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Abstract 

In recent years biopharmaceutical companies have started to turn their attention towards small 

interfering RNA (siRNA) therapeutics, as they offer a strategy to address therapeutically 

interesting targets that are not “druggable” with classic small molecule inhibitors. siRNAs can 

be easily adapted to any target of interest; they operate upstream of the protein production by 

silencing the messenger RNA (mRNA) before it is translated into pathogenic or disease-

related proteins.  

However, the successful application of siRNA based therapy strongly depends on the 

development of an efficient delivery system to (1) specifically target a particular cell type, (2) 

protect the siRNA from ribonucleases enzymatic degradation, (3) be taken up by the cells, and 

(4) release the siRNA in the cytoplasm where the targeted mRNA is located. Therefore, the 

main focus of this study was to design, synthesize and characterize an efficient and specific 

delivery system for siRNA.  

Chitosan is a versatile, biocompatible and biodegradable polymer with high positive charge 

density. As such, it can be modified and optimized with various domains, thus proving to be 

very suitable as a gene delivery system. Despite the advantage of being biocompatible and 

biodegradable, chitosan has also some drawbacks, one of them being low solubility at 

physiological pH which can influence the formation of nanoplex (NP) aggregation.  

Upon contact with biological fluids, chitosan:siRNA NP may unspecifically interact with the 

charged biological components. Therefore, chitosan was first conjugated with increasing 

grafting ratios of hydrophilic polyethylene glycol (PEG). The systematical analysis of various 

chitosan_PEGs enabled the identification of a defined PEG ratio with a low impact on the 

advantageous physicochemical characteristics of chitosan NP, whilst maintaining high gene 

transfection efficiency.  

Further work was focused on a specific targeting of the NP. Two different strategies were 

pursued: targeting with a small molecule inhibitor as well as targeting via a specific antibody 

fragment. The exposed position of the targeting moiety on the surface of the NP, outside of 

any shielding effect, is one of the basic requirements for the effective addressing of the target. 

Therefore the main building block of the linker system had to be based on a spacer system. 

PEG was the obvious choice as the spacer moiety due to the positive results with 
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chitosan_PEG NP. A heterofunctional linker system was developed, with one end selective to 

the targeting moiety and other end selective to the modified chitosan.  

The siRNA delivery system was designed with the aim of incorporating the NP on the surface 

of implantable medical devices. Therefore, a layer-by-layer coating approach of solid surfaces 

was tested with chitosan_PEG/siRNA NP with regards to layer deposition and release of the 

NP over time.  

Overall, this study provided a delivery system with high transfection efficiency, achieved by 

an optimized PEG ratio. The developed system was further modified for specific cell targeting 

with both biological molecules and chemical inhibitors via a highly flexible heterofunctional 

linker system. Together with the layer by layer coating, the basis for a highly flexible and 

efficient targeted siRNA delivery system was successfully developed, providing a broad 

know-how for the further development of various siRNA delivery systems. 

 

  



 

 

Zusammenfassung  

Während der letzten Jahre bestand ein verstärktes Interesse der biopharmazeutischen Industrie 

an der Entwicklung RNA-Interferenz basierter Therapeutika, größtenteils mittels siRNA 

(small interfering RNA). Diese Technologie bietet die Möglichkeit therapeutisch interessante 

Targets zu adressieren, welche mit den klassischen Ansätzen der niedermolekularen 

Wirkstoffe gar nicht oder nur mit unzureichender Spezifität inhibiert werden können. siRNA 

Wirkstoffe können für jedes Target optimiert werden. Sie greifen immer oderhalb der 

jeweiligen Proteinsynthese in die Proteinbiosynthese ein, indem sie die messengerRNA 

(mRNA) für das therapeutisch relevante Targetprotein abbauen. Dadurch wird die Expression 

des kankheitsrelevanten Targetproteins verhindert oder starl reduziert. Allerdings hängt die 

erfolgreiche Anwendung von siRNA basierten Therapien stark von der Entwicklung 

geeigneter und effizienter Transportsysteme ab, welche (1) eine spezifische Zelladressierung 

gewährleisten (2) die siRNA vor enzymatischem Abbau durch Ribonukleasen schützen (3) 

eine effiziente Zellaufnahme ermöglichen (4) siRNA spezifisch im Zytoplasma freisetzen. 

Das Ziel dieser Studie war das Design,  Synthese und Charakterisierung eines effizienten und 

spezifischen siRNA Transportsystems.  

Chitosan ist ein vielseitiges, biokompatibles, sowie biologisch abbaubares Polymer mit hoher 

Ladungsdichte. Als solches kann dieses vielseitig modifiziert und optimiert werden und eignet 

sich daher besonders als Wirkstoff-Transportsystem. Trotz der Vorteile der Biokombatibilität 

und biologischen Abbaubarkeit, hat Chitosan auch nachteilige Aspekte. Einer dieser 

Herausforderungen ist die geringe Löslichkeit unter physiologischen Bedingungen, mit 

Einfluss auf die Aggregation der Nanoplexe. Desweiteren, können die Chitosan-siRNA 

Nanoplexe in einer biologischen Matrix unspezifische Wechselwirkungen mit biologischen 

geladenen Komponenten eingehen. Um diesen Effekten entgegen zu wirken, wurde Chitosan 

in verschiedenen Substitutionsgraden mit Polyethylenglykol konjugiert. Die Untersuchung 

verschiedener Pegylierungsgrade von Chitosan ergab einen definierten Pegylierungsgrad mit 

geringem Einfluss auf die vorteilhaften Eigenschaften von Chitosan.  

Ein weiterer Schwerpunkt dieser Arbeit lag auf der spezifischen Adressierung der Nanoplexe 

(NP), damit diese nur von speziellen Zielzellen aufgenommen werden. Zwei verschiedene 

Ansätze wurden hierbei verfolgt, zum einen die Adressierung mit Hilfe eines 

niedermolekularen Inhibitors zum anderen durch ein spezifisches Antikörper-Fragment. Eine 

exponierte Lage dieser Targeting-Moleküle auf der NP-Oberfläche, außerhalb jeglicher 
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Abschirmungseffekte, ist eine der Grundvoraussetzungen für eine erfolgreiche Adressierung 

des Zielsystems. Daher basierte einer der essentiellen Teilstrukturen des nötigen 

Linkersystems auf einem Spacer. Durch die positiven Ergebnisse mit Chitosan PEG NP, lag 

es nahe PEG auch als Spacersystem zu verwenden. Basierend hierauf wurde ein 

heterofunktionales Linkersystem aufgebaut, zum einen selektiv gegenüber dem zu 

kuppelnden Targetingmoleküls, zum andere gegenüber modifiziertem Chitosan.  

Das erarbeitete siRNA Transportsystem wurde mit dem Ziel entworfen die NP in die 

Oberfäche medizinischer Implantate zu integrieren. Es wurde daher ein layer by layer 

Beschichtungsverfahren mit chitosan_PEG/siRNA NP getestet, im Hinblick auf die 

Schichtablagerung und die zeitabhängige NP Freisetzung. 

Im Verlauf dieser Arbeit wurde ein Transportsystem mit hoher Transfektionseffizienz über 

ein optimiertes Pegylierungsverhältnis entwickelt. Das System wurde mit Hilfe eines 

biologischen Antikörper-Fragments, bzw. eines niedermolekularen Inhibitors im Hinblick auf 

dessen Spezifität weiter optimiert. Zusammen mit dem getesteten Beschichtungsverfahren 

wurden neue wissenschaftliche Erkenntnisse für die Entwicklung verschiedenster siRNA 

Transportsysteme gewonnen, die als Basis eines hoch flexiblen und spezifischen siRNA 

Transportsystems angewendet werden können. 



  INTRODUCTION 

 

 

1. Introduction 

1.1. Biomaterials 

Throughout history the idea of inserting foreign objects into the human body has emerged 

numerously. The earliest known examples of medical use include suturing of wounds and 

replacement of teeth with materials of biological origin. Since then carefully selected and 

manufactured materials to recover or replace physiologic disabilities have been well 

established [1-3]. Scientists categorized these materials in three primary types, metallic, being 

based on the metallic bond, ceramic, based on a mixture of ionic and covalent bonds and 

polymeric, based on covalent bonds. Each of these categories contained many subdivisions. 

However, these boundaries between material classes have now been eroded; those substances 

derived from clear, chemically defined primary interatomic and intermolecular bonds are 

being replaced by those of greater structural complexity [4]. In a similar way biomaterials are 

broadly defined as materials intended to interact with biological systems to “evaluate, treat, 

augment or replace any tissue, organ or function of the body” [5].
 
 

Synthetic and natural biomaterials are now being used for various medical applications such 

as tissue cultures [6], synthetic skin [7], hybrid organs [8], synthetic blood vessels [9], 

artificial hearts [10], cardiac pacemakers [11], drug delivery systems [12-14], wires and pins 

for bone treatments, total artificial joint implants [15], skull reconstruction [16], dental and 

maxillofacial applications [17]. Although their bulk properties should not be ignored, their 

contact to the cells and tissues via their surface is of utmost importance. The characterization 

of the material interaction with cells was,  frequently based on biocompatibility, initiation of 

tissue ingrowth into the material’s void space or host tissue integration properties [18].  

The clinical application of many of the implantable devices developed in recent years is still a 

critical issue due to the foreign body reaction (FBR). Even though, the ability of the body to 

protect itself against foreign bodies such as toxic components, bacterial toxins and allergens is 

regarded as an advantage, for an implant this reaction can be very detrimental. The formation 

of a fibrotic capsule on the surface of an implanted medical device can lead to the impairment 

or failure to perform its functions (Figure 1) [19, 20].  

Already after the first contact with the tissue, proteins from blood and interstitial fluid are 

adsorbed on the implant surface. A process referred to as biofouling. The proteins are mainly 

fibrinogen and immunoglobulin. The protein layer is a trigger for the activation of the 
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coagulation cascade of the complement of platelets and immune cells. Phagocytic cells such 

as neutrophils and macrophages are the first ones trying to destroy or eliminate the foreign 

body. This is not possible due to the size of the implant and the nature of the material. This 

leads to the so-called "frustrated phagocytosis", resulting in the fusion of macrophages to 

polymorph nuclear cells creating the foreign body giant cells (FBGCs), which generate 

fusogenic cell phenotype or macrophages at the implant surface. This macrophage phenotype 

produces a variety of cytokines which lead to the recruitment and activation of fibroblasts as 

in normal wound healing. The ongoing activity of enteric FBGCs leads to prolonged 

fibroblast activation and excessive deposition of extracellular matrix (ECM) and ultimately to 

the formation of a fibrotic capsule surrounding the entire implant [21].  

 

 

Figure 1. Formation of fibrotic capsule around implanted biosensors [22]. The implant is immediately covered by plasma 

proteins. Leucocytes recognize the foreign environment and attract other immune cells. As large implants cannot be 

eliminated by phagocytosis, foreign body giant cells are formed which recruit fibroblasts. In the end the entire implant is 

packed in a capsule of fibrotic tissue.  

 

Biocompatibility of an implant therefore influences the extent, intensity and duration of 

inflammation and wound healing processes. Size, shape and mainly chemical and physical 

properties of the surface material determine the biocompatibility of an implant. Polymers have 

great potential to construct or to coat biomaterials for applications in biomedicine, 

pharmaceutics and biotechnology. Their chemical modifications lead to the synthesis of 

materials with diverse physical and mechanical properties. Furthermore, stimuli-responsive 

polymers are engineered to undergo chemical or physical transitions in response to specific 
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external triggers. One such example could be bio-degradation over time. Another advantage 

of using polymers for implant surfaces is the possibility of adding or incorporating active 

substances at the surface either via covalent bonds or via a layer-by-layer approach [23]. Such 

a bioactive implant surface with incorporated active substances could target the foreign body 

response in order to trigger the healing process, but prevent it from evolving to the formation 

of the fibrous capsule.  

 

1.2. RNA interference (RNAi) based therapy 

The concept behind gene therapy is based on the use of nucleic acids as drugs with the 

aim of restoring or shutting down a specific cellular function. In contrast to conventional 

drugs that often focus on the treatment of clinical symptoms, gene therapy provides an 

alternative treatment which tries to fix a genetic dysfunction at its source [24].
 
Proteins for 

example are responsible for a variety of the physical and dynamic properties of a cell. Defects 

in the protein function or regulation contribute to or are even the cause of many diseases. 

Therefore, a significant number of drugs today are designed to selectively inactivate proteins 

by interfering with the enzymatic activity of the target protein, relying on distinct binding 

pockets of proteins. Oligonucleotides are molecules that operate upstream of the protein 

production in a cell. They target genes directly and can be stably integrated into 

chromosomes. But transient knockout of genetic information is easier to become “druggable”. 

Such therapies usually target mRNA – the carrier of genetic information before translation 

[25, 26]. Because mRNAs encode all cellular proteins, oligonucleotides targeting mRNA 

could prove to be effective for targets and disease that are not treatable by current drugs and 

are caused by the overexpression of single proteins [27, 28].
 
The cellular RNA interference 

(RNAi) mechanism starts with the enzymatic degradation of the double-stranded RNAs 

(dsRNA) into 21-22 nucleoties long dsRNAs, known as small interfering RNAs (siRNAs) 

(see Figure 2). These are included in the RNA induced silencing complex (RISC) with so-

called Argonauts proteins. Within the RISC, the siRNA is unwound, the sense strand is 

discarded, and the antisense or guide strand binds to mRNA. When siRNA is fully 

complementary to its target, the endonuclease Argonaut 2 – a component of the RISC - 

cleaves the mRNA within the hybridization site preventing the translation of genetic 

information into the targeted protein. The remaining sections of the mRNA are degraded and 

the RISC complex will further degrade the next mRNA strand [29-33]
.
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Figure 2. Scheme of the mechanism of cellular RNA interference. dsRNA is cleaved by an enzyme (“dicer”) into short dsRNA 

fragments known as siRNA. These short dsRNA fragmenst are then bound to Argonaut proteins building the so called RISC. 

In this complex one siRNA strand (sense strand) is degraded whereas the other one is bound to the RISC complex and serves 

as a template for the binding of homologous mRNA. RISC targets complementary single stranded mRNA by its bound 

antisense siRNA fragment and then degrades the bound mRNA by the so called “slicer” proteins. 

 

RNAi is an endogenous biological pathway which regulates protein expression in many 

eukaryotes at the mRNA level. RNAi is a key process in gene silencing and defense against 

viral infections. Furthermore, RNAi allows the development of efficient drugs [34]. As 

siRNA is part of the catalytic RISC complex it mediates the silencing of many mRNAs. The 

very small concentrations of siRNAs can minimize the risk of adverse side effects often 

caused by the use of high drug dosages. In sharp contrast to small molecules, which have very 

diverse chemical properties and therefore pharmacological challenges that are very specific to 
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each drug candidate, the chemical uniformity of all siRNAs enables to use the know-how 

from the development of one siRNA drug candidate to establish an entire therapeutic platform 

for siRNA delivery [35, 36].  

Even though the biomedical potential of siRNA is very promising, the side effects cannot be 

excluded. siRNA can lead to „off-target” effects on gene expression [37] as well as inducing 

the immune response [38, 39]. The sequence-specific „off-target” effect is caused by 

hybridization of other mRNA than the target one, while the sequence-unspecific „off-target” 

effect is induced by binding to proteins [28, 40]. However, it was shown that by slightly 

modifying the oligonucleotide design the „off-target” effect could be avoided without 

compromising the potency of siRNA [38, 41]. The immune stimultaiton can also be avoided 

either by careful oligonucleotide modifications [42] or by using delivery systems that shield 

siRNA and avoid interaction with immune cells [43].  

siRNA could be used for coatings on the surface of implants[44] in order to target the anti-

inflammatory response[45] without interfering with the reendothelialization of the device. The 

foreign body response to the implanted device leads to the formation of an extracellular 

matrix (ECM). One main component of the ECM is collagen which binds cells together and 

forms a reservoir for hormones and growth factors. There are several types of collagen found 

in different tissues optimized for their specific local function [46]. Collagen biosynthesis is a 

multi-step complex process that includes both intracellular and extracellular events (Figure 3) 

[47]. During the processing and folding steps within the endoplasmic reticulum (ER) heat 

shock protein 47 plays  (HSP47) plays an important role. This chaperone specifically binds to 

collagen and ensures the correct folding. HSP47 is assumed to protect against premature 

degradation of the unfolded procollagen. In addition, it stabilizes the still immature 

procollagen during transport from the ER to the Golgi apparatus. It is also known that the 

HSP47 expression is increased in fibrotic  disease which makes it a perfect target to 

manipulate collagen production [47-50]. Therefore, in order to circumvent the formation of 

fibrotic collagen, it is necessary to reduce collagen synthesis rates locally. The chaperone 

HSP47 is one the best characterized target molecules for the RNA interference. Furthermore, 

two groups have already shown, through in vitro experiments as well as experiments in a rat 

model, that the HSP47 knockdown has an inhibitory effect on collagen secretion in liver 

fibrosis [49, 51, 52].  
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Figure 3. Modell of multi-step intracellular and extracellular events of fibrillar collagen synthesis. Step 1. Transcription of 

collagen gene. Step 2. Synthesis of a chains of pre-procollagen on ribosomes and ER. Step 3. Hydroxylation of proline 

residues to hydroxyproline and lysine residues to hydroxylysine. Step 4. Glycosylation of some of the hydroxylysine residues. 

Step 5. Assembly of three α chains to form procollagen. HSP47 is involved in correct folding and assembly of procollagen 

molecules to the stable triple helix structure. Step 6. Procollagen is transported to the extracellular space across the Golgi 

complex by exocytosis. Step 7. Cleavage of registration peptides by procollagen N- and C-proteinases. Step 8. Self-assembly 

and polymerization into collagen fibrils. Step 9. Cross-linkage between fibrils to form collagen fibers [47].  
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1.3. Polymeric based siRNA delivery 

siRNA delivery is challenging due to its fast degradation by ubiquitous endogenous 

ribonucleases in biological fluids. Unmodified siRNA is also rapidly eliminated from blood 

by the kidneys [53]. In addition, the physicochemical properties of siRNAs (negative charge 

and size of: ~13 kDa) hinder the permeation of the equally negative charged “grease-like” 

barrier of the cell membrane in order to reach the cytoplasm, their site of action [29, 49]. 

Therefore, the success of RNAi therapy is dependent on a safe, stable and specific transport in 

the blood stream and high transfection efficiency. 

Viral systems are very efficient for in vitro and in vivo transfection. However they pose 

considerable risk by activation of the immune system, such as triggering an interferon 

response or activation of coagulation and complement factors. There is also the risk of 

mutations by integration of expression cassettes in the host genome which can cause the 

development of cancer [29, 49, 54, 55]. Non-viral vectors produced from lipids or polymers, 

on the other hand, can provide a safer alternative to viral systems with lower costs, potential 

for rapid production at a larger scale, ability to modify or attach targeting ligands, and 

potential for repeated administration [56, 57].  

Despite effective transfection into cells, liposomes have shown a relatively low encapsulation 

efficiency with poor storage, stability and rapid clearance from the blood [58]. Once inside 

the cells, they do not prevent degradation of nucleic acids within endosomes. To account for 

this, cationic liposomes have been coated with lipids such as DOPE (1,2-dioleoyl-sn- glycero-

3- phosphoethanolamine) facilitating endosomal release of the complex [59-61] or cholesterol 

was inserted between the lipid bilayers to increase the rigidity of the liposomes [62]. 

However, lipid-based delivery still maintained several drawbacks including minimal control 

of degradation rates and targeting difficulty [56].  

Non-viral systems based on cationic polymers have been extensively used as an alternative for 

nucleic acid delivery. Some of the advantages of polymeric delivery systems are: minimal 

immune response, targeting capability, controllable degradability, low costs and most 

importantly the possibility to easily modify them. Variations in chemical composition, 

structure, and molecular weight can provide changes in size, charge, 

hydrophobicity/hydrophilicity, and degradation rate of polymer/nucleic acid complexes [56, 

63, 64]. Cationic polymers are generally divided into natural and synthetic polymers. One of 

the most commonly used synthetic polymers is polyethilenimine (PEI), which has a high 
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transfecion efficiency and endosomal escape [65]. However, its use is limited by the cytotoxic 

effects [66]. Nanoparticles made of natural polymers such as chitosan and atelocollagen [67, 

68] have been additionally exploited due to a better cytotoxicity profile, but slightly lower 

tranfection effieciencies [63].  

 

1.4. Chitosan for oligonucleotide complexation 

In recent years, chitosan has become one of the most widely used non-viral delivery systems 

for nucleic acids. Its high positive charge density, versatility, biocompatibility, and 

biodegradability set chitosan apart from other polymeric nanocarriers [58, 69]. In 

physiological conditions chitosan can be readily digested by either lysozymes or chitinases, 

which are produced by the normal flora in the human intestine and can be detected in the 

blood as well [58]. This makes chitosan highly eligible for applications in the pharmaceutical 

field.  

Chitosan is mainly produced by the alkaline de-N-acetylation of chitin, the second most 

abundant polysaccharide in nature after cellulose [70]. Chitin is primarily sourced from 

crustacean and insect shells[71]. It has a randomly distributed ß-1-4 linked D-glucosamine 

(GlcN) and N-acetyl-D-glucosamine (GlcNAc) structure (Figure 4) with a pKa of 6.2 – 7.0 of 

the D-glucosamie unit. This means that chitosan is protonated at pH values lower than ~6.5  

and can only be solubilized by slightly acidic conditions [72]. The high charge density of 

chitosan at pH levels below the pKa can also be seen as an advantage for polyplex preparation 

and endo-lysosomal escape, whereas a low charge density at pH 7.0 - 7.4 contributes to low 

cytotoxicity and may facilitate the intracellular release of the genetic material [73] 

 

 

Figure 4. Chitosan structure:  N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN) are randomnly distributed in 

the linear polysaccharide.  
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The two most important structural parameters that influence chitosan’s solubility and most of 

its physicochemical properties like protonation, are the degree of deacetylation and the 

molecular weight [74].  

The degree of deacetylation (DD) offers information about the average amount of D-

glucosamines available to interact with the nucleic acids and strongly influences degradability 

[75], inflammation [76] and immune modulation of chitosan [77, 78]. For siRNA delivery a 

higher DD is necessary to effectively bind the short length and stiff molecular topology of 

siRNA. High DD (≥80%) is mandatory to complex siRNA and form efficient nanoparticles 

[58]. Malmo et al. [79] even formed siRNA nanoplexes using fully deacetylated chitosan 

which showed more efficient silencing than partially deacetylated chitosan with a DD > 85% 

because of the high number of charges. However, an ecvessive high DD will results in slower 

degradation rates [80]. Liu et al. [69] were able to formulate siRNA nanoplexes with a low 

DD (54%) chitosan. Nevertheless, this yielded low transfection efficiency of H1299 GFP cells 

due to lacking nanoplex  stability [53].  

 

Chitosan molecular weight (Mw) also strongly impacts the biological and physicochemical 

characteristics of nanoplexes. Its chains can influence the nanoplex stability which is crucial 

for siRNA protection before and after cell internalization, but should be low enough to permit 

the nucleic acid release once it reaches the cytosol [53]. Low Mw chitosan (~10 kDa) may be 

able to form nanoplexes with DNA but has short chain lengths which worsen siRNA 

complexation [69, 81]. Complete siRNA binding could only be observed with 25 to 80 kDa 

chitosan [81, 82]. Therefore, a high Mw chitosan would better entangle siRNA which will 

result in a more compact binding and a better protection from enzymatic degradation [69, 83]. 

Conversely, a chitosan with Mw which is too high may be too long to form suitable 

nanoplexes. Ragelle et al. [53] summarize in their review that chitosan molecules with 5–10 

times the chain length of siRNA (MW of ~13 kDa) are feasible to form suitable NPs. 

 

1.5. Chitosan:siRNA nanoplex formation 

There are three known methods for siRNA nanoplex formation in solution: complexation, 

ionic gelation using for example tripolyphospate (TPP) and  chitosan for siRNA entrapment 

and adsorption of siRNA onto the surface of preformed chitosan nanoplexes [58]. The later 

method raises concerns regarding nucleic acid protection against degradation [84]. The 

complexation technique relies on the electrostatic interactions between the positively charged 



  INTRODUCTION 

 

 
 18 

chitosan and negatively charged nucleic acids [69, 83, 85]. The ionic gelation method is based 

on the inclusion of a small polyion such as tripolyphospate (TPP) in the nucleic acid solution 

that acts as an ionic cross-linker upon mixing with chitosan [77, 86, 87]. Katas et al. [88] 

reported a better transfection efficiency of chitosan-TPP:siRNA compared to chitosan:siRNA 

complexes for CHO K1 and HEK 293 cell lines. However, they also reported a higher loss of 

cell viability for chitosan-TPP:siRNA in comparison to chitosan:siRNA nanoplexes. There is 

no clear indication on which type of nanoplex formation leads to nanoplexes with the best 

transfection efficiency for a broad application range. 

 

Once the DD and Mw are optimized for the specific chitosan delivery system and a 

preparation methods is defined, the ratio between the number of positive charges in the 

polymer and the negative charges in siRNA needs to be taken into consideration and 

calculated [83]. This amine (N) to phosphate (P) ratio has a major impact on the nanoplex 

size. It was reported, that with a higher N/P ratio the siRNA nanoplexes were in the range of 

100 nm, whereas 200 nm NPs were obtained at a lower N/P ratio (5/1–10/1) [83, 89]. Higher 

N/P ratios (50/1-150/1) proved to enable the successful and efficient EGFP knockdown in 

1299 human lung carcinoma cells, in comparison to lower N/P ratios of 2/1 and 10/1 [53, 58, 

69].   

 

1.6. Physiological barriers for chitosan: siRNA nanoplex delivery 

In the current thesis, chitosan:siRNA nanoplexes are designed to be incorporated into surface 

structures of medical implants. Therefore, their delivery is done locally at the site of 

implantation  with a maximum dosage in comparison to systemic delivery [53]. Nevertheless, 

upon introduction into physiological fluids, either cell culture medium in vitro or, the body 

fluids in vivo, nanoplexes will encounter a hostile environment [90] (Figure 5). In such an 

environment, siRNA can be easily degraded by ribonucleases resulting in a loss of mRNA 

activity and knockdown. Therefore, the first function which has to be covered by the chitosan 

nanoplexes is to safely deliver the siRNA to the cell membrane.   

The second barrier is the extracellular membrane. The naked anionic siRNA is unable to cross 

the negatively charged cell membrane due to both, its size and the electrostatic repulsions 

[91]. Therefore, the cationic chitosan must be able to bind and condense siRNA into small 

nanoplexes (100 – 300 nm) maintaining an overall positive charge at the nanoplex to facilitate 

cell uptake. However, studies showed that these two parameters only indirectly influence cell 
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uptake and ultimately transfection efficiency. Upon introduction into physiological fluids, the 

positive charge of the cationic nanocarrier and its size influence the formation of a protein 

corona on the surface of the nanopolyplex [92, 93]. The first in vitro studies on chitosan/DNA 

nanoplexes indicated that serum proteins in fetal calf serum – (FCS) had no inhibitory effect 

on chitosan DNA binding [94]. Further investigations showed that actually the FCS in cell 

culture medium enhanced the efficacy of the transfection [77, 95-98].  Nimesh et al. [96]  

 

Figure 5. Physiological barriers for chitosan/siRNA nanoplex delivery. (1) Nanoplex formation in aqueous buffer and 

stability in the extracellular biological environment. Dependent on the components of the cell culture medium a protein layer 

is formed on the nanoplex surface (“protein corona”). (2) Cell uptake. (3) Escape from the endo-lysosome. (4) Disassembly 

and release of the nucleic acid payload into the cytosol. (5) Knockdown of the targeted gene product mRNA leading to the 

inhibition of e.g. Hsp47 chaperon protein production and ultimately the inhibition of collagen synthesis.  

 

tested chitosan:DNA nanoplex formation at different pH values from 6.5 to 7.4 in cell culture 

medium with and without 10% FCS. The results showed that at pH 6.5, no matter if FCS was 
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present or not, the nanoplexes showed the best cellular uptake. Furthermore, at pH 7.1 and 7.4 

the presence of large aggregates could be noticed near the cell membrane. Sato et al. [97] 

showed that an increased percentage of FCS (>20%) resulted in a decrease of transfection 

efficiency. Therefore, it seems that the positive charge of chitosan is important for the 

stability of the nanoplexes, but the uptake is promoted by the molecules on the nanoplexes 

surface.  

The third barrier is the endosomal release into the intracellular environment. Within the 

endocytosis pathway nanoplexes will be exposed to dynamic pH environments. From an 

extracellular pH of ~7.0 chitosan:siRNA nanoplexes are enclosed in the early endosome at pH 

values between 6.0 – 6.5. In the late endosome the pH values are between 5.5 – 6.0 due to the 

action of an ATPase proton-pump in the vesicle membrane [99, 100]. The late endosome 

fuses with the lysosome which is even more acidic with a pH value of ~4.5 [100]. The most 

widely known endosome escape model for oligonucleotide delivery to the cytosol is the 

“proton sponge hypothesis” first describe by Behr et al. [101] It describes the ability of a 

polycation to swell and rupture vesicles by raising intra-vesicular osmotic pressure through 

proton buffering coupled to a concomitant influx of negatively charged ions such as Cl
- 
[77, 

102]. However, chitosan nanoplexes are not able to escape the endo-lysosome pathway very 

quickly due to the proton sponge effect. In comparison to polyethyleneimine (PEI) delivery 

systems which show a rapid endosomal release (~4h) chitosan has a much slower release of 

~12 to 24h [103, 104]. This late onset of oligonucleotide release [105] might be due to a lower 

linear charge density and a weaker membrane disrupting ability of chitosan [77]. Thibault et 

al. [104] traced the intracellular trafficking of chitosan:DNA systems via the dextran pulse-

chase fluorescent dextran lysosomal staining which revealed the very fast transport of the 

nanoplexes from the endosome to the lysosome within ~4h, respecting the kinetics of the 

endosomal fusion with lysosomes [106]. The nanoplexes were colocalized in the lysosome for 

8-12h until they were gradually released to the cytosol. Using double labeled FRET analysis 

Thibault et al. could observe that there was a direct correlation between the stability of the 

nanoplexes and their decondensation in the lysosome. The high Mw chitosan with a high DD 

was the most stabilizing and had the slowest decondensation and lysosome escape. The low 

Mw chitosan with a low DD was the least stabilizing chitosan and had the fastest 

decondensation which effected the DNA degradation inside the endosome. The chitosan with 

a good balance between Mw and DD showed the best transfection efficiency. Therefore, it is 

assumed that the lysosomal-escape of chitosan nanoplexes is due to the increase in vesicular 
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osmolarity by lysosomal enzyme induced degradation products of chitosan [75, 105]or due to 

the hydrostatic membrane destabilization [107]. Nevertheless, there are discrepancies between 

studies that hypothesise that the nanoplexes are transported in the lysosomes [103-105, 108] 

and studies suggesting chitosan nanoplexes do not transit the lysosome at all [109, 110]. The 

lack of consensus between the above studies could stem in part from the use of different 

methodologies for transfection and lysosomal staining, including different cell types, 

transfection pH or the use of an acidophilic Lysotracker dye versus dextran. In this context, it 

is important to note, that inhibition of lysosomal acidification will abolish Lysotracker 

fluorescence and acidophilic partitioning [111]. Therefore, this agent may not be an accurate 

marker of lysosomes when loaded with polycations endowed with a proton buffering capacity 

such as PEI [112] and chitosan [95] that can prevent lysosomal acidification [77, 104].  

