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Abstract 

In determining the optimal redistribution of a given population’s income, we ask which 

factor is more important: the social planner’s aversion to inequality, embedded in an 

isoelastic social welfare function indexed by a parameter alpha, or the individuals’ 

concern at having a low relative income, indexed by a parameter beta in a utility 

function that is a convex combination of (absolute) income and low relative income. 

Assuming that the redistribution comes at a cost (because only a fraction of a taxed 

income can be transferred), we find that there exists a critical level of beta below which 

different isoelastic social planners choose different optimal allocations of incomes. 

However, if beta is above that critical level, all isoelastic social planners choose the 

same allocation of incomes because they then find that an equal distribution of incomes 

maximizes social welfare regardless of the magnitude of alpha.  

 

 

JEL Codes: D31, D60, D63, H21, I38  

Keywords: Maximization of social welfare, Isoelastic social welfare functions,   

Deadweight loss of tax and transfer, Concern at having a low relative 

income, Social planners’ aversion to inequality 
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1. Introduction 

The fundamental tension between different social planners with regard to the income 

allocation rule under a deadweight loss of tax and transfer is easily understood, and has 

been alluded to for many years. For example, Tullock (1975) and Sen (1982) already 

grappled with the assumptions or conditions necessary to render equal division the 

optimal distributional rule for a given total income. However, neither of them enlisted 

individuals’ concern at having a low relative income as a conciliator. In this paper we 

bring together under the same isoelastic roof all the pivotal social planners, we 

incorporate a deadweight loss of tax and transfer, we display the received tension 

between the different social planners, and we ask what strength of the individuals’ 

concern at having a low relative income will cause all the social planners to choose the 

same - equal - distribution of income.1  

The class of isoelastic social welfare functions (Atkinson, 1970) enables us to 

represent the varying degrees of the social planners’ aversion to inequality in the 

population’s distribution of income as special cases. Due to its appealing axiomatic 

foundation and flexibility in embracing basic equality criteria,2 the function has become 

a popular measure of social welfare in a variety of fields, ranging from optimal taxation 

(Atkinson and Stiglitz, 1976; Stern, 1976; Slemrod et al., 1994) to health economics 

(Abasolo and Tsuchiya, 2004, and references cited therein) and environmental 

economics (Shiell, 2003). 

Our aim is to uncover a condition under which all the pivotal “isoelastic social 

planners” - a utilitarian, a Rawlsian, a Bernoulli-Nash, or any planner “in-between” - 

                                                
1 Rich evidence from econometric studies, experimental economics, social psychology, and neuroscience 
confirms that individuals routinely engage in, and are affected by, interpersonal comparisons. In 
particular, people are dissatisfied when their consumption or income levels are lower than those of others 
who constitute their “comparison group.” Studies that recognize such discontent are, among others, Stark 
and Taylor (1991), Zizzo and Oswald (2001), Luttmer (2005), Fliessbach et al. (2007), Blanchflower and 
Oswald (2008), Takahashi et al. (2009), Stark and Fan (2011), Stark and Hyll (2011), Fan and Stark 
(2011), Stark et al. (2012), and Card et al. (2012). Additionally, the comparisons that affect the sense of 
wellbeing significantly are those made by looking “up” the hierarchy, whereas the possibility that 
individuals derive satisfaction from looking “down” is not supported by studies of this subject. For 
example, Andolfatto (2002) demonstrates that individuals are adversely affected by the material wellbeing 
of others in their reference group when this wellbeing is far enough below theirs. See also Frey and 
Stutzer (2002) and Walker and Smith (2002) for a large body of evidence that supports the “upward 
comparison” hypothesis. 
2 The isoelastic social welfare function satisfies the criteria of unrestricted domain, independence of 
irrelevant alternatives, anonymity, separability, and the weak Pareto criterion (Roberts, 1980). 
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will come up with the same optimal income distribution when a tax and transfer 

procedure is subject to a deadweight loss. We obtain a strong congruence result: when 

the individuals’ utility functions exhibit a sufficiently high concern at having a low 

relative income, the optimal tax policies of all the social planners align. This unanimity 

holds for the entire class of isoelastic social welfare functions with a parameter of 

inequality aversion, α , (defined in (1) below) spanning from zero (the case of a 

utilitarian social function) to infinity (the case of a Rawlsian social function). We 

characterize the consensus optimal income distribution - which is a distribution of equal 

incomes - and we find that the intensity of the individuals’ concern at having a low 

relative income crowds out the preferences over income distribution harbored by 

particular social planners. Moreover (and unless we begin with equal incomes), we 

identify the critical intensity of the individuals’ concern at having a low relative income 

below which every isoelastic social planner other than the Rawlsian will choose a 

different, and particularly a non-equal, distribution. In other words, we formulate a 

necessary and sufficient condition for reconciliation of all the isoelastic social planners.  

We proceed in two steps. First, we show that when the individuals’ preferences 

do not exhibit a strong enough concern at having a low relative income, a deadweight 

loss of tax and transfer impedes equalization of incomes, and entails an optimal 

allocation in which, except for the Rawlsian social planner, all social planners end up 

with an unequal distribution of the available income. Second, we show that if the 

individuals’ preferences exhibit a strong concern at having a low relative income, any 

isoelastic social planner who acknowledges this concern will end up equalizing incomes, 

no matter what is his degree of inequality aversion. Put more starkly, although the 

higher α , the more the isoelastic social welfare function tilts in favor of income 

equalization, a deadweight loss of tax and transfer interferes with this “proclivity” for 

any α < ∞ . Incorporation of the individuals’ concern at having a low relative income 

restores the “power” (or reinvigorates the mandate) of the social welfare planner to 

equalize incomes. 

Our analysis unravels an interesting distinction between the social planners’ 

aversion to inequality (represented by the parameter α  in the isoelastic social welfare 

function) and the individuals’ concern at having a low relative income (represented by 

the parameter β  in the individuals’ utility functions). We find that when an “isoelastic 

social planner” faces a population characterized by an intensity of concern at having a 
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low relative income that is higher than a critical value, the planner will choose to 

equalize incomes. There exists a critical level of the individuals’ concern at having a 

low relative income that makes all the isoelastic social planners choose an equal income 

distribution, but there does not exist a (finite) level of the social planner’s aversion to 

inequality that leads him to choose equal income distribution for any β . That is, the β  

preference of the individuals dominates the α  taste of the social planner. Essentially, 

we show that inequality aversion formed “top-down” via the social welfare function is 

not a substitute for the intensity of a distaste percolating “bottom-up” from the 

preferences of the individuals.3 In a sense, this finding is in conflict with intuition that 

has gained analytical support in the optimal taxation models of Stern (1976), Slemrod et 

al. (1994), and others, who show that embedding inequality aversion in the social 

welfare function suffices to render taxation more progressive, and the distribution of 

income more equal. 

