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Abstract—This paper is a quantitative multifactorial study of 

near-synonymous constructions let + V, allow + to V and permit + 

to V based on the British National Corpus. We fit a Bayesian 

multinomial mixed model with twenty formal, semantic, social, 

collostructional and other variables as fixed effects and the 

infinitives that fill in the second verb slot as random effects. The 

model reveals a remarkable alignment of variables that indicate 

the formal distance between the predicates, conceptual distance 

between the events they represent and between the speaker and 

the main arguments, the social and communicative distance 

between the interlocutors, as well as the looseness of the 

relationship between the constructions and second verb slot 

fillers. These results raise fundamental theoretical questions 

about the relationships between linguistic form, function and use. 
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near synonymy; multifactorial models 

I.  AIMS OF THE STUDY 

There has been an increasing number of quantitative studies 
that determine the factors that help predict the speaker’s choice 
between functionally similar constructions, such as English 
phrasal constructions with varying particle placement [1], 
German middle field alternation [2], Finnish verbs of thinking 
[3], Russian verbs of trying [4], and Shanghainese topic 
markers [5]. However, even though these models are 
descriptively adequate, they often focus on the effects of the 
semantic, pragmatic, collocational, social and other factors 
separately, without considering the underlying relationships 
between them. In this study, we want to show that a 
multifactorial analysis of near-synonyms can raise fundamental 
questions that are relevant for general linguistics. 

The object of this study is variation of three English 
constructions of letting: let + V, allow + to V and permit + to 
V. Examples from the British National Corpus are provided in 
(1): 

 

(1) a. I am content to let you form your own judgment of my 
character. (H84)  

b. Representation 1 allows us to depict any set of pairs of 
coordinates. (FNR) 

c. In this form the censor permitted the book to pass. (B7K) 

  

This paper investigates several dimensions of variation of the 
constructions: formal, semantic, cognitive, social and 
collostructional [6]. To the best of our knowledge, this is a first 
study that investigates how all these dimensions are aligned in 
near-synonymous constructions and which offers a discussion 
of this alignment from a theoretical point of view. 

From a methodological perspective, this paper is 
innovative, as well: the effect of the twenty variables that 
represent the dimensions is tested with the help of a cutting-
edge statistical technique, Bayesian multinomial mixed-effect 
regression, which is implemented in the R package 
MCMCglmm [7]. Since near-synonymy in lexicon and 
grammar is not restricted to pairs of functionally similar 
constructions, this method represents an attractive solution for 
predicting the speaker’s choice between three and more near-
synonyms. 

II. PREVIOUS RESEARCH 

Letting represents a subtype of causation. In Force 
Dynamics theory [8], letting is observed in situations when the 
Causer fails to override the Causee’s intrinsic tendency towards 
some action or state. Unlike factitive causative constructions, 
such as make + V, have + V or the into-causative, the 
constructions of letting have been at the periphery of 
researchers’ attention. However, there have been a few studies 
within a broader domain of infinitival complementation, such 
as [9] and [10], as well as some observations in general 
functionalist theories [11]. In particular, let is believed to 
express situations when the act of permission is construed as 
inseparable from the realization of the permitted event, while 
allow and permit only denote the prior condition for the 
permitted event [9]. In addition, it has been shown that let is 
more frequently used with the 1st and 2nd person matrix 
subjects than allow and permit and in the imperative form. In 



contrast, allow and permit occur more frequently with 
inanimate subjects [10].  

The semantic difference is not the only factor that explains 
the use of the constructions. There are also social and 
collocational factors at play. For example, some grammars 
mention that the construction permit + to V is more formal than 
the construction with allow [12]. In addition, it has been 
observed that let forms a tight unit with some infinitives. Such 
expressions are synonymous with lexical causatives, e.g. let fall 
is similar to drop and let know is similar to inform [9].  

The present paper aims to bring together these and other 
factors known from previous research of causation. These 
factors are operationalized as variables that help us predict the 
use of the three near-synonymous constructions in a large 
corpus. 

III. DATA AND VARIABLES 

1. Data 

The data set is a sample from the British National Corpus 
(XML edition). To create the data set, we first extracted all 
forms of let, allow and permit that were followed by another 
verb within the context window of 6 words. Since let + V 
cannot be used in the passive (*He was let come), only the 
active forms of the first verb were taken into account. 
Examples of adhortative let (e.g. let’s go) were excluded. Next, 
a random sample of 882 instances for each construction was 
drawn (2646 examples in total), discarding all spurious hits. 
The examples were then coded for twenty variables, which are 
discussed in the following section. To speed up the coding 
process, we annotated the data set syntactically with the help of 
the Stanford Parser [13] and extracted the information about 
the main slot fillers of the constructional instances. All 
automatic annotations were manually checked. 

