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Tight Junction Protein 1a regulates
pigment cell organisation during zebrafish
colour patterning
Andrey Fadeev, Jana Krauss†, Hans Georg Frohnhöfer, Uwe Irion,
Christiane Nüsslein-Volhard*

Max Planck Institute for Developmental Biology, Tübingen, Germany

Abstract Zebrafish display a prominent pattern of alternating dark and light stripes generated by

the precise positioning of pigment cells in the skin. This arrangement is the result of coordinated cell

movements, cell shape changes, and the organisation of pigment cells during metamorphosis.

Iridophores play a crucial part in this process by switching between the dense form of the light

stripes and the loose form of the dark stripes. Adult schachbrett (sbr) mutants exhibit delayed

changes in iridophore shape and organisation caused by truncations in Tight Junction Protein 1a

(ZO-1a). In sbr mutants, the dark stripes are interrupted by dense iridophores invading as coherent

sheets. Immuno-labelling and chimeric analyses indicate that Tjp1a is expressed in dense iridophores

but down-regulated in the loose form. Tjp1a is a novel regulator of cell shape changes during colour

pattern formation and the first cytoplasmic protein implicated in this process.

DOI: 10.7554/eLife.06545.001

Introduction
One of the most fascinating features of vertebrates is their display of remarkable colour patterns in

skin, fur, or plumage, frequently varying strikingly between closely related species. Teleost fish exhibit

a particularly high diversity of patterns formed by several types of pigment cells distributed in

a multilayered arrangement in the hypodermis (Singh and Nüsslein-Volhard, 2015). Adult zebrafish

display a conspicuous pattern of alternating dark and light stripes; remarkably different from

a relatively simple larval pattern, which is generated directly from neural crest cells migrating during

embryogenesis (Kelsh et al., 1996). The adult pattern is formed from neural crest-derived progenitors

during metamorphosis (3–6 weeks of development). Metamorphic iridophores (silvery cells containing

reflective guanine platelets) and melanophores (dark cells containing the black pigment melanin) arise

from neural crest-derived stem cells associated with the peripheral nervous system, whereas

metamorphic xanthophores (yellow–orange cells containing pteridine based pigments) originate from

proliferating larval xanthophores (Budi et al., 2011; Dooley et al., 2013; Mahalwar et al., 2014;

McMenamin et al., 2014; Singh et al., 2014). Several adult viable zebrafish mutants displaying

abnormal adult pigment patterns have been described (Haffter et al., 1996; Kelsh et al., 1996;

Lister et al., 1999). One class of genes primarily affects the formation of one of the three cell types.

For example nacre/mitfa mutants lack melanophores, pfeffer/csf1ra/fms mutants lack xanthophores,

and in shady/ltk iridophores are compromised (Lister et al., 1999; Parichy et al., 2000; Lopes et al.,

2008). Genetic analyses and regeneration studies revealed that interactions between all three cell

types are necessary for proper stripe formation in the trunk of the fish (Maderspacher and Nüsslein-

Volhard, 2003; Nakamasu et al., 2009; Frohnhöfer et al., 2013; Patterson and Parichy, 2013).

Long-term in vivo imaging has shown that stripe formation involves intricate cell shape and density

changes of metamorphic pigment cells (Mahalwar et al., 2014; Singh et al., 2014). Iridophores take

a lead in stripe formation: they appear along the horizontal myoseptum, proliferate and spread as

*For correspondence: christiane.

nuesslein-volhard@tuebingen.

mpg.de

Present address: †Auengrund 7,

Schönau-Berzdorf, Germany

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 14

Received: 18 January 2015

Accepted: 24 April 2015

Published: 27 April 2015

Reviewing editor: Marianne E

Bronner, California Institute of

Technology, United States

Copyright Fadeev et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Fadeev et al. eLife 2015;4:e06545. DOI: 10.7554/eLife.06545 1 of 17



a dense sheet in the skin to form the first light stripe. At the margins of this first light stripe, the dense

iridophores undergo a transition into a loose form and spread over the dark stripe region. Past the

presumptive dark stripe, they change into the dense form again and aggregate into sheets forming

new light stripes (Singh et al., 2014). The first two dark stripes form dorsally and ventrally of the first

light stripe by melanoblasts migrating along spinal nerves into the skin in the presumptive dark stripe

region. They initially appear as stellate cells with the pigment located in the centre of the cells but

later expand into the stationary rounded form (Dooley et al., 2013; Singh et al., 2014). Metamorphic

xanthophores originate from larval xanthophores, they compact over the dense iridophores of the

light stripe and change into a pale stellate shape above the loose iridophores and melanophores of

the dark stripe (Mahalwar et al., 2014). A different type of iridophores—L-iridophores—underlie the

melanophores of the dark stripe. L-iridophores appear only after the first two dark stripes are formed

and do not participate in laying out the pattern (Frohnhöfer et al., 2013; Hirata et al., 2003, 2005).

Interestingly, iridophore-deficient mutants are not affected in the stripe pattern of the fins, suggesting

differences in the mechanisms involved in patterning of the trunk and fins (Frohnhöfer et al., 2013).

Mutants in which all three chromatophore types develop, but stripe formation is impaired, are of

particular interest, as they can provide insights in the molecular mechanisms of cell–cell interactions

underlying stripe formation. Several mutants have been described in which dark stripes are broken

into spots. leopard/Cx 41.9, luchs/Cx39.4 encode components of gap junctions involved in cell–cell

communications (Maderspacher and Nüsslein-Volhard, 2003; Watanabe et al., 2006; Irion et al.,

2014). In the absence of leo or luc, iridophores fail to change to the loose form and suppress

melanophores. leo and luc presumably form heteromeric gap junctions among and between

melanophores and xanthophores, instructing iridophores to change shape in a spatially controlled

manner (Irion et al., 2014).

In this study, we present the mutant schachbrett (sbr) (German for checkerboard) that exhibits

interruptions in dark stripes by light stripe regions. sbr encodes Tight Junction Protein 1a (Tjp1a/ZO-1).

Immunostaining revealed that Tjp1a is expressed in dense iridophores but neither in loose iridophores

nor any other pigment cell type. Analysis of double mutants and chimeras shows that sbr is

cell-autonomously required in iridophores. During metamorphosis, dense iridophores invade the

dark stripe regions and temporarily suppress the expansion of melanophores, suggesting that

Tjp1a is required to regulate the transition of dense iridophores into the loose shape and their

organisation.

eLife digest The striking horizontal striped pattern of the zebrafish makes it a decorative

addition to many home aquariums. The stripes are a result of three different pigment cells interacting

with each other, and first begin to emerge when the animal is two to three weeks old. At that time,

iridescent cells called iridophores begin to multiply and spread in the skin. In the light-coloured

stripes, the iridophores are compact and ‘dense’; in the dark stripes the cells change into a ‘loose’

shape and organisation. Black-pigmented cells fill in the dark stripes, and a third cell type with

a yellow hue condenses over the light stripes. How the three types of cell work together to make the

striped pattern is not fully understood.

Fadeev et al. examined a zebrafish variant with a genetic mutation that disrupts the function of

a protein called Tight Junction Protein 1a (or Tjp1a)—a fish variant of a mammalian protein called ZO-

1. This protein helps cells to interact with each other. The mutant fish appear spotted rather than

striped, because light regions containing sheets of the dense iridophores interrupt the dark stripes.

Experiments using fluorescent markers showed that Tjp1a is produced in much lower amounts in

the loose iridophores in the dark stripes than in the dense iridophores of the light stripes. This led

Fadeev et al. to suggest that the transition from the dense to the loose shape is dependent on the

presence of Tjp1a in the cell.

Tjp1a is likely to regulate how colour patterns form by controlling how iridophores interact with

other types of pigment cell. The Tjp1a mutant fish provides the first glimpse into the machinery

inside cells that underlies colour pattern formation, and will help to identify other components and

cues responsible for cell interactions.

DOI: 10.7554/eLife.06545.002
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Results

schachbrett encodes Tight Junction Protein 1a
Adult sbr fish display an unchanged arrangement and approximately normal width of stripes,

however, the dark stripes are interrupted and undulating (Figure 1A). The allele sbrtnh009b was isolated

during a screen for ENU-induced recessive, homozygous viable mutants affecting adult pattern

formation. The mutation was mapped to the region 29.6–32.5 Mb of chromosome 7 (Ensembl

Zebrafish release 72) (Figure 1B). Using a candidate approach, we sequenced tjp1a cDNA of sbrtnh009b

and detected a nonsense mutation leading to Y1143Stop change in the C-terminal part of the protein

(Figure 1C). To confirm the suggestion that this mutation is causative for the sbr phenotype, we

performed a screen for additional alleles. ENU-mutagenized Tü males were crossed to sbrtnh009b

females; the progeny was raised to the adulthood and screened for the sbr phenotype. Four new

Figure 1. schachbrett encodes Tjp1a. (A) All alleles of sbr exhibit interrupted, undulating dark stripes of normal arrangement and width when compared

to wild type, but no other obvious defects. Scale bar: 5 mm. (B) Scheme of meiotic mapping of sbr. Marked are z-markers and contigs on which SNPs were

found with their genomic and genetic (where applicable) coordinates. The numbers of recombinants among all fish tested are given in red and blue.

The right-most bar shows genes on the ends of the final mapped region. The dotted region is not to scale and contains multiple genes. (C) DNA sequence

traces for four alleles of sbr. Red rectangles mark the mutated residues. Red asterisks stand for stop codons. (D) Scheme of Tjp1a protein. Purple rounded

squares indicate regions corresponding to polypeptides used for antibody generation. Red diamonds show the positions of stop codons in the mutants.

DOI: 10.7554/eLife.06545.003
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alleles not complementing the original allele were isolated. We identified novel stop codons in

positions of the tjp1a gene corresponding to the N-terminal part of the protein in all four new alleles.

The phenotype is variable, and no qualitative differences between the alleles could be recognized.

Individual fish of the sbrtnh009b allele with the C-terminal truncation may show a weaker phenotype

not seen in the other alleles, therefore, we cannot exclude that it may have residual function.

In subsequent crosses, we never observed a segregation of the sbr phenotype and the tjp1a mutant

alleles. These results show that the loss of Tjp1a function causes the sbr phenotype.

The sbr phenotype is not caused by a decrease in melanophore number
The larval pigment pattern is unaffected in sbr mutants (Figure 2A, 6.5 mm). Repeated photography

of individual fish revealed that mutants can be distinguished from wild-type siblings at stage 7.5 mm

SL (Standard Length [Parichy et al., 2009]) (about 4 weeks post fertilisation) shortly after the first

metamorphic melanophores appear (Figure 2A). At this and following stages, melanophores in the

mutants appear as small dots when compared to melanophores of wild type, giving the metamorphic

fish a pale appearance (Figures 2A, 9.0–10.2 mm). Later (11 mm SL), the melanophores acquire

Figure 2. Abnormal behaviour of sbr mutant melanophores. (A) Pigment pattern during metamorphosis in the mid-trunk of individual wild type and sbr

mutant fish. Arrowheads: forming interruptions. White arrowheads: disappearing melanophores (N = 6). Scale bar: 1 mm. (B) Average number of

melanophores per segment in the first two dark stripes in wild type and mutant fish plotted against standard length. Red circles—individual wild type fish;

blue squares—individual sbr fish. Inset shows the area where melanophores were counted. Distributions of melanophore numbers in mutants and wild

type fish do not differ significantly until the 10 mm stage as shown by Kolmogorov–Smirnov statistics. At 10–14 mm stages the distributions are different

with p-values < 0.05. (C) Close-ups of mid-trunk regions of adult wild type, sbr, spa and spa;sbr and melanophore numbers in a dark stripe dorsal to the

first light stripe of adult fish. Red lines—standard deviation. Scale bar: 2 mm.

DOI: 10.7554/eLife.06545.004

The following figure supplement is available for figure 2:

Figure supplement 1. Width of the first light stripe in sbr and wild type fish.

DOI: 10.7554/eLife.06545.005
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a shape similar to wild-type cells (Figure 2A, 11.6 mm). The melanophore numbers in mutant and

wild-type fish do not differ significantly until 10 mm SL (Figure 2B), when the pale phenotype is

already established. In older mutant fish, there is a slight decrease in the average number of

melanophores, likely due to the interruptions of the stripe areas (Figure 2C, wt, sbr). To assess the

impact of melanophore number on stripe integrity, we compared sbr to sparse (spa) mutants, which

have decreased numbers of melanophores (Johnson et al., 1995). spa mutants have only about

a third as many melanophores as wild-type fish (Figure 2C, plot); however, these cells form

uninterrupted stripes (Figure 2C, spa). Double mutants sbr;spa display a combination of both

phenotypes (Figure 2C, sbr;spa). This indicates that the pale appearance of the mutant metamorphic

fish is caused by an abnormal size, shape, or pigment arrangement rather than a reduced number of

melanophores.

sbr iridophores fail to undergo shape change during early stripe
formation
In early metamorphic mutant fish, but not in adults, the width of the first light stripe, composed of

dense iridophores covered by compact yellow xanthophores, is increased compared to wild type

(Figure 2A, 11.6 mm; Figure 2—figure supplement 1).

After 10 mm SL, dense S-iridophores and xanthophores can be observed in the dark stripe region

in sbr mutants (Figure 2A, arrowheads) and melanophores disappear from these areas (Figure 2A,

white arrowheads), ultimately leading to the interruptions. To investigate iridophore behaviour, we

performed repeated imaging of wild-type and sbr individuals over a period of 2 weeks. To allow

a more detailed visualisation of the cell shapes, we imaged fish carrying the Tg(TDL358:GFP)

transgene (labelling iridophores and glia with cytosolic GFP [Levesque et al., 2013]) alone (Figure 3)

or together with a second transgene, Tg(sox10:mRFP) (Figure 4), which labels neural crest derivatives

with membrane-bound mRFP. In both, wild type and mutants, iridophores appeared in segmental

clusters during early metamorphosis (about 7 mm SL), they increased in number and merged to form

the first light stripe (Figure 3A, Figure 4A). In wild type, iridophores proceeded to define the edge of

the light stripe, there they delaminated and formed loose iridophores, which spread dorsally and

ventrally over the dark stripe regions (Figure 3A, 8.9 mm; Figure 4; Singh et al., 2014). Dense

iridophores occasionally spread too far from the horizontal myoseptum (Figure 3B, wt), but later

formed sharp light stripe borders. However, in the mutants the dense iridophores did not delaminate

but continued to spread over the metamorphic melanophores as a coherent sheet (Figure 3A, sbr 8.9

mm; Figure 4, sbr, 8.3 mm). At later stages, eventually some of them switched to the loose form

(arrowheads in Figure 3B; Figure 4A) and occasionally seemed to disappear from the dark stripe

regions at a time point, which coincided with expansion of melanophores (10.5 mm SL,

Figure 3—figure supplement 1). When this retreat did not happen, the iridophores persisted in

interruptions of the dark stripes (Figure 2A, 11.6 mm). The failure to precisely form the boundary

between light and dark stripes might be a cause for another anomaly observed in sbr mutants:

L-iridophores, which are restricted to dark stripe areas in wild type, were observed in light stripes of

adult sbr mutants (Figure 3—figure supplement 2).

Analysing fish carrying the transgene Tg(kita:GalTA4:UAS:mCherry), which labels melanophores

(Anelli et al., 2009), we observed that in sbr mutants individual melanophores moved away from

invading dense iridophores, while maintaining a migratory stellate shape, or they disappeared after

being trapped (Figure 5, Figure 5—figure supplement 1). This is in agreement with the observed

reduction in the number of melanophores in sbr during later stages of development (Figure 2B).

Tjp1a is required in iridophores for pattern formation
To investigate in which cell type sbr function is required, we analysed sbr in combination with mutants

lacking one of the three pigment cell types. Both shady mutants, lacking iridophores (shd, Figure 6C,

Figure 6—figure supplement 1A) and shd;sbr double mutants (Figure 6D, Figure 6—figure

supplement 1B), display the shd phenotype with no detectable differences, suggesting that sbr

function is only required in iridophores. In contrast, the phenotypes of double mutants with nacre (nac,

no melanophores, Figure 6E) or pfeffer (pfe, no xanthophores, Figure 6G) differ from the single

mutants. Both pfe and nac alone exhibit expanded areas of dense iridophores. In combination with

sbr, both double mutants show a further expansion of these dense iridophore regions (Figure 6F,H),

covering most of the body. This phenotypic enhancement suggests that the cell type affected in sbr is

Fadeev et al. eLife 2015;4:e06545. DOI: 10.7554/eLife.06545 5 of 17
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still present in nac and pfe mutants, again

pointing to iridophores. To confirm these find-

ings, we created chimeric animals by blastomere

transplantations. Experiments with sbr donors

and nac or pfe recipients revealed that sbr

melanophores and xanthophores can participate

in normal pattern formation (Figure 6I,J). When

we used shd;sbr double mutants as recipients

(Figure 6D) and nac;pfe (Figure 6K) as donors,

which can provide only iridophores, we observed

regional restoration of the striped pattern in the

chimeric fish (Figure 6L). This indicates that sbr is

required cell autonomously in iridophores and

confirms that mutant sbr melanophores and

xanthophores can contribute to the normal

pattern when confronted with wild-type

iridophores.

The fins of sbr mutants are striped, although

we detect branching and supernumerary stripes

to various extents in the caudal fins of some sbr

mutant fish but not in their anal fins suggesting

that there is no systematic defect in fin pattern-

ing. This is in agreement with the finding that

iridophores are not required for striping the fins

(Hirata et al., 2005; Frohnhöfer et al., 2013;

Krauss et al., 2013).

Tjp1a is expressed in dense
iridophores but not in loose
iridophores nor other pigment cells
We raised two polyclonal antibodies in rabbits

specific to zebrafish Tjp1a (Figure 1D). α-Tjp1aN
was designed to recognize both, truncated

sbrtnh009b and wild-type Tjp1a protein, whereas

α-Tjp1aC would only bind to the wild-type

protein. Both antibodies allow the detection of

Tjp1a in epithelial cells of larval and adult zebrafish

skin (Figure 7—figure supplements 1, 2). This

staining is absent in mutants with stop codons in

the N-terminal part of tjp1a but present in

sbrtnh009b mutants stained with α-Tjp1aN
(Figure 7—figure supplement 1). We also

detected expression of Tjp1a in blood vessels

during larval and adult stages (Figure 7—figure

supplement 2), corroborating earlier reports on

the expression of Tjps in zebrafish and mice

(Anderson and Itallie, 1995; Blum et al., 2008).