The forth barrier in the siRNA delivery is the release from the chitosan nanoplex after 

reaching the cytosol. siRNA must be able to dissociate from the polycation. The competition 

with cytoplasmic polyanions [113] and the partial degradation of enzyme-labile biodegradable 

chitosan in the lysosome [75, 114] might facilitate the decomplexation in the cytosol [77]. 

However, this mechanism is not yet fully understood. 

 

1.7. Chitosan modifications 

In order to overcome the different siRNA delivery barriers, chitosan can be modified with 

various functional domains. On the chitosan backbone two groups are particularly susceptible 

to chemical modification: the free amine on the N-deaceylated glucosamine and the hydroxyl 

groups linked to the glucopyranose ring. The primary amines are more reactive in comparison 

to the hydroxyl groups. However, they are the basis for electrostatic interactions with the 

anionic phosphate groups of siRNA needed for nanoplex formation. Therefore, the 

modification of these primary amino groups may generate steric hindrance as well as a 

decrease in the number of positive charges available for nanoplex formation.  

Chitosan modifications are focused mainly on adding functional domains to the polymer 

chain which enhance the solubility at physiological pH. This influences the colloidal stability 

of the siRNA nanoplexes as well. Furthermore, more specific modifications can be performed 

which incorporate targeting ligands for a more specific delivery or add endo-lysosomal 
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domains for a faster release of the oligonucleotide into the cytosol or fluorescent labels which 

enable live cell tracking of the nanoplexes.  

Buschman et al. [77] summarized the chitosan modifications at the primary amine on the N-

deacetylated glucosamine for the majority of the chitosan applications (see Figure 6). 

Furthermore, the review  of Ragelle et al. [53] summarized in a table some of the chitosan 

modifications made specifically for siRNA delivery (Table 1) 

Table 1. Chitosan derivatives for siRNA delivery from literature [53]. The table lists the modifications 

and their benefits for siRNA delivery applications. 

Derivatives of chitosan Improvements References 

Trimetyl chitosan (TMC) Increased solubility 

pH independence 

[115-117] 

Thiolated/TMC 

Increased extracellular stability by formation of 

intra and intermolecular disulfide bonds; 

enhanced intracellular release 

[118] 

Glycol chitosan Increased stability [119, 120] 

PEGylation Increase solubility and stability [121, 122] 

Guanidinylation 
Improved cellular uptake by mimicking the cell 

penetrating peptide trans-membrane activity 
[123] 
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Figure 6. Modifications of the chitosan primary amine from literature [77] a) enhance of pharmacokinetics [124] b) c) 

solubility [125-127] d) endosomal escape [128] e) f) g) h) increase transfection efficiency [129] i) j) a) texas red: 

fluorescence [130] k) dextran: enhance complex stability [131], phosphorylcholine: enhance uptake [132]; 9-anthraldehyde: 

fluoresce [133]; N-acetylchitosan oligosaccharide aldehyde terminated: colloidal stability [134]; phosphorylcholine-

glyceraldehyde: solubility [132] l) arginine: enhance uptake [135]; folate PEG: enhance pharmacokinetic and cancer cell 

recognition [135]; histidine, urocanic acid: endosomal escape [135-137]; galactosiylated lactobionic acid, galactosiylated-

PEG: target liver cells [131].  

 

1.7.1. Chitosan Poly(ethylene glycol) (PEG) modification 

The functional modification of chitosan with hydrophilic PEG polymers is a strategy widely 

used because of its unique physicochemical properties. PEG has minimum interfacial free 

energies with water, extensive hydration, good conformational flexibility and large excluded 

volume[138]. PEG can enhance chitosan solubility at higher pH values, increase stability of 

the nanoplexes in the biological environment and prevent inter-nanoplex aggregation [139-

142]. Furthermore, it is known to increase bioavailability, reduce cytotoxicity and decrease 

immunogenicity of nanoparticles [143, 144].  

Chitosan_PEG nanoplexes form two compartments: the inner core via electrostatic 

interactions between the chitosan and the nucleic acids and a hydrophilic PEG layer serving 

as sterically stabilizing barrier [145-147]. The tightly bound interfacial hydration coating can 

prevent direct contact between the surface and the proteins in the biological environments. 

However, it has been shown that PEGylation reduces, but does not completely exclude protein 

binding to the nanoplexes [148]. Ebbesen et al. [149] hypothesize that small proteins may 

penetrate a thin polymer coating and adsorb to the underlying substrate, whereas larger 

proteins may adsorb at the upper layers if not sufficiently dense resulting in long range 

interactions between protein and nanoplex surface. Zheng et al. [138] showed that the protein 

repulsion ability decreased when the PEG substitution increased from 7% to 29% using the 

same PEG chain length of 2 kDa. Furthermore, Mao et al. [150] showed that PEI-(PEG5kDa)4 

and PEI-(PEG20kDa)1 siRNA nanoplexes could better protect the siRNA against RNAse 

digestion and had a positive influence on the transfection efficiency of NIH13T3 fibroblast 

cells in comparison to PEG550Da with a higher PEG chain density at the nanoplex surface. 

Therefore, the protein resistance and the successful transfection efficiency depend on the PEG 

surface coverage and chain lengths [138, 144, 151]. The results of Chao et al. [152] revealed 

that it is actually the distance between two PEG molecules, which influences the protein 

adsorption.   
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1.7.2. Chitosan modifications for specific targeted nanoplex delivery 

The targeted delivery of chitosan siRNA nanoplexes can not only reduce the siRNA 

accumulation in other cells, but it also minimizes the dose required to achieve a desired 

therapeutic effect. The specific delivery of siRNA to a particular cell type can be achieved by 

grafting a ligand onto the nanoplex surface, which will then recognize a receptor expressed by 

the cell [53]. The ligand could be conjugated to the chitosan amino groups via a broad range 

of modifications. However, the number of positive charges available on chitosan for nanoplex 

formation has to be high enough to enable sufficient electrostatic interaction between 

oligonucleotide and chitosan. Furthermore, the impact of a modification could change 

nanoplex characteristics such as size, charge, stability and cytoxicity. The availability of the 

ligand to interact with its target is dependent on the physicochemical properties of the ligand 

and the interactions with the nanoplex surface [53, 153]. Therefore, PEG has been widely 

used as spacer between a targeting ligand and a cationic polymer (see Table 2) [154].  

 

Table 2. Examples of PEG-conjugated copolymers for targeted delivery of oligonucleotide loaded 

nanoparticles to different cell types. 

Gene carrier Target Cells References 

BPEI-g-PEG-RGD 
Vascular endothelial cells 

(angiogenesis) 
[155] 

Lactose-PEG-g-PLL Hepatocytes [156, 157] 

Galactose-PEG-g-PLL Hepatocytes [158] 

Folate-PEG-g-PLL Cancer cells [159] 

Folate-PEG-folate-g-PEI Cancer cells [160, 161] 

Folate-PEG-g-chitosan Cancer cells [162] 

Biotin-PEG-g-chitosan 
Brain endothelial cells (Blood 

Brain Barrier) 
[163] 

RGD-PEG-g-chitosan Thrombocytes  [164] 

Poly-L-Arginine-PEG-g-chitosan epithelial cells (adenocarcinoma) [165] 
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1.7.2.1. Fibroblast targeting  

In order to successfully prevent the formation of ECM on implantable pharmaceutical 

devices, siRNA can be used to inhibit collagen synthesis specifically. As the collagen protein 

is produced by fibroblasts it is desirable to address this target cells directly via a cell specific 

cell surface protein. A suitable candidate seems to be the fibroblast activation protein (FAP).  

FAP or separase (surface expressed protease) is a type II transmembrane protein with an 

extracellular C-terminal region followed by a single hydrophobic transmembrane domain and 

a short cytoplasmic tail [166]. It belongs to the serine protease family and exhibits dipeptidyl 

peptidase and endopeptidase activity, catalyzed by the same active site [167]. FAP is 

selectively expressed during fetal development [168], in reactive stromal fibroblasts of 

epithelial cancers [169], granulation tissue of healing wounds, and malignant cells of bone 

and soft tissue sarcomas [170]. The activation of fibroblasts, as happens in wound healing and 

fibrosis, results in an overexpression of FAP which makes it an interesting target molecule to 

specifically address active fibroblasts during fibroblast encapsulation [49]. Conversely, 

resting fibrocytes in normal adult tissues generally lack detectable FAP expression and would 

not be addressed by FAP targeted drug delivery [168].  

 

Until now various ligands, such as proteins, peptides [171, 172], folic acid [173], antibodies 

[174] or single chain fragment antibodies [175], have been conjugated to polymeric delivery 

systems, including chitosan,  in order to target specific cells. Messerschmidt et al. [176] in 

Prof. Kontermann’s group at the University of Stuttgart developed novel single chain 

fragments (scFv) for immunoliposomes to target FAP. The insertion of the scFv into the lipid 

coat was achieved by a defined and site-directed coupling through a genetically engineered 

additional cysteine residue in the scFv protein.  In the current study, the scFv used as a 

targeting ligand had a hexahistidyl-tag incorporated into the peptide linker between heavy and 

light chain fragments together with a cysteine residue at position 3 (scFv’LCH3) (see Figure 

7) [177]. The Mw of the scFv’LCH3 is 56 kDa as a dimer and 28 as a monomer.  
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Figure 7. Structure of scFv’LCH3 construct, visualized with PyMol by Dr. Messerschmidt et al. [177]. The sequence of the 

linker between heavy (VH) and light (VL) protein fragment had a cysteine residue at position 3 and a hexahistidyl-tag to 

enable metal-chelate affinity purification of the expressed protein and detection by anti-His-tag antibodies.  

 

Small molecules such as carbohydrates, folate and cholesterol have also been used as 

targeting ligands. Therefore, the use of small potent and selective chemical inhibitor of cell 

membrane proteins might also be a viable targeting concept for specific cell delivery of drug 

molecules. Nanoplexes are mostly internalized via endocytosis. Therefore, once in the 

proximity of the target cells, a chemical inhibitor covalently attached to a nanoplex could bind 

the drug delivery system tightly to the surface of the desired cells, promoting a concentrated 

specific uptake of the siRNA delivery system. 

 

Jansen et al. [167] in the group of Prof. Van der Veken at the University of Antwerp 

optimized a drug library based on N-acylated glycyl-(2-cyano)pyrrolidines to identify 

inhibitors with higher potency and selectivity for FAP against compared to dipeptidyl 

peptidases (DPPs) and prolyl oligopeptidase (PREP) (Figure 8). Structure activity relationship 

studies identified different influences of modifications at the N-acyl group and the 2-

cyanopyrrolidine residue [167, 178]. As a result they reported compounds that displayed low 

nanomolar inhibitory potency and high selectivity for FAP with respect to related DPPs, 

DPPIV, DPP9, DPPII, and PREP.  
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Figure 8. Structure activity relationship of N-acylated glycyl-(2-cyano)pyrrolidine based FAP inhibitors. The 2-

cyanopyrrolidine is essential for in vivo activity of the inhibitor, as it binds to the FAP. Therefore, the attachment of the 

inhibitor to polymers or nanoplex surfaces must be done at the glycyl part of the molecules. 

 

The structure of the chemical inhibitor was not revealed. The only information provided was 

that compound UAMC 1533 (the inhibitor) contains a linker group with an azide moiety at the 

glycyl end. Its potency and selectivity is shown in Table 3. Its molecular weight is 524.57. 

UAMC 1533 had a yellowish appearance and was >95% pure on LC-MS.  

 

Table 3. Potency and selectivity of UAMC as provided by the group of Prof. Van den Veeken. 

IC50 (µM)  

Compd FAP DPP IV DPP8 DPP9 DPP II PREP SI (FAP/PREP)
* 

UAMC 0.0051 ±0.0003 >100 >100 >100 >25 >100 >20 

*SI stands for “Selectivity Index” (calculated as [IC50(PREP)/IC50(FAP)]) 

 

1.7.3. Bioconjugation techniques  

Bioconjugation involves the linking of two or more molecules to form a novel complex 

having the combined properties of its individual components, mostly with at least one protein 

as biomolecule. Natural or synthetic compounds with their individual activities can be 

chemically combined to create unique substances possessing carefully engineered 

characteristics. Reactive functionalities on crosslinking reagents, tags, and probes provide the 

means to specifically label certain target groups on ligands, peptides, proteins, carbohydrates, 

lipids, synthetic polymers, nucleic acids, and oligonucleotides [179].  

The intense research over the last decades provides a broad spectrum of different applications 

with specific targeting of functional groups under biorelevant and biocompatible conditions. 
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Functional groups in biomolecules like thiol-, amino- or hydroxyl groups can be directly 

addressed. Another approach is to incorporate unnatural functional groups into the target 

ligand without interfering with naturally occurring functional groups which are present in a 

living organism. Additional important requirements of these, so called “bioorthogonal 

reactions” are, chemoselectivity, high reaction rates and the operability under physiological 

conditions (water, high salt concentrations, reducing conditions, no toxic additives). As an 

example, azides are biologically inert and react specifically with alkynes in [3+2] 

cycloadditions under physiological conditions. Introduction of these unnatural functional 

groups is mostly done via the first approach of bioconjugation, by direct addressing of 

functional groups with reactive tags. These tags are bearing the corresponding unnatural 

functional group, which has to be inert to the “tagging-reaction” itself. 

The most predominantly used internal and external chemical functionalization strategies are 

shown in Figure 9. Many modifications of the shown reactions were further developed over 

the years in order to improve specificity, reactivity and efficacy, such as the use of cyclo- 

instead of linear alkynes. 

 



  INTRODUCTION 

 

 
 30 

 

 

Figure 9. Depiction of the most predominantly used internal and external chemical functionalization reactions from protein-

based bioconjugation strategies [180].  

 

Short overview over the basic methods commonly used in protein bioconjugation techniques 

(see to Figure 9): 

(a) The ε-amino groups of lysine can be amidated via N-hydroxysuccinimide esters in a 

classical amidation reaction.  

(b) The free thiol residue of a cysteine can react specifically with maleimides in a Michael-

reaction, forming stable thioethers. Alternatively the thiol can be reacted in a nucleophilic 

substitution to halogen-substituted usually iodated acetamides. 
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(c) Glutamic and aspartic acids can be activated with carbodiimides to reactive intermediates, 

mostly O-acylisourea intermediates, which undergo amidation with the corresponding amines 

under release of the corresponding urea among the available carbodiimides, EDC is preferred, 

due to its water solublility.  

(d) Tyrosine. The phenol ring is a low reactive group but reacts with electrophiles especially 

diazonium salts in a very sensitive and specific manner. Diazonium coupling uses a 

phenyldiazonium salt electron withdrawing substitution in 4 position increas reaction rates. 

Another quite often used technique is the oxidative coupling of a phenylene diamine. 

Mannich condensations are also feasible site-specific reactions at tyrosine residues. Another 

approach to address tyrosine, less selective would use the phenolate ion, which can be easily 

generated under alkaline conditions, followed by alkylation or acylation reactions by using a 

variety of bioconjugate reagents.  

(e) + (f) Tryptophan and phenylalanine, the two non-polar aromatic amino acids can be 

modified via oxidative coupling of a phenylene diamine derivative, similar to that shown for 

tyrosine.  

 (g) Homopropargyl glycine is a non-natural aminoaicd which can react in a [3+2] Huisgen 

cycloaddition between the alkyne and azide.  

h) Azidohomoalanine can react via [3+2] cycloaddition between an alkyne and the azide with 

inversed functionalities to the reaction shown in (g). 

The copper (Cu) catalyzed alkyne-azide Huisgen cycloaddition (g+h) (CuAAC) represents 

one of the most emblematic approaches of the “click chemistry” reactions. The “click” 

concept is based on fulfilling set of stringent criteria: wide in scope, give high yields, generate 

no or limited byproducts that can be removed by non-chromatographic methods, be 

stereoselective, take place in biologically benign conditions (aqueous solution, ambient 

temperature, and near physiologic pH [181]. Four main groups were orginally defined on 

these basis: (i) additions to carbon - carbon multiple bonds (such as epoxidation, 

dihydroxylation, aziridination, and sulfenyl halide addition, but also Michael additions), (ii) 

carbonyl chemistry of the „non-aldol” type (such as formation of ureas, thioureas, aromatic 

heterocycles, oxime ethers, hydrazones, and amides), (iii) cycloadditions of unsaturated 

species (especially 1,3-dipolar cycloaddition reactions, but also the Diels - Alder reactions), 

(iv) nucleophilic substitution chemistry (particularly ring-opening reactions of strained 
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heterocyclic electrophiles such as epoxides, aziridines, aziridiniumions, and 

episulfoniumions) [182]. These ‘‘click’’ reactions constitute a toolbox for efficient coupling 

methodologies that can take place in a one-pot approach or in a sequential manner. These 

characteristics and advantages meet the increasing demand for multi-functional biomaterials 

that can mimic complicated synergistic signaling cascades inherent within biological 

environments [183]. 

 

1.7.4. Orthogonal conjugation chemistry based on 1,3 –dipolar cycloadditions 

The 1,3-dipolar cycloaddition of 1,3-dipole azide and a dipolarophile like an alkyne (Huisgen 

1,3 dipolar cycloaddition) can be done via Cu(I) promoted synthesis as well as via strain 

promoted 1,3 dipolar cycloaddition. The click chemistry of non-activated alkynes, such as 

terminal alkynes, needs high temperatures to overcome the activation barrier. Therefore 

catalyzed modifications are usually considered, which allow the reaction to take place at room 

temperature and also in aqueous solvent systems. Two of the most efficient transition metal 

catalysts known in literature are copper and ruthenium [184] (with rate acceleration of up to 

10
7
 to 10

8
) [185]. However, in this type of reaction Cu (I) complexes are usually the catalysts 

of choice.  

The mechanism of this type of ‘click chemistry’ reaction proceeds via the π-π interaction 

between a 1,3 dipole and a dipolarophile. The 2 π-electrons of the dipolarophile (the alkyne) 

and the 4 electrons of the dipolar compound (the azide) participate in a concerted, pericyclic 

shift, yielding 5 membered heterocycles (the triazole) as regioisomers (depending on 

electronic and steric effects) via a Hückel aromatic transition state as shown in Figure 10. 

 

 

Figure 10. Mechanism of 1,3-dipolar reaction between alkyne and azide [185]. The 1,3-dipole of the azide shifts electrons to 

the alkyne system which shifts and electron pair to the azide dipole at the same time in a 4π+2π symmetry allowed the 

perycyclic concerted cycloaddition reaction. This forms the 6π – electron Huckel aromatic transition state which finally 

yields different regioisomers.  
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A condition for such a reaction to take place is a certain similarity of the interacting HOMO 

and LUMO orbitals of dipole and dipolarophile, depending on the relative orbital energies of 

both the dipolarophile and the dipole. According to the HOMO-LUMO interactions, the 

reaction is divided into three subclasses, type I-III [186] (Figure 11). 

 

 

Figure 11. HOMO-LUMO interactions of the dipole and dipolarophile for type I-III 1,3-dipolar cycloaddition reactions. The 

energy levels of HOMO and LUMO define three different subtypes of 1,3-dipolar cycloadditions. The reaction with the 

lowest HOMO-LUMO energy gap is preferred. The influence of different electron drawing and pulling groups is therefore 

different for the three reaction types. Dashed lines show overlapping HOMO-LUMO pairs (1: Type I, II; 2: Type III, II) 

[186].  

 

The reaction pathway via type I, II or III is always determined according to the lowest 

HOMO-LUMO energy gap.  

The type I reactions are characterized by a high-lying HOMO of the 1,3-dipole which is 

overlapping with the LUMO of the dipolarophile (dashed line 1). Dipoles of this class refer to 

the class of HOMO-controlled or nucleophilic dipoles. In this case the reaction rates are 

accelerated by electron withdrawing groups lowering the LUMO of the dipolarophile (alkyne) 

while electron donating groups can decelerate the reaction (overlapping according to dashed 

line 1) (Figure 11). 
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Type II reactions are characterized by a mixture of HOMO-LUMO interactions. Due to 

similar energy gaps both interactions either HOMO (dipole)-LUMO (dipolarophile) as well as 

LUMO (dipole)-HOMO (dipolarophile) are possible. Both electron donating (highering 

HOMO) as well as electron withdrawing groups (lowering LUMO) on the dipolarophile are 

accelerating the reaction. Azides are included in these classes of dipolarophiles, the so called 

ambiphlic or HOMO-LUMO controlled dipoles (overlapping according to dashed line 1 or 2). 

Type III is similar to inverse demand Diels-Alder reactions [187]. The low-lying LUMO of 

the dipole interacts with the HOMO of the dipolarophile (dashed line 2 in diagram). Electron 

withdrawing groups on the dipolarophile decelerate, while electron donating groups 

accelerates the reaction rates. 

In all cases the HOMO-LUMO energy gap can be significantly lowered with catalysts such as 

copper as already mentioned above. This type of reaction is often referred as copper (I) 

catalyzed azide alkyne click chemistry reaction (CuAAC). The lowering of the HOMO-

LUMO energy gap leads to highly efficient conversions with high reaction rates, deserving 

the name “click-reaction”. 

An alternative for lowering the activation barrier of alkyne towards azide coupling is the use 

of activated ring strained alkynes. The so called strain-promoted azide-alkyne cycloaddition 

(SPAAC) was first reported by Bertozzi et. al [188] (Figure 12 a). The ring strain (18 

kcal/mol of ring strain) activation is high enough to allow the azide-alkyne conjugation 

without the need of Cu-reagents as catalysts in high reaction rates. Cyclooctyne is the smallest 

stable ring strained alkyne with lowered HOMO-LUMO gap, allowing an efficient reaction at 

room temperature. Therefore, SPAAC represents one of the main bioorthogonal reactions and 

has found broad application in material sciences [189], chemical biology and in vivo imaging 

[188, 190-192]. In order to increase the reaction rates of the SPAAC, a number of structurally 

varied cyclooctyne derivatives, such as difluorinated cyclooctyne (DIFO) [193], 

dibenzocyclooctynols (DIBO) [194], dibenzoazacyclooctyne (DIBAC) [195], 

Biarylazacyclooctynones (BARAC) [196], bicycle[6.1.0]nonyne (BCN) [197] have been 

developed (Figure 12 b).  
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Figure 12. a) Strain promote azide alkyne cyclooaddition (SPAAC), b) various activated cyclooctyne derivatives used for 

bioconjugation such as difluorinated cyclooctyne (DIFO), dibenzocyclooctynols (DIBO), dibenzoazacyclooctyne (DIBAC), 

Biarylazacyclooctynones (BARAC), bicycle[6.1.0]nonyne (BCN).  

 

Other known bioorthogonal reactions are the Staudinger ligation via the corresponding 

phosphine, yielding an amide linkage [179, 180], tetrazine ligation, nitrone dipole, 

norbornene, and oxanorbornadiene cycloaddition, tetrazole photoclick chemistry, and 

quadricyclane ligation [198].   

 

1.8. Layer-by-layer coating and release  

The successful integration of an implant with the surrounding living tissue and its overall 

performance is influenced by the biological response to the device surface. Therefore, 

interactive coatings allow modifications of the implant surface in order to modulate and 

control the preferred biological interactions.  

The layer-by-layer (LbL) adsorption technique is an established, simple and versatile 

approach for the formation of controlled bottom-up multilayer thin-films on surfaces of 

various chemistry and shape [199-202]. Important applications of LbL coatings include 

controlling cellular and bacterial adhesion[203], as well as  delivery of bioactive molecules at 

the interface of a biomedical device and biological tissue, such as surfaces of orthopedic 

implants, urinary catheters or cardiovascular stents [204]. 

This technique is based on the alternate adsorption of oppositely charged materials, mainly 

via electrostatic interactions [205, 206] (Figure 13 A). Each adsorption leads to a charge 
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inversion at the surface, resulting in the continuous building up of a layer system of tunable 

characteristics in terms of composition and thickness (number of layers), surface charge, 

permeability and elasticity [207, 208]. The most commonly used polyelectrolytes are 

poly(ethyleneimine), poly(allylamine) hydrochloride, poly(diallyldimethylammonium 

chloride), poly(sodium styrenesulfonate), poly (sodium vinylsulfonate), poly(acrylic acid), 

and chitosan. Furthermore, the LbL film fabrication under mild aqueous conditions enables 

the imobilization of biomolecules with preserved activity such as dyes, proteins[209], lipids 

[210], nucleic acids [44, 45, 202, 211-213], (nano)particles [214], and enzymes (Figure 13 B). 

In a similar manner to the control of the film thickness, the amount of functional molecules 

can be controlled by the increase in the number of deposited layers. Furthermore, the release 

rate of drugs or biomolecules from the multilayers can be “controlled in a wide range from 

several seconds to several weeks by changing the nature of biodegradable building blocks, or 

by applying environmental cues, including temperature, pH, ionic strength, light or 

electrochemical stimuli” [204].  
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Figure 13. Schematic representation of the LbL deposition of oppositely charged polymers for the surface modification of 

implants. (A) After the activation of the surface, the multilayer coating is built up via repetitive exposure to dilute polycation 

and polyanion solutions. (B) Nanoplexes for example can also be inserted in the film. At a certain pH nanoplexes, such as 

chitosan/siRNA, are positively charged and can be absorbed via electrostatic interactions on the surface of a negatively 

charged layer. The film coating can be further developed by alternate adsorption of positively charged nanoplex solution and 

polyanion solution. The implant can be of different composition, size, and shape (stents, orthopedic implants, dental implants, 

biosensors, etc.).  
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2. Aim of the present study  

The clinical application of many of the pharmaceutical implantable devices developed in 

recent years is still a critical issue due to the foreign body response. The current approaches to 

reduce the development of fibrosis have an overall anti-inflammatory effect or attempt to 

neutralize disease-associated proteins through direct binding without removing them. siRNA 

oligonucleotides are molecules that operate upstream of the protein production. They target 

mRNA – the carrier of genetic information before it is translated into proteins. Therefore, the 

delivery of siRNA to the inflammation site before the fibrotic capsule is formed might prevent 

the failure impairment or failure to perform.  

This thesis is divided in three parts: 

1) Design, synthesis and optimization of a chitosan:siRNA delivery system stable in 

extracellular environment, able to protect the siRNA from degradation, with nanoplex 

size in the range of 100 to 300 nm for a good cellular uptake, able to escape from the 

endo-lysosomal pathway before degradation and unstable enough to release siRNA 

once in the cytosol. 

2) Targeting of the chitosan:siRNA delivery system. Therefore, a multifunctional linker 

needs to be developed in order to bind the targeting molecule to the nanoplex surface. 

3)  Coating of the solid surfaces with chitosan:siRNA nanoplexes via a layer-by-layer 

approach. 

The physico-chemical properties of the established nanoplexes will be correlated with their 

biological behavior. The biological experiments performed by Dr. Schuster (NMI) or by the 

group at the University of Antwerp will be also attached in the results section of the thesis 

correspondently marked.  
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3. Results  

3.1. Influence of molecular weight (MW) and degree of deacetylation (DD) on the 

physico-chemical properties of chitosan for nanoplex formation 

High MW chitosans form longer and more flexible molecules, whereas the lower MW chitosan 

form shorter and stiffer molecular chains. Therefore, chain length has a high impact on 

polymer properties and influences for example the formation of siRNA nanoplexes. 

Furthermore, the charge density correlates to the binding capacity of siRNA. It is directly 

correlated to the percentage of deacetylated primary amine groups along the molecular chain 

(degree of deacetylation – DD). 

3.1.1. Alkaline deactylation of chitosan  

As sufficient nanoplex stability is necessary for extracellular siRNA protection and 

disassembly is needed to release the gene after the endosome escape, an appropriate balance 

needs to be achieved between the length of the chitosan molecules and the amount of 

deacetylated groups. Therefore, commercially available low and medium MW chitosan 

(Aldrich) was characterized and modified to generate a library of chitosans with DD ≤80% 

and Mw between 70-380 kDa (Figure 15, Table 4).
 

The increase in the DD of chitosan, the number of primary amine groups in position C2 of the 

D – glucosamine monomers leads to a modification of Mw as well. The approach chosen was 

the alkaline deacetylation, using strong NaOH solutions (40-50% NaOH) at high temperatures 

(60-110 
o
C) and increasing time intervals (4 – 24 h) (Figure 15, Table 4). The kinetics of 

deacetylation and polymer chain degradation can be optimized by screening different 

temperatures and testing different hydrolysis times. The alkaline solution detaches the acetyl 

groups by the nucleophilic addition of hydroxide ions to the carbonyl groups, separating the N 

– acetyl – D – glucosamine at position C2 into CH3COO
-
 and the NH2 – group. In the partial 

range of the FT-IR spectrum (1300 – 1800 cm
-1

) the β form of the native chitosan could be 

identified. The 1652 cm
-1

 band was attributed to the stretching vibration of C=O (amide I) and 

1558 cm
-1 

band corresponded to the NH bending (aminde II), which both can be used to 

measure the N-acetyl group contents [215, 216]. In the case of α-chitin the amide I band (1652 

cm
-1

) would be split into a doublet from two type of H-bonds in which C=O are involved, 

whereas for the β-chitin and β-chitosan, respectively, it was shifted to a single peak indicating 

much weaker intermolecular hydrogen bonds (Figure 14) [216].  



