and generic tool for facilitating structure elucidation of macromolecular
assemblies.

• Algorithms. In Chapters 3, 4 and 5, we presented various BD algorithms that despite
having been developed for a specific application, can be readily applied or easily
adopted to other problem settings. The following section 6.2.2 will outline such a case,
where we adopted the BD algorithm that has been developed for the sharpening of
cryo-EM density maps (see Chapter 5), to an interesting problem in medical imaging.
In this respect, the presented algorithms are noteworthy in their own right, as they
might offer novel algorithmic solutions to similar inference problems.

6.1.2 Discussion and Outlook
Both benefits and shortcomings as well as limitations and possible extensions of the pre-
sented material have been discussed in great detail at the end of each chapter, hence we will
not repeat them here. Instead, we will outline some problems that remain unsolved as well
as interesting future directions:

• Full Inference of EFF parameters. In its current implementation, there are a couple
of parameters within the EFF framework that necessitate manual adjustment. These
parameters include the number of sampling sites which depends on the spatial corre-
lation length of the point spread function (PSF), the support size of the local kernels
and the interpolation scheme between them. As in some situations the spatial vari-
ance of the underlying PSF is position-dependent as e.g. it is often the case for lens
aberrations, an approximation of the PSF by a non-uniform grid of sampling sites has
the potential of improved accuracy and a speedup in computation time, which how-
ever comes at the cost of increased model complexity. As the EFF is linear in the
parameter, which determines the interpolation scheme between neighbouring filters,
an efficient inference scheme should be able to balance the trade-off between model
complexity and goodness of approximation.
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Particularly, in the context of astronomical imaging, some of the above-mentioned
parameters are tightly connected to the statistical properties of the atmospheric tur-
bulence. By incorporating this additional knowledge about the underlying physical
properties, an inference scheme based on e.g. non-parametric Bayesian statistics could
minimise human intervention and facilitate fully automatic image processing which
is essential for the successful integration of the EFF framework into the data pipelines
of future sky surveys.

• Low Signal-To-Noise Ratio. Many scientific imaging applications suffer from very
low signal-to-noise-ratio (SNR). There are two ways of increasing the SNR for very
faint signals: either increase the exposure time or the number of observations. There
is a subtle trade-off between the two and Hasinoff et al. (2009) argues in the case of
photography for the latter given a constraint time budget. However, all multi-frame de-
convolution algorithms the author is aware of (incl. the online BD algorithm presented
in Chapter 3) suffer from the presence of high noise and either lead to unwanted noise
amplification or necessitate the use of additional regularisation terms. Often enough,
simple averaging seems to be the method of choice due to a lack of efficient regular-
isation terms and robust deconvolution techniques. Evaluating and understanding the
shortcomings of present deconvolution algorithms in the low SNR regime will help to
improve current methods and to develop noise robust deconvolution techniques, thus
broadening the applicability of deconvolution in scientific imaging.

• Semi-blind deconvolution. Commonly, non-blind and blind deconvolution are dis-
tinguished depending on whether the PSF or point response of the optical system is
assumed to be known or unknown. However, in many situations partial information
about the PSF is accessible by the use of additional measurement sensors, such as e.g.
wavefront sensors or inertial measurement sensors. In other cases, the PSF describes
the joint effect of several blurring sources, one of which can be analysed through ad-
ditional measurement as e.g. in the case in astronomical imaging where blur is due to
atmospheric turbulence and lens aberrations of the telescope optics. Only little work
has been done along these lines which we refer to as semi-blind deconvolution. One
interesting question that arises, is how to deal with uncertainties in the measured part
of the PSF and how to optimally exploit the additional information available.

6.1.3 Conclusion

Overall, this thesis is witness of how various fields of research can mutually stimulate and
enrich each other, often leading to fast progress and novel approaches to longstanding prob-
lems. In particular, based on the fundamental laws of physical optics, we developed a novel
and generic framework for the description of spatially varying blur. By generalising the
short-time Fourier transform commonly employed in the domain of audio and signal pro-
cessing, we were able to devise an efficient implementation of the EFF. Being able to
efficiently compute the gradients with respect to the model parameters enabled us the use
of powerful gradient-based quasi-Newton methods from mathematical optimisation theory.
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This in turn was crucial for its successful application to the various challenging real-world
problems presented in this thesis.