The plan of the remainder of this paper is as follows. In Section 2 we introduce 

the class of isoelastic social welfare functions. In Section 3, which serves as a 

benchmark, we consider a population of two individuals. Under a deadweight loss of tax 

and transfer, we find that if the individuals’ concern at having a low relative income, β , 

is not strong enough (in a sense made precise), then (i) the optimal income distributions 

chosen by different social planners differ from one another, depending on the social 

planners’ parameter of inequality aversion, α ; and (ii) only a Rawlsian social planner 

chooses an equal income distribution. In Section 4 we consider a population of any size. 

We show that there exists a critical level of the intensity of the concern at having a low 

relative income, *β , which compels all isoelastic social planners to choose an equal 

income distribution, regardless of the value of their parameter of inequality aversion, α . 

Section 5 concludes. 

 

                                                
3 Kaplow (2010) already noted asymmetry in the effect of the concavity of individuals’ utility functions 
and the effect of the concavity of the social welfare function on the desirability of redistribution, finding 
that the former has more significant influence. In our model, a strong concern at having a low relative 
income embodied in the individuals’ utility functions, namely, a high enough β , translates into a high 
marginal utility of individuals whose incomes are low, whereas the parameter α  defines the concavity of 
the social welfare function. 
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2. The isoelastic social welfare function 

Let there be a population of 2n ≥  individuals (where n is a natural number), and let the 

isoelastic social welfare function, SWF, be defined as 
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where 1,( , )nxx …=x , and 0ix ≥  is the income of individual 1,...,i n= ; ( , )iu x x  is the 

utility function of individual i, which depends on the individual’s income ix  and, 

possibly, on the incomes of other individuals in the population, such that ( , 0)ixu >x  for 

any ∈Ωx , where Ω  is the set of possible income distributions; and [0, )α ∈ ∞  is the 

social planner’s parameter of inequality aversion.4,5 The social welfare function in (1) is 

a discrete equally-distributed-equivalent utility, as is often defined in social choice 

theory. 

As already noted in the Introduction, varying the parameter α  allows us to 

represent the maximization problem of the social planners who differ from one another 

in the degree of their inequality aversion.  

When 0α =  (no preference for equality), we have that (1) reduces to  

 0
1

1( ) ( , )
n

i
i

SWF
n

u x
=

= ∑x x ,  

                                                
4 The literature offers several definitions or representations of an isoelastic social welfare function with 

0α ≥ , 1α ≠ . Probably the one that is most commonly used is 1

1

( ) ( 
1

1
),

n

i

iuS xα

α
α

−

=

=
−
∑x x . However, 

as noted by Iritani and Miyakawa (2002), this form of isoelastic function does not converge point-wise to 
a Rawlsian maximin social welfare function for α → ∞  (although the preference relations described by 
( )S

α
⋅  converge to those of maximin function for α → ∞ ). For precision’s sake, we resort throughout this 

paper to the formulation of SWF given in (1), which has the advantages of converging to a Rawls 
maximin function for α → ∞  without additional transformations and, as a monotone transformation of 
( )S

α
⋅ , it is equivalent to ( )S

α
⋅  in terms of maxima for any 0α ≥ , 1α ≠ .

 5 The isoelastic function can be linked to the so-called Box-Cox transformation of population incomes, 
used often in statistics and in econometrics in order to render the data resemble a pattern akin to the 
normal distribution (Salas and Rodríguez, 2013). 
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which is equivalent to a standard utilitarian social welfare function,
 

1

 ( ) ( , )
n

i
i

USWF u x
=

=∑x x .  

Using a well-known property of a generalized mean (Bullen, 2003, Theorem 

III.1.2), it follows that, when 1α → , we have that  

 1
1

1
li (m ( ( , ) )) i

n

n

i

SW uF x SWFαα→
=

= =∏ x xx ,  

namely, the limit function for α  approaching 1 is equivalent to the Bernoulli-Nash 

social welfare function,
 1

(( ) , )BN

n

i
i

SWF xu
=

=∏ xx .  

In addition, it is easy to show that when α →∞ , we have that 

 { }
{1,..., }

lim ( ) min ( , ) ( )Rii n
SWF x Su WFαα→∞ ∈

= =x x x ,  

which implies that the Rawlsian maximin social welfare function ( )RSWF x  represents 

the extreme case of a social planner’s inequality aversion.6 

Thus, and as is already well known, by varying the coefficient 0α ≥  and, 

additionally, by analyzing the limit case α →∞ , we can use the isoelastic social welfare 

function defined in (1) to represent the preferences of the most “prominent” social 

planners: utilitarian, Bernoulli-Nash, and Rawlsian.  

We now formulate the social planner’s optimization problem. Let the vector of 

initial incomes of the n individuals be 1( ,..., )ne e=e  such that 1 ..0 . nee< ≤ ≤ . A social 

planner can transfer income from one individual to another in order to obtain what he 

considers to constitute the population’s optimal income distribution. Let ix  denote the 

possible post-transfer (or post-tax) income of individual i, and let 
1

max{ ,0}
n

i i
i

t e x
=

= −∑  

denote the total income that the social planner takes away from the individuals 

(henceforth “the tax”). Due to a deadweight loss of tax and transfer, only a fraction of 

                                                
6  In what follows, we denote by ( ) ( )RSWF SWF

α
=x x  the case when the social welfare function is 

Rawlsian, even though the parameter α  is then not set. 
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the tax ends up being transferred.7 We denote this fraction by (0,1]λ∈ . Consequently, 

the set on which we search for the solution of the social planner’s problem is  

1
1 1

( , ) ( , , ) : 0 for all and max{ ,0} max{ ,   ,0}
n n

n i i i i i
i i

x x e xx i x eλ λ
= =

" #
Ω = = … ≥ − = −' (

) *
∑ ∑e x , 

namely, we search over the set of incomes that can be attained from the initial allocation 

e  by taxing some individuals; we thereby obtain the sum 
1

max{ ,0}
n

i i
i

t e x
=

= −∑ ; and we 

distribute tλ
 
between the remaining individuals such that the transfer amounts to 

1

max{ ,0}
n

i i
i

t x eλ
=

−=∑ .  

