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Chapter 1

Introduction

1.1 Motivation

Contingent claims are an important ingredient in a huge range of financial contracts. Espe-

cially with markets moving ever faster due to electronic trading platforms, automated trading

systems and extended trading hours, being able to map the products into a robust and yet

intuitive model becomes increasingly difficult. Furthermore, the computational speed of the

numerical implementation of a given model is crucial if it is meant to be used in a real time

environment. Thus, inherited in the decision which model to choose and how to implement it

is a trade-off between simplicity and speed on the one hand as well as the capability of repre-

senting market movements accurately on the other hand. This thesis is therefore concerned

with the numerical implementation of derivative pricing models.

Market prices move in an apparently coincidental upward and downward movement. Within

the seemingly random behavior, stylized facts on the distribution of asset prices and returns

can be found within time series. Fat tails and volatility clustering are just two examples

that are typically present when dealing, e.g., with share prices. The very basis of modeling

market movements as random behavior was introduced by Bachelier (1900). In his work he

describes stock price movements by means of a Brownian motion. Even though his work

was not appreciated for a long time, it marks the entering of advanced probability theory

into finance. Starting from this pioneer of financial mathematics, the theory of stochastic

processes made its way into the models.

A Brownian motion assumes movements as being normally distributed which yields to a

framework where negative stock prices are possible. To overcome this problem Samuelson

(1965) formulates an exponential version, known as geometric Brownian motion (GBM).

In contrast to a Brownian motion, log returns under a GBM are normal distributed and

prices are now log-normally distributed which prevents negative stock prices. However,

within the environment of financial contracts, the assumption of a Normal distribution as

the underlying source of randomness is rarely supported by empirical studies. Therefore,

more complex stochastic processes with richer behavior were introduced.
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With that in mind, we consider the numerical implementation of models that describe mar-

kets by means of exponential semimartingale processes. This rich class of stochastic processes

includes (jump) diffusion processes as well as pure jump Lévy processes and several stochas-

tic volatility models. For our purposes, we mainly consider pure jump Lévy processes (Lévy

processes for short) as well as stochastic volatility models to some extend. The class of

Lévy processes contains a wide range of processes with different characteristics. The most

basic representatives are Brownian motion and the Poisson process. In fact, it can be shown

that all Lévy processes are assembled by a non stochastic drift, a Brownian part and Poisson

jumps. Thus, besides other properties, Lévy processes are equipped with the feature of being

able to produce discontinuous paths. In financial applications this translates into the capa-

bility of prices to jump between two values S1 and S2 instead of moving continuously from

S1 to S2. While, compared to a GBM, more flexible stochastic processes are able to cover a

wide range of stylized facts, their incorporation within the pricing models also increases the

overall complexity of the models. As a result, closed-form solutions are rare.

This directly leads us to numerical methods in option pricing which can be classified into

the following three concepts

i) stochastic differential equation methods,

ii) Monte-Carlo simulations and

iii) numerical integration methods.

Our research is located in the area of numerical integration. However, the methods within this

enumeration overlap on multiple occasions and a broad overview is helpful to gain a better

understanding of the projects that are described within this thesis. Thus, a short orientation

within each of the fields is provided in the following starting with partial differential equation

methods.

Fueled by Itô’s lemma1, stochastic differential equations are a common method for describ-

ing the value of an option. Hereby, the assumption of the stochastic process driving the

underlying asset affects the type of stochastic differential equation that is used to represent

the option. If a diffusion process, such as a geometric Brownian motion, is implemented a

parabolic partial differential equation occurs. In case of more general jump-diffusion and

exponential Lévy market models, partial integro-differential equations (PIDE) are used to

represent the option’s behavior. Hereby, compared to the former, the latter type of partial

differential equation has an additional integral term due to the presence of jumps.

Up to this point, solutions are stated in closed-form. However, only a few stochastic pro-

cesses allow a closed-form solution of the option price. Thus, from the point on where the

partial (integro-) differential equation is defined, numerical methods are used to approximate

it. Hereby, tree and Markov chain methods are the most basic methods of choice. In case

1 Stochastic processes are discontinuous functions which, in turn, implicates that classical calculus cannot
be applied to define e.g. a differential. Itô’s lemma provides a way to calculate the differential of a time
and state dependent function such as an option that depends on time to maturity as well as the state of
an underlying asset.
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of a geometric Brownian motion, the binomial tree method by Cox et al. (1979) is an ap-

proximation of the continuous time process by means of a discrete time Markov chain (Cont

and Tankov, 2004, p. 408). Amin (1993) studies multinomial tree methods and thereby

generalizes the assumption on the underlying stochastic process by including jump-diffusion

models.

The link between tree methods and the approximation of a partial (integro-) differential

equation is somehow indirect. Tree methods work on a lattice in (t, S)-space and can be

interpreted as an explicit finite difference scheme for the associated partial differential equa-

tion (Cont and Tankov, 2004, p. 410). In general, finite difference methods approximate

a partial differential equation by replacing derivatives by finite differences. In this context,

Cont and Voltchkova (2005) propose a scheme in which European and barrier options under

jump-diffusion and exponential Lévy models are priced.

As a final numerical method connected to PIDE appoaches, we would like to mention

Galerkin methods. Galerkin methods represent the solution to a PIDE in terms of a se-

ries representation based on basis functions. Hereby, the choice of the basis function yields

to different numerical schemes. In case of a hat-function on a regular grid, Galerkin methods

are equivalent to finite difference methods. However, irregular grids can also be introduces

dedicating a higher attention to areas where a higher accuracy is necessary (Cont and Tankov,

2004, p. 425). Besides hat-functions, other basis such as complex exponentials and wavelet

basis are common choices. In recent years, especially wavelet basis were studied to a greater

extend since they show numerical advantages in terms of the matrix design within the linear

system that needs to be solved using Galerkin methods. Hereby, wavelets decrease the den-

sity of the matrices in a sense that the number of nonzero elements is decreased which yields

to faster numerical calculations. Both, Matache et al. (2004) and Eberlein and Glau (2014)

use wavelet methods to price options in an exponential Lévy market model environment.

PIDE methods are a suitable method of choice in case of single underlying contracts. How-

ever, it becomes less advantageous if the number of underlyings increases. While the com-

putational complexity of PIDE methods growths exponentially, the complexity of Monte

Carlo methods grows linearly given a pre-defined level of accuracy. However, contrary to

this advantage that is inherit to simulation methods, the simulation of random variables and

therefore the simulation of paths can be quite complex if working with Lévy processes. This

is due to the fact that the distribution function of the increments is not known explicitly

for most Lévy processes other than (geometric) Brownian motion and Poisson processes. In

case of other Lévy processes, simulation can be achieved by exploiting the fact that a general

Lévy processes can be written as a subordinated Brownian motion. A subordinator is defined

as a non-decreasing Lévy processes that is used to time-change a Brownian motion. Subor-

dination is often mentioned in conjunction with the expression stochastic time-change and

business time versus calendar time. Since efficient methods are available for simulating some

of the subordinators, the resulting Lévy processes are conveniently being implemented in a

pricing routine. Carr and Wu (2004) offers a broad overview to the concept of time-changing
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stochastic processes. Approaches to numerically simulate these processes are discussed e.g.

in chapter 8 of Schoutens (2003) as well as Madan and Yor (2008).

Both, PIDE methods as well as simulation based techniques, have in common that changing

the stochastic process has a rather huge impact on an existing implementation in terms of

the adjustments that have to be re-coded. Numerical integration methods, or quadrature

methods as they are often called, complete the above trio of numerical option pricing methods

and, in part, minimize the need for adaptions within an existing pricing framework.

In its most basic form, quadrature methods discretize the integral that is present in the

risk neutral pricing formula. Common discretization rules are (composite) Newton-Cotes,

(composite) Gaussian quadrature and adaptive quadrature methods. Newton-Cotes formu-

las approximate a given integral by a sum composed of the integrand evaluated at finite

many points in combination with a weighting function. Depending on the weighting func-

tion different rules, such as trapezoid rule and Simpson rule, occur. In this context, the term

composite refers to the proceed of not approximating the whole integral at once but subdi-

viding it into smaller areas where the respective rule is applied to each subinterval. Instead

of fixed weight functions, Gaussian quadrature methods work with weight functions based

on the roots of polynomials that are computed each time to provide an improved order of

accuracy. Similar to Newton-Cotes formulas, the choice of a specific polynomial gives rise to

different quadrature rules such as Gauss-Legendre, Gauss-Chebyshev, Gauss-Laguerre and

Gauss-Hermite. Besides different polynomial functions, these methods differ in the assump-

tion of the integration limits. While the first two define the integration domain to be in

between negative one and one, Gauss-Laguerre allows for a domain on the positive reals and

Gauss-Hermite includes the whole real line. Thus, depending on which Gaussian quadrature

comes into operation, a change of variables may be necessary. Another prominent numerical

integration method is given by adaptive quadrature. This method also splits the integration

domain. However, instead of using a number of evenly spaced subintervals, the integration

range is broken down into ever finer pieces until a given level of accuracy is reached.

A major drawback of all of these quadrature methods when used to directly integrate the risk

neutral expectation is that the distribution function of the underlying asset must be known

explicitly. In case of a Black-Scholes environment where the asset’s behavior is described by

a log-Normal distribution, this is not a critical claim. However, as soon as other stochastic

processes than a geometric Brownian motion are applied, the density functions are either

not known or are based on special functions such as modified Bessel functions which are

slow to evaluate. As a different approach Bakshi and Madan (2000) show in a very general

setting that the price of an option is a function that depends on, among other things, two

ingredients: the probability of finishing in the money and the option’s delta. Hereby, both

terms are defined by an integral with an integrand that includes characteristic functions of

the assumed stochastic process. The advantage of an approach that is based on characteristic

functions is that they are known explicitly in most cases and, furthermore, interchanging the

assumption on the underlying stochastic process is easily being achieved by interchanging

between characteristic functions. In a last step, the approximation of the two integrals can be
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done by means of the before-mentioned quadrature methods. However, due to the fact that

the integrands are based on complex exponentials, they show an oscillatory nature which

can be troublesome for some of the quadrature methods.

Instead of computing the probability of ending up in the money and the option’s delta,

Carr and Madan (1999) propose a method where the Fourier transform of an adjusted2

call option has to be inverted to come up with option prices. The inversion step is hereby

done by numerically evaluate a single integral. Using a Newton-Cotes formula, to be more

precise the trapezoid rule, this step can be done very efficiently by means of the Fast Fourier

Transform (FFT) algorithm described by Cooley and Tukey (1965). Carr and Madan’s FFT

method achieves a high level of computational speed, however, as a disadvantage, prices are

related to a grid of strike prices which extends far out of the money. As a result, the method

prices a high number of contracts that differ in the respective strike price. However, most

of the strike values are not meaningful for most applications and option prices belonging to

strike values that are not on the grid have to be interpolated. To overcome this downside,

Chourdakis (2005) proposes a fractional FFT method that allows the user to define strike

prices as an input variable. Particularly well known models that rely on inversion techniques

and can be evaluated efficiently via FFT or fractional FFT methods are Stein and Stein

(1991), the extension by Schöbel and Zhu (1999) as well as Heston (1993) and Duffie et al.

(2000).

Another way to calculate the risk neutral expected value is to not discretize the integral

but to rewrite it in terms of an inner product of series coefficients as in Fang and Oosterlee

(2008). Hereby, the integral as a whole can be represented in terms of a sum of two series

coefficients. Our research is rooted within this spirit in a way that we also rewrite the risk

neutral expectation in terms of an inner product and implement Fourier series and Gabor

series methods to numerically solve the pricing problem associated with several derivative

type contracts such as plain vanilla European options, multi-asset barrier options as well

as swaps and credit derivatives. Fourier and Gabor series are especially suited for this

task due to the fact that they also allow the usage of characteristic functions within the

computations. As a result, the overall algorithm does not change if we interchange between

different stochastic processes described by a particular characteristic function. However,

before we elaborate in more detail on how we use these methods, we give an intuition for

the nature of pure frequency analysis, to which Fourier series belong, and time-frequency

analysis, to which Gabor series belong, by means of two examples: function approximation

and musical sound.

At its very core, Fourier series decompose an arbitrarily complex periodic3 function into basic

building blocks of sine and cosine terms with different amplitudes and frequencies. Figure

1.1 depicts the nature of this kind of decomposition in greater detail. Within the figure, the

function, which is sometimes referred to as signal, colored in red, has to be approximated.

2 A damping factor has to be introduced to ensure L2-convergency of the call price.
3 Fourier series operate on a closed interval I ⊂ R and assume a periodic extension on R \ I meaning that

the trajectory within the interval is repeated at the outside.
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-rst component

second component

third component

observable signal

Figure 1.1: Function decomposition of a given observable function into sine waves of different am-
plitude and frequencies.

Fourier series analysis enables us to realize that the function under consideration is built

up by three different components, each of which is a trigonometric function with individual

frequency. To come up with a representation of the observed signal in terms of trigonometric

functions, we do not even have to know the exact functional relation. Even in case we do know

the exact function that creates the signal within the figure, a whole range of mathematical

operations are done more conveniently on the simple building blocks of the decomposition

than on the function itself.

The second example results quite naturally from function approximation. A musical tone

in its pure form is represented by a vibration. Each of the components in Figure 1.1 could

therefore also be interpreted as pure tones and the signal in red as a combination of these

pure tones played, e.g., on an instrument. The knowledge on which tones are to be played in

order to replicate a given sound or signal is handy if we consider a constant input sound or

signal. If we concentrate on melodies as a timely order of many tones, Fourier analysis would

still come up with the answer which basic frequencies are in use. But it cannot answer the

question at which point in time which tone has to be played. Fourier analysis, therefore, only

offers frequency information but no information on localization. Such a situation describes

a limiting case of Heisenberg’s uncertainty principle4 in a sense that we have all information

regarding frequencies but no control on localization.

To illustrate this statement we use Mozart’s symphony No. 40 in Figure 1.2. To be more

precise, we use a sample containing the first six seconds of the symphony and transform it

from time domain (upper part of Figure 1.2) to frequency domain (lower part of Figure 1.2).

4 Originally Heisenberg’s uncertainty principle is rooted in quantum mechanics where it states that the
position and the momentum of a particle can only be determined simultaneously with a limited precision
(Heisenberg, 1927).
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Figure 1.2: Sample file containing the first six seconds of Mozart’s symphony No. 40.

Figure 1.3: Time-frequency analysis of a chirp signal (left-hand side) and Mozart’s symphony No.
40 (right-hand side).

While in the upper part the musical movement is observable with respect to time evolving,

the lower part shows a summary of which frequencies are played the most during the first

six seconds within an interval of 400 Hz to 800 Hz. The plot in the lower part of the figure

reveals that certain frequencies are used heavily while others are not. It is even possible that

frequencies are used that are out of the spectrum a human ear is able to process. Deleting

these frequencies from the sample results in a compressed version of the original signal. A

particularly well known standard that is based on this principle is the MP3 format.

In contrast to Fourier analysis, a basic time-frequency analysis separates a signal in smaller

sub-signals and takes a look at the frequencies incorporated on the interval of the sub-

signal afterwards. As a result, not an overview of the magnitude of all frequencies becomes

visible but a time evolving picture of the frequencies used at particular time intervals. An

intuitive example is to take a closer look at so-called chirp signals: A chirp refers to a signal

which frequencies increase or decrease with time in a monotone way. Such a chirp signal is

analyzed on the left-hand side of the spectrogram in Figure 1.3. Within the graph, brighter

areas indicate frequencies that are heavily used. By design, the chirp signal of this example
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starts at a frequency of 1000 Hz and decreases down to zero Hz with time evolving. However,

signals are rarely as clear in structure as chirp signals are. Therefore, on the right-hand side

of Figure 1.3, we turn our attention to Mozart’s symphony No. 40 again. Compared to a

pure Fourier analysis, the figure allows for an allocation of the frequencies to a time scale.

Before, a Fourier analysis did show us that frequencies somehow below 600 Hz are played

with a high magnitude. The same information is visible in Figure 1.3. But in addition to

Figure 1.2, Figure 1.3 indicates that these frequencies are played the most from second two

to roughly second three.

This particular analysis is based on an elementary routine called short-time Fourier trans-

form. Gabor analysis is somehow different to a pure short-term Fourier transform in the

way it interprets the connection between time and frequency. In a nutshell, the energy of

a continuous signal5 can be thought of as being spread out over the time-frequency plane

(Dörfler, 2002, p. 7). Gabor analysis not only cuts the signal into sub-signals but uses a

function, called generator function or window function, which has it’s own particular time-

frequency localization to concentrate the analysis on certain pieces of the original signal

within the time-frequency plane. Hereby, the localization of the generator functions plays

a crucial role. The theory which tells us how to rebuild the signal based on the individual

pieces is known as frame theory. More specific, using Gabor analysis, the theory is known

as Gabor frame decomposition or Weyl-Heisenberg frame decomposition. Within our area of

interest, this particular frame decomposition is realized by means of a series representation

called Gabor series.

Even though time-frequency analysis is able to provide additional information it is still

subject to the before-mentioned uncertainty principle which states, in this context, that a

function cannot be localized exactly in time and frequency domain simultaneously. However,

time-frequency analysis allows us to move in between the limiting cases of either knowing

the exact frequency and nothing on timing or of knowing the exact timing but nothing on

the frequency spectrum. Besides numerous applications in technical science, these transform

methods also became important in financial applications and especially in option pricing.

1.2 Structure

This thesis considers valuation problems related to different types of financial contracts.

Within the course of three main chapters, as depicted in Figure 1.4, we move from contracts

with a single underlying asset to contracts with multiple underlying assets. To provide the

reader with the necessary tools, an additional chapter is included that states the mathemat-

ical preliminaries needed to follow the implementations within the main chapters. In case

the reader is familiar with the mathematical concepts, Chapter 2 can easily be skipped.

In Chapter 3, we consider European-style options based on a single underlying. European

options were the first contracts to be modeled by means of characteristic functions. In this

5 Given a continuous signal s, the energy is defined as the squared norm of this signal
∫∞
−∞ | s(t) |

2 dt.
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Mathematical preliminaries
(Chapter 2)

Single-asset
(Chapter 3)

Europ. options:
N = 1

Multi-asset
(Chapter 4)

Barrier options:
2 ≤ N ≤ 5

Swaps:
2 ≤ N ≤ 5

Multi-asset
(Chapter 5)

Credit portfolio:
N > 100

Figure 1.4: Schematic illustration of the structure of the thesis.

spirit, we introduce an option pricing algorithm based on non-orthogonal series expansion

methods. More precisely, Gabor frame decomposition is used to split the risk neutral option

pricing formula into the sum of two inner products that can be evaluated efficiently by means

of Parseval’s theorem on complex Fourier series. The first inner product is hereby based on

the stochastic process that is assumed to drive the underlying asset and the second one

depends on the option contract to be priced. To the best of our knowledge, Gabor series

have not been considered yet in literature to calculate option prices. We consider European

style plain vanilla call and put options as well as binary options. Compared to Fourier series

methods such as Fang and Oosterlee (2008), we find an improved accuracy in terms of options

with a short time to maturity as well as a lower sensitivity of the model regarding critical

input values.

In Chapter 4, we concentrate on pricing rainbow options. These contracts are defined as

derivatives which are exposed to at least two sources of uncertainty. Since closed-form

solutions are rare and mostly limited to a Black-Scholes environment, the primary method to

evaluate such contracts is to implement Monte Carlo routines. Ruijter and Oosterlee (2012)

consider two-dimensional Fourier cosine series to price European and Bermudan options.

As an extension, we focus on pricing multivariate discrete barrier options using various

Fourier series methods: Besides cosine series, we also consider sine series and modified sine

series approximation in a d-dimensional setting to calculate option prices. Especially, the

incorporation of different Fourier series methods proofs to be insightful due to the fact that we

pinpoint modified sine series to be a better fit for the pricing problem than cosine series and

sine series are. The field of application is diverse and ranges from plain vanilla barrier options

to multi-asset equity default swaps and structured products such as multi-barrier reverse

convertibles. When modeling multi-asset options, the so-called curse of dimensionality, i.e.

the issue of computational times increasing fast when incorporating an additional asset, is

important. This is also true for the Fourier method considered here. However, the methods

turn out to be extremely exact if faced with a basket size of low dimensionality.

In Chapter 5, we put credit derivatives in form of synthetic collateralized debt obligations in

focus, and, therefore, analyzes contracts built upon a large portfolio. Factor models based

on Gaussian distributions have been widely used to price such synthetic collateralized debt
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obligation contracts before the market meltdown starting in 2007. With this chapter, we add

value to the credit risk discussion in a twofold way. First, the body of literature researching

the impact of replacing the Gaussian by more flexible distribution functions is developed

further. Hereby, a special focus is placed on generalized tempered stable and generalized

hyperbolic distributions. Moreover, we broaden the perspective by deviating from the usual

approach of using identical distributions within the factor model setup. Instead, subclasses

of the above-mentioned distributions are mixed in order to combine different characteristics.

Second, an extensive calibration study based on standardized iTraxx Europe tranches is

conducted that sheds light on the question regarding where the limits of the factor models

presented in this chapter are. We hereby find that particularly mixed models assuming

extended Variance Gamma distributions are able to reproduce market prices.

Especially in Chapter 3 and Chapter 4 of the thesis, we emphasize on the numerical imple-

mentation of the models in their respective field of application. Theoretical parameter sets

are used to come up with test scenarios the models can be evaluated on. Thus, in Chapters

3 and 4, the speed of convergency to a pre-defined error tolerance level is central. Within

Chapter 5, the term implementation becomes a somehow different meaning. In contrast

to before, market prices rather than theoretical values are used to conduct an extensive

calibration study.



Chapter 2

Mathematical Preliminaries

The aim of this complementary chapter is to discuss several concepts of the field of proba-

bility theory and linear algebra. Each of the following concepts are also introduced in the

respective chapters, however, to a lesser extend. The resulting redundancy is therefore made

by intention and aims to allow us to focus on the implementation of the concepts within the

main chapters which begin with Chapter 3.

We consider a continuous time framework to evaluate derivatives. Hereby, such concepts

as probability spaces, filtrations and stochastic processes are crucial to fully understand

the resulting pricing formulas and are introduced in the following Section 2.1. Whereas

probability theory is needed to specify this pricing relation, numerical methods are needed

to evaluate the relation given by an expected value. Thus, in addition to probability theory,

Section 2.2 is dedicated to topics which are typically covered in linear algebra such as vector

spaces and infinite series approximation.

2.1 Financial modeling in continuous time

In order to come up with a proper environment to price various kinds of financial contracts

in, the concepts of probability spaces and filtrations have to be introduced before moving

on to stochastic processes and risk neutral pricing methods with the help of an equivalent

martingale measure. Figure 2.1 gives an outlook on which topics are covered within this

section. For a deeper insight into the theory, Øksendal (2003), Cont and Tankov (2004) and

Shreve (2004) are excellent sources from which parts of this section are built upon.

2.1.1 Probability space

A probability space (Ω,A,P) is built upon three components: the outcome set Ω, the σ-

algebra A, also called event set, and the probability measure P. Hereby, the outcome set Ω

includes all possible outcomes. Elements within this set are given by ω ∈ Ω. A σ-algebra is
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Figure 2.1: Preliminaries in financial modeling in continuous time.

defined as a system of subsets that obey the following conditions:

Ω ∈ A
A ∈ A → AC ∈ A

A1, A2, ... ∈ A →
∞⋃
i=1

Ai ∈ A

While the first condition states that the outcome set itself is part of the σ-algebra, the second

condition demands the complement AC of a given element A to also be part of the σ-algebra.

Accordingly, the third statement induces that if an arbitrary number of subsets is included

in the σ-algebra, the union of these subsets has to be also part of the σ-algebra.

We use the toss of a coin to elaborate on the concept of probability spaces. To do so, we

define head by H and tail by T . Now, the event set is given by Ω = {H,T} and the set

of possible subsets6 is given by A = {∅, {H}, {T}, {H,T}}. To indicate that A is indeed a

σ-algebra, we note that, first, it is true that the event set is included in the set of subsets.

Second, the complements are also included if we interpret the complement of head to be tail

and the null set – interpreted as not tossing at all – to be the complement of throwing either

head or tail. Finally, since it is true that ∅ ∪ {H} ∪ {T} ∪ {H,T} = {H,T}, we conclude

that the set A is indeed a σ-algebra.

Up to this point, we only introduced the pair (Ω,A) which is also known as a measurable

space. To come up with a probability space, a probability measure P has to be added to

the pair. The probability measure P hereby assigns probabilities to the subsets within the

σ-algebra. Thus, a probability measure P can be seen as a function that maps a measurable

6 Assuming the coin never lands on its edge.
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space (Ω,A) into a closed interval P : A → [0, 1] and has the following properties:

P(∅) = 0, P(Ω) = 1

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

Hereby, the first and the second condition only state that the empty set has zero probability

and the probability that the event has to be within the predefined event set is one. The

third statement shows that, given the sets within A do not overlap, the probability of the

union of all subsets is given by the sum of individual probabilities.

Filtration Ft

Using the concept of filtration, the information collected within the σ-algebra can be consid-

ered as being time dependent and, for this reason, is labeled with index t, where t ∈ [0, T ].

Thus, a filtration can be seen as a sequence of σ-algebras {Ft}t∈[0,T ] with the distinct charac-

teristic that each σ-algebra within the sequence contains all the sets of the previous σ-algebra:

F0 ⊆ F1, ...,FT ⊆ A

In a way, each σ-algebra within the filtration contains the information that are available up

to this point and, therefore, unveils some information by itself.

To be more explicit, we come back to the coin tossing example: When tossing a coin two

times, the event set is given by Ω = {H,T} × {H,T} = {HH,HT, TH, TT}. By incorpo-

rating the concept of time, we state three different points in time. At t = 0 the coin has not

been tossed yet. At t = 1 the coin is tossed once, and, at t = 2, the coin is tossed twice.

Thus, the sequence of σ-algebras is given by

F0 = {∅,Ω} contains no information

F1 = {∅,Ω, {HH,HT}, {TH, TT}} contains some information

F2 = P(Ω) = A contains all information

Before the coin is tossed for the first time, no information other than the empty set and

the event set itself is given. However, the σ-algebra grows at time t = 1 and includes two

additional sets, {HH,HT} and {TH, TT}. Knowing in which set the outcome of the first

toss is located in effectively unveils the nature of the first toss, i.e. if the first toss resulted

in head or tail. Therefore, F1 is said to contain the information of the first toss. σ-algebra

F2 contains all information as described by the power set P(Ω) and is identical to A.

The coin tossing example shows that additional information is unveiled with time evolving.

