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Abstract

The research reported in this thesis addresses necessary equilibrium information for un-

derstanding of homogeneous and heterogeneous nucleation in the hard sphere system.

Colloidal hard spheres are an intensely studied model system for addressing the nucle-

ation problem. Understanding nucleation requires a precise knowledge about equilibrium

crystal structures and free energies. We use classical density functional theory (DFT) of

fundamental measure type (FMT) to evaluate the fully minimized crystal density profiles

and their interfaces. Results are compared with simulation data and complemented by

a cluster expansion approach due to Stillinger which is based on expanding the crystal

partition function in terms of the number n of free particles while the remaining particles

are pinned at their ideal lattice positions. Finally, dynamical density functional theory

(DDFT) as a time dependent extension of static DFT is implemented.

Face–centered cubic (fcc), hexagonally close–packed (hcp) and body–centered cubic

(bcc) crystals are investigated using fundamental measure theory and results are com-

plemented by results from Stillinger’s approach. Two branches of solutions have been

observed for bcc structure corresponding to different width parameters of the density

distribution around lattice sites. The free energy of one branch of bcc agrees well with

FMT and Stillinger’s approximation truncated at n = 2. A second branch of the bcc

solution features rather spread–out density distributions around lattice sites and a large

equilibrium vacancy concentration and it is presumably linked to the shear instability

of the bcc phase. Within fundamental measure theory and Stillinger approach (n = 2),

hcp is more stable than fcc by a free energy per particle of about 10−3kBT . In previous

simulation work, the reverse situation has been found which can be rationalized in terms

of an effect due to correlated motion of at least 5 particles in the Stillinger picture.

At a hard, flat and unstructured substrate, the crystalline phase completely wets the

substrate when the fluid density approaches the freezing point. The formed crystal is

oriented with close–packed planes parallel to the substrate. Heterogeneous nucleation

for the hard sphere fluid at unstructured hard walls has not been found neither in sim-

ulation methods nor in DFT approaches. In collaboration with a simulation group, the



hard sphere fluid confined between parallel soft plated is studied in search of a vari-

able nonzero contact angle which could allow studying heterogeneous nucleation. The

Week–Chandler–Andersen (WCA) potential is used as a wall potential with variable

wall strength. Two variants of FMT are implemented to evaluate the density distribu-

tions and surface tensions of the hard sphere fluid at the wall with different strengths.

DFT is found to be quantitatively very accurate over a wide range of packing fraction in

comparison with Monte Carlo simulation. For the surface tension, only small deviations

between DFT and MC near the fluid–crystal transition are observed.

Finally, dynamical density functional theory (DDFT) is implemented for equilibrating

the fcc hard sphere crystal and the crystal–liquid interface density profile. DDFT re-

sults for fcc are in an excellent agreement with DFT and simulation data. For the

crystal–liquid interface tension there is about 4% discrepancy between DDFT and di-

rect minimizations of DFT. This difference is due to the stiffness of the DDFT equation

which does not allow us to fully equilibrate the interface density profile.
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Zusammenfassung

Diese Arbeit addressiert Informationen über das thermische Gleichgewicht in Hartkugel-

systemen, die für das Verständnis von homogener und heterogener Keimbildung notwendig

sind. Kolloidale harte Kugeln sind ein oft untersuchtes Modellsystem für die Frage der

Keimbildung. Das Verständnis der Keimbildung erfordert präzises Wissen der Kristall-

strukturen im Gleichgewicht und deren freie Energien. In dieser Arbeit wird klassische

Dichtefunktionaltheorie (DFT) in der Form der Fundamentalmaßtheorie (FMT) benutzt,

um Dichteprofile im Kristall und an der Grenzfläche durch volle Minimierung zu bestim-

men. Die erhaltenen Resultate werden mit Simulationsdaten verglichen und mit Resul-

taten aus einem Clusterentwicklungszugang nach Stillinger ergänzt. Dieser basiert auf

einer Entwicklung der Zustandssumme des Kristalls in der Zahl n von freien Teilchen,

während die anderen Teilchen an ihren idealen Gitterpositionen fixiert bleiben. Ab-

schließend wird eine Implementierung von dynamischer Dichtefunktionaltheorie als eine

zeitabhängige Erweiterung von DFT diskutiert.

Kubisch–flächenzentrierte (fcc), hexagonal–dichtgepackte (hcp) und kubisch–raumzentri-

erte (bcc) Kristalle werden mit FMT untersucht und mit Resultaten aus Stillingers

Zugang ergänzt. Für bcc wurden zwei Lösungszweige gefunden mit entsprechend unter-

schiedlichen Breiten der Dichteverteilung um einen Gitterplatz. Die freie Energie eines

Zweigs stimmt gut mit dem Resultat aus dem Stillinger–Zugang für n = 2 überein.

Der zweite Lösungszweig zeigt eine verhältnismäßig breite Dichteverteilung um einen

Gitterplatz, eine relativ große Leerstellendichte und hat vermutlich eine enge Beziehung

mit der bekannten Scherinstabilität der bcc–Phase. Weiterhin ist in FMT und dem

Stillinger–Zugang (n = 2) hcp stabiler als fcc um eine freie Energie pro Teilchen von

etwa 10−3kBT . In Simulationen wurde die umgekehrte Situation gefunden, dies kann in-

nerhalb des Stillinger–Zugangs mit der korrellierten Bewegung von mindestens 5 Teilchen

erklärt werden.

Für Anlagerung an einem harten, flachen und unstrukturierten Substrat ist bekannt,

dass die kristalline Phase das Substrat vollständig benetzt, wenn die Dichte der Flüssigkeit

der Koexistenzdichte zustrebt. Heterogene Keimbildung im Hartkugel–Fluid an glatten
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harten Wänden wurde weder in Simulationen oder DFT–Studien gefunden. In Zusam-

menarbeit mit einer Simulationsgruppe wurde das Hartkugel–Fluid zwischen parallelen

weichen Wänden in Hinsicht auf einen von Null verschiedenen Kontaktwinkel unter-

sucht. Dieser würde die Untersuchung von heterogener Keimbildung zulassen. Hier-

bei wurde das Weeks–Chandler–Anderson–(WCA–)Potential mit variabler Stärke be-

nutzt. Dichteverteilungen an den Wänden und Grenzflächenspannungen wurden mit

zwei verschiedenen FMT–Funktionalen berechnet. Die DFT–Resultate stimmen quanti-

tativ sehr gut mit Monte–Carlo–Resultaten in einem großen Dichtebereich überein. Für

die Oberflächenspannung wurden nur kleine Abweichungen in der Nähe des Flüssig–

Kristall–Übergangs gefunden.

Abschießend wird eine Implementierung von DDFT für die Equilibrierung von fcc–

Kristall– und Grenzflächendichteprofilen diskutiert. Die DDFT–Resultate für fcc stim-

men gut mit denen aus DFT und Simulationen gewonnenen überein. Für die Gren-

zflächenspannung ist eine eta vierprozentige Differenz zwischen DDFT und direkter

Minimierung von DFT zu sehen. Diese Differenz ist eine Folge der Steifheit der DDFT–

Gleichung, die es nicht erlaubte, das Grenzflächenprofil vollständig zu equilibrieren.
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Chapter 1

Introduction

Crystallization touches every aspect of our lives from the foods we eat and the medicines

we take, to the solar cells which are used to produce electricity. The majority of phar-

maceutical products go through at least one crystallization step during their manu-

facture [1]. It is also a central topic of tremendous importance in industry ranging

from semiconductors, piezo sensors, ferroelectric memories, optical elements to nano–

structures, quantum dots and organic systems [2].

Scientists and engineers working in many industries around the world are required to

understand, optimize and control crystallization processes every day. The prevalence of

crystallization processes in industry can probably be attributed to the fact that crys-

tallization acts as both a separation and purification step. In one fell swoop, crystal

product of the desired purity can be created and then isolated. Despite this obvious

advantage, crystallization processes still need to be understood and controlled to en-

sure that the desired crystal product quality is achieved and to ensure an efficient and

cost-effective crystallization process.

The starting point for most crystallization processes is a saturated solution. Crystalliza-

tion is generally achieved by reducing the solubility of the product in this solution by

cooling, antisolvent addition, evaporation or some combination of these methods. An-

other common method used to drive crystallization is via a chemical reaction where two

or more reactants are mixed to form a solid product insoluble in the reaction mixture.

The method chosen can vary depending on a number of factors.

1
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Having recognized the existence of atoms and molecules, it seems natural to use a system

of hard bodies perturbed by intermolecular potentials for the modeling of the thermo-

dynamic properties of fluids. In crystallization molecules or particles form an ordered

structure. It is a formidable problem in statistical mechanics and quantum chemistry

to predict the stable crystal structure and its free energy for a given substance. Ap-

proximating the particle interactions in this substance by classical two–body potentials

makes the problem amenable to a treatment using methods of classical statistical me-

chanics, most notably Monte Carlo (MC) simulations and (classical) density functional

theory (DFT). While the approximation using two–body potentials may not be very

accurate for truly atomic substances, the advance in colloid synthesis allows to real-

ize systems with simple two–body potentials to a good degree of approximation, thus

hard colloidal suspensions are a perfect model system for investigating crystallization in

classical statistical mechanics.

Hard spheres (HS) are a paradigmatic system. Despite the simplicity of that system, and

that it only exists in computers, it has served as the basis for the advance of science in

the fields of general liquids, amorphous solids, liquid crystals, colloids, granular matter,

etc. HS systems exhibit a surprisingly rich structural and thermodynamic behavior

(phase transitions, metastable states, demixing, etc.) that call for careful study. Also

surprisingly, this behavior is not completely understood and is an object of current

research. The hard sphere system is not temperature–dependent and the only control

parameter for crystallization is density. The interest for the study of these systems is

due to the fact that the structure of real fluids is mainly determined by repulsive forces

and it is commonly used as a reference system for perturbation approach.

Understanding the crystallization requires a precise knowledge about crystal structures,

free energies and interfacial properties. Density functional theory (DFT) is one of the

core theoretical approaches in statistical physics. DFT was developed by P.Hohenberg

and W. Kohn [3] in the context of quantum chemistry and led to the 1998 Nobel prize

in chemistry. Later on, it has been generalized to finite temperature [4] and classical

systems [5, 6]. The density functional theory for classical particles was developed to find

out the equilibrium density distribution of inhomogeneous systems at interfaces or in the

presence of an external potential. The applicability of DFT is related to its functional

approximation. Over the last decades, there has been an impressive improvement in

the quality of functionals with the development of fundamental measure theory (FMT)
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in the 1990s as a milestone. Dynamic density functional theory (DDFT) is a time

dependent (dynamic) extension of the static DFT is able to describe the time evolution

of the density of Brownian particles.

In this thesis, first an introduction to the phase transition and statistical mechanics is

given in Chapter 2. In Chapter 3, density functional theory as the main theoretical

approach of this thesis is introduced and different functional approximations as well as

the FMT as the most natural approximate scheme are presented. Besides, Stillinger’s

approach which approximates the crystal free energy by an expansion of the crystal

partition function in terms of the number n of correlated, contiguous particles which

are free to move and dynamical density functional theory are recapitulated. The hard

sphere crystals are studied in detail in Chapter 4 in the framework of density functional

theory of FMT and results are complemented by the Stillinger’s approach. The main

goal of this chapter is to study the stability of the hard sphere crystals. Chapter 5 deals

with the hard sphere fluid confined between two parallel soft walls. Density distribution

and interfacial properties are obtained by DFT and results are compared to Monte Carlo

simulation data. The motivation of this study besides the test of the accuracy of FMT

functionals was to test whether a variable contact angle can be obtained for hard spheres

at repulsive walls. The nonzero contact angle would allow studying the heterogeneous

nucleation. Finally, in Chapter 6 dynamical density functional theory (DDFT) is used

to investigate the equilibrium structures of the fcc crystal and crystal–liquid interface.





Chapter 2

Phase Transitions and Statistical

Mechanics

Condensed matter is held together by intermolecular forces, the strength and range of

these forces determine the bulk, macroscopic properties of matter. The basic aim of the

condensed matter physics is to understand the collective properties of large assemblies

of particles in terms of the interactions between their component parts. This chapter

concerns with the phase transition of soft matter systems (Section 2.1) and the tools we

will need are those of statistical mechanics (Section 2.2).

2.1 Phase Transitions in Soft Matter

2.1.1 Condensation and Freezing

The most obvious manifestation of the forces between molecules is in the fact that on

cooling a collection of molecules, its physical state changes from a gas or vapor to a liquid

and on further cooling there is another change of state from a liquid to a solid. The

attractive forces between molecules are weak at high temperatures in comparison with

the thermal energy; this thermal energy is present almost entirely in the form of kinetic

energy. The molecules in the gaseous state are moving with a very little correlation

between the positions of different molecules. In this state molecules are in a state of

constant motions and interacting with each other only relatively infrequently through

5
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occasional collisions. This is the state that approximates the ideal or perfect gas. By

reducing the temperature, attractive interactions between the molecules start to become

more important. On colliding, pairs of molecules stay together longer and longer and

correlation between the motion of different molecules starts to appear, with short–lived

clusters of molecules forming and breaking up. While the energy of the molecules is

still dominated by the kinetic energy in this state, the properties of the gas start to

deviate from the ideal gas and at some point the correlation between molecules leads

to a new dense phase of the liquid. In the liquid state the attractive energy between

molecules is as important a part of total energy as the kinetic energy of the motion.

The repulsive part of the interaction energy between the molecules also plays a role;

the fact that two molecules cannot be in the same place at once leads to short–ranged

correlations in the position of the molecules. The structure of the liquid is determined

by the tension between the attractive part of the intermolecular potential, which tries

to pack molecules as closely as possible, and the repulsive part of the potential which

imposes a minimum separation between molecules. As the temperature is decreased

further, another way of resolving this tension manifests itself. By packing the molecules

together in regular rather than random way, it is possible to achieve a higher density

of molecules, while still satisfying the minimum distance constraint imposed by the

repulsive part of the potential. The liquid has frozen. The condition under which

solids, liquids, and gases form and coexist are summarized in a phase diagram. For a

simple liquid, this plots the relationship between temperature, pressure and volume (or

equivalently, density). Figure 2.1(a) shows a typical phase diagram of simple molecular

material in which the regimes of temperature and pressure in which various phases are

stable are plotted. Figure 2.1(b) shows the same information with emphasizing the idea

of coexistence; at a given pressure, there is a temperature at which two out of the three

phases will coexist [7].

2.1.2 Phase Transitions

Soft matter often has a very rich and complicated morphology and its components

can be arranged in a complicated way, involving features at length scales intermedi-

ate between the atomic and the macroscopic. The remarkable feature of these struc-

tures is that they are self–assembled. It means they put themselves together in a very

complicated arrangements without outside assistance. There are two general classes of
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self–assembled structure, equilibrium and non–equilibrium structures. Non–equilibrium

self–assembled structures often occur following a phase transition. If some external

parameters (e.g. temperature) is changed, the structure with the lowest energy may

discontinuously change its character. Thus a qualitative change of structure occurs in

response to a quantitative change in a control parameter. The balance between entropy

and energy is reflected in the free energy; for example, for changes at constant volume

the appropriate free energy is the Helmholtz free energy F , defined by F = U − TS,

where U is internal energy ans S is entropy. For a phase transition one can define an

order parameter, which typically takes a zero value in the disordered phase and a finite

value in the ordered phase. The way the order parameter varies with temperature tells

one about the nature of the transitions. In first–order phase transitions, the order pa-

rameter changes discontinuously at the phase transition (e.g. melting of a crystal), and

in second–order transitions the order parameter is continuous (e.g. change from a liquid

to a gas at a critical point).

Information about which equilibrium phases have the lowest free energy is not sufficient

by itself to explain all types of the structures one can obtain in soft matter. In addi-

tion, one needs to understand the kinetics of the process by which phase ordering or

disordering proceeds.
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2.1.2.1 Liquid–Liquid Demixing

The first example of a phase transition describes the situation when two liquids are

miscible in all proportions at high temperature, but separate into two distinct phases

when the temperature is lowered. In order to understand the phase separation, we

need to calculate the free energy of mixing, Fmix. If we can predict this quantity as a

function of composition and temperature we have everything we need to know about

the phase behavior of the system. We are also able to calculate the free energy of the

phase–separated system according to the relative composition.
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Figure 2.2: The phase diagram of a liquid mixture. Interaction parameter character-
izes the strength of the energetic interaction between two phases relative to their self
interactions and the horizontal axis denote the the volume fraction of one species of the

mixture.

Figure 2.2 shows the phase diagram of liquid–liquid mixture. In the unstable part of the

phase diagram, phase separation takes place by a continuous change in composition. In

this process, the concentration fluctuations that are present in any mixtures at thermal

equilibrium are amplified. This process is known as spinodal decompositions. In con-

trast, when a mixture is in the metastable region of the phase diagram, it is not possible

for the mixture to phase–separate by a process in which the composition in a region

changes continuously; in a pure mixture a relatively large composition fluctuation must

take place, with a corresponding high energy cost. This relatively large nucleus can grow

in size [7]. This process is known as homogeneous nucleation. In a real system, it is
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usually found that some impurity particles are present on which the new phase may be

nucleated with lower activation energy that for homogeneous nucleation. This is known

as heterogeneous nucleation.

2.1.2.2 The Liquid–Solid Transition: Freezing and Melting

The transition between liquid and solid is important both for normal and soft matter.

When a liquid freezes it goes from a state with short–range order to a state with long–

range order. Associated with this long–range order is the rigidity that we associate with a

solid. The liquid–solid phase transition is a first–order phase transition; this means that

at the transition the order parameter changes discontinuously and the thermodynamic

quantities that are derivatives of a free energy with respect to other thermodynamic

variables are discontinuous at the transition.

Before studying the thermodynamic behavior of the phase transition it is worth to reca-

pitulate some thermodynamic quantities. Enthalpy is the preferred expression of system

energy changes in many chemical, biological, and physical measurements at constant

pressure through expansion or heating and it reads

H = U + PV. (2.1)

The enthalpy change of a system, ∆H, is equal to the sum of non–mechanical work done

on it and the heat supplied to it. In phase transition process, the pressure is constant,

therefore ∆H is equal to the change in the internal energy of the system, plus the

work that the system has done on its surroundings [9]. This means that the change in

enthalpy under such conditions is the heat absorbed (or released) by the system through

a chemical reaction or by external heat transfer. This change in the enthalpy during a

constant–temperature process like melting and freezing transition is known as the latent

heat ∆Hm [10, 11]. On the other hand, the Gibbs free energy1 G is the appropriate

thermodynamic potential for constant temperature and pressure which is defined as

G = H − TS, (2.2)

1Also known as free enthalpy [12]
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or equivalently

G = F + PV, (2.3)

where F = U − TS is the Helmholtz free energy. At melting transitions the change in

Gibbs free energy is zero

∆Gm = 0 −→ ∆F = −P∆V, (2.4)

thus the change in enthalpy is given by

∆Hm = ∆U + P∆V

= ∆F + Tm∆S + P∆V. (2.5)

Using Equations (2.4) and (2.5) it is obvious that at the melting temperature a latent

heat ∆Hm released is related to the change in the entropy of melting ∆Sm by

∆Sm =
∆Hm

Tm
. (2.6)

Using Figure 2.3 one can argue that a liquid in its melting point, if it is free from

impurities and in a large enough container to be unaffected by the walls, will never

freeze, because creation of a crystal costs free energy due to the interfacial energy γsl

between solid and liquid. But the change in Gibbs free energy going from liquid to solid

is zero exactly at the melting point. Therefore in order to initiate freezing in the absence

of impurities, one must undercool a liquid below its melting temperature. Freezing is

then initiated by an active process of nucleation.