Immunostaining of skin in metamorphic fish

carrying the Tg(TDL358:GFP) transgene

(Figure 7A) shows that Tjp1a is expressed in

dense iridophores of the light stripe. Intriguingly,

delaminated loose iridophores still express GFP,

but no Tjp1a is detectable (Figure 7B). This

indicates that Tjp1a is down-regulated during

delamination of loose iridophores from the dense

Figure 3. Behaviour of sbr mutant iridophores during

metamorphosis. (A) Repeated imaging of Tg(TDL358:

GFP) wild type and mutant metamorphic individual (N =
5 each, one shown). Scale bar: 300 μm. (B) Same

individuals with another magnification. Empty patches in

the light stripe of wild type fish are caused by

variegation of the transgene expression. Arrowheads:

loose iridophores. Scale bar: 300 μm.

DOI: 10.7554/eLife.06545.006

The following figure supplements are available for

figure 3:

Figure supplement 1. Invading sbr iridophores

occasionally retreat.

DOI: 10.7554/eLife.06545.007

Figure supplement 2. L-iridophores in wt and sbr.

DOI: 10.7554/eLife.06545.008
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sheet in the light stripe. In adult skin prepara-

tions, the signal can be observed in dense

iridophores of the light stripes but not in

xanthophores, melanophores, L-, or loose irido-

phores (Figure 7C). Together with our observa-

tion that the loss of tjp1a function in sbr mutants

compromises the transition of iridophores from

dense to loose state, these results suggest that

Tjp1a is a component of the molecular switch

that regulates iridophore shape changes during

their dispersal.

Additionally, we analysed chimeras obtained

by transplanting blastomeres from sbrtwl4em-

bryos, where transplanted cells were labelled

with expression of the ubiquitous Tg(H2A:GFP)

transgene, into blastula stage wild-type embryos.

Double stainings with α-Tjp1aN and α-GFP anti-

bodies show that the donor-derived sbr dense

iridophores integrate with the wild-type recipient

iridophores but do not express Tjp1a

(Figure 7D). This suggests that the sbr pheno-

type is not caused by over-proliferation of

iridophores, since they do not produce large

clusters. We stained skin of nac;pfe/shd;sbr

chimeras with α-Tjp1aC and detected Tjp1a in

donor-derived iridophores but not in the epithe-

lium, suggesting that loss of Tjp1a function in the

epithelium does not affect pattern formation

(Figure 7—figure supplement 3).

sbr enhances connexin mutant
phenotypes
To investigate the genetic interactions between

tjp1a and potential partners, cx39.4 and cx41.8,

we evaluated the phenotypes of double mutants

with luct32241 and leot1 (Figure 8). luc mutant fish

display meandering and broken stripes, whereas

in leot1 the stripes are broken into spots. In the

double mutants with sbr, we observe consider-

ably stronger patterning defects than in the

single mutants. In the case of sbr;luc, an almost

complete loss of melanophore clustering is observed; the upper part of the body is covered with

a layer of dense iridophores. In the case of sbr;leo, the melanophore spots are even smaller and the

dense iridophore-free areas around them are narrower. These results suggest that connexins and

tjp1a do not act in a linear pathway affecting pigmentation. To investigate whether zebrafish Tjp1a

can interact directly with connexins, we performed yeast two-hybrid assays (Figure 8—figure

supplement 1). We observed interactions between Cx41.8 and all three PDZ domains of Tjp1a and

between Cx39.4 and PDZ-2 and 3 in this assay.

Discussion
We show that Tjp1a-deficient fish develop multiple interruptions of the dark stripes in the trunk by light

stripe structures composed of dense iridophores covered by compact xanthophores. In sbr mutants,

dense iridophores of the light stripe spread during metamorphosis as a coherent sheet invading dark

stripes rather than loosening up and dispersing. Melanophore expansion into the stationary rounded

form is temporarily suppressed. However, clustered melanophores later expand and seem to repulse

iridophores in a process, which is similar to the one involved in smoothening of stripe boundaries

Figure 4. Behaviour of sbr mutant iridophores during

establishment of the first dark stripes. (A) Tg(TDL358:

GFP); Tg(sox10:mRFP) wild type and sbr metamorphic

fish (N = 4 each, one shown). Arrowheads point to

delaminating loose iridophores. Arrow shows dense

iridophores failing to delaminate. Scale bar: 150 μm.

(B) Close-ups of Tg(TDL358:GFP); Tg(sox10:mRFP) wild

type and sbrmetamorphic fish 8.3 SL. Note difference in

iridophore shapes in wild-type. Scale bar: 50 μm.

DOI: 10.7554/eLife.06545.009
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(Frohnhöfer et al., 2013; Singh et al., 2014). The

location of the interruptions seems to be random.

Genetic mosaics, double mutant analysis, as well

as immunostaining indicate that Tjp1a is

expressed and required in dense iridophores

but not in melanophores or xanthophores. We

show that, surprisingly, Tjp1a-deficient irido-

phores do display a dense shape and organisa-

tion, however, intriguingly, they fail to undergo

the transition to the loose shape. This suggests

that the cell shape of loose iridophores is not

determined by the absence of Tjp1a per se. In

contrast, a reduction in the levels of Tjp1a may be

read by iridophores as a trigger for the transition

or the cell shape change might result in a down-

regulation of Tjp1a. In the absence of Tjp1a, other

Tjps might take over the role in cell compaction

but may not be able to properly respond to cues

guiding the transition to the loose shape.

Gene duplication and redundancy of Tjps functions in zebrafish
One surprising finding of this study is that Tjp1a-deficient zebrafish are viable unlike embryonic lethal

Tjp1−/− mice (Katsuno et al., 2008). There are three tjp genes (1–3) in mammals and five in zebrafish

(1a–b, 2a–b, 3), due to the whole genome duplication in teleosts (Amores et al., 1998). The lack of

Tjp1a function in epithelial cells in sbr mutants might be compensated for by other Tjps, for example,

Tjp1b, which does not exist in mammals. This is supported by the observation that morpholino-

mediated knockdown of tjp1b in sbr mutants, but not wild-type embryos, results in impaired blood

flow and death at 5 dpf (Videos 1–3). This suggests that Tjp1b and Tjp1a have redundant functions at

least in the vasculature epithelial cells. This notion is supported by experiments with mammalian cell

cultures showing that absence of ZO-1 leads to increased recruitment of ZO-2 to cell membranes,

which is suggested to compensate for the absence of ZO-1 (Umeda et al., 2004).

Tjp1a-induced cell shape transition during colour pattern formation
Our data show that in sbr dense iridophores fail to switch to the loose form in dark stripe regions. In

wild type, dense iridophores normally stay restricted to developing light stripes, but occasionally

spread into the prospective dark stripe areas. This irregularity is usually corrected and sharp stripe

boundaries are formed. However, in sbr, the invasion of dense iridophores occurs along the whole

length of stripes. Not all dense iridophores persist in dark stripe regions in sbr mutants. In summary,

we hypothesize that the loss of Tjp1a impairs the ability of iridophores to recognise the (as yet

unknown) cues defining the dark stripe areas or their ability to react to them efficiently. So far, only

a rather small number of molecules have been identified, which are involved in the various interactions

between chromatophores. Tjp1a is the first for which a molecular distribution and cell type specific

expression has been shown.

Tjp1a might interact with connexins/gap junctions
Several zebrafish mutants including leopard (Haffter et al., 1996;Watanabe et al., 2006), luchs (Irion

et al., 2014), and seurat (Eom et al., 2012) exhibit a spotted pattern formed by ingressions of

iridophores into the dark stripe area. luc and leo encode Connexin41.8 (Cx41.8) and Connexin39.4

(Cx39.4), respectively, which are, in contrast to sbr, required in melanophores and xanthophores

(Maderspacher and Nüsslein-Volhard, 2003; Irion et al., 2014). Irion et al. suggest that Cx39.4 and

Cx41.8 form heteromeric gap junctions, promoting interactions of melanophores and xanthophores

that result in the appropriate patterning of iridophores. In the absence of xanthophores or

melanophores, dense iridophore regions are expanded (Frohnhöfer et al., 2013), suggesting that

Tjp1a in iridophores may be involved in cell communication with xanthophores and/or melanophores.

However, the downstream cytoplasmic partners of the transmembrane proteins shown to be involved

in patterning in melanophores and xanthophores are unknown as well as transmembrane molecules in

Figure 5. Two closely positioned melanophores in sbr

(arrowheads), are migrating away from the iridophores

in posterior and anterior directions. Scale bar: 100 μm.

DOI: 10.7554/eLife.06545.010

The following figure supplement is available for figure 5:

Figure supplement 1. Melanophores trapped in the

mass of iridophores are disappearing in sbr.

DOI: 10.7554/eLife.06545.011
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iridophores that are responsible for the interactions. Another mutant displaying a spotted pattern is

seurat, encoding the transmembrane protein immunoglobulin superfamily member 11 (Igsf11) (Eom

et al., 2012). Interestingly, Cx41.8 and Igsf11 are possible interacting partners of Tjps since they have

putative PDZ-binding motifs on their extreme C-termini (Hung and Sheng, 2002; Suzu et al., 2002).

The multiple protein–protein interacting domains in Tjps allow for many interacting partners and

facilitate formation of large complexes in proximity of cell membranes that are associated with tight,

adherens, and gap junctions. These provide a link between transmembrane proteins and the

cytoskeleton and were shown to participate in regulation of many cellular processes such as junction

assembly, cell proliferation, and differentiation (Balda and Matter, 2000; Bauer et al., 2010;

Figure 6. tjp1a is required in iridophores, but not melanophores or xanthophores. (A) Wild type fish. (B) sbr fish.

(C) shady (shd) mutant, which lacks iridophores. (D) shd;sbr mutant is indistinguishable from shd. (E) nacre (nac)

mutant, which lacks melanophores. (F) nac;sbr double mutant exhibiting expanded dense iridophore areas in

comparison to nac alone. (G) pfeffer(pfe) mutant, which has no xanthophores. (H) pfe;sbr double mutant exhibiting

expanded dense iridophore areas in comparison to pfe alone. (I) Chimeras, obtained from transplantation of sbr

blastomeres into nac recipient blastulas, show clonal rescue. (J) Chimeras obtained from transplantation of sbr

blastomeres into pfe recipient blastulas, show clonal rescue. (K) nac;pfe fish have only one type of pigment

cells—iridophores. (L) Chimeras obtained from transplantation of nac;pfe blastomeres into shd;sbr recipient

blastulas, show clonal rescue. Scale bars: 5 mm.

DOI: 10.7554/eLife.06545.012

The following figure supplement is available for figure 6:

Figure supplement 1. Phenotypes of shd and shd;sbr mutants.

DOI: 10.7554/eLife.06545.013
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Xu et al., 2012; González-Mariscal et al., 2014). Our results show that sbr enhances the phenotypes

of both luc and leomutants. This suggests that Tjp1a and connexins do not act in a linear pathway to

regulate pattern formation, but most likely work through different mechanisms. One possible

explanation is that Tjp1a is required for spatially and temporally controlled reaction of iridophores

in response to melanophores (directly or through xanthophores). Absence or truncation of Tjp1a

results in a delayed switch to the loose form, which in turn forces melanophores to reorganize

according to the presence of dense iridophores in normally iridophore-free regions. In luchs and

leopard, the melanophore and xanthophore autonomous mutations also affect patterning of

iridophores, likely due to the failure to properly guide iridophores (Irion et al., 2014). The

combined effect of failure of melanophores and xanthophores to provide cues to iridophores, and

the delayed reaction of iridophores might be responsible for the enhanced phenotypes in the

double mutants.

Interestingly, Tjp1a and Cx39.4 and Cx41.8 can interact in a yeast 2-hybrid assay. As in the fish they

are required in different pigment cell types, this may point to the existence of other, as yet unknown,

connexins, similar to the Cx41.8 and Cx39.4, that are expressed in iridophores and interact with Tjp1a.

ZO-1 was shown to regulate gap junction assembly, localization, and regulate plaque size in

mammalian cell cultures (Hunter et al., 2005; Laing et al., 2005; Rhett et al., 2011). Defective Tjp1a

in sbrmight affect proper interaction of iridophore connexins with their counterparts in melanophores

and xanthophores, compromising cell–cell communication and recognition.

Figure 7. Tjp1a is expressed in dense iridophores. (A) Double antibody staining of metamorphic Tg(TDL358:GFP) fish with α-Tjp1aC and α-GFP

antibodies. Note: not all iridophores are expressing GFP due to transgenic line variegation. Scale bar: 100 μm. (B) Loose iridophores migrating over the

dark stripe in 8.3 mm metamorphic Tg(TDL358:GFP) fish express GFP, but not Tjp1a, although the epithelial staining is still visible. Scale bar: 30 μm. (C) α-
Tjp1aC staining in skin of adult wild type fish. The protein is detected in the sheet of dense S-iridophores of the light stripe, but not in L-iridophores (black

arrowheads), loose iridophores (white arrowheads), melanophores or xanthophores. Scale bar: 100 μm. (D) Double antibody staining with α-Tjp1aC and

α-GFP of skin of adult chimera, obtained by transplanting sbr;Tg(H2A:GFP) blastomeres into wild type blastula. Either GFP or Tjp1a was detected in cells,

never both. Some sbr cells express no GFP due to variegation of the transgene expression. Scale bar: 30 μm.

DOI: 10.7554/eLife.06545.014

The following figure supplements are available for figure 7:

Figure supplement 1. Tjp1a stainings in wild type and sbr.

DOI: 10.7554/eLife.06545.015

Figure supplement 2. Characterization of the Tjp1a expression domain.

DOI: 10.7554/eLife.06545.016

Figure supplement 3. Correlation between clonal rescue of sbr phenotype and Tjp1a expression.

DOI: 10.7554/eLife.06545.017
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Tjp1a as a regulator of cell shape
Iridophore-specific connexins or other molecules, responsible for communication between pigment

cells, might also transmit signals via Tjp1a, controlling iridophore migration or shape change in

a spatiotemporally appropriate manner. Immunostainings show that Tjp1a is expressed in dense

iridophores, but not in loose iridophores. Intriguingly, the absence of Tjp1a does not obviously affect the

morphology of dense iridophores, which display normal shape and organisation. In vitro studies of the

past decade have demonstrated a function of ZO-1 in organisation of confluent cell layers.

Counterintuitively, ZO-1 −/− Eph4 cells polarize and form tight junctions morphologically indistinguish-

able from those of ZO-1 +/+ cells, but the formation is delayed. These cells do not exhibit abnormal

growth or motility in scratch assays (Umeda et al., 2004). However, knockdown of endogenous ZO-1 in

COS-7 cells hampers delamination and migration of cells to fill the wound area in scratch assays (Huo

et al., 2011). These data suggest that epithelial cells of different origin may react differently to the

absence of ZO-1. Our Tjp1aN antibody shows that the non-functional truncated protein is at least

partially retained and normally localized in sbrtnh009n mutants, suggesting that the missing domains (ZU-5

and possibly parts of afadin- and actin-binding regions [Bauer et al., 2010]) are crucial for the function of

Tjp1a in iridophores. It was shown that absence of the ZU5 domain of ZO-1causes defective

delamination and migration of COS-7 cells (Huo et al., 2011). Furthermore, mis-expression of truncated

ZO-1 in the presence of the wild-type protein in CE culture leads to the expression of mesenchymal

markers and to an epithelial–mesenchymal transition (EMT) (Ryeom et al., 2000). Taken together with

our findings, these data suggest a role of ZO-1 in

regulating and fine-tuning of cell shape and state.

Figure 8. Genetic interactions between luc, leo and sbr. (A) luchst32241 (luc) mutant affects Cx39.4 and results in

meandering and broken stripes. (B) luchst32241;sbrtwl4 mutant exhibits complete loss of stripes and expansion of

dense iridophore area. (C) leopardt1 (leo, cx41.8) stripes are broken into spots. (D) leot1;sbrtnh009b double mutant

displays decrease in the size of the spots. Scale bars: 5 mm.

DOI: 10.7554/eLife.06545.018

The following figure supplement is available for figure 8:

Figure supplement 1. Interaction of PDZ domains of Tjp1a with connexins.

DOI: 10.7554/eLife.06545.019

Video 1. 50 hpf wild type embryo. Note normal blood

flow.

DOI: 10.7554/eLife.06545.020

Video 2. 50 hpf wild type embryo injected with

morpholino against Tjp1b. Note normal blood flow (N

= 53/53). The result shows non-toxicity of morpholino.

No defects are observed in the injected fish (observed

until adulthood).

DOI: 10.7554/eLife.06545.021
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We show that transitions in cell shape and

organisation are crucial for the arrangement of

pigment cells in stripes and identify Tjp1a as

a regulator of this process. It appears that the

presence of Tjp1a allows iridophores to change

into the loose form at the appropriate positions.

This suggests that Tjp1a is required for interaction

of iridophores with other pigment cells (for

example through controlling assembly of gap

junctions) and/or appropriate reaction of irido-

phores to perceived cues (through control of

delamination and cell shape). The spatial and

temporal regulation of iridophore shape transi-

tions by Tjp1a might underlie the generation of

a variety of patterns observed in teleosts. More-

over, the viability of sbr mutants presents exciting opportunities for studying the behaviour of Tjp1

deficient cells in vivo.

Materials and methods

Zebrafish maintenance
Fish were bred and maintained as described (Nüsslein-Volhard and Dahm, 2002). Fish of the

following genotypes were used: Tü, WIK, TE wild-type strains (Tübingen zebrafish stock centre),

luchst32241(Irion et al., 2014), leot1 (Watanabe et al., 2006), nacrew2 (Lister et al., 1999), pfeffertm236b

(Odenthal et al., 1996), shadyj9s1 (Lopes et al., 2008), sparseb134 (Kelsh et al., 1996), Tg(TDL358:

GFP) (Levesque et al., 2013), Tg(kdrl:GFP) (Jin et al., 2005), Tg(kita:GalTA4:UAS:mCherry) (Anelli

et al., 2009), Tg(sox10:mRFP) (M Levesque; CN-V laboratory), Tg(H2A:GFP) (A Mongera; CN-V

laboratory). Fish were staged according to the normal table of zebrafish development (Parichy et al.,

2009).

Mutagenesis
The original allele sbrtnh009b was identified in a screen for mutants induced with N-ethyl-N-nitrosourea

(N5809, Sigma-Aldrich, St. Louis, Missouri) in Tü wild-type background. Mutagenesis was carried out

as described previously (Rohner et al., 2011). Subsequently, fish were crossed to TE and later

maintained in homozygosity by regular outcrossing. Four new alleles were isolated by crossing

mutagenized Tü males to sbrtnh009b females and screening the adult progeny for the sbr phenotype.

