
NanoSQUIDs for Studies on the

Magnetization Reversal of

Individual Magnetic Nanoparticles

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
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Abstract

The subject of this thesis is the development, characterization and optimization of

nanometer-sized superconducting quantum interference devices (nanoSQUIDs) for

operation at cryogenic temperatures (∼ 4K). This task is motivated by the need

for convenient detectors for the investigation of individual magnetic nanoparticles,

nanotubes, nanowires or molecular magnets. For this purpose the detectors need

to withstand rather high magnetic fields, which are typically necessary to alter the

magnetization of small spin systems. At the same time, the SQUIDs should feature

ultra-high sensitivity with respect to magnetic flux with the ultimate goal of being

able to detect the flipping of the spin of a single electron. These requirements can

be satisfied by shrinking down the physical dimensions of the SQUID towards the

nanoscale. On the one hand, the reduced loop size results in a much lower induc-

tance and as a consequence thereof in an increased sensitivity. On the other hand,

nanopatterning the SQUID minimizes the parasitic effects of the applied magnetic

field. Two types of devices are considered in this thesis: (a) nanoSQUIDs based on

Nb as a superconductor with Josephson junctions (JJs) having normal metal HfTi

barriers and (b) nanoSQUIDs based on YBa2Cu3O7 (YBCO) with grain boundary

(GB) JJs.

Different designs of Nb nanoSQUIDs have been investigated in the past with remark-

able success. In the first part of this work, an improved layout has been developed

and studied with regard to high-field suitability and spin sensitivity. In this context

it has been demonstrated that the Nb devices can be reliably operated in inter-

mediate magnetic fields (around 100mT) with ultra-high spin sensitivity. With

these findings, the Nb nanoSQUIDs could be even further improved and were suc-

cessfully combined with cantilever torque magnetometry. This system allowed for

detailed examinations on magnetic nanotubes, proving the huge potential of this

kind of devices for the investigation of small spin systems.

Likewise, the YBCO nanoSQUIDs were investigated, showing flux and spin sensi-

tivity comparable to conventional SQUIDs but in huge magnetic fields up to 1T.



In order to enhance the sensitivity, an optimization study was performed using nu-

merical simulations based on London and Maxwell equations. It was shown that

by choosing proper geometrical parameters, the YBCO nanoSQUIDs are indeed

capable of detecting magnetic signals arising from a few Bohr magnetons. The corr-

esponding devices were fabricated and the predicted properties could be confirmed.

Finally, first magnetization reversal measurements on a Fe nanowire, encapsulated

in a carbon nanotube, were performed.



Kurzfassung

Thema dieser Dissertation ist die Entwicklung, Charakterisierung und Optimierung

von supraleitenden Quanteninterferometern mit Dimensionen auf der sub-µm Skala

(nanoSQUIDs) für den Betrieb bei kryogenen Temperaturen (∼ 4K). Die Arbeit

ist motiviert durch den Mangel an geeigneten Detektoren für die Untersuchungen

von individuellen magnetischen Nanopartikeln, Nanoröhrchen, Nanodrähten oder

molekularen Magneten. Hierfür müssen die Detektoren recht hohen Magnetfeldern

standhalten, die typischerweise nötig sind, um die Magnetisierung kleiner Spinsys-

teme zu beeinflussen. Gleichzeitig sollten die SQUIDs über eine enorme Empfind-

lichkeit hinsichtlich magnetischem Fluss verfügen, mit dem ultimativen Ziel, die

Magnetisierungsumkehr eines einzelnen Elektronenspins zu detektieren. Durch Re-

duzierung der Abmessungen des SQUIDs auf die Nanometer-Skala können diese An-

forderungen erfüllt werden. Zum Einen führt eine kleine Lochgröße zu einer kleinen

Induktivität und damit auch zu einer erhöhten Empfindlichkeit, andererseits mini-

miert eine Nanostrukturierung der SQUIDs parasitäre Effekte durch ein angelegtes

Magnetfeld. In dieser Dissertationsarbeit werden zwei Arten von Interferometern be-

handelt: (a) auf dem Supraleiter Nb basierende nanoSQUIDs mit Josephson Kon-

takten (JKs) mit normalleitenden Barrieren aus HfTi und (b) nanoSQUIDs aus

YBa2Cu3O7 (YBCO) mit Korngrenzenkontakten.

In der Vergangenheit wurden verschiedenen Entwürfe von Nb nanoSQUIDs mit

großem Erfolg untersucht. Im ersten Teil dieser Arbeit wurde ein verbessertes

Design hinsichtlich Hochfeldverträglichkeit und Spinempfindlichkeit entwickelt und

analysiert. In diesem Zusammenhang konnte demonstriert werden, dass die

Nb-Interferometer in mittelhohen Magnetfeldern (um 100mT) mit enorm hoher

Spinempfindlichkeit stabil betrieben werden können. Aufbauend auf diesen Resul-

taten konnten die nanoSQUIDs noch einmal verbessert und erfolgreich mit cantilever

torque Magnetometrie kombiniert werden. Dieses System ermöglicht detailierte Un-

tersuchungen an magnetischen Nanoröhrchen, was das große Potential dieser Detek-

toren unterstreicht.



Gleichermaßen wurden YBCO nanoSQUIDs studiert, die selbst in sehr hohen Ma-

gnetfeldern bis hin zu 1T eine Fluss- und Spinempfindlichkeit vergleichbar mit kon-

ventionellen SQUIDs zeigten. Um die Empfindlichkeit zu verbessern, wurde eine

Optimierung mit Hilfe numerischer Methoden basierend auf London und Maxwell

Gleichungen durchgeführt. Es konnte gezeigt werden, dass durch geeignete Wahl

der geometrischen Parameter die YBCO nanoSQUIDs in der Tat in der Lage sind,

magnetische Signale von einigen wenigen Bohr’schen Magneton aufzulösen. Die

entsprechenden Interferometer wurden hergestellt und ihre vorhergesagten Eigen-

schaften konnten bestätigt werden. Abschließend wurden erste Messungen der

Magnetisierungsumkehr eines mit einer Kohlenstoffnanoröhre ummantelten Eisen

Nanodrahts durchgeführt.
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Chapter 1

Introduction

The fundamental interest in submicron magnetic systems, such as magnetic nanopar-

ticles (NPs) [1], nanowires (NWs) [2], nanotubes (NTs) [3] or even single electrons

[4], is driven by the desire to understand magnetism at the nanoscale and beyond

[5–7]. In contrast to the well-known characteristics of macroscopic magnets, meso-

and microscopic spin systems exhibit a whole range of novel features under conve-

nient conditions [8, 9]. Fig. 1.1 schematically displays the situation. The hysteresis
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Figure 1.1: Illustration of macro-, meso and microscopic magnetic systems (from
left to right). The scale represents the number of magnetic moments in units of
Bohr magnetons. The hysteresis loops are characteristic for the respective size of
the magnet. Figure adapted from [9].
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loop to the left corresponds to a macroscopic magnet and shows the typical features

of a system consisting of multiple magnetic domains separated by domain walls. If

the size of the particle is reduced, the nucleation of domains becomes energetically

unfavourable and the magnetization remains in a single-domain state; cf. hysteresis

loop in the second graph of Fig. 1.1. In this regime, the magnetization reversal

is dominated by rotation, curling or other more complex non uniform modes, de-

pending e.g. on the exact shape of the particle. For even smaller spin systems, here

Fe8 molecular clusters, quantum mechanical effects emerge, e.g. resonant tunneling

between discrete magnetic energy levels (Fig. 1.1; hysteresis loop to the right).

Particularly interesting regarding applications is the existence of a superparamag-

netic state for NPs in the single-domain state with a typical diameter of 10− 20 nm

[10, 11]. Since an NP generally exhibits a huge (shape-)anisotropy, its magnetic mo-

ment is forced to align (anti-)parallel to the so called easy axis. The two states are

separated by an energy barrier, which can be overcome by thermal excitation, result-

ing in a magnetization flip of the NP. For relatively high temperatures, the thermally

induced flipping happens faster than the sampling rate of the measurement, which

means that the NP has no net (average) magnetization and acts as a paramagnet.

However, it retains the high saturation magnetization of a ferromagnet, thus giving

rise to the designation ”superparamagnetic”. Below the blocking temperature TB,

the thermal flipping becomes much slower than the measurement time and the mag-

netization of the NP is ”frozen”. Fluids containing superparamagnetic NPs find

different applications, e.g. as contrast agents in the field of medicine [12–18] or as

shape shifting magnetic mirrors for earth-based telescopes [19, 20]. Furthermore,

magnetic NPs are highly suitable for applications in the field of spintronics [21] and

as high-density storage devices [22].

Several methods have been developed to examine the properties of magnetic NPs,

e.g. magnetic resonance force microscopy [23], magneto-optic spin detection [24,

25] or scanning tunneling microscopy assisted electron spin resonance [26], since

conventional methods are lacking of sensitivity. Compared to these techniques,

the use of Superconducting Quantum Interference Devices (SQUIDs) [27] offers the

advantage of directly detecting changes in magnetization by measuring the stray

field of a single NP penetrating the SQUID loop. Also, SQUIDs constitute the most

sensitive detectors for magnetic flux, which is why Wernsdorfer et al. proposed to

use micrometer SQUIDs [9, 28] as detectors for small spin systems. In fact, it was

predicted that by nanoscaling the devices, it is possible to detect single electron spin

flips [29].
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Figure 1.2: (a) Sketch of a dc SQUID. Josephson junctions (JJs) are indicated in
black, superconductor in blue. (b) V (Φ)-characteristic of a dc SQUID. The dotted
red line marks the point of the steepest slope where the SQUID is usually operated.

In general, there are two types of SQUIDs: the direct durrent (dc) [30] and the

radio frequency (rf) SQUID [31]. This thesis deals exclusively with the former one,

which is sketched in Fig. 1.2 (a). The dc SQUID consists of a superconducting

ring in which two Jospehson junctions (JJs) [32] are incorporated. For optimum

performance, the device is usually biased at a current Ib slightly above the critical

current Ic. Coupling magnetic flux Φ into the loop leads to a periodic modulation of

the voltage drop V across the SQUID (Fig. 1.2 (b)). Here, voltage is normalized to

the characteristic voltage Vc = IcRN, with the normal resistance RN of the device,

and flux is normalized to the flux quantum Φ0. Bias current and applied flux are

adjusted to values where the slope of the V (Φ)-characteristic is maximum, defined

by the transfer function VΦ = (∂V/∂Φ)max. In this way, the SQUID is operated at

its resolution limit given by the spectral density of root mean square (rms) flux noise

S
1/2
Φ = S

1/2
V /|VΦ|, where S

1/2
V is the spectral density of rms voltage noise. Typical

values for conventional SQUIDs are around a few µΦ0/Hz
1/2.

For investigations of small spin systems, SQUIDs need to be tailored to specific

conditions [33–38]. We consider the scenario sketched in Fig. 1.3: A magnetic NP

is placed near the SQUID loop and a magnetic bias field B is applied to alter its

magnetization. Obviously, SQUID loop and bias field need to be parallel to each

other, since one is only interested in signals arising from the stray field of the NP and

not from the applied field. Nanoscaling the device minimizes the flux penetrating

the SQUID and its JJs by a possible misalignment of B. At the same time, tailoring

the linewidth w of the SQUID ring to submicron dimensions prevents the occurrence

of Abrikosov vortices in the superconducting structures at high magnetic fields as
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Figure 1.3: Sketch of a nanoSQUID with an attached magnetic NP. The loop con-
tains a constriction where φµ is maximum for this specific orientation of ~µ.

a source of transients [39]. Furthermore, a reduced linewidth helps to achieve a

sufficient coupling between NP and SQUID, described by the coupling factor φµ =

Φ/|~µ| [40]. Here, Φ is the flux coupled into the SQUID loop by the magnetic NP

with magnetic moment ~µ. φµ strongly depends on the position of the NP with

respect to the SQUID, the orientation of ~µ and the SQUID layout. Considering

Fig. 1.3, φµ decreases significantly if the magnetic moment of the NP is oriented

perpendicular to the plane of the loop, for example. However, tailoring the device to

the nanoscale is not just limited by technological constraints, but also by the kinetic

inductance Lkin ∝ 1/wd of the used superconducting material, with film thickness

d [41]. If w and/or d drop well below the London penetration depth λL, the rise

in kinetic inductance will lead to a reduced flux sensitivity, since S
1/2
Φ ∝

√
Lkin.

At the end of the day, we can define a new figure of merit, the spin sensitivity

S
1/2
µ = S

1/2
Φ /φµ, which gives the smallest amount of Bohr magnetons µB detectable

for a given device and orientation of ~µ. While minimizing SΦ ≈ f(βL)kBTLΦ0/Vc

[27], with Boltzmann constant kB and screening parameter βL = IcL/Φ0, poses

no basic difficulties, maximizing φµ is not straight forward, because it is rather

hard to get experimental access to this quantity. By properly designing the SQUID

geometry, inductances of only a few pH are achievable, and the use of high quality

JJs yields characteristic voltages in the range of mV. By this means, the spectral

density of rms flux noise can be reduced to well below S
1/2
Φ ≤ 100 nΦ0/Hz

1/2 at

T = 4.2K. To optimize φµ, numerical methods have to be developed and applied to

the specific SQUID layout, with the ultimate goal of achieving S
1/2
µ ≈ 1µB/Hz

1/2.
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In order to overcome the above mentioned obstacles, much effort has been invested

in fabrication technology and nanoSQUID design over the last few years [28, 42, 44–

57, 59–61]. Most groups back on constriction type JJs (cJJs) nanoSQUIDs, and

although impressive results have been achieved with respect to flux noise, this de-

sign implicates several complications, see e.g. [45, 49, 54, 57]. First of all, cJJs often

exhibit hysteretic current-voltage-characteristics (IVCs) which hampers a continuous

operation of the device, being unfavorable for dynamic measurements of magnetiza-

tion changes. Secondly, noise properties of cJJs are not well understood, making an

optimization of S
1/2
Φ difficult. And finally, the cJJ is often denoted as the position of

choice for a magnetic NP, however, in this way an optimization of φµ is impossible

without affecting the junction properties and consequently S
1/2
Φ . In one approach,

it was demonstrated that nanoSQUIDs with extremely low film thickness of only a

few nm can be operated in magnetic fields up to several Tesla [58]. The associated

rise in kinetic inductance though leads to considerably less flux sensitivity. One

of the most promising designs is the SQUID-on-tip (SOT), which was the first to

achieve single electron spin flip sensitivity [59–61]. Here, the devices are fabricated

by shadow evaporation on a quartz tip with apex diameters down to 50 nm. Spin

sensitivities below 1µB/Hz
1/2 were calculated, even in fields up to 1T. The major

drawback to this design is that the nanoSQUIDs can not be feedbacked to retain

the optimum working point of the V (Φ)-characteristic.

Subject to this thesis is the development and optimization of nanoSQUIDs based on

alternative JJ types as well as their application to investigate small spin systems.

The focus is on suitable designs, high spin sensitivity and stable operation in rather

high magnetic fields. To meet these challenges, two types of nanoSQUIDs based on

different superconductors and JJs were utilized.

Fig. 1.4 (a) shows a sketch of the nanoSQUIDs based on Nb/HfTi/Nb supercon-

ductor/normal metal/superconductor (SNS) JJs [62–65], which were fabricated by

the Physikalisch Technische Bundesanstalt (PTB) in Braunschweig [66, 67]. By ap-

plying electron beam lithography, devices with loop sizes down to 600 × 220 nm2

and linewidths of 250 nm could be realized. The JJs (indicated in yellow in Fig.

1.4 (a)) are square shaped with an area of 200 × 200 nm2 and HfTi thickness of

≈ 25 nm. The main advantage of the usage of normal metal barriers is a high crit-

ical current density of j0 ≈ 105 kA/cm2 which yields sufficiently large values of Ic

even for submicron JJs. At the same time, the JJs are intrinsically shunted, i.e.

show non-hysteretic IVCs even without bulky shunt-resistors. Implemented within

the nanoSQUID is a ”coil-on-chip” to avoid a possible noise source by an external
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Figure 1.4: (a) Layout of Nb nanoSQUID (not so scale). Blue areas indicate Nb and
yellow areas JJs with HfTi barriers. Arrows show paths for bias current Ib (yellow)
and modulation current Imod (red). (b) Layout of the YBCO nanoSQUID (not to
scale). The black dashed line denotes the grain boundary. Intersections with the
YBCO film (grey) give positions of the JJs.

coil. Passing a modulation current Imod through the bottom electrode results in

magnetic flux Φ coupling into the loop. Also, this feature enables flux locked loop

(FLL) operation, to keep the device at the optimum working point during measure-

ments. Due to the sandwich geometry, a magnetic bias field can be applied parallel

to the loop (perpendicular to the HfTi layer) without coupling any flux into the

SQUID or the JJs.

Fig. 1.4 (b) schematically sketches the layout of the YB2Cu3O7 (YBCO)

nanoSQUIDs [68], which are nanopatterned by focused ion beam (FIB) milling

[69–71]. In contrast to the Nb nanoSQUIDs, these devices are based on a pla-

nar geometry, which involves only a single superconducting layer. The black dashed

line in Fig. 1.4 (b) indicates a grain boundary (GB) intersecting the (grey) YBCO

bridges to form two GBJJs. Since the weak links tend to have a hysteretic IVC at
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T = 4.2K, an Au film is evaporated on top of the YBCO, acting as a resistive shunt

and as a protective layer. As for the Nb devices, the YBCO nanoSQUIDs feature a

coil-on-chip for flux-biasing. A magnetic bias field can be applied parallel to the sur-

face perpendicular to the GB without inducing any signals in the SQUID. Regarding

the physical dimensions of the YBCO devices, loop sizes of down to 350× 190 nm2

and linewidths down to ≈ 80 nm were achieved.

Table 1.1 summarizes a few important properties for both types of nanoSQUIDs.

properties Nb YBCO
barrier type normal metal insulator
geometry trilayer monolayer
durability stable degrading
critical temperature Tc [K] 9.2 92
upper critical field Bc2 [T] 1 30
critical current density j0 [A/cm2] 105 105

Table 1.1: Properties of the Nb and YBCO nanoSQUIDs. Tc and Bc2 is the tem-
perature and magnetic field, respectively, above which the superconductive state
collapses. Values for j0 are for T = 4.2K.

In the following chapter 2 publications regarding Nb and YBCO nanoSQUIDs are

summarized. Publication 1 deals with the characterization of Nb nanoSQUIDs as

well as with their noise properties in shielded and unshielded high-field environments.

In Publication 2 we discuss the same issues with respect to the YBCO nanoSQUIDs.

An optimization study for the YBCO nanoSQUIDs with the goal of single electron

spin flip sensitivity is presented in Publication 3. In Publication 4, we use these

results to fabricate the according devices and demonstrate first measurements on

small spin systems.

In chapter 3 we present measurements on magnetic NTs performed simultaneously

with nanoSQUID and cantilever torque magnetometry.
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Chapter 2

Summary of Publications

2.1 Summary of Publication 1:

Nb Nano Superconducting Quantum Interference De-

vices with High Spin Sensitivity for Operation in Mag-

netic fields up to 0.5 T

Subject of the presented study are two Nb nanoSQUIDs which were investigated

at T = 4.2K with respect to noise and high-field suitability. The devices were

fabricated by the PTB in Braunschweig by using electron beam lithography and

argon ion milling [66, 67]. The layout is schematically depicted in Fig. 2.1 (a);

(b) shows a scanning electron microscopy (SEM) image. The samples are based on

a trilayer geometry with Nb/HfTi/Nb SNS type JJs. In contrast to conventional

Nb/Al− AlOx/Nb [72] or constriction type weak links, these junctions are intrin-

sically shunted and have very high critical current densities. Compared to early

works [62], the SQUIDs have a microstrip-like geometry, i.e. the plane of the SQUID

loop is perpendicular to the plane of the substrate. In this configuration, a magnetic

bias field can be applied parallel to the SQUID loop without suppressing the critical

current of the junctions. Furthermore, the bottom electrode can be used to apply

a modulation current Imod to flux bias the device at its optimum working point

without the need of an external coil.

All data were taken at T = 4.2K. Electrical transport measurements exhibit non-

hysteretic IVCs and characteristic voltages of Vc = 50µV. By applying magnetic

flux to the SQUID loop via the modulation current Imod, we recorded the critical
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a)
(a) (b)

Figure 2.1: (a) Sketch of the Nb nanoSQUID. Blue areas indicate the Nb strips
and yellow areas JJs with HfTi barriers (not to scale). (b) SEM image of the
Nb nanoSQUID. Yellow rectangles indicate size and positions of the JJs. Arrows
indicate current paths for the bias current Ib (dashed: symmetric bias; solid: asym-
metric bias) and for the modulation current Imod. Figure adapted from appended
Publication 1. c© American Physical Society.

current Ic as a function of Φ ∝ Imod. From the Ic modulation depth we derived a

screening parameter of βL ≈ 0.2, equivalent to a very low inductance of L ≈ 2.5 pH.

Since S
1/2
Φ ∝

√
L/Vc, we therefore expected extremely low values of the spectral

density of rms flux noise for both devices. To verify this assumption we conducted

noise measurement in an electrically and magnetically shielded environment using a

cryogenic amplifier in a two stage configuration [73] instead of a room-temperature

amplifier as for the transport measurements. The nanoSQUIDs were flux-biased in

the voltage state at the optimum working point, i.e. at VΦ = (∂V/∂Φ)max. The

obtained spectra show a distinctive 1/f -like noise right up to the cut-off frequency

of the electronics, which hampers to make a statement about S
1/2
Φ in the white

(frequency independent) noise limit. By fitting the experimental data to S
1/2
Φ (f) ∝

S
1/2
Φ,w + 1/f 1/2, we find S

1/2
Φ,w = 200 nΦ0/Hz

1/2.

To determine the spin sensitivity for the Nb nanoSQUIDs we use a numerical pro-

cedure which is described in detail in Publication 2, see also [69, 71, 74]. For a

point-like magnetic particle with its magnetic moment ~µ oriented perpendicular to

the plane of the substrate with a distance of 10 nm to the SQUID loop, we find

a coupling factor of φµ = 8.6 nΦ0/µB. This corresponds to a spin sensitivity of

S
1/2
µ = S

1/2
Φ,w/φµ = 23µB/Hz

1/2.

For measurements on magnetic NPs, the nanoSQUIDs should withstand an applied

bias field which alters the magnetization of such a small spin system. Therefore, in

the second part of Publication 1, we investigate the nanoSQUIDs in an unshielded

high-field environment. The setup is equipped with a superconducting split coil
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 (a)

 (b)

Figure 2.2:
(a) Critical current Ic vs applied field
B measurement for field sweep se-
quence 0mT → −9mT → 18mT →
−27mT → 36mT → −45mT →
54mT (0-6). The steep jump at
B ≈ 45mT can be assigned to an
Abrikosov vortex entering the Nb
leads close to the SQUID loop.
(b) Ic(B) measurement for field
sweep sequence 46mT → −46mT →
64mT (1-3) after removing Nb ar-
eas by FIB milling as indicated by
the yellow hatched rectangles in the
SEM image in the inset. The steep
jumps at B ≥ 50mT signal vortex(-
motion) in the Nb leads. Figure from
appended Pulication 1. c© American
Physical Society.

magnet and an alignment system for the SQUID consisting of a rotator and two

goniometers with perpendicular tilt axes. By aligning the bias field parallel to the

plane of the SQUID loop, no flux should penetrate either the loop nor the JJs.

Measurements of the critical current Ic as a function of the applied bias field B

exhibit a hysteresis-like behaviour (Fig. 2.2 (a)), which can be assigned to the

penetration of Abrikosov vortices in the wider superconducting structures. The

effect is eliminated by reducing the linewidth of the connection lines of the SQUID

by FIB milling (Fig. 2.2 (b)).

These findings were implemented into the second generation Nb nanoSQUIDs, i.e.

the linewidth of the connection lines were significantly reduced in the fabrication

process. By repeating the measurements (Fig. 2.3 (a)), we demonstrate a stable

operation in a field interval of ±50mT with minor decrease of Ic. For larger mag-

netic fields, vortices enter the narrow connection lines close to the SQUID loop,

as confirmed in [64]. Noise measurements for different applied fields show only a

slight increase in rms flux noise in the white noise limit (S
1/2
Φ,w ≈ 240 nΦ0/Hz

1/2)

(inset of Fig. 2.3 (a)). Furthermore, we show that even for fields much larger

than 50mT the nanoSQUIDs can still be operated with remarkable sensitivity of

S
1/2
Φ,w ≈ 680 nΦ0/Hz

1/2 (Fig. 2.3 (b)). Assuming that φµ is independent of the ap-

plied field, we calculate spin sensitivities of S
1/2
µ (B ≤ |50mT|) ≤ 29µB/Hz

1/2 and
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Figure 2.3: (a) Critical current Ic vs applied field B measurement for field sweep
sequence 46mT → −46mT → 55mT (1-3; black solid line) and 55mT → −55mT
(3-4; red dotted line). Steep jumps at field values B = ±50mT indicate Abrikosov
vortices in the superconducting structures. The jump at B ≈ 10mT can be assigned
to a vortex escape. Inset shows spectral density of rms flux noise in the white noise
regime S

1/2
Φ,w for different field values; dashed line is a linear fit. (b) Spectral density

of rms flux noise S
1/2
Φ (f) for B = 0mT, 50mT, 500mT. Figure from appended

Publication 1. c© American Physical Society.

