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Abstract

This thesis develops a probabilistic vehicle tracking and behavior anticipa-
tion system for advanced driver assistance systems. Advanced Driver Assis-
tance System(s) (ADAS) need to know where other vehicles in the surround-
ing of the ego-vehicle are or will be in a few seconds, in order to maintain
a safe driving state by activating evasive actions or issuing warnings to the
driver in the event of a critical situation. The difficulty of this task are the
uncertainties in driver behavior and sensor readings. Since sensors are never
accurate and behavior cannot be predicted exactly, the internal estimate of
the surrounding world state has to be modeled probabilistically.

In contrast to most state-of-the-art approaches in the vehicle tracking
domain, this thesis represents the uncertainty of an individual vehicle posi-
tion estimate by a probabilistic grid representation also known as a Bayesian
Histogram Filter (BHF). This representation handles multi-modal distribu-
tions by saving the probability in individual grid cells and propagates them
through the grid by model assumptions that simulate real-world vehicle
kinematics and driver behavior.

In this thesis, first, the probabilistic position and velocity representa-
tion by the grid cells is discussed, as well as the models that propagate
the probabilities. Then, the ego-movement compensation and how to use
the representation for position tracking is illustrated. Next, the thesis deals
with specific errors that emerge due to the discrete grid representation. The
BHF is then further developed towards an Iterative Context Using Bayesian
Histogram Filter (ICUBHF) approach by introducing an attractor-driven
behavior model. This addition enables the anticipation of the behavior of
the monitored vehicles’ by comparing the likelihood of different behavior
alternatives. Surveys of different comparison measures and of related re-
search are provided as well. Finally, the ICUBHF is evaluated in different
real-world settings.

The evaluation results confirm that the ICUBHF approach is able to
track a vehicle and anticipate the behavior in a real-world intersection sce-
nario. In conclusion, we outlined possible improvements necessary to create
a productive ADAS application that deals with arbitrary real-world inter-
section scenarios. Such a system would allow an ADAS to work in complex
urban scenarios in which it could track other vehicles and anticipate their
behavior.
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Chapter 1

Introduction

Mobility is highly in demand in today’s society. However, commuting is
time-consuming and inconvenient. According to [67], female commuters in
Germany spend on average 51 minutes a day and male commuters 66 minutes
a day traveling to and from the work place. These times are in the middle
of the field of the worldwide comparison. Most of these hours are spent in
private transport. Driving during rush hour is not fun, so it can be assumed
that drivers have good reasons to take the car. Time spent sitting behind
the steering wheel is not available for more useful or pleasant activities, such
as reading a book or looking up a fact on the internet. In addition to the
annoyance of wasting time while driving the same route each day the risk
of having an accident is higher for inattentive or bored drivers.

At some time in the future there will be autonomous vehicles straight
from the assembly belt. On the way to this overall goal, more and more Ad-
vanced Driver Assistance System(s) (ADAS) are currently being developed
or are already in use, helping drivers avoid accidents. Some cars are also al-
ready driving partially autonomously in certain defined highway situations.
In order to broaden the scope of situations the systems have to cope with,
such as inexpensive and noisy sensors, bad driving and vision conditions
like rain, snow and sun reflections, the systems need to be able to perform
anticipatory driving and to react to unexpected behavior from other traffic
participants.

In order to fulfill these tasks the ADAS needs an overview of the situation
or in other words an internal representation of all relevant information on
the traffic situation. However, agents (biological or technical ones such as
vehicles with an ADAS) do not know the exact state of the real world.
Instead they observe sensors. These sensors are probabilistically correlated
with the real world. This work is about how this internal model can be
built in a probabilistic way and how the knowledge of the real state can
be optimized in a street environment in order to improve advanced driving
assistant systems which need, by definition, knowledge about the world.
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Most of today’s ADAS systems, like adaptive cruise control, only work
in certain situations in which a small defined set of rules can be applied.
Such situations are mostly available in highway situations or in special cases
like the autonomous parking system. In generic inner city situations the
rule-set is much more complex, the search-tree for decision making is com-
plex and the sensors rely on fewer assumptions. For example, while parking
each eventuality can more or less be specified in advance (e.g. a pedestrian
walks between our vehicle and another vehicle, or the other vehicle starts
moving), while a usual inner-city drive is much less static, and uncertain-
ties in the actions of others and in the surrounding are present. In such
situations common state-of-the-art approaches are at their limit. Instead
of approaching the problem from the state-of-the-art engineer perspective
with deterministic or probabilistic representations limited to Gaussian dis-
tributions we decided to start from a biologically inspired representation, a
grid of neurons or cells, which turn out to be identical with the so called
Bayesian Histogram Filter (BHF).

ADAS systems need this internal representation in order to know about
the current situation and in order to anticipate the behavior of vehicles in
the surrounding area. Figure 1.1 shows the sketch of such an ADAS system,
which can be applied to intersection scenarios, where an oncoming vehicle
has the right-of-way. When the ego-driver is reacting in the form of braking,
there is no need to intervene. But when the vehicle is not reacting, the
ADAS needs more information on the other vehicle in form of a behavior
anticipation. Is the other vehicle probably going to collide with the ego-
vehicle? In order to determine this, behavior detection is used to extrapolate
the internal estimate on the other vehicle state. In the case of a dangerous
situation the ADAS will warn the inattentive driver or execute an emergency
braking.

This thesis deals with two important modules of ADAS systems, the
vehicle position tracking, which estimates the position of another vehicle
based on noisy sensor detections, and the behavior detection module, which
deduces the behavior of another vehicle.

An existing probabilistic representation, the Bayesian histogram filter
(BHF), was adapted and optimized to on-board ego-centered vehicle track-
ing. An attractor approach was developed in order to generically model be-
havior in this representation, based on the surrounding context. A process
detecting the right behavior by comparing different probabilistic representa-
tions was implemented and evaluated. Despite being fundamental research,
the concept was evaluated with simulation data and tested on real-world
data.
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Chapter 2

Mathematical Background

The vehicle tracking and behavior anticipation technique presented in this
thesis are founded on the theoretical background of Bayesian networks and
Bayesian filters. It is mandatory for the reader to have knowledge about
these concepts. This chapters gives a brief introduction into the necessary
foundation.

2.1 Bayesian Networks

A Bayesian network is an acyclic directed graph consisting of stochastic
variables as nodes. The edges represent dependencies between the variables.
Bayesian networks are therefore a compact representation to model proba-
bilistic relationships. The following sections will equip the reader with all
the fundamental knowledge needed to understand Bayesian filtering, which
is based on this concept. For the more interested reader the tutorial [55] or
the comprehensive introduction [16] is recommended.

The reader should already be familiar with the basics of probability
theory and the idea of stochastic variables. In this thesis we denote a certain
value from the set of all states of a stochastic variable with lower case letters,
e.g. x. The stochastic variable itself is denoted with big letters, e.g. X, a
vector of values with bold type, e.g. x, and a vector of variables with X.

2.1.1 Designing Bayesian Networks

Bayesian networks are graphical models illustrating dependencies between
stochastic variables. Stochastic variables X can have a certain value x from
a set of possible values and each value arises with a certain probability. As a
simple example with an academic background, assume you are an university
employee and you forgot the password for your desktop computer. The
sysadmin could help you to reset the password but it is absolutely mandatory
to wait for the right moment to ask him to do that. He is much more likely
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2.1 Bayesian Networks

to do it when he is in a good mood than a bad mood. In order to solve
this problem we need to build a model world from our knowledge about
sysadmins in general or even better about the individual sysadmin. The
sysadmin’s mood is denoted as stochastic variable M with two possible
states M = {OK,Bad} and set by observation the probability of M = OK
to P (M = OK) = 0.2. This knowledge alone does not help us in our task,
since we only know that we wont get the password in 80% of all naive trials.
At this time our sysadmin model consists of only one stochastic variable,
but to reason a day when the sysadmin is probably in a good mood we need
to augment our model with additional stochastic variables.

Next we denote a stochastic variable F = {won, lost} for the event that
the local football club has won or lost the last match. It is possible that
an event like this will influence the sysadmin’s mood, but since the sysad-
min is not into football the probability P (M |F ) that the sysadmin is in
a certain mood giving the football results F will not improve our knowl-
edge. Therefore assuming independence, we can write P (M |F ) = P (M).
The resulting Bayesian network consists of two separated subgraphs (c. f.
Fig 2.1) indicating that M and F are independent variables. This shows two
issues when designing Bayesian networks. First, stochastic variables must
be chosen carefully, and second (expert) knowledge about the dependencies
between them are needed. Failure in these tasks will produce misleading
results when deriving the variable M .

A useful Bayesian network needs dependent variables. We denote the
stochastic variable P = {pizza, nopizza} for the event that there was a pizza
event at the institute. When a pizza event P takes place, the sysadmin’s
mood will be better, since it is a well known fact that sysadmins love pizza.
This means that P (M |P ) 6= P (M) (c. f. Fig 2.1).

Sysadmin Mood Football

Pizza Event

Figure 2.1: A Bayesian network consisting of two dependent nodes that model
how a pizza event influences the sysadmin’s mood and an independent subgraph
containing the football event.

The above example represents the very basics of Bayesian networks. Usu-
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2.1 Bayesian Networks

ally Bayesian networks are used for more complex models. For simple mod-
els the reasoning can be done using a single Joint Probability Table (JPT),
whose complexity scales with O(2n). The Bayesian network scales much bet-
ter since it represents the joint probability distribution with small tables in
each node instead of using a single big JPT. The small tables are the result
of the exploitation of the independence. Fig. 2.2 from the example in the
next section shows the tables called conditional probability tables (CPT s),
on top of the Bayesian network nodes. It states the conditional probabil-
ity in each node dependent from the values of the incoming variables. The
usage of a CPT is only possible when all incoming variables are discrete
variables. In other cases conditional continuous density distributions are
necessary (CPD).

In this section Bayesian networks were introduced and the concept of
dependent and independent variables were outlined in a practical example.
The next sections cover reasoning in Bayesian networks and learning.

2.1.2 Reasoning in Bayesian Networks

The main goal when designing Bayesian networks is to compute the probabil-
ity or probability distribution of a certain variable, given existing probabilis-
tic knowledge like the network structure and the observable event variables.
In our example we want to derive the probability of the sysadmin’s mood
in order to maximize the chance of getting a password reset.

This process is called (probabilistic) reasoning or inference in the litera-
ture. It is mandatory to introduce variable types used in Bayesian Networks
discussing probabilistic reasoning. The stochastic variables can be divided
into evidence variables, hidden variables and query variables. Evidence vari-
ables contain given knowledge about observed events. E.g. P can have a
value of the set {pizza, no pizza}. Query variables are unknown variables
which need to be inferred. In the example the sysadmin’s mood will be
inferred. Hidden variables are the left variables, for which neither knowl-
edge of the value exist nor is the value is needed as output. The distinction
between those last two variables is somewhat artificial for our application,
as our example will show. Both, the hidden variables and query variables
have an unknown value.

In the sysadmin example only query and evidence variables exist, and we
want to know the probability that the sysadmin is in a good mood given the
pizza event P (M = OK|p = pizza) in order to gain a new password. At the
moment the example is very basic and does not contain any hidden variables,
but let’s introduce some. Assume that a good mood of the sysadmin is a
necessary but not a sufficient condition to gain our system password. This
is the case because the sysadmin’s password reset system is very buggy and
does not work every day. The stochastic variable that the system will work
or not is denoted with S = {work,¬work}. This means that a new query
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2.1 Bayesian Networks

variable reset R = {true, false} has to be introduced which depends on S
and the sysadmin’s mood M . The new Bayesian network can be seen in
Fig. 2.2. For the sake of clarity the football variable was removed from the
figure, which can be done with fully independent variables. The attentive
reader will recognize that M has become a hidden variable, which together
with the hidden variable S, influences the probability that our password will
be reset R. Hidden variables may become query variables or vice versa if
the question (aka. query) to the system is changed.

We now introduce the last piece of information about the state of the
variables in order to reason about them. The Joint Probability Distribution
(JPD) allows us to reason about P (R|p). Details about the JPD can be
found in [65]. As mentioned, the JPD represented by Bayesian networks is
much more sparse than a decomposition using the multiplication rule, which
contains non-necessary factors leading to a computation effort of O(2n).
The JPD can be easily constructed by reading the Bayesian Network graph.
Every variable in the graph is a factor, which is dependent from all its parent
variables. The JPD of the sysadmin example is therefore: P (P,M, S,R) =
P (R|M,S)P (M |P )P (P )P (S)

Sysadmin Mood

Pizza Event

Password Reset

System Working

P(P)=0.05

P      P(M)
pizza 0.9
No pizza 0.2 P(S) = 0.95

M S      P(R)
OK work 0.99
OK nwork 0.0
Bad work 0.01
Bad nwork 0.0

Figure 2.2: A Bayesian network modeling the dependency of four probabilistic
variables. The Conditional Probability Table is noted for each variable. Note that
the sum over a column does not need to be 1. In case of the the sysadmin’s mood
this means that a pizza event leads to a change of 0.9 that the sysadmin is in a
good mood. In the case that there was no pizza, the sysadmin’s mood is good with
a 0.2 chance.
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2.1 Bayesian Networks

P (X|e) = αP (X, e) = α
∑
y

P (X, e,y) (2.1)

P (R|p) = αP (R, p) = α
∑
m

∑
s

P (R,m, s, p) (2.2)

In order to convert conditional probabilities into unconditional probabil-
ities Equation 13.9 from [62] can be used, which is restated here as Eq. 2.1.
α is a normalization term asserting that the probability over all possible
states of X sums to 1, X the unknown query variable, e are the evidence
variables and y are the unobserved hidden variables. When a variable is not
known like the unobserved hidden variable it is possible to marginalize over
all possible states of the unknown variable. The sum is therefore consider-
ing all possible combinations of the hidden variables. Using that equation
we can infer Eq. 2.2 and inserting the specific JPD gives us an expression
(Eq. 2.3) in which we can directly incorporate the system knowledge. Con-
stant products can be moved out of the sums and thereby we receive Eq. 2.4.
The query can be solved by entering the specific values into the equation.

P (r|p) = α
∑
m

∑
s

P (r|m, s)P (s|p)P (p)P (s) (2.3)

P (r|p) = αP (p)
∑
s

P (s|p)P (s)
∑
m

P (r|m, s) (2.4)

Note that this method can also be used to derive the probability of a pizza
event when the observer knows that there was a password reset. The pizza
event becomes more likely when you know that a colleague was successful in
getting his password reset while the probability of a pizza event gets smaller
when you know that your colleague was frightened away by the sysadmin.
This is called explaining away in Bayesian network terms. The knowledge
over a certain variable in the network, like the password reset event, can be
used to explain away reasons for this variable state. Bayesian networks can
be used for inference in the direction of causality and against the direction
of causality in the same way. In our case the calculation beginning with
Eq. 2.2 has to be changed to derive the probability P (P |r) that there was a
pizza event P when there was a password reset r, instead of deriving P (R|p).
The JPD product in the resulting equation is identical, but the sum differ.

In the previous examples exclusively discrete stochastic variables were
used, but it is also possible to model continuous variables. A Bayesian
network can consist of both continuous and discrete variables. Continu-
ous stochastic variables are often denoted by ovals in the literature while
discrete stochastic variables are denoted by rectangles in graphs. This is
demonstrated with an basic example from the automotive domain. The sys-
tem consists of two stochastic variables. Y represents a sensor which detects

9



2.1 Bayesian Networks

the position of other vehicles and X represents the real position of the other
vehicle. The query variable will be the X of the other vehicle and the evi-
dence variable will be the sensor’s state Y. (cf. Fig. 2.5). Each variable is
two dimensional and therefore represented by a vector and denoted in bold
type.

Both variables have not just two but an unlimited amount of possible
states. Imagine that the sensor is mounted on a satellite and gives one
particular sensed two dimensional UTM position Y = {y} ∧ y ∈ R × R
(the altitude is neglected here). This means that the possible state is a
position somewhere on the earth’s surface.

As in the discrete case expert knowledge is needed to derive the CPT,
which gives the probability of all states of Y given a certain x. In the
continuous case the CPT becomes a Conditional Probability Distribution
(CPD). For each x another probability distribution is assigned to Y.

In Fig. 2.3 a CPD P (Y|X) for a certain x is seen. This special CPD
will be later introduced as part of the sensor model. It gives the probability
that the sensor will respond at a certain position y given the true vehicle
position x. In a perfect world x would exactly match to one y, but in reality
sensor measurements are noisy. Therefore a vehicle at a certain position x
will create a sensor feedback at a certain position in Y with a (usually given)
sensor specific probability distribution.

Fig. 2.4 gives us the resulting distribution for Y given a certain x.

−40 −30 −20 −10 0 10 20 30 40 50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 2.3: The CPD P (Y |X) is visualized by showing it at an arbitrary x position
P (Y |x). The (Gaussian) function is represented by its equiprobability lines. Since
the sensors characteristics are not dependent on x, the reader can imagine the CPD
as an unvarying Gaussian shiftable over the whole coordinate system depending on
x.

This is also a good opportunity to show a reasoning in the opposite
direction of causality. P (X|Y ) is the query with the unknown query variable
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Figure 2.4: The sensor model P (Y|x = (50, 50)T ) given the true state x=50. The
plot shows the probability that the sensor will output a certain position given the
state estimate x = (50, 50)T for this specific sensor. (In other words the sensor
output takes place in the same coordinate frame as the state. Generally the graph
shows the distribution over Y )

x and the evidence variable y. The direction of reasoning is different of
the direction of causality, since we want to know the position of the vehicle
given the sensor reading, despite the fact that the vehicle position causes the
sensor input. The JPD is generated by the Bayesian network interpretation:
P (X,Y ) = P (Y |X)P (X) and the reasoning formula (like Eq. 2.3) P (x|y) =
αP (y|x) · P (x). Note that sometimes the PDF P (y|x) is not given, but
the inverse PDF P (x|y) is. Then the above equation cannot be used for
reasoning directly. The Bayesian rule must then be used first to substitute
”wrongly directed” PDFs (that can be visualized as edges) in the graph. The
inverse sensor model can be calculated by using the Bayesian rule on the
sensor model resulting in P (Y |X) = P (X|Y )P (Y )/P (X). In this example,
the forward sensor model P (y|x) is given (cf. Fig. 2.4) so that the Bayesian
rule is not needed.

This Bayesian network introduction is based on [65]. A more compre-
hensive introduction in Bayesian networks can be found there. A short but
outstanding tutorial is found in [54].

2.1.3 Learning Bayesian Networks

Bayesian networks can be created using existing world knowledge or the
models can be learned. In the scope of this thesis, we used the assump-
tion that the world knowledge is sufficiently known. Vehicle kinematics
and sensor models are given by specification. However learning would also
make sense when focusing on biological plausibility [33] or when adapting
to drivers, country-specifics, or sensors (e.g. recalibration of a sensor).

11



2.2 Bayesian Filters

Y

X

Figure 2.5: The Sensor model as a Bayesian network. The sensor output Y
depends on the true state X.

2.2 Bayesian Filters

The Bayesian Network examples in 2.1.2 are all static thus far. This means
the reasoning process takes place within only one time step. Bayesian filters
or recursive Bayesian estimation in contrast reason over several time steps.
They are a subset of the set of Bayesian networks dividing the variables into
time slices. The knowledge from the previous time-step is transferred into
the next time slice using a probabilistic transition model. Recursive Bayesian
estimation is the standard probabilistic concept used to accumulate sensor
knowledge over time.

In the first subsection we will introduce the Hidden Markov Model
(HMM) as a subclass of Bayesian Networks by introducing the concept of
time slices and the Markov assumption. This theory leads to the Bayesian
Filter concept. In the next subsection the most important implementations
of the Bayesian filters are introduced. A comparison with the Bayesian oc-
cupancy filter concept is done. In practice there is much confusion between
the two concepts. The last subsection deals with world representation and
how to discretize the world in a useful way to generate reasonable computer
models. The tradeoff between computing time and accuracy is explicated.

2.2.1 Bayesian Filter Concept

The Bayesian filter or recursive Bayesian estimator is a special kind of
Bayesian network for a recursive estimation of the internal state of a sys-
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Y
t-1

X
t-1

Y
t

X
t

Y
t+1

X
t+1

(a) A HMM Model sep-
arated into time slices.

Y

X

(b) The
Bayesian Net-
work with a
loop.

Figure 2.6: Loops can be avoided by unfolding the Bayesian network into different
time slices

tem. Using the nomenclature of Bayesian networks, the state of the query
variable is reasoned over several time steps. It is useful to introduce hidden
Markov models (HMM) before starting with Bayesian filtering.

It is necessary to use the Markov assumption when accumulating sen-
sor data over several time steps. The Markov assumption states ”that the
current state Xt depends only on a finite fixed number k of previous states
Xt−k:t−1”[65]. All models used in this thesis are first-order Markov pro-
cesses, meaning that the current state depends only on the previous state
and the current evidence. The Markov assumption can be used by Bayesian
modelers, when they assume that the (hidden) state variables (and the query
variables) contain all information needed in order to derive the state in the
next time slice. Equation 2.5 shows this first-order independence assumption
in a probabilistic language.

P (Xt|X0:t−1) = P (Xt|Xt−1) (2.5)

When looking back at the vehicle position example from the last sub-
section with the vehicle UTM coordinates provided by a satellite, the reader
should notice that the position estimation could be improved by incorpo-
rating position measurements over several time steps. This is exactly the
idea behind HMMs. We will first limit our view to static processes (e.g. the
vehicle does not change its position) and then broaden to dynamic processes.

Figure 2.6a shows a HMM in which the vehicle position is measured at
subsequent time slices. The HMM was simply created by using the Bayesian
network in Fig. 2.5 as a time slice. A time slice contains all stochastic
variables in the Bayesian network for a certain time step. Instead of creating
a loop (cf. Fig. 2.6b) the network can be unfolded into an infinite amount
of time slices.
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The transitions from one time step to the next can be modeled with
the transition model P (Xt|Xt−1), which emerges directly from the Markov
assumption 2.5.

In a static process the hidden state X would not change over time. In
each time step a new measurement is done. The process of adding new sensor
information is called filtering. By adding more and more sensory information
by subsequent filtering the estimate becomes more and more accurate. For
t→∞ the distribution in X would converge to a dirac distribution. Since,
however, vehicles are not static objects, the process has to be treated as
dynamic. The transition function is then a distribution instead of a 1:1
matching (which is also a dirac distribution). The higher the uncertainty in
the transition model, the more the information from the previous time step
is blurred and the less accurate the estimate of X.

Recursive Bayesian estimation allows us to estimate the system state
of dynamic processes. In comparison to static processes the real state of
the system can change over time. In order to use sensor information from
previous time steps the estimation has to be transformed from one time step
to the next. This transformation of the estimate by using a transition model
is called prediction.

The Recursive Bayesian estimation therefore consists of the filter step
(introduced above for the static process) and the prediction step. The prob-
abilistic formulas emerge by using Bayes’ rule and the Markov assumption
[62] on the Bayesian network query.

The Bayesian network query (Eq. 2.6) considers the complete network.
The query wants to know the vector of internal state variables Xt at the
current time t given a certain time series of evidence variable y1:t. The query
is split (Eq. 2.6) and then the Bayes’ rule is used (Eq. 2.7).

P (Xt|y1:t) =P (Xt|y1:t−1,yt) (2.6)

=αP (yt|Xt,y1:t−1)P (Xt|y1:t−1) (2.7)

=αP (yt|Xt)P (Xt|y1:t−1) (2.8)

Equation 2.8 uses the Markov assumption on the sensor model. The current
sensor state already includes the information of all past sensor inputs. The
result is the filter step of the Bayesian estimation.

The prediction step is derived after the filter step. The prediction step
emerges from a marginalization over all possible previous states xt−1 com-
bined with another Markov assumption application.

P (Xt|y1:t) =αP (yt|Xt)

∫
xt−1

P (Xt|xt−1,y1:t−1)P (xt−1|y1:t−1) (2.9)

=αP (yt|Xt)

∫
xt−1

P (Xt|xt−1)P (xt−1|y1:t−1) (2.10)
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With Eq. 2.10 the Bayesian estimation derivation is complete. Within
the integral term of the equation, the estimation from the last time step
is predicted into the future and the new sensor input is fed into the result
of the integral. The result is the state estimate of the current time step.
Note that the integral is used in continuous state space. A discrete process
can be solved by using a sum term instead, which directly represents the
discrete Bayesian filter. Some readers will also notice that the integral (or
sum) term is a convolution, which blurs the internal state distribution from
the current time step to the next time step.

The blurring effect takes the uncertainty into account. How will the
state of a system change from one time step to the next? The less we know
about the system’s dynamic, the higher the blurring effect. The more we
know about the system’s dynamic, the steeper the transition model. More
explanation about transition models can be found in Section II.

Looking at the example in this section the reader could ask why use
Bayesian statistics instead of heuristic algorithms. Heuristic algorithms
would improve the position knowledge, by applying for example, an arith-
metic mean over the measurements. This would be equivalent to the Bayesian
approach under two constraints: The process must be static and the noise
must be fixed over time. If one of the above statements is not fulfilled a
Bayesian filter with reasonable models will outperform every heuristic al-
gorithm, since Bayesian filters can cope with changing noise and variable
system states. In an automotive tracking task the sensor noise and the ve-
hicle position is changing over time and therefore Bayesian filters are better
suited than heuristic approaches.

System inputs

For the sake of completeness we will introduce a further stochastic variable
u. In literature u is often used to account for external non-noise influences
on the system. In other words it is an input variable, which influences the
dynamic of the system’s state. When looking at the vehicle position example
the vehicle position will change over time following the vehicle kinematics.
However, the driver can make an input to the system in terms of steering
or accelerating. This will affect the velocity and the direction of the vehicle
in the next time step. In practice it is often irrelevant if an input variable
u is introduced or if the system state is expanded so that u becomes part
of x. For example, the driver can be considered to be a deterministic but
unknown part of the vehicle system to eliminate the extra variable u. This
also makes sense when the input is unknown. By introducing the variable
u the current state xt of the system depends on its previous state xt−1
and the current input ut, which increases the complexity of the transition
model. It is then a CPD depending on the state dimensions and the control
dimensions. The resulting Bayesian filter formula (Eq. 2.11) is depicted as
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a Bayesian model in Fig. 2.7. For reasons of clarity and comprehensibility
the input u will be sometimes omitted in formulas and figures without loss
of generality in this thesis.
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Figure 2.7: The HMM with system input U . Note that U and Y are observable
variables, while X is the query variable.

P (Xt|y1:tu1:t) = αP (yt|Xt)

∫
xt−1

P (Xt|xt−1,ut)P (xt−1|y1:t−1) (2.11)

The Bayesian Filter as a Two Step Algorithm

The complete Bayesian filter mathematics are already derived by Eq. 2.10
or 2.11. As previously stated it contains a prediction and a filtering step.
To be more explicit the equation is usually split up into these two steps.
The result of the split is a two step iterative algorithm. For each state xt

in Xt the prior distribution P (Xt|y1:t−1,u1:t−1) and the posterior distribu-
tion P (Xt|y1:t,u1:t) are calculated consecutively. By splitting Eq. 2.11 the
equations 2.12 and 2.13 emerge.

P (Xt|y1:t−1,u1:t) =

∫
xt−1

P (Xt|xt−1,ut)P (xt−1|y1:t−1,u1:t−1) (2.12)

P (Xt|y1:t,u1:t) =αP (yt|Xt)P (Xt|y1:t−1,u1:t) (2.13)

The first equation is the prediction step resulting in the prior distribu-
tion, and the second equation is the filtering step (also known as measure-
ment update in some literature) resulting in the posterior distribution. In
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literature the state estimate is sometimes called the (internal) belief (mean-
ing internal knowledge about the state), state of knowledge or information
state [65]. The terms posterior and prior refer to the moment when the
measurement is incorporated into the (internal) state estimate / belief. If
not explicitly stated the term (internal) state estimate / belief denotes the
posterior state distribution. The term predicted state estimate denotes the
prior distribution.

In pseudocode the Bayesian filter can be written as Alg. 2.1 but in prac-
tice the algorithm cannot be directly implemented for continuous problems
on a machine with a finite set of states.

Algorithm 2.1: The Bayesian filtering algorithm. Adapted to our
notation from [65].

input : ut, yt, P (xt−1|y1:t−1,u1:t−1)
output : P (xt|y1:t,u1:t)
forall xt do1

// The prediction step

P (Xt|y1:t−1,u1:t) =
∫
xt−1

P (Xt|xt−1,ut)P (xt−1|y1:t−1,u1:t−1)2

// The filter step

P (Xt|y1:t,u1:t) = αP (yt|Xt)P (Xt|y1:t−1,u1:t)3

end4

return P (Xt|y1:t,u1:t)5

The problem is that the integral in the prediction step is not solvable
for arbitrary continuous distributions. Several approximate solutions exist.
Some discretize the distribution in different ways, others approximate the
distribution with a function for which the integral is solvable. However,
even some approximative solutions have very high computational costs and
are hardly computable efficiently. The state of the art Bayesian filter im-
plementations are introduced in Section 2.2.2. In Section 2.2.4 the search
space and its influences on the computational costs are highlighted.

2.2.2 Bayesian Filter Implementations

The integral in Eq. 2.12 is not solvable for continuous processes. Therefore
an exact Bayesian filter solution is limited to discrete world problems. How-
ever, there are some ways to approximate the integral. The Kalman filter
offers an analytical solution of the integral assuming Gaussian noise. Numer-
ical approximations of the integrals, such as the particle filter or the Bayesian
histogram filter are explained in the subsequent sections. Figure 2.8 out-
lines the differences in the representation of the compared Bayesian filter
implementations. A brief and clear survey on Bayesian filtering techniques
[35] is also recommended.
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(a) The Kalman filter
uses a Gaussian, fully
represented by its expec-
tation value µ and the
covariance P.

(b) The particle filter
saves the particle co-
ordinates as represen-
tation.

(c) The Bayesian His-
togram filter assigns
a probability value to
each histogram bin.

Figure 2.8: The representations used by the Bayesian filter implementations.

Kalman Filter

The Kalman filter method is the result of the analytical solution of the
integral in Eq. 2.12. The analytical solution is restricted to Gaussian sensor
noise and linear system dynamics with Gaussian system noise. The term
system noise describes the uncertainty in the state change, which can be
caused by incomplete world knowledge and manufacturing tolerances. In
practice the Kalman filter is surprisingly tolerant against violations of these
restrictions. In engineering tasks, noise is often generously assumed to be
Gaussian and linearity is perceived by local linear approximations of the
process dynamics in enhanced versions of the Kalman filter. We will later
see that the smaller the noise, the better this oversimplification works.

The Kalman filter can be derived from the Bayesian network equations
(2.12 and 2.13). For a complete proof the reader is again referred to the
standard literature [62, 65]. The overall concept of the derivation is stated
here. As in the literature, we use the one dimensional example for the sake
of simplicity. First a Gaussian prior distribution

P (xt−1) := αe
−(x0−µ0)

2

2σ20

is introduced with α as the normalization term to retrieve a probability
density function from the Gaussian by setting the integral over the function
to 1. Let µ0 and σ2

0 be the expectation value and the variance of the prior
distribution. These values represent the initial knowledge about the system
state. We further assume a linear Gaussian transition model

P (xt|xt−1, ut) := αe
−(xt−xt−1)

2

2σ2x

with ut = 0 and a Gaussian sensor model distribution
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P (yt|xt) := αe
−(yt−xt)

2

2σ2y .

The prior distribution and the transition model are inserted into Eq. 2.12.
The equation is again presented in Eq. 2.14 for the first time step of the
Kalman iteration.

Inserting the explicit Gaussian distributions from above into the equa-
tion and combining the exponents and applying ”the completing the square
method” leads to the handy form in Eq. 2.15. The mathematical tricks used
to get there can again be looked up in [62]. In short the argument of the
Gaussian function is split up into a constant term, which becomes 1 after
normalization with α and the residual term stays in the argument of the
exponential function in 2.15.

P (xt|y1:t−1, u1:t) =

∫
x0

P (x1|xt−1, ut)P (xt−1|y1:t−1, u1:t−1) (2.14)

=

∫
xt

αe
− (x1−µt−1)

2

2(σ2t−1+σ
2
x) (2.15)

The result of Eq. 2.15 is applied to Eq. 2.13 together with the Gaussian
sensor model from above.

P (xt|y1:t, u1:t) =αP (yt|xt)P (xt|y1:t−1, u1:t) (2.16)

=α exp

1

2

(xt −
(σ2
t−1+σ2

x)yt+σ2
yµt−1

σ2
t−1+σ2

x+σ2
y

)2

(σ2
t−1+σ2

x)σ2
y

σ2
t−1+σ2

x+σ2
y

 (2.17)

The result after another row of mathematical tricks in Eq. 2.17 looks
rather complicated. But by comparing the term with the Gaussian function
description, it is clear that it is a Gaussian with expectation value

µt =
(σ2
t−1 + σ2

x)yt + σ2
yµt−1

σ2
t−1 + σ2

x + σ2
y

and variance

σ2
t =

(σ2
t−1 + σ2

x)σ2
y

σ2
t−1 + σ2

x + σ2
y

.

The derivation is complete since the posterior distribution with µt and σ2
t

was derived by the prior distribution, using the sensor distribution and the

19



2.2 Bayesian Filters

transition model. Thereby a complete iteration is completed. Furthermore
the derivation outlines why the Kalman filter needs the basic assumption of
Gaussian distributions and linearity. Without those assumptions the distri-
butions in the algorithm would alter to non-Gaussian distributions in the
multiplication during the filtering step or during the non-linear prediction.
This would lead in the next iteration at the latest to the problem that the
integral can no longer be solved analytically by the mathematical tricks
used.

When using multiple dimensional space, the overall concept stays the
same but the distributions become multivariate Gaussian distributions, the
expectation value becomes a vector and the variance a covariance matrix.

Although in practice the Kalman filter achieves passable results when
approximating distributions as Gaussian, enhanced versions of the Gaussian
filter were researched and used widely in practice to cope with non-linear
system dynamics. The Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF) approximate non-linear system dynamics by different
methods. While the EKF uses a Taylor approximation of the transition
model for a local linearization around the current estimated state xt the UKF
uses sample points (called sigma points) in order to preserve the covariance.
A short glimpse into these algorithms is given here, and for further details
consult [65]. The linearization in EKF is done using the first term of the
Taylor polynomial arround xt. Thereby the transition model changes for
each t. Using the first term of the Taylor polynomial is like drawing a
line with the gradient of the system dynamics beginning at xt. At diverging
positions where small changes in x yield high changes in the transition model
output the linearization leads to worse results. The variance in the internal
estimate can be especially drastically underestimated. Nevertheless the EKF
is often used in practice due to its simple implementation. In many cases it
works, but the possible pitfalls are discussed later in Section 2.2.4.

The UKF was designed to avoid high errors in the covariance by using a
stochastic linearization instead of the Taylor approximation. From the prior
distribution some samples so-called sigma points are extracted. A sigma
point is generated at the expectation value of the Gaussian prior PDF. In
each dimension two further sigma points are determined, each at a certain
distance in each direction of the dimension. The distance is arbitrarily
chosen once in the beginning by introducing some bias parameters. Each
sigma point is then individually fed into the transition function. A Gaussian
is reconstructed from the mapped sigma points. The expectation value and
the variance of the new Gaussian is determined by a weighted mean over the
mapped sigma points. The weights are again determined by bias parameters.

However looking at Fig 2.9 it becomes clear that even the UKF can-
not cope with highly non-linear systems. Therefore the Kalman filter is
used too generously by engineers to cope with highly non-linear dynam-
ics and multi-modal Gaussian distributions. A Multiple-Hypothesis Kalman
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(a) (b)

Figure 2.9: A vehicle is approaching a Y-junction. (a) The Kalman filter will pre-
dict the position of the vehicle being on the traffic island. (b) The desired behavior
of the Bayesian filter: The prediction should split into a multimodal distribution,
accounting for the fact that the vehicle has to steer in order to avoid a collision with
the traffic island. The figure is inspired by the bird and tree picture from p. 590 in
[62].

Filter keeps track of multiple expected tracks and a weighted sum of the
predictions is used to set the posterior state estimate. The weights of the
Gaussian distributions are set by the likelihood that the sensed observation
fits to the different predicted Gaussian estimates [62, 65]. Unfortunately the
number of hypotheses grows exponentially with time. Some multiple-model
approaches keep multiple hypotheses and therefore run multiple Kalman fil-
ters in parallel, but they have to keep track of the number of hypotheses by
doing a fusion of several hypotheses. Fusing the posteriors to a low number
of hypotheses will lead to high approximation errors in a highly non-linear
system, but the fusion of some hypotheses is necessary in order to maintain
a tractable number of hypotheses. Without fusion, a hypotheses tree has to
be computed and the number of hypotheses may become incomputable in
a finite time. Some approaches avoid keeping multiple hypotheses and use
them only in the prediction step (cf. Fig. 2.10(a)). Either a weighting on
the hypotheses can then be done or the most likeliest hypothesis will be used
by a maximum selection [72]. A comprehensive overview of multiple-model
tracking algorithms is given by [61] and a comparative study by [59]. Further
information and readings on multi-model filters can be found in Part III of
this thesis.

Another way to cope with multimodal distributions in a more ”natural”
way is the particle filter, which is discussed in the next section.

Particle Filter

Overview Particle filters use the Monte-Carlo-Method to sample proba-
bility distributions. So-called particles are generated over the entire state
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Figure 2.10: The figure shows different concepts how estimates from different
filters can be fused in multi-model approaches. (Fig. 5 from [61])

space. In the initialization step, particles are created with a high probability
in regions of the state space with high probability density. In regions with
low probability density the probability for a particle generation is low or
even near zero. The particle filter is a Bayesian filter implementation, so
there is both a prediction and filter step. In the prediction step the particles
are applied as input in the transition model and probabilistically distributed
to the predicted states according to the model (note the difference to the
sampling in the UKF, where the sigma points are directly mapped to one
specific forward position). The result is the prior state estimate in a particle
representation (cf. Fig. 2.8b).

In the filter step the new sensor input is fused to the prior estimate.
Since it is difficult in the particle representation to perform a multiplication
in a direct way a trick is used. Each particle in the prior distribution has a
weight assigned to it. The weight is given by the sensor model. The higher
the probability that the state at the particles position is true given the sen-
sor input, the higher the assigned weight. Therefore the sensor model is
only sampled at the particle’s position. Highly multi-modal sensor models
will therefore lead to problems. Next an importance sampling takes place.
Particles with low weight (=importance) are erased. Particles with high
weights will be cloned so that the number of particles stays constant over all
time steps [65]. The result is the posterior distribution in particle represen-
tation. Then the iterative process repeats. The particle filter representation
has several advantages, but also limitations. The limitations are discussed
in the following paragraph.
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Limitations The first limitation is not the fault of the particle filter itself,
but the fault of successor algorithms. Most algorithms which use the track-
ing output as their input cannot cope with particle representations directly.
A probability density function rather than a particle cloud is desired even for
for visualization of the distribution. If the particle filter is used in discrete
state spaces the density can be extracted by counting the particles in the
bins. For continuous state spaces there are no hard and fast rules about how
to create the density function from the particles. One idea is the Gaussian
approximation, which generates a mean and variance by the particle samples
generating a unimodal distribution. Another method is to artificially lay a
histogram or density tree over the state space. Another idea uses each par-
ticle as center of a (Gaussian) kernel to rebuild the density function. Lastly,
algorithms are computationally complex in comparison with the first one
(which creates a unimodal distribution) [65]. On the other hand, the first
one loses a lot of information from the internal representation to the output
of the particle. The entire complex distribution is sampled to a Gaussian
distribution losing all its characteristics except the mean and variance. In
the end many current ADAS algorithms cannot cope with multimodal data
at all, so that the simple Gaussian density output suffices for those systems
in far too many cases (c. f. 2.2.4).

Discretization errors are another issue when dealing with low particle
numbers per state space size in a dimension. This is relevant in high-
dimensional problems, where the particles have to be distributed over a
wide area in all dimensions. In that case the result of a particle filter may
deviate from the unknown true Bayesian state distribution significantly af-
ter one or more time iterations. That means that a particle filter started
several times from the same original state with exactly the same sensory
inputs over time will produce different state distributions, depending on the
seed of the random number generator used for particle forwarding. In parti-
cle filter terms this is called sample variance. The error increases with each
iteration when no new sensor information is fed in or the sensor noise is very
high. The variance of the distribution will be increasingly underestimated,
whereby the estimate distribution approaches a single point. A strategy
called variance reduction or systematic resampling is therefore used. The
first strategy suspends the importance sampling in some time steps when the
state changes slow down, or it even stops the integration of measurements
when the state is known to be static for a while [65].

It is useful to think about the importance sampling as a roulette wheel
approach to understand the systematic resampling or low variance sampling.
The systematic resampling then chooses the particles systematically rather
than picking them randomly from the set of particles.

A number of further discretization problems can occur if the number of
particles is too low relative to the state space size. The sampling bias occurs
in regions with a low number of particles. In the extreme case there is no
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particle in the vicinity of the measurement y and only one particle a fair
distance away. The importance weight of that particle is then much greater
than all other weights. In the extreme case that there is only one particle
in the entire state space the input y would be ignored completely [65].