Let the utility function of an individual whose income is ix  be  

 ( , ) ( ( ) ,) )1 (i i ix x xu Ef RIβ β−≡ − +xx , (2) 

where ( )f ⋅  is a strictly increasing, strictly concave function with (0) 0;f ≥  [ )0,1β ∈  

measures the intensity of the individual‘s distaste at having a low relative income, while 

the taste for having an (absolute) income is accorded the complementary weight 1 β− ; 

RI is the index of low relative income, defined as  

 
1

( ) max{,
1

 ,0}
n

i j i
j

RI xx x
n =

≡ −∑x , 

namely, we operationalize the concern for low relative income by the index of relative 

deprivation;8 and where E is a constant such that 
1

1 n

k
k

E
n

E e
=

≡≥ ∑ , which we introduce in 

order to ensure that for each i and ( , )λ∈Ωx e  we will have that ( , ) 0.ixu >x 9  

                                                
7 The loss incurred in the course of the process of tax and transfer is in the spirit of Okun’s (1975) concept 
of “leaky bucket.” 
8 The index of relative deprivation, based on the seminal work of Runciman (1966), was proposed by 
Yitzhaki (1979), and axiomatized by Ebert and Moyes (2000) and Bossert and D’Ambrosio (2006). A 
detailed account of the background, rationale, and logic for this index is in Stark (2013). The index can be 
shown (see, for example, Stark, 2013) to be equal to the fraction of the individuals in the population 
whose incomes are higher than the income of the individual, times their mean excess income. 

9  From the definition of the set ( , )λΩ e  we have that 
1 1

n

i
i

n

i
i

e x
= =

≥∑ ∑  for any ( , )λ∈Ωx e . Thus, 
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3. A population of two individuals 

In this section we study a population of two individuals. We find that if the concern for 

a low relative income is not strong enough, an isoelastic social planner who faces a 

deadweight loss of tax and transfer will not, in general, choose to equalize incomes. The 

analysis of the case of two individuals serves as a foundation for analyzing the case of a 

population of any size, conducted in Section 4. The case of two individuals, and in 

particular the part leading to inequality (7) below, is significant in that it unravels the 

intuition of our main result, presented in the form of a proposition, in Section 4.  

We consider a two-person population, 1,2i = , in which individual 1i = , the 

“poor,” has an initial income 1e , and individual 2i = , the “rich,” has an initial income 

2e , 1 20 e e< < .  

Let there be an isoelastic social planner who can revise the prevailing income 

distribution by transferring an amount t  from one individual to another, taking into 

account the deadweight loss as defined in Section 2. It is easy to verify that if we were 

to tax the income of the “poor” individual and transfer income to the “rich” individual, 

social welfare would decline. Thus, the only way in which the social planner could try 

to improve social welfare is to tax the “rich” individual, and make a transfer to the 

“poor” individual. In the case of two individuals, it is convenient to rewrite the utility 

levels in (2) as functions of the tax amount t, ( )iv t , 1,2i = . The post-transfer utility of 

the “poor” individual is then 

 ( ) { }2 11 11 2 1) max ( ( )( ) (1 ( ) ) ,0, )
2

( ,v t u f ee t te t e e tt Eet β
β λ λλ λ≡ = − + − − − + ++ + − , 

and the post-transfer utility of the “rich” individual is 

 ( ) { }2 1 22 1 22 ) max ( )( ) (1 ( ) ),0,( ) (,
2

v t u f e t ee e t e t Ete tt β
β λλ≡ = − − − + −− − ++ − . 

Which t will an isoelastic social planner choose? To find out, we rewrite the social 

welfare function in (1) for a population of two individuals and for a transfer from the 

                                                                                                                                          

1 1 1

( ) max{ , 0} / / /,
n n n

i j i j j
j j j

RI x x x n ex n n E Eβ β β
= = =

= − ≤ < = ≤∑ ∑ ∑x  and, therefore, because ( ) 0
i

f x ≥ , 

,( ) 0
i

u x >x  for any {1,..., }i n∈  and ( , )λ∈Ωx e . 
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“rich” individual to the “poor” individual as   

 

1 1
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which is to be maximized over 2[0, ]t e∈ . We note that the amount t which equalizes the 

incomes of the two individuals is 2 1

1
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1
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. It is easy to verify that for 2, )(t t e∈  and any 

0α ≥  we have that ( ) 0swf tα
" <  and, thus, the isoelastic social planner will surely not 

choose a tax level higher than t . 

For [0, ]t t∈ , we have that 2 1e e tt λ≥− + . Thus, while the “poor” individual 

experiences low relative income (that is, except when t t= ), the “rich” individual does 

not, so 
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and for any (0, )t t∈  and 0α ≥ , 1α ≠  we have that 

 

1
1 11 1
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1

1 1
2

1 1
12 0( ) ( )v t v t

α
α αα α− −− − ># $+% &  for any (0, )t t∈ , the sign of ( )swf tα"  depends 

only on the sign of the term 

 1 2

1 2

(1 ) / 2 (1 ) (( ) ( )( )
( ) (

1 )
)

f e t f e ts t
v t v tα α α

λ β λ β λ β$ $ −+ +
≡

− −+
− . (5)  

Strict concavity and monotonicity of ( )f ⋅  imply that  
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for any (0, )t t∈ ; namely, ( )s tα  is a strictly decreasing function. Therefore, in order for 

t t=  to constitute the optimal tax level, we must have that 

 lim ( 0)
t t
s tα→

≥ , 

because this condition ensures that social welfare increases all the way up to t t= . This 

limit condition is equivalent to requiring that 

 
*

1

(1 ) / 2 (1 )(1 ( ) 0)
( )

f x
v tα

λ β λ β+ − − −
≥

& , (6) 

which, due to 1 ( ) 0v tα > , is equivalent to requiring that  

 
*

*
*

( ) (
( )

(1 ) , )
(1 ) (1 ) / 2

f x
f x
λ

β β λ
λ λ

#

# +

−
≥ ≡

− +
e , (7) 

where, obviously, 
*0 , )( 1β λ≤ <e . 

 We see that for *( , )β β λ< e , the optimal tax lies somewhere in the range 

[0, )t t∈ . Specifically, if ) 0(0sα ≤ , we have that 0t = , namely, the social planner will 

not choose to transfer any income, whereas if ) 0(0sα > , the optimal level of the tax is 

given by setting (5) equal to zero: 

 1 2

1 2

(1 ) / 2 (1 ) (1 )( ) ( )
( ) ( )

f e t f e t
v t v tα α

λ β λ β λ β+ $ + −− $
=

+ − . (8) 

 For 1α = , an analysis analogous to the one undertaken above shows that we get 

exactly the same condition as (7) for t t=  to constitute the optimal level of the tax.  