Mapping and alleles testing
sbrtnh009b/WIK fish were incrossed and used for meoitic mapping as described previously (Nüsslein-

Volhard and Dahm, 2002). The mutation was mapped to the region between microsatellite markers

z4706 (36.7 cM) and z52932 (41.4 cM) on chromosome 7. Further, the interval was narrowed to the

region 29.6–32.5 Mb of chromosome 7, between contigs CR356242 and BX3235912 (Ensembl

Zebrafish release 72). The following primers were used:

CR356242_F GTAGTATATGGATATGGATG

CR356242_R CCACCGCTGCATACCCTGC

BX3235912_F CTTGCACAGGGAATGTGT

BX3235912_R CTGCAGTGTTCTCACGCT

To check for presence of lesions in tjp1a, RNA was extracted from blastema of adult wild-type and

sbr fish using TRIzol reagent (15596, Thermo Fisher Scientific, Waltham, Massachusetts). cDNA was

obtained using Omniscript RT kit (205111, Qiagen, Netherlands). Four overlapping regions of the

coding region of tjp1a (ENSDART00000148347) were amplified using Taq polymerase S (M3001.0250,

Genaxxon, Germany) and the following primers:

tjp1a_1F 5′-GACTGCGGGATTTCAGTTGT-3′
tjp1a_1R 5′-CACTATTCGCCGGTACACATC-3′
tjp1a_2F 5′-GCAGAAGAAGAAAGATGTGTAC-3′

Video 3. 50 hpf sbr embryo injected with morpholino

against Tjp1b. No blood flow is observed, possibly due

to disrupted angiogenesis (N = 30/38). None of the 30

individuals without blood flow survived past 5 dpf.

DOI: 10.7554/eLife.06545.022
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tjp1a_2R 5′-ATGTGAACCGTCCGCCTTG-3′
tjp1a_3F 5′-CAACCATCATCTCTTCACAGCCACT-3′
tjp1a_3R 5′-GATTTTCTCCACTGACTCTGCTCTGG-3′
tjp1a_4F 5′-CTGGATCAAGAGAAGACCTTTAGAACTC-3′
tjp1a_4R 5′-TCCCTGCAGTCTCAGAGGTT-3′.
PCR products were cloned into pGEM-T Easy (A360, Promega, Fitchburg, Wisconsin) and

sequenced using Big Dye Terminator v3.1 kit (4337455, Thermo Fisher Scientific).

Generation of polyclonal antisera
Two parts of the tjp1a cDNA corresponding to 992–1143 a.a. (α-Tjp1aN) and 1293–1397a.a.

(α-Tjp1aC) of Tjp1a (ENSDART00000148347) were cloned both into pET28-nusA (Novagen) and

pOPT-GST-Kan (gift from U Irion and O Perisic) plasmids to produce 6xHis-nusA and GST-tagged

fusions. The following primers were used to amplify these regions:

tjp1aN_F 5′-CATATGTACAAGAAGGATATCTACCGACCC-3′
tjp1aN_R 5′-GGATCCTTAGGAAGGCCTTTGGG-3′
tjp1aC_F 5′-CATATGAAACCCTCCACACAGCTGACAC-3′
tjp1aC_R 5′-GGATCCTTAGCTGGACGTGGCAG-3′.
Obtained constructs were used to transform BL21-CodonPlus DE3-RIPL (230280, Agilent

Technologies, Santa Clara, California) cells. The cells were grown in 1 ml of 2xTY medium containing

20 mM glucose and 15 μg/ml kanamycin for 3 hr on 37˚C, 220 rpm. This culture was used to inoculate

50 ml of the same medium and was grown overnight on 20˚C, 220 rpm. His-tagged polypeptides were

purified using HiTrap IMAC FF 1 ml (17-0921, GE Healthcare, UK) charged with Ni2+ and 250 mM

imidazole in the elution buffer. GST-tagged polypeptides were purified using GSTrap FF 1 ml (17-5130,

GE Healthcare). In all cases, the samples of eluted proteins were loaded on NuPage Novex 4–12% Bis-

Tris gel (NP0322BOX, Thermo Fisher Scientific) and stained with Coomassie Brilliant Blue G-250 to

assess the purity. The polypeptides were dialyzed in PBS using Slide-A-Lyzer Dialysis Cassettes 10K

MWCO (66383, Thermo Fisher Scientific). The protein concentrations were assessed using Bradford

method. His-tagged polypeptides were used to immunize rabbits with Freund’s complete adjuvant

(F5881, Sigma-Aldrich) as immunopotentiator. GST-tagged polypeptides were bound to HiTrap NHS-

activated HP columns (17-0716, GE Healthcare) and used to purify the corresponding antibodies from

rabbit serum, using PBS as binding buffer and 100 mM glycine pH 2.3 as elution buffer. The purified

antibodies were neutralized with Tris-HCl pH 9.5 and mixed 1:1 with glycerol.

Immunohistochemistry
Antibody staining was performed as described previously (Singh et al., 2014) omitting methanol

hydration/rehydration and HCl steps. Antibodies used were mouse α-E-cadherin (610181, BD

Biosciences, Franklin Lakes, New Jersey), mouse α-GFP (11814460001, Roche, Germany), goat

α-rabbit coupled with Cy3 (111-165-003, Dianova, Germany), goat α-mouse AlexaFluor 488 (A21131,

Molecular Probes, Eugene, Oregon). All antibodies were used in 1:400 dilution, except α-Tjp1aN and

α-Tjp1aC, which were used in 1:100 dilution.

Transplantations
Chimeras were produced as described (Nüsslein-Volhard and Dahm, 2002) using mid-blastula stage

(1000 cell stage) embryos, transplanting 30–60 cells.

Image acquisition
We used Zeiss LSM 780 NLO confocal microscope and Canon 5D Mk II camera to obtain images. Fiji

(Schindelin et al., 2012), Adobe Photoshop, and Adobe Illustrator CS6 were used for image

processing and analysis. Maximum intensity projection was made for fluorescent channels of confocal

scans. For bright-field images, we used ‘stack focuser’ plugin or a single slice on an appropriate

depth. For adult fish photos, multiple RAW camera images were taken in different focal planes and

auto-align and auto-blend functions of Photoshop were used. Repeated imaging of metamorphic fish

and anaesthesia were performed as described previously (Singh et al., 2014).

Melanophore counts
Melanophores in metamorphic fish were counted in five segments in the middle 70% of

myotome starting with the one above the first ray of the anal fin and proceeding posteriorly.
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A Kolmogorov–Smirnov test was conducted in SciPy (Jones et al., 2001) to compare the distributions

of melanophore counts in mutant vs wild-type fish. An initial comparison was conducted on fish of

4–6 mm SL. Sample sizes were then increased to include the melanophore counts of fish of 6–7 mm SL,

and each subsequent data set was formed in a similar fashion by 1 mm increment. The null hypothesis

of the samples being drawn from the same distribution was rejected with a p-value of 0.011 when

a data set composed of 4–10 mm SL fish was used.

Light stripe width quantification
For measuring the first light stripe width, the light stripe was defined as an area taken by dense

iridophores. The width of the stripe was measured along five lines, perpendicular to the lateral line

and drawn from the bases of each second fin ray in the anal fin starting with the first. The body height

was measured along the first line.

Morpholino injections
The knockdown was performed as described before (Nüsslein-Volhard and Dahm, 2002) using 3 ng of

tjp1b-MO (CGAGTATGTGATCAGTCTTACTGCA), obtained from Gene Tools, LLC, Philomath, Oregon.

Yeast two-hybrid assay
The PDZ domains of ZO-1 were amplified by RT-PCR from wild-type zebrafish RNA with the following

primer pairs:

T878: 5′-CATATGGTGACTCTTCACAGGGCACC-3′
T879: 5′-GGATCCTTCCGCTTCCTGCGGATAG-3′
T880: 5′-CATATGGTCACACTCGTCAAGTCCCGC-3′
T881: 5′-GGATCCTTCATCTCTCTGCACCACCAT-3′
T882: 5′-CATATGAAGTTTAAGAAAGGGGAAAGTG-3′
T883: 5′-GGATCCTTTCTTCTTCTGCGCAAGGATGG-3′
and cloned in the vector pGBKT7 (Takara, Japan) via NdeI and BamHI.

Similarly, the C-termini of Cx39.4, Cx41.8, and Cx43 were amplified by RT-PCR with the following

primer pairs:

T886: 5′-CATATGCTTCAGTTGGTGATAAC-3′
T887: 5′-GGATCCTCAAACATAATGTCTCGGTTTG-3′
T884: 5′-CATATGGCATGGAAGCAGTTGAGG-3′
T885: 5′-GGATCCTATACCGCAAGGTCGTCCGG-3′
T888: 5′-CATATGCTCTTCAAACGAATCAAGGACC-3′
T889: 5′-GGATCCTAGACGTCCAGGTCATCAGG-3′
and cloned into the vector pGADT7 (Clontech) via NdeI and BamHI.

The plasmids were transformed into the yeast strain Y2HGold (Clontech) by standard procedures,

and we screened for positive interactions using X-α-Gal and His as markers.
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Summary

The zebrafish striped pattern results from the interplay among three pigment cell types; black melanophores,

yellow xanthophores and silvery iridophores, making it a valuable model to study pattern formation in vivo. It

has been suggested that iridophore proliferation, dispersal and cell shape transitions play an important role

during stripe formation; however, the underlying molecular mechanisms remain poorly understood. Using gain-

and loss-of-function alleles of leucocyte tyrosine kinase (ltk) and a pharmacological inhibitor approach, we show

that Ltk specifically regulates iridophore establishment, proliferation and survival. Mutants in shady/ltk lack

iridophores and display an abnormal body stripe pattern. Moonstone mutants, ltkmne, display ectopic

iridophores, suggesting hyperactivity of the mutant Ltk. The dominant ltkmne allele carries a missense mutation

in a conserved position of the kinase domain that highly correlates with neuroblastomas in mammals. Chimeric

analysis suggests a novel physiological role of Ltk in the regulation of iridophore proliferation by homotypic

competition.

Introduction

Vertebrates display an astounding variety of colour

patterns in their skin, fur or feathers that often strikingly

differ even between closely related species. Teleost fish

show a particularly high diversity of patterns, which are

formed by pigment cells distributed in superimposed

layers in the skin (Singh and N€usslein-Volhard, 2015; Irion

et al., 2016). In the zebrafish Danio rerio, a characteristic

pattern of alternating dark and light stripes is produced by

three pigment cell types: melanophores (dark cells

containing the black pigment melanin), xanthophores

(yellow-orange cells containing pteridine-based pigments)

and iridophores (silvery cells containing reflective guanine

platelets) in the flank of the body (Kirschbaum, 1975;

Kelsh et al., 2009; Hirata et al., 2005; Hirata et al., 2003).

Cell–cell interactions between all the three pigment cell

types are essential for appropriate stripe pattern forma-

tion (Maderspacher and N€usslein-Volhard, 2003;

Frohnh€ofer et al., 2013; Patterson and Parichy, 2013;

Significance

Development of the striped pattern in zebrafish is a complex process involving three pigment cell types. It

has been shown that light-reflecting pigment cells – iridophores – are crucial for the repetition of stripe

pattern. We describe a mutant in leucocyte tyrosine kinase (ltk) containing a lesion highly similar to those

implicated in human cancers, especially neuroblastoma, and confirm the role of Ltk in establishing the

iridophore population in zebrafish. We describe a new role of Ltk in the control of iridophore survival and

maintenance. Aggressive behaviour of mutant cells with hyperactive Ltk in chimeric animals suggests that

Ltk is involved in homotypic competition-dependent iridophore proliferation.
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Nakamasu et al., 2009). It has been suggested that

homotypic competition regulates pigment cell prolifera-

tion and dispersal, whereas heterotypic interactions

regulate cell shape transition (Irion et al., 2016; Walderich

et al., 2016; Fadeev et al., 2015; Irion et al., 2014).

Zebrafish develops two patterns. It has a relatively

simple larval pattern comprised of a dorsal, ventral and

lateral stripe of melanophores and scattered xan-

thophores (Kelsh et al., 2009). Iridophores are organized

in a dorsal and ventral stripe, comprising about one

iridophore cell per segment. These pigment cells are

derived directly from neural crest cells migrating during

early embryogenesis (Singh and N€usslein-Volhard, 2015;

Kelsh et al., 1996). The adult zebrafish pattern arises

during metamorphosis (3–6 weeks post-fertilization).

Recent studies underscored a key role of iridophores

in stripe formation (Fadeev et al., 2015; Singh et al.,

2014; Frohnh€ofer et al., 2013; Patterson and Parichy,

2013). However, despite recent advances not much is

known about the establishment and regulation of

iridophores. Clonal analysis revealed that adult iri-

dophores are derived from multipotent stem cells

located at the dorsal root ganglia of the peripheral

nervous system. At the onset of metamorphosis, they

appear along the horizontal myoseptum, proliferate and

spread as a dense sheet in the skin to form the first

light stripe. At its borders iridophores start to spread as

a loose sheet over the dark stripe region. Past the

presumptive dark stripe they aggregate to form new

light stripes (Singh et al., 2014). Melanoblasts migrate

along spinal nerves into the skin to form dark stripes

(Singh et al., 2014; Dooley et al., 2013a; Budi et al.,

2011), whereas metamorphic xanthophores are a pro-

duct of proliferation of larval xanthophores (Mahalwar et

al., 2014; McMenamin et al., 2014). Interestingly,

iridophores do not participate in the stripe pattern of

the fins, but are lined along the fin rays, suggesting

differences in the mechanisms involved in patterning of

the trunk and fins (Frohnh€ofer et al., 2013). The mid-

dorsum is covered by a longitudinal band of melano-

phores.

On the scales, all three cell types form a belt of

intermingled pigment cells along the posterior edge of the

scale, with pigment cell numbers decreasing along the

dorso-ventral axis (Kirschbaum, 1975). Scale iridophores

share a lineage with stripe iridophores (Singh et al.,

2014), but otherwise still virtually nothing is known about

the establishment and interactions of this pigment cell

population.

Several genes have been described that affect the

development and/or maintenance of iridophores. In shady

(shd) mutants, which are deficient in the gene encoding

Leucocyte tyrosine kinase (Ltk), both larval and adult

iridophores are missing (Lopes et al., 2008). Other

iridophore mutants, such as are rose (rse, endothelin

receptor ba) and karneol (endothelin-converting enzyme

2), lead to a severe reduction of the number of dense

iridophores in adult fish (Parichy et al., 2000; Krauss et al.,

2014). transparent (MpV17 mitochondrial inner mem-

brane protein) mutants display loss of iridophores

throughout larval and adult stages (Krauss et al., 2013).

It has been suggested that shd/ltk is required for the

establishment of iridophores and affects fate specifica-

tion of iridoblasts from multipotent neural crest cells. shd/

ltkmutants are devoid of all types of iridophores, although

sometimes they develop clonal patches of iridophores in

the adult pattern that are several segments wide and are

likely due to a single escaping progenitor that proliferates

in the absence of competing iridophores (Singh et al.,

2014; Lopes et al., 2008; Frohnh€ofer et al., 2013). The

creation of chimeras by blastomere transplantation has

revealed that shd/ltk is autonomously required in iri-

dophores (Lopes et al., 2008; Frohnh€ofer et al., 2013).

Clusters of donor-derived iridophores in a wild-type

environment are confined along the antero-posterior axis

to two to four segments, whereas in shd/ltk mutant

recipients they have a tendency to spread laterally over

several segments (Walderich et al., 2016). This indicates

that the rate of iridophore proliferation in wild-type fish is

controlled by homotypic cell competition between iri-

dophores.

Based upon similarities of their kinase domains, Ltk and

Alk (Anaplastic lymphoma kinase) form a subgroup of the

insulin receptor superfamily of receptor tyrosine kinases.

There is only one protein of this class in Drosophila (dALK)

and C. elegans (SCD-2) (Liao et al., 2004; Lor�en et al.,

2001), but both proteins are present in zebrafish and

mammals (Ben-Neriah and Bauskin, 1988; Bernards and

de la Monte, 1990; Shiota et al., 1994). This suggests that

the divergence is unique to vertebrates. Mammalian LTK

and ALK display highly similar kinase domains, but only a

few similarities in their extracellular domains, beside

glycine-rich regions (Toyoshima et al., 1993; Cismasiu et

al., 2004; Fass et al., 1997). In contrast, both zebrafish Alk

and Ltk possess domain structures similar to mammalian

ALK, for example MAM domains (meprin/A5-protein/

PTPl), thought to mediate homophilic cell adhesion

function (Lopes et al., 2008; Palmer and Hallberg, 2015;

Cismasiu et al., 2004). In addition, unlike mammalian LTK,

which was shown to be expressed in pre-B and B

lymphocytes and in the adult brain (Ben-Neriah and

Bauskin, 1988; Bernards and de la Monte, 1990),

zebrafish Ltk is expressed in neural crest (Lopes et al.,

2008), sharing this characteristic with mammalian ALK

(Dirks et al., 2002), and making it an attractive model for

studying physiological functions of human ALK (Challa

and Chatti, 2013).

Both ALK and LTK in humans were shown to be major

factors in tumorigenesis. A number of activatingmutations

in ALKwere reported in human cancers (Car�en et al., 2008;

Moss�e et al., 2008; Chen et al., 2008; George et al., 2008).

Specifically, mutations F1174I/S/L were shown to be

frequent in neuroblastoma samples, especially in relapsed

post-treatment tumours (De Brouwer et al., 2010; Mar-
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tinsson et al., 2011). It was shown that expression of

F1174L ALK in mice leads to tumour formation (Heukamp

et al., 2012; Chen et al., 2008). LTK mutations were found

in various human cancers (Catalogue of SomaticMutations

in Cancer, http://cancer.sanger.ac.uk/, Forbes et al., 2015),

and high expression levels of LTK have been demonstrated

to correlate with an increased risk of metastasis in non-

small cell lung cancer (M€uller-Tidow et al., 2005). F1174

mutations in hALK and a corresponding mutation in hLTK

(F568L) were shown to cause ligand-independent activa-

tion of these kinases (Chand et al., 2013; Janoueix-Lerosey

et al., 2008; Roll and Reuther, 2012; Chen et al., 2008;

George et al., 2008; Martinsson et al., 2011).