S
1/2
µ (B = 0.5T) ≈ 79µB/Hz

1/2.

In summary we could demonstrate that Nb nanoSQUIDs based on SNS type JJs

are suitable for the detection and investigation of small spin systems. The devices

show a very high flux and spin sensitivity in shielded low-field environments as well

as in relatively high magnetic fields up to 0.5T.

Contributions

Publication 1 was done in collaboration with the group of J. Kohlmann and A.

W. Zorin of the PTB in Braunschweig. The samples were fabricated by O. Kieler

and T. Weimann. For this work I conducted the transport characterization of the

nanoSQUIDs, as well as the low- and high-field measurements. T. Schwarz did

the FIB milling procedure to reduce the linewidth of the connection lines of the

nanoSQUIDs to achieve an improved high-field performance. J. Nagel assisted with

the measurements and developed the sample design, while M. Kemmler supported

the interpretation of the results.
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2.2 Summary of Publication 2:

Low-Noise Nano Superconducting Quantum Interfer-

ence Device Operating in Tesla Magnetic Fields

The nanoSQUID presented in Publication 2 is based on the superconductor YBCO.

The fabrication was done as described in [69] in Tübingen. A YBCO film of thickness

dYBCO = 50 nm is grown epitaxially on an SrTiO3 (STO) bicrystal substrate with a

24◦ misorientation GB. In this way the misorientation of the substrate is transferred

to the YBCO film forming a GBJJ. To provide a non-hysteretic behaviour of the

weak link, a dAu = 60 nm gold layer is evaporated on top of the YBCO film, serving

as a shunt resistor. In addition, the Au acts as a protective layer against the following

fabrication processes. 7µm wide bridges were patterned across the GBJJ by optical

lithography and Ar ion milling. In the final process step, the nanoSQUID was

patterned by FIB milling as depicted in Fig. 2.4.

The two junctions have a width of wJ = 130 nm and the SQUID loop has dimensions

of 300 nm × 400 nm. Additionally, a constriction close to the SQUID loop was

patterned, which allows to apply a modulation current Imod coupling magnetic flux

into the loop. In this way it is possible to flux bias the device without the need of

an external coil, similar to the Nb nanoSQUIDs in Publication 1. Also, numerical

simulations of the coupling factor φµ have shown that the constriction constitutes

Figure 2.4: SEM images of the YBCO nanoSQUID. (a) Overall view with the di-
rections of bias (Ib) and modulation current (Imod) shown as arrows. The GB is
indicated by the yellow dashed line. In (b), the physical dimensions of the most
narrow sections are shown. Figure from appended Publication 2. c© American
Chemical Society.
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the optimum position for a magnetic NP [71]. Since JJs and place of optimum

coupling are separated from each other, this design allows for the optimization of

junction properties and φµ independently.

The characterization of the YBCO SQUID is done at T = 4.2K. Low field transport

measurements conducted in a electrically and magnetically shielded environment

yield a characteristic voltage Vc = 130µV. From the modulation depth of the

Ic(Imod)-measurement, we calculate the inductance of the nanoSQUID to L = 36 pH.

This quite large value for L, as compared to the Nb nanoSQUIDs presented in

Publication 1, can be explained by the kinetic inductance Lkin contribution. Since

λL ≈ 250 nm for YBCO is significantly larger than dYBCO = 50 nm and wJ =

130 nm, we expect Lkin to be the dominant contribution to L instead of the geometric

inductance.

To demonstrate the high-field suitability of the YBCO SQUID, the device was

mounted in the high-field setup, as described in the summary of Publication 1.

In contrast to the Nb nanoSQUIDs, now the applied field needs to be oriented along

the plane of the substrate perpendicular to the JJs to avoid suppression of Ic. Even

in magnetic fields up to B = 3T the sample can be operated with only a slight

reduction of Ic. Noise measurements are conducted in the high-field setup using a

cryogenic amplifier. Fig. 2.5 shows the obtained spectra for zero field and in an

Figure 2.5: Rms spectral density of flux noise S
1/2
Φ (f) in B = 0 (black) and B = 1T

(red) for the YBCO nanoSQUID. Table gives characteristic parameters. Figure from
appended Publication 2. c© American Chemical Society.
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applied field of B = 1T.

For B = 0 we find an rms spectral density of flux noise in the white noise limit of

S
1/2
Φ,w = 1.3µΦ0/Hz

1/2. Also, we find a distinctive 1/f -like noise for low frequencies,

which we attribute to critical current fluctuations in the grain boundary junctions

[75]. The relatively high flux noise values can partially be explained by the large

kinetic inductance of the device. At fields of B = 1T we find S
1/2
Φ,w = 2.3µΦ0/Hz

1/2

and also an increase of the 1/f -noise. This rise in flux noise can be associated to a

minor misalignment inducing vortices in the superconducting structures.

Calculations of the coupling factor are shown in Fig. 2.6 and were performed as in

[63]. For a point-like magnetic particle with its magnetic moment oriented along

the x-axis positioned 10 nm above the constriction (disregarding the Au layer; cf.

Figure 2.6: Numerical simulation of φµ. (a) SEM image of the YBCO nanoSQUID.
(b) Contourplot φµ(x, z) for y = 0 as indicated by the yellow dashed line in (a).
Black areas indicate YBCO and yellow areas Au. (c) and (d) show φµ(x) and
φµ(z) linescans, respectively, for the red dashed lines in (b). Figure from appended
Publication 2. c© American Chemical Society.
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Fig. 2.6 (b)), we find φµ = 21 nΦ0/µB which corresponds to a spin sensitivity of

S
1/2
µ = S

1/2
Φ,w/φµ = 62µB/Hz

1/2 in zero field and S
1/2
µ = 121µB/Hz

1/2 at B = 1T. As

can be seen from Fig. 2.6 (c), the very narrow constriction provides a much higher

coupling factor as compared to the area on the left side of the SQUID loop. Fig.

2.6 (d) displays φµ(z). Here, the main finding is that indeed φµ can be increased by

a factor of 2 by removing the Au layer above the constriction. However, it remains

to be shown whether or not this affects the electrical properties of the nanoSQUID.

In summary, we demonstrated that our YBCO nanoSQUIDs have a very high sen-

sitivity regarding flux and spin and can reliably be operated in huge magnetic fields

up to at least B = 1T. Therefore, the devices are the first choice for the detection

of very small magnetic NPs.

Contributions

T. Schwarz fabricated the nanoSQUID and performed the measurements and data

analysis. J. Nagel built the high-field setup, developed the sample design and as-

sisted with the measurements. M. Kemmler also assisted with the measurements.

I did the numerical simulations of the coupling factor and helped optimizing the

high-field setup.
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2.3 Summary of Publication 3:

Optimizing the Spin Sensitivity of Grain Boundary

Junction NanoSQUIDs - Towards Detection of Small

Spin Systems with Single-Spin Resolution

To further improve the performance of the YBCO nanoSQUIDs as designed in Publi-

cation 2, we conducted an optimization study with the goal of significantly enhancing

the spin sensitivity S
1/2
µ = S

1/2
Φ /φµ. Obviously, this can be done via reducing the

spectral density of flux noise S
1/2
Φ and via increasing the coupling factor φµ. Since

S
1/2
Φ ∝

√
L, the spin sensitivity can be improved by further minimizing the SQUID

loop and linewidths. However, this reduction is not only limited by technological

constraints but also by the kinetic inductance Lkin of the used superconducting ma-

terial, which scales inversely with film thickness d and linewidth w. To achieve a

high value of φµ, i.e. a sufficient coupling between nanoSQUID and a particle with

magnetic moment ~µ, the nanomagnet needs to be placed on a narrow constriction

inserted in the SQUID loop. For the design of the YBCO nanoSQUIDs, the posi-

tion of ideal coupling is separated from the grain boundary junctions, allowing for

an independent optimization for S
1/2
Φ and φµ.

L
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e
L
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L
J

L
J

L
b

junctions

constriction

grain boundary

l
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Figure 2.7: Sketch of the YBCO nanoSQUID. Lower-case characters indicate geo-
metric parameters: constriction length lc and width wc and junction length lJ and
width wJ. Capital L indicates inductance of: constriction Lc, junction LJ, edge Le

and bottom part of the SQUID Lb. Yellow dashed line shows position of the grain
boundary. Figure from appended Publication 3. c© Institute of Physics and IOP
Publishing.
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First, we numerically calculate the coupling factor between the nanoSQUID and a

magnetic moment ~µ using three different methods within the software package 3D-

MLSI [74]. A detailed description is given in Appendix A of this thesis. The program

is based on Maxwell and London equations and takes into account the geometry of

the SQUID (Fig. 2.7). For all methods we consider a magnetic particle positioned

10 nm above the center of the constriction, i.e. at wc/2 and lc/2. Method 1 is

similar as in [69]: we consider a virtual point-like magnetic moment ~µ = µêµ close

to the SQUID geometry and calculate the magnetic field distribution ~B(~r) arising

from the screening currents J within the SQUID. The coupling factor is obtained by

φµ(~r, êµ) = êµ · ~B(~r)/J . In methods 2 and 3 we consider two superconducting strips

imitating a magnetic dipole with one Bohr magneton. For the boundary condition

in method 2 we demand the net current around the SQUID loop to be zero, i.e.

we consider ideal flux focussing. By calculating the fluxoid Φfluxoid induced in the

SQUID by the stray field of the particle, we obtain φµ = Φfluxoid/µB. In contrast,

in method 3 we demand the fluxoid in the SQUID loop to be zero, i.e. we consider

ideal flux screening. Here, we obtain the coupling factor φµ = LJ/µB by calculating

the inductance L and the screening current J . All methods yield identical results

φµ(d, wc), verifying the calculations of the coupling factor in previous works.

Figure 2.8: Contributions to calculated spin sensitivity S
1/2
µ . sc(wc) is plotted for

lc = 200 nm, sc(lc) for wc = 60 nm and sβL
(βL) for κ = 0.26. Figure from appended

Publication 3. c© Institute of Physics and IOP Publishing.
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In the next step, we optimize the spectral density of flux noise by using the relation

SΦ = f(βL)Φ0kBTL/I0R with f(βL) = 4(1 + βL) and βL = 2I0L/Φ0. We fix the

critical voltage to I0R = 0.5mV and calculate the inductance L(d, wc, lc, wJ, lJ) as a

function of all relevant geometric parameters, which yields S
1/2
Φ (d, wc, βL).

With the terms for φµ(d, wc) and S
1/2
Φ (d, wc, βL), we now are able to give an analytical

expression for S
1/2
µ , which splits into three independent parts:

S1/2
µ = S

1/2
µ,0 sd(d)sβL

(βL)sc(wc, lc)

The three contributions are plotted in Fig. 2.8, while sc(wc, lc) has been split into

sc(wc) and sc(lc). sd(d) shows a shallow minimum around d ≈ 120 nm. For thicker

films the decrease of the coupling factor seems to counterbalance the decrease in

kinetic inductance. sβL
(βL) shows a clear minimum at βL,min ≈ 0.83. However, it

becomes apparent that sβL
(βL) is also a function of κ ∝ (lJ + lc)j0. The evaluation

of sβL
(βL) yields βL,opt = 0.4 for κ ≈ 0.09, which gives a relation between the

optimum junction length lJ,opt and constriction length lc. Thus, the choice of lc

fixes lJ,opt. Finally, the contributions sc(lc) and sc(wc) depend on each other. sc(lc)

yields a monotonic decrease, while sc(wc) shows a clear minimum. Position and

value depend on lc; a detailed analysis shows that lc should be as small as possible,

which then determines the optimum choice for wc.

Figure 2.9: Sµ,opt(wc, lc) for optimum values dopt = 120 nm and βL,opt = 0.4. The
dotted and the dashed lines show wc,min(lc). The solid line indicates Sµ,opt(lc) for
wc = wc,min. Figure from appended Publication 3. c© Institute of Physics and IOP
Publishing.
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Fig. 2.9 shows S
1/2
µ,opt for optimum values of βL,opt = 0.4 and dopt = 120 nm. The

coloured lines give S
1/2
µ,opt(wc, lc), the dashed and dotted lines show wc,min(lc) and the

numbers within the plot give the according spin sensitivity in units of µB/Hz
1/2.

It becomes apparent, that by shrinking down lc, S
1/2
µ ≈ 1µB is achievable, how-

ever realizing wc,min becomes impossible with current FIB technology. Still, if we

assume more realistic values, e.g. wc = 60 nm, lc = 100 nm and lJ = 200 nm, spin

sensitivities of down to S
1/2
µ = 2.4µB/Hz

1/2 are feasible.

In summary, we could achieve a significant improvement of the spin sensitivity S
1/2
µ

in the thermal white noise limit for the specific design of our YBCO nanoSQUIDs.

By applying numerical methods, we find optimum values for the crucial geometrical

parameters d, wc, lc, wJ and lJ yielding S
1/2
µ ≈ 1µB/Hz

1/2. While most of these

conditions can be fulfilled with currently available fabrication technology, the ex-

tremely small size of the constriction demands for novel patterning techniques, e.g.

the use of focused He/Ne ion beam milling [76]. By fabricating the corresponding

devices, we find good agreement with the theoretical predictions.

Contributions

For the third publication I developed the methods for the determination of the

coupling factor and did the main part of the numerical simulations. B. Müller

assisted with the simulations and the data analysis. T. Schwarz underpinned the

results by fabricating the corresponding nanoSQUIDs and wrote a C based program

to automate the numerical simulations.
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2.4 Summary of Publication 4:

Low-Noise YBa2Cu3O7 Superconducting Quantum In-

terference Devices for Magnetization Reversal Measure-

ments on Magnetic Particles

With regard to Publication 2, we learned that YBCO nanoSQUIDs are indeed suit-

able for the detection of nanoscale magnetic systems. However, the flux sensitivity

of the presented device is far off from state-of-the-art nanoSQUIDs. Considering

Publication 3, we were able to show that by choosing proper geometrical param-

eters it should be feasible to reach rms flux noise levels of S
1/2
Φ < 100 nΦ0/Hz

1/2,

resulting in a spin sensitivity of a few Bohr magnetons. In the study at hand we

present an optimized YBCO nanoSQUID with the aforementioned attributes and

in addition show first measurements on a small spin system, namely an iron filled

carbon nanotube.

The layout of the YBCO nanoSQUID is similar to the devices shown in previous

works, cf. Fig. 2.10. Consequently, the physical dimensions were to the greatest

possible extent adjusted to the optimum values discussed in the optimization study.

Film thickness dYBCO = 120 nm as well as junction width wJ ≈ 200 nm are increased

and the loop size is shrinked to 350× 190 nm2 to reduce the kinetic inductance con-

tribution to the overall inductance of the device. Hence, we achieve a larger char-

acteristic voltage Vc = 2mV at T = 4.2K and a by a factor of 10 lower inductance

Figure 2.10: SEM image of the optimized YBCO nanoSQUID. Arrows indicate
current paths for Ib (orange) and Imod (red). Dashed yellow line represents the GB.
Figure from appended Publication 4. c© American Physical Society.
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L = 3.9 pH, as compared to the previous device. The corresponding measurement of

the spectral density of rms flux noise is shown in Fig. 2.11 (a). Since the spectrum

is dominated by 1/f -like noise up to the cut-off frequency of the electronics, we can

only give an upper limit of the white noise flux level S
1/2
Φ,w = 50 nΦ0/Hz

1/2 above

f = 7MHz. This extremely low value is on par with state-of-the-art nanoSQUIDs

[60] and eventuates in a spin sensitivity of S
1/2
µ = 3.7µB/Hz

1/2. The obvious draw-

back regarding the spectrum in Fig. 2.11 (a) is a reduced flux sensitivity for low

frequencies f ≤ 100Hz which is problematic since magnetization reversal of e.g.

magnetic nanoparticles typically occurs in this frequency range. To overcome this

Figure 2.11: S
1/2
Φ (f) for the optimized YBCO nanoSQUID measured in at T = 4.2K

(a) open loop and in (b) FLL (red) as well as with bias reversal (br) (blue). The
dashed lines in both plots represent fits to the data. Horizontal lines indicate noise
level in the white limit. Figure from appended Publication 4. c© American Physical
Society.
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handicap, a bias reversal (br) readout scheme is applied to the nanoSQUID [73],

which eliminates the noise contributions of in- and out-of-phase critical current fluc-

tuations in the JJs (s. Fig. 2.11 (b)). The obtained spectra show that the 1/f -like

noise can not entirely be eliminated by the br technique, indicating that another

process of fluctuation is involved. At the time of writing this thesis, the origin

of this process is unknown, however, we can exclude the existence and motion of

Abrikosov vortices in the superconductor since the linewidth of the device is very

narrow and the measurements were conducted in a well shielded environment. A

possible explanation for this effect are defects in the STO substrate caused by the

FIB milling process [77]. Especially oxygen vacancies with magnetic moment come

into question [78, 79].

The second part of the study deals with the measurement on an iron nanowire encap-

sulated in a multiwall carbon nanotube (FeCNT) [80–82]. For this purpose, another

(not optimized) YBCO nanoSQUID was fabricated on which the nanoparticle was

located (s. Fig. 2.12). The Fe nanowire has a diameter of 39 nm, a length of roughly

14µm and was positioned near the SQUID loop opposite to the constriction. This

position does not constitute the region of optimum coupling (cf. Publication 2 and

3), but prevented the fragile parts of the device from taking damage during the

positioning.

Figure 2.12: SEM image of the FeCNT attached to the nanoSQUID. The magnetic
bias field is applied along the x-direction. Figure from appended Publication 4. c©
American Physical Society.
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Figure 2.13: Hysteresis loop Φ(H) of the FeCNT measured with the not optimized
YBCO nanoSQUID. Left axis shows corresponding magnetization M(H); dashed
red lines show the literature value for the saturation magnetization ±Ms. Figure
from appended Publication 4. c© American Physical Society.

By applying a magnetic field parallel to the wire axis, i.e. along the x-direction,

we were able to trace out hysteresis curves of the Fe nanowire while running the

YBCO nanoSQUID in FLL (s. Fig. 2.13). The nucleation field Hn ≈ ±100mT is in

accordance with theoretical predictions and indicates a reversal process by curling

of magnetization [83]. Furthermore, the hysteresis loop shows a very good signal-

to-noise ratio as compared to measurements conducted on similar Fe nanowires by

micro-Hall magnetometry [83]. By calculating and integrating the coupling factor

over the entire volume of the particle, we are able to theoretically determine the

total amount of flux coupled into the SQUID loop by the fully magnetized iron

wire. The prediction is conform with the experiment, underpinning once more the

validity of our numerical model.

In the supplemental data we investigate an additional YBCO nanoSQUID with

respect to frequency-dependent excess noise [84] by numerical methods [85] as a

function of temperature. However, we found no systematic dependence on T . Similar

to the device in the main part of Publication 4, we find that the br technique can

not entirely eliminate 1/f -noise. Furthermore, the characteristics of the YBCO

nanoSQUID used for the measurements on the iron nanowire are discussed in detail.

Even though the device is by no means optimized with regard to flux and spin
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sensitivity, we were able to investigate the NW, revealing the huge potential of

YBCO based nanoSQUIDs for nanomagnetometry.

In conclusion, we fabricated an optimized YBCO nanoSQUID able to detect the

flipping of the spin of only a few electrons under convenient conditions. We were

able to at least reduce the low-frequency excess noise by applying a bias reversal

readout technique. Finally, we demonstrated that even a non optimized device is

able to detect the magnetization reversal of an iron nanowire with excellent signal-

to-noise ratio.

Contributions

This study was done in collaboration with the group of B. Büchner at the Leibnitz-

Institut für Festkörper- und Werkstoffforschung (IFW) in Dresden. The group pro-

vided the Fe nanowire and the positioning of the wire on the nanoSQUID was done by

C. F. Reiche. The nanoSQUIDs were fabricated by T. Schwarz who also conducted

the measurements at T = 4.2K. B. Müller performed the measurements at variable

temperatures. M. J. Mart́ınez-Pérez assisted the measurements and supported the

interpretation of the results. I determined the optimum SQUID parameters and the

coupling factor for the nanoSQUID. Furthermore, T. Schwarz and me optimized the

measurement setup and the readout electronics.
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Chapter 3

Magnetic Nanotubes Studied by

Torque and NanoSQUID

Magnetometry

In the final chapter of this thesis, we discuss measurements conducted on different

magnetic nanotubes with combined torque and nanoSQUID magnetometry [64, 65,

86]. The basic constituents of the setup are depicted in Fig. 3.1.

nanoSQUID

nanotube

LASER

cantilever

x

z

y

Bz

Figure 3.1: Sketch of the setup (not to scale) used for torque and nanoSQUID
magnetometry. The cantilever is shown in black along with an attached magnetic
NT in green. A Laser is focused on the wide paddle of the cantilever to read out its
resonance frequency. The nanoSQUID is mounted below the NT. Blue areas indicate
Nb and yellow areas JJs with HfTi barriers. A magnetic field can be applied in the
z-direction, i.e. along the axis of the NT.
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We use a Nb nanoSQUID with SNS type JJs, similar as in Publication 1, with the

main difference being that the devices are not based on two T-shaped Nb arms

lying on top of each other, but rather on two Nb strips separated by the two SNS

JJs. The revised design allows for operation in larger magnetic fields, i.e. the

threshold value at which Abrikosov vortices enter the Nb strips is raised to ≈ 90mT

at T = 4.2K. Furthermore, by doubling the characteristic voltage Vc, we achieve

S
1/2
Φ ≈ 190 nΦ0/Hz

1/2 in the white noise regime, which corresponds to an improved

spin sensitivity of S
1/2
µ ≈ 18µB/Hz

1/2. It is worth noting here, that with the so far

best Nb nanoSQUID with the revised design, we achieve S
1/2
Φ ≈ 110 nΦ0/Hz

1/2 and

S
1/2
µ ≈ 9.7µB/Hz

1/2, however these devices have not yet been implemented into the

setup.

The single-crystal Si cantilever is fabricated by selective Si epitaxy and patterned

by optical lithography and plasma etching. An individual magnetic NP, in this case

a magnetic NT, can be attached to the cantilever. Therefore, a drop of epoxy glue

is located on the tip of the cantilever via an omniprobe needle and then the NT is

placed on the tip by the help of a second needle. A magnetic field Bz can be created

in z-direction by a superconducting coil, inducing torque on the cantilever due to

the interaction of the applied field and the magnetic moment of the NT. The torque

leads to a change in the resonance frequency fres of the cantilever, which is read

out by a Laser interferometer. To increase the signal-to-noise ratio of the frequency

measurement, the cantilever is additionally exited via a piezo.

Recent works have shown that hollow tubular nanostructures can be synthesized

reliably and are potentially helpful for applications in biotechnology [3, 87–89]. Also,

in contrast to magnetic nanowires, NTs exhibit more controllable reversal processes

due to the absence of magnetic vortex cores or Bloch points [90]. The relatively low

coercive fields in the range of ≈ 10mT predestine this type of magnetic system for

magnetometry with the Nb nanoSQUIDs.

Two different NTs were investigated: (a) Permalloy (Py) and (b) a compound of

Co and Fe (CoFeB) [91]. The basic geometry of both tubes is depicted in Fig. 3.2

(a). The core of the tubes is made of the semiconductor GaAs and has a radius of

ri ≈ 80 nm. The GaAs is coated with a thin shell of ferromagnetic (FM) material,

defining the outer radius ro ≈ 110 nm. Along with the length L of the tube and the

magnetic exchange length λex of the respective material, these parameters define

the magnetic equilibrium state of the tube. Fig. 3.2 (b) shows the theoretically

predicted phase diagram for the three possible magnetic states as a function of

tube dimensions. We find that for very thin and long tubes, the magnetization will
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Figure 3.2: (a) Basic geometry of the magnetic NTs. Grey areas represent the
magnetic shell. The inner core is GaAs. (b) Phase diagram for magnetic NTs:
Normalized length L vs normalized outer radius ro as a function of the possible
equilibrium states, which are illustrated by the two insets, with arrows indicating
the orientation of local magnetic moments. Dotted and dashed lines give phase
transitions for β = ri/ro = 0.5 and β = 0.9, respectively. Red (blue) star indicates
position of the investigated Py- (CoFeB-) NT in the phase diagram. Figure adapted
from [91].

be uniform, i.e. all magnetic moments are oriented along the axis of the NT. For

thick and short tubes, the magnetization configuration will prefer the vortex state,

which features no magnetic stray field [92]. However, for the investigated Py- and

CoFeB-NTs, it becomes apparent that the mixed state is favored, which in essence

is a superposition of the former two. A similar phase diagram can be calculated

for the reversal mechanism in magnetic NTs. Here, we find the propagation of

a vortex domain wall to be the dominant magnetization reversal process for the

studied samples.