Two observations are worth making: (i) condition (6) is satisfied for any 0β ≥  

if and only if 1λ = ; that is, if and only if the transfer is perfectly costless; (ii) the critical 

level of β  that is necessary for the equalization of incomes, * ,( )β λe  in (7), does not 

depend on the parameter α . We summarize the preceding analysis in the following 

lemma. 
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Lemma 1. In the case of two individuals with initial incomes 1 20 e e< < , an isoelastic 

social planner who is maximizing the function ( )swf tα  over 2[0, ]t e∈  with [0, )α ∈ ∞ , 

and who is facing a deadweight loss of tax and transfer (0,1]λ∈ , will choose the 

optimal tax which equalizes incomes, *t t= , if and only if: 

(a) 1λ =  

or 

(b) 1λ <  and *( , )β β λ≥ e .  

 Additionally, noting that the post-transfer level of income at the point of equality 

treated as a function of λ  for given initial incomes 1 20 e e< < , namely, * 2 1(
1

) e e
x

λ
λ

λ
+

=
+

, 

is increasing,10 we obtain from (7) that 
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 . 

Thus, and aligning with intuition, the critical level * ,( )β λe  increases when the 

deadweight loss becomes more onerous: when more is being lost in the tax and transfer 

procedure, following the procedure will be justified only if the weight attached to low 

relative income is higher.  

Regarding the Rawlsian social welfare function, which is equivalent to the limit 

case of (3) with α →∞ , namely, to 

 { }1 2( ) min ( ), ( )Rswf t v t v t= , 

it is easy to see that as long as 1 2 ,e t teλ ≤+ −  the Rawlsian social planner will find it 

optimal to increase the income of the “poor” individual at the expense of the “rich” 

individual, and that he will so act until reaching the point 21e t e tλ+ = − , namely, until 

                                                
10 We have that 

*

2

2

1)(
0

(1 )

ed ex

d

λ

λ λ

−
= >

+
. 
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t t= . Thereafter, transfers cannot anymore increase social welfare because they will 

render the “rich” “poor.” We thus have the following lemma. 

Lemma 2. In the case of two individuals, a Rawlsian social planner who is facing a 

deadweight loss of tax and transfer (0,1]λ∈  will choose to equalize incomes, that is, to 

set *Rt t=  for any (0,1]λ∈  and any [0,1)β ∈ . 

From a comparison of Lemma 1 with Lemma 2, we see that in the presence of a 

deadweight loss of tax and transfer, the optimal choices of isoelastic social planners 

(including a utilitarian social planner and a Bernoulli-Nash social planner) differ from 

the choice of a Rawlsian social planner; only the latter chooses to distribute incomes 

equally. Moreover, because the solution to (8) depends on the value of the parameter α , 

we get that the choices of isoelastic social planners for *( , )β β λ< e  differ for different 

levels of inequality aversion. In Example 1, where we shorten the notation * ,( )β λe  to 

*β , we present this divergence diagrammatically for a chosen utility specification and 

specific values of the parameters.  

 Example 1. Consider the following preferences and initial endowments of the 

two individuals: ( ) ln( 1)f x x= + , 1 4e = , 2 13e = , and 1/ 2λ = . Then 6t = , and 

* 0.08β ≈ . In Figure 1 we depict the optimal tax *t  as a function of the social planner’s 

inequality aversion parameter α  for three different values of * *:  0,  0.9 ,  and  β β β . As 

α  increases, the optimal tax for 0β =  and for *0.9β β=  asymptotically approaches t , 

although it does not reach t  even for large values of α  and for *0.9β β= . Other than 

the Rawlsian social planner, represented by the limit case α →∞ , no social planner 

chooses to equalize incomes. However, when *β β=  (or, for that matter, when *β β≥ ) 

all the social planners, regardless of their α , pursue a redistribution policy that 

equalizes incomes.  
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Figure 1. The optimal tax *t  as a function of α  for three different values of β : 0β =  

(dashed line), *0.9β β=  (dotted line), and *β β=  (solid line), for ( ) ln( 1)i if x x= + , 

1,2i = , 1 4e = , 2 13e = , and 1/ 2λ = . 

In the case of a population of two individuals, we see that if an individual’s 

concern at having a low relative income is not strong enough (in the sense of not 

exceeding the critical level *β ), then even a social planner’s high level of aversion to 

inequality, α , does not bring about equalization of incomes. Drawing on this insight, in 

the next section we present this paper’s main result. We show that for a population of 

any size, the choices of all the social planners are identical when the individuals’ 

concern at having a low relative income is strong enough, and that the congruence 

obtained is that all the social planners divide the available income equally. Moreover, 

acknowledgment by the social planners of the individuals’ distaste for low relative 

income overrides the social planners’ own preference for equality.  

 

4. A population of any size 

We next show that for a population of any size, the optimal choices of the isoelastic 

social planners (including the utilitarian and the Bernoulli-Nash) along with the optimal 
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choice of a Rawlsian social planner are all the same if the individuals’ concern at having 

a low relative income is acknowledged, and if this concern is strong enough. 

As a preliminary, we establish that in the set ( , )λΩ e  there exists a unique point 

of equal incomes.  

Lemma 3. There exists a unique 1( , ) (, , )nx x λ… ∈Ω e  such that 1 nx x=…= . 

Proof. Assuming that 1 ne e< ,11 we let 

 1

1

max{ ,0}

ma
)

,0}
(

x{

n

i
i
n

i
i

x e

e
g x

x

=

=

=
−

−∑

∑
 

for 1 )[ , nex e∈ . Then, as a ratio of a continuous, strictly increasing, and positive 

function, and a continuous, strictly decreasing, and positive function, ( )g ⋅ is a 

continuous and strictly increasing function, 1( ) 0,g e =  and lim ( )
nx e
g x

→
=∞ . Thus, there 

exists a unique *
1( , )nex e∈  such that *( )g x λ= , which is the solution of the equation 

1

,max{ 0}
n

i
i

xeλ
=

−∑  
1

max{ ,0}
n

i
i

x e
=

= −∑ , and we set *
1 nxx x…== = . □ 

Henceforth, we will denote the unique point of equal incomes in ( , )λΩ e , shown 

to exist in Lemma 3, by ** *, ,( )x x…=x .  

The proposition that follows is this paper’s main result. It is helpful to highlight 

the essence of the proposition. First, if we begin with an income distribution in which 

all the incomes are equal, then no social planner chooses to interfere with the 

distribution. Second, if the social planner is a Rawlsian, then he always chooses to 

equalize the incomes. Third, there exists a critical level of the individuals’ concern at 

having a low relative income which renders the choices of the utilitarian, the Bernoulli-

Nash, and, for that matter, any isoelastic social planner perfectly congruent with the 

choice of the Rawlsian; namely, they all choose equal income distribution.  

