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Summary

Executive control refers to the ability of animals and humans to select appropriate ac-
tions for achieving goals under varying environmental conditions. Working memory, for
example, enables us to manipulate and integrate information about the sensory environ-
ment without needing constant sensory input. This information can then be integrated
with internal representations about rules, plans, or goal values to guide behavior. Ex-
ecutive functions rely on the integrity of prefrontal cortex (PFC), where single neurons
signal information relevant for guiding behavior. PFC networks are strongly innervated
by midbrain dopmine neurons, which regulate a variety of executive control functions.
However, the neuronal basis for dopaminergic control of executive functions is largely
unknown.

In this thesis, we performed several studies addressing dopamine modulation of neu-
ronal signals relevant for executive control. We trained macaque monkeys to perform
several tasks requiring a range of executive control functions and recorded single neu-
rons in PFC while stimulating or blocking specific dopamine receptors at the vicinity
of the recorded neurons using micro-iontophoresis. We investigated how dopamine in-
fluences neuronal signals carrying behavioral relevant information at single neuron and
population levels and addressed possible mechanisms of action using computational
models of prefrontal networks.

We show that dopamine and dopamine receptors modulate a variety of signals rele-
vant for executive control. Fist, dopamine enhanced visual signals in PFC relevant for
perceptual decisions. Next, working memory activity during subsequent delay periods
was strongly improved by activating D2 family receptors, which also controlled dynamic
properties of PFC networks. Stimulating either D1 or D2 family receptors enhanced sig-
nals about behavioral rules by distinct physiological mechanisms. On the other hand, D1
and D2 family receptors oppositely modulated representation of goal values. Compu-
tational modeling proposed a specific mechanism by which dopamine receptors change
synaptic properties, suggesting that dopamine acts primarily by changing interneuron-
to-pyramidal signaling.

These results show that dopamine receptors assume complementary as well as oppo-
site roles in modulating executive control. Dopamine receptors cooperatively regulate
working memory and behavioral flexibility while oppositely influencing reward sig-
nals. Thus, dopamine functions might dissociate between different executive control
functions. Together, our results suggest that dopamine gates sensory input to PFC and
subsequently stabilizes prefrontal representations relevant for executive control. Thus,
dopamine modulates the flow of information through PFC, controlling the selection of
appropriate actions during goal-directed behavior.
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Part I.

Synopsis

1. Introduction

1.1. Goal-directed behavior

1.1.1. Perception-action cycle

During the organization of animal behavior, sensory signals from the environment trig-
ger percepts that lead to specific actions. The actions themselves induce changes in the
external environment, which are again fed into sensory systems forming a perception-
action cycle (Fuster 2008). To achieve goals that are not a direct consequence of an
external stimulus, however, organisms control stimulus-response associations through
cognition (Shettleworth 2010). At the cognitive level, internal information about goals
influence the behavioral action following a percept (Figure 1A). Consider the simple be-
havior to drink triggered by the percept of a full glass. This behavior is not mediated by
a stimulus-response association alone, but influenced by a number of variables that are
represented internally. These include motivational states (am I thirsty?), memories (do I
like the drink?), attention (do I interrupt my conversation?), social knowledge (does the
drink belong to me?) and so on. The set of abilities to organize behavior towards a goal
are referred to as executive control functions (Miller and Cohen 2001).

1.1.2. Executive control functions

Executive control functions enable organisms to orchestrate perception, thought and ac-
tion along the perception-action cycle in accordance with internal goals (Miller and Co-
hen 2001). They mediate flexible behavior by de-coupling automatic stimulus-response
associations thus providing the ability to respond with a variety of behaviors to a stim-
ulus depending on contexts or goals (Miller and Wallis 2009). Executive functions com-
prise a set of abilities such as working memory, representation of task rules, information
about goal values, perceptual decisions and many more (Miller and Cohen 2001, Miller
and Wallis 2009, Tanji and Hoshi 2008, Baddeley 2012). However, all executive functions
have a common conceptual foundation (Miller and Wallis 2009, Miller and Cohen 2001),
which is the control of information flow between stimuli and motor actions (Figure 1B).
In this framework, automatic processing transforms sensory signals into actions through
established associative connections. However, executive control functions control the
flow of information between sensory signals and motor actions, thereby flexibly ad-
justing the behavior following a stimulus to obtain a goal. Thus, executive functions
integrate sensory information, internal representations, and motor actions. This inte-
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1. Introduction

gration is state-dependent on the level of arousal, stress, motivation, or fatigue (Robbins
and Arnsten 2009). State-dependent modulation controls executive functioning to adjust
the selection of action based on current goals. Here, I want to briefly introduce concepts
of different executive functions relevant for my thesis.

Executive control functions

Working
memory

  Goal
values

Behavioral
rulesActionPerception

Cognition

Environment MotorSensory

State-dependent modulation

A B

Figure 1: Conceptual framework for executive control. A: Behavior is organized along a perception-
action cycle, in which perception of sensory signals from the environment triggers actions, which them-
selves lead to changes in the environment following another percept, and so on. After Fuster (2008).
B: Conceptual model for executive control functions. Sensory signals are associated with motor actions
(grey lines between green boxes). Executive control functions (blue box) can modulate existing sensory-
motor associations to bias the selection of an action towards a goal. Executive functions are modulated
by state-dependent variables (red box). After Miller and Wallis (2009).

Perceptual decision-making Decision-making refers to the process of selecting a par-
ticular action from a set of alternatives, thus constituting a part of executive control
(Gold and Shadlen 2007). Decisions are characterized first by the presence of choice
alternatives with expected outcomes (Wang 2008). Second, a decision is based on the
accumulation of evidence from external or internal signals. Finally, decisions are inher-
ently risky since they involve evaluation of noisy evidence. The most basic decision is
the perceptual decision about presence or absence of a faint external stimulus (Gold and
Shadlen 2007, de Lafuente and Romo 2005, 2006, Merten and Nieder 2012). For example
when swimming, the perceptual decision if I heard a remote thunder might determine
subsequent behavior to leave the water. A perceptual decision involves the accumula-
tion of evidence from a noisy stimulus in the environment into a categorical decision
about the presence or absence of the stimulus to select from a set of actions (Deco and
Romo 2008). Remarkably, a noisy or ambiguous stimulus may or may not produce a
percept. Thus, the integration of sensory information and internal representations to
achieve goals underlies perceptual decisions (Deco and Romo 2008).

Working memory and categories Working memory is the ability to briefly maintain
and manipulate information in mind (Baddeley 2012). It involves transforming sensory
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1.1. Goal-directed behavior

signals into sustained representations and integrating these representations with other
goal-relevant information to guide behavior. For example, solving simple arithmetic
problems involves not only memorizing numbers for a short amount of time, but also
manipulating number information to add or subtract numbers to solve the problem.
Working memory comprises short-term memory of sensory signals from different sen-
sory modalities, categories, or long-term memories. Dealing with categories requires
working memory representations independent from the precise appearance of sensory
signals. For example, animals and humans are able to discriminate numbers, i. e. the
number of items in a set, independently from their precise appearance (Nieder 2005).
The representation of number categories follows basic principles similar to sensory rep-
resentations: It is harder to discriminate two numbers the more distant the two numbers
are (numerical distance effect). For larger numbers, the minimal distance between two
numbers that can be discriminated is larger, too (numerical magnitude effect). Thus,
number representations show characteristics of compressed scaling in accordance with
Weber’s law arguing for an analogue magnitude system (Nieder and Miller 2003, Nieder
and Merten 2007, Cantlon and Brannon 2006, 2007).

Behavioral rules Using behavioral rules refers to the ability to select an appropriate
action in a novel environment according to an internal model, or set of rules, which
guides behavior (Miller and Cohen 2001). This enables behavioral flexibility and rapid
learning in novel situations without the need to newly learn each stimulus-response
association (Miller and Wallis 2009). For example, when using the metro for the first
time in Tokyo without speaking the language, we readily apply rules that we learned
previously in this novel situation: We are purchasing a ticket, looking for a schedule
and checking the map. This allows for navigating successfully in a novel environment
without the necessity to learn every aspect of using the metro newly. When training
animals, rules can be studied by using conditional learning tasks, in which animals
learn conditional associations between a stimulus and a response (Miller and Wallis
2009). For example, animals can remember a visual stimulus and subsequently report
if they saw the same stimulus or a different stimulus before, depending on a rule that
instructs the animal (Wallis et al. 2001, Miller et al. 2002). Animals are able to handle
numerical information, too. Monkeys can perform basic arithmetic tasks by comparing
two numerosities and reporting which numerosity is larger or smaller, depending on a
cue that instructs the rule currently in effect (Cantlon and Brannon 2006, Bongard and
Nieder 2010, Vallentin et al. 2012, Eiselt and Nieder 2013).

Goal values Actions are selected according to their value functions, which describe
how much future reward is expected from each action (Lee et al. 2012). Value functions
can be updated using the reward prediction error describing the mismatch between
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1. Introduction

expected reward and actual outcome following an action. In this framework, a reward is
a stimulus reinforcing an action (Schultz 2006). To enable goal-directed behavior, value
functions have to be integrated with other information relevant for executive control,
such as sensory information, working memory, and rules (Lee et al. 2012, Kennerley
et al. 2009). For example, when planning and deciding where to go to for dinner, we
incorporate information about the expected quality of food and other factors, such as
distance and price. In animal studies, the expected reward of an action modulates
working memory performance. Larger rewards increase working memory accuracy,
decrease reaction times, and increase the motivation to complete a task (Amemori and
Sawaguchi 2006, Kennerley et al. 2009, Roesch and Olson 2003).

1.2. Neural substrates of executive control

1.2.1. Prefrontal cortex: ideal candidate region for executive control

Structural requirements for implementing executive control A brain structure imple-
menting executive control functions requires a specific range of characteristics, because
it needs to integrate a wide range of information (Miller and Cohen 2001, Tanji and
Hoshi 2008). First, it needs cortical inputs from all sensory areas providing informa-
tion about sensory signals as well as cortical inputs providing memory signals. Second,
it needs subcortical inputs providing information about the motivational state of the
organism modulating executive control. Thirdly, it requires direct output to motor sys-
tems to coordinate action. The prefrontal cortex (PFC) has been shown to meet these
and other criteria (Miller et al. 2002, Fuster 2008, Tanji and Hoshi 2008). Accordingly,
the PFC is strongly involved in executive functions.

Prefrontal cortex subdivision The PFC lies at the anterior pole of the neocortex in mam-
mals and can be anatomically defined by receiving inputs from the mediodorsal nucleus
of the thalamus (MDNT) (Fuster 2008). In primates, the PFC comprises different sub-
areas with an extensive amount of local connections within PFC (Tanji and Hoshi 2008,
Petrides and Pandya 1999). By refining cytoarchitectonic maps from the human frontal
lobe and the macaque monkey (Walker 1940), Petrides (2005) and Petrides et al. (2012)
describe sub-areas belonging to the primate PFC that can be grouped in three main di-
visions (Miller and Cohen 2001). These include orbital and medial areas (areas 10, 11,
13, 14), mid-dorsal areas (area 9) and areas constituting the lateral PFC (LPFC) compris-
ing dorsal area 9/46 and ventral areas 12/47 and 45 (Figure 2A). Note that the frontal
eye field (FEF, mainly area 8A) is here not considered as part of PFC (Miller and Co-
hen 2001). In primates these areas show a characteristic, i. e. granular layer IV, further
distinguishing prefrontal from other cortical areas (Petrides 2005, Fuster 2008).
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1.2. Neural substrates of executive control
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Figure 2: PFC anatomy and physiology. A: PFC subdivisions after Petrides (2005). Note that some
authors do not include FEF (area 8A) to PFC (Miller and Cohen 2001). Copied from Petrides (2005).
B: PFC is heavily connected to cortical and subcortical areas. Copied from Fuster (2008). C: ODR
task (left), in which monkeys have to memorize the location of a spatial cue, which can be one of eight
locations, during a memory delay to make a saccade towards the remembered location in the subsequent
test phase. Neurons in LPFC show charateristic sustained responses during the delay period only for
their preferred spatial locations, i. e. are spatially tuned (180◦ for the example neuron shown here, only an
example subset of directions shown). Modified from Arnsten (2009).

Prefrontal cortex connections PFC is reciprocally connected to cortical associative sen-
sory areas of all sensory modalities, including connections with somatic, visual, audi-
tory, gustatory and olfactory areas (Figure 2B) (Miller and Cohen 2001, Fuster 2008,
Tanji and Hoshi 2008). Thus, PFC receives sensory information from all modalities
that are previously largely separated. In addition, PFC receives strong inputs from the
MDNT, probably relaying information from other subcortical areas such as movement
information, since MDNT receives input from parts of the basal ganglia and the cere-
bellum (Fuster 2008). In addition, PFC receives direct input from basal ganglia, the
limbic system including the amygdala, and the hypothalamus (Fuster 2008). Of special
interest for my thesis, and because of their regulatory role over broad cortical areas,
are PFC afferents from neuromodulatory systems including the cholinergic system of
the basal forebrain, the noradrenergic system of the locus coeruleus, the serotonergic
system of the raphe nuclei, and the dopaminergic system of the ventral tegmental area
and substantia nigra (Fuster 2008, Arnsten and Li 2004). These systems likely provide
information about internal states of the organisms, including arousal, attention, motiva-
tion, and reward expectation. PFC projects also back to many of these subcortical areas,
establishing feedback loops on several levels (Fuster 2008). Finally, PFC is reciprocally
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1. Introduction

connected to cortical motor areas, in particular pre-motor areas (Tanji and Hoshi 2008).

Functional heterogenity Connections to PFC are not uniformly distributed. Medial and
orbital areas in PFC are more strongly connected to limbic areas and, accordingly, are
more strongly involved in motivation and emotional processing (Bechara et al. 2000).
Within LPFC, which is the focus of my thesis, a functional segregation of dorsal (area
9/46) and ventral areas (area 12/47 and 45) has been proposed. Based on connection
patterns and lesion studies, ventral LPFC has been argued to be involved mainly in re-
trieving and maintaining representations, whereas dorsal LPFC has been proposed to
support the manipulation of working memory to select an action (Petrides 2000, Cur-
tis and D’Esposito 2003). In addition, it has been argued that ventral LPFC represents
mainly visual information, whereas dorsal PFC represents mainly spatial information
based by lesion and electrophysiological studies (Goldman-Rakic 1988, Wilson et al.
1993). However, visuo-spatial integration during working memory has been character-
ized in both ventral and dorsal LPFC (Rao et al. 1997).

Conclusion Together, evidence from functional anatomy suggests that the PFC oper-
ates at the top of the cortical hierarchy during sensorimotor processing (Miller and Co-
hen 2001, Badre and D’Esposito 2009). PFC is strongly interconnected with multi-modal
association areas in parietal cortex, which has repeatedly been shown to be involved
in executive functions, too, suggesting that PFC does not act in isolation but through a
fronto-parietal network (Nieder and Miller 2004, Salazar et al. 2012, Siegel et al. 2015).

1.2.2. Executive functions involving prefrontal cortex

Visual signals and perceptual decision-making The PFC represents sensory signals sim-
ilarly to sensory cortices. For example, neurons in LPFC are tuned to motion direction,
motion speed, and luminance of visual stimuli (Hussar and Pasternak 2009, 2013, Con-
stantinidis et al. 2001). Strikingly, sensory properties of these stimuli modulate repre-
sentation of working memory (Constantinidis et al. 2001) and are dependent on the be-
havioral context: Tuning of neurons in LPFC was stronger when monkeys were required
to use that information to guide behavior (Hussar and Pasternak 2009), although it has
been repeatedly reported that neurons in PFC represent sensory signals even if they are
not behaviorally relevant (Mante et al. 2013, Viswanathan and Nieder 2013). During the
detection of faint visual stimuli, the activity of a portion of LPFC neurons correlates
with stimulus intensity (Merten and Nieder 2012). However, a larger amount of neu-
rons encoded the subjective percept of the animals. They showed categorical responses
in action potential rates, which correlated with the animal’s choice about presence and
absence of the stimulus independently of motor preparation (Merten and Nieder 2012).
Similarly, visual signals during decision making propagate from primary sensory cor-
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1.2. Neural substrates of executive control

tices to PFC, where choice signals emerge for the first time, and then to pre-motor areas
(Siegel et al. 2015). The same principle was found for somatesensory detection tasks, in
which choice signals about the presence or absence of tactile stimuli were stronger for
frontal as compared to sensory cortical areas (de Lafuente and Romo 2006). Together,
PFC is likely involved in transforming parametric sensory signals into categorical choice
signals to support goal-directed behavior.

Working memory and categories Single neurons in LPFC show a characteristic sus-
tained response selective for items held in working memory. The most widely used
paradigm to investigate neuronal correlates of working memory is the oculo-motor de-
layed response (ODR) task, in which monkeys are required to remember the location of
a target during a memory delay period to make a saccade towards remembered target
location in the subsequent choice period (Goldman-Rakic 1995). A subset of neurons
in LPFC encode the target location throughout the delay period by exhibiting sustained
high activity to only a specific target location, with decreasing activity to more distant lo-
cation constituting a spatial memory field (Figure 2C) (Goldman-Rakic 1995, Funahashi
et al. 1989, Fuster 1973). Neurons in LPFC can also be tuned to visual objects during
memory-based object recognition tasks (Rainer et al. 1998, Rao et al. 1997, Wilson et al.
1993). In addition, neurons in LPFC encode categories irrespective of their precise sen-
sory appearance. In one study, monkeys had to categorize pictures to either belonging
to the cat or dog category, while stimuli were systematically morphed between those
categories (Freedman et al. 2001). Neurons in LPFC reflected category membership of
the stimulus rather than their visual appearance (Freedman et al. 2001). Neurons in
LPFC encode the magnitude of items in a visual display, irrespective of sensory appear-
ance (Nieder 2002). Numerosity stimuli were controlled for visual appearance, density,
total covered area, and other features. The neurons showed characteristic tuning curves,
with decreasing activity for more distant numerosities, and broader tuning curves for
larger numerosities (Nieder and Miller 2003). Thus, neuronal activity matched behav-
ioral properties in agreement with Weber’s law, reflecting both numerical distance and
numerical magnitude effects (Nieder and Miller 2003, Nieder and Merten 2007).

Behavioral rules In a classic test assessing the ability to switch between task rules, the
Wisconsin card sorting test (WCST), subjects are required to sort a test item to an existing
card deck based on either the color or the shape of the test item. The rules (“sort color”
or “sort shape”) change after a couple of trials without explicit instructing. Subjects
have to adjust their behavior based on the feedback after every trial (correct or wrong).
Patients with PFC damage have difficulties switching between these rules (Milner 1963).
Monkeys can perform the WCST, too, and functional imaging studies suggest that the
LPFC is involved in switching between task rules (Nakahara et al. 2002). Lesion studies
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1. Introduction

in monkeys suggest a specific role for LPFC in maintaining task rules, whereas other
prefrontal and frontal areas are specifically involved in error monitoring and updating
rules (Buckley et al. 2009). In addition, neurons in LPFC represent task rules (Mansouri
2006).

An alternative approach is explicitly cueing the rule currently in effect, which also
requires rule representation and rule switching but a lesser demand in error monitor-
ing (Stoet and Snyder 2009). In one study, monkeys had to report if two successively
presented pictures were the same or different depending on a cue that instructed the
monkeys which rule they had to use (Wallis et al. 2001). Neurons in LPFC reflected
the abstract behavioral rule, irrespective of the actual pictures that were shown. Using
rule-switching tasks, similar results have been reported for a number of different rules
(Hoshi et al. 2000, Asaad et al. 2000, Genovesio et al. 2005). Even abstract arithmetic
rules, such as “greater than” and “less than” comparisons, are encoded by LPFC neu-
rons (Bongard and Nieder 2010, Vallentin et al. 2012, Eiselt and Nieder 2013). In these
tasks, monkeys were required to report if a test numerosity, i. e. the number of items in a
visual display, was larger or smaller than a preceding sample item, based on a rule cue
indicating which rule was currently in effect. Neurons in LPFC encoded the abstract
arithmetic rule irrespective of the numerosities or the sensory appearance of the rule
cues. The PFC’s involvement in applying rules is supported by patients with prefrontal
lesions, who show impairments retrieving task context (Chapados and Petrides 2015),
as well as lesioned animals that show impairments in learning rules (Petrides 1985).

Goal values Neurons in PFC reflect the amount of expected reward in situations where
monkeys were cued about the amount or quality of reward they would receive after fin-
ishing a task (Watanabe 1996, Kennerley et al. 2009, Wallis and Miller 2003, Roesch
and Olson 2003). In LPFC, where also working memory signals are present, informa-
tion about the amount of expected reward modulated visual working memory (Amem-
ori and Sawaguchi 2006) and spatial working memory signals (Kennerley et al. 2009,
Kobayashi et al. 2002, Leon and Shadlen 1999, Wallis and Miller 2003, Watanabe et al.
2005). In accordance with LPFC’s role in executive control, neurons in LPFC encoded
the monkey’s future response in addition to information about reward size, whereas
other PFC areas were only encoding reward size (Wallis and Miller 2003). Thus, the
LPFC likely integrates information about goal values expressed by the expected reward
with cognitive information to enable goal-directed executive control (Watanabe 2007).

1.2.3. Models of prefrontal cortex functions

Despite the variety of specific executive functions, PFC models generalize mechanisms
describing how PFC might achieve these functions (Miller and Cohen 2001, Miller and
Wallis 2009). According to these models, which rely on the conceptual framework of ex-
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1.2. Neural substrates of executive control

ecutive functions discussed previously, context cues can activate PFC populations repre-
senting rules or other goal-relevant information (Figure 3A). Because they are connected
to PFC populations encoding sensory information, which generalizes to information
from memories, both populations together can bias the selection of a particular action,
which is distinct from the selection of another action when a different context activates
a different population of PFC neurons. In this model, connections between neurons and
populations are reinforced if the outcome is rewarding, likely mediated by dopamine
signaling (Miller and Cohen 2001, Miller and Wallis 2009).

Context 1

Context 2

Dopamine

Stimulus Response 1

Response 2

90˚ 180˚

A B

C

Time
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ik

es

Figure 3: Models of prefrontal cortex functions. A: Context-specific cues from the environment ac-
tivate specific PFC populations (grey box) that together with sensory signals relevant for behavior trigger
the selection of particular actions. Through conditional associations, a different context can lead to the
selection of a different action. PFC networks are influenced by dopamine (red). Circles represent neuronal
population, lines connections between populations. After Miller and Cohen (2001). B: Schematic model
architecture used in computational models of PFC networks. Pyramidal cells (triangles) are tuned to spe-
cific spatial directions and have recurrent exciatory connections and connections to GABA-ergic interneu-
rons (circle), which project to pyramidal cells. If one selective pool is stimulated (180◦), sustained working
memory activity is mediated by recurrent NMDA connections and lateral inhibition through interneurons,
which suppress population selective for other directions and dominate during spontaneous activity states
with low firing rates. Note that axonal subcellular target regions are largely unknown and ignored in this
schematic. Architecture from Goldman-Rakic et al. (2000), Brunel and Wang (2001), and Durstewitz et al.
(2000b). C: Neurons in the network can switch from a stable spontaneous activity state with low firing
rate to a stable high-activity state with high firing rate after transient stimulation (gray box) of a selective
subpopulation (green population in B selective for 180◦). Own simulation with network parameters from
Brunel and Wang (2001).

Within PFC, the integration of a variety of goal-related information across time re-
quires a sustained signal, which is most obvious during working memory processing.
Based on anatomical evidence and electrophysiological studies, Goldman-Rakic (1995)
proposed a network architecture to implement working memory (Figure 3B). This ar-
chitecture has been used to build biologically-plausible computational models describ-
ing how PFC networks might implement working memory processes (Durstewitz et al.
2000b, Brunel and Wang 2001, Constantinidis and Wang 2004). The network architec-
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ture relies on excitatory recurrent connections mediated mainly by α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) and N-Methyl-d-aspartate (NMDA) recep-
tors. NMDA receptors have long postsynaptic currents, which allow for integrating ac-
tivity over longer timescales. In addition, inhibitory connections from γ-Aminobutyric
acid-(GABA-)ergic interneurons to pyramidal cells balance the excitatory drive, shaping
selective responses of pyramidal cells by inhibition, which is also supported by electro-
physiological studies (Rao et al. 2000, Constantinidis et al. 2002). These attractor net-
works show two stable states: a spontaneous, low activity state dominated by inhibitory
currents and a persistent, high activity state of a subset of pyramidal cells with strong
recurrent excitatory connections dominated by NMDA currents (Brunel and Wang 2001,
Wang 1999). The persistent activity state is stable even without external stimulation.
These models were used to describe spatial (Constantinidis and Wang 2004, Durstewitz
et al. 2000b, Compte et al. 2000) and object working memory (Brunel and Wang 2001)
processes in PFC.

Experimental evidence supports the predicted prominent role of NMDA receptors
in mediating the sustained high-activity state as blocking NMDA receptors impaired
sustained responses (Wang et al. 2013, Seamans et al. 2003). The power of attractor
networks models is further demonstrated by their ability to generalize to a number of
other functions for executive control. The same model architecture has been applied
to problems in perceptual decision-making (Wang 2002, 2008), reward-based decision-
making (Deco et al. 2013), and the learning of category representations (Engel et al.
2015). In addition, they allow for investigating neuromodulation in cortical networks.
By changing synaptic conductances in the model, mechanisms for dopamine modulation
of prefrontal networks have been proposed (Durstewitz et al. 2000a, Brunel and Wang
2001).

1.3. Dopamine modulation of executive control

1.3.1. Dopamine systems in the brain

Dopamine belongs to the catecholamines together with epinephrine and norepinephrine
(Björklund and Lindvall 1984). Several nuclei in the brain stem contain dopaminergic
neurons, with the largest assembly of dopaminergic neurons found in the mesencephalic
dopamine system of the primate brain (Felten and Sladek 1983). It consists of the cell
groups A8, A9 and A10 (Felten and Sladek 1983, Williams and Goldman-Rakic 1998).
The area A8 lies dorsal to the lateral part of the substantia nigra. A9 corresponds to
the substantia nigra pars compacta and A10 to the ventral tegmental area of the mesen-
cephalon. Humans and macaques have less than 400,000 dopaminergic neurons (Stark
and Pakkenberg 2004), which project to many subcortical and cortical areas exerting
a widespread control of brain function, characteristic of a neuromodulator (Björklund
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1.3. Dopamine modulation of executive control

and Lindvall 1984). Three main subdivisions of the mesencephalic dopamine system
can be distinguished. The mesostriatal pathway projects to the basal ganglia and has
an important role in the voluntary execution of movement (Obeso et al. 2008). The
mesolimbic pathway projects to a variety of structures belonging to the limbic system
and has been extensively studied with respect to its function in motivation, learning,
and addiction (Wise 2009, 2004). Finally, the mesocortical pathway projects mainly to
the frontal lobe and modulates cognitive functions such as working memory (Seamans
and Yang 2004). Dopamine acts on five different dopamine receptors D1–D5, which are G
protein coupled receptors modulating intracellular signaling cascaded rather than pro-
ducing postsynaptic currents directly (Jackson and Westlind-Danielsson 1994, Seamans
and Yang 2004). Based on structural and pharmacological similarities, these receptors
fall into two main receptor types, the D1-like receptor family (D1R) with subtypes D1

and D5 and the D2-like receptor family (D2R) with subtypes D2, D3 and D4 (Jackson
and Westlind-Danielsson 1994, Seamans and Yang 2004).

1.3.2. The mesocortical dopamine system

Dopaminergic projections to the cortex can be separated into two parallel systems
(Williams and Goldman-Rakic 1998): Projections that originate mainly from A10 in-
nervate the anterior cingulate cortex (area 24) and medial frontal areas (areas 14 and
32) in both primates and rodents, which is often assigned to the mesolimbic pathway.
In addition, primates developed a distinct mesoprefrontal dopamine system projecting
particularly to dorsal and lateral areas of the PFC (areas 12/47, 9/46, and 9). This path-
way originates from the area A8 and A9 and to a lesser extent from A10, thus from more
lateral parts of the midbrain dopamine system, establishing a medial-to-lateral projec-
tion topography (Figure 4A) (Williams and Goldman-Rakic 1998). Compared to other
cortical areas, the PFC exhibits the highest dopamine concentrations and synthesis rates
(Brown et al. 1979).

Within primate PFC, dopaminergic fibers innervate both pyramidal cells and in-
terneurons forming synaptic contacts with somas, dendritic shafts, and dendritic spines
(Goldman-Rakic et al. 1989, Smiley and Goldman-Rakic 1993). Contacts with spines on
pyramidal cells establish synaptic triads with the postsynaptic neuron receiving another,
presumably glutamatergic input (Goldman-Rakic et al. 1989). Dopamine receptors are
located postsynaptically on dendritic spines (Bergson et al. 1995), but even more often
found extrasynaptically (Smiley et al. 1994), suggesting that dopamine controls cortical
information processing via diffusion in the neuropil (volume transmission) (Zoli et al.
1998).

D1Rs are expressed in all cortical layers in primate LPFC and are about 10-fold more
abundant than D2Rs (Lidow et al. 1991). D2Rs, in contrast, have low expression rates
in most layers showing highest expression rates in layer V (Lidow et al. 1991, 1998).
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Figure 4: Dopamine modulation of PFC. A: Mesocortical dopamine projections show a ventromedial-
dorsolateral projection topography, where medial dopamine neurons project to medial frontal areas and
lateral dopamine neurons project to PFC and LPFC. ACC, anterior cingulate cortex; PL, prelimbic cortex;
IL, infralimbic cortex; VTA, ventral tegmental area; SNc, substantia nigra pars compacta; SNr, substantia
nigra pars reticulata; dl, dorsolateral; vl, ventrolateral. Modified from Ranganath and Jacob (2015) with
data compiled from Williams and Goldman-Rakic (1998). B: Dopamine neurons fire phasic bursts in
response to unexpected reward (left) and to reward predicting cues (right), thus signaling reward prediction
errors. Modified from Bromberg-Martin et al. (2010). C: Application of D1R agonists in LPFC enhances
spatial tuning primarily by inhibiting responses to non-preferred spatial directions. Left, single neuron
example; right, population tuning curve. Modified from Vijayraghavan et al. (2007).

D1Rs and D2Rs are expressed in both pyramidal cells and interneurons (de Almeida
and Mengod 2010, Smiley et al. 1994, Mrzljak et al. 1996, Muly et al. 1998) suggesting
that dopamine modulates both excitatory and inhibitory synaptic transmission.

1.3.3. Dopamine physiology

Dopamine signal

In monkeys, dopamine neurons respond with short, phasic bursts of activity when
presented with appetitive stimuli, such as food or fruit juice (Schultz 1986, Schultz and
Romo 1990, Romo and Schultz 1990). These responses are independent of the different
types of appetitive stimuli and occur in the majority of recorded dopamine neurons.
Remarkably, after classical conditioning of an unconditioned stimulus with a reward,
dopamine neurons shift their phasic activation from the time of reward delivery to the
time of presentation of the conditioned stimulus (Figure 4B) (Ljungberg et al. 1992).
Dopamine neurons are not active during the delay between conditioned stimulus and
reward delivery (Ljungberg et al. 1991). In addition, unexpected omission of reward
leads to a suppresion of dopamine neuron activity. The peak activity of dopamine
bursts is correlated with the expected amount of reward (Tobler et al. 2005). These
findings lead to the theory that dopamine neurons signal the reward prediction error
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1.3. Dopamine modulation of executive control

used for reinforcement learning (Schultz et al. 1997, Schultz 2006, 1998).

More recent experiments revealed that some dopamine neurons also respond to aver-
sive stimuli, which seem to belong to a specific subset of dopamine neurons located
in dorsolateral parts of the substantia nigra (Matsumoto and Hikosaka 2009). In addi-
tion, neurons in dorsolateral substantia nigra were activated by behaviorally relevant
visual stimuli needed to solve a visual search task requiring working memory, whereas
ventromedial dopamine neurons represented reward prediction errors (Matsumoto and
Takada 2013). These findings suggest that dopamine may convey distinct signals serv-
ing different functions along the dorsolateral-medioventral axis (Matsumoto and Takada
2013), with ventromedial dopamine neurons carrying reward prediction error signals
and dorsolateral dopamine neurons carrying saliency signals (Bromberg-Martin et al.
2010). Remarkably, dopamine neurons in the dorsolateral midbrain project specifically
to LPFC (Williams and Goldman-Rakic 1998), which indicates that the saliency signal
conveyed by dopamine neurons during cognitive tasks modulates LPFC networks me-
diating executive control.

Reward signals and cognitive signals converge in the PFC, and reward signals likely
modulate cognitive signals relevant for executive control such as working memory
(Watanabe 2007). However, it remains unclear if dopamine mediated reward signals
modulate memory signals directly. Given that dopamine neurons seem to carry distinct
signals (Schultz 2007, Bromberg-Martin et al. 2010), it is conceivable that PFC signals
about reward and working memory signals are distinctly modulated by dopamine.

Dopamine receptor mechanisms of action in prefrontal cortex

D1R mechanisms D1Rs and D2Rs have been demonstrated to modulate the respon-
siveness of PFC neurons via a variety of cellular mechanisms, of which only the most
prominent ones can be introduced here (Seamans and Yang 2004). D1R stimulation
shows an overall inhibitory effect on PFC neurons in vivo (Vijayraghavan et al. 2007,
Williams and Goldman-Rakic 1995). This inhibition might me mediated by amplifying
inhibitory post-synaptic currents in pyramidal cells (Trantham-Davidson et al. 2004) or
weakening non-NMDA-glutamatergic responses (Seamans et al. 2001a). At the same
time, D1R stimulation shows a specific excitatory effect by potentiating only NMDA-
evoked responses in vitro (Seamans et al. 2001a, Tseng and O’Donnell 2004).

D2R mechanisms D2R stimulation, oppositely, shows an overall excitatory effect in vivo
(Wang et al. 2004a). This excitatory effect might be mediated by a decrease of GABA-
evoked inhibitory currents in pyramidal cells (Seamans et al. 2001b, Trantham-Davidson
et al. 2004). On the other hand, D2Rs have been demonstrated to show inhibitory effects,
too. D2Rs decrease NMDA-evoked responses in pyramidal cells via interneurons (Tseng
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and O’Donnell 2004) and increase interneuron excitability (Zhong and Yan 2016).

Together, D1Rs and D2Rs show both excitatory and inhibitory effects when investi-
gated in isolation in vitro. However, D1Rs and D2Rs seem to differentially modulate
synaptic currents in distinct cell types.

1.3.4. Dopamine modulation of prefrontal cortex functions

Visual signals and attention

Stimulus detection During the detection of faint stimuli, PFC neurons signal the choice
of the animal about presence or absence of the stimulus, i. e. the monkeys’ subjective per-
cept rather than physical stimulus intensity (de Lafuente and Romo 2005, 2006, Merten
and Nieder 2012). Recordings from midbrain dopamine neurons during stimulus de-
tection revealed that dopamine activity reflects perceived stimulus intensity, too, rather
than physical stimulus intensity, since dopamine neurons were only active when the an-
imals successfully detected the stimulus (de Lafuente and Romo 2011). Remarkably, the
latency of dopamine neurons reflecting the animals choice matched the latency of choice
signals in frontal cortex, lacking behind visual signals in sensory cortex (de Lafuente and
Romo 2012). These findings suggest that dopamine might prepare its higher-order target
areas for the processing of incoming signals (Redgrave and Gurney 2006, de Lafuente
and Romo 2011). However, it remains unknown if dopamine modulates visual signals
in PFC directly, which would be a prediction from this hypothesis.

Attentional processing Noudoost and Moore (2011a) manipulated dopamine signal-
ing in FEF while monkeys could choose a target by making a saccade in a free-choice
task. Both D1R and D2R manipulation increased target selection towards the location
in space, where the receptive fields of the manipulated site was. In addition, only D1R
manipulation changed visual signals in V4 resembling effects observed after shifting
spatial attention towards the receptive field (Noudoost and Moore 2011a, Reynolds et al.
2000). Based on the distribution of prefrontal dopamine receptors, Noudoost and Moore
(2011b) suggested that only D1Rs modulate visual signals in V4 possibly by intracortical
connection from superfical layers in FEF, while D2Rs modulate target selection by sub-
cortical connections from deep layers. These findings support the idea that dopamine
mediates the attention-dependent modulation of visual signals also observed in visual
cortices (Arsenault et al. 2013). The source of this attentional signals is likely the PFC
(Clark and Noudoost 2014), given that dopamine signaling in frontal cortex modulates
neuronal activity in visual cortices (Noudoost and Moore 2011a,b). However, it remains
unclear if dopamine also modulates visuals signals in PFC directly, which as discussed
above are clearly present in PFC.

24



1.3. Dopamine modulation of executive control

Working memory modulation

Role of D1R First direct evidence for an involvement of dopamine in cortical functions
was found by depleting dopamine in PFC, which lead to an impairment of working
memory that could partially be rescued by pharmacologically increasing dopamine lev-
els (Brozoski et al. 1979). Blocking D1Rs impairs spatial working memory performance
in studies using the ODR task (Sawaguchi and Goldman-Rakic 1991, 1994) and in vi-
sual working memory tasks in humans (Müller et al. 1998). Stimulating D1Rs improves
working memory performances in dopamine depleted animals, but not controls (Arn-
sten et al. 1994), supporting the notion that the effects of D1R activation in PFC is dose-
dependent following an inverted-U response curve, where sub- or supra-optimal D1R
activation is detrimental for working memory performance (Arnsten 2011). This dose-
dependency has been found in LPFC neurons. When stimulating D1Rs of LPFC neurons
during an ODR task using micro-iontophoresis, the tuning of the neurons’ memory
fields is enhanced at an optimal dose (Figure 4C), following an inverted-U response
curve with little stimulation having no effect and large stimulation having detrimental
effects on tuning (Vijayraghavan et al. 2007). Blocking prefrontal D1Rs impairs spatial
memory fields (Sawaguchi 2001), but has also been reported to improve spatial tuning
of LPFC neurons (Williams and Goldman-Rakic 1995).

Role of D2R D2R modulation of working memory has been less clear. D2R stimulation
has been shown to influence working memory performance in monkeys and humans
by increasing or decreasing performance (Arnsten et al. 1995, Gibbs and D’Esposito
2005, Von Huben et al. 2006, Mehta et al. 2001), depending on the subject’s baseline
performance (Clark and Noudoost 2014). Blocking D2Rs often produced no effects on
working memory performance (Sawaguchi and Goldman-Rakic 1994), but has also been
shown to impair working memory performance in monkeys (Von Huben et al. 2006) and
humans (Mehta et al. 2004, Clark and Noudoost 2014). However, electrophysiological
studies failed to find any effects on spatial mnemonic activity during the delay period
in ODR tasks after stimulating or blocking D2Rs in LPFC (Wang et al. 2004a, Williams
and Goldman-Rakic 1995).