• Homogeneous Nucleation

The process of crystallization is initiated by the spontaneous appearance of a

crystal nucleus. We assume the nucleus to be spherical with radius r. The change

in the Gibbs free energy ∆G(r) due to the formation of nucleus is the sum of a term

proportional to the surface area of the crystal with solid–liquid interfacial energy

γsl and a term proportional to the volume, representing the change in Gibbs free
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energy in going from liquid to solid (Figure 2.4)

∆G(r) =
4

3
πr3∆Gb + 4πr2γsl. (2.7)

The free energy change has a maximum at a critical radius r∗ given by

r∗ =
−2γsl
∆Gb

. (2.8)

Crystals bigger than r∗ can continue to grow and smaller crystals are unstable and

will remelt [7]. When an undercooled melt freezes, the free energy change per unit

volume takes the form2

∆Gb = −∆Hm

Tm
∆T. (2.9)

2This approximation is reasonable only when the undercooling ∆T is much smaller than the melting
temperature (∆T � T ). This is because for the entropy change on melting we assume ∆Sm =

(
∂Gs
∂T

)
P
−(

∂Gl
∂T

)
P
= ∆Hm

Tm
. When ∆T is small enough, the partial derivatives are approximately constant and we

can write the Equation (2.9).
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Therefore the free energy barrier ∆G∗ associated with the critical nucleus size

which must be overcome by thermal fluctuation is given by [7]

∆G∗ =
16π

3
γ3sl

(
Tm

∆Hm

)2 1

∆T 2
. (2.10)

Hard–Sphere Case:

The hard–sphere system is independent of temperature and its freezing is driven

by entropic forces. The thermal energy kBT just normalizes the free energy in the

HS system. If the HS liquid is compressed (or equivalently density is increased),

it freezes into an ordered, solid phase. This transition is accompanied by a discon-

tinuous change in volume ∆V and entropy ∆S. The difference in free energy of

the HS solid and fluid phases at a given temperature is equal to F = −T∆S. One

of the most significant finding to emerge from the molecular simulations [13, 14]

is that the HS fluid freezes into a stable, face–centered cubic (fcc) crystal and

accurate calculations [15, 16] show that the packing fractions at coexistence in the

fluid and solid phases are ηf ≈ 0.494 and ηs ≈ 0.545 and the coexistence pressure

equals pcoex = 11.576 kBT/σ
3 [16].
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Figure 2.4: Schematic diagram of the change in Gibbs free energy when a crystal of
radius r is nucleated in a melt cooled below its melting point.
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• Heterogeneous Nucleation

Heterogeneous nucleation occurs much more often than homogeneous nucleation.

Pre–existing surfaces of different or the same solids in the melt usually lower the

activation energy for nucleation of a new crystal and it is typically much faster

than homogeneous nucleation because the nucleation barrier is much lower at a

surface.

2.2 Statistical Mechanics

2.2.1 Principle of Statistical Physics and Ensembles

Statistical systems are complex systems. The systems are so complex that we cannot

obtain all the information to completely characterize them. For example, a liter of gas

contains about 1022 atoms. To completely characterize such a system (or more precisely,

a state of such a system), we need to known the three components of the velocity for

each atom and the three components of the position for each atom. It is impossible to

obtain 6× 1022 real numbers to completely characterize the gas. However, not knowing

all the information needed to characterize gas does not prevent us from developing a

theory of gas. This is because we are only interested in some average properties of gas

such as the pressure, volume and temperature. Those properties do not depend on every

little details of each atoms. Not knowing every thing about the atoms does not prevent

us from calculating those average properties. This is the kind of problems in statistical

physics. In statistical physics we try to understand the properties of a complex system

without knowing all the information of the systems [17].

2.2.1.1 All Possible States Appear with an Equal Probability

In statistical physics there is only one principle: All possible states appear with an equal

probability. Suppose we know certain quantities, such as pressure, total energy, etc, of a

complex system. But those quantities do not characterize the system completely. This

means that the system has a number of states for which those quantities take the same

values. Thus even after knowing the values of those quantities, we still do not know,
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among those possible states, which state the system is actually in. Then according to

the principle of statistical physics, all the possible states are equally likely.

2.2.1.2 Time Average and Ensemble Average

Statistical physics is a science that deals with ensembles, rather than individual systems.

Since the ensembles under study are stationary, the ensemble average of a physical

quantity f will be independent of time. It means that taking a time average will not

change the results

〈f〉 ≡ the ensemble average of f

= lim
T→∞

1

T

∫ T

0
〈f〉dt. (2.11)

The process of time averaging and ensemble averaging are completely independent, so

changing the order of averaging will not change the value of 〈f〉

〈f〉 =
〈

lim
T→∞

1

T

∫ T

0
f dt

〉
. (2.12)

Now the time average of any physical quantity taken over a sufficiently long interval

of time, is the same for every member of the ensemble. Therefore taking the ensemble

average should be inconsequential. Thus we may write

〈f〉 = lim
T→∞

1

T

∫ T

0
f dt. (2.13)

Furthermore the long–time average of a physical quantity is the quantity we may obtain

by measuring that quantity experimentally [17]

〈f〉 = fexp. (2.14)

The two (time and ensemble) averaging approaches are equivalent only when the system

can visit all the possible states many times during a long period of time. This is the

ergodicity hypothesis. Not all systems are ergodic. For a non–ergodic system, statistical

physics only apply to its ensemble. For an ergodic system, statistical physics also apply

to the time average of the system [18].
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2.2.2 Microcanonical Ensemble

Consider an isolated, macroscopic system on N identical, spherical particles of mass

m enclosed in a volume V . In classical mechanics the dynamical state of the system

is completely specified by 3N coordinates rN = r1, . . . , rN and 3N momenta pN =

p1, . . . ,pN of the particles. The values of these 6N variables define a phase point in a

6N–dimensional phase space. The hamiltonian of the system H can be written as follows

H(rN ,pN ) = KN (pN ) + VN (rN ) + Vext(r
N ), (2.15)

where

KN =

N∑
i=1

|pi|2

2m
, (2.16)

is the kinetic energy, VN is the interatomic potential energy and Vext is the potential

energy due to an external field. A microcanonical ensemble is an ensemble formed by

isolated systems with a same particle number N and a same energy E in a same volume

V . Here by same energy we really mean that the system has an energy which lies

within a small window between E and E+∆E. By definition, such a system exchanges

neither particles nor energy with the surroundings. In thermal equilibrium, the density

distribution function ρ(r) is given by

ρ(r) =

 1
ω(E,V,N) if E < H(rN ,pN ) < (E +∆E)

0 otherwise
, (2.17)

and the volume of the phase space accessible to the representative points of the system

ω, is given by

ω(E, V,N) =

∫ ∫
E<H(rN ,pN )<E+∆E

dNr dNp. (2.18)

Statistical mechanics is related to thermodynamics by the Boltzmann’s equation which

relates the entropy, S, to the number of microstates, Γ, corresponding to given macrostate

S(E, V,N) = kB log(Γ(E, V,N)). (2.19)
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where Γ(E, V,N) =
(
ω(E,V,N)
h3NN !

)
and h is the Plank constant [17].

2.2.3 Canonical Ensemble

Physically, the concept of a fixed energy (or even an energy range) for a system belonging

to the real world does not appear satisfactory. For one thing, the total energy E of a

system is hardly ever measured; for another, it is hardly possible to keep its value

under strict physical control. A far better alternative appears to be to speak of a fixed

temperature T of the system – a parameter which is not only directly observable but also

controllable. The equilibrium probability density for a system of N identical, spherical

particles is

f0(r
N ,pN ) =

1

h3NN !

exp(−βH(rN ,pN ))

QN
. (2.20)

The normalization constant QN is the canonical partition function

Q(T, V,N) =
1

h3NN !

∫
dNrdNp exp(−βH(rN ,pN )). (2.21)

If the hamiltonian is separated into kinetic and potential energy terms, the integrations

over momenta can be carried out analytically. This allows the partition function to be

written as

QN =
ZN

Λ3NN !
, (2.22)

where Λ = h/
√
2πmkBT is the thermal De Broglie wavelength and

ZN =

∫
dNr exp(−βVN ), (2.23)

is the configuration integral.

The corresponding thermodynamic potential for the canonical ensemble is the Helmholtz

free energy F (T,N, V ), defined as

F = U − TS, (2.24)
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where U is the internal energy and S is the entropy of the system. The canonical

statistical mechanics can be linked to thermodynamics via a relation between the ther-

modynamic potential and the partition function

F (T,N, V ) = −kBT log QN (T, V,N). (2.25)

In the absence of any external potential we may write an expression for the internal

energy as follow

U = TS − PV + µN. (2.26)

If the free energy of a system is known, all other thermodynamic information of the

system can be extracted using differentiation

S = −
(
∂F

∂T

)
V,N

,

P = −
(
∂F

∂V

)
T,N

, (2.27)

µ =

(
∂F

∂N

)
T,V

.

In the rest of this section the ideal gas system of non–interacting classical particles is

studied. For the case of an ideal gas VN = 0, thus the configuration integral gives rise

to

ZN =

∫
. . .

∫
dr1 . . . drN = V N . (2.28)

Hence the canonical partition function QN (Equation (2.22)) of a unifirm ideal gas is

Qid
N =

V N

Λ3NN !
. (2.29)

We can calculate the free energy of the ideal gas system

Fid(T,N, V ) = NkBT

[
log

(
Λ3N

V

)
− 1

]
, (2.30)
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which is obtained using Stirling’s approximation3. Other thermodynamic quantities can

be obtained. The expression for the energy

E = − ∂

∂β
logQid(T, V,N), (2.31)

and pressure

P = kBT

(
∂ logQid(T, V,N)

∂V

)
, (2.32)

gives rise to the results E = 3NkBT/2 and PV = NKT . In addition the chemical

potential of the ideal gas is obtained by

µid =
∂Fid(T,N, V )

∂N
= kBT log

(
Λ3N

V

)
. (2.33)

2.2.4 Grand Canonical Ensemble

In the preceding section the canonical ensemble was introduced. The effectiveness of

that approach became clear from the ideal gas example discussed there. However for a

number of problems the usefulness of the canonical ensemble formalism turns out to be

rather limited. It comes from the realization that not only the energy of a system but

the number of particles as well is hardly ever measured in a direct manner. Therefor we

may regard both N and E as variables and identify their expectation values, 〈N〉 and

〈E〉, with the corresponding thermodynamic quantities. The grand canonical ensemble

describes systems that allow energy and particle exchange at a fixed volume V , temper-

ature T and chemical potential µ. The ensemble probability density is a function of 6N

phase–space variables rN ,pN and has the form

f0(r
N ,pN ; N) =

exp(−β(H(rN ,pN )−Nµ))

Ξ
, (2.34)

where the grand canonical partition function is

Ξ(T, V, µ) =

∞∑
N=0

1

h3NN !

∫
dNrdNp exp(−β(H(rN ,pN )− µN))

=

∞∑
N=0

zN

N !
QN , (2.35)

3Stirling’s approximation (or Stirling’s formula) for factorials: log(N !) = N log(N)−N +O(log(N)).
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here QN denotes the canonical partition function of a system with N particles and the

activity z is

z =
exp(βµ)

Λ3
. (2.36)

The link with thermodynamics is established through the relation

Ω(T, V, µ) = −kBT log(Ξ(T, V, µ)), (2.37)

where Ω denotes the grand (or Landau) potential. The grand potential is defined in

terms of the Helmholtz free energy by

Ω = F −Nµ. (2.38)

When the internal energy is given by Equation (2.26), the grand potential reduces to

Ω = −PV. (2.39)

Using the differential form of Equation (2.38), the thermodynamic functions S, P and

N are given as derivatives of Ω by

S = −
(
∂Ω

∂T

)
V,µ

,

P = −
(
∂Ω

∂V

)
T,µ

, (2.40)

N = −
(
∂Ω

∂µ

)
T,V

.

Equations (2.33) and (2.36) show that z = N/V = ρ for a uniform ideal gas and in that

case Equation (2.35) reduces to

Ξ id =
∞∑

N=0

ρNV N

N !
= exp(ρV ), (2.41)

which, together with Equation (2.39), yield the equation of state in the form βP = ρ.
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2.3 Particle Densities and Distribution Functions

All the information on the equilibrium properties of a many–body system is encoded,

in increasing degree of detail, into the thermodynamic potentials (e.g., its Helmholtz

free energy or the grand potential) at given conditions and its n–body correlation func-

tions (n < N). The n–body correlation function describes the joint probability of

finding n particles in the system in elementary volumes d3r centered around the points

r1, r2, . . . , rn, in space. We very rarely need information of a system in such details and

in practice correlation functions up to the pair level (n ≤ 2) is sufficient [19]. Accord-

ingly, two operators ρ̂(1)(r) and ρ̂(2)(r, r′), called one– and two–particle density operators

are defined respectively as follows

ρ̂(1)(r) =

N∑
i=1

δ(r− ri), (2.42)

and

ρ̂(2)(r, r′) =

N∑
i=1

N∑
j=1

δ(r− ri)δ(r
′ − rj)−

N∑
i=1

δ(r− ri)δ(r
′ − ri), (2.43)

where ri,j are the instantaneous particle coordinates and r, r′ denote arbitrary obser-

vation points in space. The one– and two–particle densities ρ(1)(r) and ρ(2)(r, r′) are

the expectation values of the corresponding operators in the chosen ensemble. The one–

body density ρ(1)(r) is proportional to the probability density of finding any particle

of the system around r, whereas the two–body density ρ(2)(r, r′) is proportional to the

probability density of finding simultaneously any particle of the system around r and a

different particle of the system around r′. For a uniform fluid

ρ(1)(r) =
N

V
= ρ. (2.44)

The two–body density for solids is orientation dependent but for liquids and gases de-

pends only on the magnitude of the difference of its arguments

ρ(2)(r, r′) = ρ(2)(|r− r′|). (2.45)

In the theory of classical fluids, a quantity of central importance for investigation of the

pair structure of the system is the pair (radial) distribution function g(|r− r′|) defined
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through

ρ(2)(|r− r′|) = ρ2g(|r− r′|). (2.46)

The pair distribution function is a good measure to distinct between the spatial arrange-

ments of molecules in gases, liquids and solids. Pair distribution function g(r, r′) is a

measure of the probability of finding a particle at position r′ given that another particle

is located at position r. Typical shapes of the pair distribution function for gas, liquid

and solid phases are shown in Figure 2.5. In general, the n–particle distribution function
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Figure 2.5: Typical pair distribution function for (a) a gas, (b) a liquid and (c) a
solid [20].

reads as

g(n)(r1, . . . , rn) =
ρ(n)(r1, . . . , rn)∏n

i=1 ρ
(1)(ri)

. (2.47)

The total correlation function is defined as follows

h(r) = g(r)− 1, (2.48)

which is a measure of the influence of molecule 1 on molecule 2 at a distance r away

with g(r) as the pair distribution function. In 1914 Ornstein ans Zernike proposed to
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split the total correlation function into two contributions, direct and indirect parts [21].

The direct contribution is defined to be given the direct correlation function c(r) and

the indirect part is due to the influence of molecule 1 on molecule 3 which in turn affects

molecule 2 directly and indirectly

h(r) = c(r) + ρ

∫
dr′ c(|r− r′|)h(r′). (2.49)

The Ornstein–Zernike (OZ) relation is a definition of c(r). Another important quantity is

the structure factor S(k) as a three dimensional Fourier transform of the total correlation

function h(r)

S(k) = 1 + ρ

∫
dr h(r) exp(−ik · r). (2.50)

For the point particles, the scattering intensity is directly proportional to S(k) [22] and

for large particles, such as colloids, the form factor P (k) of the particles has to be taken

into account and the scattering intensity is proportional to the product P (k)S(k). This

makes the structure factor an important tool to test the accuracy of the soft matter

theories.



Chapter 3

Theory: From Density Functional

Formalism to Stillinger’s

Approach

In this chapter we introduce the classical Density Functional Theory (DFT) as one of

the core theoretical approaches for studying inhomogeneous systems. After a short in-

troduction in Section 3.1, this chapter first introduces DFT and explains the different

approaches for approximating various functionals (Section 3.2). Section 3.3 is dedicated

to the Fundamental Measure Theory (FMT) as the most natural approximate scheme to

approximate the free energy functionals and different versions of FMT will be presented

in this section. Section 3.4 presents Stillinger’s expansion in correlated, contiguous par-

ticles to approximate the free energy of a system and 3.5 recapitulates the dynamical

DFT. This chapter is mostly based on references [22–24].

3.1 Introduction

Density functional theory was first invented by Hohenberg and Kohn [6] to find out the

equilibrium density distribution ρ(r) of inhomogeneous systems at interfaces between

coexistence phases or in the presence of an external potential Vext(r). In most cases, like

layering of fluids against walls or liquids confined in nano–capillaries, the sharpest level of

density variation comes from the effects of molecular packing, and hence the development

23
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of density functional theories for hard–core models has been a main objective in this

field [25, 26]. In 1976, Percus [27] presented the free energy density functional for one–

dimensional (1D) hard–rods (HR). In his work both an exact case to test the internal

relation of the density functional formalism and a hint on how to approximate the

free energy of two–dimensional (2D) hard disk (HD) and three–dimensional (3D) of

hard sphere (HS) systems have been studied. Over the last decades, there has been

an impressive improvement in the quality of these approximations, with milestones in

the weighted density approximation (WDA) in the middle 1980s and the fundamental

measure theory (FMT) over the 1990s [24]. Introducing Fundamental Measure Theory

(FMT) for hard–sphere mixtures by Rosenfeld [28] and generalization of Percus’ exact

one–dimensional DFT for hard rods [27] by Vanderlick and co–workers [29] both in 1989,

made a remarkable year for classical DFT. Later, Tarazona, Rosenfeld, Evans and other

people improved the quality of the functional to make FMT successful in describing the

properties of the hard–sphere fluid, solid and crystallization.

3.2 Density Functional Theory

In the framework of density functional theory, for any given temperature (β = 1/kBT )

and form of the pair molecular interaction potential u(ri − rj) there is a unique free

energy functional F [ρ], which is a functional of the one–body density distribution ρ(r).

This free energy functional is independent of the external potential Vext(r).

The grand potential has temperature and intrinsic chemical potential as its natural

variables. However, it turns out to be more profitable to treat one–body density rather

than intrinsic chemical potential. Density functional theory profits from the functional

of one–body density to determine the free energy of a classical thermodynamic system.

All the thermodynamic properties of the system can be extracted using the free energy

functional. The key ideal is that F [ρ] is a unique functional of ρ(r); its functional form

does not depend on the external potential Vext(r). For a given interparticle potential

function u(ri − rj) and fixed values of temperature T and chemical potential µ, there

is only one external potential that gives rise to a specific density profile. The proof of

existence and uniqueness of this functional is given in Appendix A.
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In the grand canonical ensemble, the free energy functional can be expressed as a func-

tional of one–bode density ρ

Ω[ρ] ≡ F [ρ] +

∫
dr ρ(r)(Vext(r)− µ), (3.1)

where µ denotes the chemical potential and Vext(r) is the external potential. Here ρ(r) is

not necessarily the equilibrium density distribution ρeq(r). For the equilibrium density

distribution ρeq, the functional is minimized and reduces to the grand potential of the

system Ω[ρeq] = Ω
δΩ[ρ]

δρ

∣∣∣∣
ρ=ρeq

≡ δF [ρ]

δρ
+ Vext(r)− µ = 0, (3.2)

in terms of the functional derivative of the intrinsic Helmholtz free energy F [ρ]. The

Helmholtz free energy functional is conventionally split into an ideal gas part (without

particle interaction) and excess (over ideal) part

F ≡ Fid + Fex, (3.3)

where the excess part includes all the particle interactions.

The explicit knowledge of the (exact or approximation) free energy density functional

would reduce the equilibrium statistical mechanics of inhomogeneous systems to a prob-

lem of functional minimization with respect to the one–particle distribution ρ(r), and

this would represent a huge simplification with respect to the direct evaluation of the

grand partition function. DFT has found application to a very wide range of problems,

some of which are discussed in later chapters. As in any variational calculation, the suc-

cess achieved depends on the skill with which the trial functional is constructed. Since

F is a unique functional of ρ, a good approximation would be one that is suitable for

widely differing choices of external potential.

3.2.1 The Ideal Gas and the Excess Free Energy Density Functional

The classical ideal (non–interaction) gas, u(rij) = 0, provides the simplest example of

the density functional formalism. For such a system the grand partition function can be

expressed as

Ξid =

∞∑
N=0

(eβµQ1)
N

N !
= exp(Q1e

βµ), (3.4)
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in terms of the one–body partition function

Q1 =

∫
dr e(−βVext(r)). (3.5)

The equilibrium grand potential energy is

Ωid[Vext] ≡ − 1

β
log(Ξid) = −e

βµ

β

∫
dr e−βVext(r), (3.6)

and the equilibrium density distribution follows the simple form

Λ3ρid(r) = eβ(µ−Vext(r)). (3.7)

Using these results and Equation (3.1) one can get the explicit functional form of the

ideal gas intrinsic free energy,

βFid[ρ] =

∫
dr ρ(r)[ln(Λ3ρ(r))− 1], (3.8)

and the functional derivative of Fid[ρ] reads

δFid[ρ]

δρ(r)
=

1

β
ln
(
Λ3ρ(r)

)
. (3.9)

The free energy of hard core systems is purely entropic and it may be split in two parts,

the ideal gas contribution, Fid[ρ], and excess free energy, Fex[ρ], which contains all the

information about interactions between particles. The excess part is responsible for

entropy reduction due to the non–overlap of the particle cores in the system. The total

free energy is usually written in kBT units as

βF [ρ] = βFid[ρ] + βFex[ρ] ≡
∫

dr {Φid (ρ(r)) + Φ([ρ]; r)}, (3.10)

where the ideal free energy density Φid(ρ), as a function is evaluated at the local density,

while the excess contribution is expressed as a volume integral of an excess free energy

density Φ([ρ]; r), which is a function of r and a functional of ρ(r). In contrast to the

ideal gas contributions, the excess free energy functionals Fex[ρ] is not known exactly.

