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Abstract 

 

 In recent years numerous archaeological approaches to predictive modeling have been 

presented in the literature.  Most of these have taken the “inductive” perspective of applying known site 

locations to an analysis that estimates probable site location based on a mathematical equation and 

presents predictive surfaces in a GIS.  Conversely, “deductive” models have also been used in which 

“expert systems” or site selection variables have been quantified as probability surfaces.  There has been 

little discussion, though, of the theoretical differences between CRM and research-oriented predictive 

modeling and how it has influenced the state of the “science” today.   

 

 Generating more refined correlative predictive models either through the use of higher quality site 

location data or through more complex statistical techniques, runs counter to the implicit goals of CRM-

based predictive modeling. A simple cognitive GIS approach which assumes a causal explanatory 

relationship creates comparable or better results (especially in homogenous areas) with no negative 

effects on these limited goals.  Ultimately, the dichotomy between correlative and cognitive approaches is 

not in theoretical orientation, rather it is embodied in our understanding (or failure to understand) that 

correlative predictive modeling is really a tool useful only for land management in some very restricted 

circumstances and never for interpretive archaeology. 

 

 

Introduction 

 

 Archaeological predictive models are currently being employed in numerous places and with 

varying degrees of success.  Although they originated in the United States in the late 1970s, becoming 

widespread in the early 1990s (Kvamme 1995:3), they are increasingly attracting attention in European 

settings (e.g. Kamermans 2000, Verhagen and Berger 2001, Stančič et al. 2001, Stančič and Kvamme 

1999, van Leusen 2002:Chapter 5).  In this discussion I will focus on the conflict between some of the 

basic underlying assumptions of certain kinds of predictive models and the purposes for which they were 
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originally intended.  Ultimately this takes the form of an absence of causality and explanatory power even 

in models which are becoming increasingly complex and more difficult to employ.  In essence, the 

methods of predictive modeling often fall far short of the theoretical assumptions (cf. Ebert 2000, and 

Church et al. 2000).   

 

 This discussion is not intended to regurgitate the history and development of predictive modeling 

in archaeology (e.g. Kvamme 1995, 2001, van Leusen 2002, Warren 1990).  Instead I would like to 

narrow the scope to address some key theoretical elements of all predictive models, whether they arose 

in the United States, Europe, or elsewhere.  Foremost among these is the purpose (or more correctly the 

purposes) of predictive modeling. 

 

Purposes and Applications of Predictive Models 

 

 What are the purposes of predictive models?  Why do we use them?  Who pays for their 

development and application?  The primary use of predictive models to date is almost invariably for large 

scale Cultural Resource Management (CRM) applications, and they typically occur in North America.  

Some notable examples include the Ontario Ministry of Natural Resources (OMNR) Model (Dalla Bona 

1994), the Minnesota Model (Hudak et al. 2002), and the North Carolina GIS Archaeological Predictive 

Model Project (NCDOT n.d.) 

 

 The corporations, state and federal agencies who paid for these models do not particularly care 

about the implications of predictive models on our interpretations of past human cognition and behavior.  

They merely want to reduce their costs to a more manageable level by controlling expensive 

archaeological survey.  For their part this is seen as good land management practice, and there are two 

ways in which such cost reduction strategies are usually employed. 

 

 First, a predictive model can be used to argue for a reduced level of field effort in areas deemed 

to be “low potential” and a proportionally higher or, at least fixed, level of effort in other zones.  For 

example, if we expect that some areas of a large land tract are not going to be “productive” based on a 

predictive model, then perhaps those areas can be field investigated with a coarse sampling strategy or 

even eliminated from survey altogether.   

 

 The drawback of this approach is that any site which would have been found in low potential 

zones should, theoretically, be more significant merely by the fact that it was not expected.  Therefore, 

the counter-intuitive argument could be made that low potential zones are the areas which should be 
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more intensively scrutinized, and well understood high potential zones should have a reduced level of 

field survey.  This is an example of the inherent conflict between significance and abundance of sites.  