An extract of the experimental results obtained from measurements on the CoFeB-

NT is shown in Fig. 3.3. With the use of a three-stage piezo system for motion in x-,

y- and z-direction, we can scan the nanoSQUID close to the NT, while operating the

SQUID at the optimum working point in open loop mode. Prior to these measure-

ments, the NT was magnetized at B = 3T, while the scanning was performed in zero

field. The obtained coupling scan Φ(x, y, z = 1µm) is shown in Fig. 3.3 (a). Bright

(dark) areas represent positions where the NT couples positive (negative) flux into

the SQUID loop, cf. colour bar to the right of the plot. The Φ-asymmetry in the con-

tour plot can be attributed to a minor misalignment of the plane of the SQUID with

respect to the y-direction. The long yellow rectangle indicates the position of the Nb
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Figure 3.3: (a) Coupling map Φ(x, y, z = 1µm). The yellow rectangles show position
of the Nb strips and the nanoSQUID loop. (b) Hysteresis Φ(Hext) loop recorded with
the CoFeB-NT positioned according to the blue point in (a). (c) Hysteresis loop
with the NT located as indicated by the red point in (a).
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strips and the smaller rectangle represents the nanoSQUID loop. The blue and the

red point show the positions where the NT was located for the hysteresis measure-

ments Φ(Hext) in (b) and (c). For the measurement shown here, the voltage drop

across the nanoSQUID is amplified by a second stage series SQUID array (SSA), to

exploit the full sensitivity of the device. In addition, both stages are operated in

FLL during the field sweeps. Fig. 3.3 (b) displays a quite rounded hysteresis loop

with nucleation fields around µ0Hn ≈ ±25mT. Moreover, the CoFeB-NT seems to

favor an intermediate magnetic state which produces almost no stray field coupling

into the SQUID as indicated by the red horizontal line in Fig. 3.3 (b). A global

vortex-like configuration of the magnetization, however, seems unlikely since theory

predicts a mix of a uniform state and a vortex-like state for the NTs under inves-

tigation (cf. Fig. 3.2 (b)). Since the nanoSQUID is most sensitive to the bottom

end of the NT [65], one can envision a reversal process involving the nucleation of

a vortex wall in the lower portion of the NT which counterbalances the stray field

of the vortex configuration at the bottom end. In this scenario, the SQUID would

detect no magnetic flux, while net magnetization of the NT would remain finite, as

it is seen by cantilever magnetometry.

Fig. 3.3 (c) shows the hysteresis loop as measured at a position which corresponds to

the red point in Fig. 3.3 (a), i.e. roughly 200 nm closer (in y-direction) to the SQUID

loop as compared to the blue point. Obviously, the peak-to-peak signal increases,

but also the hysteresis becomes more rounded and additional steps occur, while some

are more pronounced than before. We assign this behavior to the nucleation of a

vortex wall at the bottom end of the NT, as discussed before, since the nanoSQUID is

now more sensitive to signals arising from magnetization components in y-direction.

To reveal the true nature of the magnetization reversal process of the CoFeB-NT,

micromagnetic simulations as in [65] will be applied in the near future.

Continuing with the Py-NT, we conducted similar measurements as for the CoFeB

sample. Fig. 3.4 shows the first and second hysteresis measurement right after

cooling the sample to T = 4.2K in zero field. Both curves are shifted to the left

with respect to the field axis, indicating the involvement of an antiferromagnetic

(AFM) constituent in the Py shell, leading to an exchange bias effect [93–95]. X-ray

absorption spectroscopy (XAS) conducted on different Py-NT at the Paul-Scherrer-

Institut (PSI) in Switzerland indeed revealed that the samples are coated with a

thin AFM layer (< 5 nm) of FeO and presumably NiO. The shift in the hysteresis

loops is described by the exchange bias field Hex = 1
2
(|Hl + |Hr|), where Hl and Hr

are the switching fields on the left and right side of the hysteresis curve, respectively.
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Figure 3.4: (a) First hysteresis loop and (b) second hysteresis loop of the Py-NT.
The vertical red lines indicate the exchange bias field.

Fig. 3.4 (b) shows the second hysteresis loop recorded shortly after the first one.

Hex has slightly decreased, which is common for exchange bias systems, known as

the training effect. Furthermore, the measurements show similar roundings as for

the CoFeB samples, indicating that the nucleation and propagation of domain walls

is the dominant reversal mechanism. The interaction between the FM and the AFM

layer also seems to have an effect on the switching of the magnetization, since the

reversal for positive fields appears to involve more domain walls than the reversal

for negative fields.

Fig. 3.5 schematically depicts the exchange bias effect: (a) shows the characteristic

hysteresis loop and (b) the configurations of the magnetization of the FM and AFM

layer. We start at T = 300K which is in between of the Curie temperature for

Py (TC ≈ 800K) and the Néel temperature of FeO (TN ≈ 200K). For the sake

of simplicity, we assume the FM layer to be in a fully magnetized state. In the

next step, the system is cooled down to below TN ≈ 200K in an applied magnetic

field Hcool, which is usually in the range of 100mT. This leads to a magnetization

of the AFM layer as depicted by picture 1 in Fig. 3.5 (b) which corresponds to

point 1 in the hysteresis loop of Fig. 3.5 (a). By applying an external field Hext

opposite to Hcool, the switching of magnetization occurs at −(Hc+Hex) (point 2 and

3), since Hext has not only to overcome Hc but also the internal field arising from

magnetization of the AFM which is closest to the FM layer. Reversing the applied

field, leads to switching at lower field values, because now Hext and the internal field

add up (point 4). The result is a hysteresis loop which is shifted to the left, without
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(a) (b)

Figure 3.5: (a) Characteristic hysteresis loop for an exchange bias system. (b)
Magnetization configurations for the FM and AFM layer. Here, TN is the Néel
temperature of the AFM and TC is the Curie temperature of the FM.

loss of generality. Note that for the measurements shown in Fig. 3.4, the Py-NT

was cooled in zero field. However, hysteresis loops performed after cooling in an

applied field of µ0Hcool = 200mT showed no significant differences.

While the origin of the exchange bias effect is well understood, the nature of the

training effect is not (see e.g. [96–98] and references therein). Fig. 3.6 displays the

evolution of the exchange bias field with consecutive hysteresis loops Hex(n). The

red curve is a fit to the data according to Hex(n) = He
ex + κ/

√
n, with the exchange

bias field in the limit of infinite loops µ0H
e
ex = 2.6mT and a system dependent

constant µ0κ = 7.8mT. The obtained fit parameters are more or less in accordance

with literature, but provide no further insight into the microscopic character of the

training effect. To explain this effect, several models have been developed over the

years, however the underlying mechanism remains controversial. To just take a

single example, A. Hoffmann [99] assumes the existence of various anisotropy axes

within the AFM layer that initially stabilize a non-collinear configuration of the

AFM spins. With growing number of hysteresis loops n, this arrangement relaxes

into a collinear configuration.

It is well known that exchange bias systems exhibit a critical temperature above
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Figure 3.6: Exchange bias field as a function of loop number. Red line is a fit to the
data points. Inset shows evolution of the switching fields |Hl|(n) (black points; left
axis) and Hr(n) (red points; right axis).

which Hex vanishes, known as the blocking temperature TB [100–103]. For bulk size

AFM, TB = TN, but with shrinking dimensions of the AFM, TB should approach very

low temperatures. Due to the limited range of operation temperature for the Nb

nanoSQUID, below Tc ≈ 9K, we conducted cantilever magnetometry to find TB for

the Py-NT, because the properties of the cantilever do not significantly change in the

low temperature regime (≤ 50K). We find that Hex drops to zero for T ≈ 13K and

furthermore that the hysteresis loops become symmetric with respect to the nature

of the reversal mechanism, unlike in Fig. 3.4. Just like the XAS measurements, the

low TB indicates a very thin AFM layer of just a few nm thickness.

In summary of chapter 3, we found that nanometer sized magnetic nanotubes feature

a huge variety of interesting effects. Nb nanoSQUIDs are highly suitable for the

exploration of these systems because of their relatively large magnetic field tolerance

and extremely high flux and spin sensitivity. However, to gain a more detailed

comprehension of nanomagnetism, numerical methods need to be applied to the

specific geometries of the samples under investigation.

The measurements were preformed in a collaboration with A. Buchter, M. Wyss

and M. Poggio at the Department of Physics of the University of Basel, Switzer-

land. The magnetic nanotubes were fabricated by D. Rüffer, E. Russo-Averchi, A.

Fontcuberta I Morral of the Laboratoire des Matériaux Semiconducteurs EPF in
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Lausanne, Switzerland and by R. Huber, P. Berberich, D. Grundler of the Physik-

Department E10 of the Technische Universität München, Germany.



36 Magnetic Nanotubes Studied by Torque and NanoSQUID Magnetometry



Appendix A: Numerical

Simulations of the Coupling Factor

In this Appendix, the methods as used in Publication 3 for deriving the coupling

factor φµ are discussed. For this purpose, we use the software package 3D-MLSI for

numerical simulations of current distributions and inductances in superconducting

thin films [74]. The central quantity is the thickness-integrated current density

~J(x, y) =

∫
dz~j(x, y, z) = (Jx, Jy), (1)

called sheet current density [104]. Since ∇· ~J = 0 in the thin film, ~J can be expressed

by a scalar potential g(x, y), called stream function, with the property

~J = −ẑ ×∇g = ∇× (ẑg) = (∂g/∂y,−∂g/∂x). (2)

In other words, the contour lines of g(x, y) are the current stream lines and the

difference g(x1, y1) − g(x2, y2) is the current that crosses the line connecting the

points (x1, y1) and (x2, y2) within the film. Furthermore, using stationary London

and Maxwell equations

λ2
L∇× ~J + ~H = 0, (3)

∇× ~H = ~J, (4)

external magnetic fields ~H can be included and fields arising from the current sheet

can be calculated. Beyond that, the software package enables to determine the

inductance matrix by calculating the full energy of a set of superconductors, as well

as fluxoids for holes in superconductors. For details see [74, 104, 105] and references

therein.

The numerical procedure of 3D-MLSI is based on the finite-element-method (FEM).

The thin film superconductors are subdivided into smaller (finite) parts (triangles)
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Figure A1: (a) Triangulation of a superconducting ring. (b) 3D-MLSI output: the

current distribution ~J(x, y) is indicated by the yellow arrows, white lines indicate

equipotential lines of the stream function g(x, y). Amplitude of the ~J(x, y) is en-
coded in colour with red areas indicating locations of high current density.

within which the system of partial differential equations (3), (4) is solved. For the

boundary conditions, g(x, y) = 0 at the edges of the films and g(x, y) = const.

inside an isolated hole or slit within the film. Fig. A1 (a) shows an example for

the subdivision of a superconducting ring into triangles (triangulation) and (b) the

corresponding current distribution for an applied field B = 1mT normal to the

surface of the film and zero trapped flux in the hole.

Method 1

Method 1 is similar to the approach first presented in [69]. First we give 3D-MLSI

the exact physical dimensions of the nanoSQUID and choose an arbitrary value

(1mA) for the total current Jtotal circulating around the SQUID hole. With the

corresponding sheet current density distribution ~J(x, y) we calculate the magnetic

field distribution ~B(~r) generated in 3D space in the vicinity of the device. The

coupling factor is obtained from

φµ = −êµ · ~B(~r)/Jtotal, (5)

with êµ being the unit vector along the direction of the magnetic moment ~µ = µêµ at

position ~r. Note that in this case the magnetic moment is ”virtual” and point-like.

But also for finite size magnetic objects, φµ can be derived by integrating the
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coupling factor over the corresponding volume of the object [64]. In earlier works

[62, 63, 69] we used two current sheets located at the upper and lower surface

of the superconductor and calculated an averaged < ~B(~r) > arising from two

sheets. However, if one is interested in the scaling of φµ with film thickness d, it is

appropriate to use more current sheets to avoid numerical artefacts, as shown in

Publication 3. As a result, we found that φµ is up to 20% smaller if a more realistic

number of sheets (n = 11, 101) is considered.

Method 2

Since the derivation of (5) in [69] was rather controversial, we developed another

approach to the problem. Instead of considering a virtual magnetic moment near

the SQUID loop, we construct a ”quasi-dipole” with finite size within 3D-MLSI,

cf. Fig. A2. Obviously, the simplest way to mimic a magnetic dipole would be a

circulating current in a tiny ring. However, within 3D-MLSI, it is not possible to

construct such an object in the x-z-plane forming a dipole in y-direction, as it is

favorable for the YBCO nanoSQUID design. Instead, we consider two strips lying

on top of each other as depicted in Fig. A2. Currents flowing along êx (−êx) in

the lower (upper) strip create a quasi-dipole field with a magnetic moment oriented

along −êy. The currents can be adjusted to generate the magnetic moment of a

x

y

z

Figure A2: Sketch of the YBCO nanoSQUID (grey) as presented in Publication 2,
3 and 4 and the quasi-dipole (blue) formed by two superconducting strips (not to
scale). Yellow arrows indicate currents which generate a magnetic dipole field.



40 Appendix A: Numerical Simulations of the Coupling Factor

(a) (b)

Figure A3: Current and field distribution for the case of ideal flux focussing (a) and
ideal screening (b) for a simple superconducting ring in a homogenous magnetic field
B applied normal to the film surface. For reasons of clarity, the current paths are
emphasized by yellow arrows. Magnetic field lines are indicated in grey.

single Bohr magneton µB. The quasi-dipole formed in this manner does not feature

the magnetic field distribution of an ideal dipole, since the strips are not connected.

However, the field generated by the missing links is of minor relevance, since it would

not interact with the superconducting structures or the SQUID hole. In Fig. 2 of

Publication 3 it is shown that the quasi-dipole is a very good approximation to an

ideal magnetic dipole with only minor deviations of around 1%.

To get access to φµ, we use problem 3 (”pb = 3”) within 3D-MLSI, which allows

for setting the total current circulating around the hole to a desired value by the

command line ”hc i n”, with i being the hole number and n the total current. We

choose Jtotal = 0, which means that the screening currents in the superconducting

structures induced by the magnetic field of the quasi-dipole are counterbalanced so

that there is no net current circulating in the loop. The situation corresponds to the

case of ideal flux focussing and is schematically shown in Fig. A3 (a) for a simple

superconducting ring. In this case the output of 3D-MLSI is the fluxoid φfluxoid

induced in the SQUID hole by a magnetic moment with an amplitude of one Bohr

magneton. Thus, we can interpret the result as the coupling factor φµ = φfluxoid/µB.

Similar to Method 1, the calculation is deployed for n = 11 current sheets.
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Method 3

For Method 3 we again consider the quasi-dipole as introduced in Method 2. In

contrast to the former approach, we now use problem 2 (”pb = 2”) within 3D-

MLSI, which allows to fix the number n of flux quanta trapped in the hole with

number i to a desired value by the command line ”hc i n”. For our purposes, we set

n = 0, which means the loop will induce screening currents that shield the magnetic

field generated by the quasi-dipole, i.e. we consider the case of ideal screening (cf.

Fig. A3 (b)). The coupling factor φµ = LJscreen/µB is obtained by computing the

total screening current Jscreen and the inductance L of the bare SQUID (without

quasi-dipole). As before, the calculation is performed for n = 11 current sheets.

As already pointed out in the summary of Publication 3, the three Methods yield the

same results and therefore constitute a valid approach for calculating the coupling

factor.
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Appendix B: List of acronyms and

physical constants

List of acronyms

3D-MLSI 3-dimensional multilayer superconducting integrated circuits

AFM antiferromagnet/antiferromagnetic

br bias reversal

cJJ constriction type Josephson junction

CNT carbon nanutube

dc direct current

FEM finite-element-method

FIB focused ion beam

FLL flux locked loop

FM ferromagnet/ferromagnetic

GB grain boundary

IFW Leibnitz-Institut für Festkörper- und Werkstoffforschung

IVC current-voltage-characteristic

JJ Jospehson junction

NP nanoparticle

NT nanotube

NW nanowire

PSI Paul-Scherrer-Institut

PTB Physikalisch Technische Bundesanstalt

Py Permally

rf radio frequency

rms root mean square

SEM scanning electron microscopy

SNS superconductor normal metal superconductor
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SOT SQUID-on-tip

SQUID superconducting quantum interference device

SSA series SQUID array

STO strontium titanate

XAS X-ray absorption spectroscopy

YBCO yttrium barium copper oxide YBa2Cu3O7

List of physical constants

µB = 9.274 · 10−24 J/T Bohr magneton

Φ0 = 2.072 · 10−15Tm2 magnetic flux quantum

µ0 = 4π · 10−7Tm/A vacuum permeability

kB = 1.38 · 10−23 J/K Boltzmann constant
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hardt and B. Büchner. Magnetic Force Microscopy Sensors Using Iron-Filled

Carbon Nanotubes. J. Appl. Phys., 99, 104905, 2006.

[81] A. Leonhardt, S. Hampel, C. Müller, I. Mönch, R. Koseva, M. Ritschel, D.

Elefant, K. Biedermann and B. Büchner. Synthesis, Properties, and Applica-

tions of Ferromagnetic-Filled Carbon Nanotubes. Chem. Vap. Deposition, 12,

380-387, 2006.
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Magnetic Force Microscopy Sensors Providing In-Plane and Perpendicular Sen-

sitivity. App. Phys. Lett., 101, 112401, 2012.

[83] K. Lipert, S. Bahr, F. Wolny, P. Atkinson, U. Weißker, T. Mühl, O. G. Schmidt,
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We investigate electric transport and noise properties of microstrip-type submicron direct current

superconducting quantum interference devices (dc SQUIDs) based on Nb thin films and

overdamped Josephson junctions with a HfTi barrier. The SQUIDs were designed for optimal spin

sensitivity S1=2
l upon operation in intermediate magnetic fields B (tens of mT), applied

perpendicular to the substrate plane. Our, so far, best SQUID can be continuously operated in

fields up to B � 650 mT with rms flux noise S
1=2
U;w � 250 nU0=Hz1=2 in the white noise regime

and spin sensitivity S1=2
l � 29 lB=Hz1=2. Furthermore, we demonstrate operation in B¼ 0.5 T

with high sensitivity in flux S
1=2
U;w � 680 nU0=Hz1=2 and in electron spin S1=2

l � 79 lB=Hz1=2. We

discuss strategies to further improve the nanoSQUID performance. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4804673]

Recent developments in miniaturized submicron-sized

direct current (dc) superconducting quantum interference

devices (SQUIDs) are motivated by the need of sensitive

detectors for small spin systems such as molecular

magnets1–3 and magnetic nanoparticles,4 cold atom clouds,5

or single electrons and atoms6 and improved resolution in

scanning SQUID microscopy.7–12 As a common approach,

nanoSQUIDs based on constriction Josephson junctions (JJs)

have been used,13–19 achieving root mean square (rms) flux

noise power S
1=2
U down to a few 100 nU0=Hz1=2 (U0 is the

magnetic flux quantum) in magnetically shielded environ-

ment.20 However, constriction JJs, even if resistively

shunted, often show hysteretic current-voltage-characteris-

tics (IVCs). This hampers continuous SQUID operation as

required for the investigation of magnetization dynamics of

magnetic particles and the use of common SQUID electron-

ics, developed for readout of very sensitive dc SQUIDs with

nonhysteretic JJs. Furthermore, the noise properties of con-

striction JJs are not well understood, which makes SQUID

optimization difficult.

An alternative approach is the use of submicron

superconductor-normal conductor-superconductor (SNS)

sandwich-type JJs, which offer large critical current densities

in the 105 A=cm2 range and which are intrinsically shunted,

providing nonhysteretic IVCs without the need of bulky

external shunt resistors.21 In a standard thin film SQUID ge-

ometry, the SQUID loop and the JJ barrier are in the plane of

the thin films. For detection of magnetization reversal of a

small magnetic particle, one applies an external magnetic

field in the plane of the SQUID loop and detects the change

of the stray field coupled to the SQUID upon magnetization

reversal, without coupling the external field to the SQUID.

However, in this case, the applied field also couples mag-

netic flux into the JJ barrier and reduces its critical current,

which in turn reduces the SQUID sensitivity. In order to

avoid this problem, in this letter we present results on a

modified SQUID design, which takes advantage of the multi-

layer technology used for SNS JJ fabrication. This approach

allows for a further reduction of the SQUID inductance and

hence improved SQUID sensitivity and at the same time

operation in higher magnetic fields.

The Nb thin film dc SQUIDs have a microstrip geome-

try, i.e., the two 250 nm wide arms of the SQUID loop lie

directly on top of each other. The 200 nm thick bottom and

160 nm thick top Nb layers are separated by a 225 nm thick

insulating SiO2 layer and are connected via two JJs with

areas 200� 200 nm2 and a nominally 24 nm thick HfTi bar-

rier (see Fig. 1). HfTi was chosen as a barrier material as,

among other binary materials, it provides a relatively high

resistivity, does not become superconducting at 4.2 K, and is

compatible with our fabrication technology. For details on

sample fabrication and JJ properties we refer to Refs. 21–23.

The size of the SQUID loop is defined by the 1:6 lm spacing

between the JJs and by the SiO2 interlayer thickness. In con-

trast to earlier work,21 for this geometry a sufficiently large

magnetic field B can be applied perpendicular to the sub-

strate plane without inducing a significant magnetic flux pen-

etrating either the SQUID loop or the junction barrier.

Furthermore, this design provides a very small area of the

SQUID loop and hence a very small SQUID inductance L of

a few pH or even lower. This is essential for reaching ultra-

low values for the spectral density of flux noise power SU.24

For current and flux biasing, additional 250 nm wide Nb

lines are connecting the SQUID in a cross-shape geometry,

and a bias current Ib, flowing from the top Nb layer through

the JJs to the bottom Nb layer, can be applied either in a

symmetric or asymmetric configuration (see Fig. 1). For sim-

plified readout we use asymmetric current bias in the follow-

ing. A magnetic flux U can be coupled into the SQUID loop

by applying a modulation current Imod across the bottom Nb

layer (“flux bias line”). This enables flux biasing the

SQUIDs at the optimum working point without the need of

0003-6951/2013/102(19)/192601/4/$30.00 VC 2013 AIP Publishing LLC102, 192601-1
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an external coil. Furthermore, the flux bias line can also be

used to provide a feedback flux for SQUID operation in a

flux locked loop. However, in this work, the SQUIDs were

always read out open loop.

We investigated various SQUIDs which were fabricated

in two different runs on separate wafers. Below we present

results for two devices, SQUID 1 from wafer 1 and SQUID 2

from wafer 2. The main difference in the design of these

devices is the different lengths �2:5 lm (SQUID 1) and

�5 lm (SQUID 2) of the narrow bias lines, running from the

center of the SQUID to the 4 lm wide connection lines fur-

ther away from the SQUID (cf., Fig. 1). This variation has a

strong impact on the SQUID performance in applied mag-

netic fields, as will be shown below.

All data were taken at temperature T¼ 4.2 K. We first

present results of transport and noise measurements of the

two SQUIDs in an electrically and magnetically shielded

environment. Since both devices showed qualitatively the

same behavior, we only give a detailed analysis of SQUID

2 and summarize the main parameters extracted for both

devices in Table I. Regarding absolute values, a major differ-

ence between both devices are the values for maximum criti-

cal current Ic and normal resistance RN, which probably is

due to variations in the HfTi barrier thickness for the devices

fabricated in different runs. Devices fabricated from the

same run showed a spread in Ic and RN values of 610 %.

Figure 2(a) shows IVCs of SQUID 2 for U=U0 ¼ 0, 1/4,

and 1/2. The IVCs are nonhysteretic with Ic ¼ 227 lA and

RN ¼ 250 mX, yielding a characteristic voltage Vc � IcRN

¼ 57 lV. The IVC at U=U0 ¼ 1=2 exhibits a small bump

for low voltages. This bump appears in all our devices and is

presumably a property of the quasiparticle current rather than

a LC resonance of the SQUID. The inset of Fig. 2(a) shows

the modulation IcðImodÞ for positive and negative bias current.

From the modulation period we obtain the inverse mutual in-

ductance M�1
i ¼ 2:73 mA=U0. From the modulation depth

we find a screening parameter bL � 2I0L=U0 ¼ 0:25. By

assuming that both JJs are identical, i.e., Ic � 2I0, we deter-

mine the SQUID inductance L¼ 2.3 pH.

The VðImodÞ modulation for different bias currents, plot-

ted in the inset of Fig. 2(b), yields a maximum transfer func-

tion VU � @V=@U ¼ 164 lV=U0 for Ib ¼ 230 lA. The shift

in IcðImodÞ and VðImodÞ for positive and negative bias currents

can be attributed to the asymmetric current bias, which leads

to an inductance asymmetry aL � ðL2 � L1Þ=ðL1 þ L2Þ; here

L1 and L2 are the inductances of the two SQUID arms. The

measured IcðImodÞ-characteristics are fitted well by numerical

simulations based on coupled Langevin equations25 with a

noise parameter C � 2pkBT=I0U0 ¼ 1:55 � 10�3 (kB is the

Boltzmann constant) and aL ¼ �0:35 (see inset of Fig. 2(a),

dotted lines).