  RESULTS 

 

 
 40 

 

Figure 14. FTIR spectrum of commercially available chitosan (Aldrich). The broad absorption band at 3377 cm-1 is 

attributed to the O-H stretching vibrations. At 2872 cm-1 the methylene C-H band showed absorption. The 1652 cm-1 

stretching vibration corresponds to the amide I (hydrogen bond in a C O group with the NH group of the adjacent chain) 

and 1562  cm-1 corresponds to amide II (in-plane N–H bending and C–N stretching mode). The CH bending, symmetric CH3 

deformation and CH2 wagging bands appear at 1377 and 1302 cm−1. The bands ranging from 1032 to 1163 cm−1 are 

attributed to the asymmetric bridge oxygen and C–O stretching and the vibration of NH2 appears at 897 cm-1.The zoom in of 

the stretching vibration of C=O and bending of NH in the β-chitosan Aldrich was compared to the zoom in of the same 

region from the literature α-chitin to clearly show the differences between the α and β structure.  

 

In case of β-chitosan, the deacetylation is supposed to be fast due to its weak hydrogen 

bonding and the resulting residual acetyl groups are distributed randomly on the chitosan 
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polymer chain [217]. As the IR data of the commercial chitosan showed β – type 

characteristics, short time intervals were chosen for the reaction 4, 8 and 24h (Table 4). 

 

 

Figure 15. Alkaline deacetylation of chitosan using strong NaOH solutions (40-50% NaOH) at high temperatures (60-110 

oC). Increasing time intervals provide different DD.  

 

3.1.2. Analytical characterization of deacetylated chitosans  

The primary amine content was determined by 
1
H NMR. The degree of deacetylation was 

calculated with the method proposed by Hirai et al. [218], using the signals from protons H2, 

H3, H4, H5, H6 of the sugar moieties to quantify the hexoses in chitosan and the peak of the 

three acetyl protons in the N-acetyl-glucosamine to quantify the acetyl groups (Figure 16, 

Table 4). 

Polymer chains did not show the same degree of polymerization and molar mass, and H1 H2 

signals show different chemical shift dependent on the neighboring acetylated or free amino 

groups. Whereas the H2 in deacetylated chitosan is fully separated at 3.0 ppm, the H2 signal in 

acetylated chitosan was part of the signal group of H2-6 (A) and H3-6 (D). The H1, A signal was 

detected at ~4.5 ppm whereas the H1, D signal could not be separated from the strong HOD 

peak at 4.7 ppm. Therefore, the results from the gel permeation chromatography (GPC) 

presented in Table 4 were used to calculate usual polymer parameters such as number-avarage 
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molecular weight MN, weight-average molecular weight MW, polydispersity defined as MW 

devided by MN, intrinsic viscosity ɳ and the hydrodynamic radius Rh.  

 

 

Figure 16. 1H NMR reference spectrum of chitosan (low molecular weight Aldrich) dissolved in 2% CD3COOD in D2O. The 

H1 of the acetylated unit (H1, A) appears at ~4.5 ppm while H1 in the acetylated glucosamine unit (H1, A) should appear at 

~5 ppm which can’t always be seen. Signals from H2 to H6 overlap between 3.3 and 4.1 ppm, however, H2 of the deacetylated 

unit (H2, D) can be found separated at 3 ppm. The acetyl protons (Ac) appear at 1.9 ppm.  
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Table 4.  Chitosan parameters measured and calculated based on the data from gel permeation chromatography (GPC) and 
1
H NMR

a
 for different 

starting materials and deacetylation conditions: number average molecular weight MN, weight-average molecular weight MW, intrinsec viscosity ɳ, 

hydrodynamic radius Rh, degree of deacetylation measured by NMR DDNMR, integration of the H2-6 protons of sugar monomers IH2-H6; the integration 

of the acetyl protons IAc was defined as 1.  

RN (DD;Mw) Batch number 
Starting material 

NaOH (w/v) % /T 
o
C/t(h) 

MN [kDa] MW[kDa] MW/MN η [dL/g] Rh [nm] IH2-H6
b c

DDNMR % 

Chi (80;165) Aldrich Low - 103 ±24 165 ±13 2.3 ±0.5 2.38 ±0.13 18.5 ±0.62 10 80 

Chi (85;379) Aldrich Med - 314 ±11 379 ±18 1.2 ±0.1 6.04 ±0.41 32.2 ±1.02 13 85 

Chi (83;122) ANG115236b Ald Low (40/60/4) 54 ±16 122 ±20 2.3 ±0.4 1.74 ±0.07 13.5 ±0.92 12 83 

Chi (85;110) ANG115236a Ald Low (40/60/8) 53 ±7 110 ±15 2.1 ±0.4 1.72 ±0.09 13.1 ±0.32 13 85 

Chi (88;135) ANG115235b Ald Low (40/110/4) 54 ±7 135 ±21 2.5 ±0.1 1.36 ±0.03 12.5 ±0.70 16 88 

Chi (90;96) ANG115235a Ald Low (40/110/8) 47 ±14 96 ±21 2.1 ±0.2 1.56 ±0.15 12.4 ±1.01 20 90 

Chi (92;73) ANG115251a ANG115235a (50/60/24) 43 ±1 73 ±2 1.7 ±0.1 1.67 ±0.04 11.7 ±0.10 25 92 

Chi (90;276) ANG115275a Ald Medium (50/110/4) 184 ±3 276 ±2 1.5 ±0.0 6.70 ±0.10 29.8 ±0.13 20 90 

Chi (94;245) ANG115275b Ald Medium (50/110/8) 154 ±7 245 ±11 1.6 ±0.1 6.03±0.04 27.3 ±0.24 32 94 

a) chitosan samples dissolved in 20µL CD3COOD and 980µL D2O; b) 10% failure range c) DD= 100 - ( 
1/3×𝐼𝐴𝑐

1/6 ×𝐼(𝐻2−𝐻6)
× 100) 
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As the values of the DD and MW of the starting materials were rather broad (DD: 75-85% and 

Mw: low), it was necessary to characterize them before further modifications. The low MW 

Aldrich chitosan (Ald Low) with DD of 80% and Mw of 165kDa was deacetylated to give 5 

new chitosan samples with higher DD and lower MW. The first 2 samples, deacetylated with a 

solution of 40% NaOH at 60 
o
C for 4h and 8h, yielded a slight increase in the degree of 

deacetylation compared to the starting material. However, the differences between these two 

samples were barely noticeable. This indicated the necessity of higher temperatures or longer 

reaction times. When the reaction was performed at 110 
o
C the degree of deacetylation 

increased up to 90% after 8h reaction time. Significant differences could be noticed for the 

MW which decreased from 165 kDa to 73 kDa. This MW decrease was assumed to be mainly 

due to the decrease in number of acetyl groups. However the 96 kDa average molecular 

weight in the case of Chi (90; 96) must be also due to a depolmerization of the chitosan 

during deacetylation. Therefore, it was interesting to investigate the influence of temperature 

and reaction time on the depolymerization. Chi (90; 96) was further deactylated at 60
 o

C for 

24h at a slightly higher concentrated NaOH solution (50%). A small percentage increase in 

the DD but a 23 kDa decrease could be noticed after the prolonged reaction times. In the end 

the deacetylation of the Ald Low starting material yielded chitosans with DD of up to 92%, 

but with Mw lower than 100 kDa. Therefore, Ald Medium starting material was also 

deacetylated under the same conditions and yielded chitosan with ˃90% DD and MW higher 

than 200 kDa. The heterogenous reaction was performed at 110 
o
C with a NaOH 50% 

solution at 2 time interval 4 and 8h under conditions which showed best results for the Ald 

Low chitosan before. As expected the chitosan incubated for 8h in the previously mentioned 

conditions had a higher DD than the one left in 50% NaOH for only 4h. The MW decreased 

from 379 kDa to 276 kDa (4h) or 245 kDa (8h), and the DD for both chitosans reached values 

higher of 90% (4h) and 94% (8h) which were feasible for the preparation of the siRNA 

nanoplexes.   

The decrease of the intrinsic viscosity ɳ was proportional to the decrease in MW. The 

chitosans with MW lower than 170 kDa reported ɳ values ~2 dL/g while the chitosans with 

higher MW showed ɳ values in the range of ~6 dL/g. These results were expected, because of 

the chitosan hydrogen bonds of which form a superstructure that is only going to increase in 

complexity with an increase in molecular weight. As the hydrodynamic radius Rh is 

calculated based on the ɳ and MW values, it also decreased proportionally to the MW. For MW 
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between 73 kDa and 165 kDa, the Rh values decreased from 18 nm to ~12 nm. For MW 

between 245 kDa and 379 kDa the Rh increased from 27 nm to 32 nm.  

The dispersion of the molar – mass or average molecular weight within a polymer was 

calculated by dividing the MW to the MN. The results for all modified chitosan samples 

indicated a distribution of the relative MW with a dispersity value ~2 which differed not much 

from the dispersity of the starting material.  

To assess the impact of both Mw and DD on the charge of the chitosan polymer chain, 

samples were solubilized in 0.3 M CH3COONa buffer at pH 5.5 and the zeta potential (ζ) was 

measured via ZetaSizer (Figure 17).  

While chi with a DD of 80% had the lowest zeta potential with 29 mV, chi with a DD of 92% 

reached a positive charge of 62.1 mV. Even if the DD had the major influence on the zeta 

potential, the MW seemed to have had some impact also. The charge of the chitosan with a 

DD of 90% was ~17 mV higher than the zeta potential of a chitosan with the same DD but a 

much lower MW of ~96 kDa. Furthermore, it was shown that with a high MW (276 kDa) and a 

DD of 90%, the charge of the polymer was ~19 mV higher than for a chitosan with a DD of 

92 % but a lower MW of 73 kDa.   

 

  

Figure 17. Effect of Mw and DD on the zeta potential ζ of the chitosan polymer chain. Both MW  (grey columns) and DD 

(blue markers) showed to have an influence on the ζ.  
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The results of the deacetylated chitosans offered a clear picture of the influence of the DD and 

Mw on the polydispersity, viscosity and charge of the polymer chain. These parameters were 

used to investigate which physicochemical factors have the largest influence on nanoplex 

formation.  

 

3.1.3. Chitosan siRNA nanoplexes 

Chitosan:siRNA nanoplexes were formed via electrostatic interactions between positively 

charged amino groups of chitosan and negatively charged phosphate groups of siRNA at pH 

5.5. In order to generate stable nanoparticles, an excess of amino groups had to be considered 

for complexation of siRNA. The nitrogen/phosphate ratio (N/P) chosen was 50/1 and 100/1, 

meaning 50 or 100 positive charges (amines) to one negative charge (phosphate group). As 

Chi (90; 96) and Chi (92; 73) had a similar zeta potential to other Chi (90; 276) and Chi (94; 

245), but lower MW, they were not chosen for the nanoplex formation. 

 

 

Figure 18. a) General scheme of chitosan:siRNA nanoplex formation b) Detailed representation of the complex formation via 

electrostatic interactions at a pH of 5.5 due to pH dependent generation of positively charged ammonium groups in chitosan. 
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The structural chitosan parameters described in subchapter 3.1.2 can influence the successful 

formation of siRNA nanoplexes and ultimately the transfection efficiency. By measuring and 

comparing both the size and the charge of the nanoplex the optimal chitosan Mw and DD 

could be chosen for siRNA – complex formation. 

 The size of the nanoplexes is important for cellular uptake and in the case of siRNA 

nanocarriers it should be between 100 and 300 nm [69, 219]. The results summarized in Table 

5 revealed for all chitosan:siRNA formulations a size average lower than 300 nm, between 

165 and 260 nm. The minimum size for N/P 100 and 50 was for nanoplexes formed with 

chitosan with a MW of ~ 250 kDa with a DD 94%, followed by chitosan with a ~ MW 280 kDa 

with a DD 90% and chitosan with MW 165 with a DD of 80%. The nanoplexes formed with 

chitosan MW 379 kDa had the highest size at both N/P ratios.  

The surface charge of the nanoplexes must also be taken into consideration as it can influence 

the stability of the nanoplexes, sterically inhibits the agglomerate formation between the 

nanoplexes and can influence the transfection efficiency. As it can be seen in Table 5, all 

nanoplexes had a positive charge higher than 9 mV. The decrease in charge of the chitosan 

samples before and after nanoplex formation confirms the electrostatic interactions between 

the polycation and the negatively charged siRNA phosphate groups. Similar to the nanoplex 

size MW correlation, at N/P 50 the highest zeta potential resulted from nanoplexes formed 

with chitosan with a MW of ~ 250 kDa with a DD 94% and chitosan with a ~ MW 280 kDa 

with a DD 90%. The increase in zeta potential clearly correlated to the increase in DD in the 

case of nanoplexes formed at N/P 50 and chitosan alone. At N/P 100 the highest zeta potential 

resulted from nanoplexes formed with chitosan with a MW of ~ 120 kDa and a DD 83%, 

followed by chitosan with a MW of ~ 380 kDa and a DD 85%.  
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Table 5.  z-Average diameter (size) and  zeta potential (ζ) of the chi/siRNA nanoplexes formed via 

electrostatic interactions  at N/P ratios 50 and 100 and measured by ZetaSizer..  

RN (DD;Mw) Batch 
Chitosan alone 

ζ (mV) 

N/P 50 N/P 100 

Size (nm) ζ (mV) Size (nm) ζ (mV) 

Chi (80;165) 
Ald Low 

29 184 9.41 216.7 16.6 

Chi (83;122) 
ANG115236b 

40.2 233.8 9.67 259.2 23.1 

Chi (85;110) 
ANG115236a 

43.9 234,0 12,0 244.1 16.4 

Chi (85;379) 
Ald Medium 

39.3 250,4 11,7 253,6 21,9 

Chi (90;276) 
ANG115275a 

57.6 164.6 21.1 191.7 19.4 

Chi (94;245) 
ANG115275b 

62.1 215.2 18.9 171.9 20.4 

 

The detailed characterization of the chitosan with different MW and DD pointed towards using 

a chitosan with a higher DD (92 – 94 %) and MW between 200 and 250 kDa. As PEGylation 

increases MW of the polymer, it was decided to purchase chitosan Heppe with a Mw of 165 

kDa and 92.6 % DD to get the final MW of PEG_chitosan in the desired range. This chitosan 

not only fitted the structural parameters required for the siRNA delivery system, but it was 

also tested microbiologically and the protein content was as low as 0.5%. Chitosan Heppe was 

also characterized via GPC and 
1
H NMR (Table 6).  

 

3.2. Chitosan – PEG synthesis and physicochemical characteristics 

3.2.1. Synthesis of chitosan with different degrees of substitution (DS) 

N-hydroxysuccinimidyl methoxy PEG 5 kDa was selected to be grafted on chitosan at low 

substitution ratios. As previous investigations proved that, both chain length and graft density 

of PEG have an impact on nanoparticle formation and can influence the efficient transfection 

of nucleic acids[150]. The long PEG chain will allow the siRNA to interact with positively 

charged chitosan without interference. However, the PEG chains reduce protein adsorption on 
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the nanoplex. The D-glucosamine units of chitosan can be modified by chemical 

derivatization of the amine or hydroxyl groups. The higher activity of the amino group at C-2 

compared to the hydroxyl groups at C-6 and C-3 results in a specific reaction with the PEG 

succinimidyl ester ( 

Figure 19). 

 

Figure 19. Synthesis of chitosan_PEG. Deacetylated chitosan was modified at pH 6.0 using NHS-methoxy PEG at different 

degrees of substitution. 

 

At slightly acidic pH the amino groups of deacetylated chitosan can be modified by N-

hydroxy succinmidyl methoxy PEG in a specific reaction. As the PEG grafting is done via 

amidation of the amine moiety at deacetylated chitosan, the ratio of substitution might affect 

the stability of the nanoplexes. High substitution ratios lead to a decrease in protonable groups 

which could interact with the negatively charged siRNA phosphate groups. To test this, five 

different chitosan_PEG copolymers were synthesized with increasing degrees of PEG 

substitution. The higher percentage of PEG grafting was generated by increasing the amount 

of the activated methoxy PEG derivative. To remove the excess of mPEG-NHs, hydrolyzed 

mPEG-carboxylic acid, and 1-hydroxypyrrolidine-2,5-dione side product, the resulting 

copolymer was dialyzed against deionized water using a dialysis membrane of 50 kDa 

MWCO.  

 

3.2.2. Analytical characterization of PEGylated chitosan  

After derivatization, the formation of new bonds on the amino group was identified by 

characterizing the copolymer in terms of its molecular weight and degree of substitution. 
1
H 
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NMR spectra of the raw materials (chitosan Heppe and mPEG5kDa-NHS ester) and the mPEG-

grafted chitosan copolymer were compared to identify specific signals for the grafted groups. 

Specific mPEG signals were identified between 3.5 ppm and 4.3 ppm with the protons of the 

methoxy group at ~3.3 ppm. The peak related to the protons of the N-hydroxysuccinimide 

was methoxy present at ~2.7 ppm only in the activated form of the raw material. It was no 

longer present in the chitosan-PEG copolymer spectra. The signals of the three acetyl protons 

in the N-acetyl-glucosamine groups could be distinguished from the PEG peaks in the 

chi_PEG sample at ~1.9 ppm. Integration of this chitosan specific signal and the PEG specific 

OCH3 singlet of the grafted mPEG chitosans were used for the determination of the degree of 

substitution of the grafted copolymer (Figure 20).  

 

 

Figure 20. 1H spectra of mPEG-NHS ester, chitosan and Chi-PEG copolymer in 2% CD3COOD/D2O. Specific signals from 

groups of the grafted PEG derivatives were identified in the range between 3.5 – 4.3 ppm (zoomed region) 1H – signals from 

the methoxy group were detected at 3.3 ppm and were used for the quantification of PEG grafts on the chitosan-PEG 

copolymer.  
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Figure 21. Overlay of 1H-NMR spectra chi-PEG at DS 4%, 6% and 8%. Specific signals of the protons in the – OCH3 group 

of the PEG graft at ~3.3 ppm were integrated and the grafting yield was calculated relating to the specific signal of the 

acetyl protons of N-acetylated glucosamine moieties of chitosan.  

The grafting of PEG to the chitosan was also measured using gel permeation chromatography 

(GPC) by the increase in MW calculated from right angle light scattering data and the decrease 

in retention time. The degree of PEG substitution was calculated from the MW difference of 

the final chi-PEG copolymers and the MW of the raw materials. The summarized results show 

that the degree of substitution of mPEG from GPC was similar to the value obtained by 
1
H 

NMR (Table 6). 
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Table 6.  Chitosan-PEG parameters measured and calculated from results of GPC and 
1
H NMR analyses. Average molecular weight MN, weight-average 

molecular weight MW, intrinsic viscosity ɳ, hydrodynamic radius Rh measured by GPC. Degree of substitution of mPEG expressed as  moles/moles measured 

by 
1
H NMR. S.D= standard deviation; RN=reference number; 

a DD%= DDchi% -bDS%; b DS = IOCH3 × ( 
1

3
×𝐼𝐴𝑐

1

6
×𝐼(𝐻2−𝐻6)

× 100)chitosan Heppe; 
cDS= 

(𝑀𝑤𝐶ℎ𝑖𝑃𝐸𝐺−𝑀𝑤𝐶ℎ𝑖)/5000

𝐷𝑃𝑐ℎ𝑖
; DPchi=Mwchi/Mnchi 

RN 
Batch 

number 

mPEG/Chi-

NH2[mol/mol] 

Mn 

±S.D[kDa] 

Mw 

±S.D 

[kDa] 

Mw/Mn 

±S.D 

η±S.D  

[dL/g] 

Rh 

±S.D 

[nm] 

DD 

[%]
a
 

IOC

H3 

DS of PEG mol 

[%] 

NMR
b 

GPC
c 

Chi (152; 92.6) 
Chitosan 

Heppe 
- 119 ±0.1 152 ±1.1 1.3 ±0.01 3.8 ±0.19 

20.4 

±0,13 
92.6 - - - 

1.5% PEG ANG142958 0.06 131 ±0.7 161 ±4.1 1.2 ±0.02 4.0 ±0.07 
21.1 

±0.05 
91.1 0.20 1.5 1.6 

3% PEG ANG142960 0.11 141 ±1.2 176 ±2.1 1.3 ±0.03 3.3 ±0.81 
20.1 

±1.78 
89.6 0.44 3.3 3.4 

4% PEG ANG142961 0.13 146 ±1.7 185 ±6.8 1.3 ±0.05 3.3 ±0.87 
20.5 

±2.08 
88.6 0.60 4.4 4.3 

6% PEG ANG142897 0.14 156 ±2.2 
231 

±11.0 
1.4 ±0.07 3.6 ±0.13 

22.3 

±0.52 
86.6 0.81 6.0 5.8 

8% PEG ANG142953 0.19 172 ±1.2 
316 

±23.0 
1.8 ±0.12 3.4 ±0.14 

24.4 

±0.75 
84.6 1.10 8.1 8.4 
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With increasing PEG grafting an increase in Mw was noticed as well as a decrease in the DD 

due to the D-glucosamine derivatization.  The lowest DD was 85% for chi_PEG with an 8% 

DS. A higher amount of PEG would have reduced the number of protonable amino groups 

even further which influence the stability of the nanoplexes. The polydispersity of the samples 

was between 1.3 and 1.4 quite similar to the starting material. However, chi-PEG with the 

MW/MN equal to 1.8 showed an increase in polydispersity, which could have been caused by 

the steric hindrance of the PEG grafting. Polydispersity values lower than 1.5 correlate to 

polymers with narrow molecular weight distribution.  

 

3.2.3. Influence of the DS on the solubility of mPEG-chitosan copolymer in aqueous 

buffers 

Chitosan is considered to be a reversibly cross-linked polymer as it forms superstructures via 

hydrogen bonds. These bonds have to be broken in order to dissolve chitosan. Therefore, the 

more primary amino groups are available the better chitosan can dissolve under slightly acidic 

conditions. At pH values higher than 5.5, however, it is believed that grafting of PEG chains 

onto chitosan can improve its solubility. The resulting solubility at neutral or even basic pH 

values seemed to be dependent on the MW of the chitosan, its DS and the length of the PEG 

chains [150, 220, 221].  

In the present work the solubility of unmodified chitosan was compared to PEGylated 

chitosan copolymers with increasing amount of mPEG by measuring the transparency of a 

solution at 600 nm using a spectrophotometer. A lower absorbance at 600 nm indicated better 

chitosan solubility while a higher absorbance reflected more turbid samples due to 

aggregation and precipitation. Chitosan and its derivatives were all soluble in acidic pH buffer 

( 

Figure 22). In the case of PEGylated chitosan with DS 4% and 8%, a low turbidity and high 

solubility was kept also at higher pH. At pH 7.0 the absorbance for the highest DS samples 

was almost the same as at pH 4.0.  The transparency of the chitosan derivatives was starting to 

decrease at pH 9.6 from a slightly increased turbidity for 8% Chi-PEG to a practically 

insoluble unmodified chitosan showing significant absorption at 600 nm. With a 1.5% mPEG 

DS the solubility of chitosan increased more than 3 times at pH 7.0 and about 2 times at pH 

9.6 compared to the unmodified chitosan. Therefore, the solubility of unmodified chitosan 

was considerably improved even by very low mPEG DS.  
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Figure 22. Solubility of chitosan and PEGylated chitosan at different DS in aqueous solutions at different pH measured as 

turbidity at 600nm. At acidic pH no significant turbidity was detected. At higher pH unmodified chi-PEG showed significant 

turbidity which was decreasing with increasing degree of PEGylation. 

 

3.2.4. Influence of the mPEG DS on the formation of chitosan_PEG siRNA nanoplexes  

Chitosan modifications of the primary amino groups might influence the stability of the 

nanoplexes. An increased PEGylation can lead to a lower number of positively charged 

groups and therefore to a lower complexation with siRNA via electrostatic interactions. 

Therefore, not only the DS was kept lower than 10% but also the ratio between the protonable 

amino groups (N) and phosphate groups (P) was kept constant for complex formation. The 

nanoplexes were formed with scrambled siRNA in 0.3 M CH3COONa buffer at pH 5.5 at a 

constant N/P ratio of 25/1. This means, that in order to compensate for the lower overall 

cationic charge of PEGylated chitosans a higher amount of copolymer was added. 

The stability of the chi_PEG siRNA nanoplexes was tested in a gel retardation assay. 

Unstable nanoplexes would release the siRNA in the agarose gel. Negatively charged siRNA 

would migrate to the cathode and a band in the lower part of the gel would be visible. All 

samples were treated either with RNAse-free water which did not affect the complex stability, 

or with negatively charged polyaspartic acid (PAA), which displaced siRNA from the 

chitosan complex. Complete retardation of all complexes was observed whereas PAA-treated 

nanoparticles showed clearly the presence of free siRNA (Figure 23) (data provided by L. 
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Schuster NMI, Figure 4.21, page 75) [49]. At N/P 25/1 PEGylation at low DS had no negative 

effect on complex formation and stability for all tested PEGylation ratios. All chitosan siRNA 

nanoplexes were stable.  

 

Figure 23. Gel retardation assay for the determination of nanoparticle stability. By means of differently modified chitosans 

and scr siRNA, nanoplexes were prepared. They were incubated with RNase-free water or with the complexation competitor 

PAA. The nanoplex samples were then loaded onto a 4% agarose gel and run for 90 min at 55 V. Subsequently, siRNA 

detection was performed with ethidium bromide. Fluorescence was detected after UV excitation. Free siRNA was detected 

only in nanoplex samples treated with PAA. All nanoplexes were stable in deionized water (data provided by dr. L. Schuster, 

NMI) [49]. 

 

The complexation of siRNA and chitosan_PEG was also characterized in terms of the 

hydrodynamic diameter, charge and size distribution of the nanoplexes (Table 7, Figure 26). 

The unmodified chitosan exhibited a particle size of ~200 nm while Chi_PEG formed 

nanoplexes with a mean size between 140 nm and 170 nm. With a nanoplex diameter lower 

than 200 nm and a polydispersity index in the 0.1 – 0.2 range, all complexes were optimal 

candidates for successful cell uptake via endocytosis. Furthermore, in agreement with the gel 

retardation results, all chitosan/PEGylated chitosans formed stable complexes protecting the 

negatively charged siRNA and yielding a positive charge on the surface of the nanoplexes. An 

increasing percentage of grafted PEG displayed a reduced, but still positive zeta potential. 

Unmodified chitosan: siRNA complexes showed a surface charge of 18 mV, while 

nanoplexes with Chi_PEG 8% DS exhibited a positive charge of only 8 mV.  
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Table 7. z-Average diameter and polydispersity index (PDI) of the nanoplexes formed when using 

different degrees of PEGylation to compact siRNA at a constant N/P ratio at 25. 

*S.D = standard deviation between three independent experiments each performed in triplicates 

 

3.2.5. PEGylated chitosans cell viability  

Before testing the cytotoxicity of the nanoplexes, it was important to evaluate if chitosan and 

PEGylated chitosans have an impact on the cell viability (data provided by L. Schuster NMI, 

Figure 4.20, page 74) [49]. The cytotoxicity results for all chitosans were in the accepted 

limits of 70% viability (Figure 24). As the chitosans or PEGylation had no negative effect on 

cell viability, all samples were considered biocompatible and non-toxic.  

 

Figure 24. Cell viability of different PEG-modified chitosan. H1299-GFP cells were seeded the day before in medium 

without antibiotics and incubated on the following day with the tested chitosan for 6 h, followed by a change of medium. 48 h 

after the addition the vitality of the cells was determined by means of resazurin assay. Untreated cells (100% vital) were used 

as reference and the DMSO-treated cells were used as a death control. All measurements were based on the viable control. 

Three independent experiments were done in triplicates. (Statistics based on untreated cells, Nonparametric ANOVA, 

Kruskal-Wallis test, p <0.01) (data provided by L. Schuster NMI, Figure 4.20, page 74) [49]. 

RN 0% PEG 1.5% PEG 3% PEG 4% PEG 6% PEG 8% PEG 

Size ±S.D* [nm] 203 ±11 151 ±51 168 ±3 150 ±4 145 ±10 140 ±3 

PDI ±S.D* 0.11 ±0.06 0.14 ±0.03 0.14 ±0.06 0.12 ±0.04 0.19 ±0.03 0.23±0.01 
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3.2.5.1. Chitosan and Chi_PEG:siRNA nanoplexes cell viability 

The nanoplexes formed with scrambled siRNA at NP 25 were also tested for biocompatibility 

to exclude cytotoxic effects (data provided by L. Schuster NMI, Figure 4.22, page 77) [49]. 

The cytotoxicity results of the nanoplexes were similar to the results of the chitosans alone as 

shown in Figure 25. Although there were significant differences compared to the live-control, 

the vitality values were within the acceptable range of minimum 70% vitality.  

 

Figure 25. Vitality assay after transfection of H1299 cells with chitosan siRNA nanoparticles. The transfection was carried 

out with 200 nM siRNA for 6 h, the measurement of cell viability 48 hours after transfection. Untreated cells (100% vital) 

and DMSO-treated cells (death control) were used as reference. All measurements were based on the viable control. Three 

independent experiments were done in triplicates. (Statistics based on live control, Nonparametric ANOVA, Kruskal-Wallis 

test, p <0.01) (data provided by L. Schuster NMI, Figure 4.22, page 77) [49]. 

 

3.2.6. Effect of the dynamic cell environment on the properties of PEGylated 

chitosan:siRNA nanoplexes properties 

Chitosan and PEG grafted chitosan:siRNA nanoplexes were designed to enter the cells and be 

actively translocated across biological barriers. At the point of action they should release 

siRNA causing the knockdown of the targeted mRNA Thus nanoplexes will be exposed to 

cell culture medium and dynamic cell environments with a complex mixture of proteins at 
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different pH values. Therefore, it was important to analyze their physicochemical parameters 

in a cell culture medium (CCM) containing RPMI, 1% L – Glutamate and 10% fetal calf 

serum (FCS). The ratio of nanoplex in aqueous buffer to CCM volume was exactly the one 

used for the in vitro experiments: 1 part nanoplex suspension and 3 parts of CCM.  

For nanoplexes exposed to CCM it was expected that proteins adhere to the surface of the 

complexes forming the so called ‘protein corona’ [222]. The size and charge of the 

nanoplexes were characterized via dynamic light scattering (DLS) and analysis of the zeta 

potential of the nanoplexes while the siRNA complexation by the different chitosans was 

investigated with the dye quenching assay.  

 

3.2.6.1. CCM influences on the nanoplex surface charge 

Unmodified chitosan nanoplexes had the lowest zeta potential (-1.6 mV), followed closely by 

the 1.5% PEG grafted chitosan copolymer with an almost neutral charge of 0.8 mV (Figure 

26). The zeta potential was starting to rise when PEG density increased. Chi_PEG 6% 

nanoplexes reached the positive charge of +6.6 mV and chi_PEG 8% nanoplexes a slightly 

lower positive charge of +4 mV in zeta potential.  