There are many ways to construct the excess free energy of the system in terms of local

contributions. Different approaches to Fex[ρ] may give similar results with very different

Φ([ρ]; r) and the goal of DFT is to develop and use better approximations for Φ([ρ]; r).
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3.2.2 Density Functional Virial Expansion of the Excess Free Energy

The usual virial expansion for thermodynamics and correlation structure of bulk fluids

may be extended to get the generic density expansion of Fex[ρ] in systems with pairwise

interactions,

βFex[ρ] = − 1

2

∫
dr1 ρ(r1)

∫
dr2 ρ(r2)f(r12)

− 1

6

∫
dr1 ρ(r1)

∫
dr2 ρ(r2)

∫
dr3 ρ(r3)f(r12)f(r13)f(r23)

+ O(ρ4), (3.11)

where rij = |ri − rj | and the Mayer–f function is given by

f(r) = exp(βu(r))− 1, (3.12)

with the pairwise potential u(r). In the case of hard–sphere interaction, f(r) has a

purely geometrical interpretation:

u(r) =

 ∞ r < 2R

0 otherwise
⇒ f(r) =

 −1 r < 2R

0 otherwise
,

i.e. the Mayer–f function marks the volume that is not accessible to the center of one

sphere (with radius R) close to another sphere. This excluded volume is the volume of

a sphere of radius 2R.

The direct correlation function for a system with uniform density is generated hierarchy

by

c(n)(r1, . . . , rn; ρ0) = −β δnFex

δρ(r1) . . . δρ(rn)

∣∣∣∣
ρ=ρ0(r)

. (3.13)

As expected, the lowest order of the excess free energy DF produced by the interactions

between the particles is quadratic in ρ(r), while its second functional derivative has a

zero density limit c(r, 0) = −f(r). These exact low density results for βFex[ρ] provide

useful hints for the development of DF approximations.
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3.2.3 The Local Density Approximation and the Gradient Expansion

The Local Density Approximation (LDA) is the simplest scheme to build a DF ap-

proximation for Fex[ρ] from the restricted knowledge of the thermodynamics of uniform

systems. This DF form approximates the local excess free energy density as a function

of the local density, ΦLDA([ρ]; r) = Φ(ρ(r)), where Φ(ρ0) is the excess free energy per

unit volume in a system with uniform density ρ0, directly accessible from its equation

of state. The ideal gas free energy DF has exactly the local density form (3.8), but the

generic form of the excess part ,Φ([ρ]; r), depends on the density distribution at different

positions, as already observed in the first term of the virial expansion (Equation (3.11)),

so that the LDA can only give acceptable results if ρ(r) changes very smoothly over

molecular size distances. The LDA description of the HS excess free energy may also

be regarded as a coarse grained description of ρ(r), when we are interested in its long–

ranged aspects rather than in the molecular layering structure [30].

For systems with attractive interactions, there is a systematic, although limited way to

improve the LDA in terms of density gradient expansions [6], assuming that the generic

functional Φ([ρ]; r) is not just a local function of ρ(r) but also of its local gradient ∇ρ(r).

The van der Waals theory for the structure of the liquid surface may be considered as the

precursor of that DF approximation [31], well before the DF formalism was established.

However, the approach fails from the beginning when applied to systems with hard–core

interactions. The non–local dependence of Φ([ρ]; r) implies a sharp finite range of in-

terference between ρ(r) and ρ(r′), associated to the geometry of the molecule, and this

cannot.

3.2.4 The Mean Field Approximation

For systems with very soft molecular potentials, the particles may be assumed to be

fully uncorrelated, as in the ideal gas, so that Fex[ρ] has got no entropic contribution

and is given by the interaction energy

Fex[ρ] =
1

2

∫
drdr′ ρ(r)ρ(r′)u(r− r′). (3.14)
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This is the Mean Field Approximation (MFA) DF [25], since the functional derivative

in Equation (3.2) takes the form

δFex[ρ]

δρ
=

∫
dr′ ρ(r′)u(r− r′), (3.15)

and it is interpreted as the potential created on a particle at r by the (uncorrelated)

mean distribution of particles over the whole system. The MFA may give an accurate

description of the full excess free energy for ultra–soft interactions, like those between

polymer chains in good solvents [32], but it is obviously out of question for the de-

scription of hard–core interactions with an infinite u(r) inside the molecular cores. The

relevance of the MFA comes from the usual treatment of simple liquids to split the in-

teraction potential in a repulsive core, urep(r), often described as a reference HS with

temperature–dependent diameter and the soft attractive part uatt(r), which may be in-

cluded through the MFA [25]. Such a simple addition of the molecular packing and the

attractive interaction effects is sometimes referred to as a generalized van der Waals ap-

proximation, and it is the simplest and very successful approach to the DFT of realistic

model interactions.

The excess free energy functional Fex can be expanded around the background density

profiles ρ0

βFex[ρ] = βFex[ρ0]−
∫

dr c(1)(r; ρ0)∆ρ(r)

−1

2

∫
dr dr′ c(2)(r, r′; ρ0)∆ρ(r)∆ρ(r

′), (3.16)

where Fex[ρ0] is the excess free energy pertaining to the background profile ∆ρ(r) =

ρ(r) − ρ0. In general the background density ρ0(r) can depend on the position. c(1)

and c(2) are the first two members in the hierarchy of the direct correlation function

(3.13). In most practical applications the reference density is taken to be a reference

bulk density, ρ0 ≡ const.. Therefore c(1) = βµex = βµ − ln(Λ3ρ0) and c(2)(r − r′; ρ0)

depends only on the coordinate difference of two positions r and r′. To evaluate the

functional in Equation (3.16), the correlation function c(2) has to be determined as an

external input, provided e.g., by integral equation theory or by simple approximations of

the reciprocal lattice vectors (RLV) type [6]. The Taylor–expanded functional appears

to be merely a suitable qualitative tool to explore basic features of dense liquids in the
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vicinity of the solid or glass transition (see, e.g., Refs. [33, 34]) and should hold only for

modest departure from the reference density [35].

The Taylor expanded functional in Equation (3.16) is nonlocal in densities. Through an

additional expansion, so–called gradient expansion, it can be transformed into a local

form. By expansion of the Fourier transform of the direct correlation function around a

constant reference density ρ0

c̃(2)(k; ρ) = −c0 + c2k
2 − c4k

4 . . . , (3.17)

Equation (3.16) takes the form

βFex[ρ] = βFex[ρ0] + βµex

∫
dr∆ρ(r)

+
1

2

∫
dr∆ρ(r)(c0 + c2∇2 + c4∇4 . . .)∆ρ(r) + . . . . (3.18)

On sees that the excess free energy density contains local terms up to order 2 in ∆ρ and

up to order 4 in ∇(∆ρ.). We can define the dimensionless density difference as an order

parameter

φ(r) =
ρ(r)− ρ0

ρ0
, (3.19)

thus the power–expanded excess free energy up to order 4 in φ and ∇φ reads

βFex[ρ] = βFex[ρ0] + βµexρ0

∫
drφ(r)

+
ρ20
2

∫
drφ(r)(c0 + c2∇2 + c4∇4)φ(r). (3.20)

The model defined in Equation (3.20) looks like the square–gradient Ginzburg–Landau

models [36] and the usefulness of this model to describe the transition between a homoge-

neous and a periodically ordered system [37, 38] and phase transitions in amphiphilic [39]

systems has been known. The functional in Equation (3.20) has some important char-

acteristics:

1. For c2, c4 > 0, the term ∝ φ∇2φ favors a periodically varying φ and the term

∝ φ∇4φ punishes a spatially varying φ.
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2. Depending on the parameters, it may have as equilibrium states periodically or-

dered phases in one dimension (stripes), two dimensions (rods) and three dimen-

sions (bcc, fcc, hcp).

3. The characteristic wave number of the order parameter field is q0 =
√
c2/(2c4)

which follow from

φ(r)(c2∇2 + c4∇4)φ(r) = φ(r)[−c4q40 + c4(q
2
0 +∇2)2)]φ(r). (3.21)

The total free energy contains in addition the ideal gas term, Fid[ρ] from 3.8. It turns

out that the phase diagram of the above model is equivalent to the formulation of a

reduced model with the free energy according to [40]

FPFC =

∫
dx fPFC

=

∫
dx

{
1

2
Φ(x)[−ε+ (1 +∇2)2]Φ(x) +

Φ(x)4

4

}
, (3.22)

which is called the phase–field crystal (PFC) model.

3.2.5 The Weighted Density Approximation

The theory was presented for the free energy of an inhomogeneous HS fluid by Nordholm

et al. in 1980 [41], which inspired a whole family of DF approximations. The most

successful members of that family had come to share the name of WDA, originally

applied in the context of DF theory for the exchange and correlation energy of electronic

systems [42]. The common feature of the WDAs for classical fluids is to approximate

the local free energy DF by ΦWDA[ρ, r] = ρ(r)ψ(ρ̄(r)), where ψ(ρ̄(r)) = Ψ(ρ̄0)/ρ0 is

the excess free energy per particle of a bulk system with uniform density ρ0 and ρ̄(r)

is a weighted density to represent a sampling of the density around point r through the

convolution

ρ̄(r) =

∫
dr′ ρ(r+ r′)ωWDA(r

′, ρ̄(r)), (3.23)

with a normalized weight function ωWDA(r, ρ), which may be assumed to depend on

the local value of ρ̄(r). The choice of that weight function is the key element of the

WDA, because it determines the non–local dependence of Fex[ρ]. Notice that the LDA is
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recovered with a delta–function weight, ωWDA(r) = δ(r). The MFA may also be cast into

the WDA form by taking the weight function ωWDA(r) = u(r)/u0, with the pair potential

normalized by its total volume integral, u0, and the linear function ψ(ρ0) = u0ρ0/2 for

the excess free energy per particle. The use of non–local weights and non–linear functions

ψ(ρ0) made the WDA a very successful DF scheme for HS and other hard–core particles.

The use of more accurate equations of state and the exploration of other analytical

forms for ωWDA(r) paved the road [43] to the crucial element of the WDA: the (den-

sity dependent) weight function ωWDA(ρ0, r) may be tailored to, through the relation

(3.13) to reproduce any given approximation for the direct correlation function of the

bulk liquid, so that DF approximations for Fex may be systematically built, using as

ingredients the equation of state and the correlation structure of the HS liquid. The

resulting functionals are much more effective than the plain functional Taylor expansion

(3.11) built with the same ingredients:

ωWDA(ρo, r) = ω0(r) + ρω1(r) + ρ2ω2(r) + . . . . (3.24)

3.3 Fundamental Measure Theory of Hard Spheres

In 1989, a new DF approximation for the HS fluid was proposed by Rosenfeld [28, 44]

under the name of Fundamental Measure Theory (FMT), and it represented a breaking

point in the theory of inhomogeneous hard body systems. FMT is a generalized form

of weighted density approximation for fluids consisting of hard particles. In contrast

to similar approximations discussed in Section 3.2, the free energy density is taken

to be a function not just of one but several different weighted densities, defined by

weight functions that emphasis the geometrical characteristics of the particles. The

Rosenfeld’s original theory was formulated for hard–sphere mixtures [28], but for the

sake of simplicity we only consider the one–component case in detail. By the end of the

century, it was clear that the generic FMT scheme is quantitatively superior to any WDA

although it requires a much more careful design of the functional form and it also has

some technical complexities, like the use of vector and tensor weighting functions. This

section gives a brief account of the main concepts of the FMT and the most advanced

versions, based on the idea of dimensional crossover.
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3.3.1 Rosenfeld’s Original Fundamental Measure Theory

The Rosenfeld theory was motivated in part by the form of the exact excess free energy

functional for a hard–rod mixture in D = 1 (note that in this section we use capital D

for dimensionality rather than lower case d). The other key ingredient to formulate the

FMT is the exact low density limit free energy (ρ→ 0):

βFex[ρ] = −1

2

∫
dr

∫
dr′ρ(r)ρ(r′)f(r). (3.25)

Equation (3.25) retains only the lowest–order term in a virial expansion of the functional

(3.11). The next term in the virial expansion contains the product of three Mayer–f

bonds. For the particular case of hard spheres

f(r) =

 −1 r < 2R

0 otherwise

= −θ(2R− r), (3.26)

where R is the radius of particles, and θ is the Heaviside step function. Rosenfeld showed

that the Mayer–f function for hard spheres in 3D can be decomposed as follows [28]

f(r) = ω3 ⊗ ω0 + ω0 ⊗ ω3 + ω2 ⊗ ω1 + ω1 ⊗ ω2 − ω2 ⊗ ω1 − ω1 ⊗ ω2, (3.27)

where the six weight functions are given by

ω3(r) = θ(R− r) ,

ω2(r) = δ(R− r) ,

ω1(r) = ω2(r)/(4πR) ,

ω0(r) = ω2(r)/(4πR2) , (3.28)

ω2(r) = r/r δ(R− r) ,

ω1(r) = ω2/(4πR) ,

and the symbol ⊗ denots the 3–dimensional convolution of weight functions

ωα ⊗ ωβ(r = ri − rj) =

∫
dr′ ωα(r′ − ri)ω

β(r′ − rj). (3.29)
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For vector weights, a scalar product is also implied. The convolution can be easily

calculated in Fourier space. The deconvolution of the Mayer–f function derived by

Rosenfeld is not unique (e.g. see [45]). The ωα are characteristic functions of a sphere

of radius R. This becomes clear on integrating each weight ωα over space. For α = 3

one obtains the Volume V = 4πR3/3, for α = 2 the surface area S = 4πR2, for α = 1

the mean radius of curvature R and for α = 0 the Euler characteristic which is simply

1. These are the fundamental geometric measures of the sphere in three dimensions.

Rosenfeld made the following ansatz for the excess free energy functional of the hard

spheres

βFex[ρ] =

∫
drΦ(nα(r)), (3.30)

where β−1Φ, the excess free energy density is a function of a set of the weighted densities

nα(r)

nα(r) =

∫
dr′ ρ(r′)ωα(r− r′). (3.31)

Using dimensional analysis, Rosenfeld assumed that

Φ(nα) = f1(n3)n0 + f2(n3)n1n2 + f3(n3)n1 · n2 + f4(n3)n
3
2 + f5(n3)n2n2 · n2,

(3.32)

where the coefficients fα depends only on n3 and each term has dimension [length]−3.

Equations (3.30) and (3.31) must recover the exact low density limit and pair direct

correlation function up to first order in density, and this demands that to lowest order

in n3 the fα must have expansions

f1 = n3 +O(n23),

f2 = 1 +O(n3),

f3 = −1 +O(n3),

f4 = 1/(24π) +O(n23),

f5 = −3/(24π) +O(n23).
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Since f3(n3) = −f2(n3) and f5(n3) = −3f4(n3), the free energy density (Equation (3.32))

simplifies to

Φ(nα) = f1(n3)n0 + f2(n3)(n1n2 − n1 · n2) + f4(n3)(n
3
2 − 3n2n2 · n2). (3.33)

For intermediate and high densities it is necessary to extrapolate the excess free energy

to higher densities. The extrapolation can be performed in various ways. Using Scaled

Particle Theory (SPT), Rosenfeld derived FMT for higher densities which resulting

functional was not able to predict the freezing transition of hard sphere fluid into a

crystalline state. The dimensional crossover approach constructs a functional with new

tensorial weighted densities which successfully describes the freezing transition. A third

way of extrapolation uses a known equation of state as input and leads to the White

Bear (WB) version of FMT [46].

Rosenfeld imposed additional physical requirements (scaled particle theory) in order to

determine the coefficients fα

lim
R→∞

(µex
V

)
= p, (3.34)

where V = 4πR3/3 is the volume of sphere and p is pressure. This result simply states

that the excess chemical potential for inserting a hard–sphere into a uniform fluid at

pressure p is pV plus the contribution proportional to the surface area [23]. µex can be

determined in terms of weighted densities from Equation (3.30)

βµex =
∂Φ

∂ρ
=
∑
α

∂Φ

∂nα

∂nα
∂ρ

, (3.35)

and from the definition of the scaled particle variables ∂n3/∂ρ = 4πR3/3, ∂n2/∂ρ =

4πR2, ∂n1/∂ρ = R and ∂n0/∂ρ = 1. Thus

lim
R→∞

(µex
V

)
=

∂Φ

∂n3
. (3.36)

The pressure is obtained from the thermodynamic relation Ωbulk = −pV , which is valid

for a bulk fluid with the grand potential density given by Ωbulk/V = β−1Φ + fid −

ρbulkµ. Combining these results and using Equation (3.34) one obtains the scaled particle
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differential equation,

∂Φ

∂n3
= −Φ+

∑
α

∂Φ

∂nα
nα + n0. (3.37)

By solving this equation, five coefficients fα can be determined; integration constants

are chosen so that the correct low density limits are recovered. The solution is

f1(n3) = − ln(1− n3),

f2(n3) = (1− n3)
−1,

f3(n3) = −f2(n3),

f4(n3) =
(
24π(1− n3)

3
)−1

,

f5(n3) = −3f4(n3).

The resulting functional is usually written as

Φ = Φ1 +Φ2 +Φ3, (3.38)

with

Φ1 = −n0 ln(1− n3), Φ2 =
n1n2 − n1 · n2

1− n3
, (3.39)

Φ3 =
n32 − 3n2n2 · n2

24π(1− n3)2
. (3.40)

3.3.2 Dimensional Crossover and the Cavity Theory

The concept of dimensional crossover is a strong test for DF approximations which was

first applied [47] to the WDA for HS. The idea is that any DF approximation for the

3D excess free energy of HS, Fex, also contains predictions for any 2D distribution of

hard–disks , ρ2D(x, y), because the latter should be fully equivalent to a 3D distribution

with a delta function along the z–axis: ρ3D(x, y, z) = ρ2D(x, y)δ(z); see Figure 3.1. The

dimensional crossover may be extended to represent 1D distributions of hard–rods as

3D distributions, with ρ3D(x, y, z) = ρ1D(x)δ(y)δ(z), and the equivalent reduction from

2D to 1D can also be defined. It has been shown that the DF reduction of the FMT
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from 3D to 2D is very accurate; however, the reduction from 3D to 1D was a complete

failure, since the third term Φ3 in Equation (3.40) diverges [24].

Z

X

Y

X

3D 2D 3D 1D

Z

Y

Y
X

X

Figure 3.1: Dimensional crossover within the DF formalism. On the left, a 3D
distribution with the hard sphere centers located on the z = 0 plane ρ3D(x, y, z) =
ρ2D(x, y)δ(z) is fully equivalent to a 2D distribution of hard disks ρ3D(x, y, z) =
ρ1D(x)δ(y)δ(z). On the right, a 3D distribution with all the HS centers along the

x–axis is fully equivalent to a system of 1D hard rods [24].

The concept of the zero–dimensional (0D) limit which leads to the cavity theory was

proposed by Tarazona and Rosenfeld [48] to treat this failure. Consider a small cavity

which can not hold more than one hard–core particle which is connected to a particle

reservoir at chemical potential µ. This cavity may be considered as the zero–dimensional

(0D) limit of hard sphere fluid. From any free energy functional, F [ρ(r)], for a 3D system

we may get the free energy of a 2D system considering the fluid inside a very narrow slit

pore. The one–dimensional free energy may be obtained from a fluid in a very narrow

cylindrical capillary, and the very narrow cavity should provide the ultimate dimensional

crossover to the 0D excess free energy which is a simple function of the mean occupation

number N [49],

F 0D
ex = (1−N) ln(1−N) +N. (3.41)

The interesting property of the 0D limit is that its free energy does not depend on the

shape of the cavity (i.e. the confining potential) (see Figure 3.2).
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Figure 3.2: Three types of cavities which can hold only one particle.

