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Abstract—Current efforts in computational histor-
ical linguistics are predominantly concerned with
phylogenetic inference. However, methods for ances-
tral state reconstruction have been only sporadically
applied. This is surprising since reconstruction is
considered essential both in evolutionary biology and
in classical historical linguistics. In contradistinction
to phylogenetic algorithms, automatic reconstruction
methods presuppose phylogenic information in order
to explain what has evolved when and where.

Here we report a pilot study on the potential
of reconstruction algorithms in historical linguistics.
Based on an explicit family tree, we apply different
algorithms to wordlist data in order to infer how the
words evolved along the phylogeny, and which words
were used without change of meaning in the ancestral
languages.

I. INTRODUCTION

Phylogenetic reconstruction plays leading role
in quantitative approaches to historical linguistics,
and many algorithms, workflows, and software
packages for the reconstruction of phylogenetic
trees and networks have been proposed in the
last two decades. While tree- and network-building
methods play a leading role in modern historical
linguistic research and more and more scholars
tend to use them, methods for ancestral state recon-
struction (ASR) have been only sporadically tested
and applied [1], [2]. This is surprising, firstly, since
the application of ASR is quite common in the
discipline of evolutionary biology which usually
serves as a pool of inspiration for quantitative
endeavours in historical linguistics, and secondly,
since ASR plays a major role in traditional histor-
ical linguistics [3].

While tree-building methods seek to find branch-
ing diagrams which explain how a language fam-
ily has evolved, ASR methods use the branching
diagrams in order to explain what has evolved
concretely (see the example in Fig. 1). In traditional
historical linguistics, the search for the concrete
is best reflected in linguistic reconstruction, i.e.
the reconstruction of proto-forms of an unattested
ancestral language, but also in semantic reconstruc-

tion, i.e. the attempt to find the original meaning
of a given proto-form.
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Fig. 1. Ancestral state reconstruction for words meaning ‘head’.




Here we report initial tests of the potential of
ASR algorithms in historical linguistics. Based on
an explicit model of external language change as
represented by a family tree, we apply different
ASR algorithms to wordlist data in order to infer
how the words evolved along the tree, and which
words were used without change of meaning in the
ancestral languages.

II. MATERIALS AND METHODS

In order to investigate the power of Parsi-
mony methods, we used specific samples of
two large lexicostatistical databases, the Indo-
European Lexical Cognate Database ([4]; http:
/fielex.mpi.nl/), and the Austronesian Basic Vo-
cabulary Database (ABVD [5]; http://language.psy.
auckland.ac.nz/austronesian/). This data is struc-
tured in wordlist form, that is, for a given set of
meanings (207 in IELex and 210 in ABVD), the
translations into different languages are given, and
annotated for cognacy. For the pilot study, we used
all 153 doculects present in IELex and a sample
of 100 doculects from ABVD. The data for both
samples was divided into one training and one
test set. For both samples, the proto-forms for the
oldest proto-language in the sample (Proto-Indo-
European and Proto-Austronesian) was available
and used as a gold standard in our investigations.

ASR relies on a (rooted) phylogenetic tree. To
obtain such trees, we performed Bayesian phylo-
genetic inference on the full (binarized) data from
IELex and the data for all cognate classes for
the 100-doculect sample from ABVD (using the
software Beast; [6]; http://beast.bio.ed.ac.uk/beast)
and obtained a summary tree (using TreeAnnota-
tor; h’[tp://beast.bio.ed.ac.uk/treeannotator).1 Addi-
tionally, we sampled 1,000 trees from the posterior
distribution for both families.

Both the summary tree and the trees from the
posterior sample are binary branching. We also
considered multifurcating trees by collapsing all
branches with a length below a certain threshold
which was identified manually on the training sets.

ASR was performed (1) on the summary tree,
(2) its multifurcating version, (3) on all trees from
the posterior sample, and (4) on their multifur-
cating version. In (3) and (4), a cognate class
was reconstructed for the proto-language iff it was
reconstructed for at least 50% of all trees in the
sample.

I'We imposed the constraints that Anatolian branches off first
for IELex and that Malayo-Polynesian forms a monophyletic
clade for ABVD.