To double check the influence of the ‘protein corona’ on the charge of the nanoplexes, the 

complexes were also characterized in absence of the CCM, but at a similar pH in PBS (Figure 

26). Except for the chi_PEG 8% sample, all the other nanoplexes had a zeta potential similar 

to the one in buffer at pH 5.5. Therefore, the adsorbed proteins at the surface of the 

nanoplexes proved to have a much greater impact on the overall charge of the nanoplexes than 

the pH of the medium. At higher PEGylation ratios the zeta potential reached a quite small 

range of positive values between 2.4 up to 8 mV. Thus the zeta potential became more and 

more independent from the composition of the medium. The zeta potential was regulated by 

the PEG groups at higher PEGylation ratios.  
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Figure 26. Zeta potential of chitosan and chi_PEG:siRNA nanoplexes with increasing DS measured in buffer at pH 5.5, 

CCM at pH 7.0 and in PBS at pH 7.0. The nanoplexes were formed in buffer at pH 5.5, after 15 min of stabilization they were 

directly measured or added over to PBS or CCM in a volume ratio of 1:3. With increasing PEGylation ratio the zeta 

potential converged to a small range of positive values at 2 – 8 mV.  

 

3.2.6.2. CCM influence on the nanoplex size 

The evaluation of the z-average diameter in the serum rich CCM was not as straightforward as 

in the aqueous buffer due to the exceeding presence of proteins which bound to the nanplex 

surfaces. DLS size measurements showed a broad size distribution resulting in different 

nanoplex species which made it difficult to determine the overall size and charge of the 

nanoplexes.  

When measuring the CCM alone, two peaks were seen: one protein peak at 9 nm and a 

broader peak at ~77 nm, probably from larger aggregates of FCS proteins (Figure 27 a.). 

Signal intensities of the blank CCM sample could be compared to the ones measured in the 

nanoplex samples. When measuring the unmodified chitosan siRNA nanoplexes in CCM, 

however, the broad peak at ~77 nm, in CCM blanks was drifted to lower size of about 20 nm 

(Figure 27 c). Furthermore, the presences of two other peaks at about 1000 nm and 600 nm 

indicated the formation of large aggregates between the proteins and nanoplexes. A dominant 

nanoplex peak was detected at about 150 nm.  
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Figure 27. Intensity size distribution of a) CCM (RPMI+10%FCS+1%L-Glu) with a size of ~10 nm and 77 nm, b) 

chitosan:siRNA NP in CCM, c) overlay of the CCM with the chitosan:siRNA nanoplexes in CCM. The DLS data showed 

multiple nanoplex populations which made it difficult to determine the precise particle size in the mixture.  

 

All the nanoplexes showed a high polydispersity in CCM and similar intensity peaks as the 

ones in Figure 27a. Therefore, a precise measurement of the average size was not possible via 

photon correlation spectroscopy. It was, however, possible to investigate the agglomeration 

behaviour of the nanoplexes with and without PEG in CCM by DLS. Furthermore, an 

estimate of the particle size of the nanoplex was possible which was quite similar to the 

nanoplex size found in pure buffer (Table 7).   

Since the nanoplexes in solution exhibit Brownian motion, small random fluctuations in the 

scattering intensities can be observed and measured across µs time scales. The physical 

confinement of the nanoplexes, meaning the limited movement in the extremely short time 

scale makes it possible to correlate the degree of non-randomness in an apparent random data 

set. The correlation coefficients can be calculated as shown in equation (1) [223]
 
: 
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G (τ) =∫ 𝐼(𝑡)𝐼(𝑡 + 𝜏)𝑑𝑡
∞

0
;  t – initial time; τ – delay time  (1) 

In contrast to separation techniques, where nanoplexes are separated by size and then counted, 

the dynamic light scattering technique measures all the size information for the whole 

ensemble of nanoplexes within the same single correlation curve (Figure 28) [223]. Smaller 

nanoplexes will move faster than larger nanoplexes, which is reflected in the faster 

fluctuations of the scattered light intensities. Therefore, by comparing the decay rate in the 

correlation curve the size of the nanoplexes can also be compared. As proteins from FCS in 

the CCM also scatter light, DLS data referred to proteins, protein aggregates, protein-

nanoplexes, and nanoplex aggregates. The overlay of the correlation curve can also give 

information about the polydispersity of the nanoplexes. An increase in gradient indicates an 

increase in the distribution of the nanoplexes. However, the most important and reliable 

information is found over the baseline of the correlation graph. When the nanoplexes 

agglomorate, or the proteins aggregate the baseline is no longer smooth [224]. 

 

Figure 28. Intensity correlation curves for nanoplexes with increasing percentage of PEG grafted to the chitosan copolymer 

in CCM (RPMI+10%FCS+1%L-Glu). The three samples were measured after 15 min in CCM at a volume ratio of 

nanoplexes: CCM of 1:3.(See figure 29)  
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Same as for the zeta potential measurements nanoplexes were prepared first in 0.3 M 

CH3COONa pH 5.5 and then added to the CCM in a volume ratio of nanoplex suspension: 

CCM of 1:3. After 15 minutes incubation the nanoplexes were analyzed and correlation 

coefficient curves shown in Figure 28 were compared. In comparison to the chitosan PEG 8% 

DS nanoplexes, both unmodified chitosan and 4% PEGylated samples showed a curve with 

three different decay rates. The fast decay rates seen at delay times up to 100 µs were 

interpreted as arising from the nanoplexes with no protein corona. The slower decay rates 

seen at delay times up to 1000 µs for the smaller chi_PEG 8% nanoplexes were probably due 

to the nanoplexes with a protein corona. Decay rates next to the baseline indicated the 

presence of larger agglomeration of nanoplexes and proteins. The sample with an 8% DS with 

PEG revealed a standard correlation curve with a smooth baseline, but with a large gradient. 

This means that the sample was still too dispersed [223].  

As the nanoplexes were incubated for 6h in the cell culture in the in vitro assay, it was 

important to evaluate the behavior of the nanoplexes in CCM over time. 
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Figure 29. Correlation coefficient curves for nanoplexes with increasing percentage of PEG grafted to the chitosan 

copolymer kept in CCM (RPMI+10%FCS+1%L-Glu). Curves are shown for a) chi_H siRNA NP in CCM measured every 2 

h, b) chi_PEG 4% siRNA NP in CCM measured every 2 h, c) chi_PEG 8% siRNA NP in CCM measured every 2 h, d) overlay 

of a)b)c) measured at 6h.  

 

Independent of the PEG density increase, all nanoplexes had slower decay rates at time 0 

compared to the decay rates after 2, 4 and 6 h as shown in Figure 29. At 2 h the correlation 

curve showed more than one decay rate for unmodified chitosan and 8% PEGylated chitosan. 

Chi_PEG 4% nanoplexes indicated a similar behavior to the other two samples only after 4 h, 

as the correlation curve showed the formation of larger agglomerates near the baseline. 

However, the correlation curve for all 3 nanoplexes, at 6 h, revealed no agglomerates near the 

baseline and only one decay rate for each sample. These results could reflect the competitive 

adsorption of the proteins in the FCS to the nanoplex surfaces. Further information for the 3 

different samples was obtained by the overlay of the correlation curve after 6 h which 

indicated slightly higher decay rates when the PEG density of the chitosan was higher.  

Given the changes in nanoplexes zeta potential and size parameters once added to the CCM, 

there was a pending question of whether the complexation of siRNA would be changed due to 

different PEGylation ratios of chitosan. Merkel et al. [225] used the fluorescent quenching 

assay approach to assess the condensation efficiency at different N/P ratios by using Tye563-

labeled siRNA. At a minimum of fluorescence signal a large number of fluorescently labeled 

siRNA molecules are entrapped in a complex, quenching each other due to close spatial 

proximity. However when fluorescence intensity increases the close proximity of the dyes 

decreases, indicating a weaker binding of the siRNA in the nanoplex. In the current work the 

same approach was used for comparing the behavior of the siRNA complexation in different 

environments at the same N/P ratio of 25.  

The nanoplexes were formed with Tye563-labeled siRNA in 0.3 M CH3COONa buffer at pH 

5.5 before being added to the CCM in a volume ratio of 1 part nanoplexes and 1 part CCM 

resulting in 200 nM Tye563-labels as final concentration. The dye quenching assay was 

performed over 6 h in order to analyze the siRNA complexation changes during the cell 

uptake. Our findings indicated, independent from the nanoplexes formed, that after more than 

2 h, the degree of siRNA complexation was almost the same for all types of samples (Figure 

30). The relative fluorescence intensities were high, meaning that a very small amount of the 

labeled siRNA was self-quenched due to decreased spatial proximity. However, the relative 



  RESULTS 

 

 
 65 

fluorescence intensity was still under 100% was stable enough. Even if siRNA was very 

tightly bound inside the nanoplexes, the entire complex was stable enough to protect the 

siRNA in the CCM.  

 

 

Figure 30. Dye quenching assay of the chitosan:siRNA and chi_PEG:siRNA nanoplexes with increasing PEG grafting in 

CCM at pH 7.0 over 6 h. At time 0 the fluorescence of Tye-563 siRNA molecules were strongly quenched due to close spatial 

proximity of the fluorophores. Over time the nanoplexes seemed to enlarge their volume which lead to a decrease in spatial 

proximity of the dyes and increased in the relative fluorescence intensity, reaching a plateau after 2 h at 80% fluorescence 

intensity. The relative fluorescence intensity was calculated using Tye-563 siRNA in CCM (200nM - same concentration as 

for the nanoplexes) as a control (100% fluorescence) and CCM alone as blank (0% fluorescence). Three independent 

experiments were done in triplicates. (Sttistics based on results at t= 6 h, Nonparametric ANOVA, Kruskal-Wallis test, p 

<0.01). 

 

3.2.6.3. Intracellular environment  

During the cellular uptake experiments, nanoplexes see very different environments. They go 

from their preparation in pH 5.5 buffer to pH 7.0 in the extracellular CCM. After cellular 

uptake the nanoplexes are exposed to different subcellular locations (endosome, lysosome, 

and cytosol). The intracellular environment of the endosome has a pH of 5-5.5 as the vacuolar 
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ATPase pumps promote the influx of protons from the cytosol. The lysosome compartments 

are connected to the endosome and have even a more acidic environmental pH of ~4.5 [99]. 

Tribault at al. [104] showed in colocalization studies that intracellular trafficking of chitosan 

based nanoplexes was taken place in the endo-lysosomes, making the endo-lysosome release a 

crucial step in efficient siRNA delivery. Therefore, the change in zeta potential for nanoplexes 

at different pH was investigated in detail ( 

Figure 31). For these analyses, the nanoplexes formed from the different chitosans and 

scrambled siRNA were first added to the CCM in a volume ratio of 1 part nanoplex to 3 parts 

CCM. Then the pH was lowered to pH ~4.5 and the zeta potential was measured.   

 

 

Figure 31.  Zeta potential measurements of chi-siRNA and chi_PEG siRNA nanoplexes with increasing PEG grafting in 

CCM at pH 7.0 and at pH ~4.5. The nanoplexes were formed in 0.3 M CH3COONa buffer at pH 5.5 then added to CCM (pH 

of 7.0). The pH was decreased with acetic acid to a pH of ~4.5 and the zeta potential was determined immediately. For 

highly PEGylated chitosan the differences in zeta potential for the nanoplexes at pH 7.0 and 4.5 were much smaller than for 

low grafted PEG-chitosan nanoplexes. 

 

All samples showed an increase of the positive charge with values between 10 and 13 mV at 

low pH compared to pH 7.0. Chitosan and chi_PEG nanoplexes with small DS (up to 4%) 

revealed a higher increase in the zeta potential at low pH than nanoplexes with higher PEG 

densities. The difference between extracellular and intracellular pH may play an important 
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role in the endosome release. When highly protonable nanoplexes invade the endo-lysosome 

the osmotic swelling of the endo-lysosome might be faster and more efficient.  

3.2.7. Cellular uptake of chitosan and Chi_PEG:siRNA  

In previous chapters it was shown that the grafting of PEG on chitosan improved chitosan 

solubility. Also, due to the steric hindrance and shielding of the nanoplex surface it can have 

an effect on charge and could influence the protein corona formation on the nanoplexes once 

in cellular culture medium. Therefore, it was important to investigate the transfection 

efficiency of nanoplexes without and with increasing amounts of PEG on the surface  

H1299 cell line, which naturally exhibits no fluorescence, were transfected with nanoplexes 

formed from chitosan/chitosan_PEG at increasing DS and fluorescently labeled siRNA with a 

final concentration of 200 nM siRNA. The N/P ratio used was 25/1, the same as in the 

physico-chemical characterization. The transfection was carried out as in the previous 

experiments for 6 h before the medium was changed and the cells were incubated for another 

48 h. The transfection results were assessed via microscopy (data provided by L. Schuster 

NMI, Figure 4.23, page 78) [49], and the internal intensity inside the cells of the fluorescence 

signal was determined by flow cytometry (data provided by L. Schuster NMI, Figure 4.24, 

page 79) [49]. To minimize false positive signals by the adhesion of the nanoplexes to the 

outer layer of the cell membrane, the extracellular green fluorescence was quenched before 

cell harvest by treatment of the cells with trypan blue. 
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Figure 32. Fluorescence microscopy of H1299 cells after transfection with chitosan/chi_PEG: fluorescently-labeled siRNA 

nanoplexes. H1299 cells were transfected for 6 h before the medium change. After 48 h, the cells were quenched by trypan 

blue and the uptake of the nanoplexes in the cells was examined microscopically (scale bar 100 microns) (data provided by 

L. Schuster NMI, Figure 4.23, page 78) [49]. 

 

The microscopy recorded signals for all the chitosan/chi_PEG:fluorescently labeled- siRNA 

nanoplexes indicating a successful upake for all 6 samples. In addition, the 3% zoom in 

Figure 32 indicated the presence of some agglomerates in the the cell culture which were 

successfully quenched showing no green fluorescence. Even though the punctual fluorescent 

signals can be seen in the cells, it was hard to quantify the transfection efficiency based only 

on the microscope pictures. Therefore, the cells were further analyzed by flow cytometry.  
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Figure 33. Flow cytometry analysis of chitosan/chi_PEG: fluorescently-labeled siRNA nanoplexes uptake. H1299 cells were 

transfected with nanoparticles consisting of different chitosans and a fluorescent Alexa488-siRNA for 6 before the medium 

change. 48 h after transfection, the cells were harvested and the fluorescence in the cells was determined by flow cytometry. 

Three independent experiments were done in triplicates. (Statistics based on 0% PEG, Nonparametric ANOVA, Kruskal-

Wallis test, p <0.05) (data provided by L. Schuster NMI, Figure 4.24, page 79) [49]. 

 

The mean fluorescence of the untransfected control was set to 1 as well as for all other 

analysis based on it. Flow cytometry results showed apparent differences in the measured 

fluorescence between cells that were transfected with unmodified chitosan and cells that were 

transfected with PEGylated chitosans. However, according to the statistical analysis no 

statistically significant difference was detected between the different chitosan and chi_PEG 

nanoplexes with DS up to 6%. The increase in PEG grafting above 6% indicated a statistically 

significant decrease in the chi_PEG_8% nanoplex uptake compared to unmodified chitosan 

nanoplexes. Therefore, it appears that a small degree of PEG substitution did not significantly 

interfere with the nanoplex uptake. Given these results, the siRNA knockdown results should 

only be influenced by the intracellular barriers.  
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3.3. Knockdown of chitosan and chi_PEG:siRNA nanoplexes  

The nanoplexes used for the knockdown experiments were prepared similar to the uptake 

experiments at an N/P ratio 25/1 and a siRNA final concentration of 200 nM siRNA. The 

transfection of both scrambled and GFP silencer siRNA nanoplexes was measured for 6 h 

before the medium change. The knockdown efficiency was measured after 48 h in cell culture 

(data provided by L. Schuster NMI, Figure 4.25, page 81) [49]. 

 

 

Figure 34. Knockdown efficiency of different chitosan / siRNA nanoparticle formulations in H1299-GFP cells. Transfection 

was carried out for 6 h with a GFP silencer and a scr siRNA (200 nM). 48 h after transfection reduction of fluorescence was 

analyzed by microscopy (scale bar 100 microns). 
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Microscopy showed for all the 6 samples a decrease in fluorescence meaning a successful 

knockdown of GFP mRNA in targeted cells. The knockdown was more efficient with a 

smaller amount of GFP expressed from the cells, so that the fluorescence decreased. 

Unmodified and PEGylated chitosan nanoplexes with a DS smaller than 6% showed very 

good knockdown results. The increasing PEG percentage seemed to considerably affect the 

knockdown results. Therefore, only a small amount of PEG was necessary to increase 

solubility and to prevent the agglomeration of the nanoples as seen in Figure 32. On the other 

hand a too high PEG substitution influenced both the knockdown and the uptake as seen in 

Figure 33.  

As the microscopic results were more qualitative than quantitve, the cells and the remaining 

fluorescence after successful knockdown was investigated by flow cytometry (data provided 

by L. Schuster NMI, Figure 4.26, page 82) [49]. 

 

 

Figure 35. Analysis of the GFP signal by flow cytometry. H1299-GFP cells were transfected with various chitosans: GFP 

silencer or scr siRNA nanoplexes. The incubation time was 6 h and the cells were harvested after 48 h. The fluorescence of 

the cells directly correlated to the knockdown efficiency. Statistical analysis was calculated based on the untreated control. 

Three independent experiments were done in triplicates. (Statistics: Nonparametric ANOVA, Kruskal-Wallis test, p <0.01). 
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The flow cytometry results were very similar to the microscopy results. The unmodified 

chitosan and chi_PEG nanoplexes with a DS smaller than 6% showed a knockdown of ~75%. 

The GFP knockdown of the higher PEGylated chitosans is significantly lower. Chi_PEG 

nanoplexes with a 6% DS showed a knockdown of ~30%, while chi_PEG nanoples with 8% 

DS showed almost knockdown. For the last type of nanoplexes it is important to mention also 

the lower uptake that might have influenced such a low knockdown efficiency.  

 

3.4. Targeted delivery of siRNA nanoplexes to specific cells 

The specific delivery of the nanoplexes would not only prevent the side effects of siRNA 

being delivered to random cells, but will also ensure a concentrated uptake of the nanoplex in 

the cell of interest increasing the efficiency of the delivery system. PEG was grafted on 

chitosan in order to increase solubility and to shield the nanoplexes from unspecific 

interactions. In addition, PEG could be used as a spacer to bind the targeting molecule on the 

surface of the nanoplex without interfering with complex formation.   

 

3.4.1. Electrostatic interaction of scFv’LCH3 target protein and nanoplex surface 

The single chain antibody fragment of the fibroblast activation protein (scFv’LCH3) was 

chosen as a targeting molecule for fibroblast cells (see 1.7.2.1). The charge of the nanoplexes 

in 0.3 M CH3COONa buffer pH 5.5 was previously measured (Figure 26) and yielded a 

positive zeta potential for all chitosan and PEGylated chitosan nanoplexes. Therefore, the 

scFv’LCH3 should be negatively charged in order to interact via electrostatic interactions 

with the nanoplex surface.  

The zeta potential of the targeting molecule scFv’LCH3 was measured in the ZetaSizer at a 

concentration of 1mg/mL and revealed a negative charge of -9.18 mV. After mixing of 

scFv’LCH3 (1mg/mL) with the chi_PEG 6%:siRNA nanoplexes, the overall charge of the 

nanoplexes decreased from 16.8 mV to 2.7 mV which indicates the presence of electrostatic 

interactions between nanopexes and scFv (Figure 36). The zeta potential decreased at lower 

concentrations of scFv’LCH3 reaching a reduction in charge of only 3 mV at a concentration 

of 0.1 mg/mL of scFv. The mixing of the targeting molecule and nanoplexes was performed 

in a constant 2:1 nanoplex:scFv’LCH3 volume ratio. Therefore, to prevent the electrostatic 
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interactions the ratio can be increased. Furthermore, in the CCM, the proteins in the medium 

will probably compete with the scFv’LH3 reducing even more the risk of undesired 

nanoplex:scFv electrostatic interactions.  

 

Figure 36. Zeta potential measurement of chi_PEG DS 6%:siRNA nanoplexes at N/P 50 in buffer (0.3M CH3COONa pH 5.5) 

at increasing concentrations of scFv’LCH3. The nanoplex solution was mixed with scFv’LCH3 solutions of different 

concentrations at a constant volume ratio of 2:1. The neighboring charged protein built up a surface layer on the positively 

charged nanoplexes. 

 

3.4.2. Chemistry of the linker system  

The purpose was to find a linker system to conjugate a bio-macromolecular ligand as well as a 

small chemical inhibitor to the surface of chitosan nanoplexes for specific cell targeting. A too 

close binding of the ligand/inhibitor to the surface of chitosan would result in a shielding 

effect and therefore the risk for inactivation of the targeting moiety (Figure 37). PEG as a 

spacer between the targeting moiety and chitosan was chosen as linker system. 
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Figure 37.  Principle concept of the ligand/inhibitor attachment to chitosan nanoplexes. PEG of different lengths can be used 

to modify siRNA chitosan nanoplexes with macromolecular ligands or small inhibitor molecules at optimal distance for 

nanoplex- cell interaction (left). If the linker is too short the specific ligand might be shielded by the nanoplex surface (right).  

In order to bind the linker to the spacer, PEG can was modified with an azide group, offering 

more versatility and efficient coupling yields for the targeting system. The encapped azide 

functionality can react via “click-chemistry” with substituted alkynes to stable triazoles in a 

site specific manner as shown in Figure 38. This binding concept allows a high yielding 

conjugation under mild conditions resulting in a stable covalent linkage.  

 

Figure 38.Conjugation concept for the linker-ligand/inhibitor system based on azide modified chitosan_PEG. Azide groups 

at the PEG terminal end allow specific and mild covalent coupling of alkynes to the nanoplex surface.  
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3.4.2.1. Synthesis of the PEG/benzoate-cyclooctyne 

The first linker system chosen was based on the work of the Bertozzi [188] group with 

benzoate as spacer and linkage functionality (compound 8). However, due to the low yields 

(<20%), not corresponding to the procedures described by Bertozzi, and also the limited 

expectations derived from the structural properties, such as spacer length and solubility, the 

focus was changed to a second linker system.  

In the second approach a small PEG (n=4) spacer was coupled to the cyclooctyne moiety 

based on the work of Lallana E. et al. [226]. PEG can increase the solubility of the entire 

system, improve the spacer length and offers the possibility to modify the number of ethylene 

glycol repeating units if space length should be changed.  

 

 

Figure 39. Synthesis of activated cyclooctyne linkers with intermediates. a) t-BuOH, HCBr3, pentane anhydride, RT; b) 

AgClO4,  tetraethylene glycol, toluene/pyridine, overnight, reflux; c) t-BuOH, i-PrOH/pyridine, RT; d) N,N’-Disuccinimidyl 

carbonate, Et3N , MeCN, RT; e) AgClO4, methyl 4-hydroxymethylbenzoate, toluene, no light, RT; f) NaOMe, anhydrous 

DMSO, RT; g) HCl (1M), 20% H2O/dioxane, LiOH, RT; 

 

The dibromocyclopropanation of cycloheptene 1 to intermediate 2 was performed via a 

classical cheleotropic reaction, a subclass of pericyclic reactions. Bromoform serves as 
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carbene precursor, which is released under basic conditions. The in situ formed carbene, 

reacts with the cycloheptene in a concerted [2+1] cycloaddition, yielding compound 2 in a 

good yield (70%) 

Silver perchlorate was then used to carry out the electrocyclic ring-opening of 2 to the allylic 

cation, which was captured with tetraethylen glycol, affording bromo-cyclooctene 3 as shown 

in Figure 40 in an 80% yield  

 

Figure 40. Synthesis of 1-Bromo-8-tetraethylenglycol-cyclooctene. Ag2+ catalyzed electrophilic rearrangement of 2 leads to 

compound 3 in a good yield (80%) 

 

 

 

Figure 41. 1H NMR spectrum of compound 3 (400MHz, CDCl3). It showed the characteristic vinyl signals at 6.1 ppm and the 

PEG protons in the range of 3 -3.6 ppm . 
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1
H NMR spectra of compound 3 showed the characteristic vinyl signal with its anisotropic 

downfield shift at 6.1 ppm and the following alkyne formation yielding cyclooctine 4 was 

performed by dehydrohalgenation via E2 elimination using KOtBu as base in an iso-

propanol/pyridine mixture at room temperature. Monitoring of the reaction was difficult via 

TLC as no clear differences in Rf-values were achieved. HPLC analysis suffered from the low 

active chromophore and the very similar retention times of educt and product. Therefore, the 

reaction progress was monitored via in-process 
1
H NMR analysis. Characteristic signals were 

found at 6.1 ppm where the vinyl signal is disappearing and a new signal was seen at 4.21 

ppm (C≡C-CH-PEG), indicating the alkyne formation Figure 42. 

 

 

Figure 42. In situ 1H NMR (400 MHz, CDCl3) monitoring of cyclooctyne formation after 25 h reaction time (IPC= in process 

control), pure isolated cyclooctyne (middle) and pure isolated octene (top). The vinyl signal (CH=CHBr) at 6.1 ppm 

dissapeaard within 25h of reaction time whereas the proton of the PEG substituted tertiary carbon atom showed a 

characteristic new signal at 4.21 ppm (C≡C-CH-PEG) which was used to follow the alkyne formation.Sample preparation of 

the IPC was done by evaporating a small portion of the reaction mixture and subsequent 1H NMR measuring in CDCl3.  
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According to literature, reaction times of ~60 h were needed [226]. However, it was proven 

via 
1
H NMR that reaction times of 25 hours were by far sufficient and could be further 

reduced. The yield of the reaction performed for 60 h was actually ~10% less (54% yield) as 

one of the 25 hours experiment (66% yield) probably due to side reactions. Nevertheless, side 

products were not quantified or identified in this study.  

In the final step, the PEG side chain was transformed to the corresponding activated 

succinimidyl carbonate ester 5 with N,N’-Disuccinimidyl carbonate (DSC). The carbonate 

ester 5 served as broad and robust linker platform for further modifications with an acceptable 

stability profile for storage.  

 

3.4.2.2. Synthesis of the PEG-cyclooctine-maleimide 

As maleimide alows the specific and covalent binding to thiols under physiological 

conditions, it was decided to use the specific Michael system as a protein capturing moiety on 

the linker system. Therefore, the succinimidyl carbonate ester 5 was reacted with aminoethane 

maleimide (TFA salt) in dichlormethane and triethylamine at room temperature to yield the 

target compound 9.  

 

Figure 43.  Synthesis of cyclooctyne_PEG-maleimide, compound 9 in DCM, RT (~60%  yield) 

 

The maleimide compound 9 was purified via column chromatography and yielded a yellow 

oil (Figure 44a). The linker was stored at -20°C under argon atmosphere and under light 

exclusion. Despite these special precautions in storage, a polymerization was observed within 

~1-2 days. At room temperature polymerization took place within hours (Figure 44b). 
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      a.    b.   

Figure 44. a) Freshly prepared maleimide_linker b) Polymerized maleimide_linker after storage at -20°C under light and 

oxygen exclusion. 

 

The polymerization of maleimide is known in literature [227] for alkenes, via 

photocyclization, which can be excluded in our case as storage was done under light 

protection. Furthermore, systems like furane react under thermal conditions with maleimide as 

dienophile in Diels Alder reactions even at room temperature at significant reaction rates 

[228]. 

For our observations, a thermal [2+2] cycloaddition reaction mechanism like shown in Figure 

45 is the most feasible explanation leading to the observed polymer 10 with the structure 

shown below.  

 

Figure 45. Probable polymerization of compound 9 via [2+2] cyclooaddition between the octyne and the maleimide group 

could lead to the polymer type 10. 
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Usually the [2+2] cycloaddition between alkynes and alkenes needs catalysts [229] or UV 

irradiation [230]. The en (alkyne) and enophil (maleimide) in the present system are differing 

to usual systems as both have to be seen as highly activated. The HOMO of the cyclooctyne is 

increased (due to the ring strain activation), whereas the LUMO of maleimide is significantly 

lowered (due to the high electron deficiency), which is resulting in a lowered HOMO-LUMO 

energy gap and therefore lowered activation energy barrier, which might enable the [2+2] 

cycloaddition reaction without any catalysts, heat or photoactivation. 

Nevertheless the cyclooctyne_PEG_maleimide compound 9 can be used as a linker to attach 

the specific cell targeting moiety to the nanoplex. Unfortunately it has to be just freshly 

prepared. In order to further improve the linker moiety and its tability, the octyne was kept as 

linkage functionality for the azide substituted chitosan. Only the functional moiety, linking 

the target to the nanoplex was changed. Therefore, a functional group specific towards thiols 

and inert to the ring strained activated alkyne was needed.  

Iodoacetamide was chosen as an alternative functional group for bioconjugation because of its 

high reactivity towards thiols and low hydrolysis profile in aqueous systems.  

The thiol specific iodoacetamide coupling mechanism is based on the nucleophilic attack of 

the thiol to the electrophilic iodonated carbon of the iodoacetamide. Interactions, as observed 

with the Michael acceptor – (maleimide) could be excluded due to the changed mechanism 

from Michael addition to nucleophilic substitution. 

The synthetic strategy was starting with tetraethylenglycole oct-2-yne 4 which was already 

synthesized before. However, in this case a second linker was introduced to connect the 

iodoacetamide to the octyne derivative 4. As coupling strategy for the endcapped hydroxy 

functionality, we decided for a Steglich esterification with EDC as carbodiimid and DMPA as 

organocatalyst. The linkage of the acetamide was planned to be introduced as already linked 

intermediate 12 with an endcapped carboxyl group. The synthesis of intermediate 12 was 

performed via chlor-iodoacaetic acid and 6-aminohexanoic acid (Figure 46).  
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Figure 46. Retrosynthetic analysis of  the octyne-iodoactamide linker system. The synthesis route was developed based on the 

tetraethylene oct-2-yne 4 which was synthesized earlier. Esterification with 6-[(iodoacetyl)amino]hexanoic acid yielded the 

desired product 11 (52 %) 

 

The synthesis of compound 11 was performed according to the retrosynthetic concept in a 

yield of 52% (Figure 47).  

 

Figure 47. Synthesis of the octyne-PEG-iodoacetamide ester linker (compound 11). a) THF, 0oC – RT; b) EDC, DMAP, THF, 

RT.  

 

As an alternative to the iodoacetamide 11, the corresponding iodoacetic acid ester 13 was also 

prepared via direct Steglich esterification of iodoacetic acid and tetraethylenglycole oct-2-yne 

4 as shown in Figure 48.  
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Figure 48. Synthesis of the octyne-PEG-iodoacetic acid ester linker. Reaction conditions: a. DMAP, EDC, THF, RT. Direct 

esterification of the tetraethylenglycole oct-2-yne 4 with iodoacetic acid yielded the compound 13 (10 %  yield).  