The particle deprivation problem also arises when the number of particles
is small relative to the state space size, but it can - with a smaller likelihood -
also appear when the number of particles seems high enough. When running
a particle filter long enough it may eventually appear that the importance
sampling does not produce particles in an important region by chance. To
avoid empty areas, often a small number of random particles are added to
the complete state space. [65]

Despite all the limitations particle filters perform well and are used in
practice in the automotive domain [44], [64], [30]. Particle filters are used
less often than Kalman filters, but much more often than the approach used
in this thesis.

Bayesian Histogram Filter

In this thesis a type of Bayesian Histogram Filter (BHF) was used. The
BHF is a form of grid-filter. Chen [28] offers a comprehensive survey on
Bayesian filtering and Bayesian grid-filters. Grid filters represent the prob-
ability density function by a finite set of samples, bins or regions. Another
early form of the grid-filter is the Point-Mass Filter (PMF) also known as
probability-grid filter.

Point-Mass Filter The PMF [45, 25] represents the estimate by prob-
ing the density functions at certain equidistant states with distance d. The
points get weights (masses) according to the sensor input. The points are
then sent through the transition function. The result is a transformed grid,
which has to be resampled by interpolation to a new equidistant grid. The
standard probability-mass-filter needs equidistant sample states, since the
new posterior distribution is resampled from the density where the trans-
formed grid states lay together with their probability mass. [18] Point mass
filters are used for terrain navigation for aircrafts or underwater navigation,
though the task can also be solved by particle filters with lower computa-
tional expenses and only slightly more inaccurate results [10, 19].

In contrast, in the Bayesian histogram filter approach the sample points
are not transformed to other positions in the state space following the transi-
tion function, instead the sample points position is fixed and the probability
inherent in the sample points is distributed to the other sample points ac-
cording to the transition function. In other words: In BHFs there is a
probability flow from one bin to the other, instead of sample points flowing,
taking their probability with them, as is the case in the PMF or even in the
particle filter.

24



2.2 Bayesian Filters

Bayesian Histogram Filter The Bayesian Histogram filter as another
grid-based filter samples the probability density function at N so-called grid
cells (also known as bins or regions). The set of all grid cells cover the state
space X. One specific grid cell k contains a certain probability mass pk,t
(not to be confused with point-mass, cf. 2.2.2) which gives the probability
that the true state x lies at the time step t within that region xk. The
volume of the grid cell |xk,t| may be fixed or vary over time. In either case,
all grid cells have to be disjoint from each other.

We will see later, that it is useful to select a certain state x̂k,t within each
grid cell and assign a special role to it. For example the density functions
are usually probed only at one representative state in each grid cell. It is
useful to choose the center of mass x̂ of the grid cell (cf. Eq. 2.25 [65])
in order to minimize errors. That special state (sometimes called node or
sample point) x̂k,t is then the representative of the grid cells.

x̂k,t = |xk,t|−1

∫
xk,t

xt dxt (2.18)

The density functions were probed at this representative x̂k,t, which
means that the sensory model p(zt|x̂k,t) and the transition function p(x̂k,t|x̂i,t−1,ut)
are density function samples at x̂ instead of probabilities. Thus, integrat-
ing these density functions probes over the whole state space would not
accumulate to 1. ∑

k

p(x̂k,t|x̂i,t−1,ut) 6= 1 (2.19)∑
k

p(zt|x̂k,t) 6= 1 (2.20)

The representative x̂k,t is also used to determine the system dynamics
for the whole grid cell k. Meaning that each state within the borders of
the grid cell xk follows the state dynamics of the representative x̂i,t. Of
course this will lead to approximation errors, which are smaller for fine
granularity grids and smooth non-linearities in the system dynamics. The
sensor models are only sampled at the grid nodes x̂k,t (cf. Eq 2.20), which
leads to discretization errors when the sensor characteristics are steep as
well (Sec. 6.2 and 6.2).

When probing the probability density directly at the node position x̂ the
Bayesian filtering equations look like Eqs. 2.21 and 2.22. These equations
can be directly used when the grid nodes are equally spatially distributed.
The normalization η sets the sum over all nodes to 1, ensuring that all
computed values are probabilities after the filtering step.
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p(x̂k,t|z1:t−1,u1:t) =
∑
i

p(x̂k,t|ut, x̂i,t−1) · p(x̂i,t−1|z1:t−1,u1:t−1) (2.21)

p(x̂k,t|z1:t,u1:t) =ηp(zt|x̂t) · p(x̂k,t|z1:t−1,u1:t) (2.22)

An algorithmic notation of these formulas using the probability mass
pk,t (and the predicted state estimate probability mass pPk,t−1

) is given by
Equation 2.23 and 2.24.

For all grid cells k do:

pPk,t−1
=
∑
i

p(x̂k,t|ut, x̂i,t−1) · pi,t−1 (2.23)

pk,t =ηp(zt|x̂t) · pPk,t−1
(2.24)

The distinction between probability density and mass is only necessary
when the grid cell size is not equal for each grid cell. However, when the
grid cell volume |xk,t| differs, it is necessary to convert the densities into
probability masses first (Eq. 2.25).

pk,t = |xk,t| · p(xk,t) (2.25)

In this thesis the Bayesian histogram filter is researched in a continuous
world task. The discretization problems of the Bayesian histogram filter
are comparable but differ in details from that of the particle filter. We dis-
cuss the discretization problems in Sec. 6.2 and the curse of dimensionality
in Section 2.2.4. In chapters 3,4 and 5 the MDBHF (Merged Dimension
Bayesian Histogram Filter) is described and in Sec. 7.2.2 the ICUBHF (It-
erative Context Using BHF).

In the following section we explain another kind of grid filter, often
confused with the BHF.

2.2.3 Obstacle Maps and the Bayesian Occupancy Filter

In the automotive domain the Bayesian Occupancy filter (BOF) is a recent
field of research. The fact that the BOF as well as the BHF are grid-filters
often leads to mix-ups and confusion. Therefore this section will explain the
differences between these two kinds of grid filters. The main difference is
the state space of the BOF. Instead of keeping track of the position of an
object, the BOF is used to keep track of the individual positions. It states
the probability that an individual position is occupied by an arbitrary object.
Additionally, it assigns the velocity of a potential object at that position.

We will first discuss the general concept of static obstacle maps and then
bridge to the BOF.
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Static Obstacle Maps

The BOF consists of a grid over binary occupancy states {occupied,¬occupied}
and additional variables for each grid cell. The concept of using binary oc-
cupancy states evolved from the binary Bayes filter approach. The binary
Bayes filter is also a state-of-the-art approach used for simultaneous local-
ization and mapping (SLAM) in robotics [12] and driving assistance [70].
Each grid cell consists of a probability giving the likelihood that the cell is
occupied by a static or movable object.

The Bayesian Occupancy Filter

The original BOF formalism is complex and not easy to describe it in a short
introduction. We explain the outline of BOF by using a simplified Bayesian
Network based on the BOF version of [40] and [23]. They enhanced the BOF
in order to use context information in the system dynamics. The notation
was also changed to a form which conforms better to the Bayesian-filter
notation.

The internal state X of the BOF consists of a vector for the occupancy
of all N grid cells O = (O1, O2, .., ON ), where each Oi has two possible
states Oi = {occupied,¬occupied}. Each grid cell can also be assigned a
number of non-binary variables, e.g. the velocity of the occupancy inside
V = (V1, V2, .., VN ) with Vi as a two dimensional velocity vector discretized
in cells per time-step. Consequently the internal state of the standard BOF
is X = (O,V).

The original standard BOF notation consists of a velocity distribution
for each cell, but the velocity distribution was replaced by a single velocity
value per field in later versions due to the high computation costs [27]. A
sketch of the state vector X of the newer BOF version is shown in Fig. 2.11.

The state X can be further augmented by additional variables, in order
to contain further information about the individual grid cell. For example
the type of object occupying the cell can be estimated by a variable G =
{pedestrian, vehicle} [24].

In the transition step, the probability in the predecessor grid cells is
forwarded into the current time step. The new velocity is calculated by the
distance and time between the grid cells.

The difference between the BHF and the BOF is also becoming more
clear when considering the dimensionality of the internal state variable in
an abstract HMM view. In the BOF, the dimension of the occupancy state
O for itself is already a N -dimensional variable with a binary state space in
each dimension. In the end, the number of possible states is 2N . A BHF
observing a two dimensional position space contrast has a two dimensional
position state variable, but each dimension has

√
N possible states (the grid

cells in each dimension). In other words the grid cells in the BOF are binary
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Figure 2.11: A one-dimensional outtake from a BOF. Each state consists of a
probability of occupancy and a velocity. Velocities are represented as directions
only in this figure. Occupancy probability of cell 5 is 0 and therefore no velocity
is set for that cell by the BOF. The figure is simplified by neglecting the absolute
velocity value.

state variables and the grid cells in the BHF represent states. The number
of possible states in a two-dimensional Bayesian Histogram filter with N
cells is

√
N ·
√
N . This does not mean that the BOF is more complex than

the BHF. The number of possible states should not be confused with the
complexity by the reader, since the BHF models a continuous distribution
for each possible state, while the BOF models each cell independently as a
binary state.

Due to that differences, the BHF and the BOF have different advantages
for ADAS systems using their data as input. The problems of the BOF
differ widely from the other Bayesian filter approaches. One advantage of
the BOF is that the state is not object related. Each cell occupancy may
belong to another object, and the BOF just collects sensory data without any
association to objects. In multi-object environments the sensory evidence
can be gathered and fused on a low level representation. This advantage is
also a problem when it will be used for object tracking. Nearby grid cells
are clustered by comparing distance, occupancy value, and velocity because
objects have to be extracted from the BOF representation. The output is
put into an object-related Bayesian histogram filter. In the literature the
Kalman-filter was used together with a JPDA algorithm. [27]. This shows
that the BOF is not a substitution of particle filters, Kalman filters or BHFs,
but it may be used as a preprocessing algorithm to improve sensory input
quality.
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2.2.4 World Representation, Search-Space Reduction and Com-
putational Costs

All the introduced Bayesian filter implementations can be applied to dis-
cretized or continuous processes in theory. However, all these methods strug-
gle with the limited computational power and storage space in computer
systems, when it comes to implementation of continuous systems. Bayesian
networks can be used to model almost arbitrary complex model worlds with
high-dimensional variables with continuous variable spaces, but a lot of com-
plex concepts are doomed to always exist in the theoretical-world. When
implementing the concepts for the real-world, Bayesian applications suffer
not only from the well-known curse of dimensionality, but also from the
continuous variable state space within each dimension and the need for a
search-space discretization. The remaining finite state space should resam-
ple the most important characteristics of the original continuous state space.
Which characteristics should be conserved depends highly on the applica-
tion. In this section we first outline the two general search-space reduction
methods, next how the search-space reduction was handled by real-world
approaches in automotive tracking tasks and finally which state-space re-
ductions were used in our MDBHF approach.

Search-Space Discretization

Each continuous stochastic variable stands for an arbitrarily formed prob-
ability density function (PDF). For use in computers the PDFs have to be
approximated by a number of bins, Gaussians, particles or other means. The
basis behind each approximation is always the conversion from the unlimited
complex state space to a finite number and range of variables representing
the state space. The number of finite variables and their range is limited by
computer memory and computation time requirements.

Curse of dimensionality

While the necessary variable range grows linearly with the size of the in-
dividual dimension, the number of dimensions increases the computational
effort exponentially. The reason for the exponential growth of complexity
is intuitively understandable when examining the discrete counterpart of
the CPD, the CPT, in the Bayesian network. With each additional condi-
tional dimension the number of entries in the CPT grows exponentially (cf.
Sec. 2.1.1).

The key to computability is therefore to keep the probability density
function in terms of the CPD small. This goal can be reached by exact or
approximate dimension reducing approaches. An exact way is to find inde-
pendent subspaces and divide them in independent variables. This is exactly
done by the process of setting up the JPD of the Bayesian network. Recall
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that independent stochastic variables are not connected by an edge in a well
defined Bayesian network graph. As an approximate approach, it may also
be useful or even necessary to assume independence between variables with
existing but weak dependence. Note that the drawbacks of this harsh ap-
proximation may even be compensated by putting the freed resources into a
more accurate state space discretization. The success of this approach may
vary from case to case. In practice independence assumptions are often used
somewhat generously. The reader has already learned about the Markov as-
sumption, which is in most applications an approximation assuming that
further unconsidered variables are independent to the observed system. As
an extreme example, a sudden meteorite impact and its influence on the
vehicle state may be ignored by all Bayesian vehicle tracking approaches,
but stronger independence assumptions of all kinds also exist. Instead of
ignoring dependencies between variables completely, a less generous approx-
imation is the reduction of the variable range within a dimension. This is of
course related to the search-space discretization. Non-essential dimensions
can be represented in a coarser way. Instead of considering the whole distri-
bution of a non-essential dimension, the dimension may be represented by
the maximum or mean value of the distribution as a representative value.
Note that the usage of a single representative value is a special case of a
particle filter, in which only one particle instead of a number of particles
per dimension is used. In [30] a combination of different representations
is used, the velocity dimension is represented by particles and the position
dimension by a grid.

A dimension reduction assumption often used in the automotive do-
main is the flat world assumption. The three dimensional position state
space is mapped onto a plane two dimensional earth surface. The assump-
tion is highly relevant when projecting camera images into a birds-eye-view.
Applied to tracking the flat world assumption means that vehicles cannot
jump and vehicles on crossover bridges above the ego-vehicle plane or in
tunnels under the ego-vehicle plane are ignored. The reader notices that
this assumption is not very strong, since most on-board sensor systems fail
in detecting cars under the ground surface or on bridges above. Jumping
vehicles play a minor role in everyday traffic, but the assumption gains rel-
evance in hilly areas. Since we focus on on-board tracking, these cases can
also be neglected, since current on-board sensors and detection algorithms
are highly prone to slope changes and a lot of work is still necessary in that
field of research.

Complexity of the PDF

Due to the curse of dimensionality, the complexity of the PDF has to be
kept small when coping with high dimensional problems. Low dimensional
problems allow complex PDF representations. The system engineer must
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decide what is computable and he or she needs to check if the providable
complexity fits to the complexity that is needed by the system. The needed
complexity is discussed in this subsection. In the end it must be decided
on a case-by-case basis, where and if the requirements overlap with the
computational reality.

PDFs can exist as a single value, a Gaussian distribution or an arbi-
trary distribution. From the Gaussian representation to the arbitrary PDF
representation the computational effort increases. The needed complexity
increases with increasing uncertainty in the sensor or in the transition model.

When the sensors are very accurate, meaning that the sensor noise is very
small, the usage of a probabilistic framework becomes exaggerated. We will
nevertheless play this situation through. When the sensors become more
and more accurate, the variance of the PDF becomes smaller and smaller,
while the PDF converges into a dirac delta function δ(A) where A is the
measurement y. With an exact measurement all information is available in
the current time step so that a zero order Markov model can be assumed.
The transition model becomes obsolete and the shape of the PDF remains
a dirac forever.

For the sake of completeness it is mentioned here that the same effect
would occur when a sensor with a given sensor noise greater than zero could
deliver measurements in arbitrary small update time intervals. With fixed
sensor noise even a simple mean computation would then suffice, under
the assumption that the system cannot switch its states arbitrarily, but
continuously. Such thought experiments help us understand better when
more complex probabilistic representations become necessary. As already
stated, the complexity of the PDF increases with increasing uncertainty in
the sensor or in the transition model. The uncertainty in the transition
model also increases with growing time intervals between the measurements
and with smaller system stability. Some ADAS approaches use just the
most probable value of the PDF as a single representative and ignore that
the value may be not right in some cases (e.g. [20], the successor publication
[21] generates different individual representatives by a Monte-Carlo method
fed into the algorithm of [20]).

The most state-of-the-art approaches try to at least model the uncer-
tainty with a Gaussian noise assumption, presumably without reflecting
upon the validity of the assumption very much. Using the assumption,
all PDFs are represented by Gaussians. As already stated in 2.2.2 the as-
sumption works for smaller noise levels and linear or stable areas of the
state space. Basically the EKF approach calculates the system dynamics
at the expectation value of the state. A covariance is used to model the
uncertainty of the estimation. The EKF approach gives an illusive security.
The covariance is underestimated over time in non-linear unstable areas of
the state space. Outliers in the PDF are ignored by EKFs and even by
UKFs. It is possible that systems working with Gaussians will fail suddenly
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in unexpected scenarios in rare situations. In general, such system behav-
ior is always possible when the uncertainty in sensors or in the transition
function is underestimated. This is based on the general tradeoff that all
probabilistic systems are associated with. When too much noise is assumed,
the system’s state estimate is to vague and no actions can be derived by the
system. For example, a system with the goal to avoid dangerous situations
while driving may be an overcautious system. In extreme cases this system
may not move at all since the world may be too unpredictable and comet
impacts are possible at any time. However, a system assuming less noise is
too self-confident in its estimation. Non-probabilistic systems are not bet-
ter. They underestimate the noise of real systems in every case because all
real sensors have a sensor noise greater than zero and deterministic systems
assume zero noise.

Of course particle filters and grid filters also underlay the possibility
of such system failures, but in practice the engineer’s trust into Kalman
filters is frequently exaggerated in comparison to the other filters. In non-
linear systems with higher noise this trust is not reasonable and may lead to
problems in autonomous vehicles. Ignoring this fact could lead to accidents
and should therefore be considered by automotive manufacturers, who plan
to build autonomous vehicles.

In addition to the sensor noise, the update time interval also plays a
role, as is shown in the extreme case discussion above. When the predic-
tion horizon increases, the transition models will become more and more
non-linear. The benefit of using Bayesian filters capable of representing ar-
bitrary PDFs increases with increasing prediction horizons. Looking back
at the Y-junction situation in Fig 2.9 on page 21 this becomes very clear.
Only with large update time intervals the prediction has to consider both
movement alternatives simultaneously. In smaller prediction horizons it is
sufficient that only one alternative is considered at one time step, since the
measurement updates will iteratively correct the estimate to the right posi-
tion while the prediction horizon only models small scale movements in the
forward directions. This shows that only long term predictions with multi-
modal distributions need a more sophisticated noise representation in this
Y-situation.

All the discussed effects point out that the selection of the representation
is driven by the assumptions of the quality and quantity of the sensor noise
and the uncertainty in the system dynamics. They are the most fundamental
questions any Bayesian filter user should consider. The next section will
outline, which assumptions are made on a number of exemplary state-of-
the-art approaches from the automotive domain.
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Examples from the Automotive Domain

The consequences of the computational limitation on the state space rep-
resentation can be discovered in existing automotive tracking approaches.
Table 2.2.4 gives an overview of the different approaches.

Approach Search Space Complexity of the PDF

Barth [15, 14] 2D Gaussian1

Althof [8] 1D2 Histogram
MDBHF 2D Histogram

In [15, 14] a system to track the state of oncoming vehicles and predict
their trajectory from the state was presented. A multiple model EKF is used.
The multiple models are necessary since a Kalman-filter parametrized for
tracking longitudinal movement reacts too slow in turning scenes according
to the authors. The multiple models are therefore used not to represent
complex PDFs exceeding the Gaussian state-of-the-art way, but to adapt the
noise in the prediction model in an indirect way. The flat-world assumption
is used and the state space is the two dimensional earth surface. The Kalman
filter representation suffice since the application is limited to approaching
objects. This causes the sensor noise to become smaller and smaller with
decreasing distance to the approaching object. The final predictions are
done by running the Kalman-filter in a loop that utilizes the prediction step
and not the filter step, in later chapters we will introduce this as prediction-
only mode. In the beginning predictions are rather weak but are iteratively
getting better and better with the decreasing sensor noise.

In [9] or [8] stochastic reachable sets in non-linear systems are calculated
with a Markov model. Collision probabilities of certain trajectory combi-
nations are derived by the approach and two dimensional histograms are
therefore laid on deterministic preselected trajectories. All trajectories are
observed from a global non-on-board view. The deterministic trajectory is
set by the street-pathway and the second dimension of the histogram is not
independently modeled. Depending on the type of vehicle, segments on the
right are weighted higher for bicycles, and for cars the middle is weighted
higher. A probability flow over time from one histogram bin to the next
histogram bin takes place only on the trajectory. All other probability val-
ues are derived by the probability on the trajectory. The reduction to one
dimension is necessary, since the overlap of two or more reachable sets has
to be calculated in order to receive the collision probability. Each trajec-
tory of vehicle A has to be compared with each trajectory of vehicle B. The

1Barth is using multiple models, but not in order to represent the PDF in more detail.
The coordinate frame is global.

2Althof is using a 2D-histogram, but the second dimension is generated generically.
Therefore the visualizaton is in 2D, while the representation is 1D.
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complexity of the algorithm rises with the number of histogram bins N with
the number of trajectories M , and with the number of vehicles V leading to
the sloppy O-Notation: O((N ·M)V ). On the other hand, it is not guaran-
teed that these constraints are valid in all cases. For example, bicycles are
often ridden anywhere on the street in urban areas. Lane changes cannot
be modeled generically, which means that typically lane change trajectories
have to be preset in advance, although the position where a lane change can
take place is arbitrary. In wider intersection areas the real trajectories of
the vehicles may have a high diversification.

Similar to the approaches above, our MDBHF approach, which is in-
troduced in the next part of this thesis, tracks the position of an observed
vehicle and derives the behavior by a model comparison technique. As with
all discussed approaches, we use the flat-world-assumption and utilize a
two dimensional histogram on the driving plane for the position estimate.
At each position, the velocity dimension is represented by a mean value.
This mean value is a representative value of the entire velocity dimension.
The merging of a dimension to a single value is the new feature of the
MDBHF in comparison to traditional BHF approaches. This simplification
of the state-space is necessary, since the probability distribution disperses
with increasing prediction horizons. The computability in real-time then
becomes intractable. The MDBHF has in comparison to the cited related
work the highest complexity of the position state-space and allows therefore
multi-modal estimate distributions and a complex prediction model with in-
dividual predictions for each cell position. Further novelties of the MDBHF
approach and the additional implemented features like the ego-movement
compensation and the improved integration technique are discussed in the
subsequent chapters.

In this section we learned about issues with selecting the state space of
Bayesian models. We mentioned the effects of the curse of dimensionality
and explained how different approaches deal with the computational limi-
tations. We now focus on the Bayesian histogram filter for the automotive
tracking task and in later chapters we will also use further techniques to
improve computation time in the histogram filter.
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Part II

Vehicle Position Prediction
and Tracking with the

Bayesian Histogram Filter
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In the first part of this thesis the theoretical background of the Bayesian
filter was discussed. These foundations are now used to track and predict
the position of vehicles in road environments. Bayesian filtering gives the
mathematically optimal solution for tracking tasks. The Bayesian filter itself
cannot be implemented exactly, but it needs to be approximated by the
Kalman filter or numeric solutions. In this part of the thesis we explain
and discuss all relevant steps for vehicle tracking with our BHF solutions,
the MDBHF and the ICUBHF. First, relevant parameters for adjusting the
world representation of the BHF are discussed. Second, the influence of the
prediction model is outlined. Third, the vehicle tracking task is explained in
detail and illustrated by a vehicle simulation experiment. In the last chapter
we discuss the modeling of the driving behavior.
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Chapter 3

World Representation of the
MDBHF

As discussed in section 2.2.4 the unlimited state-space of the real world has
to be converted into a finite number of variables with high resolution repre-
senting this state space X. The MDBHF and the common BHF approach
achieve this by using grid cells xk as introduced in section 2.2.2. The follow-
ing section deals with the placement of the grid cells and the granularity of
the grid cell distribution. Next, we evaluate how the PDF can be sampled
and the influences on the position estimation quality. The last section covers
the complexity of the representation of the velocity dimension.

3.1 The State-Space Domain and the Grid Cell
Representation

The right choice of the state-space for a tracking task is highly task-dependent.
Different kinds of state-spaces may fit even when in the field of vehicle track-
ing.

3.1.1 State-Space Domain

When localizing a vehicle with global sensors like the introductory example
in section 2.1.2 the UTM position X is delivered by a satellite triangulation.
When no further constraining assumption on the location of the vehicle can
be given, the state space of the BHF has to cover the whole earth surface.

For the task of using on-board sensors of an ego-vehicle and tracking the
position of the observed vehicle relative to the ego-vehicle a much smaller
state-space needs to be covered. On the input side all sensors have a limited
range and all state-of-the-art on-board sensors are limited to a range below
approximately 100 m. And on the output side ADAS systems rarely need
wider ranges for deriving driving actions. Evasive maneuvers in the case of
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3.1 The State-Space Domain and the Grid Cell Representation

wrong-way drivers may constitute an exception here, but will be neglected
due the lack of sensor and object detection capabilities. For the usual sensor
setting it is also eligible to use a smaller state space in the lateral direction.
The flat-world assumption is used for the vertical direction since vehicles
mostly stay on the ground.

The state space of the real state is specified by Z = (Z0 Z1 Z2)T ,
where z0 is a certain position difference to the side, z1 towards the vehi-
cles nose and z2 the height dimension (c.f. Fig. 3.1). The domain of all
these probabilistic variables is Dom(Zi) =] − ∞,+∞[ when ignoring the
curvature of the earth and the periodicity. The domain of the estimated
state x = (l0 l1 l2 ||v|| ω(v))T ∈ X is [−lmin,+lmax] for the location vari-
ables l0 and l1. The height is not represented (l2 = 0). The domain of the
absolute vehicle value is thereby Dom(||v||) =] −∞,+∞[ and the Domain
for the velocity direction is Dom(ω(v)) =]−Π; +Π]. All velocity and posi-
tion variables are relative to the ego-vehicle’s global position and velocity.
To be even more accurate, we observe the position of the other vehicle’s
geometric center with respect to the ego-vehicle’s center of the rear axis.

x
0

x
1

Figure 3.1: x0 is the direction to the side, x1 towards the vehicles nose and x2
the height dimension.

As discussed above, the discrepancy between the modeled state space
and the real state space can be neglected in our task in most cases. But
there are some special cases that may produce problems. These problems
and the ways to address them are discussed in the next sections.
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3.1 The State-Space Domain and the Grid Cell Representation

3.1.2 The Boundary Condition Problem

The consequence of a finite state space is that boundaries have to exist.
The world beyond the boundaries is not modeled by the MDBHF. But what
happens when the observed object leaves the covered space or when parts
of the PDF already lay beyond the boundary?

The following situations are possible:

• In the filter step, sampling errors occur when using a Gaussian Sensor
Model. Since Gaussians assign probability values to infinite positions
in all directions, there are always probabilities outside the covered
space.

• In the prediction step, sampling errors occur when the transition func-
tion is Gaussian-like. When a vehicle is leaving the covered space the
probabilities will gather at the boundary, unable to leave the covered
space (c.f. Fig. 6.7). We will refer to this as boundary jam.

From other domains, such as splines or cellular automaton theory, such
problems are well known and strategies to cope with them are used. How-
ever, not all proposed solutions make sense in a probabilistic representation.

• Periodic boundary conditions (leads to a toroidal world shape). Prob-
abilities leaving the covered space will reenter on the opposing side.

• Ignore boundary problem. Do not use special rules at the boundaries.

• Persistent border values. Values at the border keep their value.

• Natural boundary condition. Set probabilities in the boundary to zero
to absorb probabilities there.

The periodic boundary condition is clearly not suitable for our task.
When ignoring the boundary problem the problems stated above will oc-
cur. The persistent boundary values method might not be the worst so-
lution, but it will lead to the problem that the probability in the center
will become smaller and smaller, while the probability accumulates in the
boundary. When ignoring the probability values in the boundary during the
normalization and during the output, that problem can be avoided. This is
exactly the behavior of the natural boundary condition. Probability values
in the boundary are treated as zero by ignoring them during normalization
and during the prediction step. This is equivalent to an absorption of the
probabilities in the boundary cells.

To ensure better and faster absorption, it is appropriate to use a bound-
ary consisting of more than one row of boundary cells. An unlimited number
of boundary cells would eliminate the errors, as would an unlimited covered
area. In practice this is not possible, so the designer of a BHF should work
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3.2 The Vehicle Position Represented by Grid Cells

with a reasonable number of border node rows combined with a generously
chosen covered area size. In our experiments three rows of boundary cells
have proved to provide a good trade-off between the number of additional
”useless” nodes and accuracy. Nonetheless, even with the absorption strat-
egy of the natural boundary condition and a reasonable number of boundary
rows the error will not be zero.

3.2 The Vehicle Position Represented by Grid Cells

The grid cells are the fundamental concept of the BHF. In section 2.2.2 we
saw how the grid cells are used to represent the PDF. The grid cells position
determines where the PDF is sampled, and the grid cell size determines the
sampling accuracy.

We will tighten the notation here and subsequently explore the effects
of different parameter choices affecting the cell position and grid cell sizes.
A BHF consists of a set of N grid cells xk with the index k ∈ {1..N}.
Generally, a grid cell xk samples the PDF at a certain volume of the state
space |xk,t| in a given time step t. In our vehicle tracking task, each cell xk
contains the probability mass pk,t giving the probability that an observed
vehicle’s position lies within the grid cell volume |xk,t|. Note that grid cells
also represent velocity values. The details of the velocity representation are
discussed in Sec. 3.3.

The grid cell volume |xk,t| can be set fix for all cells when choosing
an regular grid, but it is also allowed to set different grid cell volumes for
each cell. It is then important to distinguish between probability mass and
probability density. Grid cell sizes are compensated by converting probabil-
ity densities to probability masses before propagating the probability value
during the prediction step (c.f. Eq. 2.25).

The freedom to vary the grid sizes allows the BHF designer to arbitrary
set the cell positions. Not only is a regular tessellation possible, but so
are all kinds of non-regular Voronoi or Dirichlet tilings. Arbitrary mixes
are also possible. For example, there could be a grid consisting of cells
with a regular tessellation in front of our vehicle, with an additional cell
on the moon representing the small probability that the vehicle in front
of our vehicle departed to the moon in the next time step. Of course,
this example is not relevant to the vehicle tracking application. However,
another type of tessellation would make sense, such as small grid cell volumes
in the near-field of the ego-vehicle and bigger grid cells in more distant
regions of the covered domain. Two reasons are speaking in favor of such
an approach: First, most ADAS applications will demand more exact data
on vehicles in the near-field since a collision is more likely and imminent.
Second, the information delivered by the on-board vehicle detection sensors
in more distant regions is not as exact as in the closer regions. For example,
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3.2 The Vehicle Position Represented by Grid Cells

a camera that detects vehicles in the surrounding will not output the exact
position of distant vehicles.

In our MDBHF approach the grid cells are arranged in a regular tessel-
lation with squares. Hence, the grid cells k are ordered in rows and columns
where lk0 denominates the columns in the x0 direction and lk1 denominates
the rows in the x1 direction. The representative x̂k,t (c.f. Sec. 2.2.2) is set
on the center of mass of the grid cell, which assumes constant density, in the
geometric center of the square. The representative state of the grid node
in the bottom left corner of the grid has the position (lmin0 , lmin1) and the
upper right has the position (lmax0 , lmax1). This regular tessellation allows
a homogeneous behavior of the grid in all distances and positions for eval-
uation purposes. A variation of the grid cells can be implemented when
demands on computation time and accuracy are determined by the applica-
tion. The position (lk0 , lk1)T of the k-th grid cell can be easily computed by
Eq. 3.1, where DIV is the integer division and MOD is the modulo operator,
through the regular tessellation in the MDBHF. The distance between the
grid cells is set by d0 in the horizontal direction, d1 in the vertical direction
and d := d0 = d1 due to the squared nature of the cells. The grid cell
volume is |xk,t| = d2. The on-board sensor of the ego-vehicle is set to the
origin of the coordinate system. An offset value offsetx1 = 0 assures us that
the boundary is shifted towards the area behind the ego-vehicle.

(
lk0
lk1

)
=

(
((k DIV (max0 −min0))− (max0 −min0) DIV 2) · d0

(k MOD(max1 −min1) · d1 − offsetx1

)
(3.1)

In the next section the influence of the grid cell volume |xk,t|, and thereby
the distance between two neighboring nodes d on the tracking quality, is
assessed.

3.2.1 Grid Cell Size and its Influence on Tracking Precision

The MDBHF is a numeric approximation of the Bayesian filter for non-linear
and non-Gaussian systems. The quality of the approximation depends on
an appropriate choice of several parameters. An example of one of these
parameters is the grid granularity g = 1

d . This is the inverse of the distance
between the grid nodes d and thereby depends on the shape and size of the
integration areas (c.f. Sec. 3.2). For instance, a BHF with infinitely small
integration areas would be an exact solution of the Bayesian filter, though
the need for an infinite number of grid nodes makes this approach impossible
to compute. This chapter will outline the impact of parameter changes to
the tracking result.

The finer the granularity and the smaller d, the more accurate the sam-
pling of the PDF. The right choice of the grid cell size and position depends
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3.2 The Vehicle Position Represented by Grid Cells

highly on the task. In a vehicle tracking task for ADAS the parameter d
has to fulfill specific demands. The parameter needs to be small enough so
that the MDBHF is able to:

1. Cover the vehicle dynamics.

2. Derive warnings or evasive maneuvers.

3. Avoid discretization errors.

Since the number of nodes needed to receive the same covered space rises
quadratically with the granularity in a 2D-space ( meaning in a sloppy-O-
notation: N = O(g2) ), it is a hard task to set the granularity to values
fulfilling this demands and cope with the computational power of current
hardware. When looking back to the satellite example it becomes clear that
it cannot be solved with a BHF with a d=0.5m resolution on the whole earth
surface. The grid needs to be much coarser, with the following consequences.
First, it would be impossible to cover the vehicle dynamics. Second, evasive
maneuvers are not possible since the ADAS algorithm on the ego-vehicle
does not have any accurate information with lane-level precision. When as-
suming that the sensor accuracy of the satellite triangulation would provide
the same accuracy on the observed vehicle position as on-board sensors it is
also obvious that the granularity of the BHF would be too coarse to repre-
sent the PDF - the whole distribution would collapse into one grid cell. Note
that the velocity dimension (Sec. 3.3) is even more prone to discretization
errors in the position space, as detailed in later chapters. Low velocities lead
to high relative velocity errors.

With an increasing grid cell size d, the approximation errors in the BHF
become increasingly large. We evaluated the effects of d on the tracking
result in a simulated situation in Sec. 6.1.1. The reader may look at Fig 6.2
and the following figures now, which show the tracking performance in de-
pendence of the grid cell size d. Corresponding to Sec. 2.2.2, where the
particle filter limitations based on [65] are discussed, we will discuss the
limitations of BHFs and MDBHFs analytically in Sec. 6.2.

The grid cell size d is determined by the number of grid cells. And
the number of grid cells is limited by the computational costs. In the next
section we discuss how to reduce the computational costs in order to increase
the accuracy of the BHF or MDBHF.

3.2.2 Computational Costs due to High Node Numbers

The computation time rises quadratically with the number of cells O(N2).
While the filter updates each node n of the N nodes with the new sensor
input in linear time resulting in a linear computation time for the filter step,
the prediction step has to compute the integral in the Bayesian filtering by
a sum over all preceding cells in Eq. 2.23. The probability flow from each
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3.2 The Vehicle Position Represented by Grid Cells

cell to each other cell has to be determined (O(N2)) in order to receive the
prior estimate distribution.

In practice there are methods to reduce the computation time by reduc-
ing the number of cells that need to be updated in a certain time step. We
can consider the method of using boundaries at the covered area as an al-
ready discussed method, which allows us to ignore states/positions outside
of the covered area. Of course, this is a very strict method, dividing the
state space into an important area and an unimportant and ignored rest.
It is also possible to perform a gradual transition between more important
and less important areas. As in the particle filter approach, the PDF is then
sampled in a better resolution in areas with high importance. High impor-
tance may be the result of a high probability density as in the particle filter
approach, or also set by the ADAS application demands. For example, the
area next to the ego-vehicle is more important than distant areas. Instead
of a regular tessellation, a density tree can be used to cover the area with
a different sampling quality. In important regions the distance between the
nodes d is set to d

2i
with i ∈ N, while in rather non-relevant areas the sam-

pling size is reduced by i ∈ Z−. In many cases these density trees will be
static representations with fix i over time. Otherwise, new cell objects have
to be created during runtime and tree structures need to be updated.

In order to accelerate the computation we use two further methods that
work in a dynamic manner: selective updating (c.f. [65]) and a technique
we call selective propagation. Selective updating is used in the filter and in
the prediction step to ignore cells with a propability mass < pmin. Since the
filter step works in linear time, it is not worth applying selective updating
in the filter step, but in the prediction step significant speedups can be
achieved. In our experiments a speedup of the factor 10 was generated with
pmin = 0.0001 when using a grid size of N = 88000 grid cells. The benefit
varies strongly with the size of the grid, the grid cell distance and the model
noise and can be much greater when the grid covers huge unimportant areas.
In Eq. 2.23 on page 26 cells i are ignored when pi,t−1 < pmin. The errors
produced are marginal and are corrected by the next sensor input in the
filter step. It is only with extremely converging dynamics that this may
cause a problem since the small neglected probabilities accumulate into a
small number of nodes and again become important, instead of diverging
further into smaller and smaller probabilities, and therefore into even more
unimportant activity ranges.

Selective propagation is a further method to save computation time. The
idea of selective propagation is that even cells with high activation pi,t−1

propagate most probabilities to a relative small number of cells and only a
small amount of probability mass to the other cells. For this, the probabil-
ity flow is calculated for each cell i when Eq. 3.2 is fulfilled. The equation
shows the probability flow from node i to node k from time step t − 1 to t
according to the transition model. More accurately, it is more of an activa-
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tion flow instead of a probability flow, since the activation is not normalized
to probabilities here. In the BHF, the normalization to probabilities takes
place only after the filter step.

flowk,i =

{
p(x̂k,t|ut−1, x̂i,t−1) · pi,t−1 p(x̂k,t|ut−1, x̂i,t−1) ≥ ppruning
0 otherwise

(3.2)

In order to avoid the O(N2) computation time to check the above condi-
tion for each target cell k, the monotonous and smooth gradient of the tran-
sition function can be exploited. We utilized the ”snail-search” algorithm,
which checks the Moore neighborhood around the expectation value of the
transition function. The range of the Moore neighborhood is increased until
the transition probability in all new cells is smaller than ppruning. The com-
putation of further flows emerging from cell i is skipped for this time step.
Of course, this method only works with smooth and monotonous transition
functions. In return it avoids a full inspection of the state space domain.

When dealing with problems near the computational limits, where a
higher number of grid points for a more accurate sampling is not possible,
a variation of the sampling may help. The next section deals with differ-
ent sampling strategies used in order to increase accuracy by reducing the
discretization error with a constant number of cells.

3.2.3 Integrating Probability Mass in a Grid Cell

In BHFs the PDF is sampled at the grid cells. Each grid cell is an integration
interval. Errors in the integration occur through approximation errors due
to large grid cell volumes or by inaccurate function approximation within the
cells. The prediction step is especially prone to such function approximation
or discretization errors produced by that sampling. This is because the error
propagates into the especially error-prone velocity dimension.

In standard BHFs the PDF is probed in each cell k once at the repre-
sentative state of the cell x̂k (c.f. Sec. 2.2.2). In the position dimension
the representative is the cell’s center of mass x̂k = (lk0 , lk1). This standard
integration technique is called piecewise constant function approximation.
We will refer to it as constant piecewise integration. Instead of using only
one representative, each cell can also be probed at several points. We have
chosen the corner points c0,...,c3 in Eq. 3.3 to do a more sophisticated inte-
gration (referred to as piecewise linear integration).

c0 := (lk0 − d0, lk1 − d1)

c1 := (lk0 − d0, lk1 + d1)

c2 := (lk0 + d0, lk1 − d1)

c3 := (lk0 + d0, lk1 + d1) (3.3)
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3.3 Velocity dimension reduction

The prediction equation in the MDBHF is therefore replacing Eq. 2.23
with Eq. 3.4 in the position space.

pPk,t−1
=
∑
i

p(c0, c1, c2, c3|ut, x̂i,t−1) · pi,t−1 (3.4)

p(c0, c1, c2, c3|ut, x̂i,t−1) = (p(c0|ut, x̂i,t−1) + p(c1|ut, x̂i,t−1) (3.5)

+ p(c2|ut, x̂i,t−1) + p(c3|ut, x̂i,t−1))/4.

The selection of the corner points as probing points has the benefit that
the function value can be saved in a look-up list and be reused for the neigh-
boring cell in the ”snail-search” algorithm (c.f. 3.2.2). Only one additional
row and column of probe points in comparison to the standard implemen-
tation are needed.

Equation 3.5 shows how the values at the corner points are combined
in order to receive the probability value for the cell. The equation is the
result of the solution of the integral over the volume below the integration
area interpolated by two triangular plane shapes through the points c0,c1,c2

respective c0,c3,c2.

The additional probe points are only used for probing the transition
model, since the velocity dimension is derived here by the start and end of
the flow (c.f. Sec. 3.3). The velocity dimension is highly prone to errors
(c.f. 6.2). Since the filter step is more robust, the sensor model is probed at
the representatives in the center of mass as in the default setting.

The improvements achieved by the additional probe points are seen in
the experimental vehicle tracking results in Fig. 6.4 in Sec. 6.1.2.

In the previous sections we introduced how vehicle positions are repre-
sented by grid cells in the BHF, we investigated the influence of the grid cell
size on the tracking results and we introduced techniques to cope with the
trade-off between computation time and tracking accuracy. The representa-
tion of the velocity dimension was mentioned but not explicitly stated. We
deal with the velocity dimension in the next section.