The overall goal of this thesis was to take forward the state-of-the-art in the field and
further the applicability of BD techniques in everyday photography as well as in scientific
imaging. With the EFF, we presented for the first time a generic and versatile tool for mod-
elling spatially varying blur which is a prevalent problem in many real-world applications.
Through its efficient implementation and the provision of fast optimisation techniques for
model parameter estimation, we hope to promote the use of more sophisticated but realistic
imaging models and release researchers in digital image processing from having to make the
frequently overly simplified assumption of an invariant PSF for the sake of computational
tractability.

Our success in tackling various challenging real-world problems owes itself to a sub-
tle trade-off between two integral parts of almost every computational approach: modelling
and inference. The more accurate a model captures the underlying physics or dynamics of
a problem, the more capable is a method in terms of quality and accuracy. On the other
hand, the more complex a model is, the harder the inference of the underlying model pa-
rameters becomes, which might render a method computationally infeasible or intractable.
The balancing between the two is often a delicate task, however at the same time also a
key ingredient for the success of a computational method. One-sided viewpoints or the un-
derestimation of one or the other, especially in fields where established models are rarely
scrutinised, more often than not hinder or impede scientific progress. This thesis provides
evidence for the importance of both modelling and inference in successfully approaching a
challenging problem and suggests interdisciplinarity as an efficient catalyst.

6.2 Outlook and Perspectives
In this section, we will briefly outline some ongoing projects that are directly related to the
work presented in this thesis and underpin the relevance and value of its findings.

6.2.1 Non-Stationary Correction of Optical Aberrations

This project directly builds on the EFF framework developed in Chapter 2, and is done in
collaboration with Christian J. Schuler, Stefan Harmeling and Bernhard Schölkopf. First
results have been published recently in (Schuler et al., 2011).

A direct application of the EFF is the modelling of optical aberrations, which describe
departures of an optical system from an ideal optical system as described theoretically by
paraxial optics: in an ideal optical system all light rays emitted by a point source converge
to a single point in the focal plane, forming a clear and sharp image. Departures from this
ideal behaviour are inevitable and the design of a lens is always a trade-off between various
parameters, including price.

Manufacturers of photographic lenses attempt to minimise optical aberrations by com-
bining several glass elements to so-called compound lenses comprising of as many as 15
elements or more, which renders high grade lenses probably the most expensive compo-
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Figure 6.1: Self-made photographic lens with a 120mm focal length. Taken image without
and with lens correction.

nents of high-end camera systems today.

Optical aberrations are commonly classified into:

• Monochromatic aberrations which cause blurring that varies across the image plane.
This class of aberrations include:

◦ spherical aberration, where the focal length is a function of the distance from
the optical axis within a spherical lens
◦ coma occurs in an oblique light bundle when the intersection of the rays is

shifted with respect to its axis
◦ field curvature occurs when the focal surface is non-planar
◦ astigmatism occurs when the sagittal and tangential focal surfaces do not coin-

cide (i.e., the system is not rotationally symmetric for off axis light bundles)

• Chromatic aberrations caused by the wavelength dependence of the diffractive-
index of most materials including glass.

• Vignetting, i.e. the intensity falls off towards the image corner due to absorption of
oblique light bundles.

In (Schuler et al., 2011), we show that all of the above-mentioned optical aberrations can
be well described by the EFF framework and even corrected for by digital image processing.
By noting that aberrations of a linear optical system are fully described by their PSF, this
does not come as a surprise, since in Chapter 2 the EFF framework was exactly derived as
an efficient numerical approximation of a spatially varying PSF.