In this study, we describe moonstone, ltkmne, a

dominant allele of shd/ltk in zebrafish. It contains a

F993I mutation in the kinase domain, which corresponds

to human ALK residue F1174. Homozygous and heterozy-

gous zebrafish ltkmne mutants display ectopic iridophores

inside the trunk at larval stages, and an increased number

of iridophores on scales and fins, giving the fish a strong

green-blue sheen. Treatment with ALK inhibitors causes a

decrease in the number of iridophores in both wild-type

and mutant fish during larval stages as well as metamor-

phosis. This suggests that Ltk is continually required

during iridophore development and maintenance. When

presented with an ltk+ wild-type environment in chimeric

animals, ltkmne iridophores can massively overgrow in the

surrounding skin. Our data indicate that the phenotype is

a result of an increase in Ltk activity. Our gain-of-function

and loss-of-function analysis allows us to conclude that

Ltk plays an instructive role in the establishment of

iridophores and to propose a role for Ltk in regulating

proliferation in post-embryonic fish through homotypic

competition.

Results

moonstone encodes Leucocyte tyrosine kinase

The dominant mutant moonstone (mne) was isolated

during a screen for ENU-induced mutants affecting adult

pigment pattern formation (Fadeev et al., 2015) due to the

striking glow of the adult fish. Adult mutants display a

strong green-blue sheen on the body owing to an

increased number of iridophores on the scales (Fig-
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Figure 1. moonstone mutants exhibit an

increase in iridophore numbers. (A–C)
moonstone, ltkmne, adults show a strong

green-blue sheen, owing to supernumerary

iridophores on the scales, especially dorsally.

Scale bars: 5 mm. (D) Phenotype of ltkshd

(shady), a loss-of-function mutant for Ltk. Scale

bar: 5 mm. (E) Transheterozygous ltkmne/ltkshd

fish exhibit ltkmne phenotype comparable to or

weaker than ltkmne/+. Scale bar: 5 mm. (F, G)

ltkmne mutant fish exhibit increased iridophore

numbers in dorsal, anal and caudal fins. Scale

bars: 2 mm. (H) Overgrowth of eye iridophores

onto pupils in ltkmne fish. (I) Ectopic iridophore

clusters can be observed in ltkmne adults next

to spinal column on sagittal sections

(arrowhead). The inner side of abdominal cavity

is also covered by iridophores in ltkmne. (J) The

nomenclature of adult stripes. All light stripes

start with X (for xanthophore), with X0 being

the first interstripe, and 1D and 1V are the first

dark stripes. (K) The width of adult light and

dark stripes is not affected in adult ltkmne when

compared to wild type. Each line represents

average for one fish. (L) six dpf mne larvae

exhibit ectopic iridophores, as compared to

wild-type larvae.
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ure 1A–C). The number of iridophores on the fins is

increased as well, as to form almost an uninterrupted

sheet of iridophores in the space between fin rays in the

light stripes (Figure 1F,G), as opposed to single iri-

dophores in wild type (Hirata et al., 2005). The mutant

is homozygous viable, and its phenotype is stronger in

homozygous fish.

Occasionally, homozygotes show an overgrowth of

iridophores in one or both eyes (Figure 1H), covering the

pupil. Further, the abdominal cavity of adult mne fish is

completely covered by a dense sheet of iridophores

(Figure 1I).

Adult mne display an apparently normal striped pattern

in the skin, albeit at times the dark stripes display rough,

undulating borders. To assess the width of the dark and

light stripes, 4 different stripes were measured in three

consecutive segments – the first two dark stripes (1D

and 1V), the first light stripe (X0) and the second light

stripe (X1V) located ventrally to 1V (Figure 1J and

Frohnh€ofer et al., 2013). These measurements indicate

that there is no significant change in the width of the

light and dark stripes in the trunk of heterozygous and

homozygous mutant fish when compared to wild type

(Figure 1K).

In larvae, iridophores are arranged in a dorsal and a

ventral stripe – on average one iridophore per segment.

In addition, mne mutant larvae display scattered clusters

of ectopic iridophores, located inside the body (Fig-

ure 1L).

The mutation was mapped to the region of chromo-

some 17 between markers z9831 (43.5 cM, 26.5 Mb)

and z11202 (48.8 cM, 38 Mb, according to Ensembl

Zebrafish release 82). shady, a recessive mutant

exhibiting loss of iridophores in larvae as well as adults

(Kelsh et al., 1996) encodes Leucocyte tyrosine kinase

(Ltk) (Lopes et al., 2008). ltk is located in the middle of

the mapping region (31.4 Mb) (Figure 2A). We

sequenced ltk cDNA from mne mutants and detected

an F993I change in the kinase domain of the protein

(Figure 2B,C), which is highly conserved throughout the

tyrosine kinase family (Figure 2D). In subsequent

crosses, no segregation of the mne phenotype and

the ltk lesion was detected. This suggests that the

supernumerary iridophores in the dominant mne pheno-

type are caused by a gain-of-function mutation in the ltk

gene. Subsequently, the mutant allele will be referred to

as ltkmne.

To investigate the phenotype in the absence of a

functional ltk allele, transallelic ltkmne/- animals were

produced. ltkmne/ltkshd individuals exhibit a phenotype

close to wild type, only a slight increase of iridescence in

dorsal scales is observed, weaker than in heterozygous

ltkmne/+ animals (Figure 1E). Homozygous ltkmne fish

exhibit a stronger phenotype than heterozygous animals,

suggesting that the ltkmne allele encodes a hyperactive

Ltk, and the strength of the phenotype depends on the

overall Ltk activity.

Ltk regulates specification, survival and proliferation

of iridophores

Further evidence that mne is a shd allele comes from the

sensitivity of the phenotype to inhibitor treatment.

TAE684 (TAE) has been shown to be a specific inhibitor

of zebrafish Ltk and Alk (Colanesi et al., 2012; Rodrigues

et al., 2012). To test whether it affects the ltkmne

phenotype, we grew wild-type and ltkmne/ltkmne larvae

in a medium containing TAE from 82 to 105 hpf (N = 5;

Figure 3A). Numbers of iridophores in TAE and

A

C

D

B

Figure 2. mne encodes Ltk. (A) Scheme of meiotic mapping of

ltkmne. Marked are z-markers with their genomic and genetic

coordinates. The numbers of recombinants among all fish tested are

given in red and blue. (B) DNA sequence traces of ltk from mutants

and wild type (Ensembl transcript ID: ENSDART00000061547). Red

rectangles mark the mutated residues. (C) Scheme of Ltk protein of

Danio rerio (UniProt ID: F1QVU0) and human ALK (Q9UM73) and LTK

(P29376). SP – signal peptide, MAM – MAM domain, TM –
transmembrane region, KD – tyrosine protein kinase catalytic domain.

Red diamond – position of F993 in Dr Ltk, and corresponding

phenylalanine in human proteins. (D) Multiple protein alignment of

kinase domains of zebrafish Ltk and human ALK and LTK. Intensity of

colour corresponds to the conservation level. Red square – F993 in

Danio rerio and corresponding phenylalanine.
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mock-treated wild-type larvae did not differ significantly,

whereas TAE treatment lead to a reduction of iridophore

numbers in mutants. When fish were treated from 9 to

72 hpf with daily changes of the medium, the effect was

much stronger, resulting in complete disappearance of

iridophores (N = 7; Figure 3B,C). In this experiment

iridophores were labelled with Tg(TDL358:GFP) and Tg

(sox10:RFP), the former driving expression of GFP in

iridophores and the latter labelling neural crest-derived

tissues. These results indicate that Ltk is required for the

maintenance of iridophores.

Larval wild-type and ltkmne fish did not show a signif-

icant difference in numbers of clusters of iridophores in

the ventral or dorsal stripes of the body (entopic

iridophores, found in both wild type and mutant) (Fig-

ure 3C, mock treatment). Ectopic iridophore clusters in

the mutants were frequently found close to or in contact

with dorsal root ganglia (DRG) in four dpf fish (six of 10

clusters in 11 fish, Figure 3D). Some ectopic iridophores

are located in ventral parts of the larvae and might give

rise to the sheet of iridophores covering the abdominal

cavity (Figure 1I). These data point to an instructive role of

Ltk in specification of iridophores from the neural crest

and subsequent neural crest-derived iridophore progeni-

tors. It is plausible that in ltkmne mutants additional

precursors for ectopic iridophores are produced, although

the possibility that these arise from entopic iridophores

moving to abnormal positions cannot be excluded.

Ectopic iridophore clusters inside the body persist and

increase their size in metamorphic (Figure 3E) and adult

fish (Figure 1I, arrowhead). The increase of iridophore

number in these clusters is achieved, at least partially, by

cell division as shown by BrdU incorporation experiments

on three dpf ltkmne/+ larvae (Figure 3F). Four dpf ltkmne

larvae exhibit larger entopic clusters, as compared to wild

type, suggesting larger number of cells (Figure 3G). BrdU

incorporation showed that in three dpf ltkmne/+ larvae 9 of

93 entopic iridophore clusters contained dividing cells

(9.6%), in a contrast to 1 of 24 clusters in wild-type

animals (4.1%). Interestingly, four dpf mutant larvae

exhibited proliferation in only 4/89 clusters, whereas in

wild type no division was observed in 61 clusters. This

suggests a gradual decrease in iridophore proliferation

during larval development. To estimate the effect of

ltkmne on iridophore proliferation during the formation of

the first light stripe, we quantified the change in the

number of iridophores during a time-window of 24 h at

the onset of metamorphosis in 14 dpf fish carrying both

Tg(TDL358:GFP) and Tg(sox10:RFP) transgenes (N = 7;

Figure 3H). ltkmne did not show a significant difference in

iridophore proliferation rate as compared to wild type

(Figure 3I). These data suggest that Ltk controls iri-

dophore ability to divide, but not the division rate,

because ltkmne iridophores continue to proliferate when

their wild-type counterparts cease to do so.

TAE treatments suggest that the iridophore lineage

requires Ltk for survival during metamorphosis as well as

larval stages: wild type and ltkmne display reduction in the

numbers of metamorphic iridophores after 24 h of treat-

ment with TAE (Figures 3H,I).

Thus we suggest that the overall increase in iridophore

numbers in mutants is due to a combination of increased

number of iridophore progenitors, enhanced survival of

iridophores and retention of proliferation activity.

ltkmne iridophores display normal cell–cell
interactions during body stripe patterning

To assess the behaviour of iridophores during metamor-

phosis, Tg(TDL358:GFP);Tg(sox10:RFP) transgenic fish

were imaged repeatedly during the formation of the first

dark stripes (7–12 mm Standard length (SL). In early

metamorphosis, the distribution of the iridophores in both

wild type and ltkmne was similar – clusters of iridophores

appeared along the horizontal myoseptum and merged to

form the first light stripe (Figure 3H). However, at 7 mm

SL iridophores in ltkmne extended further ventrally com-

pared to wild type, instead of restricting themselves to

the borders of the developing first light stripe (Figure 4A).

Subsequently, at 8 mm SL additional clusters of iri-

dophores appeared dorsally and ventrally (arrowheads).

By the 9 mm stage, the borders of the first light stripe

started to sharpen and look similar to wild type. In some

cases, dense iridophores in the dark stripe area could be

observed until 10–11 mm SL (Figure 4A, arrowheads). At

10 mm SL, the scales dorsal to the 1D stripe exhibited

large numbers of iridophores. By 12 mm SL, the ltkmne

stripe pattern is indistinguishable from wild type. How-

ever, increased numbers of iridophores and melano-

phores persist on the dorsal scales (Figure 4A). These

data are corroborated by the observation of ectopic

iridophores on the trunk in bright-field images (Figure 4B).

Our observations indicate an increase in iridophore

numbers during early metamorphosis, which is regulated

later to achieve a normal cell density in the adult pattern.

To test whether ltkmne is affecting the number of

melanophores during metamorphosis, the average num-

ber of melanophores per segment was assessed in

developing metamorphic fish (Figure 4C). When com-

pared to wild type, neither homozygous, nor heterozy-

gous ltkmne showed significant differences in

melanophore numbers. Meaningful comparison of the

number of iridophores in metamorphic fish has proven to

be challenging due to the substantial variation in iri-

dophore numbers even in the adjacent myotomes of the

same fish; however, the stripe width measurements

suggest a number within a normal range.

Adult fish have increased number of iridophores and

melanophores on scales

The green sheen of mutant fish seems to be largely

derived from supernumerary iridophores on the scales

and dorsum. Scales isolated from heterozygous ltkmne/+
fish along the dorso-ventral axis display an increased

area occupied by iridophores when compared to their
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wild-type counterparts (Figure 5A). The iridophores also

seem to be packed more densely in the mutants

(Figure 5A, dorsal). In homozygous ltkmne fish, the cover-

age of scales with iridophores is increased even further

(data not shown). Melanophores on the dorsal scales are

present in larger numbers and co-localize with iri-

dophores. This effect is even more profound in homozy-

gous fish (Figure 5B). It is plausible that melanophores on

wt ltkmne/+

7.
0

8.
0

9.
0
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.0
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.0

wtltkmne/ltkmne

0

5
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ltkmne/+
SL, mm

Average number of melano-
phores per segment

ltkmne/+

ltkmne/ltkmne

wt

A B

C
Figure 4. Development of the ltkmne adult

phenotype. (A) In ltkmne/+mutants a larger area

in the skin is covered by iridophores after stage

8.0 mm SL, when in wild-type iridophores form

the first light stripe and start to disperse across

the forming dark stripes. Dorsally, ectopic

clusters of iridophores in the skin can be

observed. At 9.0 mm ltkmne/+ loose

iridophores can be seen above stripe 1D,

coming from ectopic clusters as well as from

the first light stripe. Green signal – Tg(TDL358:

GFP), labelling iridophores, red – Tg(sox10:

RFP), marking neural crest derivatives. Scale

bar: 200 lm. (B) An increased number of

iridophores can be observed in bright-field

images of mutants. Iridophores form long

streaks along the myotomes at 8.5 mm SL

(arrowheads). (C) The number of metamorphic

melanophore number in the skin is not affected

in ltkmne. Presented is the average number of

melanophores in five mid-trunk segments of

ltkmne and wild type, plotted against standard

length.

Figure 3. Ltk inhibitor TAE684 partially rescues the ltkmne phenotype and decreases the number of iridophores. (A) The number of iridophores is

reduced in ltkmne/+ larvae treated with ALK inhibitor TAE684 from 82 to 105 hpf. N = 5. (B) A massive reduction in iridophore numbers is observed

in wild-type and ltkmne/+ larvae, treated with TAE684 from 9 to 72 hpf. Green signal – Tg(TDL358:GFP), labelling iridophores, red–Tg(sox10:RFP),

marking neural crest derivatives. Arrowheads: ectopic iridophores in ltkmne larvae. N = 8. Scale bar: 100 lm. (C) The increased number of

iridophores in three dpf ltkmne/+ larvae is due to ectopic iridophores. Continuous TAE treatment (B) abolished all iridophores both in wild type and

ltkmne/+. Shown is the number of single iridophores and iridophore clusters posterior to the developing swim bladder. N = 7–9. (D) Clusters of

ectopic ltkmne iridophores (arrowhead) are frequently located close to or in direct contact with DRG (arrows, shown are three individual four dpf

larvae). Green – Tg(-8.4ngn1:GFP) driving the expression of GFP in DRG neurons, red – Tg(sox10:RFP). Scale bar: 25 lm. (E) Larval ectopic

iridophores inside the trunk continue to proliferate and stay clustered in metamorphic fish. Scale bar: 200 lm. (F) ltkmne iridophores in ectopic

clusters are able to divide, as shown by BrdU incorporation in fish carrying Tg(TDL358:GFP). Scale bar: 25 lm. (G) ltkmne fish exhibit larger entopic

iridophore clusters (arrowheads) as compared to wild type. Shown is antibody staining against GFP of fish carrying Tg(TDL358:GFP). Scale bar:

10 lm. (H) TAE684 treatment for 24 h causes a reduction in iridophore numbers in metamorphic fish. N = 7. Scale bar: 50 lm. (I) ltkmne

metamorphic iridophores do not divide at a significantly different rate, when compared to wild type. Plotted is the ratio of metamorphic iridophore

numbers after/before treatment with TAE for 24 h.
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scales are regulated differently from hypodermal mela-

nophores.

Ltk specifically regulates iridophores

As discussed above, the major ltkmne adult phenotype is

increased numbers of iridophores on the scales. To test if

this is due to the formation of excess iridophores at the

expense of other pigment cell types, we studied the

genetic interaction between ltkmne and sparse (spa).

Mutations in spa/kita affect a subset of melanophores

and display a strong reduction in the number of

Dorsal

1V

2V

0

50
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150

200

250

300

2V 1V 1D X1D Dorsal
wt ltkmne/ltkmne

B Number of melanophores on scales

wt ltkmne/+A

X1D

ltkmne/+

ltkmne/+;spa

spa

ltkmne/+;rse

rse

wt

ltkmne/+;spa

spa

ltkmne/+;rse

rse

ltkmne/+

wt

A B

Figure 6. ltkmne acts independently of sparse and rose. (A) Double

mutants of ltkmne;spa and ltkmne;rse exhibit superpositions of the

corresponding phenotypes. Scale bar: 5 mm. (B) Dorsal view. Scale

bar: 1 mm.

Figure 5. Adult ltkmne fish exhibit increased numbers of iridophores

and melanophores on scales. (A) All ltkmne/+ scales exhibit large

areas covered by iridophores, which are accompanied dorsally by

melanophores. Dorsal – dorsal-most scale, X1D, 1V, 2V – stripe

covered by a scale. Scale bar: 200 lm. (B) All ltkmne/ ltkmne scales

exhibit increased number of melanophores. Evaluated were 3–8
scales for each group from 1 to 2 individuals. The error bars represent

standard deviation.
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melanophores on the scales and on the dorsum (Johnson

et al. 1995). If increased iridophores in ltkmne develop

from spa-dependent precursors, then ltkmne;spa double

mutants should display a spa phenotype and decreased

numbers of iridophores in the dorsum and the trunk. We

do not observe this, despite the expected reduction in the

number of melanophores in ltkmne;spa, the excess

iridophores remain (Figure 6). This suggests that the Ltk

specifically regulates iridophores.

Ltk and Ednrba regulate distinct aspects of iridophore

behaviour

During stripe pattern formation, iridophores undergo

proliferation, dispersal and cell shape transitions; at the

genetic level, these processes are regulated by two main

signalling receptors – Ednrba and Ltk. Mutations in rose

(rse)/ednrba lead to a severe reduction in iridophore

numbers, specifically a reduction in dense iridophores.