3.3 Velocity dimension reduction

The BHF not only tracks the vehicle position by position sensor inputs,
it also derives a velocity dimension in order to be able to use the vehicle
dynamics in the vehicle tracking. Representing the PDF of the position
dimension already requires high computational effort (c.f. Sec. 2.2.4). Fully
representing the velocity dimension as a grid in addition to the position
would increase the computation time to O(N4). The velocity dimension of
the PDF is therefore reduced in the MDBHF (Merged Dimension BHF) to
a single representative value.
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3.3 Velocity dimension reduction

3.3.1 Derive Velocity from Position Estimates

The MDBHF is designed to work with on-board sensors, which deliver the
position of the detected object (e.g. a vehicle detection via camera, stereo-
camera, lidar or radar, c.f. Sec 5.1). Using the velocity data from a velocity
sensor device such as radar can improve the tracking but is not mandatory
for the MDBHF. Instead, the velocity is derived by the position differences
over the time within the probabilistic representation. In order to reduce
discretization errors, the algorithm was slightly improved for the piecewise
linear integration. However, first we will look at the solution for constant
piecewise integration.

Velocity Derivation with Piecewise Constant Integration

The velocity is implicitly given by the probability flow in Eq. 3.2. The
position estimate flows from one state (cell) to the other state (cell) within
a time step ∆T . The probability flow from a cell i to k represents the
probability that the vehicle’s position is within cell i and that a vehicle at
that position departs to cell k during the time step. In Bayesian network
terms, the vehicle velocity is a hidden variable, which depends on the current
estimated position and the previous estimated position.

The velocity vk,i (Eq. 3.6) is determined by the grid cell positions li and
lk.

vk,i =
lk − li
∆T

(3.6)

The number of all velocity flows that enter the grid cell k are then merged
into a single representative velocity for the probability mass in cell k. A
pure BHF solution has to model all possible flows (velocities) in the grid
cell. The velocities assigned to a grid cell are the result of all incoming
flows from all other grid cells. The computation time for this representation
would be far too high, therefore the velocity PDF is reduced by averaging
one representative per grid cell. This is the topic of the next subsection.

3.3.2 How to Keep the Important Information by Merging
the Velocity Dimension.

The goal of averaging of all incoming velocities to a single representative
is to keep as much relevant information in the representative velocity as
possible. Therefore the averaging is done separately for the absolute value
||v|| (Eq. 3.8) and the direction ω(v) (Eq. 3.7) of the velocity, in order to
keep the essence of the information. When doing a simple vector addition
instead of the separate averaging, two opposing flows with high velocities
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would be summarized to a zero velocity. The nature of separate averaging
fits better for the problem.

ω(vk)t = atan2

(∑N
i=1 vk,i · flowk,i,t−1∑N

i=1 flowk,i,t−1

, x1

)
(3.7)

||vk|| =
∑N

i=1 ||vk,i|| · flowk,i,t−1∑N
i=1 flowk,i,t−1

(3.8)

The resulting velocity in polar coordinates (||vk||, ω(vk)) can be trans-
ferred again into Euclidean space (Eq. 3.9).

vk = (||vk|| · sin(ω(vk), ||vk|| · cos(ω(vk)))
T (3.9)

Instead of the averaging strategy, a winner-takes-all method also is possi-
ble. The averaging method helps to smooth the resulting PDF and therefore
reduce discretization errors, the winner takes all method enables us to keep
trajectories of the most probable behavior. This is especially relevant in
prediction only loops (c.f. Sec. 4.3).

imax = argmaxi∈{1..N} (flowk,i,t−1) (3.10)

ω(vk)t = atan2 (flowk,imax,t−1, x1) (3.11)

||vk|| = ||vk,imax || · flowk,imax,t−1 (3.12)

When the winner-takes-all strategy is used, the Eq. 3.11 and 3.12 sub-
stitute for 3.7 and 3.8.

Velocity Derivation with Piecewise Linear Integration

The piecewise linear integration has been used to improve the sampling of
the transition model. As an additional benefit, we can further decrease
the discretization errors in the velocity dimensions. Velocities are usually
determined by the difference between the start location and end location of
a probability flow 3.6. The locations are limited to the center of mass of the
grid cells.

The additional sampling points in the corners of the cell allow us to
specify the end location in a more continuous way by averaging. Note that
due to the Markov assumption this is of course not possible for the start
locations without blowing up the state space representation.

With the transition function sampled at the corners of the cell we have
an indication into which subarea of the cell most probability is flowing.
Taking into account this additional information it is better to shift the end
location used for the velocity estimate towards the corners with the higher
flow instead of choosing the center of mass.
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This is realized by a weighted sum over the corners (Eq. 3.13) with the
resulting location l̂k inserted into the velocity estimate equation 3.14.

l̂k =((p(c0|ut, x̂i,t−1) · c0 + p(c1|ut, x̂i,t−1) · c1
+ p(c2|ut, x̂i,t−1) · c2 + p(c3|ut, x̂i,t−1)) · c3)

/(4(p(c0, c1, c2, c3|ut, x̂i,t−1)) (3.13)

vk,i =
l̂k − li
∆T

(3.14)

Our experimental evaluations in Sec. 6.1.2 show significant improvements
due to a combination of both techniques (Fig. 6.4 and 6.5). The reasons for
these improvements are the better sampling of the transition function for
the position estimate and the improved velocity derivation.

3.3.3 Potential Errors due to the Velocity Representation

The merging of the velocity dimension to one representative is, of course,
a strong approximation. Therefore, we can give example PDFs in which
strong approximation errors will occur.

A worst case scenario is a position estimate which splits at a certain
point (e.g. a vehicle at a Y-junction) and then comes in conflict by entering
a crossing from opposing directions. The PDF in the velocity direction di-
mension will have two distinct peaks. On the one hand, the absolute velocity
will be preserved at the clash of the probability peaks, but on the other hand
the velocity direction dimension will collapse. The collapse symptoms will
vary depending on the velocity merging technique used in Sec. 3.3.2. The
averaging technique leads to probability flows which depart from the clash
in an orthogonal direction. The winner-takes-all strategy partly preserves
the direction. In other words, some flows will survive the clash, but with
a uniform split at the Y-junction both clashing peaks in the PDF have the
same amount of probability. Small numerical differences determine which
peak wins.

Such behavior is not wanted when using a filtering algorithm. Luckily,
such worst-case behavior is limited to worst-case scenarios. Most of the
worst-case scenarios will not apply to our vehicle tracking task. Even the
scenario above is only possible with very wide prediction intervals, since
in most cases the filtering step will collapse the PDF into one peak long
before a multi-modal distribution reaches a junction point again. However,
in prediction-only loops such cases may occur.

But even without the filtering step the behavior of the velocity merging
techniques is rather of good nature. In diverging situations the approxi-
mation errors are minor, and even in some converging situations, such as
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merging Y-junctions, because clashing probability flows will in most cases
not clash with exactly opposing velocities and mirrored probability masses.
In that case they will act much more reasonably, as when two exactly op-
posing peaks in the distribution hit each other. Imagine the scenario above
with a merging Y-junction instead of an orthogonal crossing. The direction
estimate will, according to the merging technique average to the correct di-
rection. Above all, when the probability masses of both peaks differ, the
proposed merging techniques will succeed.

Considering the computation time savings, this is a behavior we gladly
accept. After dealing with the representation of our filter approach (MDBHF),
we will now focus on the anticipation of vehicle positions in the next chap-
ter. In a separate error analysis (Chp. 6.2) we will experimentally evaluate
errors caused by the representation.
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Chapter 4

Position Prediction

Anticipating the future state and behavior of car drivers is a challenging task
for the designers of autonomous vehicles and ADAS. Current state-of-the-art
ADAS systems for luxury class vehicles are capable of driving autonomously
in highway scenarios, combining distance-keeping and lane-keeping technol-
ogy. This technology uses modern sensor equipment including cameras and
radar. From an engineer’s perspective this task is relatively easy to manage.
Lane detection already works in highway scenarios and each radar echo in
front of the ego-vehicle within a lane is highly likely a car, motorbike or
truck following the route of the highway. The rule-set and number of possi-
ble surprising situations in highway scenes is relatively small in comparison
with inner city scenarios. In the case of an unforeseen event the car hands
control back to the human driver.

The current goal of the automotive manufacturers is to use existing low
cost sensor systems without expensive LIDAR solutions for these systems,
but these sensors are prone to errors and only strong assumptions allow their
usage. Such assumptions are possible in highway scenarios, for example. It
is known what lane markings look like and how lanes are curved. It is not
necessary to interpret the radar sensor into object hypotheses. The vehicle
does not know objects at all, but uses raw data (radar reflections) and keeps
its distance from them. Some preprocessing and filtering is needed at the
data level only. Such simple models of the real world are not sufficient in
inner city scenarios. A nearly unlimited amount of possible situations with
exceptions and unforeseen events exist in such scenarios. To cope with them,
a vehicle needs some form of comprehension of objects and their movement
properties. This comprehension, which humans know and apply, is enabled
by better world representations. In this chapter we deal with the knowledge
about the movement properties of vehicles. In Chapter 7 we will build on
this knowledge and introduce a representation which enables the MDBHFs
to incorporate knowledge about vehicle movement given hypothesized driver
intentions and, vice versa, driver intentions (behavior) can be recognized by
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observing the vehicle behavior over time. This approach is called ICUBHF
(Iterative Context using BHF).

The fact that world knowledge (system dynamics) can be used in Bayesian
filtering via transition models is the big advantage in comparison to averag-
ing approaches. The transition model is used to transfer the estimate from
the past to the present.In comparison, moving averages work like low-pass
filters, and therefore the averaged state lags behind the ground-truth.

The transition model can predict the state into the present or the future
by using probabilistic prediction models already introduced as transition
models in previous chapters. The prediction can take place as part of a
vehicle tracking algorithm, using Eq. 2.23 and Eq. 2.24 in turns in order to
predict the previous information collected by the sensor measurements into
the next time step to combine them with the latest sensor measurement.
Furthermore the prediction can be used in a prediction-only-mode using
Eq. 2.23 iteratively without the filtering equation. In this way the reachable
area of the observed vehicle can be calculated probabilistically [3]. However,
one statement should be kept in mind when talking about predictions: all
predictions are based upon assumptions on the system dynamics. Or, in
our case, the predictions are based on assumptions on the behavior of the
driver-car system. Any deviations from the assumptions will result in worse
results.

We therefore first specify reasonable assumptions for prediction mod-
els in the next section, before we continue to incorporate these prediction
models into our MDBHF.

4.1 Prediction Models

The prediction model p(x̂k,t|ut, x̂i,t−1) transforms the estimate into the
next time step. In other words, it provides the rules how the probability
has to flow from one cell xi,t−1 in time step t − 1 to the other cell xk,t
in time step t. These rules are determined by the system dynamics and
the system inputs, or more specifically on the automobile dynamics and
the behavior of the driver ut. This probability flow can be treated like a
neuronal activation passing the information about the object position from
one neuron (cell) to the other neuron. We will look at the probabilistic flow
first and then illustrate how the prediction model can be formulated by the
kinematic model. In the last subsection we will apply the prediction model
to the (MD)BHF.

All this together leads to the implementation of the prediction step,
which consists of three sub-steps for each cell. We will refer to them in the
following subsections:

1. Sample prediction model at all neighboring cells.
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2. Create departing flow.

3. Accumulate incoming probability flow to new probability mass.

4.1.1 Probability Flow

The equations for the probability flow 3.2 are restated here for the sake
of clarity. The probability flow from node i to k is defined by Eq. 4.1
(step 2 of the prediction step) and, by summing the incoming flow in k, the
prior estimate is determined. The prior estimate distribution (Eq. 2.23) can
therefore be rewritten as a sum over the incoming probability flow (Eq. 4.2,
step 3 of the prediction step). Please note that the prior probability receives
the index t − 1 since the information inherent in the prior PDF is based
completely on the previous time step. But the reader should notice that the
time it represents is already t, since the prior estimate is the predicted state
estimate.

flowk,i,t−1 =p(x̂k,t|ut, x̂i,t−1) · pi,t−1 (4.1)

pPk,t−1
=
∑
i

flowk,i,t−1 (4.2)

The probabilistic flow from Eq. 4.1 gives the probability moving from one
cell i to another cell k from one time step to the other. The flow should, of
course, match the dynamics of how the states of the real system can change.
For this, the vehicle kinematics need to be modeled first, which is the topic
of the next subsection. The modeling has to be done once in order to sample
the model as the first substep of the prediction step.

4.1.2 Modeling the Vehicle Kinematics

Human drivers intuitively know intuitively how vehicles move. Technical
systems either have to learn the kinematic physics or need an implemented
physical model to decide which vehicle trajectories are possible and which are
not. As an example, every car driver knows that another car cannot depart
from its position orthogonal to its wheel plane in normal driving situations.
This kind of world knowledge is also used by tracking systems. Therefore,
we have implemented a probabilistic kinematic model which is based on the
bicycle model (Eq. 4.6) widely used in robotics [63, 65]. The bicycle model
can be used to simplify the well-known Ackermann steering into a model
using a single imaginative wheel on each vehicle axis (c.f. Fig 4.1).

The bicycle model assumes that the wheels remain vertically oriented to
the ground and that each wheel touches the ground in a single point. In this
case two constraints apply:
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Figure 4.1: The bicycle model. [63]
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crete simulation steps ∆T .

Figure 4.2: The reachable area in the continuous world and the discrete time
approximation.

1. The rolling constraint, which states that the wheel must roll when
motion takes place

2. The sliding constraint, which states that the wheel must not slide
orthogonal to the wheel plane

While the first constraint is not particular relevant to our application,
the second constraint limits the reachable area by the limited steering angle
−βmax < β < βmax in a limited time span ∆T . These constraints apply for
each wheel and can be written as equations. Together they state a system of
linear equations. The nullspace of this system of equations is the reachable
area of the vehicle. That means the system of equations is solvable for
certain vectors xt of the state space. More details can be read in [3, 63]. A
brief graphical description is seen in Fig. 4.2a and in the discrete time view
in Fig. 4.2b.
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4.1.3 The Probabilistic Driver Behavior

In the previous subsection the kinematic model was deterministically stated
with strict limits for the driving behavior. In this subsection we introduce
the driver behavior as a probabilistic variable in order to transform the
deterministic kinematic model into a probabilistic kinematic model in the
next subsection.

The probabilistic prediction model p(x̂k,t|ut, x̂i,t−1) depends on the sys-
tem state and the system input. In other words, it depends on the vehicle
state and the driver behavior.

The state xt−1 is thereby a certain state from the state space domain X
from the last time step. It contains the position l0t l1t , the absolute velocity
||vt|| and direction ω(vt).

xt =


l0t
l1t
||vt||
ω(vt)

 (4.3)

The previous state fully defines the position expectation value of the state
transition l′t (Fig. 4.3a). A probabilistic model needs to account for the
unknown driver behavior, and therefore needs to model deviations from the
expectation value. Such deviating state transitions occur when the driver
changes the velocity or steers.
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(a) The transition model is derived
from a probabilistic interpretation of
the kinematic model.
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(b) A two-dimensional Gaussian dis-
tribution in polar coordinates. E.g.
the derived probabilistic prediction
function in a 3D view.

Figure 4.3: The prediction function p(xt|Ut, 0)= in the continuous world and the
discrete time approximation for a fix xt−1 = 0 and a variable system input ut.

The behavior of the driver is defined by the probabilistic variable ut
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(Eq. 4.4.) with the steering angle β and the acceleration γ.

ut =

(
β
γ

)
(4.4)

The domain of the acceleration is Dom(γ) =] − ∞,+∞[ and the domain
of the steering angle is also Dom(β) =] − ∞,+∞[ instead of ] − π,+π[.
This allows us to use Gaussian distributions with unlimited domains in each
dimension of the input. When using the circular boundaries instead, a von
Mises distribution or a circular normal distribution [17] should be used for
β.

The missing knowledge in the steering and acceleration behavior is mod-
eled as a Gaussian distribution in our approach. Gaussian distributions
φ(x;µ, σ2) are denoted with three parameters, as the probability value de-
rived from the Gaussian distribution with expectation value µ and stan-
dard deviation σ sampled at value x. The steering is therefore denoted by
β := φ(x, µβ = 0, σ2

β) and the velocity change by γ := φ(x, µγ = 0, σ2
γ). The

expectation values are set to zero, since a steering angle of 0 and an accel-
eration of 0 is assumed to be most probable. The resulting input space U
is a two-dimensional Gaussian distribution in polar coordinates (Fig. 4.3b).

The usage of a Gaussian distribution has several advantages. The Gaus-
sian distribution with its monotonous shape, allows the computational ac-
celeration specified in Sec. 3.2.2. However, in the MDBHF the distributions
can be chosen freely, and therefore arbitrary distributions are possible which
reflect the behavior of the drivers in a better manner. The distributions may
be learned dynamically or set by observations of real drivers.

We have chosen the Gaussian distribution as an a priori assumption for
our models and it is possible to improve them later. The models reflect the
fact that the steering wheel of a vehicle is, in most cases, in a neutral position
and only in rare cases is in extreme positions. The Gaussian distribution
is also a good choice since we do not know the maximum steering angle
βmax of the individual observed vehicle. In addition, the assumptions that
vehicles tend to keep their velocity is according to the vehicle physics and the
traffic conditions with speed limitations. Deviations from this behavior, for
example at traffic lights or curves, are discussed in the behavior prediction
part (Part III) and in Chapter 7.

In the previous subsection we saw that the kinematic constraints depen-
dent on the maximum steering angle, but the steering angle used does, in
fact, depend on the driver. In this section we modeled driver’s steering and
acceleration behavior as a probabilistic variable u. In the next section we
exploit this model to define the probabilistic prediction model.
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4.1.4 From the Kinematic Model to the Prediction model

By defining the distribution of the driver behavior in the last section, which
accounts for the uncertainty in the directional and velocity changes of the
observed vehicle, we can now define the probabilistic prediction model as
a function. This function can then be sampled in the first sub-step of the
prediction algorithm in order to generate the probability flow in the next
step.

The probabilistic prediction model p(x̂k,t|ut, x̂i,t−1) for a certain sys-
tem input ut−1 is derived by the prediction function fP normalized over
the prediction function for all probabilistic vehicle movement alternatives
ut = (β, γ)T in Eq. 4.5. The normalization is necessary in order to achieve a
probabilistic density function with function values between 0 and 1. Other-
wise, the departing flow from the cell would not match the probability mass
in the cell.

p(xt|ut,xt−1) :=
fP (ut,xt,xt−1)∑

x∗
t∈Xt

fP (ut,x∗t ,xt−1)
(4.5)

The state variable xt−1 and the input variable ut together determine the
probabilistic reachability of the states x as stated in Eq. 4.6. This equation
can be directly derived by the kinematic constraints. Figure 4.3a helps us
understand the effect.

l0t
l1t
||vt||
ω(vt)

 =


l0t−1 + cos(β + ω(vt−1)) · (||vt−1||+ γ) ·∆T
l1t−1 + sin(β + ω(vt−1)) · (||vt−1||+ γ) ·∆T

||vt−1||+ γ
ω(vt−1) + β

 (4.6)

In contrast to the deterministic kinematic model, the prediction model
uses β and γ as part of the probabilistic input variable ut = (β, γ)T . The
reader intuitively understands the correctness of the equation when substi-
tuting u := 0. This is the state transition modeling the expectation value
in the normal distributed u. The expectation value of the transition will
transfer the probability from lt−1 to l′t as illustrated in Fig. 4.3a. In other
words, a vehicle with a non-steering and non-accelerating driver will move
from position lt−1 to l′t. The absolute velocity value and direction stay the
same (third and fourth line of Eq. 4.6).

The probabilistic velocity change and steering angle ut has the effect
that the probability is not just flowing into the expectation value, but is
also distributed to different subsequent states. The anticipated velocity and
position in time step t of a vehicle with given position lt−1 and velocity vt−1

in the previous step is given by Eq. 4.6. The normalization in Eq. 4.5 causes
the overall probability value propagated from the node i to all following
nodes k in Eq. 4.1 is exactly the probability value in node i. In the last
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substep of the prediction step all flowing probability can be summed up in
node i again.

In the BHF approach Eq. 4.6 is sampled at the grid cells. By knowing the
sample positions, and thereby the distances and angles between the starting
cell and the sample points, we can postulate Eq. 4.7 as a generic prediction
model for each grid cell i.

Remember that the sample positions are given, since the grid cells specify
at which positions the prediction model should be sampled (c.f. Sec. 3.2.3).

fP (vi,t−1, lk, li) := α(ω(lk − li);ω(vi,t−1), σ2
β)· (4.7)

γ(||lk − li||/∆T ; ||vi,t−1||, σ2
γ)

+ α(ω(lk − li) + π;ω(vi,t−1), σ2
β)·

γ(−||lk − li||/∆T ; ||vi,t−1||, σ2
γ)

The uncertainty due to speed changes is combined by a multiplication
with the uncertainty due to the direction change. The expectation value
can be set to the direction respective to the velocity in the previous time
step. For a given velocity v, each position difference between the two sample
points lk − li is assigned a transition probability. The attentive reader will
have noticed the second line of the equation. This line accounts for the
possibility of driving backwards. The line becomes effective at very small
velocities and/or large prediction horizons ∆T .

More information about prediction models can be found in [3] and [65].
[65] use a slightly different model. Instead of setting the new velocity di-
rection ω(vt) directly by the location difference ω(lk − li), the direction is
recomputed by rotating the velocity with ω(vt) − ω(vt−1). The underlying
assumption is that the steering angle stays constant instead of preferring
non steering. While this difference is important for the MDBHF, the effect
becomes obsolete later when using the ICUBHF, since in the ICUBHF the
steering angle is specified by the driving behavior (c.f. chapter 7).

In this section we have learned how the prediction step in the MDBHF
works. We derived a probabilistic prediction model from knowledge about
vehicle dynamics. We also mentioned that driver behavior is an additional
element of uncertainty, which can be modeled as well. As general rule of
thumb, it can be stated that the better the vehicle kinematic and driver
behavior are modeled, the better the estimated states transitions will cor-
respond with the real state transition an actual system will undergo. The
influences of these model assumptions on the estimate are illustrated upon
in the next section.
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4.2 Conclusion on Model Assumptions and their
Influence on the Estimate.

As human drivers do, also the technical systems have to rely on assumptions
in order to compensate for uncertainties in the available sensors. Most of
the time, the internal models are good enough, so that humans do not even
notice that the brain relies on them. Neither, do we notice that what we
see is the internal model world, our estimate of the reality rather than the
reality itself. Let’s be more concrete here and look at typical examples of
driving situations most driver will be familiar with. In highway situations at
night the velocities of very slow cars are often overestimated. The prediction
model of the human driver assumes that cars drive faster than trucks. At
the same time, at night our vision is less reliable about the velocity of other
vehicles, and therefore the sensor input is trusted less than the prediction
model. When our vehicle is approaching the car much faster from behind
than expected, we are often immensely surprised. With the approaching
vehicle, the sensor inputs gain in trust and the prediction model is revealed
to be wrong. The fact that the velocity of trucks with the same speed is
estimated correctly and without any surprise situation backs the theory that
the reason is the wrong prediction model.

Another more trivial example is the underestimation of the acceleration
of quickly-accelerating cars. When deciding to enter an intersection some
drivers are confident that certain perceived vehicles will speed up with only
very limited acceleration. When the assumption is proved wrong, the result-
ing situation causes surprise to the drivers of both cars. The driver of the
outbound vehicle is surprised by the other vehicle approaching so fast, and
the driver of the initially accelerating vehicle might be surprised that the
other vehicle entered the intersection, since his prediction model assumed
that other vehicles should give way in this situation. From the Bayesian
perspective, it is clear that much annoyance in the traffic domain is the re-
sult of wrong internal models of traffic participants. In this context, ’wrong’
simply means that the model does not match the real situation.

Since humans rely on models (based on assumptions), it is fair to allow
that to machines. Machines need assumptions as well, since their sensors
give them no complete world knowledge. If all sensors were accurate, com-
prehensive assumptions would not be needed. For example, if the machine
knows what the other drivers want to do, assumptions on their behavior are
no longer needed. In general, how many assumptions are necessary and how
well the world needs to be modeled depends on the quality of the sensors.
The MDBHF and ICUBHF have been developed for cheap state-of-the-art
sensors with high uncertainty (c.f. 5.1). For a tracking system it is there-
fore necessary to have good models. In contrast, for accurate sensors or
sensors with small update time steps ∆T a simple Gaussian distribution as
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sensor model or transition model is often more than enough (c.f. 2.2.4).
But in medium time range predictions, such prediction models would result
in a smooth probability estimate. The PDF of the position estimate would
easily cover the width of the entire road. ADAS algorithms need a more
precise estimate as input. The variance of the estimate PDF depends on
the models. The better the assumptions used in the models are, the more
precise is the resulting estimate.

In the previous section we introduced the prediction model. The assump-
tions made, were that the driver steers with a normal distribution with σβ
and accelerates with a normal distribution σγ . Using small values for σβ
and σγ the PDF of the estimate will only fade slowly. The stronger the
assumption, meaning the smaller the values for σβ and σγ , the slower the
information from the previous time steps is lost, at the cost that the model
might be too strong and that the real state deviates from the strong as-
sumption. This is exactly the same problem that the human driver has in
the examples above.

On the other hand, when the assumptions are too weak, which implies
high values for σβ and σγ , the information from the past time steps is quickly
lost. In extreme cases an automated vehicle is not allowed to enter an
intersection from a give-way road at any time since an opposing vehicle may
suddenly appear out of the dark at any point in time.

The parameters of the prediction model have to be chosen carefully by
the designer and need to correspond with the grid cell distance: the grid cell
distance needs to be small enough to sample the PDFs without producing
many errors. A theoretical analysis is done in Chp. 6. As a final note, the
thought experiments in this section were done for Gaussian models, but they
easily generalize to other formed models.

Prediction models are used in Bayesian filter approaches to model the
state transition. As we already know the Bayesian filter is a two step algo-
rithm using in turns a prediction step and a filter step. In the next section
we will discuss the possibility of using an iterative prediction without filter
step.

4.3 The Pure Prediction Loop

The pure prediction loop is a method that can be used for iterative predic-
tions over a long time interval ∆T instead of using a single prediction step
with small ∆T as an alternative method. It can, for example, be used to
project the current estimate into the future, in order to determine crashing
probabilities and evasion maneuvers by a comparison of the own predicted
trajectory with the predicted estimate of the other traffic participants. Both
methods have advantages and disadvantages. A single prediction over a long
time interval has the advantage of faster computability and a smaller amount
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of discretization errors. One reason for this is the greater distance to grid
distance ratio Λ (c.f. definition in 6.2.2). The other reason is that the sam-
pling after the prediction step has to be applied only once (Sampling errors
are discussed in Sec. 6.2.1). The advantage of the iterative prediction in a
pure prediction loop is that prediction models can be used that are not ini-
tially built for long predictions. For example, as we will see in later chapters
when inferring the lane course to improve the prediction, the behavior of the
prediction functions differs locally. That local behavior might be ignored by
long single prediction steps spanning a great distance.

The iterative pendant to a single long prediction step, the MDBHF in
pure prediction loop, works like this: the sub-steps of the prediction steps
are iteratively applied in Eq. 4.1 and 4.2. Ppk,t−1

from Eq. 4.2 becomes the
new Pi,t−1 in Eq. 4.1, when advancing one time step. The filter step, which
is explained in 5.3 is omitted.

Due to the flattening probability distribution over time, pure prediction
loops are costly to compute. This is because the probability masses climb
over the selective updating limit in more and more cells from time step
to time step. In practical considerations an online computation quickly
becomes impossible with current sequential computation techniques.

4.4 Compensating the Velocity of the Ego-Vehicle

In our MDBHF and ICUBHF approaches we track the relative position be-
tween the observed vehicle and the ego-vehicle. All positions and movements
are observed in the ego-centered-coordinate-frame (ECCF). The advantages
and disadvantages of such reference frames are discussed in the first subsec-
tion. The next subsection discusses the additional implementation effort for
compensating the ego-velocity most ECCFs need. In the subsequent sub-
section we give instructions on how to integrate the ego-compensation into
the MDBHF. In the last section we discuss the consequences of a missing
ego-movement compensation.

4.4.1 Advantages of Ego-Centered-Coordinate-Frames

The use of an Ego-Centered-Coordinate-Frame (ECCF) has benefits for ve-
hicle tracking. First, the sensors are mounted on the ego-vehicle and there-
fore all measurements are relative to the ego-vehicle. On the other hand,
when using a global coordinate system the ego-vehicle has to be located in
the global reference frame first, in order to place the measurements in the
global frame. A tracking algorithm working in the global reference system
needs, at the very least, the ego-position and the ego-direction as additional
inputs. But usual sensors like GPS do not accurately provide this data.
thus, the ECCF is the more natural frame of reference to use. The ECCF
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based tracking needs the ego-yaw rate (or steering angle with vehicle config-
uration) and the ego-velocity as input parameters. Both are available and
rather accurate in automobiles. While the ego-velocity is available on the
Controller Area Network (CAN)-Bus, the yaw rate is provided by an Inertial
Measurement Unit (IMU). This means that on the input side, all necessary
input variables are available in many currently developed vehicles.

On the output side, ECCF based tracking supplies a representation
which can be used directly by ADAS algorithms to generate emergent action.
These actions can be easily derived from the ego-centered estimate PDF by
sensor-to-motor mappings. A well known example is the Braitenberg ve-
hicle [22]. A Braitenberg vehicle maps the sensor inputs directly into the
motor output in order to create an emergent light following or light avoid-
ing behavior (Fig. 4.4). The behavior that a Braitenberg vehicle executes,
would need complex algorithms in a representation using a global reference
system. The usage of ECCF makes it possible to build comparable ADAS
algorithms with intelligent behavior that emerges from the representation
itself, instead of needing a pre-programmed behavior routine for each situa-
tion or special case. Thus, also for adding ADAS capabilities on top of the
tracking algorithm, an ECCF is the more natural choice.

Figure 4.4: The right light sensor of the Braitenberg vehicle a gets a higher signal
and speeds up the right wheel. The left light sensor of the Braitenberg vehicle b
gets a higher signal and speeds up the right wheel. [22]

The disadvantage of ECCF is the higher implementation effort. The
effort is higher, since an ECCF is not an inertial frame of reference, mean-
ing that Newton’s laws of motion cannot be used in the prediction models
without considering the ego-motion. However, assuming that the ego-yaw
rate is constant, it is a rotating reference frame since the ego-vehicle, like
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every Ackerman vehicle, drives around an instantaneous center of rotation
(ICR) defined by the wheel axis [63]. (An ego-yaw rate of 0 can be treated
as a special case or, in order to avoid a special case, we disallow zero and
set zero values to very small values - small enough to appear as zero for our
application. We prefer to disallow zero and treat straight movement as a
circle movement with infinite curve radius). With a rotating reference frame
the influence of the ego-movement has to be compensated in each time step
in order to transform the probability from one time step to the next time
step. The theoretical background for the ego-compensation is the topic of
the next subsection.

4.4.2 Rotating Reference Systems and their Implementation
in the BHF

In a rotating reference frame all relative movements vl consist of a velocity
component caused by the global velocity (we denote it as absolute velocity)
vabs and a velocity component caused by the movement of the ego-vehicle
vEgo (cf. Eq. 4.8).

vl,i = vabs,i − vEgo,i (4.8)

The ego-velocity vector depends on its position on the rotating plane.
Therefore each cell has its specific ego-velocity vector. The ego-velocity can
be denoted as a function of the cell position and the ICR-position, which is
again defined by the yaw-rate or the steering angle and ego-vehicle velocity.

vabs is the movement a stationary observer in a global frame of reference
would see. vl is the movement a moving observer would see. To picture
what happens with positions and velocities observed by an observer on a
non-linearly transferred reference frame you can imagine a transformed co-
ordinate frame and a point with a fix velocity vector in the global reference
system. The point is straight-moving in the global reference frame, but the
movement will be bent in the transformed reference frame. Fig. 4.5 shows
the general principle of how an observer moving on a circle will see a straight
moving vehicle.

When using Bayesian filters, there are two general options about how to
account for the ego-movement during the time transition:

1. Introduce another step, which rotates the representation after the pre-
diction step

2. Consider the turning within the prediction function

The first option introduces a separate step, which is independent from
the prediction step. The advantage is that only a simple rotation of the
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Observer M
ovement

Figure 4.5: A moving observer sees a vehicle at the position of the blue vehicle,
and in the next time step at the position of the black vehicle (rotated by the
negative ego-yaw rate −ω). During the transformation the vehicle is assumed to be
stationary. The observed vehicle has a velocity vR and points at the expectation
value of the next time step. The velocity vector is also transformed by −ω to
the new velocity ṽR. The new expectation value shows the predicted position
of the observed vehicle in the next time step. The observer, who is by convention
arbitrarily but fix positioned in the transferred location space and which is oriented
parallel to the dashed circle, is seeing the movement of the observed vehicle as a
circle movement illustrated as the green arrow. This means in the end, that in the
eyes of a left turning observer objects are deviated on a circular trajectory to the
right.
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representation needs to be done, but the drawback is that another sampling
is needed. In addition to the sampling in the grid cells at the end of the
prediction step, the rotated estimate PDF has to be sampled again at the
grid cells (cf. Fig. 4.6).

Figure 4.6: A simple rotation of a grid requires a resampling.

The second option is more complicated to implement. We decided to
incorporate the turning within the prediction function and ignore the im-
plementation overhead in order to avoid stronger discretization errors due to
the second sampling. The concept of velocities in different reference systems
needs to be implemented within the prediction step, while the first concept
allows us to omit this by applying the rotation on the relative positions and
velocity. The second concept needs the following velocities: The relative
velocity vl, the absolute velocity vabs and, as already discussed, the ego-
velocity vEgo. Additionally, it needs the rotated velocities, which will be
marked by a tilde, e.g. the rotated absolute velocity ˜vabs. In later chapters
we introduce the concept of attractors. The attractors based on context
information also need to be rotated for use in the prediction function, de-
pending on the method used. We mention them here in order to avoid a
double explanation of the ego-velocity compensation. The rotated absolute
velocity using attractors will be denoted by ṽR, the velocity proposed by
the attractor as ṽA.

Note that for the sake of clarity we omitted the cell indices. Each grid
cell has its own velocities, so the velocities usually have, as an additional
index, i.e., the number of the cell i. Only the ground truth velocities used in
other chapters do not need a cell index since there is only one true velocity.

There are at least two ways to incorporate the ego-velocity compensation
in the prediction step. One method is to calculate the transition function
in the coordinate system from the actual time step, depicted by the blue
color in Fig. 4.5. The other method uses the coordinate frame from the next
time step. Both methods are approximate solutions. All transformations
on the velocities are executed on the expectation value, while the transition
function itself is not transformed, because the computational expense would
be too high. The second method is used in our BHF approach due to a
slightly better implementability in our individual implementation, but the
first method is mentioned here first, since it uses the coordinate transforma-
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4.4 Compensating the Velocity of the Ego-Vehicle

(a) Method 1. (b) Method 2.

Figure 4.7: Comparison of the two methods.

tions in a more intuitive order.

Method 1

The first method is illustrated in Fig. 4.7a. The individual steps of the
algorithms are:

1. Calculate prediction expectation values with attractors from context
and starting position (blue).

2. Rotate start position and end position of the vector vR −→ ṽR.

3. Use the new prediction function described by the velocity expectation
ṽR to distribute the probability flow.

The attractor function defines vR = fA(vA, vabs) with vabs = vl + vEgo
and vA denotes the velocity determined by the attractor algorithm vA =
ATTR(contextt−1). Since attractors have not yet been introduced, the
reader may interpret the attractor function fA as the identity function on
vR = fA(vabs) := vabs in order to ignore the attractor influence.

Method 2

The second method is used in our BHF approach. It is illustrated in Fig. 4.7b
and consists of the following steps:

1. Use rotated starting point and rotated lane context contextt−1 −→
˜contextt−1.

2. Calculate transition function with the attractor derived from predicted
˜context and the red starting point.
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4.4 Compensating the Velocity of the Ego-Vehicle

3. Use the new prediction function described by the velocity expectation
ṽR to distribute probability flow.

The attractor function defines ṽR = fA(ṽA, ˜vabs) with ˜vabs = ṽl+vEgo and
ṽA is the velocity determined by the attractor algorithm generated by the
rotated lane context ṽA = ATTR( ˜contextt−1). For this method the reader
may for now look at the attractor function fA as the identity function on
ṽR = fA( ˜vabs) := ˜vabs in order to ignore the attractor influence.

4.4.3 Integration into the BHF via the Prediction Model

The theoretical background of the ego-motion compensation in rotated co-
ordinate systems was discussed in the previous subsections. Now we incor-
porate the results in the prediction step of the BHF in order to compensate
the ego-movement when predicting the position of the observed vehicle.

The type signature of the prediction function (Eq. 4.7) is therefore ex-
tended by two additional parameters: The ego-vehicle influence at node i on
the observed velocity vego,i and the yaw rate of the ego-vehicle ω. The con-
text is also needed as input when the use of attractors is enabled (cf. Chp. 7).
The attentive reader will also notice that the probabilistic transition func-
tion (Eq. 4.5) now depends on the additional ego-movement variables, in
addition to the existing observed driver action variables β and γ, and there-
fore the input vector u increases to u = (β, γ,vEgo, ω)T . We restate Eq. 4.7
here as Eq. 4.9 for the readers convenience.

fP (vi,t−1, lk, li) := α(ω(lk − li);ω(vi,t−1), σ2
β)

·γ(||lk − li||/∆T ; ||vi,t−1||, σ2
γ)

+ α(ω(lk − li) + π;ω(vi,t−1), σ2
β)

·γ(−||lk − li||/∆T ; ||vi,t−1||, σ2
γ) (4.9)

f̃P (Eq. 4.10) with ego-movement compensation now replaces fP (Eq. 4.9).
The content of the function is explained in Alg. 4.1, since f̃P is no longer
representable in equation form.

f̃P (vl, lk, li,vego,i, ωt−1, contextt−1) (4.10)

By implementing this function the BHF is ready for ego-motion com-
pensation. In the next two subsections we will first briefly discuss the BHF
behavior without ego-compensation and then show the benefits in a Car-
maker simulation tracking task.
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4.4 Compensating the Velocity of the Ego-Vehicle

Algorithm 4.1: The new prediction function f̃P in time step t− 1.

input : (vl, lk, li,vego,i, ωt−1, contextt−1)
global input: ∆T
output : The transition activity from node i to node k
// First step. Rotate position and context.

l̃i := predictPoint(li, ωt−1,vego,i,∆T )1

˜context ← predictContext(contextt−1)2

// Second step. Translate to absolute velocities and feed

into prediction function.

˜vabs ← ṽl + vEgo,i3

if UseAttractors then4

ṽA ← ATTR( ˜context)5

ṽR ← fA(ṽA, ˜vabs)6

else7

ṽR ← ˜vabs8

end9

return fP (ṽR, lk, l̃i)10

4.4.4 The Ego-Movement without Ego-Movement-Compensation

The BHF can also be used in a transferred reference frame without ego-
movement compensation. The resulting errors are small, as long as the
velocity changes and the yaw rate are small. That means that in highway
situations with high curve radii and without harsh accelerating or decelerat-
ing actions by the driver, the effects of the ego-motion on the tracking result
are small.

As already mentioned, the biggest challenges for ADAS lie in inner city
scenarios. In inner city situations the ego-vehicle will turn with steeper radii
than in highway situations. This is why new tracking techniques should cope
well with ego-movement when they are planned to work in real world inner
city scenarios.

The explicit compensation of the ego-movement makes it possible to
use a constant absolute velocity assumption instead of a constant relative
velocity assumption on the observed vehicles. The first means that the
prediction model assumes that the absolute velocity of the observed vehicle
stays constant without driver input (α = 0∧ω = 0), and the second assumes
the same for the relative velocity. Only for the sake of completeness do
we mention that the latter model may also have benefits. Note that both
assumptions guarantee that the absolute velocity will stay the same when
the ego-driver input is zero (meaning that the yaw rate and the ego-velocity
is not changed: ∆ω = 0 ∧ ∆vEgo = 0) and therefore no velocity needs to
be compensated. Early versions of our MDBHF approach (cf. [5]) used
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4.4 Compensating the Velocity of the Ego-Vehicle

a constant relative velocity assumption. It delivered good results in large
curves, as used in the TORCS racing simulation. In a wide and steady
curve the relative movement of the observed vehicle stays the same while
the absolute movement changes. This has the benefit of the estimated PDF
staying in the lane in large smooth curved roads instead of trying to model
a straight movement with constant absolute velocity, which would leave the
curve.

In the newer experiments the attractor algorithm is used to achieve a
lane-following behavior. Curves in Carmaker or in the real world are often
much sharper than the curves used in racing tracks. The errors generated
by the constant relative velocity assumptions are therefore higher than the
benefits. There is no need to use a fixed relative velocity assumption instead
of a fixed absolute velocity assumption when using attractors.