The most significant sites are almost always those of which there are few examples. 

 

 In contrast, the second approach is more acceptable for archaeologists and preservationists, but 

tends to be applicable to only certain kinds of undertakings (such as new highway corridors, etc.).  That 

approach is one of alternatives analysis.  In this application, a predictive model is used to determine 

which areas are more likely to produce archaeological sites, and which are less likely to do so, but the 

field effort is not changed between high and low potential zones.  Instead, the same level of effort is 

employed throughout, but where there are several different options the planners are forewarned about the 

specific costs which are likely to be entailed with each alternative.  Therefore, they can choose the one 

which will probably be less costly in terms of archaeological survey.  Plus, later testing and mitigation 

costs can be anticipated. 

 

 Now, the second primary purpose for which predictive models have been developed is that of 

understanding past land use or what can be called site selection processes (cf. Whitley 2000).  It was 

recognized early on that predictive models provided a quantitative aspect to what was well understood as 

the qualitative realm of settlement pattern analysis (e.g. Allen et al. 1990).  Clearly, predictive modeling is 

seen as a means by which we might address some of the complex issues of human/landscape 

interaction, typically in a GIS framework.  This is precisely why it has attracted recent attention in 

academic settings and particularly among the landscape approaches common to European Archaeology 

(Harris and Lock 1995:353-355, Kamermans 2000, van Leusen 2002:Chapter 5, van Leusen et al. 

2002:3-6). 

 

 The implication is that a successful predictive model has an inherent explanatory capacity and an 

ability to allow us to see causal relationships between sites and site selection factors.  For a variety of 

complex reasons, however, understanding past land use from an explanatory and causal perspective is 

incompatible with the typical correlative applications of predictive modeling currently being employed in 

CRM.  To explore this point further I will first move on to some other key aspects and assumptions of all 

predictive models. 

 

Assumptions of all Predictive Models 

 

 Regardless of the practical application of any particular model, there are several assumptions that 

go hand in hand with quantitative predictive modeling.  First among these is the probabilistic assumption 
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that the potential for any land unit to contain (or be part of) an archaeological site lies between 0 and 1 (or 

no chance to 100% likely).  Any area which was chosen as a site, or in which a site was inadvertently 

created, must be scored as a 1 (a site) while any other area must be considered a probability value 

reflecting our interpretation of how likely it is that the area was chosen as a site, or that a site was 

inadvertently created.  This means that all unsurveyed land units range in probability value between 0 and 

1 (what we think their site value is), while all completely surveyed land units must rank as either 0 or 1 

(what we know their site value is; a site or a non-site). 

 

 Using Bayesian probability terminology we can  address the assumptions of what makes up those 

site probability estimates.  Though Bayesian statistics is not invoked in all predictive models, the 

underlying structure of Bayesian probability is assumed for all of them.  The first fully articulated 

assumption of all archaeological predictive modeling is a form of the Bayesian rule of “total probability” 

(cf. Pearl 2000:3).  This assumption can be stated as: 

 

The probability of any land unit being a site (or a portion of a site) is the sum of the 

probabilities of all exhaustive and mutually exclusive variables that cause a land unit to 

be chosen as a site or to unintentionally be made one.  

 

 Put simply, this means that the presence of a site in any area is a factor of all possible influencing 

variables (intentional or unintentional).  This invokes a direct causal relationship between archaeological 

sites and a host of possible variables; the underlying principle of all predictive models.  This is further 

elaborated by the “conditional rule of Bayesian probability” (cf. Pearl 2000:3-4).  This can be stated in 

archaeological terms as:  

 

The probability of any land unit being a site is the sum of the probabilities of each causal 

variable multiplied by the conditional probability of that variable.   

