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Abstract

Brain state classification for communication and control has been well established in the

area of brain-computer interfaces (BCIs) over the last decades. BCIs are communication

systems in which muscles or neural pathways are not passed for sending messages or com-

mands to the external world. The goal of the present work is to investigate the feasibility of

automatic affect recognition in the electroencephalogram (EEG) in different populations

with a focus on feature validation and machine learning in order to augment BCIs by the

ability to identify and communicate the users’ inner affective state.

Currently, affect recognition studies conducted on EEG data are hardly comparable due

to variable parameters in study design, machine learning approaches, and performance

measures. Class size is identified as a main constraining factor.

The present work introduces a machine learning framework based on common machine

learning practices suitable for affect recognition in the EEG. Two in-depth studies on affect

induction and classification are presented.

In the first study, an auditory emotion induction paradigm that easily translates to a clinical

population is introduced.The paradigm is designed with a focus on maximizing trial size

while avoiding habituation. Based on stimulus valence, three affective states are defined

(unpleasant, neutral, and pleasant). The paradigm is applied in a healthy and a population

of individuals with cerebral palsy. The late positive potential is identified in the healthy

population. Significant above chance group classification is achieved using time domain

features for unpleasant vs. pleasant conditions.

In the second study, data of an emotion induction paradigm for preverbal infants are inves-

tigated. In infant-parent interaction, different emotions are induced in 6-month-old infants.

Employing the machine learning framework, cross-participant classification of pleasant vs.

neutral conditions is significantly above chance with balanced training data.

Furthermore, the machine learning framework is applied to the publicly available physi-

ological affect dataset DEAP for comparison of results. Based on spectral frequency fea-

tures, the framework introduced outperforms results published by the authors of DEAP.

The results strengthen the vision of the feasibility of a BCI that is able to identify and

communicate the users’ affective state.
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Zusammenfassung

Gehirn-Computer-Schnittstellen (GCS) sind Kommunikationssysteme, die es Nutzern er-

lauben Nachrichten oder Befehle an die Umwelt zu senden, ohne dabei neurale Pfade oder

Muskeln zu nutzen. Die Klassifikation von Gehirnzuständen im Elektroenzephalogramm

(EEG) durch maschinelles Lernen ist über die letzten Jahrzehnte zunehmend verbessert

worden. Die vorliegende Arbeit hat zum Ziel zu untersuchen, ob GCS durch die Fähigkeit

ergänzt werden können automatisch den affektiven Zustand der Nutzer zu identifizieren

und zu kommunizieren. Derzeit sind Studien über Affekterkennung im EEG nur schwer

vergleichbar, da verschiedene Parameter wie Studiendesign, maschinelle Lernansätze und

Performanzmaße sich stark unterscheiden. Die Klassengröße ist als ein Schlüsselparame-

ter identifiziert. Die vorliegende Arbeit stellt ein Rahmenwerk für Affekterkennung in EEG

vor, welches auf gängigen Praktiken im maschinellen Lernen basiert. Es werden zwei Stu-

dien zu Affektinduktion und Klassifikation im EEG vorgestellt. Die erste Studie beschreibt

ein auditorisches Paradigma zur Emotionsinduktion, welches sich leicht auf eine klinische

Population übertragen lässt. Das Paradigma ist so gearbeitet, so dass die Anzahl an ver-

fügbaren Trials maximiert ist und gleichzeitig Habituation zu vermeiden. Basierend auf

der Valenz der Stimuli werden drei affektive Zustände definiert (unangenehm, neutral und

angenehm). Das Paradigma wird in einer gesunden und einer Population mit Zerebral-

parese angewendet. Das späte positive Potential ist als Korrelat von Affekt in der gesun-

den Population identifiziert. Klassifikationsergebnisse zwischen unangenehmen und an-

genehmen Zuständen sind signifikant über Zufall mit Merkmalen aus der Zeitreihe, wenn

man die Gruppe betrachtet. Die zweite Studie untersucht die EEG-daten von präverbalen

Kleinkindern von sechs Monaten aufgenommen während sie mit einem Elternteil inter-

agieren. Gemäß dem Rahmenwerk konnte erfolgreich zwischen angenehmen und neutralen

Zuständen klassifiziert werden und das in einem cross-subject Design mit balancierten

Trainingsdaten. Darüber hinaus wird das Rahmenwerk auf den veröffentlichten DEAP

Datensatz mit physiologischen Daten affektiver Zustände angewendet. Basierend auf spek-

tralen Frequenz-domänen Merkmalen zeigt die vorgestellte Methodik höhere Performanz

als mit der bereits veröffentlichten. Die Ergebnisse stärken die Vision, dass ein GCS fähig

ist die affektiven Zustände von Nutzern zu identifizieren und zu kommunizieren.
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“Human behavior flows from three main sources:
desire, emotion, and knowledge.”

Plato (428 – 328 BCE)

1
Introduction

Human behavior is driven by constant interaction. Desire, emotion, and knowledge emerge

while we as individuals interact with the surrounding world, other individuals, or our inner

selves. For the interaction between humans, communication is indubitably most vital. Dur-

ing the course of human existence, we developed a plethora of verbal and non-verbal means

of communication. In the beginning nonetheless, the fountain of human behavior and in-

teraction was built upon emotions. Evolution provided our ancestors with the abilities to

swiftly express, recognise, and evaluate emotions in order to adjust their immediate behav-

ior accordingly. These abilities may seem somewhat hidden in everyday life nowadays, yet

they continue to greatly guide our behavior, interaction, and therefore communication.

1.1. Motivation

Affective states (i.e. emotions, feelings, and moods) are key in personal and interpersonal

everyday life. Expressing and understanding emotions not only influences cognitive pro-

cesses and therefore behavior, yet also secures and maintains individual well-being on a

basal level. Classic human-computer interaction (HCI), as the interaction between humans

and computing systems, lacks affect as a communication channel, to date. The relatively

young field of affective computing seeks to also incorporate psychophysiological informa-

tion about the inner state of an individual into classic HCI. This interdisciplinary endeavour
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1. Introduction

requires knowledge from many domains mainly consisting of computer science, psychol-

ogy, and neuroscience.

Besides the commonly known possibilities classic HCI offers for healthy individuals to

date, the development in providing disabled or paralyzed individuals a communication

system has progressed over the last decades. Systems that do not require muscles or neural

pathways to send messages or commands to the external world can be described as brain-

computer interface (BCI) systems. Clinically, disabled or paralyzed individuals profit from

novel therapeutic or rehabilitative measures offered by these systems. In order to commu-

nicate with families or caretakers, paralyzed individuals without verbal communication can

send messages to a computer screen solely by their brain activity and a BCI system. Fur-

thermore, partially or entirely paralyzed individuals are able to control orthoses or robotic

arms with such systems.

BCI systems for communication have first been established during the ’80s of the last cen-

tury [1, 2]. Until now, advancements in their efficiency and reliability have been achieved.

Nonetheless, communication by BCI systems can still be categorised as classic HCI. Re-

search shows that affective states and communication are vital in personal and interpersonal

life especially during development and in a population where communication is impaired.

Thus, the development of BCI systems that are able to recognise and communicate indi-

viduals’ affective states is of high clinical interest.

Furthermore, various commercially exploitable applications regarding affect recognition in

healthy individuals in modern computing and communication systems can be thought of.

1.2. Problem Statement

Current state-of-the-art computing or communication systems lack the ability to commu-

nicate their users’ affect based on their brain activity. Especially a motor-impaired patient

population could benefit from affect recognition systems, which has not yet been targeted in

research. To date, there are ambiguous results regarding affect recognition even in healthy.

Therefore, experimental paradigms, that easily translate to patient populations, have to

be designed and executed to record electrophysiological data that contain affective infor-

mation for analysis. A sufficiently large trial size is a main constraining factor in affect

induction and classification studies. Psychophysiological correlates of affect have to be in-

vestigated and confirmed in the data recorded, before classification. Once validated, only

discriminating features of affect must be selected and subjected to classification. Finally,

valid machine learning approaches have to be applied to train and test models that are able

to predict the users’ affective state.

6



1.3. Thesis Structure

1.3. Thesis Structure

To approach the problems outlined, this doctoral thesis is structured as follows.

Chapter 2 constitutes the theoretical background regarding models and electrophysiolog-

ical correlates of affect, the idea of affective computing, an overview of brain-computer

interfaces, the state-of-the-art in affect recognition, as well as the employed classification

apparatus including feature selection and extraction as well as performance analysis strate-

gies.

Chapter 3 addresses the design of an auditory emotion induction paradigm with a focus on

maximizing trial size that easily translates to a patient population. The paradigm is applied

in a healthy as well as in a motor-impaired population with cerebral palsy. Correlates of

affect stated in the literature are investigated in the time and frequency domain, then only

validated features are subjected to classification.

To investigate affective states and affect recognition on the most fundamental level, Chap-

ter 4 outlines the analysis and classification of affective data recorded from 6-months-old

infants’ brains while preverbal infants interacted with one of their parents in emotional

scenarios.

In order to validate the method developed in the previous chapters and compare its perfor-

mance to existing approaches, it is applied to a publicly available affect dataset based on

emotion induction by music videos as depicted in Chapter 5.

Chapter 6 concludes the work presented and outlines strategies for affect classification as

derived during the course of the present work. Also, remaining issues and future directions

will be discussed.
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“A computer will do what you tell it to do, but that may be
much different from what you had in mind.”

Joseph Weizenbaum (1923 – 2008 CE)

2
Theoretical Background

This chapter provides a theoretical background regarding concepts and methods employed.

Firstly, the term affect is coined and main theories of emotion are introduced. Secondly, the

concepts of affective and physiological computing are explained. Thirdly, electrophysio-

logical correlates of affect in the peripheral and central nervous systems are characterized.

Lastly, brain-computer interface systems and their different components are discussed, also

with respect to active, reactive, as well as passive input.

2.1. Affect - Emotions, Feelings, and Moods

Emotion is an ambiguous term whose meaning has been intensely debated by scientists

and philosophers for centuries. Antonio Damasio’s definition of emotions as ”bioregula-

tory reactions aimed at the promotion, directly or indirectly, of the sort of physiological

states that secure not just survival, but [...] [also] well-being” [3] has afforded researchers

a modern, popular, and practical starting point from which to address emotion. From this

viewpoint, emotions are considered short-lasting (seconds to a few minutes), universal,

and elicited by the evaluation of a stimulus like a person, event, or object. This descrip-

tion contrasts emotions to longer lasting moods (hours to days), which are considered to

be tendencies towards certain emotions. This view is also in-line with work conducted by

Scherer [4]. Furthermore, feelings are regarded as mental representations of physiological

9



2. Theoretical Background

changes which occur during emotions. Emotions, feelings, and moods therefore constitute

the term affect. To give an example for each of these aspects of affect: fear is an emotion,

restlessness a feeling, and anxiety a mood. This work employs the terms affect and emotion

as synonyms in order to refer to the investigated phenomena.

As emotions are a complex multi-dimensional phenomenon (e.g. see [5]), a complementing

definition of emotion was given by Kleinginna and Kleinginna [6]:

"Emotion is a complex set of interactions among subjective and objective fac-

tors, mediated by neural-hormonal systems, which can (a) give rise to affective

experiences such as feelings of arousal, pleasure/displeasure; (b) generate cog-

nitive processes such as emotionally relevant perceptual effects, appraisals,

labeling processes; (c) activate widespread physiological adjustments to the

arousing conditions; and (d) lead to behavior that is often, but not always,

expressive, goal- directed, and adaptive."

Notably, both definitions are based on hypotheses postulated over a century ago. On the

verge of the 20th century William James and Carl Lange independently hypothesized that

”bodily changes follow directly the perception of the exciting fact, and that our feeling

of the same changes as they occur is the emotion” [7]. Thus following the James-Lange

view, an emotion is experienced after bodily changes caused by preceding physiological

changes. It is important to note that the focus in this view lied on bare-eyed observable

bodily changes (e.g. fleeing or crying) and not so much on the micro-scale physiological

changes preceding those observable, as investigated nowadays. Based on a critical exami-

nation of the James-Lange view, Walter B. Cannon presented his own theory in 1927 [8].

He postulated that emotional experiences are grounded on subcortical activity (e.g. in the

thalamus) and that peripheral activity is not necessary for emotional experiences. Approx-

imately 40 years later, Schachter and Singer also added an important theory on emotion in

1967. They proposed that bodily changes only qualify as emotions in evaluation of objects

or events that are emotionally relevant and may be attributed to these changes [9] (also see

Section 2.1.3).

Another approach to define the term affect is by contrasting it to cognition. This idea fol-

lows the notion that phenomena related to affect are subjective and intuitive whilst aspects

of cognition are objective and explicable. However, it is increasingly reported that affect

and cognition are strongly entangled [10, 3].

The ongoing debate in emotion theory is of high relevance to the area of affective brain-

computer interface systems as well as their development. As outlined in Section 2.5, such

systems rely on distinct physiological changes in the peripheral or central nervous system
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2.1. Affect - Emotions, Feelings, and Moods

used as control signals. Distinct physiological patterns are a prerequisite for the success of

machine learning and ultimately affect recognition.

In the following, three main theories useful for the study of emotion in an affective comput-

ing context will be outlined: the basic emotion, the dimensional, and the appraisal theory

of emotion. However, these theories will not be addressed in more detail throughout the

course of the present work for the focus lies on the feasibility of affect recognition by

physiological signals and machine learning.

2.1.1. Discrete Emotion Theory

Discrete emotion theory [11, 12] suggests that humans express emotions based on on the

combination of basic emotions and that these emotions are universal, partially inherited,

and physiologically distinguishable from one another. Ekman and Friesen [13] investigated

emotion expression in different ethnicities and showed that basic emotions are present in

all of them. However, they concluded that deviations within these are possible due to so-

cial learning. Based on previous work, Ekman suggested six basic emotions (anger, hap-

piness, disgust, surprise, sadness, and fear) [14] of which facial expression examples are

shown in Figure 2.1. Ekman later on extended the set of basic emotions by embarrassment,

Figure 2.1.: Facial expressions examples of six basic emotions after Ekman [14] from left to right:
anger, happiness, disgust, surprise, sadness, and fear)

shame, guilt, pride in achievement, relief, satisfaction, sensory pleasure, amusement, con-

tempt, contentment, and excitement [15]. Obviously, definitions on inconsistent sets of

basic emotions are cumbersome. This inconsistency is also the main criticism of discrete

emotion theory.

2.1.2. Dimensional Emotion Theory

Dimensional emotion theory, originating from the model by Wundt [16], proposes that

emotions are largely explained by the dimensions valence and arousal [17]. Valence is

whether the emotion is subjectively felt as positive/pleasant or negative/unpleasant, and

arousal is the subjective energetic activation from deactivated/calm to activated/excited as-
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sociated with the emotion. The concept of valence has been found to be present in every

Figure 2.2.: (A) Self-assessment manikin in valence (top) and arousal dimension (bottom) on
Likert-like scale from 1 to 9 after [18]. (B) Continuous valence from unpleasant to pleasant and
arousal from deactivation to activation. Quadrants depict groups of negative valence / low arousal
(bottom left), positive valence / low arousal (bottom right), positive valence / high arousal (top
right), and negative valence / high arousal (top left).

culture [19, 20]. Even infants, a few days of age, feel pleasure or discomfort [21] and can

distinguish between unpleasant or pleasant facial expressions in others [22]. As validated

by factor analyses, linearly scaled valence and arousal spanning a two-dimensional space

cover a wide range of discrete emotions and their combinations (Figure 2.2 B). Further-

more, additional dimensions such as dominance (being in control/being controlled) or ten-

sion, which appears similar to arousal, were found to explain more variance, however less

consistently [5]. Consequently, discrete emotional responses can coherently be grouped

into categories, e.g. an unpleasant, a neutral, or a pleasant category regarding valence. An

important advantage of dimensional emotion theory is the possibility to easily obtain par-

ticipants’ self-reported valence and arousal in response to emotional stimuli. Participants

rate the quality and intensity of an emotional response by the help of the self-assessment

manikin (SAM) [23] (Figure 2.2 A) on a Likert-like scale.

2.1.3. Appraisal Theory of Emotion

Appraisal theory of emotion states that emotions are the consequence of evaluations (ap-

praisals) of stimuli such as persons, events, or objects that cause specific (emotional) reac-

tions in specific contexts [9]. These evaluations may consist of a complex interrelated pro-

cessing cascade involving cognitive, sensory, and neurophysiological components [4]. Dif-

ferent stimulus dependent analysis levels such as relevance, importance for current goals,

coping-potentials, and normative significance are checked in this cascade. As a conse-

quence, physiological and motor reactions are elicited or prepared, respectively.
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Whilst discrete and dimensional emotion theory mainly attribute the emotional response to

a stimulus, appraisal theory of emotion tries to shed more light on the process that led to

an emotional response. Nonetheless, the proposed theories are not mutually exclusive yet

rather cover different areas in the complex domain of affect and can also be combined (e.g.

pleasant/unpleasant appraisal following the notion of valence) [24].

Related to the appraisal theory of emotion, Barrett [25] argues against discrete hard-coded

emotions inside the brain yet for the evaluation of emotional stimuli in an introspective

memory-like fashion.

Now that there is an understanding of affect and different theories of emotion, electrophysi-

ological correlates of affect in the peripheral and central nervous system will be discussed.

For further reading on the topic of emotion theories, the interested reader is directed to

[21, 24].

2.2. Electrophysiological Correlates of Affect

Following the definition of emotion as bioregulatory reactions by Damasio [3], affect can

be studied through psychophysiological signals from the peripheral and central nervous

system, through audio recordings of speech signals, and through video-recordings of facial

expressions. Research in computational linguistics as well as computer graphics provides

a wealth of articles on the assessment of affect from audio- and video-signals (see [26]

for review), respectively. However as for signal acquisition, both modalities require the

active participation of users (e.g. verbal speech or facial muscle activity) which may not be

available in disabled or paralyzed individuals. Thus, the focus lies on correlates of affect

in the peripheral, and most importantly for the present work, the central nervous system.

2.2.1. The Peripheral Nervous System

The peripheral nervous system (PNS) comprises of nerve fibers and nerve cells outside

the brain or spinal chord. It is divided into the somatic nervous system (SNS) and the

autonomous nervous system (ANS). The former is responsible for voluntary muscle control

as well as reflex behavior via efferent nerve fibers projecting from the central nervous

system into the body. The latter consists of the sympathetic and the parasympathetic sub-

system which act as control systems that maintain bodily functions. These sub-systems in

turn form a nerve fiber network between the central nervous system, numerous internal

organs, and various glands throughout the body. Short linguistic idioms for the function

of the sympathetic, i.e. "fight or flight", as well as for the parasympathetic, i.e. "rest and

digest", systems are well-known. Thus, the sympathetic system allocates bodily resources
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for mental or motor activity, whereas the parasympathetic system brings the body into a

relaxed state in order to maintain homeostasis by also managing intestinal activity.

Employing different recording techniques, analyses of peripheral signals have produced a

multitude of findings regarding correlates of affect. Popular psychophysiological measures

are electromyography (EMG), electrocardiography (ECG), skin conductivity by galvanic

skin response (GSR), blood volume pressure (BVP), and respiratory activity (RSP).

Commonly, recordings of electrophysiological biosignals in the PNS require a technical

setup consisting of electrodes attached to the body, impedance reduction by conductive

measure (e.g. gel), amplification, filtering, digitization, and storage in a computer system.

Electromyography

Electromyography is the recording of electrical activity produced by the enervation of

skeletal muscles via nerve cells employing electrodes. Already Darwin wrote exhaustively

about the importance of posture and facial expressions related to emotion [27] which was

continued by Ekman [15]. Thus, the EMG of facial muscles is a prominent location to de-

rive psychophysiological information about emotion expression. With regard to the ANS

and SNS, the notion of elevated emotional arousal and overall increased muscle tension is

obvious. Furthermore, facial EMG discriminates emotional valence and arousal [28, 29].

The activity of the muscles zygomaticus major (smiling) as well as corrugator supercilli

(frowning) are often recorded for affect recognition (see [30] for review). Interestingly,

differences in facial emotion expression in non-depressed and depressed individuals dur-

ing emotion imagery have been found [31]. Nonetheless, these types of measures are not

of interest in search for physiological control signals of affect in a disabled or paralyzed

population.

Electrocardiography

Electrocardiography is the recording of cardiovascular activity produced by the enervation

of the heart employing electrodes. The heart is a unique muscle within the body that is

responsible to maintain blood circulation by continuous contractions. To supply the body,

the heart is connected to three vascular networks consisting of the pulmonary circulation,

the coronary circulation, and the systemic circulation. Following this order, one network

cycle of contraction starts at the lungs for O2/CO2 exchange in the blood, then goes to the

heart, and finally reaches the rest of the body.

A common measure for cardiovascular activity is the heart beat rate. The average heart beat

rate changes dramatically during lifetime. Newborns in the first month exhibit a high heart

beat activity of 70 - 190 beats per minute (BPM) during rest. The upper bound decreases
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greatly with age, as for infants (1 - 11 months of age) show on average a resting heart

beat rate of 80 - 160 BPM. For healthy adults and children over 10 years of age, the heart

beat rate ranges on average from 60 - 100 BPM. (Well trained athletes have an even lower

resting heart beat rate of down to 40 BPM.)

With regard to the ANS, the heart beat rate is directly coupled with the activity of the

sympathetic nervous system. If sympathetic activity increases, the heart beat rate increases

and vice versa. Thus the heart rate may react to a stressing stimulus with increased activity

to allocate resources for a potential fight or flight scenario. On the other hand, the heart

beat rate is inversely coupled with activity of the parasympathetic nervous system. Thus,

if parasympathetic activity increases, the heart beat rate decreases and vice versa (e.g. in

the absence of stressors during relaxation, the heart rate decreases). Both relationships be-

tween heart rate and ANS activity are not mutually exclusive but can coexist [32]. The

effects of arousing stimuli on the heart beat rate have been investigated in the literature by

the presentation of pictures (see Section 2.5 in [33]), sounds (see Figure 5 in [34]), and

videos (see Figure 1 A in [35]). Regarding dimensional emotion theory, stimulus valence

has been found to influence heart rate. Accordingly, heart rate is decreased for unpleas-

ant and increased for pleasant pictures [33] or scenic sounds [34]. Interestingly, Goldstein

presented in his article "Thrills in response to music and other stimuli" [36] the impact of

music on affective states of the listeners. Heart rate has also been found to be responsive to

the emotional valence and arousal of music pieces [37]. Besides heart beat rate, blood vol-

ume pressure, as well as respiratory activity are further measures related to cardiovascular

activity.

Skin Conductivity

Skin conductivity refers to altered conductivity of the skin due to sweat gland activity

which is guided by the sympathetic part of the ANS. Most commonly skin conductivity is

measured by the galvanic skin response. Hereby, two electrodes are attached to skin of the

palm or food a couple of centimeters apart from each other, a small harmless current is then

applied to one electrode and measured at the other to obtain the level of skin conductivity.

Even non-perceivable deviations in gland activity in terms of sweat are measurable by

GSR. Emotional arousal influences sympathetic activity and is thus found to alter sweat

gland activity which in turn alters the GSR. Skin conductivity was higher for pleasant or

unpleasant stimuli as compared to neutral ones. Arousal is robustly expressed in GSR in

studies with arousing pictures [38, 39] and scenic sounds [34, 40]. Skin conductivity has

been found to be influenced by music clips of different arousal levels [41].
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2.2.2. The Central Nervous System

The central nervous system comprises of the brain and spinal chord. The brain is the central

element in integrating information received by afferent nerve fibers as well as distributing

information via efferent nerve fibers throughout the spinal chord to body parts. Anatomi-

cally, the brain is divided into various structures. The larger part of the brain, the cerebrum,

can be divided into six lobes: frontal or (neo)cortex, temporal, parietal, occipital, limbic,

and insular cortex. The other, smaller, part is the cerebellum.

Evidence for structures associated with affective responses have been found by a num-

ber of investigations employing different technical measures and approaches. Historically,

evidence about brain structures was derived from lesion studies. Although lesion studies

continue to benefit neuroscience, the possibility to record physiological activity of the brain

has provided researchers with new insights. The first such tool was electroencephalogra-

phy (EEG), introduced in the first third of the 20th century. This was followed by brain

imaging techniques such as positron emission tomography (PET), functional magnetic

resonance imaging (fMRI), functional near-infrared spectrometry (fNIRS), or magnetoen-

cephalography (MEG) that have been introduced throughout the remainder of that cen-

tury (all of which have their strengths and weaknesses). Based on brain imaging reviews

[42, 43, 44, 45, 46], brain structures associated with affective processing and affective re-

sponses are briefly outlined.

The main network of affective processes is located towards the ventral structures of the

brain. The limbic system which is a complex connection of parts located on both temporal

sides of the thalamus ventral to the cerebrum has been identified as a vital part in processing

sensory information, contextualizing, and estimating the effect of an internal or external

emotionally relevant event. It includes but is not limited to structures such as the amygdala,

the insular cortex, the hippocampus, as well as the striatum. Lesions in the amygdala have

been found to interfere with both positive or negative emotional reactions. The amygdala

is viewed as a connectivity hub of major sensory input from the thalamus and higher-order

association areas of the cortex. Simultaneously, the amygdala projects to the brainstem

controlling emotional responses such as behavioural responses (e.g. facial expressions,

or freezing) or autonomic nervous system responses (e.g. endocrine responses that lead

to sympathetic or parasympathetic de/activation). The insular cortex is associated with

introspective features of the body (e.g. skin condition, posture, or information about inner

organs) that are also integrated during the evaluation of the stimulus event. Further circuits

such as the orbitofrontal cortex (OFC) and parts of prefrontal cortex (PFC) have been found

to be active during affective processing in brain imaging studies (see [45] Section 5.3 ff.).