Using a commercial SQUID amplifier with a voltage

noise S
1=2
V � 40 pV=Hz1=2 and a �3 dB cutoff frequency

fc � 30 kHz, we measured the spectral density of the rms flux

noise S
1=2
U ðf Þ � S

1=2
V ðf Þ=jVUj at the optimum working point

(see solid line in Fig. 2(b)). Here the SQUID amplifier contri-

bution was subtracted. We observe a significant low-

frequency excess noise, which we assign to I0 fluctuations in

the JJs. Since the low-frequency excess noise extends to well

FIG. 1. Scanning electron microscopy (SEM) image of SQUID 2. Open

(yellow) squares indicate positions of JJs. Arrows indicate current paths for

bias current Ib (dashed: symmetric bias; solid: asymmetric bias) and modula-

tion current Imod (dotted).

TABLE I. Parameters of SQUID 1 and SQUID 2.

Ic RN IcRN bL L M�1
i VU S

1=2
U;w

(lA) (mX) (lV) (pH) mA
U0

� �
lV
U0

� �
nU0

Hz1=2

� �

SQUID 1 129 385 50 0.19 3.0 2.63 154 260

SQUID 2 227 250 57 0.25 2.3 2.73 164 200

FIG. 2. Transport and noise characteristics of SQUID 2. (a) IVCs for different

flux U; inset shows measurement (solid black lines) and numerical simulation

(dotted red lines) of IcðImodÞ. (b) Solid black line: Spectral density of rms flux

noise S
1=2
U ðf Þ at optimum working point (Ib ¼ 230 lA; Imod ¼ 243 lA). Dotted

(red) line: fitted spectrum; dashed (red) line indicates white noise level for fit-

ted curve. Inset shows VðImodÞ for Ib ¼ 6ð150…300Þ lA (in 10 lA steps).
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above 1 kHz and due to the limited bandwidth of the SQUID

amplifier, we do not see a clear white noise region in the

spectrum. By fitting the experimental data (dotted line in

Fig. 2(b)), we derive a low-frequency noise contribution

S
1=2
U;f / 1=f a with a ¼ 0:5 and S

1=2
U;f ðf ¼ 1 HzÞ ¼ 3:7 lU0=

Hz1=2 and a white noise contribution S
1=2
U;w ¼ 200 nU0=Hz1=2

(dashed line in Fig. 2(b)).

In order to determine the spin sensitivity S1=2
l � S

1=2
U =/l

of our SQUIDs, we calculated the coupling factor /l, using

a routine based on the numerical solution of the London

equations for the given SQUID geometry.26 Here, /l � U=l
is the magnetic flux U per magnetic moment j~lj � l coupled

by a magnetic particle to the SQUID loop. Very recently, the

validity of this approach has been verified experimentally by

measuring the magnetic coupling of a Ni nanotube to a Nb

nanoSQUID which had the same geometry as SQUID 2.27

For a point-like magnetic particle with ~l perpendicular to

the substrate plane, placed at a lateral distance of 10 nm from

the lower edge of the upper Nb SQUID arm at the center of

the loop, we obtain /l ¼ 8:6 nU0=lB (lB is the Bohr magne-

ton). Along with the obtained value of the rms flux noise

S
1=2
U;w ¼ 200 nU0=Hz1=2 we calculate the spin sensitivity to

S1=2
l ¼ 23 lB=Hz1=2.

To investigate the SQUID performance in a magnetic

field B applied perpendicular to the substrate plane we

mounted SQUID 1 on a high-precision alignment system

(one rotator, two goniometers). B is generated by a supercon-

ducting split coil running in persistent mode to suppress field

noise.28 Figure 3(a) shows IcðBÞ for SQUID 1 after the

alignment process for a field sweep sequence as indicated by

labels 0–6. The observed hysteresis for jBj < 45 mT is

ascribed to entry and trapping of Abrikosov vortices in the

4 lm wide connection lines, cf., inset of Fig. 3(b). The steep

jump in Ic at B � 45 mT can be assigned to a vortex entering

the narrow Nb leads very close to the SQUID loop, as con-

firmed recently by magnetic force microscopy on a similar

Nb nanoSQUID (with layout of SQUID 2).27 Subsequently,

we reduced the linewidth of the connection lines of SQUID

1 from 4 lm to �500 nm by focused ion beam (FIB) mill-

ing28 (see inset of Fig. 3(b)). For the repatterned device, the

maximum Ic was reduced by �10%, probably due to a slight

degradation of the JJs during FIB milling. More importantly,

Ic became almost independent of B, and within B � 650 mT

the magnetic hysteresis disappeared, cf., Fig. 3(b). At

B � 50 mT we still observed the jump in Ic due to vortex

entry in the narrow Nb line close to the SQUID. This indi-

cates that the linewidth of the Nb wiring close to the SQUID

may limit the range of operation to jBj � 50 mT. However,

as will be shown below, even after vortex entry, by proper

realignment of the applied magnetic field direction, which

compensates the stray magnetic flux induced by trapped vor-

tices, Ic can be restored and low flux noise can be retained.

We now turn to SQUID 2, which has much longer nar-

row bias lines. Figure 4(a) shows IcðBÞ for a field sweep

46 mT! �46 mT! 55 mT (1–3). Again Ic is almost inde-

pendent of B for jBj � 50 mT and, as before, we find a jump

in Ic at B � 50 mT due to a vortex entering the narrow bias

lines. The vortex can be removed by sweeping back the field

as indicated by the curve (3–4) in Fig. 4(a).

For SQUID 2 we performed noise measurements as

described above to determine S
1=2
U;w at several values of B from

0 to 50 mT, without any jump in Ic (see inset of Fig. 4(a)). For

B¼ 0, S
1=2
U;w � 220 nU0=Hz1=2, which is slightly higher than

the value obtained in the low-field setup. We attribute this to

external disturbances from the unshielded environment in the

high-field setup (cf., noise spectrum in Fig. 4(b), black line).

As indicated in the inset of Fig. 4(a), the white noise level

increases only slightly with B to S
1=2
U;w � 250 nU0=Hz1=2 at

B¼ 50 mT (cf., noise spectrum in Fig. 4(b)), still correspond-

ing to a very small spin sensitivity S1=2
l � 29 lB=Hz1=2 (in the

white noise regime). We assign this behavior to a minor

decrease of Ic due to an imperfect alignment of the device rela-

tive to B. At B¼ 55 mT, i.e., after the jump in Ic occurred and

after realigning the SQUID by maximizing Ic, we obtain a sim-

ilar value S
1=2
U;w � 240 nU0=Hz1=2 as for B¼ 50 mT. Following

the same procedure of realignment, we were able to operate

the SQUID in magnetic fields up to B¼ 0.5 T, yielding

the noise spectrum as shown in Fig. 4(b), with S
1=2
U;w

� 680 nU0=Hz1=2, corresponding to S1=2
l � 79 lB=Hz1=2.

Note that all spectra feature excess low-frequency noise peaks,

which are presumably due to mechanical vibrations of the

setup.

In conclusion, we fabricated and investigated Nb

nanoSQUIDs based on a trilayer geometry which were

optimized for stable operation in comparatively large mag-

netic fields. Very low white flux noise values down to

S
1=2
U;w � 200 nU0=Hz1=2 have been achieved in a shielded

environment yielding a spin sensitivity S1=2
l � 23 lB=Hz1=2.

Concerning the suitability to applied magnetic fields, we

FIG. 3. IcðBÞ data of SQUID 1 for field sweep sequence 0–6 (a) and 1–3

(b) after removing Nb areas by FIB milling as indicated by hatched (yellow)

rectangles in the inset (SEM image).
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redesigned the layout of SQUID 1 via FIB milling and

implemented these findings into the design of SQUID 2.

We demonstrated stable operation in a field range of

B � 650 mT with a marginal increase in white flux noise

and spin sensitivity with B (S
1=2
U;w � 250 nU0=Hz1=2 and

S1=2
l � 29 lB=Hz1=2). Moreover it was shown that SQUID 2

can maintain high sensitivity in large fields up to B¼ 0.5 T

with S
1=2
U;w � 680 nU0=Hz1=2 and S1=2

l � 79 lB=Hz1=2. An

obvious way to further decrease S
1=2
U and S1=2

l is to lower the

SQUID inductance L, which can be done easily by decreas-

ing the lateral distance between the JJs and by reducing the

thickness of the SiO2 layer separating the top and bottom Nb

layers. In addition, the width of the Nb lines can be reduced

further to increase /l and to extend the range of magnetic

fields where the SQUID can be operated without vortices

entering the wiring. All in all, we consider a spin sensitivity

down to a few lB=Hz1=2, for a field range exceeding 100 mT,

to be achievable for this type of device.
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G
rowing interest in the detection and
investigation of small spin systems
like single-molecular/single-chainmag-

nets,1,2 cold atom clouds,3 or even single
electrons/atoms4 demands for sensors that
are sensitive to very small changes of the
magnetization of small particles with the
ultimate goal of single spin detection. The
interest for the investigation of such parti-
cles affects many fields of research such
as material science, chemistry, information
technology, medical and biological science,
or studies of quantum effects inmesoscopic
matter. In order to meet the challenge of
detecting a single electron spin, various
techniques such as magnetic resonance force
microscopy,5 magneto-optic spin detection,6,7

and scanning tunneling microscopy assisted
electron spin resonance8,9 havebeenadapted.
In contrast to these techniques, miniatur-

ized Hall bars10,11 or direct current (dc)
superconducting quantum interference de-
vices (SQUIDs)12�29 offer the possibility of
measuring directly magnetization changes
in small spin systems by probing changes of

the particle's stray magnetic field or mag-
netic flux coupled to theHall bars or SQUIDs,
respectively. Such devices can be operated
continuously as field-to-voltage or flux-to-
voltage converters (for dc SQUIDs with non-
hysteretic Josephson junctions), allowing
one to investigate magnetization dynamics
of the sample under investigation. Indeed,
apart from pioneering work by Wernsdorfer
et al. using microSQUIDs for the mea-
surements of the magnetization of nano-
particles,13 recent publications reported on
preliminary measurements of small clusters
of nanoparticles by using nanoSQUIDs with
a flux capture area below 1 μm2.22,26,30

For SQUIDs, scaling down their size to the
submicrometer range offers the possibility
to reach extremely low values of the spec-
tral density of flux noise power SΦ (via
reduction of the inductance L of the SQUID
loop).31 Furthermore, by placing amagnetic
particle on top of a very narrow constriction
intersecting the SQUID loop, one can
achieve a large coupling factor φμ � Φ/μ,
that is, the amount of magnetic flux Φ
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ABSTRACT Superconductivity in the cuprate YBa2Cu3O7 (YBCO) persists up

to huge magnetic fields (B) up to several tens of Teslas, and sensitive direct

current (dc) superconducting quantum interference devices (SQUIDs) can be

realized in epitaxially grown YBCO films by using grain boundary Josephson

junctions (GBJs). Here we present the realization of high-quality YBCO

nanoSQUIDs, patterned by focused ion beam milling. We demonstrate low-

noise performance of such a SQUID up to B = 1 T applied parallel to the plane of

the SQUID loop at the temperature T= 4.2 K. The GBJs are shunted by a thin Au layer to provide nonhysteretic current voltage characteristics, and the SQUID

incorporates a 90 nmwide constriction which is used for on-chip modulation of the magnetic flux through the SQUID loop. The white flux noise of the device

increases only slightly from 1.3 μΦ0/(Hz)
1/2 at B = 0 to 2.3 μΦ0/(Hz)

1/2 at 1 T. Assuming that a point-like magnetic particle with magnetization in the

plane of the SQUID loop is placed directly on top of the constriction and taking into account the geometry of the SQUID, we calculate a spin sensitivity

Sμ
1/2 = 62 μB/(Hz)

1/2 at B= 0 and 110 μB/(Hz)
1/2 at 1 T. The demonstration of low noise of such a SQUID in Tesla fields is a decisive step toward utilizing the

full potential of ultrasensitive nanoSQUIDs for direct measurements of magnetic hysteresis curves of magnetic nanoparticles and molecular magnets.

KEYWORDS: YBCO . SQUID . superconductivity . nanofabrication . flux noise . spin sensitivity . magnetic particle detection
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which is coupled by a particle with magnetic moment
μ to the SQUID loop. Hence, it has been proposed that
nanoSQUIDs may reach spin sensitivities Sμ

1/2� SΦ
1/2/φμ

of only a few μB/(Hz)
1/2,32 where μB is the Bohr magne-

ton. Taking φμ ≈ 20 nΦ0/μB, for example, which is
achievable as we demonstrate below, a spin sensitivity
of 1 μB/(Hz)

1/2 requires an ultralow rms flux noise SΦ
1/2 =

20 nΦ0/(Hz)
1/2 (Φ0 is the magnetic flux quantum). We

note that state-of-the art, nonminiaturized dc SQUIDs
reach values for SΦ

1/2 on the order of 1 μΦ0/(Hz)
1/2.33

However, for very low inductance SQUIDs, values of
SΦ
1/2 down to∼20 nΦ0/(Hz)

1/2 have been demonstrated
indeed.31

So why have we not seen demonstrations of mea-
surements of magnetization reversals of small mag-
netic particles by using ultrasensitive dc nanoSQUIDs
so far? The reason for this is that such measurements
typically require the application of very strong mag-
netic fields in the Tesla range,13 while very low flux
noise in SQUIDs has been demonstrated only for
operation of such SQUIDs in the earth's magnetic field
(∼60 μT) or, more typically, in a magnetically well-
shielded environment in the nT range (i.e., 9 orders of
magnitude lower magnetic fields).33

Miniaturized nanoSQUIDs based on very thin Nb
films with constriction-type Josephson junctions have
been operated in impressive background fields in the
Tesla range.34,27 Chen et al.34 achieved operation in
fields up to 7 T for SQUIDs made of d∼ 5.5 nm thin Nb
films. However, there are two drawbacks in this design.
First, the very low thickness of the Nb film causes the
(kinetic) SQUID inductance L (�1/d) and consequently
the SQUID flux noise power SΦ (�L) to be large,35 at
least 4 orders of magnitude above the values obtained
for sensitive state-of-the-art SQUIDs. Second, the con-
striction junctions have a hysteretic current voltage
characteristic (IVC). This prevents continuous measure-
ments and the use of advanced readout schemes,36

which are required for ultrasensitive dc SQUIDs. Similar
values for the flux noise (at B ∼ 0.3 T) have been
reported very recently for boron-doped diamond
μ-SQUIDs based on constriction junctions, which op-
erated up to 4 T.29 For B > 0.5 T, the IVCs became
nonhysteretic; however, noise data at such high fields
have not been reported, and the very low transfer
function VΦ� (∂V/∂Φ)max≈ 0.5 μV/Φ0 at B= 1 T implies
probably similar noise performance as for lower fields
(V is the voltage across the SQUID).
We should note here that very sensitive Nb thin film

(d = 200 nm) nanoSQUIDs based on nonhysteretic
constriction type junctions, resistively shunted with a
150 nm thick W layer, have been realized with SΦ

1/2 =
0.2 μΦ0/(Hz)

1/2.37 However, these devices are probably
only suited for operation in subTesla fields38 and show
optimum performance only in a narrow temperature
range not too far below the transition temperature (Tc)
of Nb. Thismakes them less interesting for applications

which are most promising for temperatures of a few
Kelvin and well below.13

In order to fully exploit the potential of SQUIDs, there
is thus a clear need to develop sensitive nanoSQUIDs
with nonhysteretic IVCs that at the same time can
be operated in strong background fields. As for the
SQUIDs with constriction junctions, such SQUIDs should
incorporate at least one very thin and/or narrow sec-
tion where themagnetic particle is placed, allowing for
a good coupling of the magnetic stray field of the
particle to the SQUID. This all calls for a superconductor
which has a very high critical field and allows for
patterning nanosized structures and not too large
Josephson junctions. The cuprate superconductor
YBa2Cu3O7 (YBCO) fulfills these requirements. Com-
pared to Nb, YBCO is not a mature material and even
the most reliable type of YBCO Josephson junctions,
such as grain boundary junctions (GBJs), exhibit a large
1/f noise as well as an appreciable scatter in their
electrical parameters.39,40 Nonetheless, based on a
recently developed process for fabricating high-quality
submicrometer YBCO grain boundary junctions,41

SQUIDs with high spin sensitivity can be fabricated
reproducibly. YBCO GBJ SQUIDs have already been
demonstrated to operate in B = 1 T4 and were used
to measure magnetization curves of microscale mag-
nets in fields up to 0.12 T,42 however, with poor noise
performance. Here, we show that this field scale can be
extended to above 1 T, while still maintaining state-of-
the art noise performance of the SQUID.

RESULTS AND DISCUSSION

Sample Fabrication and Layout. The YBCO nanoSQUIDs
were made in a similar way, as described in Nagel
et al.41 Using pulsed laser deposition, epitaxial c-ax-
isoriented YBCO thin films of thickness d = 50 nmwere
grown on SrTiO3 (STO) [001] bicrystal substrates with
misorientation angleΘ = 24�. Subsequently, a Au layer
of thickness dAu = 60 nm was evaporated in situ,
serving as a shunt resistance for the YBCO GBJs
(providing nonhysteretic IVCs at the envisaged opera-
tion temperature T = 4.2 K and below) and also acting
as a protection layer during focused ion beam (FIB)
milling. The critical temperature (Tc) of the YBCO film,
measured inductively, was ∼91 K.

To obtain the nanoSQUID, structures with line widths
down to 1 μm (at the region of the grain boundary) were
prepatterned by photolithography and Ar ion milling.
Subsequently, two nanoscaled Josephson junctions
and a constriction next to the SQUID loop, which
permits modulation of the SQUID by applying an
additional current Imod, were patterned by FIB. Cutting
deep into the STO substrate results in sloped junction
edges due to redeposition of amorphous YBCO and
STO, which should help to prevent oxygen outdiffu-
sion from the YBCO film. With this procedure, we
could fabricate high-performance SQUIDs with junction
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widths wJ down to ∼100 nm. The SQUIDs had almost
identical transport and noise characteristics. Below, we
discuss data of one device.

Figure 1 shows a scanning electron microscope
(SEM) image of the nanoSQUID with a hole size of
300 nm � 400 nm. The junctions have a width wJ ≈
130 nm, and the lengths of the bridges containing the
junctions are lJ ≈ 400 nm. The constriction has a width
wc ≈ 90 nm and length lc = 300 nm. A bias current I
flowing across the junctions, as well as a modulation
current Imod flowing across the constriction are applied
as indicated by arrows in Figure 1a.

Electric Transport Data. All measurements were per-
formed at T = 4.2 K with the magnetic field B carefully
aligned in the plane of the SQUID loop. Figure 2a shows
the IVC of the nanoSQUID at B = 0 and Imod = 0. We find
a critical current of the SQUID Ic = 2I0 = 37 μA and a
resistance R/2 = 3.5 Ω, which results in I0R = 130 μV
(I0 and R refer to the average junction critical current
and resistance, respectively). The corresponding values
j0 = I0/(wJd) = 2.85 mA/μm2, F = RwJd = 0.046 Ω 3 μm

2,
and the value for I0R are close to the values obtained for
earlier devices.41 Very slightly above Ic, the voltage
increases continuously from zero, but then the IVC
develops a small hysteresis between 15 and 70 μV. This
is presumably caused by some Fiske or LC-type reso-
nance, which prevented accurately fitting the resistive
part of this IVC to a resistively and capacitively shunted
junction (RCSJ) model.43,44 Simulations using Langevin
equations45 were still possible for Ic(Imod).

Figure 2b shows themeasured Ic(Imod) at B = 0 (solid
black line), together with Ic(Imod) curves at B= 1 and 3 T,
which will be discussed below. The data for B = 0 are
fitted well by the Langevin simulations, which is shown
as the dashed cyan line. For the simulations, we have
used a noise parameter Γ = 2πkBT/I0Φ0 = 0.01, corre-
sponding to the measured value of I0 at T = 4.2 K. We
further used an inductance asymmetry RL = (L2 �
L1)/(L1 þ L2) = 0.175 due to asymmetric biasing of the
device; here, L1 and L2 are the inductance of the upper
and lower arm of the SQUID, respectively (cf. Figure 1).
We also used a junction critical current asymmetry
Ri = (I02 � I01)/(I01 þ I02) = 0.22. For the inductance
parameter, the simulations yield βL � 2I0L/Φ0 = 0.65,
which results in L= 36 pH. From the Ic(Imod)modulation
period, we find for the magnetic fluxΦ, coupled to the
SQUID by Imod, the value Φ/Imod = 3.1 Φ0/mA, which
corresponds to amutual inductanceMmod = 6.4 pH.We
note that the values quoted above for L and Mmod are
determined experimentally; given the geometry of our
device, these values seem to be consistent. However,
using standard expressions taking into account the
large contribution of the kinetic inductance due to the
small YBCO film thickness d , λL (λL is the London
penetration depth), one expects much smaller values
for L and Mmod. The reason for this is still unclear. The
final parameter to be determined is the Stewart�Mc-
Cumber parameter βC � 2πI0R

2C/Φ0, where C is the
junction capacitance. Since we cannot fit the experi-
mental IVC accurately, we cannot infer a precise
number here. However, due to the fact that a small
hysteresis shows up in limited ranges of bias current
and applied flux, we assume that βC is on the order of 1,
yielding C ≈ 0.36 pF. Figure 2c shows the V(Φ) char-
acteristics of the device for bias currents I ranging from
�49.5 to 49.5 μA at B = 0. Near I = Ic, the curves are
hysteretic. The transfer function, that is, the maximum
slope of the V(Φ) curves at optimum I (determined for
the nonhysteretic curves), is VΦ = 500 μV/Φ0.

For further measurements, the nanoSQUID was
shunted by the input circuit of the SQUID amplifier
with an input resistance Rinp = 10 Ω. The additional
shunt resistance reduces βC, yielding nonhysteretic
IVCs and V(Imod) characteristics; in this case, VΦ ≈
450 μV/Φ0 (at B = 0).

At B = 1 T (cf. dashed red line in Figure 2b), the
Ic(Imod) characteristics show a slightly suppressed max-
imum critical current Ic(1 T) = 30 μA. This pattern is
shifted in comparison to the B = 0 data, as the SQUID is
not perfectly aligned to the magnetic field and flux
couples into the Josephson junctions and the SQUID
loop. In addition, when sweeping Imod back and forth, a
hysteresis becomes visible in a small interval of Imod,
presumably caused by Abrikosov vortices trapped in
the bias leads. Flux jumps caused by Abrikosov vortices
also affect the modulation period, reducing it by about
5% in the interval plotted in Figure 2b. Figure 2d shows

Figure 1. SEM images of the nanoSQUID. In (a), the direc-
tions of the modulation and bias currents Imod and I are
indicated by arrows, and the grain boundary (GB) is indi-
cated by the vertical dashed line. In (b), the widths of the
most narrow sections of the nanoSQUID are indicated.
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V(Φ) characteristics at B = 1 T for currents Ib (fed to the
SQUID which is shunted by Rinp) ranging from�40.5 to
40.5 μA. The IVCs are nonhysteretic and hence the V(Φ)
characteristics are smooth, exhibiting no jumps as in
Figure 2c. The lack of hysteresis is either due to the
additional shunt resistance Rinp or due to the strong
magnetic field suppressing the critical current. The
transfer function is VΦ = 350 μV/Φ0. Interestingly, the
hysteresis in V(Φ) at B = 1 T upon sweeping the applied
flux in both directions almost disappeared, which is
helpful for reading out the SQUID when operated in
strong magnetic fields.

Upon increasing B up to 3 T, still periodic Ic(Imod)
characteristics with only a slightly suppressed max-
imum critical current Ic = 24 μA could be measured, as
shown in Figure 2b as blue dashed-dotted lines. The
shift in comparison to the B = 0 data did increase
further, and also the hysteresis did increase, as men-
tioned above presumably due to vortices in the bias
leads. These data clearly show that the SQUID is
operating also in B = 3 T. As mentioned above, noise
measurements could not be performed for fieldsmuch
higher than 1 T since the SQUID amplifier trapped
magnetic flux. However, this is just a technical problem
which can be solved in future measurements by
implementing field compensation via a coil mounted
around the Nb shield.

Flux Noise Measurements. Figure 3 summarizes the
flux noise spectra SΦ

1/2 (f) of the nanoSQUID at
B = 0 and B = 1 T at the optimum working point.

As measurements were performed without magnetic
shielding, noise spikes occur on both spectra. The noise
data were corrected for the noise contribution of the
amplifier. In both cases, SΦ

1/2 increases for frequencies
f below ∼3 kHz, a behavior which at least for B = 0 is
known to arise from critical current fluctuations of
the junctions. This contribution can, in principle, be
eliminated by proper modulation techniques (bias
reversal).46 At B = 1 T, there are presumably additional
contributions due to fluctuating Abrikosov vortices.
Note, however, that between ∼300 Hz and 3 kHz the
noise level is less than a factor of 2 higher at B = 1 T as
compared to B = 0. The decrease in SΦ

1/2 above 10 kHz is
caused by the limited bandwidth of our measurement
setup. At B = 0, thewhite noise level averaged between
6 and 7 kHz is 1.3 μΦ0/(Hz)

1/2. For B= 1 T, we determine

Figure 2. Transport characteristics of the nanoSQUID: (a) IVC at Imod = 0 and B = 0. (b) Critical current Ic(Imod) for B = 0, 1, and
3 T; for comparison, the numerically calculated curve for B = 0 is also shown. (c) V(Φ) at B = 0 for I =�49.5 ... 49.5 μA (in 1.5 μA
steps.) (d) V(Φ) at B = 1 T for currents fed to the SQUID which is shunted by the input resistance Rinp = 10 Ω of the SQUID
amplifier Ib = �40.5 ... 40.5 μA (in 1.5 μA steps.) All curves in (a�d) were traced out in both sweep directions.

