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1. Zusammenfassung/Summary 

1.1. Zusammenfassung 

Die Etablierung und Aufrechterhaltung der polaren Blattachse wird durch ein 

komplexes Netzwerk von Transkriptionsfaktoren bewerkstelligt. Mitglieder der 

KANADI und HD-ZIPIII Transkriptionsfaktorfamilien sind an der Festlegung der 

Organpolarität beteiligt und agieren in diesem Prozess antagonistisch. In 

unseren Studien haben wir vergleichende 

Chromatin-Immunopraezipitationsexperimente durchgeführt und haben die 

direkten Zielgene von KANADI1 identifiziert. Die Analyse dieser Zielgene legt 

nahe dass KAN1 Musterbildungsprozess in Blättern durch Kontrolle der 

Auxinantwort kontrolliert. Des Weitern haben unsere Studie ergeben dass 

REVOLUTA (REV), ein Mitglied der HD-ZIPIII Familie und KAN1 viele Gene 

gegensätzlich regulieren. 

Da Pflanzen sessil sind müssen sie ihr Wachstum kontinuierlich mit der 

Umweltsituation synchronisieren. Das Auslösen der Blattseneszenz leitet die 

letzte Phase der Blattentwicklung ein. In diesem Stadium werden 

energiereiche Substanzen von den Blättern zu den Wachstumszonen 

transportiert. Dieser Vorgang erhöht der reproduktiven Erfolg und ist eng an 

das Entwicklungsalter der Pflanze gekoppelt. 

Wir konnten in unseren Studien zeigen dass HD-ZIPIII eine wichtige Rolle in 

der Regulation der Blattseneszenz spielen. So kontrolliert REV direkt die 

Expression von WRKY53, einem wichtigen Seneszenzregulator. Des Weiteren 

haben wir gezeigt dass diese Regulation abhängig vom Redox-Status von 

REV erfolgt. Die weitere Analyse anderer REV Zielgene legt nahe dass REV 

verschieden Seneszenzfaktoren stadium-spezifisch reguliert. REV kontrolliert 

demnach die frühen und späten Stadien der Blattentwicklung. 
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1.2. Summary 

In plants, the establishment of organ patterning and polarity is mediated by the 

action of several transcription factors. Among them, KANADIs and HD-ZIPIIIs 

act antagonistically by which they play crucial roles in organ polarity. Using a 

combination of chromatin immunoprecipitation (ChIP-Seq) approach and tiling 

arrays, we could identify a set of potential direct target genes of KAN1. Further 

analysis showed that a number of KAN1 targets appear to regulate organ 

patterning or response to auxin. In addition, KAN1 shares a set of common 

direct targets with REV, implying that the REV/KAN1 module acts in organ 

patterning through opposite regulation of shared targets. 

As sessile organisms, plants have to continuously adjust growth and 

development to changing environmental conditions. During the final stage of 

growth, plants induce leaf senescence to reallocate nutrients and energy-rich 

substances from mature leaves to reproductive seeds, leading to increased 

reproductive success. Therefore leaf senescence is tightly coupled to the 

developmental age of the plant. 

In this study, we show that class III HD-ZIP transcription factors have an 

additional role in controlling the onset of leaf senescence in Arabidopsis. We 

report that acting as a redox-sensitive transcription factor, REV directly and 

positively regulates the expression of WRKY53, a senescence-related 

transcription factor. REV is required for the induction of WRKY53 in response 

to oxidative stress, and reducing the activity of HD-ZIP III genes strongly 

delays the onset of leaf senescence. Besides WRKY53, we also identified nine 

direct REV targets which are differentially expressed during senescence. Thus, 

a crosstalk between early and late stages of leaf development appears to 

contribute to reproductive success. 
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2. Aim of the work 

Adaxial-abaxial polarity is the developmental basis of leaf shape diversity. For 

instance, most leaves are flat with two distinctive surfaces and the formation of 

the leaf lamina requires the establishment of dorsiventrality. Previous genetic 

studies have showed that Class III HD-ZIPs and KANADIs are critically 

involved in mediating leaf polarity establishment. Interestingly, these two types 

of transcription factors act antagonistically to regulate organ patterning and 

polarity. This study is focusing on investigating the downstream genes of REV 

and KAN1 to better elucidate how these two patterning factors act to control 

developmental processes. 

In the first part, we could identify a number of target genes of KAN1 by using a 

combination of next-generation sequencing and genetic analysis. Further 

analysis of these potential targets will indirectly contribute to examine the roles 

of KAN1 in plant development.  

Based on our previous finding that the senescence-related WRKY53 factor is 

regulated by REV, in the second part we wanted to understand how REV plays 

a role in controlling leaf senescence via the regulation of the WRKY53 

transcription factor. 
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3. Introduction  

3.1. Leaf primordium initiation and the establishment of adaxial-abaxial 

polarity 

Leaves are the main photosynthetic organs of plants. Energy-rich sun-light is 

captured in the leaves and converted into chemical energy through 

photosynthesis. In order to adapt to a variety of habitats, plants have evolved 

leaves displaying a wide range of shapes and sizes. Leaves vary 

tremendously in size, shape and color among different plant species. Even in 

the same plant, leaf shapes may be different at the different stages. During the 

past decades, the molecular mechanisms underlying leaf shape diversity have 

been started to be addressed. Although many details remain unclear, much 

progress has been made in understanding the developmental mechanisms. 

 

3.1.1 Leaf primordium initiation 

Initiation of the leaf primordium is one of the three main processes in early leaf 

development. In higher plants, leaves and flowers are referred to as lateral 

organs, which arise, from individual groups of founder cells on the meristem 

periphery. The center zone (CZ) of the shoot apical meristem (SAM) harbors a 

population of stem cells that divide slowly. These cells are always in 

a non-differentiated and proliferative state having the ability to continually 

divide. Owing to the continuous cell production in the meristem, some 

daughter cells are displaced toward the periphery of the meristem where they 

organize into organ primordia such as leaf primordia. Leaf primordia initiate 

from the flank of the shoot apical meristem and the simultaneously 

specification depends on the proper gradient of auxin distribution. Due to the 

presence of auxin, the cells keep the competence for the initiation of leaf 

primordia (Reinhardt et al., 2000).  

Two Arabidopsis genes, PIN-FORMED1 (PIN1) and PINOID (PID) are thought 

to regulate boundary formation though both of them are not key genes 
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essential for SAM formation and/or maintenance. The PIN1 gene is the first 

identified PIN family member associated with auxin transport. PIN1 encodes a 

transporter-like membrane protein acting in the efflux of auxin from cells. Polar 

transport of auxin is believed to control the formation of leaf primordia. 

Moreover polar auxin transport is regulated by the putative auxin efflux carrier 

PIN1, resulting in leaf separation and delimitation. PIN1 is shown to promote 

polar auxin transport in Arabidopsis inflorescence axes (Gälweiler et al., 1998). 

The pin formed 1 (pin1) mutant of Arabidopsis shows structural abnormalities 

in leaves, including fused or deformed cotyledons together with much wider 

leaves as well as abnormal phyllotaxis on the inflorescence axes (Okada et al, 

1991). The auxin efflux carrier also plays an essential role in promoting organ 

formation by regulating auxin distribution (Benková et al., 2003; Reinhardt et 

al., 2003). After treating young pin1 plants with indole-3-acetic acid (IAA), 

normal leaves were formed. Additionally, ring-shaped flower primordia were 

induced when IAA was applied to the tip of the meristem of pin1 mutants 

suggesting the role of PIN1 in organ formation (Reinhardt et al. 2003). 

Encoding a protein serine/threonine kinase, PINOID (PID) is an important 

molecular determinant in PIN polar targeting and is mainly expressed in the 

boundaries of cotyledon primordia. Moreover, its transcription is induced by 

exogenous auxin application (Christensen et al., 2000, Friml et al., 2004). The 

PID gene is involved in positive regulation of polar auxin transport indicated by 

both PID loss- and gain-of-function mutant phenotypes (Benjamins et al., 

2001). Overexpression of PID alters auxin distribution by inducing a 

basal-to-apical shift in PIN polarity, resulting in developmental defects in 

embryo and seedling roots (Friml et al., 2004). Loss-of-function pinoid (pid) 

mutants display inflorescence and flower phenotypes similar to those of the 

pin1 mutant, but different in cotyledons and leaves (Bennett et al., 1995). 

Mutations in the PIN1 and PID genes all disrupt the patterning of cotyledons. 

The pin1 pid double mutant has a severe phenotype with completely lacked 

http://dev.biologists.org/content/131/20/5021.long#ref-19
http://dev.biologists.org/content/131/20/5021.long#ref-7
http://dev.biologists.org/content/131/20/5021.long#ref-28
http://dev.biologists.org/content/131/20/5021.long#ref-28
http://www.plantcell.org/content/22/4/1129.full#ref-21
http://www.plantcell.org/content/22/4/1129.full#ref-21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC167099/#ref4
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cotyledons displaying radial symmetry due to improper auxin flux. However the 

double mutant develops a normal SAM that can produce leaf primordia, 

although these primordia display abnormal phyllotaxis (Furutani et al., 2004).  

Another parallel mechanism required for leaf primordium initiation is the 

antagonistic interaction between class I KNOX (KNOTTED1-like homeobox) 

gene family and ARP (for AS1/RS2/Phantastica) genes, which contribute to 

the regulation of meristem maintenance. In Arabidopsis thaliana, there are four 

class-I KNOX transcription factors, including SHOOT MERISTEMLESS (STM), 

BREVIPEDICELLUS (BP or KNAT1), KNAT2, and KNAT6 (Hake et al., 2004). 

The class 1 KNOX genes are expressed throughout the shoot meristems but 

not in P0 cells which are designated for the cells in the incipient leaf 

primordium that will become the next leaf (Jackson et al., 1994). These genes 

were reported to play an important role in maintenance of meristematic cell 

identity during embryogenesis. Some knox loss-of-function phenotypes are 

highly infromative for understanding their functions. The first recessive knox 

mutant line discovered in plants is the stm mutant, which fails to form a 

functional shoot apical meristem. The fact that stm is able to produce 

cotyledons suggests that STM is required to maintain the SAM (Barton and 

Poethig, 1993; Long et al., 1996). BP and KNAT6 contribute redundantly 

with STM to SAM maintenance, as the examination of bp stm-11 and knat6-2 

stm-2 double mutants reveals that loss-of-function mutations in BP/KNAT6 all 

reduce the residual meristematic activity of the stm mutants (Byrne et al., 2002; 

Belles-Boix et al., 2006). KNAT2 has a similar expression pattern to STM 

mainly expressed in domains of the SAM, but its role is still unclear. In maize, 

the knotted1 (kn1) gene is the first described gene whose expression is related 

to the early events in leaf initiation. Kn1 is expressed throughout the shoot 

meristem but is absent in leaves. A kn1 loss-of-function mutant, kn1-e1 fails to 

establish a SAM suggesting its function in formation of organ primordia (Smith 

et al., 1992; Jackson et al., 1994; Vollbrecht et al., 2000). 

http://dev.biologists.org/content/129/17/3965.long#ref-4
http://dev.biologists.org/content/129/17/3965.long#ref-4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390738/#bib5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390738/#bib2
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Previous research has shown that cells in the leaf primordium loose 

indeterminacy and become determinate by completely switching off KNOX 

genes which are necessary for stem cell specification (Long et al., 1996). Then 

these cells begin to express ARP genes which are involved in negative 

regulation of class 1 KNOX genes in leaf primordia, subsequently promoting 

growth and differentiation. The ARP genes are three MYB transcription factors 

respectively found in Arabidopsis (ASSYMETRIC LEAVES1 (AS1)), maize 

(ROUGH SHEATH2 (RS2)) and Antirrhinum (PHANTASTICA (PHAN)). Those 

three negative regulators of KNOX genes are closely related to each other 

(Byrne et al. 2000; Timmermans et al. 1999; Tsiantis et al. 1999b; Waites et al. 

1998). AS1 negatively regulates the homeobox genes KNAT1 and KNAT2, in 

turn, repressed by STM (Byrne et al. 2000). In maize, the rs2 mutations 

induce misexpression of KNOX genes and resulting in a range of 

developmental phenotypes, such as twisted leaves and vascular patterning 

aberrations (Schneeberger et al., 1998; Timmermans et al., 1999; Tsiantis et 

al., 1999). Briefly, whether cells switch from determinate to indeterminate is 

depend on the antagonistic interactions of KNOX1 and ARP genes.  

Figure 1. Genetic regulatory 

network between class-I KNOX in 

SAM. Arrows indicate positive 

regulation and lines with blunt ends 

indicate negative regulation. P1 and 

P2, leaf primordia; CK, cytokinin; GA, 

gibberellic acid. 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59483/#B21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59483/#B27
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59483/#B29
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59483/#B29


                                                          Introduction 

8 

 

3.1.2. Genetic framework and molecular regulation of leaf polarity 

establishment 

 

 

 

Most leaves are flat with distinctive adaxial (upper leaf side specialized in 

photosynthesis) and abaxial (lower leaf side specialized in gas exchange) 

zones. The establishment of dorsoventrality (the ad-/abaxial axes) is required 

for the formation of the leaf lamina. In the classic microsurgical experiments in 

potato (Solanum tuberosum L.) over 60 years ago, Sussex first proposed the 

mechanisms that establish the adaxial-abaxial patterning in the leaf. When 

incipient primordia were isolated from the meristem by incision, the primordia 

developed centric and abaxilized leaves, suggesting that a signal from the 

SAM is required for specifying adaxial cell fate in leaf development, since the 

adaxial cells of leaf primordia are adjacent to the SAM (Sussex, 1951; Sussex, 

1954). Generally, the adaxial-abaxial polarity is established after primordia 

initiation from the shoot apical meristem. The MYB transcription factor PHAN is 

the first gene recognized to be involved in the control of adaxial-abaxial 

patterning (Waites and Hudson, 1995). Loss of PHAN displays a range of leaf 

defect phenotypes, including radialized leaves with abaxial cell types, 

indicating that PHAN plays a role in in adaxial identity for flat lamina growth in 

Antirrhinum. 

To date, several families of transcription factors and two types of small RNAs  

Figure 2. A cartoon showing two 

distinctive surfaces of leaf. The 

adaxial leaf side is specialized for 

light-harvesting while the abaxial zone 

is specialized for gas exchange and 

water loss. 
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are known to modulate establishment of adaxial-abaxial polarity. In 

Arabidopsis, one of the master players in the establishment of leaf polarity is 

the class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) gene family. The 

HD-ZIP III family is comprised of five members including PHABULOSA (PHB), 

PHAVOLUTA (PHV), REVOLUTA (REV), CORONA (CAN or ATHB15) and 

ATHB8, which have distinct but overlapping patterns of expression (McConnell 

and Barton, 1998; McConnell et al., 2001; Zhong and Ye. 1999; Zhong et al., 

1999). All members encode plant-specific transcription factors sharing 

homeodomain-leucine zipper motifs, a steroidogenic acute regulatory protein 

(StAR) lipid transfer domain (START), a homeodomain-START associated 

domain (HD-SAD) and a Per-ARNT-Sim-like (PAS-like) MEKHLA domain at 

the C terminus (Sessa et al., 1998; Pontig and Aravind, 1999; Schrick et al., 

2004). PHB, PHV, and REV are expressed in the adaxial domain of lateral 

organs and vasculature (McConnell et al., 2001; Otsuga et al., 2001; Emery et 

al., 2003), while the expressions of ATHB8 and ATHB15 appears to be 

confined to the vascular tissues (Baima et al., 1995; Ohashi-Ito and Fukuda, 

2003).  

In the HD-ZIPIII family, PHB, PHV and REV are much closer related to one 

another and are the only members that contribute to leaf polarity. Recent data 

suggest that the class III HD-ZIP proteins PHB, PHV and REV are likely to 

mediate an adaxial-promoting signal produced by the SAM. Gain-of-function 

mutants of PHV, PHB and REV display polarity defects with leaves curled 

upward (McConnell and Barton, 1998; McConnell et al., 2001; Emery et al., 

2003). Of the three members, only rev single mutants have an observable 

mutant phenotype, whereas phb or phv single mutants show no mutant 

phenotypes (Talbert et al., 1995; Zhong and Ye, 1999; Otsuga et al., 2001). 

The loss-of-function rev mutants (e.g. rev-1) show a failure in polarity 

establishment results in abaxialized leaves (Talbert et al., 1995). When rev 

mutations are combined with phb and /or phv mutations, double or triple 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390745/?report=reader#bib28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390745/?report=reader#bib32
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390745/?report=reader#bib8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390745/?report=reader#bib8
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mutant plants display obvious developmental defects. For instance, the triple 

mutant phb phv rev has a seriously defective SAM with a pin-like cotyledon 

(Emery et al., 2003; Prigge et al., 2005). Thus, REV is more important in 

promoting adaxial development than PHB and PHV though the latter of two 

provide redundant activities for REV activity. 

The small regulatory microRNAs, miR165 and miR166 (that have only one 

nucleotide difference in mature RNA sequences) are able to regulate the 

functions of the HD-ZIPIII genes by cleaving their target mRNAs (Juarez et al., 

2004; Kidner and Martienssen, 2004; Kim et al., 2005; Williams et al., 2005a). 

The negative regulation is supported by genetic analysis of dominant 

mutations of HD-ZIP III genes. Molecular characterization of these 

gain-of-function mutants revealed that the microRNA complementary site in 

the class III HD-ZIP genes is disrupted because of base changes, making the 

mRNA resistant to miRNA. Overexpression of miR165/miR166 (except for 

miR166g) causes dramatically reduced transcript levels of all five HD-ZIP 

III genes in Arabidopsis. As a result, the miR165 overexpressors exhibit a 

variety of phenotypes reminiscent of loss-of-function mutants of rev and phb 

phv rev, including abnormal SAM, downward curled leaves and disorganized 

vascular tissues (Kim et al. 2005;  Williams et al. 2005a; Zhou et al., 2007). It 

is well known that PHB, PHV and REV are expressed in the adaxial domain of 

leaf primordia inducing adaxialization while miR165/166 is expressed on the 

abaxial side of leaves and contributes to repressing Class III HD-Zip activity. 

Interestingly, miR165/166 are genetically repressed by a miRNA effector, the 

Arabidopsis ARGONAUTE10 (AGO10), expression of which is also directly 

regulated by REV (Liu et al., 2009; Ji et al., 2011; Brandt et al., 2013). Thus, 

these regulators (REV, AGO10 and miR165/166) are likely to form a feedback 

loop, mediating the establishment of leaf adaxial-abaxial polarity. 

Recent studies have shown that LITTLE ZIPPER (ZPR) proteins play a role in 

leaf polarity determination via interacting with HD-ZIPIII proteins at the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390745/?report=reader#bib8
http://www.plantcell.org/content/23/2/567.full#ref-36
http://pcp.oxfordjournals.org/content/48/3/391.long#ref-17
http://pcp.oxfordjournals.org/content/48/3/391.long#ref-39
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post-translational level in Arabidopsis. ZPR is a small gene family containing 

four functionally redundant members from ZPR1 to ZPR4 (Wenkel et al., 

2007). All of the ZPR proteins contain a ZIP motif that is quite similar to the one 

found in HD-ZIP III proteins. Given the similar leucine-zipper domain, the ZPR 

proteins repress the HD-ZIPIII activity by dimerizing with HD-ZIPIII proteins 

and hence prevent them from forming homodimers (Kim et al, 2008; Wenkel et 

al, 2007). Interestingly, HD-ZIPIII proteins transcriptionally activate ZPR 

expression suggesting a feedback loop modulating HD-ZIPIII function in 

meristem regulation (Wenkel et al, 2007). ZPR3 overexpression line displays 

an abaxialized leaf phenotype reminiscent of HD-ZIPIII loss-of-function mutant 

plants, such as rev-6 mutant. In contrast, ZPR mutants (e.g. zpr3-2) show 

disrupted activities of the SAM similar to HD-ZIPIII gain-of-function plants (Kim 

et al, 2008; Wenkel et al, 2007). ZPR genes encode small proteins (consisting 

of 67 to 105 residues) also called microProteins (miPs) which can modulate 

transcription factor activities (Staudt and Wenkel, 2011; Wenkel et al., 2007).  

Unlike the HD-ZIPIII family specifying leaf adaxial identity, abaxial cell fate is 

promoted by the KANADI and YABBY genes (Eshed et al., 2001; Kerstetter et 

al., 2001). The KANADI genes encode four members of the GARP 

transcription factors (KAN1 to KAN4) which have expression pattern 

complementary to that of the Class III HD-Zip genes (Kerstetter et al., 2001; 

Emery et al., 2003; Eshed et al., 2004). Single kan1 or kan2 mutants have 

slight or no effects on leaf polarity. However, the kan1 kan2 double mutant 

plants exhibit polarity defects in all lateral organs which are enhanced in kan1 

kan2 kan3 and kan1 kan2 kan3 kan4 mutants implying the redundancy 

between the four KANADI genes (Eshed et al., 2001; Emery et al., 2003; Izhaki 

and Bowman, 2007). Surprisingly, the adaxialized leaves and radialized 

vasculature bundles in kan1 kan2 kan3 plants are similar to those of the 

phb-1d and rev-10d gain-of-function mutants (McConnell and Barton, 1998; 

Emery et al., 2003; Eshed et al., 2004). Together with the complementary 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390745/?report=reader#bib46
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390745/?report=reader#bib46
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024132/#b15
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024132/#b15
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024132/#b41
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expression patterns between the Class III HD-Zip genes and KANADI genes, 

the two gene families may act antagonistically in leaf polarity establishment. 

The YABBY family consists of six genes in Arabidopsis which are also 

considered as abaxial determinants. Three family members, FIL, YAB2, and 

YAB3 are expressed in the abaxial domains of leaf primordia and cotyledons 

(Sawa et al., 1999a; Siegfried et al., 1999; Watanabe and Okada, 2003; Golz 

et al., 2004). Ectopic expression of some YABBY genes can promote 

differentiation of abaxial cells (Sawa et al., 1999; Siegfried et al., 1999). 

Furthermore, the expression patterns of the YABBY genes are altered in kan1 

kan2 double mutants suggesting that the YABBY genes act downstream of 

KANADI genes (Siegfried et al., 1999; Eshed et al., 2001). However, the 

YABBY gene family has different expression pattern within the angiosperms. 

For example, YAB2 was found expressed adaxially in Amborella trichopoda in 

contrast to the abaxial expression in Arabidopsis thaliana (Yamada et al., 

2004). Additionally two maize homologs of the Arabidopsis FIL and YAB3 

genes are expressed on the adaxial side of leaf primordia (Juarez et al., 2004). 

The contradictory evidences indicate that the YABBY gene family is involved in 

establishing abaxial identity of leaf primordia in Arabidopsis but may not be a 

key regulator. 

In addition to KAN and YABBY genes, further determinants of abaxial fate are 

the AUXIN RESPONSE FACTOR genes ARF3 (also known as ETT) and 

ARF4 which are plant-specific transcription factors (Pekker et al., 2005). ett 

arf4 double mutants have adaxialized leaves resemble the phenotypes of kan1 

kan2 double mutants. Besides, mutations in ETT and ARF4 were found to 

suppress the ectopic KAN1 activity. Additionally, both of ETT and ARF4 are 

expressed in the abaxial domain of leaf primordia supporting their role in the 

specification of abaxial identity (Alvarez et al., 2006; Pekker et al., 2005).  

ETT and ARF4 mRNAs are targeted by a TAS3-derived trans-acting short 

interfering RNA (tasiR-ARF) through cleavage, indicating that tasiR-ARF is an 
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important contributor to adaxial fate in Arabidopsis (Allen et al., 2005; Williams 

et al., 2005a). ta-siRNAs are 21 nt endogenous small interfering RNAs derived 

from non-coding transcripts which initially undergo miRNA-guided cleavage. 

The following conversion of cleavage products into dsRNA is mediated by the 

activities of SUPPRESSOR OF GENE SILENCING 3 (SGS3) and the 

RNA-dependent RNA polymerase RDR6 proteins, respectively. Subsequently 

the Dicer-like 4 (DCL4) protein cleave dsRNA into siRNAs (Peragine et al., 

2004; Gasciolli et al., 2005; Xie et al., 2005; Yoshikawa et al., 2005).  

Given the role of tasiR-ARF in adaxial identity, mutants defective in ta-siRNA 

biogenesis are expected to show an abaxialized phenotype. However, the 

reduced tasiR-ARF activity (such as mutations in RDR6, SGS3 and DCL4) 

causes no obvious leaf polarity phenotypes in Arabidopsis (Peragine et al., 

2004; Yoshikawa et al., 2005; Xie et al., 2005b). The rdr6 loss-of-function 

mutant displays only minor phenotypes, whereas rdr6 as2 double mutant 

shows enhanced defects in adaxial-abaxial polarity even stronger than that of 

the as2 single mutant plant, indirectly suggesting the contribution of the 

ta-siRNA to adaxial- abaxial patterning (Li et al., 2005). 