The OFC is supposed to allow for flexible reactions during the integration of the initial
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coding of the stimulus event by the amygdala. The PFC is thought to link already integrated

information about the stimulus event to visceromotor actions. Information integration and

execution resulting from the interplay of these circuits has been described as an "affective

neural reference space" [47] which serves as a "valence-general affective workspace". This

view has been supported by the latest meta study on brain structures sensitive to emotional

valence of stimuli [46].

The following will focus on correlates of affect in the EEG time- and frequency domain

as EEG is the most common and well-established technique for non-invasive recordings

of brain activity especially in the field of brain-computer interfacing. The next chapter is

devoted to EEG since it is the main topic of the present thesis.

2.3. Electroencephalography

Electroencephalography is the recording of summed electrical activity along the scalp pro-

duced by the firing of neurons within the brain employing electrodes. Hans Berger in-

troduced this technique for monitoring electrophysiological activity within the brain [48].

Berger discovered an oscillating pattern in the electrical signal within the frequency range

8 - 12 Hz which he named alpha waves, since it was the very first brain signal ever discov-

ered. Subsequently, more repetitive patterns have been discovered and named. Oscillatory

brain activity originates from synchronized events in billions of neurons. Table 2.1 gives

an overview of typical brain oscillations and their frequency ranges.

Table 2.1.: Names and greek symbols of typical brain waves as well as their frequency ranges.

Name Symbol Frequency Range [Hz]

delta δ 0 - 4
theta θ 5 - 7
alpha α 8 - 12
mu µ 8 - 13
beta β 13 - 30
gamma γ 40 - 100

Electrophysiological recordings usually follow a common approach where electrodes are

attached to the scalp following the standardized 10/20 electrode location system [49], am-

plified and digitized by an analog-to-digital converter at a certain sampling frequency. For-

mally, sampling is the process of converting a signal from a function of continuous time or

space into a numeric sequence, i.e. a function of discrete time or space.

When recording EEG, typical filters are high-, and low-pass filters of 0.1 Hz to 1 Hz and

30 Hz respectively. Also a notch filter of 50 Hz (Europe) or 60 Hz (USA) is applied to filter
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out voltage phase artifacts of power lines. Other artifacts are electrogalvanic, movement, or

electromyographic artifacts. The first two are filtered by the high-pass filter and the latter,

being a high-frequency artifact, is filtered out by the low-pass filter.

In a referential montage, the EEG of each channel depicts the voltage difference of the

electrode at that channel referenced to a designated electrode. The signal is also grounded

to another electrode. Established positions for those are left or right mastoids as well as a

frontal midline location for the study of hemispheric differences. The EEG is sampled in an

analog-to-digital converter. Formally, sampling is the process of converting a signal from

a function of continuous time or space into a numeric sequence, i.e. a function of discrete

time or space. Commonly, absolute EEG amplitudes measured on the scalp are between 5

- 50 µV and decline with age [50]. Furthermore, frequency bands in infant EEG have been

found to be shifted to the left in terms of frequency compared to adult EEG. Infant alpha

waves have been found to be within 6 - 9 Hz during the first year into early childhood [51].

In the following, time- and frequency domain correlates of affect in the EEG will be out-

lined. Furthermore for each band in the frequency domain, their respective general func-

tions are outlined followed by correlates of affect.

2.3.1. Time Domain

Time domain correlates of affect refer to altered deflections of event-related potential am-

plitudes in reaction to emotional stimuli.

Typically, event-related potentials are computed by averaging amplitudes in the EEG over

multiple trials of the same stimulus condition relative to stimulus-onset. Averaging in-

creases the signal-to-noise ratio of a stimulus-driven functional brain response with respect

to background EEG activity.

Researchers have reported conflicting evidence that early components of visually-induced

ERPs, e.g. P1, N1, or N2, are modulated by stimulus valence. These modulations are

thought to reflect the increased attention towards emotional stimuli [52]. Emotional va-

lence as well as arousal have been reported to modulate late components (greater 300 ms

after stimulus-onset) known as the late positive potential (LPP) to varying degrees (see

[53] for review). Late positive potential amplitudes have been found to be more positive to

pleasant and unpleasant stimuli compared to neutral with respect to emotional valence, as

well as for emotionally arousing stimuli [54, 55]. Although, emotional valence and arousal

are entangled, findings about LPP amplitude modulations have been more consistent with

regard to emotional arousal (at least for pictures [53]). Another ERP sensitive to affective

stimulation is the P300 which is involved in attention towards the saliency of a stimulus.

P300 amplitudes show a larger positive deflection for very rare and highly emotional stim-
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uli [56]. Furthermore, the P300 is a common control signal for brain-computer interfacing

(see Section 2.5.4).

In an affect manipulation study of 7-month-old infants, an altered ERP due to the presen-

tations of fearful and happy faces has been described. The midlatency (700 ms) negative

central component (Nc) of ERPs has been found to be more negative in response to fear-

ful faces than to happy ones which is attributed to increased recruitment of attentional

resources [57].

Although there is a large body of research regarding affective manipulation of ERP am-

plitudes, the LPP has not yet been classified in a machine learning approach which is

addressed in the present work in Chapter 3. At the same time, the practical realization of

employing ERPs as a control signal in affective brain-computer interfacing is rather dif-

ficult due to their requirement of repetitive stimulation and response averaging. In that

regard, frequency domain features of affect could be promising as a control signal for an

affect recognition system.

2.3.2. Frequency Domain

Frequency domain correlates of affect refer to deviations in the spectral dimension of trans-

formed time domain EEG data attributed to affective manipulation.

To obtain the spectral dimension of an EEG recording, various techniques are available.

Fast Fourier transform (FFT), spectral density estimation by autoregressive models (AR)

after Welch [58] or the maximum entropy method (MEM) after Burg [59] are fundamental

approaches for the transformation of discrete time signals into power spectra. (For further

reading on the topic, the interested reader is referred to the excellent book by Oppenheim et

al. [60].) Various typical oscillatory patterns in the EEG have been investigated throughout

the last century with the help of spectral methods (see Table 2.1). The following will briefly

review the (currently known) functions of these typical bands also with respect to affective

processing in the second halves for each section and frequency band.

Delta Frequency Band

The delta frequency band is within the range of 0 - 4 Hz. Oscillations in this band are

associated with sleep and an aroused brain as has been found in investigations of the tha-

lamocortical network [61]. During wakefulness, delta oscillations have been attributed to

homeostatic and motivational as well as during the transition into slow wave sleep (SWS)

(see reviews [62, 63] and review [64] with emphasis on neurotransmitters). Based on a

review on ERPs and oscillations [65], delta and theta activity has been theorized to pos-

sibly generate or influence the P300 ERP. With regard to affective responses to emotional
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facial expression, an increase in delta band power has been reported over posterior sites

[66], however for all emotional conditions including neutral. A follow-up study attributed

increased delta activity to stimulus updates [67]. Focusing on delta oscillations and affect,

a study has found effects sensitive to emotional arousal and valence [68].

Theta Frequency Band

The theta frequency band is within the range of 4 - 8 Hz. There is a large body of research

regarding the role of theta oscillations in cognition and affective responses. Fundamen-

tal research regarding working memory, as a part of cognition, has been conducted by

Klimesch et al. [69, 70]. Specifically, theta band power is increased in response to higher

workload demands and is thought to reflect information integration vital to executive func-

tion [71].

Regarding affect manipulation, increased theta activity has first been reported in 1950 [72]

as "hedonic theta" occurring when pleasurable stimulation was aborted. Research in 6-

month-old infants to 6-year-old children has revealed increased theta activity in response to

pleasant stimuli [73]. In an infant population, literature findings suggest that the type (e.g.

unpleasant or pleasant) of an emotional experience can be discerned by power differences

across frontal hemispheres [74, 75, 76, 77]. Thereafter, elevated frontal left-hemispheric

activity is associated with a pleasant emotional experience as compared to the contra-lateral

hemisphere. An unpleasant or aversive emotional experience leads to relative higher frontal

right-hemispheric activity as compared to the contra-lateral region. This concept has been

introduced as appraisal theory of emotion (see Chapter 2.1.3). Recent investigations with

different stimulus modalities have reported increased theta over frontal and/or parietal re-

gions in response to arousing stimuli [78, 67]. Emotional valence has also been associated

with increased theta activity in fronto-medial regions [37, 79]. During sleep, pre-frontal

theta has been found to be relevant for emotional memory consolidation during rapid-eye

movement (REM) sleep [80].

Alpha Frequency Band

The alpha frequency band is within the range of 8 - 12 Hz. This historically famous type of

oscillatory activity is exhibited the most over parietal to occipital regions especially during

wakeful relaxation when the eyes are closed. Increased alpha activity is thought to reflect

inhibitory activity when certain brain regions are idle during wakeful relaxation [81, 73].

This has been validated by skin conductivity measures reflecting overall arousal in healthy

adults [82] and 8-12-year-old children [83].
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Furthermore, alpha activity decreases in the presence of sensory stimulation indicating

the allocation of sensory input processing cortical regions. Alpha activity is associated

with sensorimotor activity, whereas motor activity is emphasized. It is then known as the

mu rhythm within a similar frequency range of 8 - 13 Hz. Anatomically, the mu rhythm

is located over central regions where the frontal meets the parietal lobe (central sulcus).

The mu rhythm is a well established control signal for brain-computer interfaces. It is

coherently altered during motor execution but more importantly also during motor imagery

which is detectable in single trial classification [84].

The notions of event-related desynchronization (ERD) as well as event-related synchro-

nization (ERS) of alpha oscillations reflect a decrease and an increase in alpha band power,

respectively. The method to compute ERS and ERD, which are not exclusive to alpha ac-

tivity, has been introduced by Pfurtscheller and Da Silva [85]. Alpha ERS has been found

during working memory tasks [81].

Regarding affect manipulation and originally stated by Davidson in 1982 [74], frontal al-

pha power asymmetry has been described [86, 87, 88]. Thereafter, alpha is increased over

frontal left hemispheric regions in response to appetitive stimuli, as opposed to increased

right hemispheric frontal alpha activity in response to aversive stimuli compared to corre-

sponding alpha activity at the contra-lateral hemisphere, respectively. This is also known

as the approach-withdrawal theory of affect for which Harmon-Jones et al. provide consid-

erable work [89, 90, 91, 92]. Underlying lateralized neural structures responsive to specific

stimulus properties have been thought to account for asymmetrical activity in the alpha

band. However, latest evidence based on a review [46] has shown that the existence of

specific neurons only responsive to certain types of emotional stimuli is unlikely (see ex-

planation on neural structures of affect in the beginning of Section 2.2.2). Fox et al. have

found asymmetrical brain activity in newborns in response to appetitive and aversive taste

[93] and by facial-signs of emotion in 10-month-old children [76]. Although there are sev-

eral studies reporting asymmetrical brain activity in the alpha band during affect manipu-

lation, numerous studies failed to validate this effect [94, 95, 96]. Recently, frontal alpha

asymmetry has been described to play a role in cognitive processes related to workload

[97].

Beta Frequency Band

The beta frequency band is within the range of 13 - 30 Hz. Over the central sensorimo-

tor cortex and with the lower frequency boundary overlapping with the mu rhythm, beta

waves are associated with motor planning, motor execution, and processing of sensory in-

put [98] (e.g. visual [99]). Thereafter, beta oscillations decrease during motor execution
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but increase when voluntarily withstanding movement impulses [100]. In the review "beta-

band oscillations – signalling the status quo?" [101], the authors propose a general theory

where beta oscillations govern the upkeep of sensorimotor areas in a buffer-like top-down

fashion (see also [102]). Recently, beta band activity in auditory pathways has been linked

to speech recognition [103].

Regarding affective manipulation with unpleasant and pleasant pictures or affect imagery,

increased lateralized beta activity has been found [104, 105]. Decreased beta activity has

been found for relevant emotional stimulus events as compared to neutral ones [106]. A

recent study has also found decreased beta activity whilst pictures of emotional faces were

viewed during simultaneous pain induction which initially led to an increase in beta band

activity [107].

Gamma Frequency Band

The gamma frequency band is within the range of 40 - 100 Hz. Oscillations in the gamma

band are thought to be important during cognitive processes, mainly information integra-

tion in cortical circuits [102, 108]. Furthermore, gamma band oscillations have been found

during multi-sensory integration [109, 110] as well as during attention and memory rel-

evant tasks [111]. Interestingly, dysfunctional gamma band oscillations have been asso-

ciated with working memory and other cognitive deficits in schizophrenia (see [112] for

review). Meditation experts have shown increased baseline gamma activity which is ex-

plained by highly trained selective attention (see [113] for review). In the infant brain,

increased gamma oscillations have been associated during object recognition tasks which

are also related to selective attention [77].

Regarding affective manipulation and emotional valence, a proportional relation in tem-

poral gamma has been reported by [105]. Aversive pictures enhance mid gamma activity

(40 - 45 Hz) shortly after stimulus-onset, whereas arousing pictures elicit higher gamma

activity (46 - 65 Hz) 500 ms after stimulus onset compared to neutral, as has been reported

by [114] (see also [115]). During pain induction, increased gamma band activity has been

found over the somatosensory cortex whilst watching fearful faces as compared to angry

faces which might reflect avoidance behavior [107]. However, if the appraisal of emotional

stimuli does not yield a subjective emotional experience, decreased gamma band power

has been reported [106]. Gamma oscillations haven been linked to emotional memory con-

solidation [116].

To conclude this section about central nervous system activity recorded by EEG, it is obvi-
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ously non-trivial to attribute a plethora of reported cognitive or affective processes to spe-

cific neural substrates, event-related potentials, or specific frequency bands. Nonetheless, a

consensus of the research body has been presented regarding affect manipulation of the late

positive potential as well frontal alpha band power asymmetries in electroencephalography

data. Furthermore, lateralized beta and higher gamma are worth investigating but estimated

not as promising. Especially frequency domain correlates of affect in the slower bands are

of interest as control signals for affective brain-computer interfacing.

The following section will further elaborate the ideas of affective and physiological com-

puting.

2.4. Affective and Physiological Computing

Originating from the article by Rosalind Picard in 1995 [10], affective computing can be

defined as the study and development of systems and devices that are able to recognize,

interpret, process, and simulate human affect. The modern field of affective computing,

combining the study of affect and computing, is an interdisciplinary endeavour mainly

consisting of computer science, neuroscience, and psychology. As outlined before however,

the origins of this field date back to the verge of the 20th century [7].

The key principles of user input in human-computer interaction, namely a typewriter-style

keyboard and mouse, have not changed in their core since personal computers were first

sold in 1965. To alleviate and improve user experience, human-computer interaction con-

tinues to study and to explore design principles in hard- and software. Numerous improve-

ments including speed, size, and portability of computing systems and communication de-

vices have been made, yet the core principles of user input remain unchanged. This classic

mode of human-computer interaction is asymmetrical in terms of information exchange

[117]. To elaborate on this thought, the machine is able to provide a plethora of infor-

mation based on its inner state (e.g. CPU speed, RAM usage, information stored on hard

drive(s), network connection to other machines, etc.), yet the inner state of the user (e.g.

intent, cognitive, or affective state) remains hidden for the machine except for overt com-

mands the user sends via keyboard and/or mouse. Thus, Allanson and Fairclough suggest

a new mode of human-computer interaction, where system interaction is achieved by mon-

itoring, analyzing, and responding to covert psychophysiological activity from the user in

real-time [118]. Similar to brain-computer interfaces (see Section 2.5), such systems trans-

form psychophysiological data into a control signal without any conscious actions from

the user. To get back to the thought on asymmetry, the mode of interaction would be ren-

dered symmetrical if such systems work seamlessly. Therefore, Fairclough proposes in his

article on physiological computing an extension to the idea of affective computing. There-
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after, additional psychophysiological user input is not limited to affective information but

also includes information about the user’s cognitive state (e.g. workload, attention, or vig-

ilance).

Brain-computer interface systems are in a sense physiological computing systems yet with

the limitation of only conveying messages or commands to the external world by active or

reactive physiological changes (in a sense emulating the keyboard or mouse). Currently,

such systems still require experts for setup and operation. As of now, seamlessly working

affective or physiological computing systems as described by Picard and Fairclough are

dreams of the future, yet there is a growing body of research regarding affect classification

(see Section 2.8). Nonetheless, the young fields of affective and physiological computing

are expanding and the work presented here seeks to add information for the realization of

the common goals.

The design and structure of brain-computer interface systems with a focus on affect is

outlined in the following section.

2.5. Brain-computer Interfaces

In the original definition, BCI systems allow users to actively convey intent (e.g. messages

or commands) to the external world without passing the brain’s motor output pathways

[119]. Recently, this definition was extended by additionally conveying information about

the users’ inner state (e.g. emotional, cognitive, or physical) [120]. At the same time, BCI

input is not anymore exclusive to brain activity but further biosignals from the PNS are em-

ployed. In this context, multi-modal input BCIs are also referred to as hybrid-BCI (hBCI)

systems [121]. The present work will employ the abbreviation BCI referring to brain-state-

based control signals and hBCI for central- and peripheral-based control signals combined.

2.5.1. Overview

The BCI, being a communication or control system, is composed of input and output chan-

nels, components that translate input into output, as well as a protocol that controls inter-

action and timing of all components. Figure 2.3 shows these components and their basic

interactions. After signal acquisition, the key part in any (h)BCI system is signal processing

consisting of feature extraction and a translation algorithm that interprets extracted features

into device commands.
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Figure 2.3.: Basic design and operation of any BCI system defined by [119]. Physiological input is
recorded from the user and digitized. Meaningful features related to the intent or inner state of the
user are extracted, translated into messages or device commands, and fed back to the user.

2.5.2. Active, Reactive, and Passive Input

In the original paper by Vidal [1], physiological activity recorded from the central nervous

system (CNS) was proposed to serve as input to control hBCI systems. In active and re-

active hBCI systems (Figure 2.4), users convey information by either voluntarily altering

physiological signals (e.g. motor imagery) or by attention (e.g. oddball paradigm). With

the formulation of passive hBCI systems [120], hBCI input was to be complemented by

passively gaining information about the user’s inner state (e.g. emotional, cognitive, or

physical). Consequently, input signals have not anymore been limited to the CNS yet ex-

tended to the peripheral nervous system which contains vital information about the user’s

inner state (see Section 2.2). Thus, passive hBCI systems are formulated as an augmenta-

tion to established active and reactive BCI communication.

Figure 2.4 shows an overview of the described systematics of active, reactive, and passive

input for which the original modules of a hBCI system still exist. Central to the idea of pas-

sive hBCI systems is the possibility that family members or caregivers act upon a detected

inner state of the user. A number of ethical challenges arise with the setup of passive BCI

systems, which shall not be discussed herin. However, the interested reader is directed to

the ethical reviews [122].
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Figure 2.4.: User-centered schematic of active, reactive, and passive BCI systems along with care-
giver and interactions after [120].

2.5.3. Signal Acquisition

Various possibilities to record physiological signals from the CNS are available, but not

necessarily practical for hBCI communication. Electrophysiology measured on the skin

or scalp is a minimally, well-established, non-invasive method to acquire biosignals (see

Chapter 2.3).

In terms of BCI, overall signal quality of non-invasive EEG is good enough to ensure

reliable communication, i.e. classification accuracies of ≥ 70 % [123].

2.5.4. Control Signals

Slow cortical potentials (SCPs), mu- and beta rhythms, and the event-related potential P300

are possible signals for BCI control [124, 84]. SCPs are negative or positive polarizations

in the EEG that last from 300 ms to several seconds [125]. ERPs are, as suggested by the

name, neuronal reactions to visual, auditory, or other stimuli that result in amplitude de-

flections in the EEG [126]. Such EEG signals are time-, and phase-coupled. The neuronal

source of these activations is the somatosensory cortex (lateral post-central gyrus) since ac-

tivations are caused by somatosensory stimuli. Besides an evoked response, an induced one

exists which is elicited in the cortex subsequent to ongoing higher mental processes. Such

induced responses are rather time-, but not phase-coupled since they result from synchro-

nization and desyncronization processes. As mentioned earlier, event-related synchroniza-

tion and event-related desynchronization effects are observable in the synchronous alpha
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rhythm (8 - 12 Hz) after motions are imagined. Then the alpha rhythm desynchronizes over

the sensorimotor cortex (central sulcus; pre-central gyrus) which is at this locus also known

as mu rhythm. The P300 as the most common control signal for a selective attention and

therefore a reactive BCI is described in the next paragraph.

P300

The P300 shows a reproducible positive amplitude at roughly 300 ms after stimulus onset

and is typically measured most strongly by the electrodes covering the central-parietal lobe

in the EEG [127, 128]. A P300 comprises of subcomponents such as the P3 and P3a, and

a subsequent slow wave [126].

The P300 is mainly involved in the process of decision making and is therefore elicited

if a target criterion is met. For example, two different tones, the first being the target and

the second being a non-target, are randomly presented to a subject. The subject is told to

count each occurence of the target tone, while the non-target tone is presented in greater

abundance. A P300 is elicited each time the subject distinguishes a target. In short, the

P300 response is evoked by attention to rare stimuli in a random order series of stimulus

events (i.e. oddball paradigm) [127]. The robust reproducibility makes the P300 a common

choice as a BCI control signal in the EEG [2].

2.5.5. Signal Processing

Signal processing in BCI systems consists of filtering, feature extraction, and translation

into device commands. The filtering commonly includes artifact rejection of (eye) move-

ment artifacts. For eliminating movement artifacts, statistical methods such as independent

component analysis (ICA) can be employed [129], however yielding altered EEG due to

the various shapes of movement artifacts. To discard well-defined eye movements, the elec-

troocculogram (EOG) is recorded and then regressed out of the EEG [130]. The latter has

proven useful in the analysis of EEG for BCI control.

There is a multitude of feature extraction methods of which each has their pros and cons.

The technicalities of the pleathora of feature extraction methods are not within the scope

of this thesis. However, the fast feature selection method based on Pearson correlation by

Spüler et al. [131] has proven to be very versatile and will be employed throughout the

work presented. For further information on signal processing in BCI, the interested reader

is directed to the reviews [132, 133].

The translation algorithm consists of a classification or regression algorithm that computes

a model of the relation of physiological states in recorded data and target labels of classes

or numeric values, respectively. Besides the well-established stepwise linear discriminant
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analysis (SWLDA) for the classification of brain states in the EEG, support vector ma-

chine (SVM) classifiers have been increasingly employed. As a note, linear or quadratic

discriminant analysis (L/QDA) methods have also been employed. Lotte et al. provide an

excellent review on this topic [123]. The authors state that SVMs are particularly efficient

for BCI due to their regularization property as well as their immunity against the curse-of-

dimensionality.

2.5.6. Application: P300 Speller

As a practical example of a BCI application, the P300 speller is described in the following.

Also, trial size and bitrate are given for comparison to affect recognition studies outlined

in Chapter 2.8.

A common software system for the realization of BCI paradigms is BCI2000 [134]. The

P300 speller has often been realized with a regular alphabet, either visual or auditory [135,

136, 137]. Figure 2.5 depicts the matrix view of the P300 speller with flashing row and

column, respectively.

Figure 2.5.: Example P300 speller matrix with letters, numerals, and underscore realized in
BCI2000 with flashing row and column. User feedback is given on top of the screen in plain text.

Users are instructed to focus attention on the symbol-to-select in the matrix. Rows and

columns intensify in a random order. Users select a symbol by focusing and/or counting

the intensifications of a target symbol. Thus, a P300 is elicited each time the user identi-

fies/counts the intensification of a target. Event-related potentials are classified by stepwise

linear discriminant analysis in an online and offline setting.

User feedback is realized via an output-line on the computer screen above the matrix. On
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average, motor impaired individuals yield approximately 1.2 selections per minute with

this setup [137].

In the context of machine learning, there are on average 180 trials available for the classi-

fication of one symbol in the P300 speller paradigm.

Symbol content of the P300 speller is exchangeable. For the illiterate, Blissymbols offer an

augmentative and pictographic symbol language especially designed for individuals with

speech impairments [138], e.g. motor-impaired individuals with cerebral palsy.

2.6. User Groups and Motivation

Brain-computer interfaces for communication and control have been well-established in

a paralyzed population. Many different disorders can disrupt neuromuscular communica-

tion channels or render people paralyzed. Amyotrophic lateral sclerosis (ALS), brainstem

stroke, brain or spinal cord injury, cerebral palsy (CP), muscular dystrophies, multiple scle-

rosis, and numerous other diseases impair the neural pathways that control muscles or im-

pair the muscles themselves. These diseases disable patients in communication over time.

Patients who are almost completely paralyzed, but have residual voluntary control over a

few muscles, such as eye movement, eye blinks, or twitches with the lip, are referred to

as being in the locked-in state (LIS). Patients may also be in the complete locked-in state

(CLIS), e.g. in the end-stage of ALS, in which all motor control is lost [139]. The main

targets for brain-computer interfacing have been individuals in the LIS and individuals in

stroke rehabilitation. Naturally, the holy grail of brain-computer interfacing is to restore

communication in the CLIS which has not been achieved to date.