In a financial interpretation, this could be seen as stock prices that become observable at

some time t > 0 which have been viewed as random in t = 0. Thus a filtration is nothing

but a time-sensitive addition to a given probability space. Such a probability space is then

called filtered probability space and is sometimes noted by (Ω,A,Ft,P).
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2.1.2 Random variables and stochastic processes

Random variables

The importance of a probability space becomes obvious when we try to model the outcome of

an experiment or of a stock market movement as a random event. Hereby, we are especially

interested in the probability measure which assigns probabilities to the different events. Each

outcome is defined as a random variable which lives on the probability space connected to

this random variable. Thus, if (Ω,A,P) represents a complete7 probability space, a random

variable X is defined as an Ft-measurable function X : Ω→ R which indicates that the value

of the random variable will be known at time t.

Even though the value x of random variable X is not known before time t, the behavior of

X can be described by its distribution FX . In general, a cumulative distribution function

FX : R → R is defined by the probability that a given random variable X assumes values

less than or equal to x:

FX(x) = P(X ≤ x)

=

∫ x

−∞
fX(s) ds

Hereby, the integral based definition of a cumulative distribution function involves the prob-

ability density function fX . With these two concepts at hand, the expectation operator can

be defined by

E[X] =

∫
Ω
X(ω) dP(ω) =

∫
R
x dFX(x) =

∫
R
x fX(x) dx,

given the condition that
∫

Ω | X(ω) | dP(ω) < ∞. The transition from the calculation

of the expected value based on the cumulative distribution function to a density based

representation is done by the fact that dFX(x) = fX(x) dx.

A useful feature of an expected value is that cumulative distributions, and therefore proba-

bilities, can be written as such:

FX(x) = E [1X≤x]

=

∫
R
1s≤x fX(s) ds

=

∫ x

−∞
fX(s) ds = P(X ≤ x),

where 1A represents the indicator function. In general the indicator function assumes either

of two values: value one if x ∈ A and zero otherwise.

Another important concept when dealing with random variables is the Fourier transform

of the distribution function called characteristic function. In general, Fourier transforms

7 A probability space is complete if its σ-algebra contains all subsets of the outcome set Ω.
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are defined according to their field of application. In physical sciences and engineering the

Fourier transform f̂ : R → C and the inverse Fourier transform f : R → C are typically

defined by

f̂(ξ) =

∫
R
f(x) e−2πiξx dx (2.1)

f(x) =

∫
R
f̂(ξ) e2πiξx dξ (2.2)

The transform pair in (2.1) and (2.2) are especially handy due to the symmetry inherited

within the equations. Every time we use the hat-notation (f̂ , ĝ,...) in the following, we refer

to this specific transform pair. In a probabilistic environment, standard notation evolved in

a way that the angular frequency u = 2πξ is used and, moreover, the signs of the complex

exponentials are interchanged. Thus, the characteristic function φX(u) : R→ C of a random

variable X with density function fX : R→ R is given by

φX(u) =

∫
R
fX(x) eiux dx (2.3)

and its inverse by

fX(x) =
1

2π

∫
R
fX(x) e−iux dx.

Equation (2.3) indicates that, similar to a cumulative distribution function, a characteristic

function is defined as an expected value φX(u) = E
[
eiuX

]
.

An especially heavily used feature of a characteristic function is its direkt link to the cu-

mulants of a random variable and, therefore, also to the moments of a random variable

via

cn =
1

in
∂n ln(φX)

∂u

∣∣∣
u=0

The function cn is called cumulant generating function. Its importance stems from the fact

that cn enables us to calculate the moments of an arbitrary probability distribution with

known characteristic function. We use this feature, e.g., in answering the question where to

truncate the risk neutral expectation integral. For our purposes, the first four moments

E[X] = c1

V ar[X] = c2

s[X] =
c3

c
3
2
2

κ(X) =
c4

c2
2

are of special interest. Hereby, besides the expected value E[X] and the variance V ar[X],

s[X] and κ(X) define skewness and kurtosis of a random variable’s distribution.
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Figure 2.2: Evolution of stochastic processes in finance: Bachelier’s model St = S0 + µt+ σWt on
the left, Black-Scholes St = S0e

µt+σWt in the middle and a Lévy model St = S0e
µt+Xt

on the right.

Stochastic processes

A stochastic process is a timely ordered collection of random variables {Xt}t∈T . As it is the

case for random variables, stochastic processes are defined on a probability space (Ω,A,P)

and do assume values in Rn. For our application, this probability space is always equipped

with a filtration Ft. Similar to an Ft-measurable random variable, a stochastic process

whose values are revealed by the information flow within Ft is considered as being non-

anticipating. Calling a stochastic process non-anticipating is equivalent to stating that the

process {Xt}t∈[0,T ] is {Ft}t∈[0,T ] adapted which is the most conventional nomenclature.

The use of stochastic processes within financial modeling has underwent different stages.

Figure 2.2 indicates this evolution incorporating three distinct examples: Bachelier’s model,

Black-Scholes and exponential Lévy market models.8 In its very beginnings, Bachelier (1900)

models stock price movements by means of a Brownian motion St = S0 +µt+σWt. However,

stock prices are able to assume negative values as indicated in the figure. The famous Black

and Scholes (1973) framework keeps the assumption of a Brownian motion but puts it in an

exponential setting. In order to overcome the assumption of Normal distributed stock price

movements, Lévy market models, in a next step, do allow jumps in the stock price path and,

thus, introduce excess kurtosis and skewness among other things.

As implied by Figure 2.2, there are different ways to describe the market in which the

financial instruments are traded in. To outlay the fundamental concepts, we concentrate on

exponential Lévy market models of the form

St = S0 e
µt+Xt ,

where µ is a drift factor and the underlying source of randomness is given by the stochastic

process Xt. To describe the distribution of the stochastic process at each given step in time,

8 It should be mentioned that this list is very limited and does not display a full picture of the use of stochastic
processes in finance. It is purely indicated as visualization of different concepts in the field of stochastic
processes.
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characteristic functions are again the concept of choice. As long as we are working with

infinitely divisible distributions, the most general starting point to define the characteristic

function is through the Lévy-Khintchine formula

φ(u) = etψ(u)

ψ(u) = iuµ− 1

2
σ2u2 +

∫
R

(eiux − 1− iux1|x|<1) ν(dx), (2.4)

where µ ∈ R, σ > 0 and ν being a Lévy measure following the usual conditions ν({0}) = 0

and
∫
R(1 ∧ |x|2)ν(dx) < ∞. It can be seen from equation (2.4) that every Lévy process is

composed of three elements: a deterministic drift part µ, a diffusion part (given σ2 > 0) and

a pure jump part (integral part in (2.4)).

Ultimately, we are interested in using stochastic processes to price financial contracts. One

way to accomplish this task is to formulate risk neutral pricing relations. However, to

understand the dynamics behind the expression risk neutral pricing, martingale processes

and the concept of measure transformations have to be introduced.

Risk neutral pricing and equivalent martingale measures

In martingale theory, three different classes are distinguished: martingale processes, sub-

martingales and supermartingales. If a time series shows no trend or periodicity it is a

martingale process. Processes whose trajectories do increase on average are called sub-

martingales, processes with a declining trend are labeled as supermartingales.

More technically, a martingale can be defined as a stochastic process {Xt}t∈[0,T ] that lives

on a probability space (Ω,A,P) which is equipped with a filtration {Ft}t∈[0,T ] and for which

it is true that E[| Xt |] <∞ as well as

E[Xs|Ft] = Xt, ∀ s > t.

Besides the fact of assuming the expected value to be finite, the above statement says that

the best prediction of the future value of the stochastic process at time s is its value at time

t. Thus, if we try to price a contingent claim whose value is derived from an underlying

stochastic process that is a martingale, we can use the discounted expected value as the

contracts value. Unfortunately, most of the observable time series are not martingales. To

use the concept of martingales nevertheless, probability measures have to be defined that

are equivalent to the real world measures connected to submartingales and supermartingales

but induce the resulting process to be a martingale. Such a concept is called an equivalent

martingale measure.

The link between the value of a derivative and a risk neutral expected value can be established

by the Feynman-Kac theorem. Assuming that the underlying asset follows an Itô process9,

this theorem gives a stochastic representation to solutions of a partial differential equation

9 An Itô process is a stochastic process following a stochastic differential equation in form of dXt = b(Xt)dt+
σ(Xt)dWt (Øksendal, 2003, p. 110).
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(Bingham and Kiesel, 2004, p. 202). In a financial setting this translates to the fact that the

solution to the partial differential equation that is connected to an option’s value is given by

a conditional expectation. Thus, following Cont and Tankov (2004), the value of an arbitrary

contingent claim at time t with terminal payoff V that is traded in an arbitrage free market

described by the probability measure P can be represented as

vt(V ) = e−r(T−t)EQ[V |Ft],

where Q represents an equivalent martingale measure. From an intuitive point of view, an

equivalent martingale measure ensures that the value of a financial claim can be computed

by means of an discounted expected value. If the process under the real world measure P is

not a martingale, measure Q must somehow reweight the probabilities within the probability

measure P. This reweighting of probabilities is exactly what a change of measure does: It

builds a new stochastic process by assigning new probabilities to the events within A. The

only reason this approach is called risk neutral is due to the use of the expected value. It

does not imply anything about investors risk attitude.

Two questions remain to be answered: What does it mean to be an equivalent martingale

measure and how to find them? To answer the first question we state that the probability

measure Q is said to be equivalent to another probability measure P (Q ∼ P) if

i) they share the same null set and

ii) the discounted stock price process is a martingale under Q.

The former statement herby only clarifies that events that are impossible under the proba-

bility measure P are impossible under Q as well. In other words, only such events that are

feasible under P are ought to be feasible under Q.

The second question is somehow harder to answer. Kreps (1981) states that in a continuous

time framework it can be shown that the existence of an equivalent martingale measure

implies an arbitrage free market. The reverse is however not always true. A somehow stronger

argument than no-arbitrage needs to be considered. Delbaen and Schachermayer (1994)

prove that a equivalent martingale measure exists under the condition that there is no free

lunch with vanishing risk. Besides existence of an equivalent martingale measure uniqueness

is another important issue. It can be shown that uniqueness implies market completeness,

i.e. a market in which a contingent claim can be perfectly hedged. The Black-Scholes

framework, e.g., describes a complete market with a unique equivalent martingale measure.

In incomplete markets, however, the equivalent martingale measure is not unique and we

have to choose it in some way. The exponential Lévy market model is one example of an

incomplete market. Within this thesis, we choose to work with mean-correcting martingale

measures. Hereby, the original drift term of the stochastic process in (2.4) is modified as

follows (Schoutens, 2003, p. 79):

m = µ+ r − q − ln [φ(−i)] ,
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Figure 2.3: Preliminaries in linear algebra.

where r represents the risk free interest rate and q covers costs of carry. Both, explicit forms

of the characteristic function and mean correction terms can be found in Schoutens (2003)

for a wide range of Lévy processes, Ornstein-Uhlenbeck processes driven by Lévy processes

as well as Lévy models with stochastic volatility.

2.2 Series approximation

This upcoming section introduces the necessary tools from linear algebra needed to install

different types of series approximations10. Figure 2.3 contains an overview of the topics that

are covered. The starting point is a definition of vectors and vector spaces V as well as

function spaces as a part of vector spaces. The concept of bases are introduced twice: on

an exemplary level when defining vector spaces and in a more detailed level when consid-

ering series decompositions. However, before series decomposition techniques on a bounded

interval I are discussed, Hilbert spaces H are introduced.

2.2.1 Vector spaces, function spaces and bases

Nearly all of the calculations that are done in the following chapters are carried out in vector

spaces. Thus the question arises: What is a vector space? The answer to this question is

supposed to serve as a starting point from which concepts such as bases and frames and their

role in function approximation are introduced.

Most importantly, a vector space is not always a space with traditional vectors in it. Follow-

ing the definition of a vector, functions can be seen as vectors as well. In its most general

definition, a vector is a mathematical construct that obeys the following axioms:

10 Within this thesis, we use the terms series approximation, series expansion and series decomposition as
synonyms.
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i) Given the vectors a, b from some set V, there is a vector a+ b which also comes from

V.

ii) Commutativity: a+ b = b+ a.

iii) Associativity: a+ (b+ c) = (a+ b) + c.

iv) There is a zero vector included in V such that a+ 0 = a.

v) Each a ∈ V comes with an inverse element −a such that a+ (−a) = 0.

vi) Given a scalar λ and a vector a it is true that λ · a ∈ V.

Since a function also follows these axioms, functions can be considered as being vectors.

Thus, when defining a vector space as a construct whose elements are vectors, a function

space is an algebraic concept whose elements are considered as functions. While each function

space is a vector space, not all vector spaces are function spaces.

Within a vector space, bases are an important concept. Bases form a set of elements which

can be used in a linear combination to uniquely construct all vectors within the associated

space. As an example, we consider the vector space R3. Associated to R3 is the set
 1

0

0

 ,

 0

1

0

 ,

 0

0

1




which forms the basis for this vector space. Using a linear combination of these elements, all

vectors in R3 can be described. Thus, bases can be used to decompose a given vector into

basic elements of the vector space itself.

In most cases, however, we are not only interested in the vector space itself but rather in a

vector space that is equipped with an inner product which yields directly to Hilbert spaces

H. Given y, z are two vectors and f, g are two functions, the inner product is defined by

〈yk, zk〉 =
∑
k∈N

yk zk and (2.5)

〈f, g〉I =

∫
I
f(x) g(x) dx = 〈f, g〉 , (2.6)

respectively.

〈f, f〉 =

∫
I
f(x) g(x) dx

Attached to the inner product in (2.6), and sometimes written as an index, is the integration

domain I on which the functions are defined on. In most cases, however, the index is

dismissed. In addition, if y, z ∈ Cn are complex valued vectors or if f, g : R→ C are complex

valued functions, zk and g(·) indicate complex conjugates11. Given inner products as in

11 The complex conjugate of a complex number shows identical real part but an imaginary part with opposite
sign: z = a+ b · i→ z = a− b · i.
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(2.5)-(2.6) exist on a vector space, the combination of both is called Hilbert space or inner

product space. Within this thesis, the relevant Hilbert space is given by the space of Lebesgue

measurable functions L2([a, b]) on a bounded interval I = [a, b] ⊂ R. Hereby, the Hilbert

space is defined by the vector space and its associated inner product:

L2([a, b]) =

{
f : R→ C |∫

[a,b]
| f(x) |2 dx <∞

}

〈f, g〉 =

∫
[a,b]

f(x) g(x) dx.

Hilbert spaces are of major importance due to the fact that a series decomposition is built

upon inner products. Thus, working within a Hilbert space ensures the existence of a se-

ries representation. These series representations rely on basic building functions that are

weighted by a set of coefficients.

Ultimately, to reconstruct a function f ∈ H as a superposition of a sequence of coefficients

{fk}, we are looking for conditions on this sequence {fk}. In most cases, an exact decomposi-

tion cannot be done with a finite number of elements. Thus, the theory needed to accomplish

a given series approximation is carried out in infinite-dimensional vector spaces rather than

finite-dimensional vector spaces. However, in real-world applications, a truncation of the se-

ries is necessary which introduces some noise to the system. To control the level of accuracy,

we are interested the most in finding finite sequences in infinite dimensional vector spaces.

In other words, we are looking for sequences {fk}∞k=1 where a finite number of elements is

non-zero. Both, bases and frames are instruments that utilize that thought.

2.2.2 Orthogonal bases and Fourier series

In the example of an Euclidean vector space R3, bases are introduced as a set which elements

can be used in a unique way to describe all other vectors in the space. A similar linear

combination can be found when using functions ek : R → C as bases. Hereby, a sequence

of functions {ek}∞k=1 is a basis with respect to a Hilbert space H if each function f ∈ H is

uniquely described by a set of coefficients {fk}∞k=1 in a linear way:

f =
∞∑
k=1

fk ek

Although other specifications of ek are possible, orthonormal bases are a common choice and

convenient to implement. For a basis to be orthonormal on a given interval I = [a, b] it must

be true that

〈ek, ej〉[a,b] = 〈ek, ej〉 =

1 if k = j

0 if k 6= j
. (2.7)
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Condition (2.7) separates an orthonormal basis from an orthogonal basis. For a system to

be orthogonal, it must be true that 〈ek, ej〉 = 0, k 6= j. For a system to be orthonormal, it

must also be true that 〈ek, ek〉 = 1.

When using an orthonormal basis to decompose an arbitrary function in terms of a linear

combination, two facts are important for the progress of this thesis:

f =
∞∑
k=1

〈f, ek〉 ek =
∞∑
k=1

fk ek ∀f ∈ L2([a, b]) (2.8)

‖f‖2 =
∞∑
k=1

| 〈f, ek〉 |2 ∀f ∈ L2([a, b]) (2.9)

where ‖f‖2 =

∫ b

a
| f(x) |2 dx

Equation (2.8) states that every function that lies within a Hilbert space H, here we assume

L2([a, b]), can be expressed by an infinite sum that is built upon an orthonormal bases

{ek}∞k=1 and a set of coefficients. The set of coefficients {fk = 〈f, ek〉}∞k=1 is given by the inner

product of the orthonormal basis itself and the function that is to be decomposed. Another

important insight is stated in equation (2.9) and is often named as Parseval’s equation. If

Parseval’s equation holds, the system {ek} is said to be complete. On a more intuitive

basic, equation (2.9) shows that the sum of the squared coefficients converge for an arbitrary

square integrable function due to the fact that the left-hand side of the equation is finite. As

a result, the coefficients also converge to zero as k grows large. The practical importance of

equation (2.9) lies in its immediate consequences on the calculation of integrals that consist

of two functions by means of their series coefficients.

Up to this point, we dealt with orthonormal basis in a general setting. Now, we introduce

Fourier series on a bounded interval I = [0, 1
b ] (Christensen, 2008, p. 69). Fourier series come

in different flavors. One way is to use an exponential function as the building block of the

orthonormal system
{
ek(x) = b

1
2 e2πikbx

}
k∈Z

on the interval [0, 1
b ]. A series representation

based on this particular choice of orthonormal system is called complex Fourier series due

to the complex valued basic function. We use this type of Fourier series heavily in Chapter

3. Other types of Fourier series are given by building functions being sine functions, cosine

functions or a combination of both. Chapter 4 relies on a multivariate version of sine and

cosine series and Chapter 5 incorporates univariate cosine series.

Although the system {ek}k∈Z is an orthonormal system on the interval [0, 1
b ], standard nota-

tion of Fourier series write the expansion f =
∑

k∈Z 〈f, ek〉 ek only in terms of the exponential

function

f(x) =
∑
k∈Z

fk e
2πikbx (2.10)
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Figure 2.4: Fourier series coefficients of a Normal probability density function N(2, 0.2).

and pull the factor b
1
2 into the set of coefficients

fk = b
1
2 〈f, ek〉 = b

∫ 1
b

0
f(x) e−2πikbx dx. (2.11)

Using orthonormal basis such as the sequence {ek}k∈Z within the series representation (2.10)

yields to a unique definition of the according dual basis {ek}k∈Z and, therefore, to a unique

set of coefficients fk given by (2.11).

To visualize the concept of a sequence with a finite number of non-zero elements, we consider

a Normal probability density function with mean µ and standard deviation σ given by

N(µ, σ) = N(2, 0.2) and calculate the coefficient vector fk which is displayed in Figure 2.4.

Within the figure, two components are included: the coefficients itself and, as a reference

value, a horizontal line at ε = 2.2 · 10−16 which indicates the floating-point relative accuracy.

With a slight abuse of its meaning, we consider this level to be the threshold below which

coefficients can be considered as being zero. Thus, when defining | fk |< ε to be zero, the

example in Figure 2.4 implies that the set of coefficients {fk}k∈Z contains 52 non-zero entries.

An accurate approximation of the above Normal density function on the given interval can be

accomplished using only these non-zero elements in a linear combination with the belonging

basis function.12

After outlying a specific example of a complex Fourier series, we would like to pick up

Parseval’s equation once again to elaborate on the calculation of an integral by means of

Fourier coefficients: Assuming two functions f, g ∈ L2(I) with Fourier coefficients fk and

gk, it can be shown that the sum

f + g =
∑
k∈Z

fkek +
∑
k∈Z

gkek =
∑
k∈Z

(fk + gk)ek

12 The above example is solely chosen for illustrative purposes and does not necessarily represent the co-
efficients’ convergency behavior of any arbitrary square integrable function. When assuming a Normal
distribution with a different standard deviation, the coefficient vector assumes different values. However,
the overall convergency behavior is preserved in this case.
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has Fourier coefficients fk+gk and, accordingly, the difference has Fourier coefficients fk−gk.
Applying Parseval’s equation to the sum and the difference individually, it is true that∫

I
[f(x) + g(x)]2 dx =

∑
k∈Z

(fk + gk)
2 and∫

I
[f(x)− g(x)]2 dx =

∑
k∈Z

(fk − gk)2 .

When we subtract both equations from each other, square-terms cancel out leaving only

cross-terms left. Now, after multiplying by 1
4 , the following result appears:∫

I
f(x) g(x) dx =

∑
k∈Z

fk gk (2.12)

Thus, equation (2.12) uncloses a technique to calculate an integral by means of the inner

product of the functions’ Fourier coefficients.

2.2.3 Non-orthogonal frames and Gabor series

Orthogonality is an inherit characteristic of bases which is at the same time a strong con-

dition on the family of vectors that are used to decompose a function f ∈ H. Thus, the

question arises whether orthogonality is necessary in any circumstances. On the one hand,

orthogonality prevents redundancy but, on the other hand, comes with the disadvantage

that it includes a low fault tolerance. A concept that is far more general than bases are is

the concept of frames. Frames are also used to decompose a function by means of a linear

combination of vectors. These vectors are, in contrast to the vectors used in the theory of

bases, linear dependent.

Within this subsection, we intend to provide the reader with an intuition for the differences

between function approximation using bases and using frames. Moreover, we introduce

Gabor frames as a special class of frames that are used in Chapter 3 to price European

options.

Frames, similar to bases, rely on basic building functions Fk : R → C. In its most general

version, following Christensen (2008), a frame is defined as a sequence of these basic elements

{Fk}∞k=1 in H for which it is true that, given two constants A,B > 0,

A‖f‖2 ≤
∞∑
k=1

| 〈f, Fk〉 |2≤ B‖f‖2, ∀f ∈ H (2.13)

Comparing equations (2.13) and (2.9), shows that the function norm is no longer identically

preserved in the sum of the coefficient norms but rather lies within an interval that is defined

by the frame bounds A and B. Thus, equation (2.13) can be considered as a generalized

version of Parsevals equation given by (2.9). If A = B equality is restored and the resulting
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frame is called a tight frame. Tight frames share many properties with bases. Since one of

these properties is being quite restrictive, we do not consider tight frames in the following.

Within the theory of frames, we are interested the most in procedures to reconstruct an

arbitrary function. Using bases to approximate a given function in H yields to a unique

definition between a basis and its dual basis. As for orthonormal bases, a simple link is

present: The dual basis to the basis ek is uniquely given by its complex conjugate ek. This

simple connection is, however, no longer given when considering frames to decompose a

function. Now, in addition to a frame itself, a frame operator S : H → H is necessary to

construct a dual frame in form of the sequence {S−1Fk}∞k=1. This dual frame is the counter

piece in frame theory to a dual basis in the theory of bases.

Given a frame {Fk}∞k=1 and a dual frame {S−1Fk}∞k=1, we can write down an arbitrary

function f ∈ H in terms of

f =

∞∑
k=1

〈
f, S−1Fk

〉
Fk (2.14)

=
∞∑
k=1

〈f, Fk〉S−1Fk (2.15)

A major difference between the series expansions in (2.14) and (2.15) compared to (2.8) is

given by the fact that in most cases the coefficients of a frame decomposition are not unique,

and, finding and calculating the inverse of the frame operator S may be highly cumbersome.

Nevertheless, due to the fact that the elements within a frame do not necessarily be orthog-

onal, allows frames to be a more general solution to the problem of function approximation

than orthonormal expansion methods are.

We now turn to a special class of frames called Gabor frames. Gabor frames are built upon

Gabor systems, also known as Weyl-Heisenberg systems, which, in turn, are built upon the

operators of translation Tz and modulation Mω:

(Tzg)(x) = Tzg = g(x− z) and

(Mωg)(x) = Mωg = g(x) e2πiωx

While the modulation operator is also included in the complex Fourier series (2.10), the

translation operator adds a new element. Hereby, the distinctive feature of Tz is that it

allows to analyze local behavior within a function more closely.

As mentioned before, frames rely on basic building blocks. In the environment of Gabor

frames, these building blocks are called generator functions. Given a generator function

g ∈ L2(R) and two positive variables α, β > 0, the set of functions

G(g, α, β) =
{
g(x− nα) e2πimβx = TnαMmβ g

}
m,n∈Z
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Figure 2.5: Schematic representation of a time-frequency lattice with Gabor particles included.

forms a Gabor system.13 An element out of this system can be interpreted as a particle

occupying one node on the time-frequency lattice Λ = αZ × βZ. Hereby the localization

of the generator g as well as the product α·β are crucial ingredients. Figure 2.5 displays

the grid in greater detail. Moving from one integer value to the other shifts the generator

function along the time-frequency axes.

How to choose α and β is one of the central questions and is related to the uncertainty

principle. In general, any time-frequency application is subject to Heisenberg’s uncertainty

principle ∫
R
| x g(x) |2 dx

∫
R
| ω ĝ(ω) |2 dω ≥ ‖g‖

4

16π2
(2.16)

which states that a better localization in time domain x goes along with a worse localization

in frequency domain ω (Stein and Shakarchi, 2011, p. 158). In a way, equation (2.16) marks

the lower limit of time-frequency localization.

Within the theory of Gabor systems, localization heavily depends on the product α·β. Figure

2.5 shows a redundant system with α·β < 1. The redundancy is characterized by the

overlapping areas on the right hand side of the figure. Such a redundant system yields to a

good localization in time and frequency. In addition to a redundant system, a parameter set

with α·β > 1 results in an incomplete scheme where no function approximation is feasible.

Finally, we consider a system with α·β = 1, called critical density (Gröchenig, 2001, p. 163).

Such a system is redundancy-free and is even able to form an orthonormal basis. However,

regardless the choice of function g in G(g, α, β), there will be no system with good time-

frequency localization at the critical density. In a mathematical sense, this implies that the

inequality in (2.16) equals infinity∫
R
| x g(x) |2 dx

∫
R
| ω ĝ(ω) |2 dω =∞ (2.17)

13 By referring to Gabor systems, we concentrate on regular Gabor systems where the combinations
(nα,mβ)m,n∈Z form a lattice in R2.
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Figure 2.6: Rectangular function in time domain and frequency domain.

In a time-frequency environment, equation (2.17) is known as Balian-Low theorem. It states

that, given an an orthonormal basis, either g or its Fourier transform ĝ is not decaying and

is therefore not localized in either time or frequency.