Conclusion Together, evidence from human and animal studies show a strong involve-
ment of D1Rs in working memory processing. The lack of physiological evidence of
D2R modulation on spatial mnemonic processing (Wang et al. 2004a) lead to the view
that D2Rs seem to be less involved in modulating working memory processing, de-
spite behavioral evidence that suggest an involvement of D2Rs in working memory, too
(Arnsten 2011, Seamans and Yang 2004, Clark and Noudoost 2014).
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Behavioral flexibility

Animal studies Evidence for an involvement of D1Rs in executive functions other than
working memory mainly comes from animal behavioral studies. In rodent studies as-
sessing behavioral flexibility, rats learned to enter a specific arm in a maze based on
either a spatial strategy (e.g., “turn right”) or on a visual strategy (e.g., “select arm
with visual cue”) (Floresco and Magyar 2006). Blocking D1Rs impairs flexibly switching
between the different response strategies, without impairing learning of the strategies
(Ragozzino 2002, Floresco and Magyar 2006). An even stronger influence was reported
by blocking D2Rs, which lead to an impaired performance by increasing perseverative
errors, i. e. rats maintained the same response strategy and needed much more trials
to shift their strategy (Floresco and Magyar 2006, Floresco et al. 2006). Similarly, de-
pleting dopamine in PFC impaired learning new cue-reward associations in marmoset
monkeys (Crofts et al. 2001). Recently, Puig and Miller (2012) trained macaque mon-
keys to form associations between arbitrary visual items and saccade directions. After
a sample item and a delay period, monkeys were required to make a saccade towards
right or left depending on the item shown before. Blocking D1Rs in PFC impaired the
monkey’s ability to learn new associations while not strongly affecting selecting familiar
associations (Puig and Miller 2012). Blocking D2Rs impaired learning new associations,
too (Puig and Miller 2015). In addition, blocking D2R increased perseverative errors,
which was not observed for blocking D1Rs (Puig and Miller 2015). Further, blocking
either D1Rs or D2Rs reduced neural signatures of associations encoding the upcoming
response in LPFC (Puig and Miller 2012, 2015).

Human studies In humans, D1R availability in human PFC is positively correlated with
flexibly shifting between rules during the WCST (Takahashi et al. 2008, 2012). Blocking
D2Rs impaired shifting between response strategies in a variation of the WCST, in which
subjects had to learn new visual discriminations based on different stimulus dimensions
(Mehta et al. 1999). Stimulating D2Rs improved performance of subjects in a WCST
(Kimberg et al. 1997) and increased functional imaging signals in frontal cortex during
rule switching (Stelzel et al. 2013). These findings lead to the conculsion that cognitive
flexibility is mainly mediated by D2Rs (Klanker et al. 2013).

Conclusion Together, primarily behavioral evidence suggests a complementary role for
both D1Rs and D2Rs in mediating behavioral flexibilty with a specific role of D2Rs in
switching behavioral strategies (Floresco and Magyar 2006, Floresco 2013). However,
cellular mechanisms of dopamine modulation of neuronal signals underlying executive
functions beyond working memory are lacking.
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1.3.5. Models of dopamine modulation of prefrontal cortex

Qualitative models Based on models of PFC network architecture and electrophysiolog-
ical evidence about D1R modulation of prefrontal neurons, Goldman-Rakic et al. (2000)
proposed a network architecture describing how D1R might modulate PFC networks
to mediate the observed changes in spatial tuning during working memory, which pro-
poses a gating mechanism of excitatory input to both pyramidal cells and interneurons.
Later, Arnsten (2011) and Arnsten et al. (2012) proposed a model, in which D1Rs pri-
marily modulate lateral connections by reducing excitatory input from pyramidal neu-
rons with opposite tuning or increasing inhibition from interneurons to pyramidal cells
(Figure 5A) based on their finding that D1R stimulation primarily reduced responses to
nonpreferred spatial directions (Vijayraghavan et al. 2007).
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Figure 5: Models of dopamine modulation of prefrontal cortex. A: Same basic model architecture as
in Figure 3B. Dopamine modulates PFC networks by changing synaptic conductances in the model. Or-
ange, proposed D1R effect on sculpting PFC representations by decreasing lateral excitatory connections
or increasing interneuron excitability (Arnsten 2011). Red, proposed D1R modulation by computational
models suggesting an increase in recurrent NMDA currents and an increase in GABA currents (Durstewitz
et al. 2000a). Blue, proposed D2R modulation by computational models opposite from D1R modulation
(Durstewitz and Seamans 2008). Green, proposed gating mechanism by dopamine (Cohen et al. 1996).
B: Dual-state theory of D1R/D2R activation in PFC proposing a D1R-dominated state with stable, i. e.
deep basin attractors and a D2R-dominated state with flexible, i. e. shallow basin attractors. After Rolls
et al. (2008).

Computational models for D1R Using biologically-plausible attractor models of PFC
networks based primarily on in vitro results from primate and rodent studies, Durste-
witz et al. (2000a) proposed a model in which D1R stimulation enhances the stability
of PFC representations by increasing neuronal responses to preferred rules and at the
same decreasing spontaneous activity, together increasing the neurons’ selectivity dur-
ing working memory (Figure 5A). This effect was mediated first by an increase of GABA
currents, which decreased the spontaneous activity of pyramidal cells. Second, sus-
tained high-activity states, were enhanced by increasing NMDA currents in the model
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(Durstewitz and Seamans 2002, Brunel and Wang 2001). This model is in agreement
with early electrophysiological studies (Williams and Goldman-Rakic 1995, Sawaguchi
2001). However, the proposed mechanism by which D1R enhances working memory
tuning relies primarily on the increase of recurrent excitatory connections mediated by
NMDA-receptors, which is the opposite mechanism proposed by Arnsten (2011) and
Arnsten et al. (2012) discussed above. It remains to be resolved if the model can ex-
plain a reduction in responses to nonpreferred directions, without changing responses
to preferred directions as reported by Vijayraghavan et al. (2007).

Dual-state theory of prefrontal cortex dopamine function Based on the finding that D2Rs
show some in vitro effects opposite from D1Rs, which are mainly a D2R-mediated de-
crease and a D1R-mediated increase in GABA responses, Seamans et al. (2001b) and
Seamans and Yang (2004) proposed a conceptual framework for dopamine modulation
of prefrontal networks. In this framework, PFC networks are either in a D1R-dominated
state, in which an increase in recurrent excitation and a decrease in spontaneous activity
stabilizes current representations in working memory. Conversely, a D2R-dominated
state reduces inhibition in the networks allowing for fluctuations between representa-
tions, rendering PFC networks more flexible and enabling switching between different
representations in accordance with the role of D2Rs in mediate behavioral flexibility
(Figure 5B). These states might by controlled in time: dopamine might first support
dynamic updating of prefrontal representations via a D2R-dominated state, and subse-
quently stabilize a limited amount of representations via a D1R-dominated state, shut-
ting down irrelevant reprensetations and safeguarding representations from distractors
(Seamans et al. 2001b, Seamans and Yang 2004). This idea has been translated into
biologically-plausible network models using the same architecture as before, incorpo-
rating a proposed D1R and D2R modulation (Durstewitz and Seamans 2008). For D1Rs,
the same modulation as proposed before stabilizes prefrontal representations (Durste-
witz et al. 2000a, Durstewitz and Seamans 2002). For D2Rs, the opposite mechanism
of decreasing GABA currents and increasing NMDA currents in the model produced
unstable representations with spontaneous transitions between spontaneous and high-
activity states (Durstewitz and Seamans 2008).

Attractor hypothesis of schizophrenia The dual-state theory of prefrontal cortex
dopamine function has been linked to clinical symptoms of schizophrenia, forming
the attractor hypothesis of schizophrenia (Rolls et al. 2008). In this model, excessive
D2R activation produces unstable representations in PFC leading to positive symptoms
such as hallucinations and intrusion of thought (Mueser and McGurk 2004). Accord-
ingly, blocking D2Rs is the common mechanism of all antipsychotic drugs used to treat
positive symptoms of schizophrenia (Seeman 2002).
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Gating model of dopamine The attractor model is in agreement with another view of
dopamine functions, in which the short-lived phasic dopamine signal gates sensory in-
put to PFC (Figure 5A) (Cohen et al. 1996, 2002). This idea is supported by properties of
dopamine neurons, which exhibit short-latency signals in response to salient events. In
a functional imaging study, D’Ardenne et al. (2012) found that LPFC encoding of con-
text was correlated with the amount of phasic activation of midbrain dopamine areas
suggesting that dopamine gates the updating of prefrontal working memory represen-
tations. Further, dopamine neurons fire phasic bursts in response to faint faint stimuli
in a detection task and show no response if the animals failed to detect the stimulus
(de Lafuente and Romo 2012, 2011).

Conclusion Together, models about dopamine functions in PFC suggest that dopamine
gates representations in PFC and subsequently controls the stability of prefrontal sus-
tained representations by balancing D1R/D2R activation. For D1R, the models are sup-
ported by electrophysiological studies in monkeys reporting a D1R-mediated modula-
tion of working memory proccesses. However, the models also predict a prominent
D2R modulation of sustained responses in PFC, which has not been reported in vivo.
In particular, the models predict that the ratio of D1R/D2R activation controls dynamic
properties of prefrontal networks when representations are updated.

1.4. Open questions

Box 1. Open questions about dopamine modulation of executive functions addressed
in my thesis.

1. What are the cellular basis and mechanisms of dopamine modulation of executive
funtions beyond working memory?

(i) Visual signals relevant for perceptual detections

(ii) Behavioral rules

2. What is the precise role of D2Rs in working memory processing?

3. Is there physiological evidence for predictions by computational models about
dopamine’s role in stabilizing representations?

4. Does dopamine modulate reward signals and cognitive signals by a common mecha-
nism?

Based on the key features of executive functions, PFC, and dopamine discussed in
the previous sections, I want to highlight some of the main questions that we need
to address to understand dopamine’s role in modulating executive functions in PFC
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(Box 1). These questions emerge from the lack of studies investigating how dopamine
modulates physiological underpinnings in the PFC.

First, electrophysiological studies almost exclusively used the ODR task to investigate
working memory. However, as discussed above, executive functions comprise a much
larger range of specific abilities not previously addressed, such as behavioral rules and
perceptual decisions. In addition, the ODR task has severe limitations in interpreting the
sustained activity during memory delay, which might be attributed to motor processing
(Markowitz et al. 2015, Takeda and Funahashi 2004) or attentional processing (Lebe-
dev et al. 2004) due to constraints in task design. Second, the role of D2Rs has been
neglected, although behavioral, clinical and computational evidence suggest a strong
involvement of D2Rs in working memory and executive control. Third, there is a gap
between physiological data and computational models, which propose a strong role of
both D1R and D2R in modulation PFC neurons and networks by controlling the stability
of prefrontal representations. Finally, it is unclear if dopamine signals about expected
reward and dopamine modulation of cognitive signals, which are both present in PFC,
share common properties or if both systems are modulated independently.

In my thesis, I want to address these questions by training macaque monkeys on
tasks requiring executive control, recording from single neurons in LPFC and pharma-
cologically stimulating and blocking dopamine receptors using micro-iontophresis. In
addition, I want to use computational models to test if predictions from dopamine mech-
anisms of action apply to my experimental data and, reversely, test concepts proposed
by existing models to my experimental data.
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2. Main results

2.1. Statement of contributions

This thesis comprises 5 publications, which are summarized in the following sections
and in Box 2. The individual publications and manuscripts can be found in Part II.

1. Jacob*, S. N., Ott*, T., Nieder, A. (2013). Dopamine regulates two classes of pri-
mate prefrontal neurons that represent sensory signals. Journal of Neuroscience
33(34):13724–34. (*shared first-authorship)

I trained the monkeys and performed electrophysiological recordings together
with S. N. Jacob. I analyzed the data together with S. N. Jacob. I wrote the paper
with S. N. Jacob and A. Nieder.

2. Ott, T., Jacob, S. N., Nieder, A. (2014). Dopamine receptors differentially enhance
rule coding in primate prefrontal cortex neurons. Neuron 84(6):1317–1328.

I designed the task with A. Nieder. I trained the monkeys and performed all elec-
trophysiological recordings. I analyzed the data. I wrote the paper with A. Nieder.
S. N. Jacob provided analysis tools and edited the manuscript.

3. Ott, T., Nieder, A. (under review). Dopamine D2 receptors enhance population
dynamics in prefrontal working memory circuits.

I designed the task with A. Nieder. I trained the monkeys and performed all elec-
trophysiological recordings. I analyzed the data. I wrote the paper with A. Nieder.

4. Ott, T., Stein, A. M., Nieder, A. (in preparation). Dopamine D1 and D2 receptors
oppositely modulate reward signals in primate prefrontal cortex neurons.

I designed the task with A. Nieder. I trained the first monkey and supervised
training of the second monkey, which was mainly trained by A. M. Stein. I per-
formed electrophysiological recordings with A. M. Stein. I analyzed the data. I
wrote the manuscript with A. Nieder.

5. Hage, S. R., Ott, T., Eiselt, A.-K., Jacob, S. N., Nieder, A. (2014). Ethograms indicate
stable well-being during prolonged training phases in rhesus monkeys used in
neurophysiological research. Laboratory Animals 48(1):82–7.

S. R. Hage and A. Nieder designed the study. I contributed to the study by
collecting the majority of the behavioral data for focal sampling. Together with
S. R. Hage, A.-K. Eiselt and S. N. Jacob, I collected behavioral data for statistical
sampling. S. R. Hage analyzed the data and wrote the paper with A. Nieder. I
helped in editing the manuscript.
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2.2. Dopamine modulation of visual signals

Dopamine modulates executive functions, which rely on the integrity of PFC. Midbrain
dopamine neurons fire phasic bursts in response to salient sensory events and predict
the detection of faint sensory stimuli. Thus, it has been hypothesized that dopamine
acts as a gate allowing for updating prefrontal representations. In PFC, dopamine has
been shown to modulate working memory responses of single neurons. However, it is
unkown if dopamine controls visual information in PFC that precede memory repre-
sentations. Here we tested the hypothesis that prefrontal dopamine modulates visual
representations needed for perceptual decisions.

We trained two macaque monkeys to detect faint visual stimuli on a screen. Monkeys
had to decide about the presence or absence of the visual stimulus to make a correct
choice and receive a reward. We simultaneously recorded single neurons in LPFC while
applying dopamine to the vicinity of recorded neurons using micro-iontophoresis with
custom-made electrode-pipette combinations.

We found that dopamine distinctly modulated two classes of LPFC neurons. One
group of neurons was quickly inhibited by dopamine and showed short latencies to
visual stimuli. Representation of visual stimuli was retained despite prominent inhi-
bition, which lead to an increase in signal-to-noise ratio. This group consisted mainly
of narrow-spiking, putative interneurons. The second group was slowly excited by
dopamine and showed longer response latencies to visual stimuli. In this class of neu-
rons, encoding of visual stimuli was improved by reducing response variability. This
class consisted exclusively of broad-spiking, putative pyramidal cells.

In conclusion, prefrontal dopamine regulated two distinct LPFC populations with
distinct properties. The observed effects support the idea that dopamine gates sensory
input to PFC und subsequently improves sensory representations needed for perceptual
decisions. Thus, dopamine might control the flow of information in PFC shaping how
PFC initiates appropriate behavior in response to sensory changes in the environment.

2.3. D1R and D2R modulation of behavioral rules

Applying rules is a key function of executive control enabling goal-directed behavior.
By guiding behavior in novel situations, rules enable behavioral flexibilty and rapid
learning. Neurons in LPFC signal rules relevant to solve a task. Midbrain dopamine
neurons strongly innervate PFC modulating flexible behavior. However, the cellular
basis for dopamine modulation of rules remains unknown.

In this study, we trained two macaque monkeys to flexibly switch between two be-
havioral rules. Monkeys had to remember a sample numerosity, i. e. the amount of dots
in a visual display, during a delay period to chose if a test stimulus was larger (“larger
than” rule) or smaller (“smaller than” rule) than the sample stimulus based on the rule
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currently in effect to get a reward. The rule was cued by either a visual or a gustatory
stimulus in the delay period between sample and test item presentation to dissociate
neuronal responses signaling the abstract rule from responses correlating with sensory
features of the rule cue. We recorded 384 randomly selected single neurons in LPFC
and simultaneously applied dopamine receptor targeting drugs at the vicinity of the
recorded neurons using micro-iontophoresis.

We determined neurons encoding the abstract numerical rule by a significant main
factor of rule without an interaction of rule and rule cue modality during the delay pe-
riod using analysis of variance (ANOVA). About 17 % of all recorded neurons (64/384)
encoded abstract numerical rules, with similar numbers preferring the “smaller than”
rule or the “larger than” rule. D1R stimulation slightly inhibited the spontaneous fir-
ing rate of the neurons. At the same time, D1R stimulation increased responses for
the preferred rule in the delay period, increasing the neurons’ selectivity for numeri-
cal rules. Oppositely, blocking D1Rs increased spontaneous activity impaired encoding
of numerical rules. D2R stimulation increased rule coding, too, although by a distinct
mechanism. After applying D2R agonists, spontaneous activity was slightly increased,
while responses to the non-preferred rule were decreased, thus increasing the neurons’
selectivity for numerical rules. Thus, D1R and D2R both increase rule coding by dif-

Box 2. Main results of the studies included in my thesis.

1. Dopamine modulated visual signals in LPFC in two distinct classes of neurons.

(i) Dopamine inhibited narrow-spiking neurons increasing signal-to-noise ratio of
visual signals with short latencies.

(ii) Dopamine excited broad-spiking neurons reducing variability of visual signals
with longer latencies.

2. D1R and D2R modulated neuronal rule signals in LPFC by complementary mecha-
nisms.

(i) D1R reduced spontaneous activity and enhanced responses of preferred rules.

(ii) D2R increased spontaneous activity and reduced responses of non-preferred
rules.

3. D2R modulated working memory representations in LPFC.

(i) D2R stimulation enhanced working memory signals on single neuron an popu-
lation levels.

(ii) D2R stimulation increased dynamic properties of neuronal networks.

(iii) Computational models suggest that interneuron-to-pyramidal signaling underlies
the observed effects.

4. D1R and D2R oppositely modulated reward expectancy signals in LPFC neurons.
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ferential mechanisms. Drug application left behavioral performance of the monkeys
unchanged, but slightly increased reaction times.

In conclusion, our results suggest a complementary mechanism for D1Rs and D2Rs in
modulation executive functions in LPFC. D1R and D2R show opposite mechanisms in
modulation spontaneous activity. At the same time, both enhance numerical rule coding
of LPFC neurons by distinct mechanisms. These results might provide a cellular basis
for D1R and D2R stimulation of executive control.

2.4. D2R modulation of working memory

Working memory, which is the ability to briefly retain and manipulate information in
mind, is key function of executive control. Sustained activity in LPFC is considered the
neuronal substrate of working memory. Dopamine neurons innervate LPFC modulating
spatial working memory performance. Stimulating or blocking D1Rs in LPFC modulates
the spatial tuning of neurons during the delay period of spatial working memory tasks.
However, D2R manipulation failed to show any modulation of sustained mnemonic
activity during spatial working memory. This is surprising, given behavioral, clinical,
and computational evidence suggesting a strong role of D2Rs in modulating sustained
activity underlying working memory.

Here we tested if D2Rs modulate feature-based working memory of the number of
items in a display, i. e. the numerosity information. We trained two macaque monkeys to
perform a memory-guide rule switching task, in which the monkeys had to remember
a sample numerosity during a memory delay period to indicate in the subsequent test
phase if a test numerosity was larger or smaller than the sample numerosity based on
the rule currently in effect. We tested a range of sample numerosities to assess neuronal
selectivity of sample numerosities during the memory delay period. We recorded 310
randomly selected single neurons in LPFC and simultaneously applied dopamine recep-
tor targeting drugs at the vicinity of the recorded neurons using micro-iontophoresis.

We identified single units selectively encoding the sample numerosities during the
memory delay using an ANOVA with significant main effect of sample numerosity.
Neurons showed a characteristic tuning with a high firing rate for their preferred nu-
merosity and lower firing rates for more distant numerosities. After D2R stimulation,
the neurons’ tuning curve was steeper, enhancing working memory representations for
numerosities. To assess if coding measures translate to the population level, we analyzed
population responses using regression analysis. Similiarly, D2R stimulation increased
the population code for working memory. Next, we tested if predictions from com-
putational models about the role of D2Rs in rendering prefrontal representations more
flexible by using principal compoment analysis to quantify dynamic properties of neu-
ronal populations. D2R stimulation increased the dynamic responses of LPFC neurons
during the transition from sample to memory representations. In contrast, D1R manip-

34



2.5. D1R and D2R modulation of reward signals

ulation did not systematically change working memory representations, but decreased
the dynamic properties of LPFC populations.

Finally, we tested a biologically-plausible computational model of prefrontal networks
to test if predictions about D2R mechanisms of action from in vitro studies apply to our
experimental findings. Decreasing GABA signaling from interneurons to pyramidal
cells and increasing interneuron excitability qualitatively reproduced our experimental
findings, i. e. increased spontaneous activity and coding selectivity.

These results suggest a prominent modulation of feature-based working memory rep-
resentations by D2Rs in LPFC. Computational modeling proposed a potentional mech-
anism of action, suggesting that D2Rs modulate working memory primarily by acting
on interneuron-to-pyramidal signaling. In addition, our results are in agreement with
models postulating that D2Rs increase dynamic properties of prefrontal populations.

2.5. D1R and D2R modulation of reward signals

During executive control, different types of information have to be integrated to enable
goal-directed behavior. Both information about expected rewards that signal goal values
and working memory information are encoded by LPFC neurons, where there are inte-
grated. For example, expected reward size modulates working memory processing in
LPFC neurons. Dopamine strongly innervates LPFC neurons modulating executive con-
trol and and working memory processing. However, it remains unknown if dopamine
modulates working memory processing directly, or through the modulation of reward
signals, which leads to differential predictions about dopamine modulation of reward
signals in PFC.

Here we examined how dopamine receptors modulate reward expectancy signals of
LPFC neurons. We trained macaque monkeys on a reward-modulated working memory
task, in which a reward cue at the beginning of each trial predicted the amount of reward
for a correct choice at the end of a trial. Monkeys had to remember visual items during
a delay period to match it with a test item in the subsequent test phase. We recorded
from 256 single units in LPFC while simultaneously stimulating D1Rs or D2Rs using
micro-iontophoresis.

Information about the expected reward modulated the monkey’s behavior. A larger
expected reward increased the percentage of correct trials, decreased reaction times and
decreased the percentage of trials aborted by the animals. We identified LPFC neurons
signaling the expected reward size by an ANOVA with significant main effect reward
size. A large proportion, about one third, of LPFC neurons carried information about
reward size. D1R stimulation did not change information about reward size in the cue
period following reward cue presentations. However, D1R stimulation impaired reward
expectancy coding during the delay period preceding sample presentation. In contrast,
D2R stimulation improved reward expectancy coding during both cue period and delay
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period. As reported previously, D1R stimulation decreased the neurons’ spontaneous
activity. This change in baseline activity was correlated with D1R modulation of reward
expectancy coding during both cue and delay periods. In contrast, D2R stomulation
increased spontaneous activity, which was not correlated with D2R stimulation induced
changes in coding quality.

In conclusion, D1R and D2R stimulation oppositely modulated reward signals in
LPFC neurons. D1R modulation was opposite as found in previous studies for working
memory and rule coding. These results suggest that opposite mechanisms described for
D1R and D2R modulation dominate the modulation of reward signals in LPFC and sug-
gest a complex interaction between dopamine control of reward signals and executive
functions in LPFC.

2.6. Impact of prolonged training on behavioral well-being of rhesus monkeys

Macaque monkeys are widely used in neurophysiological studies including all studies
for my thesis. These studies rely on operant conditiong techniques to train a large
variety of cognitively demanding tasks. Behavioral tasks requiring executive control
involving the PFC are particularly demanding and require extensive training of the
animals. During training and recording, the animals’ psychological well-being has to be
ensured.

Here S. R. Hage et al. defined objective behavioral criteria to measure the psycho-
logical well-being of seven macaque monkeys during behavioral training protocols. We
defined a set of behavioral categories logged during a combination of two sampling pro-
tocols to assess the monkeys’ behavior. First, we focally sampled behavior continously
for 30 min directly after behavioral training sessions. Second, we used statistical scan
sampling collecting instantaneous samples every hour during the day. These data were
compared by S. R. Hage between two behavioral training protocols. The first training
protocol (long break) consisted of 12 consecutive training days followed by 9 consec-
utive days without training and free access to both water and food. During training
days, water intake was restricted to training sessions and food was delivered ad libitum.
The second training procol (short break) consisted of 12 consecutive training days with
restricted water intake and 2 subsequent days without training and free access to food
and water.

We found no systematic differences in the monkeys’ behavior during training that
followed a short break compared to training that followed a long break. Behavioral
sampling revealed typical behaviors during the day, for example peak activity after
training and decreasing activity in late afternoon. However, this pattern was not affected
by the differences in training protocol. Further, extensive feeding and foraging behavior
following training sessions revealed by continous sampling did not change after a long
or a short break. Importantly, we observed no abnormal behavior such as pacing.
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These results suggest that the monkeys’ psychological well-being can be guaranteed
during training periods without long breaks. Prolongation of the daily working sched-
ule does not act as a stressor as the animals are likely well habituated to the training
schedule.

3. Discussion

3.1. Dopamine modulates a variety of signals relevant for executive control

3.1.1. Visual signals

Dopamine stimulation differentially modulated two distinct classes of LPFC neurons.
The two classes showed different charateristics in their response to sensory stimuli,
suggesting that dopamine modulates cortical visual signals via two distinct modes of
operation.

Inhibition by dopamine

Dopamine-mediated inhibition was characterized by a reduction in general firing rate
of the neurons, without changing the magnitude of visual representations. This type of
modulation resembles a subtraction, which is an additive shift in response levels retain-
ing encoding properties and increasing signal-to-noise levels (Silver 2010). Control over
sensory signals by subtraction mediates response normalization offering a major com-
putational advantage (Carandini and Heeger 2012). Inhibition can adaptively rescale the
input to a neuron to match its dynamic range (Mitchell and Silver 2003) and therefore
maximize information transmission (Brenner et al. 2000).

These results support the gating model of dopamine, in which dopamine is hypothe-
sized to filter sensory input to cortex (Cohen et al. 1996, 2002). Mechanistically, gating
could be realized by modulating the dendritic arbor in input layers (Durstewitz et al.
2000a, Gao et al. 2003). One major argument supporting the gating mechanism is the
presence of a precisely timed signal, which mediates gating of sensory inputs. Neu-
rons inhibited by dopamine showed rapid modulation by dopamine, rendering them
ideal recipients of rapid, phasic dopamine signals relayed to PFC (Redgrave et al. 2008).
Further, mean visual response latencies of inhibited neurons was about 165 ms, closely
following the mean latency of phasic dopamine bursts after visual stimulation of about
120 ms (Dommett et al. 2005) and dopamine response latencies following the detec-
tion of somatosensory stimuli of about 150 ms (de Lafuente and Romo 2012). Thus,
dopamine might reinforce or block signals reaching the PFC and mediate the updating
of behaviorally relevant signals in PFC (D’Ardenne et al. 2012) increasing the cortical
signal-to-noise ratio (Servan-Schreiber et al. 1990).
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In visual cortex, subtractive shifts in neuronal firing rates is mediated by somatostatin-
(SOM-)expressing, dendrite-targeting interneurons (Wilson et al. 2012). Dopamine has
been shown to increase inhibitory signaling from non-fast-spiking, dendrite-targeting
interneurons to pyramidal cells (Gao et al. 2003). Thus, this mechanism might drive
the observed inhibition in the subset of broad-spiking cells inhibited by dopamine,
which are putative pyramidal cells (Mitchell et al. 2007, Connors and Gutnick 1990).
All narrow-spiking, putative interneurons were inihibited by dopamine. Given the im-
portant role of interneurons in cortical information flow (Rao et al. 2000, Constantinidis
et al. 2002), interneurons constitute an ideal target by which dopamine could mediate
rapid gating.

Excitation by dopamine

In neurons excited by dopamine, neuronal firing rates were increased in proportion
to to baseline activity, indicating a multiplicative gain (Silver 2010). Gain modulation
by dopamine has been proposed by computational models as a mechanism by which
cortical networks might increase signal detection performance (Servan-Schreiber et al.
1990, Thurley et al. 2008), which we also observed at a single neuron level. Further, in
neurons excited by dopamine, dopamine induced a reduction in trial-to-trial variability
of neuronal spike counts. Together, these results resemble effects on neuronal firing
properties described following the allocation of attention towards a neurons’ receptive
field (McAdams and Maunsell 1999, Noudoost and Moore 2011a). Thus, dopamine
might similarly enhance relevant PFC signals as if allocating attention to these signals
(Noudoost and Moore 2011b), controlling the selection of relevant information.

Neuronal response latencies to visual stimuli were considerably longer in neurons
excited by dopamine, on average about 100 ms longer than for neurons inhibited by
dopamine. Further, dopamine only slowly induced the observed changes in neurons
excited by dopamine. Thus, dopamine might exert differential control on cortical neu-
rons by distinct temporal profiles (Schultz 2007). Dopamine-excited neurons could be
influenced by tonic dopamine signals, which are controlled by anatomically distinct
pathways (Floresco 2013). In the PFC, tonic signals might primarily be mediated by
high-affinity dopamine receptors located extra-synaptically (Grace et al. 2007).

In visual cortex, gain modulation was reported to be mediated by parvalbumin-
(PV-)expressing, soma-targeting interneurons (Wilson et al. 2012). Dopamine has been
shown to decrease inhibitory signaling from fast-spiking, soma-targeting interneurons
(Gao et al. 2003). This modulation might drive the excitation observed in broad-spiking,
putative pyramidal cells, by dis-inhibiting pyramidal cell firing.
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Conclusion

Together, these results suggest that dopamine controls two distinct cortical popula-
tions. Differential modulation might be mediate by an inhomogenous receptor distri-
bution present in PFC (Noudoost and Moore 2011b). Possibly, differential distributions
of D1Rs and D2Rs at the level of cell types, cortical layers, and subcellular location
establish heterogenous dopamine modulation profiles.

3.1.2. Rule signals

Stimulation of D1R or D2R enhanced neuronal representations of numerical rules by dis-
tinct physiological mechanisms. Stimulating D1Rs decreased spontaneos activity and at
the same time increased responses to the neurons’ preferred rule. In contrast, stimulat-
ing D2Rs increased spontaneous activity while decreasing responses to non-preferred
rules, thus also increasing rule coding.

D1R modulation of rule coding

We observed a D1R-mediated inhibition of overall neuronal firing rates. D1R-induced
inhibition of LPFC neurons was repeatedly reported by previous in vivo studies (Vi-
jayraghavan et al. 2007, Williams and Goldman-Rakic 1995). Mechanistically, this can
be explained either by in vitro studies reporting that D1R stimulation reducing the effi-
cacy of excitatory neurotransmission in PFC (Gao et al. 2001) and weakens non-NMDA-
glutamatergic responses (Seamans et al. 2001a). Further, D1Rs have been shown to en-
hance inhibitory post-synaptic currents (IPSCs) in pyramidal cells (Trantham-Davidson
et al. 2004), thus modulating interneuron-to-pyramidal signaling. At the same time,
D1R stimulation induced an increase in neuronal responses to the preferred rule during
sustained rule-related activity in the delay period. D1R-induced excitatory effects might
me mediated by an increase in NMDA-evoked responses observed in vitro (Seamans
et al. 2001a, Tseng and O’Donnell 2004).

The bidirectional modulation, i. e. a decrease in spontaneous activity and an increase
in sustained activity, was proposed by computational models implementing previously
described D1R modulation of synaptic currents (Durstewitz et al. 2000a). In these
models, an increase in GABA-conductances from interneuron-to-pyramidal cells and an
increase in recurrent NMDA conductances qualitatively matches our experimental re-
sults (Brunel and Wang 2001), increasing the selectivity of sustained high-activity states.
Thus, our data strongly supports these models. Experimental predictions from the same
computational models have been positively tested by manipulating NMDA receptors in
LPFC, which modulated sustained activity during working memory (Wang et al. 2013).
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Our results provide a possible cellular basis for the role of D1R in mediating behav-
ioral flexibility. Blocking prefrontal D1Rs in monkeys impairs learning of new associ-
ation rules and reduces corresponding neural selectivity to learned saccade directions
(Puig and Miller 2012). In rodent studies, blocking D1Rs impairs flexibly switching
between different response strategies (Ragozzino 2002, Floresco and Magyar 2006). Sim-
ilarly, D1R availability in human PFC is positively correlated with flexibly shifting be-
tween rules in a WCST (Takahashi et al. 2008, 2012).

D2R modulation of rule coding

We found a D2R-mediated increase in overall firing rates. D2R-induced excitation of
LPFC neurons has been reported by previous in vivo studies (Wang et al. 2004a, Wang
and Goldman-Rakic 2004). In vitro studies have shown that D2Rs decrease IPSCs in
pyramidal cells (Seamans et al. 2001b, Trantham-Davidson et al. 2004), thus decreasing
interneuron-to-pyramidal signaling leading to a dis-inhibition of pyramidal cells. At the
same time, D2R stimulation reduced neuronal responses to non-preferred rules, thus
showing inhibitory effects. Inhibitory effects have been repeatedly reported by in vitro
studies reporting that D2R stimulation decreases NMDA-evoked responses (Tseng and
O’Donnell 2004) and increases inhibition by enhancing interneuron excitability (Zhong
and Yan 2016).

These results partly contradict ideas from computational models about the role of
D2Rs in modulating sustained activity in PFC (Durstewitz and Seamans 2008, Rolls
et al. 2008). In agreement with the models, D2Rs increases network activity through
an decrease in GABA-mediated inhibition (Durstewitz and Seamans 2008). However,
the models proposed an antagonism between D1Rs and D2Rs, in which D2R stimula-
tion would decrease and de-stabilize sustained activity states (Durstewitz and Seamans
2008). In contrast, we found an increase in selectivity and coding capacity for rule-
related sustained activity in PFC neurons.

Our results show that D2Rs modulate the representations of task rules of LPFC neu-
rons thus providing a cellular basis for D2R modulation of executive functions. Blocking
prefrontal D2Rs impaired monkeys to learn new association rules and reduced neural
selectivity in LPFC to learned saccade directions (Puig and Miller 2015). In agreement
with our data, blocking D2Rs increased neuronal responses to non-preferred saccade
directions. In addition, monkeys made more perseverative errors indicating that the
ability to switch between representations was impaired (Puig and Miller 2015), an effect
also observed in rodents (Floresco and Magyar 2006). Similarly, blocking D2Rs impairs
shifting between rules in humans (Mehta et al. 1999) and stimulating D2Rs enhances the
performance to switch between rules (Kimberg et al. 1997). Thus, our results support
the idea that D2Rs mediate behavioral flexibility (Klanker et al. 2013).
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Conclusion

Together, our results show that D1R and D2R cooperatively modulate the processing
of numerical rules underlying executive control in LPFC neurons. D1R and D2R show
opposite mechanisms as predicted by computational models, but also show complemen-
tary mechanisms not described previously. Future theories about dopamine receptor
functions in LPFC will have to incorporate these effects.

3.1.3. Working memory signals

Stimulating D2Rs enhanced neuronal working memory representations for numerosities
on single neuron and population levels in LPFC. In addition, D2R stimulation increased
the dynamic properties of prefrontal networks. Computational modeling suggested that
D2Rs primarily act by decreasing GABAergic responses in pyramidal cells.

D2R modulation of working memory

Our results provide a possible celluar basis for D2R modulation of working memory.
In animal and human studies, it has been repeatedly shown that D2Rs modulate work-
ing memory performance (Clark and Noudoost 2014). However, modulation was often
complex, depending on the baseline performance and the age of subjects. This might
be contributing to the failure of finding D2R modulation of spatial working memory
processes at the neuronal level. Wang et al. (2004a) trained monkeys on a ODR task
and recorded neurons from LPFC while manipulation D2Rs. They found no effect of
D2Rs on spatial mnemonic processing during the delay period. D2Rs did, however,
modulate saccade-related responses during the response phase when monkeys made a
saccade towards the target. In contrast, we found a prominent modulation of sustained
activity in the delay period during working memory. In our study, monkeys learned to
remember the numerosity information of visual displays, thus requiring feature-based
working memory. Recordings from LPFC suggest that spatial and feature-based work-
ing memory might be represented by anatomically distinct populations (Wilson et al.
1993), although many neurons represent both spatial and visual information (Rao et al.
1997). In addition, the ODR task might reflect mainly motor preparation signals rather
than representation of sensory signals (Markowitz et al. 2015, Takeda and Funahashi
2004), since the monkeys know from the onset of the sample location where they have
to make a saccade to in the subsequent test phase. Thus, the ODR task might capture
specific spatial processing signatures.

Similarly, these differences might explain the lack of effects on working memory pro-
cessing following D1R manipulation. On the other hand, interpretation of the absence of
an effect for D1Rs is limited, because our dataset for analyzing D1R effects on working
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memory might have been too small. In addition, D1R show a strong and possibly nar-
row inverted-U response curve that might be different for D2Rs (Floresco 2013), making
additional experiments necessary.

D2R mechanisms of action

We implemented a biophysically-plausible spiking neural network in which synaptic
connections are described on a single neuron level to investigate possible mechanisms of
action for D2Rs on working memory processing. Neuromodulation can be investigated
by systematically changing synaptic conductances. We constrained possible synaptic
modulation of D2Rs by investigating putative D2R targets supported by in vitro studies
(Seamans et al. 2001b, Zhong and Yan 2016, Trantham-Davidson et al. 2004), which pro-
pose a decrease in IPSCs in pyramidal cells and an increase in interneuron excitability.
When incorporating this putative D2R modulation in the model, we observed a small
increase in spontaneous activity as well as a prominent increase in sustained activity,
increasing the neurons’ selectivity during working memory. Thus, the model could
reproduce two of our major experimental findings.

Our results suggest that primarily interneuron-to-pyramidal signals mediates the en-
hancement of working memory representations. In agreement, interneurons have been
shown to control cortical information flow, shaping neuronal tuning of memory repre-
sentations (Constantinidis et al. 2002, Rao et al. 2000). In visual cortex, PV-expressing,
soma-targeting neurons have been shown to modulate response gain, which might un-
derlie the excitatory mechanisms.

D2R modulation of dynamic response properties

Since single neuron responses show a high complexity and variablity (Rigotti et al.
2013), we explored whether compuations in PFC might emerge from the dynamics of
populations of neurons (Mante et al. 2013). We described neuronal responses in the
framework of dynamical systems in which the activity of neuronal population can be de-
scribed as a dynamical process revealing shared activity patterns that are prominent in
the population response (Cunningham and Yu 2014). This allowed us to study dopamine
receptor modulation of PFC network properties.

Computational models about dopamine receptor modulation proposed that D2Rs
render PFC networks more flexible, i. e. increase their dynamic response properties
(Durstewitz and Seamans 2008, Rolls et al. 2008, Seamans and Yang 2004). We tested
this hypothesis by quantifying the dynamic responses of PFC networks using princi-
pal component analysis representing the activity or neuronal populations in state space
(Harvey et al. 2012). By calculating the rate of change of neuronal trajectories in state
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space (Stokes et al. 2013), we quantified the responsiveness of prefrontal networks dur-
ing sample presentation and working memory. Similar to previous findings, we found
that prefrontal networks show high dynamic phases after sample onset and at the begin-
ning of the delay period. During memory delay, prefrontal networks show a more stable
response pattern (Stokes et al. 2013). D2R stimulation enhanced the dynamic properties
of prefrontal networks by an increase in the speed with which activity patterns changed
over time. This enhancement was only observed during high dynamic phases in particu-
lar during the transition between visual and mnemonic representations at the beginning
of the delay period. Oppositely, D1R stimulation decreased the dynamic properties of
PFC networks.

These results support computational models proposing that dopamine receptors con-
trol dynamic updating of PFC representations (Durstewitz and Seamans 2008, Rolls
et al. 2008, Seamans and Yang 2004). However, they also predict a decrease in selectivity
for D2R stimulation during sustained responses. In contrast, we found an increase in
selectivity both for single neurons and the population analysis. Future models might be
able to reconcile both findings.

Conclusion

Together, our results suggest a prominent D2R modulation of working memory pro-
cessing in LPFC. Computational modeling suggests a mechanisms by which D2Rs might
modulates PFC networks. Conversely, we tested predictions from existing models and
found evidence that D2Rs promote the flexible updating of PFC representations.