In conclusion, antagonistic interactions between the adaxial and abaxial 

determinants form complex genetic networks in coordination with auxin by 

which leaf polarity is established for leaf growth and morphogenesis. 

 

3.2. A brief summary of leaf senescence 

Plant senescence is an age-related disintegration process of plants that occurs 

at all levels of organisms from cells to individuals, ultimately leading to death. It 

is a strictly organized process that is governed by the actual age of the organ 

and/or the developmental age of the whole organism. At the cellular level, 

senescence can be considered as a special form of programmed cell death 

(PCD). One difference is that after cell degradation the final breakdown 

products of cellular components are recycled for developing organs of the 
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plant. Moreover, senescence is reversible until very late stages of its 

progression which was not observed for any other form of PCD in plants or 

animals. 

Leaf senescence is a crucial means for plants to reallocate nutrients and 

valuable substances from senescing leaves to reproducing seeds, eventually 

maximizing reproductive success (Himelblau and Amasino, 2001). Generally, 

leaf senescence is visible by leaf color changes during its progression in most 

plant species. Biochemically, it can be characterized by degradation of various 

types of macromolecules including proteins, lipids and nucleic acids. 

Developmental age is an important determinant for the induction of leaf 

senescence. Besides, various internal and external factors can have a strong 

impact onthis process (Xu et al., 2011; Guo and Gan, 2012). The internal 

factors that affect leaf senescence include developmental cues and 

reproductive development as well as phytohormones (Gan and Amasino, 1995; 

Pic et al., 2002; Riefler et al., 2006). The environmental cues include various 

stresses such as extreme temperatures, nutrient deficiency, drought, 

radiations, and pathogen infection.  

Phytohormones are key players in long-distance communication in plants and 

have been shown to play crucial roles in senescence regulatory networks. 

Several phytohormones promote senescence in leaves including ethylene, 

abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) (Grbic and 

Bleecker, 1995; Park et al., 1998; Morris et al., 2000; He et al., 2002; Guo and 

Gan, 2005; Jing et al., 2005). For instance, etr1 and ein2 mutants are 

insensitive to ethylene and exhibit a delay in the onset of leaf senescence 

(Grbic and Bleecker, 1995). By contrast, others like cytokinins, gibberellins and 

auxin prevent this process. For example, decreased level of cytokinin during 

leaf development leads to accelerated senescence in leaves (Masferrer et al., 

2002). 
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Interestingly, the leaf transcriptome varies immensely accompanying the onset 

and progression of leaf senescence. For instance, a comparative 

transcriptome analysis revealed that 827 genes show at least three-fold 

increase in transcript levels during senescence in Arabidopsis 

(Buchanan-Wollaston et al., 2005). In particular, genome-level studies have 

revealed that thousands of senescence-associated genes (SAGs) are 

differentially expressed during leaf senescence (van der Graaff et al., 2006; 

Breeze et al., 2011). It was previously reported that 20 different families of 

transcription factors are transcriptionally up-regulated in senescing leaves, 

remarkably contain several large groups such as NAC, WRKY, C2H2-type zinc 

finger, AP2/EREBP, and MYB proteins (Guo and Gan, 2005). Among these 

large groups, NAC and WRKY proteins are plant specific transcription factors 

which are believed to especially play central roles in regulating senescence.  

In Arabidopsis, approximately 20 NAC genes exhibit increased expression 

levels during senescence (Buchanan-Wollaston et al., 2005; Balazadeh et al., 

2008). AtNAP has been shown to control leaf senescence, while atnap 

knockout mutant plants show delayed silique senescence, overexpression of 

AtNAP triggers early senescence (Guo and Gan, 2006; Kou et al., 2012). 

ORE1, ORS1 and JUB1 have also been characterized to regulate senescence 

being involved in the crosstalk between stress and senescence (Balazadeh et 

al., 2010, 2011; Wu et al., 2012). 

Besides NAC factors, the WRKY family has been shown to play a role in 

regulating leaf senescence (Eulgem and Somssich, 2007). All WRKY proteins 

contain at least one WRKY domain which is composed of a zinc finger 

structure and a 60 amino acid region with WRKYGQK at N-terminal end. The 

WRKY domain is a DNA-binding domain that binds directly to various W-box 

variants (Eulgem et al. 2000; Yu et al. 2001). Some WRKY members such as 

WRKY6 and WRKY75, are highly induced during leaf senescence (Robatzek  
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and Somssich, 2001; Guo and Gan, 2006). Another well-known WRKY 

member, WRKY53 plays a regulatory role in the early events of leaf 

senescence. It was reported that WRKY53 is up-regulated at a very early time 

point of leaf senescence. Additionally, wrky53 knockout plants display delayed 

leaf senescence phenotypes, suggesting that WRKY53 acts as a positive 

regulator of leaf senescence (Hinderhofer and Zentgraf, 2001; Miao et al., 

2004). WRKY53 activity is regulated in a very complex way by phosphorylation, 

protein-protein interaction as well as by protein degradation (Zentgraf et al., 

2010)  

In conclusion, various internal and external factors induce multiple pathways 

that are possibly interconnected to form regulatory networks. Subsequently, 

distinct sets of senescence-associated genes are activated in response to 

these regulatory networks, and execute degradation processes to cause cell 

death. 
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REVOLUTA and WRKY53 connect early and late leaf
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ABSTRACT
As sessile organisms, plants have to continuously adjust growth and
development to ever-changing environmental conditions. At the end
of the growing season, annual plants induce leaf senescence to
reallocate nutrients and energy-rich substances from the leaves to the
maturing seeds. Thus, leaf senescence is a means with which to
increase reproductive success and is therefore tightly coupled to the
developmental age of the plant. However, senescence can also be
induced in response to sub-optimal growth conditions as an exit
strategy, which is accompanied by severely reduced yield. Here, we
show that class III homeodomain leucine zipper (HD-ZIPIII)
transcription factors, which are known to be involved in basic
pattern formation, have an additional role in controlling the onset of
leaf senescence in Arabidopsis. Several potential direct downstream
genes of the HD-ZIPIII protein REVOLUTA (REV) have known roles
in environment-controlled physiological processes. We report that
REV acts as a redox-sensitive transcription factor, and directly and
positively regulates the expression ofWRKY53, a master regulator of
age-induced leaf senescence. HD-ZIPIII proteins are required for the
full induction of WRKY53 in response to oxidative stress, and
mutations inHD-ZIPIII genes strongly delay the onset of senescence.
Thus, a crosstalk between early and late stages of leaf development
appears to contribute to reproductive success.

KEY WORDS: REVOLUTA, HD-ZIPIII, WRKY53, Leaf senescence,
Hydrogen peroxide signaling

INTRODUCTION
Senescence is the final stage of leaf development and involves the
concerted reallocation of nutrients from the leaves to developing
parts of the plant, especially fruits and seeds. Thus, leaf senescence
has a major impact on yield quantity and quality, e.g. salvaged
nitrogen (N) from wheat leaves accounts for up to 90% of the total
grain N content (Kichey et al., 2007). In order to minimize loss of
nutrients, plants induce leaf senescence in response to endogenous
cues such as plant age and altered hormone homeostasis. However,
external factors, such as the availability of water or light quality can
also induce senescence, referred to as premature senescence
(Ballaré, 1999). Although age-induced senescence tends to

maximize seed production, premature senescence describes an
exit strategy that is induced in response to sub-optimal growth
conditions and is often correlated with severely decreased yields.

The onset and progression of leaf senescence is accompanied by
immense changes in the leaf transcriptome. It is estimated that about
20% of all genes are altered in expression upon induction of
senescence, implying an important role for transcriptional
regulators (Balazadeh et al., 2008; Breeze et al., 2011; Buchanan-
Wollaston et al., 2005; Zentgraf et al., 2004). NAC and WRKY
transcription factors are over-represented in the senescence
transcriptome (Guo et al., 2004) and some members of these two
transcription factor families have been shown to play central roles in
regulating senescence (Balazadeh et al., 2010, 2011; Besseau et al.,
2012; Breeze et al., 2011; Miao et al., 2004; Uauy et al., 2006; Ülker
et al., 2007; Yang et al., 2011). WRKY proteins are plant-specific
transcriptional regulators that contain a DNA-binding domain of
∼60 amino acids. This domain contains a WRKYGQK motif at the
N terminus and a zinc-finger structure at the C terminus, and is
called the WRKY domain. Diverse processes, such as the response
to pathogens or wounding but also leaf senescence, are controlled
by WRKY transcription factors (Rushton et al., 2010). WRKY53, a
key player in age-induced leaf senescence, regulates a complex
network of downstream targets that promote vast physiological
changes associated with the reallocation of nutrients and the
induction of cell death (Lin and Wu, 2004; Miao et al., 2004).
Owing to its important function, WRKY53 expression, activity and
protein stability are tightly controlled (Zentgraf et al., 2010). When
leaf senescence is induced, the WRKY53 locus is activated by
histone modifications H3K4me2 and H3K4me3 (Ay et al., 2009;
Brusslan et al., 2012), whereas DNA methylation remains low and
unchanged (Zentgraf et al., 2010). Several promoter-binding
proteins have already been characterized for WRKY53 regulation,
includingWRKY53 itself, other WRKYs and the activation domain
protein (AD protein), which has some similarity to HPT kinases and
works as an activator of WRKY53 expression (Miao et al., 2008;
Potschin et al., 2014). In addition, a mitogen-activated protein
kinase kinase kinase (MEKK1) was characterized to bind directly to
the DNA of theWRKY53 promoter. The binding region of MEKK1
appears to be involved in the switch from leaf age-dependent to
plant age-dependent expression of WRKY53 (Hinderhofer and
Zentgraf, 2001; Miao and Zentgraf, 2007). MEKK1 can directly
phosphorylate the WRKY53 protein, thereby increasing its DNA-
binding activity (Miao and Zentgraf, 2007). As almost all WRKY
factors contain WRKY factor-binding sites (W-boxes) in their
proximal promoter regions, a complex regulatory WRKY network
exists. Besides the transcriptional regulation, WRKY53 protein
stability is strongly controlled by a HECT E3-ubiquitin ligase (Miao
and Zentgraf, 2010). Moreover, gene expression changes are
accompanied by hormonal changes. Although the plant hormones
cytokinin and auxin act to delay senescence (Kim et al., 2011;Received 10 September 2014; Accepted 14 October 2014
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Li et al., 2012), ethylene, abscisic acid (ABA), salicylic acid (SA)
and jasmonic acid (JA) strongly promote leaf senescence (Li et al.,
2012). Besides hormone homeostasis, elevated hydrogen peroxide
levels also trigger senescence (Bieker et al., 2012; Smykowski et al.,
2010).
Here, we identify REVOLUTA (REV), a transcription factor

known to regulate polarity-associated growth processes in embryos,
leaves, stems, vasculature and roots (Carlsbecker et al., 2010;
McConnell et al., 2001; Smith and Long, 2010), as a direct regulator
of WRKY53 expression. During early leaf development, REV is
involved in establishing the dorsoventral axis of leaves by specifying
the domain that will later develop into the upper side of the leaf
(Byrne, 2006). REV, also known as INTERFASCICULAR
FIBERLESS (IFL), has been shown to play multiple roles in
meristem organization, leaf polarity set-up and vascular development
(Otsuga et al., 2001; Talbert et al., 1995; Zhong andYe, 1999). Using
a ChIP-Seq approach, we identified REV-binding sites in the
WRKY53 promoter and by qRT-PCR demonstrate that REV
promotes WRKY53 expression. Conversely, plants that carry loss-
of-function mutations in REV and otherHD-ZIPIII genes show lower
levels of WRKY53 expression, confirming that HD-ZIPIIIs are also
required for WRKY53 expression. By performing a detailed
expression analysis using both REV and WRKY53 GUS-reporter
lines, we reveal that both genes have partially overlapping patterns of
expression. In wild-type plants, WRKY53 expression is strongly
induced in response to hydrogen peroxide. However, in rev mutant
plants and in transgenic plants with reduced HD-ZIPIII activity, this
response is significantly dampened. Furthermore, the ability of REV
to bind to the WRKY53 promoter is also dependent on the redox
environment and, under oxidative conditions, less binding is
observed. In line with the lower WRKY53 expression levels, rev
mutant plants are considerably delayed in age-induced leaf
senescence, suggesting a role for HD-ZIPIIIs in this physiological
process. Taken together, we conclude that REV is a positive regulator
ofWRKY53 expression, which influences the onset of leaf senescence
in response to changes in the cellular redox state. Obviously, early
and late leaf development are tightly linked by transcriptional
networks between HD-ZIPIII andWRKY factors, in which disturbed
early development is coupled to extended life span of leaves and
delayed senescence.

RESULTS
REVOLUTA is a positive regulator of WRKY53 expression, a
major factor controlling age-induced leaf senescence
REVOLUTA is amemberof the class III homeodomain leucine zipper
(HD-ZIPIII) transcription factor family that regulates various polarity-
associated growth processes during development (Carlsbecker et al.,
2010; McConnell et al., 2001; Smith and Long, 2010), but plays an
additional role in shade-induced growth promotion (Bou-Torrent
et al., 2012; Brandt et al., 2012). REVOLUTAexpression is controlled
by the microRNAs miR165 and miR166 at the post-transcriptional
level (Rhoades et al., 2002), and by the associationwith small leucine-
zipper-type microProteins at the post-translational level (Kim et al.,
2008; Staudt and Wenkel, 2011; Wenkel et al., 2007). Using a
genome-wide chromatin-immunoprecipitation sequencing approach
(ChIP-Seq), we recently identified binding regions for REVacross the
Arabidopsis genome (Brandt et al., 2012). This analysis revealed
binding of REV to the promoter of the WRKY53 transcription factor
(Fig. 1A). Transient promoter-GUS experiments in Arabidopsis
protoplasts revealed an induction of WRKY53 expression after co-
transformation of 35S::REVd, a dominant microRNA-resistant
version of REV (Fig. 1B). Quantitative ChIP-PCRs confirmed the

binding of REV to the ChIP-Seq identified binding motifs (Fig. 1C).
For better control of REV activity, we constructed transgenic plants
expressing REVd fused to the rat glucocorticoid receptor carrying an
N terminal FLAG epitope. In response to dexamethasone (DEX)
induction, the chimeric FLAG-GR-REVd fusion protein translocates
to the nucleus, where it can associate with DNA and alter the
expression of target genes. In response to DEX induction, REV can
significantly upregulate WRKY53 expression (Fig. 1D), while
seedlings carrying mutations in REV and plants with globally
reduced HD-ZIPIII activity show reduced levels ofWRKY53mRNA
(Fig. 1E), thus supporting a new role for REV as a direct and positive
regulator of WRKY53.

REVOLUTA and WRKY53 have overlapping patterns of
expression
REVOLUTA, as well as the other class III HD-ZIP transcription
factors of Arabidopsis, have a distinct expression pattern, confining
their expression to the adaxial domain of developing leaves, the
xylem part of the vasculature, the pro-vasculature and the shoot
apical meristem. Both WRKY53 and REV are expressed in young
seedlings (Fig. 2A,B). Even though REV function was initially
described for polarity-associated growth processes during early leaf
development, REV is still expressed at later stages of development
(supplementary material Fig. S1) and an additional function in
shade avoidance has recently been assigned to REV (Brandt et al.,
2012). In comparison with the vascular expression pattern of REV,
WRKY53 shows a broader less-specific pattern of expression and is
most highly expressed in old leaves (Miao and Zentgraf, 2007). In
genetic backgrounds with reduced REV mRNA [rev-5 (Fig. 2C),
35S::miR165a (Fig. 2D)] or with reduced REV protein activity
(35S::ZPR3; Fig. 2E), the spatial expression of WRKY53 is more
restricted to hydatodes and overall expression levels appear to be
much lower in leaf tissue. In older seedlings, expression of both
genes is found in vascular strands (Fig. 2F-M). Surprisingly, high
co-expression is observed in the root vasculature at all investigated
stages of development. It is not known whether WRKY53 has an
additional function in root development but it might be important to
note that the expression in the root vascular appears to be
independent of HD-ZIPIII function (Fig. 2B-E).

Using publicly available microarray data (http://bar.utoronto.ca),
we also analyzed at which stages of development and in response to
which treatmentsREV andWRKY53 are co-expressed (supplementary
material Fig. S2). We find evidence for co-expression during early
developmental stages but not during the later stages of leaf
development. This discrepancy suggests that REV mRNA is not
upregulated at late stages of leaf development but residual protein
could respond to a cellular signal and induce the expression of REV-
regulated senescence targets. However, our GUS expression analyses
using REV::GUS plants indicate that REV is still expressed to certain
extends in older leaves (supplementary material Fig. S1).

In order to identify other direct REV targets that show an
expression pattern resembling WRKY53, we surveyed recently
published timecourse microarray datasets (Reinhart et al., 2013)
that revealed 119 genes to be upregulated in response toREVOLUTA
induction. Our ChIP-Seq datasets resulted in the identification of 286
high confidenceREV-binding sites (corresponding to 552 potentially
regulated genes) across the entire Arabidopsis genome (Brandt et al.,
2012). By comparing both datasets, we could identify 18 of the 119
REV-regulated genes (15% of the REV upregulated set) to have
REV-binding sites in their respective promoters (Table 1).WRKY53
is among these 18 genes and we investigated whether other
senescence-related genes could be identified in this dataset. A
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genome-wide survey with a high temporal resolution classified
thousands of genes as differentially expressed senescence genes
(DESGs) (Breeze et al., 2011). Interestingly, REVwas also classified
as a DESG, showing a dip of expression at the onset of leaf
senescence. Furthermore, nine out of the 18 potential direct
REV targets (Table 1) were also classified as DESGs, implying that
REVmight have an additional function in late developmental stages.

WRKY53 expression is modulated in response to oxidative
stress in a REVOLUTA-dependent manner
WRKY53 expression is strongly upregulated in response to hydrogen
peroxide as part of the age-induced senescence-promotion pathway
(Miao et al., 2004). Because REV is a novel upstream regulator
ofWRKY53 expression and possesses a domain that is suggestive of
sensing changes in the redox state of the cell, we investigated whether
REV is required for the induction ofWRKY53 expression in response
to oxidative stress. Therefore, we grew Col-0 wild-type plants and
mutant plants with reduced HD-ZIPIII activity (rev5, 35S::miR165a
and 35S::ZPR3) on soil for 3 weeks in long-day conditions. In order

to elicit oxidative stress, plants were sprayed with hydrogen peroxide
solutions of different concentrations (0.01%, 0.1% and 1%) and plant
material was harvested before and after spraying. Subsequent RNA
isolation, cDNA synthesis and quantitative PCR analysis revealed a
strong induction ofWRKY53 in response to H2O2 application in Col-
0 wild-type plants. These changes of WRKY53 mRNA levels were
significantly dampened in rev mutant plants (rev-5) and 35S::
miR165a, and in plants with reduced HD-ZIPIII activity (35S::
ZPR3), indicating that REV activity is required for high-level
WRKY53 induction in response to oxidative stress signaling (Fig. 3).
To assess which externally applied hydrogen peroxide concentration
is able to elicit redox changes that would occur under natural
conditions, we measured intracellular hydrogen peroxide levels after
applying heat stress and compared them with the intracellular levels
reached after external application of H2O2 by spraying. To be sure
that only intracellular H2O2 is measured, we used non-fluorescent
H2DCFDA (2′,7′-dichlorodihydrofluorescein diacetate), which is
converted to the highly fluorescent 2′,7′-dichlorofluorescein upon
cleavage of the acetate groups by intracellular esterases and

Fig. 1. REVOLUTA binds to the WRKY53 promoter and is a direct and positive regulator of WRKY53 expression. (A) ChIP-Seq results for the binding of
REV to the WRKY53 promoter. Two binding sites (BS) were identified, located −1.3 kb and −2.1 kb upstream of the transcriptional start site. Traces in gray are
sequence reads derived from sequencing ChIP DNA from Col-0 wild-type plants; red plots ChIP DNA from dexamethasone-induced 35S::FLAG-GR-REVd
transgenic plants. (B) Transient expression assay in Arabidopsis protoplasts. A plasmid with a 2.8 kb WRKY53 promoter fragment fused to the GUS gene was
transformed along with a second plasmid containing a CaMV35S-promoter (control) or the CaMV35S-promoter driving expression of REVd. GUS activity was
determined ∼15 h after transformation. Data are mean±s.d. *P<0.05. (C) Chromatin-immunoprecipitation qPCR experiments with two biological replicates for
35S::FLAG-GR-REVd without DEX (gray bars) and 35S::FLAG-GR-REVd with DEX (red bars) plants testing four positions in the WRKY53 promoter. Y-axis
shows the fold enrichment normalized to the non-induced IPs. Gene map above the chart shows the localization of the REV-binding site identified by ChIP-Seq
and the regions that were tested. Distance between two marks along the chromosomes represents 1.0 kb. (D) Real-time quantitative PCR experiments showing
expression changes of WRKY53 in Col-0 (black) and 35S::GR-REVd (orange) in response to 60 min DEX induction in the presence of the protein biosynthesis
inhibitor cycloheximide (CHX). Data are mean±s.d. *P<0.05. (E) Expression ofWRKY53 was analyzed in different revmutant plants (rev-5, rev-6, phb phv rev/+
and phb phv rev) and in plants with reduced activity of HD-ZIPIII proteins (35S::ZPR3). The bars indicate expression levels relative towild type, including standard
errors of the mean of three individual biological experiments. *P<0.05.
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subsequent oxidation. The increase in intracellular H2O2 was similar
1 h after heat treatment and 1 h after spraying 0.1% H2O2 but
dropped more rapidly in the H2O2-treated samples. This indicates
that external application of 0.1% H2O2 leads to intracellular changes
in the range of an oxidative burst in stress response (supplementary
material Fig. S3).

REVOLUTA is a redox-sensitive transcription factor
REV is a positive regulator of WRKY53 expression and is required
for high level ofWRKY53 induction in response to oxidative stress.

This could be either due to an upregulation of REV mRNA in
response to oxidative stress or to a response of the REV protein
to altered redox conditions. To test whether REV mRNA is
upregulated in response to hydrogen peroxide treatment, we treated
Col-0 wild-type plants with H2O2 and performed quantitative RT-
PCRs. We detected no induction of REV mRNA but a slight
decrease in response to high levels of hydrogen peroxide
(supplementary material Fig. S4), excluding the idea that REV is
transcriptionally upregulated in response to oxidative stress.

It has been shown that proteins of the class II homeodomain
leucine-zipper (HD-ZIPII) family from sunflower interact with DNA
in a redox-sensitive manner (Tron et al., 2002). To test whether REV
shows also redox-dependent DNA binding, we performed redox-
sensitive DPI-ELISA experiments. Therefore, crude lysate of E. coli
cells expressing HIS-tagged REV protein were prepared and
incubated with streptavidin plates pre-loaded with biotinylated
oligonucleotides containing the REV-binding site 1 of the
WRKY53 promoter (W53-BS1). ELISA plates were then washed
and subsequently incubated with HRP-tagged anti-HIS antibodies.
Enhanced signal was detected in the control binding reaction (HIS-
REV lysate versus a lysate from BL21 cells expressing the empty
vector control), indicating that HIS-REV binds to the W53-BS1
element (Fig. 4A). As observed for the sunflower HD-ZIPII proteins
(Tron et al., 2002), REV also showed enhanced binding in response
to reducing conditions (10 mM DTT), whereas in response to
oxidative conditions (10 mM H2O2) DNA-binding was reduced
(Fig. 4A). This negative effect is reversible as the subsequent addition
of 10 mM DTT was able to restore REV DNA binding.