In curves with small curve radii the attractor algorithm clearly outper-
forms the positive side effects of the constant relative velocity assumption.
In Sec. 6.3 we analyze the errors caused by a missing ego-movement com-
pensation. The results clearly show that the ego-movement compensation
is necessary for inner city tracking tasks.
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Chapter 5

Position Tracking

Advanced driver assistant systems need to know the position of vehicles
around the ego-vehicle in order to derive actions or driver warnings in dan-
gerous situations. The typical data flow from the overall system input to
the overall system output can be separated into the following modules:

1. The sensors and the sensor post-processing

2. Object/vehicle detection

3. Data association

4. Object/vehicle tracking

5. Action derivation

6. Output to the vehicle or driver.

This classification is valid for ADAS which use the concept of object
hypothesis. We have already mentioned that ADAS tasks that allow the
use of strong assumptions on the situation, e.g. in highway scenarios, may
manage tasks without the concept of objects (cf. introduction of Chp. 4).

This chapter deals with the fourth module, the object tracking task.
The core of the object tracking module is the filtering of sensor information
from the sensor and object detection channel. As previously discussed, the
Bayesian filter consists of a prediction step and a filter step. The prediction
step was described in detail in the last chapter, and we now focus on the
filter step. However, before the new sensor information can be integrated
in, it has to pass through the previous modules, which we outline below.

There exists a vast number of sensors which can be or which are already
used for ADAS. They can be categorized into stationary or on-board sen-
sors. There are big projects which attempt to monitor dangerous areas like
intersections [48], and systems which monitor traffic in order to optimize the
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traffic flow [57], mostly with stationary sensors attached to the infrastruc-
ture. The quality of the needed sensors and the budget for high-precision
sensors depend highly on the task. It is costly to equip infrastructure with
sensors. Maintaining is often more expensive than the costs of the technical
parts themselves and the needed standardization demands high costs for lob-
bying. The system should work with the vehicles of all manufacturers and,
depending on the technology used in the end, some car manufacturers will
have advantages in the beginning. Many car manufacturers focus therefore
on on-board sensor systems for ADAS.

Those who use on-board sensor applications have two philosophies. The
first is related to finances. Relatively inaccurate low-cost sensors, which
are already integrated into top-of-the-range models, are used by many car
manufacturers for ADAS solutions. This is because the current consumer
wants ADAS solutions without much additional charge and the dictate of
the car designers is to disallow any superstructures on the vehicles. The
second philosophy is to use as much technology as possible. The most ex-
pensive sensors or sensors that need superstructures on the cars, as well as
world-knowledge by map databases in order to get a detailed image of the
surrounding world. The most famous example of this approach is Google.
The inaccuracy in the world knowledge is so far reduced that even prototypes
of vehicles which drive autonomously in city-center and rural conditions are
possible. The results of current ADAS systems using low-cost sensors are far
from such a world-knowledge. Perhaps the car-manufacturers will also use
map-data more intensively in the future in order to reduce the inaccuracy
in the world knowledge, with Google and others acting as map providers
for them. How such map data can be used to improve tracking is part of
Chp. 7.

Depending on which sensors are used an individual sensor post-processing
and object detection algorithm is used. The detection of a vehicle on a
camera image differs from the vehicle extraction of a radar echo. Often,
especially in the radar sensors used by the car manufacturers the sensor
post-processing and the object detection are done by the sensor as a black-
box component. For camera sensors, these algorithms are separate and
independent from the camera manufacturers. One of the many reasons for
this is that features extracted from camera sensors are more diverse. The
ADAS systems not only try to extract cars from the camera image, but
also lane markings, the ego-lane [47] or the free driving space [46]. The
properties of an object extracting algorithm used in our real-world evalua-
tion are explained in Sec. 10.4.1. The BOF approach mentioned previously
(cf. Sec. 2.2.3), can also be used on the sensor post-processing level to fuse
sensor information on a low-level representation before extracting features
from the BOF-map in order to detect objects. All algorithms that extract
objects, whether they are working on camera images, radar or the cluster-
ing algorithm working on BOF-maps [27], can act as a virtual sensor for
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the object-tracking-module. Unfortunately, the object hypotheses delivered
by the object detection module are often not PDFs, but simple positions.
In addition, the error distributions are often unknown and therefore it is
also difficult to rebuild PDFs from the position of the object hypothesis and
the error distribution. Much can be improved in this field by sensor man-
ufacturers and by the developers of virtual sensors. Too much information
is getting lost in the first two modules with the state-of-the-art solutions.
This information in the form of PDFs instead of single positions could be
used meaningfully by non-Gaussian Bayesian filter implementations. The
reason that virtual sensors providing PDFs are not widespread in use is a
vicious circle. It is the consequence of the fact that most state-of-the-art
tracking algorithms can only cope with Gaussian input, and therefore the
engineers demand sensors to deliver single positions or, at best, Gaussian
PDFs as an input for tracking. This is similar to the self-delusion that exact
positions are better than PDFs, that is later mentioned in Sec. 6.2.3. The
lack of virtual sensors providing PDFs also downscales the positive effects
when using non-Gaussian Bayesian filter implementations.

In the following section we show basic ideas as to how low-cost sensors
like radar and camera can be modeled in the BHF. These models are used in
our simulations and in real-world-scenarios in later chapters. Subsequently,
we explain the vehicle tracking in the MDBHF using the sensor models to-
gether with the prediction models. We show that the usage of non-Gaussian
sensor and non-Gaussian prediction models can deliver better results in a
tracking task.

5.1 Modeling Sensors

Sensor models (also known as measurement models) reflect the knowledge
about the errors a sensor has when sensing a vehicle at a certain position.
We first explain the theoretical concept of sensor models with a row of simple
examples. Then we show how we modeled sensor models for ADAS in order
to use the sensor information for the tracking task in the next section.

5.1.1 Measurement Models and Inverse Measurement Mod-
els

The measurement model (or sensor model) describes the sensor measurement
depending on the vehicle state in the real world. It is a CPD since sensors
always deliver a noisy and incomplete image of the world, e.g. the camera
sensor which images the 3D world onto a 2D image. In Bayesian filters we
use an inverse sensor model to map the 2D image back to a 3D position.
Of course, like the sensor model, it is also fraught with uncertainty and
therefore a CPD (cf. overview in Fig. 5.1).
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5.1 Modeling Sensors

(a) Real world. (b) Sensor annotates ve-
hicle in camera image co-
ordinates.
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(c) The vehicle position
in the model world.

P(Y|X) P(X|Y)

(d) The measurement model P (Y |X) determines were the sensor detection will
be given the real position. The inverse measurement model P (X|Y ) reasons the
vehicle position that caused the measurement.

Figure 5.1: The real world is sampled by the camera sensor. Within the camera
image a virtual sensor detects the vehicle position in camera image coordinates.
The real position can be estimated using the inverse measurement model.
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The word ’inverse’ is used in the inverse measurement model, because
it reasons from the effects to the causes [65]. In Bayesian filtering the mea-
surement model and the inverse measurement model can be substituted for
each other by using the Bayes’ theorem. In some situations it is easier to
postulate the inverse measurement model instead of modeling the forward
measurement model. Further information on sensor models used for range
sensors like laser scanners can be looked up in [65].

For a better understanding of inverse and forward sensor models we use
a minimal working example in this chapter. We introduce a light barrier
array as a sensor. Each of the six single light barriers Y={1,..6} detects
whether there is an object in the line between the light transmitter and
the photoelectric receiver at corresponding position X={a,b,c,d,e,f}. This
is probably one of the simplest designs to determine the position of an
object. Additionally, we assume that the object size is exactly the size
of the distance between two sensors, so that it is always detected by exactly
one light barrier in the array. Without loss of generality we assume that it
is a stationary sensor instead of an on-board sensor. This does not change
the basic understanding.

In the first example, light barrier four detects an object, therefore the
CPD created by the sensor measurement P (X|y = 4) is P (x = d|y = 4) =
1 ∧ P (x = X \ {d}|y = 4) = 0 as illustrated in Fig. 5.2.

a b c d e f

1

X

P(X|y=4)

Figure 5.2: Sensor y=4 has a detection, meaning the object needs to be at position
d.

In the first example we assumed that all light barrier arrays are properly
mounted and cannot be shifted to the side. The direct assignment of 1 indi-
cates that this can also be solved with deterministic functions. We assume
in the second experiment that the same light barrier array is not mounted
on the floor and can be shifted to each side. The reason for that shifting
is unclear and not important, perhaps it was shifted by our lab dog Kelly.
We know from previous observations that there is a 20 percent chance that
it shifted by exactly the margin between two light barriers to the left or
with the same chance to the right, so the neighbor light barrier will sense
an object instead of the correct light barrier. This can be perfectly modeled
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5.1 Modeling Sensors

by a probabilistic sensor model, and the corresponding CPD is illustrated in
Fig. 5.3. Note that the light barriers are mounted and fixed on a structure
and only the structure as a whole can move. Therefore the CPD is the same
for the whole input dimension y.

a b c d e f

1

X

P(X|y=4)

Figure 5.3: The CPD for y=4. There is a 60% chance that the object is at
position d. Note that the full CPD is a function with a two dimensional input
space assigning each (x, y)-tuple a probability value. We set the y dimension fixed
to 4 and illustrate the probability of an object occurrence over the x direction in
this graph. For each sensed position y the CPD assigns a probability distribution
over x.

Note that the inverse measurement model is equal to the measurement
model in this example (cf. Fig. 5.4), since P (Y |X) = P (X|Y )P (Y )/P (X)
and the object can appear in the whole array with the same probability
(P (X) is a uniform distribution) and each light barrier is as sensitive as any
other barrier (P (Y ) is a uniform distribution).

1 2 3 4 5 6

1

Y

P(Y|x=d)

Figure 5.4: The forward sensor model for x=d. When the object is at position d
there is a 60% chance that the light barrier 4 will be activated and a 20% chance
that light barriers 3 and 5 will be activated.

Let’s first focus on how we model sensors used in the ADAS domain.
Later we will use the above minimum working example again in order to
explain the problem of multi-object tracking and the data-association prob-
lem.
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5.1.2 Radar and Camera Sensors

In most ADAS approaches the sensor model is modeled as Gaussian noise in
the position space. We already used more sophisticated prediction models
in this thesis. In this subsection we will introduce two more sophisticated
sensor models and use them in the simulated and real-world evaluations. In
the simulations the model parameters of the sensor model match exactly the
simulated sensor characteristics. We are able to set the measurement model
this way because the noise model is known under simulation conditions.

In the real-world scenes the measurement model parameters are chosen
as a rough estimate since, as already mentioned above, object detection algo-
rithms or virtual real world sensors do not provide sensor noise distributions.
Such distributions can be determined for specific sensors under specific con-
ditions by excessive empiric evaluations. This is not reasonable here since
object detection algorithms are under constant development and therefore
the measurement model undergoes changes. Additionally, the noise per-
formance of the virtual sensors depends on the situation, the weather, the
brightness, and parameters of the detection algorithm. Therefore, the pa-
rameters of our measurement models are manually adjusted to the situation.

In our experiments we mainly made use of one of two different sensor
types, the radar sensor or the camera sensor. Both are low cost sensors
used for ADAS tasks. The origin of the reference system, in which the
state X is measured, is set in each case to the sensor position in order to
avoid conversion between the sensor and the ego-vehicle reference system
(cf. Sec. 3.2).

Radar Sensor

The radar sensor is rather good at estimating distances. It emits electro-
magnetic waves and measures the echoes created by obstacles with help of
a radar antenna. Using the Doppler effect each position measurement is
also assigned a velocity value. The drawback of this sensor type is that
ghost echos can occur from reflections. The noise in the angular dimen-
sion is rather high. The advantages in the ADAS domain are the sensing
capabilities through fog and rain.

Although the velocity measurement can be easily used by our MDBHF
approach to assign a value to the velocity dimension, we decided not to
incorporate this information, but to derive the velocity by the position di-
mension, because we did not have access to real-world radar sensors with
such velocity information. From Bayesian filter theory we know that a BHF
proved to work without this easing will also work with better results with a
measured velocity.

Equation 5.1 shows our measurement model for the radar sensor. Using
the Bayesian formula and the assumption that the a priori distributions P(X)
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and P(Y) are equal we can directly state the inverse measurement model in
Eq. 5.2. They are equivalent here since the Gaussian terms α and γ, which
denote the expectation value parameter and the sample point parameter,
can be swapped.

P (y|x) := η · α(ω(y);ω(x), σ2
angle) · γ(||y||; ||x||, σ2

distance(||x||)) (5.1)

P (xk|y) := η · α(ω(lk);ω(y), σ2
angle) · γ(||lk||; ||y||, σ2

distance(||y||)) (5.2)

η is the normalization constant in order to receive a proper PDF. σ2
angle

is the noise in the angular dimension and σ2
distance the noise in the distance

measurement. The remaining variables are already known: lk is the posi-
tion of the representative of the cell xk and y is the position of the sensor
measurement.

The relative uncertainty in the measured distance depends on the dis-
tance of the object. The uncertainty in the noise is modeled over-proportional
to the distance. It is therefore implemented as a function depending on the
distance ||x||, or for practical considerations, ||y||. Since the real distance is
not known by the sensor model, we use the simplification ||x|| ≈ ||y|| and
use the measured distance ||y|| for the noise function instead of using the
more correct but unknown ||x||.

The noise σ2
distance (Eq. 5.3) increases by 2% with increasing distance

(value used at Honda Research Institute Europe (HRI-EU)).

σ2
distance(||x||) := ||x|| · 0.02 (5.3)

Camera Detection Sensor

The object detection working on camera images is also more precise in closer
locations, since more object features are more clearly visible. We can reuse
the radar model Eq. 5.2 in order to postulate the camera model. The dis-
tance noise σ2

distance needs to be adapted to the specifics of cameras.
In the camera sensor model the noise variance in the camera depth di-

mension also depends on the distance, but the noise in the distance is deter-
mined by the pixel resolution in the camera depth dimension. With increas-
ing depth the camera resolution decreases, becoming zero in the vanishing
point. At HRI-EU the following model is used: The camera resolution in
the depth dimension (Eq. 5.4) depends on the pixel width in meters dpixel,
the focal length dfocal and the camera baseline dbaseline.

σ2
distance(||x||) :=

1

2

dpixel
dfocaldbaseline

· ||x||2 (5.4)

The factor 1
2 is used since the deviations are possible to the same extend

in each direction and therefore split by the factor. The provided parameter
values are dpixel = 1, 10 · 10−5 m, dbaseline = 0.3 m, dfocal = 0.0120 m.
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As a result the relative measurement error increases quadratically in the
camera model in comparison to the linear increase in the radar model. The
changing noise value highly impacts the influence of the measurement on the
estimate. When tracking vehicles near the ego-vehicle the noise in the sen-
sor measurement is low, the estimate sharp and therefore the relatively wide
prediction model comparably unimportant for the tracking. With further
distances the measurement model is very wide and gives less information
on the tracked vehicle, and the estimate, and therefore the prediction is
weighted higher by the Bayesian filter. In Sec. 5.2.2 we will briefly dis-
cuss this effect. First, however we have a look at how to fuse the position
measurement into the position estimate.

5.2 Fusing Sensor Information

With proper, probabilistic sensor models in hand, we can now proceed with
fusion the sensor measurements into the state estimates in the MDBHF.
In 2.2.2 we learned that the Bayesian filtering consists of a prediction step
and a filter step. While in the prediction step the estimate distribution is
distributed according to the assumptions on the movement, in the filter step
the sensor measurement of the new time step is combined with the predicted
estimate.

The first subsection deals with the filter step itself, and the second calls
to mind how recursive filtering without prediction would look like.

5.2.1 The Filter Step of the MDBHF

The filter step of the MDBHF does not deviate from the filter step of a
usual BHF (Eq. 2.24). Filtering takes place in the position dimensions only.
The velocity is derived by the position and not measured by a sensor, and
there is therefore no fusion necessary between a predicted velocity and a
hypothetically measured velocity.

Eq. 2.24 is restated here for the sake of clarity as Eq. 5.5. The variable
z is renamed to y to comply with our MDBHF notation.

For all grid cells k do:

pk,t =ηp(yt|x̂t) · pPk,t−1
(5.5)

In contrast to the rather complicated prediction step, the filtering step
is easy to implement. Eq. 5.5 shows how a sensor input can be fused into
the estimate by multiplying the value of the measurement model (yt|x̂t)
sampled at cell k and the existing probability value pPk,t−1

(which represents
the predicted estimate) in cell k. The result must again be normalized to a
probability density function.

77



5.2 Fusing Sensor Information

The simple multiplication executed over all grid cells in order to fuse the
sensor input with the predicted estimate is only possible due to the indepen-
dence assumption (independence was briefly discussed in Chp. 2. When XP

and Y are independent the following is a correct equation: P (X|Y,XP ) =
P (Y ) · P (XP )). The application of the filter step has a correcting influence
on the estimate, which is made explicit in the following subsection.

5.2.2 Position Estimation of Static Objects and the Balance
between Measurement and Prediction

The filter step in the MDBHF can be understood best when estimating the
position of static objects. In 4.3 we applied the prediction step in a loop.
For the tracking of static objects we can also apply the filter step in a loop,
since the prediction step is only necessary in order to model moving objects.

Hence the filter step on its own only works correctly for static objects.
The underlying assumption is in this case that the measurement of the cur-
rent time step is generated by exactly the same ground-truth state x as
in the previous time step. The multiplication in the filter step provides a
combination of the knowledge of both sources of information, the estimate
from the previous time step Xt−1 and the measurement Yt. When using
Gaussian distributions, it can be clearly seen in the Kalman-filter equa-
tion 2.17 that the multiplication generates a weighted averaging. For the
reader’s convenience the one-dimensional Kalman equation is restated here
as Eq. 5.6.

P (xt|y1:t, u1:t) =α exp

1

2

(xt −
(σ2
t−1+σ2

x)yt+σ2
yµt−1

σ2
t−1+σ2

x+σ2
y

)2

(σ2
t−1+σ2

x)σ2
y

σ2
t−1+σ2

x+σ2
y

 (5.6)

σ2
t−1 + σ2

x can be aggregated in the equation, and is then the variance of
the predicted estimate σP t−1

2. The term ’predicted estimate’ is not correct
for a filter only step, so that we will call it ’prior estimate’ in this subsection.
The new expectation value of the estimate after the filter step is the output
of a weighted average over the prior estimate and the measurement

µt =
σP t−1

2yt + σ2
yµt−1

σP 2
t−1 + σ2

y

(5.7)

and the variance of the new estimate is

σ2
t =

σP t−1
2σ2
y

σP t−1
2 + σ2

y

(5.8)

The weights of the weighted averaging in Eq. 5.7 are the variance of
the predicted estimate σP t−1

2 and the variance of the measurement σ2
y .
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The variance is inversely proportional to the information the distribution
contains. A high variance in the predicted estimate means that the prior
estimate contributes less information to the new estimate and therefore the
measurement is weighted higher in the averaging.

The resulting distribution contains more information on the estimate and
has therefore a variance smaller than the smallest variance of the combined
variables (cf. Eq. 5.8). By repeatedly combining the sensor measurement
with the estimate, the information on the object becomes higher and higher
and therefore the uncertainty in the form of the variance in the estimate
becomes smaller and smaller.

This concept also applies to non-Gaussian variables or when combining
sensor measurements from different sensors in the same time step. How-
ever, the stochastic variables need to be statistically independent in order
to be combined. Only fully independent variables create the information
gain postulated in Eq. 5.8. The more information overlapping of the to be
combined variables occurs the lower is the information gain. When both are
totally dependent the information gain is zero. In [34] suggestions on the
combination of dependent Gaussian distributions are made.

The above findings help us to understand what will happen in our
MDBHF when using the radar sensor or camera sensor introduced above.
The sensors are less accurate at higher distances. That means that with
increasing distance between the ego-vehicle and the observed vehicle, the
uncertainty in the sensor rises and the prior estimate is increasingly trusted
in comparison to the sensor input. In contrast to the static object state as-
sumption used in this subsection, the vehicles in our experiments move and
therefore a combination of the filter step and the prediction step is needed
for vehicle tracking. However, the prediction step induces information loss
by adding the motor noise in each iteration. At a greater distance the infor-
mation gain of the filter step becomes smaller in relation to the information
loss of the prediction step, and the overall information in the estimate de-
creases and levels out at a lower value. This behavior is absolutely consistent
with our human perception of uncertainty and information. The following
performance evaluation will evaluate this statements.

In the next section we introduce the concept of tracking as a combination
of the prediction and filtering step.

5.3 Bayesian Tracking with the MDBHF

Having defined the probabilistic prediction model and the probabilistic sen-
sor model, all components are now available and can be put together. Fig-
ure 5.5 shows the complete Bayesian network created by the introduction of
the stochastic variables and the CPDs introduced in the last chapters.

To summarize: The vehicle location l as part of the state vector X gen-
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Figure 5.5: The figure shows the MDBHF as an Bayesian Network Graph. The
prediction step and the filter step is highlighted. The individual time slice is marked
by the vertical dashed lines.

erates the sensor measurement. This dependency is represented by the mea-
surement model CPD. Remember that altogether the state vector consists
of the variables x = (l0 l1 0 ||v|| ω(v))T ∈ X (cf. Sec. 3.1.1). The velocity
v is derived by the position difference. It is merged into a direction and an
absolute value in each grid cell (cf. Sec. 3.3). Both are, together with the
ego-movement parameter for ego-movement compensation the inputs for the
prediction model CPD (cf. Chp. 4). The result is the predicted position lPt .
The partition of the estimate into an estimated position lt and a predicted
estimate lPt position is artificial and not necessary at first glance, but has
advantages as shown in later chapters.

5.3.1 The MDBHF Performance versus the EKF

Does the MDBHF perform better due to the more sophisticated models
enabled by the distributed cell representation? Or will the extended Kalman
filter (EKF) still outperform the MDBHF due to the disretization errors of
the MDBHF or other non-concerned issues? These questions were addressed
in one of our first evaluations (published in [5]).

Scenario Description

The evaluation scenario was created by The Open Racing Car Simulator
(TORCS) [2]. The observed vehicle O is overtaking the ego-vehicle E in a
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2-lane highway scene. After overtaking, vehicle O reduces speed and cuts
into the lane of vehicle E. They then both drive then with the same speed
and finally enter a right curve. Fig. 5.6 shows the scenario when vehicle O
is beginning to cut into the right lane. The detailed scenario description
is: The ego-vehicle E uses the MDBHF to track the position of vehicle O
during the overtaking. Car E accelerates to a constant speed of 80 km/h
in the right lane of a simulated road. The overtaking car O starts next
to E in the left lane and overtakes car E while accelerating to 100 km/h.
It stays in that lane for 8 timesteps = 4.0 seconds, which corresponds to
100 meters. It then, switches lanes ahead of car E for 4 timesteps = 2.0
seconds, while reducing speed to 80 km/h, and finally continues in the right
lane ahead of car E for another further 8 timesteps until it enters a right
curve. The overtaking trajectory of car O was intentionally controlled in a
rather abrupt fashion to evaluate to what extent the tested filters can deal
with different directional changes. In the screenshot Fig. 5.6 the estimate
distribution appears to be rather wide, but the reader should notice that
a log-scale color coding was used. However, when looking at the update
interval ∆T = 500 ms it is clear that a lot of uncertainty is inherent in
the estimate, due to the limited amount of measurement updates. The
sensors were modeled to mimic actual ones, even when ∆T was chosen rather
high due to constraints of the TORCS simulator. The radar sensor uses a
standard deviation in the angular dimension of σ2

angle = 0.218 rad. The
distance between the grid cells is set to d = 0.5 m

Figure 5.6: A screenshot from the test scenario. The yellow car O is overtaking
the red ego-vehicle E, heading for the curve. The active grid cells representatives
are drawn in perspective on the street.
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5.3 Bayesian Tracking with the MDBHF

Performance Evaluation

In order to measure the tracking quality we use as metrics the Euclidean-
distance dist(E(P (Xt)), xreal) between the expectation value of the estimate
E(P (Xt)) and the ground truth position xreal and the probability assigned
to the ground truth position by the estimate denoted by P (X = xreal). In
later chapters we will introduce and discuss a wide variety of more sophisti-
cated quality measures. Note: E(P (Xt)) is found by a probability weighted
averaging of the positions of all grid cells. The parameters are evaluated in
50 runs with the camera measurement model and camera noise, and in 50
further runs with the radar measurement model and radar noise, each with
an identical trajectory.

Fig. 5.7 shows the trajectory of the ground truth positions xreal, the
expectation value E(P (X0t)) and variance

√
V AR(P (X0t)) in the x0 direc-

tion of the MDBHF estimate and the EKF estimate. In the figure and in
Table 5.1 it can be seen that the MDBHF outperforms the Kalman filter
in all but one stage of the scenario. It is only in the lane changing state,
and then only when using the radar sensor, that the Kalman filter performs
better due to a faster reaction to the lane change. The MDBHF estimate is
slightly delayed upon the lane change but yields a lower deviation of its ex-
pectations. This is because the trust in the sensor is set too low by the radar
model of the MDBHF and modeled with lower variance by the Kalman filter
sensor model. The camera sensor settings in the MDBHF and the Kalman
filter are generally far more comparable and in all cases the distance metric
indicates a better performance of the MDBHF (cf. Table 5.1).

Table 5.1: Average Euclidean distances dist between real position xreal and ex-
pectation value of the position E(P (Xt)) and average standard deviations σ =√
V AR(P (Xt)) of the expected positions during the different stages of the over-

taking maneuver

Stage Driving by Changing Lane In front

Radar Data dist σ dist σ dist σ

MDBHF 0.49 1.51 1.81 2.08 0.62 2.24
EKF 0.60 2.83 0.84 4.57 0.72 4.50

Camera Data dist σ dist σ dist σ

MDBHF 0.18 0.86 0.72 1.36 0.33 1.59
EKF 0.22 0.83 1.06 1.37 0.66 1.60

The E(P (Xt)) interpretation (cf. Fig. 5.8 and Table 5.2) backs the con-
clusions drawn from the distance measure. This means, that at least with
these parameter settings and this situation, that the MDBHF can outper-
form the EKF in filtering tasks. It can be used for tracking the position of
a vehicle equal to the EKF.
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Figure 5.8: The probability P (x), and standard deviation, for the likelihood of
the true state x during the overtaking situation with radar sensor information.
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Table 5.2: The average probability P (X = xreal) at the real position xreal in the
different stages of the overtaking maneuver.

Stage Driving by Changing Lane In front

Radar Data

MDBHF 0.0374 0.0168 0.0140
EKF 0.0235 0.0163 0.0121

Camera Data

MDBHF 0.0744 0.0246 0.0151
EKF 0.0331 0.0174 0.0104
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5.3 Bayesian Tracking with the MDBHF

Conclusion

Of course, it is always difficult to produce a fair comparison between an
optimized own approach and another existing approach as a benchmark.
We tried to be fair in the comparison and optimized the Kalman filter as
far as possible. The models of the Kalman filter are limited to Gaussian
noise, so we formed and rotated the models in a way that best matched the
uncertainty in the sensors and the motor noise. For this reason we preferred
to use an EKF, with a sensor model depending on the measured angle to
the observed vehicle. More details on this modeling can be read in [5].

Before going from the position tracking to the driving behavior tracking
in the next chapter, we offer a short glimpse on multi-object tracking in the
next subsection.

5.3.2 Multi-Object-Tracking and the Data-Association Prob-
lem

In real situations there is usually not just one vehicle to track, but multiple
vehicles. Therefore the object detection algorithm detects a number of M
vehicles at once. Bayesian filters can only handle one object hypothesis, so
M Bayesian filters are needed. A pre-selection must be done, which decides
which measurement is routed to the input of which Bayesian filter. The
problem of finding a correct pre-selection is called the Data-Association-
Problem.

For better comprehension we will again use the sensor array as a minimal
example. Lets assume that light barriers 2 and 4 both detect light absorp-
tion. Then, assuming that both light barriers are similarly trustworthy, the
CPD of the sensor consists of two peaks, each with 0.5 change due to the
normalization of the sum to 1 (cf. Fig. 5.9).

a b c d e f

1

X

P(X|y={2,4})

Figure 5.9: Light sensors 2 and 4 are both activated with the knowledge or the
underlying assumption that only one object can or does trigger the activation.

The measurement model in the multi-object tracking has to take into
consideration the fact that a measurement can be the result of different
objects P (Y |Xo1 , Xo2 , .., XoM ). The inverse measurement model is hard to
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postulate, since the detection cannot be associated to exactly one input.
Hence, it is not a function.

Depending on the sensor type a detection algorithm has different prop-
erties when mapping the detection exactly to a vehicle: The color of the
vehicle, the size, direction or velocity of the detection and the proximity
to other detections. Unfortunately, a detection can be temporarily lost by,
for example, obstruction or weaknesses of the detection algorithm. In some
cases the vehicle will mistakenly be assigned to a new object after the loss.
For this reason, the detection algorithm also needs a kind of tracking, which
can be executed by a BOF or by a backward information flow from the
vehicle tracking top-down to the object detection algorithm. Such informa-
tion is used, for example, by the joint probabilistic data association (JDPA)
algorithm [27]. A survey of data association techniques can be found in [32].

The association from a detection to an object hypothesis will never be
accurate, a problem which has to be solved with probabilistic models. In
most concepts the detections have influence on the object hypothesis which
is weighted with the probability of causality. Each object hypothesis de-
pends therefore on all detections to a certain degree. We will not get into
the mathematical details here and refer to the cited literature for further
readings. In the following we assume that the data association is done cor-
rectly by the detection module which delivers the object position of a single
object hypothesis as a virtual sensor.

As a last point we want to graphically outline the overall concept again:
how ADAS deal with ambiguous detections. Either the multiple peaks in the
detection are decomposed into multiple object hypothesis when transferring
information from the detection step to the tracking step (cf. Fig. 5.10),
or all information is first gathered in a representation within the detection
step, e.g. in a BOF (cf. Fig. 5.11) in order to do the data association by a
clustering on that gathered representation.

a b c d e f

1

X

P(X
o1
|y=2)

a b c d e f

1

X

P(X
o2
|y=4)

Figure 5.10: The detections are associated to two different objects o1 and o2. The
input is fed into two different Bayesian filters.

In conclusion, each Bayesian filter has, by definition, the ”problem” that
it can only deal with single objects, so when using BHFs an own BHF is
needed for each object hypothesis. Since multi-object tracking is a problem
that holds true for all Bayesian filters, it is not especially relevant for the
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a b c d e f

1

X

P(X|y={2,4})

Figure 5.11: Light sensors 2 and 4 are both activated and the sensor input is fed
directly into a BOF without an object assignment. Positions b and d seem to be
occupied in the BOF representation.

scope of this work, but the problem is related to the task of finding out the
correct behavior model of a certain driver, which we discuss in Part III.

In the Chp. 7 we will start to model the behavior of the observed driver
in order to later estimate the correct behavior. In contrast to the multi-
object tracking, where the BHF acts like all Bayesian filters without any
specific advantages, the distributed grid cell representation of the BHF has
several advantages when it comes to behavior modeling. But first we will
have a small excursus into error analysis of the MDBHF.
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Chapter 6

BHF Error Analysis

The MDBHF is now fully introduced. As was shown, the MDBHF essen-
tially approximates the environmental state and the progress over time by
means of an enhanced version of the BHF. Filters of this kind inevitably
cause estimation and prediction errors due to the necessary compact repre-
sentations. We already discussed erroneous model assumptions in Sec. 4.2
and errors due to the sparce velocity dimension in the MDBHF in Sec. 3.3.3
during its introduction. Now we focus on discretization errors of the BHF
and other errors that are typical due to the grid representation. Addition-
ally we evaluate the MDBHF behavior on systematic sensor errors and the
error when running the filter without compensation of the ego-motion.

6.1 Tracking in a Simulated Example Situation
with Varying MDBHF Parameters

In the following subsections we evaluate the performance in the tracking in a
simulated scene (cf. Fig. 6.1). The scene is identical with the one published
in [5].

The MDBHF’s task is to track surrounding vehicles observed from a
moving ego-vehicle (ego-velocity vego = 90km/h). The test scenario is a
highway scene created with the TORCS simulator. It consists of five phases
in which an observed vehicle driving in front of the ego-vehicle is observed.
The measurements were updated every ∆T = 0.2s (In contrast to ∆T = 0.5s
in [5]). In the first phase, the observed vehicle changes from the left lane to
the right lane, where the ego-vehicle is and stays in that lane (approximately
time step 0 to 30). In the last part of the first phase the observed vehicle
is doing an abrupt correction of its driving direction in order to maintain
a path along the lane center of the right lane. In phase 2 (time step 30
to 50) the observed vehicle drives in front of the ego-vehicle on a straight
highway segment. In time step 50 the observed vehicle enters a curve to
the right (begin of phase 3). In time step 57 the ego-vehicle also enters the
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Figure 6.1: The scenario created with the TORCS Simulator. The yellow vehicle
is overtaking the red ego-vehicle. The grid nodes are projected into the image. The
line within the nodes shows the estimated velocity direction. (Parameters other
than those stated below are used.)

curve (begin of phase 4). In time step 80 the ego-vehicle leaves the curve.
All highway segments have circular or straight shape, no clothoids are used.
This fact makes it more difficult for any filter algorithm to keep track of the
observed vehicle. In the following subsection we vary the parameters of the
filter and evaluate the tracking performance.

6.1.1 Effects of the Grid Cell Size

In Sec. 3.2.1 the grid cell size was introduced. In this subsection we want to
evaluate the tracking error depending on the grid cell size d.

In the shown example (Fig. 6.2) with d = 0.25m the average estimated
state equals the ground-truth state of the observed vehicle. This indicates
that the filter works correctly. The error of the average estimated state is
at all times below d

2 (cf. Fig. 6.3 and Fig. 6.4. In this figures the error is
analyzed for the direction towards the side x0 and towards the ego-vehicle
nose x1 as described in Fig. 3.1). The errors rise with increasing d. For
d = 1.5m the standard deviation increases significantly, indicating that the
tracking becomes more and more unstable. The grid is now too coarse to
cover the vehicle dynamics. For d = 2.5m discretization errors become
clearly visible in the position estimate. The probabilities are gathering in a
few grid cells and the discrete grid cell positions are in some cases not suited
to represent the position state with this low number of cells. When the
ground truth position lies by chance on a position that is easy to represent
by the grid, the errors and the standard deviation will be low (e.g. d = 3.0m
at time 60 to 80). For d = 3.5 or d = 3.75 the ground-truth position is not
followed anymore in a reliable manner. For d = 4.0 approximation errors
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exceed the working range of our approach and no position estimate was
possible anymore.

6.1.2 A Comparison of the Integration Methods

In Sec. 3.2.3 two different integration techniques in order to sample the PDF
were introduced. Here, we analyze the effects in the TORCs simulation
scenario from above.

The experiments are executed with different granularity d and different
standard deviation in the transition model σβ. A different standard devia-
tion in the transition model does not only influence the anticipated behavior
(e.g. high σβ anticipates direction changes better while small σβ values de-
liver smoother results when tracking during a straight driving phase (cf.
Sec. 4.1)), it also influences the discretization errors. The reason is simple,
a high σβ leads to wide and smooth transition functions while a small value
leads to steep transition functions. Steeper functions are more error prone
to discretization and need a finer sampling. A theoretical excursus is done
in Sec. 6.2.

The evaluation shows that with a fine grid granularity and smooth tran-
sition models there is no significant benefit of the better integration method.
But the coarser the granularity and the steeper the transition function, the
more important are more sophisticated integration methods. Figure 6.4
compares the evaluation runs using the piece-wise linear integration with
the piece-wise constant integration. It is clearly visible that the tracking
with the simple integration method performs worse when the prediction
variance is small (σβ = 0.07071). With d = 1.00 or greater the sampling of
the prediction function with the piecewise linear integration clearly outper-
forms the piecewise constant integration. With d = 2.0 the track is totally
lost without the improved integration technique.

We evaluate the integration methods with the same settings but σβ =
0.04 instead of σγ = 0.07071. The differences in the tracking between the dif-
ferent integration techniques are smaller within the same granularity. There
are two reasons for that. First, as already mentioned, the discretization
error is smaller for smoother functions. Second, due to the Bayesian fusion,
the influence of the prediction step becomes smaller in comparison to the
filtering step if the standard deviation of the prediction function is higher.
Both effects are extensively discussed in later chapters. As a result, the error
becomes obvious at coarser granularity (d = 2.0) in comparison to d = 1.0,
when using the higher standard deviation σβ = 0.04 (compare Fig. 6.4 with
Fig. 6.5).
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(a) d=0.25 m
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(b) d=0.50 m
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(c) d=0.75 m
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(d) d=1.0 m
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(e) d=1.25 m
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(f) d=1.5 m
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(g) d=1.75 m
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(h) d=2.0 m
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(i) d=2.25 m
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(j) d=2.5 m
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(k) d=2.75 m
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(l) 3.0 m
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(m) d=3.25 m
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(n) d=3.5 m
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(o) d=3.75 m

Figure 6.2: Tracking of the x-position with different grid cell distances d. The blue line is the
estimated position averaged over 100 runs. The black line is the ground-truth position. d is
incremented in 0.25m steps. With d=4.0m the probability collapses and no tracking is possible.
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(a) d=0.25 m
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(b) d=0.50 m
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(c) d=0.75 m
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(d) d=1.0 m
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(e) d=1.25 m
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(f) d=1.5 m
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(g) d=1.75 m
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(h) d=2.0 m
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(i) d=2.25 m
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(j) d=2.5 m
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(k) d=2.75 m
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(l) 3.0 m
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(m) d=3.25 m
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(n) d=3.5 m
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(o) d=3.75 m

Figure 6.3: The average error of the x0-position with grid cell distances d. d is
incremented in 0.25m steps. With d=4.0m the probability collapses and no tracking
is possible.
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(b) d=0.50 m
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(c) d=0.75 m
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(d) d=1.0 m
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(e) d=1.25 m
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(f) d=1.5 m
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(g) d=1.75 m
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(h) d=2.0 m
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(i) d=2.25 m
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(j) d=2.5 m
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(k) d=2.75 m
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(l) 3.0 m
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(m) d=3.25 m
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(n) d=3.5 m
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(o) d=3.75 m

Figure 6.4: The average error of the x1-position with grid cell distances d. d is
incremented in 0.25m steps. With d=4.0m the probability collapses and no tracking
is possible.
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(a) Piecewise linear integration
(d=0.25)

0 20 40 60 80 100 120 140

−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [tics]

X
p
o
s
[m

]

(b) Piecewise constant integration
(d=0.25)
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(c) Piecewise linear integration
(d=0.50)
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(d) Piecewise constant integration
(d=0.50)
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(e) Piecewise linear integration
(d=1.00)
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(f) Piecewise constant integration
(d=1.00)
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(a) Piecewise linear integration
(d=1.50)
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(b) Piecewise constant integration
(d=1.50)

Figure 6.4: Comparison of the two integration methods with a prediction function
standard deviation of σβ = 0.07071

Further results from this evaluation

Another interesting effect, but irrelevant for the integration comparison is
seen already for d = 0.25. Abrupt direction changes are not tracked opti-
mally for σβ = 0.07071. The average estimate corrects the direction too late
in time step 22 and deviates from the ground truth position. But in the
time interval with the smooth and straight movement, the σβ = 0.0.07071
runs (cf. Fig. 6.4) outperform the runs with σβ = 0.4 (cf. Fig. 6.5), which
is clearly visible by the smaller deviations of the individual runs. This is
exactly the result a Bayesian filter is expected to provide, since a higher σβ
filters the sensor input less strongly.
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(a) Piecewise linear integration
(d=1.50)
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(b) Piecewise constant integration
(d=1.50)
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(c) Piecewise linear integration
(d=2.00)
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(d) Piecewise constant integration
(d=2.00)
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(e) Piecewise linear integration
(d=2.50)
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(f) Piecewise constant integration
(d=2.50)

Figure 6.5: Comparison of the two integration methods with a prediction function
standard deviation of σβ = 0.4
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6.2 Analytical BHF Error Evaluation and Extreme
Case Studies

As already discussed in section 2.2.4 the unlimited state-space of the real-
world has to be converted into a finite number of variables. Therefore all
(continuous) PDFs have to be sampled at discrete points. A brief glimpse
on these effects was already presented by the evaluation in Figs. 6.2 and
6.4 with a preliminary discussion in Sec. 3.2.1. Now we focus more on
the theoretical background of the different types of BHF errors. First an
analytical inspection is done and second an extreme case evaluation.

6.2.1 Sampling Errors

For one dimensional grids the sampling errors are well-defined by different
techniques. The Nyquist-Shannon sampling theorem for example tells us
that a signal with limited frequencies < fmax needs a sampling of at least
2 · fmax in order to reconstruct a signal exactly [56]. The frequency is
here considered over time and implies that the observed function consists
of periodic oscillations. While the time can be easily interpreted as spatial
dimension to transfer the theorem into our field it is hard to assume that
the PDFs are of periodic nature. In the end the value for an error analysis
of the BHF is weak. High frequencies correspond with high changes of the
function value and its derivatives. In other words, the higher the frequencies
the ”less smooth” is a function. The number of necessary sampling points
will be higher for a ”less smooth” function.

A more sophisticated error analysis can be done for one-dimensional
functions using the theory about integration errors. The one-dimensional in-
tegration pendant to the piecewise-constant integration used here is referred
to in the literature as the rectangle method. The trapezoidal rule is the one
dimensional pendant to the piecewise linear integration and the special case
of the Newton-Cotes integration using 2 sampling points per integration in-
terval [a, b]. The integration interval is equivalent to the one dimensional
grid cell volume. The approximate integration is done by Eq. 6.1.