Another population with severe motor impairments comprise individuals with cerebral

palsy. Cerebral palsy is an umbrella term for non strictly defined motor impairments caused

by damage to the newborn or infant brain up to three years of age (see [140] for review).

The prevalence of CP ranges from 1 to 4 per 1000 births of a defined age range. Motor

impairments often affect the movement apparatus to various degrees including spasticity

and dyskinetic movements. Dyskinetic CP is usually accompanied by impairments to oral

communication from early childhood. The absence of communication may cause the intri-

cate emotional needs to be forgotten leading to psychological conditions. At 12 years of

age, 40 % of children with CP require professional psychological help [141]. Furthermore,

prolonged physical impairments may cause intense chronic pain which is often co-morbid

with depression [142] and social isolation [143].

Individuals with CP have not been in the focus of BCI research yet. However, the benefits

of brain-computer interfacing are of high clinical interest in this population. Since individ-

uals with CP often lack the ability to exhibit emotions by quantifiable physical behaviours,
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psychophysiological information from the PNS or CNS offers a promising alternative to

access the their inner affective or cognitive state. Thus, passive affective BCIs pose a mul-

titude of advantages for users, families, and caregivers. Brain-computer interfacing or psy-

chophysiological affect have not yet been investigated in this population.

Furthermore, preverbal infants up to 6 months of age account for an interesting "model" for

the study of affective processing due to their "purity" (i.e. less cultural learning). The vision

behind affect classification in preverbal infants is to provide an emotional communication

channel between the child on a sensory deprived or severely impaired caretaker. To date,

preverbal infants have not been addressed in brain-computer interface or affect recognition

research.

2.7. Classification

In machine learning or pattern recognition, classification is the process of identifying the

class membership of an unknown observation based on training data. Two types of learning

are distinguished from each other. In supervised learning, training data consist of class-

determining data points and known class labels. Besides supervised classification, there

exist regression methods which identify the outcome of an unknown observation on a con-

tinues scale based on training data. If class labels are unknown or unavailable, the process

is known as clustering and referred to an unsupervised learning approach.

The present work deals with supervised learning problems. A variety of classification algo-

rithms exist. These algorithms are often formulated as mathematical optimization problems

and simply referred to as classifiers. The very first pattern recognition algorithm was intro-

duced by Fisher in 1936 [144]. Fisher considered two normally distributed populations of

data and has shown an optimal (Bayesian) solution in form of a quadratic function which,

based on populations’ characteristics, degenerates to a linear function. Subsequently, this

linear or quadratic discriminant analysis algorithm has constituted the basis for many clas-

sification algorithms employed until today [123].

2.7.1. EEG Data and Classification Basics

In brain state classification, EEG data consists of a two dimensional matrix X ∈Rc,s, where

c ∈ N is the number of channels and s the number of data samples. (Please note that the

introduced notation M ∈ Ri1,...,in denotes the cardinality of a n dimensional matrix M con-

sisting of values mi1,...,in ∈ R.) Matrix X is then epoched into intervals (usually according

to stimuli) resulting in a three dimensional matrix Xepoched ∈ Re,c,s′ , where e is the num-

ber of epochs and s′ = ds/ee is the number of samples per trial. Alternatively in an online
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scenario, a ringbuffer is employed that equals one trial when fully filled. For further pro-

cessing, each two-dimensional epoch consisting of channels times samples is collapsed

into a one-dimensional vector where channels are concatenated. Therefrom, features are

extracted using an appropriate method, e.g. moving average filter [145] or feature selection

based on R2-values (Section 2.7.2), which results in a data matrix X f eatures ∈ Re, j, with

j ∈ N. The number of features is determined by the feature selection method or by hand.

In classification, rows in X f eatures consist of a feature vector of a single epoch that is asso-

ciated with a discrete value, i.e. the class label, yi ∈ Y . Well established normalized class

values for yi are −1 and 1. In regression, target values yi ∈ [a,b], where a ∈ R is the lower

bound and b ∈R the upper bound of the interval, are (usually) continous with data-specific

resolution.

Each classification algorithm computes a model out of training data. Based on that model,

predictions about the class affiliation of future incoming data are possible.

2.7.2. Feature Selection by R2-values

To reduce the number of features, R2-values between data and labels are computed for

each feature and the features with the highest R2-values are used for classification [131].

Correlation in statistics indicates the strength and direction of a linear relationship between

two random variables. This coefficient is used in the context of statistical models whose

main purpose is the prediction of future outcomes on the basis of other related information.

It is a measure describing the amount of variability in one variable that is explained by the

other.

The basis of the coefficient of determination R2 is the correlation coefficient R:

R =
covxy

sxsy
=

∑(xi− x̄)(yi− ȳ)
(N−1)sxsy

(2.1)

with N being the number of observations, x̄ and ȳ being the mean of the samples in X

and Y , xi and yi being data points and sx and sy being the standard deviations of X and Y ;

R ∈ [−1,1], where 1 means a positive correlation and -1 means a negative correlation. In

other words, if R = 1 and x increases in a certain way, then y has to increase in a similar

way. If R =−1 and x increases, then y has to decrease and vice versa.

This coefficient represents no causality between the variables x and y. A squared correlation

coefficient represents this causality. It is then called the coefficient of determination [146].
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2.7.3. Support Vector Machine

The support vector machine classifier was introduced by Vapnik in 1995 [147]. In its stan-

dard definition, the SVM is the formulation of a geometric and data-driven minimization

problem that finds a hyperplane best separating datapoints of two classes under certain

conditions. The SVM is also known as a large margin classifier for it finds a hyperplane

from which the distances to datapoints of either class are maximal. The closest datapoints

to the hyperplane are called support vectors. Euclidean distances from support vectors to

the hyperplane are defined as ||w||. In case of a linear kernel and a key point in SVM, ||w||
can be expressed by a linear combination of support vectors [147].

The core principle of training a SVM model is best explained in an example. Consider n

datapoints X and class labels Y , such that (X ;Y ) = (x1, ..., xn ; y1, ..., yn), here xi ∈R2 and

yi ∈ {−1,1}. Let wo · xi +b0 be the optimal hyperplane in feature space.

min ||w||, such that ∀ yi, yi(w · xi−b) ≥ 1 (2.2)

Figure 2.6 visualizes an example with n = 7 datapoints for each class.

Figure 2.6.: Schematic of training a support vector machine model based on seven datapoints per
class and two features.

Equation 2.2 describes a hard-margin SVM classifier. This approach is prone to overfitting

the training data. In prediction, obtained models therefore suffer from a lack of generalizing

future data. The introduction of soft-margin SVM classifiers overcomes the issue of over-

fitting. Therefore, a cost parameter C weighting errors and slack variabels ξi determining

an error are introduced to the original equation.

32



2.7. Classification

min
w,ξ,b

{
1
2
||w||2 +C

n

∑
i=1

ξi

}
, such that ∀ yi, yi(w · xi−b) ≥ 1−ξi, ξi ≥ 0 (2.3)

If C is small, the penalty for errors is minuscule leading to more errors and larger margin.

If C is large on the other hand, the penalty for erros is considerable leading to a smaller

margin. Lastly, if C = ∞, the hard-margin SVM is obtained, i.e. there are no mistakes in

prediction.

Computationally, it is of interest how to solve the minimization problem. Vapnik has shown

a re-formulation of the minimization problem (Equation 2.3) in two steps. Firstly, Lagrange

multipliers have been introduced which lead to the following minimization problem.

min
w,ξ,b

max
α,β

{
1
2
||w||2 +C

n

∑
i=1

ξi −
n

∑
i=1

αi[yi(w · xi−b)−1+ξi]−
n

∑
i=1

βiξi

}
, (2.4)

such that αi,βi ≥ 0

Secondly, the transformation of the equation into its dual form has been introduced. The

dual form determines the lower bound for minimization problems. For convex problems,

this lower bound equals the global optimum. This allows for efficient computation since

weights ||w|| and slack variable ξi have been eliminated. These concepts have been intro-

duced by Platt and are known as sequential minimum optimization (SMO) [148, 149].

Maximize ∀ αi :

L̃(α) =
n

∑
i=1

αi−
1
2 ∑

i, j
αi α j yi y j 〈xi,x j〉, (2.5)

such that 0 ≤ αi ≤ C and
n

∑
i=1

αi yi = 0

For linearly separable data, this approach is perfectly fine. For non-linear data however, the

so called kernel trick is necessary. The idea of a kernel function is to transfer the data into

a higher-dimensional space without exactly knowing that space and furthermore without

knowing the exact transfer-function. There are linear kernels k(x,y) = 〈x, y〉, polynomial

kernels k(x,y) = 〈x, y〉d , where d ∈ N and radial basis function (rbf) kernels k(x,y) =

exp
(
− ||x−y||2

2σ2

)
. For kernel functions, certain formal conditions must hold (i.e. Mercer’s

Theorem). For an adequate disquisition on kernel functions, the interested reader is directed

to [150]). The present work adheres to linear kernel functions.

Although SVM classifiers are in their core only applicable in binary classification prob-

lems, they can be extended to multi-class problems (e.g. conduct one-vs-one or one-vs-all
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classification, then output highest performance value, majority voting, etc.).

Besides classification, it is possible to employ SVM models for regression.

Performance measures will be explained in the following section. However, the introduc-

tion of probabilistic output by Platt [151, 152] for SVM model predictions is of interest for

the calculation of certain performance measures.

The open-source implementation of different SVM formulations by Chang and Lin [153]

offers efficient calculations in many programming languages including MATLAB (The

MathWorks, Inc., Natick, Massachusetts, United States).

2.7.4. Performance Measures and Permutation Tests

To assess classification performance, the present work will investigate three measures: (i)

classification accuracy, (ii) area under the curve (AUC) values, and (iii) F1-scores1. All

three performance measures are different ratios of true positives (TP), true negatives (TN),

false positives (FP), and false negatives (FN).

Once performance measures are introduced, permutation tests are discussed regarding the

significance of machine learning performance.

Accuracy

Accuracy, as the most prominent performance measure in reporting classification results,

is the ratio of TP plus TN divided by the number of test instances. To estimate the quality

of classification, obtained accuracy is compared to the chance level of purely random clas-

sification. The chance level is dependent upon the numer of instances per class as well as

the number of classes. This is best illustrated by a thought experiment. Assuming there is

a dataset containing results of n = 100 coin tosses. The data consist of either heads or tails.

Say coin toss results are highly skewed, heads occurred 90 times and tails 10 times. Now,

if a classifier model was to always predict heads, it would achieve 90 TP and 0 TN. Thus,

the classification accuracy is 90+0
100 = 90 % in this example.

Area Under Curve

As a second measure for assessing classification performance, area under the curve (AUC)

values from receiver operating characteristic (ROC) curves can be computed (see [154]

for review). AUC-values are based on true positive and true negative rates computed from

thresholds of prediction probabilities of a classifier. The true positive rate is the ratio of TP

1The source code for feature reduction, classification by SVM, as well as the computations for accuracies,
AUC-values, and F1-scores is freely available at https://github.com/dthettich/BSClassify
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divided by TP plus FN, whereas the true negative rate is the ratio of TN divided by TN

plus FP. To obtain a performance measure that is independent of thresholds, true positive

rate and true negative rate are computed by varying thresholds ranging from 0 to 1 in 0.01

steps. The area under the resulting curve is the final AUC-value. As a note for interpre-

tation, AUC-values range from 0 to 1 where 0.5 equals purely random classification, i.e.

the classes are statistically identical, values exceeding 0.5 are better than random and vice

versa.

F1-score

As a third measure of classification performance, F1-scores reflecting the harmonic mean

of true positive rate and positive predictive value of a binary classifier can be computed.

Positive predictive value is the ratio of TP divided by TP plus FP. Thus, F1-scores

are computed by 2·TP
2·TP+FP+FN . F1-scores also range from 0 to 1 with purely random

classification at 0.5. Scores exceeding 0.5 are better than random and vice versa. Although

F1-scores are claimed to account for class imbalance, these scores are unreliable under

certain circumstances [155].

Permutation Tests

In a binary classification problem with balanced classes in which the number of instances

per class is the same, chance level for accuracy is at 50 %. However, the individual sig-

nificance level threshold of classification performance scales with the number of instances

per class as well as the number of classes [156]. Individual significance level thresholds of

classifier performance are obtained in permutation tests [157]. Therefore, for each dataset,

classification performance is repeatedly evaluated in multiple iterations (typically 100 or

1000), where on each iteration the class label vector is randomly permuted. A common ap-

proach for the evaluation of classification performance is k-fold cross-validation (CV) or

leave-one-out-estimation (LOOE). In the former, the dataset is divided into k ∈N mutually

exclusive sets. Then the classifier model is repetitively trained on k−1 sets and tested on

the k-th set. Typical values for k are 5 or 10. In the former, classifier models are repetitively

trained on n−1 samples of the dataset with size n and then tested on the n-th sample.

Individual significance level thresholds for classification are then obtained by sorting per-

formance values in an increasing fashion and selecting values at the 5 % position for each

dataset. If initially computed performances exceed obtained thresholds, classification ac-
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curacies are significant at p = 0.05.

Since permutation tests are accurate but computationally exhaustive, [158] have shown that

individual significance thresholds can be properly approximated for accuracy in the context

of BCI research, assuming classification errors follow a binominal cumulative distribution.

Accordingly for balanced classes, the individual significance level ci(α) at a given signifi-

cance threshold α is computed by the following MATLAB (The MathWorks, Inc., Natick,

Massachusetts, United States) code binoinv(1-α,n,1/c)*100/n , where n is number of

samples per class and c the number of classes. This approximation is only applicable if all

classes are balanced. In different circumstances to properly obtain classification accuracy,

permutation tests are recommended.

2.8. State-of-the-art in EEG-based Affect Recognition

Since the emergence of affective computing, various attempts to classify affective states in

the EEG offline have been conducted. Emotion elicitation paradigms follow either visual

stimuli (e.g. pictures form the International Affective Digitized Sounds (IAPS) set [159])

auditory stimuli (e.g. scenic sounds from the International Affective Digitized Sounds

(IADS) set [160] or music) , video clips, musical video clips, or emotional recall/imagery.

Physiological recordings include signals from the CNS, PNS, or the combination of the

two systems. For feature selection and subsequent classification, there is a manifold of

techniques available.

2.8.1. Affect Recognition Studies

Selected descriptive affect recognition studies are summarized in the following.

Takahashi (2004) [161] conducted an affect recognition study by inducing pleasure and

displeasure in an unknown number of participants with classical music (e.g. vivaldi) and

music mixed with white-noise. EEG was recorded on 3 dry electrodes at frontal locations

by a headband. Employing a SVM classifier and spectral features, he reported 62.3 % accu-

racy. In another study, Takahashi [162] induced 5 basic emotions (joy, anger, sadness, fear,

and relaxed) with music videos in 12 participants. For each class, two trials are available

resulting in 10 trials per participant. EEG was recorded on 3 channels at frontal locations.

Employing signal statistics features and one-vs-all SVM, he reported 42 % accuracy in

5-class and 60 % in 2-class classification. In both studies, it is not clearly stated if classi-

fication was conducted on pooled or individual datasets. Emotional spectral correlates of

affect as well as their potential differences were not statistically validated.

Chanel et al. (2006) [163] classified the arousal dimension by spectral power features of
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specific frequency bands and locations relevant for emotion processing. Emotions were in-

duced by a subset of the IAPS (100 pictures) in 4 participants while EEG was recorded on

64 electrodes. Stimulation time was 6 seconds. Trials were equally divided into 2-classes

(calm and exciting), as well as 3-classes (calm, neutral, and exciting). The authors state

that, labelings led to unbalanced classes (see [163] Figure 2) and adress this issue by im-

posing an a priori probability of 1/3. Classifiers were a naïve Bayes and Fisher’s linear

discriminant analysis (LDA). For every participant, LOOE was employed for performance

evaluation in conjunction with accuracy. On group average in 2-class classification, 54 %

accuracy were obtained in the Bayes approach and 55 % for LDA.

Chanel et al. (2009) [164] conducted another study in. In that study, emotions were induced

by mental imagery of three states in a recall paradigm in 10 participants. States are defined

in valance-arousal space as negatively excited, positively excited, and calm-neutral states.

Mental imagery was cued with a descriptive image of the target state and lasted 8 seconds.

EEG was recorded from 64 electrodes. Using LOOE and linear SVM, 3-class classifica-

tion achieved 63 % accuracy and 2-class 70 %. Time-frequency features and the common

information contained at each pair of electrodes served as features.

Horlings (2008) [165] conducted emotion induction in 10 participants by emotional pic-

tures from IAPS while recording EEG on 19 electrodes. In the paradigm, 50 pictures were

presented and the self-report of valence and arousal was obtained on a 5-point scale (the 5

classes). Employing various EEG features in a 3-fold CV in 5-class SVM classification, 32

% and 37 % accuracy were reported in the valence and arousal dimension. When the author

only classified samples with self-report 1 and 5 in a 2-class approach (approximately 70

% of samples were removed), 71 % and 81 % accuracy in the valence and arousal dimen-

sion were reported. Class imbalances are not adressed and class size values are not clearly

stated. Furthermore, it remains unclear whether classification was conducted on pooled or

individual datasets.

Winkler et al. (2010) [94] investigated frontal EEG asymmetry [166] in response to emo-

tional pictures similar to the IAPS in 9 healthy participants. They selected 48 negative,

48 positive, and 16 neutral pictures for presentation. Pictures were presented randomly for

6 seconds following self-report of valence and arousal by the help of the SAM. EEG was

recorded from 32 electrodes. Statistically, significant differences in spectral power between

hemispheres were not reported. To distinguish between negative vs. positive emotions, log

alpha power features and a common-spatial patter (CSP) approach along with a LDA clas-

sifier in 5-fold CV repeated for 5 times were tested. Both approaches performed on group

average with 56 % accuracy. On average, there were 78.6 trials available, yet numbers

varied for each participant. The authors did not adress class imbalance.

Koelstra et al. (2012) [167] released a publicly available multi-modal physiological dataset
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of 32 participants for the study of human affective states. Emotion was induced by 40

music videos and self-report of valence, arousal, dominance, and liking was obtained. EEG

was recorded from 32 electrodes. Statistically, spectral power and emotional dimension

were validated. The authors employed spectral features across frequency bands as well as

spectral differences between opposite electrodes for classification in a nïve Bayes classifier.

In LOOE for 2-class classification between low and high valence as well as arousal, 57.6

% and 62.0 % accuracy were reported on average. The authors adress the issue of class

imbalance by reporting F1-scores: 0.563 for valence and 0.583 for arousal. The authors

state that F1-scores take class imbalance into account. Also, class ratios are reported: 57

% for valence and 59 % for arousal. In terms of validating classification performance, the

authors perform right-tailed t-tests of F1-scores against 0.5, which they report was chance

level for this measure. In that regard, the authors state that group average classification

performance in valence and arousal are significant.

Gupta and Falk (2015) [168] employ the DEAP dataset and introduce graph theoretical

features in order to account for highly interactive information transfer of active brain net-

works during emotional processing. They compare classification using spectral features

against graph theoretical features. Performance increases of 11 % for valence and 7 % for

arousal are reported by employing graph theoretical features. For each participant, LOOE

was employed in rbfSVM. The authors specifically investigated spectral power and asym-

metry features (as did Koelstra et al.), graph theoretical features, as well as the fusion of

the two along with the number of features in relation to classification performance. For

the first feature set, 52 % max. accuracy for valence and 54 % for arousal with 60 and 70

features are reported. For the second feature set, 63 % max. accuracy for valence and 61 %

for arousal with 135 and 130 features are reported. The third feature set leads to 63 % ac-

curacy for valence and 66 % accuracy for arousal with 350 and 167 features, respectively.

The authors do not address class imbalance.

2.8.2. Literature Survey

To limit the search-space of free variables, Mühl et al. have reported a literature survey on

the topic of affective computing [169]. The authors have conducted a literature review on

the amount of publications including the terms "brain-computer interfaces; emotion affect;

affective computing; emotion recognition; EEG fNIRS" has shown a substantial increase

since the year 2000 (less then 5 articles) up to the year 2013 (almost 900 articles). From that

time period, Mühl et al. provide an excellent survey of 18 curated studies regarding affect

recognition from the CNS or PNS. They give information about the number of participants,

emotion elicitation method, timing aspects, emotions assessed, signals/senors used, num-
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ber of channels, signal processing, features, classification/regression, and performance for

brain activity only (see Table 1 in [169]). All of these studies vary greatly in their experi-

mental paradigms, methods used for analyses, and presentation of results rendering a clear

state-of-the-art statement rather difficult. However, key aspects of the overview in [169]

are outlined in the following.

On average, studies were conducted by 16.3 participants with 43.92 s emotional stimula-

tion or recall time of 3.67 emotional classes and recorded from the CNS on 44 channels

(28.71 channels, if 306 channel MEG study is excluded).

The studies have employed different materials for emotion elicitation (with counts): 8

IAPS, 3 IADS, 3 video clips, 2 musical 2 video clips, 2 music, 2 recall/imagery, 1 game

with different difficulties, and 1 images of facial expressions.

The studies have employed different methods for recording physiological data from the

CNS (with counts): 15 EEG, 1 MEG, and 2 fNIRS.

Classification or regression methods have been employed (with counts): 9 SVM, 2 LDA, 1

multi-layer perceptron (MLP), 1 naïve Bayes, 1 fuzzy clustering, 1 QDA, 1 logistic regres-

sion, and 1 ridge regression.

Besides different classification performance results, mainly regarding the number of

classes, also regression results have been reported (counts with average accuracies): 6 two-

class problems (68.33 %), 4 three-class problems (58.66 %), 2 four-class problems (81.50

%), 2 five-class problems (59.50 %), and 2 six-class problems (85.00 %).

To summarize this sample of affect recognition articles, there is a preference for the IAPS

(followed by IADS), EEG recordings, and binary classification problems using a SVM

classifier. The findings outlined are hardly comparable due to their substantial variances

in experimental design and analysis methods. Classification performance measures are not

comparable due to these variances, as is outlined in Section 2.7.4.

2.8.3. Key Parameter: Sample Size

A key parameter especially for brain state classification is the amount of trials also known

as sample size. The outcome of brain state classification is directly related to the number of

classes, class sizes, as well as class distributions [170, 156, 158]. These figures are defined

by the experimental paradigm and therefore the number of trials. The amount of trials has

not been provided in the overview cited above. However, Mühl provided in his PhD thesis

a similar overview table containing information about 19 affect recognition studies based

on EEG (see Table 1.1 ff. in [171]; study samples partially intersect). The average amount

of trials of those studies is 111.2, however with a standard deviation of 226.1. If one study

of this sample based on emotional recall with a trial number of 1000 in one subject is
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excluded, the mean of total trials is 61.3 with a standard deviation of 71.2. In comparison

for example, the amount of trials available for the classification of one target symbol in the

P300 speller is 180 in a two-class problem (30 samples target; 150 samples non-target).

Recently, Brouwer et al. published recommendations to avoid common pitfalls in the anal-

yses of brain signals that reflect cognitive or affective states [172]. The work presented here

seeks to adhere to these with a focus on best practices for conducting and reporting clas-

sification results related to brain state classification of affect. Therefore, the present work

will extend on these best practices with a focus on machine learning and classification of

brain states of affect. Methodological pitfalls in brain state classification and classification

performance reporting is outlined.
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“ "They will never make a machine to replace the human
mind—it does many things which no machine could ever
do."
You insist that there is something a machine cannot do. If
you will tell me precisely what it is that a machine cannot
do, then I can always make a machine which will do just
that! ´´

J. von Neumann, 1948. (Quoted by E. T. Jaynes in
Probability Theory: The Logic of Science, p. 4.)

3
Auditory Affect Induction: Stimuli,

Physiology, and Classification

This chapter provides an in-depth view on an auditory affect induction and classification

study conducted in a healthy and motor impaired population.

The focus of this study is the investigation of affective processing in the EEG during au-

ditory stimulation by emotional sounds with subsequent classification. Since emotional

processing has not yet been researched in individuals with CP and their is no clear consen-

sus on the strategies how to classify electrophysiological correlates of affect in a healthy

population, the first milestone of this study is to investigate mentioned goals in a healthy

population. These are first steps and groundwork towards an affective BCI for individuals

with CP.

The results presented in the following have been obtained during the course of the Euro-

pean Union (EU) project: Augmented BNCI Communication1 (ABC); supported by the

Seventh Framework Programme (FP7) – EU Contract: FP7-ICT-2011-7-287774. The ab-

breviation BNCI stands for brain-neural-computer interface meaning a BCI system where

input is not only limited to brain activity but extended to other signals (e.g. the periphery)

as well.

Results presented in the following have been partially published [40, 18].

1http://www.abc-project.eu/
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3. Auditory Affect Induction: Stimuli, Physiology, and Classification

3.1. Participants

Healthy individuals as well as motor impaired individuals with cerebral palsy participated

in the study which was approved by the Ethical Review Board of the Medical Faculty,

University of Tübingen.

Healthy

Twenty-five right-handed healthy participants (12 female; age: 24.46 ± 3.17 years) with

normal hearing participated in the study. Each participant was informed about the pur-

pose of the study and signed informed consent prior to participation. All participants fully

completed the experiment.