Furthermore we compared three different meth-
ods for ancestral state reconstruction: (a) Sankoff
parsimony [7] with binary state characters, (b)
Sankoff parsimony with multistate characters, and
(c) weighted parsimony for binary state characters
based on the minimal lateral networks (MLN)
method [8].
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Fig. 2. Comparison of evaluations (continued in Fig. 3).



ABVD

algorithm  characters  furcating treeSample precision  recall ~ F-score
MLN binary multifurcating  summary tree 0.440 0.722  0.547
MLN binary multifurcating  posterior sample  0.757 0.354 0.483
MLN binary bifurcating summary tree 0.481 0.405 0.440
Sankoff multi multifurcating  summary tree 0.305 0.709  0.426
Sankoff binary multifurcating  summary tree 0.341 0.557 0.423
Sankoff multi multifurcating  posterior sample  0.295 0.696  0.415
Sankoff multi bifurcating summary tree 0.295 0.696 0415
Sankoff multi bifurcating posterior sample  0.279 0.671  0.394
MLN binary bifurcating posterior sample  0.537 0.304  0.388
Sankoff binary multifurcating  posterior sample  0.205 0.570  0.301
Sankoff binary bifurcating posterior sample  0.205 0.570  0.301
Sankoff binary bifurcating summary tree 0.175 0.570  0.268
TABLE I

RESULTS, ORDERED BY DESCENDING F-SCORES, FOR ABVD.

IELex
algorithm  characters  furcating treeSample precision  recall ~ F-score
Sankoff binary multifurcating  summary tree 0.716 0.734  0.725
Sankoff binary bifurcating posterior sample ~ 0.718 0.709  0.713
Sankoff binary bifurcating summary tree 0.704 0.722  0.713
Sankoff binary multifurcating  posterior sample  0.724 0.696 0.710
Sankoff multi multifurcating  posterior sample  0.765 0.658  0.707
MLN binary multifurcating  posterior sample  0.758 0.633  0.690
Sankoff multi bifurcating posterior sample  0.746 0.633  0.685
Sankoff multi multifurcating  summary tree 0.735 0.633  0.680
Sankoff multi bifurcating summary tree 0.721 0.620  0.667
MLN binary multifurcating  summary tree 0.584 0.658 0.619
MLN binary bifurcating posterior sample  0.793 0.291 0426
MLN binary bifurcating summary tree 0.742 0.291 0418
TABLE II

RESULTS, ORDERED BY DESCENDING F-SCORES, FOR IELEX.

III. RESULTS binary choices of algorithms, data and guide trees.’

Results are generally better for IELex than for
ABVD. A possible explanation for this discrepancy
might be that we used only a sample for 100
doculects for ABVD (out of 700 doculects in the
database), while the full database was used for
IELex.

As for the other binary choices, we generally
observe a trade-off between precision and recall.
Therefore it is not possible to single out an optimal
ASR method on the basis of our results.

All methods were applied to the two test sets,
using the four samples of reference trees mentioned
above. The list of cognate classes present in the
proto-language according to expert assessments
were used as gold-standard. It provides a binary
classification of all cognate classes (1: present/
0: not present in the proto-language). The perfor-
mance of the methods compared was evaluated by
calculating precision, recall and F-score. The full
results are given in Table I (ABVD) and II (IELex). 2As the MLN algorithm always uses binarized characters, its
Figs. 2 and 3 give aggregated values for the various  results were excluded for this choice.
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Fig. 3. Comparison of evaluations (continued from Fig. 2).

IV. DISCUSSION

ASR for IELex and ABVD per se is of limited
use as good reconstructions are available from tra-
ditional comparative research. Still, ASR is a first
step towards more rewarding goals. Let us conclude
with listing three of them. (1) A reconstruction of
all changes in cognate classes allows to identify
loci of homoplasy. There are only two plausible
explanations for homoplasy of cognate classes:
(a) parallel semantic change and (b) borrowing.
A semi-automatic inspection of homoplasies is a
promising route towards identifying pre-historic
borrowings and thereby improving phylogenetic
inference. (2) ASR affords to quantify differential
rates of evolution for different Swadesh concepts.
We expect this to be a principled way to assess
the stability of concepts. (3) ASR is a precondition
for automatically identifying sound change and
reconstructing proto-forms.
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