∫ b

a
f(x)dx ≈

∫ b

a
p(x)dx =

b− a
2

[f(a) + f(b)] (6.1)

The integration error in an individual grid cell is defined as the difference
between the numerical integral over the approximating trapezoid function
p(x) and the integral over the real function f(x) (cf. Eq. 6.2). Note: In
contrast to the literature, the overall integral over all grid cells is not relevant
for our application since we know that f is a PDF and therefore its overall
integral is 1.
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Figure 6.6: The first order Newton-Cotes integration. [11]

E(f) =

∫ b

a
f(x)dx−

∫ b

a
p(x)dx (6.2)

The resulting error for trapezoidal integration intervals is stated in Eq. 6.3
(cf. proof in [11]).

E(f) = −(b− a)3

12
· f ′′(η) η ∈ [a, b] (6.3)

The error depends on the second derivative of the function. PDFs with
low |f ′′| values are less error prone than PDFs with high |f ′′| values.

Somewhere within the interval there is an η for which the second deriva-
tive becomes highest. In the PDFs used by us the exact solution of the in-
tegral and thereby η and the second derivative at its position is not known.
Therefore this equation can be used only to give the order of the error term.
Tables 6.1 and 6.2 show the integration errors for the trapezoidal integration
over a Gaussian PDF for the integration interval around η = 0, were the
f ′′ has its absolute maximum. As illustrated in Fig. 6.6 and in Eq. 6.3 the
negative f ′′(η = 0) leads in our evaluation to a positive error, which signals
an underestimation of the probability density at the area around η.

Table 6.1: The maximum integration error when sampling a Gaussian with σ =
1.0. The accurate integrated density is 0.398.

Interval size 0.25 0.50 0.75 1.0 1.5 2.0

Density 0.386 0.352 0.301 0.242 0.129 0.054
Error 0.012 0.046 0.097 0.156 0.269 0.344

The order of the error can be further decreased by using higher or-
der Newton-Cotes equations. E.g. when using the Simpson rule the error
depends on the fourth derivative of the PDF. But the number of sample
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Table 6.2: The maximum integration error when sampling a Gaussian with σ =
0.5. The accurate integrated density is 0.798.

Interval size 0.25 0.50 0.75 1.0 1.5 2.0

Density 0.704 0.483 0.259 0.108 0.009 0.000
Error 0.093 0.313 0.539 0.690 0.789 0.797

points increases with each order and the method becomes finally unstable
due to negative sample weights. The literature advises that it is then better
to reduce the cell size instead or to use more sophisticated methods like
the Gauss-Legendre quadrature instead. These more sophisticated methods
need varying sample point positions within the cells.

Neither the Newton-Cotes equations nor the Gauss-Legendre quadrature
can be generalized to multivariate inputs. Although Multivariate integra-
tion is possible for a subset of functions, e.g. for periodic integrands [66].
That also means in a strict interpretation that the error term cannot be
generalized to our two dimensional estimate PDF. Independent from that,
the integration technique itself can be specified as a Monte-Carlo method
with non-random fix sample points. With the particle filter (Sec. 2.2.2) we
already mentioned a Monte-Carlo approach used for integrating the PDF.
The advantage of our technique is the practical improvement in cases with
critical cell distance d (cf. Fig. 6.4) at a very small computation overhead.

When looking at equation 6.3, it is clear that for a constant error E(f)
the designer of a BHF should keep in mind that the cell distance d should be
reduced with rising second derivation of the PDF. That means that steeper
prediction models, e.g. models with smaller σβ and σγ need a smaller grid
distance d. And even more so, the steepness of the sensor model influences
the error and needs an adaption of d, since it is sampled with the constant
piecewise function. In this subsection it becomes clear that there is no exact
rule to determine the error in the two dimensional MDBHF. However, in the
next subsection we will give rules of thumbs on the right parameter setting.

6.2.2 Error Types

Analogous to the extreme case analysis for particle and Kalman filters in
[65] we will now examine the errors of the BHF and MDBHF on the basis
of extreme parameter settings.

Boundary Problems

Usually the space covered by the BHF should be chosen in a way that the
borders are far away from the relevant area. Otherwise the sensor sampling
and the prediction sampling are distorted. As an extreme example imagine
a prediction function with its expectation value outside of the covered space.
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Figure 6.7: The graphs show the estimate in a series of time frames. The axes
denote the cells (d = 0.25). In the second frame the Boundary effects become
visible as a beginning boundary jam. In the third graph the probabilities begin to
drift sidewards in the top row. The second row shows the zoomed versions of the
images.

Since no sample points are near the expectation value the sampled density
in that area is zero. There will be some parts of the prediction function with
low probability densities inside the covered space. Due to the normalization
the whole probability mass will flow into these areas inside the covered
space. In result, a jam of probability values occurs next to the border. The
direction of the probability flow is diverted to unlikely directions, which lie
within the covered space as only left option.

We have created an artificial situation in which a vehicle approaches
the border with ||vObserved|| = 22m/s while the ego-vehicle stays exactly
behind the observed vehicle with ||vEgo|| = 0. In order to highlight the
error no boundary cells are used. The PDF of the estimate is illustrated in
subsequent time-steps in Fig. 6.7.

Small Velocity to Grid Distance Ratio

This subsection targets the problem of small absolute velocity to grid dis-
tance ratios. Or to be more exact, the problem of small (flow) distance

to grid distance ratios Λ = ∆T ||v||
d . The problem was already mentioned

in Sec. 3.2.1 and the effects became clear in the evaluation in Sec. 6.1.1.
The absolute velocity error depends on the grid distance d with fixed time
step size ∆T . With smaller Λ the relative error in the velocity dimension
increases, while the absolute velocity stays constant. That means that low
velocities are more prone to discretization errors than high velocities.

This becomes clear with an example: We observe a vehicle driving
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straight into l1 direction with a velocity of ||vobserved|| = 5m/s. The ego-
vehicle follows with the same velocity ||vego|| = 5m/s. As a result the
relative position of the observed vehicle does not change over time. The
sensor error was set to zero in order to avoid disturbing effects induced by
noise. Notice that this means not that the sensor model assumes zero noise,
too. While tracking the following will happen: Since we are dealing with
probability distributions, it is totally clear that some probabilities will flow
from one cell to the other. They will not flow into a single cell. When a
probability mass is flowing from one grid cell to the neighboring cell in l0
direction, that flow represents movement vertical to the ego-vehicle nose.
With a cell distance d = 0.5m and ∆T = 0.1s this movement has a ve-
locity of 5m/s into l0 direction. In the chosen example the ground truth
velocity was already 5m/s. The velocity increases according to Pythagoras
to 7.071m/s as the minimum value. And a probability flow hitting the cell
above the cell in l1 direction, is resulting in the velocity 10m/s. In a fine
grid this flows would be assigned a very low probability value, since there
are other sampling points between the starting cell and the destination cell,
which produces the 10m/s flow. If there are no other cells in between, how-
ever, the probability flow with 10m/s is weighted too high. This kind of
discretization errors produces a high error in the relative velocity and leads
to an chaotic velocity behavior in the PDF. This is depicted in Fig. 6.8.

It is clearly seen that the absolute velocity is too small in comparison to
the grid cell size, since the PDF has a very small width. The small width is
produced by prediction functions with small extent. The possible (absolute)
velocity change produces again a distribution with small width. Due to the
coarse sampling, the sampled prediction function is even steeper than the
real prediction function (cf. Sec. 6.2.1. One sampling point is due to the
relative velocity of zero directly at the expectation value = maximum value
of the prediction function. In the range of f ′′ < 0 of transition function, the
next neighbors are underestimated.) Probability masses with relative high
speeds depart from the sensor position in each direction. High velocities to
the side gain influence and the estimate starts to lurch from the left to the
right around the sensor input.

In Fig. 6.9 the correcting effect of the sensor input is not yet incorporated.
It shows the predicted estimate. The discretization effect with the departing
flows is seen there even better.

The example above was an extreme case with Λ = 1. Of course even
smaller ratios are possible. The value was chosen since the effects are clearly
visible directly in the estimate PDF, even for the untrained eye. But even
with a higher velocity of v = 11m/s and Lamda = 2.2 the effect influences
the estimate clearly. It shows that at these velocities the sampling needs
to use at least a cell distance d = 0.25 or smaller. A strategy to reduce
that error could be to increase the time step size ∆T dynamically like in
the sample variance problem of the particle filter (cf. Sec. 2.2.2). Alterna-
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Figure 6.8: The graphs show the estimate in a series of time frames. The axes
denote the cells (d = 0.5). The velocity is too small to create wide prediction
functions and therefore the whole PDF collapses. The second row shows a zoomed
version of the images.
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Figure 6.9: The graphs show the predicted estimate in a series of time frames.
The axes denote the cells (d = 0.5). Already in the first frame the discretization
effects are visible. In the second graph the probabilities begin to drift sidewards.
The second row shows a zoomed version of the images.
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tively vehicles with small absolute velocities could be marked as static or
near-static objects. Then they can be tracked by a Kalman filter. The disad-
vantages of the Kalman filters are small as long as the vehicle velocities are
small, since the movement can be approximated as linear movement. Note
that this problem is relevant for small absolute velocities and not dependent
on the relative velocity of the observed vehicle. In the example above we
set the relative velocity to zero in order to make the explanation easier to
understand.

Steep PDFs

The previous error types can generate serious distortions of the PDF, but
in the end the PDFs are corrected by the new sensor input in the filter step.
Are there errors possible that the filtering step cannot correct? The example
illustrated in this section gives the answer.

One of the principles of the Bayesian filtering is that with decreasing
variance in the transition model, the influence of the sensor input decreases.
This is obvious since the variance in the model is something like the trust
into the expectation value. Transition to cells away from the expectation
value become more and more unlikely with decreasing variance.

The extreme case here uses a similar mechanism, but due to discretiza-
ton errors or pruning of small flows the effect increases even further. The
probabilities can only flow into certain cells, everything else is pruned. This
happens by the pruning of the prediction function by the selective propa-
gation (cf. Sec. 3.2.2). As a result, the whole probability is flowing with
a certain velocity, which may deviate strongly from the movement of the
observed vehicle. The missing variance in the transition model disallows
velocity corrections of the estimate.

Figure 6.10 illustrates such a situation. Every probability is flowing into
a certain direction, no variance in the direction occurs.

In a working BHF with PDFs smooth enough for the grid granularity,
this will never happen. The sensor would weight the cell density which is
nearer to the sensor input higher. Thereby the flow producing the prior
probability at this cell will gain importance in the next step and thereby the
direction of the whole estimate changes towards the sensor input over time.
But due to the steep transition function and the selective propagation there
are no flows possible which target the right direction. There need to be at
least a transition probability ≥ ppruning to correct the situation by setting a
prior probability at the cell, where a vehicle doing a direction change should
be in the next time step. But with a grid coarse-enough, the effect of the
leaving probability is never stopped, since even small corrections are not
possible, since due to the discrete nature of the grid no sampling point is
located where the small direction change could be created.

While Fig. 6.10 shows the effect of a small variance to grid distance ratio
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Figure 6.10: The graphs show the estimate in a series of time frames. The axes
denote the cells (d = 0.5). The estimate drifts to the left while the sensor inputs
produced by the observed vehicle leaving with ||v|| = 11.1m/s all occur on l0 = 0.
The effect of drifting is clearly visible, therefore no zoom is provided.
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Figure 6.11: The graphs show the (non-normalized) predicted estimate in a series
of time frames. The axes denote the cells (d = 0.5). The second row shows a
zoomed version of the images.

in the direction in the estimate Fig. 6.11 shows the error in the predicted
estimate. The small (non-normalized) activities show that the sample points
do not hit the high values of the transition PDF.

When the variance in the sensor model is too small as well the whole
PDF may collapse to zero since no overlap between the sensor model and
predicted estimate is left. This unwanted effect may be resolved by setting
a very small propability greater 0 to each cell in the grid. This will happen
at the cost of loosing the computational time improvement by selective up-
dating. The problem is comparable with the sampling bias in the particle
filter limitations (cf. Sec. 2.2.2).
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6.2.3 Summary

In this subsection we have analyzed the characteristic error types of the BHF
approaches. It should be clear that the task of transforming a continuous
distribution into a discrete distribution is not possible without discretization
errors (cf. Sec. 2.2.4). Errors can occur when the relevant area of the
distribution is near the grid boundary, when the absolute velocity of the
observed vehicle is too small in comparison to the grid cell distance or when
the sensor model is too steep. The errors can be avoided or reduced by
using boundary cells and by choosing the space covered by the BHF in a
reasonable manner, by handling slow moving vehicles using an adaption of
the time step size or by using another filter for slow moving vehicles, or by
using smaller grid cell sizes and a probability greater than 0 in each cell in
the grid.

In Sec. 2.2.2 we have mentioned typical errors occurring in other discrete
PDF representations (e.g. when using particles or Gaussian distributions).

The number of error types and the quantity of the error may seem rather
high. But in the end this is the price of computability. When lower er-
rors are desired the number of sample points need to be increased causing
higher computational effort. Other probabilistic approaches have similar
problems and even more so the non-probabilistic approaches, which hide the
uncertainty in the calculation by not dealing with probabilities at all. Even
the clear Gaussian shape produced by approaches that are using Gaussian-
representations gives elusive safety. Regardless how bad the filter is working
the output is always a nice looking Gaussian shape. BHF representations
are more honest from that perspective.

6.3 Comparison of Compensated Tracking with non-
Compensated Tracking

In order to show the obvious benefits of the ego-motion compensation in
rotated coordinate systems (introduced in Sec. 4.4.1) for a tracking task we
set up an evaluation with Carmaker. The results will show that without
ego-movement compensation serious errors occur in curves.

We tested the errors in the tracked position in a scenario in which our
ego-vehicle follows an observed vehicle on the same lane into a curve with
a radius of 30 m. A smaller curve radius would lead to the result that the
observed vehicle is leaving the sensor range to the side (cf. experiment in
Sec. 7.3.2). Both vehicles (the ego-vehicle E and the observed vehicle O)
drive with a velocity of vEgo = vO = 50 km/h in order to simulate an inner-
city tracking task. The distance between both vehicles is about 25 m. The
tracking error induced by the ego-motion is clearly visible in the evaluation
graphs 6.12. At the same time we track the progression of ego-yaw rate ω.

105



6.3 Comparison of Compensated Tracking with non-Compensated Tracking

This enables the reader to discover the influence of ω in the tracking results.
The iteration time step size ∆T was set to 0.1s. At time step (tic) 125

vehicle O enters the curve and in time step 138 vehicle E follows. With
increasing yaw rate the error in the x and y direction increases (referred as
x0 and x1 direction elsewhere in this thesis). When reducing the yaw rate
at the end of the curve (time step 185) the x error overcompensates in the
negative direction and does not predict the overshoot of vehicle O in the end
of the curve. The tracking with enabled ego-movement compensation shows
in all stages smaller errors. Only the overshoot when vehicle O leaves the
curve is overestimated by the prediction. In order to reduce the remaining
error in the compensated tracking results the prediction model is improved
by an attractor algorithm which is introduced in Chp. 7. The attractor
model allows to model the driving behavior in curves in a more accurate
way. In section 7.3 we use the full-blown ICUBHF approach on the same
scenario again in order to show the benefits of the attractor approach using
ego-movement compensation.

This result and also the referenced results clearly show that the ego-
movement compensation is necessary for inner city tracking tasks. In inner
city tracking tasks the ego-vehicle will in most cases not drive straight. It
drives in curves, turns at intersections or evades parked vehicles or pedes-
trians standing besides the road.
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(a) Without ego-compensation
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(b) With ego-compensation
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(c) Without ego-compensation
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(d) With ego-compensation
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(e) Without ego-compensation
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(f) With ego-compensation

0 20 40 60 80 100 120 140 160 180 200 220 240

−1

−0.5

0

0.5

1

Time [tics]

A
ve
ra
g
e
ya
w

ra
te

[r
a
d
]

(g) Without ego-compensation
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(h) With ego-compensation

Figure 6.12: Tracking of the x-position during a left curve with radius = 30m.
In the first row the blue line is the estimated x-position and the black line is the
ground-truth x-position. The next two rows show the average error in x and y
direction. The last line is the yaw rate. The left figures show the tracking with
enabled ego-compensation and the right figures show the tracking without ego-
compensation.
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Chapter 7

Model Driving Behavior

This chapter is about how to model the driving behavior. We begin by
discussing why it is necessary to model the driver behavior of other vehicle
drivers. ADAS systems profit twice, on the one hand the prediction can be
improved by incorporating the behavior model and thereby improving the
vehicle tracking. In addition, the perception of the ADAS can be compared
with the modeled behavior in order to check if the detection matches a
plausible behavior model. We discuss the behavior categorization itself in
Part III.

The behavior model is based on the observed context. We know that in
certain situations drivers execute a certain behavior with a high probability
(cf. Fig. 7.1). The knowledge about this is gained by the human driver
due to experience. The idea is to introduce driving models in our MDBHF,
which gives us stricter assumptions (4.2) about the other vehicles than the
kinematic model introduced in 4.1.2. Every driver knows, with a very high
confidence, that an oncoming vehicle on the street will probably stay in its
lane.

There are two different ways to incorporate context, and thereby behav-
ior of vehicles. The context can either be incorporated into the filter step
or into the prediction step.

The incorporation into the filter step is the state-of-the-art approach,
which we will discuss in the following section, while the incorporation into
the prediction step has hardly been attempted before to the best of our
knowledge. We developed an attractor algorithm in order to find a solution,
which is as generic as possible (cf. patent [4]). The attractor approach is
the topic of the subsequent section.

7.1 Using Context Information in the Filter Step

A possible solution to the problem of incorporating context information into
the Bayesian filter is altering the filter step, but that is not suited to inferring

108



7.1 Using Context Information in the Filter Step

Figure 7.1: Without context the observer would assume a crash. With context
behavior leading to a crash becomes unlikely. Human drivers assume that (oncom-
ing) vehicles stay in their lane, and they have a high confidence in this assumption.
The image was originally published in [53]

.

behavior. The context can be used in the filter step in order to define states
with a higher a priori probability of occurrence and states with a lower a
priori probability.

The advantage of this behavior incorporation is that it is easy to im-
plement. Using the Bayesian equation the measurement model has to be
multiplied by the prior vehicle state P (X) divided by the prior of the sen-
sor measurements P (Y ) in order to receive the inverse measurement model
(Eq. 7.1), to reason about the state X. Note that the PDF P (Y ) can ac-
count for a sensor bias and that the a priori probability of a certain state X
is given by P (X).

P (X|Y ) = P (Y |X)
P (X)

P (Y )
(7.1)

To implement the context in the filter step, the Bayesian filtering equa-
tion has to be altered in order to draw P (X) out of the normalization term.
The prior state estimate P (X) is no longer a uniform distribution but can
be altered to match the context. For example vehicles will not occur on
trees, vehicles will not be on the top edge of the image in camera images,
and there is a lower probability of vehicles being next to the street. There
are several state-of-the-art approaches that are incorporating the context in
the filter step (e.g. [26, 8]). Others are using it in a novel, but questionable
way in the filter step [58], causing an inhibition of the necessary divergence
of the estimate. A rare approach is to use the context in the prediction and
in the filter step [31].

The usage of a priori assumptions in the measurement model has some
drawbacks. One is that the model’s assumptions may be too strong and
correct measurements may be ignored due to a low prior, but that is also the
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7.2 Using Context Information in the Prediction Step

case when using assumptions on the prediction model. The main drawback
is that it cannot model the behavior itself. In simpler terms, the behavior
needs to be modeled in the prediction step, since the prediction step tells the
Bayesian filter how a state can change from one time-step to the other, just
like the planned behavior induces an action, which effects a certain position
change. The position is just the effect of the position change. When there is
a red light in front of us, it does not mean that there is only a small a priori
probability that there is a vehicle behind that red light. It rather means
that there is only a small probability that a vehicle in front of the red light
will cross the red light.

7.2 Using Context Information in the Prediction
Step

In the prediction step we can determine which state transitions are more
likely than others. As introduced in Chp. 4 the vehicle kinematic determines
which states are reachable from the current state, but kinematic reachability
is not a strong assumption on the input. Drivers will prefer certain states
of the set of reachable states. As a simple example, in most cases drivers
will stay in their lane or stop in front of a red traffic light. That means that
most probability flow should stay within the lane it originated, and that the
velocity of the flow should be reduced when approaching a red light signal.

There are different ways possible to influence the probability flow:

1. Cut unwanted probability flow.

2. Change the probability flow.

3. Change the expectation value in each grid cell

4. Set an overall goal for the whole estimate

Each of these models is detailed in the following subsection and the
general principle is shown in Fig. 7.2. In the subsequent subsection we
introduce the different parts of the generic ICUBHF approach, which uses
attractors in order to model the trajectory that a vehicle would drive.
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7.2 Using Context Information in the Prediction Step

Figure 7.2: The figure shows how the overall information flow is adapted in
the Bayesian filter by the context incorporation in the prediction step. Originally
published in patent [4] .

7.2.1 Methods Influencing the Prediction Model

The prediction model creates a probability flow which represents the move-
ment the vehicle executes from one time step to the next time step. There
are different points at which we can alter the prediction model and therefore
the probability flow.

Cut Unlikely State Transitions

One of the easier ways to influence the probability flow is to cut unlikely
flow. Unlikely flow may, for example, be probability flow that crosses a lane
marking. Since the crossing of lane markings should be less probable than
staying in its lane, the flow may be partially absorbed as follows:

flowk,i =

{
flowk,i , withinSameLane(i, k)

flowk,i · (1− kabsorp) ,¬withinSameLane(i, k)

where kabsorp is a parameter defining which quota of a lane crossing flow is
cut by this method.

The cutting method was evaluated in the TORCS scenario, introduced
in Sec. 5.3. The absorption was set to kabsorp = 0.9.

Due to the flow cutting method, the MDBHF with the lane knowledge
reacts slower to lane changes but achieves better tracking during the straight
driving phases before and after the lane change. This is visible in Fig. 7.3,
where the variances are smaller and the expectation value nearer to the
ground-truth position in the straight driving phases. This result is also
backed-up by the two further evaluation measures: the distance measure
dist(E(P (Xt)), xreal) (Table 7.1) and at the assigned ground truth proba-
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Figure 7.3: Mean and standard deviations of the expectation values of the pos-
terior distributions of the filters are compared with the actual overtaking vehicle
position, plotting corridors of one standard deviation from the mean for each filter
approach. Compared are the MDBHF without lane knowledge and the MDBHF
with lane knowledge.

bility P (Xt = xrealt |Y1:t) (Table 7.2). The evaluation measures are assessed
and categorized in Sec. 8.4.2 as specified in Eq. 8.17.

In the graphical comparison over time of the assigned probability at
ground truth metric, the lane change at time step 10 is clearly visible
(Fig. 7.4).

The drawback of the cutting method is that it only distinguishes between
wanted and unwanted flow instead of being able to change the direction and
the absolute value of the velocity. Additionally, the cutting of the flow is
theoretically questionable. Each flow represents the trajectory of an esti-
mated vehicle, and when cutting the flow the trajectory becomes at once
unlikely. The existing trajectory hypothesis is suddenly removed (at least
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Figure 7.4: The probability P (X̂ = xrealt |y1:t), and standard deviation, for the
likelihood of the true state xreal during the overtaking situation with radar sensor
information.

partly) from the estimate. However, just as vehicles cannot disappear at lane
markings, neither should the vehicle hypothesis. It is much more reasonable
to eliminate the unwanted flow at its root. With an unlimited amount of
computational power, the best method would be to trace the flow back
through time and eliminate the trajectory (as a branch of a hypothesis tree)
which leads later to a lane marking crossing. Unfortunately, this method
would be too complex, the first order Markov assumption would be violated
and the whole hypothesis tree must be saved. As a consequence, the attrac-
tor method was developed, which basically models the driver behavior in a
forward directed way in order to enforce stay-in-lane behavior.

Table 7.1: Average Euclidean distances dist between real position xreal and es-
timated position x and average standard deviations σ of the expected positions
during the different stages of the overtaking maneuver

Stage Driving by Changing Lane In front

Radar Data dist σ dist σ dist σ

MDBHF (without lane) 0.49 1.51 1.81 2.08 0.62 2.24
MDBHF (with lane) 0.61 1.15 3.19 2.00 0.90 1.62

Camera Data dist σ dist σ dist σ

MDBHF (without lane) 0.18 0.86 0.72 1.36 0.33 1.59
MDBHF (with lane) 0.16 0.89 1.19 1.23 0.32 1.39
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7.2 Using Context Information in the Prediction Step

Table 7.2: The average probability P (X̂ = xrealt |y1:t) at the real position xreal
in the different stages of the overtaking maneuver.

Stage Driving by Changing Lane In front

Radar Data

Grid (without lane) 0.0374 0.0168 0.0140
Grid (with lane) 0.0406 0.0121 0.0191

Camera Data

Grid (without lane) 0.0744 0.0246 0.0151
Grid (with lane) 0.0775 0.0225 0.0159

Change the Probability Flow or each State Transition.

Instead of reducing the probability flow, each flowk,i or state transition
could be redirected. This is rather difficult in BHFs for two reasons: First,
the new target of the flow probably does not lie directly on a cell repre-
sentative. Sophisticated averaging strategies are needed to distribute the
flow to the neighboring cells of the new target position. Another way to
solve this could be to change the position of the target cell k. However, a
simple position change is not enough. In fact, a new representative needs to
be generated for each new target k. For particle filters it may be possible
to redirect single particles, but for BHFs redirecting each flow would re-
sult in a very costly implementation. Second, the computational complexity
would be as high or even higher than the calculation for generating the flow
in the prediction model. Calculating an own target for each flow has the
complexity O(N2).

Change each State or Change the Expectation Value in each Grid
Cell

An elegant solution is to calculate a new target for the expectation value of
each cell, instead of calculating a target for each flow. It is relatively fast to
compute with O(N) and it uses the distributed representation in the form of
N grid cells. Each grid cell gets the yaw rate and acceleration assigned that
a vehicle at the grid cell position would need in order to reach the target
direction and the target velocity. The incorporation of context information
improves the knowledge about vehicle movements. The improved prediction
model reduces the information loss in the prediction step and this can again
be realized by smaller variances in the prediction model σγ and σβ.

Note that smaller variances in the prediction model, and therefore less
information loss, would also emerge with the ”Change each state transition”
method due to converging flows. However, this can be sufficiently emulated
by setting the prediction model variances to smaller values a priori instead
of attracting the flow that is created by the prediction model.
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7.2 Using Context Information in the Prediction Step

Due to the mentioned properties we have chosen this method for the
context incorporation in the ICUBHF (Sec. 7.2.2).

Set an Overall Goal for the whole Estimate or change a single
State Representative

This method defines a single target for all states. Usually the target yaw
rate and the target acceleration are only sampled at a single representative.
In Kalman filter approaches the expectation value would be used as a repre-
sentative. In the Multiple-Hypothesis Kalman filter each expectation value
would state a representative. For the Kalman filter approach, the method of
only probing the context influence by distance relations to a (or at most to
a few) state representative(s) is the only obvious way to incorporate context
information.

The method using the context information at only a single representative
has the drawback of ignoring the fact that vehicles at different initial states
may have different goals. In a simple example, a Kalman filter (or a MDBHF
using this method) is used for vehicle tracking. Let the tracked estimate be in
front of a traffic light. The traffic light changes to red and the representative
used for context incorporation lies in front of the traffic light. The whole
estimate PDF is decelerated in order to model the behavior of a vehicle
which is stopping in front of the traffic light. This behavior is correctly
modeled, but it ignores all probabilities that already lie behind the traffic
light in the position estimate PDF. To be more precise, that vehicle position
hypotheses are also decelerated despite most real drivers would not brake
within the crossing behind a red light.

The target position that a vehicle at the representative position may have
in order to reach a certain goal is applied to all possible vehicle positions.

7.2.2 The ICUBHF Approach

We have pointed out the advantages of distributed representations when
it comes to context incorporation. We also made it clear that unwanted
probability flow representing unlikely trajectories has to be eliminated at its
root. In the following subsections we present a generic algorithm in order
to incorporate context information into Bayesian filtering. It can be used to
attack the problem of context incorporation either by changing each state
transition (especially when using particle filtering) or by changing the yaw
rate and acceleration of each state (MDBHF). Parts of this subsection are
published in [4]. We apply this approach to the MDBHF and receive a
Iterative Context Using Bayesian Histogram Filter (Iterative Context Using
Bayesian Histogram Filter (ICUBHF)).

The context is fused into the ICUBHF in the following way. For each
grid cell:
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7.2 Using Context Information in the Prediction Step

1. Attractor candidates need to be identified first.

2. An attractor has to be chosen from the list of candidates

3. A trajectory from the initial state to the attractor state has to be
generated.

4. The yaw rate and acceleration is adapted to match the trajectory.

When more than one behavior alternative will be modeled at once, a mul-
tiple model approach with multiple ICUBHFs can be utilized (cf. Part III).
The following sub-subsections deal with single goal behavior first. Parts of
this subsection were originally published in [6].

Finding Attractor Candidates

An attractor is a defined goal state xA = (ω(vAi ), ||vAi ||, lAi )T for each initial
state xi. Each goal state belongs to an assumed behavior bk ∈ B given by
the context c ∈ C. We will explain this with an example. A vehicle driving
straight towards a red light will have one of two different behaviors: stopping
in front of the traffic light b1 or violating the traffic light b2. Since behavior
b2 is not very likely we will focus on the stopping behavior. The goal state
position lAi is best set somewhere in the lane before the stop bar. There is
more than one attractor candidate possible. The absolute velocity value at
the goal state should be modeled to be zero ||vAi || = 0. The goal direction
ω(vAi ) is not regulated by the traffic light, but it can be determined by the
lane direction at the goal position in front of the stop bar. The concept
applies analogously to speed limits or other signs.

When looking at the attractors that only determine the absolute velocity
value, it becomes clear that lane-constrained states suffice for that kind of
attractors. That means that they do not require a two dimensional spatial
distributed representation of the estimate as the MDBHF or the derived
ICUBHF provide, whereas attractors defining the direction highly demand
such a representation. In the remaining part of this thesis we therefore focus
on the influence of certain behaviors on the direction by using attractors.
The modeling of velocities is possible by using, next to traffic lights or traffic
signs, also the incorporation of the following context into the prediction
model: braking lights, indicator lights, other vehicle positions, vehicle-2-
vehicle communication and more. For further readings, see e.g. [50] and
[60].

By defining an attractor function AF (Eq. 7.2) we can generically model
driving behavior. It defines for each initial state, meaning for each grid cell
i an attractor location lAi as well as a heading direction ω(v)Ai and velocity
||vAi || given the state estimate represented in a particular grid cell i and the
current context c of the road and surrounding traffic.
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7.2 Using Context Information in the Prediction Step

ω(vAi )
||vAi ||

lAi

 = AF (||vi||, ω(vi), li, c) (7.2)

The general attractor function may be realized by individual algorithms de-
pendent on the attractor type. In the following, we consider an AF algorithm
for lane following, meaning a vehicle which is already in a lane should stay
in its lane according to its prediction model. The stay-in-lane assumption
fits to most situations. We can detect a violation by methods proposed in
Part III. The context, and therefore the lane information, has to be provided
by a virtual sensor. The virtual sensor may be a lane detection algorithm
working on camera images or a map containing a lane-graph. The real-
world lane-data provided by HRI-EU is in polyline format. We have chosen
to align the proposed attractor algorithm to lane data provided in the poly-
line format because it is easy and fast to process and other formats can be
easily approximated by polylines. However it is also possible to rewrite the
AF in other formats.

The proposed AF algorithm is detailed in Alg. 7.1 and illustrated in
Fig. 7.5. The algorithm generates attractor points within the lane of the
initial position. This means that the vehicle would stay in its current lane.
Different parts of the estimate PDF may follow different lanes. The context
c is here a tuple K of lanes. Each lane k ∈ K consists of a left lane border
polyline Lk, a right lane border polyline Rk, and the lane center polyline
Mk.

Algorithm 7.1: Attractor function algorithm (AF) considering lane
context.

input : (||vi||, ω(vi), li, c)
output : The attrator state: (ω(vAi ), ||vAi ||, lAi )T

forall lanes k do1

if li within lane k ∈ K then2

Ak ← {mkj |mkj ∈Mk ∧mkjli ∩ Lk = ∅ ∧mkjli ∩Rk = ∅}3

Ak ← {aj |aj ∈ Ak ∧ aj fulfills (7.3,7.4) and4

laneDirectionAt(aj) fulfills (7.5)}
â ← argmaxaj∈Ak(||ajli||)5

return (laneDirectionAt(â), ||vi||, â)6

end7

end8

The algorithm considers the lane k in which the grid point i is located.
It restricts the set of attractor candidates (meaning potential attractor posi-
tions) more and more and finally selects the actual attractor â. Specifically,
it generates the set Ak of all points mkj that lie on the lane center Mk and
whose connection to the grid point location li does not intersect with the
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lane borders. This models that the observed driver needs visual contact to
the attractor (cf. the concept of gaze-points in [50].) Points mkj ∈ Mk

are either the polyline vertex or additional equidistantly distributed points
on Mk. Next, the algorithm verifies if the points in the considered set are
sufficiently close in distance and angle to the starting state at grid cell i. Fi-
nally, the algorithm returns the attractor values derived from the attractor
point. Note that the absolute velocity value is not changed by the algorithm.
Fig. 7.5 illustrates the algorithm in a street-curve scenario exemplarily for
one grid cell with indicated estimates for velocity and heading direction.
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Figure 7.5: The proposed attractor algorithm considering lanes. mk1 is selected as
attractor for this specific grid cell i. Fig. 7.6 shows the positions mk in a real-world
intersection.

The attractor state reachability assertion in line four of the algorithm
considers whether the attractor state may be reached from the current state
in a reasonable way. The reachability is approximated by defining a trian-
gular search region (cf. Fig. 7.5). Such reachability assertions may consider
additional factors, such as information about the road level, e.g. A-road,
B-road, urban, in order to set a looking-forward distance dmax and maxi-
mum change in the yaw rate βmax based on the road conditions. In effect,
attractor points are only considered within the area around the grid node i
(c.f. search region in Fig. 7.5): The attractor points need to be close enough
at grid point i as specified in (7.3) and the direction change should not ex-
ceed βmaxas specified in (7.4). Additionally the aimed-at heading direction
ω(vAi ) does not differ too strongly from the initial heading direction ω(vi)
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in grid point i (7.5):

(||
mkjli
∆T

||) ≤ dmax, (7.3)

|atan2(ω(vi),mkjli)| ≤ βmax ·∆T (7.4)

|ω(vi)− ω(vAi )| ≤ βmax ·∆T, (7.5)

where βmax specifies the maximum change of the yaw rate and dmax specifies
the maximum distance change allowed in a time window ∆T .

Figure 7.6: Attractor candidates in a real-world test scenario. Only positions are
visualized as marker, no directions are visualized.

Now the attractor state and the initial state are determined. In order
to incorporate the newly gained knowledge of the attractor state into the
ICUBHF a trajectory (cf. Fig. 7.7) has to be defined between both points.
The trajectory itself defines how the yaw and acceleration has to be set in
order to follow the trajectory towards the attractor point.

Trajectory Generation

In order to model the trajectory between the initial state li and the attractor
state lAi we connect both points by a cubic spline (Eq. 7.6) considering initial
direction ω(vi) and attractor direction ω(vAi ). Note that for vAi and vi the
direction is given by the attractor algorithm, but the length of these vectors
is a free parameter. Note that the free parameter cannot be interpreted as
velocity. The free parameter is used in order to optimize the trajectory. d
is the continuous parameter within the interval [0, 1] where the resulting set
of values describes all points on the spline.
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Figure 7.7: A number of initial position with different attractor points.

s(li,v, l
A
i ,v

A
i , d) =(2li − 2lAi + vi + vAi )d3+

(−3li + 3lAi − 2vi − vAi )d2 + vid+ li (7.6)

Techniques other than splines are possible in order to generate trajec-
tories between the goal point and the start point, but splines are easy to
implement and fast to compute. This is an important feature since the tra-
jectories have to be calculated for each grid cell i. A spline technique has
also been proposed by [38] to model trajectories, but more sophisticated
trajectories are also possible. A lot of splines do not correctly model vehi-
cle trajectories. In order to reliably generate trajectories with the typical
properties of vehicle trajectories, iterative algorithms are necessary, as pre-
sented by [41]. Such iterative processes are computationally too expensive
for our ICUBHF approach. A comprehensive work on curves that gives a
good introduction into iterative smoothing and deformation of curves is [52].

What are the desired properties of a vehicle trajectory? It should be
sufficiently smooth. The curvature should be minimal since the driver will
usually use minimal steer angles to achieve his goal. The derivation of the
curvature should also be small, since usually changes of the steering angles
are performed gently by human controllers.

According to these desired properties, the spline should have been op-
timized in such a way that both requirements are achieved. At first glance
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there are two possibilities: minimize the overall (average) curvature or min-
imize the maximum curvature. Unfortunately, both attempts lead to either
integrals that are not solvable in an analytical way or to a numerical root-
finding, so that iterative numerical solutions would again be the result. In
order to achieve the above requirements in an approximate way, we search
the length of ||vAi || = ||vi|| minimizing the acceleration in x0 and x1 direc-
tions in our spline (cf. Eq. 7.7). The result of the optimization is stated in
Eq. 7.8. Note that we do not use the lane borders as a constraining factor in
this optimization, meaning that resulting trajectories may leave the lane in
extreme situations. This is an unwanted effect but cannot be easily solved
without iterative solutions. The risk of such trajectories is minimized by
setting restrictive values in the reachability constraints (Eqs. 7.3, 7.5 and
7.4).

||vAi ||∗ =

||vi||∗ = argmin||vAi ||=||vi||
(s0(li,v,v

A
i ,v

A
i )′′2 + s1(li,v,v

A
i ,v

A
i )′′2) (7.7)

||vAi ||∗ = ||vi||∗ =

max(
3(lAi0 cos(ω(v)) + cos(ω(vAi )) + lAi1(sin(ω(v)) + sin(vAi )))

2(2 + cos(ω(vAi )− ω(v)))
, 0) (7.8)

The spline (Eq. 7.6) is then used with the re-sized velocity vectors v∗

and vA∗i in order to receive the optimized spline s(li,v
∗, lAi ,v

A∗
i , d). The

maximum operator in Eq. 7.8 was introduced in order to avoid negative
values that can emerge from the optimization when a backward motion
would be smoother than a forward trajectory.

The trajectory is thereby generated. We can now determine the new
yaw that needs to be set in grid cell i in order to follow the trajectory.

For this the distance d∗ a vehicle at grid cell i will drive in a time step
∆T is estimated by Eq. 7.9. The heading direction (yaw) to reach this point
ω∗(vi) is calculated by postulating the vector from the start position to
the position d∗ on the spline. The yaw ω(vi) is therefore changed by the
attractor algorithm to ω∗(vi) (Eq. 7.10).

d∗ = min(||vi|| ·∆T/(lAi − li), 1) (7.9)

ω∗(vi) =atan2((s(li,v
∗, lAi ,v

A∗
i , d∗)− li),x1) (7.10)

The direction change is derived by probing the spline at a distance d
around the start node (7.9). Here, d is an approximation of the ratio between
the drivable path length during a time step ∆T and the length of the spline
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7.2 Using Context Information in the Prediction Step

generated. We approximate it by using the velocity ||vi|| and the distance
between li and lAi . This approximation is illustrated in Fig. 7.8 and fits well
for splines with small curvature.

Figure 7.8: The spline is probed in order to receive the new ω∗(vi).

Using Context Information via Attractor Functions

In this sub-subsection we will summarize the steps necessary to infer con-
text information via attractors. We will also critically discuss the attractor
approach and show the performance with an evaluation. Fig. 7.9 gives an
graphical overview on the ICUBHF, resembling all steps for the context
information via attractors.

The underlying assumption for attractor usage was that drivers react to
context. Therefore, the prediction model can be better modeled by using
context instead of using only kinematic models. In order to change the
prediction model several steps were taken:

1. The attractor function delivers goal points towards which a driver will
drive (Eq. 7.2 Alg. 7.1)

2. Trajectories between the current estimated positions and the goal
points are generated (Eq. 7.8, 7.9 and 7.10).

3. The prediction model in each grid cell is changed, according to the
trajectory, by adjusting yaw and velocity.

The first item is clear and understandable when looking at the human
driver. Deviations may occur, but in many situations the human will define
the goal first, and then control the car in a way that will achieve the goal
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Figure 7.9: A simplified graphical view on the ICUBHF. Bt is the behavior model
variable influencing the yaw rate and velocity change (determined by the attractor
function). The behavior depends on the context Ct and the vehicle state. A more
elaborated insight on the behavior model is given in Sec. 9.1.1
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7.2 Using Context Information in the Prediction Step

position. The second item is more arguable. While it is clear that a tra-
jectory has to be generated between the goal and the initial point, the way
the trajectory is stated is a compromise between fast computability and ac-
curacy. For example, we do not test whether the trajectory leaves the lane,
even when the gaze line to the attractor itself is not allowed to intersect
the lane border. The way the prediction model is changed by determin-
ing the yaw rate and the velocity change by the trajectory to the attractor
is again rather elegant. However, by resetting the expected direction and
the expected velocity, the model ignores the kinematic constraints when the
change in direction or velocity is too high. This is indirectly compensated
by the reachability assertions Eqs. 7.3, 7.4 and 7.5. The drawback of a more
precise solution would be that the prediction model is no longer Gaussian
in its different locations. The benefit of the usage of Gaussians is that they
are the weakest assumption and therefore obligatory, since the specific kine-
matic parameters such as βmax of the different vehicles are not known. A
graphical comparison is illustrated in Fig. 7.10.