Cerebral Palsy

Four participants with cerebral palsy (2 female; age: 18 ± 2.16 years) with normal hearing

participated in the study. Handedness was not present in 3 participants due to their motor

impairments. Each participant was informed about the purpose of the study and their legal

guardian signed informed consent prior to participation. With great effort, ’VPcb’ signed

informed consent themself. All participants fully completed the experiment.

3.2. Stimuli and Procedure

In an attempt to develop an emotion induction paradigm that yields a sufficiently large

number of trials and which would easily translate to patient populations, the International

Affective Digitized Sounds 2nd Edition (IADS-2) database [160] was utilized to induce

emotion. Sounds in the database are 6 s long stereo audio recordings of scenic or everyday

events. Using IADS-2 allows stimulation via the auditory sensory channel, which tends to

be intact in many groups that cannot focus on or otherwise exploit visual information (e.g.

patients with cerebral palsy). The auditory affect induction paradigm consisted of sixty

audio files selected from the IADS-2. All sixty stimuli were categorized into 20 unpleasant

events (e.g. vomit, growl, etc.), 20 neutral events (e.g. fan, rooster, etc.), and 20 pleasant

events (e.g. baby, laughter, etc.). A list of all sounds with their respective categories is

given in Supplementary Table A.1. All sounds were repeated in two separate blocks. Two

pseudorandom sequences of consecutive, categorically disjoint sounds were generated for

each participant, leading to 120 trials per participant.
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Procedure

Healthy participants were seated in a comfortable chair approximately 1 m away from a

laptop screen with a 15 inch diameter in a quiet room. Participants completed a German

version of the Positive Affect Negative Affect Scale (PANAS) [173, 174] to evaluate cur-

rent feelings prior to experimentation (see Appendix, Figure A.1). All participants were in

a normal and relaxed state with no signs of substantial deviations. Standardized audiom-

etry validated binaural hearing capabilities of each participant. The Presentation software

kit (Neurobehavioral Systems, Inc.) was used for stimulus presentation. Auditory stimuli

were presented via customary computer loudspeakers (Yamaha Co., Hamamatsu, Japan).

Figure 3.1.: Design of auditory emotion induction paradigm with annotations.

After attachment of electrodes, task instructions were given. Participants were asked to

relax and to actively listen to the sounds presented whilst visually focusing a cross on the

laptop screen. After presentation of a 12 s baseline sound, the first sequence of sounds

was presented. To assess individual valence and arousal ratings, participants were asked

to evaluate each sound after sound-offset with the help of the self assessment manikin

(SAM) [23] by navigating a 9-point Likert-like scale using the cursor keys on the keyboard.

The schematic SAM is shown in Figure 2.2 A. Pressing the up key first confirmed the

selection for perceived valence followed by confirmation of the individual arousal rating

also marking the end of the trial. The ITI varied randomly between 6 s and 14 s in order

to maintain participants’ task engagement. After presentation of 60 sounds, participants

were allowed to relax their eyes and arms for 5 min. The second sequence of sounds was

then presented in the same manner lacking the rating step. The design of the experimental

paradigm for the rating run is depicted in Figure 3.1.

For participants with cerebral palsy, valence and arousal values were obtained before the
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3. Auditory Affect Induction: Stimuli, Physiology, and Classification

sequential presentation of sounds. Therefore, an input form was realized within a webpage

environment. Sounds were played consecutively, whereas after each sound the user input

was obtained for valence and arousal. Following the acquisition of valence and arousal

values, the regular experiment with sequential presentation of sounds in pseudorandom

order was conducted.

3.3. Data Collection and Analysis

The electroencephalogram along with the vertical and horizontal electrooculogram as well

as electrocardiography were recorded by active electrodes at 500 Hz sampling frequency

and bandpass filtered from 0.1 Hz to 100 Hz (BrainProducts GmbH, Munich, Germany).

Following the extended 10-20 system [49], EEG was recorded from Fp1, Fp2, F3, F4, C3,

C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, Tp9, Tp10, Fc1, Fc2, Cp1, Cp2, Fc5,

Fc6, Cp5, and Cp6 all referenced to Fcz and grounded against Apz. Electrode locations

on the scalp are depicted in Figure 3.2. Continuous EEG was corrected for vertical and
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Figure 3.2.: Electrode locations.

horizontal eye movement artefacts [130]. EEG was segmented into 6 s long trials relative

to stimulus onset. The data of two healthy participants had to be excluded from analysis

due to excessive artefacts leading to nhealthy = 23 datasets for analysis. For cerebral palsy

datasets, the amount of movement artifacts poses several problems. Nonetheless, all ncp = 4

datasets were included for analysis.

3.3.1. Statistics

All data analyses were performed offline with a commercial software package (MATLAB

2014b, The MathWorks, Inc., Natick, Massachusetts, United States), FieldTrip [175], and
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custom code. For analysis of event-related potentials (ERPs), EEG was bandpass filtered

from 0.1 Hz to 30 Hz with a two-pass Butterwerworth filter with order 6 and baseline

corrected from -0.1 s to 0 s relative to stimulus onset. Grand average waveforms were

computed for each valence category separately. Waveform differences in the time domain

were tested for significance for conditions pleasant vs. neutral, unpleasant vs. neutral, and

pleasant vs. unpleasant with a Wilcoxon test and corrected for multiple comparisons by

false discovery rate (FDR) [176]. Power spectra were computed from time domain data (0

s to 1.4 s relative to stimulus onset) in 1 Hz frequency bins from 1 to 40 Hz by the method

of Burg [59] with a model order of 32. Inter-hemispheric differences in power spectra of

emotional conditions pleasant and unpleasant at electrode locations F3 and F4 were tested

for significance across conditions with a FDR corrected Wilcoxon test. Additionally, scalp

topography distributions of spectra for unpleasant minus neutral as well as for pleasant

minus neutral conditions were investigated by ANOVA. To analyse if emotional stimuli

had an overall effect on power spectra, conducted an ANOVA with factors participant,

power per frequency band delta (1 - 4 Hz), theta (5 - 7 Hz), alpha (8 - 12 Hz), and beta (13

- 25 Hz), emotional condition (unpleasant, neutral, and pleasant), as well as channel.

3.3.2. Classification

Classification of valence categories was evaluated by postulating three binary classification

problems: unpleasant vs. neutral, unpleasant vs. pleasant, and pleasant vs. neutral. In the

following, classes are occasionally abbreviated with ’-’ for unpleasant, ’0’ for neutral, and

’+’ for pleasant.

Feature Extraction and Selection

Based on the neurophysiological analysis presented in results, features were extracted from

channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6. To reduce the number of features, R2-values be-

tween data and labels were computed for each feature and the features with the highest

R2-values were used for classification [131]. Initially, the number of features were varied.

Only features that exceeded the mean of all computed R2-values were taken into account

for training the classifier model. On average, 1558 features were used for classification

with this setting. As best practice however, only the 100 best scoring features in terms

of R2-values were retained for classification throughout the rest of analyses. As a rule of

thumb, the number of features should approximately equal the number of samples (80 in

the present study). Resulting feature selection masks were applied to test sets before assess-

ing classification quality. As classifier, a support vector machine (SVM) with a linear kernel

(C=1) using the libSVM implementation [153] was employed. SVMs have been proven to
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be well suitable for brain state classification especially in the field of BCI research [123].

Label predictions as well as prediction probabilities [152, 151] were obtained. All perfor-

mance measures are obtained in a 10-fold cross-validation, i.e. for each participant, feature

sets were divided into 10 mutually disjoint training and test sets resulting in 10 sets of

72 training and 8 test instances each. To assess classification performance, three measures

were investigated: (i) classification accuracy, (ii) area under the curve (AUC) values, and

(iii) F1-scores (see Section 2.7.4).

3.4. Results

Emotional categories unpleasant, neutral, and pleasant differed significantly from each

other by IADS-2 normative valence as shown in Figure 3.3 B (p < 0.01, Wilcoxon test).

Significant differences of literature IADS-2 and participants’ self reported valence values

were not observed in a Wilcoxon test. Participants’ self report was correlated with litera-

ture IADS-2 valence values. Self reported valence values of all participants highly corre-

late with literature IADS-2 valence values (r = 0.81, p< 0.001) verifying the experimental

paradigm.

Figure 3.3.: A: Self-assessment manikin in the valence (top) and arousal dimension (bottom) [23].
B: Valence (left) and arousal (right) value distributions of IADS-2 sounds selected according to
categories.

3.4.1. Event-related Potentials and Power Spectra

Healthy

The grand average event-related potential time locked to stimulus onset is shown in

Figure 3.4 A for each valance category. Clear potentials are visible for responses to all

categories. After a negative peak at approximately 200 ms, waveforms of low and high

valence stimuli exhibit a stronger positive deflection than neutral valence stimuli that

46



3.4. Results

lasts approximately until 1400 ms. Figure 3.4 B depicts schematic scalp plots showing

grand average responses on all channels for all categories on time points when amplitudes

were minimal and maximal, respectively. Time points for minima and maxima were

computed from channel Pz for each emotional condition. After stimulus-onset, amplitudes

are more negative in frontal regions across categories. Topographies of responses to

unpleasant and pleasant stimuli result in higher positive amplitudes over centro-parietal

regions compared to neutral. Channels Cp1 and Cp2 exhibit the most prominent ERP

Figure 3.4.: (A) Event-related potentials averaged over all participants for unpleasant, neutral, and
pleasant stimuli on midline electrode Pz. Grey horizontal bars depict significant differences be-
tween neutral and pleasant (light grey) or neutral and unpleasant responses (dark grey), (p < 0.05,
FDR corrected Wilcoxon test). Differences between unpleasant and pleasant conditions are not
significant (p > 0.05, FDR corrected Wilcoxon test). (B) Scalp plots showing the topographic dis-
tribution where grand average responses are minimal (left) and maximal (right) at electrode Pz for
unpleasant, neutral, and pleasant stimuli.

waveforms with significant responses from 448 ms to 1400 ms for comparison of

categories unpleasant and neutral, as well as pleasant and neutral (Figure 3.5 A). On Cp5

and Cp6, only pleasant and neutral responses are significantly different. Marginal inter-

hemispheric waveform differences within the same category at electrode locations Cp1 and

Cp2, as well as Cp5 and Cp6 were not significant (p> 0.05, FDR corrected Wilcoxon test).

In the frequency domain, it was expected that the processing of unpleasant sounds results in

higher power in the alpha band (8 - 12 Hz) over right frontal hemispheric regions, whereas

power would be elevated over left frontal brain regions for pleasant sounds [166, 177].

Figure 3.6 A depicts spectral differences of unpleasant and neutral and Figure 3.6 B be-

tween pleasant and neutral conditions in the frequency bands delta (1 - 4 Hz), theta (5 - 7

Hz), alpha (8 - 12 Hz), and beta (13 - 25 Hz). Unpleasant minus neutral condition shows
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Figure 3.5.: Event-related potentials averaged over all participants for unpleasant, neutral, and
pleasant stimuli on temporal electrodes Cp1 and Cp2 (A) as well as Cp5 and Cp6 (B). Grey hor-
izontal bars depict significant differences between neutral and pleasant (light grey) or neutral and
unpleasant responses (dark grey), (p < 0.05, FDR corrected Wilcoxon test). Differences between
unpleasant and pleasant conditions are not significant (p > 0.05, FDR corrected Wilcoxon test).

Figure 3.6.: (A) Scalp topography plots of grand average spectral differences for unpleasant minus
neutral and (B) pleasant minus neutral valence categories for different frequency bands.

48



3.4. Results

higher power in delta, theta, and alpha frequency bands over frontal, right hemispheric

channels Fz, F4, and Fc2. Left temporal parietal power slightly increases in the beta band

for this condition. Condition pleasant minus neutral shows an inverted effect where power

is higher over frontal left hemispheric electrode locations Fz and F3, as well as a marginal

power increase on P7. These power differences were not significant (p > 0.05, Bonferroni

corrected ANOVA).

To investigate frontal alpha power asymmetry, power spectra of responses to pleasant and

unpleasant stimuli on frontal electrode locations F3 and F4 were compared. As expected,

pleasant stimuli exhibit on average higher power compared to unpleasant in the frequency

range 1 Hz - 30 Hz on F3 (pleasant; 2.19± 1.39 µV2/Hz; unpleasant: 1.76± 1.13 µV2/Hz),

and vice versa on F4 (pleasant: 1.97 ± 1.17 µV2/Hz; unpleasant: 2.11 ± 1.24 µV2/Hz),

however not significant (p > 0.05, FDR corrected Wilcoxon test).

Cerebral Palsy

Analysis of cerebral palsy EEG data poses severe problems regarding artifacts. Motor dis-

abilities including spastic and dyskinetic movements are intrinsic to cerebral palsy. When

unphysiological trials with amplitudes greater 100 µV are rejected, only a very small num-

ber of trials can be retained for analysis (SC01: 12 trials, SC02: 0 trials, SC03: 45 trials, and

SC04: 60 trials). Therefore, the following results have to be treated not only with caution

but are an example of most likely false interpretations of machine learning analysis.

The grand-average responses in individuals with cerebral palsy to unpleasant, neutral, and

pleasant sounds is shown in Figure 3.7 A recorded at midline electrode Pz. There is a

positive deflection for all conditions starting at around 400 ms post stimulus-onset, peaks

at 450 ms, declines until 1200 ms post stimulus. The deflection is strongest for unpleasant

sounds. Against expectation, pleasant sounds evoked the smallest deflection of amplitudes.

As shown in Figure 3.7 B, schematic scalp topography plots of the different conditions

show a high occipital activation during the maxima of amplitudes for unpleasant and neu-

tral sounds.

Topological differences in the conditions unpleasant minus neutral and pleasant minus neu-

tral are depicted in Figure 3.8 A and B, respectively. Activity in the delta band (1 - 4 Hz)

show lateral (A) and central differences (B). Theta band activity differences are almost

absent. Alpha and beta differences show lateral and frontal differences in A and B, re-

spectively. Lateriazation effects could not be observed. All differences were subjected to

a statistical test employing ANOVA which has not led to significant differences across

conditions.
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Figure 3.7.: (A) Event-related potentials averaged over all participants with CP for unpleasant,
neutral, and pleasant stimuli on midline electrode Pz. Amplitude differences are not significant,
(p > 0.05, FDR corrected Wilcoxon test). (B) Scalp plots showing the topographic distribution
where grand average responses are minimal (left) and maximal (right) at electrode Pz for unpleas-
ant, neutral, and pleasant stimuli.

Figure 3.8.: (A) Scalp topography plots of grand average spectral differences in CP for unpleasant
minus neutral and (B) pleasant minus neutral valence categories for different frequency bands.
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3.4.2. Time Domain Classification

Healthy

Classification was conducted on time domain EEG data where significant differences were

observed between conditions on channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6. Three binary

classification problems were postulated according to valence categories: unpleasant vs.

neutral, unpleasant vs. pleasant, and pleasant vs. neutral. Table 3.1 depicts average group

classification accuracies, AUC-values, and F1-scores. Average group level accuracies and

AUC-values for binary classification of unpleasant vs. pleasant and pleasant vs. neutral are

significantly above chance.

Table 3.1.: Healthy mean classification accuracies, AUC-values, and F1-scores based on time do-
main EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 obtained in 10-fold cross-validation.
Columns indicate classes of respective binary classification problems ( ’-’ unpleasant, ’0’ neutral,
’+’ pleasant). Classes are balanced with 40 instances each. Stars indicate significant group differ-
ences in a right-tailed t-test against 50 for accuracy and 0.5 for AUC-values and F1-scores with
p < 0.05 and p < 0.01, respectively.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Accuracy 49.99 % 53.39 % ** 53.21 % *

AUC-value 0.49 0.54 ** 0.54 *

F1-score 0.46 0.51 0.51

Individual chance levels are derived from permutation test results at α = 0.5. Average

chance levels for each performance measure are shown in Table 3.2.

Table 3.2.: Average healthy individual chance levels of classification at significance threshold α =
0.5 obtained by permutation tests for the performance measures accuracy, AUC-value, and F1-score
based on time domain EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 in 100 iterations.
Columns indicate classes of respective binary classification problems ( ’-’ unpleasant, ’0’ neutral,
’+’ pleasant). Classes are balanced with 40 instances each.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Accuracy 49.53 ± 0.99 % 49.29 ± 0.99 % 49.46 ± 1.18 %

AUC-value 0.50 ± 0.01 0.49 ± 0.01 0.49 ± 0.01

F1-score 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.01

Complete individual chance level results are shown in the Appendix Chapter A, Table A.2.

Individual chance levels obtained by permutation tests are not significantly different to
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expected chance levels at 50 % or 0.5 for their respective performance measures (two-

tailed t-test, p < 0.001).

Individual participant classification results are shown in Table 3.3.

Table 3.3.: Healthy individual classification accuracies, AUC-values, and F1-scores based on time
domain EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 obtained in 10-fold cross-validation.
Columns indicate classes of respective binary classification problems ( ’-’ unpleasant, ’0’ neutral,
’+’ pleasant). Classes are balanced with 40 instances each. Stars indicate significant group differ-
ences in a right-tailed t-test against 50 for accuracy and 0.5 for AUC-values and F1-scores with
p < 0.05 and p < 0.01, respectively.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Participant Accuracy AUC F1-Score Accuracy AUC F1-Score Accuracy AUC F1-Score

S01 63.75 % 0.65 0.64 67.50 % 0.73 0.68 46.25 % 0.49 0.46
S02 54.82 % 0.52 0.51 59.29 % 0.54 0.56 55.00 % 0.54 0.57
S03 52.50 % 0.55 0.53 51.25 % 0.49 0.49 52.50 % 0.52 0.49
S04 53.75 % 0.52 0.51 56.25 % 0.58 0.53 51.25 % 0.46 0.48
S05 56.25 % 0.58 0.56 53.75 % 0.57 0.53 73.75 % 0.82 0.71
S06 45.00 % 0.45 0.39 57.50 % 0.59 0.60 55.00 % 0.54 0.50
S07 46.25 % 0.47 0.38 46.25 % 0.48 0.47 57.50 % 0.56 0.57
S08 41.25 % 0.42 0.30 50.00 % 0.49 0.43 57.50 % 0.59 0.60
S09 46.25 % 0.54 0.48 40.00 % 0.40 0.33 60.00 % 0.59 0.57
S10 47.50 % 0.49 0.40 48.75 % 0.54 0.45 57.50 % 0.62 0.56
S11 47.50 % 0.45 0.49 60.00 % 0.58 0.57 48.75 % 0.49 0.44
S12 47.50 % 0.47 0.45 56.25 % 0.60 0.53 58.75 % 0.58 0.55
S13 55.00 % 0.51 0.54 50.00 % 0.50 0.44 62.50 % 0.65 0.58
S14 47.50 % 0.41 0.30 48.75 % 0.49 0.37 46.25 % 0.51 0.38
S15 50.00 % 0.49 0.39 51.25 % 0.49 0.51 48.75 % 0.43 0.48
S16 43.75 % 0.42 0.43 60.00 % 0.60 0.53 47.50 % 0.52 0.50
S17 51.25 % 0.49 0.52 53.75 % 0.57 0.49 43.75 % 0.41 0.33
S18 43.75 % 0.42 0.38 53.75 % 0.52 0.60 45.00 % 0.46 0.41
S19 57.50 % 0.53 0.55 50.00 % 0.47 0.51 48.75 % 0.49 0.42
S20 43.75 % 0.48 0.40 53.75 % 0.51 0.51 60.00 % 0.60 0.60
S21 48.75 % 0.46 0.44 53.75 % 0.47 0.53 41.25 % 0.45 0.41
S22 52.50 % 0.54 0.47 57.50 % 0.58 0.54 55.00 % 0.55 0.56
S23 53.75 % 0.46 0.51 48.75 % 0.52 0.49 51.25 % 0.53 0.55

Mean 49.99 % 0.49 0.46 53.39 % ** 0.54 ** 0.51 53.21 % * 0.54 * 0.51

Regarding individual classification results in terms of significance levels, only one partici-

pant exceeded 62.5 % accuracy for unpleasant vs. neutral and unpleasant vs. pleasant. In the

classification of pleasant vs. neutral, one participant exceeded the individual significance

level 70.0 % (depicted in bold font; Table 3.3). With a significance threshold of α = 0.05,

on average 1 in 20 participants was expected to exceed the individual significance level by

chance.

To give a valid estimate of individual significance thresholds of classification for the re-

spective performance measure, permutation tests were conducted. Table 3.4 shows in-
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dividual significance levels at p = 0.05 for each participant (for comparison, individual

classification performances are shown in Table 3.3). Two participants exceed individual

significance levels in all performance measures for the classification of unpleasant vs. neu-

tral, unpleasant vs. pleasant, and pleasant vs. neutral, respectively. One participant slightly

exceeded the individual significance level for AUC-values, however not for accuracy nor

F1-score. Average accuracy significance thresholds obtained by permutation tests prove

the binomial estimate of 62.5 % only with deviations lesser than 0.5 %.

Table 3.4.: Healthy individual significance levels of classification at significance threshold α= 0.05
obtained by permutation tests for the performance measures accuracy, AUC-value, and F1-score
based on time domain EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 in 100 iterations.
Columns indicate classes of respective binary classification problems ( ’-’ unpleasant, ’0’ neutral,
’+’ pleasant). Classes are balanced with 40 instances each.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Participant Accuracy AUC F1-Score Accuracy AUC F1-Score Accuracy AUC F1-Score

S01 61.25 % 0.63 0.61 63.75 % 0.67 0.64 61.25 % 0.64 0.60
S02 61.07 % 0.65 0.61 63.21 % 0.65 0.63 63.75 % 0.65 0.62
S03 63.75 % 0.66 0.65 62.50 % 0.66 0.63 63.75 % 0.63 0.63
S04 63.75 % 0.63 0.65 63.75 % 0.63 0.62 60.00 % 0.65 0.60
S05 62.50 % 0.63 0.62 65.00 % 0.68 0.64 61.25 % 0.62 0.61
S06 63.75 % 0.62 0.64 63.75 % 0.64 0.65 65.00 % 0.66 0.63
S07 63.75 % 0.69 0.62 66.25 % 0.65 0.65 63.75 % 0.64 0.63
S08 62.50 % 0.63 0.62 61.25 % 0.63 0.61 61.25 % 0.66 0.63
S09 65.00 % 0.65 0.63 63.75 % 0.65 0.66 62.50 % 0.64 0.63
S10 60.00 % 0.62 0.59 63.75 % 0.66 0.63 61.25 % 0.63 0.64
S11 63.75 % 0.64 0.64 61.25 % 0.67 0.62 63.75 % 0.64 0.63
S12 61.25 % 0.65 0.62 62.50 % 0.66 0.63 62.50 % 0.64 0.64
S13 62.50 % 0.60 0.64 60.00 % 0.62 0.62 62.50 % 0.64 0.63
S14 65.00 % 0.67 0.66 62.50 % 0.67 0.64 63.75 % 0.66 0.62
S15 60.00 % 0.63 0.61 60.00 % 0.64 0.61 62.50 % 0.64 0.63
S16 63.75 % 0.65 0.64 65.00 % 0.66 0.64 61.25 % 0.63 0.61
S17 65.00 % 0.62 0.64 62.50 % 0.67 0.64 62.50 % 0.66 0.64
S18 58.75 % 0.62 0.60 62.50 % 0.62 0.62 62.50 % 0.63 0.62
S19 60.00 % 0.66 0.59 61.25 % 0.64 0.60 62.50 % 0.64 0.62
S20 63.75 % 0.65 0.63 63.75 % 0.65 0.63 62.50 % 0.65 0.62
S21 65.00 % 0.64 0.66 62.50 % 0.67 0.64 62.50 % 0.67 0.62
S22 62.50 % 0.60 0.63 61.25 % 0.64 0.61 62.50 % 0.64 0.65
S23 63.75 % 0.65 0.64 62.50 % 0.62 0.63 65.00 % 0.63 0.66

Mean 62.71 % 0.64 0.63 62.80 % 0.65 0.63 62.61 % 0.64 0.63
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Classification Cerebral Palsy

Classification was conducted on time domain EEG data on channels Cz, Pz, Cp1, Cp2,

Cp5, and Cp6. However as opposed to healthy data results, differences in ERP amplitudes

are not significant. Furthermore, it has been stated that cerebral palsy data are prone to

artifacts which in turn lead to classification results most likely stemming from artifacts

rather than real physiological effects. The results reported here are an example for the

importance of correct data processing in the context of domain knowledge, i.e. numbers

are patient. Table 3.5 depicts average group classification performance measures for three

binary classification problems as described above.

Table 3.5.: Cerebral palsy mean classification accuracies, AUC-values, and F1-scores based on time
domain EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 obtained in 10-fold cross-validation.
Columns indicate classes of respective binary classification problems ( ’-’ unpleasant, ’0’ neutral,
’+’ pleasant). Classes are balanced with 40 instances each. Stars indicate significant group differ-
ences in a right-tailed t-test against 50 for accuracy and 0.5 for AUC-values and F1-scores with
p < 0.05 and p < 0.01, respectively.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Accuracy 53.04 % 50.80 % 54.20 % **

AUC-value 0.55 ** 0.50 0.52 *

F1-score 0.49 0.49 0.52 *

Individual chance levels are derived from permutation test results at α = 0.5. Average

chance levels for each performance measure are shown in Table 3.6.