Due to the lack of dense iridophores melanophores are

restricted to the two early stripes (1D and 1V) in both shd

and rse, and their numbers are much reduced. If the

primary defect in rose is a reduced number of iridophores,

then supplying excess iridophores should revert the

phenotype. However, if it is due to a primary function of

rse during the cell shape transitions of iridophores, then

we should observe no rescue even when excess

iridophores are supplied. To distinguish between these

two possibilities, we generated double mutants ltkmne;

rse, which display a combination of ltkmne and rse

phenotypes – increased numbers of iridophores and

melanophores on scales and reduced numbers of trunk

melanophores and iridophores (Figure 6). Taken together

with the results of BrdU incorporation experiments, this

observation suggests that rse and ltkmne affect

iridophores independently: Ltk regulates iridophore prolif-

eration, whereas Ednrba might have a primary function in

iridophore cell shape transition.

ltkmne iridophores may have a growth advantage

over wild-type iridophores

Recently, it has been shown that iridophore proliferation

and coverage of the skin is regulated by homotypic

competition between iridophores (Walderich et al., 2016).

Our data indicate that Ltk regulates iridophore numbers

by promoting iridophore establishment, proliferation and

survival. This suggests that the hyperactive Ltk might

provide a selective advantage to ltkmne iridophores

compared to wild-type iridophores. To assess the

behaviour of ltkmne cells in a wild-type environment, we

performed blastomere transplantation. As recipients,

we used albino mutants, which lack pigment in

B1

B2 B2’

B3 B4

B5 B6

A

alb

ltkmne/+→alb

Figure 7. ltkmne iridophores lead to overgrowth in an ltk+

environment. (A) Blastula transplantations from ltkmne into albino

hosts resulted mostly in a normal striped pattern in the chimeras.

Scale bar: 5 mm. (B) In some cases ltkmne/albino chimeras developed

large overgrowths of iridophores (B1-B4), which persisted when

scales were removed from affected area (B2’). Frequently such

overgrowths were spreading out further along the antero-posterior

axis on the ventral and dorsal sides (arrowheads). Overgrowths of

iridophores in the eyes and heads (B5, B6). Scale bar: 2 mm.
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melanophores but are normal otherwise (Dooley et al.,

2013b), thereby allowing easy identification of clones

(Figure 7A). In most of the cases (28/46), chimeric fish

exhibited mixed donor-derived melanophore and iri-

dophore clusters spanning 2–5 segments and spreading

vertically, contributing to all stripes along the dorso-

ventral axis, typical for such transplantations (Walderich

et al., 2016). These clusters displayed the characteristic

scale pattern of ltkmne, indicating cell-autonomous func-

tion of ltk in iridophores. However, in some cases (12/46)

a novel phenotype, which can be described as iridophore

overgrowth, was observed in the clusters (Figure 7B).

They displayed a sheet of iridophores that spread out over

several segments along anterior–posterior axis especially

in the ventral or dorsal region of the chimeric fish

(Fig. 7B3, 4, arrowheads). These clones presented

obscure stripe borders and contained fewer donor-

derived melanophores (compare Figure 7A and B2), in

some cases only 10–20 melanophores (Figure 7B2-B4).

After removal of scales, the green sheen was lost, but the

overgrowth phenotype persisted (Figure 7B2, B2’) indi-

cating that overgrowth of iridophores occurred in the skin,

along with increased iridophore numbers in scales. In

some cases (10/46), extensions of iridophore sheets over

the pupils were observed (Figure 7B5, 7B6). This pheno-

type was also occasionally observed in the ltkmne mutants

(Fig 1H). However, an overgrowth in the skin has never

been observed in mutants. These data suggest that when

presented with an environment with normal Ltk activity,

the iridophores expressing the overactive ltkmne allele

exhibit overgrowth behaviour due to a growth advantage.

Discussion

Moonstone fish exhibit ectopic iridophores inside the

body during larval stages and entering in the skin at the

onset of metamorphosis. Adults display a normal striped

pattern but an increased number of iridophores on the

scales and fins, which gives the fish a striking green-blue

sheen. Ectopic iridophore sheets are also observed in the

viscera and occasionally in the eye. No effect on other

pigment cell types was observed, besides an increase of

melanophore numbers on scales. We show that moon-

stone is a gain-of-function allele of ltk carrying a mutation

in a highly conserved position of the kinase domain. An

inhibitor of ALK – TAE684, shown to inhibit zebrafish Ltk

as well, alleviated the ltkmne phenotype and caused a

reduction in the number of iridophores in metamorphic

mutants and wild-type fish. Transallelic ltkmne/- animals

display the phenotype weaker than or comparable to

ltkmne/+, suggesting that Ltk acts in a dosage-dependent

manner. Intriguingly, in an ltk+ environment, ltkmne

mutant iridophores sometimes produce large homoge-

neous overgrowths in the skin.

Several genes were shown to regulate different

aspects of iridophore development, such as establish-

ment, proliferation and cell shape transition. schachbrett/

tjp1a is expressed in iridophores and required for proper

transition of iridophores from the dense to the loose form

(Fadeev et al., 2015). It has been reported that endothelin

signalling regulates iridophore number (Parichy et al.,

2000). However, mutations of rose (ednrba) and karneol

(ece 2) specifically abolish dense iridophores, as loose

iridophores can still be observed even in the strongest

mutant alleles. This suggests that the endothelin pathway

has a function in iridophore shape transitions. ltkmne does

not rescue the rose phenotype, and double mutants show

the superposition of the two phenotypes, indicating

independent roles in iridophore development for both

genes. We confirm the requirement for ltk in iridophore

establishment and suggest a novel role in proliferation

and survival, as gain-of-function ltkmne leads to increased

iridophore numbers, and specific inhibitors cause disap-

pearance of existing iridophores.

We propose a role for Ltk in iridophore homotypic

interactions (Walderich et al., 2016), as ltkmne iridophores

can form large clusters in an ltk+ environment, outcom-

peting wild-type iridophores. In addition, ltkmne displays

supernumerary iridophores in regions devoid of iri-

dophores on anterior regions of scales and in the eye.

However, interactions with other pigment cells do not

seem to be affected, as ltkmne iridophores are able to

participate in a normal striped pattern. It is possible that

MAM domains, present in the extracellular part of hALK

and zebrafish Ltk and Alk (Fig 2C), mediate homotypic

iridophore interactions in zebrafish. MAM domains have

been shown to participate in homotypic interactions in

insect cell culture (Cismasiu et al., 2004; Zondag et al.,

1995; Brady-Kalnay and Tonks, 1994).

Data on the physiological functions of ALK and LTK in

vertebrates are scarce, studies mostly concentrating on

their tumorigenic properties. LTK and ALK mutations in

mice and humans at the same conserved position as in

ltkmne have been shown to be involved in several types of

cancer (De Brouwer et al., 2010; Martinsson et al., 2011;

Heukamp et al., 2012; Chen et al., 2008). Notably,

knockdown of ALK lead to a decreased proliferation rate

of neuroblastoma cells (Moss�e et al., 2008), supporting

our suggestion for a role of the Ltk tyrosine kinase

receptor in proliferation control of iridophores. We

describe the function of Ltk in particular aspects of

cellular behaviour in the context of pigment cells in an

in vivo system. We suggest that the ltkmne larvae can

provide an easily detectable readout in drug screens for

Alk and Ltk inhibitors.

Methods

Zebrafish maintenance

Fish were bred and maintained as described (Brand et al., 2002). Fish

of the following genotypes were used: Tu, WIK, TE wild-type strains

(T€ubingen zebrafish stock centre), shadyj9s1 (Lopes et al., 2008),

sparseb134 (Kelsh et al., 1996), rosetLF802 (Frohnh€ofer et al., 2013),

albinob4 (Dooley et al., 2013b), Tg(TDL358:GFP), Tg(sox10:mRFP) (M.
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Levesque; C.N-V. laboratory), Tg(-8.4ngn1:GFP) (Blader et al., 2003).

Fish were staged according to the normal table of zebrafish

development (Parichy et al., 2009).

Mutagenesis

The allele mnedtwc3/WIK was identified in a screen for mutants

induced with N-ethyl-N-nitrosourea (N5809, Sigma-Aldrich, Louis,

MO, USA) in T€u wild-type background. Mutagenesis was carried out

as described previously (Rohner et al., 2011). Subsequently, fish

were crossed to TE fish and later maintained by regular outcrossing.

Mapping and alleles testing

mnedtwc3/WIK fish were incrossed and used for meiotic mapping as

described previously (Geisler 2002). The mutation was mapped to the

region between microsatellite markers z9831 (43.5 cM) and z11202

(48.8 cM) on chromosome 17. To check for the presence of lesions in

ltk, RNA was extracted from fin blastema of adult wild type and

heterozygous mne fish using TRIzol reagent (15596, Thermo Fisher

Scientific, Waltham, MA, USA). cDNA was obtained using Omniscript

RT kit (205111, QIAGEN, Venlo, the Netherlands). For amplifying and

sequencing the ltk coding sequence, the following primerswere used:

Tue1013 ATGAAGACACCAAGCTCATC

Tue1014 GCTGGATCAGGATTTGACG

Tue1015 AGACATCGCTCTTGGCTGTC

Tue1016 CCATGCTCCAGAAGTAGTTC

Tue1017 GACCAGGACAAGTCAAAAGG

Tue1018 CGTCCAAAGCTCTCTAGGAC

Tue1430 ACTGGAGGAGACTGGTTTATC

Tue1431 TGTTCTTCAGAGTTGTGCC

Tue1432 TGGGGATTTCAATGGAACAG

Tue1433 TCAGCAAAGGAAGTGGTTG

Taq polymerase S (M3001.0250, Genaxxon, Ulm, Germany)

was used for amplification, and products were cloned into

pGEM-T Easy (A360, Promega Fitchburg, WI, USA) and

sequenced using Big Dye Terminator v3.1 kit (4337455, Thermo

Fisher Scientific).

Transplantations

Chimeras were produced as described (Kane and Kishimoto, 2002)

using mid-blastula stage (1000 cell stage) embryos, transplanting 30–
60 cells.

BrdU incorporation and immunohistochemistry

Experiments were carried out using three, four and five dpf fish as

described before (Singh et al., 2014).

Image acquisition

We used Zeiss LSM 780 NLO confocal microscope and Canon 5D

Mk II camera to obtain images. Fiji (Schindelin et al., 2012), Adobe

Photoshop and Adobe Illustrator CS6 were used for image process-

ing and analysis. Maximum intensity projection was made for

fluorescent channels of confocal scans. For bright-field images, we

used ‘stack focuser’ plugin or a single slice on an appropriate depth.

For adult fish photos, multiple RAW camera images were taken in

different focal planes and auto-align and auto-blend functions of

Photoshop were used. Blemishes on the black background in the

photos were removed using the brush tool, without affecting the

image of the fish. Repeated imaging of metamorphic fish and

anaesthesia was performed as described previously (Singh et al.,

2014).

Melanophore counts

Melanophores in metamorphic fish were counted in five segments in

the middle 70% of the myotome starting with the one above the first

ray of the anal fin and proceeding posteriorly.

Multiple alignments

Multiple protein alignment was obtained using MUSCLE (Edgar, 2004)

and visualized using JALVIEW (Waterhouse et al., 2009).

TAE treatment

TAE684 (NVP-TAE684) (HY-10192, MedChem Express) was diluted

in dimethylsulphoxide (DMSO; Sigma-Aldrich Louis, MI, USA) to a

final concentration of 7.5 mM. Fish were treated in the fish medium

containing 50 lM gentamycin (NH09, Carl Roth GmbH + Co. KG,

Karlsruhe, Germany) and 0.8% DMSO with 6 lM TAE or without for

controls. Thirty embryos were treated in 40 ml of the medium in a

30 mm Petri dish. Larvae were treated individually in 10 ml of the

medium in six well plates.
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INVESTIGATION

Pigment Pattern Formation in the Guppy, Poecilia
reticulata, Involves the Kita and Csf1ra Receptor

Tyrosine Kinases
Verena A. Kottler,*,1 Andrey Fadeev,† Detlef Weigel,* and Christine Dreyer*,1

*Department of Molecular Biology and †Department of Genetics, Max Planck Institute for Developmental Biology,
72076 Tübingen, Germany

ABSTRACTMales of the guppy (Poecilia reticulata) vary tremendously in their ornamental patterns, which are thought to have evolved
in response to a complex interplay between natural and sexual selection. Although the selection pressures acting on the color patterns
of the guppy have been extensively studied, little is known about the genes that control their ontogeny. Over 50 years ago, two
autosomal color loci, blue and golden, were described, both of which play a decisive role in the formation of the guppy color pattern.
Orange pigmentation is absent in the skin of guppies with a lesion in blue, suggesting a defect in xanthophore development. In golden
mutants, the development of the melanophore pattern during embryogenesis and after birth is affected. Here, we show that blue and
golden correspond to guppy orthologs of colony-stimulating factor 1 receptor a (csf1ra; previously called fms) and kita. Most excitingly,
we found that both genes are required for the development of the black ornaments of guppy males, which in the case of csf1ra might
be mediated by xanthophore–melanophore interactions. Furthermore, we provide evidence that two temporally and genetically
distinct melanophore populations contribute to the adult camouflage pattern expressed in both sexes: one early appearing and
kita-dependent and the other late-developing and kita-independent. The identification of csf1ra and kita mutants provides the first
molecular insights into pigment pattern formation in this important model species for ecological and evolutionary genetics.

THE guppy (Poecilia reticulata) is thought to be among
the most color-polymorphic vertebrates (Endler 1983).

Male guppies have an outstanding degree of variation in
their ornamental patterns, which are shaped by a complex
interplay between natural and sexual selection in wild pop-
ulations. Along with introduction experiments, studies on
guppy life-history traits, mate choice behavior, and predator–
guppy as well as guppy–environment interactions have
demonstrated that guppy populations can adapt rapidly to
new environments (for an overview, see Magurran 2005).

The guppy is therefore a prime model organism for the study
of “evolution in action.”
Despite our wealth of knowledge about the ecological

importance of coloration, the genes and developmental
pathways underlying guppy pigment pattern formation are
unknown. Both forward and reverse genetic studies are
hampered by the fact that guppies are livebearers with
internal fertilization, an average gestation period of 3–4
weeks, and a relatively small brood size (Houde 1997). The
genetic basis of sex determination is highly variable within
the Poeciliid family, to which the guppy belongs. The guppy
itself has incipient X and Y chromosomes that include a non-
recombining part (Traut and Winking 2001). Only males de-
velop highly polymorphic ornaments during puberty, which
are under hormonal control (Houde 1997). The genetic anal-
ysis of male guppy ornaments first attracted attention .80
years ago, when Winge described a total of 18 putative
ornamental loci, of which 17 showed sex-linked inheritance
and 9 were strictly Y-linked (Winge 1922, 1927). Many more
pigment pattern loci, which can be Y-linked, X-linked, XY-
linked, or autosomal, have since been described (Lindholm
and Breden 2002). Ornamental traits linked to the sex
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chromosomes are typically expressed only in males, but females
can develop some male color patterns when treated with tes-
tosterone (Clemens et al. 1966; Lindholm and Breden 2002).
An analysis of quantitative trait loci (QTL) has confirmed that
most male color traits are controlled by multiple genes, includ-
ing genes on autosomes (Tripathi et al. 2009b). In contrast to
the sex-specific genes, several autosomal color factors behave
as ordinary Mendelian recessive genes and are expressed in
both sexes (Goodrich et al. 1944; Dzwillo 1959; Lindholm
and Breden 2002).
The pigment pattern of the guppy consists of three to four

different types of neural crest-derived chromatophores:
black melanophores, yellow/orange to reddish xanthophores,
blue iridescent iridophores, and, possibly, white leukophores
(Takeuchi 1976; Tripathi et al. 2008). Guppy embryos are
staged according to the differentiation of their eyes. In the
middle-eyed stage, the retina is fully pigmented and the first
melanophores differentiate on the head above the midbrain
(Martyn et al. 2006). More melanophores appear during the
late-eyed stage and form dark stripes along the lateral mid-
line, on the back, and on the belly (Martyn et al. 2006). In the
very late-eyed stage shortly before birth, a rhombic reticulate
pattern consisting of melanophores emerges on the trunk
(Martyn et al. 2006). It has also been referred to as a ground,
diamond, or camouflage pattern (Goodrich et al. 1944; Martyn
et al. 2006; Tripathi et al. 2008). All pigment cell types are
present in wild-type embryos at birth and contribute to the
newborn pattern (Figure 1A); e.g., the yolk is partially cov-
ered by iridophores and melanophores, while xanthophores
are widely dispersed (Martyn et al. 2006).
The reticulate pattern of very late-eyed embryos and

newborn guppies appears to persist into adulthood (Tripathi
et al. 2008). This pattern is expressed in both sexes, but
becomes overlain in males by male-specific ornaments (Fig-
ure 1, B–E). Two different melanophore types occur in adult
wild-type guppies: large, roundish corolla and more hetero-
geneously shaped dendritic melanophores (Goodrich et al.
1944). The reticulate pattern is composed of corolla melano-
phores in deep skin layers, which are additionally arranged
irregularly over the whole body, whereas dendritic melano-
phores are distributed superficially and are associated with
the scales (Figure 1E) (Goodrich et al. 1944; Winge and
Ditlevsen 1947).
Two autosomal color loci that are expressed in male and

female guppies are blue and golden [also known as fredlini
(Haskins and Druzba 1938; Winge and Ditlevsen 1947) and
not to be confused with the zebrafish (Danio rerio) golden
locus (Lamason et al. 2005)]. The mutations in both genes
occurred spontaneously and act recessively (Goodrich et al.
1944; Dzwillo 1959). Blue mutants lack orange pigmenta-
tion in their skin, indicating a xanthophore defect (Figure 1)
(Dzwillo 1959).
In golden mutants, the development of the melanophore

pattern during embryogenesis and after birth is affected
(Haskins and Druzba 1938; Goodrich et al. 1944; Winge
and Ditlevsen 1947). Golden guppies of both sexes lack

melanophores in the skin at birth and have only a few peri-
toneal melanophores above the swim bladder (Figure 1A),
but eventually develop an incomplete reticulate pattern,
which gives them a “coarsely mottled appearance” (Goodrich
et al. 1944; Winge and Ditlevsen 1947). Corolla melano-
phores are restricted to the reticulate pattern in golden
mutants, which also have only a very few dendritic melano-
phores (Figure 1E) (Haskins and Druzba 1938; Goodrich
et al. 1944; Winge and Ditlevsen 1947). golden mutant
females have only half of the normal number of melano-
phores in total (Goodrich et al. 1944). golden mutant males
develop male-specific ornaments (Figure 1, B and C) (Haskins
and Druzba 1938).
Among teleost fish, pigment pattern formation has been

most extensively studied in zebrafish. Zebrafish undergo
a complex pigment pattern metamorphosis during the
transition from the embryonic/early larval to the juvenile/
early adult stage (Johnson et al. 1995; Parichy and Turner
2003a,b; Kelsh et al. 2009; Parichy et al. 2009; Budi et al.
2011). The two type III receptor tyrosine kinases encoded by
kita and its ancient paralog colony-stimulating factor 1 re-
ceptor a (csf1ra; previously called fms) (Braasch et al. 2006)
play key roles during the establishment of the adult zebra-
fish pigment pattern: early metamorphic melanophores re-
quire kita for their development, while late metamorphic
melanophores depend on csf1ra and endothelin receptor b1a
(ednrb1a) (Parichy et al. 1999, 2000a,b; Parichy and Turner
2003b). Csf1ra is also crucial for xanthophore development
(Parichy et al. 2000a; Parichy and Turner 2003b). In other
teleost species, the functions of kita and csf1ra are less well
understood; comparative studies including interspecies
hybrids suggest some functional diversification of both
receptor tyrosine kinases even within the Danio genus
(Quigley et al. 2005; Parichy 2006; Mills et al. 2007).
Here, we present evidence that golden and blue corre-

spond to guppy orthologs of kita and csf1ra. Both an early
kita-dependent and a later-appearing kita-independent me-
lanophore population contribute to the adult reticulate pat-
tern in this species. In contrast to zebrafish, csf1ra is not
required for the development of the late-appearing kita-
independent melanophores. Csf1ra, however, is essential
for xanthophore development and the formation of the
male-specific melanophore pattern, which also requires kita.