 

3.4.3. Bioconjugation of biological targets via a free thiol group to the maleimide linker 

system 

The maleimide linker system 9 can be added directly to the chitosan_PEG copolymers. Then 

the target molecule can be attached to the bound linker via the thiol group (Figure 49a). The 

alternative synthesis, the system that was chosen, was based on the reaction of the maleimide 

linker group 9 with the targeted molecule prior to the chitosan_PEG binding via 1,3-dipolar 

cycloaddition to the azide groups on PEGylated chitosan (Figure 49b).  

 

Figure 49. Bioconjugation concepts of biological targets via their free thiol group to the maleimide linker system of 

compound 9. a) bind first the linker to the PEGylated chitosan by 1,3 – dipolar cycloaddition of the octyne to the azide 

groups.Then the thiol group of the biological target can be couples to the maleimido groups on the polymer. b) The coupling 

of the biological target to the maleimido groups of the linker can be done first followed by the coupling of the whole 

construct to the azide groups of the PEGylated chitosan. The second approach was chosen for development.  
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The concern with the first approach (Figure 49 a) was that due to reduced accessibility of the 

thiol to the linker system with the maleimide moiety at the distal end of the 

chitosan_PEG_linker the reaction could show low yields. In addition it was much easier to 

identify and quantify the covalently bound target molecules on the small and well define 

linker systems compared to the polymeric systems with a broad MW distribution.  

 

3.4.3.1. Bioconjugation of H-CDoaDoaEQKLISEEDL-OH to the 

cyclooctyine_maleimide linker system 

The first step was to prove the bioconjugation of a small peptide to the linker system via thiol 

linkage to the maleimide. The chosen peptide was H-CDoaDoaEQKLISEEDL-OH also 

named Cys-DoaDoa-Myc epitope with a free cysteine at the N-terminus and a molecular 

weight of 1596.77 g/mol.  

As previously mentioned, the double bond of maleimides undergoes a Michael reaction with 

sulfhydryl groups to form stable thioether bonds. The maleimde on the cyclooctine linker was 

reacted with the free thiol group of the H-CDoaDoaEQKLISEEDL-OH peptide at a pH of 6.5 

(Figure 50). Another very important aspect was the immediate use of the 

cyclooctine_maleimide linker and short reaction times in order to avoid its polymerization 

(see Figure 45). The reaction was stopped after 2h by adding L-cysteine which could bind to 

the remaining unreacted maleimide or the free thiol groups on the peptide via disulfide bond 

formation.  
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Figure 50.  Synthesis of the cyclooctyne-PEG-succ-DoaDoaMyc epitope. Compound 9 was mixed in PBS buffer 

with1%DMSO and the H- CDoaDoaEQKLISEEDL-peptide for 2 h at room temperature. The thiol of the N-terminal cysteine 

was added to the maleimide double bond in a Michael addition reaction. The resulting 3-thio succinimidyl moiety forms a 

stable linkage of the peptide to the cyclooctyne group. After 2h, cysteine was added which reacted with the remaining 

maleimido groups or free thiols of the unreacted peptide yielding the secondary products shown.  

 

The crude product was purified via preparative HPLC with a GromSil 120 ODS-4 HE, 7µm 

125x30mm column. The purified product was compared via analytical HPLC with the raw 

materials: peptide and cyclooctyne linker system, compound 9 (Figure 51). In the HPLC 

analysis of the purified compound 14 (pink chromatogram), H-CDoaDoaEQKLISEEDL-OH 

peptide peak cannot be observed and only a small amount for the dimer peptide can be 

identified. Furthermore, compound 9 (Peak 5) was  not seen and a new compound peak could 

be observed at a retention time of 3.88 minutes. The binding of the peptide increased the 

polarity of the bioconjugate. Therefore, from the overlay it was concluded that the new peak 

represented compound 14 in a 32% yield.  
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Figure 51. Analytical HPLC comparison of cyclooctyne_maleimide linker (A), H-CDoaDoaEQKLISEEDL-OH peptide (B) 

and cyclooctyne_succ_CDoaDoaEQKLISEEDL-OH, compound 14 (C). The PEG maleimide showed two proeminent peaks 

(5, 6) in the HPLC separation which shifted to shorter retention times after reaction with the thiopeptide. The later eluting 

peak was isolated and further characterized by MALDI ToF MS (Figure 52) (column: Chromolith Performance RP-18e 

100x3 mm; solvents: 0.1% TFA in water (solvent A), 0.08% TFA, 100% acetonitrile (solvent B); gradient: 5-65% solvent B 

in 5.8 min, wavelength: 214 nm).   

 

The purified compound 14 was further analysed via the standard ‘dried droplet’ MALDI-ToF 

MS. The fraction was co-crystallized with α-Cyano-4-hydroxy-cinnamic acid (HCCA) matrix 

which is used in the majority of proteomics applications for the analysis of peptides[231]. 

Figure 52 shows the mass spectra of compound 14 yielding the characteristic [M+H]
+
 signal 

at m/z 2062.602, the [M+Na]
+
 signal at m/z 2084.609 and an [M+K]

+
 signal at m/z 2100.588 

which are consistent with the expected monoisotopic mass [M] of 2061 g/mol.  
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Figure 52. Maldi ToF MS of compound 14 (cyclooctyne_succ_CDoaDoaEQKLISEEDL-OH). The found mass of 2062.62 

[M+H]+ and the masses of [M+Na]+ and [M+K]+  fitted well to the calculated monoisotopic mass of 2061 Da (Ultraflex III, 

Bruker Daltonics, dried droplet preparation with HCCA in ACN + 0.1% TFA:H2O 2:1).  

 

3.4.3.2. Conjugation of scFv’LCH3 to the cyclooctine_maleimide linker (9) 

Given the successful bioconjugation to the small peptide, the next step was to add a larger 

biological target to the cyclooctyne_maleimide linker (9). Therefore, the single chain 

fragment antibody (scFv’LCH3) directed against of the fibroblast activation protein (FAP) 

was chosen to target fibroblast cells in a highly specific manner [49, 177].  ScFv’LCH3 

expressed and purified from E.coli lysates revealed both a monomeric form with a free thiol 

from the cysteine residue and a dimeric form with disulfide bonds between the free thiols of 

two monomeric forms (see 1.7.2.1). Therefore, prior to bioconjugation, the disulfide bonds 

were reduced with an excess of tris(2-carboxyethyl)phosphine (TCEP). Unlike commonly 

used dithiothreitol (DTT), TCEP is more stable and does not have to be removed before the 

following step. The bioconjugation of the scFv’LCH3 to the maleimide linker was performed 

in 1% DMSO PBS at a pH of 7.2 over 2 h under argon (Figure 53). As in the case of the small 

peptide, the reaction was stopped after 2 h by adding L-cysteine which could bind  to the 

remaining unreacted maleimide linker, compound 14 or the free thiol groups on the 

scFv’LCH3 monomer.  
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Figure 53. Synthesis of cyclooctyne-PEG-succ-scFv’LCH3 in PBS with 1% DMSO for 2 h at room temperature. Side 

products of the reaction due to the final quenching step with cysteine are shown. Secondary product 1 and 2 could couple to 

azide groups in the following 1,3 dipolar cycloaddition and should therefore be removed Due to the large difference in size 

this could was easily done by centrifugal ultrafiltration.  

 

The excess of unreacted maleimide_linker, TCEP, L-cysteine and bioconjugated L-

cysteine_maleimde linker were removed by centrifugal ultrafiltration with a 10 kDa cutoff 

membrane. It was noticed that the scFv’LCH3 precipitated in the retentate solution. To 

prevent scFv’LCH3 precipitation, 0.005% Tween20 was added to the reaction mixture. This 

kept the final bioncojugated product in solution and increased the overall yield. SDS-PAGE 

analysis showed an increased amount of scFv’LCH3 in the retentate collected from the 

unltracentrifugal filters (Figure 54).  
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Figure 54. Non-reducing SDS-PAGE analysis of scFv’LCH3 conjugates and unconjugated scFv’LCH3 after ultrafiltration. 

a) Cyclooctyne_succ_scFv’LCH3 (compound 15) with 0.005% Tween20 (Linker scFv +), b) 

cyclooctyne_maleimide_scFv’LCH3 (compound 15) without 0.005% Tween20 (Linker scFv -), c) scFv’LCH3 without 

0.005% Tween20 (blank reaction: same conditions but no maleimide_linker (compound 9) was added (scFv’LCH3 -), d) 

scFv’LCH3 with 0.005% Tween20 (blank reaction: same conditions but no maleimide_linker (compound 9) was added 

(scFv’LCH3 +). Addition of low amounts of mild detergent improved the protein recovery from the ultrafiltration retentate 

significantly. The analysis showed smaller potentially fragmented protein at about 16 – 17 kDa and some additional protein 

bands at higher Mw in the unmodified scFv’LCH3 when Tween20 was added (d).  

 

After optimization of the bioconjugation reaction with 0.005% Tween20, compound 15 was 

produced in higher amounts. The identification of the next batch of compound 15 was done 

again via SDS-PAGE analysis. Increasing concentrations of BSA were applied to the same 

gel in order to have an estimate for the concentration of compound 15 obtained in the 

ultrafiltration retentate (Figure 55).  
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Figure 55. Non-reducing SDS-PAGE analysis of scFv’LCH3 with and without cycloctyne linker and BSA for determination 

of total protein yield. BSA was added with increasing concentrations: 0.05 mg/ml to 10 mg/ml, scFv’LCH3, 

cyclooctyne_succ_scFv’LCH3 (compound 15) and cyclooctyne_maleimide (compound 9) were analyzed. The linker with a 

MW of 466,59 g/mol showed no band. scFv’LCH3 showed a slightly lower MW than the modified 

cyclooctyne_succ_scFv’LCH3 at about 28 kDa. Stray bands were detected for modified and unmodified scFv’LCH3 at about 

64 kDa and very strong bands at about 14 kDa.  

 

Together with the scFv’LCH3 at 28 kDa some potential proteolytic cleavage products of 

scFv’LCH3 were also detected at 14 kDa. Depending on the scFv’LCH3 fraction collected 

from the purification column the concentration of these low MW products was sometimes 

lower or higher. In the batch shown in Figure 55 it seemed that their concentration was in the 

range of 5 mg/ml, about 5 times higher than the scFv’LCH3 itself. As SDS-PAGE analysis 

was performed under non-reducing conditions, the presence of scFv’LCH3 dimers was also 

seen at ~56kDa in the scFv lanes. However, the successful bioconjugation of the scFv’LCH3 

to the maleimide linker seemed to generate a peak shift at the 27 kDa band. Additionally, the 

mass shift at about 14 kDa on the linker_scFv band, might be from the reaction of a potential 

proteolytic cleavage product with compound 9.  As the scFv’LCH3 is purified via the His-Tag 
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situated next to the free cysteine it is quite likely that proteolytic cleavage products kept the 

His-Tag sequence with the cysteine (see 1.7.2.1), which can be modified by the maleimide of 

compound 9. The mass shift in the non-reducing SDS-PAGE analysis is much larger than 

expected for a 476 Da modification. The effect might be due to differences in the 3D structure 

of the modified and unmodified scFv’LCH3.  

Compound 15 was further analyzed via HPLC-ESI-MS with a Poroshell 300SB-5µm-C18-

1.0x74mm column at 75
o
C. As the concentration of the proteolytic cleavage products was 5 

times higher than the scFv’LCH3, they were detected with a high response. Indeed only  the 

proteolytic cleavage products with and without maleimide linker were identified, but not the 

full length scFv’LCH3 with an average mass of 26794 Da and a monoisotopic mass of 26778 

Da (calculated with the Sequence Editor Software from Bruker). It was not possible to 

determine whether the full length protein was not transferred through the C18 column or 

whether it was further fragmented in the highly acidic buffer. The different fractions eluting 

from the column could be clearly identified as scFv’LCH3 fragments. Fragmentation took 

place in the His6 tag linking the two domains VH and VL of the original scFv-fragment. 

Fraction 1 contained the cysteine residue inserted next to the His6 linker in the protein. The 

monoisotopic mass of the fragment was calculated without the periplasmic localization 

sequence of 13775 Da (C607H931N173O187S5). Fraction 2 contained part of the His-Tag and the 

second part of the peptide linker sequence with the deconvoluted mass of 13019 Da 

(C574H884N162O178S4). In Figure 56b fraction 1 was increased to the deconvoluted mass of 

14241 Da and fraction 2 was increased to the deconvoluted mass of 13485 Da (also masses 

were calculated with the Sequence Editor software from Bruker).  
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a. 
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Figure 56. ESI-MS of cyclooctyne_succ_scFv’LCH3 (compound 15) cleavage product with and without cyclooctyne linker. a) 

proteolytic cleavage products of scFV’LCH3. Four charge fragements were detected in the two fraction elution from the 

column, The protein was cleaved in the His6-linker-seqence b) proteolytic cleavage products + 

cyclooctyne_maleimide_linker (compound 9). The linker peptide sequence in scFv’LCH3 is SSGGCGHHHHHHGGGSA, 

with the cysteine residue in the first part of the sequence in red, the His-tag in blue and the second part of the linker peptide 

sequence in green. The periplasmic localization sequence was not used for mass calculation.  

 

The increase in mass of both fractions was 466 g/mol, which represents the exact molecular 

weight of compound 9. The first proteolytic cleavage product (fraction 1) reacted with the 

maleimide on the linker via the free cysteine on the first part of the peptide-linker 

(SSGGCGHHH). The second proteolytic cleavage product (fraction 2) also reacted with 

compound 9. The maleimide_linker (compound 9) can also reacted with amine groups in the 

protein. However, this reaction is kinetically disfavored compared to the thioether formation 

and was not detected for other protein fragments.  

The SDS-PAGE and LC-MS ESI results indicate the versatility of the compound 9 to bind to 

larger peptides (of ~13 kDa), via specific Michael addition reaction with the thiol groups of 

free cysteine groups, and to single chain antibody fragments with a molecular weight of ~26 

kDa (proved by SDS-PAGE, Figure 55). Together with the small peptide bioconjugation 

results in subchapter Bioconjugation of H-CDoaDoaEQKLISEEDL-OH to the 

cyclooctyine_maleimide (proved by MALDI, Figure 52), it could be concluded that 

compound 9 could be used to bind to any biological target with a free thiol.  

 

3.4.4. Chemical inhibitor for specific cell targeting  

The highly potent and selective FAP inhibitor received from the Van der Veken group 

(University of Antwerp) was conjugate to the cyclooctyne_linker system and could be 

ultimately conjugated to chitosan. The group in Antwerp provided no structural details of the 

inhibitor besides the long chained endcapped azide that could be used as functional group for 

linkage to further systems without interfering with the potency or selectivity of the chemical 

inhibitor. Therefore, the existing cyclooctyne linker system was modified in order to bind 

both to the FAP chemical inhibitor via the available azide moiety as well as being able to 

react with the azide substituted chitosan_PEG as shown in Figure 57.  



  RESULTS 

 

 
 93 

 

Figure 57. Concept for inhibitor binding to chitosan azide. The inhibitor had to be attached via an azide group to the 

cyclooctyne linker which should react with the azide groups of the modified chitosan as well.  

 

The FAP inhibitor_linker system was synthesised as shown below. 

 

 

Figure 58. Synthesis of cyclooctyne-FAP inhibitor linker.a) N,N’-Disuccinimidyl carbonate, Et3N , MeCN, RT; b) 

Ethylenediamine, CH2Cl2, RT; c) THF, 50oC; d) CH2Cl2, RT. 

 

After activation of compound 4 to the carbonate ester 5, diaminoethan was reacted with 5 to 

yield the corresponding carbamate 16. The ongoing cycloaddition yielded the triazole coupled 

inhibitor system 17. The endcapped amine was reacted with the carbonate ester 5, which 
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serves as dual intermediate in this strategy to the target compound 18 as two regioisomers 18a 

and 18b, which can be coupled to the azide modified chitosan. 

The crude product was purified via preparative HPLC with a GromSil 120 ODS-4 HE, 7µm 

150x50mm column. The regiosimers 18a and 18b were obtained with a purity of ~90% ( 

Figure 59). The exact molecular weight was determined via direct injection ESI-MS analysis 

resulting in a m/z of 619.3409 [M+2H]
2+

 for regioisomer 18a and 619.3407 [M+2H]
2+

 for 

regioisomer 18b corresponding to a calculated monoisotopic molecular mass of 1238 Da.
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Figure 59. Analytical HLPC before and after purification of the regioisomers a) crude product b) regioisomer 18a with 91.9% purity c) regioisomer 18b with 87.5% purity (GromSil 120 ODS-4 

HE, 7µm 150x50mm column, 5 to 65% solvent B, 25oC, temperature, solvent A: H2O+0.1% TFA, B: ACN+0.1%TFA).
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3.4.5. Chitosan_PEG_N3  

The selective functionalization of the nanoplex surface can be achieved by incorporating an 

azide moiety at the distal end of the PEG spacer. This implies the use of a heterobifunctional 

PEG spacer which such as compound 20, with a carboxylic group at one end and an azide the 

opposite end. The carboxylic acid functionalized PEG was grafted to the N-glucosamine unit 

of chitosan via amidation. The synthesized was based on the work of Lallana et al. [226]. The 

grafting linkage was selected because of the high yield and reproducibility of the process 

under physiological conditions [232]. Compound 20 was synthesized from another 

heterodifunctional PEG (compound 19) by reaction with glutaric anhydride as shown below 

(Figure 60).   

 

Figure 60. Synthesis scheme of chitosan_PEG_N3. The commercially available PEG with distal amino and azide groups (19) 

was selectively functionalized with glutaric anhydride yielding compound 20 which was coupled in aqueous solution to the 

amino groups of deacetylated chitosan with EDC and HOBt.   
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Table 8. Chitosan_PEG parameters measured and calculated by gel permeation chromatography; 

number avarage molecular weight MN, weight-average molecular weight MW, intrinsic viscosity ɳ, 

hydrod- ynamic radius Rh, degree of substitution DS 

*DS =
(𝑴𝒘𝑪𝒉𝒊𝑷𝑬𝑮−𝑴𝒘𝑪𝒉𝒊)/𝟑𝟗𝟎𝟎

𝑫𝑷𝒄𝒉𝒊
; DPchi=Mwchi/Mnchi 

 

The DS and Mw of compound 20 were determined via GPC and IR analysis (Table 8).   

According to the GPC results, the PEG_N3 grafting to the amino group of chitosan was low 

(1.7% DS). As the PEG_N3 grafting was achieved at the primary amino group of the 

deacetylated chitosan unit, it was important to make sure that there are still enough primary 

amines were still available for electrostatic interactions stabilizing the final nanoplexes. 

Therefore, no PEG_N3 chitosan grafting with higher DS was pursued.  

The successful modification of chitosan with the PEG_N3 group was also be detected via IR 

analysis (Figure 61).  

RN  Mw[kDa] Mw/Mn η [dL/g] Rh [nm] *DS[%] 

Chi (152; 92,6)  152 ±1,1 1,3 ±0,01 3,75 ±0,19 20,4 ±0,13 - 

1.5 % PEG  158 ±1,9 1,3 ±0,01 2,91±0,01 18,9 ±0,08 1,7 
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Figure 61. IR spectra  overlay of chitosan, Chi_PEG_N3 and HOOC-PEG_N3 

 

3.4.5.1. Proof of concept for azide_cyclooctyne linkage formation 

Having established the strain-promoted azide-cyclooctyne [3+2] cycloaddition conditions for 

the functionalization of chitosan_PEG_N3, compound 21, the next step was to prove the 

formation of the conjugation of the cyclooctyne linker to the chitosan. Therefore, 

HOOC_PEG_N3, compound 20, was reacted with an excess of hydroxyl cyclooctyne linker at 

room temperature for 52 h (Figure 62).  
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Figure 62. Synthesis of cyclooctyne_linker_PEG_COOH. As proof of concept the azide compound 20 was reacted with the 

cyclooctyne compound 4 at RT for 52 h to yield product 22 via selective [3+2] azide_cyclooctyne click chemistry.  

 

Both HOOC_PEG_N3, compound 20, and the triazole conjugateg PEG_linker system, 

compound 22, were analyzed via dry droplet MALDI-ToF-MS. The expected mass shift was  

301.2 amu in compound 22 MALDI-ToF mass spectrum and a shift of 299.9 was observed. 

The adjacent peaks in both compound 20 and compound 22 differed in mass one PEG 

monomer unit (ΔM = 44.03 (CH2CH2O)).  
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Figure 63. MALDI-MS spectra of reagent HOOC_PEG_N3 and product triazole_PEG_linker system, compound 22. The 

found mass shift between the product and the reagent ion series of the polymer was 300 Da. This corresponded exactly to the 

mass of the cyclooct-2-yne-tetraethyleneglycol (C16H28O5) attached to the polymer azide. The mass difference between 

adjacent peaks in both reagent and product related to the mass of the ethylene glycol monomer unit (ΔM = 44.03 

(CH2CH2O)). 
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3.4.6. Functionality of the scFv’LCH3 after bioconjugation to the linker system 

The binding of the scFv’LCH3 to FAP expressing cells was successfully tested by Dr. 

Schuster* in human fibrosarcoma HT1080 cell line, both the wild type (HT1080wt) and a 

FAP overexpressing stably transfected variant (HT1080FAP #33)[49]. The bioconjugation of 

the scFv’LCH3 to the linker system might affect the functionality of the targeting molecule. 

Therefore, we tested compound 15 (Figure 64) in the same two cell lines together with the 

scFv’LCH3 as a positive control (Figure 65).  

 

Figure 64. Structure of the scFv’LCH3 bionconjugate succinyl_cyclooctyne_PEG  

 

The integrated His-Tag makes it easier to purify scFv’LCH3 via Ni-affinity chromatography 

and to identify it with an anti-His primary antibody. In this study, the cells were stained with a 

Cy3 (red) – labeled secondary antibody in order to detect the binding of the scFv’LCH3 

before and after bioconjugation yielding compound 15. The nuclei were stained with DAPI 

(blue) in order to be better localize the cell and the binding of the scFv’LCH3 on the cell 

surface. Therefore, successful binding of scFv’LCH3 was expected to be illustrated by a 

strong Cy3 (red) signal on the HT1080 cell surface. As a negative control compound 15 was 

also incubated without the anti-His primary antibody which should correlate with no Cy3 

(red) signal. As the optimization of the bioconjugation reaction was performed with 0.01% 

Tween20, the cells were also incubated with 0.01% Tween20 as a negative control.   
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Figure 65. Cell assay to test the functionality of scFv’LCH3 bioconjugated to the maleimide linker system. HT1080FAP # 33 

and HT1080wt cells were fixed with PFA before adding compound 15, unconjugated scFv’LCH3 as a positive control, 0.01% 

Tween20 as a negative control. Detection of bound scFv’LCH3 was performed by an anti-His primary antibody and staining 

with Cy3 labeled secondary antibody. As a negative assay control compound 15 was added without anti-His primary 

antibody.The nuclei were stained with DAPI (scale bar 100 microns). Whereas the pure FAP_ligand scFv’LCH3 was located 

only at the cell membrane. The scFv’LCH3 coupled to the cyclooctyne linker showed strong signals between cells as well 

(compound_15_His_cy3).  

The Cy3 signal in the HT1080FAP cells indicated that scFv’LCH3 was still functional even 

when coupled to the linker system. Furthermore, the assay data showed that it was specifically 

bounnd to the FAP target after the bioconjugation to the linker system. The two negative 

controls, compound 15 without the anti-His primary antibody and the Tween20, showed that 

the Cy3 signal was specific to the specific binding of the scFv’LCH3 to its target on FAP 

expressing cells.  
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3.5. Layer by layer 

3.5.1. Build-up of (HA/Ch)2 (HA/NP)n PEM layer 

The polyelectrolyte multilayer (PEM) build-up consisted of two bilayers of HA and chitosan 

(HA/Chi)2, and several bilayers of  HA and Chi/Chi_PEG:siRNA nanoplexes (HA/NP)n. The 

first two bilayers were formed in 5.5mM CH3COONa buffer (pH 5.5), while the HA/NP 

bilayers were added in 0.3M CH3COONa buffer (pH 5.5) due to the NP formation. As 

previously measured at pH 5.5 chitosan and NP (Table 7) have a positive charge. Therefore, 

the HA was deposited as a negatively charged layer and chi/NP as a positively charge layer in 

alternative order. The overcompensation of charge resulted in the adsorption of each layer, at 

which stage the charge on the surface of the layer was reversed. 

The multilayer assembly was proven by QCM measurements carried out on PEI-coated gold 

crystals[44]. The constant increasing frequencies in Figure 66 indicated the continuous 

building up process. The (HA/NP)n bilayers revealed smaller frequencies compared to 

(HA/Chi)2. However, the steady increase with each (HA/NP)n bilayer added, confirmed the 

build-up process. The decreased zeta potential with increasing PEG densities (Table 7) 

correlated with the lower deposition of NP. The number of HA/NP bilayers decreased from 5 

in the case of unmodified chitosan:siRNA NP to 3 – 4 for NP formed with chi_PEG 3 and 4% 

DS, with only 2 nanoplex bilayer deposition in the case of chi_PEG 8% DS.   
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Figure 66. Build-up of (HA/Chi)-layers with Chi:siRNA NP and Chi_PEG:siRNA NPs. Frequency shifts (-Δf) measured with 

quartz crystal microbalance after successive injections of polyelectrolytes (hyaluronic acid:HA or chitosan:Chi) and Chi or 

Chi_PEG:siRNA NPs (indicated by arrows).  

 

3.5.2. NPs release over time 

The release of the NPs with Chi_PEG 4 and 8% immobilized PEMs was followed by using 

Tye563 labeled siRNA (Figure 67). The PEM were build-up analogues to the QCM films, 

PEI/(HA/Ch)2(HA/NP
Tye563

)n , with both negative control siRNA and labeled siRNA, and 

were deposited on 96-well plates. The wells were washed with PBS every 24h and the 

decreasing fluorescent intensity of the collected supernatant was compared to the negative 

controls.  The data revealed linear release for both PEM assemblies. The higher number of NP 

bilayers in the case of chi_PEG 4% DS was reflected also in the release data. In the first 24h 

the relative intensity of PEMs with chi_PEG 4% was higher in comparison to chi_PEG 8%, 

however after 48 both PEMs showed similar fluorescent absorbance at 600 nm. The PEM 

complete degradation and NP release was achieved after 96h.  

 



  RESULTS 

 

 
 105 

 

Figure 67. NPs release from PEI/(HA/Ch)2(HA/NPTye563)n. PEI/(HA/Ch)2(chi_PEG 4%:siRNATye563)4 and 

PEI/(HA/Ch)2(chi_PEG 8%:siRNATye563)2 films were incubated in PBS at 37oC for 96h. The fluorescent intensity was 

measured every 24 h. As a negative control the similar procedure was performed for PEI/(HA/Ch)2(chi_PEG 4%:siRNA)4 

and PEI/(HA/Ch)2(chi_PEG 8%:siRNATye563)2.  
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4. Discussion  

4.1. The optimal chitosan for siRNA delivery 

Given the cationic nature, biodegrability, biodistribution, low immunogenicity and ease of 

manufacturing, chitosan was chosen as a natural non-viral siRNA nanocarrier. As it was 

already used in various studies for the delivery of DNA, many of the tactics used to improve 

the DNA delivery can be transfered to siRNA delivery. However, it is important to take into 

consideration that in comparison to DNA, siRNA is much more sensitive to nuclease 

degradation in the biological environment [233], it has a much smaller size (20-25 base pairs, 

~14kDa) [91] and it targets the mRNA in the cytosol instead of the nucleus. Therefore, the 

physicochemical parameters of chitosan need to be optimized in order to have a subtle 

balance between sufficient siRNA protection complex, stability and intracellular release of 

siRNA into the cytosol. As DNA has a higher MW than siRNA, the polymer length of chitosan 

can be reduced for the successful DNA condensation from 10 kDa [234]  to even ~4.7 

kDa[235]. The longer DNA chains might be able to build a stable polymer backbone and 

compensate for the higher mobility of shorter chitosan chains [58]. siRNA, however, is a lot 

stiffer and might not be able to condense further [236]. Also the limited number of negative 

charges per molecule may not be sufficient for stable binding resulting in incomplete 

association of chitosan and siRNA [237]. As a consequence longer chitosan chains with a 

higher degree of deactylation (DD) have to be considered for siRNA complexation. 

Simultaneously with siRNA protection, the polyplex cell uptake has also to be considered 

also. A chitosan with a too high molecular weight (Mw) might form polyplexes too large for 

cell uptake. From literature it seems that chitosan molecules with 5-10 times the chain lengths 

of siRNA form suitable polyplexes [53, 69]. Katas et al. [88] could form 276 nm 

nanoparticles from siRNA and 160 kDa chitosan and Liu et al. [69] showed that a DD higher 

than 80% is necessary for higher siRNA binding capacity.  

In the current study a library of chitosans with DD between 80 – 94% and Mw between 73 – 

379 kDa was synthesized and characterized. The chitosan/siRNA nanoplexes formed were 

characterized according to size and zeta potential in order to choose the chitosan with the best 

DD and Mw values for an efficient siRNA based knockdown in the current study. The 

nanoplexes were formed at N/P ratios of 50/1 and 100/1. For both ratios the size of the 

nanoplexes was never higher than 250 nm. The zeta potential was always positive, but lower 

than the charge of the chitosans alone before nanoplex formation. This indicated the 
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successful interaction with the negatively charged siRNAs. The results pointed towards a 

balance between DD and MW which influences nanoparticle formation. The chitosans with 

Mw lower than 165 kDa and higher than 250 kDa as well as DD smaller than 90%, formed 

nanoplexes with a size of ~250 nm at both N/P ratios. Conversely, the chitosans with higher 

DD (90-94%) and MW in the range of 165 – 280 kDa formed smaller nanoplexes. Therefore, 

chitosan Heppe 95/50 was used further on as the structural characteristics (Mw (140-200 kDa 

and the DD (~95%)), as well as the more detailed biological testing for side effects due to 

contaminants in comparison to the Aldrich products were optimal for biological applications. 

Chitosan Heppe was microbiologically tested and had a protein content of 0.5%. The exact 

structural parameters (MW of 152 and DD of 92.6%) were determined via GPC and 
1
H NMR.  