2. Variables 

 

1) Semantic variables 

 

 The semantic class of the Causer, i.e. the entity that 

lets, allows or permits. This is a variable that can be 

represented as the animacy hierarchy [14], which is 

also known as the entrenchment hierarchy [15] or 

viewpoint/empathy hierarchy [16]. We used the 

classes from the hierarchy presented in (2): 

 

(2) Speaker > Hearer > Animate > Material 

(Physical) Object > Abstract 

 

Since there exist different versions of the hierarchy, 

this variable was coded as a categorical one and the 

classes were treated as unordered. 

 The semantic class of the Causee, with the same 

classes as for the Causer.  

 Control of the Causee, which shows whether the 

Causee has control over the permitted event or not. 

Controlling Causees are associated with less direct 

causation and weaker semantic integration of the 

causing and caused events than non-controlling ones, 

e.g. see [17].  

 Semantics of V2: non-mental and mental.  

 

2) Morphosyntactic variables 

 

 Tense, aspect and mood of V1: imperative, Present 

Simple Indicative, Past Simple Indicative, Perfective, 

Progressive, Irrealis and Non-finite. 

 Valency of V2: intransitive, transitive or passive.  

 Polarity: positive or negative. The latter is 

operationalized as the presence of negative particles, 

pronouns or adverbs in the simple clause with the 

letting construction. 

 Coreferentiality: the presence or absence of 

coreferentiality between the Causer and other 

participants of the causative situation. 

 Possession: presence of absence of grammatical 

possession relationship between the Causer as the 

possessor and another participant as the possessee, 

formally marked by the possessive case or a 

possessive pronoun. 

 

3) Social variables 

 

 Channel of communication: written and spoken.  

 Domain of use: public, educational, imaginary prose 

or other.  

 

4) Collostructional measures 

 

The collostructional measures are meant to represent the 

degree of association between each of the three letting 

constructions and the verbs that fill in the V2 slot, which are 

called collexemes. There exist a plethora of possible 

association measures for collexemes and constructions. For 

this study, we computed several popular measures that 

represent different aspects of relationships between a 

collexeme and a construction:  

 Attraction: the proportion of collexeme X in the total 

frequency of construction A.  

 Reliance: the proportion of occurrences of collexeme 

X in construction A.  

 Minimum Sensitivity: in this context, the minimum 

score of Attraction and Reliance.  

 Collostructional strength: a log-transformed p-value 

based on the Fisher exact test in collostructional 

analysis (see [18] for details). 

 ΔP with verb as a cue, which represents the 

difference between the proportion of the verb in the 

total uses of the construction and the proportion of 

the same verb in the other constructions.  

 ΔP with construction as a cue, which represents the 

difference between the proportion of the construction 

in the total frequency of the verb and the proportion 



of the same construction in the total frequency of all 

other verbs.  

 

These measures were computed for each instance of a letting 

construction with let, allow or permit observed in a given 

sentence and the corresponding V2. The verb frequencies were 

taken from a frequency list of lemmata based on the entire 

corpus. The constructional frequencies were computed with 

the help of a Python script, which counted all instances of let, 

allow and permit with a verbal complement in the 

syntactically parsed version of the corpus. In order to avoid 

multicollinearity, we decided to select one collostructional 

measure that would predict the use of the constructions the 

best. For this purpose, we fit several simple Bayesian 

multinomial mixed-effect regression models (see more details 

below) for each of these association measures. Having 

compared the models with the help of the Deviance 

Information Criterion (see Table 1), we concluded that the 

model with Minimum Sensitivity was the best. This variable 

was used for subsequent multivariate analyses presented in the 

next section.  
 

 

TABLE I.  DIC OF DIFFERENT COLLOSTRUCTIONAL MEASURES 

Collostructional measure DIC 

Attraction 4595.74 

Reliance 4957.77 

Minimum Sensitivity 3582.81 

Collostructional Strength 4159.99 

ΔP with verb as a cue 4615.11 

ΔP with construction as a cue 4959.13 

 
 

5) Formal variables 

 

 formal linguistic distance, which represents the 

formal distance in words between a verb of letting 

(V1) and the second predicate with or without to 

(V2). Words were defined as strings of alphabetic or 

numeric characters separated by white spaces. 

 Horror aequi: the presence of another letting verb 

(let, allow, permit or enable) in the left context within 

the same sentence. Horror aequi is a tendency to 

avoid repetition of identical elements. The reason for 

considering this variable is to take into account the 

choice of a particular letting construction for stylistic 

purposes.  

 Length of V2 in characters.   

 

IV. A BAYESIAN MULTINOMIAL MIXED-EFFECT MODEL 

 

We fit a Bayesian multinomial mixed-effect model with the 
letting construction as the response, the variables described 
above as fixed effects and the infinitives as random effects. The 
multinomial model contained two sets of coefficients, one 

where allow was compared with let, and the other where permit 
was compared with let. 