Proposition 1. Let the social welfare function ( )SWFα ⋅  be defined on ( , )λΩ e . Then: 
                                                
11 Otherwise, the distribution is equal at the outset, and any transfer permitted by the definition of the set 
( ),λΩ e  would make it unequal, and (as is easy to check) would decrease social welfare for any value of 
.α  
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(a)! the solution of the social planner’s problem is to divide incomes equally, namely,  

*

( ; )
max ( ) ( )SWF SWFα αλ∈Ω

=
x e

x x , 

if and only if at least one of the following conditions holds: 

(b)!the incomes are equal to begin with, namely, *
1 ... xee n === ; 

(c)! the social planner is a Rawlsian, namely, ( ) ( )RSWF SWFα =x x ; 

(d)! *( , )β λβ ≥ e , where the critical level of the concern at having a low relative income, 

* ,( )β λe , is such that 
*

*
*

( )(1 )( , ) 1
( )(1 ) (1 ) /

f x
f x n

λ
β λ

λ λ λ
# −

≤ <
# − + + −

e  and it does not depend 

on [0, )α ∈ ∞ . 

Proof. The proof is in the Appendix. 

As long as 1λ < , the upper bound on * ,( )β λe  in part (d) of Proposition 1 can 

be rewritten as 

 
*

*

( ) 11( )
1

f x

f x
n

λ
λ

"
<

" + +
−

. 

This formulation leads to two observations. First, because *x  is increasing with respect 

to λ , f  is concave, and 
1
λ
λ−

 is increasing in λ , then the smaller the leak incurred in 

the transfer, the smaller the upper bound on * ,( )β λe ; when the social planner sacrifices 

less income in the transfer process, then a smaller level of β  suffices to entice him to 

equalize incomes. Moreover, when λ  tends (from below) to 1, 
1
λ
λ−

 converges to 

infinity and, thus, because *( ) 0f x! >  is decreasing, * ,( )β λe  converges to 0. This is in 

correspondence with the case of no leakage ( 1=λ ) in which, independently of the 

magnitude of β , all the isoelastic social planners choose an equal income distribution. 

Second, although the bigger the population the lower the upper bound on * ,( )β λe , for a 

constant (0,1)λ∈  this bound is always (namely for any n) smaller than 

*

*

( )
( ) / (1 )
f x

f x λ λ
"

" + −
 and, thus, for any population size this bound is essentially distanced 
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from one. 

 

5. Conclusion 

We find that for the entire class of isoelastic social welfare functions, there exists a 

single critical level of intensity of the individuals’ concern at having a low relative 

income which leads to equal distribution of incomes being the optimum for any extent 

of the social planners’ inequality aversion. 

The result that the critical level of intensity of the individuals’ concern at having 

a low relative income is the same for all levels of the isoelastic social planners’ 

parameter of inequality aversion, questions the robustness of modeling the equality 

desired by the society by means of the parameter of the isoelastic social welfare 

function. In other words, it appears that the degree of the individuals’ concern at having 

a low relative income plays a distinct and more important role in the formation of the 

optimal redistribution policy than the intensity of the social planner’s inequality 

aversion. Further research on this issue will enrich our understanding of the role and 

relevance of the social planners’ distaste for inequality in shaping social preferences, 

and in guiding the search for a socially optimal income distribution.  
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Appendix  

Proof of Proposition 1  

We show that ( )(a) .(b) (c) (d)⇔ ∨ ∨  We proceed in three steps. First, we remark that 

(b) (a).⇒  Second, we show that (c) (a).⇒  Third, we show that 

( ) ( )(b) (c) (d) (a)⇒¬ ∧¬ ⇔ . 

Step 1. That (b) (a)⇒  is obvious. 

Step 2. We next show that (c) (a),⇒  namely, that the unique solution to the Rawlsian 

social planner’s problem, 

 { }{ }1( , ) ( , )
max ( ) max min ( ),..., (, , ) ,nRSWF u x u x

λ λ∈Ω ∈Ω
=

x e x e
x x x  (A1) 

is the equal income distribution ** *, ,( )x x…=x  for any 0.β ≥  The proof is by 

contradiction. We assume that
 ( , )
argmax ( ) ,RSWF

λ∈Ω
=

x e
x z  where 1,..., )( nz z=z  is such that 

1min{ ,..., }nz z z= 1max{ ,..., },nz z<  and we show that it is possible to construct a 

transfer from an individual with income higher than z  to individual(s) with income z  

and obtain a ( , )λ∈Ωy e  such that ( ) ( )R RSWF SWF>y z . Therefore, we will conclude 

that z  cannot constitute a maximum.  

Let { 1,..., }{ : },i i iI i n z z ez+ = = ≥∧∈ { 1,..., }{ : },i i iI i n z z ez− = = ∧ <∈  

min{ : },iz z i I I+ −= ∉ ∪ min{ 1,..., }:{ },ik i n z z= =∈ { },J I I k+ −= ∪ ∪  and 

h I I+ −= ∪ , where the notation A  stands for cardinality of the set A. Obviously, from 

the characteristics of the point z , it follows that I I+ −∪ ≠∅ , and that 1h ≥ . Let δ  be 

such that { }{ }:
min ( ) / 2, min .0

i i
i ii J e z

z zezδ λ
∈ ≠

< < − −  We define the coordinates of the 

point 1( , ), ny y= …y  as  

 
for 
for ,
for 

/ ,

{1, , } ,\

i

i i k

i

z i
y z i k

z i

h I I

n J

δ

δ
+ −∈ ∪

∈ …

+%
&

= − ='
&
(

 

where ( ) / ( )k I I hδ δ λ λ+ −= +  if ,k kz e≤  and ( ) /k II hδ δ λ+ −= +  otherwise. It is 

easy to verify that, indeed, ( ),λ∈Ωy e .  
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We note that if 1 ... ,nx x≤ ≤  then 1 ...( ) ( ),nf x f x≤ ≤  

and ( ) ( )1 ..., , .nRI x RI x≥ ≥x x  Therefore, 1( ) ... ( ., , )nu x u x≤ ≤x x  Hence, for any 

1,..( ))., ( ,nxx λ∈Ω=x e  and any {1, , }nk∈ …  such that 1,min{ . }. .,k nx x x= , we have that 

( ) ( ).R kSWF u=x x  Because ( )f ⋅  is an increasing function, and because a smaller 

difference between incomes implies a smaller value of the index of low relative income, 

it follows that for any i I I+ −∈ ∪  

 
[ ]

[ ]

( ) ( )
( (
(1 ) ( /

, ) , )
) ( )

( / , ( ) 0,)

i i

i i

i i

R RSWF SWF
u y u z

f z h f

RI h

z

z RI z

β δ

β δ

−

=

= − −

−

−

+

− >+

y z
y z

y z

 

for any [0,1)β ∈  and 0 1λ< ≤ . Therefore, ( ) ( )R RSWF SWF>y z , which contradicts the 

presumption that ( )RSWF ⋅  attains a global maximum at .z  Additionally, because the 

function ( )RSWF ⋅  is continuous, it attains a global maximum on the compact set 

( , )λΩ e . Thus, the solution of the problem of a Rawlsian social planner, (A1), has to be 

a transfer such that the post-transfer incomes are all equal and, as shown in Lemma 3, 
*x  is the unique point in ( , )λΩ e  such that all the incomes are equal. This completes the 

proof that (c) (a)⇒  by contradiction. 