To visualize this thought, we use the standard example of a rectangular function that assumes

non-zero values within the interval A = −1
2 ≤ x ≤ 1

2 :

g(x) = 1A(x)

ĝ(ω) =

∫ ∞
−∞

g(x) e−2πiωx dx =
sin(πω)

πω

Figure 2.6 shows both the evolution of the rectangular function g in time domain and in fre-

quency domain. The system G(1A(x), 1, 1) does indeed form an orthonormal basis. However,

whereas an extremely fast convergency is present in time domain, the Fourier transform ĝ

is not converging at all in frequency domain. As a result of ĝ not converging, the integral∫∞
−∞ | ω ĝ(ω) |2 dω tends to infinity and, thus, the Balian-Low theorem in (2.17) holds. An

expansion based on such a Gabor system will fail to reconstruct the original function.

Instead of an orthonormal bases, a less demanding concept is introduced with frames. The

difference between bases and frames is that the elements of a basis are linearly independent

while the elements of frames are not. That is, using frames instead of bases brings some

redundancy into the approximation. In other words, the price for keeping the property of an

unconditionally convergent expansion is to give up uniqueness of the coefficients (Christensen

(2008, p. 93)) and therefore move to a system with α·β < 1.

To ensure a proper Gabor frame approximation, some preliminaries have to be put in place

that cope with the existence of Gabor frames; moreover, the concept of dual frames has to

be discussed. Similar to equation (2.13), the system G(g, α, β) forms a Gabor frame if there
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exist two constants A,B > 0 such that

A‖f‖2 ≤
∑
m,n∈Z

| 〈f, TnαMmβg〉 |2 ≤ B‖f‖2. (2.18)

Thus, in case of Gabor frames the norm of function f is also no longer identically preserved

in the coefficients but is rather defined within an interval between the lower frame bound A

and the upper frame bound B. For our purposes, however, it is not necessary to determine

these frame bounds. Instead, once the existence of a Gabor frame is ensured, a second frame

is needed to facilitate any kind of function approximation. This frame is based on the Gabor

frame operator Sg,

Sgf =
∑
m,n∈Z

〈f, TnαMmβg〉TnαMmβg.

Since the operator is invertible, function f can be decomposed into

f =
∑
m,n∈Z

〈f, TnαMmβg〉TnαMmβγ (2.19)

=
∑
m,n∈Z

〈f, TnαMmβγ〉TnαMmβg, (2.20)

where γ = S−1
g g. The expression γ is called dual function due to the fact that it is part of a

(canonical) dual frame G(γ, α, β) to the original frame G(g, α, β) (Gröchenig (2001, p. 94)).

As can be seen from (2.19) and (2.20), the frame and its dual can be interchanged within

the function approximation.



Chapter 3

Non-Orthogonal Option Pricing

3.1 Introduction

In recent years, option pricing based on more sophisticated assumptions about the associated

stochastic process for the underlying asset has received a high level of attention. While the

centerpiece of the famous Black-Scholes formula is the assumption of a geometric Brownian

motion as a driving factor, current option pricing methods often rest upon continuous-

time asset models based on exponential semimartingale processes. Besides pure jump Lévy

processes, this class of stochastic processes also encompasses jump diffusion processes and

affine processes in general, which allows them to represent stylized facts of asset returns more

closely. The higher level of complexity in the assumptions translates into a higher level of

complexity in the numerical implementation of the evaluation methods. Special attention is

therefore set on efficient methods that lower the computational load.

In many cases, the implementation is based on the knowledge of the characteristic functions.

As the characteristic function is a mere Fourier transformation of the probability density

function, Fourier transform methods became of interest. Since Carr and Madan (1999)

published their method to price European options based on characteristic functions using the

Fast Fourier Transform (FFT) algorithm, this area of research picked up pace and developed

further. Although the FFT algorithm is highly efficient, the implementation is subject to

the Nyquist relation14 yielding to a situation where more computations than necessary have

to be executed. A refinement to the FFT method of Carr and Madan was developed by

Chourdakis (2005). He introduced the fractional fast Fourier transform (FrFFT) into option

pricing and thereby disconnected the strike price grid from the integration variable grid.

Alongside other developments, Fourier series methods were introduced by Fang and Oosterlee

(2008). By means of their procedure, called Cos method, they present a way to use orthogonal

expansion methods, more precisely Fourier cosine series, to calculate the risk neutral pricing

14 The Nyquist relation states in terms of option pricing that the grid size of the integration domain s and
the grid size of the strike domain K are connected through ∆s∆K = 2π

N
, where N is the number of terms

within the FFT algorithm.
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formula. Hurn et al. (2013) recently added complete Fourier series and Fourier sine series to

the picture. As a next step, Ortiz-Gracia and Oosterlee (2013) proposed an algorithm based

on Haar wavelets and B-spline wavelets to price European-type options. Due to the higher

dimensionality of the algorithm, computational time increases when compared to, e.g., the

Cos method. This disadvantage, however, is compensated by a better performance in pricing

long term call options.

The focus of the present chapter15 is related to Ortiz-Gracia and Oosterlee (2013) in the sense

that our work uses tools from the field of time-frequency analysis. Instead of considering

wavelet theory, we propose Gabor series expansion techniques for the given task. Both

approaches are built on coherent systems that work with operators acting on given generator

functions. However, the operators used in wavelet theory (translation and dilatation) differ

from the ones used in time-frequency and Gabor theory (translation and modulation). To

the best of our knowledge, Gabor series have not been considered yet in literature to calculate

option prices.

In contrast to Fourier series theory, where expansions are supported by orthogonal bases, the

kernel of a Gabor series is rather a frame than a basis, and, in most cases, this frame is non-

orthogonal. Based on these frames, our procedure (Gabor method) consists of the decompo-

sition of the risk neutral expected value of the payoff at maturity into two inner products in

Hilbert space that are evaluated by means of Parseval’s theorem and complex Fourier series.

Using this framework, we are interested in the question whether time-frequency methods

are capable of providing a stable and efficient pricing tool for European options. In more

detail, we research whether a refinement of the expansion method, compared to e.g. cosine

series as in the work of Fang and Oosterlee (2008), yields to a higher pricing accuracy? We

find that time-frequency expansions can yield to an improved pricing accuracy. Especially in

terms of contracts with a short time to maturity, this effect is most pronounced. In addition,

compared to other pricing methods, our method shows a higher robustness with respect to

the input parameters truncating the pricing domain.

The chapter is organized as follows: In Section 2, we discuss non-orthogonal expansion meth-

ods and the conditions needed to ensure a good approximation behavior. In Section 3, the

pricing formula is introduced and Gabor frames are used to solve this option pricing problem.

Section 4 presents an error analysis and Section 5 contains a numerical implementation of

the Gabor method and tests its robustness. A conclusion can be found in Section 6 followed

by an appendix.

3.2 Non-orthogonal expansion methods

This section presents a short summary of the theory. For a more detailed overview of frame

theory, we refer to Gröchenig (2001) and Christensen (2008) as well as to the information

stated in Section 2.2. As for the rest of this chapter, except stated otherwise, we operate in a

15 A version of this chapter is available on SSRN as Niederstätter (2014).
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Hilbert space H of Lebesgue measurable functions in L2(R) equipped with the norm ‖f‖2 =∫
R | f(x) |2 dx and the inner product 〈f, g〉 =

∫
R f(x) g(x) dx or any subset L2([a, b]) ⊂ L2(R)

with corresponding norm and inner product.

In 1946, Dennis Gabor proposed a series expansion of an arbitrary function f ∈ L2(R) by

means of

f =
∑
m,n∈Z

cmn TnαMmβ g (3.1)

and thereby established the field of modern time-frequency analysis among others. In order

to be able to use this relation for any kind of function approximation, we take a closer look

at each of the components of equation (3.1). The expansion belongs to the class of atomic

decomposition (Feichtinger and Gröchenig, 1992, p. 360) and is based on three different

components: the fundamental operator of translation Tz in combination with the operator

of modulation Mω, Gabor series coefficients cmn and a generator function g ∈ L2(R) also

called Gabor atom. To start with the operators, we define for z, ω ∈ R translation and

modulation as

(Tzg)(x) = Tzg = g(x− z) and

(Mωg)(x) = Mωg = g(x) e2πiωx,

where i is the imaginary number. While operator Tz shifts a function g on the abscissa,

in signal processing often referred to as time axis, operator Mω influences the frequency

of function g in complex space. As a consequence, combining both operations is called

time-frequency shifting.16

In signal processing the compression or transmission of speech is an important topic. Instead

of decomposing the audio signal as a whole into frequencies without knowledge about which

frequencies are used at a given point in time, time-shifts allow to map a frequency decom-

position such as Fourier series to specific time windows. If the relevant domain with respect

to a audio signal is time, the relevant domain with respect to option pricing changes to the

domain of feasible payoffs. This is also the domain on which the ’time-shifts’ are made in

context of this chapter.

As part of Chapter 2, differences between basis and frames are discussed. Using orthonormal

basis has the advantage of coming up with a unique set of coefficients. However, uniqueness

is not always needed. Other features such as an improved handling of local characteris-

tics of the function that is to be approximated are more important in some circumstances.

Frame theory, and Gabor theory in particular, are suitable methods to overcome some of the

disadvantages of bases.

16 Within the environment of this chapter the term ’time-shifting’ might be misleading somehow since it does
not relate to the option’s time to maturity. We use the term nevertheless since it has been established as
standard vocabulary for this kind of expansion methods.
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Given a generator function g ∈ L2(R) and two positive variables α, β > 0, the set of functions

G(g, α, β) =
{
g(x− nα) e2πimβx = TnαMmβ g

}
m,n∈Z

forms a Gabor system. As addressed in Section 2.2.3, it has to be ensured that the product

α·β < 1 which yields to a redundant system. With that in mind, two additional elements

of equation (3.1), besides the operators of modulation and translation, have to be discussed:

the Gabor coefficients cmn as well as the choice of the generator function g within the frame

G(g, α, β) and how wo calculate a dual frame connected to the original frame.

Similar to the concept of a basis and its dual basis, every frame has at least one dual frame.

In contrast to a basis, there are a number of dual frames that can be used in combination

with a single frame. However, before we move on to define the dual frame we use in this

chapter, we elaborate on the coefficients first. Within Gabor frame theory, the existence and

invertibility of a Gabor frame operator Sg is crucial. Assuming G(g, α, β) is a proper Gabor

frame, it is true that

Sgf =
∑
m,n∈Z

〈f, TnαMmβg〉TnαMmβg.

Thus, since S−1
g exists, a function f can be decomposed into

f =
∑
m,n∈Z

〈f, TnαMmβg〉TnαMmβγ (3.2)

=
∑
m,n∈Z

〈f, TnαMmβγ〉TnαMmβg, (3.3)

using a generator function g and its dual γ = S−1
g g. With that in mind, we are able to define

the Gabor series coefficients from the beginning of this section via equation (3.3) as

cmn = 〈f, TnαMmβγ〉 .

Up to this point, we only claim that there exists a Gabor frame operator Sg which enables us

to build the dual frame based on a generator function g. Since constructing and inverting the

operator Sg can be highly cumbersome, we choose a special case in which formulating Gabor

frames and its duals becomes much more convinient. This concept is known as ’painless non-

orthogonal expansion’ and goes back to the work of Daubechies et al. (1986). The following

remarks, however, refer to Gröchenig (2001), Chapter 6.4. We define the generator function

to be part of the Schwartz class g ∈ S(R) with support on an interval of length L ≤ 1
β and

the additional condition α ≤ L. Under these conditions, the dual window is defined as

γ(x) =
β g(x)∑

q∈Z
g(x− qα)g(x− qα)

, (3.4)

where the bar indicates complex conjugates. With the relation in (3.4) we are able to

explicitly compute a dual frame to any given frame that obeys the assumption of a limited
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support on an interval of length L. Other methods of determining the dual frame involve

the numerical calulation of the pseudo-inverse of a matrix based on the generator g. These

procedures, however, are not feasible for the option pricing task at hand due to the fact

that both the frame and its dual have to be evaluated within an integral (see Chapter 3.3).

Therefore, an analytic expression for the dual frame as in equation (3.4) is necessary.

As already indicated by the Balian-Low theorem, a high approximation quality is only feasible

under the condition of a redundant system. This, in turn, implies that α·β < 1 has to be

guaranteed. A Gabor system G(g, α, β) will never form a frame if α·β > 1. At the critical

density α·β = 1, the Balian-Low theorem clarifies the lack of good time-frequency localization

(see Section 2.2.3), which also yields to poor results.

3.3 Option pricing

Given an equivalent martingale measure Q and a filtration Ft, the value of a European-style

option with payoff v(x, T ) at maturity T is described by the expected value

vt = e−r(T−t) EQ [v(x, T )|Ft]

= e−r(T−t)
∫
R
v(x, T )fX(x) dx. (3.5)

By truncating the moneyness x = log ST
K , with ST being the value of the underlying at

maturity and K being the strike price, on a given interval x ∈ [a, b] and by inserting the

Gabor expansion (3.2) of the risk neutral density function, the above pricing formula changes

to

vt = e−r(T−t)
∫ b

a
v(x, T )

∑
m,n∈Z

〈fX , TnαMmβg〉 (TnαMmβγ)(x) dx.

Interchanging the integral and the sums shows that option prices are defined by two inner

products that will be discussed independently in the following.

vt = e−r(T−t)
∑
m,n∈Z

〈fX , TnαMmβg〉
∫ b

a
v(x, T )(TnαMmβγ)(x) dx

= e−r(T−t)
∑
m,n∈Z

〈fX , TnαMmβg〉 〈v, TnαMmβγ〉, (3.6)

where the bar above the second inner product indicates complex conjugates. The main part

of this section is denoted to the calculation of (3.6). For this purpose, besides the choice

of a Gabor frame G(g, α, β) and its dual frame G(γ, α, β), complex Fourier series as well as

Parseval’s theorem are crucial instruments that will be applied. Thus, we define a complex



34 CHAPTER 3. NON-ORTHOGONAL OPTION PRICING

Fourier series expansion of a function f ∈ L2([a, b]) as

f(x) =
∑
k∈Z

fk e
−ikπ x−a

b−a ,with

fk =
1

2(b− a)

∫ b

a
f(x)eikπ

x−a
b−a dx.

Based on the completeness of this trigonometric system (see Section 2.2.2), Parseval’s theo-

rem states that if f and g are square integrable functions on [a, b] the following holds:∫ b

a
f(x) g(x) dx = 2(b− a)

∑
k∈Z

fk gk.

Equipped with these relations and the information about Gabor systems from Section 2.2.3

as well as Section 3.2, we concentrate on the efficient computation of the inner products in

equation (3.6) in the following two subsections. To do so, we first have to choose a generator

function g that builds the foundation of the Gabor frame G(g, α, β). The importance of fast

decay has already been emphasized in the previous section. Thus, from the Schwarz space

S(R) of rapidly decreasing functions, we select the Gaussian function as (original) generator:

g(x) = e−pπ(x−c)2

The Gaussian function by itself is defined on the whole real line and therefore harms the

assumption of compact support on an interval of length L = 1/β. To overcome this problem,

we multiply the indicator function 1A(·) by the Gaussian. As a result, an enhanced generator

function is given by

g(x) = e−pπ(x−c)2
1A(x− c),

where A =
{
− 1

2β ≤ x ≤ 1
2β

}
and c ∈ R represents a constant shift parameter. The

corresponding dual function based on (3.4) assumes the form

γ(x) =
β e−pπ(x−c)2

1A(x− c)∑
q∈Z

e−2pπ(x−c)2
1A(x− c− qα)

.

The sharp edges that are introduced by the indicator function do not harm when controlling

variable p of the generator function appropriately. In general, cutting the generator function

at the lower and upper end by means of the indicator function implies slow convergency in

the frequency domain.17 However, in every numerical implementation, calculations have to

be done with a finite number of digits. This means that a number is defined through an

interval rather than a single point on the axis. Within Matlab’s floating point arithmetic,

the machine precision − or machine epsilon18 − is around ε ≈ 2.22 · 10−16. Thus, to ensure

that the Gaussian generator approaches zero before the limits of the indicator function 1A(·)

17 Within the theory of Fourier series, this effect is known as Gibbs phenomenon.
18 See Matlab’s eps(1) command.
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are reached and discontinuities are introduced, we formulate

p = − log(1 · 10−17)

π( 1
2β )2

to ensure convergence towards zero. On the one hand, the enhanced generator now obeys

the assumption of a compact support. On the other hand, all numerical calculations can

be executed up to a machine precision level by only considering the p-controlled Gaussian

function.

3.3.1 Calculation of 〈fX , TnαMmβg〉

The first inner product within formula (3.6) is based on the risk neutral density function

as well as a shifted and modulated version of the Gabor frame. By the definition of inner

products in Hilbert spaces, these Gabor coefficients read as

〈fX , TnαMmβ g〉 =

∫ b

a
fX(x) e−pπ(x−c−nα)2

1A(x− c− nα) e−2πimβx dx. (3.7)

When the model is supposed to operate under more complex stochastic processes such as

Lévy or stochastic volatility processes, the above integral cannot be solved in closed form.

However, due to Parseval’s theorem, it is possible to approximate it to a discretionary level

of accuracy. Equation (3.7) therefore becomes the sum of two Fourier series coefficients:

〈fX , TnαMmβ g〉 =

∫ b

a
fX(x) e−pπ(x−c−nα)2

1A(x− c− nα) e−2πimβx dx

= 2 (b− a)
∑
k∈Z

fk gk, (3.8)

where the coefficients are given by

fk =
1

2(b− a)

∫ b

a
fX(x) e−2πimβx eikπ

x−a
b−a dx (3.9)

gk =
1

2(b− a)

∫ b

a
e−pπ(x−c−nα)2

1A(x− c− nα) eikπ
x−a
b−a dx. (3.10)

In the case of (3.9), fX is defined by the stochastic process (SP) chosen with according

parameter vector ΘSP . For a large class of processes, the characteristic function

φ(u; ΘSP ) =

∫
R
fX(x; ΘSP ) eiux dx , u ∈ R

is known and most often given in closed form19. When the truncation interval [a, b] in (3.9)

and (3.10) is chosen sufficiently large, the expressions can be approximated highly accurately

19 Within the environment of diffusion models and pure jump models as well as stochastic volatility models
and (Lévy driven) Ornstein-Uhlenbeck processes, expressions for the characteristic function are known in
closed form. Where a closed form is not given, it is mostly due to the presence of special functions such as,
e.g., Bessesl functions.



36 CHAPTER 3. NON-ORTHOGONAL OPTION PRICING

by characteristic functions which are defined on the whole real line R. Thus, coefficients fk

can be rewritten to

fk =
1

2(b− a)
φSP

(
kπ

b− a − 2πmβ; ΘSP

)
eix0( kπ

b−a−2πmβ)−i kπb−aa.

In the case of equation (3.10), a similar procedure yields a solution: Rewriting gk in a way

that we incorporate the indicator function into the integration limits and extract the part of

the exponential function that does not rely on the integration variable

gk =
1

2(b− a)

c+nα+ 1
2β∫

c+nα− 1
2β

e−pπ(x−c−nα)2
eikπ

x
b−a dx e−ikπ

a
b−a (3.11)

enables us to use the Fourier transform (see equation (2.1)) of the original generator function

ĝ(ξ) =

∫
R
g(x− nα) e−2πiξx dx

=

∫
R
e−pπ(x−c−nα)2

e−2πiξx dx (3.12)

=
1√
p
e
−2πiξ(c+nα)−πξ

2

p (3.13)

to represent the coefficients gk. To do so we use equation (3.12) with ξ = −1
2

k
b−a to calculate

the integral in (3.11). Finally, due to the fact that (3.12) is given in closed form by (3.13),

we can write gk as

gk =
1

2(b− a)
ĝ

(
−1

2

k

b− a

)
e−ikπ

a
b−a . (3.14)

In order for equation (3.14) to be accurate, variable p has to be chosen as described earlier

to ensure convergence of the Gaussian function on the interval A. Only under this circum-

stance, the integral over the given finite interval which is defined by the indicator function

is accurately calculated by an infinite interval.

3.3.2 Calculation of 〈v, TnαMmβ γ〉

The second part of the pricing formula (3.6) includes the contract’s payoff function v(ST , T )

as well as the dual frame G(γ, α, β). Once again, Parseval’s theorem can be used to compute

the inner product based on the individual Fourier series coefficients. To outline the general

procedure, we implement an European put option. There are, however, several other Euro-

pean type derivatives for which closed form solutions in terms of Fourier series coefficients

exist. Next to the coefficients of a call option, Appendix 3.A lists several coefficients for

binary options.
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In line with the procedure in the previous subsection, the inner product based on a put

option is defined by

〈v, TnαMmβ γ〉 =

∫ b

a
K [1− ex]+

β e−pπ(x−c−nα)2
1A(x−c−nα)∑

q∈Z
e−2pπ(x−c−nα−qα)2

1A(x−c−nα−qα)
e2πimβx dx

= 2(b− a)
∑
k∈Z

vk ek, (3.15)

and the coefficients are given by

vk =
1

2(b− a)

∫ b

a
K [1− ex]+ e2πimβx eikπ

x−a
b−a dx (3.16)

ek =
1

2(b− a)

∫ b

a

β e−pπ(x−c−nα)2
1A(x−c−nα)∑

q∈Z
e−2pπ(x−c−nα−qα)2

1A(x−c−nα−qα)
eikπ

x−a
b−a dx. (3.17)

In terms of vk, integration yields to a closed form solution:

vk =
1

2(b− a)

∫ 0

a
K (1− ex) e2πimβx eikπ

x−a
b−a dx (3.18)

=


−K

2

 i
(
e
ikπ a

a−b−e2iaβmπ
)

ζ +
e
ikπ a

a−b
(
e
a− iaζ

a−b−1

)
a−b−iζ

 for ζ 6= 0

, K
2(b−a) (ea − 1− a) for ζ = 0

, (3.19)

where ζ = (k + 2(b− a)βm)π.

In contrast to these payoff coefficients, the coefficients ek containing the dual frame are not

given in closed form. However, using a fractional Fast Fourier Transform algorithm allows

us to compute ek efficiently. Before the FrFFT can be unleashed, equation (3.17) first has

to be discretized and reorganized. Considering the range in which the indicator function of

the numerator assumes nonzero values, equation (3.17) becomes

ek =
β

2(b− a)

∫ c+nα+ 1
2β

c+nα− 1
2β

e−pπ(x−c−nα)2∑
q∈Z e

−2pπ(x−c−nα−qα)2
1A(x−c−nα−qα)

eikπ
x−a
b−a dx. (3.20)

In a next, step we define a new function h(x) which contains the fraction resulting in:

ek =
β

2(b− a)

∫ c+nα+ 1
2β

c+nα− 1
2β

h(x) eikπ
x
b−a dx e−ikπ

a
b−a

Discretization involves transformation of the continuous variable x into a discrete set {xj}J−1
j=0 .

We choose a unitary step size ∆x = 1/β
J−1 which leads to a grid in the x-domain according to
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xj = c+ nα− 1
2β + ∆x · j and the following approximation:

ek =
β

2(b− a)


J−1∑
j=0

h(xj) e
ikπ

1/β
(J−1)(b−a)

j

 eikπ
c+nα− 1

2β
−a

b−a (3.21)

Equation (3.21) represents a discretized version of equation (3.20) and inherits a structure

that allows us to use the FrFFT to calculate the expression in curly brackets: Based on

Bailey and Swarztrauber (1994), a sum

Gk(x, ξ) =

J−1∑
j=0

h(xj) e
−2πijkξ

can be efficiently calculated using a generalization of the discrete Fourier transform. The

main advantage over a non-fractional FFT algorithm is that the step size of variables k as

well as the step size of variable ξ can be chosen independently. This is a major benefit

compared to calculating the sum by means of a non-fractional FFT algorithm in which case

the step size of the two variables are connected. This fact is known in literature as Nyquist

relation and describes the effect that a finer grid in one variable comes with a coarser grid in

the other variable. A drawback of the FrFFT algorithm is that instead of only one execution

of the FFT algorithm, three FFTs are needed. However, the freedom of choosing k and ξ

independently from each other outweighs this disadvantage in terms of overall accuracy as

well as in terms of computational time needed to reach a given accuracy.

Following the algorithm by Bailey and Swarztrauber, two 2J-long sequences have to be

defined as

y =


{
h(xj) e

−πij2ξ
}J−1

j=0

{
0
}2J−1

j=J

 and z =


{
eπij

2ξ
}J−1

j=0

{
eπi(j−2J)2ξ

}2J−1

j=J

 .

To calculate Gk(x, ξ), three 2J-point discrete Fourier transforms Dj are implemented using

the FFT algorithm

Gk(x, ξ) =
{
e−πik

2ξD−1
k [Dj(y)�Dj(z)]

}J−1

k=0
, (3.22)

where the symbol � describes element-wise multiplication. Since parameter k is restricted

to the set of integers Z, we define

ξ = − 1

2β(J − 1)(b− a)
.

Thus, equation (3.21) changes to

ek =
β

2(b− a)
Gk

(
x,− 1

2β(J − 1)(b− a)

)
eikπ

c+nα− 1
2β
−a

b−a .
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3.4 Error analysis

Similar to Fang and Oosterlee (2008) and Ortiz-Gracia and Oosterlee (2013), we also include

an error analysis before we concentrate on numerical implementations. We indicate four

major sources of errors due to

(i) truncation of the integral in (3.5):

E1 =

∫
R\[a,b]

v(x, T )fX(x) dx

(ii) usage of Parseval’s theorem in (3.8) and (3.15):

E2 = 2(b− a)
∑

k∈Z\[−K,K]

fk gk and

E3 = 2(b− a)
∑

k∈Z\[−K,K]

vk ek

(iii) discretization of equation (3.17):

E4 =

b∫
a

γ(x− nα)e−ikπ
x−a
b−a dx−

J∑
j=0

γ(xj − nα)e−ikπ
xj−a
b−a wj∆xj

(iv) truncation of series (3.6):

E5 = e−r(T−t)
∑

m∈Z\[−M,M ]

∑
n∈Z\[−N,N ]

〈f, TnαMmβg〉 〈v, TnαMmβγ〉.

Term E1 is discussed in both Fang and Oosterlee (2008) and Ortiz-Gracia and Oosterlee

(2013). If the interval [a, b] is chosen appropriately large, E1 is negligibly small. In Section

3.5.1, we outline three different truncation schemes to handle E1.

Parseval’s theorem in (3.8) and (3.15) is based on Bessel’s inequality

∞∑
k=−∞

|fk|2 ≤
1

2(b− a)

∫ b

a
|f(x)|2 dx. (3.23)

The fact that (3.23) holds for any square integrable function f ∈ L2([a, b]) ensures that the

coefficients on the left-hand side converge to zero as k → ±∞. Since the error terms E2

and E3 depend on the products fk gk as well as vk ek, only the faster converging coefficients

are relevant for the overall error. As soon as the faster converging coefficients within the

respective products reach zero, the summation as a whole converges. Thus, convergency

depends on gk and ek for the most part. In contrast to the coefficients fk of a highly

skewed distribution and the coefficients vk of the options contract payoff function, the Fourier

coefficients of the p-controlled Gaussian function gk are fast decaying. The same is true for
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,K]

Re(gk )

Im
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k
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Re(gk )

Im
(g

k
)

Figure 3.1: Fourier coefficients of the Gaussian generator g with different control variables p1 and
p2, where p1 > p2, on a fixed interval [a, b].

the coefficients ek, since the dual function conserves the smoothness of the original generator

(Gröchenig, 2001, p. 118).