 

4.2. Impact of the PEGylation on the chitosan siRNA delivery system 

The two drawbacks of chitosan nanoplexes are the need for slightly acidic conditions for 

solubilization and the lower transfection efficiency compared to other cationic polymers such 

as polyethylene imine (PEI) [165]. However, chitosan structure offers the possibility for broad 

and straightforward modifications to overcome these limitations. By conjugating chitosan 

with poly(ethylene glycol) (PEG), the solubility can be improved at pHs higher than 6.5 

[139]. The steric shielding provided by the PEG chains could reduce the inter-particle 

aggregation or prevent unspecific interactions with proteins or cells. PEG can also be used as 

linker or spacer to attach groups on the nanoplex surface for specific targeting of the 

chitosan:siRNA nanoplexes resulting in an increased transfection efficiency.  

Taking into consideration the previous investigations with PEG, which state that small chains 

(550Da) can interfere with the nanoplex formation and stability [150], it was decided to 

conjugate chitosan with slightly larger 5 kDa PEG. The longer PEG chains (5 kDa) stick on 

the surface of the nanoplexes and can induce stealth shielding [138, 150]. Furthermore, they 

can better facilitate the addition of a targeting moiety at the distal end of the PEG chains 

[238]. The PEG density was also taken into consideration because of its impact on the 

biological activity. According to Zheng et al. [138] a PEG density higher than 7% is 

necessary for a sufficient shielding against unspecific interactions with proteins or cells. Also 

the chitosan solubility increases with a higher PEG grafting. The drawback is that a too high 

PEG density on the nanoplex surface is also known to decrease the transfection efficiency due 

to the reduce cellular uptake [239]. Furthermore, a certain percentage of primary positively 
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charged amino groups necessity for nanoplex formation is lost due to PEGylation. Therefore, 

chitosan was conjugated with 1.5% PEG to 8% PEG (mol %) in this study. 

A clear increase in solubility could be noticed even from 1.5% PEG grafting in comparison to 

unmodified chitosan. However, chitosans with 4 and 8% PEG grafting showed lower turbidity 

at pH 7.0. This increase in solubility can be explained by the increase of hydrophilicity. 

Investigations of PEG in solution have shown that PEG typically binds 2-3 water molecules 

per ethylene oxide unit of the two polymers forming the nanoplex [141, 221].
 
 Furthermore, 

the PEG substitution on the primary amines of the deacetylated unit can deform the rigid 

crystalline structure of chitosan, disturbing the hydrogen bonding and leading to an 

enhancement in hydrophilicity [221, 240]. 

The nanoplexes were formed spontaneously at pH 5.5 in aqueous buffer, at an N/P ratio of 

25/1. The N/P was calculated taking into consideration the replacement of the primary amino 

groups with increasing PEG amounts. Therefore, the stability of the nanoplexes was not 

influenced by the increasing PEG density due to the constant ratio of positive and negative 

charges. The size of the nanoplexes at N/P 25/1 was smaller than 200 nm for all PEGylation 

ratios. Actually, a decrease in size was noticed for increasing amounts of PEG. The 

nanoplexes formed with chitosan_PEG 8% degree of substitution (DS) had a size of 140 nm, 

60 nm smaller compared to the nanoplexes formed with unmodified chitosan. The increase in 

PEG density led to a decrease in zeta potential of the nanoplexes. Chitosan_PEG 8% had a 

zeta potential of ~8 mV, 10 mV smaller in comparison to unmodified chitosan nanoplexes. As 

the ratio between protonable amino groups (N) and phosphate groups (P) was kept constant 

for all nanoplexes, the decrease in zeta potential may be due to the spatial shielding of the 

surface charges by the PEG chains [220, 241, 242]. The hydrophilic PEG chains may cause a 

thicker stationary layer on the nanoplexes and the replacement of the slipping plane further 

away from the nanoplex surface. Fewer ions in that stationary layer would then lead to a 

decrease in zeta potential. The mobility of the nanoplexes could also be decreased by changes 

of the local dynamic viscosity. Furthermore, the addition of the hydrogen bonds between PEG 

chains and water on the complex surface might also lead to a decrease in zeta potential [224].  

The nanoplex characteristics started to change in the biological environment. The proteins in 

the cell culture medium (CCM) are likely to interact with the nanoplex surface. In recent 

years several groups have been investigating the formation of a so called “protein corona” on 

the surface on different nanoparticles, defining two entities: the hard and the soft corona 
[92, 
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243, 244]
. The proteins with higher affinity for the nanoparticle surface form the hard corona, 

while the soft corona consists of a more loosely associated and rapidly exchanging layer of 

biomolecules [244]. Some investigations showed that even with PEG surface modifications 

some protein interactions may still occur. Due to the reduced amount of surface grafted PEG, 

higher degrees of conformational freedom and hydration could enable easier binding of 

proteins in the PEG layer. In a smaller percentage protein binding could be due to the 

interactions with the methoxy distal end of the PEG chains [148, 244-247]. Therefore, the 

formation of the protein corona depends on the nanoplexes size, charge, stability, and PEG 

density.  

The charge of the nanoplexes in CCM decreased significantly, especially in the case of 

unmodified chitosan and low PEG grafted chitosan nanoplexes. For chitosan siRNA 

nanoplexes the zeta potential droped to a slight negative value (-1.6 mV), while for 

chitosan_PEG 6% and 8% DS the difference between buffer and CCM was of only 6 and 4 

mV respectively. The investigations showed that the charge differences were not influenced 

by the increase in pH from 5.5 to 7.0. The measurements in PBS at pH 7.0 resulted in charge 

values similar to the ones in buffer at pH 5.5. Therefore, it can be assumed that proteins from 

CCM interacted with the nanoplex surface decreasing the overall surface charge. Furthermore, 

the increase in PEG density correlated to the higher positive charges for chitosan_PEG 6% 

and 8% nanoplexes. This might be due to the steric shealding of unspecific interactions of the 

nanoplex surface with some of the proteins in the CCM.  

The dynamic light scattering results for the size of the nanoplexes measured in CCM only 

offered an indication of the formation of a protein corona. As previously mentioned, when 

nanoplexes are incubated in CCM, the proteins with the highest concentration (e.g. albumin) 

will bind first to the nanoplex surface. The formation of a weak protein corona could explain 

the slower decay rates in the intensity correlation curve of the ZetaSizer noticed immediately 

after adding the nanoplexes in CCM (t=0). However, these proteins did not necessarily have 

the highest affinity for the chitosan siRNA complexes. With time the higher affinity proteins, 

which might have a lower concentration in the CCM, will compete with and likely replace the 

initially bound proteins. This could also be noticed in our results. After 2 and 4 h the 

formation of larger agglomerates was noticed as well as a faster decay of the autocorrelation 

curve in comparison to the initial state. Once the high affinity proteins reached the surface, 

they formed a hard corona, which was more stable over time and had a well-defined layer 

thickness resulting in a lowered polydispersity of the particles. In our case, at 6 h nearly the 
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same progression of the correlation curve could be detected and the larger aggregates were no 

longer present independent from the ratio of PEGylation (Figure 29). The investigations of the 

nanoplexes in CCM over time, as well as the zeta potential results reinforced the idea that 

even with the PEG chains attached to the surface some proteins are still able to bind to the 

nanoplexes. From the DLS measurements it is not clear whether the proteins bind inside the 

PEG layer between the PEG chains or at the distal end of the PEG chains. A higher shielding 

of the nanoplex might be possible with an increased PEGylation ratio. However, as previously 

mentioned, an increased shielding could lead to a decrease in cell transfection efficiency.  

Zheng et al. [248] used a dye-quenching assay to investigate the self-assembly of siRNA with 

PEI at different N/P ratios. In the current work the same assay was used with a different 

purpose. Tye
TM

563 labeled siRNA was used to investigate its complexation with the different 

PEGylated chitosan samples over time in CCM at a constant N/P ratio of 25/1. The results 

showed an immediate formation of siRNA chitosan nanoplex by a reduction of fluorescence 

intensity to about 25%. But after 1h and even more after 2 and more hours Tye
TM

563 

fluorescence increased up to 60 – 80% (Figure 30). This indicates a loosened entrapment of 

the siRNA after 1h. However, the fluorescent intensity was stable until the 6h of cell uptake 

and still smaller than 100% in comparison to free labeled siRNA in CCM. As a consequence 

chitosan was still able to protect the siRNA against degradation in CCM over the 6 h of 

preparation time up to cell uptake independent of the PEG density grafted to chitosan. As a 

consequence, transfection could be started after 3h of preparation time.  

Once inside the intracelullar environment the pH is becoming more and more acidic during 

endocytosis. In the extracellular environment the main concern was the stability and the 

protection of the siRNA in the CCM at a pH of ~7.0. Inside the cell the balance between 

stability until the release from the endo-lysosomal compartment is very important. However, 

the release of the siRNA from the nanoplexes once released into the cytosol has to also be 

taken into consideration for nanoplex optimization.  

Thibault et al. [104] traced the intracellular trafficking of chitosan/DNA systems via the 

dextran pulse-chase fluorescent dextran lysosomal staining which revealed the very fast 

transport (~4h) of the nanoplexes from the endosome to the lysosome in HEK293 cells and a 

colocalization in the lysosome for 8-12h until they were gradually released in the cytosol. The 

mechanism for endo-lysosomal escape discussed in literature relies on the osmotic pressure 

generated by the ‘proton sponge’ effect [102] or by a rise in lysosomal enzyme-induced 
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degradation products of the polycation [235] [108]. Chitosan can be degraded in the lysosome 

by lysozymes which can hydrolyze the β(1-4) linkages between N-acetylglucosamine and 

glucosamine [114, 249]. Therefore, it was important to analyse the nanoplexes charge 

difference between pH 7.0 and pH ~4.5 in CCM for different PEGylation ratios. At a pH of 

~4.5 all nanoplexes showed zeta potentials higher than 10 mV. Whereas, at pH 7.0 

PEGylation influenced the nanoplex charge significantly (Figure 31). The charge difference 

between the two pHs decreased with increasing PEG densities, revealing for chitosan_PEG 

6% and 8% charge differences of only 4 mV and 6mV respectively. Given the mechanism of 

endo-lysosomal escape, the positive zeta potential of the nanoplexes with higher PEGylation 

rate at pH 4.5 in CCM should reduce the proton sponge effect. Therefore, it might be that the 

two higher PEGylated chitosan nanoplexes will show lower endosomal release rates and 

maybe final knockdown efficiency compared to the other samples. Nevertheless, a detailed 

analysis of endosomal release rates could not be performed.  

The comparison of the physicochemical parameters of the modified chitosans and the 

nanoplexes formed thereof with the biological results offered a better understanding of our 

delivery system. Cytotoxicity assays of the chitosans before and after nanoplex formation all 

showed cell viabilities above 70%. In fact, the unmodified chitosan had slightly higher cell 

viability (~85%) in comparison to all PEGylated chitosans and it stayed the same also after 

the nanoplex formation. The only improvement in cell viability after the nanoplex formation 

was for chitosan_PEG 8% DS. Cell viability increased from ~75% to ~90% in comparison to 

the untreated cells set at 100% cell viability (Figure 24, Figure 25).  

The cellular uptake was tested with fluorescently labeled siRNA in H1299 cells which 

naturally exhibited no fluorescence. Both, fluorescent microscopy and flow cytometry 

measurements showed for all samples a cell uptake in the range of 50-60% (Figure 32, Figure 

33). Even when these results could not reach statistical significance they correlated very well 

with the protein corona hypothesis. Chi_PEG 6% and 8% resulted in smaller zeta potential 

decrease in the CCM indicating some shielding against unspecific interactions. However, as it 

is known from literature [146, 147] and was already mentioned in the introduction (1.6), the 

proteins from CCM are still able to bind to the nanoplexes. Actually, the protein corona might 

even facilitate the nanoplex cell uptake. Furthermore, the uptake results indicated a good 

nanoplex stability and siRNA protection for all nanoplexes in the extracellular environment 

during the entire cell uptake period of 6h.  
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During her PhD work Dr. Liane Schuster established a cellular assay system to test the 

functional delivery of siRNA using the stable EGFP-expressing cell line, H1299-GFP (Figure 

68). The nanoplexes were formed from the different PEGylated chitosans. Instead of 

fluorescently-labeled siRNA, siRNA against GFP was chosen for nanoplex formation. 

Therefore, the efficiency of the siRNA knockdown could be traced by the GFP 

downregulation which was easily analyzed via fluorescence microscopy and flow cytometry. 

The controls used for this test system were the nanoplexes formed with scrambled siRNA 

which are not able to downregulate GFP mRNA, keeping the fluorescent signal at the same 

level as for untreated cells and indicating unspecific RNAi side effects as well.   

 

 

Figure 68. siRNA based knockdown assay system based on the H1299-GFP cell line stably expressing GFP. GFP siRNA 

silencer loss of fluorescence shows efficient mRNA knockdown. The cellular assay detects the final end point of the different 

processes of siRNA based knockdown starting from cellular uptake of siRNA nanoplexes to endosomal release of siRNA in 

the cytosol, binding of siRNA to the Dicer complex and degradation of GFP mRNA [49].  

 

Both fluorescent microscopy and flow cytometry results revealed an identical knockdown of 

75% for nanoplexes built with unmodified chitosan, chitosan_PEG 1.5%, 3% and 4%. 

Chitosan_PEG 6% and 8% nanoplexes showed much lower knockdown of only 35% and 15% 

respectively. Therefore, assuming a similar cellular uptake for all PEGylation ratios of 

chitosan:siRNA nanoplexes, which was shown with fluorescent siRNA (Figure 32), the 

efficient knockdown of mRNA was only influenced by the intracellular behavior of the 

nanoplexes. Thibault et al. [104, 108] showed that an excess of chitosan can protect the 

siRNA in the lysosome from degradation. At the same time the degradation of some of the 

extra chitosan not bound to the nanoplexes could induce a faster destabilization of the 

nanoplexes leading to a faster siRNA release from the nanoplexes once in the cytosol. In the 

current study, one hypothesis could be, that the lower number of charges on chitosan_PEG 6 

and 8% might not be enough to promote a strong proton sponge effect to induce efficient 

endo-lysosomal siRNA release The other hypothesis could be, that the lower positive charge 
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number of the higher PEGylated nanoplexes might influence the stability of the nanoplexes in 

the lysosome and reduce the protection of the siRNA. These knockdown results contradict 

other studies, which hypothesize that a higher PEG density leads to a higher transfection 

efficiency [250]. Nevertheless, a comparison of results generated with different assays is 

difficult, as different processes involved in the whole RNAi process might show different 

dependencies on the PEGylation rate of chitosan. 

As outlook, further experiments should be carried out to understand the protein corona formed 

on the nanoplexes, once in CCM. Also the DLS information regarding the size determination 

in CCM needs to be improved and alternative methods such as single particle tracking [251] 

and flow cytometry-based size determination [77, 252] should be tested. Furthermore, as the 

zeta potential was only characterized according to different pHs and different cell 

environments, a time dependence could offer more information about the charge changes at 

the nanoplexes once inside the cell. Furthermore, detailed analyses of intracellular trafficking 

[104] and stability of the nanoplexes could give a better understanding of the whole RNAi 

process which could help to improve nanoplexes further. All these further detailed physical 

chemical characterization should be again correlated to more detailed biological studies, such 

as knockdown measurements at different time points.  

 

4.3. Targeting of the chitosan_PEG siRNA delivery system  

The lack of efficient methods to specifically deliver siRNA represents one of the major 

obstacles for the therapeutic applications of RNAinterference (RNAi). A selective targeting of 

specific cells could improve the specific cellular uptake, decrease the overall dosage of 

siRNA required for effective RNAi and minimize off-target silencing and side effects in other 

cells [174].  

In this study chitosan_PEG siRNA nanoplexes were synthesized and characterized with the 

aim to coat pharmaceutical implants and prevent the prolonged foreign body response. 

Therefore, FAP was chosen as a selective target for activated fibroblasts in tissues undergoing 

remodeling of their ECM due to chronic inflammation or fibrosis [253]. The scFv’LCH3 

developed by Messerschmidt et al. [176] to target FAP, was chosen as one specific ligand for 

our nanoplexes. The cysteine residue incorporated in the flexible peptide linker (LCH) of the 

scFv’LCH3 offered the possibility to selectively bind the targeting ligand molecule to the 
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surface of the delivery system. The thiol bearing cysteine is located opposite to the antigen-

binding site, as shown by structural analysis, and should therefore be highly accessible for 

site-directed coupling without interference with the FAP binding ability [177].  

In order to bind the scFv’LCH3 to the nanoplexes a heterobifunctional linker was synthesized. 

One end of the linker had to be selective to the cysteine residue of scFv’LCH3 and the other 

end had to be reactive towards one moiety of the chitosan_PEG siRNA nanoplex, not present 

on the targeted molecule or in the reaction environment. The bioconjugation of the 

scFv’LCH3 required also mild reaction conditions in aqueous solutions, at pH values close to 

neutral and temperatures lower than 55
o
C [254] in order to prevent protein denaturation or 

precipitation. For the bioconjugation with the scFv’LCH3, maleimide was chosen as an 

excellent thiol-selective reagent. Messerschmidt et al. [177] also successfully functionalized 

polystyrene particles with a maleimide sulfo-SMCC linker and immunoliposomes with 

maleimide_PEG_DSPE. Other groups also choose the activated NHS ester_PEG_Maleimide 

heterobifunctional linker for the reaction of the NHS ester with an amino-functionalized 

surface and the relatively stable, but highly reactive maleimide group for the coupling to 

biological targeting molecules [255]. However, due to the high reactivity NHS ester with 

amino groups [256] and its fast hydrolysis in aqueous buffers [257], it is imperative to react 

the NHS ester first with the primary amino groups of chitosan. Conjugation to the scFv’LCH3 

is performed afterword. Such an approach is not ideal. The coupling of the 

chitosan_PEG_maleimide to the single specific cysteine thiol groups of the protein ligand is 

much more difficult than the conjugation of the scFv’LCH3 to the low molecular weight 

NHS_PEG_maleimide prior to chitosan attachment. Furthermore, the identification and 

characterization of the scFv’LCH3 bound only to the NHS_PEG_maleimide, would be much 

easier in comparison to the analysis of a chitosan_PEG_maleimide_scFv’LCH3 polymer. 

Therefore, the first step was to modify the chitosan with an azide group enabling click 

chemistry based bioconjugation with several ligand proteins at the polymer. The azide moiety 

is stable, extremely small and biologically inert. Therefore it has no competing chemical 

reaction. 

 Furthermore, azide moieties are well characterized 1,3-dipoles for high region and 

stereoselective 1,3-dipolar cycloaddition reactions. Such reactions can be performed as so 

called “Click Chemistry” under mild aqueous conditions compatible with biological systems 

even in the presence of cells [258, 259] or inside cells [190, 260]. Even when the covalent 

attachment of the ligands was not performed in the presence of cells, copper ions could either 
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be bound to the chitosan moieties and could influence cell behavior in the bioassays in a 

negative manner. Therefore, copper free click reaction were developed for applications in 

biology [261, 262].  

As chitosan represents a biopolymer with metal complexing character, the use of copper 

represents a disadvantage in terms of residual copper, with cytotoxic properties (class 2 metal 

acc. to ICH guideline). The effect of copper binding to chitosan was investigated by Lallana 

et. al [226] and it was revealed that even after several work-up procedures trying to remove 

the residual copper, a content of 200-700 ppm could still be found attached to the chitosan 

polymer. As the ICH guideline limits oral exposure to 250 ppm and parenteral exposure to 25 

ppm the copper contamination is not acceptable for drugs or chemicals used in biology.  

Another disadvantage of Cu (I) catalysis is the degradation of chitosan via OH∙ radicals 

formed via a Cu (I) based oxygen radicals generation analog to the iron catalyzed Fenton 

reaction. H2O2 is generated by copper mediated formation of a superoxide anion radical [O2
∙
]

-
, 

which finally leads to hydrogen peroxide disproportionation [263]. The formed hydrogen 

peroxide serves as substrate for the Fenton analog reaction, initializing the radical mediated 

decomposition of chitosan. 

Cu (I) + H2O2 → Cu (II) + OH∙  + OH
-
 

Due to the tight complexation of copper ions to the amino functionalities of chitosan, the 

generation of the OH∙ radicals takes place next to the polymer backbone. The direct 

interaction of the OH∙ radical with the neighboring hydrogen atom at C1 of the glucosamine in 

chitosan results in an effective degradation of the polymer. The close proximity of generated 

radicals to the polymer backbone makes the use of radical scavengers ineffective as shown by 

by Riguera et. al [226]. The mechanism involves an exceedingly rapid abstraction of C-

bonded hydrogen atoms accompanied by the formation of new radicals, resulting in breaking 

glycosidic bonds as shown in Figure 69. 
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Figure 69. Cooper mediated degradation of chitosan. Cu (I) can be oxidized by molecular oxygen to Cu (II) resulting in a 

superoxide anion radical which shows disproportionation to oxygen (O2) and hydrogen peroxide (H2O2). H2O2 is oxidizing 

Cu (I) to Cu (II) I a Fenton analog reaction yielding OH- and hydroxyl radical which reacts to water with the neighboring 

hydrogen at C1 of the glucosamine moiety. This further leads to radical depolymerisation of the chitosan by breaking the β-

1,4-glycosidic bond. 

 

As we already optimized the chitosan_PEG siRNA nanoplexes and as the targeting ligand 

should be located on the surface of the nanoplexes, the azide group was incorporated at the 

distal end of the PEG chain, not of directly on the chitosan backbone [232]. The second step 

in the linker modification was to replace the chemically stable NHS ester with a stable 

cyclooctyne moiety [261]. We relied on the orthogonally of the click chemistry via strain-

promoted alkyne azide cyclooaddition (SPAAC). This coupling technique proceeds in high 

yields under mild physiological conditions [226]. The last modification of the linker system 

was the introduction of a tetra PEG spacer between the two reactive distal end groups to offer 

more flexibility to the linker [226] (Figure 70). The length of the PEG chain can be further 

modified for a better exposure to the biological environment.  
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Figure 70. Chitosan_PEG_N3 modification with scFv’LCH3 using heterobifunctional linker system developed for 

optimization of nanoplexes delivery to activated fibroblasts.The scFv’LCH3 protein ligand can be easily attached to linker 

(9) via specific Michael reaction with the free thiol group of the scFv’LCH3 protein. The modified protein can be coupled to 

azide groups at the distal end of PEG chains grafted to chitosan. This 1,3 dipolar cycloaddition is pecific as well and can be 

performed under physiological conditions. 

 

The site-direct coupling of the cyclooctyne_PEG_maleimide linker, compound 9, was tested 

first with a small peptide, HC-Doa-Doa-EQKLISEEDL-OH (~1.5kDa). The bioconjugation 

took place under physiological conditions and was characterized via analytical HPLC and 

MALDI-ToF MS. Given the successful binding of the peptide, the bioconjugation of the 

scFv’LCH3 to compound 9 was performed under the same conditions. However, after 

purification via centrifugal ultrafiltration the bioconjugated scFv’LCH3 precipitated. 

Aggregation or precipitation of the proteins [264, 265] e.g. monoclonal antibodies [266] is a 

common issue. One option to prevent such precipitation is to use additives preventing protein 

aggregation [267]. Tween20 (polysorbate 20) was used as a surfactant [268]. As the critical 

micelle concentration of Tween20 is 0.007%, we used 0.01% for the bioconjugation. The 

surfactant seemed to have formed micelles with the bioconjugate scFv’LCH3 and successfully 

prevented its precipitation during purification. The concentration of the scFv’LCH3 with 

0.01% Tween20 compared to a control sample without Tween20 was much higher with than 

without 0.01% Tween20 after ultrafiltration. The micelle formation around scFv’LCH3 

prevented its binding to the filter membrane successfully. The modified scFv’LCH3, 

compound 15, was successfully identified via SDS-PAGE and also analyzed by LC-MS. 

However, in the LC-MS analysis of the full length modified scFv’LCH3 only proteolytic 

cleavage products from the scFv’LCH3 production, could be detected. Together with these 

secondary products two additional products were identified with a mass difference of exactly 

466 Da, the mass of the cyclooctyne_PEG_maleimide linker. The proteolytic cleavage 

products (~17 kDa) with cysteine groups also reacted with the maleimide moiety of the linker 

system. Therefore, compound 9 proved its versatility to bind specifically to biological 

9 
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targeting ligands with Mw from 1.5 kDa to 28 kDa, with an available free thiol group. For 

further applications it was important to take into consideration the possibility of a 

polymerization of compound 9 via cyclooaddition of maleimide and cyclooctyne. For long 

term storage of the bifunctional linker 9 a protection of the maleimide functionality is 

recommended. For example furans can be used to protect the maleimide group via a Diels-

Alder and the corresponding retro Diels-Alder reaction [228]. Also, in order to completely 

avoid the polymerization of the linker system 9, the maleimide functionality was replaced 

with an iodo ester and iodoacetamide groups, which were stable in solution at 4
o
C. However, 

the binding to large biological molecules with free thiol groups was not tested so far.  

FAP is not a cell surface receptor, but it is a membrane associated gelatinase. It is still unclear 

how the scFv’LCH3_immunoliposomes in the investigations of Messerschmidt et al. [177] 

were internalized. Kelly et al. [269] indicated that FAP executes its biological function 

through a combination of the protease activity and the ability to form complexes with other 

membrane-bound signaling molecules. Therefore, an alternative to target FAP via the 

scFv’LCH3 antibody, could be the attachment of a FAP selective chemical inhibitor of the 

gelatinase activity. Prof. Van der Veken and his group have designed and synthesized such 

FAP selective chemical inhibitors [167, 178] and provided us with one of their high affinity 

inhibitors modified with an endcap azide. In order to bind this small chemical inhibitor to the 

nanoplexes, the linker system was further modified. The maleimide group was replaced by 

another cyclooctyne moiety and both ends were reacted with the azide groups. First the FAP 

chemical inhibitor was conjugated to one end of the cyclooctyne forming a stable triazole 

bond. The other cyclooctyne end can be bound to the chitosan_PEG_N3 before or after the 

nanoplex formation. 

 

Figure 71. Chitosan_PEG_N3 modified with a FAP selective chemical inhibitor using a homobifunctional linker system with 

cyclooctynes at both ends of the linker molecule. Stoeichiometric balance of octyne and azide groups enables attachement of 



 DISCUSSION 

 

 
 119 

the chemical FAP inhibitor to one end of the linker. This modified inhibitor was still active and could be attached to azide-

modified chitosan in a separate 1,3-dipolar cycloaddition reaction. 

 

The potency and selectivity of compound 18a was tested at the Univ.of Antwerp (Table 18). 

With an IC50 of 0.05 µM, compound 18a maintained a high binding activity and selectivity 

towards FAP and dipeptidylpeptidase (DPP) 8, DPP9, DPPII and showed a lower selectivity 

towards DPP IV and PREP (prolyl oligopeptidase).  

The bifunctional linker system 18a was designed and synthesized to bind to the 

chitosan_PEG_N3 before or after the nanoplex formation. Therefore, the reaction between the 

cyclooctyne and the chitosan_PEG_azide was tested As a proof of concept PEG-azide was 

reacted with the cyclooctyne and the azide groups in 1% DMSO/D2O over 72 h at room 

temperature. The successful triazole formation was analyzed via MALDI-ToF-MS which 

showed a mass shift of the polymer mass distribution of 300 Da corresponding to the linker 

mass. Therefore, the linker system can be attached to the chitosan_PEG_N3 before or after the 

nanoplex formation in an aqueous buffer within 72h. For the coupling directly to the 

nanoplexes a time control reaction at 4
0
C should be considered to investigate the potential 

degradation of the scFv’LCH3 and of the nanoplex.  

As an outlook, a dual-targeting strategy on the surface of the siRNA delivery system could be 

advantageous for specific siRNA delivery to specifically activate fibroblasts [194]. Based on 

the new linker systems, both the biological targeting ligand and the small chemical inhibitor 

molecule can be attached to siRNA chitosan nanoplexes to target FAP on the surface of active 

fibroblasts which could lead to better transfection efficiency.  

 

4.4. Local delivery via LBL coating and release  

Although the bulk properties of biomaterials should not be ignored, surface functionalization is 

of utmost important with respect to biomedical applications [270]. Therefore, polymers such 

as chitosan have great potential to coat implants in order to change the chemical and physical 

properties, as well as incorporating active substances at the surface material. One critical issue 

with pharmaceutical implantable devices the foreign body response (FRB) (Figure 1). 

Therefore, the bioactive surface of implantable devices could be coated with chitosan:siRNA 



 DISCUSSION 

 

 
 120 

nanoplexes targeting the mRNA knockdown of the hsp47 chaperon in order to trigger the 

healing process, but prevent it from evolving to the formation of the fibrous capsule (see 1.2). 

One possibility to immobilize the chitosan:siRNA nanoplexes on implant surfaces is to 

incorporate them into polyelectrolyte multilayers (PEMs) via LbL assembly. Previously in our 

group, biocompatible and biodegradable polymers HA and Chi were used for solid surface 

coatings due to theor low toxicity [271]. Furthermore, PEM chi:siRNA nanoplexes at N/P 

ratio 50 were successfully used for neuronal implant coatings [44] and coronary stent coatings 

[272]. In the current work chi:siRNA nanoplexes and PEG modified chi:siRNA nanoplexes 

were used at N/P ratio 25. Therefore, the N/P ratio 25 and the PEG influence on the multilayer 

assembly and release was tested. The examined continuous adsorption of five bilayers of 

HA/chi:siRNA nanoplex via QCM was successful and similar to literature [44] (Figure 66). 

However, PEG modified chi:siRNA nanoplexes PEM incorpotion revealed a decrease in 

bilayer adsoprtion with increasing nanoplex PEG grafting. The bilayer deposition decreased 

from 4 layers for nanoplexes formed with chi_PEG 3% DS to 3 layers for chi_PEG 4% DS 

and 2 layers for chi_PEG 8% DS Figure 66. As the LbL assembly is achieved via electrostatic 

interaction [201], the charge of the polyelectrolytes forming the coating is extremely 

important. The zeta potential of chi_PEG:siRNA nanoplexes was shown to decrease with 

increasing PEG grafting, chi_PEG 8% DS having the smallest zeta potential of 8 mV in 

comparison to 18 mV for unmodified chi:siRNA nanoplexes (Figure 26).  

The release of the nanplexes immobilized in non-fluorescent PEMs was followed by using 

Tye563 labeled siRNA. The decrease in chi_PEG:siRNA NP layer buil-up with increasing 

PEG densities on the nanoplex surface correlated to the release behaviour in the first 24h. The 

nanoplex release was slower for the coatings with HA/Chi_PEG 4% nanoplexes when 

compared to HA/Chi_PEG 8% nanoplexes and revealed a uniform release up to 96h (Figure 

67). 