 

 Put simply again, this means that not every factor is as influential as every other factor; that they 

each respond to other conditions, or in effect provide an individual weight to the final probability of any 

land unit being part of an archaeological site.  The diversity in influence of different variables allows 

predictive modelers to statistically assess, or make expert decisions about, what they find to be the most 

influential factors and build their models accordingly.  This concept was described as the Weighted 

Additive type of predictive model by Kohler and Parker (1986:422-424). 
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 When a model is complete, how do we measure its success?  What do we mean when we say a 

predictive model is successful, and what are the requirements of all successful predictive models?  How 

do we know that they provide some useful understanding of the relationships between human behavior 

and the landscape?   

 

 There are two primary and necessary ways to measure the success of any predictive model.  

Every successful model must have both high accuracy and good precision (described as specificity in van 

Leusen et al. 2002:9).  With accuracy we mean how well the high potential zones capture known 

archaeological sites.  With precision we mean how well the model reduces the area within which sites are 

expected (the high potential zones) from the entire tract to as small as possible. 

 

 A model which is highly accurate but not precise is of little use.  For example, if given a tract of 

land measuring 1000 hectares with a known population of 100 sites, we could produce a model which 

accurately places all 100 sites within a designated “high potential” zone - giving an accuracy of 100 

percent.  However, if all 1000 hectares (or at least a high percentage of the tract) falls within the high 

potential zone then the model is not precise and provides no way of limiting survey or understanding land 

use patterns; the two purposes of predictive modeling. 

 

 A model which is very precise, but inaccurate, is likewise of little use.  Given that same tract of 

land, we could produce a model which reduces the high potential area to a mere 100 hectares out of the 

1000, but if it fails to capture any of the known archaeological sites, then we cannot assume it has any 

decent level of accuracy, and it provides little chance to actually reduce survey costs or give insight into 

land use patterns.  To be successful a predictive model must be both accurate and precise.   

 

 A measure of these two distinct values combined is typically expressed as the gain statistic 

(Kvamme 1988:329), which is a function of total land area with high or high/moderate potential zones and 

total percentage of the modeled site type which falls within those zones.  A gain statistic value ranges 

from 0 to 1, with 0 meaning the model is no better than random chance and 1 meaning that it is 100 % 

accurate and 100 % precise.   

 

 A good predictive model should achieve a gain statistic at least above 0.5, but it would be 

generally unlikely for a model to achieve anywhere near 0.9; since that would require quite dense 

settlement of nearly every suitable location in the project tract.  Ebert (2000:133) argues that gain never 

seems to exceed 0.7 in practice, and Wansleeben and Verhart (1992:103-107) provided a method for 

normalizing the gain statistic with respect to the proportion of sites included in the model. 
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 Unfortunately, the gain statistic is not infallible, nor the final word on model success.  It is quite 

easy to produce false high gain statistic values if the site dataset is too small, biased, or unrepresentative 

of the aspects of settlement which were modeled.  Likewise, strongly negative correlations between a few 

significant sites and high predictive values can be overlooked as long as the project area contains a great 

deal of low potential area.  This suggests that much closer attention needs to be paid to how we define 

the sites which are of the greatest interest to us as archaeologists.  The gain statistic also assumes that 

equal weight is placed on both accuracy and precision in determining model efficiency, but there may be 

situations in which one is more important than the other for modeling purposes, and the interaction 

between the entire range of predictive values and their expressions in the landscape could be 

enlightening.  Van Leusen et al. (2002:9-11) provides a more detailed discussion of measuring model 

quality. 

 

Theoretical Implications 

 

 So, what are the theoretical implications of the foregoing assumptions?  The most obvious is that 

the site must be a valid and useful concept to explain human activity.  Also, that sites are definitive and 

absolute in their ability to be identified, and that the characteristics used to identify sites are strictly 

correlative with human behavior, and not other phenomena.  That correlation is assumed to mean that the 

most common or abundant behavior(s) are the most significant with respect to the purposes of predictive 

modeling, and that the success of predictive models is a factor of their ability to identify the most common 

site-selection behaviors. 