To bind the speed of convergency, we take a look at the Fourier coefficients of the Gaussian

function gk. Figure 3.1 displays two exemplary curves of the coefficients gk in the complex

plane C.20 The speed of convergency only depends on the length of interval [a, b] and the

control variable p. A change in the shift parameter changes the values of the coefficients that

are assumed on the above function, but not the convergency itself. The mean squared error

δK is an appropriate tool to analyze this convergency. We therefore define

δK =
1

b− a‖g(x)− SK(x)‖2

=
1

b− a‖g(x)‖2 − ‖SK(x)‖2,

where SK(x) is the partial sum SK(x) =
∑K

k=−K gk e
−ikπ c−a

b−a . Using the p-contolled version

of g allows us to calculate the norm ‖g(x)‖2 over the entire real line. Since, in addition,

corresponding coefficients g(k) and g(−k) in the partial sum are complex conjugates, the

mean squared error of approximating function g by means of a series of coefficients gk is

defined by

δK =
1

b− a

∫
R
g(x)2dx− g2

0 − 2

K∑
k=1

|gk|2

=
1√

2p(b− a)
− 1

4p2(b− a)2
− 1

2

1

p2(b− a)2

K∑
k=1

e
−k2 1

p2(b−a)2

Thus, the mean squared error converges exponentially due to δK = O(e−k
2
) as k →∞.

20 It has to be mentioned that within the figure, variable k not only assumes integer values but is also able
to assume any real number. Therefore, the plots are rather shells in which the coefficients themselves only
occupy a finite number of points depending on the shape of function g.
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Discretization error E4 depends on the numerical integration scheme chosen. Due to the

complex exponential in E4, the integrand I(ψ) = γ(ψ − nα)e−ikπ
x−a
b−a is oscillatory which

makes a trapezoidal rule a good choice. In this case, E4 is defined by

E4 = − 1

12J2β3
I ′′(ψ), ψ ∈

[
c+ nα− 1

2β
, c+ nα+

1

2β

]
and depends heavily on the curvature of I(ψ) which can be controlled by variable α. How

to choose α in accordance with a minimal error term E4 is covered by Section 3.5.1.

Error term E5 originates from truncating variables M and N to finite values. Akin to the

argumentation in case (ii), the magnitude of the error depends on the convergency behavior

of the coefficients that are defined by the inner products. In this case, however, convergency

depends on two dimensions, M and N . Thus, we can split E5 into E5 = EN5 + EM5 and

examine both parts individually. Error EN5 interacts with E1 since the N -dimension is

directly connected to the interval [a, b]. Thus, by setting [a, b] sufficiently large, EN5 converges

to zero and E5 is dominated by EM5 . The M -dimension, however, is driven by the inner

products themselves as well as by their components. Once again, only the faster converging

coefficients are crucial for the magnitude of EM5 . Since many payoff functions v show slowly

converging coefficients, we pay attention to the coefficients cmn = 〈f, TnαMmβg〉 instead.

Equation (3.9) is responsible for the M -dimension in the calculation of cmn. For the purpose

in this section, we rename it from fk to f(m; k) and state that, as long as the density function

is well behaved f ∈ C∞([a, b]), the function f(m; k) shows an exponential convergency in k

for any given integer value m. Equation (3.30) in Section (3.5.2) provides a rule of thumb

how to determine M subject to a given target level of pricing accuracy.

3.5 Numerical implementation

This section gives an insight into the convergency behavior of the model. However, before

the model from Section 3.3 can be used to price options, we have to prepare the model

parameters first. To do so we address error terms E1, E5 and E4 individually. In contrast to

E2 and E3, these terms depend on the input parameters of the model itself and, therefore,

have to be determined with some care. Subsequently we conduct several numerical tests. The

test scenarios are chosen from standard Brownian motions to more complex jump processes

and stochastic volatility models. The belonging input parameters are either defined with the

task of analyzing specific characteristics21 in mind or are derived from parameter sets that

are commonly used in related literature.

21 E.g. model behavior in the presence of skewness and kurtosis or model behavior given different times to
maturity.
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3.5.1 Specification of the model

Up to this point, the pricing formula is given by equation (3.6). To be able to implement

the model in a programing environment such as Matlab, these sums have to be truncated at

a given level

v0 = e−r(T−t)
M∑

m=−M

N∑
n=−N

〈f, TnαMmβg〉 〈v, TnαMmβγ〉. (3.24)

This implies that the frame coefficients can only be calculated with a finite sequence of

numbers and, thus, a finite precision. As indicated by the error analysis in the former

section, truncation introduces some noise in the system. Therefore, some care has to be

exercised to minimize this source of error. We will address the error sources E1, E5 and E4

consecutively.

Specification of error term E1

Due to the fact that determination of the maximal number of shifts N depends on the lower

bound a, we start with the truncation of the integral in (3.5) and the first error term. E1

approaches zero if the values of the integrand evaluated at the integration limits is below

machine precision ∣∣∣∣∣v
([

a

b

]
, T

)
fX

([
a

b

])∣∣∣∣∣ < ε.

To define appropriate values for a and b, we concentrate on the decay of the density function.

To be more precise, we are interested in the question at which point the density function

assumes values below machine precision. One option would be to fall back on inverse dis-

tribution functions. However, since in most cases these inverse distributions are not readily

available, other schemes need to be defined. Fang and Oosterlee (2008) determine the lower

and upper boundary values in terms of cumulants of the stochastic process

[a, b] =

[
c1 − b1

√
c2 +

√
c4, c1 + b1

√
c2 +

√
c4

]
with b1 = 10, (3.25)

where b1 ∈ R determines the spread of the interval and the cumulants {ci}i∈N are calcu-

lated based on the cumulant generating function which is readily available by means of the

logarithm of the characteristic function of the stochastic process (see Section 2.1.2). Thus,

using the cumulant generating function, the sequence {cn}4n=1 is known as soon as input

parameters ΘSP are chosen.

Since the above approach does not consider skewness other than its impact on kurtosis,

we enhance (3.25) in two ways: First, we add cumulant c3 and, second, we allow bi to be

determined individually for a and b. As a result, the following three truncation schemes
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influence the convergency of the model and therefore the error term E1:[
a

b

]
=

[
c1 − ba1

√
c2 +

√
c4

c1 + bb1
√
c2 +

√
c4

]
(3.26)[

a

b

]
=

[
c1 + ba1c3 − ba2

√
c2 +

√
c4

c1 + bb1c3 + bb2
√
c2 +

√
c4

]
(3.27)[

a

b

]
=

[
ba1 + ba2Φ−1

N

(
qa, c1,

√
c2

)
+ ba3c3 + ba4c

ba5
4 + ba6c3c2 + ba7c3c4

bb1 + bb2Φ−1
N

(
qb, c1,

√
c2

)
+ bb3c3 + bb4c

bb5
4 + bb6c3c2 + bb7c3c4

]
. (3.28)

The methods from (3.25) and (3.26) only differ in the fact that in (3.26) the coefficient b1

is calculated individually for a and b. In (3.27), skewness c3 shifts the interval of interest

depending on the magnitude of asymmetry of the stochastic process’ marginal distribution.

Truncation method (3.28) is based on an inverse Normal distribution at a given level qa = ε

and qb = 1 − ε, as well as on a number of interaction terms. Including the inverse Normal

distribution is due to two arguments: first, it offers an initial guess for the location of the

true values, and, second, it is readily available and fast to evaluate. Adjustments to the

initial guess are made by adding additional interaction terms. This method, however, should

only be considered in a non-symmetric setup since it heavily depends on cumulant c3. In

case of a symmetric probability distribution, the method in (3.28) only adds a markup term

to the inverse Normal distribution.

To pre-calculate the coefficients bi, we compose a dataset consisting of the dependent vari-

ables a and b, which are defined as inverse distributions F−1
X of various density functions

evaluated again at qa and qb:

a = F−1
X (qa) = F−1

X (ε)

b = F−1
X (qb) = F−1

X (1− ε)

We use data points stemming from NIG distributions, CGMY distributions and VG distri-

butions to provide dependent variables. In case of NIG, we use the Normal Inverse Gaussian

distribution toolbox22 which includes a function to calculate inverse distributions. In case of

CGMY and VG, simulations are used to create distribution functions and their respective

inverse distributions. As independent variables, the first four cumulants X = [c1 c2 c3 c4] are

considered. To come up with suitable coefficients, we use (nonlinear) regressions to estimate

b•i according to the schemes in (3.26)-(3.28) and store the parameters for later usage. Results

are shown in Table 3.1.

The table shows that equations (3.26) and (3.27) coincide given a symmetric distribution.

Overall, it should be mentioned that these parameters are calculated based on a time horizon

of one year. They deliver quite robust boundary values even if the time to maturity differs.

Since the parameters are pre-stored, they do not create additional computational load during

the price calculation. Thus, similar to Table 3.1, additional coefficients can be calculated

and pre-stored with a special focus on extremely short or very long time horizons.

22 Downloadable at Matlab Central File Exchange http://de.mathworks.com/matlabcentral/fileexchange.
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(3.26) (3.27) (3.28)

a b a b a b

b•1 8.3169 6.6669 6.7775 5.3835 3.5790 -2.1726

b•2 8.3169 6.6669 -2.0528 1.4768

b•3 3.8471 2.8479

b•4 -4.5670 3.3609

b•5 0.5639 0.5895

b•6 7.3642 6.7739

b•7 -0.0667 -0.0325

R2 0.36 0.30 0.72 0.69 0.97 0.97

Table 3.1: Determination of the lower and upper bound a and b by means of (nonlinear) regression
models (3.26)-(3.28).

a n=1 n=2 0 n=3 n=4 b

Figure 3.2: Shifted generator function.

Specification of error term E5

Error term E5 deals with truncation of the sums in (3.24). In this case, the modulation

parameter M stays an exogenous variable. The shift variable N , however, can be internalized

by bearing in mind that the truncation area [a, b] has contract specific relevant subintervals.

When pricing a put option, only the subinterval Ip = [a, 0] is of interest.23 Therefore,

the maximal number of shifts is defined by a given number N̂ that relocates the generator

function right to the point where the lower limit of the shifted frame is within the interval

[a, 0]. That is, for n = N̂ it is no longer true that supp{g(x− nα)} ⊂ Ip; instead, both sets

form an intersection supp{g(x− nα)} ∩ Ip. Figure 3.2 exemplarily plots a scenario where

the shifted versions of g moves to the right by a factor nα = n · 0.7. As indicated in the

figure, the maximal amount of shifts needed in this particular case is n = 3 = N̂ . Given

that number of shifts, a part of the final frame lies within Ip. Therefore, this area has to be

incorporated. That is, the interval of interest given a put option is actually larger than the

contract specific domain Ip = [a, 0] due to the final shift N̂ which can be defined by

N̂ =

⌈
2|a|β + 1

2αβ

⌉
− 1 +

1

β
.

23 Similar arguments can be formulated for e.g. a call option.
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Figure 3.3: Gaussian generator and its dual function. Parameters are α = 0.6 and β = 0.25.

Given that, formula (3.24) changes to

v0 = e−r(T−t)
M∑

m=−M

N̂∑
n=0

〈f, TnαMmβg〉 〈v, TnαMmβγ〉. (3.29)

The inner summation runs from n = 0, ..., N̂ . The reason why it starts at n = 0 (in equation

(3.24), the starting value is defined as n = −N) is that we choose the shift parameter c within

the generator function to be equal to the lower bound of the interval, c = a. Therefore, the

generator starts at the lower bound and moves to the right.

Now that the number of terms in the sums of equation (3.29) has been taken care of, we

have to focus on variables α and β. The support of the generator function is directly linked

to variable β via supp(g) = [l0, l0 + L], with l0 ∈ R being some constant and L = 1
β (see

Section 3.2). For the numerical implementation, we choose l0 = − 1
2β . Thus, variable β

not only influences the frequency of the modulation operator, but also the length of the

Gabor frame and its dual frame. Since the generator and its dual can also be interpreted

as magnifiers or spotlights of a function segment, β defines the size of this spotlight. If not

stated otherwise, we use the length of the relevant subinterval of the contract that is to be

priced, yielding β = 1
|a| in the case of a put option.

Specification of error term E4

Parameter α primarily controls the magnitude of the shifts on the ’time’-axis. It also in-

fluences the shape of the dual frame γ defined in (3.4) and therefore error term E4. In

contrast to orthogonal basis, the shape of the dual frame function differs considerably from

the generator function it is based on. Due to the denominator in (3.4) and using a Gaussian

as generator function, α defines whether the dual function γ shows a single hump or a double

dip shoulder as shown in Figure 3.3.

Depending on α, the double dip that is present in the dual function can be more distinct

or may even vanish. Multiple maxima, as on the right-hand side of Figure 3.3, increase the

curvature of the function which, in turn, yields to a higher error term E4. Given multiple



46 CHAPTER 3. NON-ORTHOGONAL OPTION PRICING

maxima, E4 can only be lowered at the expense of a higher computational effort. To prevent

this effect, we choose we choose α to ensure a smooth dual frame with a plateau in the center.

An analytic way to ensure this claim would be to restrict
[
∂2

∂x2γ(x)
]
x=l0+L/2

= 0 and solve

for α. Since this expression becomes quite cumbersome and is not given in closed form, we

use a more heuristic approach. As a first step, we define a function

ν(α) =
1∑

q
e−2pπq2α2 −

e−pπ(x1−qα)2∑
q
e−2pπ(x1−qα)2 with x1 = x0 + τ,

that, given τ being small, assumes positive values in case the center point of γ is a maximum

and negative values in case of a local minimum. Given a plateau, the function shows a result

of zero. Thus, as a second step, the optimal α is given by

α = sup
{
α ∈ R+ : ν(α) ≥ 0

}
and can be determined by a root finding algorithm with a very low number of iteration steps.

In the remaining part of this section, we test the level of precision of equation (3.29). As

reference models, we implement the Cos method by Fang and Oosterlee (2008) as well as the

FFT method by Carr and Madan (1999).

3.5.2 Numerical tests

To be able to not only test symmetric marginal distributions, we use a Geometric Brownian

Motion (GBM) and, in addition, a Normal Inverse Gaussian (NIG) process as the underlying

source of uncertainty. The four-parameter NIG marginal distribution was introduced by

Barndorff-Nielsen (1977) and is capable of producing a purely discontinuous Lévy process

with heavy-tailed as well as skewed marginal probability distribution. The characteristic

function of a GBM as well as the characteristic function of a NIG process is given by

φGBM (u) = eiµut−
1
2
σ2u2t

φNIG(u) = e
iµut+δ

(√
α2
NIG−β

2
NIG−

√
α2
NIG−(βNIG+iu)2

)
.

A wide range of test scenarios is conducted in this NIG environment. To also include further

stochastic processes we use reference values from Fang and Oosterlee (2008). Therefore we

are able to additionally test the numerical method assuming a Variance Gamma (VG) and

a CGMY Lévy process introduced by Madan and Seneta (1990) and Carr et al. (2002),

respectively. Characteristic function are given by:

φV G(u) = eiµut
[
1− iuθν +

1

2
σ2νu2

]− t
ν

φCGMY (u) = eiµute
tCΓ(−Y )

[
(M−iu)Y −MY +(G+iu)Y −GY

]
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Next to pure jump Lévy processes, we include Heston’s stochastic volatility model published

in Heston (1993). However, due to a restriction of the complex logarithm to its principal

branch, the characteristic function of the Heston model is defined in a slightly different way

than it has been stated in the original paper. We implement the version that is also used in

Fang and Oosterlee (2008) to preserve comparability in notation.

φHeston(u) = eiµute
u0
η2

(
1−e−D·t

1−Ge−D·t

)
(λ− iρηu−D)e

λū
η2

[
t(λ−iρηu−D)−2 log

(
1−Ge−D·t

1−G

)]
,

with D =
√

(λ− iρηu)2 + (u2 + iu)η2 and G = λ−iρηu−D
λ−iρηu+D .

Numerical tests assuming a geometric Brownian motion

The first series of tests is done within a GBM environment. In this case, the precision can

be tested against the closed form solution by Black and Scholes (1973). In a first step, we

define the parameter set ΘGBM as

ΘGBM = [µ, σ] =

[
r − q − 1

2
σ2, σ

]
.

In general, a GBM has two parameters. However, parameter µ is pre-defined due to the drift

correction motivated by the equivalent martingale measure. The remaining test parameters24

are given by a current price of the underlying S = 10, strike price K = 10, a risk free interest

rate r = 0.02, a standard deviation of the GBM process σ = 0.35 and time to maturity

between 10 days and one year25. Within this test setup, we do not yet use equations (3.26)-

(3.28) in combination with the coefficients in Table 3.1 but rather test the overall robustness

by assuming different truncation intervals and varying maturities.

Figure 3.4 is based on pricing errors defined by the difference between the price calculated

by means of the closed form solution and the price approximation of the numerical meth-

ods. While the Gabor method is considered in the upper part of the figure, Cos method is

examined in the lower part. Besides a varying time to maturity the spread variable b1 from

equation (3.25) assumes integer values within 8 ≤ b1 ≤ 30. From the figure two observations

are important: First, in case of the Gabor method, besides the outliers that are marked by

a plus-symbol in the figure, most of the deviations from the analytical price are on a level

of 10−15. These outliers, however, can be avoided by using the afore-mentioned truncation

schemes. Second, compared to the Cos method, the Gabor method is far less sensitiv to

a particular choice of b1. The Cos method looses its accuracy quite fast given a value for

b1 that is chosen either too high or too low. This effect is more severe the larger time to

maturity is assumed to be.

Numerical tests assuming jump processes

While a single spread variable b1 performs quite well using a GBM as the underlying source

of randomness, the effect of including cumulants c3 and c4 in combination with the drift term

24 Test parameters within this section are based on hypothetical parameter sets that are either commonly
used in literature or show specific features of the models.

25 We define a year to consist of 250 trading days.
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Figure 3.4: Box plot of pricing errors of the Gabor method (upper part) and the Cos method (lower
part). Variable b1 in (3.25) assumes values b1 = {8, ..., 30} in case of both methods. In
addition, S = K = 10, r − q = 0.02 and σ = 0.35. Frequency variable is set to M = 40
for the Gabor method and an equivalent number of terms is used for the Cos method.

and volatility to the truncation is more distinct given fat tailed and asymmetric distributions.

Therefore, the second series of tests employs fat-tailed NIG processes. We use different

parameter sets with excess kurtosis and non-zero skewness

ΘNIG = [µNIG, αNIG, βNIG, δ]

= [µNIG, 5, βNIG, 1] .

Hereby, variable µNIG = r − q − δ
(√

α2
NIG − β2

NIG −
√
α2
NIG − (βNIG + 1)2

)
is chosen in

accordance to a drift correction term which assures the process to be a martingale (see

Chapter 2.1.2). We assume αNIG = 5 and δ = 1 which results in fat tails (αNIG → ∞
generates a GBM in the limit). Skewness parameter βNIG is chosen out of three different

values βNIG = {−2, 0, 2}. Picking βNIG out of these three different values results in a

negatively skewed distribution if βNIG = −2, in a symmetric distribution if βNIG = 0 and a

positively skewed distribution if βNIG = 2.

Before examining the parameter sets individually, we first compare the convergency behavior

with respect to the frequency variable M of all three NIG setups combined. Figure 3.5 shows

that the speed of convergency is dependent on the truncation scheme used as well as on the

characteristic of the stochastic process. Reference values are calculated by means of Carr
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Figure 3.5: Convergency of the Gabor method with respect to three different truncation schemes.
On the left, a negatively skewed distribution (βNIG = −2) is implemented, in the middle
part a symmetric (βNIG = 0) and a positively skewed is used on the right (βNIG = 2).
Cos method convergency is displayed as a comparison in dotted lines and also in dashed
lines with twice the number of terms MCos = 2M .

and Madan’s FFT method and the Cos method26 is included as a comparison. By the term

’absolute error’ we refer to the absolut deviation of prices calculated with the help of the

Gabor method compared to prices calculated by the reference models.

When pricing under the assumption of a fat-tailed symmetric distribution (middle part of

the figure), the three truncation schemes perform similarly. The approximation accuracy is

higher for left skewed distributions (left part of the figure) given the cumulant c3 is considered.

This higher accuracy, however, requires more terms in the approximation. In the presence

of a stochastic process with a right skewed marginal distribution (right part of the figure),

the truncation schemes (3.27) and (3.28) are again advantageous. In general, the skewness

enhanced schemes (3.27) and (3.28) show robust truncation goodness even when departing

from a one-year time horizon. Even when pricing under the assumption of a fairly skewed

marginal distribution of the stochastic process, the Gabor method only needs about 40-50

terms to come up with an accurate price approximation.

Taking a closer look at the convergency under the aspect of the computational time needed

to reach a given level of precision, Figure 3.6 displays the model’s behavior assuming a time

to maturity of half a year and a positively skew. Within the figure, for each of the truncation

schemes (3.26) - (3.28) a plot of CPU time27 in milliseconds against frequency parameter M

is included in the upper part. Independent from the truncation scheme used, CPU time is

nearly linear in parameter M .

The lower part of the figure is concerned with the question how absolute error values, i.e.

absolute deviations from reference values, are connected to CPU time. Hereby, the fig-

ure implies that truncation schemes (3.27) and (3.28) converge faster compared to (3.26).

26 The inclusion of the Cos method in Figure 3.5 is supposed to serve as a classification rather than a
comparison. This is due to the fact that the Cos method approximates the whole function at once, while
the Gabor method works on a shift-wise basis. The number of time shifts, however, is not incorporated
here.

27 Calculations are implemented within the programming environment Matlab 2014b using a machine with a
2.3 GHz Quad-Core CPU and 16 GB RAM.
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Figure 3.6: CPU time based on different truncation schemes. Time to maturity is half a year and
skewness is positive with βNIG = 2. Dashed red lines indicate an error level of 10−3,
10−5 and 10−10 respectively.

This observation is even more pronounced for truncation scheme (3.28) than for truncation

scheme (3.27). Similar findings can be described when analyzing left skewed or symmetric

distributions.

In the next part of this section, we concentrate on shortening the time to maturity. Besides

the choice of short-dated contracts, we take a closer look at the parameter environment

described in the middle as well as on the right side of Figure 3.5. That is, we use the

general setup ΘNIG and define two individual setups ΘNIG
1 and ΘNIG

2 that differ in the value

parameter βNIG is attached to. To begin with a symmetric setup (βNIG = 0), we specify

the parameter vector

ΘNIG
1 =

[
µ, αNIG, βNIG, δ

]
=
[
µNIG, 5, 0, 1

]
.

Figure 3.7 plots the resulting risk neutral probability density function given the parameter set

described by ΘNIG
1 and assuming a time to maturity of one year. Both, the NIG distribution

in black solid lines as well as the Normal distribution in red dashed lines are symmetric. The

NIG distribution, however, shows a much richer tail behavior as shown in the log-density

plot on the right-hand side. Based on ΘNIG
1 , the NIG distribution assumes a level of excess

kurtosis of κ = 3.6.

Given the above parameter set ΘNIG
1 , Table 3.2 summarizes deviations from reference values.

These reference values are again calculated by the FFT method down to a time to maturity

of 10 days. Since this particular method looses precision given very short time horizons,

the Cos method with MCos = 217 is consulted for maturities of only 5 days. We implement

at-the-money put options with S = K = 10, a risk free interest rate of r = 0.02 and costs of

carry given by q = 0. The Gabor method again shows small errors even with regard to low
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Figure 3.7: Density (left) and log-density (right) plot given the above parameter set and a time
horizon of T = 1. As comparison, a Normal distribution with matching standard
deviation is plotted in dashed lines.

Frequency Parameter M

T 10 50 100 200 400 800 1000

1 year
Gabor -4.5e-3 4.9e-15 4.9e-15 4.9e-15 4.9e-15 4.9e-15 4.9e-15

Cos -0.22 -8.9e-07 1.12e-12 9.8e-15 9.8e-15 9.8e-15 9.8e-15

1/2 year
Gabor -2.6e-2 4.1e-12 -8.9e-16 -8.9e-16 -8.9e-16 -8.9e-16 -8.9e-16

Cos -0.54 -8.7e-4 -6.2e-7 1.4e-12 1.1e-15 1.1e-15 1.1e-15

1/4 year
Gabor -7.8e-2 -5.2e-07 1.1e-12 9.1e-15 9.1e-15 9.1e-15 9.1e-15

Cos -0.58 -4.2e-3 -3.7e-5 -5.1e-9 -1.1e-15 -1.1e-15 -1.1e-15

10 days
Gabor -0.3 -5.1e-3 -2.8e-4 -2.4e-6 -3.4e-10 5.44e-15 5.44e-15

Cos -0.8 -5.4e-2 -9.7e-3 -7.7e-4 -1.3e-5 -9.7e-9 -2.6e-10

5 days
Gabor -0.3 -1.5e-2 -2.2e-3 -1.3e-4 -1.0e-6 -1.4e-10 -8.9e-13

Cos -0.9 -9.8e-2 -2.8e-2 -5.2e-3 -4.6e-4 9.5e-6 -1.6e-6

Table 3.2: Pricing errors for at-the-money put options. Parameters are chosen as S = K = 10, risk
free interest rate r = 0.02 and q = 0. Truncation in the case of the Gabor method is
done by scheme (3.27). In the case of the Cos method, M = 217 cosine series terms are
used.
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Figure 3.8: Density (left) and log-density (right) plot given the above parameter set and a time
horizon of T = 1. For comparison purposes, a Normal distribution with matching
standard deviation is plotted in dashed lines.

values of M . In particular, when confronted with a combination of a short time to maturity

and a highly non-normal marginal distribution, this feature becomes important.

In addition to heavy-tailed symmetric distributions, we now test against skewed distributions.

Thus, we define a second parameter setup

ΘNIG
2 =

[
µ, αNIG, βNIG, δ

]
=
[
µNIG, 5, 2, 1

]
.

Again, as a comparison, we plot the behavior of the resulting density functions on the basis

of a one-year time horizon in Figure 3.8. In contrast to ΘNIG
1 , there is skewness s = 0.56

and kurtosis κ = 4.07 present based on ΘNIG
2 . The effect of skewness in comparison to a

symmetric Normal distribution is especially visible in a log-density plot that is included in

the right part of the figure.

The convergency of the Gabor method and the Cos method is shown in Figure 3.9. Both

methods show fast convergency to the reference value. Especially with shrinking maturities,

the Gabor method needs less terms M for the task. Overall, The Gabor method seldom

needs more than M = 400 terms to achieve a useful price approximation, and, in many

cases, a high level of accuracy is already reached with M ≤ 100.