Step 3. We next show that if neither (b) nor (c) holds, then the solution of the isoelastic 

social planner’s maximization problem is an equal division of incomes if and only if (d) 

holds, that is, ( ) ( )(b) (c) (d) (a)⇒¬ ∧¬ ⇔ . 

For the sake of comprehensibility, we begin this step by presenting a simple 

“organizational” remark.  

Remark A1. Let : ,f X Y  nX ⊂R , Y ⊂ R , and let :g Y R . We have that: 

1. If g  is increasing, then  

 argmax ( ( )) argmax ( );
X X

g f f
∈ ∈

=
x x

x x  

2. If g  is decreasing, then 

 argmin ( ( )) argmax ( )
X X
g f f

∈ ∈
=

x x
x x  
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and 

 argmax ( ( )) argmin ( ).
X X

g f f
∈ ∈

=
x x

x x
 

Proof. The proof follows straightforwardly from the properties of the maxima and the 

minima of monotonous functions. □ 

 Proceeding with the proof of step 3 of the proposition, we assume that 1 ne e<  

(namely, ( )b¬ ) and that [0, )α ∈ ∞  (namely, ( )c¬ ). We present a detailed proof for the 

case 1;α ≠  the proof for the case of the Bernoulli-Nash social planner ( 1α = ) is 

analogous, and will be discussed briefly at the end.  

For 0α ≥ , 1α ≠ , we proceed as follows. First, we will show that Remark A1 

guarantees that the maximization problem of ( )SWFα ⋅  on ( , )λΩ e  is equivalent to the 

maximization problem of  

 
1

1

,
1

) ( )(
n

i

i
F

u xα

α α

−

= −
=∑x

x  

on ( , )λΩ e . Second, we will show that for a sufficiently large β , namely, higher than or 

equal to a certain critical level denoted by *( , ) 1,β λ <e  the point 

* * *( , , ) ( , )x x λ∈Ω= …x e  is a global maximum of ( )Fα ⋅  on ( , ).λΩ e  Therefore, 

* ( , )λ∈Ωx e  is also a global maximum of ( )SWFα ⋅  on ( , )λΩ e  for *( , )β β λ≥ e  and any 

0α ≥ , 1α ≠ , which yields the implication (d) (a)⇒ . We complete the proof by noting 

that if *( , )β β λ< e , then the point *x  ceases to be an optimum of ( )SWFα ⋅  on ( , )λΩ e , 

which is equivalent to (a) (d)⇒ . 

With 0α ≥ , 1α ≠ , we consider the functions 1
1( )g x x α−=  and 2 ( ) 1

x x
n

g
α

=
−

 

for 0.x ≥  Obviously, 2 1( ( ( ))) ( ).g g SWF Fα α=x x  Because for  α <1  both 1( )g ⋅  and 

2 ( )g ⋅  are increasing, whereas for 1α >  both 1( )g ⋅  and 2 ( )g ⋅  are decreasing then, on 

applying Remark A1 twice, we get for any 0
nX ≥⊂ R  that  

12 1argmax ( ) argmax ( ( ( ))) argmax ( ( )) argmax ( )
X X X X

F g g SWF g SWF SWFα α α α
∈ ∈ ∈ ∈

= = =
x x x x

x x x x  

when  α <1 ; and that 
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12 1argmax ( ) argmax ( ( ( ))) argmin ( ( )) argmax ( )
X X X X

F g g SWF g SWF SWFα α α α
∈ ∈ ∈ ∈

= = =
x x x x

x x x x  

when  α >1 . Thus, the global maxima on any 0
nX ≥⊂ R  of ( )Fα ⋅  and ( )SWFα ⋅  coincide, 

namely, 

 argmax ( ) argmax ( )
X X

F SWFα α
∈ ∈

=
x x

x x .  

Our next task is to find the global maxima of ( )Fα ⋅  on ( , )λΩ e . 

To this end, we show that for a sufficiently large β , * * *( , , )x x…=x  is the 

maximum of ( )Fα ⋅  on ( , )λΩ e . We start with yet another remark. 

Remark A2. A local maximum of ( )Fα ⋅  on ( , )λΩ e  is a global maximum on ( , )λΩ e . 

Proof. Let  

1
1 1

( , ) ( , , ) : 0 for all and max{ ,0},  ,0}max{
n n

n i i i i i
i i

x x e x xx i eλ λ
= =

" #
Π = = … ≥ − ≥ −' (

) *
∑ ∑e x . 

We are interested in the maximization problem
( , )

max ( ).Fαλ∈Π ex
x  Obviously, 

( , ) ( , )λ λΩ ⊂Πe e . We seek to show that if *y  is a maximum of ( )Fα ⋅  on ( , )λΠ e , then 

we must have that * ( , )λ∈Ωy e .  

To achieve this, we first show that for every ( , ) \ ( , )λ λ∈Π Ωx e e  there exists 

0ε >  such that for 1( / , , / )nx n x nε ε ε≡ + … +x  we have that ( , )ε λ∈Πx e  and that 

( ) ( ).F Fα ε α>x x  

 We fix ( , ) \ ( , )λ λ∈Π Ωx e e . Because x  does not belong to ( , )λΩ e , we know 

that  

 max{ ,0} max{ ,0}.i i i ie x x eλ − > −∑ ∑  

We take ( , ( , ))distε λ< Ωx e , where dist( , )Xx  is the distance between point x  

and the set X .12 We define 

 ,1 , 1( , , ) ( / , , / )n nx x x n x nε ε ε ε ε= … = + … +x . 