 

 Are these implications necessarily true, though, and what is not implied by these assumptions, 

but may be true?  First of all, sites may not be easily distinguished by empirical evidence, and they may 

not be considered strictly representative of human activity (cf. Dunnell 1992).  Different activities result in 

different kinds of sites, and different kinds of sites may have many different kinds of manifestations.  

Some may have easily recognizable archaeological characteristics while others may have none.  Strictly 

speaking, significance of archaeological sites cannot be equated with abundance, and models geared 

toward identifying the most common elements of site selection may, in fact, overlook very significant sites 

in supposedly low potential zones. 

 

 The observable variables are also not always exhaustive nor mutually exclusive.  Although they 

may have some causal influence on site placement (either intentional or inadvertent) they also have 

causal relationships and auto-correlations within and amongst each other.  This is repeatedly discussed 
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in many examinations of archaeological predictive modeling (e.g Warren 1990, Ebert 2000, Church et al. 

2000, van Leusen et al. 2002, Whitley 2000:Chapter 3). 

 

 Different causal variables for site placement may also be cognized or entirely subconscious, or 

somewhere in between.  This is especially important to understand if one is building a model which 

focuses on identifying site selection intentionality.  Similarly, weights of variables may be constant or 

shifting, they may change in relation to other variables, or they may be entirely random, even with respect 

to the same individuals making site placement decisions.  This implies a dynamical aspect to site 

placement and an inherent rejection of determinism.  

 

Determinism and Causal Explanation 

 

 What are the implications of determinism?  Why should it matter if we hold deterministic ideas 

with respect to predictive models?  This may be the root issue behind the so-called inductive/deductive 

dichotomy, and if we look at models from the perspective of their theoretical relationship to causal 

explanation, we may be able to understand the nature of the conflict. 

 

 Interestingly, archaeologists employ the terms inductive and deductive in ways that are quite 

limited with respect to their meaning in the realm of scientific explanation.  In philosophy of science, the 

terms inductive and deductive refer to the difference between logical arguments based on universal laws 

and statistical tendencies.  Deductive explanations are based on mathematically consistent and provable 

laws, while inductive ones are based on observing statistical trends (cf. Hempel 1965, Salmon 1971, 

1998).   

 

 In archaeological predictive modeling, however, inductive and deductive do not refer to methods 

of explanation, rather to practical means by which probability values are calculated (e.g. Kohler and 

Parker 1986:422, Church 2000, Ebert 2000, Kamermans 2000, Stančič and Kvamme 1999).  In the end, 

all predictive models are trend-based, or inductively explanatory; even so-called deductive ones.  Instead, 

the distinction should be made between models as being either correlative or cognitive in nature, and the 

failure to recognize this is perhaps due to an unfamiliarity with the debates in the philosophy of science 

(cf. Salmon 1998). 

 

 Correlative models are those which use existing site data and currently measurable 

environmental variables to build statistical relationships which can then be generalized from previously 

surveyed areas to those which have not been surveyed (such as through regression analysis).  These 
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take the form of probability surfaces based on a formula that attempts to encompass every site in the 

dataset (Kohler and Parker 1986:422).  As such, correlative models are strictly empirical by nature and 

make the assumptions of determinism.   

 

 Deterministic explanation comes in several forms (cf. Hempel 1965, Salmon 1971, 1998) but in 

general the Bayesian rule of conditional probability, in a deterministic framework, would embrace the idea 

that the inaccuracies of any predictive model are the result of not having enough information.  All 

probabilities could be identified, in principle, if we only had the ability to do so.  This is distinct from 

environmental determinism, though, since a correlative model does not, of necessity, require only 

environmental factors, but could, theoretically, include cultural ones if they were to be currently 

measurable.  Granted this is a simplification of correlative modeling, and some models are much more 

keenly aware of their theoretical and practical biases.  But, in general, correlative modelers assume that 

additional data will always increase the accuracy or precision of their models. 