For a given lens/camera combination, the parameters of the EFF are determined via an
automated calibration procedure that measures the PSF at a grid covering the image. We
demonstrate that even for heavily degraded images, taken with a self-constructed lens con-
sisting of a single lens element (see Figure 6.1), a reconstruction of a full-colour image, i.e.,
all three colour channels at full resolution given a raw image is possible. Figure 6.2 shows
degraded images taken with different lens/camera combinations that suffer from various
monochromatic and chromatic aberrations. The result of our reconstruction significantly
improves image quality. We believe that our work can have significant implications for the
design of lenses by offering the possibility of drastically lowering the costs of current lenses.
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Figure 6.2: Comparison between original and corrected images and the respective PSFs.
Only parts of the images are shown. For full resolution images please visit the project
webpage linked below.

The accompanying project website contains many more images in full resolution and is
readily accessible via:

6.2.2 A Blind Deconvolution Approach for Attenuation Map Predic-
tion from MR Image Pairs

This project directly builds on the method developed in Chapter 5 and outlines an interesting
application in medical imaging. The project is performed in collaboration with Matthias
Hofmann, Frédéric Mantlik, Michael Habeck and Bernhard Schölkopf from the MPI for
Intelligent Systems, Tübingen as well as Bernd Pichler from the Department of Preclinical
Imaging and Radiopharmacy at the Eberhard-Karls-University Tübingen.

http://webdav.is.mpg.de/pixel/lenscorrection/
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Recently, noninvasive hybrid imaging systems have been developed that combine Positron
Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) (Judenhofer et al.,
2008). PET visualises metabolic aspects of disease, while MRI produces high soft-tissue
contrast and provides high-resolution anatomical information. Although it is therefore de-
sirable to combine these two complementary modalities into one device, the development
has posed many technical challenges. Prototypes from commercial manufacturers are now
available, but one of the remaining problems for clinical adoption is that quantitative PET
image reconstruction requires a so-called attenuation map that is typically obtained via an
additional Computed Tomography (CT) scan.

Great efforts are made for circumventing the need of an additional CT scan. However,
saving the patient from additional radiation exposure is possible only if one can generate
the attenuation map from the information provided by MRI. This is a challenging problem
because bone tissue contributes nearly no signal in standard MRI sequences and is therefore
indistinguishable from air. In the attenuation image, bone and air are on opposite ends of the
attenuation scale and it is therefore of particular importance that they can be distinguished
reliably.

Recently, novel MRI sequences that use ultra short echo times (UTE) have been sug-
gested as a promising approach. In UTE images, the signal is acquired within around 70µs
of sending the excitation signal, which allows to yield signal even from solid structures such
as cortical bone. In principle, the UTE image shows distinguishable responses for bone and
air. However, as is visible in Figure 6.3, this comes at the price of lower image resolu-
tion compared to the typically used FLASH sequence protocol. The task is to harness the
strengths from both images and to find a way to extract the available, though convoluted,
information for attenuation map prediction.

Different methods such as (Keereman et al., 2008) have been proposed that make use
of a pair of images, one acquired with an ultra short echo time and one with a normal
echo time of around 1ms. These methods lack a principled approach and are based on
heuristics. Through simple image arithmetics a pseudo CT image is generated that captures
the essential features of the true CT image. However, the methods suffer from false bone
prediction in some regions, e.g. the cerebellar hemisphere, and are sensitive to user set
parameters.

In an ongoing project, we developed a novel approach that explicitly tackles the problem
of resolution loss in the UTE image for the first time. We formulated the task as a BD
problem and by exploiting the non-negativity we derived multiplicative updates for both the
blur kernel and the sought-after pseudo CT image that are reminiscent of those presented in
Chapter 5. Figure 6.3 illustrates that our method is able to predict bone with high accuracy
using the MRI image pair only. The predicted bone image can be used to compute an
improved attenuation map needed for PET reconstruction. Quantitative experiments will
have to prove the performance and merit of our approach.

Although our method was developed specifically for attenuation and electron density
estimation, it can be applied in the general case where two input images are provided, one
image containing precise information about region boundaries and the other image contain-
ing intensity information about the region class.
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Figure 6.3: Mid-sagittal, coronal and transverse slice through human head. From top to
bottom: FLASH, UTE, predicted bone and CT image. This figure is best viewed on screen,
rather than in print.