Any of the reduced dimension systems are extremely inhomogeneous, from the 3D point

of view, therefore a good description of the dimensional crossover requires a very good

density functional approximation, by taking into account the non–local dependence of

the free energy on the density distribution. The requirement that F [ρ(r)] should give

the exact 0D limit is strong enough to determine the functional dependence within the

FMT class.

Tarazona introduced a new tensorial weight function using arguments presented above [50]

ωt
ij =

rirj
r2

δ(R− r), (3.42)

which is added to the third term of the free energy density (3.40). The resulting free

energy density term is

Φ3 =
3(−n2n2 · n2 + n2,int,ijn2,j + n2nt,ijnt,ji − nt,ijnt,jknt,ki)

16π(1− n3)2
. (3.43)

Using Equations (3.39) and (3.43) the excess free energy functional can be written as

follows

Φ(n[ρ(r)]) = Φ1 + ϕ1(n3)Φ2 + ϕ2(n3)Φ3. (3.44)

Here, ϕ1(n3) and ϕ2(n3) are functions of the local packing density n3(r). By choosing

ϕ1 = 1 and ϕ2 = 1, (3.45)
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we obtain Tarazona’s tensorial functional [50] based on the original Rosenfeld func-

tional [28]. The choice

ϕ1 = 1,

ϕ2 = 1− −2n3 + 3n23 − 2(1− n3)
2 ln(1− n3)

3n23
, (3.46)

corresponds to the tensor version of the White Bear I functional [51]. Finally, with

ϕ1 = 1 +
2n3 − n23 + 2(1− n3) ln(1− n3)

3n23
,

ϕ2 = 1− 2n3 − 3n23 + 2n33 + 2(1− n3)
2 ln(1− n3)

3n23
, (3.47)

the tensor version of the white Bear II functional is recovered [52]. This functional is most

consistent with respect to restrictions imposed by morphological thermodynamics [53].

3.4 Stillinger’s Expansion in Correlated, Contiguous Par-

ticles

Classical density functional theory is a theoretical framework, which has been extensively

employed to study inhomogeneous complex fluids (CF), solids and solid–liquid phase

transition phenomena. On the other hand, computer simulation is one the most useful

approaches to the analytical theory of the classical many–body problem which is based

on finding the partition function of the system under study. Stillinger’s approach is a

technique which was developed for estimating the partition function near close packing,

by evaluating the free–energy contribution from the correlated motion of larger and

larger sets of contiguous particles. Stillinger’s expansion provides the analytical theory

on the high–density thermodynamic properties which is not very known unlike the low–

density limit. Consider the canonical partition function for N hard spheres

Q(N,V, T ) =
1

N !Λ3N

∫
dr1 . . .

∫
drn

N∏
i,j (i<j)

φ(ij) , (3.48)

φ(ij) =

0 (rij ≤ σ)

1 (rij > σ)
. (3.49)
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Here, rij = |ri − rj | is the center distance between particles i and j. We consider a

reference lattice of our choice (fcc, hcp or bcc) with M ≥ N lattice sites at positions si

spanning the volume V . We associate each particle i with a lattice site at site si and that

association divides the 3N dimensional configuration space into nonoverlapping regions

Ωl,p. The precise form of this association is discussed in Ref. [54], but one may think

of it loosely in terms of each particle i belonging to the Voronoi cell around site si of

the lattice. For a chosen subset of N lattice sites {si} and associated cells, the index p

runs over the N ! permutations of the particles among these cells and this leads to an

identical division of the configuration space, Ωl,p1 ≡ Ωl,p2 . The index l runs over the

different associations of N particles with M > N lattice sites and becomes important in

the case of finite vacancy concentration. Thus we obtain for the partition function:

Q(N,V, T ) =
1

Λ3N

∑
l

∫
. . .

∫
Ωl,1

dr1 . . . drN
∏
i<j

φ(ij) . (3.50)

For zero vacancy concentration, this decomposition is akin to the SOC method (as e.g.

discussed in Ref. [55]) where each particle is confined to its Wigner–Seitz cell. Following

Ref. [54], one may write Q in terms of configuration integrals Z l
i , Z

l
ij , . . . which describe

the correlated motion of one, two, . . . particles in a background matrix of N − 1, N − 2,

. . . particles fixed at their associated lattice sites. These configuration integrals are

defined as

Z l
i =

∫
ωl
i

dri

N∏
j 6=i

φ(ij) with (3.51)

rj = sj (j 6= i) ,

Z l
ij =

∫
ωl
ij

dridrj

N∏
k 6=i,j

φ(ik)φ(jk) with (3.52)

rk = sk (k 6= i, j) ,

... .

The integration domains must fulfill ωl
i, ω

l
ij , · · · ∈ Ωl,1, and they depend on the indices

of the free particles i, j and also in the index l determining at which lattice sites the
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other particles are fixed. The partition function is now expressed as the product

Q(N,V, T ) =
1

Λ3N

∑
l

N∏
i

Z l
i

N∏
i<j

Z l
ij

Z l
iZ

l
j

N∏
i<j<k

Z l
ijk Z

l
iZ

l
jZ

l
k

Z l
ijZ

l
ikZ

l
jk

. . . (3.53)

=:
1

Λ3N

N∏
i

Y l
i

∏
i<j

Y l
ij

N∏
i<j<k

Y l
ijk . . . . (3.54)

The Y ′s can also be expressed by the recursive relation

Y l
1...n =

Z l
1...n∏

subsets Y
l
i1...im

, (3.55)

where {i1 . . . im} is any proper subset of {1 . . . n}. For example, when omitting indices

we have Y2 = Z2/(Y1Y2) and Y3 = Z3/(Y1Y2Y3 Y12Y13Y23).

3.5 Dynamical Density Functional Theory

To study fluid dynamical phenomena, it is often sufficient to consider the fluid as a

continuum and ignore the fact that it is in reality made up of individual particles. Over

the last decade the dynamical density functional theory (DDFT) has been developed.

This constitutes a microscopic theory for fluid dynamics of such colloidal fluid. The

starting point was work by Marconi and Tarazona [56, 57], in which they assumed that

the colloids can be modeled as Brownian particles with stochastic equation of motion,

thus neglecting hydrodynamic interactions between the colloids. The Smoluchowski

equation for N Brownian particles is

∂W (rN , t)

∂t
= Γ

N∑
i=1

∇i · (kBT∇i +∇iUtot)W (rN , t), (3.56)

where rN = (r1, . . . , rN ) is the particle positions, t denotes the time and Γ is the

mobility which is connected to the diffusion coefficient through the Einstein relation,

Γ = D/kBT . W (rN , t) is the time–dependent probability distribution function. ∇i

denotes the nabla operator ∇ = êx
∂
∂x + êy

∂
∂y + êz

∂
∂z which operates on the ith particle.

The total potential energy Utot has the form

Utot =

N∑
i=1

Vext(r
N , t) +

N∑
i=1
i<j

VN (|ri − rj |), (3.57)
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here, Vext is the external potential and the internal potential VN , contains all the inter–

particle interactions. Now the idea is to integrate out degrees of freedom. Integrating the

probability density distribution over all particle positions but one leads to the one–body

density

ρ(1)(r1, t) = N

∫
dr2 . . .

∫
drN W (rN , t), (3.58)

or more generally, for n–particle density we have

ρ(n)(r1, . . . , rn, t) =
N !

(N − n)!

∫
drn+1 . . .

∫
drN W (rN , t). (3.59)

Integrating the Smoluchowski equation for one–body density yields

1

Γ

∂ρ(1)(r1, t)

∂t
= N

∫
dr2 . . .

∫
drN

{
N∑
i=1

(
kBT∇2

iW (rN , t)

+ ∇i

(
∇iVext(ri, t)W (rN , t)

))
+

N∑
i=1
i<j

∇i

(
∇i

(
VN (|ri − rj |)W (rN , t)

)) . (3.60)

The integral can be split into three terms:

1. First term:

N

∫
dr2 . . .

∫
drN

N∑
i=1

kBT∇2
iW (rN , t) = kBT∇2

1ρ
(1)(r1, t)

+N

∫
dr2 . . .

∫
drN kBT

N∑
i=2

∇2
iW (rN , t)

= kBT∇2
1ρ

(1)(r1, t)

+
N∑
i=2

NkBT

∫
dri∇i

(
∇i

∫
dr2 . . .

∫
drNW (rN , t)

)
︸ ︷︷ ︸

g(r1,ri,t)

= kBT∇2
1ρ

(1)(r, t) +
N∑
i=2

NkBT

∫
dri∇ig(r1, ri, t)︸ ︷︷ ︸

=0

, (3.61)

since W decays to zero for large distances.
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2. Second term:

N

∫
dr2 . . .

∫
drN

N∑
i=1

∇i

(
∇iVext(ri, t)W (rN , t)

)
= N

∫
dr2 . . .

∫
drN∇1 (∇1Vext(r1, t))W (rN , t) + 0

= ∇1

(
ρ(1)(r1, t)∇1Vext(r1, t)

)
. (3.62)

3. Third term:

N

∫
dr2 . . .

∫
drN

N∑
i=1
i<j

∇i · (∇iVN (|ri − rj |))W (rN , t)

= N

∫
dr2 . . .

∫
drN∇1

 N∑
j=2

∇1VN (|r1 − rj |)W (rN , t)


rN is symmetric in coordinate, set j=2

= N(N − 1)∇1

∫
dr2∇1VN (|r1 − r2|)

∫
dr3 . . .

∫
drNW (rN , t)

=

∫
dr2∇1 (∇1VN (|r1 − r2|)) ρ(2)(r1, r2, t). (3.63)

Hence in total we have

1

Γ

∂ρ(1)(r1, t)

∂t
= kBT∇2

1ρ
(1)(r1, t) +∇1

(
ρ(1)(r1, t)∇1Vext(r1, t)

)
+∇1

∫
dr2 ρ

(2)(r1, r2, t)∇1VN (|r1 − r2|). (3.64)

In equilibrium

∂ρ(1)(r1, t)

∂t
= 0, (3.65)

which implies

∇
(
kBT∇ρ(r, t) + ρ(r, t)∇Vext(r, t) +

∫
dr′ ρ(2)(r, r′, t)∇VN (|r− r′|)

)
= ∇

(
kBT∇ρ(r) + ρ(r)∇Vext(r) +

∫
dr′ ρ(2)(r, r′)∇VN (|r− r′|)

)
= 0. (3.66)
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The sum of the terms inside the parentheses should be constant and this constant must

vanish for r −→ ∞ and is thus identical to zero. Therefore

kBT∇ρ(r) + ρ(r)∇Vext(r) +
∫

dr′ ρ(2)(r, r′)∇VN (|r− r′|) = 0. (3.67)

This is also known as Yvon–Born–Green hierarchy (YBG).

In equilibrium, DFT implies

δFex

δρ(r)
+ kBT ln(Λ3ρ(r))− µ+ Vext(r) = 0. (3.68)

By applying gradient operator to the above Euler–Lagrange equation we obtain

∇Vext + kBT ∇ ln(Λ3ρ(r))︸ ︷︷ ︸
∇ρ(r)
ρ(r)

+∇ δFex

δρ(r)
= 0, (3.69)

which in combination with YBG reads

∫
dr′ ρ(2)(r, r′)∇VN (|r− r′|) = ρ(r)∇ δFex

δρ(r)
. (3.70)

Using Equations (3.64), (3.67) and (3.70) we have

∂ρ(r, t)

∂t
= Γ∇(kBT∇ρ(r, t) + ρ(r, t)∇Vext(r, t)

+ρ(r, t)∇ δFex

δρ(r)
), (3.71)

or equivalently

∂ρ(r, t)

∂t
= D∇

(
ρ(r, t)∇ δβF [ρ]

δρ(r, t)

)
, (3.72)

which presents the equation of dynamical density functional theory (DDFT). In the

case of the ideal gas (Fex = 0) and in the absence of any external potential (Vext =

0), Equation (3.72) reduces to the diffusion equation (heat equation)

∂ρ(r, t)

∂t
= D∇2ρ(r, t). (3.73)



Chapter 4

Stable and Metastable Hard

Sphere Crystals

This chapter deals with the applications of the density functional theory (DFT) of

fundamental measure type (FMT) to study the most common crystal lattice structures

with hard cores of face–centered cubic (fcc), hexagonally close–packed (hcp) and body–

centered cubic (bcc). Using DFT, density distributions, free energies and equilibrium

vacancy concentrations of these structures are studied and by comparing DFT results

with simulation data and Stillinger’s approach of correlated movement of free particles,

the stability of fcc over hcp is described. Besides, the metastability of hard sphere bcc

crystal structure is explained.

4.1 Introduction

The crystal lattices of monatomic substances are very often of face–centered cubic

(fcc), hexagonally close–packed (hcp) or body–centered cubic (bcc) type. Still, it is

a formidable problem in statistical mechanics and quantum chemistry to predict the

stable crystal structure and its free energy for a given substance. Approximating the

particle interactions in this substance by classical two–body potentials makes the prob-

lem amenable to a treatment using methods of classical statistical mechanics, most

notably Monte Carlo (MC) simulations and (classical) density functional theory (DFT).

While the approximation using two–body potentials may not be very accurate for truly

45
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atomic substances, the advance in colloid synthesis allows to realize systems with simple

two–body potentials to a good degree of approximation, thus colloid suspensions are a

perfect model system for investigating freezing in classical statistical mechanics.

For isotropic two–body potentials u(r) (r is the center distance between two particles)

a substantial amount of knowledge has been gathered. For potentials with a repulsive

core, the steepness of the core mainly determines the stability of fcc over bcc, with fcc

being more stable for steeper cores. This has been investigated for power–law potentials

u ∝ (1/r)n [58] and screened exponentials u ∝ exp(−κr)/r [59, 60] where the parameters

n and κ determine the steepness of the potential. In the hard–sphere limit (n, κ→ ∞),

fcc appears to be the stable, equilibrium structure and a possible bcc structure is unstable

against small shear [61] which is reflected in squared phonon frequencies ω2(k) being

negative for certain wave vectors k.

For hard spheres, it is a much more delicate issue whether fcc is more stable than other

close–packing structures, most notably hcp. Early theoretical work by Stillinger et al.

analyzed the free energy of hard disks and fcc and hcp hard sphere crystals in terms

of an expansion in the number n of contiguous particles (free to move) in an otherwise

frozen matrix of particles at their ideal lattice positions [62–64]. Stillinger’s approach

confirms simulation data [55, 65] of the stability of fcc over hcp and it appears to be very

hard to contribute the theoretical understanding of the stability of fcc over hcp beyond

the Stillinger arguments and in this respect density functional theory (DFT) seems to

be the only promising candidate theory.

4.2 Theory

4.2.1 Fundamental Measure Theory

In the framework of density functional theory, the crystal is viewed as a self–sustained

inhomogeneous fluid. An inhomogeneous density profile ρcr(r) minimizes the grand

canonical free energy functional of the one–body density profile ρ(r) (3.1)

Ω[ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)] +

∫
drρ(r)[Vext(r)− µ] . (4.1)
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Fundamental measure theory (FMT) provides the most precise functional for the excess

free energy part (Section 3.3). In this thesis we mostly use Tarazona, White Bear I and

White Bear II tensorial functionals. The last one is the most consistent with respect

to restrictions imposed by morphological thermodynamics [53]. In density functional

approach, besides bulk and inhomogeneous fluids, it is possible to study properties of

the hard–sphere crystal within the framework of FMT. Using the variational principle,

the equilibrium density profile ρeq(r) is determined via minimizing the grand canonical

free energy functional (Equation (3.2)) which leads to the Euler-Lagrange equation:

β−1 ln
ρeq(r)

ρ0
= −δFex[ρ(r)]

δρ(r)
+ µex − Vext(r) . (4.2)

For the equilibrium crystal, V ext(r) = 0 and ρeq(r) is lattice–periodic, and the homo-

geneous density (bulk density), ρ0, is fixed by the excess chemical potential µex. Being

computationally simpler than a free minimization of the density profile, crystal density

profiles are often obtained by a constrained minimization of a model profile with only a

few free parameters such as e.g. a Gaussian profile

ρcr(r) =
∑

lattice sites i

(1− nvac)

(
α

π

)3/2

exp

(
−α(r− ri)

2

)
. (4.3)

Here, the free parameters are the Gaussian peak width α and the vacancy concentration

nvac.

4.2.1.1 Choice of Unit Cells for the Numerical Solution of Euler–Lagrange

Equation

Face–centered cubic (fcc) and hexagonal close–packed (hcp) are two regular lattices with

the highest possible hard–sphere packing fraction (η ≈ 0.74). The body centered cubic

(bcc) structure can attain only packing fractions up to η ≈ 0.68. The fcc and hcp

structures differ in how sheets of hexagonally packed hard spheres are stacked upon one

another. Relative to a reference layer A (see Fig. 4.1), two other layer types B and C are

possible which are laterally shifted with respect to A. In the fcc structure the stacking of

the hexagonally–packed planes corresponds to the crystallographic [111] direction and

every third layer is the same (ABCABCA) whereas in the hcp lattice ([001] direction),

the sequence of A and B repeats (ABABABA) (Fig. 4.1). If the binding energy (or
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free energy) were dependent only on the number of nearest–neighbor bonds per atom

(bonds have no direction), there would be no energetic difference between the fcc and

hcp structures.

The most convenient unit cell for fcc is the cubic unit cell with 8 particles at the corners

and 6 face–centered particles (this cell, however, lies oblique in the ABCABCA packing

discussed above). For hcp it is the unit cell with hexagonally packed hard spheres on the

basal plane. In order to avoid any numerical errors in the comparison between fcc and

hcp, we define two extended unit cells of the same size with hexagonally packed spheres

as the base plane (see Figure 4.1). The fcc layers cycle among the three identical, but

laterally shifted layers, the blue A layer, the red B layer and the green C layer. For hcp,

the A and B layers alternate. Positions of the lattice points of the first layers from the

bottom are

layer A : (0, 0, 0), (a, 0, 0), (0,
√
3 a, 0), (a,

√
3 a, 0), (

1

2
a,

√
3

2
a, 0),

layer B : (0,
1√
3
a,

1

2
c), (a,

1√
3
a,

1

2
c), (

1

2
a,

5

2
√
3
a,

1

2
c),

layer C : (
1

2
a,

1

2
√
3
a, c), (0,

2√
3
a, c), (a,

2√
3
a, c),

here a is the nearest neighbor distance in the basal plane and c/2 is the distance between

two neighboring layers. Discretization of the extended unit cells by the same number of

equal–distant grid–points ensures that the lattice points in layer A are on grid points and

for layers B and C the lattice points are equally ”off–grid” since there is a mirror reflection

symmetry with respect to the x–axis between B and C. In view of the narrow density

peaks centered around each lattice point, this choice eliminates numerical differences

between fcc and hcp free energies to a large extent. In Fig. 4.1, a is the nearest neighbour

distance, and in the close–packed case a = σ. The fcc cubic symmetry requires c =√
8/3 a which entails that the distance between nearest neighbour within a base plane

is the same as between neighbouring planes. For hcp, the hexagonal symmetry group

does not enforce this constraint, for a discussion of the implications thereof see Sec. 4.3.3

below.
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Figure 4.1: Extended unit cells for the fcc and hcp crystal structures which are used
in DFT calculations to avoid any possible numerical errors due to the discretization.
Here a is nearest neighbor distance in the basal plane and c/2 is the distance between

two neighboring layers.

4.2.1.2 Free Minimization

Equilibrium crystal density profile ρeq(r; ρ0, nvac) is determined by a full minimization in

three–dimensional real space. Finding density profile using numerical methods needs to

discretize the density ρ(r) over the cuboid volume with edge lengths Lx = Ly = Lz = a

for bcc (using the cubic unit cell) and Lx = a, Ly =
√
3 a and Lz = 3c for both fcc and

hcp (using the extended unit cells of Fig. 4.1) with periodic boundary conditions.

We perform a double step minimization of the free energy. In the first step, the bulk

density ρ0 and the vacancy concentration nvac are fixed and the Euler–Lagrange equation

(4.2) is solved iteratively with a start profile given by the Gaussian profile (4.3) with

optimal width. The excess chemical potential µex in Eq. (4.2) is treated as a Lagrange

multiplier to ensure the constraint of fixed nvac. In the next step, this procedure is

repeated for different nvac (still keeping ρ0 fixed), and the equilibrium density profile is

determined by minimizing the free energy per particle with respect to the the vacancy

concentration, nvac. For a more detailed discussion of this procedure see Ref. [66].