3.5. NUMERICAL IMPLEMENTATION 53

     

 

 

 

 

 
10−03

10−05

10−07

10−09

10−11

10−13

10−15

 

0.50.40.3
Time to Maturity

0.20.1
 
0

100

200

300

400

500

600

700

800

900

1000

F
re
q
u
en

cy
M

     

 

 

 

 

 
10−03

10−05

10−07

10−09

10−11

10−13

10−15

 

0.50.40.3
Time to Maturity

0.20.1
 
0

100

200

300

400

500

600

700

800

900

1000

F
re
q
u
en

cy
M

Figure 3.9: Pricing errors of the Gabor method (left) and the Cos method (right) as a function of
M and time to maturity T = {1/250, 5/250, ..., 125/250}. Parameters as in ΘNIG

2 mentioned
above.

To complete the numerical test scenarios we turn to VG, CGMY and Heston processes.

Parameter sets are given by

V G : S = 100, K = 90, r = 0.1, q = 0

µV G = r − q +
1

ν
log
(

1− θν − σν

2

)
ΘVG = [µV G, σ, ν, θ]

ΘVG = [µV G, 0.12, 0.2,−0.14]

CGMY : S = 100, K = 100, r = 0.1, q = 0

µCGMY = r − q − CΓ(−Y )
[
(M − 1)Y −MY + (G+ 1)Y −GY

]
ΘCGMY = [µCGMY , C,G,M, Y ]

ΘCGMY = [µCGMY , 1, 5, 5, Yj ]

Heston : S = 100, K = 100, r = 0, q = 0

µHeston = r − q
ΘHeston = [µHeston, λ, η, ū, u0, ρ]

ΘHeston = [µHeston, 1.5768, 0.5751, 0.0398, 0.0175,−0.5711]

and are chosen identical to the parameters in Fang and Oosterlee (2008). Besides the pa-

rameter setup, reference values are also obtained from this source.

Table 3.3 contains an overview of the level of accuracy depending on variable M . In case

of VG and Heston, the time horizon is defined within the table. As for the CGMY process,

time horizon is fixed at T = 1. Here, instead of the time horizon, factor Y assumes three

different states. In the upper part of Table 3.3, pricing errors of the Gabor method are

summarized up to a level of M where the price converges. In the lower part of the table, the

maximal precision which is reachable by means of the Cos method is also included. Even

though parameter constellations are chosen to produce extremely peaked density functions,
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VG CGMY Heston

M T = 1 T = 0.1 Y1 = 0.5 Y2 = 1.5 Y3 = 1.98 T = 1 T = 10

10 3.2e-03 4.8e-05 6.5e-03 2.9e-03 3.7e-03 0.2 0.4

20 4.9e-06 3.7e-04 9.1e-07 4.7e-10 8.2e-10 5.6e-03 2.1e-03

30 1.2e-07 2.0e-04 5.3e-09 4.8e-10 6.0e-11 1.6e-03 3.8e-06

40 2.2e-09 8.6e-06 6.6e-09 7.9e-05 3.4e-07

50 5.5e-10 4.3e-05 1.5e-05 1.0e-08

75 2.0e-10 3.3e-06 1.0e-07 5.4e-11

100 5.8e-06 2.9e-08

150 1.6e-06

200 4.8e-07

500 4.6e-08

1000 9.4e-09

48 3.6e-11 1.2e-11

128 3.1e-09

160 1.9e-11 1.9e-10

192 3.2e-07

1024 2.5e-08

Table 3.3: Convergency behavior with respect to various stochastic processes. Reference values are,
in order of the processes’ appearance in the table, given by: 19.099354724, 10.993703187,
19.812948843, 49.790905469, 99.999905510, 5.785155450, 22.318945791.

as in the case of VG, the method is highly accurate. Both, the pricing errors as well as

convergency is in line with the reference model chosen.

Based on the various test scenarios, the accuracy of the model is controllable by means of

parameter M . It is worth mentioning that a sufficient parametrization of input value M is

dependent on time to maturity T as well as kurtosis c4 to a large extend. Therefore, as a

rule of thumb, we suggest

M =

⌈
20 +

3

100
· S + 2 · c4

T

⌉
. (3.30)

Skewness is hereby not a direct part of the rule of thumb. However, since skewness interacts

with kurtosis, it is accounted for to some degree by using cumulant c4. To come up with

(3.30), we use an identical dataset of skewed and fat tailed marginal distributions as before

and implement the optimal value of M as a dependent variable within a median regression.28

When using a linear regression, outliers due to short maturities (given time to maturity is

extremely low, the fraction c4
T becomes high) result in an overshooting of the estimated

coefficient. Thus, we choose to implement a quantile regression estimating the conditional

28 Several robustness checks have shown that the effect of including further variables besides a constant term,
c4 and T is marginal.
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median instead of an estimation of the arithmetic mean. Judging on the behavior of this

rule of thumb on several random datasets29, the specification in (3.30) yields to a level of

accuracy in the price approximation of at least 1 · 10−5 in more than 95% of cases. This

level of accuracy is sufficient for most practical applications. If a higher level of accuracy is

needed, equation (3.30) provides a starting point from which adjustments according to the

specific needs can be made.

3.6 Conclusion

In this paper, we present a new method for evaluating European-type options via time-

frequency theory. More specifically, we use Gabor frames with truncated Gaussian generator

functions to split the risk neutral pricing integral into two independent inner products. The

first inner product is affected by the stochastic process of the underlying asset and the second

one is based on the type of contract to be evaluated. Besides European put and call options,

we also outline procedures for pricing various binary options in Appendix 3.A.

In Gabor theory, as in most parts of non-orthogonal frame theory, a major issue lies in

computation of the dual frame. A function approximation is only feasible by means of

a generator in combination with a dual function belonging to this particular generator.

Instead of time consuming numerical computation and inversion of the frame operator, we

use a method known in the literature as ’painless non-orthogonal expansion’ to achieve a

considerable simplification. Even though the technique eases the formulation of dual frames,

the inner product that is built upon this dual frame cannot be solved in closed form. Thus,

while the inner product containing the generator function can be solved in closed form, a

fractional FFT procedure is used to numerically evaluate the inner product containing the

dual frame. The shape of the dual frame can differ considerably from its generating frame.

To assure a fast and accurate calculation of the dual frame inner product, we propose a

method to control parameter α and thereby generate a smooth dual frame.

We implement the FFT method by Carr and Madan (1999) as well as the Cos method by

Fang and Oosterlee (2008) as reference models. Numerical tests show that the Gabor method

achieves very high levels of accuracy combined with short computational times. Compared

to the Cos method—which relies on a cosine series expansion—the Gabor method becomes

more involved in terms of computations needed. This heavier computational load, however,

has the advantage that even extremely short dated contracts as well as heavily-skewed and

fat-tailed stochastic processes can be priced reliably. In addition, the Gabor method is

less sensitive to truncation limits which are needed to implement series expansion methods.

Compared to the FFT method, the Gabor method does not rely on a damping parameter

which is needed to ensure L2-convergency of the pricing integral. Therefore, the only truly

exogene model parameter is the maximal number of terms in the frequency domain. The

method at hand shares this feature with the Cos method. In case of the Gabor method,

29 Besides the value of the underlying S, strike K and time to maturity T , input parameters of the stochastic
process are randomized as well yielding to random samples.
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we formulate a rule of thumb to come up with sufficiently high parameter values assuring a

price accuracy on a level of at least 10−5 which is sufficient for most practical applications.

Higher levels of accuracy can be obtained by simply increasing the parameter value that is

suggested by the rule of thumb.



Appendix: Non-Orthogonal Option

Pricing

3.A European-type contracts

To simplify notation, we introduce the variable

ζ = (k + 2(b− a)βm)π

with k,m ∈ Z and α, β > 0.

Cash-or-nothing call

A Cash-or-Nothing call option pays the holder of the contract a certain amount P if ST ≥ K
at maturity. The contract’s coefficients vk needed to calculate equation (3.15) are given by

vk =
1

2(b− a)

∫ b

a
(P 1x≥0(x)) e2πimβx eikπ

x−a
b−a dx

=


i
(
e
ikπ a

a−b−eiπ(2bβm+k)
)
P

ζ for ζ 6= 0

bP
2(b−a) for ζ = 0

.

Cash-or-nothing put

A Cash-or-Nothing put option pays the holder of the contract a certain amount P if ST < K

at maturity. The contract’s coefficients vk needed to calculate equation (3.15) are given by

vk =
1

2(b− a)

∫ b

a
(P 1x<0(x)) e2πimβx eikπ

x−a
b−a dx

=


−i
(
e
ikπ a

a−b−e2πimβa
)
P

ζ for ζ 6= 0

− aP
2(b−a) for ζ = 0

.
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Asset-or-nothing put

An Asset-or-Nothing put option hands out the underlying asset if ST < K at maturity. The

contract’s coefficients vk needed to calculate equation (3.15) are given by

vk =
1

2(b− a)

∫ 0

a
(Kex) e2πimβx eikπ

x−a
b−a dx

=


e
ikπ a

a−b
(
e
a− iaζ

a−b−1

)
K

2(a−b−iζ) for ζ 6= 0

K(1−ea)
2(b−a) for ζ = 0

.

Asset-or-nothing call

An Asset-or-Nothing call option hands out the underlying asset if ST ≥ K at maturity. The

contract’s coefficients vk needed to calculate equation (3.15) are given by

vk =
1

2(b− a)

∫ b

0
(Kex) e2πimβx eikπ

x−a
b−a dx

=


e
ikπ a

a−b
(
e
b− ibζ

a−b−1

)
K

2(a−b−iζ) for ζ 6= 0

K(eb−1)
2(b−a) for ζ = 0

.

European call options

A call option pays the holder of the contract an amount ST −K if ST > K at maturity. The

contract’s coefficients vk needed to calculate equation (3.15) are given by

vk =
1

2(b− a)

∫ b

a
K (ex − 1)+ e2πimβx eikπ

x−a
b−a dx

=


−K

2

 i
(
e
ikπ a

a−b−eiπ(k+2bβm)
)

ζ +
e
ikπ a

a−b
(
e
b− ibζ

b−a−1

)
a−b−iζ

 for ζ 6= 0

K
2(b−a)

(
eb − b− 1

)
for ζ = 0

.

An alternative approach is to compute the value of a put option and use the Put-Call-Parity

to draw a conclusion on the value of the call option.



Chapter 4

A Trigger to Rule Them All:

Valuation of Multi-Asset Barrier

Options

4.1 Introduction

From Black and Scholes (1973), option pricing methods have been developed in many direc-

tions. Today, a vast literature is present dealing with both the coverage of stylized facts that

are regularly observed in markets as well as the numerical implementation of the models.

Most of the research is thereby based on one-dimensional contracts rather than multi-asset

contracts. However, within the class of exotic options, multi-asset derivatives are an impor-

tant subgroup traded on over-the-counter markets to a large extend. Although representing

an important branch of option contracts, models to value multi-asset options are researched

to a lesser extent compared to their univariate counterparts.

Especially within the class of barrier options, numerical implementation is often not straight

forward. Monte Carlo methods are a natural choice since the computational complexity

increases only linearly with the number of underlying assets. However, Monte Carlo simu-

lations converge very slowly when barrier levels are involved (see e.g. Boyle and Lau, 1994).

Next to Monte Carlo methods, lattice approaches and grid methods are candidates for a

numerical implementation as well. In case of lattice approaches, Boyle (1988) discusses an

implementation given two underlying assets. The assumption of a two dimensional basket

is broadened in Boyle et al. (1989) to a d-dimensional30 basket size. A drawback of tree

methods is an oscillatory convergency behavior which prevents an implementation of extrap-

olation methods. Korn and Müller (2009) present a method which is based on the before

mentioned tree methods but assures a smooth convergency. However, it is still the case

that the model approximates a d-dimensional geometric Brownian motion as the underlying

30 Throughout this chapter we refer to the number of assets within the basket as the option’s dimensionality.
Thus, a two-dimensional contract refers to a contingent claim with two underlying assets.
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source of randomness. Related to lattice approaches are finite difference methods also known

as grid methods. A well known example of using finite difference methods to value derivative

securities is Hull and White (1990). Both approaches, lattice and grid, have in common that

incorporating path dependency can be cumbersome, especially when time varying barriers

are in place.

Within this chapter, we contribute to this area of research by analyze multivariate Fourier

series expansions and their ability to price financial derivatives. Fourier series expansion

methods are originally used to solve the heat equation, i.e. a partial differential equation.

Over the years the field of applications of Fourier series vastly increased and the methodology

became an integral part of signal processing, quantum mechanics and electrical engineering,

among others. In finance, and especially in option pricing, Fourier series expansions are

introduced in Fang and Oosterlee (2008) within a univariate setting. Based on this contribu-

tion, this chapter is an enhancement to Ruijter and Oosterlee (2012) in which Fourier cosine

series expansion methods are used to price rainbow options31 with Bermudan features32 as

well as to Meng and Ding (2013) which use modified sine series to price European style

options based on two underlyings.

Since multivariate Fourier series have been implemented successfully to price European and

Bermudan options our main interest lies within the following question: Are there structural

differences within the class of multivariate Fourier series when using them to price deriva-

tives? More precisely, we are interested in answering the question whether a trader who

is interested in implementing Fourier series methods to price various basket options should

prefer one type of Fourier series over another. Our main findings are that pure sine series

are dominated by both modified sine series as well as cosine series. Furthermore, when also

considering computational complexity in addition to pure convergency arguments, modified

sine series also dominate cosine series and should therefore be the method of choice.

Compared to Ruijter and Oosterlee (2012), we consider discrete multi-asset barrier options

of various kinds instead of Bermudan options. Moreover, we include not only cosine series

but also sine series and modified sine series. As mentioned before, modified sine series are

also studied in Meng and Ding (2013). The authors assert a similar convergency behavior

compared to cosine series. However, our analysis shows that modified sine series unveil their

strength to a full extend only when pricing higher basket sizes or when introducing path

dependency which has not been done in Meng and Ding (2013).

Fourier series methods offer a flexible framework which enables the pricing of derivatives

assuming more complex stochastic processes such as pure jump Lévy processes as well as the

implementation of various kinds of contracts. Besides outlying the procedure to incorporate

path dependency in a similar fashion as in Ruijter and Oosterlee (2012), we concentrate on

31 The term rainbow options is equivalent to the term multi-asset option. On occasion the various sources of
randomness within a multi-asset option are referred to as the colors of a rainbow.

32 In its ability to exercise early, a Bermudan option ranges in between European options and American
options. While early exercise is not possible in case of European options and always possible in case of
American options, Bermudan options offer a finite number of predefined points in time on which exercise
is possible.
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different areas of application and thereby stroll from pure equity basket options (put and

call options as well as binary options) to hybrid equity and credit derivatives (multi-asset

equity swaps) along to structured products (multi-barrier reverse convertibles).

Within the core of the numerical algorithm used to price these products is a multivariate

version of Parseval’s theorem that describes how to calculate an integral of the product of

two functions as the multidimensional sum of their Fourier coefficients. For this sum to be

finite it is important that the coefficients converge given a finite number of terms. For the

numerical implementation by a finite number of terms within the sums, the rate of conver-

gency becomes crucial. In context of the option pricing problems chosen in this chapter, we

consider two broader types of functions and their coefficients: First, density functions which,

as part of a stochastic process, control the individual behavior of the underlying assets and

the dependency between each other. Density functions f ∈ C∞(Rd) show a high degree

of smoothness, which yields to a fast decay of their respective Fourier coefficients. Second,

payoff functions as defined by the option contract under consideration. Payoff functions

ν ∈ L2([a, b]d) are often non-analytic functions33 which yields to a slower degree of conver-

gency. Especially in relation to payoff functions, the choice between cosine series coefficients,

sine series coefficients and modified sine series coefficients affects the overall level of accuracy.

Primary, we consider step function-like payoffs since they can be used to calculate probabil-

ities of hitting a barrier which becomes an important ingredient of more exotic options or

credit derivatives.

The course of the chapter is two-folded: Within the first part (Sections 2 and 3) the conver-

gency behavior of the Fourier series expansions considered are central in Section 2. Based on

these insights, approximation quality and computational speed of European type options are

subject to Section 3. The second part of the chapter (Section 4) introduces the algorithm to

price discrete barrier options of various types. Section 5 contains a conclusion and is followed

by an appendix.

4.2 Multidimensional Fourier series

We approach the problem of evaluating multi-asset option contracts with the help of d-

dimensional series expansion methods. Common techniques within the field of series expan-

sion are either full Fourier series, Fourier cosine series, Fourier sine series, or mixed Fourier

series. Rather recently in Iserles and Nørsett (2008) as well as Adcock (2010), modified

Fourier series joint as a new alternative to the traditional series expansion methods. Com-

mon to all of the before mentioned methods is that they rely on basis functions that share

the feature of being orthogonal with respect to an inner product on a given interval. The

basis functions considered here are trigonometric functions. Thus, each of the resulting se-

ries expansions approximate a given function by means of a superposition of trigonometric

functions.

33 Analytic functions are such functions that can be described locally by a convergent power series.
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With the goal of option pricing in mind, we focus on the approximation of two distinct kind

of functions: on the one hand multivariate density functions and on the other hand payout

profiles of derivative contracts. In case of the last-mentioned, next to call and put options,

especially digital34 payout profiles are considered. Digital options are hereby defined to pay

a pre-defined amount if stock prices at maturity stay above their respective strike prices. If

at least one of the stock prices is below the strike level, the contract expires worthless. The

fact that every stock price has to stay above its strike value is an assumption to simplify

argumentations in the following. It would also be possible to reduce the final payoff if some

underlyings stay below their strike level instead of expiring worthless.

The notation within this paper is chosen as follows: variables printed in bold indicate vectors,

matrices, or block matrices such as n = (n1, ...,nd), where, depending on the expansion

method, nj is e.g. defined as the vector nj = (0, ..., Nj − 1). The symbol R(·) indicates

taking the real part of a complex number, i =
√
−1 defines the imaginary unit itself and n>

is associated with taking the transpose of vector n. In addition, we consider a d-dimensional

space Ω = [a1, b1]× [a2, b2]× · · · × [ad, bd] as well as several subsets Θ ⊂ Ω that are defined

later on. Lower case variables ωj and θj are used to describe the length of an interval at a

given dimension, e.g. ωj = bj − aj .

We consider three different types of orthogonal sets to approximate a given function f(x) ∈ Ω,

x ∈ Rd. Hereby, we use the variables

uj =
njπ

bj − aj
, pj =

(
nj − 1

2

)
π

bj − aj

heavily in the following. As a first orthogonal set we consider the set of cosine functions

Cn(x) = cos

(
n1π

x1 − a1

b1 − a1

)
· ... · cos

(
ndπ

xd − ad
bd − ad

)
= cos (u1(x1 − a1)) · ... · cos (ud(xd − ad)) ,

second, the set of sine functions

Sn(x) = sin

(
n1π

x1 − a1

b1 − a1

)
· ... · sin

(
ndπ

xd − ad
bd − ad

)
= sin (u1(x1 − a1)) · ... · sin (ud(xd − ad)) ,

and third, the set of modified sine functions which are abbreviated by the term ’modsine’

occasionally in the following.

Mn(x) = sin

((
n1 −

1

2

)
π
x1 − a1

b1 − a1

)
· ... · sin

((
nd −

1

2

)
π
xd − ad
bd − ad

)
= sin (p1(x1 − a1)) · ... · sin (pd(xd − ad)) .

34 The terms ’binary option’ and ’digital option’ are used as synonyms within this chapter.
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Given the individual base functions, we can define the respective series approximation ex-

pressions as follows: Fourier cosine series are given by

f(x) =
∑
n∈Nd

cCn Cn(x) (4.1)

cCn =
2dn

d∏
k=1

ωk

∫
Ω
f(x) Cn(x) dx,

where dn defines the number of non-zero terms in the vector n = (n1,n2, ...,nd) (Pivato,

2010). Fourier sine series are given by

f(x) =
∑
n∈Nd+

cSn Sn(x) (4.2)

cSn =
2d

d∏
k=1

ωk

∫
Ω
f(x) Sn(x) dx,

and modified sine series by

f(x) =
∑
n∈Nd+

cMn Mn(x) (4.3)

cMn =
2d

d∏
k=1

ωk

∫
Ω
f(x) Mn(x) dx.

It is worth noticing that the sums in (4.1) - (4.3) are d-dimensional sums starting at different

integers. While integer zero is included in (4.1), the sums in (4.2) and (4.3) start at integer

one as indicated by n ∈ Nd+. Within the above series approximations, the dimension of

the block matrix n defines the number of actual sums. That is, in case of three underlying

assets, we define n = [n1,n2,n3]. Each individual sum’s starting and ending integer is then

defined by the respective vectors n1, n2 and n3. Keeping these relations in mind, we start

with elaborating on the approximation of multivariate distribution functions

Approximation of multivariate distribution functions

We hereby consider the marginal density function fXt(xt|xs) ∈ Rd, s < t. Where writing

the whole expression it is not crucial for the understanding, we write fX(x) for the marginal

distribution. When trying to define series coefficients of a multivariate density function

fX(x) ∈ R, the concept of characteristic functions is of special use.

φ(ω) =

∫
Rd
fX(x) eiω

>x dx. (4.4)

As can be seen in equation (4.4), The characteristic function φ : Rd → Cd transforms the

information of a real valued density function into complex space. The major advantage



64 CHAPTER 4. A TRIGGER TO RULE THEM ALL

hereby is that these functions are known in closed form for a wide range of stochastic processes

and underlying marginal distributions.

To be able to approximate a multivariate distribution function, we need to prepare the

series coefficients fn of a density function before returning to the concept of characteristic

functions. We state the procedure in detail for cosine coefficients. Similar steps based on

sine and modified sine series can be used to reproduce the formulas stated in the following.

In terms of cosine series approximation, series coefficients are calculated by

fCn =
2dn

d∏
k=1

ωk

∫
Ω
fX(x) Cn(x) dx

=
2dn

d∏
k=1

ωk

∫
Ω
fX1,...,Xd(x1, ..., xd)

d∏
j=1

cos (uj(xj − aj)) dx1 · · · dxd.

Compared to the form of an arbitrary characteristic function in (4.4), we have to rewrite the

product of cosine terms into complex exponentials to approach the aim of approximating

density functions by means of multi-dimensional Fourier series. Hereby, the trigonometric

identities

cos(z) =
1

2

(
eiz + e−iz

)
, and

sin(z) =
1

2i

(
eiz − e−iz

)
become important. Incorporating theses identities, the coefficients can be written as

fCn =
2dn

d∏
k=1

ωk

1

2d

∫
Ω
fX(x1, ..., xd)

d∏
j=1

(
eiuj(xj−aj) + e−iuj(xj−aj)

)
dx1 · · · dxd (4.5)

=
2dn

d∏
k=1

ωk

1

2d

∫
Ω
fX(x)

2d∑
j=1

ei(undiag(ξj))
>(x−a)dx, (4.6)

where ξ ∈ {−1, 1}2d×d in (4.6) is a matrix of binary combinations. The entries of each row

vector within ξ, hereby, represent the signs of the exponentials when expanding the product∏d
j=1

(
eiuj(xj−aj) + e−uj(xj−aj)

)
in (4.5). In case of d = 2, the matrix shows the following

structure:

ξ =


ξ1

ξ2

ξ3

ξ4

 =


1 1

1 −1

−1 1

−1 −1


However, since the trigonometric identities above imply 2R(eiz) = 2R(e−iz) = eiz + e−iz ∈
R, it is sufficient to only use the first d row vectors in ξ and drop the second half with
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complementary signs. Thus, the summation in (4.6) can be shortened by half and, given the

interval Ω is chosen sufficiently large, characteristic functions can be introduced. In addition,

to shorten notations, we define ξ̄ = diag(ξ).

fCn =
2dn

d∏
k=1

ωk

1

2d

∫
Ω
fX(x)

2d−1∑
j=1

2 R
{
ei(unξ̄j)

>(x−a)
}
dx

=
2dn

d∏
k=1

ωk

21−d
2d−1∑
j=1

R
{∫

Ω
f(x) ei(unξ̄j)

>(x−a)dx

}
(4.7)

Equation (4.7) almost shows the structure of a characteristic function within the brackets. To

complete the picture, we use the fact that the characteristic function of a stable distribution

can be written independently of the state s in which the individual values of the d-dimensional

random variable Xt are:

φ(ω,xs) =

∫
Rd
fXt(xt|xs = 0) eiω

>x dx eiω
>xs = φ(ω) eiω

>xs ,

where the characteristic function to the very right indicates initial values of zero. In a final

step, multiplying the characteristic function by an exponential term of the form

φ(ω,xs) e
iω>a

and assigning ω = unξ̄j yields to the following cosine series coefficients:

fCn =
2dn

d∏
k=1

ωk

21−d
2d−1∑
j=1

R
{
φ
(
unξ̄j

)
ei(unξ̄j)

>(xs−a)
}

(4.8)

In a similar fashion, the coefficients for Fourier sine series and modified Fourier sine series

can be obtained as:

fSn =
2

d∏
k=1

ωk

1

(2i)d

2d−1∑
j=1

R
{(

d∏
k=1

ξkj

)
φ
(
unξ̄j

)
ei(unξ̄j)

>(xn−an)

}
(4.9)

fMn =
2

d∏
k=1

ωk

1

(2i)d

2d−1∑
j=1

R
{(

d∏
k=1

ξkj

)
φ
(
pnξ̄j

)
ei(pnξ̄j)

>(xn−an)

}
(4.10)

In theory, using equations (4.8)-(4.10) in combination with their respective series represen-

tation (4.1) - (4.3), a given multivariate density function in L2(Ω) can be approximated by

incorporating an infinite number of coefficients. Since every numerical implementation has

to be done with a finite number of coefficients, the convergence of the coefficients towards

zero is of crucial importance. The faster the coefficients converge towards zero, the fewer

terms are needed within the series representation, the faster computations are done.
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Figure 4.1: Decay behavior of Fourier coefficients approximating a bivariate normal density with
µ1 = µ2 = 0, σ1 = σ2 = 0.3 and ρ = 0.4. The respective characteristic function is given

by φ(u) = e−
1
2u

>Σu, with Σ being the covariance matrix.

To show the convergency behavior in more detail we approximate a bivariate normal distri-

bution with parameters chosen as µ1 = µ2 = 0, σ1 = σ2 = 0.3 and ρ = 0.4. Since a bivariate

Normal distribution fXY ∈ C∞(R) is a particularly smooth function, convergency will be

fast. The example is supposed to provide the reader with an intuition for how the conver-

gency of the coefficients in Figure 4.1 interacts with the overall quality of approximation in

Figure 4.2 as well as elaborate on differences between the three types of Fourier series.

Both, Figure 4.1 and Figure 4.2 indicate that all three approximation schemes behave similar.