We examined the possibility of whether the C-terminal PAS-
domain of REV might act as a redox sensor domain. Redox-DPI-
ELISA experiments with HIS-REV lacking the PAS-domain
(HIS-REVΔPAS) showed the same redox-sensitive behavior as
observed for HIS-REV (Fig. 4B). However, without the PAS-
domain, REV-DNA binding was strongly enhanced, supporting the
idea that the PAS-domain regulates REV activity via a steric
masking mechanism, as proposed byMagnani and Barton (2011). It
is conceivable that the observed redox effects in the ELISA system

Fig. 2. Expression analysis of REV and WRKY53. (A-I) Spatial patterns of
expression of REV (A,F,G) and WRKY53 (B-E,H,I) in 8-day-old Arabidopsis
seedlings. GUS staining of REV::GUS (A), WRKY53::GUS (B) in the Col-0
ecotype and WRKY53::GUS, rev5 (C), WRKY53::GUS, 35S::miR165
(D), WRKY53::GUS, 35S::ZPR3 (E) seedlings. Scale bars: 1 mm.
(F-I) Hypocotyls (F,H) and roots (G,I). (J,K) The pattern of GFPaccumulation in
the hypocotyl (J) and root (K) vascular tissue of 8-day-old plants carrying the
REV::REV-GFP transgene. Scale bars: 50 µm. (L,M) Cross-sections of roots
of 10-day-old seedlings reveal REV (L) and WRKY53 (M) expression in the
vascular cylinder.

Table 1. Identification of potentially direct REV target genes by comparing ChIP-Seq andmicroarray experiments with an inducible version of REV

Microarray ChIP-Seq

AGI Name Fold change q_rank Enrichment Distance Location DESG*

AT2G41940 ZFP8 2.0 469 7.5 1691 Down Yes
AT5G47370 HAT2 3.1 253 8.0 1548 Up No
AT2G39705 DVL11/RTFL8 2.8 1626 7.6 2509 Down No
AT5G06710 HAT14 2.7 272 9.3 5364 Up No
AT5G47180 Plant VAMP protein 1.7 35 15.2 168 Up Yes
AT5G19590 DUF538 protein 1.3 465 9.4 2810 Up Yes
AT4G18700 CIPK12 3.0 169 13.2 282 Down No
AT4G27730 OPT6 2.7 30 16.1 1305 Up No
AT4G03510 RMA1 7.0 33 14.9 1989 Up No
AT1G17970 RING/U-Box protein 5.1 1173 9.7 8 Up Yes
AT5G14730 DUF1645 5.8 726 6.6 2299 Up No
AT2G45450 ZPR1 13.1 400 9.2 5′UTR No
AT5G05690 CPD 1.9 202 8.0 4847 Up No
AT1G74940 DUF581 2.2 106 17.5 81 Up Yes
AT3G60390 HAT3 2.9 115 8.7 5597 Up Yes
AT4G23810 WRKY53 3.9 450 8.7 2132 Up Yes‡

AT5G16030 Unknown protein 2.8 789 9.6 2193 Up Yes
AT1G49200 RING/U-Box protein 14.4 18 14.2 187 Up No
AT2G02080 IDD4 0.5 528 8.2 8334 Down No
AT3G13810 IDD11 0.4 1643 6.7 1422 Down Yes

*Differentially expressed genes during senescence (Breeze et al., 2011).
‡Senescence-associated gene not included in the Breeze et al. (2011) analysis.
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are due to an influence of E. coli proteins on the activity of REV. To
exclude such effects, we purified GST-REV protein from E. coli and
performed in vitro gel retardation assays in the presence of reducing
agents (DTT) and oxidizing agents (H2O2) (Fig. 4C). These gel-
shift experiments largely confirm the results obtained by redox-
DPI-ELISA and confirm that REV activity can be modulated by the
intracellular redox state.
To validate redox-sensitive DNA binding in planta, we treated

35S::FLAG-GR-REVd transgenic plants with either a mock

substrate (0.1% ethanol), dexamethasone (DEX) or DEX+0.1%
H2O2. In 12-day-old seedlings, we detected REV binding to binding
site 2 (fragment II) and no binding was observed to binding site 1
(fragment III). When treated with hydrogen peroxide prior DEX
induction, binding to binding site 2 was significantly affected
(Fig. 4D), indicating that REV DNA binding is indeed redox
sensitive. The same experiment with 7-week-old plants revealed
that, at later developmental stages, both binding sites are occupied
by REV and the binding seems to be enhanced but exhibits the same
redox sensitivity (Fig. 4E). Taken together, we demonstrate that
REV shows a stage-specific redox-dependent DNA-binding
behavior and that oxidizing conditions decrease the ability to bind
DNA in vitro and in vivo.

Mutations in the REVOLUTA gene or the overall reduction of
HD-ZIPIII activity delay the onset of leaf senescence
One function of the WRKY53 protein is the regulation of the onset
of senescence, documented by the phenotype of the wrky53 mutant
showing delayed senescence. As REV is an activator of WRKY53
expression, we expected rev mutant plants to also display a delayed
senescence phenotype. Our analysis revealed that plants carrying
mutations in REV or plants with greatly reduced HD-ZIPIII activity
are significantly delayed in senescence, while overall development
is not retarded, which clearly confirms a role of HD-ZIPIII proteins
in this process (Fig. 5; supplementary material Figs S5, S6).
Furthermore, the phenotype of rev5 was even stronger than that of
wrky53, indicating thatWRKY53 might not be the only senescence-
associated gene regulated by REV.

Overexpression of the small leucine-zipper-type microProtein
ZPR3, which largely reduces the activity of HD-ZIPIIIs, led to a
further enhancement of the senescence phenotype, which was
ameliorated in the wrky53 mutant background (supplementary
material Fig. S3). This confirms that the senescence phenotype is

Fig. 3 HD-ZIPIII activity is required for H2O2-mediated upregulation of
WRKY53. Real-time qPCR experiment showing WRKY53 induction in
response to hydrogen peroxide treatment in wild-type and rev mutant plants.
Three-week-old plants were treated with different concentrations of H2O2 [0%
(mock; gray bars), 0.01% (yellow bars), 0.1% (orange bars) and 1% (red bars)]
for 40 min. Data are representative relative expression changes (fold change)
of the mean of four technical replicates±s.d. Similar expression changes have
been observed in at least two independent biological experiments.

Fig. 4. Redox-mediated regulation of REVOLUTA-DNA-
binding capability and influence of the PAS domain.
(A,B) Redox-DPI-ELISAs. The DNA-protein interaction
assays were performed by using 5′ biotinylated
complementary annealed oligonucleotides coupled to a
streptavidin-coated ELISA plate. Crude E. coli extracts
(25 µg) expressing recombinant REV or REVΔPAS were
pre-incubated with different concentrations of DTT and
H2O2 to examine a redox state-dependent binding of REV.
In order to test the reversibility of the redox effect, high
concentrations of H2O2 were added first and then oxidizing
conditions were reversed by addition of DTT. After binding,
biotinylated DNA-protein complexes were detected using
anti His-HRP conjugated antibodies. Results for REV
binding site 1 of the WRKY53 promoter are shown. E. coli
BL21 cells transformed with the empty vector were used as
background control. (C) Non-radioactive electrophoretic
mobility shift assays. Purified GST-REV protein was
incubated with a biotinylated oligonucleotide containing
the HB9-binding motif (Wenkel et al., 2007) in the presence
of different redox conditions. After gel electrophoresis
and subsequent blotting, the biotinylated DNA probe
was detected with a HRP-strepatividin substrate.
(D,E) Chromatin-immunoprecipitation qPCR assays of
35S::FLAG-GR-REVd plants. Twelve-day-old seedlings (D)
and 7-week-old transgenic plants (E) were treated with mock
substrate (0.1% ethanol), DEX or 0.1% H2O2 and DEX.
H2O2 was given 15 min prior to 45 min of DEX induction.
Fold enrichment for the same primer sets as in Fig. 1 is
shown.
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mediated by deregulation of WRKY53 expression through HD-
ZIPIIIs but also suggests that additional HD-ZIPIIIs are involved, as
the senescence phenotype of 35S::ZPR3 plants is much stronger
compared with rev5 mutants (Fig. 5; supplementary material
Figs S5,S6). Consistent with the phenotype, two typical senescence-
related physiological parameters, the decrease in chlorophyll
content and the increase in lipid peroxidation, were also delayed
in wrky53, rev5 and rev5 wrky53mutants (Fig. 6A,B). Furthermore,
the mRNA expression levels of SENESCENCE ASSOCIATED
GENE 12 (SAG12) and SAG13, which are commonly used as
senescence marker genes, were significantly reduced at the late
developmental stages in wrky53, rev5 and rev5 wrky53 mutants
compared with Col-0 wild-type plants (Fig. 6C,D). Taken together,
these results confirm that REV acts upstream of WRKY53 in the
control of age-induced senescence.

Depletion of REV delays the onset of leaf senescence more
efficiently than depletion of WRKY53. To further investigate the
possibility that REV acts upstream of several senescence-associated
genes, we focused our attention on the potential direct REV targets
classified as DESGs (Table 1). Here, we decided to investigate three
groups of genes: (1) genes whose expression decreases with age
(HAT3 and AT1G49200); (2) genes whose expression increases with
age (AT1G74940 and IDD11); and (3) genes whose expression
decreases with age but rises during senescence (AT5G47180 and
ZFP8). In the first group of genes, we found that expression in
wrky53, rev5 and rev5 wrky53mutants is maintained at a higher level
towards the onset of senescence (weeks 5 and 6), whereas expression
levels are dropping rapidly in wild-type plants (Fig. 7A,B). For the
second group of genes whose expression increases with age in wild-
type plants, we detected elevated levels in wrky53, rev5 and rev5

Fig. 5. Genetic interaction of REV with WRKY53. (A) Rosette
leaves of 6- and 7-week-old representative plants were sorted
according to their age; whole rosettes were also photographed
upside down to visualize the older leaves. (B) For a quantitative
evaluation of leaf senescence, plants were harvested in aweekly
rhythm and leaves of at least six plants were categorized into
four groups according to their leaf color: (1) ‘green’; (2) leaves
starting to become yellow from the tip as ‘yellow-green’; (3)
completely yellow leaves as ‘yellow’; and (4) dry and/or brown
leaves as ‘brown/dry’. The percentages of each group with
respect to total leaf numbers are presented. Error bars indicate s.
d. Student’s t-test was performed comparing leaf counts of
wrky53, rev5 and rev5wrky53 with Col-0 numbers, *P<0.05,
**P<0.005, ***P<0.0005. n=7-15.
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wrky53 mutants at early developmental stages (weeks 4 and 5) and
decreased levels at the late stages (Fig. 7C,D). Expression of the third
group of genes is also altered at various time points in wrky53, rev5
and rev5 wrky53 mutants compared with Col-0, but in all lines the
transcriptional increase during senescence is diminished (Fig. 7E,F),
further corroborating the idea that loss of REV function profoundly
alters the senescence transcriptome, whichmight be causative for the
strong senescence phenotype of rev mutant plants.

Loss-of-function wrky53 mutant plants do not show obvious
developmental defects during early leaf development, indicating
that WRKY53 is not required for REV function at these stages of
development. However, the severe 35S::ZRP3-induced leaf
phenotype is ameliorated in the wrky53 mutant background,
suggesting that the action of other HD-ZIPIIIs involves WRKY53
also at early stages (supplementary material Fig. S7). Nonetheless,
WRKY53 protein levels are most likely very low during these early

Fig. 6. Molecular senescence parameters. (A) Chlorophyll
contents of number 5 leaves from Arabidopsis Col-0, wrky53,
rev5 and rev5wrky53 plants. Left axis indicates atLeaf+ values.
Plant age is indicated in days after seeding (DAS). (B) Lipid
peroxidation in Col-0, wrky53, rev5 and rev5wrky53 plants.
Values represent mean of at least three biological replicate±s.d.
Comparison of means and the determination of statistical
differences was carried out using Student’s t-test (*P<0.05,
**P<0.005 and ***P<0.0005). (C,D) qRT-PCR expression
analysis of the senescence marker genes SAG12 and SAG13.
All values were normalized to GAPDH expression. Error bars
indicate s.d. of four technical replicates.

Fig. 7. qRT-PCRof other REV target genes differentially expressed during senescence.Quantitative real-time PCR profiling of putative REV target genes at
late developmental stages in wild-type and mutant plants (4-, 5-, 6-, 7- and 8-week-old plants). (A-F) Expression changes over time of HAT3, AT1G49200,
AT1G74940, IDD11, AT5G47180 and ZFP8. The Y-axis represents the relative expression level normalized to GAPDH. Error bars indicate s.d. of four technical
replicates.
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stages of development due to the degradation of WRKY53 by the
HECT domain ubiquitin ligase UPL5, which is highly expressed in
young leaves (Miao and Zentgraf, 2010). Taken together, we
discovered that HD-ZIPIIIs interact with WRKY53 genetically to
promote age-induced leaf senescence, and disruption of early leaf
development correlates with delayed senescence and extended life
span of leaves.

Functional analyses of root-specific co-expression patterns
of REV and WRKY53
It is unknown which tissues are involved in the perception of
senescence signals and conversion of these into the senescence
triggers. We find co-expression of REV and WRKY53 during the
early stages of leaf development. Later in development, co-
expression was very obvious in the vasculature of the leaves and
in the root vascular cylinder (Fig. 2L,M), although both REV and
WRKY53 are expressed throughout development (supplementary
material Fig. S1). This is in agreement with the finding that REV is
involved in the induction of WRKY53 expression by hydrogen
peroxide and that very high levels of hydrogen peroxide were
observed in vascular tissue indicated by DAB staining of leaf
sections (Zimmermann et al., 2006). Moreover, it remains tempting
to speculate that the root might also act as a senescence sensor;
however, whether roots play a role during onset and progression of
senescence has not yet been determined and whether and to what
extent hydrogen peroxide is transported through the vasculature
over long distances is also not known so far. Auto-propagating
waves of reactive oxygen species (ROS) that rapidly spread from the
initial site of exposure to abiotic stress to the entire plant are
involved in conferring systemic acquired acclimation, also allowing
a much faster transcriptome and metabolome reprogramming of
systemic tissues in response to abiotic stress (Mittler et al., 2011;
Suzuki et al., 2013).
To further investigate the spatial aspects of REV and WRKY53

expression, we decided to perform grafting experiments with Col-0
wild-type, rev5 and wrky53 mutant plants. When the aerial parts of
Col-0 were grafted onto either wrky53 or rev5 rootstocks, no
significant delays in the onset of senescence were observed.
However, the converse grafting of the aerial parts of either wrky53
or rev5 to Col-0 rootstocks significantly delayed the onset of
senescence where the latter again showed a much stronger effect
(Fig. 8A,B). The grafting experiments revealed that the root seems
not to be involved in the REV/WRKY53-mediated senescence
pathway and that depletion of REV and WRKY53 in only aerial
tissue strongly affects senescence.

DISCUSSION
Plants induce leaf senescence to provide carbon, nitrogen and
mineral resources to the developing fruits or seeds. Senescence is
induced in response to plant age but environmental signals such as
light, the availability of water and temperature strongly influence
this process. A high-resolution temporal transcript profiling of
senescing Arabidopsis leaves gives insight into the temporal order
of gene activation and repression (Breeze et al., 2011).
Approximately 6500 genes are up- or downregulated during the
course of leaf senescence, implying an important role for
transcription factors in this process. Transcription factors
themselves are transcriptionally upregulated in senescing leaves
the largest groups being NAC, WRKY, C2H2-type zinc-finger,
AP2/EREBP and MYB proteins (Guo and Gan, 2005). Here, we
now show that HD-ZIPIII factors, which are known to be involved
in basic patterning processes, have an additional role in the latest

step of leaf development, the regulation of senescence. REV is a
direct and positive regulator of WRKY53 expression and mutations
in REV and other HD-ZIPIII genes delay the onset of leaf
senescence. Interestingly, the delay of the onset of leaf senescence
in plants lacking REV is stronger compared with plants lacking only
WRKY53, implying that REV acts also upstream of other
senescence-associated genes. In plant lines with even more
reduced HD-ZIPIII activity, achieved by overexpression of

Fig. 8. Grafting experiments and senescence phenotype. (A) Nine
combinations of grafted plants were generated between the wild-type and
mutant plants (rev6 and wrky53), including three self-grafted controls, e.g. wild
type to wild type (Col-0/Col-0; scion/root). Error bars indicate s.d. (n=4-6
independent grafted plants with the exception of Col-0/wrky53, where we
achieved only two successful grafts). The quantitative evaluation of leaf
senescence of the non-grafted plants is shown in Fig. 5. Asterisks represent
significant differences from the Col-0/Col-0 graft, as determined using
Student’s t-test (*P<0.05, **P<0.005, ***P<0.0005). (B) The leaf-senescence
phenotypes of grafts. Photographs were taken 7 weeks after grafting.
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miRNA165a (35S::miR165a), rosette leaves were so strongly
downward curled that it was impossible to determine the onset of
senescence. The loss of several HD-ZIPIII genes, as in the case of
the phb phv rev triple mutant, causes severe developmental defects,
including consumption of the apical stem cells (Emery et al., 2003;
Prigge et al., 2005). The severity of these developmental defects
largely precludes a thorough analysis of the general role of HD-
ZIPIII proteins at later stages of development. Nevertheless, our
findings clearly suggest that the role of HD-ZIPIIIs in promoting
senescence is more complex and involves regulation of several
senescence-associated target genes. In the rev5/wrky53 double
mutant, leaf yellowing and chlorophyll loss were less severe at later
stages than in the rev single mutant, whereas senescence-associated
gene expression was more severely affected for some senescence-
related genes. This clearly points towards a complex network that is
altered in different aspects if one or more components are depleted
from the system. It was already shown that WRKY53 acts as an
upstream regulator, downstream target and protein-interaction
partner of WRKY18, which is a negative regulator of leaf
senescence, illustrating the complexity of the network and
possibly explaining the partially intermediate phenotype of the
double mutant (Potschin et al., 2014).
The mechanism by which REV promotes senescence appears to

involve transcriptional regulation of direct target genes. Here, we
have identified nine genes that are potential direct REV targets that
are also differentially expressed during senescence. One of these
target genes is HAT3, which has been shown to play an important
role downstream of REV in the process of setting up polarity in the
young leaf primordium (Bou-Torrent et al., 2012; Brandt et al.,
2012; Turchi et al., 2013). In young seedlings, HAT3 expression
depends partly on the presence of REV, which is supported by lower
levels ofHAT3mRNA in revmutant seedlings (Brandt et al., 2012).
During senescence, HAT3 mRNA levels decrease with plant age
(Fig. 7A). In rev mutant seedlings, however, HAT3 mRNA is more
abundant compared with wild type (Fig. 7A). Moreover, the
expression levels of several other senescence-related target REV
genes changed in a complex way (Fig. 7B-F). These findings
suggest that the transcriptome of rev mutant plants is profoundly
altered, resulting in stage-dependent mis-expression of many
differentially expressed senescence-associated genes.
It still remains unclear to which endogenous or exogenous signals

HD-ZIPIIIs respond in order to promote senescence. The finding
that WRKY53 expression is strongly upregulated in response to
hydrogen peroxide treatment and that this induction is dampened in
hd-zipIII mutant plants implies that HD-ZIPIIIs might be involved
in signal transduction processes in response to changes in the
intracellular redox state. Many senescence-associated genes,
especially transcription factors of the WRKY and the NAC
family, transcriptionally respond to elevated levels of hydrogen
peroxide but the mechanism by which the hydrogen peroxide signal
is perceived and transmitted is still unclear. Remarkably, the
subcellular compartment of hydrogen peroxide production appears
to play a role in senescence signaling in which the cytoplasmic
H2O2 is more effective in senescence induction than peroxisomal or
mitochondrial H2O2 (Bieker et al., 2012; Zentgraf et al., 2012).
Thus, sensors and mediators of hydrogen peroxide-induced
senescence are most likely cytoplasmic and/or nuclear proteins or
molecules. During bolting, intracellular hydrogen peroxide levels
increase in leaf tissue. This increase is thought to be mediated by a
complex regulation of the hydrogen peroxide scavenging enzymes
and promotes the onset of senescence (Bieker et al., 2012;
Smykowski et al., 2010).

Analysis of the redox sensitivity of the REV protein revealed a
reduced DNA-binding ability of REV in response to oxidative
conditions, which appears to be a direct effect on the REV protein
and does not involve accessory proteins. These results contradict the
finding that upregulation ofWRKY53 partially requires HD-ZIPIIIs
and indicate a more complex regulatory mechanism. Most likely,
DNA-binding of REV is affected by redox changes and also the
transactivation activity or protein-protein interfaces, which will be
further dissected in the future. However, two of the direct REV
target genes encode EAR-domain proteins that are part of
transcriptional repressor complexes (Causier et al., 2012). Among
these transcriptional repressors are HAT3 and ZFP8, the mRNA
levels of which are altered in the senescence process. Therefore, it
seems plausible to conclude that REV is a redox-sensitive
transcription factor, which among other targets, regulates genes
encoding transcriptional repressors. Decreasing REV DNA-binding
activity will result in lower expression levels of these transcriptional
repressors, alleviating the repressive activity on their targets. Thus,
modulation of REV activity in response to alterations of the
intracellular redox state will profoundly affect the REV-regulated
transcriptome. It is tempting to speculate that also within the shoot
apical meristem, domains with different cellular redox states might
exist that could serve as positional signals affecting HD-ZIPIII
activity.

Developmental age is a major determinant for the induction of
leaf senescence in an optimal growth environment. However, when
plants are exposed to situations that strongly permit normal growth,
senescence is accelerated in order to bypass these adverse
conditions and produce seeds that can withstand these adverse
conditions. We have tried to depict the complex interplay between
REV and WRKY during early and late development in a model
(Fig. 9) in which the regulatory cues of REV involving miRNA-
dependent regulation through miR165, miR166 and the LITTLE
ZIPPER microProteins ZRP1-4 is connected to the MAP kinase-
triggered WRKY transcriptional network. Several intersections can
be detected between the formerly independently described players
in early and late leaf development in which hydrogen peroxide
might play a central role.

Shade causes profound developmental changes in shade-
sensitive plants aimed at outgrowing competitor plants. We have
previously shown that the leaf regulatory module consisting of HD-
ZIPIII and KANADI transcription factors is involved in modulating

Fig. 9. Model HD-ZIPIII/senescence. A model summarizing our findings and
showing the relationship between early leaf development processes and
senescence. Both REV and WRKY53 intersect to regulate the late stages of
leaf development.

9

RESEARCH ARTICLE Development (2014) 00, 1-12 doi:10.1242/dev.117689

D
E
V
E
LO

P
M

E
N
T



growth in response to shade (Brandt et al., 2012). Consistent with
this, shade can also trigger leaf senescence (Brouwer et al., 2012),
suggesting that leaf patterning, shade avoidance and leaf senescence
are interconnected by differential activity of HD-ZIPIII proteins,
thus linking early and late leaf development, and adjusting plant
growth and development to changing external conditions.

Perspectives
It was recently shown that embryonic growth and patterning of
mammals largely depends on cellular senescence as a developmental
mechanism to shape organ growth (Muñoz-Espín et al., 2013; Storer
et al., 2013). Thismechanismpartly relies onmacrophages, which are
mobile cells that invade the tissue to remove senescent cells. In this
context, senescent cells also produce secreted compounds that can act
as positional signals triggering pattern formation and proliferation
in adjacent tissue (Storer et al., 2013). The immune system of
plants is substantially different from animals and does not involve
macrophage-mediated cell clearing. However, it is conceivable that
local cellular senescence could provide positional information to
direct growth responses. Our finding that HD-ZIPIIIs, which are
known basic patterning factors, can influence senescence processes,
suggest not only that early and late leaf development are coupled
and processes that influence patterning in the early organ control the
concerted degradation of tissue during the late phase of development,
but also that physiological processes related to senescence, such as
nutrient mobilization or lipid peroxidation, might be part of early
leaf patterning processes. Furthermore, the puzzling reduction of
DNA-binding activity under oxidizing conditions that contradicts
the finding that upregulation of WRKY53 expression by hydrogen
peroxide partially requires REVOLUTA prompts us to decipher
the redox-dependent changes in the REVOLUTA protein outside the
DNA-binding domain in more detail. This, however, will be the
subject of further investigations.

MATERIALS AND METHODS
Plant material and growth conditions
The following rev/hd-zipIII mutant lines were used in this study: rev-5
(A260V) and rev-6 (R346STOP), two strong ethyl-methylsulfonate
(EMS) alleles (Otsuga et al., 2001), phb phv rev triple mutants
introgressed in Col-0 (Prigge et al., 2005), 35S::ZPR3 (Wenkel et al.,
2007) and 35S::miR165 (Kim et al., 2010). For senescence phenotyping,
Arabidopsis thaliana plants were grown in a climatic chamber at 20°C
under long-day conditions (16 h of light) with only moderate light
intensity (60-100 μmol s−1 m−2) to slow down development for better
analyses. Under these conditions, the plants developed bolts and flowers
within 5-6 weeks. During growth and development of the leaves, the
respective positions within the rosette were color coded with different
colored threads, so that even at very late stages of development, individual
leaves could be analyzed according to their age. Plants were harvested in a
weekly rhythm and samples were always taken at the same time in the
morning to avoid circadian effects. For the evaluation of leaf senescence
phenotypes, leaves of at least six plants were categorized in four groups
according to their leaf color: (1) ‘green’; (2) leaves starting to get yellow
from the tip as ‘yellow-green’; (3) completely yellow leaves as ‘yellow’;
and (4) dry and/or brown leaves as ‘brown/dry’. Exogenous hydrogen
peroxide treatment was conducted by spraying 1%, 0.1% or 0.01%
hydrogen peroxide solution including 0.1% Tween20. Grafting
experiments were carried out according to Marsch-Martínez et al. (2013).