For specific targeting of the activated fibroblasts chitosan was modified with PEG_azide with 

a DS of 1.7 %. Therefore, the DS is small enough to not affect the successful nanoplex layer 

build-up. This approach can be directly translated to nanoplexes using FAP small chemical 

inhibitor as a targeting moiety. However, for the biological molecule (e.g. scFv’LCH3) 

targeting molecule, the nanoplex formation should be tested in PBS at pH ~7.0.  
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5. Conclusions 

The goal of the work was to establish a chitosan siRNA delivery system which is able to 

target fibroblast cells and specifically inhibit the collagen synthesis in these cells via RNAi 

knockdown of hsp47.  

As there were no in house chitosan characterization methods and no chitosan synthesis 

experience available, first such standard procedures were established. From a variety of 

spectroscopic and conventional methods for the characterization of chitosan, we established 

and optimized the characterization of chitosan via infrared spectrometry, gel permeation 

chromatography, and 
1
H NMR. Then a library of chitosans with different molecular weights 

and degrees of deactylation was synthesized and characterized. It was shown that all of these 

chitosans could form nanoplexes with siRNA via electrostatic interactions. However, the size 

and charge of these nanoplexes needed to be taken into consideration for the transfection and 

knockdown efficiency. The correlation of structural chitosan characteristics with nanoplexes 

formation allowed to choose an optimal commercially available chitosan (Heppe) with a 

molecular weight of 152 kDa and a degree of deacetylation of 92.6%, and low protein content 

(0.5%).   

Chitosan solubility at higher pH values was improved by further grafting chitosan with PEG 

at different degrees of subsititution, between 1.5 and 8% (mol %). The properties of the 

nanoplexes with increasing PEG densities was tested in buffer and cell culture medium, at 

different pH values and over time. Several trends were noticed and correlated well with 

biological results. In buffer, PEG grafting led to the formation of smaller size nanoplexes. In 

cell culture medium, the zeta potential of the nanoplexes showed, that increased PEGylation 

can minimize unspecific interactions with the proteins present in cell culture medium. 

However, DLS experiments in cell culture medium indicated towards the formation of a 

protein corona even at higher PEG substitution. The biological characterization of the 

nanoplexes indicated that increased PEGylation actually had no effect on cell uptake 

efficiency. The successful uptake of all different nanoplexes with a similar efficiency could be 

due to the similar protein corona formed on the nanoplex surfaces. Further characterization of 

the PEGylated nanoplexes at lower pHs indicated a decrease in the charge difference between 

pH 7.0 (extracellular pH) and ~4.5 (endo-lysosomal pH). Chitosan_PEG 6 and 8% showed 

the lowest decrease in charge difference which also correlated to the knockdown efficiency 

found in the GFP cell model. Unmodified chitosan and chitosan PEGylated nanoplexes with a 
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low degree of substitution of 1.5 to 4% showed a knockdown of ~75%, while for 

chitosan_PEG 6 and 8%  the knockdown was only 35% and 15% respectively.  

PEG was used as a spacer, which offered the flexibility to add the targeting molecules on the 

surface of the nanoplexes before or after the nanoplex formation. The distal end of the PEG 

chain was modified with an azide and a cyclooctyne_linker was synthesized with maleimide 

functionality for binding the biological targeting molecule (compound 9). A single chain 

antibody scfv’LCH3 was chosen to target the FAP protein on the surface of active fibroblast 

cells. Furthermore, a novel linker system with a small FAP chemical inhibitor was synthesized 

as an alternative targeting molecule (compound 18). The highly selective FAP inhibitor was 

modified with an azide end group. Therefore the heterobifunctional linker was changed to a 

homobifunctional linker with two cyclooctyne groups. Both targeting molecules, the 

scFv’LCH3 antibody as well as the small inhibitor molecule, were successfully attached to the 

same linker system and yielded an activated targeting ligand with a conserved chemical 

functionality and selectivity for the FAP target.  

The binding between the linker and the chitosan_PEG_N3 was proven by the reaction between 

HOOC_PEG_N3 and the hydroxy cyclooctyne_linker and could be confirmed by MALDI-

ToF-MS analysis of the molecules.  

Therefore, the system for the specific siRNA delivery to activated fibroblast cells was fully 

established (Figure 72). Functional assay in activated fibroblast cells could not be performed 

so far.  
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Figure 72. Scheme of the established chitosan siRNA delivery system for targeted siRNA in activated fibroblast cells. 1) 

Nanoplex formation from chitosan siRNA for knockdown of hsp47 in collagen synthesis 2) Nanoplex PEGylation 3) The 

PEGylated nanoplex was modified with the targeting ligand, which reacts with terminal azide groups of the PEG nanoplexes 

via 1,3-dipolar cycloaddition with cyclooctyne 4) The modified nanoplexesrecognizes activated fibroblasts by specific 

binding of the targeting ligand to the FAP gelatinase at the cell surface. After internalization endo-lysosomal release and 

RNAi based knockdown of the hsp47 mRNA collagen synthesis would be reduced;  

 

The chemical uniformity of siRNAs as a molecular class with similar physicochemical 

properties means that the know-how from the development of one siRNA drug candidate can 

be applied to nearly every other oligonucleotide delivery. Furthermore, the linker system 

synthesized proved its versatility by binding biological targets with various masses and 

chemical inhibitors as novel targeting molecules. 

Furthermore, the proof-of concept with Chi_PEG:siRNA nanoplex coatings of solid surfaces 

can further be used for incorporation of nanoplexes with the targeting moieties and 

developing implant coatings with bioactive properties.  
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6. Materials and methods 

6.1. Materials  

Table 9. Table of chemicals and reagents 

Chemicals/Reagents  Company 

30 % Acryl amide Carl Roth, Karlsruhe 

30 vol.% H2-O2:70 vol.% H2SO4 1:1,  Carl Roth, Karlsruhe 

Agarose Carl Roth, Karlsruhe 

Ammoniumperoxidisulfate (APS) Merck, Darmstadt 

Ampiciline Carl Roth, Karlsruhe 

Bovine Serum Albumin (BSA) PAA, Cölbe 

Bromoform Sigma-Aldrich, Taufkirchen 

Chitosan 95/50 Heppe Medical Chitosan ,Halle (Saale) 

Coomassie Brilliant Blue R-250 Sigma-Aldrich, Taufkirchen 

Cycloheptene TCI, Eschborn 

DAPI (4’,6’-Diamidino-2-phenylindol) Sigma-Aldrich, Taufkirchen 

Dimethylsulfoxide (DMSO) Sigma-Aldrich, Taufkirchen 

di-Sodiumhydrogenphosphate Carl Roth, Karlsruhe 

Dithiothreitol (DTT) Carl Roth, Karlsruhe 

Dulbecos Modified Eagle Medium (DMEM) PAA, Cölbe 

Fetal Calf Serum (FCS) PAA, Cölbe 

Geneticinsulfate (G-418) Carl Roth, Karlsruhe 
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Gentamycine PAA, Cölbe 

Glucose Carl Roth, Karlsruhe 

H2N-PEG-N3, PEG Mw 5000 Da Rapp Polymere, Marktredwitz 

Hyaluronic acid, 360 kDa Lifecore Biomedical, Chaska, USA 

Inhibitorcocktail His-tag Carl Roth, Karlsruhe 

Isopropyl-D-thiogalactopyranosid (IPTG) Carl Roth, Karlsruhe 

L-Glutamine PAA, Cölbe 

N-(2-Aminoethyl)maleimid Trifluoracetic 

acid (TFA) 
Sigma-Aldrich, Taufkirchen 

N-(2-Aminoethyl)maleimide TFA Sigma-Aldrich, Taufkirchen 

N,N’-Disuccinimidyl carbonate Sigma-Aldrich, Taufkirchen 

Normal Goat Serum (NGS) Jackson ImmunoResarch, Baltimore, USA 

Paraformaldehyde (PFA) Carl Roth, Karlsruhe 

Penicilin/Streptomycin PAA, Cölbe 

Phenylmethylsulfonyfluoride (PMSF) Sigma-Aldrich, Taufkirchen 

Phosphat-gepufferte Saline (PBS) PAA, Cölbe 

Poly-Aspartic Acid (PAA) Santa Cruz, Heidelberg 

Polyethylene glycol (Mw = 21 kDa)  Malvern Instruments, Herrenberg 

Polystyrolsulfonat Natriumsalz Sigma-Aldrich, Taufkirchen 

Resazurin Sigma-Aldrich, Taufkirchen 

Ultrapure 18.2 MΩ water Satorius, Goettingen,  

 

All other chemicals and reagents were purchased from Sigma Aldrich, Carl Roth, ACROS 

and Merck. 
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Table 10. Table of consumables  

Consumables Company 

Millipore column Merck, Darmstadt  

Microtiter plates  Greiner, Frickenhausen  

Ni-NTA Agaraose Beads  Qiagen, Hilden  

Sterile filter (0,2 μm, 0,45μm)  Satorius, Göttinge  

Fluotrac 96-well plates  Greiner Bio-One GmbH, Frickenhausen, 

ViscoGel A6000M (mixed Bed) column  Malvern Instruments GmbH,Herrenberg 

Folded capillary cells  Malvern Instruments, Herrenberg 

Chromolith Performence RP-18e,  Phenomenex, Aschaffenburg 

GromSil 120 ODS-4 HE, 7µm 125x30mm Chromspec, Brockville, Canda 

GromSil 120 ODS-4 HE, 7µm 150x50mm Chromspec, Brockville, Canda 

GromSil 120 ODS-4 HE, 7µm 30x30mm Chromspec, Brockville, Canda 

D-Tube Dializer, Midi,, MWCO 3,5 kDa VWR, Darmstadt 
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Table 11. Table of instruments  

Instrumentts Company 

Microscope Axiovert 200M  Carl Zeiss AG, Oberkochen 

Äktar UPC900 GE Healthcare, Freiburg 

Cell counter Casy Schärfe System, Reutlingen 

Centrifuge 5415C Eppendorf AG, Hamburg 

Centrifuge Rotofix 32 A Hettich Zentrifugen, Tuttlingen 

Flow cytometer Beckmann Coulter Cytomics FC 500 Beckmann Coulter Krefeld 

FTIR Thermoscientific, Munchen 

GPC Viscotek Triple Detector Array max system Malvern Instruments, Herrenberg 

HPLC Dionex Ultimate 3000 Thermoscientific, Munchen 

HPLC Varian Prep Star Thermoscientific, Munchen 

Maxis U3000 UHR-ToF Thermoscientific, Munchen 

Nanodrop 2000C Spectrophotometer Thermoscientific, Munchen 

PHERAstar BMG Labtech, Offenburg 

Q-Sense AB,  Göteborg, Sweden 

Typhoon Trio GE Healthcare, Freiburg 

Ultraflex III MALDI-TOF Bruker, Daltonik, Bremen 

UV/VIS spectrometer  Jesko, Munchen  

Zetasizer Nano ZS particle analyzer Malvern Instruments, Herrenberg 

 

Table 12. Different antibodies 
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Antigen Specie Use and dilution Reference source 

FAP Mouse 

IF 1:300 

IC 1:100 

Santa Cruz 

His-tag Mouse 

WB: 1:5000 

IC: 1:100 

Santa Cruz 

(WB = Western blot, IF = immunofluorescence microscopy) 

 

Table 13. Secondary antibody 

Name/Specie Use and dilution Reference source 

Goat-anti-Mouse Cy3 

IF 1:300 

FC 1:100 Jackson Immuno Research 

(IF = immunofluorescence microscopy, FC= flow cytometry) 

6.1.1. Table 14. Different siRNA’s  

siRNA Stock concentration Reference source 

GFP 50 μM Applied Biosystems 

Negative control 50 μM Applied Biosystems 

Negative control Alexa 488 20 μM Qiagen 

TYE 563 DsiRNA 

Transfection Control 
5 mM 

Integrated DNA 

Technologies 
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6.1.2. E.coli bacteria 

Genotype: supE thi-1 Δ (lac-pro AB) Δ (mcrB-hsdSM) 5 (RK MK) [F 'traD36 proAB 

lacIqZΔM15] [Stratagene, La Jolla, USA] 

This bacterial strain was transformed with the plasmid pAB1, which carries the genetic 

information for the scFv antibody fragment, and was made available by the working group 

Kontermann (Biomedical Engineering), University of Stuttgart.  

6.1.3. Medium for bacterial culture 

1x LB medium    1% peptone, 0.5% yeast extract, 0.5% NaCl in H2O 

2x TY medium    1.6% peptone, 1% yeast extract, 0.5% NaCl in H2O 

The bacterial cultures were incubated under shaking at 37 ° C. 100 ug / ml ampicillin were 

added to each medium.  

Table 15. Used cell lines 

Cell line Type Medium Additives Purchase 

H1299 
Human 

Lungcarcinoma 
RPMI 

10% FCS, 1%L-

Glutamin, 1% 

Penicilin/Streptomycin 

 

LGC Standards 

H1299 – 

GFP 

Human 

Lungcarcinoma 

transfected with 

EGFP 

RPMI 

10% FCS, 1%L-Glutamin, 

1% Penicilin/Streptomycin, 

G418 

 

Dr. Anne 

Chauchereau, 

Villejuif, 

Frankreich 

 

HSF 
Human Skin 

Fibroblast 
DMEM 

10% FCS, 1%L-Glutamin, 

0,5% Gentamycin 

 

Prof. Dr. 

Rodemann, 

Hautklinik 

Tübingen 

HT1080 
Human 

Fibrosarcoma 
DMEM 

10% FCS, 1%L-Glutamin, 

0,5% Gentamycin 

Wolfgang J. 

Rettig, 

Boehringer 
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Ingelheim 

Pharma KG 

HT1080 

FAP 

HT1080wt 

transfected with 

with human 

pFAP .38(Klone 

#33) 

DMEM 
10% FCS, 1%L-Glutamin, 

0,5% Gentamycin, G418 

Wolfgang J. 

Rettig, 

Boehringer 

Ingelheim 

Pharma KG 

 

6.1.4. Buffers and solutions 

1xRunning Buffer SDS-PAGE    50 mL 20x NuPAGE MES 

        in 1 L H2O 

 

1% BSA/PBS        10 g BSA    

        in 1 L PBS 

5x Bradford reagent       100 mg Coomassie Brilliant Blue  

47 ml Methanol (100%) 

100 ml Phosphoric Acid (85%) 

in 200 ml H2Odd 

 

5 μg/ml DAPI       1,5 ml DAPI  

in 148,5 ml PBS 

 

4% PFA/PBS        40 g PFA  

in 1 L PBS  

pH 7.4 

300 mM Sodium Acetate Buffer    2,72 g Acetic Acid  

20,89 g Sodiumacetate  

in 1L H2Odd 

pH 5,5, steril filter (0,2μm)  
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5x Sodium Phosphate Buffer     37.38 g Na2HPO4 • 2H2O  

6.24 g NaH2PO4 • 2H2O  

1.25 M NaCl, pH 7.5  

in 1 L H2O  

 

 

Periplasma-Lysis Buffer     30 mM Tris-HCl pH 8.0  

1 mM EDTA  

20 % Sucrose  

in H2O 
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6.2. Biological and biochemical methods  

6.2.1. Chi, Chi_PEG and NP cell viability  

The cytotoxicity of chitosan, modified chitosan, and linker system was evaluated via the 

resazurin assay (data provided by L. Schuster NMI, page 73) [49]. H1299-GFP cell were 

used. Once the cells reached ~70% confluence, the samples were added. The medium was 

changed after 6 h and the cells were cultured for another 48 h before addition of resazurin. 

Depending on the cell type, the cells were left for 4 h to 6 h in the incubator until clear color 

change from blue to pink was evident. This was followed by photometric measurement. 

Untreated cells were considered as 100% viable and the viability of the remaining samples 

was normalized to the signal from the untreated cells measured as absorbance at 570 nm. 

DMSO-treated cells were used as a death control. For the analysis, the blank value was 

subtracted from all values and all other values normalized to the untreated cell control. These 

samples were incubated in H1299-GFP cell in triplicates at a concentration of 0.18 mg/mL, 

left as in a transfection experiment for 6 h before changing the medium. The cytotoxicity 

measurements were performed after 48 h.  

The resazurin assay was performed in an analogue manner to the the chitosan and Chi_PEG 

samples in H1299 with a 200 nM siRNA final concentration in each well of 200 nM. 

 

6.2.2. Cell culture for immunocytochemistry 

The cultivation of human fibrosarcoma cell lines HT1080 FAP (HT1080#33) as well as 

HT1080 wild-type cells were performed by Dr. Liane Schuster and Dr. Dominic Stadel in 

uncoated tissue culture flasks. The medium was changed every two or three days or if 

necessary the cells were passaged. The cells were seeded with 2.5x10
4
 cells/cm

2
 (HT1080 

wild-type) or 5x10
4
 cells/cm

2
 (HT1080 FAP) in 48-well plate, in 250 µl of medium, at 37°C 

and 5 % CO2.  

6.2.3. Immunocytochemistry  

For fluorescence microscopy the cells were cultured and stained directly in 48-well plates. 

First, the cells were washed once with PBS and subsequently fixed with 4 % 

paraformaldehyde in PBS, for 30 min at RT. They were then washed 3 times with PBS to 

remove the residues of fixing agent. To prevent non-specific antibody binding the cells were 
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blocked with 5 % NGS and 1 % BSA in PBS, at RT for 45 minutes. Then, the primary 

antibodies (10 µg/ml) were diluted (1:100) with 1 % BSA in PBS and stained for 1 h at RT or 

overnight at 4 °C. After three washes with PBS, the secondary antibody (goat-anti-mouse 

Cy3) was diluted (1:300) with 1 % BSA in PBS and added on the cells for 45 minutes. The 

cells were washed again three times with PBS before the staining of the nuclei with DAPI (5 

µg/ml) for 10 minutes. As the coloring was directly into well plates, two PBS washing steps 

were necessary before measuring the sample via fluorescent microscopy.  

6.2.4. Expression and purification of scFv’36LCH3  

6.2.4.1. Periplasmic protein expression in Escherichia coli 

FAP-specific antibody fragment, scFv’36 LCH3, was expressed using the Escherichia coli 

TG1 bacterial strain. The scFv’36 LCH3 construct was amplified at the University of Stuttgart 

from pAB1 scFv36 with the primers stop-EcoRI-For and LCH3-XhoI-Back. The PCR 

products were digested with Xhol and EcoRI and cloned into pAB1 scFv36 digested with the 

same enzymes [177].  For protein expression, a preculture of the TG1 bacteria were first 

inoculated from the glycerol stock in LB medium with ampicillin (100 µg/mL) and 1 % 

glucose and then incubated under gentle shaking (140 rpm) overnight at 37
o
C.  

For 2 x 2 L scale production, 40 mL of the overnight culture were added to 4 L of 2 x TY 

medium with 0.1 % glucose and ampicillin (100 µg/mL) in 5 L baffled flasks. The bacteria 

culture was then cultivated on a rotary shaker (140 rpm) at 37
o
C until an optical density 

(OD600) of about 0.6 – 0.8 was reached.  Induction of scFv’LCH3 was started by addition of 

IPTG (end concentration 1 mM). Expression of the antibody fragment was carried out 

overnight at 20
o
C (120 rpm) to keep the scFv’36LCH3 soluble and prevent the accumulation 

of the overexpressed protein in inclusion bodies.  

The next day, bacteria were harvested at 4
o
C via centrifugation (5 min at 6000 g). The cell 

pellet was either processed immediately or stored for a longer period in at -80
o
C.   

The pellet was resuspended in 40 mL periplasmatic lysis buffer. Fresh lysozyme (10 g/L), 

protease inhibitor cocktail (100x), PMSF and DNAse (25 mg/mL) were added to the 

resuspended cell pellet and left to incubate while rolling the tube for 1 h at 4
o
C. Subsequently, 

cells were completely disrupted by ultrasonication pulses, (5 times pulsing for 30 seconds 

followed by 1 minute incubation on ice) to prevent heat denaturation of the protein. Protein 

extract was isolated as supernatant after ultracentrifugation (12000 rpm, 4
o
C, for 20 min) in 
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falcon tubes (50 mL) and immediately purified either by metal ion affinity chromatography 

(IMAC) or fast protein liquid chromatography (FPLC).  

 

6.2.4.2. Purification by IMAC 

Table 16. Purification buffers for IMAC and FPLC 

Buffer Na-Phosphate Buffer pH 7.5 NaCl Imidazole 

Washing buffer/ 

Binding buffer  
50 mM 250 mM 35 mM 

Elution buffer 50 mM 250 mM 250 mM 

 

Ni-NTA agarose beads (500 µL for 10 mL lysate) were added to the protein extract 

supernatant and left to incubate while rolling the tube for 3 h at 4
o
C. Then the agarose beads 

were transferred to separating columns (1 mL) and washed with washing buffer (10 mL) for a 

minimum of 4 times. The presence of unbound proteins in the flow through fraction was 

checked using Bradford reagent (90 µL Bradford reagent per 10 µL of eluate incubated in 96 

well plate). The scFv’36 LCH3 was collected by the addition of 500 µL elution buffer. This 

step was repeated 4 to 5 times until there were no or only small amounts of proteins in the 

eluate (tested with Bradford reagent). The fractions with the highest protein concentration 

were pooled and dialysed overnight against PBS at 4
o
C and concentrated using (500 µL).  

 

6.2.4.3. Purification by FPLC  

The collected supernatant of the bacteria lysate after ultracentrifugation, containing the 

histidine tagged scFv’36 LCH3, was purified on an ÄKTA system in two steps. First the His-

tagged protein was captured on a 1 mL HisTrap FF (GE) column. Then the eluted protein 

fraction was further purified, using gel filtration chromatography, on a Superdex_75_10/300 

GL column.    

To avoid column clogging, the protein extracts had to be fully dissolved and were filtered 

through a 0.45 µm filter to remove cell debris or other particulate material which might be 

present in the protein extract supernatant.  

As a general rule first you have to equilibrate the column with 3-5 bed volumes equilibration 

buffer so as to provide optimum binding conditions (in cases where protein will bind to 
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column matrix first and will be eluted later). Then you can load your protein. After that you 

can elute the protein with elution buffer which is again dependent on the column (e.g. 

increasing concentration of salt (NaCl) or change of pH in case of ion exchange, increasing 

concentration of ethylene glycol in case of hydrophobic interaction chromatography). 

Needless to mention every buffer has to used 3-5 bed volumes. Before elution you may 

include one wash step where unbound or loosely bound proteins may elute.  

Purification #1 (HisTrap FF) 

Flash system with 3 to 5 column volumes of binding buffer for 2 minutes at a flow rate of 

10mL/min. Then equilibrate the column with 5 column volumes with a flow rate of 1mL/min. 

Inject sample in sample loop using a 2 mL syringe and leave flow to 0.5ml/min until the 

binding buffer reaches port valve 2. Then put the flow at 10mL/min to put the HisTrap FF on 

to the UV chamber and connect it to valve 1.  

Method: HisPurification 10mL Gradient 25mL>row by row. 

Wash with binding buffer until the absorbance reaches the baseline. Then start eluting with 

the elution buffer using a linear gradient. The flow rate is fixed at 0.5mL/min for 4 column 

volumes.  

After elution regenerate the column by washing it with 5 column volumes of binding buffer.  

Run SDS-PAGE of the collected fraction that contain the scFv’LCH3.  

Purification #2 (SEC) 

Flash the system with PBS with a flow of 10mL/min for 30mL buffer.  

Flow for the column 0.5mL/min and equilibrate the column with 1 column volume 

(approximately 23.5mL).  

Inject 4 mL of PBS in the sample loop before adding the HisTrap purified fractions. Then 

inject the sample, with a syringe (minimum 2.2mL volume with no bubbles), into the sample 

loop without completely empting the syringe.  

The elution will runs with a flow of 0.5mL/min for 1.5 column volumes.  

Run SDS-PAGE and then Western-Blot before concentrating the samples for further use.  
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6.2.5. Antibody fragment characterization 

6.2.5.1. Determination of the protein concentration 

a. The concentration of scFv-LCH3 was determined using the following formula from 

the UV absorption at  280 nm: 

𝑐 [
𝑚𝑔

𝑚𝐿
] = 𝑀 [

𝑚𝑜𝑙

𝐿
] ∗ 𝑀𝑊 [

𝑔

𝑚𝑜𝑙
] =  ( 

𝑂𝐷280

ε
) ∗ 𝑀𝑊 

where ε was calculated based on the amino acid sequence results [177] in: 

ε = (number Trp ∗ 5540) + (𝑛𝑢𝑚𝑏𝑒𝑟 𝑇𝑦𝑟 ∗ 1480) + (𝑛𝐶𝑦𝑠 ∗ 125)  

(M = molarity, MW = molecular weight [g/mol = Da], ε = molar extinction coefficient) 

b. The concentration of scFv-LCH3 was determined by nanodrop using the extension 

coefficient (see a). 

6.2.5.2. SDS-PAGE identification 

Under non-reducing conditions 2.5 µL of sample were added to 2.5 µL of NuPAGE LDS 

sample buffer (4X) and 5 µL of water. For reducing conditions 1 µL NuPAGE reducing agent 

(10X) and 4 µL of water were additionally added. The mixtures were heated for 10 min at 95 

° C, which further causes reduction and denaturation of the proteins. The whole sample was 

transferred to a gel pocket. In addition, a protein standard sample was applied as a MW 

reference on each gel.  

Electrophoresis was carried out in 4-12% Bis-Tris SDS-PAGE gel for 35 min at 200 V using 

MES running buffer. 

The gels were then either stained by Coomassie or used for Western blot.  

6.2.5.3. Coomassie brilliant blue gel staining  

SDS polyacrylamide gels were stained using Coomassie Brilliant Blue G-250. Gels were 

incubated for 30 to 60 min at RT in Coomassie staining solution (0.25 % Coomassie Blue 

R250 in Coomassie destain solution). Subsequently, the excess stain was removed by multiple 

washes with Coomassie destaining solutions I and II. First, for about 30 minutes the gels were 

incubated under gentle shaking at RT in destaining solution I (500 mL Ethanol, 200 mL acetic 

acid in 1 L double distilled H2O) and afterwards in destaining solution II (100 mL Ethanol, 50 
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mL acetic acid in 1 L double distilled H2O) until low signal background and a good intensity 

of the protein bands was reached.  

6.3. Physico-chemical methods 

6.3.1. Nanoplex formation and characterization 

6.3.1.1. Nanoplex formation 

Chitosan and PEG-chitosans were dissolved overnight in an acidic aqueous solution (MQ 

water 5 ml and 25 μl CH3COOH). The next day the pH was adjusted to 5.5 with 

CH3COONa*3H2O; a final chitosan concentration of 1 mg/mL was obtained via the addition 

of H2O. Prior to mixing, chitosan solution was sterile-filtered through a 0.45µm syringe filter. 

siRNA was added to the chitosan solutions under intense stirring at 1.200 rpm for 1 h to allow 

nanoplex formation, with a resulting 800 nM siRNA concentration. The nanoplexes were then 

left to stabilize for 15 minutes prior to characterization and further use. The nanoplexes were 

formed at a N:P ratio of 25:1 (defined as the molar ratio of chitosan amino groups:RNA 

phosphate groups) for all experiments.  

6.3.1.2. Polyplex characterization Zeta Sizer 

Nanoplex size and zeta potential were determined using a Zetasizer Nano ZS particle analyzer 

(Malvern Instruments, Herrenberg, Germany) at 22°C, 173
o
 scattering angle by cumulative 

analysis. Size measurements were analyzed in CONTIN mode, in triplicates and reproduced 

minimum three times (N = 3 experiments and n = 9 total measurements). The absence of 

aggregates was assessed on basis of the correlation coefficient curve. Zeta potential analysis 

based on the electrophoretic mobility of the nanoplexes in aqueous buffer were performed 

using folded capillary cells (Malvern Instruments, Herrenberg, Germany) in automatic mode 

and calculated using the Smoluchowski equation. Zeta potential measurements were done in 

doublets and reproduced minimum three times (N = 3 experiments and n = 6 total 

measurements). 

6.3.2. Stability measurement of chitosan/siRNA nanoplexes 

Nanoplexes stability and siRNA integrity were investigated using a gel retardation assay. For 

this purpose, nanoplexes were either incubated with RNase free water or with polyaspartic 

acid (PAA) at 37°C for 30 min. PAA (5 mg/ml, Sigma, Taufkirchen, Germany) was used as a 

destabilizing control as it competes and displaces anionic siRNA from polycationic chitosan. 
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The stability of chitosan/siRNA nanoplexes was determined by 4% agarose (Promega, low 

melting point, Mannheim, Germany) gel electrophoresis containing ethidium bromide. 

Electrophoresis was carried out at a constant voltage of 55 V for 1.5 h in TAE buffer (2 M 

Tris, 250 mM sodium acetate, 50 mM EDTA, pH 7.8). The siRNA bands were visualized in a 

UV transilluminator. 

 

6.3.3. Fluorescence Quenching Assay 

The assay was completed in accordance with a previous study published by Merkel et al. 

[225]. In essence, Tye563-labeled DsiRNA (20 µM) (IDT Leuven, Belgium) was complexed 

with chitosan and PEG-chi with the differing degrees of substitution analogue to the siRNA 

nanoplexes previously described. All nanoplexes were first formed in 0.3 M CH3COONa 

buffer at pH 5.5, as described above, and only after PBS or cell culture medium (RPMI with 

10% fetal calf serum and 1% L-Glutamate) were added in a ratio of 1:3 (volume ratio) with a 

final siRNA concentration of 200 nM. The nanoplexes were pipetted into opaque Fluotrac 96-

well plates (Greiner Bio-One GmbH, Frickenhausen, Germany). Remaining fluorescence of 

the polyplex solution was quantified using a fluorescence plate reader (FLUOstar Optima, 

BMG Labtech, Ortenberg, Germany) at 545 nm excitation and 580 nm emission wavelengths. 

The experiments were performed in multiple series of three, and the results are given as mean 

relative fluorescence intensity values ±SD. For normalization purposes, free siRNA in buffer 

or cell culture medium represents 100% fluorescence, while PBS or cell culture medium were 

subtracted as blanks.  