Figure 4.1 depicts the series coefficients in a log-plot. The respective Fourier coefficients of

a bivariate Normal distribution are stored in a matrix of size RN1×N2 , in this case R75×75.

Plotting the matrix results in a three-dimensional graph. However, to emphasize on the decay

rate of the coefficients, we display the results in a two dimensional plot. The entire matrices

are shown in the upper part of Figure 4.1 where the oscillatory nature of the coefficients is

visible. The same information is plotted in the lower part of the figure. However, instead

of all coefficients, only the largest and smallest values are included. Cosine and sine series

coefficients are almost identical in its behavior to decay. In case of the modified sine series,

the overall picture varies to a certain amount but without any pronounced differences in

terms of the speed of convergency. Concentrating on the lower thee subgraphs, the slowest

coefficients to converge, indicated by the respective upper line, reach a level below 10−15 at

about N1 = N2 = 75 terms within the series. Given a machine precision of ε = 2.22 · 10−16,

this, in turn, implies that incorporating coefficients beyond N1 = N2 ≈ 75 does not improve

the numerical approximation quality.
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Figure 4.2: Approximation quality of a bivariate normal density with σ1 = σ2 = 0.3 and ρ =
0.4. Each series approximation is implemented with N1 = N2 = (10, 40, 80) terms.
Graphs are vertically connected, meaning that the graphs to the left belong to a cosine
approximation, the graphs in the middle belong to a sine approximation and the graphs
to the right belong to a modified sine series.

To complete the picture, Figure 4.2 shows the error terms, i.e. the deviation of the series

representation from the true function, based on the coefficients displayed in Figure 4.1. The

parameters chosen suggests that the orthogonal set used within the series expansion does not

yield to dissimilar results in terms of approximation quality. All of the three methods show

a fast convergency of the coefficients and based on that an accurate approximation given a

quite low number of terms within the summation. Figure 4.2 also displays a common pattern

of Fourier series: the approximation is based on wave functions. This characteristic is most

pronounced when considering the deviation pattern of Fourier series with a low number of

terms as in the upper part of the figure. Hereby, the error terms move in waves comparable

to movements of water when throwing a stone into a pond.

Approximation of a cube

This type of exponential convergency, however, does not translate over to functions that do

not show the same degree of smoothness. As long as the function under consideration is

still square integrable ν ∈ L2(Ω), it can be approximated using Fourier series. However,

convergency slows down given a lower degree of smoothness. As a contrast to the smooth
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Figure 4.3: Cube with support on the domain Θ = [c1, e1]× [c2, e2].

and symmetric bivariate density function before, we therefore consider the approximation of

a d-dimensional cube that lives on the subinterval Θ = [c1, e1]× ...× [cd, ed] ⊂ Ω given by:

ν(x) = 1Θ(x) = 1{[c1,e1]}(x1) · ... · 1{[cd,ed]}(xd),

where 1{·} is the indicator function. Figure 4.3 displays the scenario in a setting where

variable x assumes two domains x = (x1, x2).

Again, starting with cosine series coefficients, the following holds:

νCn =
2dn

d∏
k=1

ωk

∫
Ω
1{[c1,e1]}(x1) · ... · 1{[cd,ed]}(xd)

· cos (u1(x1 − a1)) · ... · cos (ud(xd − ad)) dx1...dxd

=
2dn

d∏
k=1

ωk

d∏
j=1

∫
Ωj

1{[cj ,ej ]}(xj) cos (uj(xj − aj)) dxj

=
2dn

d∏
k=1

ωk

d∏
j=1

∫
Θj

cos (uj(xj − aj)) dxj (4.11)

Equation (4.11) shows that the d-dimensional coefficients of the function ν are Kronecker

products of the univariate coefficients. Thus it is sufficient to solve the integral only in a

univariate case Θ = [c, e]

νCn (ω, θ) =

∫
Θ

cos (u(x− a)) dx

=

e− c n = 0

− (b−a)(sin(nπ a−ca−b)−sin(nπ a−ea−b ))
nπ n 6= 0

=

θ n = 0

−ω(sin(nπ c−aω )−sin(nπ e−aω ))
nπ n 6= 0

(4.12)
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and use (4.12) to calculate the multivariate cosine coefficients as

νCn =
2dn

d∏
k=1

ωk

νCn1
(ω1, θ1)⊗ νCn2

(ω2, θ2)⊗ ...⊗ νCnd(ωd, θd).

The symbol ⊗ hereby represents taking a Konecker product. Following similar steps, sine

coefficients are given by

νSn =
2d

d∏
k=1

ωk

νSn1
(ω1, θ1)⊗ νSn2

(ω2, θ2)⊗ ...⊗ νSnd(ωd, θd),

where

νSn (ω, θ) =
ω
(
cos
(
nπ c−aω

)
− cos

(
nπ e−aω

))
nπ

, (4.13)

and modified sine coefficients are given by

νMn =
2d

d∏
k=1

ωk

νMn1
(ω1, θ1)⊗ νMn2

(ω2, θ2)⊗ ...⊗ νMnd(ωd, θd),

where

νMn (ω, θ) =
2ω
(

cos
(

(2n−1)π
2

c−a
ω

)
− cos

(
(2n−1)π

2
e−a
ω

))
nπ

. (4.14)

From equations (4.12), (4.13) and (4.14) we infer that each of the series coefficients decay

like O
(

1
n1·...·nd

)
, independent of the orthogonal set used. This type of asymptotic behavior

indicates that convergency is slowest given one of the variables, say n1, is fixed at a low

value, e.g. n1 = 1. Increasing all other variables results in a decay but not in a decay as

rapid as when all variables are increased together.

In a two-dimensional setting, this means that the largest magnitudes in the absolute values

of the coefficients are given when fixing one of the parameters at its lowest possible value

and increasing the other one. If we take, as an example, the function

ν(x1, x2) = 1x1> 1 · 1x2> 1

on the cube Ω = [−π, π]2, Figure 4.4 displays the convergency behavior of all three orthogonal

sets considered here. As indicated above, convergency is rather slow which is due to the fact

that step functions are non-analytic with at least one jump in the function profile. In

case of choosing one orthogonal set over another, there is no clear-cut decision available.

Thus, calculating the price of a binary-type option contract, the three series approximation

methods ought to perform in a similar fashion (see Section 4.3). This, however changes when

considering smoother payoff functions compared to step functions.
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Figure 4.4: Decay behavior of Fourier coefficients (cosine coefficients are shown in the left part, sine
coefficients in the middle and modified sine coefficients in the right part) approximating
a step function ν(x) = 1x> 1 ∈ [−π, π]2.

Approximation of exponential functions

Up to this point, we considered functions that produce coefficients which can be localized on

different endings of a convergency scale: on the one hand a normal density with exponential

convergency and, on the other hand, step functions with a slower O
(

1
n1·...·nd

)
convergency.

As a final example within this section, we include exponential functions which can be ranged

in between the two extrem cases of before.

Next to step functions in form of binary options, payoff contracts that incorporate the

exponential function are important. In contrast to step functions, the exponential function

is a smooth analytic function. The higher degree of smoothness hereby translates into a

faster decay of the series coefficients. This is, however, only true for cosine series as well

as modified sine series. To elaborate on this result, we introduce the series coefficients in a

univariate setting. In a multivariate setting, findings are identical.

We define ν(x) = ex on a domain ν ∈ [a, b] such that the coefficients are given by

νn(x) =
2

b− a

∫ b

a
ex ϕn(x) dx.

Solving the above equation for each orthogonal set used in our analysis, the series coefficients

using an orthogonal cosine set is given by equation (4.15), coefficients of a sine series by
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Figure 4.5: Decay behavior of Fourier coefficients approximating an exponential function ν(x) =
ex ∈ [−π, π]2.

equation (4.16), and equation (4.17) defines coefficients of a modified sine series:

2

b− a

∫ b

a
ex cos (u(x− a)) dx =

2

b− a ·
eb(−1)n − ea

n2
(

π
b−a

)2
+ 1

(4.15)

2

b− a

∫ b

a
ex sin (u(x− a)) dx =

2

b− a ·
nπ(b− a)

(
ea − eb(−1)n

)
n2π2 − (b− a)2

(4.16)

2

b− a

∫ b

a
ex sin (p(x− a)) dx =

2

b− a ·
ea

(n− 1
2

)π

b−a − eb(−1)n(
(n− 1

2
)π

b−a

)2

+ 1

(4.17)

From the equations in (4.15)-(4.17), we conclude that cosine series coefficients as well as

modified sine series coefficients decay at a rate of O
(

1
n2

)
. Sine series coefficients, however,

converge only at a rate of O
(

1
n

)
as is also illustrated in Figure 4.5. Coefficients based on

a sine series converge rather slow. Cosine and modified sine series show the same speed

of convergency. However, while cosine coefficients converge in a smooth way, modified sine

series oscillate in their decay.35

This rather specific example of an exponential function, can be generalized: modified sine

series as well as cosine series show a superior convergency in case of analytic functions that

are non-periodic (Iserles and Nørsett, 2008). How distinct these differences in convergency

have a influence on the actual task of pricing multi-asset options is part of the following

section.

35 When looking at Figure 4.5 a technical note is in order: Modified sine series do converge in an oscillatory
nature. However the point of break at around n = 150 is due to a graphical issue and not due to a pattern
in convergency.
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4.3 Path independent option pricing

4.3.1 Option pricing framework

In a risk neutral setting, the price of a European basket option is given by an discounted

expected value under a risk neutral measure Q of the option’s payoff function ν at maturity

νt = e−r(T−t) EQ[ν(ST ) | Ft]

= e−r(T−t)
∫
Rd+
ν(ST ) f(ST | St) dST . (4.18)

To effectively implement Fourier series techniques, some changes in variables are helpful.

First, we use log returns instead of the underlying asset price St. Second, variables such as

asset specific strike levels Kj are also normalized by their respective underlying at a given

point in time:

xtj = log
Sj(t)

Sj(0)
, kj = log

Kj

Sj(0)
, j = 1, ..., d

For reasons of simplicity, we use t = 0 as initial value. To keep notation clearly laid out,

we try to avoid multiple indices and, therefore, write time indications in the variables lower

index when using matrices such as xt = (xt1, ..., x
t
d). By means of these changes, equation

(4.18) becomes

νt = e−r(T−t)
∫
Rd
ν(xT ) f(xT | xt) dxT . (4.19)

Since neither of functions ν and f are periodic, the above d-dimensional integral has to be

truncated at a suitable point. This means that the domain Ω has to be chosen at points in

which the integral has already converged to zero. To accomplish this task, we follow Ruijter

and Oosterlee (2012) and use the statistical moments of the stochastic process to determine

appropriate bounds for the above integral.

For now, we assume that the space Ω is a suitable truncation of Rd with respect to the above

integral. As a result, equation (4.19) can be approximated by

νt = e−r(T−t)
∫

Ω
ν(xT ) f(xT | xt) dxT . (4.20)

Based on Parseval’s identity, we can use Fourier series coefficients to calculate a given integral

if the integral under consideration can be written as the product of two square integrable

functions. For two arbitrary functions g, k ∈ L2(Rd), this general statement can be formalized
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by the following expression:

∫
Ω
g(x) k(x) dx =


∏d
j=1 ωj

2dn

∑
n∈Zd

gn kn if a cosine series∏d
j=1 ωj

2d

∑
n∈Zd+

gn kn if a (modified) sine series.
(4.21)

The d-dimensional version of Parseval’s identity in (4.21) can be used to solve the integral

in (4.20). In the following, due to the fact that sine series will show to be less effective, we

limit the formulas to versions based on cosine and modified sine series. However, sine series

are included within the numerical examples of this section.

To get rid of the factor in front of the sums in (4.21) we use the full version of the density

coefficients fn as shown in (4.8) for cosine series and (4.10) for modified sine series but only

a shortened version of the payoff coefficients ν̂n, defined by

ν̂n =


∫
Ω

ν(x)Cn(x) dx if a cosine series∫
Ω

ν(x)Mn(x) dx if a modified sine series.
(4.22)

Strictly speaking the values stored in ν̂n are no longer Fourier coefficients of the payoff

function since they miss their weights. Even being incorrect in a strict sense, due to reasons

of convenience, we continue to refer to ν̂n as series coefficients or Fourier coefficients. Thus,

using equations (4.8)-(4.10) in combination with equation (4.20), the value of an European

basket option evaluated at time 0 ≤ t < T can be calculated by means of

vt =
e−r(T−t)2dn∏d

j=1 ωj
21−d

2d−1∑
j=1

R
{
φ
(
unξ̄j

)
ei(unξ̄j)

>(xt−a) ν̂n

}
(4.23)

in case of cosine series coefficients. Using modified sine coefficients, the expression changes

slightly:

vt =
e−r(T−t)2d∏d

j=1 ωj

(
1

i

)d
21−d

2d−1∑
j=1

R
{(

d∏
k=1

ξkj

)
φ
(
pnξ̄j

)
ei(pnξ̄j)

>(xt−a) ν̂n

}
(4.24)

For the rest of the chapter we use a unified version of equations (4.23) and (4.24). For this

purpose, we define two variables ψ1, ψ2 which depend on the choice of basis functions used

in the series expansion

ψ1 =


2dn∏d
j=1 ωj

21−d if cosine

2d∏d
j=1 ωj

21−d (1
i

)d
if modsine

, ψ2 =

1 if cosine(∏d
k=1 ξ

k
j

)
if modsine

,

qj =


njπ
bj−aj if cosine

(nj−0.5)π
bj−aj if modsine

.
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The resulting unified pricing formula is now given by

vt = e−r(T−t) ψ1

2d−1∑
j=1

R
{
ψ2 φ

(
qnξ̄j

)
ei(qnξ̄j)

>(xt−a) ν̂n

}
. (4.25)

4.3.2 European digital option

With the help of equations (4.25), the first numerical test can be implemented. As a first

test scenario, European digital options are introduced. The payoff function is assumed to

pay an amount of ν = 1 if each of the underlying assets stays above their individual strike

level at maturity:

ν(x) = 1{x>k} = 1{x1>k1} · ... · 1{xd>kd}

The evolution of the basket is described by a 3-dimensional geometric Brownian motion,

j = 1, 2, 3, with the following covariance matrix:

Σ =

 0.432 0.1204 0.10105

0.1204 0.562 0.1316

0.10105 0.1316 0.472


This parameter constellation is labeled Scenario I. Within the covariance matrix Σ, correla-

tion is chosen to be at a level of ρ = 0.5. However, this choice of a flat correlation structure

is not crucial. Non-identical correlation structures do not change the overall behavior of

the model. We always use Scenario I when testing a model setup under the assumption

of a multivariate geometric Brownian motion. The characteristic function of a multivariate

geometric Brownian motion is hereby given by

φ(u) = eim
>u t− 1

2
u>Σu t,

where m represents a vector of drift correction terms according to mj = (r − 1
2σj)t. When

assuming two instead of three underlying assets we also use the parametrization of Scenario

I but drop values which are assigned to asset three. Expressions for series coefficients of

digital options can be found in Appendix 4.A.

Besides the convergency behavior of the model using cosine series, sine series and modified

sine series, Figure 4.6 shows CPU36 time needed to calculate the prices for a given number

of terms within the summation. The reference value is calculated as follows: First, a Monte

Carlo simulation is used to calculate the price on a level of accuracy of 10−5 to assure the

model price is not off target in a fundamental way. Second, a reference value on a higher level

of accuracy is calculated by means of cosine series using Nmax = (1000, 1000, 1000) terms.

This second reference value is mainly used to show convergency behavior.

36 Calculations are implemented within the programming environment Matlab 2014b using a machine with a
2.3 GHz Quad-Core CPU and 16 GB RAM.
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Figure 4.6: Approximation of a 3-dimensional European digital option with parametrization as in
Scenario I. Additional parameters are given by Kj = 0.85 and r = 0.01.

computational time in seconds

Accuracy cosine sine modsine

10−2 0.0037 0.0034 0.0043

10−5 0.0229 0.0223 0.0202

10−10 0.1341 0.1155 0.1170

Table 4.1: Computational time needed to reach a predefined level of accuracy approximating a 3-
dimensional European digital option with parametrization as in Szenario I. Additional
parameters are given by Kj = 0.85 and r = 0.01.

The overall convergency is plotted on the left part of Figure 4.6. Each expansion method

has its individual pattern of convergency. However, in terms of the actual error at a given

set (n1, n2, n3) none of the three versions systematically outperforms the other two.

The reason CPU why time is included is observable on the right-hand side of Figure 4.6.

With respect to calculation time needed, cosine series are slower. This is in part due to

the factor 2dn which is a crucial ingredient of a cosine series. While the value 2d used in

(modified) sine series is a scalar, the term 2dn represents a d-dimensional matrix. Calculation

time and storage costs of this variable increases with the number of underlyings as well as

the number of terms in the expansion.

To show critical levels of accuracy in more detail, Table 4.1 summarizes the computational

time needed to converge below a given level of accuracy. The before-mentioned slightly

slower convergency of cosine series is also observable within the table. Sine and modified

sine series do not differ in a fundamental way.

A geometric Brownian motion is based on a Normal distribution as the source of randomness.

As displayed in Section 4.2, coefficients of a Normal distribution converge fast which is due

to the smoothness and symmetry of the function itself. To also reveal the methods abilities
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under more extreme and more realistic market situations, we also define a second test scenario

under the assumption of a d-dimensional variance gamma process.

There are several ways to define a multivariate variance gamma process. In this chapter

we implement the version introduced in Leoni and Schoutens (2008) which defines the vari-

ance gamma process as a gamma-time changed brownian motion with a single background

parameter νV G as well as individual skewness parameters θj , volatilities σj and volatility

adjustment parameters ωj .
37

The characteristic function of this particular version of the variance gamma process is defined

by

φ(u) = eiu
>m t ·

(
1− i νV G u>θ +

1

2
νV G u>(ω>ω ◦ ΣBM)u

)− t
νV G

,

where ◦ represents element-wise multiplication. In addition, the drift correction term needed

to define an equivalent martingale measure is given by

mj = r + (νV G log(1− θjνV G − 0.5νV G(ωjσj).
2))−1.

For numerical implementations we define a Scenario II as following:

ΣBM =

0.18390 0.11960 0.09965

0.11960 0.31296 0.13048

0.09965 0.13048 0.21894



θ =

 −1

−0.95

−0.9

 , ω =

1

1

1

 , ν = 0.05

Hereby, the covariance matrix of the subordinated Brownian motion is chosen in a way that

the overall asset correlation fits the correlation structure of Scenario I. However, instead of

a symmetric marginal distributions, the distributions are skewed and fat-tailed.

The convergency behavior of the model considering cosine series, sine series and modified

sine series are shown on the left hand side of Figure 4.7. Due to the non-symetric nature of

the marginal density functions, convergency of the according density coefficients slows down

compared to normal distributed marginal densities coefficients. While the series converge at

about 75 terms in each summation in Scenario I, the environment in Scenario II demands at

least 100 terms in all three dimensions.

Similar conclusions can be drawn from CPU times shown on the right part of Figure 4.7 as

well as based on the entries of Table 4.2. In Scenario II, a very high level of accuracy (10−10)

is reached in a time period of well below a second. However, due to a higher number of terms,

calculation time increased by a factor of 2.7 on average compared to a multivariate geometric

37 This adjustment parameters became important within a calibration routine. Since we do not consider such
a task within this chapter, we refer to Leoni and Schoutens (2008) for further details.
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Figure 4.7: Approximation of a 3-dimensional European digital option with parametrization as in
Scenario II. Additional parameters are given by Kj = 0.85 and r = 0.01.

computational time in seconds

Accuracy cosine sine modsine

10−2 0.0087 0.0072 0.0084

10−5 0.0592 0.0564 0.0568

10−10 0.3391 0.3225 0.3307

Table 4.2: Computational time needed to reach a predefined level of accuracy approximating a 3-
dimensional European digital option with parametrization as in Scenario II. Additional
parameters are given by Kj = 0.85 and r = 0.01.

Brownian motion in Scenario I. When considering an accuracy of 10−5, computational times

differ by a factor of 2.6. Differences become smaller the lower the level of accuracy is set.

Considering an accuracy of 10−2, time differences are defined by a factor of 2.1 on average.

From the point of view of a practitioner, a level of accuracy in between 10−2 and 10−5 should

be sufficient for most cases of application.

4.3.3 European exchange option

In a second test, exchange options based on Margrabe (1978) are implemented. This two

dimensional option contract has a payoff function according to

ν(S1, S2) = max (S1(T )− S2(T ), 0)

which translates to

ν(x1, x2) = max (S1(0) ex1 − S2(0) ex2 , 0) .
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Figure 4.8: Approximation of a 2-dimensional European Margrabe option with parametrization as
in Scenario I on the left hand side and parametrization as in Scenario II on the right
hand side.

Thus, the series coefficients on Ω = [a1, b1]× [a2, b2] as defined by (4.22) read as follows:

ν̂[n1,n2] =

∫
Ω

max (S1(0) ex1 − S2(0) ex2 , 0) ϕ[n1,n2](x1, x2) dx1dx2

=

∫ b2

a2

∫ b1

z+x2

(S1(0) ex1 − S2(0) ex2) ϕ[n1,n2](x1, x2) dx1dx2, (4.26)

where z = log S2(T )
S1(T ) . Since individual solutions assuming a given basis function ϕ[n1,n2](x1, x2)

are quite lengthy, we refer to Appendix 4.B in which closed form solution to the integral in

(4.26) can be found.

As can be seen in (4.26), this type of option incorporates an analytic non-periodic function.

Thus, from the findings in Section 4.2, we expect a pure sine series expansion to show a

slower convergency. Reference values in case of Scenario I are given by Margrabe (1978).

Reference values in case of Scenario II are not as readily available. We use simulations to

retrieve reference values on a level of accuracy of about 10−4 to assure the overall correctness

of the methods and use the individual Fourier series with a very high number of terms to

analyze their convergency behavior.

Figure 4.8 combines the convergency behavior of all three series types within a log-plot.

From the figure, the slower convergency of a sine series is observable. This effect is even

more pronounced when pricing Margrabe options under the assumption of non symmetric

marginal density functions as in Scenario II. Cosine series and modified sine series, however,

behave similar. Once again, selected error levels are displayed in Table 4.3.

At least in a European-type environment, we conclude that pure sine series are dominated

by both cosine series and modified sine series in terms of convergency behavior of the payout

coefficients. When considering higher dimensional contracts, the storage costs of cosine series

are higher. This is due to the fact that the summation in a cosine series expansion starts at

integer n = 0, which yields to case differentiation in the cosine series coefficients.
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computational time in seconds

Accuracy cosine sine modsine

10−2 0.0022 0.0025 0.0017

10−5 0.0030 0.0041 0.0031

S
ce

n
.

I
10−10 0.0054 0.0057 0.0051

10−2 0.0025 0.0034 0.0025

10−5 0.0049 0.0067 0.0055

S
ce

n
.

II

10−10 0.0074 0.0090 0.0071

Table 4.3: Computational time needed to reach a predefined level of accuracy approximating a
2-dimensional Margrabe option.

In the next section, we will add path dependency as in Fang and Oosterlee (2009) to the

algorithm. Instead of considering all three expansion types, we completely drop pure sine

series in the following and only use cosine series and modified sine series.

4.4 Discrete barrier options

As shown in Fang and Oosterlee (2009) and Ruijter and Oosterlee (2012), the incorporation of

path dependency at a discrete time grid involves the recursive calculation of vector-matrix

products and matrix-matrix products respectively. Two particular types of matrices are

within the center of an efficient calculation as they occur within the derivation of these

products: Hankel and Toeplitz matrices. Since they can be embedded within a circular ma-

trix, vector-matrix products can be calculated in O(N log2N) complex calculations instead

of O(N2) calculations by means of the FFT algorithm. We discuss the algorithm in a general

manner before moving forward to enhancing the work of Ruijter and Oosterlee (2012) by

deriving formulas to price d-dimensional binary barrier options. Besides this classical type of

barrier option, we also consider more complex types of derivatives and structured products

that are regularly priced via slow converging Monte Carlo simulations.

4.4.1 Introducing path dependency

Discrete barrier options distinct themselves from their continuous counterparts by the fact

that the contract’s underlying assets are evaluated to whether a corresponding barrier event

has occurred only at pre-defined dates in time. Therefore, matching the notation of Fang

and Oosterlee (2009), we define a finite set of evaluation points T = {t0, ..., tE = T}.

In the context of defining monitoring dates also the domain Ω on which the pricing integral

is evaluated on needs to be adjusted. In case of European options the number of subdomains

included in Ω is defined by the number of underlying assets that are incorporated within

the option contract. In case of barrier options this structure is enhanced by the time dimen-
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sion which is defined by the number of monitoring events. Thus, when pricing discretely

monitored path dependent options the relevant integration domain is described by:

Ω =


Ω1(t1)× Ω2(t1)× ...× Ωd(t1)

Ω1(t2)× Ω2(t2)× ...× Ωd(t2)
...

Ω1(T )× Ω2(T )× ...× Ωd(T )

 =


Ω(t1)

Ω(t2)
...

Ω(T )

 (4.27)

For each time step an individual d-dimensional integration domain is given. The same is

true for the subset Θ ⊂ Ω which is not defined by the convergency of the probability density

function itself but rather includes the specific characteristics of the barrier levels given in

the contract. Hereby, asset specific barrier levels Hj , j = 1, ..., d, are normalized in the same

manner as strike levels kj and the underlyings xj itself have been:

htj = log
Hj(t)

Sj(0)

Taking a three-asset binary barrier option as an example, the following payout structure

ν(xT ) = 1{
min

0≤s≤T
xs1>h

s
1

} · 1{
min

0≤s≤T
xs2>h

s
2

} · 1{
min

0≤s≤T
xs3>h

s
3

}
= 1{

min
0≤s≤T

xs>hs
} (4.28)

could be defined. Assuming this particular structure describes a knock-out product that

ceases to exist as soon as any one of the underlying assets hits their barrier level. Other

d-dimensional payout structures such as

ν(xT ) = d− 1

d

(
1{

min
0≤s≤T

xs1>h
s
1

} + ...+ 1{
min

0≤s≤T
xsd>h

s
d

}) (4.29)

are, however, also convenient to implement. In contrast to (4.28), equation (4.29) describes

a scenario where the final payout is lowered by the fraction of underlying assets any time one

of the assets hits a barrier. Based on the payout structure chosen, the payout coefficients

are specified identical to a European option contract. Taking equation (4.28) as an example

once again, we write the coefficients as

ν̂tEn =

∫ b3

a3

∫ b2

a2

∫ b1

a1

1{
min

0≤s≤T
xs1>h

s
1

} · 1{
min

0≤s≤T
xs2>h

s
2

} · 1{
min

0≤s≤T
xs3>h

s
3

}
ϕ[n1,n2,n3](x

tE
1 , xtE2 , xtE3 ) dxtE1 dxtE2 dxtE3

=

∫
Ω(tE)

1{
min

0≤s≤T
xs>hs

}ϕn(xtE ) dxtE . (4.30)

Incorporating the barrier levels into the integration limits results in the definition of the

subdomain Θ ⊂ Ω. At time step tE , the corresponding version to equation (4.30) is given
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Figure 4.9: Exemplary barrier structure of a 3-dimensional contract. Each of the barrier follows an
individual pattern: A constant barrier in case of the first asset, a decreasing barrier in
case of the second asset and an increasing barrier in case of the third asset.

by the term

ν̂tEn =

∫
Θ(tE)

1ϕn(xtE ) dxtE ,

and, thus, the subdomain is defined by Θ(T ) = [h1, b1] × [h2, b2] × [h3, b3]. Equivalently to

equation (4.27), the contract specific multi-dimensional domain Θ is, therefore, formulated

in general as follows:

Θ =


Θ1(t1)×Θ2(t1)× ...×Θd(t1)

Θ1(t2)×Θ2(t2)× ...×Θd(t2)
...