3.1.4. Reward signals

Single neurons in LPFC represented reward expectancy signals during a working mem-
ory task. D1R stimulation decreased representations of reward expectancty, whereas
D2R stimulation increased representations of reward expectancy.

Opposite modulation of reward signals by D1R and D2R

The D1R-induced reduction of sustained reward expectancy signals in LPFC was sur-
prising, given that most studies and our previous work mostly found improvement of
the selectivity of sustained responses, or no effects (Vijayraghavan et al. 2007). As in pre-
vious studies, we found an overall inhibition of firing rates induced by D1R stimulation,
possibly mediated by mechanisms described earlier. Possibly, inhibitory mechanisms
dominated the modulation of sustained reward expectancy signals. There are several
possible reasons. First, dopamine baseline levels might be higher during encoding of
reward expectancy signals, shifting the inverted-U response curve to the left. Second,
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neurons signaling expected reward might be modulated by D1R using different mecha-
nisms, which realize opposite D1R and D2R effects. In either case, the results indicate
that LPFC populations signaling reward expectancy are differentially impacted by D1Rs
as compared to neurons representing working memory.

In contrast, D2R stimulation improved sustained reward expectancy signals, just as it
improved sustained working memory and sustained rule-related representations. Thus,
D2Rs might modulate a variety of signals relevant for executive control by common
mechanisms. In agreement, D2Rs consistently increased spontaneous activity in this
and previous studies.

Dependence on baseline modulation

D1R modulation of reward expectancy signals was correlated with D1R modulation
of spontaneous firing rates. These results suggest that D1R-mediated inhibition and the
observed decrease in selectivity share a common mechanism. They further suggest that
D1R modulation strongly depends on baseline dopamine levels following an inverted-U
response curve (Arnsten 2011). In contrast, the modulation by D2Rs was not correlated
with changes in baseline. Thus, mechanisms by which D2Rs modulate spontaneous
activity might be independent from mechanisms by which D2Rs enhance selectivity for
reward signals in LPFC neurons.

Conclusion

Together, D1Rs and D2Rs modulate reward expectancy signals in LPFC neurons by
opposite mechanisms. The different mechanism as compared to the modulation of mem-
ory (Wang et al. 2004a, Vijayraghavan et al. 2007) and rule-related signals challenge the
idea that reward expectancy signals positively modulate working memory signals re-
quiring further investigation (Kennerley et al. 2009, Leon and Shadlen 1999, Watanabe
2007)

3.2. Dopamine receptors show differential modulation of executive control

3.2.1. Complementary mechanisms for D1R and D2R

Our results suggest that D1Rs and D2Rs assume complementary roles in modulating
cognitive signals relevant for executive control. Both D1R and D2R stimulation increased
neuronal coding of numerical rules. Thus, D1Rs and D2Rs likely do not have opposing
roles in controlling executive control as postulated by computational studies (Durstewitz
and Seamans 2008, Rolls et al. 2008). Instead, our results support evidence that D1Rs
and D2Rs cooperatively modulate processes underlying behavioral flexibility (Floresco
and Magyar 2006, Floresco 2013).
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3.2. Dopamine receptors show differential modulation of executive control

In rats, blocking either D1R or D2R impairs flexibly switching between different re-
sponse strategies based on spatial or visual cues (Ragozzino 2002, Floresco et al. 2006).
In addition, dopamine levels in PFC increased after learning the initial rule as well as af-
ter shifting to the new rule, indicating that prefrontal dopamine is involved in mediating
rule shifts (Ragozzino 2002). A causal role for an involvement of prefrontal dopamine
in shifting between response strategies has been found in monkeys, where depletion
of prefrontal dopamine impaired learning of novel reward-predicting stimulus features
(Crofts et al. 2001). Blocking either prefrontal D1R or D2R impaired monkeys to switch
between arbitratry stimulus-response associations (Puig and Miller 2012, 2015), suggest-
ing that D1Rs and D2Rs might cooperatively control behavioral flexbility.

Both D1Rs and D2Rs modulate working memory performance in humans and animals
(Clark and Noudoost 2014). This modulation is strongly dependent on the subject’s
baseline performance and genotype associated with dopamine availability (Clark and
Noudoost 2014, Robbins and Arnsten 2009), supporting the theory that dopamine mod-
ulation of working memory follows a narrow inverted-U response curve, with either
too little or too much dopamine impairing working memory (Floresco 2013, Arnsten
2011, Goldman-Rakic et al. 2000). For D1Rs, an inverted-U modulation has been found
on neuronal level in LPFC (Vijayraghavan et al. 2007). However, despite the behavioral
evidence, D2Rs did not modulate spatial working memory in LPFC (Wang et al. 2004a).
Our data resolve these findings, since we found a strong modulation of D2Rs on work-
ing memory processes in LPFC. Together, these results suggest that D1Rs and D2Rs have
complementary roles for working memory, too. Further studies might resolve the un-
expected finding that D1Rs did not modulate working memory representations in our
study, which might either reflect differences between spatial and feature-based working
memory discussed above, or a shift on the inverted-U response curve between studies.

3.2.2. Opposite mechanisms for D1R and D2R

Modulation of signal and noise

At the same time, we found several mechanisms by which D1Rs and D2Rs seemed to
act oppositely. First, D1R reduced spontaneous activity and D2R increased spontaneous
activity, as reported previously (Vijayraghavan et al. 2007, Wang et al. 2004a). Second,
D1R increased responses to preferred rules, thus showing an additional excitatory con-
tribution to neuronal firing properties. These results are in agreement with predictions
from computational models incorporating in vitro results (Durstewitz et al. 2000a, Brunel
and Wang 2001). Puig and Miller (2012), however, found that blocking prefrontal D1Rs
increased responses to non-preferred associations, and stimulating D1Rs primarily re-
duced responses to non-preferred spatial locations in an ODR task (Vijayraghavan et al.
2007). Since D1R stimulation reduces baseline activity, too, it is hard to disentangle in-
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hibitory from excitatory contributions. Previous studies did not systematically quantify
these kinds of contributions, making direct comparisons hard (Puig and Miller 2012, Vi-
jayraghavan et al. 2007). D2Rs, on the other hand, seem to have inhibitory contributions
to neuronal firing properties, since D2R stimulation reduced responses to non-preferred
rules. In agreement, blocking D2Rs has been reported to increase neural responses to
non-preferred associations (Puig and Miller 2015).

Together, D1Rs and D2Rs show opposite mechanisms in modulating spontaneous
activity and differential mechanisms in modulation the possible “signal” of cognitive
variable (preferred response) and the “noise” of a cognitive variable (non-preferred re-
sponse). This differential modulation lead to an increase in the neuronal coding capac-
ity for rule representations for both D1R and D2R stimulation. Thus, mechanisistically
D1Rs and D2Rs seem to have opposing mechanisms, while functionally both receptor
types contribute complementarily to executive control.

Modulation of reward signals

Surprisingly, D1Rs reduced reward expectancy signals in LPFC, while D2Rs enhanced
reward expectancy signals. Thus, opposing mechanisms seemed to dominate dopamine
receptor modulation of reward signals. For now, it is unclear if reward and working
memory or rule signals are independendtly modulated by dopamine, or if differences
in baseline dopamine shifting the inverted-U response curve can account for the oberved
differences. In either case, the same amount of D1R activation lead to opposite findings
for D1Rs on modulating coding of reward signals as compared to rule signals. In con-
trast, the same amount of D2R activation lead modulation of reward and rule signals in
the same direction, indicating that both receptors are characterized by distinct reponse
profiles.

These findings are supported by rodent studies, which reported opposite mechanisms
for D1Rs and D2Rs in modulation reward-based decison-making (Floresco 2013). In
these studies, rats can chose between a lever press delivering a small certain reward or
a lever press delivering a large risky reward, i. e. only with a specific probability. Sen-
sitivity to reward can be investigated by quantifying how many times rats stay with the
risky choice after a reward was delivered (win-stay) and how many times rats switched
to the lever with certain small reward after no reward was delivered at the risky lever
(lose-shift), which can be interpreted as sensitity to negative feedback. D1R and D2R
stimulation oppositely modulated reward sensitivity and negative feedback sensitivity
(St. Onge et al. 2011, Floresco 2013). Stimulating D1Rs increased reward sensitivity by
increasing win-stay tendencies, whereas D2R stimulation decreased reward sensitivity
by decreasing win-stay tendencies promoting switching levers. Negative feedback sensi-
tity was oppositely modulated by blocking D1Rs or D2R, either increasing or decreasing
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lose-shift tendencies, respectively. These findings suggest that decision-making based
on reward signals is oppositely modulated by prefrontal dopamine receptors (Floresco
2013).

Conclusion

Together, complementary as well as opposite mechanism underlie dopamine receptor
modulation of executive functions in PFC. These differences might dissociate between
distinct types of signals for working memory, behavioral flexibility, and reward-based
decison-making.

3.3. Models of dopamine modulation suggest specific mechanism of action

3.3.1. Differential modulation of interneurons and pyramidal cells

Proposed mechanism of action

Results from previous modeling studies (Durstewitz et al. 2000a, Brunel and Wang
2001, Durstewitz and Seamans 2008) together with our own modeling suggest a spe-
cific mechanism of action for D1Rs and D2Rs (Figure 6A). For D1Rs, increasing NMDA
currents enhances recurrent excitation during sustained responses. At the same time, in-
creasing GABA currents decreases spontaneous activity. These effects proposed by mod-
eling studies are supported by our experimental data for the sustained representation
of rules. For working memory, we propose a specific mechanism for D2Rs. Decreasing
GABA currents in pyramidal cells increased both spontaneous activity and sustained ac-
tivity. When this dis-inhibition was balanced by increasing interneuron activity (enhanc-
ing AMPA currents on interneurons), spontaneous activity was only slightly elevated,
while sustained activity was strongly increased, enhancing the neurons’ selectivity.

Interneurons and pyramidal cells

Thus, we propose opposite mechanisms of action for D1Rs and D2Rs on modulating
interneuron-to-pyramidal signaling, as well as independent mechanisms of action on
modulating recurrent excitation (D1R) and interneuron excitability (D2R). The proposed
mechanism is based on findings from in vitro studies discussed in previous sections. It
relies on a differential modulation of pyramidal cells and interneurons by dopamine
receptors. Dopamine has been reported to modulate recurrent excitation in pyramidal
cells without changing pyramidal-to-interneuron signaling (Gao and Goldman-Rakic
2003). However, dopamine did change interneuron excitability as well as interneuron-
to-pyramidal signaling by either decreasing or increasing mechanisms, depending on
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Figure 6: Proposed dopamine receptor mechanisms of action . A: Same basic model architecture
as in Figure 3B with pyramidal cell populations selective for two different features (#1 and #2). We
propose that D1Rs positively modulate recurrent excitation via NMDA receptors and, at the same time,
positively modulate GABA signaling from interneurons to pyramidal cells (red). For D2Rs, we propose that
D2Rs negatively modulate GABA signaling and positively modulate interneuron excitablity by increasing in-
terneuron AMPA signaling (blue). B: Hypothesized dopamine receptor modulation by different interneuron
subtypes. We hypothesize that D1Rs modulate interneuron-to-pyramidal signaling in SOM-expressing,
non-fast-spiking, dendrite targeting interneurons, possibly mediating gating and a decrease in sponta-
neous activity. For D2Rs, we hypothesize that D2Rs modulate interneuron-to-pyramidal signaling in PV-
expressing, fast-spiking, soma-targeting interneurons, possibly mediating gain modulation. Model mainly
based on experiments from Wilson et al. (2012) and Gao et al. (2003).

the interneuron subtype (Gao et al. 2003). Interneuron-to-pyramidal was decreased in
fast-spiking, soma-targeting interneurons but increased in non-fast-spiking, dendrite-
targeting interneurons. Together with our results, and with studies from rodent cortex
(Wilson et al. 2012), it seems likely that the increase in interneuron-to-pyramidal ob-
served in dendrite-targeting interneurons is mediated by D1Rs, whereas the decrease in
soma-targeting interneurons is mediated by D2Rs (Figure 6B). This differential modula-
tion could be realized by an inhomogeneous subcellular dopamine receptor localization
on pyramidal cells (Noudoost and Moore 2011b). It might also unify possible gating
mechanisms, which could ideally be mediated by D1Rs on dendrites, mediating sub-
tractive shifts observed during gating of sensory input as well as a decrease in sponta-
neous activity. Thus, inhibitory effects observed after dopamine application on LPFC
neurons are likely mediated by D1Rs. In contrast, excitatory mechanisms observed after
dopamine application are likely mediated by D2Rs. D2R modulation resembles a gain
modulation, which was reported to be mediated by soma-targeting interneurons (Wil-
son et al. 2012). However, a pure gain modulation would not result in enhanced coding
capacties, as gain also increases noise levels (Servan-Schreiber et al. 1990, Herrero et al.
2008). Thus, an additional inhibitory mechanism possibly mediated by an increase of
interneuron excitability, which was observed for rule representations, might contribute
to D2R-mediated increase in coding capacities during working memory and rules.

Together, our results suggest that D1Rs and D2Rs differentially modulate pyramidal
cells, interneurons, and interneuron subtypes.
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3.3.2. Modulation of population dynamics

We observed a bidirectional modulation of the dynamic properties of LPFC networks
by D1Rs and D2Rs. These findings are in agreement with computational models, which
suggest that D1Rs stabilize prefrontal representations, i. e. make them less dynamic,
and that D2Rs de-stabilize prefrontal representations, i. e. make them more dynamic
(Durstewitz and Seamans 2008, Rolls et al. 2008, Seamans and Yang 2004, Seamans
et al. 2001b). The models also predicted that sustained activity in D2R-dominated
states would not be stable, and thus show a reduction of selectivity when computing
trial-averages. However, we observed an enhacement of selectivity during sustained re-
sponses after D2R stimulation. Thus, we propose that D2Rs render prefrontal networks
more flexible by increasing dynamic responsiveness of the neurons, but at the same
time increase selectivity during sustained responses. At present, it is unknown whether
a common mechanism might mediate both properties or, alternatively, if distinct mech-
anisms drive the observed pattern of responses.

3.4. Future directions

Several open questions follow from our results, which results from limitations in studies
performed so far.

1. Our hypothesis about the contributions of D1Rs and D2Rs in gating sensory sig-
nals needs to be tested empirically. Visual cortical signals could be recorded dur-
ing application of drugs specifically targeting D1Rs or D2Rs. Based on our results,
D1Rs might mediate fast inhibition of short-latency visual signals while retaining
coding capacities, while D2Rs might mediate slow excitation of long-latency visual
signals enhancing coding capacities.

2. It remains unclear which factors drive the differences in results for studies using
the ODR task and our results, in particular for differences between D1R and D2R
in modulating working memory activity. It would be helpful to record from LPFC
neurons with specific manipulation of D1Rs and D2Rs during a joint spatial and
feature-based working memory task. In addition, it would be helpful to systemat-
ically alter the drug amount applied to the recording sites to investigate possible
drug-response curves, which might be different for different receptors and func-
tions (Floresco 2013). Possibly, D2Rs do not modulate spatial mnemonic signals
but only feature-based working memory signals, while D1Rs modulate both types
of signals.

3. For reward signals, it needs to be additionally investigated if there is a direct
interaction between dopamine receptor modulation of reward signals and working
memory signals. This could be done by analyzing the interaction between reward
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and memory signals directly. Possibly, reward expectancy modulation of memory
signals is dopamine-dependent, arguing for a strong interaction between reward
and cognitive signals. Alternatively, dopamine might independently modulate
reward and memory signals, supporting the notion that dopamine modulation of
cognitive signals is largely independent from the modulation of reward signals
(Matsumoto and Takada 2013).

4. Future computational models might need to incorporate different interneuron sub-
types (Wang et al. 2004b), which have been shown to differentially exert inhibitory
control on pyramidal cells (Lee et al. 2014, Pi et al. 2013). In addition, the role of
D1Rs and D2Rs in stabilizing prefrontal representations needs to be resolved.

5. Empirical testing of predictions by computational models might help to test the
validity of the models. Specifically, the role of NMDA receptors (Wang et al.
2013), or GABAA receptors on sustained responses could be tested. As predic-
tions become increasingly complex, differential dopamine modulation of cortical
cell types needs to be addressed. This could be either done using genetic tools or
using recent advances in classifying functional cell types using electrophysiologi-
cal properties (Tripathy et al. 2015). Specifically, low-dosage blockage of GABAA

receptors should lead to a strong dis-inhbition of pyramidal cells with differential
impact during spontaneous and sustained activity.

6. A causal role for specific dopamine receptor modulation of neuronal processes
underlying executive function is in many cases still missing. Application of larger
drug amounts using pressure ejections or genetic tools might help to establish
causal relationships between dopamine modulation of neuronal firing properties
and behavior.

7. It remains unclear which signals are precisely carried by dopamine neuron activity.
To find out, it would be necessary to record from midbrain dopamine neurons
during tasks requiring executive control and to determine the amount of dopamine
release within PFC, possibly by micro-dialysis, voltammetry, or genetic markers.

3.5. Conclusion

Our studies provide several novel insights into dopamine modulation of neuronal pro-
cesses underlying executive functions (Box 3). First, we hypothesize that dopamine
gates sensory signals reaching LPFC relevant for behavior. Second, we propose that
D1Rs and D2Rs cooperatively modulate a variety of executive function including work-
ing memory and the representation of task rules mediating behavioral flexibility. On
the other hand, D1Rs and D2Rs might oppositely modulate reward-based decision-
making. Third, experimental data together with computational modeling propose a
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Box 3. Main conclusions about dopamine functions in LPFC.

1. Dopamine gates cortical visuals signals.

2. D1R and D2R cooperatively modulate a variety of signals mediating executive control.

3. D1R and D2R have opposite as well as complementary dopamine receptor mecha-
nisms.

4. Dopamine receptors control stability and flexibility of cortical networks.

specific mechanism of action for D1Rs and D2Rs comprising opposite as well as com-
plementary dopamine receptor mechanisms. Finally, our results suggest that dopamine
receptors mediate flexible updating und subsequent stabilization of representations in
prefrontal networks.

Together, dopamine regulates information flow in PFC underlying executive control,
biasing top-down signals to select appropriate actions to achieve goals.
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Abbreviations

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ANOVA Analysis of variance

D1R Dopamine D1-like receptors

D2R Dopamine D2-like receptors

FEF Frontal eye field

GABA γ-Aminobutyric acid

LPFC Lateral prefrontal cortex

MDNT Mediodorsal nucleus of the thalamus

NMDA N-Methyl-d-aspartate

ODR Oculo-motor delayed response

PFC Prefrontal cortex

PV Parvalbumin

SOM Somatostatin

WCST Wisconsin card sorting test
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Dopamine Regulates Two Classes of Primate Prefrontal
Neurons That Represent Sensory Signals

Simon N. Jacob,* Torben Ott,* and Andreas Nieder

Animal Physiology, Institute of Neurobiology, University of Tübingen, D-72076 Tübingen, Germany

The lateral prefrontal cortex (PFC), a hub of higher-level cognitive processing, is strongly modulated by midbrain dopamine (DA)

neurons. The cellular mechanisms have been comprehensively studied in the context of short-term memory, but little is known about how

DA regulates sensory inputs to PFC that precede and give rise to such memory activity. By preparing recipient cortical circuits for

incoming signals, DA could be a powerful determinant of downstream cognitive processing. Here, we tested the hypothesis that prefron-

tal DA regulates the representation of sensory signals that are required for perceptual decisions. In rhesus monkeys trained to report the

presence or absence of visual stimuli at varying levels of contrast, we simultaneously recorded extracellular single-unit activity and

applied DA to the immediate vicinity of the neurons by micro-iontophoresis. We found that DA modulation of prefrontal neurons is not

uniform but tailored to specialized neuronal classes. In one population of neurons, DA suppressed activity with high temporal precision

but preserved signal/noise ratio. Neurons in this group had short visual response latencies and comprised all recorded narrow-spiking,

putative interneurons. In a distinct population, DA increased excitability and enhanced signal/noise ratio by reducing response variabil-

ity. These neurons had longer visual response latencies and were composed exclusively of broad-spiking, putative pyramidal neurons. By

gating sensory inputs to PFC and subsequently strengthening the representation of sensory signals, DA might play an important role in

shaping how the PFC initiates appropriate behavior in response to changes in the sensory environment.

Introduction
All neuronal systems are subject to neuromodulation, which can
profoundly alter the properties of target circuits (Marder, 2012).
The primate lateral prefrontal cortex (PFC), a hub of higher-level
cognitive functioning (Fuster, 2008; Bongard and Nieder, 2010;
Eiselt and Nieder, 2013), receives particularly strong projections
from dopamine (DA) neurons in the midbrain (Williams and
Goldman-Rakic, 1998; Björklund and Dunnett, 2007). DA neu-
rons fire phasic bursts of action potentials with short latencies of
100–150 ms in response to behaviorally relevant sensory events
(Schultz, 1998; Matsumoto and Hikosaka, 2009). Therefore, it
has been suggested that DA could prepare its higher-order target
areas for the processing of incoming signals (Redgrave and Gur-
ney, 2006; de Lafuente and Romo, 2011). How might DA influ-
ence recipient prefrontal neurons to control information relayed
to this important cortical structure?

Prefrontal DA regulates many frontal lobe functions, such as
set-shifting and behavioral flexibility (Floresco et al., 2006), asso-
ciation learning (Puig andMiller, 2012), and the maintenance of

stimuli in workingmemory (Brozoski et al., 1979).Much of what
is known about the mechanisms of DA action in PFC stems from
electrophysiological studies on memory-related activity, i.e., in
the absence of sensory stimulation (Williams and Goldman-
Rakic, 1995). In rhesus monkeys engaged in a spatial working
memory task, PFC neurons active in the delay period of the task
showed improved tuning to preferred remembered locations
when stimulated with DA receptor agonists (Vijayraghavan et al.,
2007). Therefore, it is believed that the principal function of DA
in PFC is to strengthen mental representations (Arnsten, 2011).

In contrast, little is known about howDAmodulates prefron-
tal sensory signals that precede and give rise to such sustained
activity. Anecdotal evidence indicates that visual stimuli used to
cue a target to be remembered are also influenced by DA (Sawa-
guchi et al., 1990; Williams and Goldman-Rakic, 1995), but
quantitative analysis and an in-depth investigation of the cellular
mechanisms are lacking. Because phasic DA activity that is time-
locked to relevant sensory stimuli seems particularly suited to
regulate the representation of these shorter-lived signals, it has
been proposed thatDAmight serve as a gating signal that controls
inputs to PFC (Servan-Schreiber et al., 1990; D’Ardenne et al.,
2012). By assigning salience to prefrontal sensory inputs, phasic
DA could strongly influence subsequent cognitive processing in
PFC. Visual signals, for example, are passed through lower-level
cortical areas in a feedforward manner and reach the PFC within
100–150ms (Thorpe and Fabre-Thorpe, 2001). The PFC collects
this sensory information to form subjective judgments, such as
regarding the presence or absence of sensory stimulation (de La-
fuente and Romo, 2006). Recent electrophysiological studies
have demonstrated that the physical intensity of tactile and visual
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stimuli is represented in single neurons of the primate PFC along-
side their perceived intensity, i.e., the animal’s subjective experi-
ence of a stimulus (de Lafuente and Romo, 2005; Merten and
Nieder, 2012, 2013).

Here, we investigate in trained rhesus monkeys how DA con-
trols the prefrontal representation of such brief sensory stimuli
that must be detected by the animals (Merten and Nieder, 2012,
2013). We found that DA strengthens visual signals by modulat-
ing activity in two distinct classes of neurons. Our results suggest
that prefrontal DA may play an important role in determining
how the PFC orchestrates behavioral responses triggered by sen-
sory events.

Materials and Methods
Surgical procedures
Twomale rhesus monkeys (Macaca mulatta) were implanted with a tita-
nium head post and one recording chamber centered over the principal
sulcus of the lateral PFC, anterior to the frontal eye fields (right hemi-
sphere inmonkeyH, right and left hemispheres consecutively inmonkey
M). Surgery was conducted using aseptic techniques under general anes-
thesia. Structural magnetic resonance imaging was performed before
implantation to locate anatomical landmarks. All experimental proce-
dures were in accordance with the guidelines for animal experimentation
approved by the local authority, the Regierungspräsidium Tübingen.

Behavioral protocol
Task. The monkeys were trained to report the presence or absence of
visual objects flashed at varying contrast levels centered on their percep-
tual threshold. The animals initiated each experimental trial by grasping
a lever and fixating a central fixation target (fixation period). After 500
ms, a stimulus was displayed for 100 ms in half of the trials (stimulus
period). In the other half, no stimulus was shown. Both trial types were
randomly intermixed. After the delay period (2700 ms), a colored rule
cue instructed the monkey how to respond. If a stimulus was presented,
a red square cue required the monkey to release the lever within 1000 ms
to receive a fluid reward, whereas a blue cue indicated to the monkey to
keep holding the lever for 1200 ms. The rule applied in the inverse way if
no stimulus was presented.

CORTEX software (National Institute of Mental Health, Bethesda,
MD) was used for experimental control and behavioral data acquisition.
The animals maintained fixation throughout the fixation, stimulus, and
delay periods within 1.75° of visual angle of the central fixation target
(ISCAN).

Visual stimuli. The stimulus consisted of a gray object (4° of visual
angle in diameter) presented at seven levels of contrast close to perceptual
threshold, determined individually for each animal (monkey H: 7.3, 8.7,
10.6, 11.6, 19.9, 24.9, and 28.0%; monkey M: 9.1, 9.8, 11.8, 12.5, 14.7,
16.7, and 17.4%), measured with an LS-100 luminance meter (Konica
Minolta). The shape of the object was chosen randomly from a set of two
objects: hexagon and circle for monkey H; cross and rhomboid for mon-
key M. The area of the object was kept constant to maintain the same
visual contrast across different shapes.

Visual contrasts were determined for each animal individually to yield
approximately the same data points on the psychometric curve. To pool
data for analysis, visual contrasts were normalized to an ordinal scale of
1–7 (1 corresponding to the lowest and 7 to the highest stimulus contrast
presented to each animal, regardless of the actual physical intensity).
Salient stimuli analyzed in Figures 3 and 5 denote the three highest con-
trasts (5–7).

Electrophysiology
In each recording session, up to three electrodes (see below, Iontopho-
resis) were inserted transdurally using a modified electrical microdrive
(NAN Instruments). Neurons were recorded at random; no attempt was
made to preselect neurons according to particular response properties.
Signal acquisition, amplification, filtering, and digitalization were ac-
complished with the MAP system (Plexon). Waveform separation was
performed offline (Offline Sorter; Plexon).

Iontophoresis
DA was applied iontophoretically (MVCS iontophoresis system; npi
electronic) using custom-made tungsten-in-glass electrodes flanked by
two pipettes each (Thiele et al., 2006). Electrode impedances were 1–3
MV (measured at 500 Hz; Omega Tip Z; World Precision Instruments).
Pipette resistances depended on the pipette opening diameter, drug, and
solvent used. Typical resistances were 15–50 MV (full range, 15–150 MV).
Pilot in vitro experiments (DA iontophoresis into NaCl, concentrations
quantified by HPLC) determined the smallest holding current that en-
sured good retention without accumulation of dead space and thus al-
lowed for rapid delivery of DA after switching to ejection currents.
Retentioncurrentswere27 to210nA.Ejectioncurrents forDA(200mM in
double-distilled water, pH 4.0 with HCl; Sigma-Aldrich) were 125–100
nA (median, 150 nA). Control experiments with 0.9%NaCl, pH 7, used
150 nA. Ejection currents were chosen to match the values reported to
be maximally effective, i.e., in the peak range of the inverted-U function
(Sawaguchi, 2001; Vijayraghavan et al., 2007). DA currents were varied
only during experiments to determine whether the ratio of inhibition/
excitation depended on the applied concentration.Otherwise, we did not
attempt to investigate dosage effects.

One pipette per electrode was filled with DA solution, and the other
contained 0.9% NaCl. Electrode impedance and pipette resistance were
measured after each recording session. DA was applied continuously for
12–15min, depending on the number of trials completed correctly by the
animal. The first block was always the control condition. Given the fast
DA application verified by HPLC (see above), we did not automatically
exclude data at the current switching points.

Data analyses
Data analysis was performed with MATLAB (Mathworks). None of the
reported analyses depended on the exact choice of trials to include or
time windows to analyze. Repeating analyses with a different choice of
parameters yielded comparable results.

Excitability modulation. Neurons stimulated with DA were excluded
from additional analysis if their baseline (fixation period) discharge rates
were ,1 Hz in the control or DA phase. Baseline firing rates of each
neuron were pooled for the control condition and the DA condition and
compared with a rank-sum test (Mann–Whitney U test). If the median
firing rate in the DA condition was significantly (p , 0.05, two-sided
test) larger than in the control condition, the neuron was classified as
excited, and if the median was lower, the neuron was classified as inhib-
ited by DA.

Receiver operating characteristic analyses. Neuronal coding strength
was quantified using receiver operating characteristic (ROC) analysis
(Green and Swets, 1966). The area under the ROC curve (auROC) is a
nonparametric measure of the discriminability of two distributions. It
denotes the probability with which an ideal observer can tell apart a
meaningful signal from a noisy background. Values of 0.5 indicate no
separation, and values of 1 signal perfect discriminability. The auROC
takes into account both the difference between distributionmeans aswell
as their widths and is therefore a more suitable indicator of signal quality
than other, simpler measures of signal/noise ratio (Servan-Schreiber et
al., 1990; Parker and Newsome, 1998; Herrero et al., 2008).

Stimulus-responsive neurons. A two-way ANOVA was calculated with
main factors stimulus contrast (salient/absent) and iontophoresis condi-
tion (control/DA) using firing rates after stimulus presentation (300 ms
timewindow aligned to the individual response latency of the neuron; see
below), including correct trials only. Neurons with a significant stimulus
main effect (p , 0.05) were classified as stimulus responsive. Salient
stimulation was defined as the three highest visual contrasts.

Except for the analysis in Figure 7b (see below), visual response laten-
cies were calculated using sliding ROC analysis with a window size of
50 ms, step of 1 ms. For each window, we calculated the auROC by
comparing the firing rates between correct salient stimulus trials (hits)
and correct absent stimulus trials (correct rejections). To test whether the
auROC was significantly different from 0.5, bootstrapping was used to
construct 999 resamples by randomly sampling the data with replace-
ment and maintaining the original number of trials per condition. The
latency of a neuron was defined as the time after stimulus onset but no

Jacob, Ott et al. • Prefrontal Dopamine Regulates Sensory Signals J. Neurosci., August 21, 2013 • 33(34):13724 –13734 • 13725



later than 500 ms, when the auROC exceeded the 95% confidence inter-
val of the bootstrapped data for 50 consecutive windows. The response
latency was determined separately for the control and DA conditions. If
no value could be determined, a default latency corresponding to the
median response latency of all neurons in the respective condition was
used (228 and 217 ms for the control and DA conditions, respectively).
The choice of these parameters ensured that the analysis window (see
below, Neuronal signal metrics) covered the stimulus response in all
neurons.

To directly compare visual response latencies between the population
of inhibited and excited stimulus encoding neurons (see Fig. 7b), re-
sponse latency was defined as two consecutive significant auROC values
using a window size of 50 ms, step of 10 ms. This choice of parameters
was more sensitive to the actual onset of the stimulus response so that
latencies were reliably determined in all stimulus neurons (i.e., no default
latencies were used).

For single-cell spike density histograms, the average firing rate in sa-
lient trials and trials without visual stimulation (correct trials only) was
smoothed with a Gaussian kernel (bin width of 150ms, step of 1ms). For
the population responses, activity was normalized, averaged, and
smoothed with the sameGaussian kernel. Responses were normalized by
subtracting the mean baseline firing rate in the control condition and
dividing by the SD of the baseline firing rates in the control condition.

Stimulus responses calculated using sliding ROC analysis (window
size of 300 ms, step of 50 ms) quantified the discriminability between
the firing rate distributions of correct salient trials and correct rejec-
tion trials.

Neuronal signal metrics. All analyses were performed using data from a
300 ms window aligned to individual visual response latencies. This en-
sured that stimulus responses were adequately captured in all neurons.
To distinguish between additive and multiplicative operations, the dif-
ference between the mean firing rate in hit trials and correct rejections
was divided by themean baseline firing rate for all (normalized) contrasts
and both iontophoresis conditions (Vijayraghavan et al., 2007). Neuro-
metric curves were determined by calculating the auROC between dis-
charge rates in hit trials and correct rejections for all (normalized) visual
contrasts. Neuronal variability was quantified by the Fano factor (FF),
i.e., the ratio of trial-by-trial spike count variance and mean spike count
(Churchland et al., 2010).

To determine whether DA modulated a signal metric, multiple linear
regression analysis was applied to the population data (Merten and Nie-
der, 2012). Linear functions were fitted to the factors normalized visual
contrast and iontophoresis condition (control and DA) using the model
for the signal metric (S): S 5 a_0 1 a_stim 3 STIM 1 a_ion 3 ION,
where a_stim and a_ion are the coefficients that quantify the signal met-
ric dependence on the normalized stimulus contrast (STIM) and the
iontophoresis condition (ION). To assess DA effects on the analyzed
signal metric, p values for the factor iontophoresis condition were used
(t statistics for the coefficient a_ion).

DAmodulation of neuronal variability was also quantified bymultiple
linear regression analysis. Linear functions were fitted to the relationship
between mean spike count of each contrast and neuron (COUNT) and
variance of the spike count of each contrast and neuron (VAR) separately
for each iontophoresis condition (ION), i.e., control and DA. An inter-
action term was included to analyze changes in the slope of the linear
functions induced byDA (VAR3 ION). Themodel termwasCOUNT5

a_01 a_var3VAR1 a_ion3 ION1 a_int3VAR3 ION. p values for
the interaction term a_int were used to assess DA effects on neuronal
variability.

Kinetics of excitability.Exponential functionswere fitted to the baseline
firing rates of all trials recorded within 6 min of switching to the ejection
current (temporal resolution of one trial, i.e., one data point per 5 s).
Neurons with bad fits (e.g., fitted parameters out of bounds; n 5 1
inhibited cell, n 5 4 excited cells) were excluded fromadditional analysis.
If several DA phases were recorded, baseline firing rates were aligned to
all instances of switching to the ejection current and averaged using bins
of 5 s. The amplitude of DA modulation was estimated by the mean
baseline firing rate in the first or second half of the DA condition for
inhibited and excited neurons, respectively. The time course of the base-

line firing rate (FR)was expressed as FR5A3 (12 exp(2x/tau)), where
A is the estimated amplitude and tau the parameter fitted using nonlinear
least squares. The population time coursewas calculated by averaging the
normalized baseline discharge rates from all trials recorded within 6 min
before and after switching to DA application using bins of 5 s and
smoothed with a Gaussian kernel (width of 10 s, step of 5 s).

Extracellular action potential waveforms. Recorded single units were
categorized into narrow-spiking (NS) and broad-spiking (BS) neurons,
i.e., putative interneurons and pyramidal cells, using a linear classifier
(k-means, k 5 2, squared Euclidean distance) (Diester andNieder, 2008).
For each single unit, the template waveform was extracted with the
Plexon Offline sorter. Only neurons with a downward voltage deflection
followed by an upward peak were included. Units with a minimum out-
side 200–400 ms or a maximum before 300 ms after reaching the initial
threshold were excluded (n 5 3 of 60 units). Waveforms were normal-
ized by their difference betweenmaximumandminimumvoltage deflec-
tion and aligned to their minimum. Units in the cluster with the smaller
mean spike width constituted the population of NS neurons, and units in
the cluster with the larger mean spike width constituted the BS neurons.
Interdependence between modulation type (excited or inhibited by DA)
and waveform type was tested with Fisher’s exact test.

Results
To determine how DA regulates sensory signals in PFC, we pre-
sented brief flashes of visual stimuli at varying contrasts to two
rhesus macaque monkeys (Macaca mulatta). The animals were
trained to detect the stimuli and report their subjective percep-
tual judgment about the presence or absence of visual stimulation
(Merten and Nieder, 2012) (Fig. 1a). The rule-based task design
ensured that neuronal activity in the delay period after the stim-
ulus was free of preparatory motor signals. While the monkeys
performed this task, we recorded single units from the lateral
PFC. During recordings, trial blocks without pharmacological
manipulation (control) alternated with blocks in which DA was
applied to the vicinity of the recorded cells by micro-iontophoresis
(Fig. 1b). As expected, we did not observe changes in the monkeys’
behavior as a consequence ofmicro-iontophoretic drug application
(Fig. 1c,d), because transmitter application with this method is very
focal (Herz et al., 1969).

Two classes of DA-sensitive prefrontal neurons
We recorded 110 neurons that entered the analysis (60 neurons
from monkey M, 50 neurons from monkey H). Application of
DA influenced the excitability of prefrontal neurons. We com-
pared fixation period activity in the control condition with the
DA condition (rank-sum test, p , 0.05; Fig. 2a). DA suppressed
discharge rates in 32 neurons (DA-inhibited neurons; single-
neuron example in Fig. 2b). Activity increased in 28 neurons
(DA-excited neurons; single-neuron example in Fig. 2c). Dis-
charge rates were unaffected in 50 neurons (DA-unmodulated
neurons; data not shown). The changes in excitability were inde-
pendent of the iontophoretically appliedDAdosage. The propor-
tion of DA-inhibited to DA-excited neurons was not altered
when the cell counts were determined separately for lower
(125–50 nA) and higher (175–100 nA) ejection currents (23:22
versus 9:6, respectively; Fisher’s exact test, p 5 0.8). None of the
physiological parameters analyzed in the following changed in
DA-unmodulated cells. This indicates that the effects reported
for DA-excited and DA-inhibited neurons were not the result of
nonspecific electrical currents.

Inhibitory and excitatory DA effects showed different time
courses in the two groups of neurons. In a representative inhib-
ited neuron, DA-mediated suppression of spiking activity was
fast and reversed equally rapidly (Fig. 2b). In a typical excited
neuron, DA caused much slower, undulating changes in firing
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rates (Fig. 2c). These effects were confirmed at the population
level (Fig. 2d,e): inhibition was precisely time-locked to DA ap-
plication, whereas DA-mediated excitation reached maximum
levels only much later. The rate of change in excitability after DA
application was quantified by fitting exponential curves to the
temporal profile of neuronal activity. The distribution of time
constants suggested categorical differences in the rate of change
rather than a gradual transition [mean time constants of 8.9 6

2.1 s (median, 3.7 s) and 221.9 6 37.1 s (median, 190 s) for
DA-inhibited and DA-excited neurons, respectively; rank-sum
test, p , 0.001; Figure 2f,g]. Control experiments with NaCl ap-
plication verified that the rapid reduction in excitability was ab-
sent during this sham condition and thus not the result of positive
ejection currents (n 5 13 neurons; Fisher’s exact test comparing
with DA condition, p , 0.05).

Neuron-class-specific modulation of visual responses by DA
We hypothesized that the categorical changes in excitability
might reflect differences in how sensory information is repre-
sented in these groups of neurons and how it is modulated by DA.
Forty-four percent (n 5 14), 36% (n 5 10), and 34% (n 5 17) of
DA-inhibited, DA-excited, and DA-unmodulated neurons, re-
spectively, responded to salient visual stimuli [highest three con-

trasts; two-way ANOVA with main effects
stimulus (salient/absent) and experimental
condition (control/DA), main effect of
stimulus, p , 0.05; Fig. 2a]. A representa-
tive DA-inhibited neuron encoded salient
visual stimuli with a clear increase in ac-
tivity in both the control (Fig. 3a) and DA
(Fig. 3b) conditions. Inhibitory DA effects
were reversible and subsided when DA ap-
plication was discontinued (Fig. 3c). In
contrast, the stimulus response was mar-
ginal in an example DA-excited neuron
(Fig. 3d) but increased markedly after DA
was applied (Fig. 3e). Again, these changes
were clearly reversible (Fig. 3f).