The main advantage of the Bayesian GLM method is its 
flexibility. One can fit very complex models without running 
the risk of violating the assumptions that should be met in 
frequentist GLMs. A distinctive feature of Bayesian statistics is 
the use of the so called priors, i.e. the prior beliefs in the 
probability of some parameters. After the data are taken into 
account, the model returns the posterior probabilities of 
specific parameter values. These posterior probabilities depend 
on both the prior beliefs and the data, whereas the results of a 
frequentist model depend only on the data. In this model we 
used so-called flat priors. These priors have virtually no 
influence on the posteriors probabilities. However, when the 
data size is large, the choice of priors has hardly any effect.  

In order to avoid strong autocorrelation in the Markov 
chain, our model was fit with a large number of iterations 
(310,000) and a thinning parameter of 100, which means that 
only every 100th iteration was taken into account, to reduce the 
effect of autocorrelation. We also used a burn-in period of 
10,000 iterations, that is, removed the data based on the first 
10,000 iterations in order to correct the initial sampling bias. 

The estimates of the posterior probabilities (mean log-odds) 
were examined, along with the 95% Highest Density Intervals 
and the MCMC p-values. As an illustration, Figure 1 displays 
the effects of the semantic variables on the choice of allow and 
permit vs. let as the reference category. A manual check of all 
possible pairwise interactions between the variables has 
revealed a few significant cross-over interactions.  

 

 

Fig. 1. Posterior mean log-odds and 95% Highest Density Intervals of three 

semantic variables. 

 
To evaluate the goodness of fit, we computed the accuracy 

measure based a comparison between the predicted 
probabilities of allow, let and permit for every data point and 
the actual construction that was used in the given context. The 
accuracy, which is computed as the proportion of the correct 



predictions, was 70.7%. With the baseline at 33.3%, this is a 
clear improvement.  

 

V. RESULTS AND DISCUSSION 

 
The main result of the statistical analyses is a remarkable 

harmonic alignment of several literal and metaphoric distances 
in the sense that a smaller distance increases the odds of let and 
a greater distance increases the odds of allow and especially 
permit. 

A. Formal linguistic distance between V1 and V2. The more 
words there are between the predicates, the higher the chances 
of allow (marginally significant) and permit (significant).  

B. Conceptual distance between the causing and caused 
events expressed by V1 and V2. This distance is captured by the 
presence of the autonomous Causee who has control over the 
caused event. This feature increases the odds of allow and 
permit against let.  

C. Cognitive distance between the speaker and the Causer 
and (to some extent) Causee on the animacy hierarchy, which 
has also been interpreted as the hierarchy of entrenchment, 
viewpoint or empathy. In general, the further from the speaker 
the participants are on this hierarchy, the higher the odds of 
allow and permit against let.  

D. Communicative and social distance between the 
interlocutors. The odds of allow and permit increase when the 
communication is written, covers public topics (e.g. business, 
economy and politics) and does not involve immediate 
interaction between the speaker and the hearer. This distance is 
also mirrored in the length of the infinitives as an indicator of 
formality: the longer the infinitive, the higher the probability of 
allow and permit. 

E. Collostructional distance, i.e. loose association between 
V1 and V2, as the inverse of collostructional fixation expressed 
by Minimum Sensitivity. The looser the association, the higher 
the chances of allow and permit. 

In most situations, permit had more extreme posterior mean 
log-odds than allow. This means that permit more than allow 
differs from let. Moreover, although the variable Horror aequi 
had only marginal significance, permit seems to be used more 
often as a replacement for other letting verbs in order to avoid 
repetition. 

Thus, we observe a remarkable alignment of different kinds 
of literal and metaphoric distances (or conversely, proximities). 
A crucial question is how to explain these results. There are at 
least two theories that can be useful for that purpose. One of 
them is iconicity theory. The alignment of the conceptual and 
formal distance can be explained by iconicity effects [17]. This 
principle can also account for the correlation between formal 
proximity and collostructional fixation. Moreover, iconicity 
can also explain the correspondence between social distance 
and length of linguistic forms [17], which manifests itself in 
this study in the length of V2 and in the type of the infinitive 
(bare or with the particle to).  

However, iconicity theory has been recently shown to be 
outperformed by explanations that are based on usage [19]. 
Following this direction, it seems possible to explain more 
cases of alignment. First, highly salient Causers and Causees, 
which are high on the hierarchies of animacy, entrenchment, 
etc., may be the reason why let + V is the most frequent 
construction in informal conversations and spoken data, which, 
in its turn, may explain its shorter form (with a bare infinitive) 
in comparison with the two other constructions. The same can 
be said about the higher integration of events: more direct 
causation, on average, has higher salience than less direct 
causation. The differences in verbosity between more formal 
and less formal registers can explain the differences between 
the constructions with regard to the number of words between 
V1 and V2. Finally, high frequencies of some specific 
subschemata of let may also lead to a stronger collostructional 
association between the superordinate construction let + V and 
the corresponding V2 slot fillers.  

All this suggests that the usage-based account can explain 
more cases of alignment and therefore might be considered 
superior to the account based on iconicity. Of course, the 
proposed explanation is only tentative, and more factual 
evidence of different types of alignment is needed in order to 
test and develop this theory. 
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