In the program, 11 weighted densities (two scalar densities n3, n2, three vector densities,

n2,i, i = x, y, z, and six tensor densities, ntij) as well as the density profile ρ(r) are

discretized on a three dimensional grid covering the cuboid boxes. Usually grids for the
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bcc unit cell are chosen with 64×64×64 points in the x, y and z directions, respectively,

and 128 × 128 × 384 points for the fcc and hcp extended unit cells. The approach for

calculating the weighted densities is discussed in detail in Appendix B.

There are many sophisticated algorithms for minimizing a function and likewise many

techniques to increase the speed and efficiency of the process. To have a more efficient

algorithm, the iteration of Eq. (4.2) was done using a combination of Picard steps and

DIIS steps (Discrete Inversion in Iterative Subspace) (see Appendix C). In order to

prevent the procedure from diverging during the Picard iterations, we mix the new

density with the old one in each step

ρnew = (1− α)ρold + αρnew . (4.4)

Here, α is a mixing parameter and is usually a small number. For the case of bcc, α

can be adapted in the course of the iterations in the range of α = 10−5 . . . 10−3. For fcc

and hcp, a constant value for α stabilizes the iterations, with values α = 10−5 . . . 10−4.

A typical FMT run consisted of an initial Picard sequence with about 30 steps. Then

we alternated between Picard sequence of 7 steps and a DIIS step (which needs another

nDIIS Picard initialization steps), see also Ref. [67].

4.2.2 Stillinger’s Expansion up to n = 2 for hcp, fcc and bcc Hard

Spheres

Early theoretical work work by Stillinger et al. analyzed the free energy of hard disks

and hard sphere crystals in terms of an expansion in the number n of contiguous par-

ticles (free to move) in an otherwise frozen matrix of particles at their ideal lattice

positions (Section 3.4). This expansion could be done analytically only for densities in

the vicinities of close–packing and, for n = 2 and n = 3 (by quite a tour de force). In

the following, we restrict calculations to the case N = M (number of particles equal

to number of lattice sites M), i.e. consider a vacancy–free crystal and expand the free

energy up to the order n = 2. From simulations [68] and FMT [66] we can estimate that

the effect of vacancies on the free energy of the crystal is small: for fcc hard spheres we

have nvac ∼ 10−4 (simulations) and nvac ∼ 10−5 (FMT) in equilibrium at coexistence,

the corresponding free energy shift compared to nvac → 0 can be estimated from FMT,

∆F/N ∼ 10−5 kBT .
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Truncated after the first term, the Stillinger series (3.54) is

Q1 =
1

Λ3N
(V1)

N , (4.5)

where Z l
1 has been reduced to V1, the free volume for one particle in a cage of fixed

neighbors at their lattice sites. The shape of the one–particle free volume of hard disks

and hard spheres for different crystal structures are sketched in Fig. 4.2. Consequently

the free energy is

βF1 = −N ln
V1
Λ3

. (4.6)

For fcc and hcp, V1 is equal and has been calculated analytically in Ref. [69], we quote

this result in Appendix D. For bcc, we did not find a literature result and therefore give

the calculation and result also in Appendix D.

(e)(d)(c)

.

.

.

.

.

(a) (b)
. .

.. .

. .

Figure 4.2: Shape of one–particle free volumes for (a) square and (b) hexagonally
packed hard disk and for bcc, fcc and hcp ((c), (d) and (e) respectively) hard sphere

crystals.

The second term in the Stillinger series for Q gives only a contribution different from 1

if the two fixed particles are neighbors. Thus the truncated Stillinger series is

Q2 =
1

Λ3N
(V1)

N
∏
k

(
V2,k
(V1)2

)gkN

(4.7)
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lattice neighbor type k gk

fcc all neighbors 1 6
hcp within close-packed plane 1 3

in adjacent close–packed planes 2 3
bcc all neighbors 1 4

Table 4.1: Neighbor configurations with multiplicities for the different lattices.

Here, V2,k is the correlated free volume of the two neighboring particles (with dimension

[length]6) which may depend on the type of neighbor configuration (index k). The

power gkN reflects the freedom to choose the first of the two particles to be any of the

N particles in the system and gk is the multiplicity of the neighbor configuration. It is

half the number of neighbors of type k for a given fixed particle. The associated free

energy is

βF2 = βF1 −N
∑
k

gk ln

(
V2,k
(V1)2

)
. (4.8)

For our considered lattice cases the neighbor types and multiplicities are given in Tab. 4.1.

The cubic lattices fcc and bcc have only one neighbor type whereas for hcp there is a

difference whether the neighbor is within the same close–packed plane or in an adjacent

close–packed plane. See also Ref. [64] for the multiplicities corresponding to the third

term in the series (fcc and hcp).

We calculate the two–particle volumes V2,k for different densities by a simple Monte–

Carlo computation. For that we specify a suitably large cuboid volume Vc for each of the

two free particles from which n sets of random positions (for each of the two particles)

are drawn. For each set of random positions overlap is checked with the other particle

and the fixed neighboring particle, leading to a total of n′ sets of random positions with

no overlap. Then V2,k = (n′/n)V 2
c . The statistical error ∆V2,k/V2,k needs to be below

10−5 for a reliable assessment of the free energy difference between fcc and hcp, and this

is achieved with 1000 subsets, each containing n = 109 sets of random positions. In the

limit ρ0 → ρcp (ρcp =
√
2/σ3 is the close–packing density) agreement was found with

the analytical results of Ref. [64], but we had to approach ρcp very closely to establish

that.
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4.3 Results

4.3.1 Stillinger Series

For fcc and hcp, the Stillinger series truncated at n = 2 gives very good results for the

free energy per particle F/N (see Fig. 4.3, to obtain numbers, we put Λ = σ). We have

compared the free energy to very precise simulation data obtained in Refs. [66, 70] which

have an error of about 0.002 kBT . The Stillinger series (n = 2) results for F/N deviate

from these ranging from 0.01 kBT (at ρ0σ
3 = 1.0) to 0.03 kBT (at ρ0σ

3 = 1.15), this is

less than 0.5% relative deviation. This is about the same accuracy we obtain with FMT

(see also Ref. [66]). Note, however, that a deviation of the order of 0.01 kBT is about

10 times higher than the fcc–hcp free energy difference obtained from simulations, as

discussed before.

For bcc, the situation is very much different. Since the bcc structure for hard sphere is

unstable against shear, the crystal can be stabilized in simulations only by constraints

such as in the self-occupancy cell (SOC) method. We would expect from the previous

derivation that the Stillinger expansion is a reasonable series expansion for the free

energy of the SOC method. However, as Fig. 4.3 demonstrates, the first two terms

are quite far away from the SOC data and also from the FMT results for the branch

with lowest free energy, pointing to the importance of higher correlations. (Ultimately,

the shear instability is a collective many–body effect, so perhaps the importance of

many–particle correlations also in the constrained crystal is not too surprising.) See,

however, the next subsection for a more detailed discussion on bcc solutions within FMT,

especially with regard to a solution branch with higher free energy which appears to be

linked to the bcc Stillinger solution.

Finally, for fcc/hcp the inclusion of the correlated neighbor term increases the free

energy, whereas for bcc it leads to a decrease.

4.3.2 bcc – FMT Results

As already discussed, a bcc crystal solution can only be stabilized by constraints. In

FMT, these are the periodic boundary condition on the cubic unit cell. Within the

Gaussian parametrization (see Eq. (4.3)), bcc solutions in FMT (Rosenfeld, Tarazona
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Figure 4.3: Crystal free energies βF/N for fcc and bcc from the Stillinger series in
comparison to simulation data and FMT results (bcc). For fcc, simulation data are
taken from Refs. [66, 70], and for bcc, simulation data are obtained using the single–

occupancy cell method (SOC) [71]. The FMT data are this work, see Sec. 4.3.2.

and White Bear Tensor, see Sec. 3.3) have been investigated by Lutsko [72] (with the

additional constraint nvac = 0, such that in the free energy minimization, the width

parameter α is the only variable which is varied at a given bulk density ρ0). For small

bulk densities (ρ0σ
3 . 1.16), Lutsko found a single free energy minimum with a rather

small width parameter α ≈ 30 . . . 40, indicating a broad Gaussian peak. Interestingly,

α(ρ0) exhibits a maximum at ρ0σ
3 ≈ 1.13 and then decreases again upon increasing the

density (i.e. the density peaks become wider upon compressing the crystal!). Moreover,

at bulk densities ρ0σ
3 & 1.16 a second free energy minimum was visible (with higer

free energy). In this second branch, the width parameter increased (the peak width

decreased) with increasing density as one would naively expect (Fig. 4.4).

We investigate these findings further using full minimization. For the first branch with

lowest free energy, we confirm that there is a minimal width of the peaks at ρ0σ
3 ≈ 1.13.

Full minimization reveals a rather strong deviation from the simple Gaussian form in the

density peaks: The difference in free energy per particle F/N between Gaussian and full

minimization is about 0.1 kBT (see Fig. 4.5 (a)) and thus about 2 orders of magnitude

higher than in the case of fcc [66]. Curiously, this free energy difference increases with

increasing density beyond ρ0σ
3 ≈ 1.07. Secondly, the equilibrium vacancy concentration

nvac is of the order of 10−2 and thus several orders of magnitude higher than found in
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Figure 4.4: (a) Free energy per particle, β f = β F/N , as a function of width param-
eter α, for the bcc hard sphere crystal calculated using (a) the Rosenfeld, (b) Tarazona
Tensor and (c) White Bear Tensor functionals for various densities. The arrows indicate

the position of the secondary crystal minima [72].

fcc. nvac(ρ0) has a minimum at ρ0σ
3 ≈ 1.10 and then increases again, adding to the

peculiarities of this solution branch. We note that in an FMT study of parallel hard

squares and cubes similar peculiarities have been found [73].

The second branch found by Lutsko is not an artefact of the constrained Gauss min-

imization. By a careful iteration procedure, we found corresponding fully minimized

solutions whose free energy per particle is very close to the values from the Gaussian

approximation (thus very much like the fcc solutions and very much unlike the solutions

from the first branch), see Fig. 4.5 (b). For increasing densities, we see a convergence of

F/N to the results of the Stillinger series (n = 2). Thus the second branch of the bcc

solutions has the same character as the fcc solution when compared with the Stillinger

approach: only a few correlated particles are sufficient to obtain the free energy.

One could argue that the discussion of these bcc solutions is futile and void of physical

significance in view of their overall instability. However, the quality of the FMT func-

tionals and their success in describing the fcc phase leads us to think that these solutions

are perhaps not to be discarded altogether. Since around coexistence (ρ0σ
3 ≈ 1.04) the

difference in F/N to the fcc crystal is about 0.3 kBT and thus very high, it is reasonable

that bcc crystallites have not been observed in the nucleation process of a hard sphere
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Figure 4.5: (a) Difference in free energy per particle between the fully minimized and
the Gaussian solution for the first branch of the bcc solutions as a function of bulk
density. Inset: Equilibrium vacancy concentration as a function of bulk density for
the same first branch. (b) Free energy per particle as a function of bulk density for
the bcc solution of the second branch: Full minimization (symbols, nvac = 6 × 10−4

fixed) and Gaussian approximation (full black line). For comparison the Stillinger result
(n = 2) is given (dashed line) as well as the Gaussian approximation for the first branch

(dot–dashed line).

crystal. Nevertheless, the bcc solutions are perhaps a useful reference point for discussing

the crossover from fcc to bcc as the most stable crystal structure for other potentials

such as of (σ/r)n type. These could be treated by suitable perturbation ansatz in the

free energy functional. Also, it could be interesting to further investigate the dispersion

relation of phonons for the solutions of the first branch and thus shed further light on

the shear instability.

4.3.3 fcc/hcp: Free Energy Differences and Density Anisotropies

For hard spheres, it is a delicate issue whether fcc is more stable than other close–packing

structures, most notably hcp. In Stillinger’s approach, The free energy of hard sphere

crystals can be expanded in terms of the number n of contiguous particles (free to move)

in an otherwise frozen matrix of particles at their ideal lattice positions. This expansion

could be done analytically only for densities in the vicinity of close–packing and, for

n = 2 and n = 3 (by quite a tour de force), resulted in hcp being more stable than fcc by

a free energy difference per particle ∆F/N ∼ 10−3 kBT . However, the individual terms

contributing in this series are much larger than this value of ∆F/N . An extension of

this method [74] (still only near close–packing) to n = 5 shows the reverse situation: fcc
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(a1) (a2)
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Figure 4.6: Unit cells and density anisotropies for fcc and hcp. (a1) and (a2) show the
most convenient unit cells (cubic for fcc and hexagonal for hcp) for the mathematical
discussion of the density anisotropies (see Eqs. (4.9) and (4.10)). (a3) and (a4) show the
unit cells used in the numerical computations. The hexagonally packed planes (marked
in different colors) lie oblique in the cubic unit cell (a1). (b) fcc and hcp density
distributions around the lattice site at the origin in different directions. Here, we used

the bulk density ρ0σ
3 = 1.04 and fixed the vacancy concentration to nvac = 10−4.

is more stable than hcp and ∆F/N ∼ −10−3 kBT , but the last term in the series is still

larger in magnitude than ∆F/N (about 6 times for fcc and 3 times for hcp). Simulation

work confirms the stability of fcc over hcp also for smaller densities (around coexistence).

Using a single–occupancy cell (SOC) method, Ref. [75] estimates ∆F/N = −(5±1)·10−3

kBT at a density of ρ0σ
3 = 1.041 (approximately at coexistence, σ is the hard sphere

diameter). In this method, particles are constrained to their Wigner–Seitz cells and

the free energy difference is found by integrating the equation of state. The limitations

of this method could be overcome by the powerful Monte–Carlo (MC) lattice switch

method which allows to compute the free energy difference between two different lattice

structures directly [65]. At ρ0σ
3 = 1.10 the result is ∆F/N = −(0.86 ± 0.03) · 10−3

kBT . Thus the result of the high–density Stillinger series for n = 5 for the stability of

fcc over hcp and the magnitude of the free energy difference is consistent with the MC

simulation result at a considerably smaller density. One may tentatively conclude that

for all densities the stability of fcc in the hard sphere system is a subtle result of the

correlated movement of five and more particles and the effect in the free energy is very

small.

FMT gives the same free energy per particle F/N for fcc and hcp when the Gaussian

approximation is employed [50, 72]. Free minimization lifts this degeneracy in the free
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energy. In order to understand this result qualitatively, it is useful to consider the

symmetries in the unit cell of fcc/hcp and the constraints these symmetries place upon

the lattice–site density profiles. For fcc, this is best discussed by considering the cubic

unit cell in Fig. 4.6 (a1). The non–radial contributions to the density profile around

the lattice point in the origin can be expanded in a Taylor series in x, y, z where the

terms in this series must respect the 48 point symmetry operations in the cubic unit cell

(belonging to point group 4
m 3̄ 3

m in Hermann–Mauguin notation) [66]:

ρfcc(x, y, z) = ρrad(r) (1 +K4(x
4 + y4 + z4) + . . . ) . (4.9)

Here, ρrad(r) is an averaged, radial profile which is more or less of Gaussian shape. The

leading anisotropic term is of polynomial order 4 with expansion coefficient K4. One

can also understand this result by resorting to an expansion in the subset of spherical

harmonics which respect the cubic point symmetry, this leads to an expansion in the

so–called Kubic Harmonics [76]. For hcp, we consider the unit cell in Fig. 4.6 (a2).

The corresponding Taylor expansion for the non–radial contributions to the density

profile around the lattice point in the origin has to respect only the 24 point symmetry

operations appropriate for the hexagonal group 6
m

2
m

2
m . According to Ref. [77], this leads

to

ρhcp(x, y, z) = ρrad(r) (1 +K ′
2z

2 +K ′
3y(3x

2 − y2) + . . . ) , (4.10)

where polynomial terms up to order 3 have been taken into account (with expansion

coefficients K ′
i). The corresponding construction using spherical harmonics leads to the

so–called Hexagonal Harmonics. We observe that there is a qualitative difference in the

shape of the density profile between hcp and fcc according to these expansions:

(i): To leading order in anisotropy for hcp, the density peak ρ(r) should look dif-

ferent in z–direction (perpendicular to the hexagonally packed planes) than in

directions in the x–y plane. To phrase it differently: one would expect different

width parameters αz, αx,y for a Gaussian density peak of the form ρhcp(x, y, z) ∝

exp(−αx,y(x
2 + y2) − αzz

2). We did not observe this in our numerical solutions

but we will return to this point below.
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(ii): To next–to–leading order in the anisotropy for hcp, we expect a different behavior

when comparing ρ(0, y, 0) with ρ(0,−y, 0) due to the antisymmetric term ∝ K ′
3 in

Eq. (4.10). Such a symmetry breaking is not present in the fcc peak. To demon-

strate this difference, we compare ρ(0,±y, 0), ρ(x, 0, 0), and ρ(z, 0, 0) between fcc

and hcp, see Fig. 4.6 (b) and (c).1

Indeed we observe that the symmetry is broken for the hcp profile, in accordance

with the anisotropy expansion, and we conclude that the fcc/hcp free energy dif-

ference in FMT results from this symmetry breaking.

The results for the fcc/hcp free energy difference per particle are given in Fig. 4.7(a). In

FMT (White Bear II–Tensor), the difference β∆F/N is larger than zero, implying that

hcp has lower free energy. Furthermore, there is only a moderate drop of β∆F/N with

the bulk density ρ0. At coexistence (ρ0σ
3 = 1.04), we have computed β∆F/N also for

other FMT functionals (Tarazona–Tensor, White Bear–Tensor) and found no change in

sign but a variation in magnitude by 50% or 5 · 10−4. In view of the variation of βF/N

for fcc between the functionals (about 4 · 10−2, i.e. a factor of 80 larger), the functionals

are very consistent with each other with respect to the stability of hcp. The results

from the Stillinger series (n = 2) for β∆F/N are approximately constant (∼ 1 · 10−3)

with increasing density and coincide with the analytical value at close packing obtained

in Ref. [64]. It is remarkable that the FMT results seem to converge to this value as

well. For comparison, in Fig. 4.7(a) we have also included the analytical value from the

Stillinger series (n = 5) [74] and the simulation value of Ref. [65]. Although FMT does

not agree with the sign of β∆F/N obtained in the simulation, it is gratifying to note

that according to these results FMT is correct on the level of two correlated particles in

the Stillinger picture.

Finally, we return to the observation that in the hcp density anisotropy the leading term

∝ z2 (see Eq. (4.10)) was missing in our numerical solutions. This is related to our choice

of the distance between the hexagonally packed layers (c/2 = c0/2 =
√

2/3a where a

is the nearest neighbor distance, see Fig. 4.1). With this choice the distance between

1 Note that in our numerical computations we used the unit cells depicted in Fig. 4.6 (a3) (fcc),
and in Fig. 4.6 (a4) (hcp). Thus, the fcc cubic unit cell and the unit cell in Fig. 4.6 (a3) are related
by a three–dimensional rotation. Likewise, the anisotropy expansion for the extended unit cell must
be obtained from the corresponding expression (4.9) for the cubic unit cell by applying this rotation.
Let x, y, z be the coordinates of the cubic unit cell, and x′, y′, z′ the ones in the rotated system. The
rotation (x, y, z) → (x′, y′, z′) is a linear transformation. Thus (x4 + y4 + z4) =

∑
ijk aijk x

′i y′j z′k with

the condition i+ j+ k = 4. For x′ = z′ = 0 only a term ∼ a040 y
′4 can contribute to the sum on the rhs.
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Figure 4.7: (a) Free energy difference between fcc and hcp vs. bulk density. The
black symbol shows the simulation value from Ref. [65]. Rest of the symbols show the
data obtained from FMT and the Stillinger series (n = 2) and dashed lines show the
asymptotic behavior of the free energy difference near close packing for the Stillinger
series (different n) [74]. (b) Distortion parameter γ = c/c0 which minimizes the hcp

free energy vs. bulk density. In all FMT calculations we put nvac = 10−4.

nearest neighbors is the same for two sites within the same hexagonally packed planes

and two sites in two adjacent planes. However, the hcp symmetry group does not require

this, and one is free to choose another distance between the planes. With a different

choice, also the nearest neighbor distance is different for sites in two different planes and

also the width of the lattice site density profiles will be different in the direction normal

to the hexagonally packed planes. We have investigated whether also the free energy

minimum for hcp shifts to a value different from c0. In order to keep the bulk density

constant we defined a stretching parameter, γ = c/c0, which describes the distortion

of the crystal in z–direction. In order to keep the bulk density constant, we rescaled

the nearest neighbor distance in the planes as follows: a′ = a/
√
γ. Full minimization

was done for a range of γ values. The result for γ which minimizes F/N is shown in

Fig. 4.7 and it is seen that the equilibrium distortion is quite small, below 10−3. The

corresponding free energy shift per particle compared to the solution with c = c0 is

about 10−5 kBT . These results are actually similar to the ones in Ref. [78]: There, a

similar lattice distortion was calculated for the zero–temperature Lennard–Jones hcp

crystal by lattice sums.
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4.4 Summary and Conclusions

In this chapter we have performed a study of bcc, fcc and hcp hard sphere crystals using

unrestricted minimization in density functional theory (DFT) of Fundamental Measure

type (FMT) which is currently the most accurate approach. We have complemented

these investigations with an approach which is based on the expanding the crystal par-

tition function in terms of number n of free particles while the remaining particles are

frozen at their ideal lattice positions (Stillinger series).