These single-cell effects were verified at
the population level. Across all DA-
inhibited cells, DA induced an offset in
activity but preserved the spike rate differ-
ence between trials with salient stimuli
and no stimulation (Fig. 3g,h). However,
DA-excited neurons increased stimulus
coding based on spike rate differences be-
tween trials with salient and absent stim-
uli (Fig. 3i,j).

We further characterized how DA
modulated neuronal excitability. For all
contrast levels and neurons, we normal-
ized the stimulus-evoked change in firing
rate (DRs; difference between mean activ-
ity in trials with and without visual stim-
ulation, calculated in a 300 ms window
after stimulus presentation) to baseline
activity in the fixation period. Data are
presented separately for DA-inhibited
and DA-excited neurons in both ionto-
phoresis conditions (Fig. 4a,b). In DA-
inhibited cells, DA subtracted response
levels: the normalized DRs increased after
DA application, i.e., the firing rate differ-

ence between trials with and without stimulation was retained at
lower baseline firing rates (multiple linear regression, factor ion-
tophoresis condition, p , 0.01; Fig. 4a). In DA-excited cells, DA
increased gain: there was no change in normalized DRs with DA,
i.e., the firing rate difference increased in proportion to the base-
line (multiple linear regression, factor iontophoresis condition,
p 5 0.5; Fig. 4b).

Prefrontal DA enhances visual coding strength in
excited neurons
We quantified the capacity of the neurons to discriminate be-
tween present and absent visual stimulation, i.e., their coding
strength or signal/noise ratio. We compared spike rates in these
two conditions by calculating the auROC derived from signal
detection theory (Green and Swets, 1966). auROC values of 0.5
indicate no discriminability, and values of 1 indicate signal per-
fect discriminability. For the representative DA-inhibited neuron
from Figure 3, a and b, auROC values increased considerably
after the presentation of salient stimuli, but they were unaffected
by DA application (Fig. 5a). These time courses were confirmed
in the population of DA-inhibited neurons (Fig. 5b). DA did not
induce systematic changes in auROC values in this class of cells
(seven neurons increased, seven neurons decreased; mean

Figure 1. Behavioral protocol and electrophysiological recordings with micro-iontophoresis. a, Stimulus detection task requir-

ing the monkeys to report whether a visual stimulus had been presented. A visual stimulus of varying contrast levels was flashed

for 100 ms in 50% of trials (top). In the other 50%, a blank screen was shown (bottom). b, Left, Lateral view of a rhesus monkey

brain depicting the location of extracellular neuronal recording and DA iontophoresis in the principal sulcus region of the PFC. Right,

Anatomical reconstruction of the recording locations in monkey M (top) and monkey H (bottom). c, Psychometric curves with

Weibull fits for monkey M (n 5 31 sessions). Data for control and DA conditions were pooled across sessions. d, Conventions as in

c for monkey H (n 5 26 sessions). The slight difference in performance between control and DA trials in monkey H was attributable

to decreased performance at the start of each session (“warm-up” phenomenon; always the control condition) and not the result

of DA application. The inset shows psychometric curves for monkey H with the first 5 min (;5%) of each session omitted. ps,

Principal sulcus; sar, superior arcuate sulcus; iar, inferior arcuate sulcus.
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DauROC pooled across contrasts, 20.0102 6 0.0143; signed-
rank test, p 5 0.5). Mean population auROC values for individual
stimuli tended to increase as a function of stimulus contrast and
did not change when DA was applied (multiple linear regression;
factor contrast, p 5 0.12; factor iontophoresis condition; p 5 0.6;
Fig. 5c). Thus, DA did not affect visual coding strength in
DA-inhibited neurons.

In contrast, DA significantly improved the stimulus coding
quality of DA-excited neurons. Figure 5d shows the time course
of the example DA-excited cell from Figure 3, d and e. Stimulus-
evoked auROC values increased in this neuron under the influ-
ence of DA. This time course was confirmed in the population of
DA-excited neurons (Fig. 5e). The increase in auROC values was

very consistent across all DA-excited single cells (eight neurons
increased, one neuron unchanged, one neuron decreased; mean
DauROC pooled across contrasts, 10.0748 6 0.0258; signed-
rank test, p , 0.05). Mean population auROC values, separated
into individual contrasts, increased as a function of stimulus con-
trast and were significantly higher with DA compared with the
control condition (multiple linear regression; factor contrast,
p , 0.001; factor iontophoresis condition; p , 0.001; Fig. 5f). No
changes were induced by DA in DA-unmodulated neurons (mul-
tiple linear regression; factor contrast, p , 0.001; factor ionto-
phoresis condition; p 5 0.14; data not shown). These results
demonstrate that prefrontal DA does not uniformly modify vi-
sual coding strength but selectively enhances the capacity to dis-
criminate stimuli from background in the class of DA-excited
neurons.

Prefrontal DA reduces neuronal variability in
excited neurons
To investigate which mechanisms could give rise to the strength-
ening of cortical processing by DA, we determined whether a
reduction in neuronal noise (discharge rate variability; Shadlen
and Newsome, 1998) might be a contributing factor as hypothe-
sized frequently (Winterer and Weinberger, 2004; Durstewitz
and Seamans, 2008; Rolls et al., 2008). To do so, we analyzed the
correlation between mean spike counts after stimulus presenta-
tion (correct trials) and spike count variance across trials for all
neurons in a given class. For quasi-Poisson spiking processes, the
data should cluster along the first diagonal (McAdams and
Maunsell, 1999). This was the case for DA-inhibited neurons
under both control and DA conditions (multiple linear regres-
sion, interaction term, p 5 0.64; Fig. 6a). On a single-cell level, no
systematic DA effects on response variability were observed as
measured by FF (spike count variance divided by mean; seven
neurons increased, seven neurons decreased; mean DFF pooled
across contrasts, 20.1498 6 0.1709; signed-rank test, p 5 0.63).
Mean population FFs for each contrast were unchanged in
DA-inhibited neurons after application of DA (multiple linear
regression; factor iontophoresis condition, p 5 0.31; Fig. 6b).

In contrast to the findings for DA-inhibited neurons, trial-to-
trial variability decreased significantly in DA-excited neurons un-
der the influence of DA (multiple linear regression, interaction
term, p , 0.01; Fig. 6c). The FF reduction was consistent across
single cells (eight neurons decreased, two neurons increased;
mean DFF pooled across contrasts, 20.391 6 0.1931; signed-
rank test, p , 0.05). Mean population FFs, separated into indi-
vidual contrasts, were significantly reduced by DA compared
with the control condition (multiple linear regression, factor ion-
tophoresis condition; p , 0.05; Fig. 6d). No changes were in-
duced in DA-unmodulated neurons (multiple linear regression;
factor iontophoresis condition; p 5 1.0; data not shown). Thus,
DA rendered prefrontal processing more reliable by reducing
noise at the level of DA-excited neurons.

Inhibition and excitation control distinct prefrontal
processing stages
To further characterize the two DA-responsive neuron classes, we
analyzed the extracellular action potential waveforms of the cells.
Electrophysiological recordings have suggested that longer wave-
forms might be primarily associated with pyramidal cells (BS
neurons), whereas shorter waveforms could be more typical of
interneurons (NS neurons) (Henze et al., 2000; Diester and Nie-
der, 2008; Hussar and Pasternak, 2009; Vigneswaran et al., 2011).
We calculated the average normalized waveform for each single

Figure 2. Kinetics of DA modulation in inhibited and excited neurons. a, Total number of

neurons excited, inhibited, or not modulated by DA together with number of stimulus coding

neurons in each group (blown out pie sections). b– e, Time courses of responses to DA. Baseline

(fixation period) firing rates of an example DA-inhibited (b) and DA-excited (c) neuron stimu-

lated repeatedly with DA over the course of ;1 h. Population mean baseline activity of

DA-inhibited (d) and DA-excited (e) neurons aligned to onset (left) and termination (right) of

DA application. Inhibition by DA was fast, whereas excitation by DA occurred on longer time-

scales. f, Frequency distribution of time constants (tau) of exponential fits to single-cell data

(baseline activity aligned to DA onset). Five neurons with bad fits were excluded and are not

shown (see Materials and Methods). g, Mean time constants in the two classes of DA-sensitive

neurons. Error bars indicate SEM across neurons.
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Figure 3. DA modulation of prefrontal visual signals is neuron-class specific. a, b, Responses of an example DA-inhibited neuron to salient (highest 3 contrasts) and absent visual stimuli in the

control (a) and DA (b) conditions. Activity is aligned to the start of a trial (fixation period). The gray shaded area marks the stimulus presentation. Top, Dot raster plot; bottom, spike density histogram.

Visual coding is preserved at shifted response levels. c, Sequence of control and DA periods in the same example DA-inhibited neuron. DA-mediated effects are reversible. d–f, Conventions as in a– c

for an example DA-excited neuron. Visual responses are enhanced by DA. g, h, Population mean responses of DA-inhibited neurons in control (g) and DA (h) trials. i, j, Conventions as in g and h, for

DA-excited neurons. Shaded areas in g–j indicate SEM across neurons.

Figure 4. Subtraction and multiplication of activity in DA-inhibited and DA-excited neurons. a, Stimulus-evoked change in firing rate normalized to baseline activity in the fixation period,

computed as shown by schematic on the left, for DA-inhibited neurons under control and DA conditions. Shifts to larger values indicate that DA offsets activity (additive operation), i.e., the firing rate

difference is retained at lower baseline firing rates (subtraction). The animals’ perceptual threshold (on the rising slope of the psychometric function; Fig. 1c,d) corresponds to normalized stimulus

contrasts 1– 4. b, Conventions as in a for DA-excited neurons. Superimposed curves indicate that DA increases gain (multiplicative operation), i.e., the firing rate difference increases in proportion

to baseline firing rates. Error bars indicate SEM across neurons.
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neuron and used a linear classifier to ob-
jectively separate BS from NS cells. BS and
NS waveforms were distributed differ-
ently in the classes of DA-excited and
DA-inhibited neurons (Fisher’s exact test,
p , 0.05; Fig. 7a). All stimulus-encoding
DA-excited cells were BS neurons (puta-
tive pyramidal neurons, n 5 10). In con-
trast, there were equal numbers of BS and
NS cells (putative interneurons) in the
class of stimulus-responsive DA-inhibited
neurons (n 5 7 each). Thus, in the group
of DA-inhibited neurons, there were
more putative interneurons than to be ex-
pected by their frequency in neocortex
(20 –30%; Markram et al., 2004), and
there were significantly more putative py-
ramidal cells in the class of DA-excited
neurons. Interestingly, all stimulus en-
coding putative interneurons that were
responsive to DA were inhibited (n 5 7).
The same pattern was found when all DA-
responsive neurons were analyzed (DA-
excited neurons: 22 BS, 3 NS; DA-
inhibited neurons: 17 BS, 15 NS; p ,

0.01). In accord with the strongly biased
distribution of putative interneurons to-
ward DA-inhibited cells, baseline firing
rates under control conditions were
higher in this group of neurons compared
with DA-excited cells, although the differ-
ence did not reach significance (8.3 6 1.4
vs 5.4 6 0.8 spikes/s for DA-inhibited and
DA-excited neurons, respectively; rank-
sum test, p 5 0.13). In the instances in
which multiple DA-modulated neurons
were recorded at the same electrode (12 of
45 electrodes), we more often recorded
cells from the same class than from differ-
ent classes (eight vs four electrodes, respec-
tively). These results support the notion that DA-mediated changes
in excitability were characteristic of distinct neuronal populations.

We finally explored whether DA-inhibited and DA-excited
neurons might be involved at different stages of prefrontal sen-
sory processing. Under control conditions, prefrontal neurons
that were inhibited by DA encoded visual signals significantly
earlier than DA-excited neurons (mean stimulus response la-
tency, 165 6 18 and 261 6 27 ms for DA-inhibited and DA-
excited neurons, respectively; rank-sum test, p , 0.05; Fig. 7b; see
also Figs. 3g,i, 5b,e). DA-inhibited neurons were driven more
strongly by sensory input: under control conditions, visual cod-
ing strength was higher in this population compared with DA-
excited cells across all contrasts (multiple linear regression; factor
neuron class, p , 0.001; Fig. 7c).

Closer inspection of the population spike density histograms
of DA-excited neurons revealed that activity after omission of a
stimulus was not a simple continuation of activity in the fixation
period when DA had been applied (Fig. 3, compare i, j). To ex-
amine whether DA-excited neurons represented not just physical
stimulus intensity but possibly a processing stage more remote
from sensory input, we compared baseline activity in the fixation
period with firing rates in trials without stimulation, calculated in
the same 300 ms analysis window as previously (Fig. 7d). A devi-

ation from zero could suggest that absent stimulation was not
encoded as a “default” condition (i.e., a continuation of baseline
activity; to be expected for sensory-driven neurons) but instead
actively in a potentially more advanced processing step. In DA-
inhibited neurons, there were no significant differences between
baseline activity and activity after the omission of a stimulus in
either control or DA conditions (signed-rank test, p 5 0.39 and
p 5 0.54, respectively; signed-rank test for difference between
control and DA conditions, p 5 0.95; Fig. 7d, left). However, in
DA-excited neurons, DA application disclosed a deflection from
baseline in trials without visual stimulation that was not evident
under control conditions (signed-rank test, p 5 0.19 and p ,

0.01, for control and DA conditions, respectively; signed-rank
test for difference between control and DA conditions, p , 0.01;
Fig. 7d, right). This result suggests that the absence of visual stim-
ulation was represented differently in the two DA-responsive
neuron classes.

Discussion

We report here that DA regulates the representation of sensory
information in the primate PFC. We found that prefrontal DA
affects two distinct neuronal populations involved in visual cod-
ing. DA controlled neurons with short visual response latencies

Figure 5. Prefrontal DA enhances visual coding in excited neurons. a, Sliding window analysis of visual coding strength (auROC

values for salient vs absent visual stimulation) for the example DA-inhibited neuron from Figure 3, a and b, in correct control and

DA trials. Data are aligned to the start of a trial (fixation period). The gray shaded area marks the stimulus presentation. b,

Population mean auROC time course of DA-inhibited neurons in correct control and DA trials. c, Population mean auROC values of

DA-inhibited neurons for individual contrasts in correct control and DA trials. DA does not change coding strength in the population

of DA-inhibited neurons. d–f, Conventions as in a– c for the example DA-excited neuron from Figure 3, d and e (d) and the

population of DA-excited neurons (e, f ). DA strengthens visual coding in the class of DA-excited neurons. Error bars indicate SEM

across neurons.
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by suppressing neuronal activity. In neurons with longer re-
sponse latencies, DA acted as an excitatory modulator and
strengthened the representation of visual inputs.

Modes of operation
Inhibition was implemented principally in the form of a subtrac-
tive shift in response levels [additive operation (Silver, 2010);
Figs. 3g,h, 4a], whereas excitation in the second population re-
sulted from an increase in gain [multiplicative operation (Silver,
2010); Figs. 3i,j, 4b]. In the rodent visual cortex, subtraction is
induced by dendrite-targeting interneurons, whereas soma-
targeting interneurons regulate gain (Wilson et al., 2012). In vitro
experiments in the ferret PFC have demonstrated that these
classes of interneurons are modulated by DA (Gao et al., 2003).
Thus, DA would subtract activity by modulating dendrites and
increase gain by controlling the soma (Yang and Seamans, 1996).
Our results now suggest that subtraction and multiplication by
DA target not the same prefrontal neuron but instead early and
late, possibly functionally specialized, processing stages, respectively
(Fig. 7).

DA-inhibited neurons
Control over sensory inputs by inhibition and subtraction of
response levels offers a major computational advantage, namely
response normalization (Carandini and Heeger, 2012). Inhibitory
conductances can adaptively rescale the input of a neuron to
match its dynamic range (Mitchell and Silver, 2003) and there-
fore maximize information transmission (Brenner et al., 2000;
Fairhall et al., 2001). Our data indicate that DA afferents to the

PFC might constitute an important path-
way to fine-tune and facilitate down-
stream processing.

DA could also filter distracting, non-
preferred signals by modulating neu-
rotransmission at the dendritic arbor of
input layer neurons (“gating”) (Durst-
ewitz et al., 2000; Gao et al., 2003). Neu-
rons extracting behaviorally relevant
information from a multitude of compet-
ing signals would necessarily show tem-
porally precise modulation. Given their
rapid responsiveness to DA (Fig. 2f,g),
DA-inhibited neurons would be ideal re-
cipients of the phasic signals, e.g., predic-
tion errors, DA neurons relay to the PFC
(Redgrave et al., 2008). With a mean stim-
ulus response latency of 165 ms (Fig. 7b),
these cells closely follow the discharge of
midbrain DA neurons that typically oc-
curs between 100 and 150 ms (Dommett
et al., 2005; de Lafuente and Romo, 2012).
Therefore, DA-inhibited neurons are
maximally active at peak extracellular DA
concentrations (Schultz, 2007). Thus, DA
might reinforce or block signals reaching
the PFC and segregate important from
distracting information (Servan-
Schreiber et al., 1990; D’Ardenne et al.,
2012). Interestingly, we found that all pu-
tative interneurons were inhibited by DA
(Fig. 7a). Interneurons are thought to play
an important role in the control of infor-
mation flow in cortex (Constantinidis et

al., 2002) and would constitute an ideal target for rapid gating by
DA.

At present, the cellular mechanisms by which DA could me-
diate fast inhibition are unclear (Seamans and Yang, 2004). In-
hibitory DA effects are generally reported on longer timescales as
a result of technical constraints, such as bath application of do-
paminergic drugs. It is also conceivable that the applied DA binds
to non-dopaminergic receptors, such as adrenergic receptors, es-
pecially at higher concentrations. Iontophoresis is nonquantita-
tive and generally does not provide reliable assessments of the
drug concentrations reaching individual neurons. Therefore, ad-
ditional experiments are required to resolve the issue of pharma-
cological specificity as well as to determine whether the observed
decrease in excitability is indeed the result of phasic, time-locked
signaling or generated by longer-lasting mechanisms.

In behaving nonhuman primates, neuronal inhibition has
been identified as an important mechanism by which DA affects
prefrontal signal processing. DA suppresses neuronal activity in
spatially tuned prefrontal neurons engaged in memory-guided
saccade tasks and enhances tuning for the remembered saccade
target location (“sculpting inhibition”; Williams and Goldman-
Rakic, 1995; Vijayraghavan et al., 2007; Arnsten, 2011). Because
subtraction sharpens stimulus selectivity, i.e., tuning (Wilson et
al., 2012), we propose that the spatially tuned cells described
previously belong to the class of DA-inhibited neurons identified
here. Although the ROC measures we used are well suited for
analyzing binary yes–no, e.g., stimulus present–absent decisions
(Green and Swets, 1966), we did not detect an increase in signal/
noise ratio as defined by the auROC in DA-inhibited neurons

Figure 6. Prefrontal DA reduces response variability in excited neurons. a, Mean spike count after stimulus presentation versus

spike count variance across trials for DA-inhibited neurons. Each data point represents one neuron and stimulus contrast. Straight

lines indicate fits to data. b, FFs (spike count variance divided by mean) for all stimulus contrasts in DA-inhibited cells. No changes

in response variability are observed after DA application. c, d, Conventions as in a and b for DA-excited neurons. The slope of the

fitted line is significantly smaller in DA trials compared with control conditions. DA reduces response variability across all contrasts

in DA-excited cells. Error bars indicate SEM across neurons.
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(Fig. 5a– c). Other response characteristics that are not ade-
quately captured by signal detection theory, e.g., sharpening of
tuning curves, might nevertheless create advantages for cortical
processing. We also considered the possibility that inhibited neu-
rons were the result of higher intrinsic DA tone and excited neu-
rons were subject to lower DA levels. However, this is unlikely
because the ratio of inhibition to excitation was independent of
iontophoretic DA dosage, and we did not observe more inhibited
neurons at higher DA currents. More experiments tapping differ-
ent behavioral demands are needed to determine whether the
benefits conveyed by DA-induced inhibition lie primarily in res-
caling and gating inputs to PFC or whether DA can also affect
signal strength per se at this stage.

DA-excited neurons
In DA-excited neurons, stimulus responses increased in propor-
tion to baseline activity, indicating a multiplicative increase in
gain (Servan-Schreiber et al., 1990; Thurley et al., 2008; Figs. 3i,j,
4b). Although the strength of sensory inputs was unchanged in
DA-inhibited neurons, DA selectively increased signal/noise ra-
tio in excited cells (Fig. 5d–f). In addition, stimuli were encoded
more reliably because trial-to-trial variability dropped (Fig. 6c,d).
All three effects closely resemble changes in visual signals ob-
served in visual cortex when attention is allocated in a top-down
manner (McAdams and Maunsell, 1999; Mitchell et al., 2007;
Noudoost and Moore, 2011a). In other words, prefrontal DA
may act as a pharmacological spotlight, directing “attention” to-
ward relevant sensory inputs and enhancing their representation
at the level of DA-excited neurons (Brunel and Wang, 2001; Nou-
doost and Moore, 2011b). Interestingly, DA-induced excitation
occurred on considerably longer timescales than inhibition (Fig.
2f,g). Therefore, it is unlikely that the amplification of stimulus
coding could be controlled on a trial-by-trial basis in these neu-
rons. DA-excited neurons might not serve the purpose of a flex-
ible, rapidly responsive gate for sensory signals but instead reflect
a later processing stage more remote from early sensory inputs. In
support of this idea, our analysis of extracellular waveforms did
not reveal any putative interneurons in this group of cells but
exclusively putative pyramidal neurons (Fig. 7a). Also, DA-
excited neurons processed visual inputs almost 100 ms later than
DA-inhibited neurons (Fig. 7b). They were driven less strongly by
visual stimuli (Fig. 7c) and encoded absent stimulation actively
by a deflection in baseline firing instead of passively as a default
condition like DA-inhibited neurons (Fig. 7d). This transient de-

pression of activity could reflect, for example, an anticipatory
response and contributed to the improved discriminability of
stimulus and background in these neurons. In any case, it sug-
gests that DA-excited neurons were not truthful encoders of the
physical properties of visual stimuli but might constitute an ad-
ditional step in the goal-directed evaluation of sensory signals.

Although application of transmitters with micro-iontophoresis is
very focal (Herz et al., 1969; Hupé et al., 1999), we cannot exclude
that the slower response kinetics in DA-excited neurons were
attributable to the fact that DA had to diffuse to a different cor-
tical layer before indirectly taking effect on this class of cells.
Another possibility is that DA-excited neurons are modulated
not by phasic DA but by tonic transmitter release. Compared
with DA neuron bursting, little is known about the function of
tonic DA signaling (Floresco et al., 2003). It is thought to reflect
increased activity in populations of DA neurons and causes an
elevation mainly of extrasynaptic transmitter. Tonic extracellular
DA levels do not reach the high levels found in the synaptic cleft
and might modulate primarily high-affinity extrasynaptic DA re-
ceptors on presynaptic terminals (Grace et al., 2007). We pres-
ently do not know the cellular receptors that are involved in
generating the effects reported here. Therefore, additional studies
will have to address whether DA-excited neurons differ from
DA-inhibited cells, for example, in their modulation by the two
DA receptor families found in PFC, the D1R and D2R, or other
catecholamine receptors (Seamans and Yang, 2004; Wang et al.,
2004; Noudoost and Moore, 2011a). Differences in the cellular
and molecular composition of prefrontal DA-sensitive neurons
could allow for targeted modulation of specific cortical signals by
DA (Noudoost and Moore, 2011b). For example, in the frontal
eye fields, behavioral effects of DA on attentional processing de-
pend on whether injections were made in supragranular or infra-
granular layers that are characterized by distinct DA receptor
profiles (Noudoost and Moore, 2011a). We now find that DA-
sensitive neurons in more anterior lateral PFC are heterogeneous
with regard to the sensory information they carry and how they
are modulated by DA. Adding to previous studies, our experi-
ments suggest that the timing and strength of DA neurotransmis-
sion could have a strong influence on how this modulatory signal
is received and processed in PFC.

Implications for mental diseases
DA is strongly linked to neuropsychiatric diseases that involve the
frontal lobes, such as attention-deficit hyperactivity disorder or

Figure 7. DA modulates distinct prefrontal processing stages. a, Normalized average waveforms of stimulus-encoding DA-inhibited and DA-excited neurons. All DA-excited cells were BS neurons,

and NS neurons were all inhibited by DA. b, Visual response latencies of DA-inhibited and DA-excited neurons under control conditions. DA-inhibited neurons encode visual signals significantly

earlier. c, Visual coding strength of DA-inhibited and DA-excited neurons under control conditions (auROC values comparing firing rates between trials with and without visual stimulation).

DA-inhibited neurons are driven more strongly by visual stimulation across all contrast levels. d, Normalized difference between baseline activity in the fixation period and activity after omission of

a stimulus. Firing rates were identical in DA-inhibited neurons in both control and DA trials. In DA-excited neurons, absence of visual stimulation induced a deflection from baseline when DA had been

applied. Error bars indicate SEM across neurons.
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schizophrenia (Arnsten, 2011). By strengthening sensory inputs,
prefrontal DA could be a critical factor in resolving ambiguous
sensory events or maintaining the focus of attention. It is tempt-
ing to speculate that the observed DA effects could help safeguard
the healthy mind, e.g., from hallucinations and intrusions of
thought that are characteristic of these mental diseases (Winterer
and Weinberger, 2004; Rolls et al., 2008; Fletcher and Frith,
2009). For example, it is frequently hypothesized that the symp-
tom relief conveyed by antipsychotic drugs targeting the DA sys-
tem, in particular the D2R, results from the fact that they decrease
noise in prefrontal circuits (Winterer and Weinberger, 2004;
Rolls et al., 2008). Our experiments now provide evidence on a
cellular level that DA indeed controls neuronal variability in the
primate brain.

In conclusion, we have demonstrated that DA neuromodula-
tion in PFC is not uniform but tailored to functionally specialized
neurons in the prefrontal processing stream (Arnsten et al.,
2012). By controlling sensory inputs to the PFC, DA could be a
powerful determinant of how the primate brain uses these signals
to generate intelligent behavior in interactions with its sensory
environment.
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SUMMARY

Flexibly applying abstract rules is a hallmark feature

of executive functioning represented by prefrontal

cortex (PFC) neurons. Prefrontal networks are regu-

lated by the neuromodulator dopamine, but how

dopamine modulates high-level executive functions

remains elusive. In monkeys performing a rule-based

decision task, we report that both dopamine D1 and

D2 receptors facilitated rule coding of PFC neurons,

albeit by distinct physiological mechanisms. Dopa-

mine D1 receptor stimulation suppressed neuronal

firing while increasing responses to the preferred

rule, thereby enhancing neuronal rule coding. D2

receptor stimulation, instead, excited neuronal firing

while suppressing responses to the nonpreferred

rule, thus also enhancing neuronal rule coding. These

findings highlight complementary modulatory con-

tributions of dopamine receptors to the neuronal

circuitry mediating executive functioning and goal-

directed behavior.

INTRODUCTION

Flexibly applying abstract rules is a hallmark feature of executive

functioning represented by the activity of prefrontal cortex (PFC)

neurons (Wallis et al., 2001; Miller and Cohen, 2001). The PFC re-

ceives particularly strong projections from dopamine neurons in

the midbrain (Björklund and Dunnett, 2007) that regulate frontal

lobe functions (Robbins and Arnsten, 2009). Prefrontal dopamine

is essential for spatial workingmemory (Brozoski et al., 1979; Sa-

waguchi and Goldman-Rakic, 1991) and the learning of associa-

tions and rules (Crofts et al., 2001; Puig and Miller, 2012; Puig

and Miller, 2014).

On a cellular level, dopamine influences PFC neurons via the

D1 (D1R) and the D2 receptor (D2R) families (Lidow et al.,

1998; de Almeida andMengod, 2010). Prefrontal D1Rsmodulate

spatial working memory performance (Sawaguchi and Gold-

man-Rakic, 1991; Müller et al., 1998). In rhesus monkeys

engaged in a spatial working memory task, PFC neurons active

in the delay period of the task showed improved tuning to

preferred remembered locations when stimulated with D1R ago-

nists (Vijayraghavan et al., 2007) and showed impaired tuning

when D1Rs were blocked (Sawaguchi, 2001). Interestingly,

blocking D1Rs has also been reported to improve spatial tuning

(Williams and Goldman-Rakic, 1995), complicating the current

understanding of D1Rs in spatial coding. While an impact of

D1Rs on modulating spatial working memory processes in the

PFC is established (Arnsten, 2011), the precise role of D1Rs in

modulating cognitive signals remains elusive.

D2Rs, on the other hand, do not modulate spatial persistent

mnemonic-related activity in the PFC (Sawaguchi and Gold-

man-Rakic, 1994; Wang et al., 2004). Instead, D2Rs selectively

modulate neuronal activities associated with memory-guided

saccades in oculomotor delayed-response tasks (Wang et al.,

2004). In addition, rodent studies suggest that D2Rs are involved

in flexible behavior. Blockade of D2Rs impairs the ability of rats

to switch between different response strategies (Floresco and

Magyar, 2006). In humans, D2R stimulation increases blood-ox-

ygen-level-dependent activity in the PFC when flexibly switching

between rules (Stelzel et al., 2013). Both prefrontal D1Rs and

D2Rs are critical for learning new association rules. Blocking

D1Rs or D2Rs impairs neural selectivity to learned saccade

directions (Puig and Miller, 2012; Puig and Miller, 2014). This

suggests a cooperative role for D1Rs and D2Rs in modulating

cognitive flexibility (Puig and Miller, 2014).

We hypothesized that both D1Rs and D2Rs play a crucial role

in regulating rule-guided decision-making, a hallmark feature of

executive control and central to flexible behavior. Executive

control is required for processing numbers and quantity infor-

mation according to abstract principles, or rules, of how to

structure, process, and evaluate numerical information. PFC

neurons represent these semantic aspects of numerical quanti-

ties (Nieder et al., 2002; Nieder, 2012, 2013; Viswanathan and

Nieder, 2013; Jacob and Nieder, 2014) and quantitative rules

(Bongard and Nieder, 2010; Vallentin et al., 2012; Eiselt

and Nieder, 2013). Here, we therefore studied the activity of

individual PFC neurons in rhesus monkeys required to flexibly

switch between ‘‘greater than’’/‘‘less than’’ rules. By selectively

activating or blocking D1Rs or D2Rs in the PFC, we report

that dopamine modulates the neuronal coding of abstract

rules through both receptor families by distinct physiological

mechanisms.

RESULTS

To determine if and how the dopaminergic system modulates

abstract rule coding in the PFC, we trained two macaque mon-

keys to apply numerical rules to numerosities and to flexibly

switch between the rules based on cues shown during each trial
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(Bongard and Nieder, 2010; Eiselt and Nieder, 2013) (see Fig-

ure 1A for protocol and details). Rule-related activity was inves-

tigated in the delay 2 period, after the behavioral rule was

indicated via the rule cues, but before the monkeys could pre-

pare amotor plan. Simultaneous neuronal recordings andmicro-

iontophoretic drug application started after the monkeys had

learned to proficiently apply the ‘‘greater than/‘‘less than’’ rules,

irrespective of the absolute values of the three sample numeros-

ities (‘‘2,’’ ‘‘8,’’ or ‘‘32’’), the two rule-cue modalities (red/blue

versus water/no-water), and the visual appearance of the multi-

Figure 1. Numerical Rule Switching Task

and Behavioral Performance

(A) Task protocol. The monkeys compared

numbers of dots (numerosities) by applying the

numerical rules ‘‘greater than’’ or ‘‘less than.’’ The

‘‘greater than’’ rule required the monkeys to

release a lever (response) if the first test display

showed more dots than the sample display,

whereas the ‘‘less than’’ rule required a lever

release if the number of items in the first test

display was smaller compared to the sample

display. For each trial, the rule to apply (‘‘greater

than’’ versus ‘‘less than’’) was indicated by a cue

that was presented in the delay between sample

and test stimuli. To dissociate the neural activity

related to the physical properties of the cue from

the rule that it signified, two distinct cues from

different sensory modalities were used to indicate

the same rule, whereas cues signifying different

rules were from the same modality. Because the

animals needed information about the numerosity

of the test 1 display to prepare a motor response,

preparatory motor activation was excluded during

the delay 2 phase.

(B) Performance (% correct trials) of the two

monkeys for each sample numerosity and for each

rule cue. Performance was equal in trials with

standard stimuli (black) and control trials (white)

using stimuli with equal dot area and density (see

Experimental Procedures). Dotted line indicates

chance performance (50%).

(C) Lateral view of a rhesus monkey brain depict-

ing the location of extracellular neuronal recording

and iontophoresis in the principal sulcus region of

the PFC.

ple-item dot displays. Average correct

performances were 98% for monkey E

and 85% for monkey O (Figure 1B).

We recorded 384 randomly selected

single neurons from the lateral PFC of

two macaque monkeys (246 from mon-

key E, 138 from monkey O) (Figure 1C)

performing the rule-switching task. To

directly assess the impact of dopamine

receptor targeting agents, control condi-

tions without drug application alternated

with drug conditions in each recording

session. In each session, we tested one

of three different substances that selec-

tively targeted the D1R or the D2R: the

D1R agonist SKF81297, the D1R antagonist SCH23390, and

the D2R agonist quinpirole. Physiological NaCl solution was

used as control.

Rule-selective neurons were identified based on a significant

main effect of the behavioral rule on the discharge rate in the

delay 2 period using a four-way ANOVA (with main factors ionto-

phoresis condition [control/drug], sample numerosity [‘‘2’’/‘‘8’’/

‘‘32’’], behavioral rule [‘‘greater than’’/‘‘less than’’], and rule-

cue modality [red/blue versus water/no-water]; p < 0.05). To

ensure that neuronal responses varied with the rule rather than
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with the rule cue, we excluded neurons that showed a significant

interaction of the main factors rule and rule-cue modality. A total

of 17% (64/384) of all tested neurons encoded abstract numeri-

cal rules (Table 1) and entered subsequent analyses. A similar

number of neurons preferred the ‘‘greater than’’ rule (34 neurons

with higher discharge for the ‘‘greater than’’ rule) and the ‘‘less

than’’ rule (30 neurons exhibiting higher response rates for the

‘‘less than’’ rule).

D1Rs and D2Rs Modulated Single Neurons Encoding

Abstract Numerical Rules

The coding properties of rule-selective neurons were modulated

by drugs targeting either D1Rs or D2Rs. Figure 2A shows a ‘‘less

than’’-rule-selective neuron that differentiated more between

‘‘greater than’’ and ‘‘less than’’ rules (irrespective of rule-cuemo-

dalities) after stimulationwith D1R agonist SKF81297 (Figure 2A).

In contrast, blocking the D1R with SCH23390 strongly reduced

rule selectivity of a different neuron that preferred the ‘‘greater

than’’ rule in control conditions (Figure 2C). When targeting the

D2Rs, rule selectivity was also affected. Stimulation of the D2R

with quinpirole increased selectivity in a ‘‘less than’’-rule-selec-

tive neuron (Figure 2E).

To analyze population responses, the responses of neurons

classifiedas ‘‘greater than’’- or ‘‘less than’’-rule-selectiveneurons

were normalized and averaged. Stimulating the D1R with

SKF81297 increased the differentiation between the preferred

rule (red trace) and the nonpreferred rule (blue trace) in the popu-

lation of rule-selective neurons tested with SKF81297 (Figure 2B)

by increasing the mean difference in normalized discharge rates

(DR = +0.37 ± 0.12 [SEM], p = 0.01, n = 20, Wilcoxon test).

Conversely, blocking the D1R with SCH23390 significantly

reduced the rule selectivity of rule-selective neurons recorded

with SCH23390 (Figure 2D; DR = –0.17 ± 0.05, p = 0.01, n = 18,

Wilcoxon test). Stimulating theD2Rwithquinpirole also increased

the differentiation between the preferred rule and the non-

preferred rule in the population of all rule-selective neurons re-

corded with quinpirole (Figure 2F; DR = +0.29 ± 0.078, p = 0.001,

n = 16, Wilcoxon test). After terminating iontophoretic drug appli-

cation, neuronal rule selectivity returned to the same levels as

prior to the first drug application, i.e., the drug effects washed

out (see Figures S1A, S1C, S1E, and S1G; see Supplemental

Information available online). Iontophoretic application of NaCl

did not change rule-selective responses (Figures S2A and S2B,

p = 0.1, n = 10, Wilcoxon test), confirming drug-specific effects.

D1R and D2R Stimulation Enhanced Abstract Rule

Coding of PFC Neurons

We characterized the quality of rule coding for each rule-selec-

tive neuron (identified by the ANOVA) during control and drug

conditions by determining the area under the receiver operator

characteristic (AUROC) (see Experimental Procedures) using

the discharge rates in the same analysis window as for the

ANOVA. Stimulating the D1R increased the coding strength

(AUROCs) in 75% (15/20) of all rule-selective neurons tested

with SKF81297 (Figure 3A; mean DAUROC = +0.080 ± 0.023

[SEM], p = 0.004, n = 20, Wilcoxon test). In contrast, blocking

the D1R with SCH23390 decreased the AUROCs in 83% (15/

18) of the rule-selective neurons, thus impairing rule coding (Fig-

ure 3C; DAUROC = –0.044 ± 0.016, p = 0.01, n = 18, Wilcoxon

test). Stimulation of the D2R with quinpirole also increased the

AUROCs in almost all rule-selective neurons (88%, or 14/16)

(Figure 3E, DAUROC = +0.050 ± 0.012, p = 0.002, n = 16, Wil-

coxon test). After terminating iontophoretic drug application,

AUROCs returned to the same levels as prior to the first drug

application phase, i.e., the drug effects washed out (Figures

S1B, S1D, S1F, S1H; Supplemental Information). Iontophoretic

application of NaCl did not change AUROCs and thus left rule

coding unaffected (Figure S2C; p = 0.8, n = 10, Wilcoxon test).

In summary, both D1R and D2R activation facilitated rule coding

in the PFC.

We used a sliding ROC analysis to assess the time course of

rule coding after rule-cue presentation and throughout the

entire delay 2 period (Figures 3B, 3D, and 3F). In general,

coding quality increased during the delay 2 period. D1R stimu-

lation with SKF81297 caused a more prominent increase of

AUROCs compared to control conditions, particularly in the

second half of the delay 2 period (Figure 3B, left panel). The

average latency of rule coding, defined as the time to the first

significant rule coding from delay 2 onset (see Experimental

Procedures), did not change after D1R stimulation (Figure 3B;

right panel, mean Dlatency = 90 ms ± 103 ms [SEM], p =

0.6, Wilcoxon test testing Dlatency against zero). Blocking

D1Rs with SCH23390 impaired AUROCs during the delay

period (Figure 3D, left panel) but left the average latency un-

changed (Figure 3D; right panel, Dlatency = –13 ms ± 75 ms,

p = 0.8, Wilcoxon test). Stimulating D2Rs with quinpirole re-

sulted in elevated AUROCs in particular in the second half of

the delay phase (Figure 3F, left panel), while not changing

average latency (Figure 3F, right panel, Dlatency = –93 ms ±

50 ms, p = 0.3, Wilcoxon test). Thus, the temporal profile dur-

ing the delay 2 period was not modulated by dopamine recep-

tor stimulation.