Materials and Methods

Fish husbandry

All fish were maintained at 25� in a 12-hr light and dark
cycle and fed 6 days a week with Artemia. No more than eight
fish were kept per 1.5-liter tank. We used virgins for crosses,
as guppy females are capable of storing sperm.

Strains

Guppies of the following inbred strains were used in this
study; available phenotypes other than wild-type are shown
in parentheses: Maculatus (MAC) (golden) (Tripathi et al.
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2008); BDZW1 (golden, golden blue) and BDZW2 (blue
only) (Dzwillo 1959); Armatus (golden) (Winge 1927);
Guanapo and Quare6 (Reznick and Endler 1982); Quare6
family II 215-3 (Tripathi et al. 2008); and Cumaná (Alexander
and Breden 2004). Maculatus, BDZW1, BDZW2, and Armatus
are domesticated strains that have been bred in captivity for
.50 years [in our laboratory since 2003 (Maculatus, BDZW1)
and 2011 (Armatus, BDZW2)]; the others are derived from
wild individuals caught in Trinidad (Guanapo and Quare riv-
ers) and Venezuela (Cumaná region). Quare and Cumaná
guppies were obtained in 2003 and Lower Guanapo (Twin
Bridge) fish in 2009. All guppy strains are kept separately in
small groups, usually consisting of two to three females and
four to five males per tank and are allowed to reproduce
freely, except for the Guanapo fish that are inbred by
brother–sister mating.

blue was found in two strains that likely both were de-
rived from the original population of blue mutants described
by Dzwillo in 1959. We renamed them BDZW1 and BDZW2
for clarity. BDZW1 was obtained under the name “Blau” and
comprised individuals heterozygous for golden and blue;
BDZW2 (“Dzwillo 1959 Blau”) fish were all homozygous
for blue.

Phylogenetic analyses

Only unambiguously annotated sequences were used for the
analyses (ORF begins with a start codon; number of exons
are as predicted for other species; and introns begin and end

with splice sites). Sequences were aligned with Clustal Omega
(v1.1.0) (Goujon et al. 2010; Sievers et al. 2011). Maximum-
parsimony and maximum-likelihood phylogenetic trees were
constructed by the PhylipParsimony algorithm (Felsenstein
1989) via the SplitsTree4 (v4.12.8) interface (Huson and
Bryant 2006) and by PhyML (Guindon et al. 2010), respec-
tively. The topologies of the maximum-likelihood trees were
not fully resolved (therefore not shown), but, as the maximum-
parsimony trees, they suggest that the sequenced guppy ORFs
are most similar to kita, kit ligand a (kitla), and csf1ra of other
teleost species.

Complementary DNA analyses

We used polymerase chain reaction (PCR) to amplify genes
of interest from first-strand complementary DNA (cDNA).
Total RNA was extracted from 10 to 15 pooled early to very-
late eyed embryos with TRIzol (Invitrogen) according to the
manufacturer’s instructions. Total RNA was then directly
used for first-strand cDNA synthesis using PrimeScript
Reverse Transcriptase (TaKaRa) and the oligo(dT) primer
59-ATTCTAGAGGCCGAGGCGGCCGACATGT(18)VN-39. We
added 1 U/ml SUPERaseIn RNase Inhibitor (Ambion) to
each reaction. First-strand cDNA was used as template for
PCR, which was carried out with Advantage 2 Polymerase
Mix (Clontech) according to the manufacturer’s instructions.
PCR program was 10 cycles touchdown [95� for 15 sec, Tm
(melting temperature) of primers (lower one) + 5� 20.5�/
cycle for 30 sec, 68� for 2–5 min) followed by 27 cycles

Figure 1 Blue and golden phenotypes.
(A) Dorsal aspect of newborns. (B) Lat-
eral aspect of adult males. (C) Dorsal
aspect of adult males. (D) Lateral aspect
of adult females. (E) Details of areas
boxed in D showing the reticulate pat-
tern. (F) Ventral view of the caudal pe-
duncle of females (indicated by white
arrows in D). golden mutants of both
sexes lack a ventral black stripe and have
only a few melanophores on the ante-
rior head, including the choroid of the
eyes. Golden females lack the female
pigment spot above the anal fin (white
asterisks in D). Individuals shown are
from the BDZW1 (wild type, golden)
and BDZW2 (blue) background. Bars:
(A) 1 mm; (B and C) 2 mm; (D) 5 mm;
(E and F) 0.5 mm.
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without touchdown (95� for 15 sec, Tm for 30 sec, 68� for
2–5 min]. Elongation time was adapted to the length of the
expected product (�1 min/kb). Primer sequences and meth-
ods used for full-ORF amplification of candidate genes are
listed in Supporting Information, Table S1. PCR products
were analyzed by gel electrophoresis, purified with MinE-
lute Gel Extraction Kit (QIAGEN), and subsequently cloned
into pGEM-T Easy vector (Promega) following the manufac-
turer’s instructions. Plasmid DNA was purified with Wizard
Plus SV Minipreps DNA Purification System (Promega)
according to the instruction manual and sequenced.
To investigate whether the kita transcripts V1–V6 cose-

gregate with the golden phenotype, we prepared first-strand
cDNA from adult individuals as described before. Total RNA
for cDNA synthesis was extracted separately from liver tis-
sue of the parental male and the parental female and from
pooled liver tissue of seven wild-type N2 fish and 11 golden
N2 fish. Liver tissue was used as total RNA isolated from
liver usually is of very high quality (personal observation).
We used primers in exon 5 (forward: 59-GATGCTGGGAGT
TACAAATGCGTAG-39) and exon 9 (reverse: 59-AAACAGT
ATGTAGGCTTGCTCTCC-39) for PCR amplification with
Advantage 2 Polymerase Mix (Clontech) and cloned the prod-
ucts into pGEM-T Easy vector (Promega). We sequenced the
purified plasmid DNA of 24 colonies per parent and N2 pool
to identify wild-type and golden mutant kita transcripts.

Real-time quantitative PCR

Total RNA for real-time quantitative PCR was prepared as
described above from skin of adult wild-type, golden, and
blue females that were 6–9 months old. Following DNaseI
treatment, first-strand cDNA was prepared from 830 ng of
total RNA primed with oligo(dT)18 using the RevertAid First
Strand cDNA Synthesis Kit (Thermo Scientific) according to
the manufacturer’s instructions. First-strand cDNA was di-
luted 10-fold for real-time quantitative PCR that was con-
ducted with Platinum SYBR Green qPCR SuperMix-UDG
(Invitrogen) on a CFX384 Touch Real-Time PCR Detection
System (Bio-Rad) according to the instruction manuals pro-
vided by the manufacturers. PCR program was 95� for 3 min,
40 times (95� for 10 sec, 60� for 10 sec, 72� for 5 sec), and
95� for 10 sec. Expression of csf1ra, csf1rb, kita, and kitb was
determined by using three biological replicates with three
technical repetitions each. Expression of the target genes
was normalized to glyceraldehyde-3-phosphate dehydrogenase
expression. Standard deviation and normalized expressions
(DDCq) were calculated with CFX Manager software. Primer
sequences and efficiencies (Pfaffl 2001; Vandesompele et al.
2002) are given in Table S2.

Genomic DNA analyses

Genomic DNA was prepared with DNeasy Blood and Tissue
Kit (Qiagen) from trunk tissue of adult guppies. We used
100 ng of DNA per PCR reaction. If not mentioned other-
wise, Advantage 2 Polymerase Mix (Clontech) was used
to carry out the PCRs. Kitainsert was first amplified using

a forward primer in exon 6 (59-TGTCTCTGAACGTTAG
CATGGAG-39) and a reverse primer in exon 7 (59-ACACG
GAGAAGTTCTGCTTTACC-39) of kita (elongation time:
5 min). To test whether kitainsert and the golden phenotype
are associated, we designed PCR assays for kitainsert and
kitawt using Phusion High-Fidelity DNA Polymerase (New
England Biolabs) according to the manufacturer’s instruc-
tions. Details can be found in Table S3. PCR products were
analyzed by gel electrophoresis. PCR products of csf1rawt and
csf1raindelwere purified with 0.2 U/ml FastAP Thermosensitive
Alkaline Phosphatase (Fermentas) and 2 U/ml exonuclease I
(Fermentas) (37� for 15 min, 85� for 15 min) and subse-
quently sequenced. Primer sequences are given in Table S3.

Sequence analysis

Purified plasmid DNA and PCR products were sequenced
with BigDye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems) on a DNA Analyzer ABI Prism 3730XL (Applied
Biosystems). Sequences were analyzed using the Staden
package (Pregap4 v1.5 and Gap4 v4.10; http://staden.
sourceforge.net/) and inspected manually. Exon–intron
structures were predicted according to the gene structure
of kitla, kita, and csf1ra of other teleost species (for species,
see Table S1; exon–intron structure was inferred from http://
www.ensembl.org).

Imaging

Photos of whole embryos or details of adult fish were taken
with a Leica MZFLIII dissecting microscope connected to
a Zeiss AxioCam HRc color camera and processed with
AxioVision Software Release 4.7.2. Photos of fish after birth
and adult fish were taken with a Canon EOS 10D digital
camera using a Canon Macro Photo Lens MP-E 65 mm or
Canon Macro Lens EF 100 mm. Adult males were at least 4
months old to ensure that their pigment pattern was fully
developed. All photos were taken under incident light con-
ditions. Fish were anesthetized in 0.1% (w/v) tricaine (ethyl 3-
aminobenzoate methanesulfonate salt) solution (pH 7) before
imaging. The background of most images was equalized with
Adobe Photoshop software version 12.1; all original images are
available upon request.

Analysis of melanophores

To analyze melanophore pattern development, photos of the
same fish were taken every 3 days (day 1–40 after birth).
Each fish was kept separately in a 1.5-liter tank. Fish were
briefly anesthetized in 0.04% tricaine solution before imag-
ing. Their siblings were kept as control; none of the imaged
fish showed retarded development. Newly arising melano-
phores were detected by comparing consecutive images to
each other.
To analyze the number of melanophores, fish were

immersed in standard E2 solution (Nusslein-Volhard and
Dahm 2002) containing 2.4 mg/ml epinephrine for �5 min
to contract melanosomes. Afterward, fish were anesthetized,
and the right side under the dorsal fin, as well as the complete
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fish, were imaged. Melanophores were counted manually uti-
lizing Adobe Photoshop software version 12.1. The number of
melanophores was plotted against the area in square milli-
meters using Microsoft Excel for Mac 2011 version 14.2.3.

Results

Identification of golden as kita:

We used a candidate gene approach to identify golden at the
molecular level. Based on a comparison with zebrafish pig-
ment pattern mutants, we investigated two potential candi-
dates for golden, kita, and kitla (also called stem cell/steel
factor). Kitla is the ligand for the Kita receptor, and together
the two are required for melanophore migration and sur-
vival in zebrafish (Hultman et al. 2007). While only one
copy of kit and kitl exists in mouse and humans, two copies
of each gene are present within the Teleostei. These copies
can be considered as “ohnologs” since they are derived from
ancestral kit and kitl genes that were duplicated during the
teleost-specific whole-genome duplication event (Mellgren
and Johnson 2005; Braasch et al. 2006; Hultman et al.
2007). Mutations in zebrafish kita, as in golden, greatly
reduce melanophore number (Parichy et al. 1999). Kita is
located on guppy autosomal linkage group 4 (Tripathi et al.
2008). Kitla has not been mapped so far.
To amplify the guppy orthologs of kita and kitla, we used

rapid amplification of cDNA ends (Table S1). Phylogenetic
analyses demonstrated that the obtained full-ORF sequences
are orthologous to kita (GenBank accession no. KC143124)
and kitla (GenBank accession no. KC143125) of other tele-
ost species (Figure 2A and Figure S1). We also identified
a potential guppy kitb ortholog by performing BLAST searches
of zebrafish kitb against a preliminary genome and transcrip-
tome assembly of the guppy (E. Sharma, A. Künstner, B. A.
Fraser, M. Hoffmann, V. A. Kottler, G. Zipprich, D. Weigel,
and C. Dreyer, unpublished data) (Figure 2A) (Altschul et al.
1990). We could not determine whether a guppy kitlb ortho-
log exists, as BLAST yielded no significant results.

Golden mutant guppies did not have any obvious poly-
morphisms in the kitla ORF. In contrast, among cDNAs from
golden fish of the MAC and BDZW1 backgrounds, we found
a total of six different kita splice variants, none of which was
wild type. Most of these variants contained inserts with
a length of 17, 36, or 53 bp and/or lacked parts of or the
complete exon 6 (Figure 2B and Table S4). Exons 7 and 8
were additionally absent in two variants (Figure 2B and
Table S4). In all cases, these alterations cause frameshifts
and truncate the ORF. These kita variants are likely non-
functional since the encoded proteins would lack the trans-
membrane, juxtamembrane, and split kinase domains, all of
which are required for normal protein function (Mol et al.
2003).
Analysis of genomic DNA indicated that kita exon 6 of

golden mutants has an insertion of 1678 bp. This insertion
consists of two potential short exons of 17- and 36-bp length
that surround a 1625-bp intron delineated by 59 GT-AG 39

canonical splice sites (Figure 2C). The splice sites within the
novel intron seem to be recognized by the spliceosome and
lead to mis-splicing of the kita pre-messenger RNAs (mRNAs)
in the golden mutants. Depending on which splice sites are
used, this leads to short insertions or removal of parts of exon

Figure 2 golden is an ortholog of kita. (A) Maximum-parsimony phylo-
genetic tree of kita and kitb ORF sequences. Mouse kit was used as an
outgroup. Bootstrap support values from 100 replicates are shown. Ac-
cession numbers of sequences are the following: guppy kita, KC143124;
medaka (Oryzias latipes) kita, ENSORLT00000000707; mouse (Mus mus-
culus) kit, NM_021099; platyfish (Xiphophorus maculatus) kita,
ENSXMAT00000013579; platyfish kitb, ENSXMAT00000017731; tilapia
(Oreochromis niloticus) kita, ENSONIT00000003735; tilapia kitb,
XM_003452144; zebrafish kita, NM_131053; and zebrafish kitb,
NM_001143918. Guppy kitb sequence is available upon request. (B)
Exons 5–9 of kita cDNAs sequenced from wild-type and golden mutant
[variants (V) 1–6] backgrounds; exons affected by splicing defects are
shown in dark red. Length in amino acids (aa) of the respective predicted
protein is shown on the left. Numbers above wild type refer to the wild-
type kita cDNA sequence deposited at GenBank (KC143124) and demar-
cate the last nucleotide of each exon. (C) Part of kita genomic locus in
golden mutants (kitainsert) (GenBank accession no. KC143126). Numbers
refer to base pairs. Exons (E), introns (I), and inserted sequence are not
drawn to scale.
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6 or of exons 6–8 from the mature transcript. Comparison
with a preliminary genome assembly of the guppy (A. Künstner,
E. Sharma, B. A. Fraser, M. Hoffmann, V. A. Kottler, D. Weigel,
and C. Dreyer, unpublished data) suggests that .50 copies
similar to the 1678-bp insertion, which all include a long ter-
minal repeat of �300 bp, exist (data not shown).
To confirm that kitainsert corresponds to golden, we tested

for genetic linkage. Forty golden mutant fish from the MAC,
BDZW1, and Armatus (ARM) backgrounds were homozy-
gous for kitainsert and complementation test crosses between
the strains demonstrated allelism (Figure S2B and S1C). In
28 wild-type MAC, BDZW1, and ARM individuals, only
kitawt could be detected. This indicates that kitainsert was
likely introduced into several guppy strains by breeders be-
cause of the golden coloration. Next, we investigated whether
kitainsert is also linked to the golden phenotype in a segregat-
ing backcross N2 population: we crossed a golden blue double-
mutant female of the BDZW1 strain to a wild-type male from
the Guanapo river in Trinidad; F1 males were then back-
crossed to produce XBDZW1XBDZW1/XBDZW1YGU N2 individuals.
Forty-six golden and golden blue N2 fish were homozygous
for kitainsert, while 12 wild-type and blue fish were hetero-
zygous kitainsert/kitawt. In addition, we could amplify only
kitainsert variants from pooled cDNA of golden mutant N2
offspring. Taken together, all of these results make it very
likely that guppy golden is allelic to kita.

Identification of blue as csf1ra:

We hypothesized csf1ra to be a candidate for blue, since blue
mutants lack xanthophores as do csf1ra mutants of zebrafish
(Dzwillo 1959; Parichy et al. 2000a). Csf1ra and csf1rb ohno-
logs have been identified in several teleost species (Braasch
et al. 2006). csf1ra has previously been mapped to guppy au-
tosomal linkage group 10 (Tripathi et al. 2008).
Rapid amplification of cDNA ends was used to amplify

the guppy csf1ra ortholog (Table S1). Phylogenetic analyses
showed that the sequenced cDNA is closely related to csf1ra
of other teleost species (Figure 3A). We also identified a pre-
sumptive guppy csf1rb ortholog within a preliminary ge-
nome and transcriptome assembly of the guppy (E. Sharma,
A. Künstner, B. A. Fraser, M. Hoffmann, V. A. Kottler, G. Zipprich,
D. Weigel, and C. Dreyer, unpublished data) (Figure 3A).