 

 Cognitive models are those which are not limited by existing archaeological data.  Hypotheses of 

site placement are built on understanding more complex issues involved in the cognitive selection of 

suitable areas.  Then, presumed important variables are measured and classified in a way hypothetically 

similar to how prehistoric populations may have done so, and probability surfaces are projected across 

the entire landscape.  A single cognitive model may, in fact, produce many different permutations which 

can be tested.  Once complete, the known dataset of archaeological sites is then compared to the 

projected probability zones and accuracy and precision estimates are made.  Cognitive models are not 

necessarily deterministic, though they can be.  But they do have the potential to embrace indeterminism, 

since they are not built from correlative evaluations. 

 

 A good way to understand the difference between deterministic and indeterministic explanation 

can be illustrated by this example (adapted from Mackie 1974:40-41 and Salmon 1998:145-147).  

Imagine three candy machines.  The first is purely deterministic; if you put in a Euro, a candy bar is 

always ejected.  No other coin or object will cause the candy bar to be released, and no candy bar will 

ever be inadvertently released without the insertion of a Euro.  We know that the function of inserting a 

Euro is both necessary and sufficient to cause a candy bar to be ejected.  We can therefore deductively 

explain the presence of a candy bar with the deterministic rule that a Euro must have been inserted. 

 

 A second machine, though, is somewhat different.  With it the insertion of a Euro will always 

produce a candy bar, but sometimes insertion of other items will have the same effect.  Thus, a Euro is a 

sufficient cause of the presence of a candy bar, but it is not the only possible (or necessary) cause.  The 
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presence of a candy bar, therefore cannot be deductively explained by a rule stating a Euro must have 

been inserted, rather it becomes an issue of inductive probability.  There is a certain likelihood that a Euro 

may have caused the appearance of the candy bar (which can be calculated by assessing the state of the 

system over a period of time or a set number of observations).   The machine is still deterministic, though, 

because we assume that if complete information were available, we could always explain the presence of 

a candy bar.  That complete information would include knowing every other coin or object that might 

cause the release of a candy bar. 

 

 A third machine differs in that inserting a Euro or other items triggers an instantaneous analysis of 

the spin of a quantum particle trapped in the machine.  If the spin is in one direction it will result in the 

release of a candy bar, but in the other direction it will not.  Similarly, sometimes with no insertion of any 

coins, the particle’s spin will be measured and a candy bar will be ejected.  Here, the insertion of a Euro is 

neither sufficient nor necessary to explain the presence of a candy bar.  We do not have any explicable 

deterministic way of addressing the presence of a candy bar from this machine.  We could assume that 

more information is needed, but clearly even when we have a suspected causal factor, it does not always 

result in the release of a candy bar (hence prediction is impossible).  In order to fully understand the 

nature of the machine we need to address all of its constituent parts and the mechanistic effects of all 

possible causal factors, even if some of those may be reliant on fundamentally indeterministic variables 

(such as quantum mechanics or human free will). 

 

 When dealing with archaeological sites, we are faced with a similar circumstance.  Correlative 

models assume that all variables are either present and have been measured, or that they could be if we 

only had the information.  Ironically, this is termed deductive chauvinism, (Salmon 1998:142-163) and it 

implies that given all variables and all parameters, all probabilities could be determined and prediction 

would be 100 % accurate and 100 % precise.  Correlative modelers, though, do not deny the influence of 

human behavior and cognition in making site placement decisions. Yet, the acceptance of this 

perspective assumes that all human cognition is a deterministic system and implies an absence of free 

will (Salmon 1998:28).   