Appendix A

Implementation Details

Although in sections 3.3 and 3.4 we only considered vectors, one-dimensional convolutions,
and vector-norms, all results naturally generalize to two-dimensional images. However,
efficiently implementing the resulting algorithms for two-dimensional images requires some
care and handling of technical details.

A.1 Convolution as Matrix-Vector Multiplication
We introduced f ∗ x as the convolution, which could be either circular or non-circular. Due
to linearity and commutativity, we can also use matrix-vector notation to write

f ∗ x = Fx = Xf. (A.1)

The matrices F and X are given by

F = ZT
y F−1 diag(FZff)FZx, (A.2)

X = ZT
y F−1 diag(FZxx)FZf . (A.3)

Matrix F is the discrete Fourier transform matrix, i.e., Fx is the Fourier transform of x.
The diagonal matrix diag(v) has vector v along its diagonal, while Zx, Zf , and Zy are zero-
padding matrices which ensure that Zxx, Zff , and Zyy have the same length. Different
choices of the matrices lead to different margin condition of the convolution.

For two-dimensional images and PSFs we have to consider two-dimensional Fourier
transforms, which can be written as left- and right-multiplications with F , and represented
as a single matrix-vector multiplication using Kronecker products and the vectorization op-
erator vec(x), which stacks columns of the two-dimensional image x into a one-dimensional
vector in lexicographical order; formally,

vec(WxW ) = (W ⊗W ) vec(x), (A.4)

which follows from the identity (Horn and Johnson, 1991)

vec(AB CT) = (C ⊗ A) vec(B). (A.5)

The zero-padding operations for two-dimensional images can be written in a similar way.
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A.2 Resizing Matrices
The resizing matrix Dm

n can be implemented efficiently using sparse matrices1. Resizing
two-dimensional images can also be implemented by left- and right-multiplications: let x
be an m×n image, then Dm

p x (Dn
q )T is an image of size p×q. Using Eq. (A.5) we can write

this operation as the matrix-vector product

vec(Dm
p x (Dn

q )T) = (Dn
q ⊗Dm

p ) vec(x). (A.6)

1Defining for instance in Octave, D = kron(speye(m), ones(n,1)’)*kron(speye(n),
ones(m,1))/m; the matrix-vector product D*v will be calculated efficiently.
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Notation

Matrices & vectors

y, x, f Lower case letters denote vectors
X,F,A Upper case letters denote matrices
xi The i-th element of vector x
Aij The ij-th element of matrix A
I Identity matrix
diag(x) Diagonal matrix with vector x on diagonal
vec(A) Vector by flattening matrix A
xT, AT Vector or matrix transpose
xH, AH Conjugate transpose of a vector or matrix XH = ĀT

x̄, Ā Conjugate transpose of a complex vector or matrix
A+ Non-negative entries of matrix
A− Negative entries of matrix
A−1 Matrix inverse

Operations & operators

� Element-wise multiplication
∗ Convolution operator
? Correlation operator
⊗ Kronecker product
� Fast forward model operator∑

Summation operator∫
Integral operator∫∫
Double integral operator

∇, ∂ Derivative operator
L Laplacian operator, i.e. ∇T∇
R Real numbers
≡ Defined to be equal to
≈ Approximately equal to
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Abbreviations

BD Blind Deconvolution

CCD Charged Coupled Device

CPS Camera Pose Space

cryo-EM Cryo-electron microscopy

CT Computed Tomography

DFT Discrete Fourier Transform

EFF Efficient Filter Flow

FFT Fast Fourier Transform

GEM generalised expectation maximisation

HST Hubble Space Telescope

LST Linear Systems Theory

MAP maximum a posteriori

MDF Motion Density Function

MFBD Multi-frame Blind Deconvolution

MRB Motion Response Basis

MRI Magnetic Resonance Imaging

MTF modular transfer function

MVM matrix vector multiplication

NNBD Non-negative Blind Deconvolution

NNQP Non-negative Quadratic Program

OBD Online Blind Deconvolution
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OLA overlap-add