6.3.4. Build-up of (HA/Chi)2(HA/NP)n PEM 

The PEM films were deposited onto QCM quartz crystals. Before, starting the build-up, the 

quartz crystals were cleaned by ultrasonication in acetone, followed by isopropanol (2 min, 

each) and plasma cleaned for 10 min. PEMs were prepared manually using the LbL technique 

[200]. First, an activating monolayer of PEI (10−2 monomer mol/l, pH ~7) was deposited 

onto the glass slides for 10 min and extensively rinsed with ultrapure 18.2 MΩ water 

(Satorius,arium 611VF, Goettingen, Germany) (3 × 2 min). Next, a precursor layer of two 

bilayers of (HA/Chi)2 was deposited, in 5 mM sodium acetaste buffer at pH 5.5, by alternate 

deposition on the quartz crystals in the flow chamber HA (1mg/mL, 10 min deposition) and 

chi (1mg/mL, 10 min deposition) solutions with an intermediate washing step (2x3 min) in 
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buffer (5 mM sodium acetaste buffer at pH 5.5). Subsequently, layers of (HA/NP)n were 

adsorbed on the (HA/Chi)2 precursor layers in 0.3 M sodium acetaste buffer at pH 5.5. Each 

deposition step for the NPs was carried out for 20 min. The deposition steps were repeated 

until the desired number of bilayers were formed. In the case of Chi_PEG:siRNA NP, the 

PEM build-up stop when no more NP deposition was noticed in the QCM.  

6.3.5. Release of chi_PEG:siRNA
Tye563

 over time 

Two 96 well-plates coated with (HA/Ch)2 (HA/Chi_PEG:siRNA
Tye563 

NPs)5 and (HA/Ch)2 

(HA/Chi_PEG:siRNA
 
NPs)5 (as control) films were incubated in 300

 
μL

 
 phosphate buffered 

saline (PBS), pH 7.4 at 37 °C for 96h with gentle agitation. Every day,
 
the supernatant was 

replaced with 300
 
μL of fresh PBS solution. The

 
fluorescence intensity of the collected 

supernatants was measured (Phera Star, BMG Labtech, Offenburg, Germany).  

6.4. Analytical chemistry methods 

6.4.1. NMR – Spectroscopy 

Bruker Advance 200 (Proton resonance frequency: 200MHz) 

Bruker Advance 400 (Proton resonance frequency: 400MHz) 

The chitosan and chitosan modified samples were diluted in CD3COOD/D2O and were 

measured at 400MHz.  

The degree of acetylation (DA), the fraction or percentage of acetylated glucosamine units 

(GlcNAc), was determined using the Equation (1) and the degree of deactylation (DD), the 

fraction or percentage of acetylated glucosamine units (GlcN) was determined using the 

Equation (2): 

𝐷𝐴 =
(

1

3
×𝐼CH3)

(
1

6
×𝐼(H2-H6))

× 100     (1) 

𝐷𝐷 = 100 − 𝐷𝐴      (2) 

ICH3 is the intensity of CH3 signal in 
1
H NMR 

I(H2-H6) is the summation intensities of H2%, H3%, H4%, H5%, and H6% of the sugar protons in 

1
H NMR 
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The height of the area of the signal is proportional to the number of protons. 

The DS of PEG-chi was determined using the integration of the OCH3 singlet (IOCH3) together 

with the degree of acetylation (DA) as shown in Equation (3):  

DSPEG − chi (%)  =  IOCH3 ×  DAchitosan (%)      (3) 

IOCH3 – integration of the acetyl protons in the N-acetyl-glucosamine monomer  

 

6.4.2. Gel permeation chromatography (GPC) 

The molecular weight (Mw) was determined by gel permeation chromatography (GPC), on a 

Viscotek Triple Detector Array max system using a ViscoGel A6000M (mixed Bed) column 

(Malvern Instruments GmbH, Herrenberg, Germany). The set up consisted of a size exclusion 

chromatograph connected to a light scattering cell, a refractive index detector, and a 

viscometer that allowed for simultaneous determination of the absolute polymer molecular 

weight, hydrodynamic radius and intrinsic viscosity. The analyses were performed at 35°C 

with 0.3 M sodium acetate pH 4.5 (adjusted with acetic acid) 1% ethylene glycol as running 

buffer, using a flow rate of 0.5 mL/min and a dn/dc of 0.165 mL/g. The concentration of the 

polymer samples was 1 mg/mL in the same buffer and the injection volume was 100 μL. 

Polyethylene glycol (Mw = 21 kDa) (Malvern Instruments GmbH, Herrenberg, Germany) 

was used to calibrate the detectors. For the evaluation of the physical data OmniSEC software 

(Viscothek) was used. Every polymer was measured in a triplicate. 

The DS of the PEGylated conjugates was also determined using the GPC results as shown in 

Eq (4):  

DS =  
MnPEG−chi – Mnchitosan 

5000
/DPchitosan      (4) 

Mn = Number Average Molecular Weight 

DP = degree of polymerization; 𝐷𝑃 =  
𝑀𝑤

𝑀𝑛
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6.4.3. Fourier transform infrared (FT-IR)  

 FTIR spectra were recorded with potassium bromide (KBr) pressed disks on a Bruker Vector 

22 FTIR spectrometer using 4 cm
-1

 resolution and 32 scans with a frequence range of 4000 – 

400 cm
-1

.  

The chitosan sample was prepared with 40-60 mg of chitosam powder and 120 mg of KBr by 

blended and triturated with mortar and pestle for 5 min. The mixture was compacted using a 

hydraulic press at a pressure of 8 tons for 30 s.  

6.4.4. Solubilty measurement via UV/VIS  

The solubility of chitosan and PEGylated conjugates was evaluated at different pH values 

(4.0, 7.0 and 9.6) at a concentration of 1 mg/mL. The chitosan samples were solubilized 

overnight in 0.3 M CH3COONa at pH 5.5, PBS at pH 7.0 and carbonate buffer at pH 9.6. 

The transmittance of the solution was recorded as a function of pH on the UV/VIS 

spectrometer (Jesko, Munchen Germany) using a quartz cell with an optical path length of 1 

cm at λ = 600 nm.  

6.4.5. LC-MS/ESI and direct injection ESI 

I want to thank Sandra Maier from the Bioanalytics department at NMI for measuring the 

small FAP inhibitor_linker regioisomers 18a and 18b via direct injection ESI and for 

measuring the scFv’LCH3 and FAP_cyclooctyne_linker compound 15 via LC-MS/ESI.  

6.4.6. MALDI 

The Mass Spectra have been aquired on a Bruker Ultraflex III MALDI-TOF with reflector in 

positive ion mode. α-Cyano-4-hydroxycinnamic acid (HCCA) matrix was used. Samples have 

been prepared with the dried droplet method, using 50% ACN + 0,5%TFA as solvent. 

6.4.7.  HPLC 

 
Analytical HPLC 

Preparative HPLC 

 Method 1  Method 2: 

Column Chromolith 

Performence RP-18e, 

#UM6102/024, 

GromSil 120 ODS-4 

HE, 7µm 125x30mm 

Pre-column: GromSil 

 GromSil 120 ODS-4 

HE, 7µm 150x50mm 

Pre-column: Gromsil 
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100x3mm 120 ODS-4 HE, 7µm 

30x30mm 

120 ODS-4 HE, 7µm 

30x30mm 

Buffer A 0.1% (v/v) TFA in 

water 

0.1% (v/v) TFA in 

water 

 0.1% (v/v) TFA in 

water 

Buffer B 100% ACN 

containing 0.08% 

(v/v) TFA 

100% ACN 

containing 0.08% 

(v/v) TFA 

 100% ACN containing 

0.08% (v/v) TFA 

Gradient 5 to 65% solvent B 5 to 65% solvent B  5 to 65% solvent B  

Temperature 25
o
C 25

o
C  25

o
C 

Detection Dionex – UVD340U 

214nm, 254nm 

214nm, 254nm  214nm, 254nm 

Injection 5µL 1 mL  1 mL 

 

6.4.8. Quartz crystal microbalance (QCM)  

The polymer/nanoplex film building up was measured in situ by QCM. The system measures 

the changes of oscillation frequency of a quartz crystal when the polymer/nanoplexes are 

absorbed on the crystal surface. The measured shift of the resonance frequency (Δf) is directly 

proportional to the adsorbed amount of polymer/nanoplexes.  

The measurements were the polyelectrolyte multilayer (PEM) adsorption was performed in 

flow chamber system using an “open module” system which allows film assembly using very 

small amounts of reagent.  

The QCM crystals were cleaned with Pirania solution (30%H2O2:70% H2SO4: 1:1(v/v)) 

6.5. Statistical analysis 

The experiments were repeated a minimum of three times, and the GraphPad Instat3 software 

was used for statistical analyses. The non-parametric Kruskal–Wallis test was applied. The 

data are expressed as the mean± SD. A statistically significant difference was assumed at 

P<0.05. 

 

Injection: 1 mL
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7. Experimental section  

7.1. Deacetylated chitosan  

Various concentrations of NaOHaq solutions were added to commercially available chitosan 

(Aldrich low and medium molecular weight) and stirred at different temperatures over a 

certain period of time. The mixture was either filtered and again treated with 50% (w/v) 

NaOHaq for 24h at 60
o
C or filtered and lyophilized. (All the variable parameters are given in 

Table 17).   

Table 17. Variable parameters for the chitosan deactylation reaction: NaOHaq, temperature (T) and 

time.  

RN Batch number SM NaOH (w/v) % T (
o
 C) Time (h) 

Chi (80;165) Aldrich Low - - - - 

Chi (85;335) Aldrich Medium - - - - 

Chi (90;56) ANG115235a Aldrich Low 40 110 8 

Chi (87;62) ANG115235b Aldrich Low 40 110 4 

Chi (85;78) ANG115236a Aldrich Low 40 60 8 

Chi (83;81) ANG115236b Aldrich Low 40 60 4 

Chi (94;116) ANG115251b Aldrich Low 50 60 24 

Chi (93;61) ANG115251a Aldrich Low 40/50 110/60 8/24 

Chi (94;200) ANG115275a Aldrich Medium 50 110 4 

Chi (90;240) ANG115275b Aldrich Medium 50 110 8 

 

7.2. Synthesis of mPEG grafted chitosan: Reaction conditions 

RN 
Batch 

number 

Chi H 

[mg] 

Chi NH2 

[mmo]
a 

mPEG-

NHS[mg] 

mPEG-

NHS 

mPEG/Chi-NH2 

[mol/mol] 
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aMmol of chitosan Heppe free amino groups, considering the degree of deacetylation 92.6% and the Mw of the 

deactylated monomer: 165 [g/mol] 

 

7.3. Synthesis of the linker system 

Compound 2: 8,8-dibromobicyclo[5.1.0]octane  

C7H12    10.05g (0.105 mol) 

CHBr3    24.6g (0.219 mol) 

C4H9KO   57.5 (0.223 mol) 

C8H12Br2   26.78g (0.099 mol) 95% 

In a dry 250mL 3 neck round bottom flask, anhydrous pentane (75mL) was added over 

cycloheptane and potassium tert-butoxide, t-BuOK. The reaction mixture was then placed in 

ice with salt (T<5
o
C) and stirred vigurously. Then the broform was added dropwise (~20min). 

The reaction mixture was left to stirr overnight at RT under N2. The next day H2O (150mL) 

was added and neutralized with HCl (1M). The organic phase was extracted with pentane 

(3x60mL) and then pentane phase was washed with H2O (3x60mL). After drying onver 

MgSO4, the solvent was evaporated on the rotavap. 

The crude product was than purified twice on a 20g normal silica column via extraction with 

250mL hexan/AcOEt 5% to afford the pure compound as an yellow oil.  

Analytics 

1
H NMR (400MHz, CDCl3):           δ [ppm] 0.98-1.29 (m, 3 H), 1.34 (qq, J=1-7,5 Hz, 2 H), 

          1.73 (ddd, J=1,5-4-10,5 Hz, 2 H), 1,75-1,82 (m, 3 H), 2,26  

[mmol] 

1.5 % PEG ANG142958 50 0,28 90,9 0,018 0,06 

3 % PEG ANG142960 50 0,28 151,2 0,030 0,11 

4  % PEG ANG142961 50 0,28 181,8 0,036 0.13 

6  % PEG ANG142897 100 0,56 400 0,080 0,14 

8  % PEG ANG142953 50 0,28 227 0,045 0,16 
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         (dtq, J=14-6-1 Hz, 2 H) 

13
C NMR (400MHz, CDCl3):        δ [ppm] 27.9 (2, C3-5), 29.1 (2, C2-6), 32.2 (C4),  

                     34.7 (2, C1-7), 40.6 (C8) 

 

Compound 6: (Z)-methyl 4-(((2-bromocyclooct-2-en-1-yl)oxy)methyl)benzoate  

C8H12Br2  500mg (1.866 mmol)  

C9H10O3   3.7g  (22.38 mmol) 

AgClO4    1.2 (5.6 mmol)  

C17H21BrO3  379mg (1.073 mmol) 57% 

AgClO4  was added to a solution of 8,8-dibromobicyclo[5.1.0]octane (1) and methyl 4-

hydroxymethylbenzoate dissolved in toluene (8mL) protected from light. The reaction was 

stirred for 2h, diluted with pentane (20mL), and filter to remove insoluble silver salts. The 

crude product was concentrated and purified via flash chromatography with 4-8% EtOAc: pet 

ether to yield the pure compound as a colorless oil (Rf8%EtOAc:pet ether=0.33). 

Analytics 

1
H NMR (400MHz, CDCl3):      δ [ppm] 0.8 (m, 1H), 1.3 (m, 1H), 1.51 (app dq, 1H, J=5.5 

                          12 Hz), 1.75 (m, 1H), 1.9-2.1 (m, 4H), 2.35 (m, 1H), 2.8 

                (app dq, 1H, J=5-8), 3.8-4.05 (m, 4H), 4.4 (d, 1H, J=12.5 

              Hz), 4.8 (d, 1H, J=12.5Hz), 6.2 (dd, 1H, J=4-11.5 Hz),  

              7.4 (d, 2H, J=8 Hz), 7.9 (d, 2H, J=8 Hz) 

 

Compound 7: 4-((cyclooct-2-yn-1-yloxy)methyl)benzoic acid  

C17H21BrO3 240mg (0.68 mmol) 

NaOMe 41.8mg (0.77 mmol) 

LiOH 610mg ( 25.4 mmol) 

C16H18O3  40mg (0.136 mmol)  20% 

(Z)-methyl 4-(((2-bromocyclooct-2-en-1-yl)oxy)methyl)benzoate (2) was dissolved in 1mL 

DMSO and 1mL NaOMe (30% in MeOH) was added under a constant flow of nitrogen at 
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room temperature. The solution turned immediately to a first deeply brown solution then a 

turbid brown thick solution. Constant flow of nitrogen was stopped after 15min. The reaction 

was quenched with 200mL 1M HCl affording a white solution. The combined organic 

extracts were washed with 80mL brine (saturated solution) and the organic layer was 

evaporated at 52
o
C, yielding a slighty brown oil which was solidifying with cooling. The 

remaining crude product was dissolved in H2O/Dioxan (7.6mL/30.4mL), LiOH were added to 

this soluion and the reaction mixture was stirred overnight. The reaction was acidified with 

100mL 1M HCl and extracted twice with 80mL ethylacetate (each portion). The organic layer 

was dried over sodium sulfate, filtered and evaporated. The crude product was purified via 

flas chromatography (EtOAc/petrolether/AcOH 25/75/1, flow 15mL/min) Rf= 0.38 (mean of 

two experiments), Rf byproduct=0.12 (same eluent as for chromatography).  

1
H NMR (400MHz, CDCl3):        δ [ppm] 2.10- 2.27 (m, 1H), 2.5 (m, 1H), 4.25 (m, 1H), 4.49  

(d, 1H, J=13Hz),4.74 (d, 1H, J=12.5 Hz), 7.45 (d, 1H, J=8    

Hz), 8.07 (d, 1H, J=8.5 Hz). 

 

Compound (3): (E)-2-(2-(2-(2-((2-bromocyclooct-2-en-1-yl)oxy)ethoxy)ethoxy)ethoxy) 

ethanol 

C8H12Br2   4g 

AgClO4       10g (0.048 mol) 

C8H18O5     69.5g (0.358 mol) 

C16H29BrO5   4.2g  ( mol)  (0.011 mol)   74% 

8,8-dibromobicyclo[5.1.0]octane (1) was added over a solution of AgClO4 (300mol%) 

dissolved in toluene (20mL) and tetraethylene glycol (300mol%) in a mixture of toluene 

(8mL) and pyridine (6mL). The reaction was refluxes (~140
o
C) in the dark overnight. The 

next day the solvent was evaporated and then brine (saturated solution) (220mL) was added. 

The insoluble salts were removed via filtration in a big funnel using filter paper. The filter 

was washed with diethylether (440mL). The aqueous phase was extracted with Et2O 

(8x440mL) and the combined organic layers were washed with brine (440mL), H2O (440mL), 

dried (Na2SO4), and concentrated to give a brown oil pure compound.  

1
H NMR (400MHz, CDCl3):           δ [ppm] 0.66 - 0.92 (m, 1 H) 1.18 (s, 2 H) 1.36 (s, 2 H) 
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1.57 - 1.69 (m, 1 H), 1.78 - 1.86 (m, 2 H) 1.89 - 1.97 (m, 

2 H) 2.21 (d, J=11.73 Hz, 1 H) 2.58 - 2.73 (m, 1 H) 2.89 

- 3.07 (m, 1 H) 3.39 - 3.43 (m, 1 H) 3.51 - 3.57 (m, 3 H) 

3.57 - 3.66 (m, 7 H) 3.60 (s, 8 H) 3.78 - 3.94 (m, 1 H) 

3.86 (dd, J=10.17, 5.08 Hz, 1 H) 6.02 - 6.21 (m, 1 H) 

 

13
C NMR (400MHz, CDCl3):        δ [ppm] 26.3, 28.1, 33.2, 36.5, 39.5, 61.7, 70.3, 70.4, 70.5, 

                    70.6, 72.5, 85.2, 131.4, 133.1  

 

Compound 4: 2-(2-(2-(2-(cyclooct-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)ethanol  

C16H29BrO5 2g (mmol) 

C4H9KO 3.15 g (mmol) 

C16H28O5 1.05g (mol) 66% 

Potassium tert-butoxide was added to a solution of compound 5 in a mixture i-PrOH (48 

mL)/pyridine (7.2 mL). After 60 h of stirring at room temperature, the reaction was 

neutralized with 5% HCl and partitioned between CH2Cl2 (500 mL) and H2O (200 mL). Then, 

the aqueous layer was extracted with CH2Cl2 (4x500 mL), dried (Na2SO4), and concentrated 

under vacuum to give a crude product that was purified by column chromatography 

(EtOAc/MeOH 5%) Rf =0.38 to yield compound 6 as a colorless oil. 

1
H NMR (400MHz, CDCl3):         δ [ppm] 1.46 (s, 2 H) 1.52 - 1.74 (m, 2 H) 1.74 - 2.03 (m, 

5 H) 2.05 – 2.30 (m, 4 H) 2.46 - 2.63 (m, 1 H) 3.49 (d,      

J=4.69 Hz, 1 H) 3.65 (d, J=3.52 Hz, 21 H) 4.14 - 4.28 (m, 

1H) 

 

13
C NMR (400MHz, CDCl3):       δ [ppm] 20.7, 26.4, 29.7, 34.3, 42.2, 61.8, 68.5, 70.4, 70.4, 

                 70.5, 70.6, 72.5, 72.7, 92.8, 100.0 

 

Compound 5: 2-(2-(2-(2-(cyclooct-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)ethyl (2,5-

dioxopyrrolidin-1-yl) carbonate  

C9H8N2O7 767,7mg (3 mmol) 
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 C16H28O5 300mg (1 mmol) 

C6H15N 303.2mg (3 mmol) 

C21H31NO9 388mg (8.8 mmol) 88% 

N,N’-Disuccinimidyl carbonate (300 mol%) was added to a solution of compound 6 and 

triethylamine (300 mol%) in acetonitrile (MeCN, 4 mL). The reaction was left to stir at room 

temperature for 21h. The solvent was evaporated and the reaction was partioned between 

dichloromethane (DCM, 100 mL) and H2O (50 mL). The aqueous layer was extracted with 

dichloromethane (DCM, 2x100 mL) and the organic layer was washed with sodium carbonate 

(NaHCO3 5%, 2x50 mL), dried over Na2SO4 and concentrated at max. 35
o
C to give a yellow 

crude product that was purified via flash column chromatography (EtOAc/Hexan: 4/1) Rf =0.6 

to give a slight yellow syrupy pure compound.  

1
H NMR (400MHz, CDCl3):          δ [ppm] 1.53 – 2.02 (m, 6 H), 2.07 -2.32 (m, 2 H), 2.84 (s, 

         5 H) 3.11 (s, 1 H), 3.45 – 3.55 (m, 1 H), 3.46 – 3.56 (m,  

         1H), 3.67 (d, J=4.30 Hz, 11 H), 3.80 (d, J=4.69 Hz, 2 H),   

        4.17 – 4.27 (m, 1H), 4.42 – 4.53 (m, 2 H).   

Compound 6: 2-(2-(2-(2-(cyclooct-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)ethyl (2-(2,5-

dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)carbamate  

C21H31NO9 60mg (0.136 mmol) 

C6H8N2O2 · C2HF3O2 48.3mg (1.4 mmol) 

C6H15N 50.6mg (0.544 mmol) 

C23H34N2O8 40mg ( mmol) 63% 

Triethylamine, and Mal-TFA were added over compound 7 in CH2Cl2 (1.5 mL). The mixture 

was stirred overnight under Ar and then concentrated on the rotavap at a maximum of 35
0
C. 

The crude product was purified by column chromatography (EtOAc 100%, Rf= 0.66) and 

then dried extra on the rotavap with pentane to yield a colorless oil.  

1
H NMR (400MHz, CDCl3):         δ [ppm] 0.64-2.95 (m, 12 H) 3.08-3.82 (m, 16 H) 4.09 (m,  

           2 H), 5.03 (br. s, 1 H) 6.62 (s, 2 H) 

Compound 16: 2-(2-(2-(2-(cyclooct-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)ethyl(2-

aminoethyl)carbamate  
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C21H31NO9 283mg (0.641 mmol) 

C2H8N2 770.5mg (12.8 mmol) 

C19H34N2O6 154mg ( 0.4 mmol) 62% 

Ethylenediamine (2000 mol%) was added to a solution of compound 7 in CH2Cl2 (6.4mL). 

After 10 minutes the reaction mixture was a white turbid mixture. Reaction was allowed to 

stir at room temperature overnight and then was concentrated under vacuum. The resulting 

crude product was purified by column chromatography (CH2Cl2/MeOH 33%) Rf=0.13 to give 

the final compound as a colorless oil. 

1
H NMR (400MHz, CDCl3):      δ [ppm] 1.20-2.35 (m, 10 H), 2.92 (t, J = 5.7 Hz), 3.27 (m,2H  

          3.41 (m, 1H), 3.57 (m, 14H), 4.18 (m, 5H), 6.15 (br. s,1H)   

                                              

 

Compound 13: 2-(2-(2-(2-(cyclooct-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)ethyl 2-

iodoacetate  

 

C16H28O5 100 mg (0.33 mmol) 

C2H3IO2 80.5 mg (0.43 mmol) 

DMAP 0.4 mg (0.003 mmol) 

EDC 70.2 mg (0.366 mmol) 

C18H29IO6 13.5 mg 10% 

Iodoacetic acid was added to a solution of compound 4, N’-ethylcarbodiimide hydrochloride 

and 4-dimethylaminopyridine in tetrahydrofuran (THF, 5mL). The reaction was left to stirr 

overnight at room temperature. The reaction mixture was concentrated and the organic layer 

was extracted with 5% NaHCO3 solution (40 mL) and ethylacetate (50 mL). The aqueous 

layer was extracted twice with ethylacetate (2x75 mL each). The organic layers were 

combined, dried over sodium sulfate and evaporated under reduced pressure to yield the crude 

product  as a yellow oil. The crude product was subjected to flash chromatography (EtOAc/n-

hexane 4/1,  Rfproduct1=0.80, Rfproduct2=0.73) to give the pure compound 13 (13.5mg, 10%) as a 

colorless oil. 

1
H NMR (400MHz, CDCl3):   δ [ppm] 1.13-2.22 (m, 10 H) 3.42 (m, 1 H) 3.49-3.76 (m,  

                  13 H) 4.04 (m, 2 H) 4.16 (m, 1 H) 4.23 (m, 1 H) 4.28 (m, 2 H) 
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Compound 12: 6-(2-iodoacetamido)hexanoic acid  

 

C6H13NO2 1.5 g (8.66 mmol) 

C2H2ClIO 1 g (4.89 mmol) 

Na2CO3 2.46 (23.21 mmol) 

 

C8H14INO3 1.8 g (6 mmol), crude product  

 

To a slurry of 6-aminohexanoic acid and sodium carbonate in anhydrous THF (50 mL) was 

added a solution of iodoacetyl chloride in THF (1.5 mL) at 0
o
C. The resulting reaction 

mixture was warmed to room temperature after 15 min and stirred for 4h. Water was added to 

the reaction mixture and the resulting solution was acidified with HClaq (32%) to pH 1.0. The 

reaction mixture was extracted 5 times with EtOAc (30 mL each). The combined organic 

layers were dried over Na2SO4 and evaporated to yield the crude product as a dark brown oil 

which was used further without purification.  

 

Compound 11: 2-(2-(2-(2-(cyclooct-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)ethyl6-(2-

iodoacetamido)hexanoate  

 

C16H28O5 100 mg (0.333 mmol) 

C8H14INO3 199 mg (0.666 mmol) 

EDC 70.2 mg (0.366 mmol) 

DMAP 0.4 mg (0.003 mmol) 

 

C24H40INO7 100 mg (mmol) 52% 

 

Crude compound 12 was added to a solution of compound 4, N’-ethylcarboidimide 

hydrochloride and 4-dimethylaminopyridine in tetrahydrofuran (5 mL). The reaction was left 

to stir overnight at room temperature. The reaction mixture was concentrated and the organic 

layer was extracted with 5% NaHCO3 solution (40 ml) and ethylacetate (50 ml). The organic 

layer was separated and the aqueous layer was extracted with ethylacetate (2x75 ml each). 

The organic layers were combined, dried over sodium sulfate and evaporated under reduced 
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pressure to yield the crude product 12 as yellow oil. The crude product was subjected to flash 

chromatography (EtOAc  100%, Rfproduct=0.83) to give the pure product as a colorless oil. 

1
H NMR (400MHz, CDCl3):   δ [ppm] 0.80-2.35 (m, 14 H) 2.67 (m, 1 H) 3.33-3.74 (m, 20 H) 

       3.99-4.39 (m, 3 H) 7.15 (br. s, 2 H) 

 

 Compound 14: 2-(2-(2-(2-(cyclooct-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)ethyl (2-(2,5-

dioxopyrrolidin-1-yl)ethyl)carbamate-S-Doa-Doa-EQKLISEEDL-OH  

 

C23H34N2O8 8.95mg (19.2 µmol) 

H-C-Doa-Doa-EQKLISEEDL-OH 1.6mg  (1.00 µmol) 

 

C23H36N2O8 - C-Doa-Doa-EQKLISEEDL-OH  

 

H-C-Doa-Doa-EQKLISEEDL-OH was solubilised in H2O (8.8mL) and compound 8 was 

solubilised in DMSO (88.2µL). The two compounds were mixed gently at room termperature 

for 2h. The reaction was stopped by adding L-Cys (10mM final concentration). The crude 

product was purified by reversed-phase HPLC.  

 

Purity by HPLC         λ=214nm;  

MALDI:                                [M-H
+
] 2062.62 

 

Compound 15: 2-(2-(2-(2-(cyclooct-2-yn-1-yloxy)ethoxy)ethoxy)ethoxy)ethyl (2-(2,5-

dioxopyrrolidin-1-yl)ethyl)carbamate – scFv’LCH3  

 

scFv’LCH3    1.26mg/1mL PBS (0.049 µmol) 

C9H15O6P      18mg/0.06mL H2O  (71.3 µmol) 

C23H34N2O8   1.082 mg (2.42 µmol) 

 

C23H34N2O8 – scFv’LCH3  

 

TCEP was added to scFv’LCH3 solution and allowed to react for 2h. Then a solution of 

compound 8 (100mg/mL DMSO) was added and left to stir moderately for another 2h at room 

temperature under Ar. The reaction was stopped by adding L-Cysteine (10mM final volume). 
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The excess of unreacted compound 8 was removed by centrifugal ultrafiltration (Amicon 

Ultra 0.5 – centrifugal filters 10kDa) affording a pure final compound. 

 

Compound 18: Inhibitor conjugate - -2 (2-(2-(2-(cyclooct-2-yn-1-

yloxy)ethoxy)ethoxy)ethoxy)ethyl(2-(2-(2-(2-((4,5,6,7,8,9-hexahydro-1H-

cycloocta[d][1,2,3]triazol-4-yl)oxy)ethoxy)ethoxy)ethoxy)ethyl) (azanediylbis(ethane-2,1-

diyl))dicarbamate  

 

Inhibitor from Belgium 120 mg (0.229 mmol)  

C19H34N2O6 280 mg (0.725 mmol)  

C21H31NO9 300 mg (0.68 mmol) 

 

C38H65N6O12 – inhibitor conjugate 84 mg (0.068 mmol) 30% 

 

Compound 9 was added to a solution of Belgium inhibitor in THF (4 mL) under N2. The 

reaction was left to stir at room temperature over 1 week and then tested by TLC using the 

EtOAc/MeOH/Et3N 1/1/1% solvent system. The crude product was used directly for the next 

step. Compound 7 was prepared freshly and added over the crude product in CH2Cl2 (3 mL) 

and was allowed to stirr at room temperature overnight. The reaction mixture was 

concentrated and the crude product was purified by flash chromatography with 

EtOAc/MeOH/Et3N 1/1/1% to yield a yellow green fluorescent oil which was further purified 

by reversed-phase HPLC. 

Purity by HPLC     regiosomer1    λ=214nm; 4.4min (94.6 %), 4.5min (5.2 %) (regioisomer2) 

                               regiosomer2   λ=214nm; 4.5min (96.3 %), 4.4min (3.7 %) (regioisomer1) 

 

ESI-MS:            regiosomer1: found [MH
2+

] 619.3409, calculated 1238  

       regiosomer1: found [MH
2+

] 619.3407, calculated 1238 
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8. Appendix 

8.1. Functionality of the bioconjugated linker_FAP chemical inhibitor (UAMC 1533)  

Table 18. Potency and selectivity of compound 18. 

IC50 (µM)  

Compd FAP DPP IV DPP8 DPP9 
DPP 

II 
PREP 

SI 

(FAP/PREP)
* 

UAMC 

1533 

0.0051 

±0.0003 
>100 >100 >100 >25 >100 >20 

18 
0.051 

±0.0030 

13.2 

±0.7 
>100 >100 >100 

7.7 

±1.1 
151 

*SI stands for “Selectivity Index” (calculated as [IC50(PREP)/IC50(FAP)]). 
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