D1Rs and D2Rs Differentially Modulated Preferred and

Nonpreferred Rule-Related Activity

To investigate whether the dopaminergic system differentially

modulates neuronal responses to the preferred and the nonpre-

ferred rule, we calculated a drug modulation index (MI). The

MI indicated if discharges to the preferred and/or nonpreferred

rule were modulated by the drug, in comparison to the base-

line (see Experimental Procedures). Stimulating the D1R with

SKF81297 specifically increased neuronal responses to the

preferred rule (meanMI = +0.35 ± 0.13 [SEM], p = 0.01,Wilcoxon

Table 1. Numbers of Recorded Neurons with Each Drug and

Respective Number of Rule-Selective Neurons, Selective for

‘‘Greater Than’’ or ‘‘Less Than’’ Rules

Drug Total Neurons

Rule-Selective (Greater/

Less)

SKF81297 (D1R agonist) 123 20 (12/8)

SCH23390 (D1R

antagonist)

112 18 (8/10)

Quinpirole (D2R agonist) 79 16 (7/9)

NaCl 70 10 (7/3)

Sum 384 64

Neuron

Dopamine Enhances Rule Coding in PFC

Neuron 84, 1317–1328, December 17, 2014 ª2014 Elsevier Inc. 1319



test against zero MI), but not to the nonpreferred rule

(MI = +0.015 ± 0.090, p = 0.9) (Figure 4A; p = 0.01 Wilcoxon

test between MIs for the preferred and nonpreferred rules).

Consequently, blocking the D1R with SCH23390 reduced

neuronal responses to the preferred rule (MI = –0.23 ± 0.083,

p = 0.02), while leaving neuronal responses to the nonpreferred

rule unaffected (MI = –0.057 ± 0.071, p = 0.9) (Figure 4B; p =

0.01). In contrast, stimulating the D2R with quinpirole reduced

neuronal responses to the nonpreferred rule (MI = –0.13 ±

0.071, p = 0.02), but not to the preferred rule (MI = +0.015 ±

0.060, p = 0.3) (Figure 4C; p = 0.03), thus enlarging the differen-

tiation between the preferred and nonpreferred rule as witnessed

in previous analysis (Figure 2F).

Differences in the modulation indices could be caused by

changes of the discharge rates or by changes in the variability

of neuronal discharges. We therefore computed the Fano factor

as a measure of the trial-by-trial variability of neuronal dis-

charges (Nawrot et al., 2008). None of the tested drugs changed

the Fano factors in the baseline period (Figures S3A–S3D; Sup-

plemental Information) or the delay 2 period for either preferred

or nonpreferred rules (Figures S3E–S3H; Supplemental Informa-

tion). This confirms that changes in rule-related firing rates (rela-

tive to the overall firing rates) rather than changes in discharge

variability drive the changes in modulation indices.

Taken together, stimulation of both D1Rs and D2Rs improved

rule selectivity, but in distinctways: D1Rs specificallymodulated

the neuronal responses to the preferred rule (but not to the

nonpreferred rule); D2Rs, on the other hand, modulated

neuronal response to the nonpreferred rule (but not to the

preferred rule).

D1R Stimulation Enhanced Numerosity Coding Strength

Because the monkeys were required to apply rules to numer-

osities, we also analyzed whether prefrontal dopamine recep-

tors might modulate the encoding of numerical values.

We quantified the coding strength of the numerical value in

numerosity-selective neurons during the sample period by

comparing responses to preferred and nonpreferred sample

numerosities. D1R stimulation increased AUROCs of nu-

merosity-selective neurons tested with SKF81297, signif-

icantly enhancing sample numerosity coding (Figure 5A;

mean DAUROC = +0.04 ± 0.02 [SEM], n = 28, p = 0.02, Wil-

coxon test). Blocking D1Rs with SCH23390 did not signifi-

cantly modulate AUROCs (Figure 5C; DAUROC = +0.001 ±

0.02, n = 13, p = 0.7, Wilcoxon test). D2R stimulation with

quinpirole did not systematically change AUROCs (Figure 5E;

DAUROC = +0.02 ± 0.03, n = 22, p = 0.6, Wilcoxon test).

Thus, D1R stimulation modulated sample numerosity coding,

while D2R stimulation did not.

To study these effects in more detail, we separately analyzed

drug impact on the responses to the preferred and nonpre-

ferred numerosity. Application of SKF81297 did not modulate

neuronal responses to nonpreferred (mean MI = –0.8 ± 0.4

[SEM], p = 0.2, Wilcoxon test against zero MI) or preferred

Figure 2. Modulation of Rule-Selective Neurons by Dopamine Receptors

(A) Dot raster and PSTH of a single neuron recorded during control conditions (left panel) and after application of SKF81297 (right panel) from the time of rule-cue

presentation (gray shaded area). After D1R stimulation, the neuron responded more strongly to the ‘‘less than’’ rule (blue and green trace) as compared to the

‘‘greater than’’ rule (red and orange trace).

(C) Same conventions as in (A), showing a single neuron modulated by SCH23390. Blocking the D1R reduced rule-related neuronal responses.

(E) Same conventions as in (A), showing a single neuron that was modulated by quinpirole. Stimulating the D2R enhanced rule-related neuronal responses.

(B, D, and F) Averaged normalized responses of all rule-selective neurons recorded with the three drugs for the preferred rule (red trace) and the nonpreferred rule

(blue trace) during control conditions (left panels) and drug conditions (right panels). Insets show differences in normalized responses DR between the preferred

and the nonpreferred rule for control conditions (gray bars) and drug conditions (black bars). Error bars represent SEMs, n denotes sample size, p values of

Wilcoxon tests.
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(MI = –0.8 ± 0.4, p = 0.2) sample numerosities alone (Fig-

ure 5B; p = 0.4, Wilcoxon test between MIs for nonpreferred

and preferred sample numerosities). Application of SCH23390

increased neuronal responses to nonpreferred sample numer-

osities (MI = +1.6 ± 0.8, p = 0.02), but also tended to increase

responses to preferred sample numerosites (MI = +1.3 ± 0.6,

p = 0.07), thus resulting in no coding differences (Figure 5D;

p = 0.7). Application of quinpirole did not modulate neuronal re-

sponses to nonpreferred (MI = +0.3 ± 0.3, p = 0.2) or preferred

(MI = +0.7 ± 0.7, p = 0.3) sample numerosities (Figure 5F; p =

0.5). In sum, sample coding was not modulated by specific

changes of neuronal responses to preferred or nonpreferred

sample numerosities.

D1Rs and D2RsModulated Baseline Activity in Opposite

Directions

D1Rs and D2Rs modulated baseline discharge rates (during the

fixation period) of the population of all neurons. SKF81297

slightly decreased baseline discharge rates (Figure 6A; DFR =

–0.27 Hz, p = 0.04, n = 123,Wilcoxon test), and SCH23390mildly

increased baseline activity (Figure 6B; DFR = +0.75 Hz, p = 0.05,

n = 112, Wilcoxon test), whereas quinpirole enhanced baseline

rates (Figure 6C; DFR = +1.1 Hz, p = 10�5, n = 79, Wilcoxon

test). No baseline modulation was found after applying NaCl so-

lution as a control (Figure 6D; DFR = +0.060 Hz, p = 0.5, n = 70,

Wilcoxon test). Figure 6E displays the average time courses

Figure 3. Modulation of Neuronal Rule Cod-

ing by Dopamine Receptors

(A) Distribution of AUROCs in control conditions

and after application of SKF81297 (left panel,

each dot corresponds to one neuron). SKF81297

increased AUROCs compared to control condi-

tions in almost all rule-selective neurons. The

mean AUROC was increased (right panel) by

SKF81297 (black bar) compared to control con-

ditions (gray bar).

(B) Sliding ROC analysis showing the temporal

evolution of rule coding from rule-cue onset during

the delay 2 period (left panel). Gray shaded box

corresponds to rule-cue presentation. The latency

of rule coding was unchanged (right panel).

(C) Same conventions as in (A), showing that

SCH23390 reduced AUROCs.

(D) Same conventions as in (B) for SCH23390.

(E) Same conventions as in (A), showing that

quinpirole increased AUROCs.

(F) Same conventions as in (B) for quinpirole. Error

bars represent SEMs, n denotes sample size, p

values of Wilcoxon tests.

of drug-influenced baseline activity that

differed significantly (Figure 6F; p =

10�7, Kruskal-Wallis test). Dopamine re-

ceptor manipulation did not change

neuronal trial-by-trial variabilitymeasured

by the Fano factor (Nawrot et al., 2008) in

the baseline period (Figures S3A–S3D;

Supplemental Information). In sum, stim-

ulating D1Rs inhibited neurons, while

blocking D1Rs excited neurons. Strong excitation was observed

after stimulating D2Rs.

Dopaminergic Modulation of Behavior

Next, we asked if modulation of prefrontal dopamine receptors

influenced the monkeys’ behavior. Since monkeys did not

show any switch costs (Figure S4; Supplemental Information)

consistent with findings reported in task-switching paradigms

(Stoet and Snyder, 2009), we focused our behavioral analysis

on changes in performance and reaction times. Iontophoretic

drug application is highly focal (Herz et al., 1969), and most

primate studies that iontophoretically applied drugs to the cor-

tex did not report any behavioral changes (Williams and Gold-

man-Rakic, 1995; Sawaguchi, 2001; Wang et al., 2004, 2013;

Vijayraghavan et al., 2007). However, small modulations of

reaction times were reported in some studies (Herrero et al.,

2008, 2013). Due to extensive training, behavioral perfor-

mance was at ceiling levels (see Figure 1) and did not change

after drug application (Figure 7A; p > 0.1 for all drugs, Wil-

coxon test over recording sessions). However, drug applica-

tion slightly modulated behavioral reaction times (Figure 7B).

Stimulating D1Rs with SKF81297 increased reactions times

(DRT = +3.2 ms, p = 0.004, Mann-Whitney U test). Accord-

ingly, blocking D1Rs with SCH23390 decreased reaction times

(DRT = –2.8 ms, p = 0.03, Mann-Whitney U test). Stimulating

D2Rs with quinpirole increased reaction times (DRT = +1.8 ms,
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p = 0.04, Mann-Whitney U test). As a control, application of

NaCl did not produce changes in reaction times (DRT =

–0.1 ms, p = 0.3, Mann-Whitney U test). Thus, manipulation

of both prefrontal D1Rs and D2Rs produced changes in the

monkeys’ behavior.

DISCUSSION

Our findings highlight that dopaminergic input to the PFC is

essential for mediating executive functions. We show that

D1Rs and D2Rs assume complementary roles in enhancing

neuronal representations of rule-guided decision-making at the

microcircuit level. D1R stimulation suppresses neuronal baseline

firing while enhancing the neurons’ responses to the preferred

rule. D2R stimulation, on the other hand, excites neuronal base-

line firing while suppressing responses to the nonpreferred rule.

Thus, two distinct physiological mechanisms that are disso-

ciable at the dopamine receptor level modulate rule coding in

the PFC.

Modulation of Rule-Related Activity via D1Rs

D1Rs have been demonstrated to modulate the responsive-

ness of PFC neurons via a variety of cellular mechanisms

(Seamans and Yang, 2004). We find that D1R activation sup-

presses neuronal baseline activity of PFC neurons. Mechanis-

tically, this can be explained either by D1R stimulation reducing

the efficacy of excitatory neurotransmission in PFC slices

(Gao et al., 2001), amplifying inhibitory currents (Trantham-Da-

vidson et al., 2004), or weakening non-NMDA-glutamatergic

responses (Seamans et al., 2001). A predominantly inhibitory

effect on PFC neurons has also been reported in studies

iontophoretically applying D1R agonists in the PFC of monkeys

engaged in a spatial working memory task (Vijayraghavan

et al., 2007). This inhibition enhanced the neurons’ spatial

selectivity in the memory period of the task, ‘‘sculpting’’ their

spatial memory fields (Arnsten, 2011). In agreement with this

finding, blockade of D1Rs has been shown to impair spatial

memory fields (Sawaguchi, 2001) (but see also Williams and

Goldman-Rakic, 1995, for opposite findings). At the same

time, D1R stimulation increases excitability of PFC neurons

in vitro by potentiating NMDA-evoked responses (Seamans

et al., 2001; Tseng and O’Donnell, 2004). Together, these find-

ings lead to the proposal that D1R stimulation enhances

NMDA-dependent persistent activity in prefrontal networks

and reduces baseline activity by controlling recurrent glutama-

tergic connections (Seamans and Yang, 2004; Durstewitz and

Seamans, 2008; Wang et al., 2013). Our results are in agree-

ment with this model because we find D1R stimulation to in-

crease the neurons’ sustained responses to the preferred rule

while generally suppressing baseline activity. In contrast, previ-

ous studies reported that prefrontal D1Rs primarily modulate

neural responses to remembered nonpreferred spatial direc-

tions (Vijayraghavan et al., 2007) or neural responses to non-

preferred associations (Puig and Miller, 2012). These findings

might reflect differences in spatial and cognitive coding in the

PFC. Blocking D1Rs decreased the neurons’ sustained re-

sponses to the preferred rule while generally enhancing base-

line activity. Thus, physiological activation of D1Rs is neces-

sary to maintain rule coding in the PFC.

While prefrontal D1Rs modulate working memory in monkeys

(Sawaguchi and Goldman-Rakic, 1991, 1994) and humans

(Müller et al., 1998; McNab et al., 2009), emerging evidence

also suggests a broader role of D1Rs in prefrontal functions.

Blocking prefrontal D1Rs in monkeys impairs learning of new as-

sociation rules and reduces corresponding neural selectivity to

learned saccade directions (Puig and Miller, 2012). In rodent

studies, blocking D1Rs impairs flexibly switching between

different response strategies (Ragozzino, 2002; Floresco and

Magyar, 2006). Similarly, D1R availability in human PFC is posi-

tively correlated with flexibly shifting between rules in a Wiscon-

sin card sorting test (Takahashi et al., 2008; Takahashi et al.,

2012). By strengthening rule signals in the PFC, our results

provide a possible cellular basis for a role of D1Rs in flexible

decision-making. Thus, our findings further argue for a role of

D1Rs beyond working memory (Floresco and Magyar, 2006),

including cognitive control processing such as rule-based deci-

sion-making.

Modulation of Rule-Related Activity via D2Rs

Our data demonstrate a D2R-mediated excitation of PFC cells.

Consistently, D2R-mediated excitation was reported by in vitro

studies showing that D2Rs increase excitability of PFC cells by

decreasing postsynaptic inhibitory currents (Trantham-David-

son et al., 2004) as well as with in vivo studies (Wang and Gold-

man-Rakic, 2004). In behaving monkeys, iontophoretic D2R

stimulation in PFC predominantly excited neurons when

Figure 4. Differential Modulation of

Preferred and Nonpreferred Rule-Related

Activity by D1Rs and D2Rs

(A) SKF81297 enhanced the modulation indices

for the preferred rule (red bar), but not the non-

preferred rule (blue bar).

(B andC) Same conventions as in (A), showing that

SCH23390 reduced modulation indices for the

preferred rule, whereas quinpirole reduced mod-

ulation indices for the nonpreferred rule. Error bars

represent SEMs, n denotes sample size, p values

of Wilcoxon tests.
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monkeysmade a saccade toward a remembered location (Wang

et al., 2004). Sustained activity during the spatial memory period

of the task, however, was not affected (Wang et al., 2004).

The authors thus concluded that D2R manipulation has little or

no effect on the persistent mnemonic-related activity (Wang

et al., 2004). Consistent with these physiological results, D2R

manipulation does not produce changes in spatial workingmem-

ory performance in monkeys (Sawaguchi and Goldman-Rakic,

1994) or humans (Müller et al., 1998).

We show here, however, that a different type of sustained ac-

tivity, namely rule-selective responses during a delay period, is

indeed influenced by D2Rs. D2R stimulation enhances rule cod-

ing by suppressing responses to the nonpreferred rule while

leaving responses to the preferred rule unchanged. This relative

suppression of responses to the nonpreferred rule might be

mediated by specific inhibitory D2R actions in prefrontal neurons

reported by several in vitro studies (Tseng and O’Donnell, 2004).

Our findings are in agreement with a recent study showing that

Figure 5. Modulation of Numerosity Coding

Strength by Dopamine Receptors

(A) Distribution of AUROCs in control conditions

and after application of SKF81297 (left panel, each

dot corresponds to one neuron) during the sample

period. The mean AUROC was increased (right

panel) by SKF81297 (black bar) compared to

control conditions (gray bar).

(B) Modulation index for nonpreferred (blue bar)

and preferred (red bar) responses during the

sample period induced by SKF81297.

(C) Same conventions as in (A) for SCH23390.

(D) Same conventions as in (B) for SCH23390.

(E) Same conventions as in (A) for quinpirole,

showing no modulation of sample preference.

(F) Same conventions as in (B) for quinpirole. Error

bars represent SEMs, n denotes sample size, p

values of Wilcoxon tests.

blocking prefrontal D2Rs in monkeys im-

pairs learning of new association rules

and reduces neural selectivity for the

learned saccade direction particularly

for the nonpreferred direction (Puig and

Miller, 2014). Furthermore, blocking

D2Rs increased preservation errors,

thus impairing behavioral flexibility (Puig

and Miller, 2014). In addition, rodent

studies suggest that D2Rs modulate

behavioral flexibility and decision-making

(Floresco andMagyar, 2006). After block-

ing D2Rs in the PFC, rats were impaired in

switching between different response

strategies (Floresco et al., 2006), and

blocking D2Rs impaired set-shifting in

humans (Mehta et al., 1999). Stimulating

D2Rs increased BOLD signals in frontal

cortex during rule switching in humans

(Stelzel et al., 2013) and improved perfor-

mance of monkeys in a delayed response

task (Arnsten et al., 1995). Thus, our finding that D2R activation

enhances rule coding in the PFC provides a cellular basis for

D2R modulation of cognitive functions. Our results highlight

that D2Rs—while not being involved in spatial mnemonic pro-

cessing—do play an important role during flexible decision-

making.

Consistent with the electrophysiological findings, both D1R

and D2R stimulation caused changes in the monkeys’ behavior

in the same direction. The monkeys needed slightly longer to

respond after D1R and D2R stimulation, whereas blocking

D1Rs mildly decreased reaction times. The magnitude of the

effect was comparable to previous studies reporting changes

in reaction times after iontophoretic drug application (Herrero

et al., 2008, 2013). Prolonged reaction times during D1R and

D2R stimulation might reflect the increased stability in rule

coding in the PFC. In addition to cognitive variables, prefrontal

dopamine receptors also modulate motor-related signals

(Wang et al., 2004). While we did not investigate motor-related
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influences, we speculate that our pharmacological interventions

also affected motor selection signals. The precise mechanisms

by which manipulation of prefrontal dopamine receptors affects

behavior surely require further investigation.

D1R Modulation of Coding Strength to Sample

Numerosity

Midbrain dopamine neurons fire phasic bursts in response to

behaviorally relevant sensory events (Schultz, 1998; Matsumoto

and Hikosaka, 2009; de Lafuente and Romo, 2012). In the PFC,

dopamine enhances visual signals (Jacob et al., 2013), possibly

gating neuronal representations of relevant stimuli (D’Ardenne

et al., 2012). Consistently, we found that D1R stimulation

enhanced neuronal representation of sample numerosity that is

needed to solve numerical tasks (Nieder, 2012, 2013; Jacob

and Nieder, 2014). Thus, D1Rs might mediate dopamine’s

function of supporting the detection of relevant sensory events

(Redgrave et al., 2008; de Lafuente and Romo, 2011). Together

with studies demonstrating D1R modulation of spatial working

memory processes (Williams and Goldman-Rakic, 1995; Sawa-

guchi, 2001; Vijayraghavan et al., 2007) and associative learning

(Puig and Miller, 2012), prefrontal D1Rs are also involved in mul-

Figure 6. Drug Effects onNeuronal Baseline

Activity

(A) Comparison of individual neurons’ baseline

spike rates during SKF81297 application and

control conditions (left panel) and mean baseline

spike rates during control and SKF81297 condi-

tions (right panel). SKF81297 induced a small

reduction in baseline spike rates. C, control con-

ditions; D, drug conditions.

(B) Same conventions as in (A), showing that

SCH23390 induced a small increase in baseline

spike rates.

(C) Same conventions as in (A), showing that

quinpirole increased baseline spike rates.

(D) Same conventions as in (A), showing that NaCl

did not change absolute spike rates.

(E) Average time courses (wash-in and wash-out

effects) of normalized baseline activity for all

neurons aligned to onset (left) and offset (right) of

drug application.

(F) Mean normalized neuronal response in the

drug phase. SCH23390 (blue bar) and quinpirole

(red bar) increased baseline activity, whereas

SKF81297 (green bar) andNaCl (black bar) did not.

Black horizontal bars indicate pairwise significant

differences (p < 0.05, Kruskal-Wallis test with post

hoc Tukey’s comparisons). Error bars represent

SEM, n denotes sample size, p values of Wilcoxon

tests.

tiple prefrontal functions and at different

time scales (Schultz, 2007). In contrast,

D2Rs did not modulate numerosity

coding strength, just as it did not modu-

late spatial working memory processes

(Wang et al., 2004), although D2Rs

modulate neural signatures of associative

learning (Puig and Miller, 2014). There-

fore, prefrontal D2Rsmight assume amore specific role in cogni-

tive processing.

Complementary Roles of D1Rs and D2Rs in Behavioral

Flexibility

We find that D1Rs and D2Rs modulated spontaneous firing in

opposite directions, with D1Rs and D2Rs strengthening rule

coding in complementary ways. This is consistent with the idea

that the ratio between D1R and D2R activation determines excit-

ability in prefrontal networks (Seamans and Yang, 2004). In

recent monkey experiments, both prefrontal D1Rs and D2Rs

influenced saccadic target selection (Noudoost and Moore,

2011a) possibly underlying attentional processes (Noudoost

and Moore, 2011b; Clark and Noudoost, 2014), while only

D1Rs seemed to control cortical visual signals. Interestingly,

dopamine depletions impair not only spatial working memory

(Brozoski et al., 1979) but also the learning of rules in monkeys

(Crofts et al., 2001). Both prefrontal D1R and D2R activation

contribute to learning new associative rules, suggesting a coop-

erative role in cognitive flexibility of both receptor families (Puig

and Miller, 2012, 2014). This is in agreement with the finding

that midbrain dopamine neurons signal the cognitive component
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of a task (Stefani and Moghaddam, 2006; Matsumoto and Ta-

kada, 2013) and are correlated with the monkeys’ decisions

(de Lafuente and Romo, 2011). Complementary roles of D1Rs

and D2Rs for behavioral flexibility are thus present in both pri-

mates and rodents (Floresco and Magyar, 2006; Takahashi

et al., 2012; Floresco, 2013; Puig and Miller, 2014). Our data

extend these findings and show that dopamine influences exec-

utive functions in the PFC through both D1Rs and D2Rs,

enhancing rule-based decision-making. These findings might

contribute to interpreting drug effects in psychiatric disorders

with disturbed prefrontal dopamine signaling (Arnsten, 2011;

Winterer and Weinberger, 2004).

EXPERIMENTAL PROCEDURES

Animals and Surgical Procedures

Two male rhesus monkeys (Macaca mulatta) were implanted with a titanium

head post and one recording chamber centered over the principal sulcus of

the lateral PFC, anterior to the frontal eye fields (right hemispheres in both

monkeys). Surgery was conducted using aseptic techniques under general

anesthesia. Structural magnetic resonance imaging was performed before im-

plantation to locate anatomical landmarks. All experimental procedures were

in accordance with the guidelines for animal experimentation approved by the

authority, the Regierungspräsidium Tübingen, Germany.

Task

Monkeys learned to flexibly perform numerical ‘‘greater than’’ versus ‘‘less

than’’ comparisons. They initiated a trial by grasping a lever and maintaining

central fixation on a screen. After a pure fixation period (500 ms), a sample

stimulus (500 ms) cued the animals for the reference numerosity (i.e., number

of dots) they had to remember for a brief time interval. The first memory interval

(delay 1, 1,000 ms) was followed by a rule cue (300 ms) that instructed the

monkeys to select either a larger number of dots (‘‘greater than’’ rule) or a

smaller number of dots (‘‘less than’’ rule) than the sample numerosity in the

subsequent test phase. The test phasewas preceded by a second delay (delay

2, 1,000 ms) requiring the monkeys to assess the rule at hand for the subse-

quent choice. In the following test 1 phase, the monkeys had to release the

lever in a ‘‘greater than’’ trial, if the number of items in the test display was

larger than the number of items in the sample display (match trial), or to

keep holding the lever for another 1,200 ms until the appearance of a second

test display (test 2), if the number of items in the test display was smaller than

the number of items in the sample display (nonmatch trial). In a ‘‘less than’’ trial,

these conditions were reversed. Monkeys got a liquid reward for a correct

choice. Thus, only test 1 required a decision; test 2 was used so that a behav-

ioral response was required in each trial, ensuring that the monkeys were

paying attention during all trials. Because both sample and test numerosities

varied randomly, the monkeys could only solve the task by assessing the nu-

merosity of the test display relative to the three possible numerosities of the

sample display together with the appropriate rule in any single trial. To test a

range of numerosities, both monkeys were presented with numerosities 2

(smaller test numerosity = 1, larger test numerosity = 4), 8 (4:16), and 32

(16:64). For any sample numerosity, test numerosities were either larger or

smaller with equal probability (p = 0.5). Because the monkeys’ numerosity

discrimination performance obeys the Weber-Fechner law (Nieder and Miller,

2003), numerosities larger than a sample numerosity need to be numerically

more distant than numerosities smaller than the sample numerosity to reach

equal discriminability. Based on this design, any test numerosity (except the

smallest and largest used) served as test numerosities for different sample

numerosities, thus precluding the animals from learning systematic relations

between numerosities.

To prevent the animals from exploiting low-level visual cues (e.g., dot den-

sity, total dot area), a standard numerosity protocol (with dot sizes and

positions pseudorandomized) and a control numerosity protocol (with equal

total area and average density of all dots within a trial) were each presented

in 50% of the trials in a pseudorandomized fashion. To dissociate the rule-

related cellular responses from responses to the sensory features of the

rule cue, each rule was signified by two different rule cues in two different

sensory modalities: a red circle (‘‘greater than’’ rule, red color) or a white cir-

cle with a drop of water (‘‘greater than’’ rule, water) signified the rule ‘‘greater

than.’’ The ‘‘less than’’ rule was cued by a blue circle (‘‘less than’’ rule, blue

color) or a white circle with no water (‘‘less than’’ rule, no water). We showed

in previous studies that monkeys generalize the numerical principles

‘‘greater than’’ and ‘‘less than’’ to numerosities they had never seen before

(Bongard and Nieder, 2010; Eiselt and Nieder, 2013). Before each session,

the displays were generated anew using MATLAB (Mathworks). Trials were

randomized and balanced across all relevant features (‘‘greater than’’ and

‘‘less than’’ rules, rule-cue modalities, sample numerosities, standard and

control stimuli, match and nonmatch trials). Monkeys had to keep their

gaze within 1.75� of the fixation point from the fixation interval up to the

onset of the first test stimulus (monitored with an infrared eye-tracking sys-

tem; ISCAN, Burlington, MA).

Electrophysiology and Iontophoresis

Extracellular single-unit recording and iontophoretic drug application were

performed as described previously (Jacob et al., 2013). In each recording

session, up to three custom-made tungsten-in-glass electrodes flanked by

two pipettes each were inserted transdurally using a modified electrical mi-

crodrive (NAN Instruments). Single neurons were recorded at random; no

attempt was made to preselect the neurons to any task-related activity or

based on drug effects. Signal acquisition, amplification, filtering, and digita-

lization were accomplished with the MAP system (Plexon). Waveform sepa-

ration was performed offline (Offline Sorter; Plexon). Drugs were applied

iontophoretically (MVCS iontophoresis system; npi electronic) using

custom-made tungsten-in-glass electrodes flanked by two pipettes each

(Jacob et al., 2013; Thiele et al., 2006). Electrode impedance and pipette

resistance were measured after each recording session. Electrode imped-

ances were 0.8–3 MU (measured at 500 Hz; Omega Tip Z; World Precision

Instruments). Pipette resistances depended on the pipette opening diameter,

drug, and solvent used. Typical resistances were 15–50 MU (full range, 12–

160 MU). As in previous experiments (Jacob et al., 2013), we used retention

currents of –7 nA to hold the drugs in the pipette during control conditions.

The ejection current for SKF81297 (10 mM in double-distilled water [pH 4.0]

with HCl; Sigma-Aldrich) was +15 nA, the ejection current for SCH23390

(10 mM in double-distilled water [pH 4.0] with HCl; Sigma-Aldrich) was +25

nA, and the ejection current for quinpirole (10 mM in double-distilled water

[pH 4.0] with HCl; Sigma-Aldrich) was +40 nA. In control experiments with

0.9% physiological NaCl (pH 4.0) with HCl, the ejection current was +25

nA. We did not investigate dosage effects and chose ejection currents to

match the values reported to be maximally effective, i.e., in the peak range

Figure 7. Drug Effects on the Monkeys’ Behavior

(A) Difference in performance (% correct trials) between control and drug

conditions. Error bars represent SEMs over recording sessions. n.s., not sig-

nificant (Wilcoxon test, p > 0.05).

(B) Difference in mean normalized reaction times between control and drug

conditions pooled over all recording sessions. n.s., not significant (p > 0.05),

*p < 0.05, **p < 0.01 (Mann-Whitney U test).
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of the ‘‘inverted-U function’’ (Wang et al., 2004; Vijayraghavan et al., 2007).

One pipette per electrode was filled with drug solution (either SKF81297,

SCH23390, quinpirole, or NaCl), and the other always contained 0.9%

NaCl. In each recording session, control conditions using the retention cur-

rent alternated with drug conditions using the ejection current. Drugs were

applied continuously for 12–15 min (drug conditions), depending on the num-

ber of trials completed correctly by the animal. Each control or drug applica-

tion block consisted of 72 correct trials to yield sufficient trials for analysis.

The first block (12–15 min) was always the control condition. Given that

iontophoretic drug application is fast and can quickly modulate neuronal

firing properties (Jacob et al., 2013), we did not exclude data at the current

switching points.

Data Analyses

Rule-Selective Neurons

All well-isolated recorded single units with a baseline spike rate above 0.5 Hz

(determined in the 500 ms fixation period preceding sample presentation)

entered the analyses. Neurons were not included based on drug effects. We

calculated a four-way ANOVA for each neuron to determine if a neuron’s

response was correlated with the numerical rules. We used spike rates in a

600mswindow beginning 500ms after offset of the rule-cue, i.e., in the second

half of the delay 2 period. We chose this window because previous studies

found the most prominent rule coding during this period (Bongard and Nieder,

2010; Eiselt and Nieder, 2013). The main factors were iontophoresis condition

(control conditions/drug conditions), sample numerosity (‘‘2’’/‘‘8’’/‘‘32’’), rule to

apply (‘‘greater than’’/‘‘less than’’) and the rule-cue modality (red/blue versus

water/no-water). We identified rule-selective neurons by a significantmain fac-

tor of the rule that the monkeys had to apply (p < 0.05). To ensure that neuronal

responses varied with the abstract numerical rules rather than with the rule

cues, we excluded neurons with a significant interaction of the main factors

rule and rule-cue modality (p < 0.05). Since the monkeys’ behavior did not

show any differences for standard and control stimuli (Figure 1), and because

we have shown previously that neuronal responses in the PFC do not differen-

tiate between standard and control stimuli (Bongard and Nieder, 2010; Eiselt

and Nieder, 2013), we pooled over standard and control stimuli trials. A similar

number of neurons preferred the ‘‘greater than’’ (34 neurons) and the ‘‘less

than’’ rule (30 neurons), and neurons in the PFC encode both numerical rules

about equally well (Bongard andNieder, 2010; Eiselt and Nieder, 2013). In gen-

eral, nine trials was the minimum number of trials in one of the four rule condi-

tions for a neuron to enter the analyses. The maximum number was 70 trials

per rule condition, with an average of 25 trials per one of the four rule condi-

tions (i.e., the average neuron was recorded for 200 trials: four rule conditions

for control and drug conditions, respectively).

Single-Cell and Population Responses

For plotting single-cell spike density histograms, the average firing rate in trials

with one of the four different rule-cues (correct trials only) was smoothedwith a

Gaussian kernel (bin width of 200 ms, steps of 1 ms). For the population re-

sponses, trials with rule cues signifying the same numerical rule were pooled.

A neuron’s preferred rule was defined as the numerical rule yielding the higher

average spike rate in the analysis window used for the ANOVA. The nonpre-

ferred rule was defined as the numerical rule resulting in lower average spike

rate. Neuronal activity was normalized by subtracting the mean baseline firing

rate in the control condition and dividing by the standard deviation of the base-

line firing rates in the control condition. For population histograms, normalized

activity was averaged and smoothed with a Gaussian kernel (bin width of

200 ms, step of 1 ms). To quantify a neuron’s selectivity to its preferred rule,

we calculated the difference DR between the normalized response to the

preferred and the nonpreferred rule in the same analysis window used for

the ANOVA.

Receiver Operating Characteristic Analysis

Rule-coding quality was quantified using receiver operating characteristic

(ROC) analysis derived from Signal Detection Theory (Green and Swets,

1966). The AUROC is a nonparametric measure of the discriminability of two

distributions. It denotes the probability with which an ideal observer can tell

apart a meaningful signal from a noisy background. Values of 0.5 indicate no

separation, and values of 1 signal perfect discriminability. The AUROC takes

into account both the difference between distribution means as well as their

widths and is therefore a suitable indicator of signal quality. We used AUROCs

to quantify the quality of numerical rule coding. We calculated the AUROC for

each neuron using the spike rate distributions of the preferred and the nonpre-

ferred rule in the same analysis window used for the ANOVA. Sliding ROCanal-

ysis was performed from rule-cue onset until the end of the delay 2 period with

overlapping 100 ms windows stepped in 10 ms increments. For each window,

we calculated the AUROC comparing spike rates for the preferred and nonpre-

ferred rule. We performed a permutation test for each window, estimating the

null distribution of AUROCs by randomly relabeling trials to the preferred or

nonpreferred group with 999 repetitions. Latency of rule coding was defined

as the time of the first of three consecutive significant windows in the permu-

tation test (p < 0.05, two-sided) beginning from the onset of the delay 2 period.

Four neurons were excluded from the analysis, because no latency could be

computed for both control and drug conditions.

Drug Modulation Index

To quantify if a drug specifically modulated the discharge of a neuron to the

preferred or the nonpreferred rule, we calculated a drug MI for each drug

and neuron separately for the preferred and the nonpreferred rule. The MI

was computed by first subtracting the mean baseline spike rate (500 ms fixa-

tion period preceding sample presentation) from each trial separately for con-

trol and drug conditions and dividing by the standard deviation of baseline

spike rates to account for general shifts in baseline spike rates induced by

the drugs (see Figure 6). Next, we calculated the MI for the preferred rule

defined as the difference between the mean response to the preferred rule

in the drug condition and themean response to the preferred rule in the control

condition for each neuron and drug. The MI for the nonpreferred rule was

calculated in the same way. Thus, the MI reflects the amount by which the

drug modulates the preferred or the nonpreferred rule, respectively, in com-

parison to the neuron’s baseline activity.

Analysis of Sample Numerosity Modulation

We calculated a two-way ANOVA with main factors sample numerosity

(sample numerosities ‘‘2,’’ ‘‘8,’’ ‘‘32’’) and iontophoresis condition (control

or drug condition) in the sample phase, a 500 ms window beginning

100 ms after sample onset (Bongard and Nieder, 2010) and selected sam-

ple-selective neurons with a significant main effect of sample numerosity

(p < 0.05). The preferred sample numerosity was defined as the numerosity

yielding the highest spike rate, the nonpreferred sample item was defined as

the numerosity yielding the lowest spike rate in the sample phase. AUROCs

were calculated using the distribution of spike rates for preferred and non-

preferred numerosities in the same analysis window. Modulation indices

were calculated in the same analysis window and calculated as described

for rule-selective neurons.

Modulation of Neuronal Baseline Activity

Baseline spike rates (500 ms fixation period preceding sample presentation)

were normalized for each neuron by subtracting the mean baseline spike

rate in control conditions and dividing by the standard deviation of baseline

spike rates in control conditions. Thus, the mean normalized activity in control

conditions is by definition zero. The amplitude of drug modulation is then given

by the mean normalized activity in drug conditions. We assessed the time

course of baseline modulation throughout one block (12–15 min) of drug

administration by aligning normalized baseline activity to the time point

when the iontophoretic drug application was switched on and off, respectively.

We used bins of 10 s (about the time of two trials) to average the population

activity and smoothed the population time course with a Gaussian kernel

(width of 60 s).

Behavioral Modulation by Drug Application

Behavioral performance was calculated for each recording session for control

and drug conditions and compared using a paired Wilcoxon test (n = 63 for

SKF81297, n = 50 for SCH23390, n = 39 for quinpirole, and n = 27 for NaCl).

Behavioral reaction times were normalized for each recording session by sub-

tracting the mean reaction time for the respective recording session from each

reaction time (Herrero et al., 2013). Normalized reaction times were pooled

over recording sessions for control and drug conditions and compared with

a Mann-Whitney U test (n = 4,886, n = 4,778 for control and SKF81297 condi-

tions; n = 5,234, n = 4,998 for control and SCH23390 conditions; n = 2,995, n =

3,830 for control and quinpirole conditions; n = 2,912, n = 2,914 for control and

NaCl conditions). Only correct match trials were used.
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Study 3: Dopamine D2 receptor modulation of working memory signals
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Abstract 

Working memory is associated with persistent activity in the prefrontal cortex 

(PFC). The neuromodulator dopamine, which is released by midbrain neurons 

projecting into the frontal lobe, influences PFC neurons and networks via the 

dopamine D1 (D1R) and the D2 receptor (D2R) families. Although behavioral, 

clinical, and computational evidence suggest an involvement of D2Rs in working 

memory, a neuronal explanation is missing. We report an enhancement of 

persistent working memory responses of PFC neurons after iontophoretically 

stimulating D2Rs in monkeys memorizing the number of items in a display. D2R 

activation improved working memory representation at the population level and 

increased population dynamics during the transition from visual to mnemonic 

representations. Computational modeling suggests that D2Rs act by modulating 

interneuron-to-pyramidal signaling. By increasing the network’s response 

dynamics, D2Rs might put PFC networks in a more flexible state and enhance the 

neurons’ working memory coding, thereby controlling dynamic cognitive control. 
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Introduction 

The persistent activation of prefrontal cortex (PFC) neurons in the absence of 

external stimulation is considered a neuronal correlate of working memory, which 

is the ability to briefly retain and manipulate information in mind (Fuster, 2008). 

During working memory, stimuli are processed flexibly from moment to moment 

depending on the behavioral context and current goals mediating cognitive control 

(Baddeley, 2012). Working memory, and executive control functions in general, are 

influenced by midbrain dopamine neurons that project to PFC. There, dopamine 

affects PFC neurons via the dopamine D1 receptor (D1R) and D2 receptor (D2R) 

families (Robbins and Arnsten, 2009). 

While D1Rs have been shown to modulate working memory and other executive 

functions on both behavioral (Müller et al., 1998; Noudoost and Moore, 2011; Puig 

and Miller, 2012; Sawaguchi and Goldman-Rakic, 1991) and neuronal level (Ott et 

al., 2014; Puig and Miller, 2012; Vijayraghavan et al., 2007; Williams and Goldman-

Rakic, 1995), the role of D2Rs has been less clear. Behaviorally, D2Rs stimulation 

can improve working memory performance in primates (Gibbs and D’Esposito, 

2005; Von Huben et al., 2006; Mehta et al., 2001) and D2Rs are involved in cognitive 

flexibility and attention (Floresco and Magyar, 2006; Noudoost and Moore, 2011; 

Puig and Miller, 2015; Stelzel et al., 2013). Clinical evidence suggests a prominent 

role of D2Rs in psychiatric diseases characterized by disturbed executive control 

and psychosis (Rolls et al., 2008; Winterer and Weinberger, 2004). Supported by 

computational modeling studies, D2Rs were hypothesized to increase cognitive 

flexibility by putting PFC working memory networks in a flexible state (Durstewitz 
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and Seamans, 2008; Rolls et al., 2008) enabling dynamic cognitive control (Cools, 

2015; Stokes et al., 2013). 