For the metastable bcc crystal, we have found two solutions for bcc crystals whose free

energies are well above the free energies of fcc/hcp (see Fig. 4.3 and 4.5(b)). The first

solution (with a rather large density peak width at lattice sites) is characterized by

a rather large equilibrium vacancy concentration (∼ 0.01) and its free energy can not

be described by the Stillinger approach. The shear instability of bcc is presumably

related to this first solution. The second solution (characterized by a small peak width

and small equilibrium vacancy concentrations) agrees well with the solution from the

Stillinger approach (n = 2) with respect to its free energy.

The free energy degeneracy between fcc and hcp, found in previous approaches using

constrained, rotationally–symmetric density peaks around lattice sites, is broken upon

full minimization. The density asymmetries are qualitatively different for fcc and hcp

and agree with expansions in respective lattice harmonics (see Fig. 4.6). We found that

in FMT the free energy per particle is lower for hcp than the one for fcc by about 10−3

kBT . This agrees remarkably well with the Stillinger solution for n = 2 (see Fig. 4.7).

Simulations, however, indicate that fcc has a lower free energy than hcp by about the

same figure. Previous investigations of the Stillinger approach in the high–density limit

(near close packing) have shown that hcp is more stable than fcc for n = 2 . . . 4 and the

situation reverses for n = 5. Thus, the stability of fcc seems to be a subtle effect involving

the correlated motion of at least 5 particles which currently can not be captured by the

FMT functionals.

Upon full minimization, also other density functionals should exhibit a free energy dif-

ference between fcc and hcp. For the Taylor expanded Ramakrishnan–Yussouff func-

tional (using the Percus–Yevick direct correlation function and the reference density

ρref = 0.946) we find a difference β∆F/N = 0.06 which is about 50 times larger than the
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FMT (and Stillinger) result. Therefore, it seems that the functional expansion around

the liquid state (underlying the Ramakrishnan–Yussouff functional) has no connection

to the Stillinger expansion.



Chapter 5

Hard Sphere Fluid at a Soft

Repulsive Wall

5.1 Introduction

Crystal growth is a very important branch of condensed matter physics and industry with

numerous applications ranging from semiconductors, organic systems, nano–structures,

substrates for high temperature superconductors, piezo sensors, ferroelectric memories

and quantum dots. There are different facets to crystal growth—homogeneous nucle-

ation, heterogeneous nucleation, epitaxial growth, molecular beam epitaxy, etc [2].

One of the main purposes of this research project is to understand the nucleation pro-

cess of simple model systems and for this one needs to investigate free energies, density

distributions and crystal–liquid and liquid–wall interfacial properties. Free energies and

density profiles of hard–sphere crystals have been extensively studied in literatures us-

ing various methods like simulation [79, 80], DFT [66, 67, 81] and PFC [67] as well

as Chapter 4 of this thesis. The density profile and the interfacial properties of the

hard–sphere crystal–fluid interface have been under intense scrutiny using DFT [82] and

simulation [82–88] approaches.

In the nucleation process of real systems it is usually found that some impurities are

present on which the new phase may be nucleated with lower activation energy than

for homogeneous nucleation. The role of impurities and seeds has been investigated in

63
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simple model systems under various conditions, such as microgravity [89], in the presence

of large spherical impurities in colloidal suspensions [90] and with variable impurity

size through MC simulations [91, 92]. A recent transition path sampling analysis [92]

has shown that pre–structure minimal crystalline seeds commensurate with the bulk

stable crystal phase enhance the crystallization rate by many orders of magnitude while

incommensurate ones have no effect.

Heterogeneous crystallization on planar surface has also been extensively studied due

to its simplicity for several model systems [93–96]. In the case of colloidal suspensions

of hard spheres against unstructured flat substrate, complete wetting of the wall by

the crystal occurs when the fluid packing fraction approaches the freezing point and

the formation of oriented crystal with close–packed planes parallel to the substrate is

induced [95, 97].

It has been demonstrated that for colloidal suspensions the effective interactions are

tunable from hard spheres to soft repulsion [98–100] or weak attraction [101, 102] and

at the same time the structure of fluid–crystal [103–106] and fluid–wall interfaces can

be analyzed in arbitrary details, e.g., by visualizing the packing of particles in these

interfaces [106]. Correspondingly, there is a great interest in model studies pertinent to

such systems. However, most work has focused on the hard–sphere colloidal fluid [13–

15, 107] confined by hard walls [95, 108–120].

Now it is well known that the interaction between colloidal particles and walls can

also be manipulated, by suitable coatings of the latter, e.g., via a grafted polymeric

layer (using the grafting density and chain length of these polymers, under good solvent

conditions, as control parameters [121, 122]). In this chapter a model is presented where

colloidal particles have an effective hard–sphere interaction in the bulk, experience a

soft repulsion from confining walls. The actual motivation of the Mainz study1 was

to test if a variable contact angle can be obtained for hard spheres at repulsive walls.

This could allow studying heterogeneous nucleation. The main work has been done

using simulation(see Ref. [123]) and DFT was performed to check the accuracy of FMT

functionals.

1This work was done when I was in Johannes Gutenberg University of Mainz with collaboration with
simulation people in 2011.
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5.2 Confined Hard Colloidal Particles Model

The model is the simple fluid of hard particles of diameter σ, confined between two

parallel walls located at z = 0 and at z = D. In the x and y directions, periodic

boundary conditions are applied throughout. The particle–wall interaction contains

either a hard wall (HW) type interaction

VHW(z) =

 ∞ if z < σ/2 or z > D − σ/2

0 otherwise
, (5.1)

or a soft repulsion of the Weeks–Chandler–Andersen (WCA) [124] type

VWCA(z) =


4ε
[(

σw
z

)12 − (σw
z

)6
+ 1

4

]
if 0 ≤ z ≤ σw2

1
6

4ε

[(
σw
D−z

)12
−
(

σw
D−z

)6
+ 1

4

]
if (D − σw2

1
6 ) ≤ z ≤ D

0 otherwise

,

(5.2)

In the Equation (5.2), σw = σ/2 is chosen, while the parameter ε controls the strength

the soft repulsion of WCA walls. Note that for ε = 0 Equation (5.2) becomes a hard–core

(HC) potential VHC(z) = ∞ for z < 0 and z > D, respectively which is much similar to

HW potential defined in (5.1) but with the difference that the position of the walls are

at z = −σ/2 and z = D+ σ/2 for HC potential and are at z = 0 and z = D as for HW.

The advantage of the choice of Equation (5.2) from the theoretical point of view is that

ε is a convenient control parameter: varying the wall–fluid interfacial tension γwf as well

as the wall–crystal interfacial tension γwc can be modified. Note that the direct effect

of VWCA is zero in the range σw2
1/6 < z < D − σw2

1/6: thus, when D is very large, we

expect that the structure of the hard sphere fluid in the center of the slit (very far from

both walls) is identical to a corresponding hard sphere fluid in the absence of confining

walls (applying periodic boundary conditions also in the z–direction).

5.3 Density Functional Theory: FMT Toolbox

DFT allows us to study the inhomogeneous structure of a fluid subjected to an external

potential (wall potential) and corresponding thermodynamic quantities within the same
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framework. It has been shown that FMT is able to predict the density distribution

and surface tension of the hard–sphere system at a hard–wall potential with a good

accuracy [46]. It is known that the density value at the hard wall, so–called contact

density, equals to the bulk pressure of the system

ρ = βp. (5.3)

Since FMT type functionals are WDA functionals, the contact theorem as one of the

sum–rules2 should be satisfied in the FMT approach. In general, one can conclude that

close to the hard–wall, a version of FMT that is based on the Carnahan–Starling–Boubĺık

equation of state (EOS) [125, 126] should be more accurate than those functionals which

are based on the Percus–Yevick EOS. While for low bulk density the difference between

these two EOSs is rather small, this difference becomes more important for the densities

close to the freezing density [46].

In this study two variants of FMT (White Bear II and White Bear II Tensor) are used

to obtain the equilibrium density profile of confined hard–sphere fluid between repulsive

walls with different strengths as well as hard–walls. The simplest initial density profile

to start the iteration process is a constant density ρ(r) = ρb between walls and no

particle (ρ = 0) outside the confinement. Iterations are done using the Picard method

(Appendix C.1) with variable mixing parameter α = 10−5 . . . 5× 10−2. This range of α

stabilizes the iteration process. For more details on implementing FMT see Appendix B.

It is useful to verify the FMT data using other approaches such as computer simulations.

Usually this check is done solely for density profile. However it is important to also

verify the accuracy of other thermodynamic quantities such as the wall surface tension.

To simulate the confined fluid between walls in the standard canonical ensemble, the

standard Monte Carlo algorithm [127] with local single particle moves is implemented.

Details of the simulation method have been presented in Ref. [123]. It is also fruitful to

check the self–consistency of our DFT code by sum–rules.
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Figure 5.1: (a) Density profile ρ(z) of the hard sphere fluid vs. z against the wall for
five choices of ε and for the hard wall. For different values of ε, the same bulk density
ρb is obtained. (b) shows the first peak of ρ(z) close to the wall, resolved on a much

finer abscissa scale.

5.4 Density Profile of the Hard Sphere Fluid at WCA Wall

By fully minimizing the free energy we can obtain the equilibrium density profile. Figures

5.1 and 5.2 show typical data for density profile ρ(z) obtained from FMT for different

strengths ε as well as different packing fractions η. Although the density profile for

the different choices of ε looks similar (Figure 5.1 a), but by looking closer to the first

peak of ρ(z) adjacent to one of the walls (Figure 5.1 b), one sees the influence of ε on

the density: the larger ε, the more remote from the wall the peak occurs. However for

σw2
1/6 < z < D−σw21/6, i.e., outside the range where the wall potential acts, the effect

of varying ε is negligible. One sees that for the packing fraction close to the fluid–solid

transition, η = 0.49, peaks close to the wall growth and “layering” occurs (Figure 5.2).

Figure 5.3 shows a plot of surface excess packing fraction ηs, as a function of bulk density

ηb. One sees that ηs depends in a nontrivial way on both ηb and ε. It can also be seen

that for packing fractions higher that ηb = 0.4 there is a systematic discrepancy between

DFT and simulation, while for lower packing fractions both methods are in excellent

agreement. Interestingly, for ε = 1, the data are rather close to the case where a hard–

core potential is used at the wall. The latter case has been studied before by Laird and

Davidchack [120] and the DFT calculation is found to be in excellent agreement with

recent simulation data [120, 123].

2Sum–rules are statistical mechanical connections between microscopic properties of a system and
thermodynamic quantities. Besides establishing connections between different quantities, they allow us
it allows us to test the internal (self–) consistency of a DFT code. [46].
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packing fraction η 0.35 0.43 0.49

contact density WBII 3.47976643 6.80865140 11.3753570
WBII-T 3.47976414 6.80863492 11.3752992

pressure 3.47977758 6.80870977 11.3755775

Table 5.1: Hard wall contact density for different packing fractions for two variants
of FMT, White Bear II and White Bear II Tensor functionals. Excellent agreement
between contact densities and pressures verify the success of FMT in satisfying the

contact theorem.

FMT functionals accuracy and self–consistency can be verified by sum–rules. For the

hard spheres fluid at a hard–wall we can use contact theorem (5.3). Table 5.1 shows

the contact density of the hard sphere fluid and the bulk pressure. One sees that there

is an excellent agreement between contact densities and pressures. For soft walls, the

Gibbs theorem (5.5) can be used. The Gibbs adsorption theorem as a second sum–rule,

connects the excess adsorption (excess density) with the derivative of the surface tension

γ w.r.t. the chemical potential

ρs =

∫ ∞

0
[ρ(z)− ρb] dz = −

(
dγ

dµ

)
V,T

, (5.4)

ηs =
π

6
ρs, (5.5)

here ηs is the excess packing fraction. The surface tension γ is defined by

γ =
Ω+ pV

A
, (5.6)

where Ω is the grand canonical free energy, V is the system volume, p denotes the

pressure and A is the planar interface area. Figure 5.4 shows that there is about 3%

discrepancy between the right and left hand sides of Equation (5.4). For the hard

wall this difference is due to the numerical discretization and results converge for finer

resolutions. Although the results get closer for better resolutions in the case of the soft

wall, the residual discrepancies remain about 2% which is not very clear.
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the WBII Tensor functional.
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5.5 Hard Sphere Wall–Fluid Interface

As a test for our FMT functionals, it is useful to consider the hard wall case (Equa-

tion (5.1)) first. The case of hard wall has been extensively studied in the litera-

ture [112, 118–120]. Figure 5.5 shows that DFT results compare very well with simulation

data over a wide range of packing fractions. Only close to the freezing transition small

but systematic deviations appear. In the case of a WCA wall (Equation (5.2)), varying

ε does have a pronounced effect on the density distribution of the HS fluid at the wall

and it is clear that varying ε must lead to a change of wall–fluid surface tension γwf (ε)

as well. The variation of γwf (ε) with the strength ε of the WCA potential (Figure 5.6)

is plotted. As expected, by changing ε we can indeed obtain a variation of γwf (ε) over a

wide range. Note that again the DFT results are very close to the MC data, particularly

for ηb ≤ 0.45 while closer to the freezing transition small but systematic discrepancies

occur again. This very good agreement between DFT and simulations for γwf is ex-

pected from the fact that DFT describes the density very accurately close to the walls

where VWCA acts. More prominent deviations in the density profiles between simulation

and DFT are seen near the second peak from the wall. DFT does not seem to account

for its precise shape near freezing. This deficiency is also visible in the “hump” in the
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Figure 5.5: Wall–fluid surface tension γwf of the hard sphere fluid at the hard wall as
a function of packing fraction ηb. Lines show the result of DFT calculation (full lines –
White Bear II functional and dashed line – White Bear II Tensor functional). Symbols

show simulation data [118–120, 123].

second peak of the pair correlation function near freezing which can be interpreted as a

structural precursor to the freezing transition [128].

5.6 Conclusion

In this chapter, the effects of confining walls on a hard sphere fluid were studied over

a wide range of packing fractions. The effect of the wall was described by using a

WCA potential (5.2) acting on the fluid particles, but hard wall potential (5.1) was also

studied. The main interest of this chapter was to verify the accuracy of FMT by means

of a comparative study of FMT and simulation. For this purpose the surface excess free

energy and the surface excess density are obtained. In the case of the hard–sphere fluid

at a hard wall, FMT results satisfied the contact theorem for all packing fractions up

to the freezing point (η ≤ 0.49). For the latter case, FMT data could also satisfy the

Gibbs theorem by finer discretization but 2% residual discrepancies remains for the soft

wall case.
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There was also a very good agreement between DFT and simulation in the fluid phase

for not too large packing fractions (η < 0.4), irrespective of the choice of the wall–fluid

potential that was used. For η > 0.35, systematic discrepancies between DFT and MC

results for the surface excess density were found, which presumably should be attributed

to the fact that for high densities in the fluid nontrivial correlations between the fluid

particles beyond the nearest neighbor shell develop, which are no longer described by

DFT with very high accuracy. However, DFT describes the density distribution very

close to the walls quite accurately, and since this controls the wall–fluid surface tension,

the latter is very accurately predicted by DFT. The motivation of this work was to

control the difference γwf −γwc at the bulk fluid–solid transition by varying ε in order to

possibly observe a nonzero contact angle. It is found that the variation of this difference

with ε is rather weak and the system is in the complete wetting region.



Chapter 6

Dynamical Density Functional

Theory: From Bulk to Interface

Dynamical density functional theory is a time dependent extension of the basic static

density functional theory. The time evolution of the density of Brownian particles is

given as an integro-differential equation (3.72) in terms of the equilibrium Helmholtz

free energy functional

∂ρ(r, t)

∂t
= D∇

(
ρ(r, t)∇ δβF [ρ]

δρ(r, t)

)
. (6.1)

DDFT is a relatively new technique and a lot of effort is going into the application of

DDFT to the heterogeneous nucleation and crystal growth as well as micro-fluidic and

biological systems. DDFT can be used to describe the out of equilibrium systems. It can

also be implemented for equilibration which is rather modest task of DDFT. Hard–sphere

crystals have been extensively studied using DFT and simulations and recently, the

equilibrium hard sphere crystal–liquid interface has been investigated using DFT [82].

If a crystal is not in its equilibrium, according to conditions it may melt or grow. In

the case of non–equilibrium crystal–liquid interface also two possible phenomena will

occur, the HS crystal grows and the crystal–liquid interface moves toward the liquid

phase, or the crystal partially or completely melts. We have lots of interests to study

these two nonequilibrium problems in DDFT scheme and lots of efforts have been put

in investigating their behaviors.
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6.1 fcc Hard Sphere Crystal

As a warm up and to check our method and the accuracy of DDFT, fcc HS crystal is

studied. The initial density ρ(r) is approximated by a Gaussian profile (4.3)

ρcr(r) =
∑

lattice sites i

(1− nvac)

(
α

π

)3/2

exp

(
−α(r− ri)

2

)
, (6.2)

with width parameter α and vacancy concentration nvac. The density is discretized on

a three dimensional grid with 64 × 64× 64 points in the x, y and z directions. We use

White Bear II tensorial functional. Iterations are done in Euler scheme (Section C.3)

and the constant step size h = 10−4 is used for the time evolution of the system.

Resulting density profile compares very well with DFT data and the free energy which

comes out from DDFT, βFDDFT/N = 4.967574, is exact up to 5 digits after point

(βFDFT/N = 4.967573) at density ρ = 1.04 and for vacancy concentration nvac = 10−4.

Numerical details are presented in detail in Section 6.3.

6.2 Crystal–Liquid Interface

The HS crystal–liquid phase transition occurs at the coexistence pressure βpcoex =

11.8676/σ3 and at the coexistence chemical potential βµcoex = 16.3787. The coexis-

tence packing fractions in the liquid and crystals sides are Φl = 0.495 and Φcr = 0.544

respectively. These DFT results are from Ref. [66] which are in close agreement with

computer simulation data [16]. DDFT equation is a conserved equation and keeps the

number of the particles constant. Chemical potential as an external constraint is fixed to

the coexistence chemical potential µcoex. The density is discretized over the cuboid box

of lengths Lx, Ly and Lz with periodic boundary conditions in all three directions. The

surface normal vector points the z–direction. The length of the box in the z–direction,

Lz, is chosen large enough to ensure a large part of crystal and liquid phases at coex-

istence which are separated by two interfaces. Usually grids for interface problem are

chosen with 64×64×2048 points in x, y and z directions. White Bear II tensorial func-

tional is used and the density profile is minimized by using the Euler iteration scheme1

1See Section C.3.
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with a very small time step. The time step is adjusted constantly during the iteration

to ensure the convergence (Section C.4).

The initial profile contains two phases of crystals and a liquid phase which are separated

by two interfaces. Figure 6.1 shows a typical crystal–liquid interface density profile. To

0 4 8 12 16 20 24 28 32
z

0

50

100

150

ρ
 

Figure 6.1: Schematic plot of crystal–liquid interface in z direction. z–axis is nor-
malized by the length of the box in the x–direction, Lx.

constitute an initial crossover between the bulk and crystal phases, a variation f(z) is

introduced which is zero in the liquid phase and one in the crystalline phase [129–133].

We define f(z) as follows

f(z) =
1

2

(
− tanh

(
z − z0
w

)
+ 1

)
, (6.3)

here z0 is the location of the interface and the sharpness of the interface is determined

through w. The mean bulk variation of the density, ρ̄(z), and the spatial resolved version

ρ(r) between the fcc crystal and the fluid bulk phases are defined as

ρ̄(z) = (ρcr(r)− ρl)f(z) + ρl, (6.4)

ρ(r) = (ρcr(r)− ρ̄(z))f(z) + ρ̄(z), (6.5)
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where ρcr is the density profile of the fcc crystal which is approximated by the Gaussian

function (6.2) and ρl is the mean bulk density of the liquid.