Θ1(T )×Θ2(T )× ...×Θd(T )

 =


Θ(t1)

Θ(t2)
...

Θ(T )

 (4.31)

By means of (4.31), implementing a three-asset contract with flat barrier levels is just as

convenient as combining a flat barrier structure for the first asset with an increasing barrier

level for the second underlying and a decreasing structure for a third asset within a single

option contract. The only parameters to change are the individual subdomains Θj(t), j =

1, ..., d, at given monitoring events t ∈ T . Figure 4.9 displays the barrier structure of such a

contract.

Depending on the contract, monitoring a barrier level can be defined daily, weekly, monthly,

quarterly or whatever needs are to be served for. In between each of these points the contract

behaves like an European option. This is also the reason for why we can use the formulas

introduced for European options in Section 4.3 to evaluate path dependent options of discrete

type. The foundation of the algorithm is still a matrix-matrix product that is composed by

density coefficients and payout coefficients. However, as can be seen in (4.32), now the payoff
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coefficients at time step t1 instead of at maturity T are crucial.

νt0 = e−r∆t
∑
n

f∆t
n ν̂t1n , ∆t = t1 − t0 (4.32)

As shown in Fang and Oosterlee (2009), these coefficients can be retrieved recursively starting

at maturity. At T = tE , under consideration of (4.27), a general d-dimensional payout

coefficient matrix is given by:

ν̂tEn =

∫
Ω(tE)

ν(xtE )ϕn(xtE ) dxtE (4.33)

To keep arguments general, we do not yet assume a particular option contract but rather

work with the unspecified38 version from (4.33). It has to be kept in mind, however, that the

coefficients in (4.33) can be expressed in closed form for a wide range of contracts. On the

contrary, coefficients before maturity are not known from the beginning but can be retrieved

by a recursion. Similar to the calculation of the coefficients at maturity, the coefficients one

time step ahead ν̂
tE−1
n are given by

ν̂
tE−1
n =

∫
Ω(tE−1)

ν(xtE−1)ϕn(xtE−1) dxtE−1 .

The term ν(xtE−1), however, is defined by the pricing formula (4.25) of an European option

with time horizon ∆tE−1 = tE − tE−1:

ν̂
tE−1
n =

∫
Ω(tE−1)

e−r∆tE−1 ψ1

∑
m

2d−1∑
j=1

R
{
ψ2 φ

(
qmξ̄j

)
ei(qmξ̄j)

>(xtE−1
−a)ν̂tEm

}
ϕn(xtE−1) dxtE−1

= e−r∆tE−1 ψ1

∑
m

2d−1∑
j=1

R

ψ2 φ
(
qmξ̄j

)
ν̂tEm

∫
Ω(tE−1)

ei(qmξ̄j)
>(xtE−1

−a)ϕn(xtE−1)dxtE−1


(4.34)

Equation (4.34) shows that the payoff coefficients one step backwards in time ν̂
tE−1
n are

dependent on the coefficients one time step ahead ν̂tEm . Since this is true for any given time

step within the set T , the payoff coefficients at t = t1 are given by:

ν̂t1n = e−r∆t1 ψ1

∑
m

2d−1∑
j=1

R
{
ψ2 φ

(
qmξ̄j

)
ν̂t2m

∫
Ω(t1)

ei(qmξ̄j)
>(xt1−a)ϕn(xt1)dxt1

}
(4.35)

Now that the recursive nature of the algorithm is introduced, the d-dimensional integral

included in (4.34) and (4.35)∫
Ω(t)
• dxt1 =

∫
Ω1(t)

∫
Ω2(t)

· · ·
∫

Ωd(t)
• dxt11 dxt12 · · · dxt1d

38 Using a specified version implies to fix a specific payout structure ν(xtE ), as e.g. in (4.28) or (4.29), and
switch from the integration domain Ω to Θ in the calculation of the payoff coefficients.
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needs to be solved at each time step t ∈ T before we are able to use formula in (4.35)

in combination with equation (4.32) for pricing barrier options. By disentangling the d-

dimensional integral, the task comes down to solving an integral of the type∫
Ωj(t)

eiv(x−a) ϕn(x) dx

multiple times, where Ωj(t) defines the jth subinterval of the d-dimensional domain at time

step t. It can be shown, that such integrals are defined by the sum of a Hankel and a Toeplitz

matrix as has been done in Fang and Oosterlee (2009) in terms of cosine series. Thus, in

Appendix 4.C, we show a derivation of this claim based on modified sine series. Within

this section, however, we only state that the above integral is given by the sum of a Hankel

matrix H and a Toeplitz matrix T multiplied by some pre-factors

∫
Ωj(t)

eiv(x−a) ϕn(x) dx =


ωj
2
i
π

(
HC + TC

)
if cosine

ωj
2

1
π

(
HM + TM

)
if modsine,

(4.36)

where superscript C and M stand for matrices that are build on cosine series and modified

sine series respectively. Incorporating this relation into equation (4.35), the series coefficients

ν̂tn can be retrieved for any given discrete time step t ∈ T .

To outline the procedure in an explicit structure, we restart at maturity tE = T and in-

corporate the knowledge about the recursive structure as well as the knowledge about the

calculation of the multivariate integral by means of Hankel and Toeplitz matrices:

ν̂tEn =

∫
Ω(tE)

ν(xtE )ϕn(xtE ) dxtE

ν̂
tE−1
n =

∫
Ω(tE−1)

ν(xtE−1)ϕn(xtE−1) dxtE−1

= e−r∆t ψ1

∑
m

2d−1∑
j=1

R
{
ψ2 φ

(
umξ̄j

)
ν̂tEm

d∏
k=1

∫
Ωk(tE−1)

e
i(umk ξ̄j)

>(xktE−1
−ak)

ϕnk(xktE−1
)dxktE−1

}

= e−r∆t ψ1

∑
m

2d−1∑
j=1

R
{
ψ2 φ

(
umξ̄j

)
ν̂tEm

d∏
k=1

ψk3 (Hk + Tk)

}
(4.37)

with

ψj3 =


ωj
2
i
π if cosine

ωj
2

1
π if modsine.

Equation (4.37) formulates an explicit way to retrieve the series coefficients of the payoff

function a single time step away from maturity based on the coefficients at maturity itself.

Hereby, the payoff coefficients are a function g of several variables. Most importantly they
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z1 = ψ2 φ(·) ν̂t+1
m

z1H1 + z1T1 = z2

z2H2 + z2T2 = z3

· · ·

zdHd+zdTd = R{A}

Figure 4.10: Schematic illustration of the backward reduction of the term

R{A} = R
{
ψ2 φ

(
umξ̄j

)
ν̂t2m
∏d
k=1 ψ

k
3 (Hk + Tk)

}
in equation (4.38).

depend on the payoff coefficients one time step ahead. As a consequence the overall recursive

structure can be formulated in a stylized way as follows:

ν̂
tE−2
n = g(..., ν̂

tE−1
m , ...)

...

ν̂tzn = g(..., ν̂
tz+1
m , ...)

= e−r∆tz ψ1

∑
m

2d−1∑
j=1

R
{
ψ2 φ

(
umξ̄j

)
ν̂
tz+1
m

d∏
k=1

ψk3 (Hk + Tk)

}
(4.38)

...

ν̂t1n = g(..., ν̂t2m, ...)

In principle, equation (4.38) can be used (E−1)-times throughout the recursion to obtain

ν̂t1n which, plugged into

νt0 = e−r∆t1 ψ1

2d−1∑
j=1

R
{
ψ2 φ∆t

(
qnξ̄j

)
ei(qnξ̄j)

>(xt−a) ν̂t1n

}
,

enables the calculation of the price of a discretely monitored barrier option at time t = t0.

However, the computational efficiency of (4.38) can be increased: basically, the calculations

done in equation (4.38) come down to different matrix multiplications of the form y = zj ·C,

where zj and C are d-dimensional complex matrices. Here, matrix zj is defined by the term

z1 = ψ2 φ
(
qmξ̄j

)
ν̂t2m at the beginning. In terms of equation (4.38), the d-dimensional matrix

z1 is multiplied with a product series of special matrices z1 ·
∏d
k=1 ψ

k
3 (Hk + Tk) which yields

to an updated version of zj . Figure 4.10 depicts a scheme showing the evolution of these

products more clearly.

To increase efficiency of theses calculations, we do not use straight multiplication but a

fast Fourier routine that allows to compute these products in a lower number of complex

computations. In Appendix 5.A, a standard procedure to calculate vector-matrix products
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is reviewed that involves a so-called Toeplitz-plus-Hankel matrix. With some adjustments,

this standard procedure also works on multidimensional matrix-matrix multiplications.

4.4.2 Digital barrier options

Based on the method outlined to evaluate discrete Barrier options so far, digital options

once again form the basic contracts on which more complex structures are build upon in the

following. Due to the fact that digital barrier options can be used to calculate probabilities of

some underlying share price path hitting a barrier, they are especially suitable as a starting

point in terms of the subsections to come.

Independent of the payoff at maturity, the first step to evaluating any type of barrier contract

is to incorporate the barrier structure into the time varying integration domain Θ. Using

a percentage value of today’s asset value and keeping this value constant over time is the

most common type of barrier structure. We will refer to this case as a flat barrier structure.

Within the numerical part of this section we focus on two issues: First, the barrier structure

and, second, the price convergency from a discrete to a continuous setting.

As mentioned before, a digital payout structure

ν(StE ) = 1{S1(tE)>K1} · ... · 1{Sd(tE)>Kd}

ν(xtE ) = 1{xtE1 >k1}
· ... · 1{xtEd >kd}

= 1{xtE>k}

is assumed. In addition to the payout structure itself, series coefficients ν̂ of the payout

structure are crucial. Since we focus on cosine series and modified sine series, the initial

matrix ν̂tEn is defined by

ν̂tEn =

∫
Ω
1{xtE>k}ϕn(x) dx

ν̂tEn =

DC(htE1 , btE1 , u1)⊗DC(htE2 , btE2 , u2)⊗ ...⊗DC(htEd , b
tE
d , ud)

DM (htE1 , btE1 , u1)⊗DM (htE2 , btE2 , u2)⊗ ...⊗DM (htEd , b
tE
d , ud)

,

where the symbol ⊗ indicates Kronecker products. Moreover, the terms DC and DM are

defined in Appendix 4.A.

With regard to the barrier structure, Figure 4.11 illustrates the base scenario for a barrier

contract with two underlying assets. The left part of the figure indicates the overall integra-

tion domain Ω as well as the contract specific subset Θ at two consecutive monitoring events

t1 and t2. The barrier level at every step can be chosen individually. Thus, implementing

a flat barrier structure is just as convenient as choosing a barrier structure that allows for

higher downward moves with time evolving (step-down-barrier) as well as upward sloping

barriers (step-up-barrier). It is worth mentioning that, while the domain Ω is kept constant

over time, Θ changes if at least one barrier level is chosen to be non-flat.
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Ω(t1)=[a1, b1]× [a2, b2]

Θ(t1)=[h1(t1), b1]× [h2(t1), b2]

Θ(t2)=[h1(t2), b1]× [h2(t2), b2]

asset x1 time t ∈ T

h1(t1) b1

h2(t1)

b2

a1=a2

b1=b2

h1=h2

t1 t2 t3 t4 t5 t6 t7 t8 t9

. .
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Figure 4.11: 2-dimensional barrier contract with flat barrier structure and E = 9 monitoring dates.

On the right-hand side of Figure 4.11, a scenario with not only a flat barrier structure

but also identical barrier levels for both underlyings is displayed. Given the stock price

movements in the figure (right part), a trigger event occurs at monitoring date t3. Depending

on the contract, touching the barrier either knocks-out the product as a whole or decreases

payments at maturity.39 Producing step-down or step-up types of barrier levels is equivalent

to adjusting the individual layers on the left-hand side of the figure.

Having fixed a suitable barrier structure, we are especially interested in an analysis of the

price convergency from European options to discretely monitored barrier options and, in the

limit, to options with continuously monitored trigger levels. Option contracts with a barrier

structure that is monitored not on a continuous basis but only on discretely distributed dates

in time differ from their continuous counterparts. In case of a down-and-out option, the price

of a discretely monitored contract shows a monotone decreasing behavior with respect to an

increasing number of monitoring dates.

Based on Scenario I and Scenario II, Figure 4.12 shows this convergency. As can be seen in

the figure, the differences from a discretely monitored contract with only a low number of

monitoring dates to a contract which is frequently monitored is substantial. However, with

monitoring dates increasing, the percentage price changes converge to zero which allows us

to approximate an continuously monitored contract with this algorithm as well. It should

be mentioned, however, that in case of a very high number of monitoring dates combined

with a skewed underlying stochastic process, the computational time increases very fast.

However, given these circumstances, a Richardson extrapolation40 is well suited to calculate

an approximation of a continuous version based on a low number of discretely monitored

contracts.

39 The method at hand is especially suitable for knock-out products. Contracts with a knock-in feature,
however, can also be modeled by making use of the in-out parity: combining a down-and-out option with
a down-and-in option describes a plain vanilla option.

40 The Richardson extrapolation is a method that uses a weighted sum of a finite number of Bermudan
options of different monitoring steps to approximate a continuous version. It has first been used in terms
of calculating American options based on Bermudan options in Geske and Johnson (1984).
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Figure 4.12: Price convergency of a digital down-and-out option based on Scenario I and Scenario
II with barrier levels at 85 percent of the stock prices.

4.4.3 Multi-asset equity default swap

An equity default swap (EDS) is a financial instrument that pays a certain amount at the

trigger event of the underlying stock price hitting a lower barrier. The structure is therefore

similar to a credit default swap (CDS). However, while a CDS pays on the event of a default,

an EDS pays on an arbitrary, pre-defined, stock price decline, e.g. 50 percent within the

next year. One advantage of an EDS over a CDS can be seen in the fact that the trigger

event or, respectively, the distance to this trigger event is observable through time.

In this subsection, we introduce a way to price equity default swaps that are written on a

basket of underlying stock prices, called multi-asset equity default swaps (MAEDS), rather

than only one underlying. For each underlying asset, a lower barrier is defined. If a stock

price hits its respective barrier a predefined amount A is paid and the contract becomes

worthless. The distinct difference to an ordinary barrier option lies within the swap-type

structure of the contract. While option contracts demand for an option premium at the

beginning of the time horizon, swap contracts usually include periodic coupon payments c

which equalize the present values of a premium leg and a protection leg.

In terms of the premium leg, a percentage value c of a notional amount N is paid as long as

none of the underlying stock prices Sj , j = 1, ..., J , hit a lower barrier Hj . The time of the

first triggering event is defined by τ . Thus, the present value of a premium leg is defined by

PV(Premium) = N c
∑
i∈I

∆ti e
−rti P[τ > ti].



88 CHAPTER 4. A TRIGGER TO RULE THEM ALL

z0

i0

z1 z2 z3

c1

z4 z5 z6

c2

z7 z8 z9

c3

z10 z11 z12

c4

Figure 4.13: Timeline of coupon payments and monitoring days. In this example coupon payments
are quarterly and monitoring dates are monthly. Given the contract matures after one
year, I = {1, ..., I = 4} and Z = {1, ..., Z = 12}.

Similar to Fang et al. (2010), the survival probability P[τ > ti] can be expressed as the price

of a binary down-and-out option without discounting:

PV(Premium) = N c
∑
i∈I

∆ti e
−rti E

 J∏
j=1

1{
min

0≤s≤ti
xj(s)>hj

}
Coupon payments c are made periodically, e.g. quarterly. The set I therefore incorporates

the dates of coupon payments. A trigger event, however, can also happen in between. Thus,

the set of monitoring days Z is at least as large as the set of payment days. In most cases,

however, the set Z is larger as shown in Figure 4.13. Coupon payments are assumed to be

paid quarterly and monitoring dates are timed on a monthly bases in the figure.

We also include an accrual on trigger ATr which is defined in the set Z and allows for trigger

events in between two successive coupon payments:

ATr = N c
I

Z

∑
z∈Z

e−rtz
{
P[τ > tz−1]− P[τ > tz]

}
.

The resulting premium leg, including an accrual on trigger, is therefore defined by the term

PV(Premium) = N c

(∑
i∈I

∆ti e
−rti P[τ > ti] +

I

Z

∑
z∈Z

e−rtz
{
P[τ > tz−1]− P[τ > tz]

})
.

(4.39)

Next to the premium leg, the protection leg needs to be defined:

PV(Protection) = A
∑
z∈Z

e−rtz P[tz−1 ≤ τ ≤ tz]

Once again, the probability P[tz−1 ≤ τ ≤ tz] can be calculated as the difference between two

down-and-out digital barrier options without discounting:

PV(Protection) = A
∑
z∈Z

e−rtz

1− E

 J∏
j=1

1{
min

tz−1≤s≤tz
xj(s)>hj

} . (4.40)
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[∏J

j=1 1{ min
0≤s≤t1

xj(s)>hj}

]t2 C = E
[∏J

j=1 1{ min
0≤s≤t2

xj(s)>hj}

]

tZ

t3 D = ...

B − C = E
[∏J

j=1 1
{

min
t1≤s≤t2

xj(s)>hj

}]

Figure 4.14: Timeline of monitoring dates with according survival probabilities.

In a last step, the coupon payments c are chosen to equalize the premium leg in (4.39) and

the protection leg in (4.40):

c =
A

N

∑
z∈Z e

−rtz P[tz−1 ≤ τ ≤ tz]∑
i∈I ∆ti e−rti P[τ > ti] + I

Z

∑
z∈Z e

−rtz
{
P[τ > tz−1]− P[τ > tz]

}
Thus, given a MAEDS, an efficient way to calculate the expected values in (4.39) and (4.40)

are central. Figure 4.14 elaborates on the relation of these expected values: within the figure,

the terms labeled as B, C and D are d-dimensional binary down-and-out options with barrier

levels at the pre-defined trigger event. The contracts only differ in their time to maturity.

Thereby, contract B shows the shortest time span t1− t0, contract C is based on a maturity

t2 − t0, and so forth. With a time to maturity of the swap contract of tZ − t0, the prices

of these shorter-dated binary options can be calculated on the run as a byproduct of the

recursive algorithm. Thus, no noteworthy extra amount of computational time has to be

spent.

In terms of the fair spread payments c, the probability term structure of the trigger events are

most important. These term structures, in turn, depend on the number of monitoring dates

that are incorporated within the contract. In Figure 4.15 the evolution of the probabilities

of not hitting one of the triggers is shown. The less monitoring dates are present, the higher

the overall curve is located in the plane. The differences between the specific paths, however,

declines with an increasing number of monitoring dates. Within the figure, this becomes most

obvious when comparing a contract with daily monitoring and a contract with monitoring

twice a day. This convergency of the probabilities is also present in the swap rates that are

calculated based on these curves as can be seen in Figure 4.16. Resulting fair swap spreads

are shown on the left-hand side of the figure. As indicated by the probabilities in Figure 4.15,

swap payments increase with an increasing number of monitoring dates. The curve, however

converges to a limit. In addition to Scenario I, the asymmetric constellation of Scenario II

is also included. Due to the presence of skewness and excess kurtosis, the overall level of the

curve based on Scenario II is higher.
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Figure 4.15: Probabilities of a decline of one of the underlying assets of less than 80 percent.
Parameters as in Scenario I.
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Figure 4.16: Fair spread payments of MAEDS based on varying number of monitoring dates. Pa-
rameter constellation as in Scenario I (GBM) and Scenario II (VG). Pure swap rates
on the left-hand side and swap rates divided by a quarterly monitored contract on the
right-hand side.
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12 52 250

Accuracy (N1, N2) sec. (N1, N2) sec. (N1, N2) sec.

10−0 27 0.006 35 0.038 50 0.327

10−2 45 0.015 68 0.159 113 1.929

10−5 60 0.022 87 0.190 169 2.691

Ref 48.78207704 58.5112337 65.47550658

10−0 49 0.017 130 0.320 292 12.755

10−2 162 0.125 285 1.54 *

10−5 437 1.272 * *

Ref 100.63212282 113.45451342 47.59 111.5675509

Table 4.4: Accuracy in basis points based on the number of terms (N1, N2), where N1 = N2 within
the double summation. If the cells are marked by a * sign the level of precision could
not be reached. This, however, is not a characteristic of the model but a lack of RAM
on the computer that calculated the values.

To better compare not only the height of the curve but also their evolution, the right-hand

side of the figure displays percentage increases in a way that each curve is standardized by

a contract with four monitoring dates.

In Tabel 4.4 we summarize information about how many terms are needed to reach a given

level of accuracy and pair it with computational times. Hereby, the upper part of the table

is based on Scenario I and the lower part is based on Scenario II. Reference values (Ref)

are obtained by a Monte Carlo simulation are included at the lower part of the respective

subtable. Within the table we consider three different contract types: While the time to

maturity is kept fix at T = 1 year, the number of monitoring dates varies from monthly (12)

monitoring to weekly (52) monitoring and, finally, to daily (250) monitoring.

It is worth mentioning that spread payments are in basis points. Thus, in most cases an inte-

ger value precision is sufficient. In rare cases more than two digits are necessary. According

to Table 4.4, an integer precision is reached very fast. Higher levels of accuracy come with

more terms in the summation which increases the need for random access memory (RAM)

plugged in into the working station.

As a supplement to Table 4.4, we visualize the price differences ∆N1,N2
c between two consec-

utive prices ∆N1,N2
c = c(N1 + 1, N2 + 1) − c(N1, N2) in Figure 4.17. Hereby, the horizontal

dashed line on the upper part of the figure indicates a difference lower than ±10−2. In

contrast, in the lower part, a price difference an a level of ±10−5 is marked. The oscillatory

nature of the model with respect to the number of terms within the summation is observable

in both parts of the figure.

To counteract the oscillatory behavior and therefore to avoid misspricing, a sufficiently high

value for the tuple (N1, N2) is crucial. One possibility is to check the series coefficients for



92 CHAPTER 4. A TRIGGER TO RULE THEM ALL

number of terms (N1;N2)
150 200 250 300 350 400 450

p
ri
ce

d
i,

er
en

ce

-0.03

-0.01

0.01

0.03

number of terms (N1;N2)
300 350 400 450

p
ri
ce

d
i,

er
en

ce

#10!3

-1

-0.5

0

0.5

1

Figure 4.17: Evolution of the price differences between two consecutive prices when increasing the
number of terms (N1, N2) by integer one ∆N1,N2

c = c(N1 + 1, N2 + 1) − c(N1, N2).
Parameter constellation as in Scenario II (VG).

convergency. We use the term

N1∑
n1=N1−10

N2∑
n2=N2−10

| ν[n1,n2] |< ε,

with ε being a user defined tolerance level close to zero, to determine (N1, N2). If the sum of

the absolute values of the coefficients is above some ε we increase (N1, N2) until the condition

above is fulfilled.

4.4.4 Multi-barrier reverse convertibles

Up to this point, we only considered derivative types of contracts. Within this subsection,

however, we focus on a structured product which is defined by combining some type of

derivative product with another financial contract, a bond in this case. Multi-barrier reverse

convertibles are products that became popular recently, foremost in the Swiss marketplace

for derivatives. We choose this contract due to the fact that it’s usual basket size is either

two or three assets which makes it especially suitable for our algorithm at hand.

On the technical side, the contracts combines a state independent coupon payment with a

state dependent repayment of the denomination: if neither of the underlyings hits a lower

barrier level, the face value is paid back in full. However, if either of the assets within the
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basket falls below their barrier levels, the repayment of the face value depends on the state

of the worst performing underlying in terms of the quotient of the assets value at maturity

over the respective initial values. If a barrier is triggered during the lifetime of the contract

and either one of the assets’ stock price at maturity is below the initial value, investors

are paid in shares instead of cash. The overall structure of the derivative implemented

within the structured product can be split in three parts: First, the fact that only the

worst performing underlying determines the payoff refers to a minimum option41. Second,

depending on a trigger event defines a barrier option. In this case the option is activated

if a barrier is reached which calls for a down-and-in structure. Third, since investors are

paid in shares below a certain strike value, they essentially write a put option. Thus, a

multi-barrier reverse convertible includes a straight bond as well as a (shorted) down-and-in

put-on-minimum option.

In other words, the payment at maturity νT of a multi-barrier reverse convertible is defined

by a final coupon payment c and a redemption of the face value42 N which, however, is

lowered when a barrier event has occurred during the lifetime of the contract.

νT = (1 + c)N −
{
N

[
1−min

(
S1(T )

S1(0)
, ...,

Sd(T )

Sd(0)

)]+
}
1{

min
0≤s≤T

xj(s)≤hj(s)
} ∀ j ∈ T

Since our numerical method is specialized on down-and-out barrier options, we make use of

the fact that the price of a down-and-out barrier put-on-minimum option can be decomposed

into a plain vanilla put-on-minimum option less a down-and-in put-on-minimum contract.

This subsection, therefore combines elements from the section on path-independent options

with the present section on path-dependent options.

νT = (1 + c)N −
{
N

[
1−min

(
S1(T )

S1(0)
, ...,

Sd(T )

Sd(0)

)]+
}

+{
N

[
1−min

(
S1(T )

S1(0)
, ...,

Sd(T )

Sd(0)

)]+
}
1{

min
0≤s≤T

xj(s)>hj(s)

} ∀ j ∈ T (4.41)

Equation (4.41) reflects this combination by including a final payment linked to the bond

contract, a European (plain vanilla) put-on-minimum option part within the first set of braces

and a path dependent (down-and-out) option within the second set of braces. Discounting

the payments in (4.41), yields to the following structure

ν0 =

T∑
t=1

D(0, t) ctN +D(0, T )N − νEuro
0 + νdown-and-out

0 , (4.42)

41 Options on the minimum (maximum) of at least two risky underlying assets are basket options that define
their payoff by the difference between a pre-defined strike value and the asset’s value performing worst
(best).

42 Within this subsection, we refer to variable N as the face value of a contract. In contrast, the upper limit
of a counting variable is labeled by an additional index, e.g N1.
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where νEuro
0 describes todays price of a path independent put-on-minimum option and

νdown-and-out
0 the price of a down-and-out put-on-minimum option at t = 0.