Table 3.6.: Average cerebral palsy individual chance levels of classification at significance thresh-
old α = 0.5 obtained by permutation tests for the performance measures accuracy, AUC-value, and
F1-score based on time domain EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 in 100 it-
erations. Columns indicate classes of respective binary classification problems ( ’-’ unpleasant, ’0’
neutral, ’+’ pleasant). Classes are balanced with 40 instances each.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Accuracy 53.48 ± 2.61 % 49.51 ± 1.42 % 55.40 ± 10.30 %

AUC-value 0.53 ± 0.03 0.50 ± 0.01 0.55 ± 0.10

F1-score 0.52 ± 0.05 0.45 ± 0.09 0.54 ± 0.13

Although accuracy, AUC-value, and F1-score on average exceed 50 % or 0.5 for conditions

’-’ vs. ’0’ and ’+’ vs. ’0’, deviations to estimated chance levels are not significant (two-

tailed t-test, p < 0.01).
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Complete individual chance level results are shown in the Appendix, Table A.2.

As mentioned, amplitude differences are not significant, yet the group average AUC-value

is significantly above chance for ’-’ vs. ’0’. For the condition ’+’ vs. ’0’, all performance

measures are significantly above chance. Table 3.7 shows individual classification per-

formances. The bold accuracy value for SC02 in ’+’ vs. ’0’ indicates above individual

significance. Thus one participant exceeded individual significance in accuracy. In four

participants, 0.2 participants are expected to exceed the individual significance level.

Table 3.7.: Cerebral palsy individual classification accuracies, AUC-values, and F1-scores based
on time domain EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 obtained in 10-fold cross-
validation. Columns indicate classes of respective binary classification problems ( ’-’ unpleasant,
’0’ neutral, ’+’ pleasant). Classes are balanced with 40 instances each. Stars indicate significant
group differences in a right-tailed t-test against 50 for accuracy and 0.5 for AUC-values and F1-
scores with p < 0.05 and p < 0.01, respectively.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Partic. Accuracy AUC F1-Score Accuracy AUC F1-Score Accuracy AUC F1-Score

SC01 50.00 % 0.57 0.35 45.00 % 0.39 0.29 55.00 % 0.49 0.49

SC02 60.00 % 0.58 0.53 50.00 % 0.51 0.49 57.50 % 0.53 0.51

SC03 55.89 % 0.51 0.62 49.46 % 0.51 0.62 53.04 % 0.56 0.56

SC04 46.25 % 0.52 0.47 58.75 % 0.57 0.56 51.25 % 0.51 0.52

Mean 53.04 % 0.55 ** 0.49 50.80 % 0.50 0.49 54.20 % ** 0.52 * 0.52 *

Individual significance levels of classification for cerebral palsy data are depicted in Table

3.8. Obtained individual significance levels for accuracy deviate approximately 4.5 % from

the pre-computed value of 62.5 %.

Table 3.8.: Cerebral palsy individual significance levels of classification at significance threshold
α = 0.05 obtained by permutation tests for the performance measures accuracy, AUC-value, and
F1-score based on time domain EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 in 100
iterations. Columns indicate classes of respective binary classification problems ( ’-’ unpleasant,
’0’ neutral, ’+’ pleasant). Classes are balanced with 40 instances each.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Participant Accuracy AUC F1-Score Accuracy AUC F1-Score Accuracy AUC F1-Score

SC01 57.50 % 0.60 0.57 57.50 % 0.58 0.49 58.75 % 0.60 0.56

SC02 65.00 % 0.67 0.61 55.00 % 0.55 0.53 56.25 % 0.57 0.54

SC03 61.96 % 0.64 0.66 56.07 % 0.56 0.63 75.54 % 0.80 0.78

SC04 58.75 % 0.59 0.59 58.75 % 0.59 0.58 55.00 % 0.53 0.54

Mean 60.80 % 0.63 0.61 56.83 % 0.57 0.56 61.38 % 0.62 0.61
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3.5. Discussion

In this study, neural responses to emotion-laden sounds by recording EEG, in the context

of affective computing, were investigated in a healthy and a population with cerebral palsy.

An auditory emotion induction paradigm also suitable for the study of affect in disabled

individuals where visual fixation is absent has been introduced. Following the dimensional

model of emotion, sounds were divided by valence into three categories: unpleasant, neu-

tral, and pleasant. Participants’ self report of valence values strongly correlated with lit-

erature reported IADS-2 values (r = 0.78, p < 0.001). In healthy data, time domain EEG

data analysis showed significant grand average waveform differences related to stimulus

valence categories. Inter-hemispheric spectral power differences in the frequency domain

related to stimulus valence were not significant. However there was a significant overall

effect of stimulus valence to power spectra. Time domain EEG data were subjected to

classification using SVM. In healthy data, group level significance for the classification of

unpleasant vs. pleasant (53.39 % accuracy, 0.54 AUC-value) and pleasant vs. neutral (53.21

% accuracy, 0.54 AUC-value) conditions. Two participants reached significant individual

classification performance in two (unpleasant vs. neutral and unpleasant vs. pleasant) and

one condition (pleasant vs. neutral) was found in healthy data.

As for cerebral palsy data, time domain ERP differences were not significant. Classifica-

tion performance exceeded chance significantly for the condition unpleasant vs. neutral

in AUC-values and for condition pleasant vs. neutral in all performance measures. At the

same time, classification results must be treated with some reservation due to CP data are

potentially prone to artifacts.

For comparison, the methods introduced are applied to the DEAP dataset with some al-

terations. Complete results regarding the DEAP dataset and a discussion are depicted in

Chapter 5. The ’DEAP: a Database for Emotion Analysis using Physiological Signals’

dataset has been publicly released by Koelstra et al. [167]. It is a multimodal dataset aimed

at the analysis of human affective states.

3.5.1. Event-related Potentials and Power Spectra

Healthy

Neurophysiological results in the time domain are consistent with results from earlier stud-

ies on affective picture perception [178, 55]. Emotional sounds (either unpleasant or pleas-

ant) evoked a larger positive deflection than neutral event-related potentials. After an N2

component, positive deflections begin approximately 400 ms after stimulus-onset and last

until approximately 1400 ms for unpleasant and pleasant stimuli. Positive deflections to
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pleasant stimuli are on average stronger compared to those of unpleasant stimuli, how-

ever not significantly. Amplitude differences between neutral and unpleasant or neutral and

pleasant conditions are significant over midline and centro-parietal electrode sites. Wave-

forms at electrodes Cp1 and Cp2 exhibit prolonged positive deflections. Although not as

prolonged, these results are in line with late positive potential data of [55] during the pro-

cessing of emotion-laden pictures. The observable N2 preceding the LPP is attributed to

auditory processing (see [179] for review). An inter-hemispheric effect of amplitude differ-

ences when comparing ERPs of the same condition at Cp1 and Cp2 or Cp5 and Cp6 could

not be observed.

Frontal inter-hemispheric differences in frequency domain power related to stimulus va-

lence reported by [180] could not be confirmed. Average power was increased at F3 for

pleasant (and decreased for unpleasant) as well as increased power at F4 for unpleasant

(and decreased for pleasant) stimuli, however not significant. Similarly, lateralised power

differences in frequency bands between unpleasant minus neutral or pleasant minus neu-

tral conditions were not significant. Nonetheless, a significant effect of stimulus valence

to spectral power has been found confirming the altered brain activity during processing

of stimuli. It is arguable that (not significant) effects in the frequency domain related to

hemispheric differences in power and stimulus valence in the present study are attributed

to substantial experimental design differences compared to the original study by [180]. The

experimental paradigm in that study employed five 60 s video clips to induce two emotional

states (happy and disgust), as well as baseline activity. The first video clip accommodated

the participant with the experiment, the subsequent two were clips to induce a positive,

and finally two clips to induce a negative emotional condition. Thus, the authors remained

with a small number of trials whilst obtaining a relatively large amount of EEG data for

analyses. In the present study, the total amount of "emotional" EEG recorded seems to

be not sufficient to result in significantly measurable power differences in the frequency

domain. However, our results in the time domain clearly show the LPP as a neurophysio-

logical marker of valence whilst frequency domain results only in trend. It is to note that

the present study is framed within the context of affective computing with focus on the

amount of trials whilst retaining a design with controlled stimuli that easily translates to

patient populations.

Cerebral Palsy

Event-related potentials in cerebral palsy data show a trend of late positivity in all condi-

tions. However, only unpleasant sounds evoked the strongest positive deflection which is

concurrent with the hypothesis. Responses to pleasant stimuli are less positive than neu-
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tral which are explained by right-hemispheric frontal artifacts as seen in the topographic

ERP plots. The number of trials has been identified as a key parameter for successful ma-

chine learning. Therefore, rigorous artifact rejection could not be applied for the loss of a

substantial amount of trials in the data recorded from this population. Behaviourally, spas-

tic and dyskinetic movements have been observed to be coupled with participants arousal

for inhibition abilities are diminished in CP [181]. This is particularly problematic during

stimulus-onset and partially during stimulation itself.

3.5.2. Classification Performance Assessment

The assessment of classification performance is strikingly influenced by the number of

classes, class sizes, as well as class distributions. Thus, it is of utmost importance to clearly

report these figures, i.e. two classes with 40 instances each in the present study. Perfor-

mance metrics such as accuracy, AUC-values, and F1-scores entail a couple of method-

ological problems. Classification accuracy, as the ratio between correctly classified in-

stances and all instances, is probably the most prominent measure for classification quality

assessment. In a generic two-, three-, or n-class classification problem, a straight-forward

approach is to evaluate classification accuracy in a 10-fold cross-validation and investigate

the deviation of obtained accuracy from random classification, i.e. the so called chance

level at 50 %, 33.3 %, or 100
n %, respectively. The most severe problem is that this com-

putation of chance level is only valid for balanced classes, i.e. the number of instances per

class is the same for all classes. Complying with this prerequisite, accuracy computed by

10-fold cross-validation is a valid measure to estimate classification performance against

the chance level. As will be outlined in the following, the performance assessment in brain

state classification on a participant level requires further measures. From a theoretical point

of view, individual significance thresholds in classification only hold for an unlimited num-

ber of training and testing instances [156]. Although this limitation is commonly accepted

in the machine learning community, it seems not well-established in interdisciplinary fields

such as affective computing where studies are especially prone to a small number of tri-

als. To properly estimate individual significance thresholds of classification, it is strongly

encouraged to conduct permutation tests. These tests are not only independent of the per-

formance measure, but also independent of class distributions. Since permutation tests can

be time consuming, it is suggested to compute individual chance levels according to [158].

Nonetheless, it is to emphasise that this approach is only valid for accuracy and if classes

are balanced. In this regard, it is strongly encouraged to design studies such that trials are

equal across experimental conditions. If class distributions are skewed however, (e.g. due

to technical failures or processing steps), it is suggested to assess classifier performance by
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AUC-values. Statistics for group level analyses are similar to accuracy. On the participant

level however, permutation tests are again a must. The interested reader is directed to the

introductory article by [182] for more information on AUC-values. The main disadvantage

of F1-scores is that true negatives are neglected in their computation. Thus, F1-scores are

known to be unreliable under certain circumstances [155]. In terms of statistical analyses,

the same policy as for AUC-values applies.

3.5.3. Time Domain Classification

For single trial classification of time domain LPP data, it could be shown that classification

of unpleasant vs. pleasant and pleasant vs. neutral was possible with accuracies and AUC-

values above chance at group level. Data processing cascade was common to BCI practices.

Fast feature reduction and selection based on R2-values along with binary support vector

machine classification yielded best results with 100 features and a linear kernel. However,

classification only reached average accuracies of about 53 %, which are only significant

at group level and not at participant-level. Thereby the application of machine learning

methods merely serves as a confirmation that there are valence-related effects in the data,

but that these effects are too small, so that the application for automatic affect recognition

is not feasible with the presented approach.

In comparison with other studies, [167] conducted emotion induction by videos and also

reported significant above chance level classification of EEG data regarding positive and

negative valence. With an accuracy of 57.6 % they obtained results in a similar range as

ours although a bit higher. However, these results are not directly comparable, as the classes

were not evenly distributed, which stresses the importance of using measures like AUC

to compare results with different class distributions across studies. In the present study,

classification was also done solely in the time domain using the LPP while [167] used

the power spectrum. As only validated features of neurophysiological emotional process-

ing were classified, power spectra were not classified since our findings regarding inter-

hemispheric frontal power difference related to emotional processing were not significant.

Nevertheless, the classification performance in both studies is currently too low to be feasi-

ble for automatic affect recognition. This shows that besides better strategies for reporting

and assessing classification performance, also better methods for EEG signal processing

are needed to reduce the amount of noise in the data and improve affective classification.
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3.6. Conclusion

Healthy

Neural responses to emotion-laden sounds were validated in the time- yet not in the fre-

quency domain. The visually evoked LPP as a neurophysiological marker of emotional

processing was investigated. Inter-hemispheric frontal differences in spectral power were

not significant. Following a BCI processing cascade, classification results of LPP for va-

lence were significantly above chance at group level.

Cerebral Palsy

Neural responses to emotion-laden sounds were not found to be significant, neither in the

time nor in the frequency domain. Different positive amplitude deflections in response to

stimuli categories could be observed, yet non-significant. On a group level, classification

performance was significantly above chance for condition pleasant vs. neutral. Nonethe-

less, classified features could not be statistically validated. Furthermore, artifacts could not

be fully excluded in the data recorded from this population due to the intrinsic difficulties

of spastic and dyskinetic movements.
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“We shall not cease from exploration, and the end of all our
exploring will be to arrive where we started and know the
place for the first time.”

T. S. Eliot (1888 – 1965 CE)

4
Affect Classification in Infants

Infants account for an interesting and promising model for the study of emotion due to

their purity (i.e. less cultural learning) in reactions to external world stimuli.

This chapter investigates the feasibility of affect recognition in an infant population. There-

fore, emotional responses of infants induced by infant-parent interaction were recoded and

classified by means of EEG.

Electrophysiological correlates of three affective states (i.e. unpleasant, neutral, and pleas-

ant) will be investigated by analyzing data obtained with this novel paradigm. Specifically,

frontal inter-hemispheric spectral differences related to emotional experiences will be val-

idated. Significant power spectral features of the three affective states will be employed in

a machine learning approach to discern the possibility of their automatic classification by

means of EEG.

4.1. Participants

Twenty-eight healthy infant-parent pairs participated in the study which was approved by

the Ethical Review Board of the Medical Faculty, University of Tübingen. Infants were

between 4 to 6 months (13 female). Parents were informed about the purpose of the study

and gave consent. The data of 3 subjects had to be excluded from data analysis due to

movement artifacts. Thus, 25 datasets remained for analysis.
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4.2. Design and Procedure

The design of a successful emotion induction paradigm for infants is a demanding en-

deavor. Most studies were based on standardized stimuli [74, 75, 76, 77]. However, the

attentional focus of infants is quite limited. The focus on potentially non-interesting stim-

uli is thus endangered. An infant-parent interaction-based emotion induction paradigm was

thus designed by Elaina Bolinger and colleagues at the Institute of Medical Psychology and

Behavioural Neurobiology, Tübingen.

In an attempt to design an emotion induction paradigm suitable for infants, emotions are

elicited by the natural interaction between an parent and their infant in different scenarios.

Therefore, six different scenarios were defined: love, peek-a-boo, sing, jack-in-the-box,

rash, and electrical outlet).

Figure 4.1.: Trial structure overview with online manually set trial markers along with offline set
response markers (behavior scoring) and offline EEG segmentation. Parents enact selected scenario
upon experimenter’s cue called ’Parent Attempt’. Post-hoc offline scoring identifies emotionally
relevant data within the larger trial called ’Response Marker’. Emotional responses are further seg-
mented offline into 2 s long trial segments subjected to analysis.

For successful interactions, the parent first ensured the attentional focus of their infant.

Subsequently, the different scenarios were carried out upon cues from the experimenter. In

the love scenario, the parent expressed their strong positive affection towards their child.

In peek-a-boo, the parent hid their face behind a writing pad and suddenly reappeared. In

the sing scenario, the parent sang their or their infant’s favorite song. In the jack-in-the-box

scenario, the parent operated a musical box out of which a clown sprung after sufficient

rotations of the mechanism. In the rash scenario, the parent expressed their strong concern

about an imaginary rash on their infant’s skin. In the electrical outlet scenario, the parent

expressed fear caused by imagining that their infant would grasp an electrical outlet and

thus warned their child.
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Data without interaction served as baseline. Scenarios were grouped into three emotional

categories of unpleasant, neutral, and pleasant experiences. Accordingly, the first four in-

troduced scenarios (love, peek-a-boo, sing, and jack-in-the-box) are grouped as pleasant,

while rash and electrical outlet scenarios are grouped as unpleasant. Baseline activity where

no overt emotion was present is regarded as neutral.

Data were recorded in two sessions separated by one to four days. In each session, the

parent enacted scenarios following the experimenter’s cues. The duration of interaction

varied naturally. The experimenter set relevant stimulus triggers manually and online. EEG

and EOG were recorded simultaneously. EEG was recorded at electrode sites F3, Fz, F4,

C3, C4, P3, Pz, P4 and Cz as the reference with special infant electrode cap (BrainProducts

GmbH, Munich, Germany) at sampling frequency Fs = 256 Hz (SOMNOmedics GmbH,

Randersacker, Germany). The topographical distribution of channels is shown in Figure

4.2 A. Furthermore, video recordings of infant-parent interactions were stored for later

behavioral analysis. EEG data were subject to eye movement artifact correction [130].

Furthermore, trials that exceeded 100 µV were discarded.

An overview of the trial structure including online cues given by the experimenter for

the parent to enact one of the scenarios (i.e. parent attempt) as well as the offline EEG

segmentation based on behavioral scoring is shown in Figure 4.1.

Behavioral Analysis

Video recordings were post-hoc scored for behaviorally significant emotional expressions

of the infants. Figure 4.1 shows the trial structure and post-hoc scoring in an example

trial. The behavioral scoring was conducted by two independent experts at the Institute of

Medical Psychology and Behavioural Neurobiology, Tübingen. Unambiguous criteria for

in- or exclusion are depicted in italics. Other indicators carry some degree of ambiguity.

Successfully identified emotional responses were segmented into 2 s long sub-trials with

the same emotional label.

As for behavioral scoring, inclusion and exclusion criteria are depicted in Table 4.2. Un-

ambiguous criteria for in- or exclusion are depicted in italics. Other indicators carry some

degree of ambiguity.
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Table 4.1.: Inclusion and exclusion criteria for successful emotional expression. Criteria written in
italics constitute strong indicators of the respective condition. The rightmost column shows indica-
tors for baseline activity.

Positive Negative Baseline

Eye contact Fussing No overt emotion

Smiling Crying Parent talking

Laughter/giggling Avoidance (arching, gaze aversion)

Cooing/babbling Pushing away

Approach (reaching)

Happy dance

4.3. Statistical Analysis

Since emotion expression was elicited by the naturalistic interaction with one of the infants’

parents, stimulus triggers were variable. This suggests the analysis of the spectrum rather

than event-related potentials (see Chapter 3).

Power spectra were computed by using autoregressive models, which were estimated using

the maximum entropy method by [59]. A model order of 16 was used. The frequency range

of 1 - 9 Hz was the main focus of analysis. For further analysis, the logarithm function was

applied to the power spectra.

Inter-hemispheric frontal asymmetry was measured by subtracting the power at right-

hemispheric electrode site F4 from left-hemispheric F3. Resulting numbers represent an

index of the degree of lateralized activity. A more negative index indicates relative higher

left-hemispheric power of EEG activity. A more positive index indicates relative higher

right-hemispheric power. Differences between the three emotional conditions unpleasant,

neutral, and pleasant were then tested for significance by a Wilcoxon test on each frequency

bin of 1 Hz and corrected for multiple comparisons [176]. The same analysis is conducted

for electrode-pairs C4 and C3, P4 and P3, as well as the average of spectra differences

across conditions at F4, C4, P4 and F3, C3, P3.

The topographical distribution of power spectra in conditions unpleasant minus neutral as

well as pleasant minus neutral is depicted in Figure 4.4. Obtained resolution is constrained

by the 8 recorded EEG channels.

To estimate the separability of conditions pleasant and neutral in a machine learning ap-

proach, R2-values are computed as shown in Figure 4.5.
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4.4. Classification

Initially, to estimate the separability of valence conditions in a machine learning approach,

coefficient of determination R2-values were computed on a complete dataset of all subjects

concatenated between the three binary classification problems: unpleasant vs. neutral, un-

pleasant vs. pleasant, and pleasant vs. neutral. Based on the correlation coefficient R, R2

values are a measure for the proportion of variance in the dependent variable (i.e. EEG

data) that is predictable from the independent variable (i.e. class). Classes in the com-

plete dataset were balanced to the smallest amount of trials across conditions such that

all classes remain with the same amount of trials. Balancing classes in machine learn-

ing ensures that estimated classifier performance is accurate. In order to estimate overall

classification performance, classification was conducted on this complete dataset in a 10-

fold cross-validation. Based on the results of this first analysis, cross-subject classification

was conducted to estimate the generalization of features across subjects. Classification

performance was assessed in a cross-subject approach with a SVM classifier using leave-

one-subject-out-estimation (LOSOE). Therefore, a training model was computed based on

n− 1 datasets. Performance was then calculated using the model to predict labels of the

n-th dataset which was excluded from training the model. This was conducted for all sub-

jects. Datasets for training were balanced according to the smaller sized class. Therefore,

trials from the larger sized class were randomly discarded until the number of trials was

the same in both classes. The classification cascade is explained as follows.

Feature Selection & Extraction

Based on statistically significant differences (see Results section) between pleasant and

neutral conditions of lateralized power spectra differences in the range of 1 to 9 Hz, binary

classification was conducted using features of these frequency bands, i.e. power values

between 1 to 9 Hz of all electrodes of one trial. The 100 best scoring features were then

automatically selected with the fast feature selection method based on R2-values [131].

Support Vector Machine

As classifier, a support vector machine (SVM) with a linear kernel (C = 1) using the

libSVM implementation by [153] was employed. In its standard definition, the SVM is

the solution of a geometric and data-driven minimization problem that finds a hyperplane

best separating datapoints of two classes under certain conditions [147]. SVMs have been

proven to be suitable for brain state classification especially in the field of BCI research

due to their regularization property making them robust against the curse-of-dimensionality
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[123]. In addition to the predicted labels, a probability estimate was obtained [152, 151].

Performance Measures

To assess classification performance, three measures were investigated: (i) classification

accuracy, (ii) area under the curve (AUC) values, and (iii) F1-scores (see Figure 4.6). Please

reger to Chapter 2.7.4 for a detailed description about performance measures.

Individual significance levels of classification performance at p = 0.05 were computed

employing permutation tests [157]. For each dataset, classification performances were ob-

tained in 100 iterations where in each iteration the label vector was randomly permuted.

Performances were sorted in descending order and then the values at position 5, which

equals the significance threshold at p = 0.05, were obtained as individual significance

thresholds. Individual classification performances computed by original labels were sig-

nificant, if they exceeded the obtained thresholds. Class ratios were computed as a ratio of

the larger class relative to the total amount of samples in both classes combined.

4.5. Results

4.5.1. Behavioral Scoring & Number of Trials

Results of the behavioral scoring are shown in Table 4.5.1. For the different scenarios,

the frequency of average attempts by the parent, the emotional scenario success rate, as

well as the infant’s average response lengths in seconds are depicted. The success rate

indicates the amount of trials of identified valence during scenarios by two independent

experts according to criteria shown in Table 4.2 in relation to the total amount of interaction

attempts. The most successful scenario was the rash scenario with 82 % correct rate. The

highest attempt frequency and the least successful scenario was jack-in-the-box with 19 %

success rate. Response lengths varied between 8 seconds in the jack-in-a-box scenario to

26 seconds in the peek-a-boo scenario.

The distributions of unpleasant, neutral, and pleasant trials across all subjects for each

condition is shown in Figure 4.2 B. After the rejection of artifacts, the following numbers

of trials remained for each subject. For the unpleasant condition, there were on average

18.56 ± 14.81 trials. For the neutral condition, there were on average 96.44 ± 56.72 trials.

Finally, the pleasant scenario led to 89.88 ± 67.61 trials.
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Table 4.2.: Identification of valence by two independent experts including grouping (’+’ pleasant;
’-’ unpleasant) with average emotional scenario attempt number of the acting parent. The success
rate indicates the amount of trials of behaviorally identified valence during scenarios according to
criteria shown in Table 4.2 in relation to the total amount of interaction attempts. Average response
lengths of the infants’ reactions is shown seconds.