OLS overlap-save

PDB Protein Data Bank

PET Positron Emission Tomography

PMPB Projective Motion Path Blur

PSF point spread function

QR Quick Response

SC saturation correction

SGD stochastic gradient descent

SNR signal-to-noise-ratio

SR super-resolution

e.g. for example (exempli gratia)

et al. and others (et alias)

i.i.d. independently and identically distributed

i.e. that is (id est)

w.r.t. with respect to



Index

atmospheric turbulence, 28
auxiliary function, 33, 93
AviStack, 40

B-factor, 90
binary star, 44
bluetongue virus capsid protein, 99, 101
blur

atmospheric, 28
motion, 58, 59
optical aberrations, 114
spatially varying, 31, 36

Burg entropy, 96

Camera Pose Space, 62
camera shake, 59
CCD, see charged coupled device
chaperonin complex, 90
charged coupled device, 1
convolution, 12

invariant, 12
non-stationary, 15
operator, 12
theorem, 12

convolution theorem, 58, 93
Copernicus crater, 46
correlation

coefficient, 99
CPS, see Camera Pose Space

dataset
Books, 44
Building, 44
Butcher Shop, 80
Chimney, 44
Coke, 83

Disk, 52
Elephant, 78
Magazines, 83
Notre Dame, 81
Pantheon, 81
Petrol Station, 83
Statue, 82
Text, 52
Vintage Car, 79

deconvolution
blind, 2, 28
classical, 2
multi-frame blind, 29
multi-frame blind, 30
non-blind, 2
non-negative, 91
online blind, 27
semi-blind, 113

density map, 89
diffraction limit, 28
distribution

Gamma, 96
Gaussian, 32, 92

EFF, see Efficient Filter Flow, see Efficient
Filter Flow

Efficient Filter Flow, 2
Efficient Filter Flow, 21, 36
Epsilon Lyrae, see binary star

Fast Fourier Transform, 93
FFT, see Fast Fourier Transform
filtering

bilateral, 71, 73
shock, 71, 73
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Gaussian mixture model, 94
GEM, see generalised expectation maximi-

sation
generalised expectation maximisation, 30
Globular Cluster M13, 50
GroEL, see chaperonin complex, 104
Guinier plot, 101, 104

homography, 62
homologous structure, 101
HST, see Hubble Space Telescope
Hubble Space Telescope, 2
hyper

-parameter, 95, 96
-prior, 96

illumination
coherent, 10
incoherent, 10

image formation model
astronomy, 32
cryo-EM, 91
pinhole camera, 62
time-agnostic, 66

imaging
lucky, 29
speckle, 28

impulse response, 9
incoherent

illumination, 10
imaging equation, 11

interpolation, 16
gaussian, 16
linear, 16
piecewise-constant, 12

invariance
scale, 94
shift, 94

irreducible, 94
isoplanatic patch, 28, 47

Knox-Thompson, 40

Laplacian, 97
lbfgsb, 71

log-likelihood, 92

M13, see Globular Cluster M13
matrix-vector-multiplication, 21
Maxwell’s equations, 8
modular transfer function, 28
Motion Response Basis, 62

reduced, 64
MRB, see Motion Response Basis
MTF, see modular transfer function
multiplicative update, 91, 92
MVM, see matrix-vector-multiplication

non-stationary
combination, 13
convolution, 15

optical aberrations, 114
Orion Trapezium, 48
overexposure, see saturation correction

phase screen, 37
photometry, 50
point spread function, 11, 28
Poisson noise, 34, 37
polarisation, 8
posterior, 95, 96
prior

entropy, 96
natural image, 75
non-uniform, 95
orthogonality, 96
smoothness, 40, 95
sparseness, 96

PSF, see point spread function
PyCUDA, 40

quadratic program, 91

rmap, 71

saturation, see saturation correction
saturation correction, 30, 35
secondary structure, 101
SGD, see stochastic gradient descent
side chains, 99
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sifting property, 9
signal-to-noise ratio, 38
SNR, see signal-to-noise ratio
stochastic gradient descent, 33
super-resolution, 30, 31, 34
superposition

integral, 9
principle, 9

superposition integral, 65
system

linear, 8
space-invariant, 12
space-variant, 12

theory
linear systems, 8
scalar, 8

Tikhonov regularisation, 40