Intracellular hydrogen peroxide measurements
After stress treatment, leaf 7 (0.1% H2O2 treatment) and leaf 8 (heat stress,
2 h at 39°C) were harvested and incubated for exactly 45 min in DCFDA
working-solution (2′,7′-dichlorodihydrofluorescein diacetate, 200 µg in
40 ml MS-Medium, pH 5.7-5.8). Leaves were then rinsed with water and

frozen in liquid nitrogen. After homogenization on ice, 500 µl 40 mM Tris
(pH 7.0) were added and the samples were centrifuged at 4°C for 30 min.
Fluorescence (480 nm excitation, 525 nm emission) of the supernatant was
measured in a Berthold TriStar LB941 plate reader.

Chromatin-immunoprecipitation and quantitative PCRs
ChIP and ChIP-qPCRs were carried out as described by Brandt et al. (2012).
To quantify gene expression changes, RNA was isolated from seedlings
using the roboklon GeneMATRIX universal RNA purification kit following
manufacturer’s recommendations. One microgram of total RNAwas reverse
transcribed using the Fermentas RevertAid Premium Reverse transcriptase
with oligo-dT primers. cDNAs were diluted 10-fold and 3.5 µl were used for
RT-PCR reactions. Quantitative measurements were performed on a Bio-
Rad CFX384 using the Fermentas SYBR Green qPCR master mix. Relative
quantities were calculated using the delta Ct method and normalized relative
to a standard curve. Oligonucleotide sequences are listed in supplementary
material Table S1. Further descriptions of the methods can be found in
the supplementary material. The ChIP-Seq dataset has been published in the
Gene Expression Omnibus database (accession number GSE26722).

Redox-DPI-ELISA
Recombinant 6xHis-tagged REV protein with and without the PAS domain
was expressed in E. coli and DNA-protein interaction ELISA was basically
performed as described previously (Brand et al., 2010). Crude extracts were
pre-incubated with different concentrations of DTT and H2O2 to examine a
redox state-dependent binding of REV (for a detailed description, see
methods in the supplementary material).

Transformation of Arabidopsis protoplasts and transient
promoter-GUS expression
Protoplasts were derived from a cell culture of Arabidopsis thaliana var.
Columbia 0 and were transformed with effector and reporter plasmids
following roughly the protocol of Negrutiu et al. (1987). The GUS
activity assays were carried out as described by Jefferson et al. (1987). A
detailed description is presented in the methods in the supplementary
material.

Chlorophyll measurements and phenotypic analysis
For assessment of the leaf senescence state, chlorophyll content of leaf 5 was
measured using an atLeaf+ chlorophyll meter (http://www.atleaf.com), lipid
peroxidation of leaf 6 was measured using the improved thiobarbituric acid/
reactive substances assay, as described previously (Hodges and Forney, 2000),
and expression of the senescence-associated marker genes SAG12
(At5g45890) and SAG13 (At2g29350) was analyzed by qRT-PCR. A
detailed description is presented in themethods in the supplementarymaterial.
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Abstract

Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among
these, the KANADI (KAN) subclade of the GARP protein family plays important roles in polarity-associated processes
during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of
KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) and genome-wide
transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of
organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes
previously shown to be important in the establishment of polarity during lateral organ and vascular tissue
development. We also show that KAN1 controls through its target genes auxin effects on organ development at
different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the
response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in
organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV). A comparison of their
target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared
targets. Evidence of mutual repression between closely related family members is also shown.
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Introduction

Plants achieve their final shoot architecture through the
proper positioning of lateral organs such as leaves and flowers.
In part this is mediated by the polar transport of the plant
hormone auxin to specific locations, which then triggers organ
initiation at these sites. The subsequent differentiation of organ
progenitor cells into more specialized cell types results in highly
organized tissues made up of many distinct cell types. The
KAN subclade of the GARP family of transcription factors, as
well as the set of class III homeodomain leucine zipper (HD-
ZIPIII) transcription factors, play important roles in polarity-
associated patterning processes. These transcription factors
are key determinants in embryo, shoot and root patterning and
during vegetative growth regulate several organ polarity
processes [1-15]. In particular, during leaf development these
two gene families have been shown to act antagonistically to

maintain a stable abaxial/adaxial boundary (the boundary
between the lower and upper side of the leaf) that is necessary
for proper leaf blade growth. Here, the four members of the
KAN group (KAN1-4) are required for abaxial cell fate, whereas
the HD-ZIPIII genes, including PHABULOSA (PHB),
PHAVOLUTA (PHV) and REV, promote adaxial cell identity in
organ primordia [1,3,4,7,12-14].

Genetic studies have identified additional regulatory factors
specifying the abaxial/adaxial sides of the leaf. The
ASYMMETRIC LEAVES2 (AS2) gene, a LOB domain–
containing plant-specific protein, and the ASYMMETRIC
LEAVES1 (AS1) gene, a MYB domain transcription factor, are
involved in the development of a symmetrical expanded
lamina, and act to promote adaxial (upper leaf) fate in this
regulatory network [16-18]. On the opposite side, members of
the YABBY (YAB) gene family, such as FILAMENTOUS
FLOWER (FIL), YAB3, YAB5 and YAB2, and two AUXIN
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RESPONSE FACTOR genes (ETTIN (ETT)/ARF3 and ARF4),
specify abaxial (lower leaf) cell fate [19-23]. In addition to this
set of transcription factors, small RNAs have also been found
to play crucial roles in the establishment of organ polarity. HD-
ZIPIII factors are targeted by microRNAs 165/166, which
therefore act as abaxial determinants [24-27]. The ARF3 and
ARF4 genes are controlled by the ta-siRNAs ta-siR2141 and
ta-siR2142 (also referred as ta-siR-ARFs), thus implicating
tasiR-ARFs as important adaxial regulators [27,28].

Genetic analysis indicates that some of these genes act
antagonistically: loss-of-function mutations in genes promoting
adaxial development typically produce an abaxialized
phenotype that is accompanied by the expanded expression of
abaxial genes, whereas loss-of-function mutations in abaxial
genes produce an adaxialized phenotype that correlates with
the expanded expression of adaxial genes. Transgenes or
mutations that cause ectopic expression of these genes,
usually lead to phenotypes opposite to that of the loss-of-
function mutations. The antagonistic relationship between the
adaxial and abaxial transcription factors could be mediated by
direct cross regulation of each other's expression, or
alternatively but not mutually exclusively, via opposite effects
on common downstream targets of biochemical processes,
both of which have been postulated [7,10,29-31]. One strategy
to understand how transcription factors mediate their
developmental functions is to identify the genes they directly
regulate. In this study, we focus mainly on identifying KAN1
targets and, in addition, define potential shared targets
between the abaxial factor KAN1 and the adaxial-fate
promoting factor REV.

Up to now, only a small number of REV and KAN1 target
genes have been reported. For instance, the LITTLE ZIPPER
(ZPR) genes have been proposed as direct REV targets since
they are transcriptionally up-regulated by REV and other HD-
ZIPIII transcription factors. Furthermore, ZPR proteins interact
with and repress HD-ZIPIII activity, forming a negative
feedback loop [32,33]. Recently, we demonstrated that REV
acts upstream of several class II HD-ZIP transcription factors
(HAT2, HAT3, ATHB2/HAT4 and ATHB4) involved in shade
signaling and leaf development [29,34], and the auxin
biosynthetic enzymes TAA1 and YUCCA5 (YUC5). Expression
of HAT2, TAA1 and YUC5 is reduced significantly by
dexamethasone (DEX) in inducible KAN1 overexpression lines
(35S::FLAG-GR-KAN1), indicating that at least one way to
establish the leaf adaxial-abaxial pattern by the REV/KAN
module is through the opposite regulation of shared target
genes [29]. In addition, KAN activity has been proposed to
negatively regulate PIN expression, and hence auxin
movement, based on the ectopic expression of PIN1 in kan
loss-of-function alleles, and the rapid down-regulation of PIN1
expression in response to induction of ectopic KAN1 activity
[7,10]. It is not known whether KAN regulation is direct or
indirect, but also suggests opposing actions of KAN and HD-
ZIPIII on regulation of auxin biology. The adaxial factor AS2 is
the best characterized target gene of KAN1, which represses
the transcription of AS2 in abaxial tissue [17,18,31]. Mutation of
a single nucleotide in a KAN1 binding site in the AS2 promoter
causes ectopic AS2 expression in the abaxial domain, resulting

in an adaxial phenotype. Furthermore, it has been shown that
the abaxial expression of KAN1 is mediated directly by AS2
[31]. Based on these results, it has been proposed that KAN1
acts as a transcriptional repressor, and that mutual repression
between KAN1 and AS2 contributes to the proper
establishment of abaxial/adaxial polarity in plants.

Here, we provide a set of potential target genes of the KAN1
transcription factor identified through a combination of
chromatin immunoprecipitation/deep sequencing (ChIP-Seq)
and genome-wide transcriptional profiling using tiling arrays.
Our dataset shows a strong over-representation of genes
involved in the regulation of organ development as well as in
the response to hormonal stimuli. In addition, the cis-element
‘VGAATAW’ has been identified to be enriched in the ChIP-seq
dataset providing the first information about the KAN1-binding
site. This cis-element is also present in the promoter of the
KAN1 target gene AS2 and it has been shown to be recognized
by KAN1 [31], validating our ChIP-seq analysis. Finally, the
identification of genes potentially dually regulated by the REV/
KAN1 module enables future elucidation of different genetic
networks underlying the action of these antagonistic factors.

Materials and Methods

Plant material and treatments
For efficient chromatin immunoprecipitation, transgenic

35S::FLAG-GR-KAN1 plants were used [29]. The
glucocorticoid receptor (GR) was cloned in frame with the
FLAG epitope in the pJAN33 vector using the KpnI restriction
site [35]. Therefore, these transgenic plants can be treated with
dexamethasone (DEX), inducing the transition of the chimeric
FLAG-GR-KAN1 protein from the cytoplasm to the nucleus,
where it can bind to DNA to regulate its downstream targets. In
order to achieve equal distribution and uptake of DEX,
35S:FLAG-GR-KAN1 plants were grown in liquid culture for 10
days and induced with 25µM DEX for 45 minutes prior to
chromatin-immunoprecipitation. As a control, we used wild type
Columbia (Col-0) plants.

ChIP-sequencing and ChIP analysis
Chromatin extraction and immunoprecipitation (ChIP) were

carried out as described by Brandt et al. (2012) [29]. In total,
we constructed one control library (Col-0) and two ChIP-Seq
libraries for 35S:FLAG-GR-KAN1 using the Illumina® TruSeq®
ChIP Sample Preparation Kit, according to the manufacturer’s
protocol. For library preparation indexing adapters were ligated
to the ends of the DNA fragments (AR003 for Col-0 library and
AR011 and AR027 for 35S:FLAG-GR-KAN1 libraries). Indexed
libraries were subsequently subjected to deep sequencing
using the Illumina HiSeq instrument. The Illumina sequencing
and data analysis were performed as described by Yant and
colleagues (2010) [36], with the exception that the number of
duplicate sequence reads was heuristically reduced prior to
further analysis. This ChIP-Seq experiment resulted in the
identification of 17402 positions in the Arabidopsis genome
being enriched in 35S::FLAG-GR-KAN1 plants compared with
Col-0 plants. ChIP-Seq raw data obtained in this study are
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available at the Gene Expression Omnibus database under
series accession number GSE48081.

Tiling arrays
To examine genome-wide effects of high levels of KAN1

activity, we used ubiqutious expression of a steroid-dependent
KAN1 variant, 35S:KAN1-GR [25]. KAN1 protein activity was
induced by growing plants on 0.5x MS plates and submerging
seedlings in 10 µM dexamethasone 21-acetate solution for 5
minutes. RNA was collected at three time points: 0 minutes
(pre-induction) and 80, and 160 minutes post-induction. A total
of 20-30 µg total RNA per sample using the RNeasy® Plant
mini Kit (Qiagen, Valencia, CA, USA) was converted into a
labeled probe for hybridization to Arabidopsis Tiling 1.0 Arrays
(Affymetrix) at the Australian Genome Research Facility (The
Walter and Eliza Hall Institute of Medical Research, Melbourne,
Australia). The results were then calibrated and pooled per
time point (2-3 biological replicates per time point) according to
the tiling 1.0 array manual, and the resulting .chp files where
loaded versus control into the Integrated Genome Browser
(version 6.7) software for analyses [37]. The transcriptional
changes from baseline were graphically assessed using
selected threshold values and candidates with consistent up/
down regulation along the full ORF/length of the predicted
expressed sequence were identified.

Semi-quantitative PCRs (sqPCR) and quantitative real-
time PCRs (qPCRs)

To test the 35S:KAN1-GR line used for the tiling array
experiment, AS2 and cyclophilin were assessed as positive
and negative controls, respectively, by sqPCR.

RNA was extracted from 15 day old seedlings grown on MS
medium and after 80 minutes of dexamethasone treatment
using the RNeasy® Plant mini Kit (Qiagen, Valencia, CA,
USA). 1 µg of purified RNA was treated with DNAse RQ1
(Promega, Madison, WI, USA) and reverse transcribed using
PrimeScriptTM Reverse Transcriptase (TaKaRa Biotech) for
sqPCR. The sqPCR was performed with three biological
replicates and visualized on 1.5% agarose gels using
electrophoresis [10].

To analyze the gene expression of ATHB8, RNA was
isolated from 10 day old Col-0 and transgenic 35S:FLAG-GR-
KAN1 seedlings after 4 hours of DEX induction.
Glyceraldehyde 3-phosphate dehydrogenase (GADPH) was
used as a reference gene to evaluate the amounts of mRNA
(Figure S2). Real-time PCR experiments were performed as
described by Brandt et al. (2012) [29].

Results

Identification of direct KAN1 target genes using ChIP-
Seq

To better understand processes downstream of KAN1 action,
we constructed transgenic plants over-expressing KAN1 fused
to the rat glucocorticoid receptor carrying an additional FLAG-
epitope (35S:FLAG-GR-KAN1). After growing these plants on
soil until the first true leaves were visible, the plants were

sprayed once a day for one week with 25µM DEX solution. This
treatment resulted in the development of partially abaxialized
leaves with drastically reduced petioles (Figure 1A), whereas
untreated control plants showed no mutant phenotype. In order
to achieve equal distribution and uptake of DEX, 35S:FLAG-
GR-KAN1 plants were grown in liquid culture for 10 days and
induced with 25µM DEX for 45 minutes prior to chromatin-
immunoprecipitation. As a control, we isolated chromatin from
Col-0 wild-type plants. One Illumina control library and two
ChIP-Seq libraries for 35S:FLAG-GR-KAN1 were sequenced.
After filtering for read quality, sequencing reads were mapped
to the Arabidopsis genome (TAIR10), resulting in the
identification of 17402 peaks that were enriched in two
independent ChIP-Seq experiments over the control sample.
We subsequently limited our analysis to peaks showing at least
three-fold enrichment. This dataset contains 4183 KAN1 bound
regions. From a MEME-ChIP analysis (http://
www.meme.sdsc.org) a VGAATAW motif was identified in 1802
of the 4183 regions (Figure 1B), corresponding to 3151 genes
potentially regulated by KAN1 (see Dataset S1). These loci
were equally distributed over the five Arabidopsis
chromosomes, with a lack of enriched peaks in the centromeric
regions (Figure 1C). A further analysis of the distribution of the
peaks relative to the gene models revealed that the majority of
binding sites were located within 1.0 kb upstream of the
transcriptional start site (about 24%) or 1.0 kb downstream of
the coding region (about 11%). Peaks were underrepresented
in gene coding regions (Figure 1D).

Next we examined whether our identified binding site is
consistent with previous findings. The recently identified as2-5d
mutation carries a G to A change in the promoter of AS2,
causing ectopic AS2 expression due to uncoupling from KAN1
regulation [31]. Our analysis revealed enrichment at three
positions in the AS2 promoter region previously identified to be
recognized by KAN1. The sequence underlying the peak in the
5’ UTR of AS2 contains the VGAATAW motif, with the G being
exchanged for A in as2-5d (Figure 2A). This finding supports
the idea that the 1802 binding regions containing the
VGAATAW motif are recognized by KAN1 and represent
genuine binding regions. Regions for which we can detect
enrichment in our ChIP-Seq dataset which do not contain the
VGAATAW motif might represent regions where KAN1 is
associated to, maybe in complex with other DNA-binding
proteins.

Taken together, we have developed an inducible system for
KAN1 expression and used it to identify KAN1 binding sites
across the Arabidopsis genome. Furthermore, we identified a
cis-regulatory motif common to many of these targets that may
represent a sequence directly recognized by KAN1.

Promoters bound by KAN1
Having identified 1802 binding regions, we were interested in

investigating whether genes encoding proteins with specific
functions are enriched in this dataset. We therefore performed
gene ontology studies using the Agrigo tool (http://
bioinfo.cau.edu.cn/agriGO/). This analysis revealed that genes
with a function in multicellular organismal development are
strongly over-represented in our dataset with further
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Figure 1.  Identification of KAN1 target genes.  A) Constructing an inducible KAN1 expression system. B) Sequence logos for the
cis-element, forward and reverse orientation, enriched in the ChIP-Seq dataset C) Distribution of KAN1 binding sites across the five
Arabidopsis chromosomes. D) Location of peaks identified by ChIP-Seq. About 25% of all peaks are located in the first 1000bp
upstream of the transcriptional start site.
doi: 10.1371/journal.pone.0077341.g001
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Figure 2.  Gene-ontology analysis of KAN1 targets.  A)
KAN1 binds to the ASYMMETRIC LEAVES2 (AS2) promoter.
Three distinct binding regions were identified but only the
second peak contains the VGAATAW motif. The guanine
depicted in red is mutated to adenine in the as2-5d mutant. B)
and C) Enrichment of GO terms identified in the set of genes
located downstream of the KAN1-binding site. Over-
representation of genes involved in multicellular organismal
development and in the response to stimuli targeted by KAN1.
doi: 10.1371/journal.pone.0077341.g002

enrichment in the sub-categories flower development and
shoot/leaf patterning (Figure 2B). Since KAN1 is a major
patterning factor and our target gene analysis revealed an
enrichment of other genes involved in patterning, this dataset
contains genes with a high probability to be regulated by KAN1
(Dataset S2). In addition to genes with a role in development,
we also identified genes whose products have known roles in
responding to stimuli (Figure 2C). Of the hormonal signaling
pathways, enrichment is found for genes involved in auxin and
abscisic acid signaling supporting previous findings [30].

Identification of genes transcriptionally regulated by
KAN1

Having identified putative promoter regions bound by KAN1
using ChIP-seq, we next attempted to identify genes that
respond transcriptionally to KAN1 activity. To this end, we
utilized a line harboring a transgene resulting in widespread
expression of a hormone inducible KAN1 protein, 35S:KAN1-
GR [6]. When seeds homozygous for the 35S:KAN1-GR
transgene were germinated in the presence of dexamethasone
both shoot and root meristems were arrested, no leaf primordia
were produced, and seedlings die a few weeks post
germination, mimicking the phenotype of 35S:KAN1 plants [3].
As positive and negative controls we followed the expression of
AS2 and cyclophilin, respectively. When assayed 80 minutes
after dexamethasone treatment, expression of AS2 was
reduced in hormone treated plants relative to controls, whereas
cyclophilin expression was unchanged [10]. We next assayed
genome-wide gene expression levels at two time points (80
minutes and 160 minutes) post-induction and identified 500
genes and 9 unannotated genomic regions in which gene
expression was down-regulated at least at one of the time
points (Dataset S3). In most instances down-regulation was
observed at both time points, with 43 genes down-regulated
only at 160 minutes and 4 genes down-regulated only at 80
minutes. Of the down-regulated genes, 42 are known to have a
role in auxin biology (Dataset S4), including auxin transport or
its regulation (PIN1, PIN3, PIN4, PIN7, AUX1, PGP4, PGP19,
PID, BIG), auxin response (IAA2, IAA3, IAA13, IAA14, IAA16,
ARF4, ARF19, HAT2), and auxin regulated genes (11 SAUR
and 3 GH3 genes). Also down-regulated were 102 genes
implicated in transcriptional regulation (Dataset S5), including
some previously implicated in regulation of leaf polarity (e.g.
PHB, YABBY5, ARF4). Some examples of each of these
classes are shown in Figure S1. In contrast, up-regulation was
detected at only 30 genes and 1 un-annotated region (Dataset
S6). Since most potential target genes exhibited down-
regulation, and KAN1 has been shown to interact with
TOPLESS [38], a transcriptional co-repressor, we next
identified genes that were both down-regulated and possessed
local KAN1 binding sites.

A set of putative KAN1 target genes identified through
ChIP-seq are also transcriptionally regulated by KAN1

Among the 3151 putative KAN1 target genes selected from
the ChIP-seq data analysis, a set of 211 genes was also
regulated by KAN1 at 80 and/or 160 minutes post-induction
(Figure 3A and Dataset S7) in the tiling array experiments. In
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addition, gene ontology classification of these ChIP-seq/tiling
array overlapping genes revealed again a strong over-
representation of genes involved in multicellular organismal
development and response to stimulus, with a significant
enrichment of genes involved in shoot development and auxin
response, respectively (Figure 3B). Interestingly, among 19
genes related to organ development and shoot patterning
(Table 1), four genes were previously shown to be important
factors in the genetic network controlling organ patterning:
PHABULOSA (PHB) and ATHB8 (see also Figure S2), two
class III HD-ZIP genes involved in the control of adaxial cell
identity [1] and provascular patterning [1,39], respectively,
MIR166F, which targets several HD-ZIPIII family members
including PHV, PHB, REV, ATHB-8 and ATHB-15 [1,24,40],
and PIN-FORMED 1 (PIN1), an auxin efflux carrier required for
organ formation and positioning [41-43]. Moreover, several
genes such as LONGIFOLIA 1 (LNG1) and LNG2 [44], the
BEL1-like homeodomain protein SAW2 [45], associated with
leaf shape establishment, the receptor-like kinase PXY/TDR
(PHLOEM INTERCALATED WITH XYLEM/TDIF RECEPTOR),
involved in the proliferation of procambial cells as well as in the
maintenance of polarity during vascular tissue development
[46,47] , NPY3, NPY5 (naked pins in yuc mutants) and the
PINOID homolog WAG2, related to auxin-mediated
organogenesis [48], were identified in both studies. Additional
genes with a role in general aspects of shoot growth and
development are listed in the Table 1.

Out of 211 genes identified as putative KAN1 targets by both
the ChIP-seq and the tiling array approaches, 21 are involved
in auxin response. Table 2 shows a set of KAN1 target genes
encoding proteins involved in auxin signaling as well as in
auxin transport. This set of genes includes several early auxin-
regulated genes with a role in auxin signaling pathways such
as two Aux/IAA genes (IAA2 and IAA13), which encode short-
lived transcription factors that function as repressors of auxin
response genes [49], three GH3 genes (DFL1, DFL2 and
WES1), encoding acyl adenylate–forming isozymes that
covalently modify indole-3-acetic acid (IAA) [50], and three
SAUR-like genes (AT1G19840, AT1G75590 and AT2G21210),
which encode short-lived nuclear proteins involved in auxin
signaling by interacting with calmodulin [51,52]. Furthermore,
an AUXIN RESPONSE FACTOR gene, ARF4, was identified in
both experiments while ARF3/ETT was identified only in our
ChIP-seq data. ARF4, together with the redundant gene
ARF3/ETT (ETTIN), act to promote abaxial identity in
association with KAN or its downstream targets [20]. In
addition, it has been shown that the negative transcriptional,
post-transcriptional and epigenetic regulation of these ARFs by
AS1 and AS2 is important for the establishment of early leaf
adaxial/abaxial polarity [53]. Among this set of genes, we also
found the class II HD-ZIP gene HAT2, which is an early auxin-
inducible gene with opposite functions in regulating auxin-
mediated morphogenesis in the shoot and root tissues [54]. In
a previous study, we also showed that HAT2 acts downstream
of REV in the shade avoidance response [29]. Regarding those
genes involved in auxin transport, two PIN genes, PIN3 and
PIN4, which are important for tropic growth of the root [55] and
root patterning [56], respectively, as well as for creating local

auxin gradients required for the establishment of primordia and
organ development [41], were found in both studies.
Furthermore, a phospholipase required for PIN protein
trafficking to the plasma membrane in the root (phospholipase
A2; PLA2A) [57], and the PINOID protein kinase (PID), which
controls PIN polarity and mediates changes in auxin flow to
create local gradients for patterning processes [58], were
identified. Additionally, the auxin influx transporter AUX1 and
the ATP-binding cassette transporter AtMDR1 found in both
studies regulate root gravitropism, and photomorphogenesis
and root development, respectively, by mediating auxin polar
transport [59,60].