Scenario Avg. Attempt No. Success Rate Avg. Response Length [s]

Love (+) 8.67 ± 3.94 43 % 18.47 ± 14.37

Sing (+) 7.17 ± 3.36 27 % 15.95 ± 11.32

Jack-in-the-box (+) 15.00 ± 7.24 19 % 8.36 ± 3.38

Peek-a-boo (+) 7.43 ± 1.89 50 % 25.57 ± 22.49

Rash (-) 4.07 ± 1.46 82 % 15.85 ± 7.03

Electrical outlet (-) 3.23 ± 1.36 44 % 10.70 ± 5.57

Figure 4.2.: (A) Topographical scheme of electrode locations. (B) Distributions of successful trials
for emotional conditions unpleasant, neutral, and pleasant after discard of trials prone to artifacts.
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4.5.2. Neurophysiological Measures

Spectral power analysis regarding a lateralization according to emotional experience is

conducted in the range of 1 to 9 Hz. An index regarding the lateralization of power is com-

puted by subtracting spectra of electrodes at opposite hemispheres. These are shown in

Figure 4.3 for F4 and F3 (A), C4 and C3 (B), P4 and P3 (C), as well as average activity at

F4, C4, P3 and F3, C3, P3 (D). Results regarding the lateralization index are shown in Fig-

A B

C D

Figure 4.3.: Asymmetry comparison in power between different electrode locations and conditions
across all subjects. Grey horizontal bars depict significant differences between neutral and pleasant
(light grey) or neutral and unpleasant responses (dark grey) (p < 0.01, FDR corrected Wilcoxon
test).

ure 4.3. There was a significant difference in the lateralization index between pleasant and

neutral conditions from 3 to 9 Hz in F4 minus F3 (Figure 4.3 A). According to the hypothe-

sis, the lateralization index shows higher frontal left-hemispheric activity for pleasant than

for unpleasant responses with increased activity on the right-hemisphere. At C4 minus C3

(Figure 4.3 B), differences between neutral and pleasant as well as unpleasant are signifi-

cant between 3 to 6 Hz where the index is more negative for unpleasant than for pleasant

responses indicating increased left-hemispheric activity during unpleasant responses more
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posterior. Furthermore, differences between neutral and pleasant conditions are significant

between 8 to 9 Hz with similar lateralization. Parietal hemispheric differences in power for

conditions pleasant and neutral are significant between 4 to 7 Hz where the index is also

more negative for unpleasant than for pleasant responses (Figure 4.3 C) indicating again in-

creased activity on the right-hemisphere. The averaged power of F4, C4, and P4 minus the

averaged power of F3, C4, and P3 (Figure 4.3 D), differences between pleasant and neutral

conditions are significant between 3 to 5 Hz. On average across hemispheres, the negative

index indicates increased left-sided activity for unpleasant responses. Pleasant responses

show no lateralized activity with values close to zero (1 - 3 Hz) and marginally negative

values in higher frequencies (3.5 - 9 Hz). There is no significant difference of conditions

neutral and pleasant on either channel pair. If not otherwise noted, there is no significant

difference between unpleasant and neutral conditions.

The topographical distribution of power is schematically plotted in Figure 4.4 across gross

frequency bands delta (1 - 4 Hz), theta (5 - 7 Hz), alpha (8 - 12 Hz), and beta (13 - 25

Hz). Figure 4.4 A shows the power distribution for unpleasant minus neutral, whilst the

distribution of pleasant minus neutral is shown in the same figure in B. The resolution is

suboptimal due to the number of channels, i.e. 8.

Figure 4.4.: Scalp topography plots of grand-average spectral differences for unpleasant minus neu-
tral (top) and pleasant minus neutral (bottom) valence categories for different frequency bands.

To estimate class separability, R2-values between valence conditions across all channels

between 1 to 9 Hz were computed. R2-values of unpleasant vs. neutral and unpleasant

vs. pleasant were small on all channels without clear patterns (data not shown) indicating

poor class separability by classification. The R2-values for valence conditions pleasant vs.

neutral are shown in Figure 4.5. Highest R2-values are observed on Pz at 3 Hz. Also at Pz,

R2-values are high between 1 to 8 Hz as compared to the other channels.
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Figure 4.5.: R2-values across all subjects per frequency and channels of conditions pleasant and
neutral.

4.5.3. Classification

Classification performance in AUC-value obtained by 10-fold cross-validation on the com-

plete dataset of all subjects for conditions unpleasant vs. neutral is 0.54, for unpleasant vs.

pleasant it is 0.50, and for pleasant vs. neutral it is the best performance of 0.84. Class dis-

tributions were 464 trials for unpleasant, 2411 for neutral, and 2247 for pleasant. Classes

were balanced to the smallest amount of trials, to have an even amount of trials. Table 4.3

depicts all performance measures in cross-subject classification results.

Table 4.3.: Classification performance on complete dataset with all subject data concatenated in
three binary classification problems. Categories are abbreviated as follows: unpleasant ’-’, neutral
’0’, and pleasant ’+’. Classes are balanced.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Accuracy 52.26 % 50,11 % 76,61 %

AUC-value 0.54 0.50 0.84

F1-score 0.12 0.00 0.76

Since classification of pleasant vs. neutral emotional conditions yielded the highest classi-

fication performance on the complete dataset, cross-subject classification has been further

investigated for pleasant vs. neutral states. Table 4.4 depicts cross-subject classification re-

sults with their respective significance levels and class ratios. The classification of pleasant

70



4.5. Results

vs. neutral conditions in a cross-subject approach with LOSOE led to significantly above

chance performances. The group average AUC-value is 0.65 ± 0.14.

Cross-subject classification performances, respective individual significance levels ob-

tained by permutation tests at p = 0.05 are summarized in Figure 4.6. Individual sig-

nificance levels of classification performance were exceeded by 16 subjects, 8 subjects

performed below chance, and 1 subject performed above chance yet not above individual

significance. Class ratios in the testing set were on average 66 ± 12 %.
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Figure 4.6.: Cross-subject classification performances in AUC-values against their respective sig-
nificance levels. Each point represents performance of one subject obtained in leave-one-subject-
out-estimation. The dotted line represents the significance threshold. Classes for training the classi-
fier model were balanced to have an even amount of trials across conditions. Individual significance
levels of classification performance were exceeded by 16 subjects, 8 subjects performed below
chance, and 1 subject performed above chance yet not above individual significance.
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Table 4.4.: Classification performance of AUC-values obtained by leave-one-subject-out-
estimation for each dataset for the classification of pleasant vs. neutral conditions as well as class
ratios within the testing set. An AUC-value of 1 means perfect classification where 0.5 is chance
level. Bold values indicate significant AUC-values. The third column shows the AUC-value signif-
icance level at p = 0.05 obtained by permutation tests for each dataset. Ratios are larger classes
divided by the total amount of trials in both classes combined. Training data were balanced to have
an even amount of trials across conditions.

Participant AUC-value Sig. Level Class Ratios [%]

01 0.77 0.63 63.64
02 0.78 0.56 52.42
03 0.75 0.61 71.60
04 0.58 0.54 58.78
05 0.49 0.60 60.55
06 0.64 0.55 61.34
07 0.50 0.62 57.81
08 0.48 0.55 53.78
09 0.66 0.66 52.94
10 0.83 0.63 92.77
11 0.89 0.60 89.02
12 0.55 0.56 62.77
13 0.50 0.57 84.32
14 0.60 0.56 58.02
15 0.80 0.58 66.00
16 0.59 0.55 66.49
17 0.87 0.54 69.19
18 0.64 0.60 75.89
19 0.82 0.58 55.77
20 0.77 0.57 59.35
21 0.50 0.56 57.84
22 0.48 0.61 75.25
23 0.79 0.57 74.49
24 0.40 0.59 84.53
25 0.62 0.56 56.44

Mean 0.65 ± 0.14 0.58 ± 0.03 66.44 ± 11.69

72



4.6. Discussion

4.6. Discussion

The present study investigated electrophysiological data of a naturalistic infant-parent in-

teraction emotion induction paradigm recorded from preverbal infants in order to develop

an automatic affect recognition system for sensory or mentally deprived caretakers and a

child. Spectral power of infants’ emotional responses across hemispheres showed signif-

icant differences in emotional valence (unpleasant, neutral, and pleasant). Based on these

differences we could use machine learning methods to train a classifier that successfully

discriminated emotional valence on unseen data.

4.6.1. Design and Procedure

The own parent is a realistic stimulus of vital importance, as compared to standardized

audio-visual stimuli especially in an infant population. Particularly, motion [183] and the

infants’ attention towards faces [184] are of high relevance. Using an interaction-based

approach, the degree of meaningful emotional experiences is substantially increased in

such a screnario as opposed to standardized stimuli. Furthermore, the attentional focus of

infants is ensured by the familiarity of the stimulus, i.e. the own parent, as compared to

standardized stimuli delivered by a screen or speakers. At the same time, the well-defined

nature of standardized stimuli approaches is missing. Trial numbers vary substantially due

to manual triggering and success rates.

Employing an offline behavioral scoring scheme based on the analysis of video recordings,

emotional segments were identified in the EEG. This approach ensured that EEG data

consisted of meaningful emotional information. The amount of trials between unpleasant

and pleasant conditions varies strongly due to ethical constraints regarding the induction of

unpleasant emotional experiences in infants. Suitable emotion induction paradigms have to

be designed to not interfere with the infant’s well-being and at the same time to ensure a

sufficient number of unpleasant emotional trials.

4.6.2. Neurophysiological Measures

The data shows increased frontal left-sided activation for pleasant than for unpleasant and

higher frontal right-sided activation for unpleasant than for pleasant emotional responses

in the theta (4 - 6 Hz) and alpha (6 - 9 Hz) band. These findings are in line with previous re-

sults in infants which indicate differences in frontal activation asymmetry between certain

positive and negative emotions [74, 185], specifically in the theta and alpha band (up to 12

Hz) [76]. Neutral responses in comparison to unpleasant and pleasant showed the smallest

left-sided activation in relation to valence. Power spectra of neutral and pleasant responses
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were significantly different in the theta and alpha band confirming values as features for

classification. Over central and parietal electrodes, lateralization is opposite to frontal elec-

trodes with increased right-sided activation for pleasant than for unpleasant responses in

the delta, theta, and alpha band. Pleasant and neutral as well as unpleasant and neutral re-

sponses were significantly different in the theta band at central electrodes also suggesting

power as feature for classification. Furthermore, significant differences between neutral

and pleasant responses in the upper theta and low alpha band at parietal electrodes shows

the usefulness of power as a feature for classification. Activity in those bands is relevant for

emotional processing [78, 66] Furthermore, [186] reported an increase in theta during plea-

surable stimulation in infants. The potential separability of neutral and pleasant emotional

valence by spectral power features in classification is supported by positive R2-values in

the theta (electrode C3, P3, Pz, and P4) and alpha band (electrode F3, Fz, F4, C3, P3, Pz,

P4). Since differences between unpleasant and neutral responses were only significant cen-

trally in the theta band, and overall small R2-values lacked clear patterns, the classification

of unpleasant vs. neutral responses by spectral power in machine learning is questionable.

The data do not suggest the classification of negative vs. positive valence by spectral power

because there are no significant differences between unpleasant and pleasant conditions.

4.6.3. Classification of EEG

Classification on a complete balanced dataset of all subjects yielded excellent above chance

classification performance in the binary classification of pleasant vs. neutral conditions

(0.84 AUC-value) by spectral power features. As already suggested by the feature analysis,

the classification of unpleasant vs. neutral conditions was slightly above chance (0..54

AUC-value) and the classification of unpleasant vs. pleasant was at chance (0.50 AUC-

value). A within-subject classification was not feasible due to the small number of trials

obtained. (Note: This is an important point since there has to be a critical amount of trials

per class for successful classification. A cross-subject classification is always the stronger

argument since the variance between subjects in classifier model is included.)

A within-subject was not feasible due to the paradigm design. In the offline pre-processing,

emotionally relevant original trial segments were further partitioned into equally long sub-

trials of 2 seconds. To conduct proper within-subject classification, the testing set must

consist of sub-trials from one original trial not used for training the classifier model. This

hard constraint for proper classification practice could not be maintained in the majority of

datasets. Assuming that the dataset was not partitioned as outlined, the classifier model may

operate on known data. Simply put, training and testing data overlap rendering any results

futile. To give a general example: if an original trial consists of slow drifts or a baseline
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shift, segmented sub-trials also contain these drifts or shift. If a classifier is evaluated in a

10-fold cross-validation, the dataset containing slow drifts or a baseline shift is partitioned

into training and test data. In this case the classifier model is likely to learn the slow drifts or

baseline shift, rather than relevant features. Eventually during testing, the model recognizes

slow drifts or baseline shift of sub-trials and outputs superior prediction performance due to

the link of sub-trials in the training and test set. For a visualization, please see the procedure

design and trial structure in Figure 4.1.

Thus, a cross-subject approach was chosen on pleasant vs. neutral conditions. Reported

cross-subject classification performances are a strong argument for successful generaliza-

tion of spectral features. With regard to the application of an affect recognition classifier,

good cross-subject classification performance indicates the best strategy since a trained

classifier potentially performs well on an unseen dataset.

There are no comparable numbers for this population, because affect recognition studies

conducted in adults deviated in paradigm design. Studies employing standardized stim-

uli for emotion induction report between 55 % and 62 % accuracy in the classification

between two emotional states [163, 167]. Those studies investigated small trial sizes in

a within-subject approach which leads to methodological challenges in machine learning

regarding chance levels and significance of results [156, 158]. The here presented cross-

subject approach with LOSOE allowed for a sufficiently large trial size in training the

classifier model. Class balancing and AUC-values ensure a chance level of 0.5 when as-

sessing classification performance. In the emotional recall study by [164] which used also

a non-standardized emotion induction paradigm, the authors report on average 80 % ac-

curacy for the classification of two states (calm vs. positive) by time-frequency features

and mutual information. However, the authors did not report a validation of the electro-

physiological features. Their results are based on a within-subject approach. The vari-

ance between EEG datasets of subjects is substantial. Our cross-subject approach shows

better generalization of spectral features, which we statistically validated before classi-

fication. Furthermore, permutation tests showed the significance of classification perfor-

mances in 16 subjects. The code used for feature selection and machine learning has been

successfully used for affect classification in EEG [18] and was made publicly available

(https://github.com/dthettich/BSClassify).

In comparison to the auditory affect classification study conducted in healthy adults (see

Chapter 3), affect classification in infant EEG between neutral and pleasant performs better.

However, there was a significant above chance classification of unpleasant and neutral

states in that study. The superiority of affect classification in infant EEG stems likely from

the quality of emotional EEG due to infant-parent interaction. Less cultural learning in

infants in conjunction with the realistic and vital parent stimulus account for the success of
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emotional EEG data available for classification.

Physiological results as well as substantial above chance cross-subject classification perfor-

mance for pleasant vs. neutral conditions attribute for the success of emotion classification

in the data analyzed.

The results support the possibility of the construction of a simple, non-invasive automatic

emotional valence classification system in a brain-computer interface (BCI) context [10,

118] even for very small children with the age between 4 and 6 months.

4.7. Conclusion

Neurophysiological data of preverbal infants recorded non-invasively during emotional in-

teractions of infant-parent pairs show increased left-sided frontal activation for pleasur-

able and increased right-sided frontal activation for non-pleasurable stimulation. Signifi-

cant differences between unpleasant and neutral as well as pleasant and neutral responses

in the power spectra lateralization in the alpha and theta band confirms power spectra as

features for classification. Successful classification of pleasant vs. neutral emotional re-

sponses in the EEG is demonstrated. In a cross-subject classification approach, on average

AUC-values of 0.65 for the classification of pleasant vs. neutral responses were obtained

employing power spectral features and a linear support vector machine classifier. The re-

sults of this realistic, everyday life emotion induction approach strengthens our vision of

an automatic and non-invasive emotional detection possibility in very small infants. Par-

ticularly in social interactions between a child a a severely impaired or sensory deprived

caretaker such a system may significantly improve quality of interaction and care.

76



5
DEAP Classification & Comparison

The relatively young field of affective computing lacks standardized datasets for the com-

parison of different methods. Such benchmark datasets are common in the field of brain-

computer interfacing [187, 188] or the machine learning community, e.g. the MNIST

dataset for hand writing recognition in computer vision [189]. Nonetheless, for the de-

tection of human affective states such datasets were not available. Koelstra et al. [167]

were one of the first to release a dataset comprising physiological signals for the study of

human affective states.

Classification of low vs. high valence will be conducted based on EEG features. As a

main focus, the influence of class sizes on classification performances will be outlined and

discussed. Finally due to their paradigm setup similarity, machine learning results will be

compared and discussed with results from the auditory affect induction and classification

study outlined in Chapter 3.

5.1. Background

DEAP is a database for emotion analysis using physiological signals. It has been released

by Koelstra et al. in 2012 [167]. The authors aimed at providing "a multimodal dataset for

the analysis of human affective states" [167].

DEAP consists of data recorded from peripheral physiological signals including GSR and
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ECG as well as EEG as a central physiological signal. These measures were recorded whilst

participants watched forty one-minute excerpts from music videos. Participants rated their

experiences in terms of arousal, valence, liking, dominance, and familiarity.

Only recently, Ringeval et al. [190] have released a challenge for the detection of physi-

ological states from peripheral signals. However, the focus of the present work lies in the

detection of affective states from the EEG. Therefore, the dataset by Koelstra et al. is well

suited for the application of the methodology developed within the course of the present

thesis.

5.2. Material & Methods

The following descriptions of material and methods (Sections 5.2.1 to 5.2.4.) are mainly

after [167] with some supplementary information. A complete dataset description by the

authors can be found at http://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.

html or of course in the article [167].

5.2.1. Participants

The dataset comprises 32 participant data (16 female). Participants were between 19 and

37 years of age (mean age 26.9 years). Prior to participation, participants gave informed

consent and filled out a questionnaire.

5.2.2. Stimuli Selection

Initially, 120 music videos were selected as stimuli. One half was automatically and one

half was manually selected. The automatic selection was based on music piece tags by

a website offering music streaming. Therefore, emotional meaningful descriptive words

were chosen (e.g. ’aggressive’ or ’depressing’) in order to retrieve music videos.

Subsequently, the valence-arousal space was subdivided into four quadrants of low arousal

/ low valence (LALV), low arousal / high valence (LAHV), high arousal / low valence

(HALV), as well as high arousal / high valence (HAHV). For each quadrant, 15 videos

were selected automatically and 15 manually, respectively, resulting in 120 videos.

In order to extract emotional meaningful information within these videos, the authors pro-

posed an affective highlighting algorithm to determine 60-second excerpts. Stimuli were

then further curated via a web-based subjective assessment. Final stimuli selection was

conducted such that only videos were selected that lie in the outermost corner of each

quadrant. That resulted in 40 music videos with 60 seconds each.
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5.2.3. Paradigm Design

Participants were seated in front of 17"-inch screen 1 meter away. The experiment started

with a two minute fixation baseline. Subsequently, the 40 music videos were presented

with the following additional steps. Firstly, the current trial number was displayed for two

seconds. Secondly, a five second fixation baseline was recorded. Thirdly, the 60 second

music video was presented. Fourthly, the self-assessment for arousal, valence, liking, and

dominance was obtained (see [167] Figure 5). Valence, arousal, and dominance rating were

obtained by a Likert-like scale from 1 to 9 as in the auditory affect induction study (see

Chapter 4). For liking, three solutions, thumb-down, thumb-horizontal, and thumb-up were

shown. After 20 trials, participants were allowed a short break. Following the break, elec-

trode placement and proper conductivity were checked. Participants then completed the

second 20 videos with equal steps.

In the following work presented here, participants’ valence ratings were employed as labels

for classification based on threshold values. The lower threshold was 3.825 and the upper

threshold was set at 5.95 as derived from quantiles. For each participant, trials were divided

by these thresholds into low and high valence trials. For comparison, this approach was

similar to the one introduced in the auditory affect induction and classification study with

unpleasant or pleasant trials (see Chapter 3).

5.2.4. Setup & Pre-processing

The experiments were performed under controlled conditions. Physiological signals were

recorded with a Biosemi ActiveTwo system (http://www.biosemi.com/). The EEG was

recorded at a sampling rate of 512 Hz using 32 active AgCl electrodes placed according to

the international 10-20 system [49]. Electrode sites were Fp1, AF3, F3, F7, FC5, FC1, C3,

T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6,

CP2, P4, P8, PO4, and O2. Thirteen peripheral physiological signals were also recorded.

These will not be outlined further for peripheral physiological signals are not within the

scope of the present work.

Out of the box, the DEAP dataset made available was further pre-processed in its MATLAB

variant by the providers of DEAP. Therefore, the authors downsampled the data to 128 Hz,

EOG artifacts were removed as in [167], a bandpass filter from 4.0 to 45.0 Hz was applied,

and the data were averaged to the common reference. Trials consisted of 60 seconds where

a 3 second pre-trial relative to stimulus-onset baseline was removed.

79

http://www.biosemi.com/


5. DEAP Classification & Comparison

5.2.5. Classification

The following is own work and based on the classification apparatus developed. Classifica-

tion of low vs. high valence was evaluated based on time- and frequency domain features

employing a setup similar to the one described in Chapter 3, Section 3.3.2.

Feature Selection & Extraction

Although [167] did not report affect related effects in the time domain, features in the time

domain were extracted from channels Pz, Cz, Cp2, Cp6, Cp5, and Cp1 from 0 s to 6 s

relative to stimulus-onset. For comparison, channels and time frame are chosen due to the

results reported in the auditory affect induction and classification study (see Chapter 3).

[167] reported significant affect related effects in the frequency domain and also employed

those as EEG features for classification between low and high valence. Therefore, fre-

quency features were also computed from the 60 s trials by the method of Burg [59] in 1

Hz frequency bins from 1 to 50 Hz with a model order of 8. Frequency features were taken

from all channels.

To reduce the number of features, R2-values between data and labels were computed for

each feature and the features with the highest R2-values were used for classification [131].

Only the 100 best scoring features were retained for training the classifier model and pre-

dictions.

Support Vector Machine

As classifier, a support vector machine (SVM) with a linear kernel (C=1) using the libSVM

implementation [153] was employed. SVMs have been proven to be well suitable for brain

state classification especially in the field of BCI research [123]. Label predictions as well

as prediction probabilities [152, 151] were obtained. Due to the relatively small number

of instances per class, a 5-fold cross-validation was employed to compute all performance

measures.

Performance Measures

To assess classification performance, three measures were investigated: (i) classification

accuracy, (ii) area under the curve (AUC) values, and (iii) F1-scores.
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5.3. Results

Classification results of low vs. high valence for unbalanced as well as for balanced classes

are depicted in the following. Firstly, classification performances employing time domain

features of channels Pz, Cz, Cp2, Cp6, Cp5, and Cp1 in the first six seconds of stimulus-

onset are shown in Figure 5.1. Secondly, classification of frequency domain features from

1 to 50 Hz of all channels is reported. Furthermore for each domain, the differences in clas-

sification performance between non-balanced classes and balanced classes are reported.

5.3.1. Time Domain Classification

The time domain classification of low vs. high valence for unbalanced as well as for bal-

anced classes is shown in Figure 5.1.

Accuracy is shown in Figure 5.1 A, AUC-value in Figure 5.1 B, and F1-score in Figure 5.1

C. The group average and standard deviation for each metric is shown in Table 5.2. Class

ratios are depicted in Figure 5.1 D. The mean of class ratios measured by the bigger sized

class is 55.06 ± 25.44 %. In terms of absolute numbers, there are on average 9.91 ± 4.53

trials in class one and 17.53 ± 3.46 trials in class two. Class distributions are significantly

different (two-tailed t-test, p < 0.001). A complete overview of number of trials per class

and dataset is shown in Table 5.1.

Table 5.1.: DEAP number of trials for each dataset after thresholding into low and high valence.
Thresholds were set at 3.825 and 5.95 for the separation.

Id. 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

low val. 17 9 4 20 8 4 9 8 8 10 11 15 12 16 10 17 7 3 12 7 8 15 4 11 15 12 5 13 12 3 7 5

high val. 18 20 16 14 22 24 25 15 13 13 16 17 13 19 17 11 18 17 16 16 18 15 19 16 15 24 22 22 20 15 18 17

Group average classification performances for time domain features are shown in Table 5.2

for the measures accuracy, AUC-value, and F1-score. Differences between non-balanced

and balanced classification performances are significant for accuracy and F1-score (two-

tailed t-test, p < 0.01 corrected for multiple comparisons).

If a chance level of 50 % for accuracy is assumed, a two-tailed t-test (p < 0.01) yields

significant group average classification for this performance measure. However, the chance

level is not at set 50 % due to non-balanced class sizes. In this case, permutation tests are

necessary to correctly estimate a chance level.

Table 5.3 depicts average classification chance levels for non-balanced and balanced
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5. DEAP Classification & Comparison

Figure 5.1.: Time domain classification performances of DEAP dataset participants for perfor-
mance measures accuracy (A), AUC-value (B), and F1-score (C). Class ratios in percent (D).

Table 5.2.: Time domain average classification performances for non-balanced and balanced
datasets for metrics accuracy, AUC-value, and F1-score.

Non-balanced Balanced

Accuracy 61.15 ± 12.93 % 48.89 ± 13.02 %

AUC-value 0.51 ± 0.12 0.51 ± 0.14

F1-score 0.26 ± 0.22 0.49 ± 0.18
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5.3. Results

classes obtained by 100 permutation tests (p = 0.5). Permutation results at p = 0.5 equal

the average group chance level. Chance levels obtained for non-balanced and balanced

classes are significantly different for accuracy (two-tailed t-test, p < 0.01) and F1-score

(two-tailed t-test, p < 0.0001).

Table 5.3.: Time domain average classification chance levels obtained by permutation tests (p =
0.5) for non-balanced and balanced datasets for metrics accuracy, AUC-value, and F1-score.