ω

ω*(v)ω(v)

(a) The expectation value is set
to the new ω∗(v). The maximum
steering angle assumption may be
violated by a small amount of
probability.

ω

ω(v)

(b) A maximum steering angle is
determined and it is more prob-
able to steer towards the trajec-
tory. No probability exceeds the
maximum steering angle.

Figure 7.10: The figures show the direction dimension of the prediction function
PDF and how the direction PDF is changed by the attractor.

The drawbacks to the use of Gaussians are further reduced due to the
decreased variance of the Gaussian distribution after the attractor incorpo-
ration. The Gaussian distribution becomes smaller and steeper, and does in
a best case scenario not exceed the dimensions of the original distributions
as illustrated in Fig. 7.11. We treated relative reduction in direction vari-
ance as a free parameter. A future work may include the task to quantify
the information gain by comparing the model to real driver behavior.

There are other ways to possibly improve the attractor incorporation in
the future. When looking back to Fig. 7.8 it becomes clear that there are
at least two ways to set the new yaw in the new grid cell. In both cases the
prediction function is set to the direction which is the difference between the
reachable point on the trajectory and the initial position: ω∗(v). However,
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7.2 Using Context Information in the Prediction Step

ω

ω*(v)ω(v)

Figure 7.11: The variance in the direction dimension is reduced by the increased
information on the steering.

the velocity of the predicted estimate could either be set to ω∗(v) as we did
in our evaluations, or set to the direction that a vehicle at the reachable point
on the trajectory would have (indicated by the gray arrow in Fig. 7.8). Such
changes may further improve the results achieved by the attractor function.

Comparative Evaluation of the MDBHF and the ICUBHF

In the following we want to show the benefits of the ICUBHF in the tracking
task. The main difference, of course, occur in curved roads. The average
run should match to the ground-truth position (average error = 0), but
also in straight roads the estimate will follow the lane, and therefore the
deviations, between the ground-truth and the estimate will be smaller for
the individual tracking run in the ICUBHF (the variance in the error is
smaller). The average error is already near zero in the MDBHF in straight
driving phases.

We used different curved road scenarios in order to evaluate the benefit
of the ICUBHF with the attractor model over the MDBHF in curved roads.
In the first scenario the ego-vehicle E follows an observed vehicle O into a
right curve. In the second scenario an oncoming vehicle is tracked in a left
curve (left from the ego-perspective). Some parts of this evaluation have
been published originally in [6].

Scenario: Follow into Curved Road The ego-vehicle is following an-
other vehicle in a curved road segment. Both vehicles are driving with a
velocity of 90 km/h. The results are shown in Fig. 7.12 comparing the re-
sults from a Bayesian filter without context information with the Bayesian
filter with context information. The graph shows that the average position
error and the variance in the position error can be reduced by using relevant
context in the ICUBHF. The remaining error is mainly caused by the fact
that the attractor model is not perfectly matched to the discrete steering
behavior of the TORCS controller of the ego-vehicle. In addition, the ego-
movement compensation is not enabled in this experiment, but the curve
radius is wide enough to avoid large errors. Fig. 7.13 confirms the advantage
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7.2 Using Context Information in the Prediction Step

of the lane following attractor, plotting the likelihood at the ground truth
P (X = xreal), which is greater when the attractor is applied. The results
show that the attractor-based adaptation of the motion model can handle
radial motion well, even without measuring yaws as in [13] and [14].
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Figure 7.12: The x position of the observed vehicle relative to the ego-vehicle
over time. The small solid line is the ground truth position, the blue dashed line is
the average tracking result of the ICUBHF, and the dotted red line is the MDBHF.
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Figure 7.13: The probability that the grid filter assigns to the ground truth
position (cf. Sec. 8.4.2). The dashed line is produced by ICUBHF and the solid
line is given by the MDBHF.

Scenario: Passing Opposing Vehicle This scenario is a setting com-
parable to that used in [13] and [14]. In that experiments a Kalman filter is
used to track oncoming vehicles in curve scenes. In our scenario the opposing
vehicle O drives at 50 km/h, while our vehicle is static. This setting is more
challenging because there are not many time steps in which the other vehicle
is observable, and the relative velocities are higher. As a result, there is not
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Figure 7.14: The probability that the grid filter assigns to the ground truth
position (cf. Sec. 8.4.2). The dashed line is produced by the ICUBHF, the solid
line is given by the MDBHF as a baseline.

much time for the Bayesian filter to calibrate its internal velocity estimates,
since the filter is initialized with zero velocities in all grid cells.

The evaluation shows that the attractor benefits are smaller than in
the previous scenario setting. This is for several reasons. First, the lane
information was not available during the first seven time steps, since the
lane detector in TORCS is not able to see behind curves. Second, with the
observed vehicle approaching our ego-vehicle, the radar sensor noise becomes
smaller (cf. Sec. 5.1), so that the attractor model influence decreases since
the influence of the measurement model increases

The results in Fig. 7.14 show that the additional attractor concept again
improves the likelihood of the predictions. As explained, the attractor does
not apply as the lane-detector does not deliver context information during
the first time steps and therefore no difference compared to the results with-
out the attractor can be seen in the graph. After about seven time steps,
however, a difference becomes visible and stays visible until about the 33rd
time step. At this point, the vehicle is rather close to the ego-vehicle, which
minimizes the sensory noise of the simulated radar sensor. The distance to
the ego-vehicle over time and the respective estimates of the MDBHF and
the ICUBHF are illustrated in Fig. 7.15 for comparison.
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Figure 7.15: The y position of the observed vehicle relative to the ego-vehicle
over time. The small solid line is the ground truth position, the dashed line is
the average tracking result of the ICUBHF and the red solid line is given by the
MDBHF as a baseline.

7.3 Error Evaluation of the ICUBHF Approach
using Ego-Compensation

This evaluation section continues the experiments in 6.3 and shows the
performance obtained by using the attractor based context and the ego-
movement compensation together on the scenarios introduced in that sec-
tion.

We will show how the average tracking is improved and then how the
ICUBHF copes with systematic sensor errors and temporarily detection loss.

7.3.1 Optimal Tracking In a Curve Scenario

The same scenario is used as in Sec. 6.3. The tracking during the curve is
clearly improved as depicted in the evaluation graph (cf. Fig. 7.16). E.g.
the overshoot when the observed vehicle is leaving the curve is significantly
smaller. During straight driving the kinematic model used in the MDBHF
also performs well in the average. However, it becomes clear that the smaller
variance in the prediction model due to the incorporation of the context
information leads to lower variances between the different simulation runs,
not only during the curve, but also during the entire tracking.

7.3.2 Systematic Sensor Errors and Sensor Limitations

The prediction model was substantially improved by introducing the at-
tractor approach. While systematic offset errors in the sensor input will
automatically lead to offset errors in the estimate, temporary detection loss

128



7.3 Error Evaluation of the ICUBHF Approach using Ego-Compensation

0 20 40 60 80 100 120 140 160 180 200 220 240

−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [tics]

X
p
o
s
[m

]

0 20 40 60 80 100 120 140

−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [tics]

X
p
o
s
[m

]

0 20 40 60 80 100 120 140 160 180 200 220 240

−1

−0.5

0

0.5

1

Time [tics]

A
ve
ra
g
e
x
E
rr
o
r
[m

]

0 20 40 60 80 100 120 140

−1

−0.5

0

0.5

1

Time [tics]

A
ve
ra
g
e
x
E
rr
o
r
[m

]

0 20 40 60 80 100 120 140 160 180 200 220 240

−1

−0.5

0

0.5

1

Time [tics]

A
ve
ra
g
e
y
E
rr
o
r
[m

]

0 20 40 60 80 100 120 140

−1

−0.5

0

0.5

1

Time [tics]

A
ve
ra
g
e
y
E
rr
o
r
[m

]

0 20 40 60 80 100 120 140 160 180 200 220 240

−1

−0.5

0

0.5

1

Time [tics]

A
ve
ra
g
e
ya
w

ra
te

[r
a
d
]

0 20 40 60 80 100 120 140

−1

−0.5

0

0.5

1

Time [tics]

A
ve
ra
g
e
ya
w

ra
te

[r
a
d
]

Figure 7.16: Tracking of the x-position during a left curve with radius = 30m.
In the first row the blue line is the estimated x-position and the black line is the
ground-truth x-position. The next two rows show the average error in x and y
direction. The last line is the yaw rate. The left figures show the tracking with
enabled ego-compensation in the MDBHF and the right figures the tracking in the
ICUBHF (obervation time-span reduced).
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7.3 Error Evaluation of the ICUBHF Approach using Ego-Compensation

should be handled well with a reasonable prediction model. This evaluation
shows that the ICUBHF copes in an adequate way with both, systematic
sensor errors and temporary detection loss.

The evaluation was carried out with a constant offset of 0.25m and a
detection loss during 4 iteration steps (tics). The detection loss occurs since
the observed vehicle is temporary leaving the sensor range to the side during
the curve driving. This is because of the reduced curve radius for this
experiment. We used the same setting as in the 30m scenario but reduced
the radius to 25m. During the detection loss the sensor detection returns 0.
Such a detection loss event is caught by a routine that runs the ICUBHF in
a pure prediction loop (cf. Sec. 4.3) during the duration of the event.

The result of the evaluation is shown in Fig. 7.17. First, it can be seen
that the temporary detection loss does not lead to a tracking loss. The
estimate quickly adapts to the new sensor information after the detection
loss phase with the ICUBHF running in a pure prediction loop. In the same
figures we can see that the sensor offset does not lead to problems during
the straight driving phase. The estimates offset complies with the offset
of the sensor input. A better tracking behavior is not possible since the
filter does not know about the real state. During the curve we see that the
estimate deviates with an offset almost twice as high as the sensor offset in
the opposite direction. This is a reasonable effect of the attractor approach.
The offset in the sensor input suggests to the ICUBHF that the vehicle is
in the right half of the lane during the left curve. This is equivalent with
an offset in the context information. The attractor approach then models
trajectories leading into the center of the lane in order to compensate for
the errors. We learn that the attractor approach can only be used in order
to improve the tracking when the context information is accurate and no
offset between context and vehicle position exists. In this situation the
offset was rather small. But when the offset is increased in size the following
principle applies: Tracking cannot be improved when putting additional
wrong information into the filter. While the Bayesian filter is meant to deal
with noisy inaccurate information, feeding in wrong information such as a
sensors with an offset or in the same way context information with an offset
the filter will perform worse than without that information. In the following
part we will focus on behavior detection with the help of the ICUBHF.
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Figure 7.17: Tracking of the x-position during a left curve with radius = 25m.
In the first row the blue line is the estimated x-position and the black line is the
ground-truth x-position (note that there is an exception: during the detection loss
at time step 150, the simulator returns 0 for the position). The next two rows show
the average error in x and y direction. The last line is the yaw rate. The sensor
detection has an offset of 0.25m. After the detection loss, which occurs roughly in
time step 150, the tracked object was not lost by the filter.
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Part III

Driving Behavior Tracking
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ADAS systems need not only the knowledge about the current position
of the vehicles, but also knowledge about the position the other vehicles
will occupy in a few seconds in order to avoid risky situations or warn an
inattentive driver in the right moment. The future position depends on the
current position and the behavior of the driver. This part of the thesis deals
with the problem of how to anticipate the driving behavior of others.
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Chapter 8

Behavior Tracking Theory

In order to track behavior, a stochastic variable B needs to be introduced in
our Bayesian network. When using Bayesian filtering the variable also needs
to be part of the state vector. In this chapter we will first discuss behavior
estimation beyond the Bayesian filtering framework. After understanding
the general concept of behavior estimation, we introduce behavior estimation
within the Bayesian filtering theory.

In both cases the behavior is referred to as variable B. Later we will
be more accurate and differentiate between the behavior model and the
behavior mode (Sec. 8.1). When it comes to behavior tracking it is very
important to distinguish between both terms, since in practical applications
it is indeed the goal to estimate the behavior mode, but the estimators
initially provide a behavior model. However, to avoid confusion we will
start the introduction without the concept of behavior modes and make the
behavior concept more concrete later. The behavior variable B stands for
the behavior model here. In the ICUBHF the behavior model is generated
by the attractor approach, which was introduced in Chapter 7 for improving
the prediction model.

The overall idea of behavior tracking is that the right behavior model b∗

has to be estimated given all (sensor) inputs y1:t [43].

b∗ = arg max
b∈B

P (b1:t|y1:t) (8.1)

This means that given all available knowledge about the other vehicle
collected from time step 1 to t, we want to know the most probable behavior
b∗ from the set of all behaviors b ∈ B.

But even when the evidence y1:t suggests that a certain behavior b∗ is
correct, it is not guaranteed that this behavior is actually the ground truth
behavior Btrue. It is possible that the noise in the sensor measurement
causes a behavior other than the ground truth behavior to be estimated
as the correct one. Hence, it is advantageous to know not only the best
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8.1 The Behavior Mode and the Behavior Model Detection

matching behavior, but the whole distribution P (B1:t|y1:t). It gives the
probability for each b ∈ B that it is correct given y, making it easier to tell
if the situation is rather clear or ambiguous.

8.1 The Behavior Mode and the Behavior Model
Detection

In this section we will learn that it is important to distinguish between the
behavior variable B modeled by the attractor, the estimated behavior mode
B̂ and the unknown real behavior mode B̂real. B is what the attractor ap-
proach models. When we estimate whether a certain behavior model B is
correct, we test whether the estimated state trajectory matches a behav-
ior modeled by the attractors. First, however, we will have a look at an
explanatory example.

8.1.1 Example without Bayesian Statistics

After reading this section it will become clear why a distinction between
model and mode is necessary. Therefore, we look at a basic example.

Imagine we live in an idealistic world where all sensors are accurate.
How can the behavior be detected in such an environment? It seems clear
that we do not need a probabilistic model due to the deterministic world
knowledge. This is not quite correct, though: Let a vehicle O in front of
the ego-vehicle E approach an intersection. We detect the position of O
accurately in each time step. We want to know if vehicle O stops in front
of the intersection or if O immediately enters the intersection. Since E
tracks the position accurately we also know O’s velocity accurately. We can
now derive a behavior model accordingly: a braking vehicle is going to stop
in front of the intersection (b1) and a vehicle with constant or increasing
velocity will enter the intersection (b2). For each vehicle decelerating we
detect b1. Of course the behavior detection will be correct in most cases due
to the accurate velocity estimate, but some drivers may deviate from that
reasonable behavior model. For example, there are certainly drivers who
decrease velocity and enter the intersection anyway and others who speed
up first only to brake suddenly. Due to that uncertainty in the driver action
the behavior detection can only be solved probabilistically. Experienced
human drivers are often prepared for common, or sometimes uncommon,
behaviors of other drivers. By that we unknowingly utilize the concept of
behavior modes. While braking or accelerating, given stopping or entering
the intersection, respectively, is the behavior model, the concept of stopping
in front of an intersection or entering an intersection is the behavior mode.
Therefore, we can say that the assignment from model to mode is only
possible in a probabilistic way. A more formal introduction and definition
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8.1 The Behavior Mode and the Behavior Model Detection

follows in subsequent sections.

We will give another example, in which the behavior modes are catego-
rized into turning or straight driving in the intersection. When the direction
component of the velocity points to the side (behavior model b1) we assume
turning b̂1, and when the velocity of the vehicle points straight (behavior
model b2) we assume straight driving b̂2. Alternatively the position can be
used for detection of the behavior. A position which is nearer to the sideward
exit of the intersection implies turning, and a position nearer to the straight
intersection exit implies straight driving. The reader may easily identify
vehicle trajectories that lead to wrong behavior mode detections. For ex-
ample, a vehicle that overtakes a bicycle in the beginning of the intersection
may lead to a wrong turning mode detection.

Temporary deviations from the modeled behavior can be compensated
by doing an integration over time using a HMM on the behavior mode.
But this also has the drawback that due to the integration over time the
detection may lag behind. Looking at these examples it has already become
clear that there is a difference between behavior (mode) and the modeled
behavior. In the following subsection we will introduce the definition for this
from the literature, mode and model, before getting into recursive Bayesian
estimation of behavior.

8.1.2 Behavior Modes versus Behavior Models

Li and Jilkov [49] introduce a nomenclature that differentiates between the
real behavior and the behavior model. The mode space S is a discrete
random variable, and state transitions are realized via Markov chains. The
mode refers ”to a pattern of behavior or a phenomenon, or a structure of
a system” and a model ”is a mathematical representation or description
of the phenomenon pattern (system structure) at a certain accuracy level”
[49]. In the examples in the previous section, we have already seen that
the estimation we are doing is based on the mathematical model that only
hints at which mode (real behavior) is correct. In most Bayesian filter
approaches not all modes are covered by a model (meaning that the model
space M is smaller than the mode space S). In our ICUBHF approach
we cover the possible modes with a low number of complex models using
a generic attractor model concept. The theory of using mode spaces also
allows the system designer to alter the sensor noise characteristics depending
on the mode. In our vehicle tracking task the modes only influence the
prediction model, since there are no sensor modes. It is assumed that the
observed vehicles are detected with the same accuracy independently from
the behavior the observed vehicle is executing. Therefore, we denote the
mode as the behavior B̂ and the model as behavior model B. Sometimes
we will use the original notation from the literature to make it clear that a
mode can affect both, the sensor and the prediction model.
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8.2 Multiple Behavior Models in Bayesian filters

8.2 Multiple Behavior Models in Bayesian filters

In the example above (Sec. 8.1.1) we saw that it is hard to track the real
behavior, even when there is no noise in the position measurement. The
task becomes even harder when the position estimates are noisy. As shown
in the intersection example from Sec. 8.1.1, when the position measurement
is noisy, the derived velocity is even nosier. Therefore, the estimated vehi-
cle direction can no longer be used for behavior detection when the noise
becomes too high. Even integration over time becomes unrewarding. It
therefore becomes necessary to use Bayesian filtering combined with a prob-
abilistic comparison of different models.

This section details the strategy of how to deal with behavior models in
Bayesian filtering and how to determine the right behavior model.

8.2.1 Overview over Multiple-Model Approaches

Li and Jilkov [49] distinguish between different types of approaches that deal
with dynamic systems in which more than one mode s ∈ S is possible. Sim-
ple approaches (so called non-multiple-model) pick one model in each time
step from the set of possible models Mt and do the filtering and predic-
tion with that model. The drawback of the non-multiple-model (non-MM)
approach is that the model cannot be retroactively changed when proved
wrong. It is also difficult to find out if the model was right since no other
model was tested for comparison.

For this reason, more than one model is usually executed in parallel.
These are the so called MM-approaches, which utilize, at least in some time
steps, more than one filter in parallel [49].

In many MM approaches the results of the different models are combined
again in order to improve the tracking. This can be done by a weighted
fusion of the estimate PDFs or by selection of the estimate with the highest
plausibility. In order to do this, a measurement is needed that quantifies the
plausibility or quality of certain estimates. Section 8.4 is dedicated to those
measures. There are two ways to combine the estimates. First, they can be
merged in the output of independently running filters. Second, estimates
can interact with respect to the transition probabilities between modes and
the plausibilities of initial mode estimates.

These filters are called Cooperating Multiple-Model (CMM), or in older
literature switching or dynamic MM algorithms. The estimates iteratively
interact with each other (cf. Fig. 8.1). In each time step the hypotheses are
merged in order to avoid a hypothesis tree emerging from the model tran-
sitions (cf. 2.2.2). From the CMM increasingly complex filter approaches
have emerged. For example, the so called Variable-Structure Multiple-Model
(VSMM) creates new models and eliminates inapplicable ones. Due to their
high complexity, CMMs and VSMMs are, in most cases, not used with parti-
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Recursive Estimators

cle filter or BHF approaches, but only in simple point estimator approaches
[49].

Figure 8.1: The estimates merge in the CMM approach and run in parallel in the
AMM approach. The time steps are denoted with k in this figure. The figure was
originally published in [49].

It is also for this reason that our ICUBHF is made up of multiple indi-
vidual filters without interaction. Multiple model approaches of this kind
are referred to as Autonomous Multiple Model (AMM) in [49]. They work
optimally when the unknown mode or the unknown true behavior does not
change over time. However, also when this assumption is incorrect the use
of an autonomous filter has convincing benefits. First, we do not have to
deal with the increasing complexity of the algorithm and the emerging hy-
pothesis tree. The complexity of BHFs is already much higher than those of
point estimators and Kalman filters. Second, we assume that the transition
probabilities between the modes are small. A driver who has decided to
drive straight, and whose behavior matches our straight moving model, will
only in rare cases revoke his decision and turn. Hence, the errors implicated
by a missing interaction between the filters are low and the modeling of an
interaction could only improve accuracy with high effort.

8.3 Delimination between Behavior Detection in
Non-Recursive and Recursive Estimators

The overall task of MM filters is to estimate the state x ∈ X and the model
m ∈M at the same time, given all inputs y1:t. That means in an accurate
solution the hybrid state (x,m) has to be estimated. The Point estimators
technique can be used to estimate the hybrid state by P (X1:t,M1:t|Y1:t) =
P (X1:t|M1:t, Y1:t)P (M1:t|Y1:t) [49].

When estimating the model by the sensor input P (m1:t|y1:t), y0:t should
be considered noisy. Actually, we want to estimate the behavior given the
true state P (m|xreal1:t), but the real state is not known. We are therefore
forced to use the sensor input as the only available information on the real
state. The noisier the sensor input, the higher the errors in the behavior
estimation.

These general reflections also apply to recursive estimation. In order to
do an online estimation, we use a Bayesian filter approach which iteratively
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applies the Markov model on the sensor input to receive a state estimate.
We cannot estimate the behavior and the state space at simultaneously. In
other words the attractors specify the model, but the model-likelihood itself
is not modeled by them.

The model is estimated in an indirect way by measuring the quality of
certain PDFs in the Bayesian filter, and comparing the quality with that of
another Bayesian filter running with a different model. Which PDFs need
to be compared and how they can be compared is the topic of the next
chapter. Note that we focus solely on behavior models from now on and
therefore use the b notation instead of the general denomination m from the
literature [49], which denominates arbitrary models. In other words this
means that in contrast to b, m can be a sensor and a behavior model.

8.4 Model estimation and selection in Bayesian fil-
tering

We will now estimate the model P (b1:t|y1:t) and detect a probably correct
model b∗ in Bayesian filtering (cf. Eq. 8.1). In the previous sections we
pointed out the need for more than one model in order to deal with different
behavior modes. We already mentioned that the models need to be selected
or that a weighted combination of the estimates may be possible in order to
improve tracking. For this we need to estimate which model fits better with
the given sensor input y1:t. In the first subsection we show how to compare
different parallel-running Bayesian filters in order to quantify which model is
most likely to be correct. The comparison itself is possible by different kinds
of measures. A number of possible measures are stated and categorized in
the next subsections.

As already stated, P (b1:t|y1:t) is not known and needs to be derived. In
recursive Bayesian filtering the Markov assumption is used, and therefore
the task is to derive P (bt|xt−1, yt)).

8.4.1 Derivation of the recursive Bayesian Behavior Estima-
tion

Now we will step-by-step describe how to derive the quality measure for the
behavior estimation.

First we apply the Markov assumption to convert the state estimation
in a recursive state estimation.

P (Xt+1|Xt, B,Yt+1)
Markov←−−−−− P (X1:t+1|Y1:t+1) (8.2)

Now we want to know, how likely it is that the estimate Xt+1 emerged
from the predicted estimate XPt given the sensor input Yt+1 and a certain
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behavior b ∈ B. For this we use the Bayes theorem to restate the equa-
tion. Since we are using an AMM we want to quantify the likelihood of a
certain behavior P (b), instead of quantifying the whole probability distribu-
tion P (B) at once.

P (b|Xt+1,Xt,Yt+1) =
P (b|Yt+1,Xt)

P (Xt+1|Yt+1,Xt)
P (Xt+1|Xt, b,yt+1) (8.3)

Equation 8.3 allows us to deduce the likelihood of a behavior model from
the state estimate using the behavior model. P (b) and P (Xt+1) are approx-
imated for the sake of computability as constant terms and we use them as
a normalization term η in the next equation. The prior state estimate itself
is a uniform distribution in our MDBHF and ICUBHF. P (b) is set equal for
each model.

In a further step the recursive state estimate can be rewritten: The esti-
mate and the behavior (Xt, b) can be aggregated to the predicted behavior
XPt , since it is fully determined by the two variables:

P (b|Xt+1,Xt,Yt+1) = ηP (Xt+1|XPt ,yt+1) (8.4)

The new estimate is the product of the predicted estimate and the inverse
measurement model for a given input.

P (b|Xt+1,Xt,yt+1) = ηP (Xt+1|XPt)P (Xt+1|yt+1) (8.5)

That means we have to compare the state estimate using the predicted
estimate P (Xt+1|XPt) (and therefore depending the previous estimate Xt

and the behavior mode b) for the estimation, with the estimate based on the
sensor input P (Xt+1|yt+1). The better the PDFs fit together, the higher
the quality or plausibility of the filter and the better is the behavior model
b used by the filter. The quality/plausibility measure is determined by the
function Pl:

P (b|Xt+1,Xt,yt+1) = ηP l(P (Xt+1|XPt), P (Xt+1|yt+1)) (8.6)

Since no space transformation is necessary from the predicted estimate to
the estimate or from the sensor space to the estimate space, the sensor and
predicted estimate PDFs can be directly compared in our approach. We use
another notation:

P (b|Xt+1,Xt,yt+1) = ηP l(P (XPt |y1:t), P (Yt+1|yt+1)) (8.7)

In other words, we can estimate the behavior by checking what mea-
surement a filter with a certain predicted estimate would expect. Or, in-
versely, the sensor input has to be transformed by the inverse sensor model
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into a state estimate. This state estimate has to be compared with the
predicted state estimate. The better the compliance of P (Xt+1|Yt+1) and
P (Xt+1|Xt, bt), the more likely the position X follows the behavior model b.

In the following we look at different quality/plausibility measures which
can be used to quantify how well the predicted estimate fits to the sensor
input, and thereby how likely it is that a certain prediction model is correct.

We distinguish between different categories of quality measurements.
First, we categorize between quality measures utilizing the whole PDF of
the compared stochastic variables and quality measures using only single
properties (representatives) of the PDF (such as the position of the peak or
the variance). While the representatives category may fit for filters using
Gaussian representations (like the Kalman filter), filters with more complex
PDFs would benefit from full PDF comparisons.

Moreover, a literature study has shown that different variables were uti-
lized for the behavior estimation. While we used the plausibility approach
from [34], which fits to Eq. 8.7, other plausibility measures in literature com-
pare Xt+1 and XPt (Eq. 8.8) and other plausibility measures use only Xt+1

(Eq. 8.9). We will use this equations for the categorization of the different
plausibility measures.

P (b|Xt+1,Xt,yt+1) ≈Pl(P (Xt+1|y1:t+1), P (XPt |y1:t)) (8.8)

P (b|Xt+1,Xt,yt+1) ≈Pl(P (Xt+1|y1:t+1)) (8.9)

In the following we will list a number of quality measures from the lit-
erature. While we cannot make a statement as to which concrete measure
is best, the reader will already see that measures using Eq. 8.9 are theoret-
ically less powerful than the other two categories because the information
available is lower. Nevertheless, the value of the quality measures not only
depends on the information used, but also on the concrete way the infor-
mation is analyzed. In each case the satisfaction of the user with a certain
quality measure depends highly on the task and the concrete situation. The
evaluation of quality measures is a promising area for future research.

8.4.2 Quality Measures based on Representatives

The quality measures introduced in this subsection are rather simple. In-
stead of comparing whole PDFs in order to derive the best fitting model,
single properties (or representatives) of the PDF are selected. Some of these
quality measures originate from the point estimator theory itself.

Highest posterior peak or MAP

P (b|Xt+1,Xt,yt+1) ≈ Pl(P (Xt+1|y1:t+1)) ∼ max
xt

P (xt|y1:t) (8.10)
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The quality measure was evaluated in [72] in a CMM Kalman filter in
order to improve the tracking of a camera observing a bouncing ball. The
filter switches to the model with the highest likelihood estimated by the
quality measure. For their application the highest posterior peak performs
best next to the modified Kullback-Leibler-divergence. The measurement is
in the category Pl(P (Xt+1|y1:t+1)) and is therefore theoretically one of the
weakest quality measures.

Point Estimator techniques and the Innovation Vector

Several measures can be classified under this category. First, the repre-
sentative is chosen, then the distance between the representative and the
measurement is determined. In the last step the distance is scaled to a
probability, e.g. by a Gaussian distribution.

One possible representative is the Maximum a Posteriori (MAP) method.
It is widely used in the point estimation theory [49] and is used for searching
for the most probable state.

x∗ = arg max
xt+1

P (xt+1|y1:t) (8.11)

The other measure used most often is the Minimum Mean Square Error
(MMSE). It sets the representative to the expectation value of the PDF.

x∗ = E[P (xt+1|y1:t)] (8.12)

In the next step the distance between the representative x∗ and the mea-
surement yt+1 is determined. This is the so called innovation vector. When
the innovation vector is small, ”the sensor measurements are well explained
by the model” [42]. The term innovation vector originates from the Kalman
filter theory. In Kalman filters both of the above measures are identical.
Multiple-model Kalman filters using the innovation vector approach are
used, for example, for automotive ego-localization in [42].

dInno = yt+1 − x∗ (8.13)

The scaling in the innovation vector approach is done via a Gaussian distri-
bution.

P (b|Xt+1,Xt,yt+1) ≈Pl(P (Xt+1|XPt), P (Xt+1|yt+1))

∼N(dInno, 0, σ(P (xt+1|y1:t)) + σ(P (Xt+1|yt+1))
(8.14)

The standard deviations σ of the predicted estimate and of the measure-
ment are calculated and their sum is the standard deviation of the scaling
Gaussian distribution.

The quality measure belongs in the first category (Eq. 8.7).
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Quotient of standard deviations of prior to posterior

This measure was stated and evaluated in [72]. They reason that a decrease
in the standard deviation from the prior to the posterior estimate indicates a
measurement that is consistent with the prediction. Due to the information
used it is a quality measure of the second category. The PDF is abstracted
to the standard deviations. It is therefore based on representatives.

P (b|Xt+1,Xt,yt+1) ≈Pl(P (Xt+1|y1:t+1), P (XPt |y1:t))

∼ σ(P (XPt |y1:t))

σ(P (Xt+1|y1:t+1))
(8.15)

Measured Position Estimate Probability (MPEP)

The MPEP was developed by us for our first behavior detection evaluations.
It probes the estimated probability at the sensed position. It is similar to
the innovation vector approach, but takes the non-Gaussian estimate PDF
into account. The drawback is that it does not account for the sensor model
and probes the estimate PDF at a single representative position.

P (b|Xt+1,Xt,yt+1) ≈Pl(P (Xt+1|XPt), P (Xt+1|yt+1))

∼P (x̂Pt = yt+1|y1:t) (8.16)

Although the plausibility measure is superior to this measure, it is well-
suited for probing the estimate at the ground truth state xreal (cf. Eq. 8.17),
as in simulations when the ground truth state is known. We will explicitly
denote those evaluations as MPEPreal.

P (x̂Pt = xrealt+1 |y1:t) (8.17)

Note that even MPEPreal, despite knowing the real position, will also
deliver a likelihood that a certain model is correct, and not the likelihood
that a certain mode is true. But in simulated environments the driver will
in most cases, drive reasonably and therefore in accordance to the modeled
behavior.

8.4.3 Quality Measures based on PDFs

These quality measures compare whole PDFs with each other in order to
evaluate how well the PDFs fit to each other, or how likely one PDF develops
from another PDF and a behavior model.

One of these measures is the (modified) Kullback-Leibler-divergence [72],
comparing prior and posterior distribution. The plausibility introduced in
[34] is also a measurement which compares two PDFs. In our evaluations we
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first used the MPEP measure introduced in the subsection above, and later
replaced that measure with the plausibility measure. Generally, Bayesian
filters that are able to represent arbitrary PDFs instead of Gaussian PDFs
should be able to benefit from the additional information that a whole PDF
provides. Therefore, we limit our evaluations to quality measures based on
PDFs. Counterexamples showing better results of quality measures based
on representatives instead of PDFs in certain situations do not prove the
opposite.

(Modified) Kullback-Leibler-divergence

The Kullback-Leibler-divergence [29] measures how well the posterior fits to
the prior distribution by using the entropy measure from information theory.
Eggert [72] argues that a ”higher [Kullback-Leibler-divergence] refers to a
stronger decrease of entropy of prior to that of posterior due to a reliable
likelihood which is consistent with the prediction”. Since it is ”easier for
a prior with a higher standard deviation to get a larger change towards
posterior” they introduced the modified Kullback-Leibler-divergence that is
normalized by the standard deviation of the prior estimate.

P (b|xt+1,xt,yt+1) (8.18)

≈Pl(P (xt+1|y1:t+1), P (xPt |y1:t))

∼

∫
P (xt+1|y1:t+1) log(P (xt+1|y1:t+1)

P (xPt |y1:t)
)dxt+1

σ(P (XPt |y1:t))
(8.19)

Scalar product of prior and posterior

The scalar product of prior and posterior distribution was evaluated as qual-
ity measure in [72]. When the overlap between the prior and the posterior
distribution is low, the scalar product is small. A higher overlap generates
a high scalar product.

P (b|xt+1,xt,yt+1) (8.20)

≈Pl(P (xt+1|y1:t+1), P (xPt |y1:t))

∼ P (xt+1|y1:t+1) · P (xPt |y1:t)

||P (xt+1|y1:t+1)|| · ||P (xPt |y1:t)||
(8.21)

(8.22)

with

||P (xt+1|y1:t+1)|| =
√
P (xt+1|y1:t+1) · P (xt+1|y1:t+1) (8.23)

||P (xPt |y1:t)|| =
√
P (xPt |y1:t) · P (xPt |y1:t) (8.24)
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A drawback of this measure is that a very wide sensor distribution cannot
produce the same overlap as a rather accurate sensor distribution. Such
effects are normalized in the plausibility measure of [34] in Sec. 8.4.3. We
preferred that plausibility since in our application the sensor model has to
account for higher noise in higher distances between the ego-vehicle and the
observed vehicle and the scaling of the measure should not depend on these
distances.

Plausibility

The plausibility measure is the quality measure used mainly in this the-
sis. Unless otherwise stated Pl stands for this plausibility measure which
was originally formulated by [34]. Parts of this subsubsection have been
originally published in [7].

The maximum possible overlap with the sensor model is used for normal-
ization. It can be seen as a shape-independent scalar product. The benefit
of this measure in our application is that the output is independent of the
form of the sensory noise, which is not constant but declines with shrinking
distance between us and the observed object. We introduced the already
discretized plausibility approach in Eq. 8.25. The continuous approach uses
integrals instead of sums and can be reviewed in the original literature [34].

Zd =

N∑
i

P (x̂t+1|yt+1 + d)P (x̂Pt |y1:t) (8.25)

Zmax = max
d

Zd (8.26)

P (b|Xt+1,Xt,yt+1) ≈Pl(P (Xt+1|XPt), P (Xt+1|yt+1)) (8.27)

∼Pl =
Zd=0

Zmax
(8.28)

Equation (8.25) is a discrete convolution of the predicted state (second
factor) and the sensor model (first factor) shifted by the vector d. It is there-
fore a quality measure of the first category. The convolution is executed over
the whole state space x̂t+1. In (8.26) the maximum over all possible shifts is
calculated, which is used for normalization in (8.27). The intuitive output
of the calculation is the convolution (or overlap) of the sensor distribution
and the predicted state distribution normalized by the highest possible over-
lap an optimal fitting sensor measurement could produce. For example, if
the sensor creates the highest possible overlap with the predicted state, the
sensor fits best with the predicted state, therefore receiving Pl = 1. Despite
that, if the sensor model shifted by an optimal d would fit better than the
sensor itself, Pl receives a smaller value by the normalization term in (8.27).
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8.4.4 Summary

There are several quality measures and choosing the correct quality measure
depends highly on the task and the concrete situation. In our following
evaluations we use the plausibility originally formulated by [34]. Quality
measures based on PDFs have advantages over quality measures based on
representatives when arbitrary probability distributions are compared. The
representation of the ICUBHF generates such arbitrary distributions. In
comparison to other PDF based quality measures, such as the scalar product
of prior and posterior, the plausibility measure has the advantage that it
normalizes the plausibility output by the maximum possible overlap. Due
to this fact, the quality measure is independent from the sensor model width
and therefore independent from the distance to the other vehicle. In some
evaluations we have also used the MPEP and the MPEPreal quality measure.
This evaluations are explicitly denoted.
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Chapter 9

Behavior Tracking in Street
Environments using the
ICUBHF

In the previous chapter we introduced behavior tracking in a generic manner.
This section deals with behavior tracking in street environments applying
the ICUBHF approach.

Why does the ICUBHF needs model selection? This question arises,
when using the filter only for the position tracking and not for behavior de-
tection. Instead of running different filters with different models, an overall
filter dealing with all behaviors could be created. This overall generic behav-
ior filter can be simply achieved by creating a single prediction model con-
sidering all behavior types simultaneously. But in addition to the fact that
a multiple-model approach allows us to categorize the current behavior for
subsequent ADAS components, the multiple-model approach also delivers a
better vehicle tracking result. Applying an overall model like the kinematic
model to a vehicle that is driving in a street curve is not optimal, since the
steering in the curve direction will be constant over a certain time span. A
filter selecting the likeliest model (or weighting the models by their likeli-
hood) can use the turning model in that situation, and therefore provides
much better predictions compared to an unspecific model. The behavior
model B is available as a quite constant state allowing for improvement of
the prediction and therefore the tracking.

The exceptional feature of the ICUBHF, is that these behavior models
exceed the complexity of the state-of-the-art approaches. That means we
do not use the usual short-term models like deceleration, acceleration or
direction change. The ICUBHF approach allows medium-term models via
the attractor concept and therefore allows medium-range predictions. It
allows the estimation of not only primitive modes, e.g. if a vehicle changes
the velocity, but also more complex modes like if a vehicle follows a certain
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lane or if the typical behavior for turning is executed. The determined
behavior can then be used to predict the future state of the vehicle (maybe
in a prediction only loop, cf. Sec. 4.3) based on the appropriate behavior
model.

In the first section of this chapter we show how the ICUBHF is influ-
enced by the behavior modeled by the attractors. We show, on the basis of
Bayesian network graphs, the overall concept of dependencies between the
behavior of the driver and the state of the vehicle. After this we introduce
the Bayesian network of the ICUBHF approach and show how the quality
measure/plausibility measure can be used to compare PDFs in order to de-
tect the behavior model and the behavior mode. Next, we show evaluation
results of the behavior detection. The chapter concludes with a survey of
the latest research in behavior modeling and behavior detection.

9.1 Using the Attractors to Generate an Overall
Representation

By implementing behavior modes and behavior models with the help of
the attractor approach, the Bayesian network of the ICUBHF increases in
complexity compared to the MDBHF. The resulting Bayesian network graph
can be interpreted in different and interesting ways. In the first subsection
we will show the Bayesian network graph in different detail or abstraction
levels. In the next subsection we will show which PDFs we compare with
the quality measure/plausibility measure in order to select the right behavior
model. In the next subsection we make the step from the behavior model B
tracking to the behavior mode B̂ tracking.

9.1.1 Our Multiple-Model ICUBHF Setup

In the ICUBHF additional variables were introduced. For the sake of clarity
it is useful to aggregate some variables or parts of the Bayesian network.
There are different ways to interpret the ICUBHF as a Bayesian network.
We will start with the most detailed graph and simplify it in the subsequent
subsubsections.

Detailed Interpretation

Fig. 9.1 shows a very detailed interpretation of the ICUBHF. The new vari-
ables are the behavior model Bt, the behavior mode B̂t, the context Ct and
the context sensor Csensor,t.

The driving behavior model Bt determines the action a driver is doing
at the moment, which depends on the context Ct and on the current vehicle
state (the location lt and velocity vector vt). The current driving behavior
determines the yaw-rate and acceleration, since the vehicle driver performs
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actions in order to achieve the goal of his behavior. The goal is implemented
as the attractor state in the behavior model. However, the driving behavior
Bt which is modeled by the attractors is not only dependent on the vehicle
state and the context, it also depends on the unknown ground truth behavior
mode B̂t. B̂t itself is driven by the unknown overall goal of a driver. This
goal could be the journey destination, an intermediate goal according to
the driving route (an intersection exit etc.) or a behavioral goal such as
malicious driving, crazy driving, fast destination reaching or overcautious
driving. Note that while the behavior mode categorization is artificial and
can be done using different criteria, the influence of the mode on the model
is real. Due to the overall goal, B̂t also depends on B̂t−1 since the behavior
mode is constant over a certain time or the transition probability is known.
For example, the behavior mode ”deceleration” is often followed by a ”drive
a curve”-mode, and each mode will be fixed over a time-span. The different
B̂ are modeled by the behavior model Bt which itself depends on the context
Ct. When it models curve-driving it needs to compare the vehicle state with
the lane position (cf. the attractor function). Ct is not directly known, but
sensed by a lane detection sensor or by localization in a map Csensor,t. But
in our implementation we do not explicitly model noise in the lane like in
this graph. The noise in the lane position can be modeled by adding the
ego-localization noise onto the sensor noise in P (X|Y ).