Finally, several genes previously described as being involved
in adaxial/abaxial patterning of the leaf and the vascular tissues
such as MIR166A and AS2 [1,17,18,24,40] were identified as
KAN1 targets exclusively through the ChIP-seq approach.
Moreover, KAN1 itself and KAN2 were isolated as putative
targets suggesting that KAN1 may control its own expression
as well as the expression of other KAN gene family members.

Genes oppositely regulated by the REV/KAN1 module
REV and KAN1 have opposite functions in early leaf

patterning. In order to determine whether the antagonistic roles
can be attributed to an opposite regulation of common
downstream target genes, we compared potential downstream
REV target genes identified by ChIP-Seq [29] with the list of
genes bound and regulated by KAN1 (Dataset S7). This
analysis resulted in the identification of 26 genes, which are
candidates for dual regulation (Table 3). Interestingly, five
genes are bound by REV and KAN1 in a region less than
100bp apart, suggesting that, besides dual regulation, REV and
KAN1 might also compete for chromatin accessibility. All five
genes (TEM, ZFP4, SUC1, a receptor protein kinase and a
NPH3-like protein) seem to be involved in the control of
development corroborating the idea that they act downstream
of developmental regulators.

Discussion

In this study, we utilize inducible overexpression of KAN1 to
identify KAN1 responsive genes and direct targets. Although
such an approach may lead to artifacts because of the ectopic
and artificially high expression levels used, the set of genes we
have identified shows enrichment for genes involved in
development and auxin biology, suggesting our experiments
have identified genes that are biologically relevant.

Our results show that the VGAATAW motif may be a
common cis-regulatory element recognized by KAN1, which
includes the motif affected by the as2-5d point mutation that
causes ectopic AS2 expression due to its regulation being
uncoupled from KAN1 [31]. We have focused our attention on
the 1802 binding regions containing this motif (corresponding
to 3151 genes potentially regulated by KAN1) and, especially,
on those genes that exhibit gene expression changes in
response to induction of KAN1 activity. Several of the identified
downstream targets have a role in organ development, shoot
patterning or auxin response and transport. In addition, we
present a set of genes that are potentially controlled by both
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Figure 3.  Genome-wide comparison of genes bound and regulated by KAN1.  A) Venn-diagram showing numbers of genes
bound by KAN1 and regulated by KAN1. The overlap contains 211 genes that are both bound and also regulated by KAN1. B) Gene
ontology analysis of 211 potential direct KAN1 targets reveals a strong enrichment for genes involved in shoot patterning and the
auxin response. Tables 1 and 2 contain these genes including the binding site information.
doi: 10.1371/journal.pone.0077341.g003
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KAN1 and REV. The potential regulation of the selected genes
by KAN1 and its link with patterning processes and auxin-
related events as well as the gene regulation by the module
KAN1/REV are discussed below.

KAN1 regulates many genes related to organ patterning
In our study, we find that KAN1 binds to the promoter of two

HD-ZIPIII genes, PHABULOSA and ATHB8 (Table 1) and
represses their expression, suggesting that both HD-ZIPIII
genes are direct targets of KAN1 during organ polarity

establishment. In previous studies, it was proposed that the
antagonistic role between KAN and HD-ZIPIII activities in
vascular tissue formation is mediated by affecting the
canalization of auxin flow rather than through a direct
interaction between both families of transcription factors [10].
However, our results suggest that there may be contexts in
which KAN1 acts directly on PHB and ATHB8.

We also find that KAN1 binds directly to the promoters of
MIR166A and MIR166F and down-regulates the expression of
MIR166F (Table 1), suggesting that at least KAN1 may directly

Table 1. Potential KAN1 target genes with a role in organ or shoot development.

  ChIP-seq data      Tiling array data

AGI Gene Symbol ORP-rank Distance Location Enrichment replicate 1 Enrichment replicate 2 FDR replicate 1 FDR replicate 2 80 min 160 min

AT1G13245 RTFL17 4140 2414 DOWN 4,3 2,7 8,20E-04 3,93E-04 yes yes
AT1G13260 RAV1 1215 519 DOWN 5,5 2,7 2,66E-39 2,20E-23 yes yes
AT1G13260 RAV1 1003 9835 UP 7,8 3,4 6,93E-49 1,03E-23   
AT1G13260 RAV1 882 6034 UP 5,1 2,8 1,54E-43 1,79E-33   
AT1G27320 AHK3 5004 630 DOWN 4,3 2,1 8,20E-04 1,29E+02 yes yes
AT1G56010 NAC1 7940 1500 UP 4,1 2,0 2,30E+04 1,80E+07 yes yes
AT1G73590 PIN1 1344 1049 DOWN 6,9 3,6 3,37E-34 8,69E-23 - yes
AT1G78240 TSD2 3471 2653 UP 5,0 2,5 2,67E-11 4,39E-04 yes yes
AT1G78240 TSD2 6421 3459 UP 6,0 2,0 4,37E-03 1,80E+07   
AT1G78240 TSD2 866 5964 UP 12,8 6,1 3,27E-49 1,04E-29   
AT1G78240 TSD2 3094 7048 UP 6,7 2,6 1,98E-19 1,28E-02   
AT2G23760 SAW2 1267 436 UP 7,2 3,8 9,78E-36 5,35E-25 - yes
AT2G23760 SAW2 1145 2496 DOWN 6,0 3,2 7,38E-38 5,57E-27   
AT2G31070 TCP10 344 76 UP 8,0 4,3 6,40E-73 1,79E-54 yes yes
AT2G34710 PHB 231 937 UP 10,2 4,2 1,91E-106 2,01E-52 yes yes
AT3G14370 WAG2 3554 1208 UP 7,9 3,5 1,08E-12 1,58E-02 yes yes
AT5G60970 TCP5 1164 2282 DOWN 7,3 4,4 1,15E-32 4,35E-30 yes yes
AT5G60970 TCP5 1019 3044 DOWN 7,8 4,9 2,90E-34 6,91E-34   
AT5G43603 MIR166F 2366 658 UP 3,8 2,7 2,25E-12 6,47E-18 yes yes
AT5G61480 PXY 2404  in CDS 5,7 2,6 5,67E-22 7,40E-09 - yes
AT5G67440 NPY3 434 413 UP 6,4 3,5 2,32E-65 1,24E-49 yes yes
AT5G67440 NPY3 1623 184 DOWN 5,5 2,5 1,19E-32 2,38E-16   
AT4G37590 NPY5 979 1452 UP 9,9 5,0 2,37E-43 3,80E-29 yes yes
AT3G02170 LNG2 3204 3955 UP 5,3 2,9 3,08E-11 6,67E-07 yes yes
AT5G15580 LNG1 4944  in CDS 10,7 2,6 1,57E-12 3,27E+06 yes yes
AT5G61960 AML1 2123 2369 UP 5,6 1,4 3,33E-34 4,59E-06 yes yes
AT5G61960 AML1 2265  in CDS 6,8 3,1 5,15E-23 3,05E-10   
AT4G32880 ATHB8 1402 561 UP 1,8 6,5 1,69E-30 3,33E-23 yes yes
AT2G46685 MIR166A 4624 3218 UP 2,3 4,8 4,90E-07 1,49E+02 - -
AT1G65620 AS2 1750  in CDS 2,4 5,1 1,50E-34 6,53E-12 - -
AT1G65620 AS2 2506 424 DOWN 2,4 5,9 1,72E-23 2,74E-06 - -
AT5G16560 KAN1 1996 173 UP 1,8 4,5 2,88E-21 5,12E-16 - -
AT5G16560 KAN1 2689 707 UP 2,6 9,3 8,92E-23 1,02E-04 - -
AT5G16560 KAN1 2930 5046 UP 2,9 7,8 8,53E-23 4,06E-03 - -
AT1G32240 KAN2 468 4442 DOWN 8,8 5 4,95E-61 4,17E-50 - -

Notes: By analyzing the ChIP-seq and the tiling array datasets and based on gene ontology (GO) analysis and literature contrast, we identified 23 genes involved in
multicellular organismal development and shoot development. These genes are listed with the AGI (Arabidopsis Genome Initiative) gene code, the Gene Symbol, the ORP-
rank, the distance from the binding site to the CDS, the location (UP=upstream of a gene, DOWN=downstream of a gene, in CDS), the enrichment of ChIP-seq replicates 1
and 2 (ratio of number of reads for a binding site in KAN1+DEX versus Col0+DEX), the false discovery rate (FDR) of ChIP-seq replicates 1 and 2, and the down-regulation at
80 and/or 160 min after KANADI1 activity induction (yes=the entire length of the predicted transcript was down-regulated; - no significant down-regulation).
doi: 10.1371/journal.pone.0077341.t001
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regulate MIR166F. In addition, our results indicate that KAN1
binds to its own promoter and KAN2 via the VGAATAW motif
(Table 1) but also potentially KAN3 (Dataset S1), although no
VGAATAW motif was found for this binding event. Taken
together, these results suggest that in some contexts KAN1
may direct a negative feedback loop that limits the levels of
several abaxial factors including KAN1 itself.

KAN1 binds to the proximal promoters and represses the
expression of genes involved in different aspects of organ
development such as PXY/TDR, LNG1/2 and SAW2 (Table 1).
Like KAN1, PXY is a key gene in vasculature polarity
establishment. In particular, PXY is required for the proper
orientation of cell divisions in the vascular meristem, which
gives rise to specialized and spatially separated xylem and
phloem cells [46,47]. The homologous genes LNG1 and LNG2
regulate leaf morphology by positively promoting longitudinal
polar cell elongation [44]. The adaxial epidermal cells of the
midveins and the leaf blade are longitudinally elongated in the

lng1-1D mutant plants compared with wild type. SAW2 controls
leaf shape and exhibits adaxial expression in developing lateral
organs [45]. Therefore, our results suggest that KAN1 may
directly regulate genes involved in the development of lateral
organs and vascular tissue, known sites of KAN1 activity.

KAN1 regulates auxin-related genes
Organ patterning is in part modulated by the polar transport

of auxin to specific locations, generating auxin maxima that
promote organ initiation and growth. PIN proteins play an
important role in the regulation of auxin distribution. Loss of
proper PIN polarity establishment, as in PIN multiple mutants
and gn mutants, leads to embryo patterning defects [61-65].
Previous studies have shown a negative effect of KAN1 on
PIN1 activity. Thus, ectopic expression of PIN1 is observed in
kan1 kan2 kan4 embryos, suggesting that KAN genes may act
to restrict auxin flow during embryogenesis by regulating PIN1

Table 2. Potential KAN1 target genes involved in auxin response.

  ChIP-seq data      Tiling array data

AGI Gene Symbol ORP-rank Distance Location Enrichment replicate 1 Enrichment replicate 2 FDR replicate 1 FDR replicate 2 80 min 160 min
AT1G19840 SAUR-like 2341 6906 DOWN 5,1 2,8 6,76E-18 1,05E-12 yes yes
AT1G75590 SAUR-like 3037 1915 UP 5,8 2,5 2,21E-17 1,86E-04 yes yes
AT2G21210 SAUR-like 157 149 UP 8,3 3,4 4,47E-119 9,21E-58 yes yes
AT2G33310 IAA13 1242  in CDS 7,4 4,1 1,00E-33 1,71E-27 yes yes
AT2G34650 PID 2130 3923 UP 5,7 2,8 6,51E-23 1,53E-12 yes yes
AT2G38120 AUX1 158 10052 UP 7,3 4,2 3,04E-94 1,24E-79 yes yes
AT3G23030 IAA2 165 171 UP 9,0 4,4 4,11E-103 3,88E-67 yes yes
AT3G28860 ATMDR1 3763 3456 UP 5,0 2,2 1,49E-11 1,45E-01 yes yes
AT3G28860 ATMDR1 3075 8677 DOWN 4,4 2,0 3,47E-16 8,40E-05   
AT4G03400 DFL2 2385 2241 DOWN 7,4 3,1 9,71E-24 9,10E-08 yes yes
AT4G03400 DFL2 1583 2654 DOWN 5,6 2,6 2,76E-33 1,08E-16   
AT4G27260 GH3.5, WES1 2996 1074 UP 4,0 2,2 6,37E-13 1,14E-07 yes yes
AT4G27260 GH3.5, WES1 5906 971 DOWN 5,0 1,3 4,55E-09 1,63E+07   
AT5G47370 HAT2 3245 86 UP 4,6 2,3 1,64E-12 1,76E-05 yes yes
AT5G54510 GH3.6, DFL1 2785 2222 DOWN 4,8 1,9 1,29E-22 1,16E-04 yes yes
AT5G59780 MYB59 1240 5918 UP 5,6 3,3 2,16E-32 7,10E-28 yes yes
AT5G61420 MYB28 1759 769 UP 6,2 2,7 5,59E-32 2,11E-13 yes yes
AT5G61420 MYB28 1753 2117 UP 4,4 2,7 4,69E-22 6,78E-21   
AT5G63160 BT1 16 1273 UP 9,1 4,7 2,98E-185 8,71E-136 - yes
AT5G67300 ATMYB44 2070 381 UP 4,5 2,4 1,11E-21 1,87E-14 yes yes
AT5G67300 ATMYB44 53 2438 UP 11,3 5,4 9,41E-140 1,06E-92   
AT1G70940 PIN3 5237 20 UP 6,4 3,2 2,54E-03 2,51E+02 yes yes
AT2G01420 PIN4 1622 367 UP 6,3 2,8 3,70E-35 3,35E-15 yes yes
AT2G01420 PIN4 1630 973 DOWN 5,5 3,0 1,65E-27 7,06E-20   
AT2G26560 PLA2A 2249 1401 UP 6,1 3,1 1,59E-20 5,88E-12 yes yes
AT5G60450 ARF4 294 2112 UP 6,7 4,0 6,92E-70 1,80E-64 yes yes
AT2G33860 ARF3/ETT 4041 1151 UP 3,9 3,1 6,30E-01 2,50E-07 - -
AT1G15690 AVP1 3612 2238 UP 8,1 3,4 4,21E-13 8,87E-02 yes yes

Notes: By analyzing the ChIP-seq and the tiling array datasets and based on gene ontology (GO) analysis and literature contrast, we identified 22 genes involved in
response to auxin. These genes are listed with the AGI (Arabidopsis Genome Initiative) gene code, the Gene Symbol, the ORP-rank, the distance from the binding site to the
CDS, the location (UP=upstream of a gene, DOWN=downstream of a gene, in CDS), the enrichment of ChIP-seq replicates 1 and 2 (ratio of number of reads for a binding
site in KAN1+DEX versus Col0+DEX), the false discovery rate (FDR) of ChIP-seq replicates 1 and 2, and the down-regulation at 80 and/or 160 min after KANADI1 activity
induction (yes=the entire length of the predicted transcript was down-regulated; - no significant down-regulation).
doi: 10.1371/journal.pone.0077341.t002
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Table 3. Genes potentially cross-regulated by the REV/KAN1 module.

  REV ChIP-seq KAN1 ChIP-seq       

AGI Gene symbol Distance  Location  FDR replicate 1  FDR replicate 2  
Enrichment
replicate 1

Enrichment
replicate 2 Distance  Location  

Distance REV/
KAN1 binding

AT1G22570 Major facilitator protein 1129 DOWN 1,19E-112 3,31E-68 13,5 6,2 920 UP 4085
AT1G25560 TEM1 2926 UP 2,15E-64 2,70E-31 11,7 4,9 3024 UP 61
AT1G51940 LysM-domain protein 1525 UP 1,22E-10 3,24E+02 4,5 1,8 5999 UP 4504

AT1G61660
bHLH transcription
factor

 in CDS 2,26E-37 1,47E-22 6,8 3,4 1365 UP 3405

AT1G66140 ZFP4  in CDS 3,75E-31 4,10E-17 6,1 2,9  in CDS 26
AT1G66140 ZFP4   1,49E-01 1,35E+02 4,0 2,2  in CDS 434
AT1G67710 ARR11 1466 UP 2,20E-54 6,92E-40 6,3 3,4 1375 UP 113
AT1G68130 IDD14 3051 UP 1,08E-12 9,72E-11 3,8 2,2 3357 DOWN 8739

AT1G68520
B-BOX zinc finger
protein

741 DOWN 4,34E-26 3,09E-09 3,8 2,3 248 UP 2757

AT1G68520
B-BOX zinc finger
protein

  5,97E-14 2,76E-06 5,9 2,8 829 UP 3408

AT1G71880 SUC1 5858 UP 2,80E-74 1,99E-51 8,1 4,1 5878 UP 41

AT1G72300
Leucine-rich receptor
protein

3145 UP 4,42E-22 4,03E-12 8,3 4,1 691 UP 2424

AT1G72300
Leucine-rich receptor
protein

  6,72E-09 1,69E-09 4,0 2,4 1465 UP 1630

AT3G02140 TMAC2 893 UP 2,04E-69 5,94E-57 10,5 5,9 201 UP 653
AT3G02140 TMAC2   1,01E-48 5,34E-34 7,4 3,7 2737 UP 1863
AT3G02140 TMAC2   4,50E-08 5,09E-03 4,8 2,5 3049 UP 2231
AT3G12920 BRG3 1579 DOWN 1,73E-04 8,92E-01 4,3 2,3 1782 UP 5019
AT3G12920 BRG3   1,22E-181 7,71E-141 13,2 7,0 4565 UP 7652
AT3G12920 BRG3   6,75E-90 8,25E-62 11,6 5,8 983 DOWN 568
AT3G12920 BRG3   1,13E-63 9,51E-49 9,9 5,4 2338 DOWN 797
AT3G15570 NPH3 family protein 1009 UP 6,12E-93 1,02E-63 8,9 4,4 1036 UP 14

AT3G54400
Aspartyl protease
protein

602 UP 4,51E+02 8,26E+04 4,6 2,4 120 UP 402

AT3G56050
Protein kinase family
protein

208 UP 4,29E-87 5,13E-48 8,8 3,9 274 UP 42

AT3G61460 BRH1 2196 UP 1,85E-17 4,61E-12 5,9 3,2 314 UP 1826
AT4G18700 CIPK12 282 DOWN 3,22E+00 3,57E+03 7,5 3,9 26 UP 2468
AT4G18700 CIPK12   4,36E-101 1,53E-92 8,4 5,0 133 DOWN 146
AT4G22190 unknown protein 2827 UP 1,45E-38 9,85E-30 8,1 4,5 1709 UP 1166

AT4G26540
Leucine rich repeat
receptor

2234 UP 3,06E-86 1,40E-45 8,5 3,7 2160 UP 129

AT4G26540
Leucine rich repeat
receptor

  8,31E-78 1,31E-53 7,1 3,6 896 DOWN 6893

AT4G27260 GH3.5, WES1 2494 DOWN 6,37E-13 1,14E-07 4,0 2,2 1074 UP 6295
AT4G27260 GH3.5, WES1   4,55E-09 1,63E+07 5,0 1,3 971 DOWN 1591
AT5G05690 CPD 4847 UP 1,81E-06 1,67E-02 5,1 2,7 5642 UP 894
AT5G47370 HAT2 1548 UP 1,64E-12 1,76E-05 4,6 2,3 86 UP 1403
AT5G51550 EXL3 2573 UP 2,22E-174 1,08E-139 14,1 7,7 687 UP 1892
AT5G51550 EXL3   9,95E-19 1,35E-11 4,0 2,1 2133 UP 480
AT5G52060 ATBAG1, BAG1 739 UP 1,28E-20 2,48E-03 5,4 2,1 8 UP 745
AT5G64570 XYL4 2389 UP 1,84E-39 5,08E-19 4,9 2,2  in CDS 5597
AT5G64570 XYL4   5,70E-50 5,28E-46 7,7 4,6 331 UP 2090
AT5G67190 DEAR2 2710 UP 1,46E-33 1,01E-22 4,9 2,6 276 UP 2557
AT5G67190 DEAR2   5,02E-178 3,45E-151 14,2 8,1 1541 UP 1248
AT5G67190 DEAR2   1,28E-61 2,35E-45 6,9 3,6 1319 UP 6884
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 gene expression [7]. PIN1 gene expression alterations have
also been observed at the ectopic abaxial leaf outgrowths of
kan1 kan2 plants. In particular, PIN1 expression was higher in
the outgrowths than in the surrounding leaf tissue, suggesting
that the outgrowths may be due to ectopic auxin maxima
forming in the lamina [3,4]. In addition, it has been shown that
polar auxin flow is essential to form procambium cells in
vascular tissues, and KAN genes play a role in the distribution
of this auxin flow by restricting PIN1 activity [10]. In agreement
with these findings, we have identified a binding site for KAN1
downstream from PIN1 that likely mediates direct repression of
PIN1 by KAN1 (Table 1). Motifs adjacent to other PIN genes
such as PIN3 and PIN4 were also bound by KAN1, and their
expression was repressed by KAN1 as well (Table 2).
Therefore, KAN1 may directly regulate several PIN family
members supporting previous findings that showed that, at
least in some contexts, KAN proteins may act in patterning
processes through auxin transport modulation. Additionally,
and reinforcing this hypothesis, KAN1 bound and repressed
several genes involved in the regulation of PIN activity and
trafficking such as PINOID and PLA2A [57,58,66], respectively.
NPY3, NPY5 and WAG2, which are thought to act together to
determine what side of the cell PIN accumulates at [48,67-69],
and genes involved in auxin polar transport such as the auxin
influx transporter AUX1 and the ATP-binding cassette
transporter AtMDR1 [59,60] were also bound and repressed by
KAN1 (Table 2).

Our data also point to a direct effect of KAN1 on auxin
signaling pathways. For instance KAN1 bound near and
repressed early auxin response genes including three GH3
genes (DFL1, DFL2 and WES1), three SAUR-like genes
(AT1G19840, AT1G75590 and AT2G21210) as well as two
Aux/IAA genes (IAA2 and IAA13) [49,70] (Table 2).

A connection of auxin signaling comes in addition from direct
repression of ARF4 and binding of ARF3 by KAN1 (Table 2).
The phenotype of ett arf4 leaves resembles the phenotype of
kan1 kan2 leaves, leading to the proposal that ARF proteins
act together with KAN proteins or its downstream targets to
regulate transcription [20]. While this previous study suggested
a positive interaction between these transcription factors, our
findings suggest that there may also be negative feedback
between KAN1 and ARF4 and ARF3/ETT, potentially again
(see above), as a mechanism to maintain homeostasis among
factors controlling abaxial identity.

We have identified several additional genes involved in auxin
transport and its regulation or auxin signaling as being
repressed after KAN1 induction and, in some cases, also
bound by KAN1 (Dataset S1 and Figure S1). This set of genes
includes PIN7, which is involved in apical–basal axis formation

of the embryo [62], YABBY5, a transcription factor involved in
abaxial cell fate specification and auxin distribution [21,23],
different early auxin-responsive genes such as GH3.3, the
SMALL AUXIN UP RNAs (SAUR) SAUR19, SAUR20 and
SAUR63, which regulate auxin polar transport and promote
auxin-mediated organ elongation [71,72], three SAUR-like
genes (AT1G19840, AT4G38840 and AT5G18030), ARF19,
IAA3, IAA16, IAA14, and an auxin receptor belonging to the
TIR1 subfamily (AFB1) that interacts with Aux/IAA proteins
[73,74]. In addition, in a previous study [29], we demonstrated
that the expression of HAT2, which was also bound and
repressed by KAN1 in the current study, and two genes that
encode auxin biosynthetic enzymes, TAA1 and YUC5, is
reduced significantly after KAN1 induction. These results
together with our findings reflect that, certainly, KAN1 may
control the influence of auxin on organ development through
complex interactions and at different levels: biosynthesis,
transport and its regulation, and signaling.

Finally, our results suggest that KAN1 may act on other
hormone pathways through the regulation of genes involved in
the response to abscisic acid, jasmonic acid, brassinosteroids,
ethylene, cytokinins and gibberellins (Dataset S2 and Figure
S1).