                                                
12 ( , ) ind fist ( , )

X
X d

∈
=

y
x x y  where ( , )d ⋅ ⋅  is the Euclidean distance between two points. 
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Because ( , ( , ))distε λ< Ωx e , we know that 

 , ,max{ ,0} max{ ,0}i i i ie x x eε ελ − > −∑ ∑  

holds. Thus, ( , )ε λ∈Πx e . Moreover, because the relative incomes did not change ( RI  

is translation invariant) and f  is an increasing function, the utility levels of all the 

individuals will increase. Thus, ( ) ( ).F Fα ε α>x x  This completes the proof that for every 

( , ) \ ( , )λ λ∈Π Ωx e e  there exists 0ε >  such that ( , )ε λ∈Πx e , and that ( ) ( ).F Fα ε α>x x   

 This last result implies that ( )Fα ⋅  cannot have a maximum on ( , ) \ ( , )λ λΠ Ωe e  

because for any point ( , ) \ ( , )λ λ∈Π Ωx e e  in its every neighborhood in ( , )λΠ e , there 

exists a point at which the function ( )Fα ⋅  attains a higher value. On the other hand, 

because ( )Fα ⋅  is a strictly concave function - it is the sum of strictly concave functions 

( )u ⋅  raised to the power  1−α  and divided by  1−α  - maximized on a closed subset 

( , )λΠ e  characterized by a concave constraint function,13 then, if a local maximum on 

( , )λΠ e  exists, then that maximum is also a global maximum on ( , )λΠ e . This implies 

that the global maximum of ( )Fα ⋅  on ( , )λΠ e  has to be realized on ( , )λΩ e  and, thus, 

any local maximum of ( )Fα ⋅  on ( , )λΩ e  is also a global maximum. This completes the 

proof of Remark A2. □  

Continuing with the proof of step 3 of Proposition 1, we assume that the point 
*x  was obtained by means of redistribution, that is, by means of a transfer enacted to 

obtain the allocation *x  from the initial allocation of incomes e , as dictated by the 

constraints defining the set ( , )λΩ e . We refer to this initial redistribution as the *→e x  

transfer. Then, starting from *x , we consider a second redistribution, namely, a marginal 

transfer of 0t >  between the individuals, subject to the conditions of the set ( , )λΩ e , 

by which an allocation ( , )λ∈Ωy e  is to be obtained. We refer to this second 

                                                
13 In other words, the problem 

{ }
0

min ( ) ( ) 0:
n

F g
α

≥∈
− − ≤

x R
x x , 

where 
1 1

( ) max{ , 0} max{ , 0}
n n

i i i i
i i

g e x x eλ
= =

= − − −∑ ∑x ,
 
is a convex optimization problem because as a 

sum of concave functions of the form ( ) max{ , 0} max{ ,0}i i i i i ix e x x eξ λ= − − − , the function ( )g ⋅  is 
concave. 
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redistribution as the *→x y  transfer. The interdependence between the initial incomes 

1 )( , , ne e…  and *x  mandates division of {1, , }I n= …  into three pairwise disjoint sets: 

0

*

*

*

{ : };

{ : };

{ : }.

i

i

i

I i I e x

I i I e x

I i I e x

+

−

=

= ∈

<

=

>

∈

= ∈  

In the case of individual i who received income in the *→e x  transfer, that is, for 

i I+∈ , in the *→x y  transfer we can give to this individual either a share, denoted by 

[0,1]iτ ∈ , of the amount t (that which we can give is reduced by the deadweight loss), 

and increase his income by ,i tτ λ  or we can take from him a share, denoted by 

[0,1]iϕ ∈ , of the amount t (also reduced by the deadweight loss), namely, take back part 

of what he gained, in which case his income will be reduced by i tϕ λ . The set of the 

individuals from I+  who receive a share will be denoted by ,I+ + , and the set of the 

individuals from whom we take a share will be denoted by ,I+ − , with , ,I I+ + + −∩ =∅  

and , ,I II+ ++ + −∪= . 

In the case of an individual from whom income was taken in the *→e x  transfer, 

that is for i I−∈ , in the *→x y  transfer we can either give him a share, denoted by 

[0,1]iω ∈ , of the amount t, which represents giving back part of what was taken from 

him, and thus his income will be raised by itω , or take from this individual a share of 

the amount t, denoted by [0,1]iν ∈ , and decrease his income by itν . Similarly as for I+ , 

this procedure imposes division of a set I−  into two pairwise disjoint subsets ,I− +  and 

,I− − . 

Completing the mapping out of the possibilities, in the case of an individual 

whose income did not change ( 0i I∈ ) in the *→e x  transfer, in the *→x y  transfer we can 

either give this individual a share, denoted by   µi ∈[0,1] , of the amount t (that which we 

can give is reduced by the deadweight loss), in which case his income will be raised by 

i tµ λ , or we can take away a share, denoted by [0,1]iρ ∈ , in which case his income will 

be lowered by itρ . These transfers define the division of 0I  into pairwise disjoint sets 
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0,I +  and 0,I − . 

Obviously, we have that , 0, ,, 0, , .I I I I I I I+ − + −+ + − + − −= ∪ ∪ ∪ ∪ ∪  Thus, the 

coordinates of the point 1( ,... ), ny y=y  which is obtained by any given marginal transfer 

that starts from *x  and that does not violate the conditions of the set ( , )λΩ e , are 

characterized by 

 

*
,

*
,

*
0,

*
0,

*
,

*
,

for 
for 
for 
for 
for 
for ,

;
;
;
;
;

i

i

i

i

i

i

i

t I
t I
t I

x i
x i
x i

y
x i
x i
x

t I
I

t i
t

I

ϕ

τ λ

λ

µ λ

ρ

ω

ν

+ +

+ −

+

−

− +

− −

( +
)

−)
) +)

= *
−

∈

∈

)
) +
)

−

∈

,

∈

∈

∈)

 (A2) 

where 0t >  is small enough so that the incomes iy  still satisfy inequalities that are 

analogous to the ones that define the sets ,I+ −  and ,I− + ; that is, *
i ix t eλϕ >−  for ,i I+ −∈ , 

and *
j je x tω> +  for ,j I+ −∈ . 