 

 Thus, correlative models are only capable of identifying necessary factors to produce 

archaeological sites, and only those which are both frequently necessary and commonly observable 

(even today).  Correlative models are not capable of providing insight into the sufficiency of site 

placement factors to explain the presence of a site, nor the mechanisms of how site selection processes 

are determined.  This is in direct opposition to the second purpose of predictive modeling. 
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 Cognitive models assume, at least, the limitations of the second machine, but allow the possibility 

of the third (where some aspects of site placement decisions may be, in principle, inexplicable).  This 

assumes that some aspects of human systems are dynamical.  Dynamical systems do not imply the 

absence of predictability for all aspects of the system, merely that they range on a scale between entirely 

predictable to entirely unpredictable.  A correlative analysis, though, is by its very nature limited to only 

those aspects which are highly predictable, and cognitive explanation must focus on causal-mechanistic 

issues instead (cf. Salmon 1971, 1998).  This requires the adoption of explanatory frameworks which deal 

with indeterministic phenomena (such as Salmon’s causal-relevance model of explanation - Salmon 

1998:345). 

 

Correlative Models - Problems 

 

 So, this brings us to the point at which we might ask; why do so many applications of predictive 

modeling tend to be strictly correlative?  The first reason is probably one of convenience.  It is relatively 

easy to take an existing dataset of archaeological sites and environmental values, perform some standard 

statistical analyses (such as multiple nonlinear regression), and produce a handy formula.  The formula 

can then be turned around and applied in a GIS and a fairly accurate and precise model sometimes 

results.  Usually, though, the results are not sufficient and additional data has to be generated (or the 

dataset has to be cleaned up at great expense).  The correlations, though, can be used without ever 

thinking about causality. 

 

 Second, correlative models are often presumed to have some level of objectivity.  There is 

something almost mystical about statistics for the typical audience (and archaeologists are no exception) 

that goes beyond mere logical justification.  It is almost as if the mathematics provides an impartial 

verification to the model for no apparent reason.  Since the math is typically beyond the immediate grasp 

of social scientists, it is assumed that the methods need no questioning.   

 

 With respect to predictive models, I think it is often assumed that more complex statistics means 

greater objectivity.  Such methods have their uses, but the old maxim of “bad data in, bad data out” 

applies regardless of the methods of mathematical manipulation in between.  This was illustrated quite 

succinctly by Cowgill’s warnings against placing too much emphasis on mathematical models at the 

expense of theoretical profundity (Cowgill 1986:387). 

 

 This brings up another point about peer acceptance.  Although I do not believe that predictive 

modelers intentionally try to deceive the target audience, they do tend to, perhaps inadvertently, confuse 
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their audience with complex ways of saying simple things.  This applies specifically to glossing over data 

inadequacies by expounding on the details of complex mathematics where it may not be needed.  

Mathematically unsophisticated audiences (as most archaeologists are, and will readily admit) will tend to 

accept the generalizations, or results of the model without question, because they cannot decipher the 

math and spot the inadequacies in the data or the theoretical shortcomings.  This suggests that more 

effort needs to be placed in training archaeologists to understand the complexities of predictive modeling 

and statistics in general. 

 

 Another issue of concern is the lack of experience, on the part of archaeologists (especially North 

American ones) with the debate regarding these very ideas in other disciplines.  The nature of human 

decision-making has been a topic in many areas of research including; psychology (e.g. Shanks et al. 

1996), computer science (e.g. Oliver and Smith 1990), and philosophy (e.g. Hume 1739, Hitchcock 1996).  

Likewise the basis of spatial patterning, including the specific interest in site selection processes, has long 

been the domain of human geography (e.g. Downs and Stea 1977, Tobler 1993), economics (e.g. Weber 

1929), sociology (e.g. Christaller 1935), and even linguistics (e.g. Levinson 1992).  The precise nature of 

explanation, causality, and probability, has been addressed by numerous researchers in the philosophy of 

science (e.g. Popper 1959, Nagel 1961, Hempel 1965, Salmon 1998), mathematics (e.g. Pearl 2000), 

statistics (e.g. Cox 1992), and computer science (e.g. Besnard and Hanks 1995), specifically, but 

peripherally in many other disciplines.  Archaeologists, typically, are unaware of, or ignore, these debates 

and tend to wade through theoretical battlegrounds fought over many times before. 