Regulation by KAN1 and REV of common downstream
target genes

Genetic analysis has indicated that the HD-ZIPIII and KAN
factors act oppositely in organ patterning [1,3,7]. However, it
remains unclear whether this interaction occurs by direct
mutually antagonistic regulation, through opposing regulation of
a set of common direct targets or through opposing regulation
of indirect targets. With respect to direct antagonistic
regulation, in the current study, we did not find evidence of
direct regulation of REV by KAN1, although KAN1 appears to
bind other HD-ZIPIII genes such as PHB and ATHB8 and to
repress their expression. On the other hand, published work
identifying HAT2, TAA1 and YUC5 as genes oppositely
regulated by REV and KAN [29] supports the shared common
targets hypothesis. To further investigate whether REV and
KAN1 act on additional common target genes, we compared
the ChIP-Seq data for KAN1 with those recently obtained for
REV [29] and found an additional set of overlapping putative
target genes that bring the total to 26 genes (Table 3). Among
these, we found genes encoding transcription factors and
proteins involved in hormone-associated processes. Finally,
several genes involved in auxin transcriptional response and
auxin transport are repressed by KAN1, whereas auxin
biosynthesis and transport are positively regulated by HD-ZIPIII
activity. Thus, another mechanism by which KAN1 and HD-

Table 3 (continued).

Notes: By comparing the REV target genes identified by ChIP-Seq [29] with the list of genes bound and regulated by KAN1 (Dataset S7), we identified 26 genes which are
candidates for dual regulation. These genes are listed with the AGI (Arabidopsis Genome Initiative) gene code, the Gene Symbol, the false discovery rate (FDR) of ChIP-seq
replicates 1 and 2, the enrichment of ChIP-seq replicates 1 and 2 (ratio of number of reads for a binding site in KAN1+DEX versus Col0+DEX), the distance from the binding
site to the CDS and the location (UP=upstream of a gene, DOWN=downstream of a gene, in CDS), and the distance between REV and KAN1 binding sites.
doi: 10.1371/journal.pone.0077341.t003
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ZIPIII activities have opposing effects is via antagonistic
regulation of auxin biology, which does not necessarily occur at
the level of the same transcriptional targets but will create
steep auxin gradients that could function as positional signals.

The vast majority of KAN1 targets identified were down-
regulated. Together with the observations that KAN1 directly
represses the expression of the adaxial factor AS2 [31] and
that TOPLESS, a co-repressor protein, directly interacts with
KAN1 [38], our data suggests that KAN1 primarily acts as a
repressor. According to the opposite regulation of common
targets hypothesis, if KAN1 acts as a repressor, the HD-ZIPIII
proteins should act as activators of those genes that are
common targets. Consistent with HD-ZIPIII proteins acting as
activators, expression of REV translationally fused with a
repressor domain (REV-SRDX) phenocopies phb phv rev
plants (Dyani Lewis and J. L. Bowman, unpublished data).
Thus, our findings together with published work
[1,3,7,29,31,38] indicate that HD-ZIPIII and KAN genes
function antagonistically both through mutual regulation as well
as through the opposite regulation of common direct targets
and indirect targets. Mutual regulation may ensure the proper
partitioning of adaxial and abaxial tissues while the opposite
regulation of common targets may help set up contrasting
transcriptional activities that distinguish adaxial and abaxial cell
types.

Supporting Information

Dataset S1.  All ChIP-Seq identified regions containing the
VGAATAW element.
(XLS)

Dataset S2.  Putative KAN1 targets with roles in system
and organ development and hormone signaling.
(XLS)

Dataset S3.  All genes down-regulated by KAN1.
(XLS)

Dataset S4.  Genes involved in auxin biology down-
regulated by KAN1.
(XLS)

Dataset S5.  Genes involved in transcriptional regulation
down-regulated by KAN1.

(XLS)

Dataset S6.  All genes up-regulated by KAN1.
(XLS)

Dataset S7.  Overlap ChIP-Seq/tiling array.
(XLS)

Figure S1.  Examples of raw tiling array data. The lower two
lines in each figure represent the 80 minute time point and the
upper two lines represent the 160 minute time point. The upper
of the lines in each time point are from a single biological
experiment, whereas the lower are the average from two
biological replicates. Genes are identified by their AtNg and
common names, and those genes that were detected as also
bound by KAN1 are denoted by an *.
(TIF)

Figure S2.  Genes bound by KAN1 are also regulated by
KAN1 at the transcriptional level. A) ChIP-Seq graphs show
enrichment for KAN1 binding in the 3’ region of the ATHB8
gene. The enriched region contains the VGAATAW motif. B)
ATHB8 expression is strongly repressed in DEX-treated
35S::FLAG-GR-KAN1 transgenic plants. Plotted are relative
qRT-PCR expression values of two independent biological
replicates. Each biological experiment was carried out with four
technical replicates and average values with standard deviation
were calculated. *p≤0.01; **p≤1.0E-06.
(TIF)
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b National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological

Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
c Center for Signal Transduction and Metabolomics, Key Laboratory of Molecular Physiology, Institute of Botany, Chinese Academy of Sciences,

Beijing 100093, China

A R T I C L E I N F O

Article history:

Available online 7 July 2012

Keywords:

Shoot apical meristem

HD-ZIPIII transcription factors

LITTLE ZIPPER

AGO10

microRNAs

microProteins

A B S T R A C T

Stem cells in the shoot apex of plants produce cells required for the formation of new

leaves. Adult leaves are composed of multiple tissue layers arranged along the dorso-

ventral (adaxial/abaxial) axis. Class III homeodomain leucine zipper (HD-ZIPIII) transcrip-

tion factors play an important role in the set-up of leaf polarity in plants. Loss of HD-ZIPIII

function results in strongly misshapen leaves and in severe cases fosters the consumption

of the apical stem cells, thus causing a growth arrest in mutant plants. HD-ZIPIII mRNA is

under tight control by microRNAs 165/166. In addition to the microRNA-action a second

layer of regulation is established by LITTLE ZIPPER (ZPR)-type microProteins, which can

interact with HD-ZIPIII proteins, forming attenuated protein complexes. Here we show that

REVOLUTA (REV, a member of the HD-ZIPIII family) directly regulates the expression of

ARGONAUTE10 (AGO10), ZPR1 and ZPR3. Because AGO10 was shown to dampen microR-

NA165/6 function, REV establishes a positive feedback loop on its own activity. Since

ZPR-type microProteins are known to reduce HD-ZIPIII protein activity, REV concomitantly

establishes a negative feedback loop. We propose that the interconnection of these microR-

NA/microProtein feedback loops regulates polarity set-up and stem cell activity in plants.

� 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Development of eukaryotic organisms is governed by a

precise control of transcription factor activities, steering dif-

ferentiation processes required for tissue formation. By

changing the transcriptional program, cells can change from

a non-differentiated state to a highly specialized state. Stem

cells are non-differentiated cells, which have the ability to

adopt highly diverse cell fates. The shoot tip of plants harbors

a population of stem cells, named the shoot apical meristem

(SAM), which is essential for growth and development. Using

forward and reverse genetic approaches, several factors in-

volved in meristem organization and maintenance have been

identified. The WUSCHEL (WUS) transcription factor plays a

key role in shoot apical meristem maintenance (Mayer

et al., 1998). WUS is expressed in a cell population underlying

the SAM, named organizing center, and has recently been

shown to act non-cell autonomously in the central zone of

the SAM, where it induces expression of CLAVATA3, a nega-

tively acting peptide ligand of the CLAVATA1 receptor kinase

(Yadav et al., 2011). Besides the activities of transcriptional

regulators, it was also shown that the tight balance of the
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plant hormones cytokinine and auxin influences the stem cell

niche (Zhao et al., 2010).

New organs are initiated at the flanks of the SAM, thereby

influencing the self-perpetuating system of stem cells. The

plant-specific CLASS III HOMEODOMAIN LEUCINE-ZIPPER

(HD-ZIPIII) transcription factors are involved in both stem cell

maintenance and polarity set-up processes in the embryo,

shoot and root as well as in cell-fate choices of developing

leaves (Carlsbecker et al., 2010; McConnell et al., 2001; Smith

and Long, 2010). Expression of HD-ZIPIII mRNA is governed

by microRNA165/166, restricting their pattern of expression

to the shoot apical meristem and the adaxial domain of devel-

oping leaf primordia (Juarez et al., 2004; Mallory et al., 2004).

Post-transcriptional gene silencing by microRNAs requires

the function of several other protein factors. Most notably, DI-

CER-like proteins which act in the processing of longer precur-

sor RNAs and ARGONAUTE (AGO) proteins which bind the

mature microRNA and guide the riboprotein complex to their

target mRNAs. AGOs are essential factors for microRNA (miR-

NA) function in both plants and animals. Plant AGO proteins

can be subdivided into five distinct clades based on their

biochemical properties. AGO1 binds primarily microRNAs

and directs either target cleavage or translational inhibition

(Brodersen et al., 2008; Kidner and Martienssen, 2004; Vauche-

ret et al., 2004). AGO7 has been shown to bind miR390 and to

regulate TAS RNAs which are further processed to trans-acting

siRNAs and associate with AGO2/AGO3/AGO5, thus acting

downstream of AGO7 (Montgomery et al., 2008). AGO4/AGO6/

AGO9 bind 24nt siRNAs and are involved in guiding small

RNA-mediated DNA-methylation (Eun et al., 2011; Gao et al.,

2010; Havecker et al., 2010; Rowley et al., 2011). AGO10 has a

high substrate specificity and predominantly associates with

miR165/6 and thereby acts as a microRNA locker, sequestering

miR165/6 (Zhu et al., 2011). Mutant screens in plants have

yielded loss-of-function alleles of several AGO genes. Muta-

tions in AGO10/PINHEAD (PNH)/ZWILLE (ZLL) disturb the self-

renewal of the apical stem cells in the shoot tip, resulting in

plants with arrested meristems (Lynn et al., 1999; Moussian

et al., 1998). The observed phenotype of ago10/pnh/zll mutant

plants is, inter alia, due to an increased expression of miR165/

166, resulting in the down-regulation of its HD-ZIPIII target

mRNAs (Liu et al., 2009). In flowers, the interplay of AGO1,

AGO10/PNH/ZLL and miR172 and miR165/166 specifies tempo-

ral cell fates through the regulation of their APETALA2 and

HD-ZIPIII targets (Ji et al., 2011). It was shown that in the central

region of the shoot tip, AGO10/PNH/ZLL sequesters miR165/166

allowing HD-ZIPIIIs to be active, while in peripheral regions of

the shoot, miR165/166 together with AGO1 depletes HD-ZIPIII

expression (Zhu et al., 2011).

In addition to the control by microRNAs, a second layer of

HD-ZIPIII regulation occurs at the post-translational level, via

the formation of non-functional heterodimeric complexes.

HD-ZIPIII proteins regulate the expression of LITTLE ZIPPER

(ZPR) genes encoding microProteins, which are able to form

non-functional HD-ZIPIII/ZPR protein complexes (Kim et al.,

2008; Staudt and Wenkel, 2011; Wenkel et al., 2007). Overex-

pression of ZPR-type microProteins causes in weak overex-

pression lines a downward curling of the leaf blade, as seen

in hd-zipIII mutant plants (Kim et al., 2008; Prigge et al., 2005;

Wenkel et al., 2007). In strong ZPR-overexpression lines the

shoot apical meristem terminates with the production of one

or two radialized leaves, strongly resembling ago10/pnh/zll mu-

tant plants.

We have carried out a ChIP-Seq study to identify genes di-

rectly regulated by the HD-ZIPIII transcription factor REVOLU-

TA (REV) (Brandt et al., 2012). This screen resulted, amongst

others, in the identification of ZPR1 and AGO10, as putative

direct targets of REV. Here we show that REV directly and pos-

itively regulates AGO10, ZPR1 and ZPR3 expression. Transgenic

plants overexpressing ZPR3-type microProteins resemble an

ago10 mutant plant, which is reflected in meristem arrest

and radialization of vascular bundles in cotyledons. In addi-

tion, hd-zipIII loss-of-function mutant plants have lower levels

of ZPR and AGO10 expression, indicative of positive regulation

by HD-ZIPIIIs. Because AGO10 is able to capture microRNA165/6

and thereby protect HD-ZIPIIIs from microRNA-dependent deg-

radation, REVestablishes a direct positive feedback loop allow-

ing HD-ZIPIII transcripts to accumulate. In addition, REV

regulates expression of the LITTLE ZIPPER genes, establishing

a direct negative feedback loop via microProtein-directed pro-

tein inhibition. We propose that HD-ZIPIII transcription factors

can directly influence their activity state by controlling posi-

tive and negative feedback loops, which is important for the

regulation of biological processes such as meristem mainte-

nance or polarity set up in leaves. Uncoupling these feedback

loops by mutation or in transgenic overexpression approaches

strongly affects developmental processes regulated by HD-

ZIPIIIs emphasizing the biological importance of these feed-

back loops.

2. Results

2.1. An inducible system to study REVOLUTA DNA-
binding

We previously showed that transgenic plants constitutively

expressing a microRNA-resistant form of the REVOLUTA tran-

scription factor (REVd) fused to the glucocorticoid receptor

(GR), can be used to create developmental defects by inducing

the translocation of the chimeric GR-REVd protein from the

cytoplasm to the nucleus, by treating plants with Dexametha-

sone (DEX) (Wenkel et al., 2007). In transcriptome profiling

experiments, using microarrays, we were able to identify the

LITTLE ZIPPER genes being transcriptionally regulated REV

(Wenkel et al., 2007). In order to being able to perform efficient

chromatin-immunoprecipitations, to demonstrate binding of

GR-REVd to the chromatin of potential target genes, we have

constructed plants constitutively expressing the GR-REVd

protein with an additional FLAG-epitope at the GR moiety.

Induction of FLAG-GR-REVd by DEX results in the same devel-

opmental defects as observed for the GR-REVd inducible line

(Fig. 1a). Using a ChIP-Seq approach, we were able to identify

a number of direct REV target genes (Brandt et al., 2012).

2.2. Identification of AGO10 as a direct target gene of REV

Interestingly, the ARGONAUTE10/PINHEAD/ZWILLE gene (in

the following referred to as AGO10) is among the list of puta-

tive target genes regulated by REV. To confirm binding of REV
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to the chromatin of AGO10, we carried out independent chro-

matin-immunoprecipitations of transgenic 35S::FLAG-GR-

REVd plants either treated with DEX or a mock substrate. Sub-

sequent qPCR reactions confirmed our ChIP-Seq data, demon-

strating that REV indeed interacts with the chromatin of

AGO10 and binds to a region located in the 5 0UTR (Fig. 1b). Be-

cause from binding to the chromatin, a positive or negative

regulation cannot be inferred, we performed DEX-induction

experiments with Col-0 wild type plants and transgenic

35S::FLAG-GR-REVd plants. Expression of AGO10 is signifi-

cantly increased in induced 35S::FLAG-GR-REVd plants com-

pared to wild type plants, revealing that REV is both a direct

and positive upstream regulator of AGO10 expression

(Fig. 1c). Furthermore, the induction also occurs in the pres-

ence of the protein biosynthesis inhibitor cycloheximide

(CHX), supporting the direct nature of this regulation

(Fig. 1c). Taken together, we show that REV interacts with

the chromatin of AGO10 and directly and positively influences

AGO10 expression.

2.3. REVOLUTA can directly regulate ZPR expression

We have previously shown that REV is able to induce

expression of all four LITTLE ZIPPER genes (Wenkel et al.,

2007). It remained unclear whether the regulation of the LIT-

TLE ZIPPERs by REV is of direct or indirect nature. Our ChIP-

Seq study revealed that REV is able to bind the chromatin of

all ZPR genes. Here, we exemplary demonstrate that REV is

able to bind to the chromatin of the ZPR3 gene (Fig. 2a). By

using different primer pairs amplifying regions spanning

the whole ZPR3 locus, we can show that a binding maximum

exists in the first intron close to the translational start site

(Fig. 2a). As mentioned before, all ZPR genes were shown

to be regulated by REV (Wenkel et al., 2007). We tested

whether positive regulation of ZPR gene expression is also

possible in our newly constructed transgenic 35S::FLAG-GR-

REVd plants. Upon DEX application, expression of ZPR1,

ZPR3 and ZPR4 is strongly induced in 35S::FLAG-GR-REVd

plants compared to the wild type control, while expression

of ZPR2 is only moderately affected (Fig. 2b). Because it still

remained unclear, whether regulation of the expression of

the ZPR genes is of direct nature, we examined DEX-induced

expression changes in conditions of inhibited protein bio-

synthesis, by pre-treating plants with cycloheximide (CHX).

Even in conditions of inhibited protein biosynthesis (by

CHX) REV is still able to significantly up-regulate ZPR1,

ZPR3 and ZPR4 expression (Fig. 2b). It is important to note

that the levels of ZPR induction is lower in plants pre-treated

with CHX, suggesting that other factors might be required to

induce ZPR expression to very high levels. Taken together,

these findings confirm that REV is a direct and positive reg-

ulator of ZPR1, ZPR3 and ZPR4 expression.

The LITTLE ZIPPER proteins are plant specific microPro-

teins that are able to interact with the much larger HD-ZIPIII

proteins and trap these into non-functional complexes (Kim

et al., 2008; Staudt and Wenkel, 2011; Wenkel et al., 2007).

For ZPR3 it was shown, that the formation of ZPR3/REV het-

erodimers prevents REV from binding DNA (Wenkel et al.,

2007). In summary, we show that REV can induce expression

of all ZPR genes and the up-regulation of ZPR1, ZPR3 and ZPR4

seems to be of direct nature.

Fig. 1 – REVOLUTA directly regulates AGO10 expression. (a)

Induction of REVOLUTA causes adaxialization of leaves (Col

and GR-REV +/�DEX). Plants were cultivated in long day

conditions and after the production of the first true leaves

sprayed daily with a 50 lM DEX solution or a mock substrate

for 2 weeks. (b) REV binds to the AGO10 promoter. The gene

model depicts the organization of the AGO10 locus. Protein

coding exons are in black, UTRs in grey. Chromatin-

immunoprecipitations, two biological replicates, were

carried out with 35S::FLAG-GR-REVd plants either induced

with DEX (red lines) or a mock substrate (blue lines). Four

different genomic regions were tested (I–IV) by qPCR. Plotted

is the fold enrichment normalized to the non-induced control

IPs. (c) AGO10 expression can be regulated by REV. Real-time

quantitative RT-PCR experiments showing expression

changes of AGO10 in Col-0 (light brown) and 35S::FLAG-GR-

REVd (dark brown) in response to DEX-induction. Plotted are

average expression levels of three independent biological

replicates normalized to actin of the ratio +DEX versus �DEX

treatments, with standard error. Asterisk: p < 0.01.v Bars on

the right show expression changes in plants pre-treated with

Cycloheximide (CHX). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web

version of this article.)
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2.4. ago10 and hd-zipIII mutant plants share phenotypic
similarities

AGO10 is required for proper organization of the shoot api-

cal meristem. In plants harboring loss-of-function alleles of

AGO10, stem cells in the shoot apex cannot be maintained,

resulting in consumption of the apical stem cells (Lynn

et al., 1999; Moussian et al., 1998). In ago10 mutant plants,

the meristem often terminates before the production of

leaves, but occasionally one or two strongly radialized leaves

or one terminal leaf are produced (Lynn et al., 1999; Moussian

et al., 1998). The shoot meristem defect of ago10 mutant

plants is reminiscent of strong ZPR3-overexpression lines.

When compared side-by-side, no difference between

35S::FLAG-ZPR3 and ago10 plants can be observed (Fig. 3a

and b). The same is true for high overexpression of microR-

NA165, which also causes consumption of the apical stem

cells (Zhou et al., 2007).

2.5. Polarity defects of vasculature observed in hd-zipIII
and ago10 mutant plants

Adaxialized leaves exhibit a strong downward curling of

the leaf blade and vascular strands show polarity defects

manifested in phloem tissue surrounding the xylem strands.

The vasculature of wild type plants shows a typical sandwich-

like structure composed of phloem at the bottom, cambium

cells in the middle and xylem tissue on top. When compared

side-by-side, both 35S::FLAG-ZPR3 transgenic plants and ago10

mutant plants show radialized vascular strands with abaxial-

ized characteristics (Fig. 3c). The phenotype of the ago10

mutation is more severe and the vascular strands have no

obvious organization. Overexpression of microRNA165 has

been shown to also cause severe developmental defects and

radialization of transport elements (Zhou et al., 2007).

2.6. Expression of AGO10 and LITTLE ZIPPER genes are
altered in hd-zipIII mutant seedlings

We have shown that both AGO10 and ZPR3 are direct and

positive targets of the REVOLUTA transcription factor. To fur-

ther corroborate the finding that AGO10, ZPR1 and ZPR3 are

bona fide REV target genes, we have analyzed their expression

levels in different hd-zipIII mutant plants (Fig. 4). AGO10

expression is significantly lower in both rev-5 and rev-6 mu-

tant plants compared to wild type control plants, indicating

that AGO10 expression is mainly regulated by REV (Fig. 4).

An even stronger reduction of AGO10 mRNA levels was ob-

served in transgenic plants expressing 35S::FLAG-ZPR3, which

points towards a redundant regulation by other HD-ZIPIII pro-

teins. No reduction in expression was observed in transgenic

plants overexpressing miR165a (35S::miR165a). It is important

to note that the transgenic line overexpressing microRNA165a

(Kim et al., 2010) shows only moderate developmental defects

and also HD-ZIPIII levels are only somewhat lower. We there-

fore also investigated the levels of expression in plants carry-

ing mutations in more HD-ZIPIII genes. Here we find that the

expression of AGO10 is slightly higher in plants carrying

mutations in PHB and PHV and are heterozygote for REV

Fig. 2 – REVOLUTA directly regulates expression of LITTLE

ZIPPER genes. (a) REV binds to the promoter of the LITTLE

ZIPPER3 gene. Chromatin-immunoprecipitation

experiments with two biological replicates for 35S::FLAG-

GR-REVd without DEX (blue lines) and 35S::FLAG-GR-REVd

with DEX (red lines) plants testing the ZPR3 locus. Genomic

regions were tested with five primer pairs (I–V) by qPCR.

Y-axis shows the fold enrichment normalized to the non-

induced IPs. Gene maps above the charts show the location

of the regions that were tested. Bar represents 0.25 kb. (b)

Expression of all LITTLE ZIPPER genes is regulated by REV.

Real-time quantitative RT-PCR experiments showing

expression changes of ZPR1, ZPR2, ZPR3 and ZPR4 in

response to DEX-induction. Plotted are fold changes in

response to DEX in Col-0 (light brown) and the inducible

35S::GR-REVd transgenic line (dark brown) of the average of

three independent biological replicates with standard error.

Bars on the left show expression changes in the absence of

the protein biosynthesis inhibitor cycloheximide, whereas

bars on the right show expression changes in plants pre-

treated with cycloheximide (+CHX). Asterisk: p < 0.01. (For

interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this

article.)
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(phb phv rev/+). In the phb phv rev triple mutant, AGO10 expres-

sion is not detectable, which is most likely due to the com-

plete loss of the apical meristem, as these seedlings develop

pin-like and arrest early in development.

Endogenous ZPR1 and ZPR3 expression levels are reduced

in transgenic plants ectopically mis-expressing ZPR3

(35S::FLAG-ZPR3), indicating that in these plants HD-ZIPIII

activity is more strongly depleted. Expression levels of ZPR1

and ZPR3 are strongly affected in rev-6, phb phv rev/+ and

phb phv rev triple mutant plants indicating that REV is a major

regulator of both ZPR1 and ZPR3 expression. Taken together,

we can conclude that AGO10, ZPR1 and ZPR3 are bona fide REV-

OLUTA target genes because induction of REV causes an in-

crease in expression and more importantly, their expression

is lower in plants having either decreased levels of HD-ZIPIII

mRNA or reduced HD-ZIPIII activity.

3. Discussion

3.1. AGO10 and ZPR3 are a bona fide REVOLUTA target
genes

We find that AGO10, ZPR1 and ZPR3 expression are both

positively and directly regulated by REVOLUTA. In transgenic

plants expressing 35S::FLAG-GR-REVd, expression of AGO10

and all ZPR genes can be induced by the application of DEX.