Figure 3. Flux noise spectra of the nanoSQUID at optimum
working points at B = 0 and 1 T. The horizontal lines indicate
the white noise levels.
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a rms flux noise of 2.3 μΦ0/(Hz)
1/2 averaged between

6 and 7 kHz.
These numbersmay be compared to the theoretical

expression obtained from Langevin simulations, SΦ =
f(βL)Φ0kBTL/I0R, which is valid for βCj 1.47 For βL > 0.4,
f(βL) ≈ 4(1 þ βL). For lower values of βL, SΦ increases.
For the parameters of our device, we calculate SΦ

1/2 =
0.23 μΦ0/(Hz)

1/2, that is, a factor of almost 6 less than
the experimental value at B = 0. Such an excess noise is
not unusual for YBCO SQUIDs.46

Finally, we note that the observed increase by a
factor of∼1.8 in SΦ

1/2 at 6�7 kHz upon increasing B from
0 to 1 T cannot be explained by the reduction of I0 and
VΦ. From the above-mentioned expression for SΦ, one
would only expect an increase in the white rms flux
noise by∼10%. However, we note that in the flux noise
data for B = 1 T (cf. Figure 3) no clear white noise is
observable. Hence, the quoted value for SΦ

1/2(B = 1 T)
should be seen as an upper limit for the white noise
level.

Spin Sensitivity. In order to estimate the spin sensi-
tivity Sμ

1/2 = SΦ
1/2/φμ of the nanoSQUID, we numerically

calculated the coupling factor φμ =Φ/μ, that is, the flux
Φ coupled into the SQUID loop by a point-like particle
with magnetic moment μ, using the software package
3D-MLSI.48 Details on the calculation procedure can
be found in Nagel et al.41 In brief, one calculates the
magnetic field distribution BB(rB) generated by a current
J circulating around the SQUID hole. The coupling
factor is obtained from φμ ¼ �êμBB(rB)=J. Here, êμ is
the direction of the magnetic moment μB at position rB.
The results of these calculations are summarized in
Figure 4 for a point-like particlewithmagneticmoment
pointing in the x-direction. The particle is located in the
(x,z) plane (perpendicular to the plane of the SQUID
loop in the (x,y) plane) at position y = 0 and x = 0 to
1000 nm, as indicated by the dashed line in the
SEM image shown in Figure 4a. The contour plot in
Figure 4b shows φμ(x,z) for values of z = 0 (substrate
surface) up to z = 1000 nm. Figure 4c shows a linescan
φμ(x) through this plane, as indicated by the horizontal
dashed line in Figure 4b. The linescan is taken at a
distanceof 10nmabove theAu layer. The coupling factor
φμ has a maximum of 9.2 nΦ0/μB at the position of the
constriction at x ≈ 0.64 μm. The minimum in φμ(x) is
slightly left from the center of the SQUID loop; this is be-
cause the constriction breaks symmetry. Figure 4d
shows a linescan taken along the vertical dashed line
in graph (b). The coupling factor φμ decreases strongly
with increasing z. Calculating the spin sensitivity with φμ
= 9.2 nΦ0/μB, we obtain Sμ

1/2 = 141 μB/(Hz)
1/2 at B = 0

and 250 μB/(Hz)
1/2 at B = 1 T. In principle, the particle

could be brought even closer to the constriction by
removing the Au layer right above the constriction, with-
out affectingSΦ. In this case (for adistanceof10nmabove
the YBCO), φμ = 21 nΦ0/μB and Sμ

1/2 = 62 μB/(Hz)
1/2 at

B = 0 and 110 μB/(Hz)
1/2 at B = 1 T. The geometrical

and electrical parameters for our device are summar-
ized in Table 1.

CONCLUSIONS

In summary, we have demonstrated low-noise per-
formance of a YBCO nanoSQUID in magnetic fields up
to 1 T. At zero applied field, the white flux noise of the
device at 7 kHz was 1.3 μΦ0/(Hz)

1/2, increasing only
slightly to 2.3 μΦ0/(Hz)

1/2 at 1 T. For the spin sensitivity,
assuming that a small particle is placed onto a con-
striction in the SQUID loop, directly on top of the YBCO
film, we calculated values of 62 μB/(Hz)

1/2 at B = 0 and
110 μB/(Hz)

1/2 at B = 1 T.
The device investigated experimentally was not

optimized yet in terms of its geometrical and electrical
parameters. In particular, the thickness of the epitaxi-
ally grown YBCO films can be increased (to ∼300 nm).
This, in turn, would decrease the SQUID inductance by
approximately a factor of 10, which will significantly
reduce the flux noise. However, such an increase in thin
film thickness will also reduce the coupling factor.

Figure 4. Calculated coupling factor φμ for the nanoSQUID.
(a) SEM image showing SQUID hole and constriction in the
(x,y) plane. The dashed line indicates the location of the (x,z)
plane for which data are shown in (b); it also indicates the
position of the linescan φμ(x) shown in (c). (b) Contour plot
of the coupling factor φμ vs position (x,z) of a magnetic
moment pointing in the x-direction. Dashed lines indicate
position of the linescans shown in (c) and (d). (c) Horizontal
linescan φμ(x) at a distance of 10 nm above the Au layer. (d)
Vertical linescan φμ(z) at the center of the constriction.

TABLE 1. Summary of Geometric and Electric NanoSQUID

Parameters (As Defined in the Text)

d (nm) lc (nm) lJ (nm) wc (nm) wJ (nm) βL L (pH)

50 300 400 90 130 0.65 36

I0

(μA)

R

(Ω)

I0R

(mV)

j0

(mA/μm2)

SΦ
1/2

(nΦ0/(Hz)
1/2)

φμ

(nΦ0/μB)

Sμ
1/2

(μB/(Hz)
1/2)

18.5 7.0 0.13 2.85 1300 21 62
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Hence, one has to carefully optimize all SQUID
parameters by also taking into account technological
constraints. Very recently, we performed such an opti-
mization study, for YBCO nanoSQUIDs operated at
4.2 K and below, which predicts an optimum spin
sensitivity of a few μB/(Hz)

1/2. It remains to be shown
whether or not such values can be achieved in high
fields.
Furthermore, we note that miniaturized YBCO dc

SQUIDs have been already used to investigate the
magnetic properties of magnetic microcrystals at
0.12 T between 30 and 70 K.42 Hence, due to their
high Tc, YBCO nanoSQUIDs might also be useful for

applications over a wide temperature range up to
70�80 K, such as for the investigation of the transition
between the superparamagnetic and ferromagnetic
state of magnetic nanoparticles. Optimization of the
SQUID parameters for such a large temperature
range;and according variation in the critical current
of the grain boundary junctions and hence in the noise
parameter Γ, the inductance parameter βL and the
Stewart�McCumber parameter βC;will bemore chal-
lenging than for operation at a few Kelvin and below.
Still, such an approach may be rewarding because
highly sensitive YBCO SQUIDs operating at 77 K have
been demonstrated in the past.46

METHODS
Film Deposition. The films were deposited on 10 mm � 10

mm (1 mm thick) SrTiO3 [001] bicrystal substrates. The sub-
strates contain a single symmetric [001] tilt grain boundary with
misorientation angleΘ = 24�. After mounting the substrates by
sliver paste on the sample holder, they were transferred to the
ultrahigh vacuum (UHV) thin film deposition cluster tool (base
pressure 10�9 mbar), equipped with a pulsed laser deposition
(PLD) chamber and an electron beam evaporation (EBE) cham-
ber. In the PLD chamber, 60 nm thick YBCO films were grown
epitaxially by using a pulsed KrF excimer laser (wavelength
248 nm, pulse frequency 2 Hz), which is ablatingmaterial from a
stochiometric YBCO target (purity 99.995%) with an energy
density of ∼2 J/cm2 of the laser spot on the target. During
deposition at an oxygen pressure pO2

= 0.2 mbar, the substrate
was heated to a temperature Ts = 780 �C by a laser heating
system. For the used 60 mm substrate-to-target distance, the
PLD parameters yield a deposition rate of 9.8 nm/s. After
deposition, the pressure was increased to pO2

= 450 mbar;
subsequently, Ts was reduced to 450 �C and kept there for
30 min before cooling the sample to room temperature. For the
next deposition step, the sample was transferred in UHV to the
EBE chamber, where a 60 nm thick Au film was deposited by
electron beam evaporation (deposition rate ∼0.2 nm/s).

FIB Patterning. FIB patterning was performed in a FEI Dual-
beam Strata 235, equipped with a Ga ion source. Parameters for
FIB milling needed to be chosen carefully, as this patterning
step can suppress superconductivity of YBCO. In the cutting
scheme, which finally permitted the fabrication of nanoscaled
Josephson junctions with no significant reduction of the critical
current density jc, Ga ion currents where adjusted to 30 pA at an
acceleration voltage of 30 kV. Four rectangular patterns cut line-
by-line (cleaning cross section cut), with cutting directions
pointing away from the Josephson junctions, were placed at
the grain boundary to form the final SQUID layout.

Measurements of Electric Transport Properties and Noise. The trans-
port and noise measurements were performed at T = 4.2 K in an
electrically shielded environment. We used a four-terminal
configuration with filtered lines to measure IVCs, critical current
Ic(Imod), and V(Imod). For transport measurements, the voltage V
across the SQUID was amplified using a room temperature
amplifier. All currents were applied by battery-powered current
sources. In-plane magnetic fields up to B = 7 T could be applied
by a split coil superconducting magnet. As magnetic fields that
couple into the Josephson junctions suppress their critical
current and hence the modulation amplitude of the SQUID,
the SQUID loop needed to be aligned with high accuracy
parallel to the magnetic field, and the in-plane field was aligned
perpendicular to the grain boundary. To do so, the sample was
mounted on two goniometers with perpendicular tilt axes
(minimum step size 0.02 m�) and a rotator (minimum step size
0.5 m�). Alignment was done by monitoring and maximizing
Ic at B ∼ 1 T.

For noise measurements, the voltage drop across the
nanoSQUID was preamplified by a dc SQUID amplifier49 with
0.l nV/(Hz)1/2 resolution and ∼30 kHz bandwidth. In this case,
the SQUID was shunted by the input resistance Rinp = 10 Ω of
the SQUID amplifier. The thermal noise of the input resistance
(at T = 4.2 K) limits the voltage resolution of the SQUID amplifier.
Tominimize stray fields, the SQUID amplifierwas placed inside a
Nb shieldmounted inside the cryostat at a position of minimum
magnetic field. Still, for B ∼ 1.5 T (at the sample position), the
SQUID amplifier trapped magnetic flux, preventing noise mea-
surements at higher fields.
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Abstract
We present an optimization study of the spin sensitivity of nano superconducting quantum
interference devices (SQUIDs) based on resistively shunted grain boundary Josephson junctions.
In addition the direct current SQUIDs contain a narrow constriction onto which a small magnetic
particle can be placed (with its magnetic moment in the plane of the SQUID loop and
perpendicular to the grain boundary) for efficient coupling of its stray magnetic field to the
SQUID loop. The separation of the location of optimum coupling from the junctions allows for
an independent optimization of the coupling factor ϕμ and junction properties. We present
different methods for calculating ϕμ (for a magnetic nanoparticle placed 10 nm above the
constriction) as a function of device geometry and show that those yield consistent results.
Furthermore, by numerical simulations we obtain a general expression for the dependence of the
SQUID inductance on geometrical parameters of our devices, which allows to estimate their
impact on the spectral density of flux noise ΦS of the SQUIDs in the thermal white noise regime.
Our analysis of the dependence of ΦS and ϕμ on the geometric parameters of the SQUID layout

yields a spin sensitivity ϕ=μ Φ μS S1 2 1 2 of a few μ −HzB
1 2 (μB is the Bohr magneton) for

optimized parameters, respecting technological constraints. However, by comparison with
experimentally realized devices we find significantly larger values for the measured white flux
noise, as compared to our theoretical predictions. Still, a spin sensitivity on the order of

μ −10 HzB
1 2 for optimized devices seems to be realistic.

Keywords: Josephson junctions, nanoSQUIDs, spin sensitivity

(Some figures may appear in colour only in the online journal)

1. Introduction

Miniaturized direct current (dc) superconducting quantum
interference devices (SQUIDs) with dimensions in the sub-
micrometer range (nanoSQUIDs) are promising devices for
the sensitive detection and investigation of small spin systems
[1]. The basic idea behind this is to attach a small (nanometer-
sized) magnetic particle directly to the SQUID and trace out
magnetic hysteresis loops of the particle. This shall be done

by detecting the change of the stray magnetic field of the
particle with magnetic moment μ via the change of the
magnetic flux Φ coupled to the SQUID loop [2–4]. To meet
the ultimate goal of detecting the flipping of only a few
electron spins [5], the spin sensitivity ϕ=μ Φ μS S1 2 1 2 has to be

optimized carefully via reducing the spectral density of flux
noise ΦS of the SQUID and increasing the coupling factor
ϕ Φ μ≡μ (with μμ ≡ | |). ΦS can be reduced by shrinking the

size of the SQUID loop, and hence its inductance L, and ϕμ
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can be increased by placing the particle on a narrow con-
striction inserted in the SQUID loop, which motivates the
need to implement sub-micron SQUID structures [2, 4, 6–26].

Until now, the most common approach for the realization
of nanoSQUIDs is to use constriction type Josephson junc-
tions (cJJs) intersecting small SQUID loops (see e.g. [13]
published in a special issue on nanoSQUIDs and related
articles therein and [7, 8, 10, 12, 15, 20, 23, 25]). Although
impressive results have been achieved very recently for ultra-
small SQUIDs based on Pb constrictions [24], the cJJ
approach comes with several drawbacks: cJJs often show
hysteretic current–voltage characteristics (IVCs). This ham-
pers continuous operation of cJJ-based nanoSQUIDs, which
however is required for the investigation of the magnetization
dynamics of the sample under investigation. Hence, more
advanced readout-schemes are required for operating such
devices. Here, a promising approach is the dispersive
nanoSQUID magnetometer with ultra-low flux noise down to

Φ∼ −30 n Hz0
1 2 achieved with Al variable thickness nano-

bridges at 30 mK [23]. We should also note here, that very
sensitive Nb thin film nanoSQUIDs based on cJJs, resistively
shunted with a thin W layer and operated in the voltage state,
have been realized [12]. However, in this case, the devices
show optimum performance only in a narrow range of tem-
perature T not too far below the transition temperature Tc of
Nb, which makes them less interesting for applications. Also,
the noise properties of cJJs are not well understood and hence
hard to optimize. And, finally, the magnetic particles have to
be placed close to the cJJs to achieve optimum coupling.
However, this means that the junction properties and the
coupling factor ϕμ cannot be optimized independently, which
hampers a careful optimization of the spin sensitivity.

With respect to the application of nanoSQUIDs for the
detection of the magnetization reversal of nanomagnets, the
most interesting regime of operation is at ≈T 1 K and below
and at very high magnetic fields in the tesla range [1]. It has
been demonstrated that Nb thin film nanoSQUIDs based on
constriction type junctions can be operated in impressive
background fields up to 7 T [27]. However, the upper critical
field Bc2 of typical Nb thin films (∼1 T) requires to use very
thin Nb films with thicknesses of only a few nm, i.e. well
below the London penetration depth λL of the Nb films, if
such SQUIDs shall be operated in tesla fields. This leads to a
large kinetic inductance contribution to the SQUID induc-
tance, and hence a large flux noise of such SQUIDs, which
does not allow to use the huge potential for the realization of
ultralow-noise nanoSQUIDs. We note that ultralow noise
values have been achieved for ultra-small SQUIDs based on
Pb cJJs up to ∼1 T, where the high-field operation was pre-
sumably also limited by Bc2 [24].

To circumvent the above mentioned drawbacks, we
recently started to develop dc nanoSQUIDs based on c-axis
oriented YBa2Cu3O7 (YBCO) thin films with submicron wide
bicrystal grain boundary Josephson junctions (GBJs) [28].
Due to the huge upper critical field of YBCO, such SQUIDs
can be realized with film thicknesses on the order of λL and
above and operated in tesla fields. Furthermore, due to the

large critical current densities of the YBCO GBJs (several
mA μm−2 at =T 4.2 K and below for a grain boundary

misorientation angle of 24°) submicron junctions still yield
reasonably large values of the critical current I0. To achieve
non-hysteretic IVCs, the GBJs are shunted by a thin Au film.
Due to the fact that the barrier of the GBJs is oriented per-
pendicular to the YBCO thin film plane, it is possible to apply
tesla magnetic fields in the plane of the film, without a sig-
nificant reduction of I0 [29]. And finally, by implementing an
additional narrow constriction (which can be much narrower
than the GBJs) in the SQUID loop, the optimization of the
coupling factor for a nanoparticle placed on top of the con-
striction is possible without affecting the junction properties.

Here, we present a detailed optimization study of the spin
sensitivity of such grain boundary junction nanoSQUIDs by
analyzing the dependence of the flux noise ΦS and the cou-
pling factor ϕμ on the geometry of our devices. We find that
for an optimized SQUID geometry a continuous detection of
magnetic moments down to a spin sensitivity μS1 2 of a few

μ −HzB
1 2 (μB is the Bohr magneton) is feasible if a magnetic

particle is placed 10 nm above the center of the constriction,
with its magnetic moment oriented in the plane of the SQUID
loop and perpendicular to the grain boundary.

2. nanoSQUID design

The layout of the nanoSQUID (top view) is shown in figure 1.
The SQUID structure is patterned in a YBCO thin film of
thickness d, covered by a thin Au film with thickness dAu. The
two bridges straddling the grain boundary have a width wJ
and length lJ. The upper part of the SQUID loop contains a
constriction of width wc and length lc. An applied bias current
Ib is flowing from top to bottom across the two GBJs. A small
magnetic particle can be placed on top of the constriction, and
an in-plane magnetic field (perpendicular to the grain

Figure 1. Schematic view of the nanoSQUID layout, divided (by
white dotted lines) into the constriction (inductance Lc, length lc,
width wc), two corners (each with inductance Le), the two junctions
(each with inductance L J, length lJ, width wJ) and the bottom part
(inductance Lb).
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boundary, i.e. along the y-direction) can be applied without
significant suppression of the critical current I0 of the
two GBJs.

Optimizing the SQUID for spin sensitivity means to
minimize the ratio ϕΦ μS 2. The coupling factor ϕμ is essen-
tially determined by the geometry of the constriction, i.e., its
width wc and thickness d. ΦS depends on the SQUID
inductance L and on the junction parameters I0, resistance R
and capacitance C. If the constriction could be made not only
arbitrarily thin and narrow, but also arbitrarily short, one
could envision a scenario, where ϕμ reaches a value around

Φ μ0.5 0 B [4], while, at the same time, the inductance of the
constriction remains small (Φ0 is the magnetic flux quantum).
Then, ΦS could be optimized independently by proper choice
of the SQUID size and the junction properties. For the type of
device we discuss here, this is certainly not the case and we
thus look for an optimization, which is compatible with
technological limitations. A large coupling ϕμ demands an as
narrow and thin as possible constriction. On the other hand,
for a too narrow constriction, given a fixed value of d, its
inductance Lc and thus also the total inductance L of the
SQUID may become too large, possibly degrading the flux
noise. This may be counterbalanced by choosing a different
film thickness and changing, e.g., the junction width wJ.

In the following sections, we derive explicit expressions
for the dependence of ϕμ (section 3) and ΦS (section 4) on
various geometric and electric SQUID parameters, which then
allows us to optimize μS (section 5).

3. Coupling factor

We numerically calculate the coupling factor ϕ Φ μ=μ , i.e.
the flux Φ coupled into the SQUID loop by a point-like
particle with magnetic moment μ, using the software package
3D-MLSI. This routine takes explicitly into account the
geometry in the plane of the SQUID loop (see figure 1), and is
based on the numerical simulation of the two-dimensional
(2D) sheet current density distribution j x y( , )2D in the
SQUID loop, using London theory with λL and d (and hence
the effective penetration depth in the thin film limit) as
adjustable parameters [30].

3.1. Methods

Three different methods, which are briefly described in the
following, have been developed to calculate ϕμ.

Method 1. With 3D-MLSI we choose an arbitrary value
for the total current J circulating around the SQUID hole and
calculate the corresponding sheet current density distribution
j x y( , )2D in the SQUID loop. The resulting j x y( , )2D is then
used to calculate the three-dimensional (3D) magnetic field
distribution B r( ) generated by J. The coupling factor is then
obtained from the relation

ϕ = −̂ ̂μ μ μ( )r e e B r J, · ( ) (1)

which was derived in [28]. Here, μe is the unit vector along

the direction of the magnetic moment μ μ= μe at position r.
This means that equation (1) provides ϕμ for any given

position r and orientation μe of a point-like magnetic particle.
To capture variations of B with film thickness d, we

simply assume that the circulating current J flows within a
number n of 2D sheets in the x–y-plane, stacked equidistantly
along the z-axis from the upper surface (at z = 0) to the lower
surface (at = −z d) of the SQUID loop. The resulting field
B r( ) is obtained by averaging the individual fields generated
by the sheets.

In our earlier work (see [31] and references therein) we
used n = 2, which corresponds to a circulating current flow
only in the upper and lower surface sheet of the SQUID loop.
This approach works well if d is small enough. However, if
one is interested in the scaling of ϕμ with d one should use a
larger value for n, which provides a better approximation of a
homogeneous current density distribution within the entire
film thickness in z-direction, in particular for relatively large
d. Since for YBCO λ μ≈ 0.7 mL along the c-axis (here, the z-
direction), we expect such a homogenous current distribution
along ez for a technologically reasonable thickness
( μ≲d 0.5 m).

Method 2. The expression for the coupling factor ϕμ from
equation (1), as used for method 1 does not take into account
modifications of j x y( , )2D due to the strongly inhomogeneous
dipole field in close vicinity to the magnetic particle. Such a
modification, however, may become important when the
distance between the point-like dipole and the SQUID surface
is smaller than the film thickness d. Within method 2, we
achieve a better description of the near-field regime by cal-
culating (with 3D-MLSI) the fluxoid Φ r(fluxoid ) in the SQUID
loop, which is induced by a ‘quasi-dipole’ (mimicking a small
magnetic particle at position r) with a magnetic moment of

μ1 B. With this we obtain ϕ Φ μ=μ r r( ) ( )fluxoid B. Such a
quasi-dipole can be constructed by a properly adjusted cir-
culating current in a tiny loop placed at position r. However,
in this case, the orientation μe of the magnetic moment of the
quasi-dipole is now fixed by the design of this tiny loop,
implemented in 3D-MLSI, which allows only to construct 2D
structures in the x–y-plane.

For instance a quasi-dipole with its magnetic moment
oriented along the z-axis (i.e. =μ e ez) can be realized by a
current circulating in a tiny ring in the x–y-plane. Due to the
layout of the nanoSQUID considered in this work, it is
however more favorable to construct a dipole with magnetic
moment pointing in y-direction. Unfortunately, it is not pos-
sible to build a corresponding ring within 3D-MLSI. Instead,
we consider two strips (2D current sheets) lying on top of
each other with separation Δ =z 3 nm along the z-axis. Both
strips expand 4 nm and 2 nm in x- and y-direction, respec-
tively. Currents flowing along ex (−ex) in the upper (lower)
strip create a quasi-dipole field with a magnetic moment
oriented along ey. The currents were adjusted to generate the
magnetic field distribution of a single μB. Furthermore the
two strips are regarded as normal conductors by setting
λ → ∞L . The quasi-dipole does not provide the field dis-
tribution of an ideal dipole (from a point-like particle) since

3
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the two strips are not connected. However, the field generated
by the missing links should be of minor relevance since it
neither interacts with the superconducting structure nor with
the SQUID hole. In figure 2 we plot the relative deviation ΔBz

between the z-component of the magnetic field Bz,qd created
by the quasi-dipole and Bz,d of an ideal dipole

Δ =
−

B
B B

B
(2)z

z z

z

,qd ,d

,d

in the x–y-plane at z = 0, with both dipoles centered at
= =r z(0, 0, 10 nm)0 0 and with an orientation of their

magnetic moment along the y-axis. As expected, the quasi-
dipole is a very good approximation to an ideal magnetic
dipole in the far field regime. In the near field regime one
finds minor deviations of Δ ≈B 1.2%z,max , which presumably
arise from the finite volume of the quasi-dipole.

For the nanoSQUID structure, the effect of (ideal) flux
focussing is taken into consideration by setting the net current
J circulating around the hole to zero. The calculation is
deployed for n = 11 current sheets and the resulting fluxoids
are averaged in a similar way as for method 1.