 

 So, then what is lacking from most correlative predictive modeling attempts? The most glaringly 

absent constituent is an explication of causality.  In other words; what causes the correlations observed in 

the archaeological record?  Correlation is assumed to be the ultimate important observation and causality 

is unnecessary.  Another missing item is a discussion of the cognitive basis of spatial decision-making.  

Though it is often implied that specific variables were chosen for their suitability, the mechanism of 

making that choice is never explained.  The incorporation of sociocultural variables is typically also 

excluded from correlative models, not on theoretical grounds, but out of a practical failure to identify them 

in spatially measurable terms. 

 

 From the other perspective, what is lacking in the dataset to allow completion of successful 

correlative models?  The primary missing element would be sufficient existing data.  All correlative models 

require statistically significant samples to produce results.  Obviously, the larger the sample the more 

accurate the results will be (at least that is the expectation).  Sufficiently large samples of archaeological 

sites typically range in the thousands.  Anything less produces poor or inconclusive results.  Similarly, 
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sufficient numbers of currently measurable variables are required.  Since these are almost invariably 

environmental in nature, there are strict limitations on what the correlations can produce, and correlative 

models are glaringly environmentally deterministic in practice. 

 

 How do correlative predictive modelers attempt to compensate for these problems?  I’ve already 

discussed the effort put out to dedicate more resources to “cleaning up” the database and the drive for 

more complex statistics to provide “better” results.  But the most common methods of improving model 

results is to expand the area of coverage to include more data and/or to combine temporal periods into a 

larger set of useable sites.  This becomes dangerous territory, in which our assumptions about the 

appropriateness of the data is often very questionable. 

 

Lowest Common Denominator Variables 

 

 But, ultimately, why is it that correlative models seem to work, at least on occasion?  The main 

reason a correlative model does achieve success is based on what might be called the lowest common 

denominators for site selection.  These are several variables that correlate highly with archaeological 

sites simply because they are limiting factors on all human behavior; primarily slope and  distance to 

water.  Invariably, every successful correlative predictive model uses slope and distance to water, in 

some form, as key factors in developing correlative formulas, and they almost all occur in semi-arid or 

highly dissected areas.  

 

 In fact, many models extend the functionality of correlative statistical analyses by splitting simple 

variables, such as cost distance to water, into a series of more complex variables, such as exponential 

cost distance to water, distance to certain types of streams and wetlands, lake edges, prehistoric water 

features, springs and seeps.   

 

 Likewise, slope can be reclassified as many different kinds of variables or ones related to 

topographic situations, such as hilltops, hillsides, terraces, etc.  Splitting variables in this manner tends to 

build an additional layer of presumed causality through the application of our own classification systems, 

which we already accept as meaningful.  Causality, though, has not been addressed in such correlative 

models.  It is assumed that because of the correlation between known archaeological sites and particular 

variables, that they were actively used as suitability indicators for sites.   

 

 In reality, though, I argue that most environmentally correlative variables (especially slope and 

distance to water) act primarily as auto-correlations and were probably rarely cognized as variables of 
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choice.  In that sense, they may be considered necessary factors for site selection, but their importance is 

auto-correlative with all human activity not causally conditioned by it.  Thus, they cannot be seen as 

sufficient cause for site placement. 

 

 Other factors, such as cultural boundaries, seasonal resource acquisition, temporal-spatial 

limitations, trade, and warfare, may have played a much greater cognitive role in determining site 

locations, but cannot be framed with a correlative analysis because our classification of many different 

kinds of human behaviors into a single category of “site” is inadequate and important sociocultural 

variables are not easily quantified. 