Blue mutant guppies carry a complex change in exon 17
of csf1ra, with a deletion of 5 bp and an insertion of 7 bp
(Figure 3B). This indel causes a frameshift and truncates the
ORF. The predicted protein lacks part of the second half of
the split kinase domain, which is required for the activity of
type III receptor tyrosine kinases (Yarden and Ullrich 1988;
Mol et al. 2003). A similar mutation in zebrafish, fmsj4blue,
inactivates csf1ra and leads to loss of xanthophores (Parichy
et al. 2000a).
We used the same cross as above to test for linkage of

csf1ra and blue. Forty-six blue and golden blue N2 fish were
homozygous for csf1raindel, while 12 wild-type and golden
N2 individuals tested were heterozygous csf1raindel/csf1rawt.
Consistent with this, 24 golden blue mutant guppies of the

BDZW1 strain were homozygous for csf1raindel, whereas
only csf1rawt could be identified in 12 wild-type and golden
fish of the same population. Another blue strain obtained
from a hobby breeder, BDZW2, was also homozygous for
the csf1raindel allele, and complementation test crosses to
BDZW1 confirmed allelism (Figure S2A). blue is therefore
likely to be the guppy ortholog of csf1ra, with the same
csf1raindel mutation present in both strains tested.
In zebrafish, csf1ra promotes the migration of the xantho-

phore precursors from the neural crest (Parichy et al.
2000a), and both embryonic and metamorphic xanthophore
populations require csf1ra activity (Parichy and Turner 2003b).
To investigate whether csf1ra mutant guppies entirely lack
xanthophores, we thoroughly inspected 7-month-old golden
blue and blue fish that shared the same grandparents. In con-
trast to a previous study (Dzwillo 1959), we found a small
number of xanthophores in 19 of 20 golden blue mutant indi-
viduals and in 5 of 17 blue mutants (Figure 3, C and C9). Most
of the xanthophores were arranged on scale margins close to
the dorsal fin. We could not detect any xanthophores on the
lateral or ventral side of adult golden blue or blue fish or in
blue embryos and newborns (we here refer to guppies as new-
borns 1–3 days after birth). A small number of xanthophores
can also be found in zebrafish larvae, but not in adults, which
are homozygous for salztl41a or pfeffertm36b, two alleles that fail
to complement fmsj4blue (Maderspacher and Nusslein-Volhard
2003).

Expression of kita, csf1ra, and their ohnologs
in female skin

We could detect kita, kitb, csf1ra, and csf1rb expression in
the skin of adult wild-type, golden, and blue females by
Reverse Transcriptase-PCR (data not shown). To assess
whether Kitb and Csf1rb might be upregulated to compen-
sate for the loss of Kita and Csf1ra function in the golden and
blue mutants, respectively, we investigated the expression
levels of these genes and their a-paralogons by real-time
quantitative PCR. We found that csf1ra expression is down-
regulated in the skin of blue mutant females compared with
the wild type, while there was no significant difference in
the expression levels of csf1rb (Figure S3). In zebrafish,
csf1ra is expressed in the xanthophore, macrophage, and
osteoclast lineages (Parichy et al. 2000a). Our data suggest
that the guppy ortholog of csf1ra is expressed in guppy xan-
thophores, as the almost complete absence of these cells in
blue skin coincides with a low csf1ra expression level. Addi-
tionally, the blue transcript of csf1ramight undergo nonsense-
mediated mRNA decay triggered by the premature
termination stop codon. In contrast, the expression levels
of kita and kitb were not significantly different in golden
skin compared with wild type, respectively (Figure S3),
which suggests that the golden kita transcripts are not sub-
jected to nonsense-mediated decay. In conclusion, no signif-
icantly elevated expression of the kit and csf1r b-paralogons
could be detected by real-time quantitative PCR in the skin
of golden and blue mutants (Figure S3). Yet we cannot
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exclude that less efficient salvage pathways mediated by
Kitb and Csf1rb compensate for the loss of Kita and Csf1ra
function in the mutants based on these findings.

Contribution of distinct melanophore populations
to the adult reticulate pattern

Kita-dependent and -independent metamorphic melano-
phores contribute to the adult pigment pattern in zebrafish
(Parichy et al. 1999; Parichy and Turner 2003b). Additionally,
Kita activity is required for the dispersal of melanoblasts from
the neural crest in zebrafish embryos (Parichy et al. 1999). To
investigate whether temporally and genetically distinct mela-
nophore populations exist in the guppy, we examined golden
mutant guppies at different developmental stages.
First, we explanted wild-type and golden embryos 12

days after last parturition, which corresponds to the middle-
eyed stage, at which the first melanophores differentiate in
the skin above the midbrain in wild-type embryos (Martyn
et al. 2006). golden mutant embryos lacked melanophores
on the head and the trunk at this stage (Figure 4A). Second,
we investigated the development of the pigment pattern
between the 1st and the 40th day after birth by taking pho-
tographs of the same individuals every 3 days.
Immediately after birth, golden mutants had few patches

of peritoneal melanophores, as described previously (Goodrich

et al. 1944; Winge and Ditlevsen 1947). Additionally, we
found some melanophores in their skin and close to the
neural tube (Figure 4B). Four and 7 days after birth, few
scattered melanophores were present close to the dorsal
midline and on the head of golden mutants (Figure 4C and
File S1). After 10 days, melanophores had become more
abundant on the dorsal part of goldenmutant fish and formed
an incipient reticulate pattern, which became quite prominent
after 16 days (Figure 4, D and E). The formation of the re-
ticulate pattern seemed to be completed �22 days after birth
in the mutants (Figure 4, F and G), although we detected
a few newly arising melanophores even in 40-day-old golden
individuals (File S1). This suggests that two melanophore
populations that are temporally and genetically distinct con-
tribute to the adult reticulate pattern: one that develops early
and depends on Kita and one that appears late and is inde-
pendent of Kita. In wild-type fish, melanophores were abun-
dant and distributed over the whole body from the day of
birth onward (Figure 4, B–G).
Adult golden mutant females have about half the number

of skin melanophores of wild-type females (Goodrich et al.
1944) and lack the pigment spot by the anal fin (Figure 1, D
and E). Additionally, the amount of superficial dendritic
melanophores associated with the scales is strongly reduced
(Haskins and Druzba 1938; Goodrich et al. 1944; Winge and

Figure 3 blue is an ortholog of csf1ra. (A) Maximum-
parsimony phylogenetic tree of csf1ra and csf1rb ORF
sequences. Mouse csf1r was used as an outgroup. Bootstrap
support values from 100 replicates are shown. Accession
numbers of sequences are the following: Astatotilapia bur-
toni csf1ra, DQ386648; A. burtoni csf1rb, DQ386647;
fugu (Takifugu rubripes) csf1ra, U63926; fugu csf1rb,
AF411927; guppy csf1ra, KC143122; medaka csf1ra,
ENSORLT00000006111; medaka csf1rb, XM_004076731;
mouse csf1r, NM_001037859; and zebrafish csf1ra,
AF240639. Guppy csf1rb sequence is available upon re-
quest. (B) Partial sequence electropherograms of cDNAs
from wild-type and blue mutant fish, which carry a deletion
of 5 nt in exon 17 (underlined in wild-type sequence) that
simultaneously contains a 7-nt insertion (underlined in blue
sequence). The length of the predicted protein produced by
blue mutants is 794 aa, with the last 12 new. The wild-type
protein is 978 aa long. The first nucleotide of exon 17
corresponds to nucleotide 2392 in the 3084-bp wild-type
csf1ra sequence (GenBank accession numbers of cDNAs:
wild-type, KC143122; blue, KC143123). (C) golden blue
mutant female; white arrow points to detail shown in C9.
(C9) Small patch of xanthophores (X) and melanophore (M)
on the back close to the dorsal fin of the female. Variation
in the number of xanthophores was high in blue and golden
blue mutant fish. Xanthophores were abundant and evenly
distributed in wild-type and golden mutant females (Figure
1, E and F). Bars: (C) 5 mm; (C9) 50 mm.
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Ditlevsen 1947), and black pigment is scarce on the choroid
of the eyes as well as on the anterior head in golden fish,
indicating that these pigmentation traits depend on Kita
(Figure 1, B–E). The arrangement of the melanophores along
the scales seems to be independent of Kita, as the size of the
reticulate pattern (diameter of rhombi) was similar in golden
and wild-type fish (data not shown). Onset of puberty in golden
and wild-type males was observed between day 19 and 28 (File
S1); the development of the reticulate pattern in golden males
was similar to that of golden females (File S1).

csf1ra-independent melanophore populations

In zebrafish, early kita-dependent metamorphic melanophores
are independent of Csf1ra, whereas late-differentiating kita-
independent melanophores require Csf1ra and Ednrb1a activ-
ity for their differentiation (Parichy et al. 2000a,b; Parichy and
Turner 2003b). kita csf1ra double-mutant zebrafish lack al-
most all melanophores because of the strong additive effect
of mutations in these two genes (Parichy et al. 2000a). Since
we identified a kita-dependent and -independent melano-
phore population in the guppy, we asked whether any of them
requires csf1ra.
Inspection of embryos and newborns revealed no major

differences between the blue mutant and wild-type melano-
phore patterns (Figure S4A), although we cannot exclude
that a small subset of the early appearing melanophores

depends on Csf1ra signaling since we could not count these
early cells (see Figure S4 legend). To investigate whether
the late-differentiating melanophores depend on csf1ra, we
compared an area below the dorsal fin in golden and golden
blue adult females (Figure S4, E and E9). We found that both
single- and double-mutant fish have similar numbers of mel-
anophores per area (Figure S4F). Therefore, unlike in zebra-
fish, mutations in kita and csf1ra have no additive effect on
the reticulate pattern of the guppy, which is further sup-
ported by the observation that the reticulate pattern of blue
mutant guppies develops as in the wild type until at least
day 40 after birth (Figure S4, A–D; File S1). Consequently,
the late-appearing melanophores of the guppy reticulate pat-
tern are independent of both Kita and Csf1ra signaling.

Requirement of Kita and Csf1ra signaling
for male-specific ornaments

Guppy male-specific pigmentation patterns vary tremen-
dously within and among populations, yet the within-
population variance decreases considerably with inbreeding
(personal observation). To investigate the roles of Kita and
Csf1ra in male color pattern formation, we compared the
ornamental patterns of related wild-type and mutant males.
We crossed golden blue mutant BDZW1 females with wild-
type males from the inbred wild-derived Cumaná (CUM),
Guanapo (GU), Quare6 family II 215-3 (QUII), and Quare6

Figure 4 Melanophore pattern development in BDZW1
wild-type and golden mutant fish. (A) Embryos explanted
12 days after last parturition (dap). Yolk sacs were re-
moved and embryos were fixed overnight at 5� in 4%
paraformaldehyde and 1% dimethyl sulfoxide. Insets: Dor-
sal aspect of the midbrain region with individual melano-
phores apparent in wild type. (B, C, and G) Lateral, (D–F)
dorsal aspects of the same females over a 3-week time
course (days are after birth). All images taken, including
the ones of males, can be found in File S1. Bars: (A) 500
mm, (insets) 250 mm; (B–G) 1 mm.
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(QU) strains. The phenotypically wild-type F1 males were
backcrossed to golden blue mutant BDZW1 females to pro-
duce a N2 generation (Figure 5). As a result of the back-
cross, the grandfather’s Y chromosome was combined with
an X chromosome of the BDZW1 strain in all N2 males.
Since recombination frequency of sex chromosomes is com-
paratively low in male meiosis (Tripathi et al. 2009a), this
experimental design minimized the amount of pattern vari-
ation caused by X chromosomes derived from different strains,
thereby allowing us to study the influence of the mutant au-
tosomal genes on the pattern directed by a given Y chromo-
some. The number of male offspring derived from each cross is
given in Table 1, and all images of the backcrosses can be
found in File S2.
For our analysis, we focused on the most prevalent

characteristic traits of each cross, as seen on the grandfather
and its wild-type male offspring (Figure 6, Figure 7, Figure 8
and Figure 9; Figure S5). Furthermore, we tried to homolo-
gize the male ornaments of the different strains based on
their color, shape, and approximate positions. A summary of
all traits and generalization of our results is shown in Figure
9, which should facilitate tracking of single traits within the
complex male patterns. We are, however, aware of the fact
that superficially similar-looking traits need neither be di-
rected by the same developmental pathways nor be derived
from the same putative cell precursor pool.
Regardless of the origin of the Y chromosome, blue mu-

tant N2 males lacked all orange color traits, indicating that
Csf1ra activity is also required for the dispersal or differen-
tiation of male-specific xanthophores (Figure 6, Figure 7,
and Figure 9). In addition, the location and shape of the black
male-specific ornaments were modified in the mutants.
Previous studies of the male-specific color pattern of the

Cumaná guppy have shown that the blue iridescent spot on
the trunk close to the dorsal fin, the combination of black
and orange on the dorsal fin, and the ventral black lining of
the caudal peduncle constitute strictly Y-linked traits (Figure
6A and Figure 9) (Tripathi et al. 2008, 2009a,b). The male-
specific ventral black lining is more pronounced than the
ventral black stripe of both sexes described in Figure 1F.
Typically, two thicker black horizontal stripes, an anterior
and a posterior one, are present on the trunk of Cumaná
males (Figure 6A and Figure 9). The orange-black lining of
the tail fin, which is often more pronounced on the ventral
margin, is another male-specific Cumaná trait (Figure 6A
and Figure 9). The prominent ventral black spot on the tail
fin of many Cumaná males (Figure 6A and Figure 9; Figure
S5) is very likely directed by one or more dominant factors
located in the pseudo-autosomal region of the Cumaná sex
chromosomes (Tripathi et al. 2008).
Most Cumaná male-specific traits were fully developed in

the grandfather, in all F1, and in all wild-type N2 males
(Figure 6, A–C; for the ventral black spot on the tail fin,
see Figure S5). Of the golden mutant N2 males, all but
one showed all of these traits as well (Figure 6D and Figure
9; the pattern of the one exceptional individual might be the

outcome of a rare recombination event). Comparisons be-
tween wild-type and golden males revealed that (i) golden
mutants had less black on the dorsal fin; (ii) the ventral
black lining of the caudal peduncle was shifted upward and
was often discontinuous in golden fish; (iii) the posterior
black stripe of golden mutants was shifted downward and
was often discontinuous (Figure 6D and Figure 9). In addi-
tion, a concise posterior orange spot on the caudal peduncle
was absent in 94% of the golden mutants (Figure 6D). The
anterior black stripe, the anterior orange spot, the blue irides-
cent spot, the orange-black lining, and the ventral black spot
on the tail fin were not obviously changed by the mutation in
kita (Figure 6D and Figure 9). The blue mutant N2 males not
only lacked all orange traits, but also lost the black compo-
nents of the orange-black lining of the tail fin, whereas the
ventral black spot persisted (Figure 6E and Figure 9). Other
defects of the blue mutant fish were the following: (i) the
anterior black stripe was absent or very diffuse; (ii) the pos-
terior black stripe was shifted downward and seemed more
diffuse, and small incoherent patches of melanophores were
often found on the dorsal trunk; (iii) in only 43% of the blue
males a comparatively small blue iridescent spot was visible
close to the dorsal fin (Figure 6E and Figure 9). The pheno-
type of the golden blue mutant N2 males resembled the blue
mutant fish, but they showed fewer melanophores on the
dorsal fin and trunk (Figure 6F).
The pattern of the Guanapo grandfather was character-

ized by several black crescents forming a labyrinthine pattern
in proximity to the gonopodium (Figure 6G and Figure 9).
The melanophores on the proximal and distal parts of the tail
fin were concentrated on the ventral half of the fin, and an

Figure 5 Crossing scheme that was used in the case of the CUM, GU,
QUII, and QU strains. The color patterns of the wild-type, golden, blue,
and golden blue N2 males were analyzed. blue (b) and golden (g) are
located on different autosomes and can therefore recombine freely. “B”
and “G” indicate wild-type alleles. BDZW1 and MAC males were crossed
with females of the same strain (for details see Figure 8).
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orange spot was located close by (Figure 6G and Figure 9).
The anterior and posterior black horizontal stripes, the ven-
tral black lining of the caudal peduncle, and the anterior and
posterior orange spots on the trunk appeared weaker com-
pared with the Cumaná male (Figure 6G). The posterior black
stripe approximately demarcated the lateral midline in the
Guanapo grandfather.
All of the F1 and wild-type N2 males showed the Gua-

napo traits described above, but only 41% of the wild-type
males had an anterior orange spot (Figure 6, H and I). Fur-
thermore, the F1 and wild-type N2 males tended to have
more complex black labyrinthine ornaments close to the
gonopodium than the Guanapo grandfather, suggesting that
cofactors derived from the autosomes or X chromosome of
the BDZW1 strain modulate this trait (Figure 6, H and I).
The black pigment pattern of the golden mutant N2 males
was substantially changed in the following ways: (i) black
pigment in the dorsal fin was reduced; (ii) the labyrinthine
black ornaments close to the gonopodium were mostly lost;
(iii) black pigment in the proximal part of the tail fin was
concentrated dorsally; (iv) anterior and posterior black stripes
were often discontinuous; and (v) the ventral black lining was
shifted upward (Figure 6J and Figure 9). The orange orna-
ments persisted, and an anterior orange spot was found in
32% of the golden N2 males (Figure 6J and Figure 9). The
bluemutant N2 males had an even more severe phenotype: (i)
only one to two round black spots were present on the trunk
that were in most individuals not located near the gonopo-
dium; (ii) as in golden N2, the black in the proximal part of
the tail fin was located dorsally, and several males had black
tail-fin margins; and (iii) the anterior black stripe was absent
or diffuse (Figure 6K and Figure 9). The golden blue mutant
N2 males had fewer melanophores on the fins and trunk than
the blue mutants (Figure 6L).
The pigmentation traits of the Quare6 family II 215-3

grandfather are shown in Figure 7A. Compared with the
Cumaná grandfather, the black pigment on the dorsal fin
and the ventral black lining of the caudal peduncle of the
Quare6 family II 215-3 grandfather appeared weak. It had
a black spot associated with its anterior black horizontal
stripe, which we found in 83% of its wild-type and in 56%
of its golden N2 male offspring (Figure 7, A–D). We found

that golden mutant N2 males of this backcross had (i) less
black on the dorsal fin, (ii) a more diffuse posterior black
horizontal stripe, (iii) an upwardly shifted or no ventral
black lining of the caudal peduncle, and (iv) a slightly up-
wardly shifted central black spot (Figure 7D and Figure 9).
In bluemutant N2 males, black ornaments on the trunk were
mostly reduced to a few spots, and in some individuals a spot
appeared at an unusual position just behind the operculum
(Figure 7E).
Fewer black ornaments on the dorsal fin were also observed

in golden mutant males of the highly inbred BDZW1 and Mac-
ulatus strains (Figure 8). The black spot in the dorsal fin of the
Maculatus strain is considered to be a strictly Y-linked trait
(Winge 1922), which illustrates that the expression of such
traits nevertheless depends on autosomal cofactors. Wild-type
males of the BDZW1 strain have a creamy-black margin of the
tail fin and a prominent black-and-white eye spot on the caudal
peduncle (Figure 8, A–C, and Figure 9). The colors of the
creamy-black tail-fin margin were intermingled or switched
in golden mutant BDZW1 males, and, instead of the eye spot,
they had black spots at a more dorsal position on the trunk or
ventral position on the tail fin (Figure 8, D–F, and Figure 9;
occasionally two spots were present). Hence, the position of
the eye spot is more variable in golden mutant BDZW1 males
compared with the wild type. The posterior black horizontal
stripe of golden BDZW1 males was often diffuse (Figure 8, D–
F, and Figure 9), while it was curved, absent, or diffuse in
golden Maculatus males (Figure 8, G, K, and L, respectively,
and Figure 9). The ventral black lining of the caudal peduncle
was shifted upward (BDZW1, Figure 8, D–F, and Figure 9) or
absent (MAC, Figure 8, G, K, and L, and Figure 9). golden
mutant Maculatus males showed dorsal or ventral black spots
on the tail fin as well, which were only rarely seen in wild-type
males (Figure 8, G–L).