Method 3. For this method we again examine the
interaction of the quasi-dipole with the SQUID loop. In
contrast to method 2, (ideal) screening is taken into con-
sideration by setting the fluxoid in the loop to zero. In
other words, a circulating current J is induced in the
loop, which counterbalances the coupled flux of the quasi-
dipole, due to the diamagnetic response of the SQUID.
The coupling factor is obtained by computing L of
the bare SQUID within 3D-MLSI and calculating
ϕ Φ μ μ= =μ r r LJ( ) ( )fluxoid B B. As before, the calculation

is performed for n = 11 current sheets. We note that
method 3 is very similar to the method used by Koch et al
[32] for the calculation of the coupling between an electron
magnetic moment and a SQUID.

3.2. Comparison of methods

To compare the three methods, we calculate ϕμ for a particle
with its magnetic moment oriented along êy, which corre-
sponds to the optimum direction of the applied external
magnetic field for our SQUID design. In all cases, we find a
maximum in ϕμ r( ) if the dipole is placed as close as possible
on top of the constriction at its center in the x–y-plane. For the
following considerations, we set the origin of our coordinate
system at the center of the constriction in the x–y-plane at the
upper surface of the superconducting film.

Assuming that the particle is placed at the position
=r z(0, 0, )0 0 with =z 10 nm0 above the constriction

(without an Au layer, which can be removed without affecting
the junction properties), we calculate ϕμ d( ) in the range

⩽ ⩽d10 nm 500 nm for the three presented methods (see
figure 3(a)).

For method 1, with n = 2 current sheets, ϕμ d( ) saturates for
≳d 200 nm to ϕ ϕ≈ =μ μ d( 10 nm),s

1

2
. Since the current J is

circulating in sheets at the lower ( = −z d) and upper (z = 0)
surface of the superconductor, the field =B z( 10 nm)y 0

induced by the lower sheet decays as d increases. However, the
field induced by the upper sheet remains constant and thus the
mean value of By as well, as soon as the contribution from the
lower sheet becomes negligible for large enough d. Obviously,
the saturation in ϕμ d( ) is an artefact stemming from the simple

approximation of the current distribution along ez by the cur-
rents in only two surface sheets.

Turning to method 1 with n = 11 current sheets, the
unphysical saturation of ϕμ d( ) is eliminated. Similar calcula-
tions with n = 101 and n = 1001 reveal the same behavior of
ϕμ d( ) for the range of thickness shown. As expected, method 1
with n = 2 and n = 11 yields the same ϕμ d( ) for very small d.

Albeit method 1 provides a sensible approximation of ϕμ
for currents flowing across the entire film thickness if n is
large enough, it does not incorporate the effect of local
screening currents induced by a magnetic particle in close
proximity to the SQUID. This becomes obvious by compar-
ison of the current distributions in the region of the con-
striction, as shown for method 1 in figure 3(b) and for
methods 2 and 3 in figures 3(c) and 3(d), respectively. The
latter two feature a more complex current distribution, arising
from local screening currents. The corresponding dependence
ϕμ d( ) for method 2 and 3 (see figure 3(a)), however, show
qualitatively and quantitatively the same behavior as for
method 1 (with n = 11). Accordingly, the local screening
currents taken into account in method 2 and 3 do not alter ϕμ
in the near field regime as compared to method 1.

Concluding this section, we have shown that all three
methods constitute a valid approach for calculating the cou-
pling factor, since each technique gives the same dependence
ϕμ d w( , )c for large enough values of n. Furthermore, we note
that these methods can also be applied to calculations of ϕμ for
other nanoSQUID designs, including constriction-type or
planar sandwich-type junctions, which would facilitate opti-
mization of their spin sensitivity and comparison of different
designs.

Figure 2. Distribution of normalized difference ΔB x y( ,z ) in the z-
components of the quasi-dipole vs ideal dipole fields at z = 0, with
both dipoles centered at =z(0, 0, 10 nm)0 . The small rectangle in
the center indicates size and position of the two strips (stacked on top
of each other) forming the quasi-dipole.
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3.3. Results

As already mentioned in section 2, the coupling factor should
also depend on the width of the constriction. Hence, we
computed ϕμ in the range ⩽ ⩽w10 nm 500 nmc and 10 nm
⩽ ⩽d 500 nm, assuming that the quasi-dipole is placed

10 nm above the center of the constriction, as in the previous
section. The numerical results can be approximated by

ϕ
ϕ

≈
+ +

μ
μ

( )( )
( )d w,

1 1
, (3)

d

d

w

w

c
,0

0

c

0

with the values for the fitting parameters ϕμ,0, d0 and w0 given
in table 1 for two different values of λL. As expected, ϕμ

decreases with increasing width wc and thickness d. Within
the simulation range, we find a monotonic decrease of
ϕμ d w( , )c , with a slightly weaker decay in ϕμ d( ) as for ϕμ w( )c .

By modifying the distance z0 between the magnetic
particle and the upper surface of the superconductor, we find
qualitatively the same dependence as in equation (3) within

⩽ ⩽z10 nm 1000 nm0 with absolute values scaling like
ϕ ∝μ

−z z( )0 0
3 2. Since the optimization of ϕμ does only trivi-

ally depend on the distance between particle and SQUID, we
can absorb ϕμ z( )0 into ϕμ,0.

4. Flux noise

To determine the flux noise of the SQUID in the thermal
white noise regime, we use the theoretical expression
obtained from Langevin simulations

β Φ=Φ ( )S f k TL I R, (4)L 0 B 0

which is valid for a Stewart–McCumber parameter
β π Φ≡ ≲I R C2 1C 0

2
0 and Γβ < 0.1L [33]. Here,

Γ π Φ≡ k T I2 B 0 0 is the noise parameter, and β Φ≡ LI2L 0 0 is
the screening parameter. For β > 0.4L , β β≈ +f ( ) 4(1 )L L .
For lower values of βL, ΦS increases.

The first factor to be discussed is I R0 . The junction
resistance R can be varied to some extent by varying the
thickness dAu of the Au layer covering the YBCO film; the
maximum achievable value is the unshunted junction normal

state resistance RN (for =d 0Au ). For °24 YBCO grain
boundary junctions, I R0 N values ∼ −2 3 mV are achievable
at 4.2 K [34]. However, such junctions typically have hys-
teretic IVCs. We thus demand β ≲ 1C to avoid hysteresis.
Ideally, one would like to derive an expression for I R0 as a
function of wJ, d and dAu using the constraint β ≲ 1C and
assuming certain values for the critical current density j0,
unshunted normal junction resistance times area ρ ≡ R w dN J

and capacitance per junction area ′C . However, the scaling of
R with wJ, d and dAu is currently not known. Furthermore, an
estimate of ′C as a function of wJ and d, based on various
scaling laws available in literature [35–37] is quite difficult, in
particular since it is difficult to determine C for underdamped
YBCO GBJs and since the stray capacitance due to the
commonly used SrTiO3 substrates may play an important role
[38]. On the other hand, we have fabricated nanoSQUIDs
from 24° YBCO GBJs with different junction widths 85 ⩽ wJ

⩽ 440 nm and film thicknesses 50, 100, 120 and 300 nm,
using the focused ion beam (FIB) milling technique as
described in [29]. Parameters of some of those devices are
listed in table 2. Except for the devices with both, small film
thickness ( =d 50 nm) and narrow junctions ( ≈w 100J nm),
which tend to have slightly lower I R0 and j0, typical values
for our devices are ≈I R 0.50 mV and μ= − −j 3 5 mA m0

2

at =T 4.2 K. Below we will find an optimum junction width
well above 100 nm and a very weak dependence of the
optimum spin sensitivity on film thickness for

Figure 3. Comparison of methods used for calculating the coupling
factor and current distribution in a =w 90 nmc wide constriction (for
λ = 250 nmL ). (a) ϕμ d( ) for a particle at z0 = 10 nm; position and

direction of magnetic moment is indicated in (c) and (d). (b)–(d) 3D-
MLSI output of the current distribution in the x–y-plane calculated
with (b) method 1 (identical distribution for all n sheets), (c) method
2 and (d) method 3 (for uppermost sheet at z = 0). Arrows indicate
the local direction of currents.
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Table 1. Summary of fit parameters from numerical simulations on nanoSQUIDs for two different values of λL. The values for ΦS , 0
1 2 and μS , 0

1 2 are given for =T 4.2 K and =I R 0.50 mV.

λL ϕμ,0 d0 w0 ′wc ′L ′Le ′Lb ″Lb b r ′L d0 ΦS , 0
1 2

μS , 0
1 2

(nm) (nΦ μ0 B) (nm) (nm) (nm) (pH·nm) (pH·nm) (pH·nm) (pH·nm) (pH) (nΦ −Hz0
1 2) (μ −HzB

1 2)

250 49 120 102 7 85 56 25 120 0.29 2.73 0.71 12.6 0.26
335 78 83 53 4.8 143 100 45 150 0.31 2.45 1.72 19.7 0.25
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≲ ≲d100 nm 500 nm. Thus, rather than introducing an ill-
defined scaling of I R0 with wJ and d, below we fix

=I R 0.5 mV0 and μ= −j 3 mA m0
2 as realistic values.

We next determine the dependence of the SQUID induc-
tance L on the various geometrical parameters. We separate the
SQUID into the constriction (inductance Lc, length lc, width wc)
, the two (symmetric) bridges containing the junctions (induc-
tance L J, length lJ, width wJ), the two corners connecting the
constriction and the junction arms (inductance Le), and the
bottom part of the SQUID (inductance Lb), as indicated in
figure 1. Then, L is given by

= + + +L L L L L2 2 . (5)c J e b

We should find L w l d( , , )c c c , L w l d( , , )J J J , L w w d( , , )e c J and
L l w d( , , )b c J . From 3D-MLSI simulations we find the para-
metrization ≈ ′L w l d L l w d( , , ) ·c c c c c . This expression fits the
computed Lc well, within the parameter range

⩽ ⩽l w d10 nm , , 500 nmc c , covered by the simulations.
We use the same parametrization for L w l d( , , )J J J .
For the corners we find, within a 15% variation with respect to
wJ and wc, the expression ≈ ′L L de e . Finally, we find

≈ ′ + ″L L l w d L db b c J b . The fitting parameters ′L , ′Le, ′Lb and
″Lb are summarized in table 1 for two different values of λL.

Inserting these expressions into equation (5) yields

⎧⎨⎩
⎫⎬⎭≈

′
+

+
+L

L

d

l

w

l bl

w
r

2
, (6)c

c

J c

J

with ≡ ′ ′b L Lb and ≡ ′ + ″ ′r L L L(2 )e b (see table 1). We note
that in our simulations we have adjusted λ = 250 nmL to be
consistent with most of the experimentally determined values of
L for our nanoSQUIDs. This value is consistent with the lit-
erature on λL in the a–b-plane of epitaxially grown c-axis
oriented YBCO thin films [25, 39]. However, for some devices
we find good agreement between measured and simulated
values of L only if we assume larger values for λL, e.g.
λ = 335 nmL for ‘exp. device 1a’1 listed in table 2.

For the minimization of μS , we will use βL as a variable
parameter. Since both, L and wJ are not independent of each
other and are related to βL , we express both as functions of
β .L This will allow us to eliminate L and wJ in the final
expression for μS which has to be optimized. With
β Φ= I L2L 0 0 and =I j w d0 0 J , we obtain

β
Φ β

=( )w L
j dL

,
2

. (7)L
L

J
0

0

Inserting this into equation (6) yields

⎪ ⎪

⎛
⎝⎜

⎞
⎠⎟

⎧⎨
⎩

⎫⎬
⎭β κ

β
≈

′
+ −

−

( )L
L

d

l

w
r 1 , (8)L

L

c

c

1

with

κ Φ≡ + ′( ) ( )l l j l bl j L, , 2 2 . (9)J c 0 J c 0 0

Inserting equation (8) into equation (4) and using
β β= +f ( ) 4(1 )L L finally yields

⎛
⎝⎜

⎞
⎠⎟β

β
≈ +

+
−Φ Φ κ

β
( )S d w S

d

d

l

w
r, ,

1

1
, (10)L

L
c ,0

0 c

c
L

with ≡Φ
Φ ′S 2 k TL

I Rd, 0
1 2 0 B

0 0
(see table 1). The most important

result here is the scaling ∝ΦS d1 . This is due to the fact that
the SQUID inductance ∝L d1 within the simulation range
for d, because of the increase of the kinetic inductance con-
tribution with decreasing d below λL. For λ≳d 2 L we
expect a saturation of L(d) and hence of ΦS d( ). However, we
will neglect this for the optimization of μS , since values for

≳d 500 nm are outside the simulation range and since we
cannot expect to produce high-quality GBJs for such large
values of d.

5. Optimization of spin sensitivity via improved
SQUID geometry

With equation (3) and (10) we find the spin sensitivity
ϕ=μ Φ μS S1 2 1 2 . The individual dependencies on d, βL and

constriction parameters wc and lc can be separated. Hence, we
can express the spin sensitivity as

β β=μ μ β( ) ( ) ( )S d w S s d s s w l, , · ( ) · · , , (11)L d L
1 2

c , 0
1 2

c c cL

with ϕ≡μ Φ μS S, 0
1 2

, 0
1 2

,0 (see table 1) and with

≡ +s d
d

d

d

d
( ) , (12)d

0

0

β
β

≡
+
−β κ

β
( )s

1

1
, (13)L

L
L

L

⎛
⎝⎜

⎞
⎠⎟≡ + +( )s w l

w

w

l

w
r, 1 . (14)c c c

c

0

c

c

Figure 4 shows sd(d), ββs ( )LL
for fixed κ, and s w( )c c and s l( )c c

for fixed lc and wc, respectively, for λ = 250 nmL . In the
following we discuss the optimum choice of the various
parameters.

For sd(d) from equation (12) we obtain a shallow mini-
mum at =d dmin 0, and a rather weak dependence for

≳d 100 nm. This indicates that with increasing d above
∼100 nm the decrease in kinetic inductance (and hence in flux
noise) and coupling factor almost compensate each other
within the simulation range. Hence, the optimization of the
spin sensitivity with respect to film thickness is

1
‘Exp. device 1a’ corresponds to the YBCO nanoSQUID which has been

described in [29]. Due to our refined calculation of the coupling factor ϕμ (i.e.
using =n 11 instead of =n 2 current sheets), we find a ∼14 % reduction of
the calculated value for ϕμ, and correspondingly a slightly larger value for

μS1 2, as compared to the values quoted in [29]. Our choice of λ = 250 nmL

for the calculation of ϕμ (instead of 335 nm in [29]) has a negligible effect on
the calculated value of ϕμ for this device.
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Table 2. Summary of geometric and electric nanoSQUID parameters (as defined in the text). The values for ‘opt. device 1’ are calculated for optimized parameters obtained for a given constriction
length lc, with λ = 250 nmL . For ‘opt. device 2’ we used more relaxed values for wc, lc and lJ and otherwise identical input parameters for d, j0, I R0 , λL with correspondingly optimized βL and
adjusted wJ. For the experimental devices we quote experimentally determined values for L and ΦS1 2 (in the thermal white noise limit) [40] together with values (in brackets) which are calculated
with equation (6) and (4), respectively, with λ = 250 nmL . Here, the flux noise was calculated based on the measured SQUID inductance L. Accordingly, the values in brackets for the spin
sensitivity μS1 2 are based on the calculated values for the flux noise ΦS1 2.

d lc lJ wc wJ βL L I0 R I R0 j0 Lc L J Le Lb ΦS1 2 ϕμ μS1 2

Units nm nm nm nm nm pH μA Ω mV mA μm-2 pH pH pH pH nΦ −Hz0
1 2 nΦ μ0 B μ −HzB

1 2

opt.
device1 120 44 174 25 280 0.40 4.1 101 5.0 0.5 3 1.3 0.44 0.47 1.0 36 20 1.8
opt.
device2 120 100 200 60 316 0.45 4.1 114 4.4 0.5 3 1.2 0.45 0.47 1.1 36 15 2.4
exp. 50 300 400 90 130 0.65 36 18.5 7.0 0.13 2.85 5.7 5.2 1.1 3.6 1300 18 71
device1a (22) (228) (12)
exp. 50 535 435 50 85 1.29 42 31.4 10.2 0.32 7.39 18 8.7 1.1 5.6 600 23 26
device1b (43) (185) (8.0)
exp. 100 500 500 420 190 0.78 8.9 91 5.4 0.49 4.79 1.0 2.2 0.56 1.9 450 5.2 86
device2a (8.5) (60) (11)
exp. 100 475 455 410 140 1.37 9.1 155 3.1 0.47 11.0 0.98 2.8 0.56 2.0 400 5.3 75
device2b (9.7) (72) (13)
exp. 120 230 370 100 205 0.94 5.8 168 5.0 0.84 6.81 1.6 1.3 0.47 1.2 <83 12 <6.7
device3 (6.4) (39) (3.1)
exp. 300 300 450 120 280 0.87 2.9 315 1.4 0.44 3.75 0.71 0.46 0.19 0.49 240 6.4 37
device4a (2.5) (37) (5.7)
exp. 300 485 480 195 285 1.01 2.2 471 1.7 0.78 5.51 0.70 0.48 0.19 0.54 <240 4.8 <50
device4b (2.6) (25) (5.3)
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straightforward, although, the proper choice of d is not very
crucial as long as ≳d 100 nm. However, in order to avoid too
large aspect ratios d wc and d wJ, it is advisable to fix the
optimum film thickness to =d d .opt min This in turn fixes the
optimum value for sd according to equation (12) to

= =( )s s d 2. (15)d d,opt min

The evaluation of equation (13) shows a much more
pronounced dependence for ββs ( )LL

with a clear minimum at

β κ κ= + + −(1 1 )L,min
1 , and

β κ κ= + +βs ( ) 1L,minL
. For κ = 0.26 used in figure 4,

we obtain β ≈ 0.83L,min and β ≈βs ( ) 1.6L,minL
. Both,

β κ( )L,min and ββs ( )L,minL
decrease monotonically with

decreasing κ, which implies that κ should be as small as
possible. However, as mentioned above, for β < 0.4L the flux
noise increases again with further decreasing βL, and
equation (13) is not applicable. Hence, the optimum value for
βL is β = 0.4L,opt , which then fixes the optimum value for κ

via the relation β κ( )L,min to

κ
β

β
=

+
= ≈

1 2

4

45
0.09. (16)

L

L
opt

, opt
2

,opt

Accordingly, the optimum value for βs
L
in equation (13)

yields

β κ= = ≈β β ( )s s ,
3

5
1.3. (17)L,opt ,opt optL L

We note that according to equation (9), the choice of κ κ= opt

relates the optimum length lJ,opt of the bridges containing the

GBJs and lc via

κ Φ
=

′
−l

j L

b
l

4 2
. (18)J,opt

opt 0

0
c

Since ≈ ≪b 2 0.15 1, the dependence l l( )J,opt c is quite

weak. For our choice of μ= −j 3 mA m0
2 and with

λ = 250 nmL , equation (18) yields ≈ −l l180 nm 0.15J,opt c,
i.e. lJ,opt decreases only slightly from ∼180 nm to ∼150 nm
for =l 0c to 200 nm. Hence, the choice of lc (together with j0
and λL) fixes lJ,opt.

By inserting = =d d dopt 0, β β=L L,opt and κ κ= opt into
equation (8), we find for the optimized SQUID inductance

⎛
⎝⎜

⎞
⎠⎟≈

′
+L

L

d
r

l

w
1.3 , (19)opt

0

c

c

i.e. ≈ +L 2.5 pH 0.91 pH ·
l

wopt
c

c
for λ = 250 nmL and

roughly a factor of two larger values for λ = 335 nmL .
Inserting this into equation (7), we find for the optimum
junction width

Φ
=

′ +
w

L j r

7

45

1
. (20)

l

w

J,opt
0

0
c

c

For our choice of μ= −j 3 mA m0
2, the prefactor in

equation (20) is μ≈1.26 m (750 nm) for λ = 250 (335) nmL ;
i.e. the optimum junction width decreases monotonically with
increasing ratio l wc c from ∼340 (270) nm for =l w 1c c to
∼100 (60)nm for =l w 10c c , with λ = 250 (335)nmL . For
our choice of μ=j 3 mA m0

2, the prefactor in equation (20)
is μ≈1.26 m (750 nm) for λ = 250 (335) nmL ; i.e. the opti-
mum junction width decreases monotonically with increasing
ratio l wc c from ∼340 (270) nm for =l w 1c c to
∼100 (60)nm for =l w 10c c , with λ = 250 (335)nmL .

Finally, as shown in figure 4, the relation s w l( , )c c c , given
by equation (14) yields a monotonic decrease of sc with
decreasing lc and a clear minimum in s w( )c c at

⎛
⎝⎜

⎞
⎠⎟= + −w

l

r

rw

l4
1

8
1 , (21)c,min

c 0

c

which can be approximated by a power law dependence
≈ ′w w l· ( nm)c,min c c

0.35 (see dashed and dotted lines in
figure 5) with ′ =w 7 (4.8) nmc for λ = 250 (335) nmL .
Accordingly, sc can be minimized by choosing

=w w l( )c c,min c . This yields

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟= +

′
+

′( )s l
w

w

l
r

w

l
1

nm

nm

nm
. (22)c,opt c

c

0

c
0.35

c

c
0.65

Both, w l( )c,min c and s l( )c,opt c decrease monotonically with
decreasing lc. This implies that lc should be made as small as
possible.

All numbers in the following paragraph are quoted for
λ = 250 nmL . For =l 500 nmc we find ≈w 60c,min , which is
feasible to realize with our FIB technology; however upon
shrinking lc it becomes increasingly hard to realize devices
with optimum constriction width w l( )c,min c . Fortunately, it

Figure 4. Scaling of the terms sd(d), ββs ( )LL
for κ = 0.26, s w( )c c for

=l 200 nmc and s l( )c c for =w 60 nmc , which enter the spin
sensitivity in equation (11) as calculated from equation (12)–(14)
with λ = 250 nmL .

9

Supercond. Sci. Technol. 27 (2014) 125007 R Wölbing et al



turns out that the degradation in spin sensitivity is not very
severe if wc deviates from w ,c,min as long as one can keep wc

below, say, 100 nm. This is illustrated in the contour plot in
figure 5, which shows the spin sensitivity for optimized d and
βL, i.e. μS l w( , ), opt

1 2
c c = ≈μ βS s s s l w· · · ( , )d, 0

1 2
,opt ,opt c c cL

μ − s l w0.69 Hz · ( , )B
1 2

c c c for =T 4.2 K and =I R 0.5 mV0 .
Within the plotted range, the spin sensitivity lies in most cases
between 2 and 4 μ −HzB

1 2, and practically for an optimized
device the spin sensitivity is limited by both, the smallest
length and linewidth which can be realized for the constric-
tion. The solid line in figure 5 shows s l( )c,opt c according to
equation (22), i.e. with the additional condition

=w w l( )c c,min c . If we take =l 44 nmc , corresponding to
=w 25 nmc,min as the current limitation for our FIB pat-

terning technology, we calculate Φ≈Φ
−S 36 n Hz, opt

1 2
0

1 2 and
ϕ Φ μ≈μ 20 n,opt 0 B, giving an optimized spin sensitivity

μ≈μ
−S 1.8 Hz, opt

1 2
B

1 2. Corresponding SQUID parameters
are listed in table 2 (‘opt. device 1’). If we take more easily
achievable values =w 60 nmc , =l 100 nmc and =l 200 nmJ

(other input parameters are the same as for the initial opti-
mization), we still get μ=μ

−S 2.4 Hz1 2
B

1 2 (see table 2 for
parameters of ‘opt. device 2’).

6. Discussion

In the following, we discuss some practical issues regarding
the realization of optimized YBCO GBJ nanoSQUIDs. The
optimization of the spin sensitivity given by equation (11)
certainly depends on the control over the various input
parameters, which are not always known precisely. For
example, I R0 and j0 of YBCO GBJs can vary significantly,
even on the same chip [34], and sometimes we find values for
λL significantly above 250 nm.

Starting with the prefactor μS , 0
1 2 , this depends on T and

I R0 . Regarding operation temperature T, this will certainly

depend on the different applications the nanoSQUIDs will be
used for. Hence, this is not a parameter which should be used
for optimization. Still, the use of YBCO SQUIDs based on
GBJs offers operation from close to their transition tem-
perature Tc (say, 77 K) down to the mK regime. The very
large range of operation temperatures is certainly a significant
advantage over nanoSQUIDs based on other materials or
other junction types such as constriction junctions, which
often can only be operated in a very limited temperature
interval. The I R0 product does only enter into the expression
for the spin sensitivity via ∝μS I R1,0 0 . Hence, any variation
in I R0 does not affect the optimization of the device geo-
metry. Obviously, as large as possible values for I R0 are
helpful for improving the spin sensitivity.

The term for sd depends on the film thickness d only, and
due to the shallow minimum in sd(d), slight deviations from

= =d d 120 nmopt (for λ = 250 nmL ) or larger values for λL

will have an almost negligible effect on μS1 2.
The term for sc depends only on the geometry of the

constriction and on λL. Here, technological limitations
imposed by the patterning technique and possible edge
damage effects are crucial, since the smallest achievable sc

will depend on the smallest achievable length lc and width wc

of the constriction. For our FIB patterning technique, we
currently do not know what the final limits for the minimum
achievable values for lc and wc are, and how strong edge
damage effects are. Further investigations are required to
determine (and reduce) edge damage effects, which will
finally limit the minimum achievable constriction size.