Having established the initial density profile for the interface, the DDFT equation should

be solved iteratively. Although DDFT equation in FMT scheme is very unstable and we

could not fully converge the solution we got close to the fully minimize DFT solution.

The surface tension (5.6) obtained from DDFT just before divergence is γcl = 0.704 in

kBT/σ
2 unit in [001] orientation which is not very far form DFT (γcl,DFT=0.678) and

simulation (γcl,Sim=0.639) results [82].

In the following section numerical techniques on implementing DDFT are briefly dis-

cussed.

6.3 Numerical Methodology

In order to equilibrate crystals and interfaces in DDFT scheme we attempted various

methods and tried many ways. Our attempts, experiences and findings are documented

in this section.

Weight function n3(r): n3(r) is the packing fraction and it can not be larger that one.

FMT type functionals are the only functionals that contain this physical restriction

in their functional forms. In the free energy density functional, 1/(1−n3) term in

the second (3.39) and third (3.43) components imports this physical constraints in

the functional. The divergence of DFT and DDFT equations is due to the (1−n3)

term in the denominators. The maximum value of the starting n3(r) at its peak is

n3,max = 1− nvc. n3,max is very close to one (see Fig. 6.2), therefore the iteration

should be performed very carefully to avoid n3 exceeding one. During the iteration

process, oscillations appear in n3 peaks and these oscillations are amplified and at

some point they become larger than one and the iteration diverges.

Time step: DDFT in FMT scheme is very stiff and has a small stability region in the

Euler method which leads to a very small time step. The largest stable step size

is estimated using the power method during the iterations (Section C.4). Usu-

ally after about 30 . . . 100 Euler iterations, the power method is used to find the



Appendix E. DDFT: From bulk to interface 77

0 4 8 12 16 20 24 28 32
z

0

0.2

0.4

0.6

0.8

1
n 3

Figure 6.2: Initial weighted density n3(z) vs. z for hard sphere crystal–liquid inter-
face. n3(z) is calculated by convolution of the initial density profile obtained form Equa-
tion (6.5) and weight function ω3. z–axis is normalized by the length of the box in the

x–direction, Lx.

stable region. The convergence rate is also constantly monitored. When diver-

gence is observed the time step decreased immediately. The combination of these

two methods provides the fastest convergence rate. If we do not concern with

the computational time, we may choose a very small time step and avoid these

methods.

Vacancy: The equilibrium vacancy concentration for the fcc crystal at coexistence den-

sity is nvac ∼ 10−5 (FMT). The free energy shift compared to the vacancy free

crystal (nvac → 0) is ∆F/N ∼ 10−5 kBT . DDFT equation for nvac ∼ 10−5 is

very unstable and it is found that by increasing the vacancy concentration, the

equation becomes more stable without loosing much accuracy in the free energy.

nvac ∼ 10−4 could be a good choice.

Differentiations: In DDFT approach we need to calculate lots of derivatives numeri-

cally. In our program we use finite difference method to calculate derivatives. The

centered difference for the first and second order derivatives in one dimension are



Appendix E. DDFT: From bulk to interface 78

given by

f ′m(x) =
f(x+mh)− f(x−mh)

2mh
, (6.6)

f ′′m(x) =
f(x+mh)− 2f(x) + f(x−mh)

(mh)2
, (6.7)

where h is the time step and m defines the roughness of the derivations. m = 1

is related to the familiar centered finite difference method which calculates the

derivatives at point x with respect to the points just before and after x. By

choosingm > 1, Equations (6.6) and (6.7) give rough approximations of derivatives

and some details in the function are neglected during the differentiations. It is

found that m = 2 in some problems makes the iteration process more stable.

Discretization: Discretizing a crystal profile over a box with 32× 32× 32 grid points

in x, y and z directions is not stable and after a while it diverges. The usual choice

for a crystal unit cell has 64 × 64 × 64 grid points in three directions. Although

for high densities or low vacancies a finer discretization is useful for crystals, it

is observed that in the crystal–liquid interface problem increasing the resolution

does not help for having more stable iterations and it leads to a kind of instability.

Numerical solution schemes: Explicit and implicit methods are approaches used in

numerical analysis for obtaining numerical solutions of time–dependent ordinary

and partial differential equations. Explicit methods calculate the state of a system

at a later time from the state of the system at the current time, while implicit

methods find a solution by solving an equation involving both the current state of

the system and the later one. Mathematically, if X(t) is the current system state

and X(t + h) is the state at the later time (h is a small time step), then, for an

explicit method

X(t+ h) = F (X(t)), (6.8)

while for an implicit method one solves an equation

Y (X(t), X(t+ h)) = 0, (6.9)

to find X(t + h). It is clear that implicit methods require an extra computation

(solving the above equation), and they can be much harder to implement. Implicit
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methods are used because many problems arising in practice are stiff, for which

the use of an explicit method requires impractically small time steps h to keep the

error in the result bounded [134]. Since solving the DDFT equation implicitly is

impossible we used two explicit schemes and one semi–implicit scheme which are

explained below.

1. Explicit scheme I: Equation (6.1) can be discretized conveniently as follows

ρj+1 = ρj + h∇
(
ρj∇

δβF
δρj

)
, (6.10)

where h = tj+1− tj . The gradient operator is discretized using the mid–point

centered difference method (6.6).

2. Explicit scheme II: The free energy functional F can be split into ideal

and excess parts

∂ρ

∂t
= ∇

(
ρ∇
(
δβFid

δρ
+
δβFex

δρ

))
= ∇2ρ+∇

(
ρ∇δβFex

δρ

)
, (6.11)

here ∇2ρ is the diffusion term. Laplace operator in the diffusion term is

discretized using the second order central difference method (6.7) while gra-

dients are calculated using (6.6) numerically. Now the equation can be solved

explicitly

ρj+1 = ρj + h

(
∇2ρj +∇

(
ρj∇

δβFex

δρj

))
. (6.12)

The reason we use this method is that it was found that the stiffness of DDFT

equation is due to the diffusion term while the divergence is due to the term

1/(1 − n3) in the excess term. We may control these two different issues by

separating the equation in to ideal and excess parts.

3. Semi–implicit scheme: In this scheme the free energy functional is split

into ideal and excess parts like before but the difference is that the derivatives

are evaluated in Fourier space instead of real space. The gradient operator

in Fourier space equals ∇̃ = −ik. Note that here i =
√
−1 is the imaginary
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unit. Equation (6.11) in Fourier space takes the form

ρ̃j+1 − ρ̃j
h

= − k2ρ̃j+1︸ ︷︷ ︸
implicit

− ik ·

(
˜

ρj∇
δβFex

δρj

)
︸ ︷︷ ︸

explicit

. (6.13)

Note that the second term of the r.h.s of Equation (6.13) is evaluated at tj

while the first term is evaluated at the later time tj+1. Now we can solve the

equation for ρj+1

ρ̃j+1 =
ρ̃j − ihk ·

˜(
ρj∇ δβFex

δρj

)
1 + hk2

. (6.14)

In order to solve the DDFT equation in the semi–implicit scheme, we need

to calculate ρ̃j+1 in Fourier space and back transform it into real space in

each iteration step in the Euler method. The first order derivative in Fourier

space is obtained by

∇̃ =
3∑

j=1

∇̃j q̂j

=

3∑
j=1

−i sin(kjdxj)
dxj

q̂j , (6.15)

where in the limit of a very fine discretization, dr = (dx,dy,dz) → 0, it takes

the familiar form

∇̃ = lim
dr→0

3∑
j=1

−i sin(kjdxj)
dxj

q̂j

= −ik . (6.16)

By taking the non–perfect numerical discretization into account, we may use

relations

∇̃ =
3∑

j=1

−i sin(kjdxj)
dxj

q̂j , (6.17)

∇̃2 =

3∑
j=1

− sin2(kjdxj)

dx2j
, (6.18)

for the gradient and Laplace operators in our numerical calculations as well.
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If we consider Fex = 0, Equation (6.1) reduces to the heat or diffusion equation.

For this problem explicit method I provides the most exact results (exact up to the

order of 10−5 in the free energy) for the fcc crystal structure. Figure 6.3 shows

the time evolutions of the free energy and maximum value of n3 for a fcc crystal.

0 0.05 0.1 0.15 0.2

Absolute time (t)

4.9675

4.968

4.9685

4.969

4.9695

4.97

4.9705

4.971

β 
F/

N

Explicit scheme I
(a)

0 0.05 0.1 0.15 0.2
Absolute time (t)

9.998995e-01

9.998996e-01

9.998997e-01

9.998998e-01

9.998999e-01

9.999000e-01

n 3

Explicit scheme I

(b)

Figure 6.3: (a) shows the convergence of the free energy as a function of absolute time
for the fcc crystal for bulk density ρb = 1.04 and vacancy concentration nvac = 10−4.
Free energy converged to FDDFT/N = 4.967574 while the free energy obtained from
DFT equals FDFT/N = 4.967573. (b) shows the evolution of the maximum value of n3

vs. absolute time.

The semi–implicit method is more stable for larger time steps (h < 0.01). The

maximum time steps for explicit methods I and II are h ∼ 10−3 and h ∼ 2× 10−4

respectively. Explicit methods II also shows an stable behavior but its accuracy

is of the order of 10−4 in the free energy. For the full functional, F = Fid + Fex,

the semi–implicit method becomes unstable while the other two methods are still

stable for not too big time steps (h < 10−4).

In the case of crystal–liquid interface problem the explicit method II works much

better than the other two methods and we can iterate the interface for a while but

the full convergence is not reached. All the three numerical schemes show a same

instability behavior. The n3 oscillates at its peaks and the last peak in the crystal

side (the peak close to the interface) exceeds one and the iteration diverges.





Appendix A

Mathematical Proof of DFT:

Existence of the Energy

Functional

The density functional approach focuses on functionals of ρ(r) rather than Vext. Al-

though it is cleat that ρ(r) is a functional of Vext, one can prove [4, 6, 135, 136] the less

obvious result that for given VN , T and µ the probability density is uniquely determined

by ρ(r)–the latter fixes Vext. In the following the Hohenberg–Kohn–Mermin theorems

will be proved which are the two key results of density functional theorem which explain

the one–to–one relationship between density and external potential1.

Consider a hamiltonian function of N–particle system

HN = KN + VN + Vext

=

N∑
i=1

p2
i

2m
+ VN (r1, . . . , rn) +

N∑
i=1

Vext , (A.1)

where KN is the kinetic energy and VN and Vext are internal and external potentials

respectively. We use a simplified notation in which

Trcl . . . ≡
∞∑

N=0

1

h3NN !

∫ ∫
. . . drNdpN . (A.2)

1This appendix is based on Appendix B of Ref [22].
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This operation is called the “classical trace”, by analogy with the corresponding oper-

ation in quantum statistical mechanics. The definition of the grand partition function

Ξ and the normalization of the equilibrium phase–space probability density f0 can be

expressed in the compact form

Ξ = Trcl exp (−β(HN − µN)), (A.3)

Trclf0 = 1. (A.4)

Lemma. Let f be a normalized phase–space probability density and let Ω[ρ] be the trial

functional for the grand free energy defined as

Ω[fN ] = Trcl[fN (HN − µN + β−1 log(fN ))]. (A.5)

Then this functional has two important properties

1. Ω[f0] = Ω: grand free energy of a system in the equilibrium distribution f0 is just

the grand potential of the system.

2. Ω[fN 6= f0] > Ω: for other distributions the functional reduces to a number larger

than the grand potential.

PROOF

1. For the equilibrium distribution the grand free energy functional takes the form

Ω[f0] = Trcl[f0(HN − µN + β−1 log(f0))], (A.6)

using Equation (2.34) we know log f0 = − log(Ξ) − β(H − µN). By inserting

log(f0) into (A.6) we obtain

Ω[f0] = Trcl[f0(HN − µN − β−1 log(Ξ)− (H−NµN))]

= Trcl[f0(−β−1 log(Ξ))]. (A.7)
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Since the partitions sum Ξ is just a number, we can take it out of the classical

trace, so

Ω[f0] = −β−1 log(Ξ)Trcl[f0]. (A.8)

f0 is a normalized distribution function, therefore

Ω[f0] = −β−1 log(Ξ) = Ω, (A.9)

which is equal to the grand potential of the system.

2. In the second part of the proof we want to show that for other distributions

than equilibrium distribution the free energy functional is larger that the grand

potential. suppose f 6= f0, then the grand free energy functional reads

Ω[f ] = Trcl[f(HN − µN + β−1 log(f))]. (A.10)

From the first part of the proof we know

log(f0) = − log(Ξ)− β(HN − µN), (A.11)

−→ HN − µN = −β−1 log(f0) + Ω. (A.12)

By substituting (A.12) into the Equation (A.10) we obtain

Ω[f ] = Trcl[f(−β−1 log(f0) + Ω + β−1 log(f))]

= Ω + β−1Trcl[f(log(f)− log(f0))]. (A.13)

β−1Trcl[f(log(f)− log(f0))] is always larger that zero and the inequality is thereby

verified

Ω[fN 6= f0] > Ω. (A.14)

Theorem 1. For the system with given temperature T , volume V and chemical potential

µ, the intrinsic free energy functional

F [ρ(1)] = Trcl[f0(KN + VN + kBT log f0)], (A.15)
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is a unique functional of the equilibrium one–body density ρ(1)(r).

PROOF. The equilibrium probability distribution f0 is a functional of external potential

Vext. Therefore the single–particle density ρ(1)(r) = Trcl(f0ρ(r)) also depends on Vext,

where ρ(r) is the microscopic density. Consider two different external potentials Vext 6=

V ′
ext give rise to the same density ρ(1)(r). With the hamiltonian H′ = KN +VN +V ′

ext we

may associate probability distribution f ′0(6= f0) and grand potential Ω′. The Inequality

(A.14) implies that

Ω′ = Trcl[f
′
0(H′ − µN + kBT log f ′0)]

< Trcl[f0(H′ − µN + kBT log f0)] (A.16)

= Ω + Trcl[f0(V
′
ext − Vext)],

or

Ω′ < Ω+

∫
ρ(1)(r)[V ′

ext − Vext] dr. (A.17)

If the same argument is carried through with primed and unprimed quantities inter-

changed, we find that

Ω < Ω′ +

∫
ρ(1)(r)[Vext − V ′

ext] dr. (A.18)

Addition of the inequalities (A.17) and (A.18) term by term leads to a contradiction

Ω + Ω′ < Ω′ +Ω, (A.19)

showing that the assumption concerning ρ(1)(r) must be false. We therefore conclude

that there is only one external potential gives rise to a particular single–particle density.

Since f0 is a functional of Vext, it follows that it is also a unique functional of ρ(1)(r).

This in turn implies that the intrinsic free energy (A.15) is a unique functional of ρ(1)(r)

and that its functional form is the same for all external potentials.

Theorem 2. Let n(r) be some average of the microscopic density ρ(r). Then the

functional

Ω′′[n] = F [n] +

∫
n(r)Vext dr− µ

∫
n(r) dr, (A.20)
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has its minimum value when n(r) is equal to the equilibrium single–particle density

ρ(1)(r).

PROOF. Consider n(r) is the single–particle density associated with a distribution func-

tion f ′. Therefore the corresponding grand potential takes the form

Ω[f ′] = Trcl[f
′(H− µN + β−1 log(f ′))]

= F [n] +

∫
n(r)Vext dr− µ

∫
n(r) d(r) = Ω′′[n]. (A.21)

According to the inequality (A.14), Ω[f0] ≤ Ω[f ′]. It is also clear that Ω′′[ρ(1)] = Ω[f0] =

Ω. Therefore Ω′′[ρ(1)] ≤ Ω′′[n], this means the functional Ω′′[n] is minimized when

n(r) = ρ(1)(r) and its minimum value is equal to the grand potential.





Appendix B

Numerical Approach for FMT

Formalism

In this appendix the numerical approach for solving the density functional theory of

FMT for liquids and crystals is introduced in detail. According to the basic theorem

of DFT, the equilibrium density profile ρeq(r) is determined via minimizing the grand

canonical free energy functional (3.2) which leads to the following equation

δFex[ρ]

δρ
+ β−1 log(Λ3ρ(r)) + Vext(r)− µ = 0, (B.1)

where the excess free energy functional has the form (3.30)

βFex[ρ] =

∫
drΦ({nα(r)}). (B.2)

Here Φ({nα(r)}) is the excess free energy density and has different functional forms

related to different approximations (see Section 3.3). The free energy density Φ is itself

a function of weighted densities {nα(r)} = {n0, n1, n2, n3, n1, n2, n
t}. These weighted

densities are determined from the density profile ρ(r) as follows

nα =

∫
dr′ ρ(r′)ωα(r− r′) = ρ⊗ ωα, (B.3)
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and here ωα are specific weight functions ((3.28) and (3.42))

ω3(r) = Θ(R− r) ,

ω2(r) = δ(R− r) ,

ω1(r) = ω2(r)/(4πR) ,

ω0(r) = ω2(r)/(4πR2) , (B.4)

ω2(r) = r/r δ(R− r) ,

ω1(r) = ω2/(4πR)

ωt
ij(r) = rirj/r

2 δ(R− r) .

Having known the weighted densities, we are able to calculate the free energy density

function Φ and respectively the free energy functional. If we calculate the derivative

of free energy with respect to density, ∂Fex/∂ρ, we have all ingredients to solve the

Equation (B.1) iteratively.

In the program, the density profile ρ and 11 weighted densities (two scalar densities

n3, n2, three vector densities, n2,i, i = x, y, z, and six tensor densities, ntij) need to

be discretized on a three dimensional grid covering the cuboid boxes. Section B.1 ex-

plains in detail how to calculate the weighted densities. Convolutions in real space are

multiplications in Fourier space. The necessary convolutions are computed using Fast

Fourier Transformations. We use the FFTW 3.3 library for parallelized Fast Fourier

Transforms. The other parts of the code are parallelized through OpenMP. To have a

more efficient algorithm, the iteration of Eq. (B.1) is done using a combination of Picard

steps and DIIS steps (Discrete Inversion in Iterative Subspace) [137]. See Appendix C

to find more details on the iteration methods used in this thesis.

B.1 Weighted Densities

The first step for solving the Euler–Lagrange equation (B.1) is to evaluate the weighted

densities. Weighted densities, nα, are just convolutions of the density ρ(r) and weight

functions ωα. Convolutions in real space are normal multiplication in Fourier space.