Despite this evidence, a neuronal correlate of D2R influence on working memory 

signals is lacking. In a previous single-cell study in monkeys required to memorize 

the location of saccade targets, D2R manipulation had a strong impact on eye 

movement-related discharges, but no effect on the preceding persistent spatial 

working memory signal (Wang et al., 2004a). So far, the underlying physiological 

basis for D2Rs modulation of working memory is still unknown. 

We hypothesized that D2Rs modulate persistent working memory activity in PFC 

neurons and networks. Therefore, we trained two macaque monkeys to remember 

visual items that represented different numerosities, thus involving feature-based 

working memory processing as opposed to spatial working memory (Jacob and 

Nieder, 2014; Nieder, 2002; Viswanathan and Nieder, 2013). By combining single 

unit recordings with iontophoretic drug application and computational modeling, 

we show that D2R stimulation indeed increases working memory coding at the 

single neuron level and enhances the response dynamics of prefrontal networks. 
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Results 

We trained monkeys to memorize the number of items over a brief delay period 

(‘memory delay’ in Figure 1A) in a delayed response task (Bongard and Nieder, 

2010; Ott et al., 2014). The monkeys had to assess the number of dots shown on a 

sample display, and maintain this sample numerosity in working memory during 

the delay period. Next, a rule cue was presented that instructed the monkeys to 

respond to a subsequent test display showing either more or less dots than the 

sample display. Thus, the delay phase after sample presentation constituted a pure 

working memory period (devoid of motor preparation) which allowed for 

investigation of neuronal working memory processes. 

While the monkeys performed this task with varying numerosities and rules 

proficiently (Figure 1B,C), we recorded 310 randomly selected single neurons from 

the lateral PFC of two macaque monkeys (Figure 1D). To directly assess the impact 

of dopamine receptor targeting agents on neuronal working memory activity, each 

neuron was recorded both without drug application (control condition) and while 

stimulating dopamine receptor agents at the vicinity of the recorded neurons using 

micro-iontophoresis (drug condition) (Jacob et al., 2013; Thiele et al., 2006). Control 

conditions alternated with drug conditions in each recording session. In each 

session we tested one of three different substances that selectively targeted the D2R 

or the D1R: The D2R was assessed in 76 neurons by applying the D2R agonist 

quinpirole. The D1R was tested in 82 neurons using the D1R-agonist SKF81297, 

and in 85 neurons using the D1R-antagonist SCH23390. To verify drug-specific 

effects, 67 neurons were recorded using normal saline. In general, D2R stimulation 
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slightly increased the neuron’s spiking activity, while D1R stimulation slightly 

decreased neuronal activity (Ott et al., 2014).  

We identified single units selectively encoding the sample numerosities during the 

memory delay (delay 1; see Figure 1A) using a 2-way-ANOVA with main factors 

sample numerosity (“2”, “8”, “32”) and drug condition (control, pharmacological 

application). Many neurons were tuned to one of the presented numerosities in the 

delay period (Jacob and Nieder, 2014; Nieder, 2002). A representative delay-

selective unit (Figure 2A) showed characteristic tuning for one of the sample 

numerosities, i.e. a higher discharge rate for their preferred numerosity (“2” in this 

neuron) and increasingly lower discharge rates for more distant numerosities.  

After D2R stimulation with quinpirole, response differences of the same neuron to 

different memorized numerosities were increased, enhancing neuronal selectivity 

and tuning curve (Figure 2B). To analyze averaged responses and tuning curves of 

the entire population of selective neurons, we ordered each neuron’s delay-

selective discharges to the three presented numerosities by its respective preferred, 

intermediate preferred and least preferred numerosity. A comparison of the 

population averaged spike rates in the control (Figure 2C) and drug conditions 

(Figure 2D), showed enhanced differentiation of the responses to the three 

memorized numerosities during D2R stimulation, and a steepening of the 

population averaged tuning curves (Figure 2D).  

 

D2R stimulation enhanced working memory coding at the single neuron level 

To quantify the neuronal delay selectivity across time, we defined a sliding tuning 

index (TI) (Figure 3A) (see Experimental Procedures). The TI was significantly 
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enhanced by D2R stimulation (Figure 3D) (TI = +0.11 mean ±0.04 SEM, p = 0.01, 

signed rank test). As a measure of effect size, we derived the percentage of 

explained variance (PEV, ω2) by the variable ‘numerosity’ across time for all 

selective neurons, calculated using a sliding ANOVA (Figure 3B) (see 

Experimental Procedures). The PEV also increased after D2R stimulation 

(Figure 3E) (ΔPEV = +0.06±0.02, p = 0.01, signed rank test). To quantify coding 

quality, we compared discharge rates of the neuron’s preferred and least preferred 

sample numerosity by calculating the area under the receiver operating 

characteristic (AUROC) across time (Figure 3C). D2R stimulation significantly 

increased AUROCs in the delay period (ΔAUROC = +0.11±0.03, p = 0.003, signed 

rank test), indicating an enhancement of the neurons’ working memory coding 

capacities (Figure 3F). This enhancement was observed for all comparisons 

between the most, intermediate and least preferred numerosity (Figure S1). The 

same significant effects were observed when analyzing all (delay-selective or not) 

neurons recorded with the D2R agonist (n = 76) (Figure S2).  

The identical comparisons of working memory responses were performed with 

pharmacological D1R stimulation or blockage, respectively. However, we found no 

differences in coding capacities when applying the D1R-agonist SKF81297 

(Figure S3A-H) or the D1R-antagonist SCH23390 (Figure S4A-H). The effect of 

pharmacological manipulation was confirmed through application of saline (NaCl) 

which did not result in any coding changes (Figure S5A-H). Thus, D2R 

stimulation, but not D1R stimulation, improves memory-delay selectivity for 

quantities at the single neuron level. 
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D2R stimulation enhanced working memory coding at the population level 

To describe numerosity representation at the population level, we used linear 

regression disentangling general drug-induced shifts of neuronal activity from 

neuronal activity explained by numerosity (Mante et al., 2013). By modeling 

interactions between drug and sample numerosity, we defined numerosity-related 

axes for control and drug conditions and projected the population response of all 

76 neurons tested with the D2R-agonist onto these axes. This provided an estimate 

of the numerosity representation during working memory at the population level 

for control and drug conditions (see Experimental Procedures).  

Relative to the control condition (Figure 4A), D2R stimulation prominently 

increased numerosity representation by the neuronal population during the entire 

delay period (Figure 4B). We quantified the selectivity between numerosities 

responses by calculating the distance between state trajectories (in Figure 4A and 

B) for all sample combinations. Compared to control conditions (Figure 4C), 

stimulation of D2Rs enhanced discrimination between numerosities in the delay 

period (Figure 4D). Average trajectory differences increased after D2R stimulation 

(Figure 4E) (change in mean Δtrajectory = +1.1±0.19, p = 0.001, bootstrapping). 

Moreover, the regression weights for the task variable ‘numerosity’ were increased 

by D2R stimulation, as witnessed by a positive interaction term (Figure 4F, mean 

interaction term = +0.021±0.006, p = 0.003, signed rank test). We confirmed the 

results of the regression analysis by using shuffled data and cross-validation 

(Figure S6). To confirm that overall drug-induced shifts in spiking activity cannot 

explain the results, we simulated data applying the same strength of numerosity 

coding and the same amount of drug-induced shifts in overall spiking activity 
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(Figure S6). These controls verified that general changes in network activity did 

not drive specific D2R modulation of working memory.  

Again, we found no significant differences in population analyses for neurons 

tested with the D1R-agonist (Figure S3I-J) or D1R-antagonist (Figure S4I-J). 

Application of saline (NaCl) did not produce any effects (Figure S5I-J). Thus, D2R-

stimulation enhanced the neuronal population’s representation of numerosities in 

the memory delay period. 

 

Dopamine receptors modulated the PFC network’s response dynamics 

To assess neuronal population’s response dynamics, we analyzed population 

responses of all recorded 76 neurons tested for D2R-effects by representing the 

population single-unit activity in a low-dimensional space using principal 

component analysis (PCA, see Experimental Procedures), extracting shared 

activity patterns prominent in the population response (Harvey et al., 2012). 

Population activity represented by the first three principal components (PCs) 

showed prominent shifts in population activity after sample onset and at the 

beginning of the memory delay period as a function of numerosities (Figure 5A). 

After stimulating D2Rs with quinpirole, population activity followed similar 

trajectories, but showed improved differentiation between different numerosities 

(Figure 5B). Discrimination between numerosity representations, quantified by the 

Euclidean distance between population trajectories for all numerosity 

combinations (Figure 5C, see Experimental Procedures), was increased by D2R 

stimulation in the delay period (Figure 5D). The mean differences between the 
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trajectories were significantly higher during D2R-stimulation (Figure 5E) (change 

in mean Δtrajectory = +0.37±0.18, p = 0.02, bootstrapping).  

To evaluate population dynamics further, we quantified the speed with which the 

population trajectories traveled through state space by calculating the average rate 

of change of state space trajectories (Stokes et al., 2013) (see Experimental 

Procedures). Delay-period onset (and sample onset) induced a rapid acceleration 

of the population trajectories (Figure 5F). The distances traveled by the trajectories 

were greater after D2R stimulation (Figure 5F, bottom inset, change in traveled 

distance = +2.1±1.3, p = 0.04, bootstrapping). Velocity decreased during the delay 

period, indicating a more stable state during working memory (Figure 5F, top 

inset). Thus, D2R stimulation enhanced velocity particularly during the dynamic 

(i.e. transition) periods of the population activity. As above, we verified PCA 

analysis by using shuffled data, cross-validation, and simulated data (Figure S7). 

Thus, D2R stimulation increased the neuronal population’s response dynamics, 

enhancing the trajectories’ separability in state space. 

Interestingly, D1R stimulation (Figure 6A-B), but not D1R blockage (Figure 6C-D), 

significantly decreased the population’s velocity in state space (change in 

velocity = –2.4±1.2, p = 0.02, change in traveled distance = –2.4±1.3, p = 0.004, 

bootstrapping, control analyses in Figure S8). Application of saline (NaCl) did not 

produce any effects (Figure S5K-L). Thus, D1Rs and D2Rs showed opposite effects 

on coding stability during transition stages. 
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Computational modeling suggests specific mechanism for D2R modulation 

We enacted a biophysically plausible network attractor model of object working 

memory (Brunel and Wang, 2001; Goodman and Brette, 2009; Wang, 2002) to 

investigate possible mechanisms of D2R actions. The model consisted of pyramidal 

cells and interneurons with recurrent excitatory and recurrent inhibitory 

connections (Figure 7A). These cell types generate attractor networks with stable 

spontaneous activity states and stable persistent (reverberatory) activity states 

(Figure 7B) modeling information held in working memory (see Experimental 

Procedures). Connections were modeled by excitatory pyramidal-to-pyramidal 

and pyramidal-to-interneuron AMPA and NMDA glutamatergic synapses, as well 

as inhibitory interneuron-to-interneuron and interneuron-to-pyramidal 

GABAergic synapses.  

When transiently stimulating one of three selective subsets of pyramidal cells, 

corresponding to neurons selective for one of the three numerosities, the 

pyramidal cell population switched from a spontaneous activity state to a stable 

persistent activity state without further stimulation (Figure 7B). In vitro studies 

using prefrontal slices suggest that D2R stimulation decreases responsiveness to 

GABA in pyramidal cells (Seamans et al., 2001; Trantham-Davidson et al., 2004). 

We thus studied effects of decreasing the GABA conductance in interneuron-to-

pyramidal synapses, which lead to an overall increase in spiking activity that 

impaired the network’s stable spontaneous activity state under only slight 

decreases of GABA conductances (Figure 7C). 

D2R stimulation has been shown to modulate interneuron excitability (Zhong and 

Yan, 2014). We implemented this effect by increasing AMPA conductances in 

interneurons, leading to an increase in inhibition and to a breakdown of the 
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network’s persistent activity state (Figure 7D). However, by combining both 

modulations, disinhibition of pyramidal cells by decreasing GABA conductances 

was balanced by increasing AMPA conductances in interneurons, i.e. increasing 

interneuron excitability. Both spontaneous and persistent activity states remained 

stable over a larger range (Figure 7E). The network showed a small increase in 

spontaneous activity in addition to a prominent increase of persistent activity, 

increasing the neurons’ selectivity to a sample stimulus during the delay memory 

period, reproducing our key experimental results.  
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Discussion 

We show that stimulation of prefrontal D2Rs enhanced working memory 

representations of numerosities both on single neuron and on population levels. 

D2Rs changed the flexibility of neuronal population activity by increasing the 

population’s response dynamics. By using a computational model of prefrontal 

networks, we suggest a mechanism by which D2Rs control prefrontal working 

memory networks. 

 

D2R improves feature-based working memory representations 

These results provide a neuronal basis for D2R modulation of working memory in 

primates and complement reported behavioral effects of D2R manipulation. D2R 

stimulation has been shown to influence working memory performance in 

monkeys and humans by increasing or decreasing performance (Arnsten et al., 

1995; Gibbs and D’Esposito, 2005; Von Huben et al., 2006; Mehta et al., 2001), 

depending on the subject’s baseline performance (Clark and Noudoost, 2014). In 

addition, D2Rs play a role in mediating cognitive flexibility (Klanker et al., 2013). 

Blocking D2Rs impairs the ability of rats to switch between different response 

strategies (Floresco et al., 2006). In monkeys, blocking prefrontal D2Rs impairs 

learning of new association rules and reduces neural selectivity for the learned 

saccade direction (Puig and Miller, 2015), while stimulating D2Rs increased neural 

selectivity for task rules in the same numerical switching task (Ott et al., 2014).  

Despite this behavioral impact, a neuronal correlate of D2R modulation of working 

memory was lacking so far. In monkeys performing a oculomotor delayed-
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response (ODR) task to test spatial working memory, D2Rs did not modulate 

persistent delay activity (Wang et al., 2004a). However, because the ODR task 

allows for saccadic motor preparation, many neurons might reflect response-

related signals rather than pure working memory representations during the delay 

(Markowitz et al., 2015; Takeda and Funahashi, 2004). Here, we excluded motor 

preparation during the delay by forcing the monkeys to make a response-

independent and rule-cued decision. Persistent activity in the delay phase thus 

reflects feature-based working memory representations devoid of motor 

preparation. In this situation, we find that D2R stimulation robustly enhanced 

persistent mnemonic activity in PFC neurons, thus resolving the discrepancy 

between behavioral and neuronal effects. It is also conceivable that feature-based 

working memory and spatial working memory are distinctly represented by PFC 

neurons (Wilson et al., 1993).  

In contrast to the clear D2R effects, D1R manipulation did not seem to modulate 

persistent working memory activity in the current study. This was unexpected, 

given that several studies reported D1R modulation of spatial working memory 

signals (Vijayraghavan et al., 2007; Williams and Goldman-Rakic, 1995) or D1R 

modulation of persistent rule-related signals in the same task as used in the present 

study (Ott et al., 2014). A possible explanation for this discrepancy might be related 

to the prominent dose-dependency of D1R effects. Reported D1R manipulations 

followed an inverted-U function and produced varying effects, including an 

improvement of spatial workings memory signals by both stimulating and 

blocking D1Rs (Vijayraghavan et al., 2007; Williams and Goldman-Rakic, 1995). 

Thus, effects observed after D1R manipulation seem to heavily depend on the 

baseline activation of D1Rs. This D1R response function might account for the 
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differences between our and other studies. Alternatively, or in addition, D1R 

modulation might differentially modulate spatial (Vijayraghavan et al., 2007; 

Williams and Goldman-Rakic, 1995) and feature-based (our study) working 

memory.   

 

Putative D2R mechanism involves differential modulation of interneurons and 

pyramidal cells 

We implemented a biophysically plausible spiking neural network in which 

synaptic connections are described on a single neuron level. By simulating 

recurrent excitatory and inhibitory connections, the activity of neurons in the 

network show characteristic stable attractor states. This approach  was successfully 

used previously to describe working memory and decision-making processes 

(Constantinidis and Wang, 2004; Durstewitz et al., 2000a; Wang, 2002). Using this 

model, we propose a mechanism by which D2Rs might act on synaptic 

transmission to modulate working memory representations. We propose that D2Rs 

decrease GABAergic synaptic currents in pyramidal cells, thus disinhibiting 

pyramidal cell firing. In addition, D2R stimulation increases AMPA synaptic 

currents in interneurons, thereby increasing interneuron excitability. This 

modulation increased the differentiation between persistent activity and 

spontaneous activity in the network model, thus enhancing working memory 

selectivity.  

Our model suggests that D2Rs might change interneuron-to-pyramidal signaling 

by reducing inhibitory postsynaptic currents (IPSCs) mediated by GABA receptors 

in pyramidal cells (Seamans et al., 2001). Decreased IPSCs disinhibit pyramidal cell 
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firing and thereby increase the neurons’ persistent activity. This dishinbition of 

pyramidal cells might be balanced by an increase in interneuron excitability 

(Zhong and Yan, 2014). We constrained possible synaptic modulation by 

investigating putative D2R targets supported by in vitro studies  (Seamans et al., 

2001; Trantham-Davidson et al., 2004; Zhong and Yan, 2014), although we 

acknowledge diverse D2R effects found in vitro (Seamans and Yang, 2004). The 

proposed mechanism accounts for two key experimental results of the current 

study. First, D2R stimulation increased neuronal activity of prefrontal neurons (Ott 

et al., 2014), which has also been reported by previous studies (Wang and 

Goldman-Rakic, 2004; Wang et al., 2004a). Second, D2R stimulation increased 

selectivity of working memory representations. Our findings argue for a strong 

role of interneurons in maintaining working memory representations. This 

suggested role of inhibition is supported by in vivo recordings showing that 

cortical inhibition mediated by GABA receptors are crucial for shaping working 

memory representations (Constantinidis et al., 2002; Rao et al., 2000). This is 

physiologically plausible since D2Rs are abundantly expressed in PFC 

interneurons, particularly in parvalbumin-positive interneurons (de Almeida and 

Mengod, 2010), which have been shown to modulate response gain in rodent 

cortex (Wilson et al., 2012).  

The proposed mechanism assumes that D2Rs influence interneurons and 

pyramidal cells differentially. This assumption is supported by studies that 

showed a differential impact of dopamine on pyramidal cells and interneurons 

(Gao and Goldman-Rakic, 2003). Dopamine excites putative pyramidal cells, 

whereas it both excites and inhibits putative interneurons (Jacob et al., 2013). Thus, 
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differential modulation of cortical cell types might be a key mechanism by which 

dopamine controls cortical networks.  

More detailed models might incorporate different types of structured interneuron 

connections (Wang et al., 2004b) that account for differential roles of cortical 

interneuron classes in inhibitory control of pyramidal neurons (Lee et al., 2014; Pi 

et al., 2013) and help to distinguish D2R actions between cortical cell types. 

Importantly, however, the spiking neural network model provides hypotheses 

about micro-circuit mechanisms that can now be tested empirically (Wang et al., 

2013). Specifically, we hypothesize that experimentally manipulating GABA 

currents in prefrontal networks might modulate the persistent activity of neurons 

similarly as observed in the model. 

Our results complement studies investigating possible mechanisms of D1Rs 

(Durstewitz and Seamans, 2008). It has been proposed that D1Rs modulate the 

network’s persistent activity by changing recurrent NMDA conductances (Brunel 

and Wang, 2001; Durstewitz et al., 2000b), which increases persistent delay activity 

of single neurons in the model. This result reproduces experimental studies 

reporting an enhancement of selective response in the delay period of single 

neurons after D1R stimulation (Ott et al., 2014; Vijayraghavan et al., 2007). Thus, 

D2Rs and D1Rs might act on prefrontal networks by distinct physiological 

mechanisms (Ott et al., 2014).  
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Dopamine receptors modulate network dynamics 

Because neuronal responses show high complexity and variability at the single 

neuron level (Rigotti et al., 2013), we explored whether computations in PFC might 

emerge from the dynamics of populations of neurons (Mante et al., 2013). We 

described neuronal responses in the framework of dynamical systems in which the 

activity of neuronal population can be described as a dynamical process revealing 

shared activity patterns that are prominent in the population response 

(Cunningham and Yu, 2014). This allowed us to study dopamine receptor 

modulation of PFC network properties. D2R activation increased working memory 

representations of numerosities at the population level independently of general 

shifts in neuronal activity, suggesting that D2Rs interact with mechanisms 

generating persistent working memory activity. This working memory 

representation can be realized through sequence-based circuit dynamics not 

captured by single neuron analyses but by our state space analysis (Harvey et al., 

2012). State space analysis revealed how neuromodulation can change the dynamic 

properties of neuronal populations. D2R stimulation increased the state space 

distance between trajectories during working memory. As a consequence, the 

neuronal system can differentiate more reliably between working memory 

representations of numerosities. 

At the onset of visual stimulation with numerosities as well as during the 

transition from visual to mnemonic processing during the delay, population 

responses were characterized by high dynamic phases. These instances of high 

network dynamics were followed by a more stable phase during working memory. 

This characteristic response dynamic was similarly observed during flexible 

decision-making (Stokes et al., 2013). D2R stimulation enhanced the dynamic 
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responses of PFC populations, thereby enhancing state flexibility in PFC networks. 

In contrast, D1R stimulation decreased population dynamics, thereby maintaining 

PFC networks in a more stable state.  

These results support computational models which suggest that dopaminergic 

modulation of prefrontal working memory networks balance stability and 

flexibility of working memory representations (Durstewitz and Seamans, 2008; 

Rolls et al., 2008; Seamans and Yang, 2004; Seamans et al., 2001). According to this 

hypothesis, a D1R-dominated state stabilizes prefrontal representations, whereas a 

D2R-dominated state destabilizes them enabling switching between different 

representations thus mediating flexibility. Our results provide experimental 

evidence that D2Rs control stability and flexibility of prefrontal working memory 

representations. These results contribute to the idea that excessive cortical D2R 

activation contributes to psychosis by destabilizing working memory 

representations in schizophrenic patients (Rolls et al., 2008; Winterer and 

Weinberger, 2004). Thus, excessive D2R activation might attribute aberrant 

salience to external events or internal representations, leading to symptoms of 

psychosis such as sensory hallucinations and intrusions of thought (Kapur, 2003). 

In conclusion, prefrontal dopamine receptors might mediate dynamic cognitive 

control (Cools, 2015) by balancing the stability of persistent activity during 

working memory with the flexibility of prefrontal networks needed for adaptive, 

goal-directed behavior. 
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Figure legends 

Figure 1. Memory-guided decision-making task and behavioral performance 

(A) Memory-guided decision-making task. Monkeys grabbed a bar and fixated a 

central fixation spot throughout the trial. They had to remember a sample 

numerosity (number of dots) during the memory delay period (delay 1). After 

presentation of a rule cue indicating either the “greater than”- or “less than”-rule, 

the monkeys were required to respond (by releasing the bar) to test-displays 

showing more or fewer dots, respectively, than the sample numerosity to receive a 

reward. 

(B) Behavioral performance (% correct) for monkey E (left panels) and monkey O 

(right panels) for the range of sample numerosities (“2”, “8”, and “32”) as well as for 

standard and control stimuli. 

(C) Example sample stimuli. For each session, new random dot patterns were 

created, using different patterns for all sample-test combinations. 

(D) Recording site located in the right lateral PFC for both monkeys. 

 

Figure 2. D2R modulation of working memory-selective neurons 

(A) Dot-raster histogram (top; each dot represents an action potential; colors 

indicate the three numerosities) and spike-density histograms (bottom) of an 

example neuron. The neuron was tuned to numerosity “2”, with lower activity for 

more distant numerosities (inset tuning curve in delay 1 period). 

(B) After D2R stimulation, the same neuron as in (A) showed enhanced and more 

selective tuning (layout as in (A)). 

(C) Time course of average normalized response of all numerosity-selective delay 

neurons; trials grouped according to the neurons’ preferred numerosity (inset 

tuning curve in delay 1 period). 

(D) Same neurons as in (C), after D2R stimulation. Population responses were 

enhanced and tuning was steeper (layout as in (C)). 

 

Figure 3. D2R stimulation enhanced numerosity coding during working memory 

at single neuron level 

(A) Time-dependent TIs for control (black) and drug (red) conditions from fixation 

onset to the end of the delay 1 period. 

(B) Time course of PEV (ω2) (layout as in (A)). 

(C) Time course of AUROCs (layout as in (A)). 
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(D) TIs during the delay period for quinpirole application plotted agains TIs in 

control conditions; each dot corresponds to one single unit, inset shows mean over 

neurons. 

(E) PEV (ω2) during quinpirole application plotted against PEV in control 

conditions (layout as in (D)). 

(F) AUROCs during quinpirole application plotted against AUROCs in control 

conditions (layout as in (D)). Gray windows in (A–H) denote analysis window in 

the delay 1 period. Error bars and colored shaded areas represent standard errors 

of the mean (SEMs). * p < 0.05, ** p < 0.01 (signed rank test). 

 

Figure 4. D2R stimulation enhanced numerosity coding during working memory 

at population level. 

(A) Population responses projected on the numerosity axes for control conditions. 

Trajectories represent the time-dependent numerosity evidence control conditions 

for different numerosities represented by the neuronal population. 

(B) Time-dependent numerosity evidence for the same population of neurons 

under quinpirole (layout as in (A)). 

(C) Absolute differences between all pair-wise sample trajectory combinations (see 

(A)) in control conditions. 

(D) Absolute differences between all pair-wise sample trajectory combinations 

under quinpirole (layout as in (C)). 

(E) Mean trajectory difference (i.e., mean of curves in (C and D)) for control 

conditions (black) and drug conditions (red). D2R stimulation significantly 

enhanced mean trajectory difference in the delay 1 period (inset). 

(F) Population average regression weights for the factor numerosity in the linear 

regression model for control and drug conditions (interaction term for sample and 

drug is either subtracted or added, respectively, see Experimental Procedures). 

Gray shaded areas denote analysis window, error bars represent SEMs (estimated 

by bootstrapping). *** p < 0.001, ** p < 0.01 (bootstrapping in (E) and signed rank 

test in (F)).  

 

Figure 5. D2R stimulation enhanced response dynamics of prefrontal 

populations. 

(A) The activity of all recorded neurons (n = 76) recorded with D2R stimulation 

represented in state space by the first three PCs for control conditions. 

(B) Same neurons as in (A) represented in state space during quinpirole application 
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(layout as in A). 

(C) Euclidean distance between all pair-wise trajectories (see (A)) for control 

conditions. 

(D) Euclidean distance between all pair-wise trajectories (see (B)) during quinpirole 

application (layout as in (C)). 

(E) Mean trajectory distance (i.e,. mean of curves in (C and D)) for control (black) 

and drug (red) conditions. D2R stimulation significantly increased trajectory 

distance in the delay 1 period (inset). 

(F) Mean trajectories’ velocity, i.e. the rate of change of positions in state space over 

time, for control (black) and drug (red) conditions. D2R stimulation increased the 

population’s mean velocity in state space at the beginning of the delay period after 

sample offset (top inset) as well as the distance travelled by the trajectories through 

state space (bottom inset). Numbers indicate trial events, 1: fixation onset, 2: 

sample onset: 3: delay 1 start, 4: delay 1 end (rule cue onset). Gray shaded areas 

denote analysis windows, error bars represent SEMs (estimated by bootstrapping). 

** p < 0.01, * p < 0.05 (bootstrapping). 

 

Figure 6. D1R stimulation decreased response dynamics of prefrontal 

populations. 

(A) PCA analysis for SKF91297. Same conventions as in Figure 5E for D1R 

stimulation. 

(B) Same conventions as Figure 5F for SKF81297. 

(C) PCA analysis for SCH23390. Same conventions as in Figure 5E for blocking 

D1Rs. 

(D) Same conventions as Figure 5F for SCH23390. Gray shaded areas denote 

analysis windows, error bars represent SEMs (estimated by bootstrapping). 

** p < 0.01, * p < 0.05 (bootstrapping). 

 

Figure 7. Attractor network model for D2R modulation of working memory. 

(A) Within the network, recurrent excitatory connections by AMPA and NMDA 

receptors are structured in three selective pyramidal cell groups (colored circles), 

characterized by strong recurrent connections within one selective pool w+ (thick 

arrows) (see Experimental Procedures) and weak synaptic connections w– between 

pools (dashed arrows) and from non-selective neurons. Other connections have 

weight w = 1 (thin arrows). An interneuron pool is characterized by recurrent GABA 

connections and interneuron-to-pyramidal GABAergic connections subject to 
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neuromodulation (C). Pyramidal cells project to interneurons, too (D).  External 

Poisson input is mediated by AMPA receptors. For details see Experimental 

Procedures. 

(B) Population activity before and after transient stimulation (red shaded area) of the 

first selective pool (purple curve), showing two distinct stable states, a spontaneous 

activity state before stimulation and a persistent activity  state after stimulation. 

(C) Simulation under systematic variation of GABA conductances in interneuron-

to-pyramidal synapses. Plotted is the spontaneous activity (closed circles) before 

stimulation and the persistent activity after stimulation (open squares) of the 

stimulated selective pool (purple), corresponding to a bifurcation diagram (Brunel 

and Wang, 2001). Note that a decrease in GABA conductance is plotted to the right, 

since D2R stimulation has been shown to decrease GABA transmission. 

(D) Same conventions as in (C) with systematic variation of AMPA conductances 

from pyramidal cells to interneurons. 

(E) Proposed D2R modulation combing both GABA modulation in (C) and AMPA 

modulation in (D). 

 

Figure S1. Pair-wise sample numerosity comparisons. 

(A) D2R stimulation increased AUROCs for preferred and least preferred 

numerosities for all numerosity-selective neurons. 

(B) AUROCs for preferred and intermediate preferred numerosities were 

increased. 

(C) AUROCs for intermediate preferred and least preferred numerosities were 

increased. Error bars represent SEMs, p-values from signed rank tests. 

 

Figure S2. D2R stimulation enhanced numerosity coding during working 

memory. 

(A) Average normalized response of all recorded neurons recorded with D2R 

stimulation (n = 76) irrespective of individual numerosity-selectivity for control 

conditions. 

(B) Same neurons as in (A) during D2R stimulation. 

(C) Tuning for mean normalized responses in the delay 1 period. The drug induced 

a general excitation as well as an increase in differentiation between samples. 

(D) Time-dependent TI for all neurons recorded with quinpirole. 

(E) TIs in delay 1 period during quinpirole application plotted against TIs in 

control conditions. Each dot corresponds to one neuron. 
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(F) Mean TIs of all neurons for control and drug conditions. 

(G) Same conventions as (D) for PEV (ω2). 

(H) Same conventions as in (E) for PEV (ω2). 

(I) Same conventions as in (F) for PEV (ω2). 

(J) Same conventions as in (D) for AUROCs. 

(K) Same conventions as in (E) for AUROCs. 

(L) Same conventions as in (F) for AUROCs. Gray shaded areas denote analysis 

window in delay 1, error bars and shaded areas represent SEMs, p-values from 

signed rank tests.  

 

Figure S3. SKF81297 control did not modulate working memory coding, but 

decreased population dynamics. 

(A) Average normalized population response for all numerosity-selective neurons 

(n = 11) recorded with SKF81297 in control conditions. 

(B) Same layout as in (A) during D1R stimulation. 

(C) TIs of selective neurons in delay 1 period obtained during drug application 

plotted against TIs in control conditions. Each dot corresponds to one neuron. 

(D) Mean TIs over neurons in (C) for control and drug conditions. 

(E) Same conventions as in (C) for PEV (ω2). 

(F) Same conventions as in (D) for PEV (ω2). 

(G) Same conventions as in (C) for AUROCs. 

(H) Same conventions as in (D) for AUROCs. 

(I) Regression analysis for all neurons recorded with SKF81297 (n = 82). Same 

conventions as in Figure 4E for SKF81297. 

(J) Same conventions as in Figure 4F for SKF81297. Gray areas denote analysis 

windows. Error bars and colored areas represent SEMs. p-values of signed rank 

tests. n.s. not significant (p > 0.05) (bootstrapping or signed rank tests). 

 

Figure S4. SCH22390 control did not modulate working memory processing. 

(A) Average normalized population response for all numerosity-selective neurons 

(n = 6) recorded with SCH23390 in control conditions. 

(B) Same neurons as in (A) during blocking D1Rs. 

(C) TIs of selective neurons in delay 1 period obtained during drug application 

plotted against TIs in control conditions. Each dot corresponds to one neuron. 

(D) Mean TIs over neurons in (C) for control and drug conditions. 

(E) Same conventions as in (C) for PEV (ω2). 
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(F) Same conventions as in (D) for PEV (ω2). 

(G) Same conventions as in (C) for AUROCs. 

(H) Same conventions as in (D) for AUROCs. 

 (I) Regression analysis for all neurons recorded with SCH23390 (n = 85). Same 

conventions as in Figure 4E for SCH23390. 

(J) Same conventions as in Figure 4F for SCH23390. Gray areas denote analysis 

windows. Error bars and colored areas represent SEMs. p-values of signed rank 

tests, n.s. not significant (p > 0.05) (bootstrapping or signed rank tests). 

 

Figure S5. NaCl control did not produce any effect. 

(A) Average normalized population response for all numerosity-selective neurons 

(n = 8) recorded with saline (NaCl) in control conditions. 

(B) Same neurons as in (A) after NaCl application. 

(C) TIs of selective neurons in delay 1 period obtained during NaCl application 

plotted against TIs in control conditions. Each dot corresponds to one neuron. 

(D) Mean TIs over neurons in (C) for control and saline conditions. 

(E) Same conventions as in (C) for PEV (ω2). 

(F) Same conventions as in (D) for PEV (ω2). 

(G) Same conventions as in (C) for AUROCs. 

(H) Same conventions as in (D) for AUROCs. 

(I) Regression analysis for all neurons recorded with saline (n = 67). Same 

conventions as in Figure 4E for NaCl application. 

(J) Same conventions as in Figure 4F for NaCl application. 

(K) PCA analysis for NaCl experiments. Same conventions as in Figure 5E for NaCl 

application. 

(L) Same conventions as Figure 5F for NaCl application. Gray areas denote analysis 

windows. Error bars and colored areas represent SEMs. p-values of signed rank 

tests, n.s. not significant (p > 0.05) (bootstrapping or signed rank tests). 

 

Figure S6. Control analyses for regression results (quinpirole). 

(A) Results (conventions as in Figure 4E) by simulating data using a Poisson 

process and the same amount of numerosity coding in the delay period as well as 

the same amount of drug-induced changes in overall spiking activity as in the real 

data. “Stimulation” with quinpirole (red) did not systematically change the 

difference between trajectories, showing that drug-induced effects cannot be 

explained by shifts in overall spiking activity. 
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(B) Simulation results for regression weights (conventions as in Figure 4F) in 

control (black) or “drug” conditions (red). 

(C) Same conventions as in Figure 4E using only half of the trials for analysis 

(cross-validation set 1). 

(D) Same conventions as in Figure 4F using only half of the trials for analysis 

(cross-validation set 1). 

(E) Same conventions as in Figure 4E using only the other half of the trials for 

analysis, i.e. not overlapping with data used in (C and D) (cross-validation set 2). 

(F) Same conventions as in Figure 4F using only the other half of the trials for 

analysis, i.e. not overlapping with data used in (C and D) (cross-validation set 2). 

D2R stimulation shows comparable effects for cross-validation as the results 

shown in Figure 4. Gray shaded areas denote analysis windows, error bars 

represent SEMs (estimated by bootstrapping), *** p < 0.001, * p < 0.05, † p < 0.1, n.s. 

not significant (p > 0.1) (bootstrapping in (A,C,E) and signed rank in (B,D,F) right 

panels). 

 

Figure S7. Control analyses for PCA results (quinpirole). 

(A) Results (conventions as in Figure 5E) by simulating data using a Poisson 

process and the same amount of numerosity coding in the delay period as well as 

the same amount of drug-induced changes in overall spiking activity as in the real 

data. “Stimulation” with quinpirole (red) did not systematically change the 

distance of trajectories (inset), showing that drug-induced effects are not a 

consequence of a general change in spiking activity. 

(B) Conventions as Figure 5F for simulations results. 

(C) Same conventions as in Figure 5E using only half of the trials for analysis 

(cross-validation set 1). 

(D) Same conventions as in Figure 5F using only half of the trials for analysis 

(cross-validation set 1). 

(E) Same conventions as in Figure 5E using only the other half of the trials for 

analysis, i.e. not overlapping with data used in (C and D) (cross-validation set 2). 

(F) Same conventions as in Figure 5F using only the other half of the trials for 

analysis, i.e. not overlapping with data used in (C and D) (cross-validation set 2). 

D2R stimulation shows comparable effects for cross-validation as the results 

shown in Figure 5. Gray shaded areas denote analysis windows, error bars 

represent SEMs (estimated by bootstrapping), ** p < 0.01, * p < 0.05, † p < 0.1, n.s. 

not significant (p > 0.1) (bootstrapping). 
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Figure S8. Control analyses for PCA results (SKF81297). 

(A) Results (conventions as in Figure 5E) by simulating data using a Poisson 

process and the same amount of numerosity coding in the delay period as well as 

the same amount of drug-induced changes in overall spiking activity as in the real 

data. “Stimulation” with SKF81297 (red) did not systematically change the distance 

of trajectories (inset), showing that drug-induced effects are not a consequence of a 

general change in spiking activity. 

(B) Conventions as Figure 5F for simulations results. 

(C) Same conventions as in Figure 5E using only half of the trials for analysis 

(cross-validation set 1). 

(D) Same conventions as in Figure 5F using only half of the trials for analysis 

(cross-validation set 1). 

(E) Same conventions as in Figure 5E using only the other half of the trials for 

analysis, i.e. not overlapping with data used in (C and D) (cross-validation set 2). 

(F) Same conventions as in Figure 5F using only the other half of the trials for 

analysis, i.e. not overlapping with data used in (C and D) (cross-validation set 2). 

D1R stimulation shows comparable effects for cross-validation as the results 

shown in Figure 6. Gray shaded areas denote analysis windows, error bars 

represent SEMs (estimated by bootstrapping), ** p < 0.01, * p < 0.05, † p < 0.1, n.s. 

not significant (p > 0.1) (bootstrapping). 
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Experimental Procedures
(partly to be moved to Supplemental Information)

Animals and surgical procedures
Two male rhesus monkeys (Macaca mulatta) were implanted with a titanium head
post and one recording chamber centered over the principal sulcus of the lat-
eral PFC, anterior to the frontal eye fields (right hemispheres in both monkeys).
Surgery was conducted using aseptic techniques under general anaesthesia. Struc-
tural magnetic resonance imaging was performed before implantation to locate
anatomical landmarks. All experimental procedures were in accordance with the
guidelines for animal experimentation approved by the authority, the Regierungs-
präsidium Tübingen, Germany.