The term βs
L
depends on βL and κ. Here, j0 enters into the

optimization only via κ ∝ j0. A variation in j0 will modify the
optimum length l j l( , )J,opt 0 c (see equation (18)) and width

∝w j1J,opt 0 (see equation (20)), which are required for
maintaining β ≈ 0.4L (and hence =β βs s ,optL L

). Fortunately, j0
can be measured prior to FIB patterning, which allows to
adjust the geometry of the bridges straddling the GBJs.
Hence, as long as j0 does not change significantly after FIB
milling [28], and as long as the conditions for lJ,opt and wJ,opt

can be fulfilled, the optimized spin sensitivity is not affected
by variations in j0.

A variation in λL has a similar effect as a variation in j0,
since κ ∝ ′L and ′L increases with λL (see table 1). However,
it is difficult to determine λL prior to FIB patterning in order
to adjust wJ and lJ properly. For fixed geometrical parameters,
we find that an increase in λL from 250 to 335 nm decreases
the coupling factor only very slightly, as long as ≲w 100c

nm. The strongest effect comes from the increase in ′L by a
factor of ∼1.7, which increases L and βL, which both enter
into the flux noise. Depending on the value of βL, this induces

an increase in ΦS1 2 (and in μS1 2) by a factor of approxi-
mately 1.4–1.7.

Finally, we would like to comment on two additional
practical issues. First, the predicted optimized spin sensitivity
around a few μ −HzB

1 2 is in particular due to the reduction in
SQUID inductance for an optimized geometry, yielding
improved flux noise. However, we should mention that for
YBCO SQUIDs the measured flux noise is often significantly

Figure 5. Contour plot of optimized spin sensitivity μS l w( , ), opt
1 2

c c

(for =T 4.2 K, =I R 0.5 mV0 , =d 120 nm and β = 0.4L ). Num-

bers at contour lines are in units of μ −HzB
1 2. Dashed and dotted

lines show w l( )c,min c from equation (21) and approximation by
power law dependence, respectively. The solid black line shows

μS l( ), opt
1 2

c for =w wc c,min . All quantities were calculated for

λ = 250 nmL .

10

Supercond. Sci. Technol. 27 (2014) 125007 R Wölbing et al



higher than the theoretically predicted one [41]. For the
experimental devices listed in table 2 the measured ΦS1 2 was a
factor 3.2–7.5 higher than predicted by equation (4). Hence,
we expect the predicted spin sensitivities to be too low by a
similar factor if compared with experimental results.

Second, the optimization procedure as described in this
work is based on calculating the white thermal noise of the
SQUIDs. However, it is well known that I0 fluctuations can
lead to a flux noise ΦS which scales with the measurement
frequency f as αf1 with α typically close to 1, and it is also
known that for YBCO GBJs such a f1 noise contribution can
be quite large [41]. For YBCO nanoSQUIDs with improved
white thermal noise around Φ −100 n Hz0

1 2 and below, this
implies that the f1 noise may dominate at frequencies up to
the MHz range. Hence, in order to utilize the full potential of
such SQUIDs, the implementation of bias reversal schemes
for suppression of f1 noise from I0 fluctuations will be very
important. Furthermore, for dc SQUIDs based on metallic
superconductors such as Nb, it has been shown that below

≈T 1 K additional sources of low-frequency excess flux
noise may become important, which cannot be eliminated by
bias reversal [42] (for more recent work see e.g. [43, 44] and
references therein). In YBCO nanoSQUIDs also similar
effects may be present and deserve further studies.

7. Conclusions

In summary, we have performed a detailed analysis of the
coupling factor ϕμ and the spectral density of flux noise ΦS ,

and hence of the spin sensitivity ϕ=μ Φ μS S1 2 1 2 for grain
boundary junction dc nanoSQUIDs. Based on the calculation
of ϕμ and ΦS , we derived an explicit expression for the spin

sensitivity μS1 2 as a function of the geometric and electrical
parameters of our devices. This allows for an optimization of

μS1 2, which predicts a spin sensitivity of a few μ −HzB
1 2. Such

a low value for μS1 2 can be achieved by realization of very
low inductance nanoSQUIDs with ultra-low flux noise on the
order of Φ −100 n Hz0

1 2 or even below, in the thermal white
noise regime. This poses severe challenges on proper readout
electronics for such SQUIDs. It remains to be shown whether
or not the readout of such ultralow-noise SQUIDs is feasible
and whether or not the envisaged values for the spin sensi-
tivity can also be achieved in high fields, which is a major
driving force for using these grain boundary junction
nanoSQUIDs.
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We fabricate YBa2Cu3O7 (YBCO) direct-current nano- superconducting quantum-interference devices
(nano-SQUIDs) based on grain-boundary Josephson junctions by focused-ion-beam patterning.
Characterization of electric transport and noise properties at 4.2 K in a magnetically shielded environment
yields a very small inductance L of a few pH for an optimized device geometry. This, in turn, results in very
low values of flux noise< 50 nΦ0=Hz1=2 in the thermal white-noise limit, which yields spin sensitivities of
a few μB=Hz1=2 (Φ0 is the magnetic flux quantum, and μB is the Bohr magneton). We observe frequency-
dependent excess noise up to 7 MHz, which can be eliminated only partially by bias reversal readout.
This behavior indicates the presence of fluctuators of unknown origin, possibly related to defect-induced
spins in the SrTiO3 substrate. We demonstrate the potential of using YBCO nano-SQUIDs for the
investigation of small spin systems, by placing a 39-nm-diameter Fe nanowire encapsulated in a carbon
nanotube on top of a nonoptimized YBCO nano-SQUID and by measuring the magnetization reversal of
the Fe nanowire via the change of magnetic flux coupled to the nano-SQUID. The measured flux signals
upon magnetization reversal of the Fe nanowire are in very good agreement with estimated values, and the
determined switching fields indicate magnetization reversal of the nanowire via curling mode.

DOI: 10.1103/PhysRevApplied.3.044011

I. INTRODUCTION

Small spin systems or magnetic nanoparticles (MNPs),
like single-molecular magnets, nanowires, or nanotubes
behave very differently from magnetic bulk material, which
makes them very interesting, both for basic research and
applications ranging from spintronics and spin-based
quantum-information processing to industrial use of ferro-
fluidic devices and biomedical applications [1–7]. Because
of their nanoscale size, MNPs have very small magnetic
moments, which does not allow one to use standard
magnetic characterization techniques for the investigation
of their properties. In one approach, which has been
pioneered by Wernsdorfer [8], MNPs are placed very close
to miniaturized superconducting quantum-interference
devices (SQUIDs), often referred to as micro-SQUIDs or
nano-SQUIDs [9–25], and the magnetization reversal of
MNPs is measured directly via the change of stray
magnetic flux coupled to the micro-SQUIDs or nano-
SQUIDs. Major challenges for this application are the
development of SQUIDs (i) with ultralow flux noise, which
can be achieved via the reduction of the inductance L of the
SQUID loop and (ii) which can be operated in very large
magnetic fields (up to the tesla range), without significant
degradation of their noise performance.
The most common approach for the realization of direct-

current (dc) nano-SQUIDs uses two constriction-type

Josephson junctions (CJJs) intersecting the SQUID loop
[11,12,14,16,23,26,27]. In this case, optimum coupling
between a MNP and the nano-SQUID is achieved by
placing the particle directly on top of one of the CJJs.
The use of CJJs offers the possibility to operate the
SQUIDs in strong magnetic fields. However, if conven-
tional metallic superconductors such as Pb or Nb are used,
high-field operation is limited by the upper critical field of
typically 1 T for thin films [28]. Still, it has been
demonstrated that by using ultrathin films, this limitation
can be overcome [29]. However, with ultrathin films the
SQUID inductance L is dominated by a large kinetic
inductance contribution, which yields large flux noise.
To date, the most successful approach is the SQUID on
tip (SOT) [26]. With the so far smallest Pb SOTwith 46-nm
effective loop diameter and 15-nm film thickness, ultralow
flux noise down to 50 nΦ0=Hz1=2 at 4.2 K has been
demonstrated [28] (Φ0 is the magnetic flux quantum).
The inductance for a slightly larger device (56-nm effective
diameter) was estimated as L ¼ 5.8 pH. The SOT tech-
nology is extremely powerful for high-resolution scanning
SQUID microscopy and provides a spin sensitivity below
1 μB=Hz1=2 for certain intervals of applied magnetic field
up to about 1 T (μB is the Bohr magneton) estimated for a
pointlike MNP with 10 nm distance to the SOT. However,
maintaining the optimum flux bias point in a variable
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magnetic field is not possible; i.e., the flux noise and spin
sensitivity strongly depend on the applied field, which
makes such devices less interesting for the investigation of
the magnetization reversal of MNPs.
An alternative approach is the use ofYBa2Cu3O7 (YBCO)

dc nano-SQUIDs with grain-boundary Josephson junctions
(GBJJs) for operation at temperature T ¼ 4.2 K and below
[30]. Magnetization reversal of a MNP can be detected by
applying an in-plane magnetic field perpendicular to the
grain boundary, i.e., without significant suppression of the
GBJJ critical currents. The huge upper critical field ofYBCO
in the range of tens of teslas offers the possibility for
operation in strong fields up to the tesla range, without
using ultrathin films [31]. Hence, very low inductance
devices with potentially ultralow flux noise can be realized.
Very recently, we performed an optimization study for

the design of YBCO nano-SQUIDs [32]. This work is
based on the calculation of the coupling factor ϕμ, i.e., the
amount of magnetic flux coupled to the SQUID per
magnetic moment of a pointlike MNP placed on top of
a narrow constriction inserted into the SQUID loop. This
additional constriction allows for the optimization of ϕμ

(via constriction geometry) without affecting the junctions.
In addition, we performed numerical simulations to calcu-
late the SQUID inductance and root-mean-square (rms)
spectral density of flux noise S1=2Φ;w in the thermal white-
noise limit. This approach enabled us to predict the spin
sensitivity in the thermal white-noise limit S1=2μ;w ¼ S1=2Φ;w=ϕμ

for our devices as a function of all relevant device
parameters. This optimization study predicts optimum
performance for a YBCO film thickness d ≈ 120 nm,
which allows us to realize nano-SQUIDs with very small
L of a few pH. For optimized devices, we predict S1=2Φ;w of
several tens of nΦ0=Hz1=2 and ϕμ ∼ 10–20 nΦ0=μB (for a
MNP placed 10 nm above the YBCO film on top of the
constriction) yielding a spin sensitivity S1=2μ;w of a
few μB=Hz1=2.
Here, we report on the realization of optimized YBCO

nano-SQUIDs based on GBJJs and on the experimental
determination of their electric transport and noise proper-
ties in a magnetically shielded environment at T ¼ 4.2 K.
To demonstrate the suitability of our YBCO nano-SQUIDs
for the detection of small spin systems, we present the
measurement of the magnetization reversal (up to approx-
imately 200 mT at T ¼ 4.2 K) of an Fe nanowire with
diameter dFe ¼ 39 nm, which is positioned close the
SQUID loop.

II. DEVICE FABRICATION
AND EXPERIMENT SETUP

The fabrication of the devices is carried out according to
Refs. [30,31]. A c-axis-oriented YBCO thin film of thick-
ness d is grown epitaxially by pulsed laser deposition

on a SrTiO3 (STO) [001] bicrystal substrate with a 24°
grain-boundary misorientation angle. An in situ evaporated
Au layer of thickness dAu serves as shunt resistance to
provide nonhysteretic current-voltage characteristics
(IVCs). SQUIDs with smallest line widths down to
50 nm are patterned by focused-ion-beam (FIB) milling
with 30-keV Ga ions. The Au layer also minimizes Ga
implantation into the YBCO film during FIB milling.
For characterization of the device properties, electric

transport and noise measurements are performed in an
electrically and magnetically shielded environment at
T ¼ 4.2 K, i.e., with the samples immersed into liquid
He. By applying a modulation current Imod across the
constriction, the magnetic flux coupled to the SQUID can
be modulated. This scheme allows flux biasing at the
optimum working point and operation in a flux-locked loop
(FLL) mode [33]. In FLL mode, a deviation from the
voltage at the optimum working point (due to any flux
signal), is amplified and then fed back via a feedback
resistor as a feedback current through the constriction. The
feedback current produces a feedback flux canceling the
applied flux signal; i.e., the SQUID is always operated at its
optimum working point, and the voltage across the feed-
back resistor (proportional to the flux signal) serves as the
output signal. The readout in FLL mode is limited by the
bandwidth of the feedback circuit. If the signals applied to
the SQUID are small enough, one can also operate the
SQUID in open-loop mode; i.e., the voltage across the
SQUID is amplified without feedback, and the amplified
voltage serves as the output signal. In this case, the readout
is limited by the bandwidth of the voltage amplifier, which
is typically larger than the FLL bandwidth. To determine
the spectral density of flux noise SΦ vs frequency f of the
devices, we use a Magnicon SEL-1 SQUID electronics [34]
in direct readout mode [35], which is either operated in
open-loop mode (maximum bandwidth of approximately
7 MHz) or in FLL mode (maximum bandwidth of approx-
imately 500–800 kHz). The SEL electronics allows for
SQUID operation either with constant bias current (dc bias)
or with a bias reversal readout scheme [maximum bias

500 nm 

I 

I 

Imod  

Imod  

FIG. 1. SEM image of YBCO nano-SQUID-1. Vertical dashed
line indicates position of the grain boundary intersecting the two
SQUID arms. Horizontal arrows indicate paths for modulation
current Imod across the constriction and bias current I across the
grain-boundary Josephson junctions.
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reversal (BR) frequency fBR ¼ 260 kHz], to reduce 1=f
noise caused by fluctuations of the critical currents I0;1 and
I0;2 of the Josephson junctions 1 and 2, respectively [33].
Below we present the data of our best device, SQUID-1,

with a d ¼ 120-nm-thick YBCO film. Figure 1 shows a
scanning electron microscope (SEM) image of SQUID-1.
The loop size 350 × 190 nm2 is given by the length lJ of
the bridges straddling the grain boundary and by the length
lc of the constriction. SQUID-1 has junction widths wJ1 ¼
210 nm and wJ2 ¼ 160 nm and a constriction width
wc ¼ 85 nm. The parameters for SQUID-1 are summarized
in Table I. For comparison, we also include parameters for a
similar device, SQUID-2, which has the same YBCO film
thickness, however, slightly larger inductance L ¼ 6.3 pH,
and about a factor of 2.5 smaller characteristic voltage
Vc ≡ IcRN . Ic is the maximum critical current, and RN is
the asymptotic normal-state resistance of the SQUID.
Details on electric transport and noise characteristics of
SQUID-2 are presented in Sec. I of the Supplemental
Material [36]. Those also include noise data taken from 6 to
65 K in a different setup with a temperature stability of
approximately 1 mK [37]. Table I also includes parameters
for SQUID-3, which is used for measurements on an Fe
nanowire in a high-field setup, as discussed further below.

III. SQUID-1: ELECTRIC
TRANSPORT AND NOISE

A. SQUID-1: Dc characteristics

Figure 2 shows the dc characteristics of SQUID-1.
Figure 2(a) shows IVCs for Imod ¼ 0 and two values of
Imod corresponding to the maximum and minimum critical
current. The IVCs are slightly hysteretic with maximum
critical current Ic ¼ 960 μA and RN ¼ 2.0 Ω, which yields
Vc ¼ 1.92 mV. The inset of Fig. 2(a) shows the modula-
tion of the critical current IcðImodÞ. From the modulation
period, we find for the magnetic flux Φ coupled to the
SQUID by Imod the mutual inductance M ¼ Φ=Imod ¼
0.44Φ0=mA ¼ 0.91 pH. We perform numerical simula-
tions based on the resistively and capacitively shunted
junction model to solve the coupled Langevin equa-
tions which include thermal fluctuations of the junction
resistances [38]. From simulations of the IcðImodÞ charac-
teristics [cf. inset of Fig. 2(a)], we obtain for the screening
parameter βL¼2I0L=Φ0¼1.8 [with I0 ¼ ðI0;1 þ I0;2Þ=2],
which yields a SQUID inductance L ¼ 3.9 pH. We do

find good agreement between the measured and simu-
lated IcðImodÞ characteristics if we include an inductance
asymmetry αL ≡ ðL2 − L1Þ=ðL2 þ L1Þ ¼ 0.20 (L1 and L2

TABLE I. Parameters of optimized SQUID-1 and -2 and of SQUID-3 used for measurements on Fe nanowire. Values for Vϕ

correspond to working points of noise measurements. Values in brackets for S1=2Φ;w and S1=2μ;w of SQUID-1 are based on the fitted noise
spectrum. All devices have dAu ¼ 70 nm. SQUID-1 and -3 are measured at 4.2 K; SQUID-2 is measured at 5.3 K.

d
(nm)

lc
(nm)

lJ
(nm)

wc
(nm)

wJ1
(nm)

wJ2
(nm) βL

L
(pH)

Ic
(μA)

RN
(Ω)

IcRN
(mV)

VΦ
(mV=Φ0)

S1=2Φ;w
(nΦ0=Hz1=2)

ϕμ
(nΦ0=μB)

S1=2μ;w
(μB=Hz1=2)

SQUID-1 120 190 350 85 210 160 1.8 3.9 960 2.0 1.92 4.4 <50 (45) 13 <3.7 (3.4)
SQUID-2 120 230 370 100 180 230 0.94 6.3 311 2.5 0.78 1.7 <83 12 <6.7
SQUID-3 75 190 340 100 270 340 0.95 28 69 2.3 0.16 0.65 <1450 15 <98

FIG. 2. SQUID-1 dc transport characteristics. (a) Measured
IVCs for three different values of Imod, including flux bias (Imod)
values which yield maximum and minimum critical current. Inset:
Measured IcðImodÞ for positive and negative current bias (solid
lines) and numerical simulations (dots). (b) Measured VðImodÞ for
bias currents jIj ¼ 0.64–1.12 mA (in 40-μA steps). Points 1 and 2
are bias points with VΦ ¼ 12 and 4.5 mV=Φ0, respectively.
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are the inductances of the two SQUID arms) and a critical
current asymmetry αI ≡ ðI0;2 − I0;1Þ=ðI0;2 þ I0;1Þ ¼ 0.27.
These asymmetries are caused by asymmetric biasing of the
SQUID and by asymmetries of the device itself.
VðImodÞ is plotted in Fig. 2(b) for different bias currents.

The transfer function, i.e., the maximum value of ∂V=∂Φ,
in the nonhysteretic regime is VΦ ≈ 12 mV=Φ0 [at
I ¼ 0.92 mA; cf. point 1 in Fig. 2(b)].

B. SQUID-1: Noise data

1. Open-loop mode

Figure 3(a) shows the rms spectral density of flux
noise S1=2Φ ðfÞ of SQUID-1 measured in open-loop
mode to reach the highest possible bandwidth of the
readout electronics. Because of the limitation in the
maximum bias current of the readout electronics, noise
spectra are taken at I ¼ 0.72 mA with a transfer function
VΦ ¼ 4.5 mV=Φ0 [cf. point 2 in Fig. 2(b)]. Up to the cutoff
frequency f3 dB ¼ 7 MHz, there is no white flux noise

observable. Instead, the flux noise scales roughly as
SΦ ∝ 1=f, with S1=2Φ ≈ 10 μΦ0=Hz1=2 at f ¼ 100 Hz and
1 μΦ0=Hz1=2 at 10 kHz. This level of low-frequency excess
noise is quite typical for YBCO GBJJ SQUIDs (also at
T ¼ 77 K) and has been ascribed to critical current
fluctuations in the GBJJs [39]. However, due to the
limitation by thermal white noise, typically between 1
and 10 μΦ0=Hz1=2 for low-noise YBCO SQUIDs, this
f-dependent excess noise has not been observed so far
up to the megahertz range. We note that for YBCO nano-
SQUIDs implementing CJJs [27], a frequency-dependent
(1=f)-like excess noise at T ¼ 8 K of almost the same level
as that for SQUID-1 was reported very recently and
was also attributed to critical current fluctuations. For
frequencies above 10 kHz, the flux noise of the YBCO
nano-SQUID in Ref. [27] was limited by amplifier back-
ground noise.
For a more detailed analysis of the measured flux

noise SΦðfÞ, we apply an algorithm [40] to decompose
the noise spectra into a sum of Lorentzians FiðfÞ ¼
F0;i=½1þ ðf=fc;iÞ2� plus a white-noise contribution Fw.
The noise spectrum measured for SQUID-1 in open loop
can be very well fitted by FopðfÞ ¼ Fw;op þ Fs;op þP

16
i¼1 Fop;iðfÞ, i.e., the superposition of a white-noise con-

tribution with F1=2
w;op ¼ 45 nΦ0=Hz1=2 plus a 1=f2 spectrum

Fs;op (i.e., one or more Lorentzians with characteristic

frequencies fc well below 1 Hz) with F1=2
s;opð1 HzÞ ¼

84 μΦ0=Hz1=2 plus 16 Lorentzians, with fc;i ranging from
2.6 Hz to 2.6 MHz. For more details, see Sec. III of the
SupplementalMaterial [36].Hence, the decomposition of the
spectrum into Lorentzians yields an estimate of thewhite rms
flux noise S1=2Φ;w ≈ 45 nΦ0=Hz1=2 for SQUID-1. We note that

this value for S1=2Φ;w is only a factor of 1.8 above the value,
which we obtain from numerical simulations of the coupled
Langevin equations [38] at T ¼ 4.2 K for the parameters of
SQUID-1.
Taking the measured flux noise at 7 MHz as an upper

limit for S1=2Φ;w, we still obtain a very low white rms flux
noise, i.e., S1=2Φ;w < 50 nΦ0=Hz1=2. This more conservative
estimate for the white rms flux noise level is an improve-
ment by more than an order of magnitude compared to our
nonoptimized devices operated at 4.2 K and compared to
the lowest value reported so far for a YBCO SQUID (at
8 K) very recently [27]. Furthermore, this value is the same
as the lowest value reported for a Pb SOT operated at 4.2 K
[28] and among the lowest flux noise levels ever achieved
for a SQUID [9,41,42].
For the geometry of SQUID-1, we calculate [32] a

coupling factor ϕμ ¼ 13.4 nΦ0=μB (10 nm above the
YBCO film). With S1=2Φ;w < 50 nΦ0=Hz1=2, we can deter-
mine an upper limit for the spin sensitivity (white-noise
limit) of S1=2μ;w < 3.7 μB=Hz1=2. If we take the fitted white

FIG. 3. Rms flux noise of SQUID-1. (a) Measured in open-loop
mode at bias point 2 (I ¼ 0.72 mA) in Fig. 2(b). Dashed line is a
fit to the measured spectrum with white noise as indicated by the
horizontal line. (b) Measured in FLL mode with dc bias and bias
reversal (jIj ¼ 0.43 mA, VΦ ¼ 4.4 mV=Φ0). Vertical arrow in-
dicates bias reversal frequency fBR. Dashed and dotted lines are
fits to the spectra; horizontal lines indicate fitted white noise.
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flux noise of 45 nΦ0=Hz1=2, we obtain S
1=2
μ;w¼3.4μB=Hz1=2.

Hence, the achieved performance matches very well the
predictions of our recent optimization study [32].