The induction of expression also takes place in plants pre-

treated with cycloheximide, indicating that the transcrip-

tional regulation is of direct nature (Figs. 1 and 2). It is impor-

tant to note, that levels ZPR up-regulation is reduced in

cycloheximide pre-treated plants (Fig. 2), suggesting that

either REV requires other proteins for the up-regulation of

these targets or that REV is modified at the post-translational

level allowing high level of up-regulation. Using chromatin-

immunoprecipitations, we show that REV interacts with the

chromatin of both ZPR3 and AGO10 further supporting a direct

role in the control of gene expression (Figs. 1 and 2). Finally,

we see a reduction of both AGO10 and ZPR3 in transgenic

plants overexpressing the ZPR3 microProtein implying that

both genes are bona fide direct targets of REV (Fig. 4). Because

AGO10 expression is significantly lower in rev-5 mutant plants

(Fig. 4), we can assume that REV is a major regulator of AGO10

expression. In plants carrying the rev-6 mutant allele, AGO10

mRNA is slightly reduced while phb phv rev/+ plants show a

slight increase of AGO10 expression. These increased AGO10

levels might reflect the partially antagonistic nature of HD-

ZIPIII function (Prigge et al., 2005). When three HD-ZIPIII genes

are mutated (as in phb phv rev triple mutant plants), these

seedlings develop pin-formed and arrest soon after germina-

tion. Expression of AGO10 is not detectable in these mutant

Fig. 3 – Mutations in hd-zipIII and ago10 cause severe phenotypic defects. (a) Comparative growth analysis of hd-zipIII and

ago10 mutant plants with corresponding wild type plants. Both 35S::FLAG-ZPR3 and ago10 (zll-2) mutant plants show

termination of the shoot apical meristem (arrow shows the terminated shoot apical meristems). (b) Scanning electron

micrographs of apices from seedlings shown in a. Both ago10 and 35S::FLAG-ZPR3 plants have terminated meristems and

only produce one radial leaf compared to the wild type shoot apex (here: Ler). (c) Sections through petioles of Col-0, 35S::FLAG-

ZPR3, Ler, ago10 (zll-2). The vasculature of wild type Col-0 and Ler plants show the typical sandwich structure: tissue

containing phloem cells (green) at the bottom, cambium cells (red) in the middle and tissue containing xylem elements (blue)

on top. 35S::FLAG-ZPR3 transgenic plants show abaxialized vascular strands with phloem nearly surrounding the xylem

whereas the structure of ago10 vascular is completely disorganized with abaxialized features. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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seedlings, for which the missing shoot apical meristem might

be causal. No down-regulation of AGO10, ZPR1 or ZPR3 expres-

sion was observed in transgenic plants overexpressing

miR165a (Fig. 4), which is most likely due to weak overexpres-

sion phenotype of this particular line.

3.2. Transgenic plants overexpressing ZPR-type micro-
Proteins resemble ago10 mutant plants

Transgenic plants overexpressing the ZPR3-type microPro-

tein show, in weak overexpression plants, leaf polarity defects

while strong overexpression plants exhibit a meristem arrest

phenotype. Conversely, plants in which both ZPR3 and ZPR4

are mutated show an enlarged and severely disorganized

shoot apical meristem (Kim et al., 2008). By growing

35S::FLAG-ZPR3 and ago10 mutant plants side-by-side, we

show that both mutant phenotypes strongly resemble each

other. It is interesting to note, that the strong ago10 mutant

phenotype is only visible in the Landsberg erecta (Ler) ecotype,

while in Col-0 AGO10 appears to be expendable. Furthermore,

ago10 mutant plants have the ability to induce adventitious

shoot meristems later in development and progress to the

reproductive phase, while 35S::FLAG-ZPR3 plants with termi-

nated meristems will senesce and do not reproduce. This

indicates, that repressing HD-ZIPIII protein function by micro-

Proteins is, most likely, more potent than reducing HD-ZIPIII

mRNA levels by overexpressing microRNAs.

3.3. REVOLUTA controls HD-ZIPIII expression and protein
activity via positive and negative feedback loops

Using a chromatin-immunoprecipitation/high throughput

sequencing approach, we have identified AGO10 as a direct

target of REV. Expression analysis revealed that REV can also

upregulate AGO10 expression while in hd-zipIII mutant plants

AGO10 expression is lower compared to wild type plants.

AGO10 can tightly interact with microRNAs miR165/6, which

are known to target HD-ZIPIIIs (Zhu et al., 2011). Because

AGO10 keeps miR165/6 in an inactive state, HD-ZIPIII mRNA

levels can increase and may thus potentiate this positive

feedback regulation (Fig. 5). When AGO10 activity is lost by

mutation (in the Ler background) the shoot meristem is se-

verely compromised and the apical stem cell population is

lost. This phenotype might be due to a strong down-regula-

tion of HD-ZIPIII mRNAs, most likely by miR165/6 and AGO1.

In addition to AGO10, REV also directly up-regulates the

expression of genes encoding the ZPR-type microProteins. In

contrast to AGO10, ZPR-type microProteins establish a nega-

tive feedback loop by sequestering HD-ZIPIII proteins into

non-functional heterodimeric complexes (Fig. 5). In case of

ZPR-overexpression shoot defects similar to the ago10 muta-

tion are observed, indicating that HD-ZIPIII activity is required

for the maintenance of the apical stem cells in plants.

Thus, REV directly establishes two different feedback

mechanisms channeling back on its own activity. Positive reg-

ulation is established via microRNA inhibition and negative

regulation via microProtein action. Further characterization

of the interconnection of these feedback loops in the wild

type plant will yield a better understanding on the role of

HD-ZIPIII proteins in both stem cell maintenance and in

development in general.

4. Experimental procedures

4.1. Plant material and phenotypic analysis

For efficient chromatin-immunoprecipitations, we have

created transgenic 35S::FLAG-GR-REVd plants. The glucocorti-

coid receptor was cloned in frame to the FLAG epitope in the

pJAN33 vector (Weigel et al., 2003) using the KpnI restriction

site, in the following termed pJAN33GR. Different mutant and

Fig. 4 – AGO10, ZPR1 and ZPR3 expression are altered in hd-

zipIII mutant plants. Expression of AGO10 and ZPR3 was

analyzed in mutants with either compromised HD-ZIPIII

expression (rev-5, rev-6, phb phv rev/+, phb phv rev and

35S::miR165a) or inhibited HD-ZIPIII protein activity

(35S::FLAG-ZPR3). Plotted are expression levels relative to

wild type including standard errors of the mean of three

individual biological experiments. Asterisk: p < 0.05.
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transgenic plants were used to analyze plants with reduced or

depleted REV activity: the 35S-miR165a seeds were kindly pro-

vided by Sang-Bong Choi (Myongji University, South Korea);

rev-5 (A260 V) a strong EMS allele (Otsuga et al., 2001) and

35S::FLAG-ZPR3 plants (this line was generated by SW in Kath-

ryn Barton’s laboratory). rev-6, phb phv rev/+ and phb phv rev

were described previously (Prigge et al., 2005). The zll-2 EMS

mutant was previously characterized by Moussian et al.(1998).

4.2. Histology and SEM microscopy

Petioles of 3-week-old plants were prefixed with 90% ice

cold acetone for 2 h following transfer into fixative (50 mM

NaPh pH 7.2; 1% glutaraldehyde; 4% formaldehyde) for 2 days.

Afterwards, the petioles were dehydrated in an ethanol series

(30%/50%/70% each for 2 h) and finally stored in 100% ethanol

prior embedding in Technovit (Heraeus). Two-micron sections

were cut using a Leica microtome. Sections were stained with

toluidine blue.

Scanning electron microscopy was done on 10-day old

seedlings. Plants were dissected, fixed in methanol, washed

with ethanol twice, critical point dried and mounted. After

gold/palladium coating, plants were examined on a Hitachi

S800 electron microscope.

4.3. Gene expression analysis

For gene expression analysis and chromatin-immunopre-

cipitation experiment, plants (Col-0; pJAN33-GR-REVd) were

grown for 10 days in liquid culture medium [MS (4.3 g/l; Duch-

efa), MES (0.3 g/l; Duchefa) and Sucrose (5 g/l; Roth), pH 5.7] in

continuous white light at 22 �C. To induce the translocation of

the chimeric GR-REVd protein from the cytoplasm to the nu-

cleus, plants were treated with either 50 lM dexamethasone

(Sigma) or a mock solution for 60 min for gene expression

analysis and for 45 min for chromatin-immunoprecipitation

experiments. Altered gene expression in Col-0, rev5, pJAN33

ZPR3, 35S-miR165a, rev-6, phb phv rev/+ and phb phv rev was

analyzed in 14 days old seedlings grown on soil under long-

day condition (16 h white light, 8 h darkness) at 22 �C. Expres-

sion of rev-6, phb phv rev/+ and phb phv rev was quantified rel-

ative to the corresponding wild type (here Col er-2). RNA was

isolated using GeneMATRIX universal RNA purification kit

[roboklon] following manufacturer’s recommendation. 1 lg

of purified RNA was used for reverse transcription using Fer-

mentas Revert Aid Reverse Transcriptase with oligo-dT prim-

ers. Real-time quantitative PCRs were carried out using the

Fermentas SYBR Green qPCR master mix on a Biorad

CFX384. Gene expression levels were calculated using the del-

ta-Ct method and a standard curve relative to actin. To detect

endogenous levels of ZPR3 expression in plants ectopically

overexpressing the ZPR3 coding sequence (pJAN33-ZPR3) we

use a forward primer spanning the first intron and amplifying

a part of the non-translated exon 1.

4.4. Chromatin-immunoprecipitation

Chromatin-immunoprecipitation experiments were car-

ried out as described by Kwon et al. (2005), except that anti-

FLAG M2 magnetic beads (Sigma) were used and immunopre-

cipitations were only performed for 2 h.

4.5. Oligonucleotides

(a) Gene expression analysis

qAGO10f:ATCACGAGAACGGGAAAGAA; qAGO10r:CATGCC

TGAGACTTCACACA; qZPR1f:CGTGGAGAATCAAAACATCA;

qZPR1r:CCTTGCTTGTAAAACCCAAA; qZPR2f:CTCACCAG-

CAGGAGGAGAAG; qZPR2r:CAGGGGAGTATTTTGGGTGA;

qZPR3f:CACTCCTTCCCAAAAGCAAG; qZPR3r:TGTCCAG

AAGCAGAGCTTGA; qZPR4f:GGAGAACGAGAGGTTGAGGA;

qZPR4r:CCAGAAGCAGAGCTTGATGA

(b) ChIP-PCR

PNH-I-F:TTGCTGCCATAAACCAAACA; PNH-I-R:CAGGCTCT

CAGCCTCATCTC; PNH-II-F:GCCAAGGAAGGGATCAGTTT;

PNH-II-R:TGGTTTTTGGATTGTGGTGC; PNH-III-F:CGGTAT

CATCAATGGCCCTA; PNH-III-R:GACAATCTGCCCGTTTAC

CA; PNH-IV-F/R (qAGO10f/r); ZPR3-I-F:GGGCAAACGAACG

AGTTTTA; ZPR3-I-R:GTTTGGACTTTGGAGCCGTA; ZPR3-II-

F:CGATGAAGAGCCAAAGGAAG; ZPR3-II-R:GCCGCAAGAA

GAGAGAGAGA; ZPR3-III-F:CAACACTCCTTCCCAAAAGG;

ZPR3-III-R:GGGTTTGTCTTCACGTTAGTTG; ZPR3-IV-F:AAT-

CATGTTCTTCTTCTCTCTTTGA; ZPR3-IV-R:ATCACACAT

GGGTTGTGCAG; ZPR3-V-F:TCGGAGATGGTGGGAATCTA;

ZPR3-V-R:GCCCGAAACTTGCTTCTCTA
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Abstract The Arabidopsis (Arabidopsis thaliana L.) genome
encodes for four distinct classes of homeodomain leucine‐
zipper (HD‐ZIP) transcription factors (HD‐ZIPI to HD‐ZIPIV),
which are all organized in multi‐gene families. HD‐ZIP
transcription factors act as sequence‐specific DNA‐binding
proteins that are able to control the expression level of
target genes. While HD‐ZIPI and HD‐ZIPII proteins are mainly
associated with environmental responses, HD‐ZIPIII and HD‐
ZIPIV are primarily known to act as patterning factors.
Recent studies have challenged this view. It appears
that several of the different HD‐ZIP families interact
genetically to align both morphogenesis and environmental

responses, most likely by modulating phytohormone‐signal-
ing networks.
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INTRODUCTION
Plants are able to detect subtle changes in light, tempera-
ture, water and nutrient availability. In contrast to animals,
plants are sessile and therefore have to cope with
permanently changing environmental conditions. Adaptive
growth responses feed back on intrinsic patterning pro-
grams, aligning plant growth to the environment. Among the
Arabidopsis homeodomain leucine‐zipper (HD‐ZIP) transcrip-
tion factors, several are known to be rapidly induced in
response to altered environmental conditions and to
integrate hormonal signals.

The Arabidopsis genome encodes for 48 HD‐ZIP proteins.
Based on their domain organization and biological functions,
they can be subdivided into four distinct protein families
(HD‐ZIPI to IV). All HD‐ZIPs contain an amino‐terminal
homeodomain (HD) (Scott et al. 1989) required for DNA‐
binding, followed by a small leucine zipper (ZIP)‐domain
enabling protein‐protein interactions. HD‐ZIP proteins have to
dimerize via their leucine zipper domains to bind DNA with
high affinity (Sessa et al. 1993). Genes encoding HD‐ZIP
proteins are evolutionary highly conserved and have also been
identified in basal plant species (Floyd and Bowman 2006;
Floyd et al. 2006; Hu et al. 2012). Another commonality among
HD‐ZIP proteins is the recognition of pseudo‐palindromic cis‐
elements, which have been identified in DNA‐binding studies.
HD‐ZIPI proteins interact with the CAAT(A/T)ATTG motif
(Palena et al. 1999), whereas HD‐ZIPII proteins preferentially
bind the CAAT(C/G)ATTG motif (Sessa et al. 1993). The binding
site for HD‐ZIPIII proteins was found to be GTAAT(G/C)ATTAC
(Sessa et al. 1998), but recent genome‐wide binding site
studies suggest that only the AT(G/C)AT core is essential for

DNA‐binding (Brandt et al. 2012). For HD‐ZIPIV, the CATT(A/T)
AATG element was found to be required for DNA‐binding
(Tron et al. 2001). Because the identified elements are very
similar, these findings suggest that the different classes of HD‐
ZIP proteins are most likely able to associate with the same
element and thus control gene expression in a competitive or
antagonistic manner.

CLASS I HD‐ZIP PROTEINS (HD‐ZIPI)—
REGULATORS OF STRESS RESPONSES
HD‐ZIPI proteins are mainly associated with stress responses.
This is supported by genome‐wide gene expression studies,
which revealed that several HD‐ZIPI genes show transcriptional
changes in response to treatments with the plant stress
hormone abscisic acid (ABA) (Henriksson et al. 2005), but also
function in the ABA signaling network. Expression of the HD‐
ZIPI genes AtHB6 and AtHB7 is for example induced by ABA
application or water deficiency (Söderman et al. 1996;
Himmelbach et al. 2002; Lechner et al. 2011). Furthermore,
AtHB6 controls its own gene expression by recognizing a cis‐
regulatory element in its promoter and thereby reduces ABA
sensitivity (Himmelbach et al. 2002), suggesting a complex
interaction between HD‐ZIPI transcription factors and stress.
The abscisic acid‐inducible AtHB12 transcription factor is closely
related to AtHB7 (Son et al. 2010). During seed germination, it
enhances ABA sensitivity, while at later stages it reduces
growth of inflorescence stems by inhibition of gibberellic acid
(GA) synthesis. Recently, it was shown that both ATHB7 and
ATHB12 act as positive regulators of several genes encoding
PP2C phosphatases and to repress multiple genes encoding
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ABA‐receptors (Valdes et al. 2012). These opposite activities
result in the suppression of ABA‐signaling and thus ATHB7 and
ATHB12 down‐regulate ABA‐sensitivity in response to
dehydration.

Besides their role in stress responses, HD‐ZIPI genes have
additional roles in controlling development. In Medicago
truncatula, HB1, the homolog of Arabidopsis ATHB7 and
ATHB12, is expressed in roots and induced by salt stress
(Ariel et al. 2010). To minimize the root surface during water
deficiency, HB1 represses the transcription of LATERAL ORGAN
BOUNDARY1 (LBD1) and thereby inhibits initiation of lateral
roots. A similar phenotype can be observed in response to
elevated ABA levels. Beside the regulation by HB1, LBD1
expression is also induced by auxin (Ariel et al. 2010). This
auxin/ABA cross‐regulation is thought to adjust root patterning
to the environmental context. The recent finding that leaf
patterning factors impinge on the regulation of several ABA‐
associated factors (discussed below) suggests that these
factors have integral role in aligning development to the
environmental context.

Beside the homeodomain‐leucine zipper motif, HD‐ZIPI
transcription factors have no other known domain. The
finding that they act as both positive and negative regulators
of transcription suggests that they are engaged in higher
order protein complexes, which mediates either transcrip-
tional activation or repression. As outlined below,
based on the structure of the leucine‐zipper stretch, it
seems possible that the negatively acting HD‐ZIPII factors
interact with HD‐ZIPI proteins to mediate transcriptional
repression.

CLASS II HD‐ZIP PROTEINS (HD‐ZIPII)—
PRIME TARGETS OF LIGHT SIGNALING
PATHWAYS
HD‐ZIPII transcription factors are widely known to play a role in
shade avoidance responses (Steindler et al. 1999; Ciarbelli
et al. 2008; Sorin et al. 2009). ATHB2/HAT4, HAT1, HAT2, HAT3
andATHB4 are under direct control of the phytochrome system
(Ciarbelli et al. 2008) and their gene expression increases
rapidly after exposure to shade (Ciarbelli et al. 2008; Sorin
et al. 2009). High mRNA levels of HD‐ZIPIIs are causal for the
typical shade avoidance phenotypes: longer hypocotyls, fewer
branches and smaller leaves (Schena et al. 1993; Sawa
et al. 2002; Ciarbelli et al. 2008; Sorin et al. 2009). Besides
shade, HAT2 expression is also rapidly induced in response to
auxin (Sawa et al. 2002) and by binding to its own promoter,
HAT2 protein regulates its own mRNA expression in a direct
negative manner (Ohgishi et al. 2001; Sawa et al. 2002). In
addition, also HAT1, HAT4 and ATHB4 regulate expression of
other HD‐ZIPIIs in a dominant negative manner (Sorin
et al. 2009), most likely to avoid excessive growth.

In contrast to Arabidopsis HD‐ZIPI proteins that consist of a
homeodomain fused to a leucine‐zipper domain, most HD‐ZIPII
proteins contain an amino‐terminal ethylene‐responsive ele-
ment binding factor‐associated amphiphilic repression motif
(EAR‐domain). EAR‐domain‐containing proteins often act as
transcriptional repressors (Kagale et al. 2010) and it was
recently shown that two members of the HD‐ZIPII protein
family (HAT1 and HAT22) were identified as interacting proteins

with the TOPLESS co‐repressor protein (Causier et al. 2012).
These interactions, mediated through the EAR‐domain,
support the idea that EAR‐domain‐containing HD‐ZIPII proteins
gain their repressive potential by interacting with TOPLESS or
TOPLESS‐related proteins.

CLASS III HD‐ZIP PROTEINS (HD‐ZIPIII)—
MAJOR POLARITY DETERMINANTS
The HD‐ZIPIII transcription factor family is the smallest gene
family of all HD‐ZIPs in Arabidopsis and consists of only five
members: REVOLUTA (REV), PHABULOSA (PHB), PHAVOLUTA
(PHV), ATHB8 and ATHB15/CORONA/INCURVATA4. In higher
plants, HD‐ZIPIIIs are involved in patterning of the embryo,
shoot, root, leaves and vasculature (McConnell et al. 2001;
Otsuga et al. 2001; Prigge et al. 2005; Carlsbecker et al. 2010;
Smith and Long 2010; Lucas et al. 2013). Despite their close
relationship within the HD‐ZIPIII family, the function of the
family members differs and multiple loss‐of‐function mutant
plants display redundant but also antagonistic phenotypes in
Arabidopsis (Prigge et al. 2005).

PHB determines the upper half of the embryo already at the
globular stage, resulting in the subsequent formation of the
upper part organ structures which are the shoot apical
meristem and cotyledons (Smith and Long 2010). Later in
development, PHB, PHV and REV are all expressed in the adaxial
regions of the cotyledons and the pro‐vasculature of the future
hypocotyl (Williams et al. 2005; Grigg et al. 2009; Smith and
Long 2010; Lucas et al. 2013). Ectopic expression of PHB/PHV in
the lower part of the embryo abolishes root formation and
results in lethality (Grigg et al. 2009), underpinning the
importance of the spatial expression of HD‐ZIPIIIs. During the
post‐embryonic growth phase, HD‐ZIPIIIs are required for the
maintenance of an active shoot apical meristem, polarization
of newly forming leaf primordia and the initiation of lateral
meristems (McConnell et al. 2001; Emery et al. 2003; Prigge
et al. 2005).

Their eminent role in the regulation of developmental
processes suggests that HD‐ZIPIII proteins are part of
growth‐promoting hormone‐signaling pathways. Based on
overlapping patterns of expression of REV and PIN (PIN‐
formed) auxin transporters, a role in controlling auxin fluxes
was proposed (Zhong and Ye 2001; Heisler et al. 2005).
Support for this hypothesis is provided by expression studies
in rev (ifl1) mutant plants in which altered gene expression
for PIN3 and PIN4 in seedlings and stems were detected,
resulting in phenotypes similar to plants with defects in polar
auxin transport (Zhong and Ye 2001). A recent genome‐wide
ChIP‐Seq study of genes directly regulated by the HD‐ZIPIII
protein REVOLUTA (REV) revealed that both auxin biosyn-
thesis and signaling are directly controlled by REV (Brandt
et al. 2012).

In addition to the homeodomain and leucine zipper
domain, HD‐ZIPIII proteins possess an additional START/HD‐
SAD domain (Mukherjee and Burglin 2006). The START‐
domain comprises a region that is complementary to the
plant microRNAs miR165 and miR166 and makes HD‐ZIPIII
mRNAs highly sensitive for microRNA‐regulation (Emery
et al. 2003). The microRNAs are expressed in a complemen-
tary pattern of expression across the newly forming leaf
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primordium, allowing HD‐ZIPIII mRNA accumulation only in
the adaxial region (Juarez et al. 2004). In this context it is
important to note that the microRNA‐machinery also affects
HD‐ZIPIII accumulation. AGO10, a specialized ARGONAUTE
protein is able to sequester miR165/6 thus allowing
accumulation of HD‐ZIPIII transcripts (Ji et al. 2011; Zhu
et al. 2011). The finding that REV is able to directly up‐regulate
AGO10 expression suggests a direct positive feed
forward regulatory mechanism allowing HD‐ZIPIII mRNA
accumulation in the adaxial region (Brandt et al. 2013).
High‐troughput next‐generation sequencing methods al-
lowed deep insights in post‐transcriptional regulation using
smallRNA‐Seq. Recently, Paul et al., identified a broad set of
miRNAs in Vigna mungo, including five members of the
miR166 family to be predominantly expressed in young leaves
(Paul et al. 2014).

In animals, START‐domain proteins can bind lipids, steroids
and steroid precursors, and some are known to be involved in
shuttling these compounds between different subcellular
compartments (Stocco 2001). Identification of a HD‐ZIP‐START‐
domain ligand has so far not been reported. The fact that
START‐domain proteins possessing homeodomain leucine
zipper domains can also be identified in basal plants
(Mukherjee et al. 2009) supports the idea that the START
domain retains an additional function.

At the carboxy‐terminal end, HD‐ZIPIII proteins possess an
additional MEKHLA domain. A region within this domain shows
sequence similarity to the PAS (Per‐Arnt‐Sim)‐domain which
has been shown to act as intracellular sensor of light, oxygen
or redox‐potentials (Mukherjee and Burglin 2006). So far, no
function has been assigned to the MEKHLA domain. Evidence
that the MEKHLA domain has a functional relevance is
provided by the identification of a point mutation in the
MEKHLA‐domain of ATHB15, which creates a complex shoot‐
regeneration phenotype (Duclercq et al. 2011). The finding that
the DORNRÖSCHEN/DORNRÖSCHEN‐LIKE transcription fac-
tors are able to physically interact with this domain and to
genetically interact with PHB (Chandler et al. 2007) further
supports an important function. Furthermore, it was recently
shown that one of the functions of the PAS‐domainmight be to
control the dimerization ability of HD‐ZIPIII proteins (Magnani
and Barton 2011).