Non-balanced Balanced

Accuracy 62.31 ± 13.99 % 49.52 ± 12.95 %

AUC-value 0.48 ± 0.12 0.46 ± 0.16

F1-score 0.20 ± 0.23 0.52 ± 0.17

Table 5.4 contrasts classification results of each participant for non-balanced and balanced

classes against their respective individual significance level (p = 0.05) for time domain

features. Bold values of individual classification performances indicate when they exceed

individual significance levels.

For non-balanced classes, two datasets exceed significance in accuracy, nine in AUC-value,

and five in F1-score. Notably, only dataset 19 yielded significance in accuracy and AUC-

value, yet not in F1-score for the non-balanced classes. For balanced classes, one dataset

yielded significance in accuracy, nine in AUC-value, and one in F1-score. The intersection

where classification performances exceed significance across non-balanced and balanced

classes in the same measure yields three cases (i.e. datasets 01, 15, 22). Only dataset 01

exceeded significance in all three performance measures in the balanced classes classifica-

tion.

Differences between individual significance thresholds are significant between non-

balanced and balanced classes for the measures AUC-value and F1-score (two-tailed t-test,

p < 0.01).

A table in similar layout yet with individual classification performances against chance

level (p = 0.5) can be found in the Appendix, Table C.1.

Figure 5.2 shows line plots of individual classification performance (depicted in blue) in

contrast to their according significance thresholds (depicted in red). Figures 5.2 A and B

show these results for non-balanced and balanced classes in accuracy, Figures 5.2 B and E

for AUC-value, and Figures 5.2 C and F for F1-score.

Accuracy and AUC-value significance thresholds mainly are between 50 % to 85 %,

and 0.0 to 0.8, respectively for non-balanced and balanced classes. F1-score significance

thresholds in the non-balanced condition (Figure 5.4 C) oscillate between 0 and 0.7. In

83



5. DEAP Classification & Comparison

contrast in the balanced condition, F1-scores of significance oscillate comparable to AUC-

values.

Evaluating the correlation between individual performance measures. In the non-balanced

condition, the correlation between individual accuracy, AUC-value, and F1-score is only

significant for accuracy and F1-scores, however negatively correlated (r = −0.48, p <

0.01). In the balanced condition, the correlation between all performance measures is sig-

nificant (p < 0.001). Accuracy and AUC-value correlate with r1 = 0.66, Accuracy and

F1-score with r2 = 0.89, and finally AUC-value with F1-score with r = 0.66.

84



5.3. Results

Table 5.4.: Time domain average classification performances for non-balanced and balanced
datasets for metrics accuracy, AUC-value, and F1-score, as well as their corresponding individual
significance thresholds (p = 0.05). Values for accuracy are given in percent. Bold values indicate
when individual performance exceed the individual significance level.

Non-balanced Balanced

Accuracy [%] AUC-value F1-score Accuracy [%] AUC-value F1-score

Id. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh.

01 62.86 68.57 0.74 0.68 0.65 0.67 82.86 68.10 0.85 0.72 0.82 0.67

02 58.67 72.67 0.59 0.77 0.25 0.20 43.33 80.00 0.45 0.86 0.38 0.80

03 75.00 80.00 0.64 0.81 0.00 0.00 40.00 80.00 0.62 0.81 0.60 0.89

04 47.14 68.57 0.58 0.69 0.59 0.77 54.00 75.33 0.49 0.63 0.70 0.85

05 66.67 73.33 0.50 0.52 0.17 0.00 50.00 63.33 0.48 0.64 0.56 0.67

06 86.00 86.00 0.51 0.59 0.00 0.00 50.00 70.00 0.66 0.62 0.57 0.67

07 70.95 76.67 0.52 0.71 0.29 0.20 50.00 50.00 0.40 0.35 0.53 0.62

08 69.00 70.00 0.55 0.50 0.46 0.33 50.00 50.00 0.50 0.51 0.50 0.53

09 67.00 77.00 0.66 0.86 0.53 0.62 55.00 80.00 0.72 0.79 0.59 0.80

10 40.00 65.00 0.39 0.63 0.22 0.60 50.00 60.00 0.51 0.59 0.44 0.64

11 40.67 63.33 0.37 0.62 0.33 0.38 54.00 64.00 0.48 0.69 0.44 0.61

12 50.48 62.86 0.60 0.60 0.33 0.54 50.00 63.33 0.46 0.59 0.40 0.54

13 64.00 60.00 0.54 0.58 0.61 0.65 58.00 63.00 0.60 0.64 0.62 0.71

14 42.86 68.57 0.39 0.73 0.33 0.67 53.33 72.86 0.45 0.77 0.48 0.76

15 55.33 56.00 0.60 0.40 0.25 0.32 35.00 50.00 0.46 0.43 0.13 0.64

16 53.33 64.67 0.44 0.53 0.63 0.77 73.00 77.00 0.54 0.50 0.83 0.87

17 52.00 76.00 0.48 0.72 0.00 0.25 20.00 80.00 0.23 0.85 0.15 0.80

18 85.00 85.00 0.34 0.36 0.00 0.00 10.00 30.00 0.33 0.22 0.00 0.50

19 58.00 53.33 0.57 0.51 0.40 0.43 36.00 58.00 0.47 0.54 0.29 0.62

20 57.00 70.00 0.43 0.63 0.00 0.00 43.33 60.00 0.40 0.57 0.50 0.53

21 57.33 73.33 0.39 0.74 0.15 0.22 50.00 73.33 0.56 0.77 0.56 0.75

22 50.00 50.00 0.59 0.49 0.52 0.56 56.67 56.67 0.63 0.53 0.55 0.61

23 83.00 83.00 0.57 0.75 0.00 0.00 50.00 60.00 0.59 0.50 0.33 0.60

24 51.33 60.00 0.48 0.47 0.32 0.42 44.00 51.00 0.34 0.45 0.40 0.42

25 53.33 53.33 0.52 0.49 0.56 0.55 46.67 53.33 0.47 0.50 0.43 0.56

26 58.57 64.29 0.50 0.51 0.12 0.32 41.00 62.00 0.42 0.66 0.42 0.67

27 78.00 81.33 0.55 0.63 0.00 0.00 50.00 80.00 0.50 0.72 0.55 0.80

28 57.14 62.86 0.59 0.62 0.35 0.38 58.67 77.33 0.61 0.85 0.59 0.81

29 46.67 62.86 0.49 0.54 0.19 0.42 43.00 54.00 0.27 0.53 0.42 0.52

30 78.33 85.00 0.19 0.69 0.00 0.00 60.00 60.00 0.89 0.39 0.75 0.75

31 64.00 76.00 0.26 0.71 0.18 0.25 56.67 63.33 0.44 0.64 0.57 0.62

32 77.00 77.00 0.65 0.51 0.00 0.00 50.00 80.00 0.56 0.82 0.55 0.75

Mean 61.15 69.58 0.51 0.61 0.26 0.33 48.89 64.56 0.51 0.62 0.49 0.67
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Figure 5.2.: Time domain classification performance of DEAP dataset participants and their significance levels (p = 0.05) obtained in permutation test.
The top row shows both measures for non-balanced classes in accuracy (A), AUC-value (B), and F1-score (C). The bottom row shows measures for
balanced classes in accuracy (D), AUC-value (E), and F1-score (F).
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5.3.2. Frequency Domain Classification

The frequency domain classification of low vs. high valence for unbalanced as well as for

balanced classes is shown in Figure 5.3.

Accuracy is shown in Figure 5.3 A, AUC-value in Figure 5.1 B, and F1-score in Figure 5.1

C. The group average and standard deviation for each metric is shown in Table 5.2. Class

ratios are depicted in Figure 5.3 D. The distributions of classes for non-balanced data are

the same as mentioned before.

Figure 5.3.: Frequency domain classification performances of DEAP dataset participants for per-
formance measures accuracy (A), AUC-value (B), and F1-score (C). Class ratios in percent (D).

Group average classification performances are shown in Table 5.5 for the measures accu-

racy, AUC-values, and F1-score. Group averages are significantly above chance for bal-

anced classes across all performance measures (right-tailed t-test, p < 0.01). Differences

between non-balanced and balanced classification performances are significant for accu-

racy and F1-score (two-tailed t-test, p < 0.01 corrected for multiple comparisons).

Table 5.6 depicts average classification chance levels for non-balanced and balanced

classes obtained by 100 permutation tests (p = 0.5). Permutation results at p = 0.5 equal
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5. DEAP Classification & Comparison

Table 5.5.: Frequency domain average classification performances for non-balanced and balanced
datasets for metrics accuracy, AUC-value, and F1-score.

Non-balanced Balanced

Accuracy 73.74 ± 10.68 % 64.29 ± 21.68 %

AUC-value 0.69 ± 0.22 0.66 ± 0.25

F1-score 0.44 ± 0.29 0.64 ± 0.25

the average group chance level. Chance levels obtained for non-balanced and balanced

classes are significantly different for accuracy (two-tailed t-test, p < 0.001) and F1-score

(two-tailed t-test, p < 0.0001).

The expected chance level in the balanced case is 50 %, 0.5, and 0.5 for the respective

performance measure. Computed chance levels from permutation tests (p = 0.05) are not

significantly different than the ones expected (two-tailed t-test, p < 0.001) for frequency

domain features. It is to note that the AUC-value chance level is 0.45 for the non-balanced

and balanced condition with a standard deviation of approximately 0.05.

Table 5.6.: Frequency domain average classification chance levels obtained by permutation tests
(p = 0.5) for non-balanced and balanced datasets for metrics accuracy, AUC-value, and F1-score.

Non-balanced Balanced

Accuracy 64.67 ± 12.00 % 47.70 ± 8.95 %

AUC-value 0.45 ± 0.04 0.45 ± 0.05

F1-score 0.15 ± 0.21 0.48 ± 0.11

Table 5.7 contrasts classification results of each participant for non-balanced and balanced

classes against their respective individual significance level (p = 0.05) for frequency do-

main features. Bold values of individual classification performances indicate when they

exceed individual significance levels.

For non-balanced classes, fifteen datasets exceed significance in accuracy, 19 in AUC-

value, and fourteen in F1-score. Notably, twelve datasets (i.e. 04, 09, 10, 11, 13, 14, 15, 19,

20, 28, 29, and 30) exceeded individual significance in all three performance measures.

For balanced classes, ten datasets yielded significance in accuracy, twelve in AUC-value,

and ten in F1-score. Nine datasets (i.e. 02, 09, 10, 13, 14, 20, 28, 29, and 30) exceed

significance in all three performance measures.

The intersection of datasets where classification performances exceed significance across

non-balanced and balanced classes in all measures is 09, 10, 13, 14, 20, 28, and 29. The
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average number of trials of these datasets is 11.14 in class ’low valence’ and 16.57 in

class ’high valence’. Thus, approximately 21 trials were used for classifier training and 5

for testing in the non-balanced case. For balanced classes, these number amount to 18 for

training and 4 for testing. On average for non-balanced classes,

Differences between individual significance thresholds are significant between non-

balanced and balanced classes for the measures AUC-value and F1-score (two-tailed t-test,

p < 0.001).

A table in similar layout yet with individual classification performances against chance

level (p = 0.5) can be found in the Appendix, Table C.2.

Figure 5.4 shows line plots of individual classification performance (depicted in blue) in

contrast to their according significance thresholds (depicted in red). Figures 5.4 A and B

show these results for non-balanced and balanced classes in accuracy, Figures 5.4 B and E

for AUC-value, and Figures 5.4 C and F for F1-score.

Accuracy and AUC-value significance thresholds mainly oscillate between 60 % to 90 %,

and 0.65 to 0.9, respectively for non-balanced and balanced classes. F1-score significance

thresholds in the non-balanced condition (Figure 5.4 C) oscillate between 0 and 0.7. In

contrast in the balanced condition, F1-scores of significance oscillate comparable to AUC-

values.

Evaluating the correlation between individual performance measures. In the non-balanced

condition, the correlation between individual accuracy, AUC-value, and F1-score is only

significant for AUC-values and F1-scores (r = 0.64, p < 0.001). In the balanced condition,

the correlation between all performance measures is significant (p < 0.0001). Accuracy

and AUC-value correlate with r1 = 0.94, Accuracy and F1-score with r2 = 0.98, and finally

AUC-value with F1-score with r = 0.92.
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Table 5.7.: Frequency domain average classification performances for non-balanced and balanced
datasets for metrics accuracy, AUC-value, and F1-score, as well as their corresponding individual
significance thresholds (p = 0.05). Values for accuracy are given in percent. Bold values indicate
when individual performance exceed the individual significance level.

Non-balanced Balanced

Accuracy [%] AUC-value F1-score Accuracy [%] AUC-value F1-score

Id. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh.

01 57.14 65.71 0.51 0.70 0.55 0.62 56.19 70.48 0.51 0.74 0.55 0.71

02 66.67 72.67 0.78 0.74 0.17 0.31 88.33 83.33 0.86 0.84 0.88 0.82

03 80.00 85.00 0.74 0.84 0.33 0.40 60.00 80.00 0.88 0.88 0.67 0.80

04 85.24 64.76 0.86 0.64 0.87 0.75 72.00 72.00 0.51 0.69 0.83 0.83

05 73.33 76.67 0.34 0.70 0.00 0.22 38.33 68.33 0.42 0.69 0.38 0.71

06 86.00 86.00 0.13 0.64 0.00 0.00 10.00 70.00 0.12 0.75 0.00 0.67

07 70.95 76.67 0.76 0.74 0.17 0.20 68.33 71.67 0.81 0.78 0.67 0.74

08 75.00 70.00 0.58 0.68 0.40 0.36 50.00 63.33 0.47 0.66 0.50 0.67

09 80.00 67.00 0.86 0.62 0.71 0.36 83.33 70.00 0.91 0.77 0.82 0.71

10 76.00 69.00 0.91 0.70 0.74 0.50 85.00 75.00 0.95 0.76 0.86 0.74

11 59.33 66.67 0.50 0.75 0.00 0.43 42.00 69.00 0.37 0.74 0.43 0.70

12 68.57 67.62 0.73 0.70 0.69 0.64 60.00 70.00 0.67 0.70 0.62 0.67

13 76.00 68.00 0.75 0.71 0.77 0.69 79.00 71.00 0.86 0.71 0.80 0.69

14 91.43 62.86 0.90 0.68 0.91 0.52 80.95 64.76 0.90 0.69 0.83 0.65

15 74.00 67.33 0.89 0.70 0.72 0.35 75.00 80.00 0.82 0.84 0.76 0.80

16 60.67 64.67 0.64 0.64 0.74 0.77 82.00 82.00 0.86 0.78 0.89 0.89

17 72.00 72.00 0.52 0.65 0.00 0.25 30.00 70.00 0.28 0.76 0.17 0.71

18 90.00 90.00 1.00 0.86 0.50 0.50 100.00 100.00 1.00 1.00 1.00 1.00

19 72.00 65.33 0.66 0.65 0.64 0.44 68.00 67.00 0.72 0.68 0.67 0.67

20 79.00 74.00 0.87 0.71 0.62 0.36 86.67 76.67 0.98 0.76 0.86 0.77

21 73.33 73.33 0.67 0.68 0.22 0.22 38.33 76.67 0.47 0.82 0.29 0.78

22 70.00 70.00 0.70 0.70 0.69 0.69 63.33 66.67 0.60 0.69 0.65 0.67

23 83.00 87.00 0.13 0.74 0.00 0.40 30.00 90.00 0.25 1.00 0.25 0.86

24 62.67 66.67 0.60 0.66 0.38 0.40 48.00 68.00 0.39 0.66 0.52 0.69

25 40.00 70.00 0.38 0.71 0.40 0.69 50.00 70.00 0.43 0.68 0.40 0.69

26 63.93 71.79 0.80 0.66 0.13 0.29 51.00 63.00 0.43 0.66 0.45 0.64

27 81.33 81.33 0.44 0.72 0.00 0.00 70.00 70.00 0.68 0.78 0.67 0.73

28 71.43 65.71 0.75 0.62 0.58 0.32 80.67 73.33 0.88 0.79 0.81 0.74

29 77.62 69.52 0.85 0.71 0.70 0.50 84.00 71.00 0.83 0.69 0.85 0.72

30 90.00 85.00 0.98 0.78 0.50 0.40 100.00 80.00 1.00 0.89 1.00 0.80

31 76.00 76.00 0.87 0.73 0.57 0.33 76.67 80.00 0.84 0.84 0.80 0.77

32 77.00 77.00 0.89 0.80 0.29 0.33 50.00 80.00 0.46 0.84 0.62 0.80

Mean 73.74 72.67 0.69 0.70 0.44 0.41 64.29 73.85 0.66 0.77 0.64 0.74
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R

esultsFigure 5.4.: Frequency domain classification performance of DEAP dataset participants and their significance levels (p = 0.05) obtained in permutation
test. The top row shows both measures for non-balanced classes in accuracy (A), AUC-value (B), and F1-score (C). The bottom row shows measures
for balanced classes in accuracy (D), AUC-value (E), and F1-score (F).
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5.4. Discussion

The DEAP dataset released by Koelstra et al. [167] is a dataset for the study of affective

states in central and peripheral physiological signals. Time domain and frequency domain

features of two affective states, i.e. low and high valence, of the central nervous system

were classified using a support vector machine classifier. Results were investigated for

differences of non-balanced and balanced classes in three performance measures. Perfor-

mances were significantly different between class conditions.

Group averages of classified frequency domain features were significantly above chance

for all performance measures in balanced classes (64.29 % accuracy, 0.66 AUC-value, and

0.64 F1-score). Koelstra et al. reported 57.60 % in group average accuracy and 0.56 in F1-

score when non-balanced classes were classified in Fisher’s linear discriminant analysis.

Although trial sizes were small, the results show successful discrimination between low

and high valence using the machine learning pipeline introduced with EEG frequency do-

main features.

5.4.1. Time Domain Classification

According to the expectation for balanced classes, group averages for time domain clas-

sification were approximately at chance levels (accuracy: 48.89 ± 13.02 %, AUC-value:

0.51 ± 0.14, and F1-score: 0.49 ± 0.18). For non-balanced classes, chance levels derived

by permutation tests for accuracy (62.31 %) are higher than the initial classification ac-

curacy (61.15 %). Thus Thus, there is no evidence for a systematic effect in time domain

data exploitable for successful classification of low and high valence. Furthermore, the ini-

tial consideration of AUC-values [154] being the most robust performance measure in this

analysis across non-balanced and balanced classes is supported.

5.4.2. Frequency Domain Classification

Non-balanced (except for F1-scores) and balanced classes yielded above chance perfor-

mance at group level. Performances were significantly different between class size con-

ditions. For non-balanced classes, accuracy and AUC-values were at 74.74 % and 0.69,

respectively. However, these results are difficult to interpret due to the small number of

trials per class as well as skewed class sizes. Chance level derived by permutation tests in

non-balanced classification for accuracy with 64.67 % was significantly higher than 50 %

as was expected by the class ratios ( 10
28 to 18

28 ). F1-scores for non-balanced classes were be-

low chance with 0.44 and the derived chance level from permutation tests was at 0.15. As

outlined in Section 2.7.4, F1-scores are computed from the TP, FP, as well as FN, however
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they do not take into account the TN which renders this performance measure challenging

to interpret in certain circumstances for it strongly depends on the definition of the TP, FP,

and FN [155]. The results presented are superior to Winkler et al. (2010) [94] who classi-

fied frontal spectral features in negative vs. positive emotional states induced by pictures

with 56 % accuracy. In comparison Koelstra et al. [167] reported an F1-score of 0.564

when classifying between low and high valence in non-balanced classes with Fisher’s lin-

ear discriminant analysis [144] and frequency domain features. As features, they employed

averages across gross frequency bands (theta: 4-7 Hz, alpha: 8-13 Hz, beta: 14-29 Hz, and

gamma: 30-47 Hz) as well as inter-hemispheric indices. Performances achieved with the

classification apparatus developed in the present thesis are superior to the results from

[167]. Gupta and Falk (2015) [] introduced graph theoretical features for the classification

of the DEAP dataset and reported a performance increase up to 66 % when classifying va-

lence. The authors did not address class-imbalance. Technically, the performances achieved

with our approach of 73.74 % are clearly higher. As outlined throughout the present work,

it is generally advisable to only refer to the balanced classes classification performance.

Sample size, especially across classes, is a critical factor in the validation of classification

performance. At the same time, the number of samples per class a crucial success factor in

training a machine learning model. As a rule of thumb, there should be at least 40 instances

per class available for classification [191]. Across classification results and participants,

AUC-values are the most robust measure besides accuracy in terms of outliers.

5.5. Conclusion

The DEAP dataset released by Koelstra et al. [167] is a dataset for the study of affective

states in central and peripheral physiological signals. Classification of spectral frequency

domain features with R2-value feature selection and SVM between low and high valence

is superior to the results reported by Koelstra et al. employing an LDA classification ap-

proach. Group averages of classified frequency domain features were significantly above

chance for all performance measures in balanced classes (64.29 % accuracy, 0.66 AUC-

value, and 0.64 F1-score). Koelstra et al. reported 57.60 % in group average accuracy and

0.56 in F1-score when non-balanced classes were classified in Fisher’s linear discrimi-

nant analysis. Although trial sizes were small, the results show successful discrimination

between low and high valence using the machine learning pipeline introduced with EEG

frequency domain features.
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6
Discussion

To date, classic human-computer interaction (HCI), as the interaction between humans and

computing systems, lacks affect as a communication channel. The relatively young field of

affective computing seeks to also incorporate psychophysiological information about the

inner state of an individual into classic HCI [10, 118]. Recent technological advancements

in computing soft-, and hardware, as well as in the recording of physiological signals have

led to an increased interest in the automatic extraction and interpretation of psychophysio-

logical information.

The present thesis focuses on the classification of three affective states (i.e. unpleasant,

neutral, and pleasant) from the electroencephalogram (EEG) in healthy adults, motor-

impaired individuals with cerebral palsy, as well as preverbal infants. Affective states

are derived from valence following the dimensional emotion model [16, 17]. There-

fore, a machine learning framework has been developed for MATLAB (The MathWorks,

Inc., Natick, Massachusetts, United States) and made publicly available online (https:

//github.com/dthettich/BSClassify). The framework is based on fast feature selec-

tion and reduction by R2-values [131] as well as a linear support vector machine classifier

[153].

A machine learning pipeline common to brain-computer interface research is maintained

throughout analyses [123]. As features, only statistically significant correlates of affect

known to the neuroscience literature are employed from the time- and frequency domain.
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6. Discussion

6.1. Auditory Affect Induction and Classification

Neural responses to a selection of emotion-laden sounds from the International Affective

Digitized Sounds 2nd Edition (IADS-2) database [160] are investigated in a healthy as

well as in a motor-impaired population of individuals with cerebral palsy. The paradigm

design focuses on the maximization of trials available with simultaneously avoiding con-

founding factors such as habituation. For each emotional condition, 40 trials are available.

Sounds are suitable stimuli for participants where visual fixation is absent [40]. Individual

participant ratings correlated strongly with literature ratings (r = 0.81, p < 0.001).

As a time domain correlate of affect, the late positive potential (LPP) is identified over

central midline electrodes in the healthy population. The LPP is an event-related potential

(ERP) with a positive deflection approximately 400 ms post stimulus-onset with variable

length. Amplitudes are more positive relative to affective content of stimuli. Results are

comparable to [54, 55].

Time domain features of affect have not been employed for classification of affective states

in the EEG. Following the machine learning pipeline outlined, above chance group average

classification of unpleasant vs. pleasant (53.39 % accuracy and 0.54 AUC-value) as well

as neutral vs. pleasant (53.32 % accuracy and 0.54 AUC-value) is achieved in the healthy

population. In comparison, Koelstra et al. [167] report significant group average classifica-

tion in a similar population of low vs. high valence (i.e. unpleasant vs. pleasant) of 57.60

% accuracy and 0.56 F1-score. However, classes in that study are not balanced, thus scal-

ing up the chance level. Furthermore, features are based on frequency domain spectra and

stimuli are in total 40 music video clips of 60 s.

Inter-hemispheric frontal frequency domain correlates of affect are only present in trend,

yet are not significant.

For the first time, affect classification is conducted in a motor-impaired population with

cerebral palsy. This population consists of potential target users who benefit of affective

brain-computer interfaces. In the comparably small sample dataset size of n = 4, time

domain LPP differences are not significant, yet visible as a trend. Although meticulous care

is taken when applying artifact rejection techniques [130], movement artifacts render the

feasibility of analyses difficult in this population [40, 192, 193]. Classification of affective

states is also conducted employing time domain features of cerebral palsy data. However,

results are not useful since good practice in the classification of brain state differences is

the statistical testing of such, before classification [172]. They are included as an example

that potentially contaminated EEG may yield above chance classification performance.

There are several limitations to the current study. The advantages of auditory stimuli from

the IADS-2 have been outlined. Yet, their effectiveness as a tool for substantial emotion
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induction, especially at the low or high end of the valence scale in a healthy population,

is open to debate. For example, a handful of healthy participants verbally communicated

after the debriefing that the experienced sounds where not really strong when compared to

scenes from a current movie in the cinema.

Although the paradigm is designed to maximize trials when compared with other studies

[169], the amount of trials available is still small when compared to other classification

problems. For example, when classifying user input in a regular P300 speller BCI, approx-

imately 180 trials are available in total for one symbol.

In conclusion, the paradigm design with maximized number of trials, statistically validated

features, as well as validated and comparable classification results of this study are a step

towards the right direction in affective computing.