Discussion

How the extreme variation in colorful ornaments satisfies the
conflicting demands of predator evasion and mate attraction
in male guppies has fascinated scientists for almost a century
(Winge 1922, 1927; Lindholm and Breden 2002; Magurran
2005). Importantly, despite the extreme interindividual differ-
ences, many color traits are highly heritable, and sons greatly
resemble their fathers (Winge 1922, 1927; Dzwillo 1959;
Lindholm and Breden 2002). A better understanding of these
issues requires better knowledge of the ontogeny of guppy
pigmentation. This has unfortunately been challenging, due
to the intrinsic difficulties of working with a livebearer for
which many standard techniques that can be utilized in model
organisms are not available. Here, we have exploited the
power of forward genetics to advance the understanding of
pigmentation in guppies. We have discovered that mutations
in the two type III receptor tyrosine kinase genes kita and
csf1ra underlie the guppy golden and blue phenotype, re-
spectively, and have studied the effects of the mutations
on both the reticulate pattern shared by females and males

Table 1 Male offspring obtained from each cross

Male parent F1 N2

Wild type Golden Blue Golden blue
Cumaná (CUM) 55 39 33a 52 53
Guanapo (GU) 30 24 25 18 21
Quare6 family II
215-3 (QUII)

34 16 16 11 10

Quare6 (QU) 43 17 18 25 14
F2

Wild type Golden
BDZW1 24 56 18
Maculatus (MAC) 12 30 13
a Actual number was 34, but one male had a BDZW1 instead of a CUM-like color
pattern (see text).
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and the male-specific ornaments. We found that the muta-
tions in kita and csf1ra have strong effects on the expression
of male-specific color patterns. In general, the mutation in
kita made none or only minor changes in orange ornaments
and affected the male melanophore pattern more subtly and
in a more reproducible manner than the mutation in csf1ra.
The salient feature of the csf1ra mutant males was the ab-
sence of all orange traits, with concomitant severe changes
in black ornaments.
In many teleost species, including zebrafish, medaka

(Oryzias latipes), stickleback (Gasterosteus aculeatus), and
Japanese flounder (Paralichthys olivaceus), larvae and adults
differ in their pigmentation patterns (Johnson et al. 1995;
Parichy and Turner 2003a,b; Lynn Lamoreux et al. 2005;
Kelsh et al. 2009; Yamada et al. 2010; Budi et al. 2011;
Greenwood et al. 2012). Our study shows that the camou-
flage reticulate pattern of newborn guppies is not yet com-
pletely developed and that it is fully elaborated only during
the first month after birth. Absence of most melanophores in
embryonic and newborn goldenmutants suggests that Kita is
essential for the differentiation of an early melanophore
population. A second melanophore population arises after
birth and remains restricted to the dorsal half of the body in
golden mutant fish, indicating that Kita signaling is not re-
quired for the differentiation of this melanophore subpopu-
lation, yet that it might be essential for its proper migration.
Alternatively, the migratory behavior of this subpopulation
might be normal in goldenmutants, with the later-differentiating
melanophores enhancing the camouflage in wild-type
fish on the dorsal side only. This could be investigated in

the future by selective labeling and tracing of the kita-
independent population or by finding another mutation that
eliminates this population. Independently of these details,
we conclude that the guppy has an early-appearing kita-
dependent and a later-developing partially or fully kita-
independent melanophore population and that both popu-
lations are required to form the non-sex-specific reticulate
pattern. Whole-mount in situ hybridization experiments
turned out to be extremely difficult in guppy embryos due to
their size and very low permeability (U. Martyn, and C.
Dreyer, unpublished data), but could potentially help to de-
termine the developmental time point at which the first
melanophores differentiate in guppy embryos, especially as
the melanization of these melanophores might be delayed in
a livebearing fish like the guppy. The tracking of putative
pigment cell precursors for adult ornaments, however, would
require analysis of serial sections of specimens from early
embryogenesis to puberty.
Our study suggests that Kita functions have at least

partially been conserved across teleosts. The last common
ancestor of zebrafish and guppies lived probably .300 mil-
lion years ago (Kasahara et al. 2007); nevertheless, the adult
pigment pattern of both species depends on an early kita-
dependent and a late kita-independent melanophore popu-
lation, and loss-of-function mutations in kita decrease the
amount of melanophores, including scale melanophores, in
both species (Haskins and Druzba 1938; Goodrich et al.
1944; Winge and Ditlevsen 1947; Parichy et al. 1999;
Parichy et al. 2000a). Yet the teleost-specific whole-genome
duplication likely also facilitated subfunctionalization and

Figure 6 Ornaments in golden and blue mutant males
from the Cumaná and Guanapo backgrounds. (A–F) Cross
between a golden bluemutant BDZW1 female and a wild-
type Cumaná male (A). Representative F1 (B) and N2 males
with different phenotypes (C–F) are shown. Cumaná traits
are highlighted in A. White arrows in E show incoherent
patches of melanophores described in the text. (G–L)
Cross between a golden blue mutant BDZW1 female
and a wild-type Guanapo male from a F5 Guanapo labo-
ratory inbreeding population (G). Representative F1 (H)
and N2 males with different phenotypes (I–L) are shown.
Guanapo traits are highlighted in G and H. I–L lack the
anterior orange spot. Orange arrows in K show the black
margins of the tail fin described in the text. Traits are
labeled with numbers that correspond with numbers used
in Figure 9: 1, 2, and 3: anterior, central, and posterior
orange spot; 4 and 5: anterior and posterior black hori-
zontal stripes; 6: ventral black lining of caudal peduncle;
7: black pigment on dorsal fin (in CUM in combination
with orange); 8: central black spot near gonopodium; 9:
blue iridescent spot; 10: orange-black lining of tail fin; 11:
ventral black spot on tail fin; 12: black crescents forming
a labyrinthine pattern close to the gonopodium; and 13:
orange spot and ventrally concentrated melanophores on
tail fin. N2 males shown for each backcross are siblings or
cousins. All photos taken from the backcrosses can be
found in File S1. Bottom left in each panel: generation
(P, grandfather; F1; N2) and phenotype. Top right in each
panel: Y chromosome origin. Bars: 2 mm.
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phenotypic diversification, as revealed in different Danio
species (Braasch et al. 2006; Mills et al. 2007).
An early xanthophore population contributes as regularly

spaced cells to the reticulate pattern of guppy juveniles and
adults (Figure 1, E and F). Our study shows that these non-
sex-specific xanthophores depend on Csf1ra signaling. The
presence of isolated dorsal clusters of xanthophores in blue
mutant fish suggests that Csf1ra activity might not be abso-
lutely required for differentiation, but for proliferation and
dispersal of guppy xanthoblasts. We do not know yet when
during ontogeny csf1ra acts and whether different xantho-
phore populations exist, but we showed that Csf1ra is not
required for the formation of the non-sex-specific black re-
ticulate pattern of the guppy. In contrast, csf1ra mutant
zebrafish cannot form a complete non-sex-specific stripe pat-
tern (Parichy et al. 2000a; Parichy and Turner 2003b).
Guppies are conspicuously sexually dimorphic in their

pigmentation, and mate-choice experiments have demon-
strated that females prefer males with pronounced orange
and blue iridescent ornamentation (Endler 1983; Kodric-
Brown 1985). Males are also able to intensify their black
ornaments while courting (Endler 1983). Crosses between
golden blue mutant females with male guppies of geograph-
ically and genetically diverse origins (Willing et al. 2010)
gave us the opportunity to study the influence of Kita and
Csf1ra loss-of-function on the diverse male-specific patterns
of the guppy. The males originated from West Trinidad
(Guanapo), East Trinidad (Quare), and Venezuela (Cumaná).
The latter two strains had previously been used for genetic
mapping and QTL analysis (Tripathi et al. 2009b). Our study
demonstrates that the male-specific xanthophores of the
guppy, whose development is induced during puberty like
the one of male-specific melanophores and iridophores, also
depend on csf1ra and that loss of Csf1ra and Kita function
substantially changes the formation of male ornaments.
Comparison between wild-type and golden males showed

that black stripes and spots appeared ectopically in golden
mutants, although in a manner that varied between popula-
tions and individuals; e.g., the ventral melanophores on the
Guanapo tail fin were shifted to a more dorsal position, and

goldenmutant Maculatus males had novel black spots on their
tail fins. In the BDZW1 strain, the arrangement of the creamy-
black tail-fin margin, which might involve iridophores (per-
sonal observation), appeared reversed. In contrast, loss of
Kita function did not change the dorso-ventral arrangement
of the orange-black lining of the tail fin of golden N2 from the
Cumaná cross. Interestingly, the marginal black components
of the Cumaná tail-fin ornaments were lost together with the
orange in blue mutants, whereas the major black spot on the
tail fin persisted. In zebrafish, kita is expressed in melano-
blasts, while csf1ra acts nonautonomously via short- and
long-range xanthophore–melanophore interactions to pro-
mote melanophore migration and death during adult stripe
formation (Parichy et al. 1999; Parichy and Turner 2003b;
Nakamasu et al. 2009; Inaba et al. 2012). As transplantation
experiments are not yet possible in the guppy, we could not
determine whether Kita and Csf1ra act cell-autonomously or
non-cell-autonomously during male pattern formation. How-
ever, as downregulation of csf1ra expression coincides with
the absence of almost all xanthophores in the skin of blue
fish, it is likely that csf1ra acts cell-autonomously within
guppy xanthophores. Kita is an early melanoblast marker
not only in zebrafish, but also in mice, and therefore most
likely is expressed in guppy melanophores as well (Kelsh et al.
2009). Our observations suggest that some pattern elements
in guppy males depend on coordinate expression of different
cell types and that the formation of some of these pattern
elements requires interactions between, or joint contribution
from, different cell types. For example, xanthophore–melanophore
interactions might underlie the formation of the orange-
black lining of the tail fin of Cumaná males, but not the
development of the black spot on the tail fin. Kita might
directly affect the migration and/or survival of a subset of
male melanophores. Terminal deoxynucleotidyl transfer-
ase-dUTP Nick End Labeling (TUNEL) assays could reveal
whether cell apoptosis plays a role during male pattern
formation in the guppy.
Comparisons between wild-type and blue offspring of the

backcrosses suggest that compact black spots can form in
absence of Csf1ra, most probably without interactions between

Figure 7 Ornaments in golden and blue mutant males
from the Quare6 family II 215-3 background. Cross be-
tween a golden blue mutant BDZW1 female and a wild-
type Quare6 family II 215-3 male (A). Representative F1 (B)
and N2 males with different phenotypes (C–F) are shown.
Quare traits are highlighted in A. Yellow arrow points to
black spot associated with anterior black horizontal stripe.
Blue arrow points to black spot close to the tail fin that
was not included in the analysis as its location was highly
variable in wild-type fish. The green arrowhead in E shows
a black spot close to the operculum described in the text.
Traits are labeled with numbers corresponding with num-
bers used in Figure 6 and Figure 9. N2 males shown are
cousins. All photos from this backcross and from the
Quare6 backcross that was very similar regarding the male
patterns can be found in File S2. Bottom left: generation
(P, grandfather; F1; N2) and phenotype. Bars: 2 mm.
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xanthophores and melanophores, yet the final positions of
these spots appear unpredictable. The labyrinthine orna-
ments close to the gonopodium in Guanapo males provide
an example of interacting genetic cofactors in that backcross
and potentially also of interactions between different cell
types. Compared with wild type, these ornaments were
greatly reduced in complexity in golden mutant N2 and lost
in blue and golden blue mutant N2. Since only faint yellow
pigment is seen in this area in wild-type fish, the contribu-
tion of xanthophores and their interactions is here hard to
assess. The loss of the labyrinthine ornaments in golden mu-
tant N2 might be explained by a reduced migratory potential
of the kita-independent melanophores or their precursors in
golden N2. We can, however, not exclude that a kita-dependent
subpopulation of late melanophores contributes to this complex
trait in wild-type fish.

golden blue double-mutant guppies from four different
backcrosses always had less total black than blue mutants,
but much more than zebrafish kita csf1ra double mutants
(Parichy 2006). This might reflect different requirements for
Kita and Csf1ra signaling: while xanthophores enhance the
survival of adult stripe melanophores in zebrafish (Parichy
and Turner 2003b), the survival of male hormone-induced
melanophores in the guppy might not require xanthophores;
yet the ability of these melanophores to form some of the
complex traits might depend on interactions with these
cells.
Taken together, we conclude that at least three tempo-

rally and genetically distinct melanophore populations occur
in the guppy: first, a kita-dependent population differentiat-

ing during embryogenesis; second, a partially or fully kita-
independent population mostly differentiating after birth;
and third, a male-specific melanophore population whose
differentiation, migration, and proliferation might be in-
duced by testosterone during puberty. It remains to be re-
solved where the precursors of these male-specific pigment
cells reside and whether they might be derived from the
same pool as the late non-sex-specific kita-independent mel-
anophores. Only a few recent publications have addressed
the routes and fates of pigment cell precursor pools destined
for delayed differentiation in other vertebrates (Watanabe
et al. 2008; Adameyko et al. 2009; Yamada et al. 2010; Budi
et al. 2011). While the embryonic and early larval pigment
pattern of zebrafish is formed by melanoblasts that are
derived directly from the neural crest, later-appearing meta-
morphic melanophores of zebrafish develop from post-
embryonic extrahypodermal pigment cell precursors, which
migrate to the hypodermis during pigment pattern meta-
morphosis (Budi et al. 2011). These precursors are associ-
ated with nerves and depend on Erbb3b and Tubulin a

8-like 3a signaling (Budi et al. 2011). Improvement of
in vitro culture methods of guppy embryos (Martyn et al.
2006) may facilitate the ability to treat, and to subsequently
raise, explanted guppy embryos with an ErbB inhibitor,
which might reveal whether ErbB signaling is required to
establish melanophore stem cells in the guppy as well.
In stickleback, regulatory mutations in kitla are associ-

ated with the light coloration of gills and ventral skin in
several freshwater populations (Miller et al. 2007). This
indicates that differential distribution of Kitla can lead to

Figure 8 Ornaments in golden mutant males from the
BDZW1 and Maculatus backgrounds. (A–F) Cross be-
tween a golden mutant BDZW1 female and a wild-type
BDZW1 male (A). F1 siblings were crossed to produce a F2
generation. Representative F1 (B) and F2 males (C–F) are
shown. BDZW1 traits are highlighted in A and B. All wild-
type F2 and 92% of the wild-type F1 males had a central
black-and-white eye spot on the caudal peduncle. Instead
of this eye spot, one-half of the golden mutant F2 males
had a spot located more dorsally on the trunk, while the
other half had a spot at a more ventral position, mostly on
the tail fin (yellow arrowheads in D and E). Three males
had two spots (yellow arrowheads in F). (G–L) Cross be-
tween a wild-type Maculatus female and a goldenmutant
Maculatus male (G). F1 siblings were crossed to produce
a F2 generation. Representative F1 (H and I) and F2 males
with different phenotypes (J–L) are shown. Maculatus
traits are highlighted in H. Red arrowheads in (G, I, K,
and L) indicate untypical black spots on the tail fin. Only
one of the F1 males showed such a black spot (I). It was
not seen in any of the wild-type F2 males, but it was
present in 85% of the golden mutant F2 males (K and
L). Traits are labeled with numbers corresponding with
numbers in Figure 6 and Figure 9. Additional traits to
those shown in Figure 6: 14, black-and-white eye spot;
15, creamy-black margin of tail fin. F2 males shown for
each cross are siblings or cousins. Bottom left: generation
(P, grandfather; F1; F2) and phenotype. Top right: Y chro-
mosome origin. Bars: 2 mm.
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distinct pigmentation patterns in natural populations. In
contrast to the receptor Kita, the functions of Csf1ra seem
to be less conserved even among species in the genus Danio,
as indicated by limited complementation of csf1ra loss of
function in interspecies hybrids (Quigley et al. 2005). Fur-
thermore, a study with haplochromine cichlids has sug-
gested that positive selection has acted on csf1ra, which is
expressed in the yellow egg spots of these fish (Salzburger
et al. 2007). QTL mapping with higher marker density may
reveal whether or not Kita and Csf1ra, and/or their ligands,
also affect natural variation of guppy ornaments. For this
purpose, we are generating a denser genetic map of the guppy
based on Restriction-site Associated DNA (RAD) markers.
Combined with the ongoing whole-genome sequencing, these

experiments will further enhance our efforts to unravel the
network of genetic factors that cooperatively maintain the
highly complex male ornaments of the guppy.
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