Note that the overall goal is not modeled by us, but this can be useful, e.g.
when using vehicle-to-vehicle communication. In concrete terms this means
that the destination in the navigation device may give a priori assumptions
on the behavior mode.

It has already become clear that the behavior mode B̂t cannot be de-
tected directly, but it is possible to measure how well the sensor input
matches the predicted model Bt and then estimate the behavior mode. This
is the topic of Sec. 9.1.2.

Interpretation: Behavior model likelihood does not depend on
vehicle state

This interpretation (cf. Fig. 9.2) focuses on the behavior model likelihood
and does not interpret the behavior model as the attractor function. vR is
the output of the attractor function receiving the context and the behavior
model likelihood. This means the output of the behavior model, which are
basically the attractor defined velocities (the effect of the behavior model),
are still depending on the previous vehicle state. But the overall behavior
model likelihood is considered to be independent from the vehicle state. For
example, a vehicle driver rarely spontaneously changes his behavior when his
vehicle is at a certain position in the lane. When the vehicle is leaving the
lane his intention does not change spontaneously, but the leaving of the lane
was already intended by the driver. It was already derived by the overall
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Figure 9.1: Detailed ICUBHF Bayesian model interpretation for an individual
grid cell: l is the position variable, it depends on the previous position, the sensor
input Y , and the velocity v. The velocity is then transformed using the behavior
model B and the ego-movement. The ego-movement compensation is not visualized
in the graph. The behavior model B is implemented by the attractor function that
assigns a new velocity direction ω(vR) and absolute velocity ||vR|| to each grid
cell position l, depending on the context representation C and the behavior mode
B̂. The context itself is measured by a context sensor Csensor. The black arrows
illustrate the MDBHF approach, the blue arrows illustrate the extension needed in
the ICUBHF approach. The dashed line is not implemented, since absolute velocity
changes are not modeled in our attractor implementation.
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driving goal which determines the behavior mode B̂. Of course, this is only
approximately correct, for example, when the driver changes his behavior
mode during an unforeseen event.
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Figure 9.2: Alternative ICUBHF Bayesian model interpretation for an individual
grid cell: In contrast to the illustration in the previous figure, the behavior model is
not interpreted as the attractor function itself. The attractor function is receiving
the behavior model B as an input variable and changes the velocity v to the new
velocity vR with usage of the context C. B is therefore not depending on the
location and the velocity. This means that the behavior B is depending on the
behavior model only.

Autonomous Multiple-Model ICUBHF

Our multiple-model ICUBHF is modeled as AMM (cf. 8.2). This means
that the behavior switch is not modeled directly in the ICUBHF. Separate
ICUBHFs are used independently. Figure 9.3 shows the ICUBHF from the
autonomous implementation perspective. It also illustrates that the position
and velocity can be aggregated to estimate x and that the attractor velocities
vR and the predicted location lP can be aggregated to xP . The behavior
models do not interact with each other as illustrated by the separate array
of behavior variables.

9.1.2 Model Comparison in the ICUBHF

The reader now has insight into different abstraction levels when looking at
the autonomous multiple-model ICUBHF (AMM-ICUBHF). For the behav-
ior detection we applied the implementation according to Fig. 9.3.
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Figure 9.3: AMM-ICUBHF Bayesian model interpretation for an individual grid
cell: In contrast to the previous figure, the ICUBHF is illustrated as an AMM
approach. This means that the individual MDBHF (black) depends on an individual

behavior model bk and behavior mode b̂k instead of the whole behavior space B̂.
Each MDBHF used represents an individual behavior mode b̂k only. Behavior
mode changes are not modeled by the BHF itself, and therefore a HMM approach
is needed for the behavior mode changes (blue). This Bayesian model interpretation
fits best to our ICUBHF implementation. We also marked the two random variables
that are compared by the quality measure in order to estimate the behavior model.
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Now we want to know which behavior fits to the input vector P (Bt|Y1:t+1).
Due to the Markov assumption, all previous sensors are condensed into the
state XP1:t or, as used here, lP1:t . This means that P (Bt|lPt ,Yt+1) needs
to be used for behavior detection. The variables are marked in gray in
the Bayesian network graph. The PDF P (Bt|lPt ,Yt+1) is by definition not
given. It needs to be chosen by using the quality/plausibility measure intro-
duced in Sec. 8.4. The plausibility measure evaluates how well two PDFs
fit together. To do this we compare the state XPt or position lPt−1 PDF
with the state or position that is based on the newest measurement only
(P (Xt|Yt) and respectively P (lt|Yt)). It is important to note that the pre-
dicted estimate PDF contains the information of all input sensor inputs Y1:t

while the second PDF applies the inverse sensor model to the latest sensor
input and therefore contains only the information in Yt+1.

The quality measure now compares both PDFs and therefore identifies
how well the model based predicted estimate fits the new sensor input. A
more precise behavior estimate could be calculated when doing a Bayesian
smoothing instead of a Bayesian filtering. Therefore, the predicted state
estimate PDF containing all previous sensor inputs is not only compared to
the state estimate using the latest time step t+ 1 but to the estimate state
knowing about all (or at least a number of) future time steps. One reason
not to implement a smoothing is that an online-detection of the behavior
is needed in ADAS systems. Each smoothing, also one with a low number
of future measurements, would decrease the value of the behavior detection
output, because the information from the past that is incorporated into the
smoothing will be inevitably already somewhat outdated. A new kind of
prediction would be needed that adds new inaccuracies. We therefore limit
our view to Bayesian filtering.

The comparison of the two PDFs is visualized by the oval shape in
Fig. 9.3. The comparison by the plausibility measure in time step t + 1
can be generally stated by Eq. 9.1. Since our ICUBHF measures positions
but not velocities, we use Eq. 9.2, which limits the PDF comparison to the
position estimate PDF.

P (Bt|Y1:t+1) := ηP l(P (XPt), P (Xt+1|yt+1)) (9.1)

P (Bt|Y1:t+1) := ηP l(P (lPt−1), P (lt|yt)) (9.2)

The variable η is a normalization constant that can be easily determined
by an integration over all model plausibilities.

9.1.3 From the Behavior Model to the Behavior Mode

The plausibility measure delivers the probability that a certain behavior
model fits the input vector P (Bt|Y1:t+1). Since the behavior mode cannot
be measured directly we make use of the Bayesian network graph (Fig. 9.3) to
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9.1 Using the Attractors to Generate an Overall Representation

recursively estimate the behavior mode from the current detected behavior
model and the previous behavior mode. The resulting equation (Eq. 9.3)
emerges from the graph.

P (B̂t|Y1:t+1) =P (B̂t|B̂t−1)P (B̂t−1|Y1:t)P (B̂t|Bt)P (Bt|Y1:t+1)

(9.3)

P (b̂t|Xt+1,Xt,yt+1) =
∑
b̂t−1

P (b̂t|b̂t−1)P ( ˆbt+1|Xt,Xt−1,yt)

P (b̂t|bt)P (bt|Xt+1,Xt,yt+1) (9.4)

Equation 9.3 is a recursive equation determining the behavior mode P (B̂t|Y1:t+1)
by the previous behavior mode P (B̂t−1|Y1:t) that is projected into the future
using the transition model P (B̂t|B̂t−1). P (Bt|B̂t) accounts for the fact that
the prediction model does not exactly match the prediction mode. Using
the behavior detection by the quality measures from Sec. 8.4.1, the equation
can be written as the recursive notation Eq. 9.4.

When the likelihood of the behavior model given the behavior mode is
not known, it can be transformed using the Bayesian theorem Eq. 9.5, but
in most cases both PDFs will be guesses.

P (Bt|B̂t) =
P (Bt)

P (B̂t)
P (B̂t|Bt) (9.5)

The recursion needs an initial value or a priori probability on each be-
havior mode b̂ ∈ B̂. The a priori behavior distribution P (B̂0) can be either
set to a uniform distribution or a worst-case mode can get assigned the full
probability: P (b̂worst0) = 1. This means that the behavior estimator as-
sumes the worst case behavior to be true in the beginning. The estimator
believes in the worst-case behavior until there is clear evidence against the
initial assumption. This is used excessively in our evaluations, e.g. when
an oncoming vehicle approaches an intersection and we want to analyze in
which direction the vehicle will drive. The worst case behavior in this situa-
tion is the behavior which leads to an interception of the trajectories of the
ego-vehicle and the observed vehicle, and hence implies the risk of an acci-
dent. By assigning the worst-case behavior the highest initial likelihood in
the behavior estimator, the estimator needs strong evidence before assign-
ing a low probability to the worst-case behavior in ambiguous situations.
Additionally, a hysteresis is assigned to the detector, before switching its
deterministic output to another behavior. This means that we do not apply
Eq. 8.1 directly. The detected behavior mode b̂∗ does not switch directly
when another behavior mode seems to be correct with a higher likelihood.

154



9.1 Using the Attractors to Generate an Overall Representation

The detection switches to a mode k = 2 from a mode k = 1 when the
following equation is true:

P ( ˆbkt=2|y1:t+1) > P ( ˆbkt=1|y1:t+1) + θ (9.6)

This hysteresis or threshold θ avoids oscillation between various modes dur-
ing ambiguous moments.

The recursive estimation of the behavior mode with the HMM model,
constructed in Eq. 9.3, has two main advantages. First, it accommodates
for the fact that the behavior mode is not the behavior model. The behavior
mode B̂ is probabilistically assigned by measured behavior model B by the
term P (B̂t|Bt). The HMM is doing a kind of averaging over time and this
averaging improves the estimation since the behavior model will fit better
or worse to the behavior mode, depending on the position in the state space
in relation to the context. That means the quality of the behavior model
itself, which states how well the model fits to the actual driver behavior,
will fit better in the average case than in some specific time steps. Second,
the mode itself can change over time. The HMM takes care of that with the
P (B̂t|B̂t−1) term. In our evaluations we use a combined PDF P (B̂t|Bt, B̂t−1)
for the uncertainties P (B̂t|Bt) and P (B̂t|B̂t−1).

The behavior detection by the AMM-ICUBHF is evaluated in the next
section of this chapter. However, first we want to add another factor to the
recursive behavior estimation (Eq. 9.4).

9.1.4 Reachability as Additional Factor

The likelihood that a certain behavior mode is correct P (b̂t|Xt+1,Xt,yt+1)
is never 1, since the mode can change from the last time step to the current
time step and the behavior model does not exactly match the behavior mode.
This is represented by the PDF P (B̂t|Bt, B̂t−1).

Additionally, P (B̂t|Bt) assigns a likelihood to behavior modes that are
no longer reachable. We therefore augment the PDF with a reachability
correction R. We will first explain how this is achieved and then discuss the
effects.

Implementation of the reachability

ri,t =N(ω(vAi,t) � ω(vi,t), 0,
βmax

3
) (9.7)

α� β ←(α− β + π)%(2π)− π (9.8)

Rt =

∑
i ri ∗ pi,t∑
i pi,t

(9.9)

The attractor reachability of a certain grid cell is ri,t (Eq. 9.7). A Gaussian
model is used to quantify the reachability in each grid cell. The argument of
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the Gaussian is the smallest angle between the attractor direction ω(vAi,t) and
the original velocity direction in the grid cell ω(vi,t). The maximum steering
angle βmax was chosen as 3σ. A possible definition of the shortest angle �
is stated in Eq. 9.8. The attractor reachability is weighted in each cell with
the probability mass in the grid cell to achieve the overall reachability in
time step t (Eq. 9.9).

The overall reachability is multiplicatively incorporated in Eq. 9.3 in the
P (B̂t|Bt) term, or respectively, in Eq. 9.4. The resulting behavior estimation
using the reachability is denoted as P (B̂Reach

t |Y1:t+1) in our evaluations.

Effects of the reachability scaling

With higher steering costs and decreasing reachability of an attractor point,
the probability decreases that the attractor and thereby the behavior model
is a realistic representative for the behavior mode. This is intuitive, since
the attractor-defined behavior model fits the behavior mode only as long
as the behavior mode is possible (or reachable). For example, the attractor
behavior model does not model a turning behavior well when the turning can
no longer be executed, since the intersection is nearly passed. The behavior
mode ”turning” becomes obsolete. The fact that the behavior mode is no
longer possible is not represented by the model itself but by the probability
P (B̂t|Bt), which states how likely a certain mode is given a certain behavior
model.

In other words, the behavior model no longer models a turning when
the intersection is passed or nearly passed, since the attractor points are no
longer reachable (cf. Eq. 7.3,7.5,7.4). The behavior model degenerates to
a kinematic model when the reachability constraints are no longer fulfilled.
The reachability scaling in P (B̂t|Bt) accounts for that effect and enables
us to do a meaningful assignment from the behavior model to the behavior
mode.

9.2 Evaluations

In the evaluation section we will first introduce the typical graphs used in
all following evaluations, thereby avoiding the need of multiple explanations.
In the following subsection we will then show the behavior detection during
a lane cut-in. The subsequent experiment deals with an oncoming vehicle
in an intersection scene. Portions of the subsections have been published in
[6] and [7].

9.2.1 Overview over the Typical Graphs

The behavior detection process can be separated in up to four phases.
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1. The first phase is the transient state. The behavior estimation ad-
justs from the a priori assumption P (B̂0) to the ”sensed” behavior
estimate. The duration of the phase depends on the inertia implied
by P (B̂t|Bt, B̂t−1).

2. The second phase is optional. It occurs only when the compared mod-
els are identical in the temporary relevant area of the state-space.
Whenever two models are temporarily identical the estimated behav-
ior persists in a uniform distribution. The detected behavior will be
due to the hysteresis θ not switching until the models separate.

3. The third phase occurs when one model becomes more probable than
the other. When the probability that a certain model is correct rises,
the mode becomes more and more likely and the hysteresis will finally
be exceeded. When the mode with the higher plausibility is not the
prior assumption mode, the behavior detection changes. If not, the a
priori mode is still the detected mode.

4. The fourth phase occurs when a model no longer models the belonging
mode and the models are identical again at the relevant area in the
state space. The relevant area are the grid cells with high assigned like-
lihoods. Due to the hysteresis, this has no negative effects on the be-
havior detection, but can be compensated by using P (B̂Reach

t |Y1:t+1)
instead of P (B̂|Y1:t+1) (cf. Sec. 9.1.4).

The quality measure graph

This graph shows the result of the quality measures over time. It shows the
non-normalized output of the plausibility measure, e.g. Pl(P (Xt+1|XPt), P (Xt+1|yt+1)).
Usually the quality measure of more than one model is depicted. The graph
is easy to understand and is used in the next evaluation (Fig. 9.8). The
standard deviation shows the deviation of the quality measure over the dif-
ferent runs with a different noise series εt in yt = xtruet + εt. It is necessary
to do several runs in order to check the robustness against sensor noise.

The mode plausibility graph

This graph shows the plausibility or probability of certain modes over time,
meaning that it shows P (B̂t|Y1:t+1) (cf. Eq. 9.3 or Eq. 9.4) observed over
time (cf. Sec: 9.1.3). Usually we draw the average value over several runs
with a different noise series εt in yt = xtruet + εt. The variance is shown at
every few time points. Again, it is necessary to do several runs in order to
check the robustness against sensor noise. Of course, it is only possible to do
so in this manner in simulations, since in real world scenarios the trajectory
xtrue1:t cannot be set constant over several runs under real-time conditions.
Therefore, simulations provide a good fundamental testing environment.
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The mode plausibility graph can be shown for several a priori settings
P (B̂0). Usually the graphs that show a wrong a priori setting (non-conform)
are more interesting than the graphs that show a correct a priori setting (con-
form), because the non-conform ones produce a changing behavior detection
in the behavior detection graph (cf. 9.2.1)

In the example graph (Fig. 9.4) we implemented a reachability scaling. In
most evaluations we do not use the reachability scaling, since the reachability
masks the effects of the plausibility measure. Masking is not desirable since
the plausibility measure applied on filters with different behavior models,
designed by attractors, is our key innovation.

1

Mode Plausibility

TimePhase 1 Phase 2 Phase 3 Phase 4

P(b
t

Reach|Y
1:t+1

)

P(b
t
|Y

1:t+1
)

R
t

Figure 9.4: The (mode) plausibility graph showing P (Bt|y1:t+1). In some situa-
tions we will show a special case of the plausibility graph, as additionally illustrated
in the figure as graph P (BReacht |y1:t+1). In either case the overall mode plausibility
adds up to 1. Therefore we have in the two mode cases two mirrored curves. Ad-
ditionally, the reachability scaling Rt is illustrated as dashed curve. An algorithm
using the reachability only instead of the plausibility would output the reachability
values.

Special case: The mode plausibility graph at the ground truth
position

This graph is well-suited for debugging purposes in simulated environments.
Instead of observing P (Bt|y1:t+1), the P (Bt|xreal1:t+1) is observed. It can
thereby be detected whether the sensor noise or the prediction model is the
reason for wrong detections. In previous chapters we denoted this measure in
a simplified way as P (X = xreal) in order to achieve an intuitive explanation
there, and a compact introduction of all measures in the current chapter.
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The behavior (mode) detection graph

This graph shows the detected behavior mode b̂∗ over time using Eq. 9.6. It
shows the number of runs with different noise series εt, where the detection
algorithm decided that a certain behavior mode is true over time. When the
mode changes because the a priori mode has proved as non-conform, then
over time more and more evidence aggregates for the new behavior mode,
and therefore the detected mode changes. Of course, not all runs switch
the modes at the same time, since the noise can mask the true behavior
for a while. This means that the detection time varies from run to run. It
is also possible that in some runs the detected mode does not change to
the ground truth mode at all or oscillates back over time. The reason for
this lies in the fact that the behavior model does not match the behavior
mode of the driver exactly or that the differences between the models is too
small in comparison to the noise level. It is also possible to some extent
that approximation errors in the grid representation are the reason for that
in a few runs. However, these approximation errors can also be interpreted
as being a deviating (discrete) model, which does not exactly match the
real behavior mode. Therefore, the HMM approach in 9.3 is already the
best way to cope with that effect. In border cases it can help to adjust
the parameters of the PDFs in Eq. 9.3 and, respectively, Eq. 9.4 in order
to make the behavior detection more sensitive or more robust. The PDF
P (B̂t|Bt, B̂t−1) can be adjusted to have a higher inertia, which makes it
more robust but the detections are delayed since more evidence needs to
be accumulated before the plausibility increases. The same applies to a
higher hysteresis θ, but theta not only regulates the number of evidence
needed, but also gives a minimum limit on the strength of the evidence.
This essentially also implies that when in the two mode cases both models
are very similar, the minimum evidence may be never exceeded even when
some evidence is present for a long time. Lower inertia and lower theta
values improve sensitivity and the detection is detected shortly after the
first evidence, but it is therefore prone to wrong evidence induced by sensor
errors or temporary/local deviating behavior models.

False positive and false negative mode switches can be discovered in the
behavior detection graph. A false positive mode switch is detected when
a run switches (temporary) to the non-conform mode even when the non-
conform mode is not the true mode. A false negative is seen in the graph
when not all runs detect the new behavior in the end.

9.2.2 Behavior Tracking in a Cut-in Lane Event

ADAS systems are able to drive partly autonomously in highway scenarios,
meaning they are able to stay in the lane and to assert a minimum distance
between its vehicle and the vehicle ahead. They also have to deal with
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10

Detected Behavior

TimePhase 1 Phase 2 Phase 3 Phase 4

Figure 9.5: The detected behavior graph shows in how many runs, a certain
behavior mode b̂∗ is assumed to be true at a given time. The graph shows a non-
conform setting fitting to the plausibility graph in Fig. 9.4. In the beginning of
phase 3 the first AMM-ICUBHFs switch to the assumption that the non-conform
mode is right, until the new behavior mode was finally detected in all 10 runs.
When the prior mode assumption is conform to the mode the detected behavior
graph should show two constant lines, since no change in the behavior detection
should occur.

unforeseen situations. In current systems the vehicle actions are determined
by rather simple rules. The ego-vehicle tries to keep distance to the vehicle
ahead without object representation, and when the parameters are not right,
the control is returned to the human driver. One example of an unforeseen
situation in a highway scenario is the sudden cut-in of another vehicle into
our ego-lane. This scenario is illustrated in Fig. 9.6.

To implement a cut-in or lane-change detection into an object-based
tracking we use our AMM-ICUBHF with two different movement models.
The attractor approach is implemented in a way that allows us to build
fitting models in two different ways, and therefore two different classifications
of the categories for the modes.

1. Mode A: Lane-keeping, Mode B: Lane change (or kinematic model)

2. Mode A: Keep lane no. 1, Mode B: Keep lane no. 2

The mode is always an artificial term, that allows to subsume different
trajectories under that abstract concept. The assignment from a trajectory
to a certain mode depends on the spectator. With both kinds of mode
classifications we can create a lane change detection.

Fig. 9.7 shows the multi-modal estimate of a filter using the lane-keeping
model during a lane change. This is model A in classification 1.
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Free distance

Desired safety distance

Figure 9.6: An ADAS without vehicle or object representation is measuring the
free distance in front of the (red) ego-vehicle by using the minimum distance the
sensors measure. When a vehicle cuts into the ego-vehicle lane and the remaining
minimum free distance is smaller than the desired safety distance (such as in this
example) the ADAS reacts to the situation.

(a) xt−1 (b) xPt−1 (c) xt

(d) xPt (e) xt+1 (f) xPt+1

Figure 9.7: A multi-modal estimate of an ICUBHF using the lane-keeping model
during a lane change from left to right. Note that this image was recorded in retro-
spect of the evaluation and shows a lane-change scenario which is not the evaluation
scenario mentioned in this section. In time step t− 1 the first measurement input
within the right lane occurs. In the following time steps the left peak fades while
the right peak gains in the estimate PDF. The predicted estimates show the lane
following behavior of the attractor algorithm.
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In the cut-in scenario in the following subsection we use the same clas-
sification of the modes with a lane keeping model and a kinematic model.
When the kinematic model is more plausible than the lane keeping model
we assume that the lane changing mode is true.

Scenario and results

In this scenario we actively compare the predictions of the model without
attractor concept with the one with attractor concept, considering the lane
information. The active comparison allows us to build a detector for a
lane change. If the measurement fits better with the kinematic model than
the attractor-based lane following model, the system can be assumed to be
”surprised” and changes the behavior mode.

We evaluated the lane change detector with a cut-in scenario on a freeway
with two lanes for each direction (similar to Fig. 5.6). The simulation was
done with the TORCS Simulator [1]. The ego-vehicle drives 120 km/h in
the left lane. The observed vehicle drives in the right lane maintaining 100
km/h while cutting into the left lane in front of the ego-vehicle. This is
a frequently seen risky situation in which the ego-vehicle needs to brake
quickly.

Evaluation with the MPEP measure

We use an attractor function, which models that the observed vehicle stays in
its lane. The MPEP quality measure, which can be interpreted as a belief in
the observed measurement, drops quickly when the lane change begins, since
the measurement does not comply with the prediction model. The graph in
Fig. 9.8 compares the MPEP quality measure of the lane-keeping ICUBHF
with that of an ICUBHF using the pure kinematic model. Note that the
HMM approach for the behavior detection was not fully developed at the
time these evaluations were done, instead a behavior mode was assumed to
be true when the quality measure of one behavior model was higher than
the other for three time steps in a row.

To evaluate the noise robustness, we decreased the angular noise in the
radar sensor to 0.04 and to 0.02 rads for comparison purposes. In the be-
havior detection graph in Fig. 9.9 it can be seen that the detector detects
the lane change events rather well (for 0.02rads). The actual lane crossing
occurs after 30 time steps. A lane crossing is defined due to the nature of
the ICUBHF as the time-step, when the center of mass of the vehicle crosses
the lane-marking. With increasing noise levels, more false positives occur
(with 0.04rads, gray solid line). When the sensory noise can be kept at a
reasonably low level, lane change events can be anticipated reliably while
the monitored vehicle approaches the border of a lane.

With high noise not all lane changes were detected, but usually sooner
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Figure 9.8: The probability the grid filter assigns to the measured position. The
blue line is produced by the Bayesian filter with lane keeping model, the thinner
red line is given by the Bayesian filter using the kinematic model only.
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Figure 9.9: The integrated time-point of the first lane change detection in the lane
changing scenario (thick) versus the lane change detection in a non-lane-changing
scenario with same noise sequence (thin) showing the false positive results. Solid
lines are measured with radial sensor noise of 0.04rad, and dashed lines with 0.02rad.
The vertical line marks the time at the passing of the lane marking.

or later all ICUBHFs should switch to the new behavior. The reason for
this is that due to the sensor noise it is possible that a lane change is missed
by the quality measure. Since the behavior modes are lane keeping and the
kinematic model there is no way to detect a lane change afterward. This
states a difference to the keep lane 1 and keep lane 2 model, where the
quality measure always gets evidence that the model 1 is violating while
driving in lane 2. An evaluation of this kind is done below. Additionally,
the results could be improved by taking the sensor noise into account. For
this evaluation we used the MPEP quality measure which does not take
the sensor model into account. If sensory noise is high, more false positives
can be expected when disregarding the measurement noise distribution, for
example by simply accidentally perceiving measurements on the right and
left side of the lane. This was our first evaluation on behavior detection,
originally published in [6]. In later evaluations we used the plausibility
measure. We re-evaluated this scene with the plausibility measure at a later
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Figure 9.10: Evaluation of the cut-in scenario using the plausibility measure. In
the beginning mode A is the true behavior mode b̂∗true, later mode B becomes true.
Blue is the prior assumption (Keeping lane no. 1). (a) The mode plausibility graph.
(b) The detected behavior graph of 10 different runs.

time. The results are published in the following subsubsection.

Evaluation with the Plausibility measure

In order to have a consistent evaluation, the cut-in scene is here evaluated
with the plausibility measure. This time the second behavior mode classifi-
cation categories were used. The a priori mode A is ”Keep lane no. 1”, the
non-conform mode B is ”Keep lane no. 2”. The algorithm detects a lane
change when mode B becomes more likely than mode A.

In the beginning, lane-keeping is the correct mode. During the lane
change no mode is correct, and after the lane change mode B is the true
mode. The result of the evaluation is depicted in Fig. 9.10. In comparison
to the other mode categorization in the previous evaluation, this time every
run detects the lane change. The drawback is that during the phase of the
lane change both behavior modes from our categorization are false. With
an own lane change model for the state transitions the detection time may
be improved.

The ego-vehicle maintains its velocity of 120 km/h and approaches there-
fore the other vehicle. The plausibility graph (Fig. 9.10) shows that with
decreasing distance between the vehicles, the noise in the mode plausibility
graph also decreases.

9.2.3 Behavior Tracking in an Oncoming Intersection Scene

When the ego-vehicle arrives at an intersection it is necessary for the ADAS
to know how the current driver is acting and how the other vehicles that are
approaching the intersection will act. In the case that the human driver of
the ego-vehicle does not brake in front of an intersection, the ADAS should
evaluate the behavior of the other vehicles. When the ADAS detects that
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Figure 9.11: Intersection scenario. The first picture is identical in scenario mode
A and B. (b) shows the turning action of scenario A at a distance of about 20-30 m.

it is likely that the ego-vehicle trajectory will intersect with another vehicle
trajectory the ADAS should warn the driver or perform an emergency brake.

The ADAS can determine if two trajectories will intersect either by a
pure kinematic extrapolation of the past vehicle trajectories or by detecting
the behavior and then predicting according to the assumed behavior. In
this evaluation we will show how such a behavior detection works with the
developed AMM-ICUBHF.

Scenario description

We tested the situation with a simulated carmaker at a T-intersection sce-
nario (cf. Fig. 9.11) in order to detect false positive and false negative
detections by adding artificial sensor noise in 10 runs. This simulation is a
pre-evaluation for the real-world scenarios executed later. To reiterate, the
advantage of a simulation is that we can run the simulation several times
with different sensor noise while using the equivalent, simulated series of
vehicle positions in each run. It is also possible to split the trajectories into
different behaviors starting from exactly the same conditions. In real-world
scenarios the vehicle will never start from exactly the same position when
splitting into different behavior modes.

The intersection scenario seen in Fig. 9.11 evaluates the algorithm with
an oncoming vehicle E (yellow). The vehicle E has two behavior alterna-
tives/modes. It can follow the straight lane or turn left. The simulation
allows us to drive both alternatives with exactly the same path until the
bifurcation point. Both vehicles drive at 30 km/h and no velocity reduction
takes place before entering the curve. This makes it impossible for the algo-
rithm to use the absolute velocity as an easy criteria for behavior detection.
The modeled sensors of the red ego-vehicle detect the position of the other
vehicle with a quite strong sensor noise. This would, in practice, also lead to
difficulties using the velocity as criteria since the derivative of a noisy time
series is even noisier than the time series itself. As a result, the ICUBHF ap-
proach using direction attractors should unfold it’s full strength. The reader
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should also recall that even the noisy position alone without tracking could
be used to estimate the behavior of the observed vehicle, but the high noise
level would lead to a very late detection. For example, when the vehicle is
sensed in the other lane, that may indicate a turn of the vehicle, but the
high sensor noise is a more probable explanation for that sensing. Without
Bayesian tracking, non-model-based methods like a moving averaging must
be done, but non-model-based methods imply a serious temporal delay for
the behavior detection. Such high delays are unwanted in the ADAS do-
main. With these simulation runs we want to show that our system copes
with high sensory noise. False positives and true positives can be prevented
with the right parameter set. Therefore, when the a priori behavior assump-
tion was right, the behavior of no single run should flip to the false model
assumption during the scene (avoiding false positives). When the a priori
behavior assumption was wrong, the behavior of all models should switch
to the right model assumption in time (avoiding false negatives).

Evaluation Results

The result of 10 runs with the vehicle turning (Mode A is b̂∗true) is depicted
in Fig. 9.12 and 9.13. The cross validation result of the algorithm when the
vehicle drives straight (Mode B is b̂∗true) is shown in Fig. 9.14 and 9.15. In
Fig. 9.12 the prior plausibility is set to turning. This is the most important
setting incorporating risk reflections into the prior. It is a risky situation for
the red car if yellow turns to the left unexpectedly, while driving straight
ahead is without risk for either. In this setting the belief in the risky turning
behavior stays active in all 10 runs because no evidence contradicts the prior
assumption (cf. Fig 9.12b). To test the unexpected detection capability, we
ran the same scenario with the prior set to driving straight ahead. Thus,
sufficient evidence against the prior needs to be accumulated (cf. Fig. 9.13a).
All runs detected this change (Fig. 9.13b).

The simulation also enables us to test if the algorithm correctly detects
that the vehicle is not turning (non-conform mode as a priori mode). When
the prior is set to turning behavior, Fig. 9.14 shows that the algorithm’s
belief appropriately changes from ”turning” to ”straight driving”. Note
that the horizontal position in Fig. 9.14b indicates how far from the yellow
vehicle’s lane center this occurs (lane width is 3 m).

Figure 9.15 shows the conform prior again. Assuming that the vehicle
drives straight from the beginning, the belief should not change since the
vehicle is indeed driving straight. But this time a false positive occurs due to
the high sensor noise. This false positive vanishes if we change the threshold
value from θ = .12 to θ = .13, but in this case the detection occurs slightly
later. This shows that the threshold value allows us to fine tune the trade-off
between detection delay and detection accuracy or sensitivity.

The characteristic of the noise was fixed to a relatively high level for
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(a) The mode plausibility graph
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(b) The detected behavior graph of
10 different runs.

Figure 9.12: Evaluation of scenario mode A is b̂∗true. Conform mode setting: Blue
is the prior assumption (Turning mode)
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(a) The mode plausibility graph.
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(b) The detected behavior graph of
10 different runs.

Figure 9.13: Evaluation of scenario mode A is b̂∗true. Non-conform mode setting:
Blue is the prior assumption (Driving straight mode).
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Figure 9.14: Evaluation of scenario mode B. Non-Conform mode setting: Blue is
the prior assumption (Turning). (a) The mode plausibility graph. (b) The detected
behavior of 10 different runs with respect to the x-position. In order to see at which
distance from the lane center the lane change was detected we rescaled the time axis
to the x-position (this is the orthogonal dimension to the lane-marking). x-position
0 is the center of the left lane. At x-position 1.5 m the street center line is crossed.
Or in other words (b) is a behavior mode detection graph with the x-axis rescaled
to the distance from the lane center.
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Figure 9.15: Evaluation of scenario mode B. Conform mode setting: Blue is
the prior assumption (Driving straight) (a) The mode plausibility graph. (b) The
detected behavior of 10 different runs with respect to the x-position. In order to see
at which distance from the lane center the lane change was detected we rescaled the
time axis to the x-position (this is the orthogonal dimension to the lane-marking).
x-position 0 is the center of the left lane. At x-position 1.5 m the street center
line is crossed. Or in other words (b) is a behavior mode detection graph with the
x-axis rescaled to the distance from the lane center.
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9.3 Survey of the Ongoing Research

all runs (Gaussian white noise with σx = 1.8m and σy = 0.9m). Higher
noise values would lead to a higher false positives rate, lower values to less
false positives. These errors can be avoided by adapting the θ value, where
a higher theta value leads to a later detection but more accurate behavior
detection. Thereby the detection time is also indirectly determined by the
sensor noise, via the threshold value.

Further evaluations in intersection scenarios will follow in the real-world
evaluation in Part IV.

9.3 Survey of the Ongoing Research

Driving behavior detection and anticipation algorithms is a hot topic in
current research. While state-of-the-art approaches focus on the behavior
detection of a driver without a reasonable context incorporation, researchers
are giving more and more attention to a Bayesian incorporation of context
information. Often the approaches are still limited or at least focused on
the behavior of the ego-vehicle.

Most research groups are now aware that prediction models need to
work in arbitrary situations. The behavior detection algorithms have to
work in more than one intersection or in arbitrarily curved roads. Such
generic models can be created either by defining goal states utilizing a lane
graph (referenced here as attractor-like concepts) [71] or by utilizing machine
learning techniques [39]. The development of generic concepts that give
implicit context-independent or self-adapting rules for behavior modeling
instead of postulating each single rule explicitly is just at its beginning.

Lane graph data was also used in previous approaches, as in [8], but in-
stead of using the lane-level map data to improve the prediction models, the
search-space was limited to the lanes, as already mentioned in Section 2.2.4.
The probability distributions move on lanes like trains on rails. These meth-
ods may be suitable for simulations with deterministic starting points, but
not for Bayesian vehicle tracking, which needs to incorporate sensor infor-
mation on every possible 2D position on the road plane.

However, such lane-constrained approaches may be useful in special ap-
plications that differ in their requirements from the position tracking and
behavior anticipation task. In [64] a lane-constrained particle filtering ap-
proach (cf. Fig. 9.16) was used to improve a vehicles navigation system state
estimate. The output space is hence limited to the lane-space and answers
the question of whether or not the ego-vehicle left the highway via an exit
lane or not. Therefore, the on-board camera image was classified into a
small set of states. The classified camera image is then used, together with
the GPS position, as an input into the particle filer. The lane-constrained
search-space is sufficient for two reasons. First, the output and, somewhat
the input, is the vehicle’s driving lane and not its 2D position. Second, the
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real-time demand is low and therefore vehicle dynamics and local predictions
can be neglected. The worst case scenario for a wrong assumption through
the neglection of kinematic predictions would be a navigation system giving
wrong directions to the driver.

Figure 9.16: The lane-constrained particle-filter. Originally published in [64].

Another lane-constrained ego-vehicle behavior anticipation approach is
presented by [50]. The vehicle position in a digital map, the indicator sig-
nal, the velocity profile and the driver’s gaze direction are used as inputs.
The models are not learned, but are generated by user studies. The proba-
bility representation is, of course, again too coarse to model spatial vehicle
dynamics, but the task limited to the ego-driver behavior detection avoids
the need for such indirect observations like the vehicle position. In an ego-
vehicle the velocity profile and the drivers gaze direction can be captured
without high noise values. A comparative approach using learned models
instead is proposed by [60].

In [71] an alternative approach to Bayesian filtering is proposed for ma-
neuver prediction at intersections. The mathematics emerge from a control
theory background. The steering and deviation of the acceleration needed
by a vehicle to reach a goal state is represented as cost function. The goal
state is set on the lane center on a lane graph like the attractor points in
our ICUBHF approach. It defines a desirable end state of the vehicle and a
trajectory is generated between the goal state and the current state of the
vehicle. The vehicle state is represented as a deterministic vector without
probabilistic considerations. The necessary costs to reach each goal point
from the vehicle state vector are then compared in each time step to derive
the most plausible behavior. Unfortunately, this approach seems to lack a
way to cope with sensory noise, instead a DT-Filter is used to smooth the
behavior outputs, but no real probabilistic framework is used. For evalua-
tion the approach was used for a ego-vehicle behavior detection tasks with
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state information provided by GPS and IMU. The non-probabilistic repre-
sentation makes it likely that the approach will not work sufficiently well
with more noisy position data. State information delivered by a low-cost
on-board vehicle detection will most likely not work with this approach.

[51] uses a classic IMM approach to detect lane changes of an ego-vehicle.
The correct model is chosen by comparing the models by their ”innovation
vector” (cf. 8.4). IMM is the state-of-the-art approach for predictions with
short-term models. Here a map is utilized to create the prediction mod-
els. Time will show if that Kalman filter IMM approach will be generic
enough to cope with more than two lanes and arbitrary situations. The
prediction model for lane-changing and lane-keeping is based on the lane
heading and is implemented as a pre-programmed non-linear function. This
pre-programmed nature of the approach will make it difficult to cope with
arbitrary situations exceeding the straight street lane-change situation in the
evaluation scenario. An attractor-based dynamic is more likely to generalize
to generic situations and especially when the noise level is high the non-linear
dynamics cannot be represented well in the Kalman filter approach.

A more advanced probabilistic representation is given by [39]. The prob-
abilistic framework is used in a simulation setup for stationary intersection
surveillance. The used ”map serves only as source of information for the
prediction process instead of constraining the motions of the traffic partici-
pants” [39]. Therefore the framework can cope with sensory noise and un-
certainties in the prediction model. In contrast to the ICUBHF approach,
the authors use an EM-learning algorithm in order to adapt the prediction
model instead of utilizing an attractor-like concept. Relations to other ve-
hicles (e.g. distances or angles to other vehicles) are also treated as context
information by this algorithm. Due to computational limits this cannot be
done with complex vehicle position PDFs. The vehicle state representation
needs to be reduced to a single or a few representatives.

The publication dates show that behavior anticipation is a field of ongo-
ing research. The correct representation of the state depends on the task,
the sensory input, the output space and the needed output quality. Re-
gardless of which approach is chosen by an engineer, a measure is needed
which compares the (estimated) state with the predicted state or goal state
in order to determine if a certain behavior model is realistic at the moment.
Depending on the terminology this measure can be referred to as costs, in-
novation vector, quality measure or plausibility measure. But when making
the effort to choose a Bayesian framework in order to anticipate behavior,
the measure should also be correct from a probabilistic perspective.
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Part IV

Real-World Application
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Up to this point we have used simulations in order to evaluate the
MDBHF and the ICUBHF approaches. Simulations allow us to generate
the same trajectory again and again and add a random error vector ε to
the trajectories. It is also possible to simulate two behavior modes starting
from exactly the same trajectory and therefore do a complete evaluation of
false positive and false negative behavior detection. None of this is possible
with real-world data. The drawbacks of simulations are that they are always
abstractions from the real-world. Not all issues and problems will be discov-
ered when using simulations. Therefore, we first started a proof-of-principle
to determine under which conditions the ICUBHF is suitable for real-world
tasks. Second, we added a row of real-world evaluations with different data-
sets to further test the application in the real-world. This part of the thesis
deals with the, proof-of-concept, the real world evaluations and the revealed
issues.
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Chapter 10

Real-World Application

In real-world applications we need real-world sensors delivering the data
needed for our MDBHF or ICUBHF. Vehicle positions are already available
from virtual sensors that detect vehicles in images or videos. Two bench-
marks used provide images and vehicle position outputs. All those positions
are measured in the reference frame of the ego-vehicle and are therefore
provided in relative coordinates to the ego-vehicle.

The datasets also provide data from an Inertial Measurement Unit (IMU)
that allows us, together with the ego-velocity from the Controller Area Net-
work (CAN)-data, to compensate the ego-movement. The MDBHF is al-
ready operative with all mentioned data. Since we focus on the behavior
detection, we also need the context information in order to run an IMM-
ICUBHF.

The context that is needed to generate the behavior models by the at-
tractor function can be delivered in at least two ways, either by

• on-board lane detection sensors working on the camera image

• or by self-localization in a global lane-level map

A simple way to obtain access to a map is the Open Street Map (OSM)
interface. Before we elaborate further on this point, we want to outline
the problems of the on-board lane detection. First, the street is partially
occluded by other vehicles. Especially when the vehicle that should be
tracked is a vehicle driving in front of us in the same direction, the lane
detection-algorithm will usually not see the street in front of the vehicle
and is therefore sometimes unable to give a lane output for the street in
front of the vehicle. This is a big problem, since this is the most relevant
area for generating the behavior of in-front driving vehicles. Since it is
difficult to give statements on the street under other vehicles or even behind
those vehicles, most street detection algorithms focus on free driving space
detection. ADAS systems may use that output in order to derive a space for
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performing driving actions or to set up a priori assumptions P (X) for vehicle
detection or tracking algorithms. The data is not usable for generating
behavior models for tracking and behavior detection algorithms. A good
example of free driving space detection is [46] or, for ego-lane detection [47].