6.2. Affect Classification in Infants

The vision behind affect classification in preverbal infants is to provide an emotional com-

munication channel between the child on a sensory deprived or severely impaired caretaker.

Electrophysiological data of a novel emotion induction paradigm for infants up to 6-months

of age are investigated. In that paradigm, emotions are induced by the interaction of infant-

adult pairs in different scenarios. The adult is a meaningful stimulus to an infant, when

compared to standardized stimuli [21]. Furthermore, with standardized audio-visual stim-

uli, it is more difficult for infants to maintain target focus.

Frontal inter-hemispheric differences in EEG power relative to stimulus valence are re-

ported in the literature [78, 67]. Furthermore, hedonic theta is stated in relation to plea-

surable stimulation [73]. In general, infant EEG is found to be shifted to the left in terms

of frequency bands [51], i.e. neural firing generally occurs less frequent when compared

to adult EEG. In the present data, frontal EEG asymmetries between hemispheres for un-

pleasant to neutral as well as pleasant to neutral are validated in the range 3 to 6 Hz.

For the first time, automatic affect classification in preverbal infant EEG was conducted.

Our results support the possibility of the construction of a simple, non-invasive auto-

matic emotional valence classification system in a brain-computer interface (BCI) context

[10, 118] even for very small children with the age between 4 to 6 months of age. In a cross-

subject classification approach by leave-one-subject-out estimation (LOSOE), significant

above chance performances are obtained using frequency domain features (62.62 % accu-

racy, 0.65 AUC-value, and 0.60 F1-score). Comparable machine learning studies regarding

affect classification of infant EEG are not available. However, there are two studies apply-

ing machine learning to data of infant-adult interaction in different contexts. Shami et al.

[194] report results of different classification methods of emotions in adult-infant speech.
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Messinger et al. [195] conduct behavior prediction by adult-infant face-to-face interaction

and machine learning in order to design smart agents for interaction.

Compared to classification results of the auditory affect induction and classification study

outlined in Chapter 3, infant classification performances are greatly higher. The own parent

is a strong and relevant stimulus to a preverbal infant. Thus, it is suggested to address the

design of more relevant and personalized emotional stimuli for the study of affect also in

adults in an affective computing context. The LOSOE accounts for a strong feasibility in

the classification of neutral vs. pleasant emotional states in the present infant EEG data.

Training set data are balanced in order to avoid shifted baselines of chance levels.

Only neutral and pleasant conditions are classified since the amount of unpleasant trials

is rather small compared with the other two. The topic of inducing unpleasant states in

infants has to be taken seriously, let alone due to ethical reasons. Thus, the scenarios for

this condition are designed such that the adult expresses their concern about their infant.

This already resulted in behaviorally observable changes of expression. Yet the success

of emotion induction is supported by results of physiological analyses and classification.

The results of this realistic, everyday life emotion induction approach strengthens our vi-

sion of an automatic and non-invasive emotional detection possibility in very small infants.

Particularly in social interactions between a child and a severely impaired or sensory de-

prived caretaker such a system may significantly improve quality of interaction and care.

Including peripheral physiological measures in addition to the EEG and/or adding other

non-invasive central nervous system measures such as portable near-Infrared spectroscopy

(NIRS) will likely greatly improve classification performance.

6.3. DEAP Classification & Comparison

The DEAP dataset released by Koelstra et al. [167] is a dataset for the study of affective

states in central and peripheral physiological signals. Time domain and frequency domain

features of two affective states, i.e. low and high valence, of the central nervous system

are classified. Koelstra et al. report significant above chance classification of these two

conditions using statistically validated spectral features. In the comparison of classifying

non-balanced and balanced classes, it is shown that non-balanced classes lead to spuri-

ous performances. Precisely in the classification of time domain features of non-balanced

classes, an accuracy of 62.31 % is obtained. Nonetheless, AUC-values are robust to such

imbalances. As a main strategy however, balanced classes are recommended for the pro-

duction of comparable results across classification studies. Permutation tests are highly

recommended in any case [196, 197, 157]. By classifying frequency domain features, the

machine learning apparatus employed here outperforms the results by Koelstra et al. ([167],
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Table 7). The machine learning cascade developed in this thesis clearly shows potential and

success in the classification of affective states in the EEG. Nonetheless, spectral features

were computed from 60 s EEG thus increasing the likelihood of actual "emotional" EEG

being present for classification. In comparison to the auditory affect induction study con-

ducted in healthy and individuals with cerebral palsy, the lower performance there is likely

due to the different paradigm design especially with the smaller time frame of 1.4 s and

features employed for classification. The cerebral palsy data furthermore showed artifacts

which added substantial noise and variance to the data likely contaminating the target fea-

tures, i.e. ERP amplitude in the late positive potential.

6.4. Conclusion and Future Directions

The present work evaluates the feasibility of affect classification in the electroencephalo-

gram of the affective states unpleasant, neutral, and pleasant. In the context of affective

computing, two proof-of-concept studies in three different populations are introduced:

healthy adults, motor-impaired cerebral palsy individuals, and preverbal infants.

Current research on the automatic classification of affective states from electrophysiologi-

cal signals lacks comparability of results due to significant differences in paradigm design,

methodology, as well as machine learning approaches [169]. Yet, alone the experimental

setup for emotion induction comprises a vast parameter space and possible confounding

factors [172].

Throughout the present work, all studies are designed for an offline classification analysis

with a common machine learning apparatus in order to establish comparable results. The

results suggest a significant above chance group classification of two affective states in a

healthy and a preverbal infant population. Physiological correlates of affect in a cerebral

palsy population, as a real user target group for affective computing systems, could not be

validated statistically, however is present in trend.

Sample and therefore class size are identified as a key parameter for the success of clas-

sification in machine learning. As outlined, it is of utmost importance to follow correct

classification practices, e.g. balancing classes or performance measures, to allow for a fair

comparison of results. Therefore, the following measures should always be named when

reporting results: number of classes, number of samples per class, number of features,

performance computation (e.g. cross-validation), chance level (directly computed [158] or

computed by permutation tests), and machine learning approach.

The quality of "emotional" EEG available for analysis is a starting point for future re-

search. Especially the identification of meaningful individualized stimuli seems key for

future affective computing research in order to establish solid and high-quality data. Af-
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6. Discussion

fective computing is an interdisciplinary endeavour where neuroscientists, psychologists,

and computer scientists must closely work together and correspond vividly such that field-

specific expertise is combined in order to foster great results. For the future, it is desirable

to establish further open datasets of affective physiological data as well as to publish analy-

sis and machine learning code. As a next step, the combination of additional physiological

measures, for example from the periphery, should be investigated in affective computing.

The results presented in this thesis strengthen the vision of an automatic affect recognition

system by means of physiology augmenting brain-computer interfaces by the ability to

identify and communicate users’ inner states of affect.
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Appendix

A.1. IADS-2 Ids, Valence, and Arousal Values

For the auditory affect induction and classification study outlined in Chapter 3, sounds

from the International Affective Digitized Sounds 2nd Edition (IADS-2) database [160]

were employed. Table A.1 denotes IADS-2 sound ids and corresponding valence/arousal

values in the respective valence category.
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Table A.1.: IADS-2 sound ids and respective valence/arousal values for each emotional category.

Unpleasant Neutral Pleasant

Id. Val. Aro. Id Val. Aro. Id Val. Aro.

106 1.57 5.68 102 4.52 2.88 110 6.31 3.36

115 1.68 6.07 120 4.52 4.03 112 6.62 3.36

244 1.68 6.31 170 4.63 4.12 151 6.81 4.18

255 1.93 6.39 246 4.68 4.35 172 6.82 4.46

260 2.01 6.57 262 4.72 4.41 200 6.84 4.47

276 2.04 6.59 322 4.83 4.42 202 6.94 4.51

278 2.04 6.82 358 4.83 4.60 220 6.94 4.95

279 2.06 6.87 364 4.83 4.60 226 6.97 5.42

284 2.08 6.91 368 4.86 4.65 311 7.00 5.87

286 2.16 7.03 373 4.88 4.65 360 7.12 5.89

288 2.34 7.05 376 4.95 4.65 365 7.20 6.00

289 2.42 7.08 410 5.01 4.75 716 7.28 6.03

296 2.44 7.10 425 5.09 4.79 726 7.40 6.32

420 2.61 7.27 627 5.09 4.87 809 7.44 6.44

424 2.65 7.39 698 5.15 4.91 810 7.51 6.85

624 2.71 7.77 700 5.18 4.97 811 7.64 7.10

703 2.82 7.88 701 5.19 5.15 813 7.65 7.12

711 2.89 7.95 722 5.20 5.41 815 7.67 7.13

712 3.08 7.98 723 5.26 5.62 817 7.78 7.15

719 3.37 7.99 728 5.31 5.89 820 7.90 7.54

Mean 2.34 7.04 Mean 4.94 4.69 Mean 7.19 5.71
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A.2. German Version of PANAS Questionnaire

To assess whether participants had substantial deviations from their current moods in the

auditory affect induction and classification study outlined in Chapter 3, a German version

of the Positive Affect Negative Affect Scale (PANAS) [173, 174] questionnaire had to be

filled out by participants. Participant ratings were only in the range of "gar nicht", "ein

bisschen", or "einigermaßen". Thus, there were no substantial deviations to a standard

baseline constitution.

Figure A.1.: German version of the PANAS realized in web browser form.
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A.3. Healthy Individual Chance Levels Obtained by Permutation

Tests

Table A.2 shows healthy individual chance levels obtained by permutation tests at α = 0.5

of time domain features form the auditory affect induction and classification study outlined

in Chapter 3. The notation with α stems from the one introduced in Chapter 2.7.4. In the

present thesis, the α-notation for individual significance at different levels is also used as

the more known p-notation.

Table A.2.: Healthy individual chance levels of classification at significance threshold α = 0.5 ob-
tained by permutation tests for the performance measures accuracy, AUC-value, and F1-score based
on time domain EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 in 100 iterations. Columns
indicate classes of respective binary classification problems ( ’-’ unpleasant, ’0’ neutral, ’+’ pleas-
ant). Classes are balanced with 40 instances each.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Participant Accuracy AUC F1-Score Accuracy AUC F1-Score Accuracy AUC F1-Score

S01 51.25 % 0.51 0.50 48.75 % 0.49 0.49 51.25 % 0.51 0.51
S02 50.36 % 0.50 0.49 48.57 % 0.49 0.47 50.00 % 0.50 0.49
S03 48.75 % 0.49 0.49 51.25 % 0.51 0.52 50.00 % 0.50 0.51
S04 48.75 % 0.49 0.49 48.75 % 0.49 0.50 46.25 % 0.46 0.47
S05 51.25 % 0.51 0.51 48.75 % 0.49 0.50 50.00 % 0.50 0.48
S06 50.00 % 0.50 0.51 48.75 % 0.49 0.50 50.00 % 0.50 0.52
S07 51.25 % 0.51 0.49 50.00 % 0.50 0.51 47.50 % 0.47 0.49
S08 48.75 % 0.49 0.49 47.50 % 0.47 0.48 48.75 % 0.49 0.49
S09 50.00 % 0.50 0.51 51.25 % 0.51 0.51 50.00 % 0.50 0.51
S10 50.00 % 0.50 0.49 50.00 % 0.50 0.50 48.75 % 0.49 0.48
S11 48.75 % 0.49 0.49 48.75 % 0.49 0.48 50.00 % 0.50 0.50
S12 48.75 % 0.49 0.48 48.75 % 0.49 0.49 48.75 % 0.49 0.49
S13 50.00 % 0.50 0.49 48.75 % 0.49 0.51 50.00 % 0.50 0.50
S14 48.75 % 0.49 0.51 50.00 % 0.50 0.52 47.50 % 0.47 0.49
S15 48.75 % 0.49 0.49 48.75 % 0.49 0.49 50.00 % 0.50 0.49
S16 50.00 % 0.50 0.51 51.25 % 0.51 0.51 50.00 % 0.50 0.52
S17 48.75 % 0.49 0.48 48.75 % 0.49 0.50 50.00 % 0.50 0.51
S18 50.00 % 0.50 0.49 48.75 % 0.49 0.50 50.00 % 0.50 0.51
S19 48.75 % 0.49 0.49 48.75 % 0.49 0.49 51.25 % 0.51 0.51
S20 50.00 % 0.50 0.51 50.00 % 0.50 0.50 48.75 % 0.49 0.49
S21 50.00 % 0.50 0.52 48.75 % 0.49 0.49 50.00 % 0.50 0.49
S22 48.75 % 0.49 0.49 50.00 % 0.50 0.49 48.75 % 0.49 0.49
S23 47.50 % 0.47 0.49 48.75 % 0.49 0.50 50.00 % 0.50 0.51

Mean 49.53 % 0.50 0.50 49.29 % 0.49 0.50 49.46 % 0.49 0.50
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A.4. Cerebral Palsy Individual Chance Levels Obtained by

Permutation Tests

Table A.3 shows cerebral palsy individual chance levels obtained by permutation tests at

α = 0.5 of time domain features form the auditory affect induction and classification study

outlined in Chapter 3.

Table A.3.: Cerebral palsy individual chance levels of classification at significance threshold α =
0.5 obtained by permutation tests for the performance measures accuracy, AUC-value, and F1-score
based on time domain EEG data of channels Cz, Pz, Cp1, Cp2, Cp5, and Cp6 in 100 iterations.
Columns indicate classes of respective binary classification problems ( ’-’ unpleasant, ’0’ neutral,
’+’ pleasant). Classes are balanced with 40 instances each.

’-’ vs. ’0’ ’-’ vs. ’+’ ’+’ vs. ’0’

Participant Accuracy AUC F1-Score Accuracy AUC F1-Score Accuracy AUC F1-Score

S01 51.25 % 0.51 0.46 50.00 % 0.50 0.33 53.75 % 0.54 0.50

S02 56.25 % 0.56 0.52 48.75 % 0.49 0.43 50.00 % 0.50 0.45

S03 55.18 % 0.55 0.59 48.04 % 0.48 0.55 70.36 % 0.70 0.73

S04 51.25 % 0.51 0.50 51.25 % 0.51 0.49 47.50 % 0.47 0.47

Mean 53.48 % 0.53 0.52 49.51 % 0.50 0.45 55.40 % 0.55 0.54
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B.1. Infant Affect Classification Performance Measure

Comparison

Cross-subject classification performances obtained by LOSOE, respective individual sig-

nificance levels obtained by permutation tests at p = 0.05, as well as class ratios are shown

in Figure 4.6 for the three performance measures: accuracy, AUC-value, and F1-score. The

average accuracy is 62.62 ± 11.09 %. The average AUC-value is 0.65 ± 0.14. The aver-

age F1-score is 0.60 ± 0.16. Class ratios in the testing set are on average 66 ± 12 % as

compared to the larger class.

An overview when individual significance thresholds are exceeded for the respective per-

formance measure are shown in Table B.1.

In total, 15 subjects exceed individual significance levels in all performance measures (i.e.

subjects 1, 2, 3, 4 9, 14, 15, 16 17 19, 20, 23, and 25). Subjects 5 and 8 exhibit no significant

classification at all. Subject 10 shows significance only in AUC-value. Subjects where only

F1-scores exceed the significance threshold are 13, 21, and 24.
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Figure B.1.: Cross-subject classification performances depicted in blue: accuracies (A), AUC-
values (B), F1-scores (C), as well as class ratios of the testing set (D) of binary classification of
pleasant vs. neutral conditions using features from the frequency domain 1-9 Hz. Permutation re-
sults at p = 0.05 are depicted in red. Asterisks at the 0 mark indicate if performance measures
exceed the 5 % significance level. Classes for model training are balanced.

Table B.1.: Per subject individual significance exceeded at p = 0.05 for performance measures ac-
curacy, AUC-values, and F1-scores. Distance values indicate disagreement between the three per-
formance measures.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Accuracy * * * * * * * * * * * * * * * * * *

AUC-value * * * * * * * * * * * * * * * * * * *

F1-score * * * * * * * * * * * * * * * * * * * *

Distance 0 0 0 0 0 1 1 0 0 2 0 0 2 0 0 0 0 1 0 0 2 1 0 2 0
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C.1. DEAP Individual Chance Levels Obtained by Permutation

Tests

Table C.1 contrasts individual chance levels at p = 0.5 as obtained by permutation tests

as well as individual performances of time domain feature classification from the DEAP

dataset analysis outlined in Chapter 5. Bold values indicate when individual performance

exceeds individual chance levels.

Table C.2 similarly shows the same results yet for the classification of frequency domain

features.
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Table C.1.: DEAP Time domain average classification chance levels obtained by permutation tests
(p = 0.5) for non-balanced and balanced datasets for metrics accuracy, AUC-value, and F1-score
for each participant, as well as individual classification performances. Values for accuracy are given
in percent. Bold values indicate when individual performance exceed the individual chance level.

Non-balanced Balanced

Accuracy [%] AUC-value F1-score Accuracy [%] AUC-value F1-score

Id. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh.

01 62.86 57.14 0.74 0.60 0.65 0.53 82.86 56.67 0.85 0.61 0.82 0.55

02 58.67 69.33 0.59 0.60 0.25 0.00 43.33 66.67 0.45 0.72 0.38 0.62

03 75.00 75.00 0.64 0.66 0.00 0.00 40.00 60.00 0.62 0.62 0.60 0.75

04 47.14 58.10 0.58 0.55 0.59 0.68 54.00 68.67 0.49 0.49 0.70 0.81

05 66.67 70.00 0.50 0.37 0.17 0.00 50.00 45.00 0.48 0.43 0.56 0.50

06 86.00 86.00 0.51 0.46 0.00 0.00 50.00 40.00 0.66 0.44 0.57 0.00

07 70.95 73.81 0.52 0.56 0.29 0.00 50.00 38.33 0.40 0.20 0.53 0.52

08 69.00 61.00 0.55 0.38 0.46 0.17 50.00 38.33 0.50 0.36 0.50 0.38

09 67.00 67.00 0.66 0.76 0.53 0.40 55.00 61.67 0.72 0.65 0.59 0.62

10 40.00 48.00 0.39 0.47 0.22 0.38 50.00 45.00 0.51 0.47 0.44 0.53

11 40.67 52.00 0.37 0.50 0.33 0.14 54.00 50.00 0.48 0.53 0.44 0.45

12 50.48 50.00 0.60 0.47 0.33 0.32 50.00 50.00 0.46 0.49 0.40 0.40

13 64.00 44.00 0.54 0.45 0.61 0.53 58.00 54.00 0.60 0.49 0.62 0.63

14 42.86 57.14 0.39 0.61 0.33 0.55 53.33 63.33 0.45 0.68 0.48 0.68

15 55.33 44.67 0.60 0.28 0.25 0.12 35.00 40.00 0.46 0.26 0.13 0.57

16 53.33 57.33 0.44 0.40 0.63 0.71 73.00 77.00 0.54 0.34 0.83 0.87

17 52.00 68.00 0.48 0.57 0.00 0.00 20.00 63.33 0.23 0.64 0.15 0.62

18 85.00 85.00 0.34 0.22 0.00 0.00 10.00 30.00 0.33 0.06 0.00 0.50

19 58.00 42.67 0.57 0.38 0.40 0.26 36.00 43.00 0.47 0.40 0.29 0.48

20 57.00 70.00 0.43 0.49 0.00 0.00 43.33 43.33 0.40 0.41 0.50 0.33

21 57.33 65.33 0.39 0.59 0.15 0.00 50.00 56.67 0.56 0.58 0.56 0.62

22 50.00 43.33 0.59 0.39 0.52 0.44 56.67 43.33 0.63 0.42 0.55 0.45

23 83.00 83.00 0.57 0.59 0.00 0.00 50.00 20.00 0.59 0.28 0.33 0.25

24 51.33 48.67 0.48 0.36 0.32 0.22 44.00 37.00 0.34 0.31 0.40 0.29

25 53.33 40.00 0.52 0.38 0.56 0.43 46.67 40.00 0.47 0.35 0.43 0.41

26 58.57 55.71 0.50 0.38 0.12 0.12 41.00 47.00 0.42 0.47 0.42 0.50

27 78.00 81.33 0.55 0.51 0.00 0.00 50.00 60.00 0.50 0.50 0.55 0.60

28 57.14 54.29 0.59 0.47 0.35 0.19 58.67 65.33 0.61 0.73 0.59 0.71

29 46.67 51.90 0.49 0.40 0.19 0.21 43.00 41.00 0.27 0.40 0.42 0.36

30 78.33 85.00 0.19 0.58 0.00 0.00 60.00 30.00 0.89 0.28 0.75 0.50

31 64.00 72.00 0.26 0.57 0.18 0.00 56.67 50.00 0.44 0.48 0.57 0.46

32 77.00 77.00 0.65 0.37 0.00 0.00 50.00 60.00 0.56 0.62 0.55 0.50

Mean 61.15 62.31 0.51 0.48 0.26 0.20 48.89 49.52 0.51 0.46 0.49 0.52
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Table C.2.: DEAP Frequency domain average classification performances for non-balanced and
balanced datasets for metrics accuracy, AUC-value, and F1-score, as well as their corresponding
individual significance thresholds (p = 0.5). Values for accuracy are given in percent. Bold values
indicate when individual performance exceed the individual significance level.

Non-balanced Balanced

Accuracy [%] AUC-value F1-score Accuracy [%] AUC-value F1-score

Id. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh. Ind. Thresh.

01 57.14 48.57 0.51 0.47 0.55 0.40 56.19 47.14 0.51 0.47 0.55 0.47

02 66.67 69.33 0.78 0.46 0.17 0.00 88.33 55.00 0.86 0.57 0.88 0.52

03 80.00 75.00 0.74 0.42 0.33 0.00 60.00 40.00 0.88 0.44 0.67 0.44

04 85.24 56.19 0.86 0.47 0.87 0.71 72.00 72.00 0.51 0.47 0.83 0.83

05 73.33 73.33 0.34 0.42 0.00 0.00 38.33 41.67 0.42 0.42 0.38 0.40

06 86.00 86.00 0.13 0.36 0.00 0.00 10.00 30.00 0.12 0.31 0.00 0.29

07 70.95 73.81 0.76 0.47 0.17 0.00 68.33 50.00 0.81 0.49 0.67 0.44

08 75.00 65.00 0.58 0.45 0.40 0.00 50.00 38.33 0.47 0.39 0.50 0.40

09 80.00 57.00 0.86 0.40 0.71 0.00 83.33 43.33 0.91 0.40 0.82 0.42

10 76.00 52.00 0.91 0.48 0.74 0.18 85.00 50.00 0.95 0.47 0.86 0.48

11 59.33 56.00 0.50 0.47 0.00 0.14 42.00 46.00 0.37 0.46 0.43 0.43

12 68.57 49.52 0.73 0.43 0.69 0.30 60.00 46.67 0.67 0.47 0.62 0.46

13 76.00 48.00 0.75 0.44 0.77 0.38 79.00 46.00 0.86 0.46 0.80 0.45

14 91.43 51.43 0.90 0.47 0.91 0.28 80.95 47.14 0.90 0.46 0.83 0.47

15 74.00 62.00 0.89 0.49 0.72 0.14 75.00 55.00 0.82 0.53 0.76 0.50

16 60.67 57.33 0.64 0.45 0.74 0.73 82.00 77.00 0.86 0.48 0.89 0.87

17 72.00 72.00 0.52 0.44 0.00 0.00 30.00 46.67 0.28 0.43 0.17 0.46

18 90.00 85.00 1.00 0.33 0.50 0.00 100.00 60.00 1.00 0.56 1.00 0.67

19 72.00 53.33 0.66 0.43 0.64 0.14 68.00 46.00 0.72 0.43 0.67 0.43

20 79.00 70.00 0.87 0.44 0.62 0.00 86.67 46.67 0.98 0.48 0.86 0.47

21 73.33 69.33 0.67 0.42 0.22 0.00 38.33 43.33 0.47 0.46 0.29 0.44

22 70.00 50.00 0.70 0.50 0.69 0.48 63.33 46.67 0.60 0.47 0.65 0.46

23 83.00 83.00 0.13 0.42 0.00 0.00 30.00 40.00 0.25 0.44 0.25 0.50

24 62.67 58.67 0.60 0.48 0.38 0.15 48.00 47.00 0.39 0.46 0.52 0.45

25 40.00 50.00 0.38 0.50 0.40 0.47 50.00 50.00 0.43 0.50 0.40 0.48

26 63.93 66.79 0.80 0.45 0.13 0.00 51.00 46.00 0.43 0.45 0.45 0.44

27 81.33 81.33 0.44 0.50 0.00 0.00 70.00 50.00 0.68 0.44 0.67 0.50

28 71.43 60.00 0.75 0.46 0.58 0.12 80.67 49.33 0.88 0.48 0.81 0.48

29 77.62 59.52 0.85 0.47 0.70 0.13 84.00 46.00 0.83 0.44 0.85 0.44

30 90.00 85.00 0.98 0.36 0.50 0.00 100.00 40.00 1.00 0.33 1.00 0.33

31 76.00 68.00 0.87 0.43 0.57 0.00 76.67 43.33 0.84 0.47 0.80 0.43

32 77.00 77.00 0.89 0.48 0.29 0.00 50.00 40.00 0.46 0.42 0.62 0.44

Mean 73.74 64.67 0.69 0.45 0.44 0.15 64.29 47.70 0.66 0.45 0.64 0.48
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