Because the *→x y  transfer characterized above must not violate the conditions 

of the set ( , )λΩ e , we have that 

 , , 0,

, , 0,

* * *

* * *

) ) )

( ) ( ) (

( (

,)

(i i i i i i
i i i

i i i i i i
i

I I I

i I i I I

e e e

e e

x t x t x t

x t x t x t e

λ ν λ ω λ ρ

τ λ λϕ µ λ

− − − + −

+ + + − +

∈ ∈ ∈

∈ ∈ ∈

) * ) * ) *− − + − + + − −+ , + , + ,

) * ) *+ − + − − + + −+ , +) *= + , ,

∑ ∑ ∑

∑ ∑ ∑
 

which, from * *

1 1

max{ ,0} max{ ,0}
n n

i i
i i

e x x eλ
= =

− = −∑ ∑  and the characterization of I, 

reduces to 

 
, , 0, , , 0,

i i i i i
i i i i i

i
I I I I iI I

T ϕν ω ρ τ µ
− − − + − + + + − +∈ ∈ ∈ ∈ ∈ ∈

≡ − + − +=∑ ∑ ∑ ∑ ∑ ∑ . (A3) 

Let  

 
, , 0, , , 0,

, , , , ,i i i i i
i i i i i

i
I IiI I I I

v ϕν ω ω ρ ρ τ τ ϕ µ µ
− − − + − + + + − +∈ ∈ ∈ ∈ ∈ ∈

= == = = =∑ ∑ ∑ ∑ ∑ ∑ ,  (A4) 

so that condition (A3) simplifies to  

 T ν ω ρ τ ϕ µ= + =− − + . 
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 The *→x y  transfer yields the following change in social welfare:  
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Taking the right-hand derivative of ( )tαη  and evaluating it at 0t =  yields  
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 (A6) 

Because for a given set of the weights , , , , ,ii i i i iν ρ τ ω µϕ  the ( , )iRI y y  function is 

linear, we can simplify the notation, drawing on the fact that 

 
10

( , )li ( , )m
tt i i

d RI y RI y
dt+ =→

=y y .  

 Using the definition of the change in social welfare, ( )tαη  in (A5), we first note 

that in the case 0T ≥ , we have that (0 0)αη +# ≤  for any 0β ≥  and, thus, we construct 

the *→x y  transfer such that 0T < . We note that for any non-equal initial allocation of 
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incomes, that is, for any 1( , ), ne e= …e  such that 1 ne e< , we can construct an *→x y  

transfer such that 0T < : from Lemma 3 we infer that we must have that *
1 ne x e< <  

and, thus, we can take , {1}I+ − = , , { }I n− + =  and 1 0nϕ ω= > , with all other incomes 

remaining at *x . 

Without loss of generality (the change can be accommodated by choice of the 

magnitude of t), we can set 1T = −  and, thus, in order for the incomes 1,..., ny y  to 

remain in ( , )λΩ e , we must have that 

 1 ν ω ρ τ ϕ µ− = − + = − + , (A7) 

namely, that  

 1 and 1ω ν ρ ϕ µ τ− = −+ = + . 

We, therefore, consider the minimization of the function 
1 1

( , )
n

i t
iRI y

= =

∑ y , where 

y
 
is defined by (A2), over the set 

 { }[0,1]: 1 1, , , , , ,ii i i i iD ν ρ τ ω µ ω ν ρ ϕ µϕ τ∈ − −= == + ∧ +  

namely, we seek to solve 
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∑ y  . (A8) 

We note that for each given division  I  of the set I into sets 

, 0, 0, , , ,I I I I I I+ − + − − −+ −+ +∪ ∪ ∪ ∪ ∪ , the sub-problem 
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is a problem of the minimization of a continuous function over a closed and bounded set 
nD⊂R  and, thereby, over a compact set. Hence, a minimum exists, and we denote it 

by RI I . The number of possible divisions I  is finite; in particular, it is smaller than 
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6n . In order to obtain a solution of (A8), it suffices then to take the minimum RI I  over 

all possible divisions, which we denote by *RI .  

Consequently, an equation analogous to (A6) for the *→x y  transfer in which 

*

1 1
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n

i t
i RRI Iy

= =

=∑ y  is  
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Hence, we conclude that if * *(1 ) ( )(1 ) 0f x RIβ λ β#− − − ≤ , which is equivalent to 

*

* *

( )(1 )
( )(1 )
f x

f x RI
λ

β
λ

# −
≥

# − +
, 

we have that (0 0)αη +# ≤ , that is, as follows from Remark A2, *x  is a global maximum 

of ( )SWFα ⋅  on ( , )λΩ e , whereas for any 
*

* *

( )(1 )
( )(1 )
f x

f x RI
λ

β
λ

# −
<

# − +
 there exists a marginal 

*→x y  transfer such that (0 0)αη +# > , that is, *x  is not a global maximum of ( )SWFα ⋅  on 

( , )λΩ e . We, thus, define 
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which is the critical value that we searched for. Therefore, if the incomes 1, , ne e…  are 

not equal, the choice of any isoelastic social planner with 1α ≠  is to divide the incomes 

equally if and only if *( , ).β β λ≥ e  In addition, we obtain that the magnitude of 

*( , )β λe  is not related to the degree of the social planner’s aversion to inequality, α .  

For 1,α =  that is, for a Bernoulli-Nash social planner, we replicate the 

preceding steps of the proof for the function 1
1

( ) ln () n , )( l
n

BN i
i

F uS xWF
=

= =∑x xx  which, 
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in view of Remark A1 with ( ) lng x x= , has the same maxima as that of the function 

( )BNSWF ⋅ . As an inequality analogous to (A9), we obtain 

 * * *
1 (1 ) ( )( 1)(1 ) ( ) (0) ,f x RIf x Eβ η β λ β+$ %− + =' '− − −( )   

which yields 1 (0) 0η +" ≤  for any *( , )β β λ≥ e , rendering the point *x  a global maximum 

of ( )BNSWF ⋅  on ( , )λΩ e , whereas for *( , )β β λ< e , the global maximum of ( )BNSWF ⋅  

on ( , )λΩ e  is attained at a point in which not all the incomes are equal. 

 To complete the proof of step 3 of the proposition, we next present a technical 

remark. We subsequently draw on this remark to characterize the critical level *( , )β λe . 

Remark A3. For , 0, ,h I I I+ − − − −= ∪ ∪  and , 0, ,H I I I+ + + − += ∪ ∪  
we have that 
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for any ,i I− −∈  we have that 
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for 0,i I −∈  we have that 
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for ,i I+ +∈  we have that 
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and for 0,i I +∈  we have that 
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This completes the proof of Remark A3. □ 
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Returning to the characterization of the critical level *( , )β λe , on using (A6) we 

note that for 0T ≥ , we surely have that (0 0)αη +# ≤ . Therefore, we study the case 0T < , 

normalizing 1T = − . From (A11) it follows that  

 [ ]* ( ) )1 (RI h H
n

λτ ω λ ϕµ λ ν ρ++ + +≥ + .  (A12) 

Recalling (A7), we have that  

 and1 1,ρ ω ν µ ϕ τ= − − = − −   (A13) 

and, from the definitions of h and H, we have that 

 H n h= − . (A14) 

Using (A13) and (A14), (A12) simplifies to 
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Because , 0ρ µ ≥  we have that 1 1ω ν≥ + ≥  and that 1 1ϕ τ≥ + ≥ . Therefore, , , 1hω ϕ ≥  

and, hence, 
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Thus, returning to (A10), we have that 
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This completes the proof of the proposition. □ 
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