The detection of lane markings can also be disturbed in another way.
In addition to occlusion by other vehicles or foliage, detection algorithms
working on camera data are always prone to errors from occlusion by other
objects, by rain and the thereby produced reflections, fog, darkness or sun
glare. Despite those drawbacks, the online lane-detection has an outstanding
advantage: When the traffic patterns or lanes are changed permanently or
temporarily (as by construction sides), the online detection is theoretically
able to detect the lanes anyway. However, in practice a priori assumptions
of current lane detections algorithms are often violated in construction side
situations and therefore the performance is weak. But an algorithm using
map-data in order to receive the context-information does not perform well
either. The database needs to be updated in such cases by a data-provider
or administration. There are first indications that Google could become an
innovator or even a map provider for ADAS or autonomous driving. Their
current autonomous car project seems to rely excessively on map data that
are collected by Google itself. [69]

Since we do not have access to a commercial lane-level database we have
taken the OSM into account. In Sec. 10.1 we present a strategy as to how
Open-Street-Map data can be used together with accurate ego-vehicle posi-
tion data, like that provided by the KITTI-benchmark, in order to improve
tracking. Driven by the results, we decided that OSM data is too inaccurate
for that task and we used manually annotated lane data in the subsequent
chapters in order to estimate the behavior mode of the observed vehicle.
In Sec. 10.2 preexisting HRI-EU data was used in order to estimate the
behavior in a vehicle following task. The recordings show an ego-vehicle
that follows the observed vehicle into different intersections. In Sec. 10.3
we evaluated the same recordings with the reachability scaling introduced
in Sec. 9.1.4. In a final evaluation (Sec. 10.4.3) we detected the behavior
in an arranged intersection setting. In contrast to the previous evaluation
we performed similar recordings with different behavior modes on the same
intersection.

10.1 KITTI and Open-Street-Map

In this section we give a short introduction to the KITTI benchmark and to
context retrieval through OSM.
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10.1.1 The KITTI-Benchmark

After the evaluation phase of our project, KITTI also provided a benchmark
for tracking. This dataset was not yet available for the evaluations, so we
therefore used the raw data originally provided on the KITTI homepage
[36].

Figure 10.1: Annotated Objects in the KITTI benchmark. Copied from KITTI
website [36].

In order to use the data provided by the KITTI benchmark coordinate
transformations together with the map data, different reference systems
were necessary. The details are omitted here, but Fig. 10.2 shows a gen-
eral overview of the different coordinate systems. More information can be
found on the website [36] and in [37], as well as in the readme-files included in
the raw data. Altogether, the KITTI benchmark is a well-designed dataset
easy accessible via the website and the concrete individual benchmarks are
convenient to use.

Figure 10.2: Reference systems used in the KITTI raw dataset. Copied from
KITTI website [36].

The main advantage for our work was, that the vehicle positions were
hand-annotated and therefore very exact. Furthermore the ego-coordinates
and the ego-heading provided by the dataset are very accurate since the
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GPS is used together with an IMU.

10.1.2 Using OSM as a Map Provider

OSM is an openly editable and freely accessible map database. The streets
and lanes are provided by volunteers. New entries can be contributed with
the assistance of simple home-use GPS-systems and freely available software,
or mobile phones with GPS modules and free phone applications.

The quality of OSM data is improving steadily but depends highly on
area and especially on the number of volunteers active in that area. In the
areas of Karlsruhe (KITTI dataset) and Offenbach (HRI-EU dataset) street
maps are comprehensive and quite accurate.

The streets are represented as polylines in OSM and therefore match the
needed context representation of our ICUBHF. In our test application we use
the vehicle coordinates to do an OSM query to the so called Overpass API
[68]. The Overpass API gives us the street(s) around the given coordinate.
A manual selection of the right street polyline was done. Such a manual
selection could be avoided by developing an own API that delivers street
graphs using more specific criteria than the coordinate alone (e.g. addition-
ally velocities and directions). The overall application using OSM data and
the vehicle sensors as input for the ICUBHF is depicted in Fig. 10.3

In our test application we tried several tests with the combination of
OSM and KITTI data. From KITTI we used the world coordinates provided
by the GPS+IMU, the velocity provided by the CAN-data and the yaw rate
provided by the IMU. We used the context from KITTI and we assumed the
street polyline from KITTI to be the center of the street and added lanes
on both sides of the street center.

This test application shows that there were several problems with this
procedure.

• The map data was too inaccurate.

• The assumption of how to generate lanes from a street center polyline
was too simple.

In sum, this means that the OSM polyline does not lie exactly on the
true street coordinates, and even if it did, the polyline does not lie in the
center of the street in true coordinates (cf. Fig. 10.4). Therefore, it cannot
be used to improve the tracking results. Fusing wrong information into the
filter is worse than fusing in inaccurate but statistically right information.
This position error is not based on a fix offset. The error is a combination
of two factors: First, the positioning error of the GPS device of the map
recording vehicle and second, the fact that the recording vehicle device is not
positioned in the street center. The last issue leads to problems especially
when OSM data is to be used in intersection scenarios. Different exits off
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Figure 10.3: The overall system. In the lower part the ICUBHF is depicted in
an abstract Bayesian filter representation. The remaining part shows the pathway
of the information from the object detection algorithm and the IMU/GPS over the
OSM interface to the ICUBHF.
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the intersection were recorded by the same vehicle or different vehicles that
were driving on different lanes or in different directions. The OSM data
is therefore suited for navigational purposes but not for being used as a
replacement for lane-level street graphs. The second problem is correlated
to the implementation we used in that first test application. Traffic islands
are not considered when adding lanes directly to a street center polyline. In
comparison to the first issue, this problem could be easily solved.

Does that mean that street-level graphs like the OSM data are generally
not qualified to improve tracking or detect behavior? It is possible that OSM
data could be used together with an on-board lane detection algorithm to
mutually improve the outputs of the different systems. Creating such a fine-
positioning system is another complex task and lies beyond the scope of
this work. We therefore manually created lane-level graphs by annotating
Google earth data.

10.1.3 Lessons from using OSM with KITTI Data

One intention behind the ICUBHF was to improve the tracking by inferring
context information (cf. Sec. 4). This was not possible in our setting due to
the inaccurate map data. Additionally the intention was to use the ICUBHF
with data provided from HRI-EU. The HRI-EU dataset does not use a GPS
localization supported by an IMU, and therefore the ego position in the
real world is much more inaccurate than in the KITTI dataset. Even when
using the annotated lane graph, the positioning within this accurate map
data is a problem. We therefore abandoned our goal to improve tracking
and focused on behavior detection. The task to improve tracking, even
with annotated data is only possible with an accurate positioning, e.g. by
using on-board lane detection or by using LIDARs for positioning. However,
today’s LIDARs are expensive and with having a LIDAR on board, the
engineer will use the LIDAR as an accurate sensor for the vehicle tracking
itself in order to accomplish two things simultaneously. Therefore, the use of
a LIDAR for ego-localization is a hypothetical option in the camera vehicle
tracking application.

10.2 HRI-EU Real-World-Test scenarios

The following selected real world scenes are from the HRI-EU datasets. We
selected scenes in which an ego vehicle approaches different intersections
and monitor the behavior of other vehicles that approach the intersection. A
vehicle O driving in front of the ego vehicle E is observed in order to detect by
which exit of the intersection it is likely to leave. The behavior modes were
set manually. Each drive to an intersection exit is an own mode. We filtered
out modes whose a priori likelihood is very low. For example we assume that
vehicles will not enter a one-way street into the wrong direction. The models
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Figure 10.4: The Google Earth view is plotted against the OSM data at a test
intersection. The figure on the bottom shows the OSM overlay. The figure on
top shows a plain view of the intersection. In the south intersection exit the left
lane is the OSM street center. In the road from west to east the northern lane is
represented by OSM. The wide intersection area is not properly represented in the
OSM data. (Map data by Google Images/GeoBasisDE/BKG and AeroWest)
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for each mode are created by annotated lane level graphs. We researched
intersections with wide intersection areas, meaning that vehicles can follow
a wide variety of trajectories in order to achieve their overall behavior goal.
An algorithm working in such intersections has to be much more generic
and will, with a high likelihood also work in simple intersections.

Since the ego-positioning was not very accurate and deviates up to more
than a street width, we manually initialized the position and vehicle heading
ωEgo0 of the ego-vehicle E at time step 0 in the global coordinate to the
estimated position, thereby simulating an ego-positioning system that works
well. The further positions were determined by a dead-reckoning, using the
velocity from the CAN-data and the yaw rates from the vehicle IMU. Errors
in the vehicle heading are therefore especially critical since the error in the
future positions rises with the distance to the set initial position lEgo0 ≈ lEgoreal0

.

10.2.1 Real-World Intersection Scenario 1

Parts of this subsection have been published in [7]. We used the same
parameter set gained from the Carmaker-simulated intersection evaluation in
Sec. 9.2.3 in order to evaluate the AMM-ICUBHF in real-world intersection
scenarios.

The scenario intersection with the annotated polylines is shown in a
Google Earth image (Fig. 10.5). Additionally the on-board camera view
(Fig. 10.6) of Scenario 1 is shown. The observed vehicle and our ego-vehicle
are leaving the road heading north via an exclusive left-turning lane towards
the east. We model two behavior modes: turning left towards one of the two
destination lanes and driving straight on the left-most straight-driving lane.
The other lanes are omitted since their prior would be near zero as a result
of the fact that the vehicle was detected in the left-most lane. Additionally
the left turning mode does not differentiate between the left exit lane and
the right exit lane, as positioning uncertainties are too high to make such a
distinction. Setting the prior belief to the ”turning left” mode (Fig. 10.7a)
does not lead to any change in the behavior belief. In Fig. 10.7b the ”driving
straight” mode as prior belief was quickly deemed incorrect. In time step 17
the new behavior mode was detected. Note that a mode behavior detection
graph makes no sense in real-world applications since only one run changes
the assumed mode. In mode 2 the mode probability graph does not assign
the same probability to both modes. This is because the straight-driving
model is not locally identical with the turning model, since the straight-
driving model is assigned to the left straight-driving lane, while the turning
model is assigned to the turning lane. Because of the separated lanes, the
behavior mode is detected early.
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10.2 HRI-EU Real-World-Test scenarios

Figure 10.5: In scenario 1 the ego vehicle is coming from the north and turning
east. There is one exclusive left turning lane and two possible target lanes in the
road Spessartring. The annotated lane center polylines for the two behavior modes
are illustrated as overlay. (Map data by Google Images/GeoBasis-DE/BKG and
AeroWest)

Figure 10.6: Intersection scenario 1 camera output
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(a) Prior assumption is doing a
turn. Turning was assumed the
whole time.
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(b) Prior assumption is driving
straight. Turning was detected at
time step 17 through the end of
the scenario.

Figure 10.7: Scenario 1. Mode probability graphs. Blue is the prior assumption.
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10.2.2 Real-World Intersection Scenario 2

Scenario 2 is a rather unusually skewed intersection (cf. Fig. 10.8 and 10.9).
The observed vehicle and the tracking vehicle are approaching from the south
and turning left. This time all modes are starting from one lane. The road
from the north is a one-way road, so that either a left-turning behavior or
right-turning behavior can be expected. The evaluation (Fig. 10.10) shows
that the detection works well. In comparison with Scenario 1 however, the
plausibility graph is not as clear-cut. The main reason is that the left turn-
ing is modeled by an insufficiently wide turn. The real behavior mode of
the vehicle in front of the ego vehicle deviates from that. Nevertheless, the
threshold value (θ = .12) ensures that ”left turning” was detected success-
fully. The graph shows a strong increase of the right mode during time steps
30 and 45, however, this effect only occurs because an attractor candidate
which is placed in the intersection fits very well to the left turning behavior.
The next attractor candidate on the polyline again does not fit as well to the
turning behavior so that the mode probabilities intersect again before the
actual effect occurs. Therefore, the early detection is based more on coinci-
dence than on real dependencies. We reevaluated the recording by defining
a free intersection area in the next sub-section. The free-intersection area
avoids giving a predefined trajectory within the intersection area.

Figure 10.8: Intersection scenario 2 shows an intersection scene with lanes for
west-east traffic only. The ego vehicle follows the observed vehicle which approaches
from the south and turns left. Since the northern road is a one way road the
vehicle can turn left or right. (Map data by Google Images/GeoBasis-DE/BKG
and AeroWest)
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Figure 10.9: Intersection scenario 2 camera output
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Figure 10.10: Scenario 2. The mode probability graph. Blue is the prior assump-
tion. (a) Prior assumption is a left turn. (b) Prior assumption is a right turn. In
(a) left turning was assumed the whole time. In (b) from time step 34 to the end it
was detected that a right turn is not the real behavior. The merging of the mode
probability in phase 4 (cf. 9.2.1) is highly pronounced.
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10.2.3 Real-World-Test Scenario with Free Intersection Area

The evaluation of the last intersection has shown that the ”turning left”
mode is not modeled very well by the chosen attractor approach based on
the polyline. We therefore evaluated the concept of free intersection areas at
this intersection. The idea is that the vehicle trajectory for the left-turning
mode can vary between a wide range of trajectories from wide to short routes
to the intersection exit.

The free intersection area is defined as a polygonal Area (cf. Fig. 10.11)
marking the intersection area. Within this polygon no attractor candidates
are selected. The attractor algorithm (Alg. 7.1) can be easily augmented by
adding the additional constraint ”aj ! within Area” in line 4. Additionally
the lane borders are ignored within the free-area polygon. Nevertheless it
has to be assured that an attractor candidate is available at the intersection
exit outside of the free intersection area.

Figure 10.11: The image shows the free area polygon and the left boundary limit
of the lanes used in the attractor algorithm. The lane width was estimated to be 3
m. (Map data by Google Images/GeoBasis-DE/BKG and AeroWest)

The concept of the free intersection areas is particularly interesting for
wide intersections without lane markings within the intersection, since the
variety of possible trajectories is highest there.

We applied the free area polygon to the ”left-driving” mode in scenario
2 as depicted in Fig. 10.11. The right-driving mode, is not being changed,
since the right-turning lane is guided within the intersection by the sidewalk.
It does not make sense to apply the free area polygon to such modes. The
result is depicted in the mode probability graph (Fig. 10.12).

When comparing the graph with Fig. 10.10 certain differences can be
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Figure 10.12: Scenario 2 with free area polygon for mode ”left-driving”. The
mode probability graph. Blue is the prior assumption. (a) Prior assumption is
doing a left turn. (b) Prior assumption is a right turn. In (a) left turning was
assumed the whole time. In (b) from time step 60 to the end it was detected that
a right turn is not the real behavior.

seen. First, note that in phase 1 the modes do not have the same likelihood.
The reason is that due to the free area polygon, the attractors already affect
the area in front of the intersection, independent from the fact that the
polylines in front of the intersection are identical. By chance the sensed
position of the vehicle lies more in the direction of the ”left-driving”-mode
assumption. Due to the hysteresis, the difference is not enough for the
behavior detector to change behavior. Phases 3 and 4 show the typical
progression. In time step 60 the behavior change is detected in the non-
conform a priori assumption.

In the result this shows that in wide intersections the free area concept
helps to avoid a wrong detection by allowing the correct model to match
a high number of trajectories. The concept cares successfully of the fact
that trajectories do not need drive over the individual attractor point. Only
since a single attractor point matches better to the wrong behavior mode,
the results in the evaluation graphs (Fig. 10.12) look worse in comparison
to the results from the same scenario without using a free intersection area
(Fig. 10.7). In other words, the detection in time step 60, and not the
detection in time step 17, is the wanted result.

10.3 Real-World-Test Scenario with Plausibility Scal-
ing and Reachability Scaling

In Sec. 9.1.4 we introduced the reachability scaling in order to avoid phase 4
which could lead to difficulties when framework-algorithms do not sort out
non-reachable hypothesis themselves. Figure 10.13 shows the mode plausi-
bility with reachability scaling P (B̂Reach

t |Y1:t+1).

In order to avoid a false positive straight-driving detection the hysteresis
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Figure 10.13: Scenario 2. The mode reachability scaled probability graph. Blue
is the prior assumption. (a) Prior assumption is doing a left turn. (b) Prior
assumption is a right turn. In (a) left turning was assumed the whole time. In
(b) from time step 60 to the end it was detected that a right turn is not the real
behavior. In (c) the P (B̂t|Bt, B̂t−1) (cf. Sec. 9.1.3) was set from 0.9 to 0.995 in
order to show that the probabilities will approach 1 and 0 when this PDF becomes
more deterministic.
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10.4 Real-World Oncoming Intersection Scenario

θ needs to be adapted to the new mode probability scaling.

10.4 Real-World Oncoming Intersection Scenario

In the previous real-world evaluations it was impossible to check the evalu-
ation for false positive detection, since in each situation only one behavior
mode was executed. Therefore we have recorded multiple trajectories with
different behavior modes in a bend priority road intersection scene with an
oncoming vehicle. Such a scene was already evaluated in the simulation
(cf. Sec. 9.2.3). Note that the simulation is better qualified to proof the
theoretical functionality, even when more than one trajectory is used in the
real-world situation. Other than in the simulation, it is impossible in real
world to generate trajectories with exactly the same history. Nevertheless,
the real-world evaluation will give us valuable experience as to if and how
the concept can be applied to a real-world intersection scene.

In this intersection scene it is important to know for an ADAS if the
oncoming right-of-way vehicle makes a turn or is driving straight. In the
first case the ADAS has to brake when the ego-driver is not reacting himself.

10.4.1 Challenges of the Dataset

The real-world data has to be converted and adapted before using it in our
ICUBHF. All data needs to be in sync - the vehicle detections, the IMU data
and the CAN-data. As already stated, the delivered GPS position is too in-
accurate, and therefore the vehicle positions were calibrated before starting
each evaluation run. Specifically, the ego-position and yaw in the beginning
was set by the calibration. The further ego-positions and velocities were
calculated by a death-reckoning. The vehicle detection algorithm delivers
several static vehicles, other moving vehicles and non-vehicle objects. The
ID of the relevant vehicle was selected manually at the beginning of the eval-
uation. The detection algorithm has at least two problems. The first is that
true distance to the observed vehicle is systematically wrongly estimated
and the second is that it has a jumping behavior. The first issue was solved
by doing a calibration of the detected position in the forward direction x1.
A time-linear additive correction value was added to the detected x1 posi-
tion. The correction was necessary since such systematic errors cannot be
handled by Bayesian filters. In practice another algorithm is needed that
calibrates the detection algorithm.

Secs. 10.4.1 and 10.4.2 deal with the second issue. Unfortunately, the
jumps are not systematic enough to use the proposed counter measures. The
ICUBHF without those measures is used instead in the main evaluation in
Sec. 10.4.3. The threshold parameter θ was increased to cope with the high
additional uncertainties.
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10.4 Real-World Oncoming Intersection Scenario

Object Detection Algorithm

The object detection algorithm is based on a disparity map that is created
by the on-board stereo camera. The object depth in the camera image or
the distance of the object can be calculated with the help of the disparity,
but first the object is detected within the disparity map. The detected
object is considered as a region of interest (ROI) and mapped from the two-
dimensional disparity map into the three-dimensional world coordinates.
Both, the detection algorithm as well as the the mapping from the ROI to
the world coordinates can be adjusted by several parameters, not detailed
here.

Vehicles that are visible from the side produce a greater ROI, and it
is more difficult to map that huge ROI to an exact position. Therefore,
lateral movements produce higher uncertainty in the position that the virtual
sensor delivers. Besides that, the mapping is not very exact in far detection
distances. Additionally and most importantly, the ROI’s size does not have
a continuous range, but increases only in fix steps. When an observed vehicle
is approaching our vehicle, the sensed position jumps up to 4 meters in a
time step (0.1s) when the size of the ROI increases. After the jump in the
sensed position, the sensed position keeps nearly constant or even moves
back slightly.

There are three possibilities of how to deal with such sensor character-
istics.

1. Use a moving average on the sensor information.

2. Adapt the sensor model.

3. Use adaptive simulation time-step sizes.

The first item has the advantage that it is easy to implement. The
drawback is that the moving average has, as a low-pass filter, the property
of delaying the estimate. Additionally, the sensor information is no longer
independent over the time, a basic assumption of the Bayesian filter. The
Markov-assumption can no longer be used on the sensor model. Therefore,
this possibility should be discarded.

The adaption of the sensor model seems to be a good solution within
the Bayesian filtering theory. The drawback is that the sensor noise shows
a complex undocumented behavior, depending on the vehicle position and
the vehicle direction. The task of modeling the sensor noise would be rather
complex since the jumps in the disparity algorithm need to be modeled in
the sensor model. We therefore decided to aim for the last item.

The simulation filter time steps size ∆T is adapted. The measurement is
only fed into the system after a detection jump, meaning that the size of the
ROI has just increased. Therefore, the sensor input is analyzed if a jump
occurs, while if no jump occurs the prediction time step size is increased by
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Figure 10.14: ∆TSum = 3 · ∆T . (a) Mode probability graph showing the 10
individual runs. Blue is the prior assumption. The prior assumption is the turning
mode. (b) The behavior mode detection graph for non-conform setting. All runs
detect the change. In the conform setting no false positive detection occurs.

another ∆TSum+=∆T until a new jump is detected. Once the new jump is
detected the prediction is done with the ∆TSum as filter time step size. Note
that this is in contrast to the pure prediction loop (cf. Sec. 4.3). We admit
that in a real-world situation the ICUBHF would not be fast enough to do
the prediction instantaneously and give the result in time for the new sensor
input to be incorporated. However, in practice different predictions with
different ∆TSum could run in parallel and then a multiplexer like approach
would be used to select the right ∆TSum.

10.4.2 Pre-Evaluations: Adaptive Update Time-steps

In order to evaluate the ICUBHF with adaptive update time-steps a pre-
evaluation within a simulated environment was done. We have again been
using the Carmaker T-Crossing situation. Figs. 10.14 and 10.15 show the
evaluation for a fix time-step ∆TSum = 3 ·∆T . In Figs. 10.16 and 10.17 we
show the same evaluation for a random ∆TSum which skips a time step with
a chance pskip = 2

3 .

Wrong detections, or in other words wrong categorizations of the modes
appear when the model does not fit to the mode. But what was not modeled
correctly? It is necessary to take a deeper look into the ICUBHF estimate
to discover what was incorrectly modeled. Figure 10.18 shows the estimate
of the ICUBHF running with the different behavior models.

It can be seen that a long δTsum (identifiable on the long rising line
segment) appears just before the intersection. Due to the long δTsum the
d∗ in Eq. 7.9 becomes the maximum possible value 1. That means the
new direction in the certain grid cell is not set by a location on the spline
itself, but by the end point of the spline lAi . The new direction ω∗(vi)
(cf. Eq.7.10) is therefore heading directly to the attractor that already lies
in the intersection. More abstractly, the dynamics modeled by the attractors
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Figure 10.15: ∆TSum = 3 · ∆T . (a) Mode probability graph showing the 10
individual runs. Blue is the prior assumption. The prior assumption is the straight
driving mode. (b) The behavior mode detection graph for non-conform setting.
Some runs are late in the change detection. In the conform setting no false positive
detection occurs.
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Figure 10.16: Random ∆TSum. (a) Mode probability graph showing the 10
individual runs. Blue is the prior assumption. The prior assumption is the turning
mode. (b) The behavior mode detection graph for non-conform setting. False
negatives or late detections occur. (c) The behavior mode detection graph for
conform setting. False positives occur.
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Figure 10.17: Random ∆TSum. (a) Mode probability graph showing the 10
individual runs. Blue is the prior assumption. The prior assumption is the straight
driving mode. (b) The behavior mode detection graph for non-conform setting.
False negatives or late detections occur. (c) The behavior mode detection graph
for conform setting. One false positive is seen.
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(a) Using turning model.
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(b) Using straight driving model.

Figure 10.18: Random ∆TSum. The estimate position (blue line) compared with
the ground truth position (black line). It is seen that in the conform mode (=turning
mode) the estimate anticipates the turning too early in some of the runs.

are only valid locally and long predictions over several ∆T may therefore
fail in modeling the mode. We admit that this would not occur with a
pure-prediction loop.

For small multiples of ∆T the predictions are local enough, but for a
long ∆Tsum this can cause problems. With this in mind we can cautiously
use the adaptive filter step size in the real world situation.

10.4.3 Oncoming Vehicle in a Real-World Situation.

In this section we evaluate the performance of the ICUBHF in the oncoming
ICUBHF in the intersection shown in Fig. 10.19. In order to get an accurate
positioning of the ego-vehicle it is necessary to calibrate the ego-position in
the calibration area. In practice, more precise ego-localization sensors or
algorithms will avoid such a calibration.

The vehicle detection algorithm delivers very noisy position data. The
trajectory of the sensor detections of all three real-world runs is depicted
in Fig.10.20. The evaluation was executed without time adaptive-filtering,
since the jumps in the detection trajectory were not systematic enough to
state a time-step selection algorithm.

Scenario Description

The scenario setting consists of two vehicles. The ego-vehicle E approaches
the intersection from the give way road with about 30 km/h, meaning from
the east in Fig. 10.19a or from the street in the right side of the figure. In
order to avoid a collision it was necessary to brake abruptly in front of the
intersection. The ego-vehicle starts from the calibration area with velocity 0
and quickly speeds up to 30 km/h. The observed vehicle O starts from the
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10.4 Real-World Oncoming Intersection Scenario

(a) The intersection area from a
pedestrian perspective.

(b) The ego-vehicle in the calibration
area.

(c) The intersection area from a bird’s-eye view. The street center
polyline is shown as overlay. The calibration position of the ego-
vehicle is shown in red. (Map data by Google Images/GeoBasis-
DE/BKG and AeroWest)

Figure 10.19: The real-world evaluation scenario from different views.

west and approaches the intersection at about 40 km/h. The first detection
of the observed vehicle O occurs at about a distance of 50m. The observed
vehicle then either drives straight east or turns left and follows the priority
road towards the north. The first stated mode can lead to an accident when
the ego-vehicle does not brake. The second mode is non-threatening. It
is therefore useful for the ADAS to know if the vehicle will turn or drive
straight.

In the next paragraphs we will show the results of the runs following
turning behavior mode. Thereafter the straight driving run is presented.
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(a) First run
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(b) Second run
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(c) Third run

Figure 10.20: The calibrated vehicle detections y1:t relative to the camera of the
ego-vehicle. The first detection of the vehicle is seen at the top of each image. The
last detection in time step t is seen at the bottom.

Turning mode

The first run is the noisiest. Figure 10.20c shows a number of reversions in
the trajectory. In order to cope with these high uncertainties, the threshold
variable for the behavior mode detection was increased to θ = 0.25 for all
real-world runs of this evaluation. It can be seen in the mode probability
graphs (Fig. 10.21a and 10.21b) that θ = 0.2 would be sufficient, since in
the conform setting (Fig. 10.21a) the false mode never exceeds a probability
of 0.6. Nevertheless it is rather unfair to adapt the threshold value to the
minimum possible value in order to get an earlier detection. Wrong behavior
detections would be likely in further runs with trajectories other than the
evaluated ones. The remaining 0.05 to 0.25 acts as a security margin.

With that security margin, the behavior change that was detected in
time step 32 is annotated in the sensor input trajectory in Fig. 10.21d. The
camera input in time step 32 with the ROI of the detection is depicted
in Fig. 10.21c. For the human observer, this detection time seems late.
However, the detection time is plausible when looking at the underlying
conditions. This is discussed in Sec. 10.4.3.

We did a second run with the observed vehicle in the turning mode.
Figure 10.22 shows the results. It can be clearly seen that the sensor in-
put trajectory (Fig. 10.22d) looks better than the trajectory in the previous
run. Nevertheless the trajectory indicates a backwards driving of the ob-
served vehicle during the early detections. Note that the graph shows the
relative position of the observed vehicle with respect to the ego-vehicle.
Since the ego-vehicle is itself moving towards the observed vehicle, a con-
stant distance in the graph indicates a backward driving of the observed
vehicle. The evidence for the turning mode starts gathering early in that
run (cf. Fig. 10.22b). Due to the high threshold value, the behavior change
was detected in time step 28, but it is clearly visible that an earlier detec-
tion (even before time step 20) is possible with lower θ values. The high
gap between the two mode probabilities in the conform setting (Fig. 10.22a)
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(a) Prior assumption is doing a turn.
Turning was assumed the whole time.

0 20 40

0

0.2

0.4

0.6

0.8

1

Time [tics]

P
la
u
si
b
il
it
y

(b) Prior assumption is driving
straight. Turning was detected in
time step 32.

(c) The camera image with ROI of
the detection in time step 32.
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(d) The relative trajectory with
marked behavior detection position.

Figure 10.21: Run 1 turning mode. Mode probability graphs. Blue is the prior
assumption.
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(a) Prior assumption is doing a turn.
Turning was assumed the whole time.
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(b) Prior assumption is driving
straight. Turning was detected in
time step 28.

(c) The camera image with ROI of
the detection in time step 28.
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(d) The relative trajectory with
marked behavior detection position.

Figure 10.22: Run 2 turning mode. Mode probability graphs. Blue is the prior
assumption.

shows that there is never a risk for false positive detections. That means
this run would have been detected correctly for the whole time even with
θ = 0. However, this is a hypothetical consideration, since in other runs the
trajectory and the noise need higher trajectories.

Straight driving mode

The straight driving trajectory was extrapolated four further data points
(cf. bottom Fig. 10.23d), since the detection algorithm no longer detects
the observed vehicle when the vehicle-front is leaving the camera image.
Otherwise, the detection of vehicle O is lost before enough evidence for
straight driving is accumulated.

When assuming turning as the correct mode, the straight driving was de-
tected in time step 25. The behavior mode probability is seen in Fig. 10.23b.
There is also no risk of a false positive detection for a turning behavior here
(cf. Fig. 10.23a). This is the first time step without a vehicle detection by
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(a) Prior assumption is straight driv-
ing. Straight driving was assumed the
whole time.
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(b) Prior assumption is turning.
Straight driving was detected in time
step 25.

(c) The camera image with ROI of
the detection in time step 25.
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(d) The relative trajectory with
marked behavior detection position.

Figure 10.23: Run 3 straight driving mode. Mode probability graphs. Green is
the prior assumption.

the original vehicle detection algorithm. The detection occurs about when
the ground-truth vehicle center crosses the white intersection margin (cf.
Fig. 10.23c).

Reflection on the Behavior Detection Performance

Note that the camera pictures themselves suggest that the detection is very
late. The reason for this impression is that the human observer looking at the
image has better vehicle detection without much noise and extracts further
features from the image (cf. Fig. 10.24a). The human driver would extract
the vehicle position relative to the lane position directly from the optical
image without the need of an ego-localization in a global map database that
can lead to offset areas.

To summarize the reasons for this effect:

• There is high (systematic or non-independent) noise in the input vec-
tor. The algorithm accounts for the noise determined in the runs and
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an additional security margin.

• The human driver/observer extracts the vehicle position and the lane
position from the camera image. The relative position between the
vehicle and the lane is more accurate than a positioning in a global
map. Errors in the positioning lead to errors in the modeling (cf.
Sec. 7.3.2)

• The human driver/observer extracts the direction (and when observing
the scene for longer than a blink, also the velocity) of the vehicle O.
The detection algorithm used does not output a detected direction
to the ICUBHF. Therefore, the sensed detection cannot be compared
with the estimated detection as was done for the position dimension.

Therefore, the results looks moderate to humans. Considering the infor-
mation input that the ICUBHF has, not much better results are possible.
In order to understand this the reader should have a look at Fig. 10.24b.
From the pure position sensor input at a certain time step even a human
driver will not be able to make a reliable behavior estimation. Fig. 10.24a
illustrates the information available to the human driver at the time step
of the detection. The vehicle nose has already nearly left the turning lane,
but a vehicle in the center of the ROI could also be in a turning behavior
with its nose directed to the side. Even when observing the relative position
estimates over time (cf. Fig. 10.20) the human driver is not able to make
an early detection, since the high noise in the vehicle position detection and
the offset noise in the map data positioning has to be considered.

The high noise is a fact that is already considered well by the grid rep-
resentation. This means that the most effective improvement would be to
consider vehicle directions in the behavior detection algorithm. In order to
do this, a detection algorithm is needed, that provides reliable data on the
vehicle velocity and direction. We will discuss this improvement next to
other possible improvements and application areas in our conclusion.
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(a) The picture illustrates the sys-
tem input for the human reader from
the camera perspective. The human
driver is likely to detect the straight
driving as true mode when seeing this
camera image. It is the time step 20
from the third evaluation run. The
green ROI of the observed oncoming
vehicle does not give a clear evidence.

(b) The relative vehicle position is
the only input from all possible ob-
servable vehicle states. The vehi-
cle position is illustrated by a yel-
low ROI. The lane markings are illus-
trated in white. Note that the lane
markings are here extracted from the
camera image. Our ICUBHF uses the
lane information from the lane-graph,
which can have an offset.

Figure 10.24: The camera image and the ICUBHF input.
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Chapter 11

Conclusion

We developed the theoretical concept of the BHF towards the ICUBHF and
used it for behavior detection in a real-world intersection. This behavior
detection can be used to anticipate dangerous collision situations by pre-
dicting the observed vehicle position estimate in a probabilistic manner.
Such a system can be used in future ADAS to provide warnings to inatten-
tive drivers or to execute automatic emergency brakings in situations with
high uncertainty.

High uncertainties can either be the result of low sensor performance due
to adverse conditions, such as poor visibility, or the result of high prediction
uncertainty in the movement due to relatively long-term prediction intervals.

This work provides the fundamental research, shows the technical pit-
falls and the strategic decisions necessary to further improve the behavior
anticipation of other vehicles by Bayesian filtering and probabilistic compar-
ative measures. Further system improvements and parameter tunings will
be needed in order to move beyond the research stage. As a first step, the
models can be learned or improved by further expert knowledge. A large
data-set with several different intersections is necessary to make these im-
provements and to make sure that the parameters work for the majority of
situations. In order to evaluate the ICUBHF in a large number of situations,
the time-consuming and complex manual calibration to set the ego-position
lEgo0 and the ego-yaw ωEgo0 needs to be replaced by a better automated local-
ization technique (at least on the accuracy-level of the KITTI-benchmark)
or by on-board lane-detection. In order to achieve a high number of evalua-
tions with different noise in a given set of situations, we have already made
use of the high-performance computing cluster (bwHPC) for an automated
test bench. The manual calibration prevented us from doing an automated
testing for a high number of different real-world situations.

We mentioned different ways to further improve the ICUBHF approach
in this thesis. To summarize, the behavior detection and position tracking
can be improved by
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1. an adaptive grid representation,

2. a sensor fusion of different sensors or usage of multi-modal sensor dis-
tributions,

3. an improved vehicle representation,

4. an improvement to the attractor approach,

5. an improved lane grid incorporation,

6. a threshold bootstrapping,

7. the usage of the vehicle heading and velocity for behavior detection,

8. the incorporation of the ICUBHF into a data-association framework
for multi-object tracking, and

9. an automatic generation of alternative behavior models based on the
lane-graphs.

The adaptive grid representation could be made up of a grid with a
coarser grid tesselation in more distant areas and a smaller size of the grid
cells in the near-field in order to improve accuracy in the near-field (c.f.
3.2). A sensor fusion of different sensors in parallel allows a fusion of the
sensor information within the grid cells in order to improve the accuracy of
the estimate. Additionally, the sensors provided for this work do not ex-
port multi-modal sensor distributions. The usage of sensors that provide a
multi-modal sensor distribution over the position space rather than a single
position estimate in each time step will improve the MDBHF and ICUBHF.
The vehicle representation of the tracked vehicles can be improved to use the
probabilistic representation of the ICUBHF for an in-system computation
of evasive maneuvers. At the moment the center of mass of the observed
vehicles is tracked. A future system could model the vehicle dimensions.
Using the position of the center of mass and the direction of the vehicle
at this position the current or predicted occupied space of a certain vehi-
cle can be computed probabilistically. The vehicle dimensions can also be
used in the prediction models in order to ensure that the modeled trajec-
tory will keep the entire vehicle within a certain lane. Furthermore, the
driver’s acceleration and steering profile can be learned in order to improve
the prediction model. The attractor algorithm can be further improved to
enhance the prediction model. Due to the incorporation of context informa-
tion into the prediction model the uncertainty, and therefore the variance
in the model, decreases. In a future work the information gain due to the
context incorporation could be quantified by comparing the model to the
real driver behavior. This can be used to quantify the variance of the pre-
diction model when the context information is incorporated. The attractor
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algorithm can be further improved by using a more advanced trajectory gen-
eration. In future approaches a collision detection between the trajectory
and the lane border could be implemented in order to avoid less probable
trajectories. The lane or context incorporation can be improved. In the
current approach the ego-vehicle has to be manually calibrated within the
lane position. On the one hand, self-positioning via GPS within the OSM
graph is not accurate enough to improve tracking or detect the behavior. On
the other hand, on-board lane-detection is not sufficient due to occlusion of
the lane by other vehicles. A combination of both methods can be used to
automatically position the ego-vehicle within the context, and either a prob-
abilistic lane marking representation or a probabilistic ego-positioning could
be implemented. For improved behavior detection, the threshold parameter
used in the behavior detection could be automatically adapted in order to
assure a certain false positive and false negative detection rate. To improve
the behavior detection, the vehicle heading (and velocity) dimension could
also be used for behavior detection. The real-world evaluation shows that
this is the most promising improvement, meaning that the plausibility mea-
sure should not only compare the position estimates with the sensor input,
but also the estimated heading with a sensed vehicle orientation. For this
purpose a sensor needs to provide the heading of the observed vehicle. In
our evaluation setting this means that a vehicle detection algorithm that
works with camera images has to provide the orientation of the detected
vehicle. The current heading detection algorithm delivers very inaccurate
data. A future project is to develop or implement more accurate algorithms
in the real-world evaluation setup. No change would be necessary in the
grid representation, since the direction dimension is already represented by
a single representative in each grid cell. However, such an enhanced com-
parison could benefit from a more advanced dimension direction, capable
of appropriately representing distributions. This improvement enables early
behavior detection, which is needed for the real-world application.

Beyond the discussed automotive application, a system such as the ICUBHF
can be used in other fields that have to cope with high uncertainty in the
sensor input, that have to cope with highly non-linear prediction models
and/or when a prediction over a relatively large time interval is necessary,
with the result that the non-linearity of the movement comes into effect. A
limitation of this approach is the high computational effort needed when it
comes to higher-dimensional problems. Some higher-dimensional problems
need to be separated into independent dimensions or the grid resolution
needs to be downscaled in order to allow computation. Regarding the ve-
hicle tracking approach it has been shown that the ICUBHF is capable of
representing two position dimensions. In order to track the velocity and
direction some compromises were necessary, such as using a single represen-
tative for the velocity and direction dimensions. Considering these general
conditions the ICUBHF can be applied in the following fields:
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• for autonomous driving and ADAS to track vehicles, bicycle drivers
and other dynamic, non-static and non-linear, goal-oriented moving
objects,

• outdoor or indoor-tracking and behavior/goal-anticipation of robots
or humans within locally bounded areas using multiple sensors, and

• self-positioning, e.g. via triangulation, since the probability grid allows
a probabilistic triangulation through probability accumulation within
the grid nodes.

Generally speaking, the ICUBHF can be used for state estimation and state
prediction of systems such as humans, machines, mobile robots or robotic
arms in low-dimensional spaces.

Despite the variety of possible application fields, the ICUBHF approach
was developed to enable behavior and position tracking within the domain
of ADAS.

The future work possibilities presented here improve the models and the
design of the Bayesian network and should enable the ICUBHF to improve
detection quality and detection time in order to provide a behavior detec-
tion that performs in a human-like manner, or even better. Such a system
contributes to accident prevention measures such as emergency braking and
enables an ADAS to act as a co-driver that actively guards the driver in
inattentive situations or takes control, in complex situations.
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12.1 Attractor function

(a) The spline trajectories connect
attractor positions with the depart-
ing positions. Attractor reachability
constraint dmax = 7 m. (c.f. Eq.7.3)

(b) The spline trajectories con-
nect attractor positions with the
departing positions. Attractor
reachability constraint dmax = 30
m. (c.f. Eq.7.3)

(c) The tracking result of the
MDBHF.

(d) The tracking result of the
ICUBHF.

Figure 12.1: The optimized spline used to improve the tracking of a vehicle in front
of the ego-vehicle during a left curve. A larger dmax creates smoother trajectories.
The second row illustrates the benefits of the ICUBHF in comparison with the
MDBHF. When using the ICUBHF, the variance is smaller and the expectation
value fits better to the ground-truth position.
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12.2 More than two modes

12.2 More than two modes

Figure 12.2: The figure shows the plausibility mode graphs in the Carmaker
intersection scenario. Different settings were chosen for the mode transition prob-
abilities. Their respective probabilities are annotated below the graphs. A turning
mode, a straight-driving mode and a ”maniac-driving” mode that uses the kine-
matic movement constraints only is used for this evaluation. With the transition
parameter setting used in the right image, the maniac driving mode is more unlikely
than is the left image. In the right image, the transition probability from a maniac-
driving mode to another mode was set to 0.1, while the transition probability from
another mode to the maniac driving mode was set to 0.05.
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