 

Cross-Purposes in Correlative Models 

 

 So the upshot of this long-winded discussion is; how do correlative models fail to meet the goals 

of predictive modeling?  Several things would be required for successful application of a correlative 

model.  First, the project would need to be located in a region that is sufficiently arid and dissected 

enough that slope and distance to water are meaningful limiting factors, or suitable alternative limiting 

factors can be identified.  Second, it would require a large dataset of accurate and well described 

archaeological sites from all temporal periods of similar function, and which do not cross multiple cultural 

boundaries.  Third, it would require an additional dataset which could be used to test the accuracy and 

precision of the model, or alternately a large enough initial dataset of sites that a “jackknife” sample can 

be held back and used for testing.  Fourth, it would require a well developed environmental dataset from 

which measurable variables can be extracted.  

 

 The problem is that there are few locations within which all of these criteria are met.  Almost 

invariably the project areas do not have such ideal conditions or large and accurate datasets, and those 

conditions can only be met by vast amounts of data gathering at a very high cost.  It therefore becomes 

too costly or even impossible to do a correlative predictive model in many cases, and ultimately the 

resulting model does not provide better insight into site placement processes than intuition. 

 

 As the cost of doing the predictive model increases, the reasons it was initiated become 

increasingly irrelevant from a land management perspective.  Since slope and distance to water are the 

primary important limiting factors in most correlative models, they contribute the greatest percentage to a 

model’s success.  Any variables beyond the primary ones add proportionally less to the gain statistic and 

therefore are of smaller and smaller consequence.  Conversely, though, the means of extracting the 

influence of those additional variables adds increasingly to the cost of the model. 
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 This sets up a losing battle where correlative predictive models have very limited applicability in 

terms of region as well as purpose, yet are often prohibitively expensive.  Simple limiting factor models 

(as historically implemented with intuitive ideas about slope and distance to water) applied in a GIS, can 

produce gain statistics well within the range of expectations at a fraction of the cost (e.g. Whitley 2002a).  

Similarly, cognitive models can be created and applied in homogenous areas with small useable datasets 

and better results, also at much less cost (e.g. Whitley 1999, 2001).  

 

 Ultimately, this sets up the question of; how should we create and apply quantitative 

archaeological predictive models?  What purposes are appropriate, and who should pursue them?  I 

argue that we need to recognize that correlative predictive models (regardless of their methods and area 

of application) have severe theoretical and explanatory limitations.  They can be used in some situations 

to give insight into land management activities; specifically alternatives analysis.  But they should not be 

mistaken as tools of interpretative archaeology.  Likewise, it would be inappropriate to consider 

correlative models as a means to protect significant archaeological sites or high potential areas, as they 

would be limited to only abundant kinds of sites and a few, probably auto-correlative, environmental 

factors.  

 

 We should also consider that cognitive models are distinctly different and provide a far superior 

means of addressing site selection processes in a causal and explanatory manner, but should not be 

referred to as predictive in nature, since we can assume that human cognition is dynamical and 

indeterministic.  Since they can incorporate both suitability and likelihood of land use, based on combining 

cost-benefit classification and perception surfaces (Whitley 2003:10), cognitive models are truly 

probabilistic rather than possibilistic (cf. van Leusen  et al. 2002:6-7). 

 

 The use of complex statistical analyses may be appropriate for many analytical models, but is in 

no way limited to strictly correlative types of investigations.  Bayesian causal networks, for instance, can 

be elaborated and both prior and posterior probabilities filled-in for variables that go well beyond the 

typical environmental parameters and their permutations.  This is especially important for recognizing 

causality and intentionality.  Using spatial proxies to simulate cognitive site selection variables (cf. Whitley 

2002b) is a means by which this can begin to be addressed.  Without causality, predictive modeling may 

be a useful land management tool in some severely limited settings and with nearly unlimited funding, but 

it provides no explanatory power and forces a deterministic and facile understanding of human cognition. 
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