Task
Monkeys performed a memory-guided decision-making task, comparing sample
numerosities (set sizes) with test numerosities. They initiated a trial by grasp-
ing a lever and maintaining central fixation on a screen. After a pure fixation
period (500 ms), a sample stimulus (500 ms) cued the animals for the reference
numerosity (i.e., number of dots) they had to remember in the subsequent mem-
ory delay period (delay 1, 1,000 ms) without numerosities. The first memory
interval was followed by a rule-cue (300 ms) that instructed the monkeys to se-
lect either a larger number of dots (“greater than” rule) or a smaller number of
dots (“less than” rule) than the sample numerosity in the subsequent test phase.
The test phase was preceded by a second delay (delay 2, 1,000 ms) requiring the
monkeys to assess the rule at hand for the subsequent choice. In the following
test 1 phase, the monkeys had to release the lever in a “greater than” trial, if
the number of items in the test display was larger than the number of items in
the sample display, or to keep holding the lever for another 1,200 ms until the
appearance of a second test display (test 2), if the number of items in the test
display was smaller than the number of items in the sample display. In a “less
than” trial, these conditions were reversed. Monkeys got a liquid reward for a
correct choice. Thus, only test 1 required a decision; test 2 was used so that a
behavioral response was required in each trial, ensuring that the monkeys were
paying attention during all trials. Because both sample and test numerosities var-
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ied randomly, the monkeys could only solve the task by assessing the numerosity
of the test display relative to the three possible numerosities of the sample dis-
play together with the appropriate rule in any single trial. To test a range of
numerosities, both monkeys were presented with numerosities 2 (smaller test nu-
merosity = 1, larger test numerosity = 4), 8 (4:16), and 32 (16:64). For any sample
numerosity, test numerosities were either larger or smaller with equal probability
(p = 0.5). Because the monkeys numerosity discrimination performance obeys
the Weber–Fechner law (Nieder et al., 2002), numerosities larger than the sample
numerosity need to be numerically more distant than numerosities smaller than
the sample numerosity to reach equal discriminability. Based on this design, any
test numerosity (except the smallest and largest used) served as test numerosi-
ties for different sample numerosities, thus preventing the animals from learning
systematic relations between numerosities.
To prevent the animals from exploiting low-level visual cues (e.g., dot density,
total dot area), a standard numerosity protocol (with dot sizes and positions
pseudo-randomized) and a control numerosity protocol (with equal total area
and average density of all dots within a trial) were each presented in 50 % of the
trials in a pseudo-randomized fashion. Each rule was signified by two different
rule-cues in two different sensory modalities: a red circle (“greater than” rule,
red color) or a white circle with a drop of water (“greater than” rule, water) sig-
nified the rule “greater than”. The “less than” rule was cued by a blue circle
(“less than” rule, blue color) or a white circle with no water (“less than” rule,
no-water). We showed in previous studies that monkeys generalize the numerical
principles “greater than” and “less than” to numerosities they had never seen be-
fore (Bongard and Nieder, 2010). Before each session, the displays were generated
anew using MATLAB (Mathworks). Trials were randomized and balanced across
all relevant features (sample numerosities, “greater than” and “less than” rules,
rule-cue modalities, standard and control stimuli, match and non-match trials).
Monkeys had to keep their gaze within 1.75 ◦ of the fixation point from the fixa-
tion interval up to the onset of the first test stimulus (monitored with an infrared
eye-tracking system; ISCAN, Burlington, MA).

Electrophysiology and iontophoresis
Extracellular single-unit recording and iontophoretic drug application was per-
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formed as described previously (Jacob et al., 2013; Ott et al., 2014). In each
recording session, up to three custom-made tungsten-in-glass electrodes flanked
by two pipettes each were inserted transdurally using a modified electrical micro-
drive (NAN Instruments). Single neurons were recorded at random; no attempt
was made to preselect the neurons to any task-related activity or based on drug
effects. Signal acquisition, amplification, filtering, and digitalization were accom-
plished with the MAP system (Plexon). Waveform separation was performed
offline (Offline Sorter; Plexon). Drugs were applied iontophoretically (MVCS
iontophoresis system; npi electronic) using custom-made tungsten-in-glass elec-
trodes flanked by two pipettes each (Thiele et al., 2006; Jacob et al., 2013; Ott et
al., 2014). Electrode impedance and pipette resistance were measured after each
recording session. Electrode impedances were 0.8–3 MΩ (measured at 500 Hz;
Omega Tip Z; World Precision Instruments). Pipette resistances depended on the
pipette opening diameter, drug, and solvent used. Typical resistances were 15–
50 MΩ (full range, 12–160 MΩ). As in previous experiments (Jacob et al., 2013;
Ott et al., 2014), we used retention currents of –7 nA to hold the drugs in the
pipette during control conditions. The ejection current for SKF81297 (10 mM in
double-distilled water, pH 4.0 with HCl; Sigma-Aldrich) was +15 nA, the ejec-
tion current for SCH23390 (10 mM in double-distilled water, pH 4.0 with HCl;
Sigma-Aldrich) was +25 nA, and the ejection current for quinpirole (10 mM in
double-distilled water, pH 4.0 with HCl; Sigma-Aldrich) was +40 nA. In control
experiments with 0.9 % physiological NaCl, pH 4.0 with HCl, the ejection current
was +25 nA. We did not investigate dosage effects and chose ejection currents to
match the values reported to be maximally effective, i.e., in the peak range of
the ‘inverted-U’ (Wang et al., 2004; Vijayraghavan et al., 2007). One pipette per
electrode was filled with drug solution (either SKF81297, SCH23390, quinpirole,
or NaCl), and the other always contained 0.9 % NaCl. In each recording session,
control conditions using the retention current alternated with drug conditions us-
ing the ejection current. Drugs were applied continuously for 12–15 min (drug
conditions), depending on the number of trials completed correctly by the ani-
mal. Each control or drug application block consisted of 72 correct trials to yield
sufficient trials for analysis. The first block (12–15 min) was always the control
condition. Given that iontophoretic drug application is fast and can quickly mod-
ulate neuronal firing properties (Jacob et al., 2013), we did not exclude data at the
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current switching points.

Data analysis
Selection criteria
All well-isolated recorded single units with a baseline spike rate above 0.5 Hz
(determined in the 500 ms fixation period preceding sample presentation) and
with at least 15 trials for each of the three sample numerosities in each control
and drug condition entered all subsequent analyses. Neurons were not included
based on drug effects.

Numerosity-selective neurons
We calclated a two-way ANOVA for each neuron to determine if a neuron’s re-
sponse was correlated with sample numerosities in the memory delay period (de-
lay 1), thus representing a numerosity in working memory. We used spike rates in
a 800 ms window beginning 200 ms after sample offset, based on previous studies
(Bongard and Nieder, 2010). The main factors were numerosity (“2”/“8”/“32”)
and iontophoresis condition (control conditions/drug conditions). We identified
numerosity-selective neurons by a significant main factor of the factor numerosity
(p < 0.05). Since the monkeys behavior did not show any differences for stan-
dard and control stimuli (Extended Data Fig. 1), and because we have shown
previously that neuronal responses in the PFC do not differentiate between stan-
dard and control stimuli (Bongard and Nieder, 2010), we pooled over standard
and control stimuli trials.

Single-cell and population responses
For plotting single-cell spike density histograms, the average firing rate in tri-
als with one of the three different sample numerosities (correct trials only) was
smoothed with a Gaussian kernel (bin width of 200 ms, step of 1 ms). Tuning
curves were constructed by calculating mean spike rates in the same analysis
window used for the ANOVA. For the population responses, we defined a neu-
ron’s preferred numerosity as the numerosity yielding the higher average spike
rate in the analysis window used for the ANOVA, averaging over control and
drug trials. Accordingly, the intermediate and least preferred numerosities were
defined as the numerosities resulting in lower average spike rates. Neuronal ac-
tivity was normalized by subtracting the mean baseline firing rate in the control
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condition and dividing by the standard deviation of the baseline firing rates in the
control condition. For population histograms, normalized activity was averaged
and smoothed with a Gaussian kernel (bin width of 200 ms, step of 1 ms). Pop-
ulation tuning curves were calculated as the mean normalized activity for each
condition in the same analysis windows used for the ANOVA.

Neuronal information about sample numerosities
We estimated the information a single unit carried about the sample numerosity
during working memory by using three different quantifications. Calculations
were performed based on spike rates in the delay period using the same analysis
window as for the ANOVA. Additionally, we performed sliding window analysis,
using spike rates in overlapping 100 ms windows stepped in 10 ms increments
from fixation onset to the end of the delay 1 period. First, we defined a tuning
index (TI) by subtracting the neurons spike rate to the least preferred sample
numerosity from the spike rate of the preferred numerosity and dividing by the
sum, i.e.

TI =
FRpref − FRleastpref

FRpref + FRleastpref
. (1)

TIs vary between 0 and 1, expressing the relative (rather than absolute) differences
in spike rates between sample numerosities, where low values correspond to low
numerosity selectivity and high values correspond to high numerosity selectivity.
Second, we calculated the percent explained variance (PEV) using ω2, expressing
how much of a neurons spike rates can be explained by the sample numerosity
(Jacob and Nieder, 2014). ω2 is defined as

ω2 =
SSgroups − df ·MSE

SStotal + MSE
, (2)

where the individual terms are calculated using a one-way ANOVA using all three
sample numerosities as levels (pooled over control and drug condition). SSgroups

is the sum of squares between groups (sample numerosities), SStotal the total sum
of squares, df the degree of freedoms, and MSE the mean squared error. The num-
ber of trials in each group was balanced by stratifying the number of trials in each
group to the minimum trial number across groups, randomly selecting individual
trials. This process was repeated 25 times, and the mean of the stratified values
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was taken as the final statistic. ω2 is an unbiased, zero-mean statistic when there
is no information, while values above zero indicates the variance explained by the
sample numerosity (Jacob and Nieder, 2014). Third, sample numerosity coding
quality was quantified using receiver operating characteristic (ROC) analysis de-
rived from Signal Detection Theory. The area under the ROC curve (AUROC) is a
nonparametric measure of the discriminability of two distributions. It denotes the
probability with which an ideal observer can tell apart a meaningful signal from a
noisy background. Values of 0.5 indicate no separation, and values of 1 signal per-
fect discriminability. The AUROC takes into account both the difference between
distribution means as well as their widths and is therefore a suitable indicator of
signal quality. We used AUROCs to quantify the quality of sample numerosity
coding in the memory period. We calculated the AUROC for each neuron using
the spike rate distributions of the preferred and the least preferred numerosity in
the same analysis window used for the ANOVA.

Linear regression analysis
We used linear regression analysis to estimate the neuronal population coding of
numerosities in working memory, disentangling general drug-induced neuronal
activity changes and variability of neuronal responses explained by the numeros-
ity that might be mixed both at single neuron level and at the level of principal
components (Mante et al., 2013) (see below). By modeling interactions between
drug and sample numerosity, we defined numerosity-related axes for control and
drug conditions and projected the population response onto these axes, yield-
ing an estimate of the sample representation during working memory at popula-
tion level for control and drug conditions. We preprocessed single unit data first
by stratifying the number of trials in each condition, randomly selecting a fixed
amount of trials corresponding to the minimal amount of trials of all conditions.
Then we calculated, for each trial, spike rates in a 100 ms window and 50 ms steps
from fixation onset to the end of delay 1 period, yielding T = 41 time points, cov-
ering the first 2100 ms of each trial. Next, we z-scored spike rates by combining all
T time bins and trials, yielding response vectors ri,t of length Ntrials (total number
of trials) for each neuron i and each time bin t. Population responses were defined
as matrices xcon

s of size n × T (n number of neurons and T = 41 time bins) for
each sample numerosity s and drug condition con (control or drug), with xcon

s (i, t)
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(i = 1, ..., n; t = 1, ..., T) for each neuron i and time point t defined as the mean
over trials of ri,t, containing trials of sample numerosity s and condition con.
Then we performed linear regression similar to Mante et al. (2013). For each time
bin and neuron, we described the i-th neuron’s response in trial j at time t as a
linear combination of spike rates depending on numerosity, drug conditions, and,
importantly, an interaction between numerosity and drug condition:

ri,t(j) = βi,t(1) · num(j) + βi,t(2) · drug(j) + βi,t(3) · num(j) · drug(j) + βi,t(4), (3)

where βi,t(k) (k = 1, ..., 3) describe how much of the trial-by-trial variability of
neuron i at the point t depends on the task variable k. βi,t(4) captures variance
independent of task variables and describes differences in responses across time.
For numerosities, we set num(j) to 1, 2, or 3 depending on the numerosity type
shown in trial j (preferred numerosity: 3, intermediate preferred numerosity:
2, least preferred numerosity: 1). We used contrast coding to code the drug
condition, i.e. set drug(j)= −1, if trial j was a control trial, and drug(j)= 1, if trial
j was a drug trial. To estimate the regression coefficients βi,t, we constructed a
design matrix Fi of size Ncoe f × Ntrials, where Ncoe f is the number of coefficients
to be estimated (Ncoe f = 4) and Ntrials the number of total trials of neuron i.
Each row of Fi contains the values of the coding variables for numerosity, drug,
numerosity and drug interactions for each trial j as described above. The last row
consists of ones. The regression coefficients can then be estimated as

βi,t = (FiFT
i )F−1

i · ri,t, (4)

where Fi is the design matrix, ri,t a column vector of length Ntrial containing
the trial-by-trial spike rates of neuron i at time point t, and βi,t is a vector of
length Ncoe f containing the estimated regression coefficients. We performed this
calculation for each time point t and each neuron i. We then rearranged βi,t(k)
(k = 1, ..., 4) to βk,t(i) (i = 1, ..., n), where each βk,t represents a direction in n-
dimensional state space, corresponding to the direction along which the corre-
sponding task variable (i.e., numerosity and drug condition) is represented at the
level of neuronal population over time. To estimate numerosity coding, we de-
fined a numerosity related axis (i.e., directions in n-dimensional state space) for
control and drug conditions separately by using the interaction term. For control
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conditions,
βcontrol

num,t = β1,t − β3,t, (5)

and for drug conditions
β

drug
num,t = β1,t + β3,t, (6)

where each βk,t is a n-dimensional vector, i.e. βcontrol
num,t and β

drug
num,t are n-dimensional

vectors describing, for each time point t, directions in state space that correspond
to the axis representing numerosity for control and drug conditions, respectively.
To define time-independent axes in state space during working memory, we cal-
culated the mean direction in delay 1 period (same analysis window used for the
ANOVA, corresponding to time bins Tdelay = 25, ..., 40, #Tdelay = 16) over time, i.e.

βcontrol
num =

∑t∈Tdelay
βcontrol

num,t

#Tdelay
, (7)

and

β
drug
num =

∑t∈Tdelay
β

drug
num,t

#Tdelay
, (8)

each, again, n-dimensional vectors in state space, describing, time-independently,
directions in state space that correspond to the axes representing numerosity for
control and drug conditions during working memory. We then projected the
neuronal population response xcon

s for each numerosity s (s = 1, 2, 3) and drug
condition con (con=control/drug) onto the numerosity axis, yielding estimates of
the population’s amount of numerosity representation at time point t. Specifically,
we calculated for each numerosity s the projection as

pcontrol
s = βcontrol

num · xcontrol
s , (9)

and
pdrug

s = β
drug
num · xdrug

s , (10)

with βcontrol
num and β

drug
num vectors of length n, xcon

s (s = 1, 2, 3, con=control/drug)
matrices of size n× T (T = 41 time points), yielding a series of time-dependent
projection vectors pcon

s (s = 1, 2, 3, con=control/drug) of length T, quantifying the
numerosity evidence for numerosity s in control and drug conditions.
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To assess statistical significance, we calculated the mean ∆pcon between all pair-
wise numerosity combinations for control and drug conditions in the delay period
(using the same analysis window as used for the ANOVA) and used bootstrap-
ping (with 999 repitions) to estimate standard errors and confidence intervals. Ad-
ditionally, we confirmed results by shuffling control and drug data 999 times and
estimating confidence intervals for the difference between control and drug con-
ditions from the shuffle data, yielding similar results. We used cross-validation
to confirm the above analysis, by computing two independent estimates, using
only every second trial in each calculation, i.e. using non-overlapping data. Both
estimates yielded comparable results. Additionally, we performed the analysis us-
ing simulated data to test if the observed effects are due to simple drug-induced
shifts in overall spiking activity. To achieve comparable results, we simulated
each neuron by using the same amount of trials for that neuron, the same mean
spike rate M (combining all conditions), the same amount of numerosity cod-
ing Us for each sample numerosity s (combining control and drug conditions
and using differences to M for all numerosities in the delay period, same anal-
ysis window as used for the ANOVA), and the same amount of drug-induced
changes in spiking activity D (using the mean difference of spike rates for con-
trol and drug conditions, combining all numerosity stimuli). We then simulated
the neuron’s response over time using a Poisson process with a mean spike rate
of R = M during fixation and sample period for all trials in all conditions, and
a mean spike rate of Rs = M + Us for trials with numerosity s in control con-
ditions and Rs = M + Us + D for drug conditions. We repeated the simulation
1000 times and performed regression analysis in exactly the same way, calculating
mean estimates and confidence intervals of all parameters. Confirming our pre-
vious results, simulated data showed no systematic differences between control
and drug conditions. Thus, the reported results are unlikely a consequence of
changes in overall spiking activity but rather induced by interaction between the
drug and the numerosity representations not captured by the simulation, i.e. by
specific actions of the drug on working memory signals that cannot be produced
by general changes in network activity.

Principal component analysis
We performed principal component analysis (PCA) to represent the population
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activity of n = 76 single units in a low-dimensional subspace, extracting shared
activity patterns prominent in the population response (Cunningham and Yu,
2014). Neuronal population activity at time t in condition c can be represented
by a n-dimensional vector in n-dimensional space, where each dimension corre-
sponds to one single unit (i.e., n = 76 dimensions). PCA corresponds to a change
of basis, where each basis vector is defined by its direction in n-dimensional space,
determining directions of maximal covariance. By using the first three directions
capturing the largest amount of variance, or principal components (PCs), neu-
ronal population activity can be represented in 3-dimensional space. We pre-
processed single unit data as for regression analysis, stratifying number of trials,
binning windows of 100 ms and steps of 50 ms, and z-scoring by combining all
trials from all conditions. We then calculated trial-averaged responses by averag-
ing all trials of the same condition, yielding one vector of length T = 41 for each
condition c (c = 1, ..., C) and neuron i (i = 1, ..., n). As in the previous analyses, we
defined C = 6 conditions corresponding to each combination of numerosity (pre-
ferred, intermediate preferred, least preferred as defined above) and drug condi-
tion (control, drug application). We constructed the n-dimensional population re-
sponse P by considering the activity of all neurons in each time bin and condition
as pseudo-simultaneous, yielding a TC× n matrix. For PCA, we used MATLAB’s
princomp(P) function to calculate the PCA scores S, i.e. the neuronal population
activity after change of basis. We represented neuronal population activity by
using the first three PCs capturing the largest amount of variance in population
response, accounting for 42 % (for quinpirole data) of the total variance, yielding
3-dimensional trajectories in state space. To quantify the population’s discrim-
inability between numerosities, we calculated the Euclidean distance between the
population trajectories in state space, using the full n-dimensional space. The dis-
tance d at each time point t (t = 1, ..., T) between two trajectories of conditions c1

and c2 is defined as

dt(c1, c2) =

√
n

∑
i=1

(Sc1(t, i)− Sc2(t, i))2, (11)

where Sc is sub-matrix of S containing T rows of condition c. This yields time-
dependent distance estimates for all three numerosity combinations for control
and drug conditions. Distances were normalized to baseline (500 ms fixation pe-
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riod preceding sample onset) for control and drug condition by subtracting the
mean distance in the baseline period from each time point. Mean distance was the
average distance over all sample combinations for control and drug conditions.
To assess statistical significance, we calculated the mean distance in the delay 1
period (same analysis window as used for the ANOVA) for all numerosity combi-
nations and used bootstrapping (with 999 repetitions) to estimate standard errors
and confidence intervals for control and drug conditions.
To assess the dynamics of neuronal population responses, we calculated the speed
by which population trajectories travelled through state space (Stokes et al., 2013).
The velocity was defined as the Euclidean distance between two adjacent points
in time within the same condition (as opposed to two points at the same time,
but from different condition), divided by the time between those points, i.e. 50 ms
(since we used step = 50 ms steps). Thus, the velocity v at time t of condition c is
given by

vt,c =

√
n

∑
i=1

(Sc(t, i)− Sc(t + 1, i))2 · step−1, (12)

yielding a time-dependent instantaneous velocity of neuronal trajectories for each
condition c. As above, we baseline normalized velocities by subtracting the mean
velocity in the baseline period. Mean velocity vt was the average velocity over all
sample numerosities for control and drug conditions. Additionally, we quantified
the distance the trajectories travelled through state space by integrating the mean,
time-dependent, velocity vt over time (t = 1, ..., T − 1), i.e.

s =
T−1

∑
t=1

vt · step. (13)

To assess statistical significance, we calculated the mean velocity in the beginning
of the delay period (300 ms window starting with sample offest) of all numerosi-
ties and used bootstrapping (with 999 repetitions) to estimate standard errors and
confidence intervals for control and drug conditions. As above, we confirmed
all statistical analyses using shuffled data, yielding comparable statistical results.
Additionally, we confirmed PCA analysis cross-validation and simulated data.

Neuronal network model
Model architecture and descriptions from synaptic currents are taken from Brunel
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Table S1: Parameters of leaky integrate-and-fire neurons.

Parameter Pyramidal cells Interneurons

VL −70 mV −70 mV

Vthr −50 mV −50 mV

Vreset −55 mV −55 mV

Cm 0.5 nF 0.2 nF

gm 25 nS 20 nS

τm 2 ms 1 ms

et al. (2001) and Wang (2002). The cortical network model is characterized by a
spontaneous activitiy state and a persistent activity state, modeling persistent de-
lay activity found during working memory. Persistent activity is largely mediated
by recurrent excitatory connections with NMDA synapses, while the spontaneous
activity state is dominated by GABA inhibition (Brunel et al., 2001).
The model consists of NE = 2000 excitatory pyramidal cells and NI = 500 in-
hibitory interneurons. The network is fully connected, i.e. each neuron receives
CE = NE = 2000 ecitatory connections from pyramidal cells and CI = NI = 500
inhibitory connections from interneurons. Additionally, each neuron receives ex-
citatory Poisson input from Cext = 800 neurons arriving with a mean rate of
3 Hz, corresponding to a background external input to each cell of vext = 2.4 kHz,
independent from cell to cell.
Pyramidal cells and interneurons are described by leaky intergrate-and-fire neu-
rons. All parameters were identical to the parameters used by Brunel et al. (2001)
(see Table S1). Neurons are characterized by a resting potential VL, a firing thresh-
old Vthr, a reset potential Vreset, a membrane capacitance Cm, a membrane leak
conductance gm, and a refractory period τm. Below threshold, the membrane
potential V(t) is described by the differential equation

Cm
dV(t)

dt
= −gm(V(t)−VL)− Isyn(t), (14)

where Isyn(t) models the summed synaptic current flowing into the cell. When
the membrane potential V(t) reaches the firing threshold Vthr, the neuron elicits
and a spike and the membrane potential V(t) is set to Vreset.
Total synaptic current consists of four components, corresponding to four synapses,
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an AMPA current from recurrent excitatory connections, a NMDA current from
recurrent excitatory connections, a GABA current from recurrent inhibitory con-
nections, and an AMPA current from external inputs, i.e.

Isyn(t) = IAMPA(t) + INMDA(t) + IGABA(t) + IAMPA,ext, (15)

where individual currents depend on conductances g and reversal potentials VE =

0.0 mV and VI = −70 mV, i.e.

IAMPA(t) = gAMPA(V(t)−VE)
CE

∑
j=1

wjsAMPA
j (t), (16)

INMDA(t) =
gNMDA(V(t)−VE)

1 + 0.2801e−0.062V(t)

CE

∑
j=1

wjsNMDA
j (t), (17)

IGABA(t) = gGABA(V(t)−VI)
CI

∑
j=1

sGABA
j (t), (18)

IAMPA,ext(t) = gAMPA,ext(V(t)−VE)
Cext

∑
j=1

sAMPA,ext
j (t). (19)

The sum over j represents the sum over all synaptic connections formed by presy-
naptic neuron j. The dimensionless wj describe the synaptic weight of connection
j, allowing for structured connections (see below). The gating variables sj describe
the time course of the fraction of open channels, depending on a time constant τ

and the time of a presynaptic spike. For both recurrent and external AMPA, we
described sAMPA

j by

dsAMPA
j (t)

dt
= −

sAMPA
j (t)

τAMPA
+ ∑

k
δ(t− tk

j ), (20)

where the sum over k represents the spike train of presynaptic neuron j. NMDA
channels are described by two differential equations, corresponding to the rise
time τNMDA,rise and decay time τNMDA,decay, expressed by

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA,decay
+ αxj(t)(1− sNMDA

j (t)), (21)
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Table S2: Parameters of synaptic equations.

Synapse Parameter Pyramidal cells Interneurons

AMPA gAMPA 0.02 nS 0.016 nS

gAMPA,ext 2.1 nS 1.62 nS

τAMPA 2 ms 2 ms

NMDA gNMDA 0.066 nS 0.052 nS

τNMDA,rise 2 ms 2 ms

τNMDA,decay 100 ms 100 ms

α 0.5 kHz 0.5 kHz

GABA gGABA 0.52 nS 0.4 nS

τGABA 10 ms 10 ms

dxj(t)
dt

= − xj(t)
τNMDA,rise

+ ∑
k

δ(t− tk
j ). (22)

GABA channels were described by

dsGABA
j (t)

dt
= −

sGABA
j (t)

τGABA
+ ∑

k
δ(t− tk

j ). (23)

All synapses had a latency of 0.5 ms. All equations and parameters used for
describing synapses were identical as used by Brunel et al. (2001), using their
large simulations, and are listed in Table S2. Interneurons are characterized by
lower conductances in general, in particular NMDA conductances (Table S2).
We structured the network by manipulating the connection weights for excitatory
recurrent connections wj (Brunel et al., 2001; Wang, 2002). Within the pyrami-
dal cell group, we defined three subgroups that represent a selective group for
one stimulus each, i.e. for one numerosity. Each group consisted of a fraction
f = 0.1 of the overall population size, i.e. of Nselective = f NE = 200 neurons.
Crucially, within one selective group, recurrent excitatory connections had the
weight w+ = 1.9 > 1, whereas between selective group, weights were set to
w− = 1− f w+−1

1− f < 1, to keep the overall amount excitatory drive constant (Brunel
et al., 2001). Connections from selective neurons to neurons in the non-selective
group, as well as from selective neurons to interneurons, had the weight wj = 1.0.
Connections from the non-selective group to the selective group had the weight
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wj = w−.
To simulate network activity during the working memory task, we recorded the
activity (i.e., time of spikes) of all neurons in the network for thee seconds. After a
baseline period of one second, we stimulated one of the three selective pyramidal
cell groups for 500 ms by increasing the total external input for all neurons in this
group by µ = 80 Hz. Thus, stimulation increased external drive by about 3 %.
Stimulation was followed by a delay period of 1.5 s, during which the external
drive was again the same for all neurons in the network (i.e., no stimulation).
For analysis, we systematically varied specific parameters and conducted simula-
tions using the full network. Simulations were performed with Python and the
Brian simulator module (http://www.briansimulator.org) (Goodman and Brette,
2009), using integration steps of dt = 0.1 ms. Population activity was calculated
by using 50 ms bins. The network’s persistent activity was defined as the aver-
age population activity of the stimulated selective group during the delay period,
using a 1-sec window at the end of the delay phase. Spontaneous activity was
defined as the average population activity of the same selective group in a 1-sec
window preceding stimulation.
We systematically varied GABA conductances on pyramidal cells only with a
range of 5 % and AMPA conductances on interneurons only with a range of
about 15 %. For combined modulation of both conductances, i.e. proposed D2R
modulation, we used the same range of values. Explicitly, we multiplied the
AMPA conductances with a factor fAMPA by the artificial D2R modulation in-
dex MD2R, e.g. for MD2R = 1.1, fAMPA = 1.1, corresponding to an increase of
AMPA conductances by 10 %. GABA conductances were multiplied with factor
fGABA = c(MD2R − 4.2) with constant c such that for MD2R = 1, fAMPA = 1 and
fGABA = 1, e.g. for MD2R = 1.1, fGABA = 0.97, corresponding to a decrease of
GABA conductances by 3 %.
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Study 4: Dopamine receptor modulation of reward signals

Ott, T., Stein, A. M., Nieder, A. (in preparation). Dopamine D1 and D2 receptors oppo-
sitely modulate reward signals in primate prefrontal cortex neurons.
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Abstract 

In the prefrontal cortex, different types of information are integrated to enable 

goal-directed behavior. The dopamine system innervates prefrontal networks, 

where it modulates information processing relevant for executive control. It 

remains unclear, however, how other types of information relevant to achieve 

goals are modulated by dopamine, such as the expected reward additionally 

represented by prefrontal neurons. Here we trained macaque monkeys on a 

reward-modulated working memory task, in which a reward cue at the 

beginning of each trial predicted the amount of reward for a correct choice at 

the end of a trial. We recorded from single units in the lateral prefrontal cortex 

while simultaneously stimulating dopamine D1 receptor (D1R) or dopamine D2 

receptor (D2R) families using micro-iontophoresis. Stimulating D1Rs did not 

change responses to the reward cue itself, but impaired representations of 

reward expectancy during the delay period preceding sample presentation. 

This modulation depended on the strength of the modulation of spontaneous 

activity, which was generally inhibited by D1Rs. In contrast, D2R stimulation 

enhanced representations of reward expectancy signals in both cue and delay 

periods independently of modulation of spontaneous activity, which was 

generally excitatory. Thus, dopamine receptors oppositely modulated reward 

signals in primate prefrontal cortex neurons. These results suggest a distinct 

modulation of reward signals and cognitive signals by prefrontal dopamine, 

supporting the hypothesis that dopamine acts via different mechanism to 

control motivation and cognition. 
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Introduction 

The prefrontal cortex (PFC) mediates executive control functions to guide goal-

directed behavior (Miller and Cohen, 2001). Single units in the PFC represent a 

variety of information related to executive control through persistent activity 

during behavior, such as working memory (Goldman-Rakic, 1995), categories 

(Nieder, 2002), and rules (Bongard and Nieder, 2010; Wallis et al., 2001). To 

achieve goals, other types of information are also relevant. For example, PFC 

neurons signal the value of goals by representing reward expectancy 

(Watanabe, 1996). Reward signals modulate cognitive signals in the PFC by 

increasing the representation of spatial memory signals for larger expected 

rewards (Amemori and Sawaguchi, 2006; Kennerley and Wallis, 2009; Leon and 

Shadlen, 1999; Roesch and Olson, 2003). Thus, PFC likely integrates reward 

signals and cognitive signals to mediate goal-directed behavior (Matsumoto et 

al., 2003; Watanabe, 2007). 

The PFC is strongly innervated by the midbrain dopamine system acting via 

prefrontal dopamine D1 receptor (D1R) and dopamine D2 receptors (D2R) 

families (Björklund and Dunnett, 2007). Dopamine neurons fire phasic bursts 

with short latencies in response to important sensory events (Matsumoto and 

Hikosaka, 2009; Matsumoto and Takada, 2013; Schultz et al., 1997), in particular 

to reward predicting stimuli with larger bursts for larger rewards (Tobler et al., 

2005). Behaviorally, larger rewards improve performance of monkeys in 

working memory tasks, reduce abortion of trials and reduce reaction times 

(Kennerley et al., 2009; Leon and Shadlen, 1999), likely by increasing motivation 

(Roesch and Olson, 2004). In PFC, dopamine modulates a variety of cognitive 

control functions (Robbins and Arnsten, 2009), including spatial working 

memory (Vijayraghavan et al., 2007; Williams and Goldman-Rakic, 1995), the 

representation of categories in working memory (Ott and Nieder, submitted), 
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abstract rules (Ott et al., 2014), and associations (Puig and Miller, 2012, 2015) via 

both D1Rs and D2Rs. D1R stimulation improves tuning of spatial working 

memory representations (Vijayraghavan et al., 2007) as well as representations 

of abstract rules (Ott et al., 2014), while blocking D1Rs has mixed effects on 

spatial working memory representations (Sawaguchi, 2001; Williams and 

Goldman-Rakic, 1995) and impairs representations of abstract rules in the PFC 

(Ott et al., 2014). D2R stimulation, on the other hand, improves both working 

memory representations (Ott and Nieder, submitted) and representations of 

abstract rules (Ott et al., 2014). 

However, it remains unknown if prefrontal dopamine receptors modulate 

reward signals that are present in the PFC. Hypothetically, dopamine could act 

primarily on prefrontal reward signals that modulate memory processing, 

suggesting a common mechanism for dopamine modulation of reward and 

cognitive signals. Alternatively, dopamine could modulate prefrontal reward 

and memory signals independently, as suggested by recent recordings from 

midbrain dopamine neurons reporting that distinct populations of dopamine 

neurons were active during reward prediction and cognitive control 

(Matsumoto and Takada, 2013). 

Here, we trained two macaque monkeys to perform a reward-modulated 

working memory task, in which a reward cue predicted the amount of reward 

the animals received for a correct choice. By specifically stimulating prefrontal 

D1Rs or D2Rs, we investigated dopamine receptor modulation of reward 

signals in prefrontal neurons. Contrary from findings for working memory and 

cognitive control (Ott and Nieder, submitted; Ott et al., 2014; Vijayraghavan et 

al., 2007), we found an opposite modulation of reward signals by D1Rs and 

D2Rs, suggesting that dopamine regulation of reward and cognitive signals 

might be implemented by distinct mechanisms. 
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Methods 

Animals and surgical procedures 

Two male rhesus monkeys (Macaca mulatta) were implanted with a titanium 

head post and one recording chamber centred over the principal sulcus of the 

lateral PFC, anterior to the frontal eye fields (right hemispheres in both 

monkeys). Surgery was conducted using aseptic techniques under general 

anaesthesia. Structural magnetic resonance imaging was performed before 

implantation to locate anatomical landmarks. All experimental procedures were 

in accordance with the guidelines for animal experimentation approved by the 

authority, the Regierungspräsidium Tübingen, Germany. 

 

Task 

Monkeys learned to perform a reward-modulated working memory task using 

a delayed matching-to-sample design. They initiated a trial by grasping a lever 

and maintaining central fixation on a screen. After a pure fixation period 

(500 ms), a reward cue (300 ms) cued the reward size the monkeys would get 

for a correct choice at the end of trial. The reward cue was followed by a delay 

period (delay 1. 1,000 ms) without visual cues. Then a visual sample stimulus 

was presented (600 ms) that monkeys had to memorize during the subsequent 

delay period (delay 2, 1,000 ms). After the delay period, a test stimulus was 

shown, which was either the same visual item as presented during the sample 

period (match trial, 50 % of trials) or a different visual item (non-match trial, 

50 % of trials). To make a correct choice, monkeys were required to release a 

lever during test 1 only if the same matching stimulus appeared and to keep 

holding the lever for another 1,000 ms if a non-matching stimulus appeared, 

which was followed by the test 2 phase showing always a matching stimulus, 
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during which the monkeys had to release the lever (1,000 ms). Thus, only test 1 

required a decision; test 2 was used so that a behavioral response was required 

in each trial, ensuring that the monkeys were paying attention during all trials. 

Monkeys got a liquid reward for a correct choice with the amount of liquid 

determined by the reward cue shown in the beginning of each trial, 

corresponding to the reward size. We used two reward sizes and two reward 

cue sets, i.e. 4 different reward cues in total. In the color cue set, a red square 

indicated a large reward (monkey L 0.8 ml, monkey T 1.0 ml) and a blue square 

a small reward (monkey L 0.3 ml, monkey T 0.2 ml). Reward sizes ware 

adjusted so that both monkeys showed comparable behavioral performance 

and effects of cued reward size difference. In the shape set, a gray annulus 

indicated a large reward and a gray cross indicated a small reward (same 

reward amount). In each session, we used three new different, randomly 

selected visual items (downloaded from flickr) as sample stimuli. Each sample 

stimulus served also as non-matching stimulus and vice versa. Trials were 

pseudo-randomized and balanced across all relevant features (reward size, 

reward cue set, sample stimulus, match and non-match trial). Monkeys had to 

keep their gaze within 1.75° of the fixation point from the fixation interval up to 

the lever release indicating their choice (monitored with an infrared eye-

tracking system; ISCAN, Burlington, MA). If eye fixation was broken during the 

trial, the trial was aborted followed by a time-out (1,000 ms) and counted as a 

break trial for behavioral analysis. 

 

Electrophysiology and iontophoresis 

Extracellular single-unit recording and iontophoretic drug application was 

performed as described previously (Jacob et al., 2013; Ott et al., 2014). In each 

recording session, up to three custom-made tungsten-in-glass electrodes 
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flanked by two pipettes each were inserted transdurally using a modified 

electrical microdrive (NAN Instruments). Single neurons were recorded at 

random; no attempt was made to preselect the neurons to any task-related 

activity or based on drug effects. Signal acquisition, amplification, filtering, and 

digitalization were accomplished with the MAP system (Plexon). Waveform 

separation was performed offline (Offline Sorter; Plexon). Drugs were applied 

iontophoretically (MVCS iontophoresis system; npi electronic) using custom-

made tungsten-in-glass electrodes flanked by two pipettes each (Jacob et al., 

2013; Ott et al., 2014; Thiele et al., 2006). Electrode impedance and pipette 

resistance were measured after each recording session. Electrode impedances 

were 0.8–3 MΩ (measured at 500 Hz; Omega Tip Z; World Precision 

Instruments). Pipette resistances depended on the pipette opening diameter, 

drug, and solvent used. Typical resistances were 15–50 MΩ (full range, 12–

160 MΩ). As in previous experiments (Jacob et al., 2013; Ott et al., 2014), we 

used retention currents of –7 nA to hold the drugs in the pipette during control 

conditions. The ejection current for SKF81297 (10 mM in double-distilled water, 

pH 4.0 with HCl; Sigma-Aldrich) was +15 nA, and the ejection current for 

quinpirole (10 mM in double-distilled water, pH 4.0 with HCl; Sigma-Aldrich) 

was +40 nA. We did not investigate dosage effects and chose ejection currents to 

match the values reported to be maximally effective, i.e., in the peak range of 

the ‘inverted-U function’ (Ott et al., 2014; Vijayraghavan et al., 2007; Wang et al., 

2004). One pipette per electrode was filled with drug solution (either SKF81297 

or quinpirole), and the other always contained 0.9 % NaCl. In each recording 

session, control conditions using the retention current alternated with drug 

conditions using the ejection current. Drugs were applied continuously for 

about 12 min (drug conditions), depending on the number of trials completed 

correctly by the animal. Each control or drug application block consisted of 
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72 correct trials to yield sufficient trials for analysis. The first block (12 min) was 

always the control condition. Given that iontophoretic drug application is fast 

and can quickly modulate neuronal firing properties (Jacob et al., 2013), we did 

not exclude data at the current switching points.  

 

Data analyses 

Reward-selective neurons. All well-isolated recorded single units with a 

baseline spike rate above 0.5 Hz (determined in the 500 ms fixation period 

preceding sample presentation) and at least 12 trials in each reward size, 

reward cue set, and iontophoretic drug application condition (i.e., at least 96 

trials in total) entered the analyses. Neurons were not included based on drug 

effects. We calculated a 3-way ANOVA for each neuron to determine if a 

neuron’s response was correlated with reward expectancy using spike rates in 

two different analysis periods. The first analysis period, the cue phase, was 

defined using a 400 ms window beginning 100 ms after reward cue onset. The 

second analysis period, the delay period, was defined using a 900 ms window 

beginning 200 ms after sample offset, i.e. non-overlapping with the cue period. 

Main factors for each ANOVA were reward size (large/small), reward cue set 

(color set/shape set) and iontophoretic drug condition (control/drug 

application), including interaction terms. We labelled a neuron as selective for 

reward expectancy (reward-selective), if it showed a significant main effect of 

reward size (p < 0.05) and no significant main effect of reward cue set (p > 0.05) 

and no interaction between reward size and reward cue set (p > 0.05). Thus, we 

isolated neurons only representing reward expectancy signals. Analysis was 

independently repeated for the cue and the delay period. 