2. FLL mode: Dc bias vs bias reversal

Although the achieved low level of white flux noise for
SQUID-1 is encouraging, one certainly will like to extend
such a low-noise performance down to much lower
frequencies. Therefore, we also perform noise measure-
ments in FLL mode (with approximately 700-kHz band-
width) and compare measurements with dc bias and bias
reversal (with fBR ¼ 260 kHz). We note that the measure-
ments in FLL mode are performed within a different
cooling cycle, after SQUID-1 already shows a slight
degradation in Ic [43]. Still, we are able to find a working
point (at jIj ¼ 0.43 mA) which yields almost the same
transfer function, 4.4 mV=Φ0, as for the measurement
before degradation in open-loop mode.
Figure 3(b) shows rms flux noise spectra taken with dc

bias and bias reversal. Comparing first the FLL dc bias
measurement with the open-loop data, we note that the
noise levels at fBR coincide. For f < fBR, the noise levels
of the open-loop and FLL dc bias data are similar; however,
the shape of the spectra differ, which we attribute to the
above-mentioned degradation and variations between dif-
ferent cooling cycles. The dashed line in Fig. 3(b) is a fit to
the measured spectral density of flux noise by FdcðfÞ ¼
Fw;dc þ

P
15
i¼1 Fdc;iðfÞ, i.e., the superposition of 15

Lorentzians, with fc;i ranging from 0.8 Hz to 6.8 MHz,

plus a white-noise contribution F1=2
w;dc ¼ 41 nΦ0=Hz1=2,

which we fix to a value similar to the white-noise level
determined for the open-loop measurement. For more
details, see Sec. III of the Supplemental Material [36].
Applying bias reversal, one expects a suppression of the

contributions due to in-phase and out-of-phase critical
current fluctuations of the GBJJs [39]. If the f-dependent
excess noise below fBR arises solely from I0 fluctuations,
one expects in bias reversal mode a frequency-independent
noise for frequencies below the peak at fBR, at a level
which is given by the noise measured at fBR in dc bias
mode. This behavior can be observed for frequencies down
to a few kilohertz, with an f-independent noise F1=2

w;BR ¼
231 nΦ0=Hz1=2. For lower frequencies, however, we still
find a strong f-dependent excess noise in bias reversal mode,
which, hence cannot be attributed to I0 fluctuations.
The spectral density of flux noise measured in bias

reversal mode can be well approximated [cf. dotted line in
Fig. 3(b)] by FBRðfÞ ¼ Fw;BR þ Fs;BR þ

P
6
i¼1 FBR;iðfÞ,

with F1=2
s;BRð1 HzÞ ¼ 128 μΦ0=Hz1=2 and fc;i of the six

Lorentzians ranging from 21 Hz to 5 kHz. For more details,
see Sec. III of the Supplemental Material [36].
Obviously, below a few kilohertz, the low-frequency

excess noise is dominated by slow fluctuators, which
cannot be attributed to I0 fluctuations. For different

working points (I and Imod) and also for other devices,
the observation of low-f excess noise in bias reversal mode
is reproducible [cf. flux noise data of SQUID-2 (from T ¼
6 K up to 65 K) and of SQUID-3 (at T ¼ 4.2 K) in Secs. I
and II, respectively, of the Supplemental Material [36]].
Considering the narrow linewidths of the SQUID struc-

tures, we estimate a threshold field for trapping of
Abrikosov vortices [44] to be well above 1 mT. Since
the measurements are performed in a magnetically shielded
environment well below 100 nT, the presence of Abrikosov
vortices as the source of the observed low-f fluctuators is
very unlikely.
Low-frequency excess noise, which neither arises from

I0 nor from vortex fluctuations, has been reported during
the last decades for SQUIDs based on conventional super-
conductors like Nb, Pb, PbIn, and Al, in particular, at
temperatures well below 1 K [45]. This issue has recently
been revived due to the increasing interest in the develop-
ment of flux qubits and SQUIDs for ultra-low-temperature
applications [46]. Various models have been suggested to
describe the origin of such low-f excess noise, e.g., based
on the coupling of magnetic moments associated with
trapped electrons [47] or surface states [48,49], although
the microscopic nature of defects as sources of excess “spin
noise” still remains unclear.
For YBCO SQUIDs, excess low-f spin noise has not

been addressed so far. However, it seems quite likely that
defects are also a source of magnetic fluctuators in SQUIDs
based on cuprates or any other oxide superconductors.
Such defects can be present either in the thin-film SQUID
structures themselves or in the substrates onto which the
thin films are grown or at the interface between the thin film
and the substrate.
The emergence and modification of magnetism at

interfaces and surfaces of oxides, which are diamagnetic
in the bulk, is currently an intensive field of research
[50–52]. For STO, oxygen-vacancy-induced magnetism
has been predicted [53], and experimental studies suggest
ferromagnetic ordering up to room temperature [54], e.g.,
for defects induced by ion irradiation of single crystalline
STO [55]. Furthermore, defect-induced magnetism in oxide
grain boundaries and related defects have been suggested to
be the intrinsic origin of ferromagnetism in oxides [56].
Obviously, further investigations on the impact and

nature of such defects in our devices are needed and
will be the subject of further studies. Such studies will
include detailed noise measurements (dc vs bias reversal,
variable flux bias, temperature, and magnetic field)
to characterize and understand the f-dependent noise
sources and, hopefully, eliminate them. Furthermore, read-
out with bias reversal at higher frequency up to the
megahertz range in FLL mode has to be implemented in
order to maintain the achieved ultralow white flux noise
level down to lower frequencies. And finally, for applica-
tions of our nano-SQUIDs, it will be important to avoid
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degradation in time, which shall be achieved by adding a
suitable passivation layer, however, without introducing
f-dependent excess noise.

IV. SQUID-3: MAGNETIZATION REVERSAL
OF FE NANOWIRE

As a proof of principle, we demonstrate nano-SQUID
measurements on the magnetization reversal of an Fe
nanowire which is encapsulated in a carbon nanotube
(CNT) [57]. Such iron-filled CNTs (Fe CNTs) are of
fundamental interest with respect to studies on nanomag-
netism. Furthermore, they are attractive for various appli-
cations, e.g., as tips in magnetic-force microscopy [58,59].
The Fe nanowire, which contains mainly single crystalline
(ferromagnetic) α-Fe, has a diameter dFe ¼ 39 nm and
length lFe ¼ 13.8 μm. The CNT has a diameter of approx-
imately 130 nm. We note that this section is not directly
related to the previous section in a sense to demonstrate the
ultimate sensitivity of our devices on a magnetic nano-
particle with the smallest yet still detectable signals and
operation in the strongest possible magnetic fields. Rather,
we want to show an example of the feasibility of using our
YBCO nano-SQUIDs for practical applications. As shown
within this section, we can demonstrate signal-to-noise
ratios which are clearly superior to micro-Hall measure-
ments on similar nanowires.
The Fe CNT is positioned by a Kleindiek three-axis

manipulator inside a FIB SEM combination onto SQUID-
3, such that the distance between the left end of the Fe
nanowire and the SQUID loop is approximately 300 nm
(cf. Fig. 4). We note that for optimum coupling of the stray
field of the Fe nanowire into the SQUID, it is preferable to
place the end of the Fe nanowire close to the edge of the
SQUID loop opposite the constriction. At this location,
the coupling factor is slightly smaller than directly on top of
the constriction; however, it does not fall off very rapidly
upon moving farther away from the loop, as it is the case
near the constriction [31]. The Fe nanowire axis (its easy
axis) is aligned as close as possible with the substrate
plane (x-y plane), with an inclination angle θ ≈ 4° and
perpendicular to the grain boundary, which is oriented
along the y axis. The inclination of the Fe wire axis with

respect to the x axis is <1°. The vertical distance (along the
z axis) between the nanowire axis (at its left end) and the
surface of the YBCO film is approximately 300 nm.
The measurements on the Fe nanowire are performed

with the nonoptimized SQUID-3. This device has a
significantly larger inductance (due to its smaller film
thickness) and much smaller characteristic voltage, result-
ing in a much smaller transfer function VΦ ¼ 0.65 mV=Φ0,
as compared to SQUID-1 and -2. Magnetization-reversal
measurements on the Fe CNTare performed with SQUID-3
operated in FLL dc bias mode up to f ¼ 190 kHz. At this
frequency, the noise is limited by the readout electronics,
which yields for SQUID-3 an upper limit of the white rms
flux noise S1=2Φ;w ≤ 1.45 μΦ0=Hz1=2. Below approximately
40 kHz, SQUID-3 shows f-dependent excess noise
with S1=2Φ ≈ 8 μΦ0=Hz1=2 at f ¼ 100 Hz and S1=2Φ ≈
20 μΦ0=Hz1=2 at f ¼ 10 Hz, with an approximately
1=f2 increase of SΦ below 10 Hz. Some experimentally
determined parameters of SQUID-3 are listed in Table I.
Details on low-field electric transport and noise character-
istics of SQUID-3 are presented in Sec. II of the
Supplemental Material [36].
For magnetization-reversal measurements of the Fe nano-

wire on top of SQUID-3, the sample is mounted in a high-
field setup, which allows us to apply magnetic fields up to
μ0H ¼ 7 T [31]. To minimize coupling of the external
magnetic field H into the SQUID, the SQUID loop (in
the x-y plane) is aligned parallel to the field. To minimize
coupling of the external field into the GBJJs, the grain
boundary (along the y axis) is aligned perpendicular to the
applied field. The alignment of the SQUID with respect to
the applied field direction is performed by an Attocube
system including two goniometers with perpendicular tilt
axes and one rotator. In this configuration, the external field
H is applied along the x axis (cf. Fig. 4), and the angle
between H and the Fe nanowire axis is given by θ.
Figure 5 shows the flux signal ΦðHÞ detected by

SQUID-3, while sweeping H, at a rate μ0∂H=∂t≈
1 mT=s. At the fields �μ0Hn ¼ �101 mT, abrupt changes
by ΔΦ ≈ 150 mΦ0 clearly indicate magnetization reversal
of the Fe nanowire. The shape of the ΦðHÞ curve indicates
magnetization reversal of a single-domain particle. The
slope of the curve in the interval −Hn ≤ H ≤ Hn depends
strongly on the alignment of the SQUID with respect to the
applied field. Hence, this slope can be attributed, at least
partially, to the coupling of the external field to the SQUID
loop. The hysteresis in the signals for jHj≳ 100 mT is
typically observed also for our SQUIDs measured in the
high-field setup without MNPs coupled to them. Hence,
this hysteresis is attributed to a spurious magnetization
signal from our setup or from the above-mentioned
magnetic defects close to the nano-SQUID, rather than
being generated by the nanowire.
In order to convert from magnetic flux detected by the

SQUID to magnetization of the Fe nanowire, we follow the

500 nm 

Fe nanowire 

CNT 

x 

y 

SQUID loop 

constriction 

FIG. 4. SEM image of SQUID-3 with an Fe-wire-filled carbon
nanotube positioned close to the SQUID loop.
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approach described in Ref. [60]. We numerically calculate
the coupling factor ϕμðêμ; ~rpÞ for a pointlike MNP with
orientation êμ of its magnetic moment at position ~rp in the
3D space above the SQUID [32]. These simulations take
explicitly into account the geometry of SQUID-3 and are
based on London theory [61]. We then assume that the Fe
nanowire is in its fully saturated state, with saturation
magnetization Ms, with all moments oriented along the
wire axis. The corresponding saturation flux coupled to the
SQUID is denoted as Φs. The ratio Φs=Ms is obtained by
integration of the coupling factor ϕμ over the volume VFe of
the Fe wire, at its given position, determined from SEM
images. This integration yields

ϕM ≡ Φs

Ms
¼

Z
VFe

ϕμð~rpÞdV ¼ 47.6
nΦ0

Am−1 : ð1Þ

From this result, we calculate Φs ¼ MsϕM ¼ 81.4 mΦ0,
with Ms ¼ 1710 kA=m taken from the literature [62]. The
comparison with the measured flux signals �82.5 mΦ0 at
H ¼ 0 shows very good agreement. The left axis in Fig. 5
shows the magnetization axis scaled as M ¼ Φ=ϕM with
the horizontal dotted lines indicating the literature’s value
Ms ¼ �1710 kA=m. Hence, the measured flux signals are
also in quantitative agreement with the assumption that
the Fe nanowire switches to a fully saturated single-
domain state.
In Ref. [58], it was shown for a similar Fe CNT that the

nucleation field Hn changes with θ in a way which is
typical for nucleation of magnetization reversal via the
curling mode [63] in ferromagnetic nanowires as opposed
to uniform rotation of the magnetic moments in small

enough MNPs as described by the Stoner-Wolfarth model
[64]. For switching via curling mode, one obtains for θ ¼ 0
the simple relationHn ¼ Msa=2, with a negligible increase
well below 1%with θ¼ 4° [65]. Here, a¼ 1.08ð2λex=dFeÞ2,
with the exchange length λex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πA=ðμ0M2

sÞ
p

and the
exchange constant A [62]. For dFe ¼ 39 nm and with
λex ¼ 5.8 nm [62], we obtain a ¼ 0.0955, and with
Ms ¼ 1710 kA=m, we obtain an estimate of the nucleation
field Hn ¼ 103 mT, which is in very good agreement with
the experimentally observed value.
Finally, we note that the SQUID measurement yields a

noise amplitude of approximately 1 mΦ0, which is 2 orders
of magnitude smaller than the detected signal upon
magnetization reversal. For comparison, measurements
on a similar Fe nanowire by micro-Hall magnetometry
yield a noise amplitude which was about 1 order of
magnitude below the switching signal [58]. Hence, the
use of our nano-SQUID improves the signal-to-noise ratio
by about 1 order of magnitude.

V. CONCLUSIONS

In conclusion, we fabricate and investigate optimized
YBCO nano-SQUIDs based on grain-boundary Josephson
junctions. For our best device, an upper limit for the
white flux noise level S1=2Φ < 50 nΦ0=Hz1=2 in magneti-
cally shielded environment can be determined, which
corresponds to a spin sensitivity S1=2μ ≡ S1=2Φ =ϕμ ¼
3.7 μB=Hz1=2 for a magnetic nanoparticle located 10 nm
above the constriction in the SQUID loop. Here, the
coupling factor ϕμ is determined by numerical simulations
based on London theory, which takes the device geometry
into account. An obvious drawback of YBCO grain-
boundary junction nano-SQUIDs is the frequency-
dependent excess noise, which extends up to the megahertz
range for optimized devices with ultralow flux noise in the
white-noise limit. To eliminate 1=f noise, a bias reversal
scheme is applied, which reduces only the frequency-
dependent excess noise partially. Hence, in addition to
critical current fluctuations, spin noise which is possibly
due to fluctuations of defect-induced magnetic moments in
the SrTiO3 substrate is a major issue, which has to be
studied in more detail for further improvement of the nano-
SQUID performance at low frequencies. Nevertheless, we
demonstrate the suitability of the YBCO nano-SQUIDs as
detectors for magnetic nanoparticles in moderate magnetic
fields by measuring the magnetization reversal of an iron
nanowire that is placed close to the SQUID loop. Switching
of the magnetization is detected at μ0H ≈�100 mT, which
is in very good agreement with nucleation of magnetization
reversal via curling mode.
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I. CHARACTERIZATION OF SQUID-2

SQUID-2 was characterized in an electrically and mag-
netically shielded setup, with the sample mounted in
vacuum (or in He gas) on a temperature-controlled
cryostage. This enabled us to characterize electric trans-
port and noise properties at variable temperature T , with
a T stability of ∼ 1mK [1].

Figure 1 shows data of electric transport properties
and flux noise of SQUID-2, measured at T = 5.3K. Fig-
ure 1(a) shows current-voltage-characteristics (IVCs) for
modulation current Imod = 0 and two values of Imod,
corresponding to maximum and minimum critical cur-
rent. The IVCs are slightly hysteretic with maximum
critical current Ic = 311µA and normal state resis-
tance RN = 2.5Ω, which yields a characteristic voltage
Vc ≡ IcRN = 0.78mV. The inset of Fig. 1(a) shows
the modulation of the critical current Ic(Imod). From
the modulation period, we find for the magnetic flux
Φ coupled to the SQUID by Imod the mutual induc-
tance M = Φ/Imod = 0.8Φ0/mA = 1.66 pH. From re-
sistively and capacitively shunted junction (RCSJ) sim-
ulations [2] of the Ic(Imod) characteristics [cf. inset of
Fig. 1(a)] we obtain for the screening parameter βL =
2I0L/Φ0 = 0.94 (with I0 = Ic/2), which yields a SQUID
inductance L = 6.3 pH. We do find good agreement
between the measured and simulated Ic(Imod) charac-
teristics if we include an inductance asymmetry αL ≡
(L2 − L1)/(L2 + L1) = 0.83 (L1 and L2 are the induc-
tances of the two SQUID arms) and a critical current
asymmetry αI ≡ (I0,2 − I0,1)/(I0,2 + I0,1) = 0.30; I0,1
and I0,2 are the critical currents of the Josephson junc-
tions 1 and 2, respectively, intersecting the SQUID loop.
These asymmetries are caused by asymmetric biasing of
the SQUID and by asymmetries of the device itself.

V (Imod) is plotted in Fig. 1(b) for different bias cur-
rents. The transfer function, i.e. the maximum value of
∂V/∂Φ, in the non-hysteretic regime is VΦ ≈ 1.7mV/Φ0.

Fig. 1(c) shows the rms spectral density of flux noise

S
1/2
Φ (f) of SQUID-2. This measurement was performed

open loop (in dc bias mode) with a Nb dc SQUID (at T =
4.2K) as a voltage preamplifier, i.e. in 2-stage configura-
tion, with a ∼ 700 kHz bandwidth. As for SQUID-1 (see
main text), we find dominating f -dependent noise, with
a noise power which scales very roughly as SΦ ∝ 1/f .

Figure 2 shows rms flux noise spectra of SQUID-2 mea-
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FIG. 1. Characteristics of SQUID-2 at T = 5.3K. (a) IVCs
for three different values of Imod, including flux bias (Imod)
values which yield maximum and minimum critical current.
Inset: measured Ic(Imod) together with numerical simulation
results. (b) V (Imod) for bias currents |I| = 175 . . . 400µA (in
15µA steps). (c) rms spectral density of flux noise, measured
open loop (dc bias) in 2-stage configuration. Arrow indicates
upper limit for measured white noise at ∼ 700 kHz.
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FIG. 2. rms spectral density of flux noise for SQUID-2, mea-
sured in FLL mode at different temperatures from 6K to 65K.
(a) dc bias mode (b) bias reversal mode (fbr = 260 kHz).

sured with direct readout in flux locked loop (FLL), with
∼ 500 kHz bandwidth, in dc bias and bias reversal mode
[3] for temperatures T ranging from 6K to 65K. For all
data measured with dc bias [cf. Fig. 2(a)], we find f -
dependent excess noise up to the cutoff frequency of the
readout electronics. The flux noise SΦ scales roughly as
1/f , and for different T , the rms flux noise does not differ
by more than about a factor of five, and does not show
any systematic T -dependence.
Similar to SQUID-1 (cf. main text), in bias reversal

mode [cf. Fig. 2(b)] the f -dependent excess noise above
∼ 1 kHz is suppressed. The remaining low-f excess flux
noise observed in bias reversal mode roughly scales as
SΦ ∝ 1/f for all values of T , again without any system-
atic T -dependence.

II. CHARACTERIZATION OF SQUID-3

Figure 3 shows electric transport and flux noise data
for SQUID-3, taken in the magnetically and electrically
shielded low-field setup at T = 4.2K, as described in
the main text. The IVC shown in Fig. 3(a) is non-
hysteretic, with Ic = 69µA and RN = 2.3Ω, which
yields Vc = 0.16mV. The inset shows Ic(Imod), from
which we obtain the mutual inductance M = Φ/Imod =
3.3Φ0/mA. From the modulation depth of Ic(Imod) we
determine βL = 0.95. With the measured Ic, this yields
a SQUID inductance L = 28pH. The bumps in the IVC

at Vres ≈ ±0.28mV, can be attributed to an LC reso-
nance. From the relation Vres/IcRN = (π

2
βCβL)

−1/2 [2]
we determine the Stewart-McCumber parameter for the
GBJJs as βC ≈ 0.22.

Figure 3(b) shows V (Imod) curves for different bias cur-
rents, yielding a transfer function VΦ = 0.65mV/Φ0 at
the optimum bias point, at which noise spectra have been
taken (I = 54µA). Figure 3(c) shows the rms spectral

density of flux noise S
1/2
Φ (f) for SQUID-3, measured in

direct readout FLL mode up to f = 100 kHz. For com-
parison, the bottom trace shows the background noise
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FIG. 3. Electric transport and noise characteristics of
SQUID-3. (a) IVC of SQUID-3 for flux bias (Imod) which
yields maximum critical current. Inset shows Ic(Imod) curves
for positive and negative current bias. (b) Voltage V vs mod-
ulation current Imod for bias currents between I = ±149µA
(step width ∆I ≈ 4µA). (c) Rms spectral density of flux
noise measured in FLL with dc bias and bias reversal mode
(fbr = 260 kHz). The lower trace shows the background noise
of the readout electronics.
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from the readout electronics S
1/2
Φ ≈ 1.45µΦ0/Hz

1/2. For
f <

∼ 40 kHz, we find f -dependent flux noise. For larger f ,
the noise is limited by the electronics background noise.
Hence, we can only give an upper limit of the white

rms flux noise of SQUID-3 as S
1/2
Φ,w < 1.45µΦ0/Hz

1/2.

With bias reversal (at fbr = 81 kHz), the f -dependent
excess noise is clearly reduced. Still, we obtain with
decreasing f a slight increase in rms flux noise up to

∼ 2.4µΦ0/Hz
1/2 at 100Hz. Below 100Hz SQUID-3

shows approximately 1/f noise, i.e. an increase in S
1/2
Φ

to ∼ 16µΦ0/Hz
1/2 at 1Hz.

III. ANALYSIS OF NOISE SPECTRA OF

SQUID-1

For a more detailed analysis of the measured spec-
tral density of equivalent flux noise power SΦ(f) for
SQUID-1, we applied an algorithm [4] to decompose
the noise spectra into a sum of Lorentzians Fi(f) =
F0,i/[1 + (f/fc,i)

2] plus a 1/f2 spectrum Fs(f) =

Fs(1Hz)/(f
2/Hz2) (i.e. one or more Lorentzians with

characteristic frequencies fc well below 1Hz) plus a white
noise contribution Fw. This means, the measured spectra
are fitted by F (f) = Fw + Fs +

∑
i Fi.

Figure 4 shows the fit F
1/2
op (f) to the spectrum mea-

sured open loop (dc bias) [cf. Fig. 3(a) in the main

text]. This yields an rms white noise level F
1/2
w,op =

45nΦ0/Hz
1/2, a 1Hz noise F

1/2
s,op = 84µΦ0/Hz

1/2 from
Fs,op plus 16 Lorentzians with characteristic frequencies
fc,i, ranging from 2.6Hz to 2.6MHz, and amplitudes

F
1/2
0,i as listed in Tab. I(a).
For comparison of the fluctuation strengths of the dif-

ferent fluctuators with different fc,i, in Tab. I we also list
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FIG. 4. Analysis of flux noise of SQUID-1: The dashed line is
the fit to the noise spectrum, measured open loop (dc bias).
This spectrum is the sum of the shown Lorentzians (labeled as
i = 1 . . . 16) plus a white noise contribution plus a Fs ∝ 1/f2

contribution.

∆Φi = F
1/2
0,i ·

√
2πfc,i, which yields values in the range

∼ 30 . . . 350µΦ0.

Figure 5(a) and (b) shows the fits F
1/2
dc (f) and F

1/2
br (f)

to the spectra measured in FLL with dc bias and bias re-
versal, respectively [cf. Fig. 3(b) in the main text]. Here,
we fixed the white noise contribution in dc bias mode
to F

1/2
w,dc = 41nΦ0/Hz

1/2, i.e. a value close to the one
obtained for the measurement in open loop mode. The
white noise contribution in bias reversal mode is deter-
mined by the noise level achieved in dc bias mode at

the bias reversal frequency fbr, which yields F
1/2
w,br =

231 nΦ0/Hz
1/2. The spectrum fitted to the dc bias mea-

surement is decomposed into 15 Lorentzians, while for
the bias reversal measurement, fitting with 6 Lorentzians
is sufficient. The rms noise at 1Hz for the bias reversal
spectrum is by a factor ∼ 1.8 lower than the one for the
dc bias spectrum. Characteristic frequencies fc,i, and
amplitudes of the Lorentzians are listed in Tab. I(b) for
the dc bias spectrum and in Tab. I(c) for the bias reversal
spectrum.
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FIG. 5. Analysis of flux noise of SQUID-1: The dashed line
in (a) and the dotted line in (b) are fits to the noise spectra,
measured in FLL (a) with dc bias and (b) with bias reversal.
Those spectra are superpositions of the shown Lorentzians
[labeled as i = 1 . . . 11 in (a) and i = 1 . . . 6 in (b)] plus a
white noise contribution plus a Fs ∝ 1/f2 contribution.
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TABLE I. Characteristic frequencies fc,i, rms amplitudes F
1/2
0,i and flux amplitudes ∆Φi of Lorentzians Fi calculated to

approximate the flux noise spectra of SQUID-1, measured (a) in open loop (dc bias) [cf. Fig. 4], (b) in FLL dc bias [cf. Fig. 5(a)],
and (c) in FLL bias reversal mode [cf. Fig. 5(b)].

(a) open loop

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

fc,i (Hz) 2.6 6.5 13 14 111 301 325 1.0 k 3.3 k 3.5 k 18 k 82 k 88 k 380 k 410 k 2.6M

F
1/2
0,i 33 5.1 9.6 11 12 1.6 2.6 2.6 1.1 1.1 0.40 0.25 0.35 0.23 0.17 0.038

(µΦ0/Hz1/2)

∆Φi (µΦ0) 131 32 87 106 314 71 119 211 158 158 131 182 261 352 269 155

(b) FLL – dc bias

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fc,i (Hz) 0.8 1 17 18 126 369 631 2.9 k 3.2 k 17.1 k 18.5 k 117 k 126 k 1.4M 6.8M

F
1/2
0,i 206 265 11.0 24.5 3.2 1.4 1.9 0.94 0.95 1.7 0.51 0.08 0.13 0.19 0.09

(µΦ0/Hz1/2)

∆Φi (µΦ0) 461 665 114 264 89 70 121 128 134 544 173 69 117 546 600

(c) FLL – bias reversal

i 1 2 3 4 5 6

fc,i (Hz) 21 23 74 736 794 5 k

F
1/2
0,i 6.2 7.4 1.9 0.056 0.21 0.063

(µΦ0/Hz1/2)

∆Φi (µΦ0) 72 90 42 3.8 15 11
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