To evaluate the weighted densities in real space, one may calculate the product of the

Fourier transformed density and weight functions and then Fourier transform it back
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into real space

nα = FT−1 (FT(ρ(r))× FT(ωα(r))) , (B.5)

which FT denotes forward Fourier transformation and FT−1 denotes the inverse (back-

ward) Fourier transformation. Fourier transform of the density, ρ̃(k), is calculated

numerically using FFTW library1 and Fourier transforms of the weight functions are

calculated analytically. The explicit form of the weight functions in Fourier space are

ω̃3(k) =
4π

k3(2π)3/2
(sin(kR)− kR cos(kR)) ,

ω̃2(k) =
4πR

k(2π)3/2
sin(kR),

ω̃1(k) =
ω̃2(k)

4πR
,

ω̃0(k) =
ω̃2(k)

4πR2
, (B.6)

ω̃2(k) = −ikω̃3(k),

ω̃1(k) =
ω̃1(k)

4πR
,

ω̃t(k) =

(
ω̃2(k)− 3

R
ω̃3(k)

)(
k · kT

k2
− I

3

)
,

where k = (kx, ky, kz) is the reciprocal lattice vector, R is the diameter of hard spheres

and kT denotes the transpose of the vector k. Explicit calculations of Fourier transfor-

mations of weight functions are presented in the following subsections. In the limit of

k → 0 the Fourier transforms of weight functions take the form

ω̃3(k) =
1

(2π)3/2
4πR3

3
,

ω̃2(k) =
4πR2

(2π)3/2
,

ω̃1(k) =
R

(2π)3/2
,

ω̃0(k) =
1

(2π)3/2
, (B.7)

ω̃2(k) = 0,

ω̃1(k) = 0,

ω̃t(k) = 0I.
1The Fastest Fourier Transform in the West (FFTW) is a software library for computing discrete

Fourier transforms which has been developed at the Massachusetts Institute of Technology (MIT) [138,
139].
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B.1.1 Fourier Transform of the Scalar Weight Function ω3

The problem of calculating the Fourier transform of ω3 is nothing than finding the

Fourier transform of the Heaviside step function

ω3(r) = Θ(R− |r|). (B.8)

Applying the Fourier transformation on ω3 yield

ω̃3(k) =
1

(2π)3/2

∫
Θ(R− |r|)e−ik·r dr. (B.9)

It is more convenient to perform the integration in the spherical coordinates, therefore

ω̃3(k) =
1

(2π)3/2

∫ R

0

∫ π

0

∫ 2π

0
r2 sin(θ)e−ik·r drdθ dφ

=
2π

(2π)3/2

∫ R

0

∫ π

0
r2 sin(θ)e−ikr cos(θ) drdθ

=
2π

(2π)3/2

∫ R

0

r

ik

(
eikr − e−ikr

)
dr

=
2π

(2π)3/2

∫ R

0

2r

k
sin(kr) dr, (B.10)

and the integral can be evaluated using the relation ∂/∂x[sin(kx) − kx cos(kx)] =

k2x sin(kx)

ω̃3(k) =
4π

k3(2π)3/2
(sin(kR)− kR cos(kR)) . (B.11)

B.1.2 Fourier Transform of the Scalar Weight Function ω2

Similar to the transformation of ω3 in the latter subsection we use the spherical coordi-

nates as well for calculating ω̃2

ω̃2(k) =
1

(2π)3/2

∫
δ(R− |r|)e−ik·r dr

=
1

(2π)3/2

∫ π

0

∫ 2π

0
R2 sin(θ)e−ik·R dθ dφ

=
2π

(2π)3/2

∫ π

0
R2 sin(θ)e−ikR cos(θ) dθ

=
4πR

k(2π)3/2
sin(kR). (B.12)
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B.1.3 Fourier Transform of the Vectorial Weight Function ω2

In this subsection the Fourier transform of ω̃2 = r
rδ(R − |r|) is calculated. The trans-

formation reads

ω̃2(k) =
1

(2π)3/2

∫
r

r
δ(R− |r|)e−ik·r dr, (B.13)

where r in the spherical coordinate system is

r =


rx

ry

rz

 = r


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)

 . (B.14)

For simplicity the coordinate system is rotated in such a way that k lies on the z–axis,

therefore ω̃2 takes the form

ω̃2(k) =
1

(2π)3/2

∫ ∞

0

∫ π

0

∫ 2π

0
r2 sin(θ)

r

r
δ(R− r|)e−ik·r drdθ dφ

=
1

(2π)3/2

∫ π

0

∫ 2π

0
R2 sin(θ)


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)

 e−ikR cos(θ) dθ dφ.

(B.15)

Integrals of cos(φ) and sin(φ) over a complete period are zero, so the only remaining

term is êz component and the integral reduces to2

ω̃2(k) =
2πR2

(2π)3/2

∫ π

0
sin(θ) cos(θ)e−ikR cos(θ) dθ

= −ik 4π

k3(2π)3/2
(sin(kR)− kR cos(kR))

= −ikω̃3(k). (B.16)

2In the last step of integration we use the relation
∫ π

0
sin(α) cos(α)e−ix cos(α) dα = 2i

x2 (x cos(x) −
sin(x)).
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B.1.4 Fourier Transform of the Tensorial Weight Function ωt

The Fourier transform of the tensorial weight function is obtained by

ω̃t(k) =
1

(2π)3/2

∫ (
r.rT

r2
− I

3

)
δ(R− |r|)e−ik·r dr. (B.17)

The integral is evaluated in the spherical coordinates which the z–axis is aligned with

the vector k. Equation (B.17) can be split into two terms

ω̃t(k) =
1

(2π)3/2

∫
r.rT

r2
δ(R− |r|)e−ik·r dr︸ ︷︷ ︸
I

− 1

(2π)3/2

∫
I
3
δ(R− |r|)e−ik·r dr︸ ︷︷ ︸

II

. (B.18)

The Fourier transform of the term II is already known form Section B.1.2

II =
I
3
ω̃2(k), (B.19)

and part I can be calculated as following

I =
1

(2π)3/2

∫
r.rT

r2
δ(R− |r|)e−ik·r dr

=
1

(2π)3/2

∫ R

∞

∫ π

0

∫ 2π

0
r2 sin(θ)

r.rT

r2
δ(R− |r|)e−ik·r dr dθ dφ

=
R2

(2π)3/2

∫ π

0

∫ 2π

0
sin(θ)

r.rT

r2
e−ikR cos(θ) dθ dφ . (B.20)

The only term in the integrand which depends on variable φ is r · rT , thus

∫ 2π

0
sin(θ)

r.rT

r2
dφ

=

∫ 2π

0
sin(θ)


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)

 ·


cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)


T

dφ

=


π sin3(θ) 0 0

0 π sin3(θ) 0

0 0 2π sin(θ) cos2(θ)


= 2π sin(θ)êz · êTz + π sin3(θ)

(
I− 3êz · êTz

)
. (B.21)
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Therefore we have

I =
R2

(2π)3/2

∫ π

0

(
2π sin(θ)êz · êTz + π sin3(θ)

(
I− 3êz · êTz

))
e−ikR cos(θ) dθ

= ω̃2(k)
k · kT

k2
− ω̃3(k)

R

(
3
k · kT

k2
− I
)
. (B.22)

By substituting (B.19) and (B.22) in to the Equation (B.18) ω̃t is obtained

ω̃t(k) =

(
ω̃2(k)− 3

R
ω̃3(k)

)(
k · kT

k2
− I

3

)
. (B.23)





Appendix C

Numerical Iterations and their

Stabilities

In general there are two methods to solve an equation; direct and iterative methods.

Direct methods compute the solution to a problem in a finite number of steps. These

methods will give the precise answer if they are performed in infinite precision arithmetic

(examples include Gaussian elimination and the simple method of linear programming).

In practice, a finite precision is used and the result is an approximation of the true

solution (assuming stability). In contrast to direct methods, iterative methods are not

expected to terminate in a finite number of steps. Starting from an initial guess, iterative

methods form successive approximations that converge to the exact solution only in the

limit. A convergence test, often involving the residual, is specified in order to decide

when a sufficiently accurate solution has (hopefully) been found. Even using infinite

precision arithmetic these methods would not reach the solution within a finite number

of steps (in general). Examples include Picard’s methods (or the method of successive

approximations) and Newton’s method and Jacobi iteration. In computational matrix

algebra, iterative methods are more common than direct methods in numerical analysis

and generally are needed for large problems.

97
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C.1 Picard Iteration

The Picard iteration scheme which was introduced by Charles Émile Picard (1856–

1941) provides a unique solution for a continuous function which satisfies the Lipschitz1

continuity[140]. Lipschitz continuity is a strong form of uniform continuity for functions

and intuitively, a Lipschitz continuous function is limited in how fast it can vary. Ac-

cording to the Picard’s existence theorem2 if f is a continuous function that satisfies the

Lipschitz conditions

|f(x, t)− f(y, t)| ≤ L|x− y|, (C.1)

in a surrounding of (x0, t) ∈ Ω ⊂ Rn × R = {(x, t) : |x− x0| < b, |t− t0| < a}, then the

differential equation

dx

dt
= f(x, t), (C.2)

x(t0) = x0,

has a unique solution x(t) in the interval |t − t0| < d, where d = min(a, b/B). min

denotes the minimum and B = sup|f(x, t)| where sup denotes the supremum. An

iterative problem may take the mathematical form as follows

Af = f, (C.3)

where f is a real function and A is a nonlinear operator in a functional space [141]. One

can use the simple Picard iteration method to solve Equation (C.2) starting with an

initial guess f1

fn+1 = Afn, n = 1, 2 . . . . (C.4)

Equation (C.4) generates a sequence of functions f1, f2, . . .. If the sequence converges

uniformly, the limiting element is the unique solution of Equation (C.2). Practically,

sometimes the iterative procedure (C.4) is unstable and oscillates or even diverges. This

problem can be treated by mixing the new function fn+1 with the previous one, fn, in

1Rudolf Lipschitz (1832–1903).
2It is also called the Picard–Lindelöf theorem or Cauchy–Lipschitz theorem.
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order to decrease the amount of the change of fn in each iteration

fn+1 = αAfn + (1− α)fn, (C.5)

where α ∈ [0, 1] is the mixing parameter and must be determined empirically. The α

should be choose large enough for fast convergence but not too large to leads any insta-

bility in the iteration procedure. One may also change the value of mixing parameter

during the iteration by monitoring the behavior of the convergence parameter. If the

iteration is converging, the mixing parameter can be slowly increased. One may also

profit mathematical approaches to approximate the upper limit of the mixing parameter

to speed up the convergence (see Appendix C.4).

The Picard iteration usually converges very slowly and the enormous speed up can be

obtained by using the Direct Inversion in the Iterative Subspace (DIIS) method, which

is introduced in Appendix C.2.

C.2 Direct Inversion in the Iterative Subspace

Direct Inversion in the Iterative Subspace (DIIS), also known as Pulay mixing was devel-

oped by Peter Pulay in the field of computational quantum chemistry with the intent to

accelerate and stabilize the iteration of the self–consistent field (SCF) method [142, 143].

DIIS applies direct methods to a linear algebra problem in a subspace formed by taking

a set of trial vectors from the full–dimensional space. At a given iteration, the approach

constructs a linear combination of approximate error vectors from previous iterations.

The coefficients of the linear combination are determined so to best approximate, in a

least squares3 sense, the null vector. The newly determined coefficients are then used

to extrapolate the function variable for the next iteration. It is found that DIIS could

be useful for accelerating the convergence of SCF procedures and, to a lesser extent,

geometry optimizations.

Suppose that we have a set of trial functions fi which have been generated during the

(Picard) iterative solution of a problem. Now let us form a set of residual vectors defined

3The method of least squares assumes that the best–fit curve of a given type is the curve that has
the minimal sum of the deviations squared (least square error) from a given set of data. In other word,
“Least squares” means that the overall solution minimizes the sum of the squares of the errors made in
the results of every single equation.
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as

∆fi = fi+1 − fi . (C.6)

The DIIS method assumes that a good approximation to the final solution ffinal can be

obtained as a linear combination of the previous guess vectors

f =
m∑
i

cifi , (C.7)

where m is the number of previous vectors (in practice, only the most recent few vectors

are used). The coefficients ci are obtained by requiring that the associated residual

vector

∆f =

m∑
i

ci∆fi , (C.8)

approximates the zero vector in a least–squares sense. Furthermore, the coefficients are

required to add to one,
m∑
i

ci = 1 . (C.9)

The motivation for the latter requirement can be seen as follows. Each of our trial

solutions fi can be written as the exact solution plus an error term, ffinal + ei. Then,

the DIIS approximate solution is given by

f =
m∑
i

ci(ffinal + ei)

= ffinal

m∑
i

ci +
m∑
i

ciei . (C.10)

Hence, we wish to minimize the actual error, which is the second term in the equation

above (of course, in practice, we don’t know ei, only ∆fi); doing so would make the

second term vanish, leaving only the first term. For f = ffinal, we must have
∑m

i ci = 1.

Thus, we wish to minimize the norm of the residuum vector

〈∆f |∆f〉 =
m∑
ij

c∗i cj〈∆fi|∆fj〉, (C.11)
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subject to the constraint (C.9). These requirements can be satisfied by minimizing the

following function with Lagrangian multiplier λ

L = c†Sc− λ

(
1−

m∑
i

ci

)
, (C.12)

where S is the matrix of overlaps

Sij = 〈∆fi|∆fj〉. (C.13)

We can minimize L with respect to a coefficient ck to obtain (assuming real quantities)

∂L
∂ck

= 0 (C.14)

⇒
m∑
j

cjSkj +

m∑
i

ciSik − λ = 2

m∑
i

ciSki − λ = 0. (C.15)

Now we absorb the factor of 2 into λ to obtain the following matrix equation



S11 S12 . . . S1m −1

S21 S22 . . . S2m −1
...

...
...

...

Sm1 Sm2 . . . Smm −1

−1 −1 . . . −1 0





c1

c2
...

cm

λ


=



0

0
...

0

−1


. (C.16)

On the DIIS minimization, further improvement is possible only after updating the itera-

tive subspace fi with new vectors introducing new dimensions, which cannot be reduced

to a linear combination of the previous ones. They can be obtained by performing sev-

eral (Picard) iteration from the point of the minimized residual and then repeating the

DIIS procedure.

C.3 Euler Method

The Picard scheme is used to solve DFT problems and the DIIS method increases the

stability and convergence rate. In the case of DDFT we have a time dependent equation

with a given initial value. For this kind of equations one may use Euler method. The

Euler method is a first–order numerical procedure for solving the initial value ordinary
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differential equations (ODEs). Consider an initial value problem

y′(t) = f(y, t), (C.17)

with initial condition

y(0) = y0. (C.18)

By discretizing the Equation (C.17) it takes the form

yn+1 = yn + hf(yn, tn), (C.19)

which advances a solution from tn to tn+1 = tn + h. Note that the method increments

a solution through an interval h while using derivative information from only the be-

ginning of the interval [144]. The accuracy of this method is not too bad and has a

reasonable stability as long as the Courant–Friedrichs–Lewy condition is fulfilled [145].

This condition states that, given a space discretization, a time step bigger than some

computable quantity should not be taken4. This simple method of solving initial value

ODEs was called simply the Euler method by Press et al. in 1992 [146].

C.4 Stability of Iterations

DFT and DDFT problems are usually solved iteratively. For the self–consistent DFT

equation we start with an initial guess ρ0 and improve the guess ρi by iteratively apply-

ing the simple or more sophisticated version of Picard itteration [46]. The iteration can

be optimized by DIIS scheme [147]. For DDFT case, we start with an initial condition

ρ0 = ρ(0) at t = 0 and obtain the density profile ρi = ρ(ti) at later times by iteratively

applying a suitable mapping like the Euler or Runge–Kutta methods. So structurally

the numerical approach is very similar. Both DFT and DDFT ODEs in FMT scheme

are quite stiff5 and Euler and Picard methods have a finite and usually small stability

4The Courant–Friedrichs–Lewy condition can be viewed as a sort of discrete ”light cone” condition,
namely that the time step must be kept small enough so that information has enough time to propagate
through the space discretization.

5A stiff equation is a differential equation for which certain numerical methods for solving the equation
are numerically unstable, unless the stepsize is taken to be extremely small. Actually, Stiffness is an
efficiency issue. If we were not concerned with how much time a computation takes, we would not be
concerned about stiffness.
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region which leads to very small step sizes. During the iteration, the step size should be

chosen in such a way to stay in the stability region [148].

The Power Method

The power method is a simple way to find the dominant eigenvector and eigenvalue of

a matrix (see e.g. [149]) and it allows us to estimate the spectral radius of the Jacobian

of a nonlinear mapping. We can prove the convergence of the method for diagonalized

matrices. When the stability region of the numerical method is not known we can

estimate the stable step size and convergence rate.

If A is diagonalizable6 then there exist n independent eigenvectors of A. Let x1, . . . , xn

be these eigenvectors, then x1, . . . , xn form a basis of Rn. Hence the initial vector q0 can

be written as

qo = a1x1 + a2x2 + . . .+ anxn, (C.20)

where a1, . . . , an are scalars. By multiplying both sides of the equation in Ak we have

Akq0 = Ak(a1x1 + a2x2 + . . .+ anxn)

= a1A
kx1 + a2A

kx2 + . . .+ anA
kxn

= a1λ
k
1x1 + a2λ

k
2x2 + . . .+ anλ

k
nxn

= a1λ
k
1x1 + a1λ

k
1

(
n∑

i=2

ai
a1

(
λi
λ1

)k

xi

)
. (C.21)

If |λ1| > |λ2| ≥ . . . ≥ |λn|, then |λ1| is the dominant eigenvalue. In the case
(

λi
λ1

)k
→ 0

and if a1 6= 0, therefore Akq0 → a1λ
k
1x1. The power method normalizes the products

Aq(k−1) to avoid overflow/underflow, therefore it converges to the normalized x1 and

the rate of convergence is linear and equals |λ2|/|λ1|. One can show that this result also

holds when A is not diagonalizable by writing q0 as a linear combination of the vectors

associated with the Schur decomposition of A [149].

Hence we have the dominant eigenvalue of a matrix, we can determine the stability

region. To evaluate the spectral radius, we choose an initial guess f0 = f(ρ0) and iterate

6A matrix A ∈ Rn×n is diagonalizable if there exists an invertible matrix X such that A = XDX−1

where D is a diagonal matrix
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the equation k times as follows

ρi+1 = ρi +
f(ρi)− f(ρ0)

σi
, (C.22)

where σi is

σi = ||(ρi)− f(ρ0)||2 . (C.23)

The σi converges to the spectral radius σ. For stable iterations the dominant eigenvalue

|λ1| = σ scaled with the step size must lie within the stability region

hσ < |β|, (C.24)

where h is the step size and β is the minimum of the stability region on the real axis

which is depends only on the iteration method. For Euler and Picard methods β = −2.



Appendix D

One–Particle Volumes for the fcc,

hcp and bcc Hard–Sphere

Crystals

D.1 fcc and hcp

The one–particle free volume is equal for fcc and hcp and has been given in Ref. [69].

We introduce the nearest neighbor distance d = 22/3ρ
−1/3
0 . The hard sphere diameter is

σ and the formula is valid for densities ρ0σ
3 ∈ [1/2,

√
2] :

V1 =
20

3
c3 − 4

3
c2s− 4c2

√
σ2 − c2 +

2
√
2(c3 − 6cσ2)

(
arcsin

c

q
+ arcsinm

)
+ (D.1)

8σ3
(
2 arcsinu+

π

2
− arcsinw − arcsin t

)
.

with

c = d/
√
2 ,

s =
√

3σ2 − 2c2 ,

q =
√

2σ2 − c2 ,

m = (c− 2s)/(3q) ,
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t = (σ2 + cσ − c2)/(qσ) ,

u = [(2σ + c)(σ + [2c− s]/3)− (σ + c)2]/[q(σ + [2c− s]/3)] ,

w = (σ2 − cσ − c2)/(qσ) .

D.2 bcc

In case of bcc the free volume is given by an octahedral–like body (see Fig. 4.2) centered

in the cubic unit cell. The faces are parts of the surfaces of the exclusion spheres (of

radius σ) around the corners of the cubic unit cell. Let a = (2/ρ0)
1/3 be the side length

of the cubic unit cell. The free volume is then given by

V1 = 8

∫ zmax

0
dz

∫ xmax

0
dx

(
a

2
−
√
σ2 −

(a
2
− z
)2

−
(a
2
− x
)2)

, (D.2)

xmax =
a

2
−
√
σ2 −

(a
2
− z
)2

− a2

4
,

zmax =
a

2
−
√
σ2 − a2

2
.

=
a3

8
+ a

(
3

2
σ2 − 1

8
a2
)(

arctan
2c

a
− π

4

)
−

a2

4
c+

2

3
σ3
(
arctan

a2

4σc
− arctan

c

σ

)
, (D.3)

c =
√
σ2 − a2/2 .
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[12] W. Greiner, L. Neise and H. Stöcker. Thermodynamics and statistical mechanics.

Springer–Verlag (1995).

[13] B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. J.

Chem. Phys. 27, 1208 (1957).

[14] W. W. Wood and J. D. Jacobson. Preliminary results from a recalculation of the

monte carlo equation of state of hard spheres. J. Chem. Phys. 27, 1207 (1957).

[15] W. G. Hoover and F. H. Ree. Melting transition and communal entropy for hard

spheres. J. Chem. Phys. 49, 3609 (1968).

[16] T. Zykova-Timan, J. Horbach and K. Binder. Monte carlo simulations of the

solid–liquid transition in hard spheres and colloid–polymer mixtures. J. Chem.

Phys. 133, 014705 (2010).

[17] R. K. Pathria. Statistical Mechanics - 2nd Edition. Butterworth-Heinemann

(1996).

[18] X. G. Wen. Statistical Physics II, MIT Course Number 8.08. MIT OpenCourse-

Ware Website (2005).

[19] C. N. Likos. Colloidal Interactions: From Effective Potentials to Structure. IOS

Press (2013).

[20] J. -L. Barrat and J. -P. Hansen. Basic Concepts for Simple and Complex Liquids.

Cambridge University Press (2003).

[21] L. S. Ornstein and F. Zernike. Accidental deviations of density and opalescence

at the critical point of a single substance. Proc. Acad. Sci. Amsterdam 17, 793

(1914).

[22] J. -P. Hansen and I. R. McDonald. Theory of Simple Liquids with Applications to

Soft Matter - 4th Edition. Academic Press (2013).

[23] R. Evans. Density functional theory for inhomogeneous fluids i: Simple fluids in
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