Single-cell and population responses. For plotting single-cell spike density 

histograms, the average firing rate in trials with one of the four different rule-
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cues (correct trials only) was smoothed with a Gaussian kernel (bin width of 

200 ms, steps of 1 ms) for visual presentation only. For the population 

responses, trials with rule-cues signifying the same numerical rule were pooled. 

A neuron’s preferred reward size was defined as the reward size (large or 

small) yielding the higher average spike rate in the analysis windows used for 

the ANOVAs. The nonpreferred reward size was defined as the reward size 

resulting in lower average spike rate. Neuronal activity was normalized by 

subtracting the mean baseline firing rate in the control condition and dividing 

by the standard deviation of the baseline firing rates in the control condition. 

For population histograms, normalized activity was averaged and smoothed 

with a Gaussian kernel (width of 200 ms, step of 1 ms) for visual presentation 

only. 

Tuning index and receiver operating characteristic analysis. We quantified the 

selectivity for reward expectancy for each neuron by calculating a tuning index 

(TI), defined as the difference in normalized response (normalized as above) 

between drug and control conditions using spike rates calculated in the same 

analysis windows as used for the ANOVAs. Rule coding quality was further 

quantified using receiver operating characteristic (ROC) analysis derived from 

Signal Detection Theory (Green and Swets, 1966). The area under the ROC 

curve (AUROC) is a nonparametric measure of the discriminability of two 

distributions. It denotes the probability with which an ideal observer can tell 

apart a meaningful signal from a noisy background. Values of 0.5 indicate no 

separation, and values of 1 signal perfect discriminability. The AUROC takes 

into account both the difference between distribution means as well as their 

widths and is therefore a suitable indicator of signal quality (Parker and 

Newsome, 1998). We used AUROCs to quantify the quality of reward 

expectancy coding. We calculated the AUROC for each neuron using the spike 
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rate distributions of the preferred and the nonpreferred reward size in the same 

analysis windows used for the ANOVAs.  

 

Results 

Two macaque monkeys learned a reward-modulated working memory task, in 

which they had to memorize a visual item on a screen for a short period of time 

to report in a subsequent test phase if they had seen the item before 

(Figure 1A,B). A reward cue at the beginning of each trial modulated the 

monkey’s reward expectancy in the delay period preceding the sample item, 

cueing either a large reward or a small reward for a correct choice at the end of 

each trial. Two reward cue sets based on color or shape were used two 

dissociate reward expectancy signals from sensory signals related to cue 

appearance (Figure 1C). 

The behavior of both monkeys was modulated by reward expectancy. 

Behavioral performance, i.e. percentage of correct trials, was slightly lower in 

trials with small reward expectancy in comparison to trials with large reward 

expectancy for both monkeys (Figure 1D,E, Δperformance = 3.1 % ± 0.3 % (large 

minus small), n = 79 sessions, p < 10-6, ANOVA, for monkey L; 

Δperformance = 3.2 % ± 0.4 %, n = 80, p < 10-5 for monkey T) and was not 

influenced by reward cue set (p > 0.2 for main factor reward cue set or 

interactions between reward size and reward cue set). The percentage of 

aborted trials in which monkeys broke eye fixation was larger in trials with 

small reward expectancy compared to trials with large reward expectancy for 

both monkeys (Figure 1F,G, Δbreaks = –17 % ± 0.9 %, n = 79, p < 10-10, for 

monkey L; Δbreaks = –14 % ± 1.5 %, n = 80, p < 10-10, for monkey T), and was not 

influenced by reward cue set (p > 0.2 for all other comparisons). Finally, 
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reaction times (RTs) of both monkeys were longer in trials with small reward 

expectancy compared to trials with large reward expectancy (Figure 1H,I, 

ΔRT = –42 ms ± 2 ms, n = 79, p < 10-10, for monkey L; ΔRT = –38 ms ± 5 ms, 

n = 80, p < 10-10, for monkey T), again independent of reward cue set (p > 0.7 for 

all other comparisons). Thus, the monkey’s working memory performance was 

modulated by reward expectancy, indicating that reward expectancy changes 

the motivational state. 

We recorded 256 single units in 159 recording sessions (79 for monkey L, 80 for 

monkey T) from the lateral PFC of both monkeys (Table 1), while the monkeys 

were performing the task. To directly assess the impact of dopamine receptor 

targeting agents on neuronal reward expectancy signals, each neuron was 

recorded both without drug application (control condition) and while stimulating 

dopamine receptor agents at the vicinity of the recorded neurons using micro-

iontophoresis (drug condition). Control conditions alternated with drug 

conditions in each recording session. In each session we tested one of two 

different substances that selectively targeted the D1R or the D2R: The D1R was 

assessed in 129 neurons by applying the D1R agonist SKF81297. The D2R was 

tested in 127 neurons using the D2R-agonist quinpirole. In previous 

experiments, we did not find any effect on neuronal firing properties when 

applying normal saline (Jacob et al., 2013; Ott et al., 2014). We identified 

neurons selective for reward expectancy based on two non-overlapping 

analysis windows, a cue period (400 ms, beginning 100 ms after reward cue 

onset) and a delay period (900 ms, beginning 200 ms after sample offset), using 

a 3-way ANOVA with main factors reward size (large/small), reward cue set 

(color/shape) and iontophoretic drug application (control  condition/drug 

condition). Neurons with a significant main effect of reward size (p < 0.05), i.e. 

neurons that were selective for reward expectancy, were included in 
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subsequent analyses. To analyze dopamine receptor modulation of pure reward 

expectancy signals, we excluded neurons with significant main affects of 

reward cue set or an interaction between reward size and reward cue set 

(p < 0.05). 

About one quarter (58/256 neurons) and one third (74/256 neurons) of all 

recorded neurons were exclusively selective for reward expectancy in cue and 

delay period, respectively (Table 1). Surprisingly, more neurons preferred the 

small reward size, i.e. had a larger firing rate during trials with small reward 

expectancy as compared to trials with large reward expectancy (Table 2). In the 

cue period, almost three quarter of reward-selective neurons preferred the 

small reward, significantly more than predicted by equal distribution (42/58 

neurons, p = 5*10-4, χ2 test against equal distribution). In the delay period, 

numbers were more even with a few more neurons preferring the small reward 

(45/74 neurons, p = 0.06). 

D2R stimulation, but not D1R stimulation, enhances reward signals in the 

cue period 

An example neuron selective for reward expectancy during the cue period 

preferring the large reward was slightly inhibited after D1R stimulation with 

SKF81297 (Figure 2A). Population responses were constructed by pooling trials 

of both reward cue sets and averaging normalized activity of preferred and 

nonpreferred reward size, defined as the reward size yielding the larger and 

lower firing rate, respectively. The population of all reward-selective neurons 

recorded during sessions with SKF81297 application did not reveal any 

systematic effect of D1R stimulation on neuronal firing properties (Figure 2C). 

In contrast, D2R stimulation with quinpirole of another neuron selective for 

small reward expectancy showed a prominent increase in reward selectivity 
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(Figure 2B). This effect was systematically observed for the population activity 

of all neurons recorded during session with quinpirole application (Figure 2D). 

We quantified the reward selectivity of neurons by calculating a tuning index 

(TI), defined as the normalized response difference between the preferred and 

nonpreferred reward size. D1R stimulation did not systematically change TIs 

during the cue period (Figure 3A, ΔTI = +0.04 ± 0.09, n = 30, p = 0.6, signed rank 

test). In contrast, D2R stimulation significantly increased the selectivity for 

reward expectancy coding, both in neurons preferring small and large reward 

(Figure 3B, ΔTI = +0.18 ± 0.07, n = 28, p = 0.02). In addition, we quantified the 

coding quality of reward expectancy for each neuron by using the area under 

the receiver operator characteristic (AUROC) derived from signal detection 

theory. Values of 0.5 correspond to an absence of coding, large values closer to 

one indicate strong coding quality. Consistent with the previous results, D1R 

stimulation with SKF81297 did not systematically change AUROCs in the cue 

period (Figure 3C, ΔAUROC = +0.01 ± 0.01, n = 30, p = 0.2, signed rank test). In 

contrast, D2R stimulation significantly increased AUROCs of all selective 

neurons in the cue period of both small and large reward preferring neurons 

(Figure 3D, ΔAUROC = +0.03 ± 0.01, n = 28, p = 0.05). Thus, D2R stimulation, 

but not D1R stimulation, increased reward expectancy coding of single neurons 

during the cue period. 

D1R and D2R stimulation have opposite effects on reward signals in the 

delay period 

During the delay period, stimulating D1Rs with SKF81297 strongly impaired 

the selectivity of an example neuron selective for small reward expectancy 

(Figure 4A). This effect was consistently observed for all selective neurons 

recorded in sessions with SKF81297 application, showing that D1R stimulation 

decreased selectivity for the neurons’ preferred reward size (Figure 4C). In 
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contrast, D2R stimulation with quinpirole increased the selectivity for small 

rewards during the delay period of another single unit (Figure 4B), as also 

observed for the population of all selective neurons recorded in session with 

quinpirole application (Figure 4D). Accordingly, SKF81297 decreased TIs 

during the delay period (Figure 5A, ΔTI = –0.13 ± 0.06, n = 31, p = 0.05, signed 

rank test) and quinpirole increased TIs during the delay period in both neurons 

preferring small and large reward sizes, thus enhancing the neurons’ reward 

selectivity (Figure 5B, ΔTI = +0.14 ± 0.06, n = 43, p = 0.007). Coding quality was 

impaired by D1R stimulation with SKF81297, too, witnessed by a significant 

decrease in AUROCs (Figure 5C, ΔAUROC = –0.01 ± 0.005, n = 31, p = 0.01, 

signed rank test). In contrast, D2R stimulation with quinpirole significantly 

increased AUROCs in both neurons preferring small and large reward sizes 

(Figure 5D, ΔAUROC = +0.02 ± 0.01, n = 43, p = 0.002), thus enhancing the 

neurons’ coding capacity for reward expectancy. Thus, D1Rs and D2Rs act 

oppositely on the coding of reward expectancy of single units during the delay 

period. 

D1R effect on reward signals depend on baseline modulation 

Finally, we considered the possibility that the modulatory effects of D1Rs and 

D2Rs are connected to changes in baseline firing rates. As reported previously 

(Ott et al., 2014), D1R slightly inhibited the neuronal firing, decreasing the 

neurons’ baseline (BL) firing rates (Figure 6A, ΔBL = –0.33 sp/s ± 0.13 sp/s, 

n = 129, p = 0.008, signed rank test). Oppositely, D2Rs increased the neurons’ 

baseline firing rates (Figure 6D, ΔBL = +1.5 sp/s ± 0.29 sp/s, n = 127, p = 10-10). 

Since our measure of coding quality considers both the distance in the mean 

and the width between two spike rate distributions, proportional changes of 

AUROCs cannot be explained by simple additive or multiplicative mechanism 

that would also scale the noise and thus the width of observed spike rate 
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distributions (Herrero et al., 2008; Jacob et al., 2013; Parker and Newsome, 

1998). To investigate if changes of coding quality are connected to changes of a 

neuron’s baseline firing rate induced by dopamine receptor stimulation, we 

correlated the drug-induced change in AUROCs with the drug-induced change 

in baseline firing rates. Interestingly, changes in coding and baseline firing 

induced by D1R stimulation with SKF81297 were significantly correlated in 

both the cue (Figure 6B, R = 0.40, n = 30, p = 0.03, t-statistics) and delay 

(Figure 6E, R = 0.36, n = 31, p = 0.05) period. In contrast, although D2R 

stimulation with quinpirole in general showed a stronger effect on baseline 

firing rates, we did not find a correlation between quinpirole-induced changes 

of coding quality and baseline firing rates in the cue period (Figure 6C, R = 0.25, 

n = 28, p = 0.2, t-statistics) or the delay period (Figure 6F, R = 0.17, n = 43, 

p = 0.3). Thus, changes in coding capacity are connected to changes in baseline 

firing rates for the D1R, but not the D2R. 

 

Discussion 

We report that D1Rs and D2Rs modulate reward expectancy signals in PFC 

neurons in distinct ways. D1Rs did not systematically change neuronal 

responses following reward cue presentation, while impairing neuronal 

representations of reward expectancy during the delay period. This effect 

depended on D1R modulation of spontaneous activity. In contrast, D2R 

stimulation enhanced neuronal reward expectancy representations during both 

cue and delay periods independently of D2R effects on the neurons’ baseline 

activity. 
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Reward expectation modulated behavioral performance 

Explicitly cued differences in reward size that are learned through classical 

conditioning of an unconditioned stimulus with a reward were reflected in the 

monkey’s behavior. Confirming that the animals followed reward 

contingencies, larger rewards lead to improved performance, shorter reaction 

times, and fewer trials that are aborted by the animals, consistent with previous 

finding that used spatial working memory tasks and reported similar effects 

using the same behavioral variables (Amemori and Sawaguchi, 2006; Kennerley 

and Wallis, 2009; Roesch and Olson, 2003). Thus, differences in reward 

expectancy changed the monkeys performance in the working memory task. 

We note that this effect could also be attributed to a change in motivation of the 

animal, since a larger reward leads to a larger motivation (Roesch and Olson, 

2004). In this and other task designs, reward expectancy and motivation are 

interchangeable.  

Neuronal reward signals and dopamine 

Single neurons in the PFC represented expected reward magnitudes following 

presentation of the reward cue and during the delay period preceding sample 

presentations. Neuronal representations of reward expectation in PFC were 

found in a number of previous studies that reported coding of reward 

expectation (Kennerley and Wallis, 2009; Kobayashi et al., 2002, 2006; Wallis 

and Miller, 2003; Watanabe, 1996) or a modulation of prefrontal visual 

(Amemori and Sawaguchi, 2006) and spatial memory signals by reward 

expectation (Kennerley and Wallis, 2009; Kobayashi et al., 2002; Lee et al., 2007; 

Leon and Shadlen, 1999; Roesch and Olson, 2003; Wallis and Miller, 2003; 

Watanabe et al., 2005). Neuronal responses to the reward cue were fast and 

strongly modulated by the expected reward size. Given that dopamine neurons 
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fire phasic bursts in response to salient sensory events (Matsumoto and 

Hikosaka, 2009; Schultz et al., 1997), in particular graded responses in response 

to cues predicting expected reward (Tobler et al., 2005), it seems likely that the 

source of cortical reward signals stem from midbrain dopamine neurons, where 

reward prediction errors are computed (Eshel et al., 2015). Interestingly, more 

neurons were selective for small reward expectancies compared to large reward 

expectancies. This finding was reported previously for PFC neurons (Kennerley 

and Wallis, 2009) is in agreement to a study that reported higher prefrontal 

dopamine levels following small reward as compared to large reward 

predictions (Kodama et al., 2014). 

D1R modulation of reward signals 

As reported previously, D1R activation slightly suppressed neuronal firing in 

general (Ott et al., 2014; Vijayraghavan et al., 2007). Surprisingly, activating 

D1Rs did not systematically modulate reward signals in the cue period. 

However, there was a significant correlation between reward modulation and 

baseline modulation in the cue period. Given the narrow inverted-U response 

curve of D1R effects on neuronal selectivity (Vijayraghavan et al., 2007), 

systematic changes might have been masked. In the delay period, however, 

D1R activation systematically decreased neuronal representations of reward 

expectations. This finding was unexpected, given that the same dose of D1R 

stimulation increased spatial working memory signals (Vijayraghavan et al., 

2007),  and representations of visual samples and abstract behavioral rules (Ott 

et al., 2014). This result suggests that neuronal networks representing reward 

signals might be modulated distinctly from networks representing cognitive 

signals, which are also modulated by D1Rs. Blocking prefrontal D1Rs impairs 

association learning and signals (Puig and Miller, 2012), and modulates 
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attentional processing (Noudoost and Moore, 2011). This differential 

modulation could be realized by prefrontal populations with distinct 

properties, such as a shifted inverted-U curve. Alternatively, dopamine could 

carry independent signals to modulate reward signals and cognitive signals, as 

suggested by recent recordings from midbrain dopaminergic neurons reporting 

that distinct populations of dopaminergic neurons are carrying reward and 

cognitive signals (Matsumoto and Takada, 2013). Mechanistically, D1-mediated 

inhibition might be realized by increasing IPSCs in prefrontal pyramidal cells 

(Seamans et al., 2001a; Trantham-Davidson et al., 2004). However, D1Rs have 

also been shown an increase in NMDA-evoked responses (Seamans et al., 

2001b; Tseng and O’Donnell, 2004), possibly contributing to the D1-mediated 

enhancement of cognitive signals (Durstewitz and Seamans, 2008; Ott et al., 

2014), suggesting that the present findings are dominated by inhibitory effects. 

D2R modulation of reward signals 

D2R stimulation, on the other hand, improved neuronal reward expectancy 

coding in both cue and delay periods. This result suggests that D2Rs play a 

prominent role in regulating prefrontal reward signals. Recently, D2Rs have 

been reported to modulate variety of prefrontal signals, such as feature-based 

working memory (Ott and Nieder, submitted) and the representation of 

abstract behavioral rules (Ott et al., 2014). Furthermore, they play a role in 

cognitive flexibility. Blocking prefrontal D2Rs impairs learning of new 

association rules in primates (Puig and Miller, 2015) and impairs rodents in 

shifting between different response strategies (Floresco and Magyar, 2006). 

Thus, D2Rs might contribute to the integration of a variety of prefrontal signals 

carrying both information about rewards and information relevant for 

executive control, such as working memory, associations, and rules. In addition, 

D2Rs also seem involved in the behavioral output, as they modulate saccade 
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signals in PFC (Wang et al., 2004) and influence saccadic target selection in FEF 

(Noudoost and Moore, 2011). In general, D2Rs slightly increased the neurons’ 

spontaneous activity, as reported previously (Ott et al., 2014; Wang and 

Goldman-Rakic, 2004; Wang et al., 2004).  Mechanistically, excitatory D2R 

effects might be mediated by decreasing GABAergic responses in pyramidal 

cells (Seamans et al., 2001a). At the same time, D2Rs have also been shown to 

increase interneurons’ excitability (Zhong and Yan, 2016). Together, these 

mechanisms might induce an increase in neuronal selectivity during delay 

periods, as suggested by computational modeling (Ott and Nieder, submitted). 

Thus, a general mechanism might explain D2R modulation of working 

memory, abstract, and reward signals in PFC. Interestingly, D2R modulation of 

reward signals did not correlate with D2R signals of baseline modulation, 

challenging simple common mechanisms such as gain modulation. Rather, 

these results suggest a direct interaction of D2Rs with reward encoding 

mechanisms (Herrero et al., 2008).  

Opposite modulation of D1Rs and D2Rs of reward signals 

Together, our results show that D1Rs and D2Rs oppositely modulate both 

spontaneous activity and reward signals in primate PFC neurons. This contrasts 

effects on cognitive signals subserving executive control, such as working 

memory (Ott and Nieder, submitted), representations of abstract behavioral 

rules (Ott et al., 2014), and association learning (Puig and Miller, 2012, 2015) for 

which D1Rs and D2Rs assume complementary roles in enhancing neuronal 

information processing. These results suggest that distinct mechanisms in PFC 

control information processing for executive control and other types of 

information processing relevant for goal-directed behavior, such as the 

representations of reward and the value of goals. 
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Figure legends 

Figure 1. Reward modulated working memory task and behavioral 

performance. (A) Monkeys had to grab a lever and fixate a central fixation spot 

throughout the length of each trial. After a pure fixation period, a reward cue 

predicted the amount of liquid reward the monkeys received at the end of a 

trial for a correct choice. After the first delay period, a visual sample stimulus 

appeared on the screen, which had to be memorized during the second delay 

period. In the test period, monkeys had to release the lever if the same stimulus 

appeared (50 % of trials) and to keep holding the lever if a different stimulus 

appeared (50 % of trials) to receive a liquid reward. (B) Example sample stimuli. 

In each session, three new stimuli were used. (C) Two sets of cues indicated the 

reward size, a color set (red square for large reward, blue square for small 

reward) and a shape set (gray annulus for large reward, gray cross for small 

reward). (D) Behavioral performance for monkey L for all different conditions 

(left). Performance was lower on small reward trials (right). (E) Same 

conventions as in (D) for monkey T. (F) Percentage of aborted trials (i.e., trial in 

which the monkey broke eye fixation) for monkey L was higher for small 

reward trials. (G) Same conventions as in (F) for monkey T. (H) Reaction times 

of monkey L were longer for small reward trials. (I) Same conventions as in (H) 

for monkey T. *** p < 0.001 (ANOVA). 

Figure 2. D1R and D2R modulation of reward expectancy selective neurons 

during the cue period. (A) Example recorded during control conditions (left) 

and after stimulating D1Rs with SKF81297 (right) selective for large reward 

expectancy during the cue period (gray shaded area). (B) A different example 

neuron recorded during control conditions (left) and after stimulating D2Rs 

with quinpirole (right) selective for small reward expectancy. (C) Average 

normalized activity of all neurons selective for reward expectancy during the 

cue period (gray shaded area) recorded with SKF81297. Activity was pooled 

over reward cue sets. (D) Same conventions as in (C) for all neurons selective 

for reward expectancy recorded with quinpirole. 

Figure 3. D2Rs increase reward expectancy coding during the cue period. (A) 

TIs quantifying the amount of reward expectancy selectivity during the cue 

period before and after stimulation D1Rs with SKF81297. Each dot corresponds 

to one reward expectancy selective neuron (left). Mean TIs were not changed by 

SKF81297 (right). (B) Conventions as in (A) for D2R stimulation with 

quinpirole, showing an increase in reward expectancy selectivity. (C) AUROCs 

quantifying the quality of reward expectancy coding during the cue period 

before and after stimulating D1Rs with SKF81297. Conventions as in (A). (D) 
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Conventions as in (C) showing that D2Rs increase reward expectancy coding. 

* p < 0.05, n.s. not significant (p > 0.05), signed rank test. 

Figure 4. D1R and D2R modulation of reward expectancy selective neurons 

during the delay period. (A) Example recorded during control conditions (left) 

and after stimulating D1Rs with SKF81297 (right) selective for small reward 

expectancy during the delay period (gray shaded area). (B) A different example 

neuron recorded during control conditions (left) and after stimulating D2Rs 

with quinpirole (right) selective for small reward expectancy. (C) Average 

normalized activity of all neurons selective for reward expectancy during the 

cue period (gray shaded area) recorded with SKF81297. Activity was pooled 

over reward cue sets. (D) Same conventions as in (C) for all neurons selective 

for reward expectancy recorded with quinpirole. 

Figure 5. D1Rs and D2Rs oppositely modulate reward expectancy coding 

during the delay period. (A) TIs quantifying the amount of reward expectancy 

selectivity during the delay period before and after stimulation D1Rs with 

SKF81297. Each dot corresponds to one reward expectancy selective neuron 

(left). Mean TIs were reduced by SKF81297 (right). (B) Conventions as in (A) for 

D2R stimulation with quinpirole, showing an increase in reward expectancy 

selectivity. (C) AUROCs quantifying the quality of reward expectancy coding 

during the delay period before and after stimulating D1Rs with SKF81297. 

Conventions as in (A). (D) Conventions as in (C) showing that D2Rs increase 

reward expectancy coding. ** p < 0.01, * p < 0.05, signed rank test. 

Figure 6. Baseline modulation by D1Rs, but not D2Rs, predicts modulation of 

reward expectancy coding. (A) Average baseline spike rate (pure fixation 

period) before and after application of SKF81297. (B) Correlation between the 

change of reward expectancy coding in the cue period and the change of log-

baseline activity induced by D1R stimulation with SKF81297. Each dot 

corresponds to one neuron. (C) Same conventions as in (B) for D2R stimulation 

with quinpirole. (D) Same conventions as in (A) for quinpirole. (E) Correlation 

between the change of reward expectancy coding in the delay period and the 

change of log-baseline activity induced by D1R stimulation with SKF81297. 

Each dot corresponds to one neuron. (F) Same conventions as in (E) for D2R 

stimulation with quinpirole. *** p < 0.001, ** p < 0.01, * p < 0.05, n.s. not 

significant (p > 0.05), signed rank test, t-statistics for correlation analysis. 
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Table 1. Number of reward expectancy selective neurons. 

 Cue Delay All 

SKF81297 30 31 129 

Quinpirole 28 43 127 

∑ 58 (23 %) 74 (29 %) 256 

 

 

 

Table 2. Small and large reward preferring neurons (*** p < 0.001, † p < 0.1, χ2 

test). 

 Cue Delay 

Large 16        29   

Small 42*** 45† 

∑      58         74  
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Ethograms indicate stable well-being
during prolonged training phases
in rhesus monkeys used in
neurophysiological research

Steffen R Hage, Torben Ott, Anne-Kathrin Eiselt, Simon N Jacob

and Andreas Nieder

Abstract

Awake, behaving rhesus monkeys are widely used in neurophysiological research. Neural signals are typically
measured from monkeys trained with operant conditioning techniques to perform a variety of behavioral tasks
in exchange for rewards. Over the past years, monkeys’ psychological well-being during experimentation has
become an increasingly important concern. We suggest objective criteria to explore whether training sessions
during which the monkeys work under controlled water intake over many days might affect their behavior.
With that aim, we analyzed a broad range of species-specific behaviors over several months (‘ethogram’) and
used these ethograms as a proxy for the monkeys’ well-being. Our results show that monkeys’ behavior
during training sessions is unaffected by the duration of training-free days in-between. Independently of the
number of training-free days (two or nine days) with ad libitum food and water supply, the monkeys were
equally active and alert in their home group cages during training phases. This indicates that the monkeys
were well habituated to prolonged working schedules and that their well-being was stably ensured during the
training sessions.

Keywords

Macaca mulatta, non-human primate, neurophysiology, operant conditioning, species-specific behavior,
water restriction

Non-human primates, and rhesus monkeys (Macaca

mulatta) in particular, are widely used in neuroscience

research.1,2 Because of a variety of primate-specific

features, ranging from behavioral capabilities (e.g. dex-

terity and advanced behavioral flexibility) to neuroana-

tomical homologies (e.g. a granular prefrontal cortex),

monkeys are indispensable for studying the neuronal

mechanisms of cognitive functions.3 Macaques can be

trained with operant conditioning techniques to per-

form a variety of behavioral tasks in exchange for posi-

tive rewards. While monkeys are engaged in such tasks,

electrical activity of nerve cells as well as their behavior

can be monitored.4,5 Measuring neuronal activity sim-

ultaneously with behavioral performance presents a

unique opportunity for experimental analyses of the

neural foundation of behavioral utterances. Neuronal

processing can be studied while the brain produces

perceptions and actions.6–8 Because the brain lacks

nocireceptors (‘pain sensors’), microelectrodes do not

cause discomfort to the animals. In fact, electrodes

are routinely implanted in humans for therapeutic

access during illnesses such as Parkinson’s disease, or

epilepsy.9,10

Understanding the biology and behavior of primates

bred and used for research is probably the single most

important factor in the design and implementation of
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all types of refinement.11 Given the relatively elaborate

cognitive status of non-human primates, their psycho-

logical well-being, although poorly defined, has become

an increasingly important concern over the past several

years.12.A frequent worry in neurophysiological

research with monkeys is that the number of consecu-

tive behavioral training days under controlled water

intake might constitute accumulated discomfort to the

animals.13 We thus specifically explored whether pro-

longed training over many days might affect monkeys’

behavior, putatively as a sign of discomfort. To that

aim, we measured and analyzed a broad range of spe-

cies-specific behaviors over several months (ethogram)

and used these ethograms as a proxy for the monkeys’

well-being.

Material and methods

Study animals

We compared monkeys’ behavior during 12-day train-

ing periods following either short two-day training-free

periods (including ad libitum water and food supply) or

long nine-day training-free periods. We measured the

behavior of seven male rhesus monkeys (Macaca

mulatta) aged 4–11 years. All the monkeys were pur-

chased from the German Primate Center, Göttingen,

Germany. All procedures were approved by the local

authority, the Regierungspräsidium Tübingen,

Germany. All experiments were in accordance with

the European Convention for the Protection of

Vertebrate Animals used for Experimental and Other

Scientific Purposes, and the National Research Council

Guide for the Care and Use of Laboratory Animals.

Housing and feeding routine

The animals were housed in several stable, small social

groups in spacious group cages, each measuring

2.75m(H)� 2.5m(W)� 4.0m(D) in a fully air-condi-

tioned room (23� 1�C, 55� 10% relative humidity,

maximum air change 15 times per hour) with daylight

(10 to 16 h per day due to seasonal differences in

Tübingen, Germany) and supplementary artificial

light with 12 h day/12 h night cycle (07:00 to 19:00 h;

1500–2300 lux). Group cages were provided with hygie-

nic animal bedding (LignocelÕ, JRS, Rosenberg,

Germany) and equipped with resting shelves, wooden

branches, fire hoses, plastic tubs as well as cardboard

tubes and boxes filled with nuts, seeds and raisins for

environmental enrichment purposes. During behavioral

investigation, the monkeys worked under a controlled

water intake protocol. Water was provided as a reward

to reinforce correct behavioral responses during

behavioral conditioning. Food (primate pellets,

10mm, ssniff, Soest, Germany) was provided ad libitum

at all times. Raisins, sunflower seeds, peanuts, walnuts

and dried fruits were given after behavioral sessions on

a daily basis. During training-free phases that inter-

rupted the experimental sessions, monkeys had free

access to water, fresh fruits (i.e. apples, bananas,

pears and grapes) and vegetables (i.e. carrot, beetroot,

salad and bell pepper) as well as primate pellets.

Fluid control protocol

Determining a single standard by which all fluid control

protocols can be evaluated or performed is difficult.12

Baseline fluid intake varies depending on body size, age,

housing, training protocol and physiological factors

that are idiosyncratic to each animal.3 Monkeys, like

humans, appear to regulate hydration more or less effi-

ciently, leading to substantial variation in the amount

of fluid intake required each day. Such individual vari-

ations can only be appreciated if the history of the

animal is known. We therefore determined the neces-

sary fluid intake individually for each animal over a

period of several days, when the monkey had a stable

profile of behavior and physiology. The monkeys were

required to obtain a substantial portion of their daily

fluid requirement by earning it as a reward for perform-

ing a behavioral task once a day. In case a monkey was

not able to earn its daily fluid requirement, a compen-

satory fluid supplement was provided; individual end-

points of the controlled water intake protocol were

in place in order not to jeopardize the animal’s

health. Published figures comparable with ours are

available14 and strongly imply that the water access con-

trol procedures we employed allowed the monkeys

to maintain a stable hydration state. Ad libitum

access to fluid was provided on non-working days.

With such a properly-managed fluid control, the

animal could achieve all, or a substantial fraction, of

its daily food/fluid requirement during training over

many days and weeks. As an additional measure of

physiological well-being, mean body weight did not

differ between the two observation modes (i.e. two- or

nine-day training-free periods) (P> 0.1, Wilcoxon sign

rank test; n¼ 7).

The veterinarian staff provided advice on all animal

welfare issues and closely monitored the health of the

monkeys (e.g. by regular inspections and frequently

analyzing blood samples). The level of fluid control

was approved by the regulatory authority and the insti-

tution’s ethical review. Physiological data collected

over many years indicated that the monkeys stayed in

good health with the applied individualized fluid con-

trol protocols, while continuing to work proficiently in

cognitively demanding tasks.
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Behavioral data collection

We used a combination of two sampling methods to

assess the monkeys’ behavior. During data collection,

observers were in visual/olfactory/auditory proximity

to the monkeys. However, the animals were very famil-

iar with all observers whom they met on a daily basis.

Thus, the monkeys were well habituated without

noticeable reactions towards the observing person. All

observers ran through an instruction phase, including

test observations, in which they were introduced by

SRH into the determination of each single behavioral

category to assure uniform logging of the monkeys’

behavior (inter-observer reliability). Data were col-

lected over a five-month period (middle of May to

end of October 2010).

First, we focally sampled the monkeys’ behavior

over 30min in 1min intervals (‘30min ethogram’)

immediately after the experimental animals were

brought back to their home cage after training sessions

(continuous sampling).15,16 We recorded the monkeys’

behavior on the first five days and last five days of the

12-day training session periods. Data of three sets for

both 12-day training sessions following either short

two-day training-free periods (3� 10 days) or long

nine-day training-free periods (3� 10 days) were col-

lected. In a few cases, we had to omit the focal sampling

sessions due to unchangeable animal care routines (cage

cleaning, etc.) resulting in a median number of 58� 2

focal sampling sessions for each monkey. Overall, we

logged over 200 h of behavioral observations during

focal continuous sampling.

In a second approach, we observed the behavior of

all monkeys at one random minute for every single

hour of the day during the first five and last five days

of the 12-day training session periods (instantaneous

scan sampling).16 These so-called ‘statistical days’ pro-

vided a median behavioral performance of each

monkey throughout the day. During both sampling

methods, we logged several behaviors which had been

established in earlier studies such as feed, forage, loco-

motion, comfort, curiosity, vocalization, groom/

huddle, aggression, play, rest and abnormal behavior

(see Table 1 for a detailed explanation of behavioral

parameters).16–20

Statistical analysis

Statistical analysis was performed with MATLAB

(MathWorks, Statistics Toolbox, Cambridge, UK) by

SRH. For the continuous sampling data-set, we per-

formed a two-way analysis of variance (two-way

ANOVA) to test for significant differences in the behav-

ioral activity during observation periods preceded by

two- or nine-day training-free periods. The Wilcoxon

signed rank was used to test for significant differences

in the mean activity of the monkey throughout the

‘statistical day’. Differences in behavioral activity

were considered significant at P< 0.05.

Results

Figure 1a depicts the median occurrence of all observed

behaviors during focal animal scanning (‘30min etho-

gram’) shown by one representative example monkey

on 30 days with a preceding two- and nine-day break,

respectively. Several behaviors like feeding, foraging

and locomotion occurred quite frequently within both

observation periods, while others like curiosity, com-

fort and vocal behavior were shown only occasionally.

Some behaviors like aggression or play were not shown.

Comparing the behavioral activity during observation

periods preceded by two- or nine-day training-free per-

iods, respectively, revealed no significant differences

(P> 0.5, n¼ 540, two-way ANOVA). This indicates

that this monkey showed similar behavior independent

Table 1. Operational definitions for behaviors of rhesus
monkeys.15,18–20

Behavior Operational definition

Feed Eating or manipulating monkey chow

Forage Picking through the ground substrate with
hands in search for food

Locomotion Walking or running along the ground or
over suspended surfaces (more than
1m/min)

Comfort Shaking; self-grooming; ‘rest-yawning’,
i.e. yawns produced during transitions
from rest to activity that are not
followed by affiliative or agonistic
inter-individual behavior21–23

Curiosity Exploring alien items brought into the
units

Vocalization Utterance of species-specific calls24

Groom/Huddle Sitting in physical or social contact with
another animal and/or picking or
manipulating another animal’s fur or
skin with hands or mouth

Aggression Bared teeth display, lunge, stare,
aggressive scream, slap, bite, push, hit,
attack and chase

Play Rough and tumble wrestling and chasing;
play face displayed

Abnormal Behavior with no obvious purpose or
function such as pacing, head tossing,
feces manipulation and licking of unit
floor

Rest Sitting alone, not in direct physical contact
with other monkeys and not engaging in
the other activity categories
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of the preceding training-free interval. Similar results

revealing no differences between sessions with preced-

ing two- or nine-day training-free phases, respectively,

were obtained for the other monkeys (P> 0.1 for all

monkeys, two-way ANOVA). Figure 1b depicts the

averaged occurrence of the logged behavior for all

seven monkeys. Abnormal behavior was not observed

in any monkey during the entire behavioral

investigation.

To test whether the monkeys’ behavior changed

over time during training, we performed a more

detailed analysis by splitting the data-set into the

first five and the last five days of the 12-day training

sessions. Again, we observed no differences in any of

the monkeys between the behavior shown during ses-

sions with preceding two- or nine-day training-free

phases, respectively, neither in the first five days, nor

in the last five days of the training session (P> 0.1 for

all monkeys, two-way ANOVA). Moreover, we found

no significant differences in the observed behavior of

any monkey between the first five and the last five

days of the 12-day training sessions, neither in com-

bination with the two-day, nor with the nine-day

training-free periods (P> 0.1 for all monkeys, two-

way ANOVA). Figures 1c and 1d show the averaged

observed behaviors for all seven monkeys subdivided

into the first five days and the last five days of the

12-day training session.

Figure 1. Comparison of monkey behavior observed with two types of focal animal analyses, focal animal sampling (a–d)
and scan sampling (e, f), show no differences in relation to preceding training break modes. (a) Comparison of the median
time a specific behavior was expressed by an individual monkey within 30min observation intervals as a function of two or
nine days of training-free phases, respectively (n¼ 30 sessions). Sum: incidence of all observed behaviors during a
session. Bars show medians, dots and triangles indicate the 1st and 3rd quartile. (b) Averaged behavior of seven monkeys
within the two session types. Same layout as in (a). (c,d) Averaged behavior depicted in (b) divided into the first (c) and
second week of the training session (d) revealed no behavioral differences. Same layout as in (a). (e) Activity indices of
behaviors shown in (a–d) of a single monkey reveal no differences between observation periods associated with two- and
nine-day training-free phases. After the first hour of the day (07:00 h), no behavioral data were collected for the time
where the monkey performed its daily training session (usually between 07:30 and 10:00 h). (f) Averaged probability for
behaviors occurring in seven monkeys confirms the results depicted in (e). Shaded areas indicate 1st and 3rd quartile.
Same layout as in (e).
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Instantaneous scan sampling revealed that the mon-

keys’ behaviors were quite diverse throughout the day,

resulting in the occurrence of most of the measured

behaviors only occasionally. We defined an activity

index that indicated a monkey’s activity occurring

within a single observation: An activity index of 1

revealed that a monkey showed at least one type of

behavior during the observation; an activity index of

0 indicated that the monkey was resting. Figure 1e

shows the mean activity indices for one example

monkey during an average ‘statistical day’16 (30 days

averaged for each of the two observation periods) for

both observation periods tested. In both observation

periods, the monkey was at rest in the morning and

had its peak activity phase between 10:00 and 16:00

h, which declined towards the late afternoon/evening.

(Between 08:00 and 10:00 h, no behavioral data were

observed because the monkeys performed the daily

training sessions during this period.) Statistical analysis

revealed no significant difference in the mean activity of

the monkey throughout the ‘statistical day’ (P> 0.2,

n¼ 10, Wilcoxon signed rank test). At a group level,

statistical analysis of the mean activity indices through-

out the ‘statistical day’ of all monkeys revealed no dif-

ferences between the two observation modes (P> 0.1,

n¼ 10, Wilcoxon signed rank test). Figure 1f depicts the

averaged distribution of the mean activity of all seven

monkeys.

Discussion

Our results obtained from both focal animal sampling

and behavioral scans show that monkeys’ behaviors

during training sessions were not affected by the dur-

ations of training-free days. Independently of whether

the monkeys obtained two or nine training-free days

with ad libitum food and water supply, behavior in

the home cages was equivalent. The monkeys were

just as active and alert after a two-day training-free

phase as after a nine-day training-free period. From

this, we conclude that the monkeys’ well-being was

robustly guaranteed during the training sessions

because if the training phase had caused accumulated

discomfort to the animals, longer training-free phases

(that might have been necessary for recovery from the

training phase) would have resulted in modifications of

behavioral utterances as measured by the ethograms.

Based on these data, we also conclude that monkeys

are well habituated to prolonged working schedules.

Prolongation of the daily working routine under con-

trolled water intake over at least 12 days does not act as

a stressor. Our results may thus also help to settle the

debate over how long a given individual animal should

be used for experimentation. Our quantitative data sug-

gest that the reuse of individual animals is favorable

over their replacement with new animals, thus allowing

a reduction of the total number of animals used.
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