CLASS IV HD‐ZIP PROTEINS (HD‐ZIPIV)—
EPIDERMAL PATTERNING FACTORS
The Arabidopsis genome encodes for sixteen HD‐ZIPIV
proteins, commonly referred to as “GLABRA” gene family,
named after its eponymous member. The large number of
genes is an indicator for high functional redundancy,
hampering the assignment of functions to individual genes.
Indeed, the analysis of T‐DNA‐insertion mutants in 12
different HD‐ZIPIV genes revealed wild type growth behavior
for all examined loss‐of‐function mutants, except for hdg11
(HOMEODOMAIN GLABROUS11), which exhibited excess
branching of trichomes (Nakamura et al. 2006). Tissue‐
specific gene expression and promoter‐GUS studies of
different HD‐ZIPIV genes revealed expression in
developing shoots and reproductive organs, suggesting a
general function in developmental processes (Nakamura

et al. 2006). Loss‐of function mutant plants of GLABRA1, 2 or 3
(GL1, 2 or 3) are characterized by glabrous leaves or leaves
producing trichomes with fewer branches (Marks et al. 2009;
Qing and Aoyama 2012). In addition to its function in leaf
epidermis patterning, GL2 has an additional role in root hair
development by controlling cell fate determination of H‐cells
(hair cells; trichoblast) and N‐cells (non‐hair cells; atricho-
blast) (Masucci et al. 1996). Brassinosteroid hormones are
positive regulators of GL2 gene expression, which is in
agreement with bri1 mutants (BRASSINAZOLE INSENSITIVE1)
that are insensitive to brassinosteroids, having reduced GL2
mRNA levels and less branched trichomes (Kuppusamy
et al. 2009). This positions GL2 downstream of the BRI1‐
mediated BR signaling pathway.

In addition to specifying trichome cell fate, HD‐ZIPIV
proteins are also involved in stomata differentiation. The
HOMEODOMAIN GLABROUS2 (HDG2) protein is highly ex-
pressed in meristemoids, which are stomatal precursor cells
that will undergo stomata differentiation (Peterson et al. 2013).
While stomatal progression is delayed in hdg2 mutant plants,
transgenic plants over‐expressing HDG2 show multiple epider-
mal cell layers with ectopic stomata located in internal
mesophyll tissue (Peterson et al. 2013).

It remains unknown whether HD‐ZIPIV proteins integrate
environmental signals to adjust patterning to altered external
conditions. The analysis of publicly available microarray data
using the eFP browser web‐interface (Winter et al. 2007)
revealed that for example HDG2 expression increases in
response to drought (Figure 1A). Whether and how this
elevated expression of HDG2 affects stomatal patterning and
adaptation is not known. It is important to note that several
HD‐ZIPIV genes also contain evolutionary conserved motifs in
the 3’‐UTR (Ingouff et al. 2003; Javelle et al. 2011). These
elementsmight also be involved in the regulation of translation
in response to external or internal signals, thus adding an
additional layer of possible regulation.

GENETIC INTERACTIONS BETWEEN
DIFFERENT HD‐ZIP FAMILIES: SHADE‐
ESCAPE CONTROL AND LEAF PATTERNING
Several recent findings point towards interactions between
different HD‐ZIP families. The genome‐wide identification of
genes directly regulated by the HD‐ZIPIII transcription factor
REVOLUTA (REV) revealed several members of the HD‐ZIPII
family (Brandt et al. 2012) underlying REV‐regulation. Both HD‐
ZIPII‐induction and increased levels of the plant hormone auxin
seem to be essential for a full shade‐avoidance response
(Ciarbelli et al. 2008; Tao et al. 2008; Sorin et al. 2009). Loss‐of‐
function hd‐zipIIImutant plants, or plants with largely reduced
HD‐ZIPIII protein activity, show an impairment in their ability to
respond to shade, which is manifested by a reduced hypocotyl
elongation ability (Brandt et al. 2012). Mutations in HD‐ZIPII
genes also result in impaired shade avoidance responses (Sorin
et al. 2009), suggesting that HD‐ZIPII and HD‐ZIPIII transcrip-
tion factors redundantly control growth responses in the same
pathway.

Beside their role in controlling shade avoidance, HD‐ZIPIIs
are also involved in leaf patterning.When HAT3 and ATHB4 are
mutated, double mutant plants develop lancet‐shaped
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cotyledons and entirely radialized leaves with abaxial
characteristics during the early growth phase (Bou‐Torrent
et al. 2012). When more HD‐ZIPII genes are affected, as in the
hat3 athb4 athb2/hat4 triple mutant, growth defects increase
and these plants develop radial cotyledons, which often
appear as fused/single cotyledons (Turchi et al. 2013). Also in
the process of establishing polarity in the early leaf
primordium, both HD‐ZIPII and HD‐ZIPIII transcription factors
appear to act in the same pathway. This finding is supported
by the combination of hd‐zipII and hd‐zipIIImutants (as in hat3
athb4 phb and hat3 athb4 rev) that exhibit severely enhanced
growth defects compared to hat3 athb4 doublemutant plants
(Turchi et al. 2013).

So far, it remains unclear how HD‐ZIPII/HD‐ZIPIII interact in
shade adaptation and leaf development. The finding that both
auxin synthesis and transport are affected in hat3 athb4 double
mutant plants (Turchi et al. 2013) and that REV transcriptionally
induces genes encoding auxin biosynthesis enzymes (Brandt
et al. 2012), points towards signal integration at the level of
hormone signaling. HD‐ZIPII expression is strongly induced in
response to both shade and auxin (Sawa et al. 2002; Ciarbelli
et al. 2008; Sorin et al. 2009) and this induction appears to be
independent of HD‐ZIPIII activity. Because HD‐ZIPIIs act mainly
as transcriptional repressors while HD‐ZIPIIIs activate tran-
scription, it seems plausible that HD‐ZIPIIs feedback regulate
HD‐ZIPIII activity by controlling pathways that either restrict
HD‐ZIPIII expression or HD‐ZIPIII activity. Alleviating this
repressive action on factors negatively regulating HD‐ZIPIII
expression or activity (as in hat3 athb4) would deplete HD‐ZIPIII
expression/activity and result in loss‐of‐function phenotypes
reminiscent of hd‐zipIII loss. The fact that hd‐zipIImultiple loss‐
of‐function mutants resemble hd‐zipIII mutant plants largely
supports this hypothesis. Conversely, it was shown that

ectopic expression of both HD‐ZIPII and HD‐ZIPIII genes causes
adaxialization of developing leaves, which is manifested by
upward curled leaf blades (Bou‐Torrent et al. 2012; Turchi
et al. 2013). Taken together, it seems that HD‐ZIPII/III proteins
have redundant functions in different pathways and their
activities depend on each other, thereby reinforcing their
action.

INTERACTIONS BETWEEN DIFFERENT HD‐
ZIP FAMILIES: LEAF DEVELOPMENT AND
STRESS RESPONSES
Drought stress can have detrimental effects on plant growth
and development. Our understanding how stress affects
patterning processes is however scarce in comparison to our
understanding of stress perception and signal transduction.
One of the most prominent plant “stress hormones” is
abscisic acid (ABA), which triggers a set of physiological
responses, such as stomatal closure, to avoid water loss. As
described above, the HD‐ZIPI factors ATHB7 and ATHB12
transcriptionally down‐regulate a number of genes encoding
ABA‐receptor proteins (Valdes et al. 2012). It was recently
published that also REV is involved in positively regulating the
expression of a gene encoding the ABA receptor protein PYL6
(Liu et al. 2013; Reinhart et al. 2013). Although, ATHB7/12 and
REV do not seem to regulate the same genes encoding ABA
receptors, it appears possible that both families oppositely
regulate the expression of related genes in a cell‐type specific
manner.

Beside the regulation of ABA signaling by HD‐ZIPIII
transcription factors (here REV), expression of HD‐ZIPIII genes
can also be modulated by ABA‐application. The analysis of

Figure 1. Response of HD‐ZIP genes to environmental and hormonal cues
(A) HDG2 expression increases in response to drought. (B) HD‐ZIPIII mRNA levels decrease in response to ABA application. Blue
color indicates low level of expression, yellow color represents intermediate expression level and red color shows enhanced
expression levels.
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publicly available microarray data revealed that the
expression of REV, PHB and PHV, three members of the HD‐
ZIPIII family, strongly decreases after three hours of ABA
application (Figure 1B). According to Liu and colleagues, this
decrease of HD‐ZIPIIIs is a consequence of ectopic induction
of miR165 expression (Liu et al. 2013). Thus, ABA perception
and signaling are connected by HD‐ZIPIIIs and may be
required to adjust leaf development to alterations in water
availability.

It is tempting to speculate that ABA might also regulate
HD‐ZIPIII protein activity by interacting with the START
domain. As described above, HD‐ZIPIII/IV proteins contain a
START domain for which, so far, no ligand is known to date.
The ABA‐receptor proteins of the PYL/PYR/RCAR family also
contain a START domain (Park et al. 2009), which is, based on
sequence identity, not closely related to the domain found in
the HD‐ZIPIII/IV proteins. It is, however, known that proteins
with a low conserved amino acid sequence can fold into
similar structures and perform similar tasks, wherefore a
regulatory role of ABA on the activity of HD‐ZIPIII proteins
cannot be excluded at this stage. The fact that exogenous
ABA application seems to affect leaf development and
shoot apical meristem activity (Liu et al. 2013), two
processes regulated by HD‐ZIPIIIs, hints towards a stronger
involvement.

THE LEUCINE‐ZIPPER DOMAIN: A HUB
FOR REGULATION?
All HD‐ZIP proteins harbor a leucine‐zipper domain enabling
them to engage in higher order protein complexes. Leucine‐
zippers are coiled‐coiled domains characterized by the regular
arrangement of aliphatic amino acids such as leucine,
methionine, valine or isoleucine residues in the “d” position
of the heptad repeats (Landschulz et al. 1988; Deppmann
et al. 2004). Residues in the “a”, “e” and “g” positions act as
specificity determinants (Deppmann et al. 2004).

It was shown that HD‐ZIPIII transcription factors underlie
post‐translational regulation by the small leucine‐zipper
protein family of LITTLE ZIPPER proteins (Wenkel
et al. 2007; Kim et al. 2008). HD‐ZIPIII and ZPR proteins
have highly similar leucine zipper domains, which can form
heterodimers (Figure 2A). ZPR proteins act as microProteins,
sequestering HD‐ZIPIII proteins into non‐functional com-
plexes (Staudt and Wenkel 2011). If the ZPR3 and ZPR4 genes
are mutated as in zpr3 zpr4 double mutant plants, severe
developmental defects such as enlarged meristems, altered
phyllotaxis and sterile flowers are observed (Kim et al. 2008).
Interestingly, the HD‐ZIPIII protein REVOLUTA directly
controls expression of ZPR genes (Wenkel et al. 2007;
Brandt et al. 2012; Brandt et al. 2013). Thus, REV establishes a
direct negative feedback loop adjusting HD‐ZIPIII protein
activity.

Based on sequence similarity, LITTLE ZIPPER proteins can
be identified as potential HD‐ZIPIII‐interacting proteins by
conducting BLAST searches with the HD‐ZIPIII leucine zipper
domain. By performing protein alignments and subsequent
BLAST searches with the leucine‐zipper domains of all other
classes of Arabidopsis HD‐ZIPs, we were curious whether
other leucine‐zipper type proteins can be identified. This

analysis resulted in the identification of a bZIP transcription
factor named G‐BOX‐BINDING FACTOR 1 (GBF1), containing a
leucine‐zipper domain highly similar to that of HD‐ZIPII
proteins (Figure 2B). GBF1 has also known roles in the
adjustment of plant growth in response to light quality
(Singh et al. 2012), suggesting that HD‐ZIPIIs and GBF1
might act together. Predicated on the chemical nature of
residues in the “a”, “e” and “g” positions, it seems also likely
that HD‐ZIPI and HD‐ZIPII proteins are able to physically
interact while the interaction of either HD‐ZIPI or HD‐ZIPII
with HD‐ZIPIII proteins appears questionable, based on the
published data.

INTEGRATION OF HD‐ZIP TRANSCRIPTION
FACTORS INTO THE NETWORK OF
FACTORS CONTROLING LEAF POLARITY
Polar leaf development is regulated by the antagonistic
activities of several transcriptional regulators. In this context,
members of the HD‐ZIPIII family specify adaxial cell fate, which
is the determination of tissue that will form the upper side of
the leaf. In contrast, members of the KANADI (KAN) and
YABBY (YAB) transcription factor families specify abaxial cell
fate and thus direct the formation of tissue making up the
lower side of the leaf. While HD‐ZIPIIIs mainly act as
transcriptional activators, KANADI factors, which are EAR‐
domain‐containing GARP‐type proteins, predominantly re-
press transcription. YABBY transcription factors promote the
expression of abaxial determinants but have recently been
shown to also act transcriptional repressor on adaxial factors
(Bonaccorso et al. 2012). It has been shown that HD‐ZIPIIIs and
KANs act in an antagonistic fashion exerting opposite
functions (Izhaki and Bowman 2007). Using genome‐wide
transcriptional profiling in combination with ChIP‐Seq, we
have started to describe genes transcriptionally regulated by
KAN1 (Merelo et al. 2013). This analysis revealed a significant
overlap of genes targeted by both REV (HD‐ZIPIII) and KAN1,
which supports the idea that the antagonism of ad/abaxial
regulation is in part mediated through opposite regulation of a
set of shared target genes. In addition, we find a number of
other HD‐ZIP genes being controlled by KAN1. Two members
of the HD‐ZIPIII family (PHB and ATHB8) are potential direct
negative targets, suggesting that besides oppositely control-
ling a common set of direct targets, mutual regulation might
also contribute to polarity set‐up. Beside HD‐ZIPIIIs, HAT2, a
member of the HD‐ZIPII family underlies negative regulation by
KAN1 (Brandt et al. 2012). Two HD‐ZIPI genes, ATHB22 and
ATHB12 are also potential KAN1 targets (Merelo et al. 2013).
This finding is particular striking because ATHB12 is known to
act in the ABA signaling pathway hypothetically antagonizing
HD‐ZIPIII activity (as described above). Since several ABA
signaling components (such as receptors, phosphatases etc.)
are also under potential KAN1 control (Merelo et al. 2013), it
seems possible that ABA contributes to the patterning of leaf
primordia.

Members of the different HD‐ZIP families regulate a
plethora of physiological pathways ranging from basal embryo
patterning to adaptation responses of mature plants. The HD‐
ZIPIII/KANADI module, required for polarity establishment in
the early leaf primordium, is also linked to adaptive responses
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such as the response to shade or the perception of drought
(Figure 3). In both adaptive pathways, other members of
HD‐ZIP proteins (HD‐ZIPII in shade and HD‐ZIPI in the drought
response) play integral roles in the routing and modulation of

signaling cascades. Thus, the evolutionary highly conserved
HD‐ZIP proteins seem to be at the nexus of patterning and
adaptation and may act to adjust developmental programs to
the environmental context.

Figure 2. Alignments of Leucine‐zipper domains of different classes of HD‐ZIP proteins
(A)Alignment of allArabidopsisHD‐ZIPIII and LITTLE ZIPPER proteins. Both protein families have six heptad repeats. (B)Alignment
of all Arabidopsis HD‐ZIPI and HD‐ZIPII families with GBF1. HD‐ZIPI proteins have either five or six heptad repeats while HD‐ZIPII
proteins and GBF1 have only four repeats. Highly conserved residues are highlighted in grey.
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5. Discussion  

5.1. The role of REVOLUTA in leaf senescence  

Plants induce leaf senescence to reallocate nutrients and valuable substances 

from mature leaves to reproductive seeds. The timing of senescence is 

controlled by developmental age while environmental cues such as 

temperature, light and drought strongly influence this process. Massive 

changes in the transcriptome during onset and progression of senescence 

imply an important role for transcriptional regulators. Previous reports showed 

that several large groups of transcription factors are transcriptionally 

up-regulated in senescing leaves, such as NAC, WRKY, C2H2-type zinc finger, 

AP2/EREBP, and MYB proteins (Guo and Gan, 2005). In this study, we show 

that HD-ZIPIII factors have an additional formerly unknown role in the final 

stage of leaf development, leaf senescence. REV is a direct and positive 

regulator of WRKY53 expression and reducing the activity of REV or other 

HD-ZIPIII proteins delays the onset of leaf senescence. Interestingly, rev 

mutant plants display stronger leaf senescence phenotypes compared to 

wrky53 mutant plants, suggesting that REV also regulate other 

senescence-associated genes.  

Here, we have identified nine REV targets which are differentially expressed 

during senescence. Among them, HAT3 has been shown to play an important 

role in regulating polar leaf development (Bou-Torrent et al., 2012; Brandt et al., 

2012; Turchi et al., 2013). rev mutant seedlings exhibit reduced levels of HAT3 

mRNA, suggesting that HAT3 expression depends partly on the presence of 

REV (Brandt et al., 2012). During senescence, HAT3 mRNA levels decrease 

with progression of this process. However, HAT3 mRNA is more abundant in 

rev mutant seedlings compared to wild type (Xie et al., 2014). Overall, the 

transcriptome of rev mutant plants is dramatically altered through senescence, 

resulting in stage dependent misexpression of many differentially expressed 

senescence-associated genes. 
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Redox-sensitive DPI-ELISA experiments revealed a reduced DNA-binding 

ability of REV in response to oxidative stress, suggesting that REV is a 

redox-sensitive transcription factor. However, these results contradict the 

finding that HD-ZIPIIIs is partially required for the up-regulation of WRKY53, 

indicating a more complex regulatory cascade. Several direct REV target 

genes act as transcriptional repressors that might explain the contradiction. 

For instance, two REV targets encode EAR-domain proteins that can act as 

co-repressors (Causier et al., 2012). Our findings also show that the mRNA 

abundance of two other transcriptional repressors, HAT3 and ZFP8, is altered 

in the senescence process. Therefore it is reasonable that the reduced REV 

DNA-binding activity will cause lower expression levels of these transcriptional 

repressors, ultimately alleviating the repressive activity of them. Thus, 

modulation of REV activity in response to the altered intracellular redox state 

will profoundly affect the REV-regulated transcriptome.  

Leaf senescence can be triggered by a number of environmental factors, such 

as shading (Brouwer et al., 2012). Shade causes profound developmental 

changes in shade-sensitive plants aimed at outgrowing competitor plants. In 

consistence with it, our previous work showed that the REV/KAN1 module is 

involved in modulating growth in response to shade (Brandt et al., 2012). Thus, 

HD-ZIPIII might play a critical role in connecting leaf patterning, leaf 

senescence and shade avoidance and adjusting plant growth and 

development to changing environmental conditions. 

 

5.2. Identification of direct REVOLUTA targets 

Based on the comparative analysis of two biologically independent ChIP-Seq 

experiments, we identified a number of putative REV targets which are 

involved in the regulation of multiple processes. Such as STM and WUS which 

are key regulators in meristem development. REV is also shown to control 

directly the expression of the genes that encode the auxin biosynthetic 
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enzymes TAA1 and YUCCA5 (YUC5). Besides, REV binds to the promoters of 

four members of the HD-ZIP II gene family, HAT2, HAT3, ATHB2/HAT4 and 

ATHB4 which are known regulators of shade signaling (Brandt et al., 2012). In 

conclusion, REV is involved in the regulation of plant development, as well as 

adaptive growth by regulating the expression of related target genes. 

 

5.3. Identification of KANADI1 target genes 

a) Genes involved in organ patterning 

In our study, we identified several KAN1 targets related to the establishment of 

organ polarity. For instance, KAN1 binds to the promoter of PHB and ATHB8 

and represses their expression. It is well known that HD-ZIPIII activities in 

vascular tissue formation are antagonized by KAN expression, thereby 

affecting the canalization of auxin flow to mediate organ patterning (Ilegems et 

al., 2010). Here, our results suggest a new finding that there may be contexts 

in which KAN1 acts directly on PHB and ATHB8. Interestingly, we also found 

that KAN1 binds directly to the promoters of two members of MIR166 genes, 

MIR166A and MIR166F which can negatively control HD-ZIPIII genes. In 

addition, KAN1 binds to its own promoter and the promoter of KAN2 via 

specifically targeting the VGAATAW motif (Merelo and Xie et al., 2013). Taken 

together, these results suggest that in some contexts KAN1 may act in a 

negative feedback loop that limits the levels of several abaxial factors including 

KAN1 itself. 

Several KAN1 targets are involved in different aspects of organ development 

such as PXY/TDR, LNG1/2 and SAW2. PXY plays a crucial role in vasculature 

polarity establishment and is particularly required for the proper orientation of 

cell divisions in the vascular meristem (Fisher et al., 2007; Hirakawa et al., 

2008). The homologous genes LNG1 and LNG2 regulate leaf morphology by 

positively promoting longitudinal polar cell elongation (Lee et al., 2006). SAW2 

is related to leaf morphology and its expression shows adaxialization in 
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developing lateral organs (Kumar et al. 2007). Therefore, our results suggest 

that KAN1 may directly regulate genes involved in lateral organ development. 

b) Genes related to Auxin 

Four PIN family members (PIN1, PIN3, PIN4 and PIN7) were identified as 

KAN1 targets and their expression was repressed by KAN1 as well. PIN1 is 

known to mediate auxin redistribution. Previous studies showed that kan1 

kan2 kan4 embryos display ectopic expression of PIN1 (Izhaki and Bowman, 

2007). Therefore, KAN1 protein may act in patterning processes through auxin 

transport modulation. Additionally, several genes involved in the regulation of 

PIN activity and trafficking were repressed by KAN1, such as PINOID and 

PLA2A (Benjamins et al., 2001; Friml et al., 2004; Lee et al., 2010). 

Furthermore, we identified a set of genes involved in auxin transport and 

signaling. For example YABBY5, a transcription factor involved in specifying 

abaxial cell fate and auxin distribution (Sawa et al., 1999; Sarojam et al., 2010). 

The set of genes also includes different early auxin-responsive genes such 

as GH3.3, the SMALL AUXIN UP RNA (SAUR) genes (SAUR19, SAUR20 and 

SAUR63), which regulate auxin polar transport and promote auxin-mediated 

organ elongation (Chae et al., 2012; Spartz et al., 2012). Taken together, 

KAN1 may control the influence of auxin on organ development through 

complex interactions. 

 

5.4. Genes subjected to dual regulation by both KANADI1 and 

REVOLUTA 

Previous studies have indicated that the HD-ZIPIII and KAN factors act 

oppositely in organ patterning (Eshed et al., 2001; Emery et al., 2003; Izhaki 

and Bowman, 2007). One hypothesis is that this interaction occurs via the 

mutual regulation of KAN1 and REV on a set of common direct targets. Our 

finding that most of KAN1 targets are down-regulated, for example KAN1 

directly represses the expression of the adaxial factor AS2 (Wu et al., 2008), 
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suggests that KAN1 acts primarily as a repressor. According to this hypothesis, 

HD-ZIPIII proteins should act as activators of those common targets. This is 

supported by the findings that HAT2, TAA1 and YUC5 genes are oppositely 

regulated by REV and KAN1 (Brandt et al., 2012). In addition, we found 26 

overlapping putative target genes after a comparison of the ChIP-Seq data for 

KAN1 and REV respectively. Among these, we found several genes involved 

in auxin transcriptional response and auxin transport are repressed by KAN1, 

whereas some genes involved in auxin biosynthesis and transport are 

positively regulated by HD-ZIPIIIs. Thus, our findings together with published 

work (Eshed et al., 2001; Emery et al., 2003; Izhaki and Bowman, 2007; Wu et 

al., 2008; Brandt et al., 2012) indicate that HD-ZIPIII and KAN genes function 

antagonistically both through mutual regulation as well as through the opposite 

regulation of common direct and indirect targets. 

 

5.5. Outlook 

REVOLUTA, a patterning factor, plays a critical role in early leaf development 

especially organ polarity processes. Taken together with our finding that 

REVOLUTA has an additional role in controlling leaf senescence via the 

WRKY network, there might be a complex mechanism in which REVOLUTA 

plays a central role mediating and coordinating early and late leaf development. 

Our finding also shows that besides WRKY53, a number of differentially 

expressed genes are regulated by REVOLUTA during senescence. However, 

much of the details remain unclear, so further investigations on these genes 

will unveil deep insights into the regulatory mechanism. Furthermore, induction 

of WRKY53 expression in response to oxidizing conditions partially requires 

REVOLUTA, whereas hydrogen peroxide decreases DNA-binding activity of 

REVOLUTA. The contradiction could be partially explained by the fact that 

several direct REVOLUTA target genes act as transcriptional repressors. 
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Future projects should focus on studying the redox-dependent changes in the 

REVOLUTA protein outside the DNA-binding domain in more detail.  
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