As a central part of equation (4.42), the valuation of a down-and-out put-on-minimum is

crucial for the pricing of the overall structure. Within the calculation of these kinds of

derivatives, an efficient coding of the Fourier coefficients of the payoff function is central.

Especially when trying to evaluate a structure as complicated as a put-on-minimum option,

modified sine series have the clear cut advantage of needing less distinctions of cases within

the closed form solution compared to a cosine series. Thus, within this subsection, we only

consider a solution based on modified sine series.

In terms of the payout coefficients that are to be calculated, the following integral has to be

defined:

νEuro
T =

∫
Ω
N
[
1−min

(
ex

T
1 , ..., ex

T
d

)]+
ϕn(x) dxT (4.43)

For demonstrative purposes, we confine ourself further to a two dimensional basket. In this

case equation (4.43) can be written as

ν̂Euro
T = N

∫ b2

a2

∫ b1

a1

max
[
1−min

(
ex

T
1 , ..., ex

T
d

)
, 0
]
ϕ[n1,n2](x) dxT

= N

∫ 0

a2

∫ 0

a1

[
1−min

(
ex

T
1 , ex

T
2

)]
ϕ[n1,n2](x) dxT

+N

∫ b2

0

∫ 0

a1

(
1− exT1

)
ϕ[n1,n2](x) dxT +N

∫ 0

a2

∫ b1

0

(
1− exT2

)
ϕ[n1,n2](x) dxT

(4.44)

Within (4.44), the second and third double integral are straight forward. However, the first

double integral containing the minimum function can be rewritten even further resulting in

the following equation:

ν̂Euro
T = N

∫ 0

a2

∫ 0

a1

ϕ[n1,n2](x) dxT

−N
[∫ 0

a2

{∫ xT2

a1

ex
T
1 ϕ[n1,n2](x) dxT1 +

∫ 0

yT2

ex
T
2 ϕ[n1,n2](x) dxT1

}
dxT2

]

+N

∫ b2

0

∫ 0

a1

(
1− exT1

)
ϕ[n1,n2](x) dxT +N

∫ 0

a2

∫ b1

0

(
1− exT2

)
ϕ[n1,n2](x) dxT

(4.45)

The solution to equation (4.45) can be expressed in closed form. Within this section, however,

we only state that equation (4.45) is built on four double integrals E1 to E4 which can be

solved individually. For individual solutions, we refer to Appendix 4.D.

Formula (4.45) only considers European type option contracts. As discussed at the begin-

ning of Section 4.4.1, path dependent options differ from their European counterparts most

obviously in the integration domain Θ. When pricing e.g. down-and-out barrier options
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[a1, b1] × [a2, b2] → [h1, b1] × [h2, b2], where h1 and h2 can variate over time. Thus, to be

able to also use the above statements when pricing barrier options, integration limits are

changed to variables in case they are different to zero. Expressing the solution in terms of

general integration limits enables us to calculate the payoff coefficients for both, European

and barrier options. In general, the coefficients ν̂T can therefore be written as

ν̂T = N

∫ 0

g

∫ 0

e
ϕ[n1,n2](x) dxT

−N
[∫ 0

g

{∫ xT2

e
ex

T
1 ϕ[n1,n2](x) dxT1 +

∫ 0

yT2

ex
T
2 ϕ[n1,n2](x) dxT1

}
dxT2

]

+N

∫ j

0

∫ 0

e

(
1− exT1

)
ϕ[n1,n2](x) dxT +N

∫ 0

g

∫ f

0

(
1− exT2

)
ϕ[n1,n2](x) dxT

= E1(e, g)− E2(e, g) + E3(e, j) + E4(f, g).

By means of this notation, coefficients of a European type contract are given by

ν̂Euro
T = N

[
E1(a1, a2)− E2(a1, a2) + E3(a1, b2) + E4(b1, a2)

]
(4.46)

and down-and-out barrier option coefficients are described by

ν̂down-and-out
T = N

[
E1(h1, h2)− E2(h1, h2) + E3(h1, b2) + E4(b1, h2)

]
. (4.47)

Detailed information on E1 to E4 are provided in Appendix 4.D. Equations (4.46) and (4.47)

can now be used in combination with (4.42) to evaluate a multi-barrier reverse convertible

contract.

The focus of our interest, however, is not rooted in the final value of the overall contract

but in the numerically demanding step of the evaluation process: The time consuming part

of equation (4.42) lies within the two embedded options which are monitored on a discrete

time scale. Table 4.5 displays the convergency of the model assuming weekly monitoring,

parameter set as defined in Scenario II and a barrier close to the actual stock prices. Reference

values (Ref) are obtained by a Monte Carlo simulation which is used as an indicator to

whether the calculated value is correct on a level of 10−5. However, for a level of accuracy

higher than 10−5, Monte Carlo methods are not a suitable method of choice. Final reference

values are, thus, calculated by the Fourier series method itself with a large number of terms

(N1, N2) = (1000, 1000) within the summation.

Also the parameter environment chosen is rather challenging, the convergency behavior of

the model is fast. If using a working precision of at least 10−4, a number of 50 terms within

the summation is sufficient.
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(N1, N2) European CPU time Down-&-in CPU time

(50,50) 2.8 · 10−5 0.006 6.9 · 10−4 0.074

(100,100) 5.0 · 10−12 0.009 1.5 · 10−5 0.171

(150,150) 1.0 · 10−12 0.019 3.3 · 10−6 0.499

Ref 273.66772168 274.01851288

Table 4.5: Pricing errors of put-on-minimum options based on Scenario II, barrier levels at 90% of
the initial stock prices, weekly monitoring and a nominal amount of N = 1000.

4.5 Conclusion

Within this chapter, the evaluation of exotic options by means of series expansion methods is

analyzed. Hereby we are especially interested in a method that is suitable for low dimensional

basket sizes with up to five assets. Given higher basket sizes and many monitoring dates

the so-called curse of dimensionality yields to a more efficient evaluation via Monte Carlo

methods. However, given a low dimensionality, pricing multi-asset contracts with series

expansion methods is a very efficient way. Due to the usage of characteristic functions, it

also allows for a high level of flexibility in the choice of the stochastic process assumed for

modeling assets behavior.

As an enhancement to the work of Ruijter and Oosterlee (2012) and Meng and Ding (2013)

which are concerned with Bermuda options and European options, we lay out a method to

price discrete Barrier options. To indicate the broad field of application, we implement vari-

ous equity option contracts. Furthermore, with multi-asset equity default swaps, a contract

which is located in between equity and credit derivatives is shown and analyzed. Pure credit

derivatives such as first-to-default swaps are also realizable following similar arguments. Fi-

nally, by means of multi-barrier reverse convertibles, a structured product is priced which

contains a short put-on-minimum option.

In contrast to Ruijter and Oosterlee (2012) and Meng and Ding (2013), we include three dif-

ferent types of basis functions within the expansion: cosine, sine and modified sine. Each of

the resulting orthogonal series expansions has different characteristics in terms of the conver-

gency behavior and approximation quality. Cosine and modified sine series share the feature

of faster convergency with respect to the number of terms needed in the series expansion. In

this matter, pure sine series are equally efficient at best. In case of analytic functions that

are non-periodic such as call or put options, sine series show an inferior behavior compared

to the other two basis functions. We illustrated this finding using exchange options based

on Margrabe (1978).

A disadvantage of cosine series is the fact that the indices within the summation of the

coefficients starts at n = 0 instead at n = 1 as it is the case for (modified) sine series. Due

to this differences in starting values, the closed form solutions of payoff coefficients are

more involved for cosine series since case differentiations are necessary. This distinction of
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Digital options Exchange options Barrier options

speed of convergency S = C = M S < C = M S < C = M

computational complexity C < S < M C < S = M C < S = M

overall C ≈ S = M S < C < M S < C < M

Table 4.6: Classification of the pricing abilities of different Fourier series: sine series (S), modified
sine series (M) and cosine series (C).

cases not only exacerbates the solution itself but also demands for additional computational

time. Modified sine series showed to be a convincing alternative in this context. Table 4.6

summarizes the results using the contracts analyzed within this chapter.

Based on the analysis throughout the different sections we conclude that, given the contracts

considered in this chapter, pure sine series are dominated by both cosine series as well as

modified sine series. This statement is true given the speed of convergency with respect to

the number of terms in the summation. When also including computational time and the

overall complexity of the coefficients, modified sine series are in advantage over cosine series.





Appendix: A Trigger to Rule Them

All: Valuation of Multi-Asset

Barrier Options

4.A Digital coefficients

d-dimensional digital options are defined by the following payoff structure at maturity:

ν(ST ) = 1{S1(T )>K1} · ... · 1{Sd(T )>Kd}

ν(xT ) = 1{xT1 >k1} · ... · 1{xTd >kd}

Coefficients are therefore given by

ν̂n =

∫
Ω
1{xT>k}ϕn(x) dx

=

∫
Θ
ϕn(x) dx

=

∫ b1

k1

ϕn1(x1) dx1 · ... ·
∫ bd

kd

ϕnd(xd) dxd

=
d∏
j=1

∫ bj

kj

ϕnj (xj) dxj . (4.48)

According to equation (4.48), the coefficients are Kronecker products of the functionD(kj , bj) =∫ bj
kj
ϕnj (xj) dxj . To define the individual series coefficients, function D(kj , bj) has to be solved

for each series representation D = {DC ,DS ,DM}. In terms of cosine series, the following is

true

DC(kj , bj , uj) =

∫ bj

kj

cos[uj(xj − aj)] dxj

=

bj − kj uj = 0

sin[uj(aj−kj)]
uj

uj > 0
.
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When using sine series, we state that

DS(kj , bj , uj) =

∫ bj

kj

sin[uj(xj − aj)] dxj

=
cos[uj(aj − kj)])− (−1)nj

uj
,

while in case of modified sine series the function is given by

DM (kj , bj , pj) =

∫ bj

kj

sin[pj(xj − aj)] dxj

=
cos[pj(aj − kj)]

pj
.

Coefficients ν̂n are, therefore, given by the expression

ν̂n = D(k1, b1, ·)⊗D(k2, b2, ·)⊗ ...⊗D(kk, bk, ·),

where D is chosen from D = {DC ,DS ,DM}.

4.B Margrabe coefficients

The terminal payoff of a Margrabe option is defined by

ν̂[n1,n2] =

∫
Ω

max (S1(0) ex1 − S2(0) ex2 , 0) ϕ[n1,n2](x1, x2) dx1dx2

=

∫ b2

a2

∫ b1

z+x2

(S1(0) ex1 − S2(0) ex2) ϕ[n1,n2](x1, x2) dx1dx2.

To state closed form solutions the general term ϕ[n1,n2] needs to be filled in by either cosine,

sine, or modified sine terms. Thus, we start with cosine coefficients and define sine and

modified sine coefficients afterwards.

ν̂C[n1,n2] =

∫ b2

a2

∫ b1

z+x2

(S1(0) ex1 − S2(0) ex2) cos(q1(a1 − x2 − z)) cos(q2(x2 − a2)) dx1dx2
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Given n1, n2 > 0, the closed form solution reads as

ν̂C[n1,n2] =
eb1S1 sin (A4) (q1 sin (q1 (b1 − a1)) + cos (q1 (b1 − a1)))(

q2
1 + 1

)
q2

+
S2 sin (q1 (a1 − b1))

(
eb2 (q2 sin (A4) + cos (A4))− ea2

)
q1

(
q2

2 + 1
)

− S1

(
1
2e
b2+z (B4 + C4)− 1

2e
a2+z (B2 + C2)

)
q2

1 + 1

− q1S1

(
1
2e
b2+z (B3 + C3)− 1

2e
a2+z (B1 + C1)

)
q2

1 + 1

+
S2

(
1
2e
b2 (B3 + C3)− 1

2e
a2 (B1 + C1)

)
q1

Since a cosine expansion includes n1 = 0 and n2 = 0, a distinction of case is necessary. If

n1 = 0 it is true that

ν̂C[0,n2] =
S1

(
ea2+zq2 +

(
q2

2 sin (A3)
(
eb1 − eb2+z

)
− q2 cos (A3) eb2+z + eb1 sin (A3)

))
q2

(
q2

2 + 1
)

− S2e
a2q2

(
q2

2 (a2 + z + 1) + a2 − b1
(
q2

2 + 1
)

+ z − 1
)

q2

(
q2

2 + 1
)

2

+
S2e

b2q2

(
cos (A3)

(
z + b2 − 1 + q2

2(z + b2 + 1)
)

+ sin (A3)
(
z + b2 − 2 + q3

2(z + b2)
))

q2

(
q2

2 + 1
)

2

Equivalently, assuming n2 = 0, it is true that

ν̂C[n1,0] =
q1S1e

z
(
ea2 (sin (A1)− q1 cos (A1)) + eb2 (q1 cos (A2)− sin (A2))

)(
q2

1 + 1
)

2

− S1e
z
(
eb2 (q1 sin (A2) + cos (A2))− ea2 (q1 sin (A1) + cos (A1))

)(
q2

1 + 1
)

2

+
S2

(
ea2 (q1 cos (A1)− sin (A1)) + eb2 (sin (A2)− q1 cos (A2))

)
q3

1 + q1

+
eb1q1S1 (b2 − a2) sin (q1 (b1 − a1))

q2
1 + 1

+
S2

(
eb2 − ea2

)
sin (q1 (a1 − b1))

q1

+
eb1S1 (b2 − a2) cos (q1 (b1 − a1))

q2
1 + 1

and, given n1 = n2 = 0, coefficients read as

ν̂C[0,0] =S1

(
ez
(
ea2 − eb2

)
+ eb1 (b2 − a2)

)
+ S2

(
eb2 (b2 − b1 + z − 1)− ea2 (a2 − b1 + z − 1)

)
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Finally, using the known abbreviation M[n1,n2](x1, x2) = sin(q1(x1 − a1)) sin(q2(x2 − a2))

and let [q1, q2] =
[

(n1− 1
2

)π

b1−a1
,

(n2− 1
2

)π

b2−a2

]
, modified sine series coefficients are given by:

ν̂[n1,n2] =

∫ b2

a2

∫ b1

z+x2

(S1(0) ex1 − S2(0) ex2) M[n1,n2](x1, x2) dx1dx2

ν̂[n1,n2] =
eb1S1 (cos (A4)− 1) (q1 cos (q1 (b1 − a1))− sin (q1 (b1 − a1)))(

q2
1 + 1

)
q2

+
S2 cos (q1 (b1 − a1))

(
q2

(
ea2 − eb2 cos (A4)

)
+ eb2 sin (A4)

)
q1

(
q2

2 + 1
)

− S1

(
1
2e
b2+z (C4 −B4)− 1

2e
a2+z (C2 −B2)

)
q2

1 + 1

+
q1S1

(
1
2e
b2+z (B3 − C3)− 1

2e
a2+z (B1 − C1)

)
q2

1 + 1

− S2

(
1
2e
b2 (B3 − C3)− 1

2e
a2 (B1 − C1)

)
q1

with

A1 = q1 (−a1 + a2 + z) B1 =
− cos (A1) (q1 + q2) + sin (A1)

(q1 + q2) 2 + 1

A2 = q1 (−a1 + b2 + z) + q2 (a2 − b2) B2 =
sin (A1) (q1 + q2) + cos (A1)

(q1 + q2) 2 + 1

A3 = q1 (−a1 + b2 + z) + q2 (b2 − a2) B3 =
− cos (A3) (q1 + q2)− sin (A3)

(q1 + q2) 2 + 1

A4 = q2 (b2 − a2) B4 =
sin (A3) (q1 + q2) + cos (A3)

(q1 + q2) 2 + 1

C1 =
− cos (A1) (q1 − q2) + sin (A1)

(q1 − q2) 2 + 1

C2 =
sin (A1) (q1 − q2) + cos (A1)

(q1 − q2) 2 + 1

C3 =
− cos (A2) (q1 − q2) + sin (A2)

(q1 − q2) 2 + 1

C4 =
sin (A2) (q1 − q2) + cos (A2)

(q1 − q2) 2 + 1

4.C Vector matrix multiplication

A key ingredient to the computation of discrete path dependent options in general is the

efficient calculation of matrix products. The usage of the FFT algorithm is a standard

procedure that can be implemented in a wide range of applications. In Fang and Oosterlee

(2009) the FFT algorithm is used to calculate one dimensional options based on cosine series

expansions. In Ruijter and Oosterlee (2012), two dimensional options are priced with the
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help of FFT. Here we describe a d-dimensional case with modified sine series as underlying

expansion method.

As already shown in Section 4.4, the starting point is given by the following integral:∫
Ωj

eiv(x−a) ϕn(x) dx =

∫ d

c
eiv(x−a) sin (u(x− a)) dx,

where u and v are given by u = (m−0.5)π
b−a and v = (n−0.5)π

b−a . Solving the above integral yields

the expression
−ei(c−a)[u cos(u(a−c))+iv sin(u(a−c))]+ei(d−a)[u cos(u(a−d))+iv sin(u(a−d))]

(v−u)(u+v) u 6= v

1
2(d− c)i u = v

Considering the first case u 6= v, rearranging terms and replacing trigonometric with complex

exponential functions by means of cos(z) = 1
2e
iz + 1

2e
−iz and sin(z) = 1

2e
−iz − 1

2e
iz, changes

the above expression to

1

2

{
ei(u+v)(c−a) − ei(u+v)(d−a)

u+ v
+
ei(v−u)(d−a) − ei(v−u)(c−a)

v − u

}
(4.49)

which already shows two structured matrices: a Hankel and a Toeplitz matrix. A Hankel

matrix H is a square matrix with constant positive sloping diagonals. A Toeplitz matrix T

shows a similar structure. But instead of positive sloping diagonals being constant, negative

sloping diagonals are constant. Inserting u and v unveils the sum of a Hankel and a Toeplitz

matrix in more detail.

b− a
2π

{
e
iπ
b−a (m+n−1)(c−a) − e iπ

b−a (m+n−1)(d−a)

m+ n− 1
+
e
iπ
b−a (n−m)(d−a) − e iπ

b−a (n−m)(c−a)

n−m

}

Here, each entry within matrix H and T only depend on an integer value j = m+n− 1 and

k = n−m. Thus the above integral can be represented by

b− a
2π

{
eiπj

c−a
b−a − eiπj

d−a
b−a

j
+
eiπk

d−a
b−a − eiπk

c−a
b−a

k

}
=
b− a
2π

{
hj + tk

}
, (4.50)

where

hj =
eiπj

c−a
b−a − eiπj

d−a
b−a

j
∀j

tk =

 e
iπk d−a

b−a −eiπk
c−a
b−a

k k > 0

d−c
b−a iπ k = 0

.
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In terms of equation (4.50), the Hankel and Toeplitz matrix can be displayed as:

H =



h1 h2 · · · hN−1 hN

h2 h3 · · · hN hN+1

h3 h4 · · · hN+1 hN+2

...
...

hN hN+1 · · · h2N−1


T =



t0 t−1 · · · t2−N t1−N

t1 t0 · · · t3−N t2−N

t2 t1 · · · t4−N t3−N
...

. . .

hN−1 hN+1 · · · t1 t0


When embedded into a circulant matrix, only a fraction of the calculations are needed

compared to straight matrix multiplication. A product of the form

y = z ·H z ∈ CN , H ∈ CN×N

involving a Hankel matrix can be calculated by means of

ỹ = F−1 (F(z) · F(ch)) ,

where the vectors z ∈ C2N and ch ∈ C2N are defined by

z = [z1 z2 ... zN 0 0 ... 0]

ch = [hN hN−1 ... h1 0 h2N−1 ... hN+1].

and the resulting vector y is given by the final N entries of ỹ in reverse order

y = [ỹN ỹN−1 ... ỹ1].

Calculations involving a Toeplitz matrix are very similar. A product

y = z · T z ∈ CN , T ∈ CN×N

is efficiently solved by

y = F−1 (F(z) · F(ct)) ,

where the vector z is defined as above and ct ∈ C2N are defined by

ct = [t0 t−1 ... t1−N 0 tN−1 ... t1].

The resulting vector y is given by the first N entries of ỹ

y = [ỹ1 ỹ2 ... ỹN ].

The procedure shown is a standard algorithm for the calculation of vector matrix products.

However, the calculations at hand demand for multiplications of multidimensional matri-

ces. Using a programing environment where the implemented FFT-algorithm also allows

for multidimensional inputs, the steps shown above can be equivalently used to calculate
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matrix matrix products. The programming environment Matlab enables multidimensional

inputs into the FFT routine. However, to save computational time, some remarks are made.

We assume a three-dimensional case for the purpose of illustration. Variable z is now a

multidimensional matrix of dimension z ∈ CM1×M2×M3 .

4.D Put-on-minimum coefficients

To be able to also use the following statements when pricing barrier options, integration

limits are changed to variables in case they are different to zero. This is due to the fact that

using a European option as a starting point, the relevant integration domain changes when

pricing e.g. down-and-out barrier options [a1, b1]× [a2, b2]→ [h1, b1]× [h2, b2].

Formula (4.45) can be subdivided into four individual expressions E1 to E4:

E1(g, e) =

∫ 0

g

∫ 0

e
ϕM[n1,n2](x) dxT

=
cos(a1q1)− cos[q1(a1 − e)]

q1
− cos(a2q2)− cos[q2(a2 − g)]

q2

E2(g, e) =

∫ 0

g

{∫ xT2

e
ex

T
1 ϕ[n1,n2](x) dxT1 +

∫ 0

yT2

ex
T
2 ϕ[n1,n2](x) dxT1

}
dxT2

=
ee (q1 cos[q1(a1 − e)] + sin[q1(a1 − e)])

1 + q2
1

· cos[q2(a2 − g)]− cos[q2(a2 − j)]
q2

− cos(a1q1)

q1

(
eg (q2 cos[q2(a2 − g)] + sin[q2(a2 − g)])

1 + q2
2

− q2 cos(a2q2) + sin(a2q2)

1 + q2
2

)
+

(
1

q1
− q1

1 + q2
1

)(
−1

2
eg(B1 −B2) +

1

2
(B3 −B4)

)
− 1

1 + q2
1

(
1

2
eg(C1 − C2)− 1

2
(C3 − C4)

)
with

A1 = q1(a1 − g)− q2(a2 − g), A2 = q1(a1 − g) + q2(a2 − g)

A3 = q1a1 − q2a2, A4 = q1a1 + q2a2
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B1 =
(q1 − q2) cos(A1) + sin(A1)

1 + (q1 − q2)2
, C1 =

cos(A1)− (q1 − q2) sin(A1)

1 + (q1 − q2)2

B2 =
(q1 + q2) cos(A2) + sin(A2)

1 + (q1 + q2)2
, C2 =

cos(A2)− (q1 + q2) sin(A2)

1 + (q1 + q2)2

B3 =
(q1 − q2) cos(A3) + sin(A3)

1 + (q1 − q2)2
, C3 =

cos(A3)− (q1 − q2) sin(A3)

1 + (q1 − q2)2

B4 =
(q1 + q2) cos(A4) + sin(A4)

1 + (q1 + q2)2
, C4 =

cos(A4)− (q1 + q2) sin(A4)

1 + (q1 + q2)2

E3(e, j) =

∫ j

0

∫ 0

e

(
1− exT1

)
ϕ[n1,n2](x) dxT

=
cos(a2q2)− cos[q2(a2 − j)]

q2

·
− cos(a1q1) + (1 + q2

1 − eeq2
1) cos[q1(a1 − e)] + q1

(
sin(a1q1)− ee sin[q1(a1 − e)]

)
q1(1 + q2

1)

E4(f, g) =

∫ 0

g

∫ f

0

(
1− exT2

)
ϕ[n1,n2](x) dxT

=− cos(a1q1)− cos[q1(a1 − f)]

q1

·
cos(a2q2)− (1 + q2

2 − egq2
2) cos[q2(a2 − g)]− q2

(
sin(a2q2) + eg sin[q2(a2 − g)]

)
q2(1 + q2

2)

Coefficients are, thus, given by

ν̂[n1,n2] = N
[
E1(a1, a2)− E2(a1, a2) + E3(a1, b2) + E4(b1, a2)

]
in terms of European options and

ν̂[n1,n2] = N
[
E1(h1, h2)− E2(h1, h2) + E3(h1, b2) + E4(b1, h2)

]
in terms of down-and-out barrier options.



Chapter 5

Yet Another Factor Model

5.1 Introduction

The market for credit risk is still in the middle of a substantial period of transition. Instru-

ments such as synthetic collateralized debt obligations (CDO) and the models used to price

and monitor these financial contracts faced a lot of criticism during the subprime crisis and

its aftermath. Particularly modeling via Gaussian copula was soon spotted as the source

of the crisis and branded as ’the formula that killed Wall Street’ (Salmon, 2009). However,

when taking a closer look and moving beyond such colorful headlines, it becomes apparent

that the weaknesses of the models were known and alternatives did exist. Alongside numer-

ous other developments, one such alternative is to change the linear dependence structure

implied by a pure Gaussian approach. Detaching a factor model from a pure Gaussian en-

vironment is within the core of this chapter. To concentrate on this effect, we adopt the

market standard for pricing synthetic CDO, i.e., a one-factor model in combination with

Vasicek’s large homogeneous portfolio approach (LHP). Being a static concept, factor mod-

els are not able to cope with dynamics of the aggregated loss process in a way that more

complex products such as constant proportion debt obligations demand (Burtschell et al.,

2009). However, keeping the focus on CDO pricing, factor models are an adequate way of

mapping the overall structure into a model while still remaining intuitive.

Since it is well-known that the Normal distribution is not able to represent the nonlinear

dependence structure that can be observed within the underlying pool of credit derivatives,

we study the behavior of more flexible distributions. By changing the distributional assump-

tions, the dependence structure changes implicitly. Whereas in case of Gaussian random

variables correlation is a complete measure of dependence, it no longer is when turning to

more flexible distributions. Our analysis unveils that, predominantly, the degree of skewness

s and kurtosis κ are of major importance for the model’s behavior when testing it at real

world data. Andersen and Sidenius (2004) assert that market loss distributions have fat-

ter upper tails and assign only a relatively small probability to small losses compared to a
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loss distribution generated by a Gaussian factor model43. Within our model setup, we have

higher moments of the factors’ distribution at hand to realize this empirical evidence.

Two broader distribution families known as generalized tempered stable (GTS) and gener-

alized hyperbolic (GH) distributions as well as their subclasses form the basis of our analy-

sis. Within this extension of the Gaussian framework, we build upon the work of previous

publications: In a first step, Hull and White (2004) used a factor model with Student’s

t-distributed parameters which – due to its fat-tails – is able to capture market spreads44

more precisely. However, similar to the normal distribution, the Student’s t-distribution is

a symmetric function. In order to allow for both kurtosis and skewness, researchers moved

on to distributions allowing for non-zero skewness. Within the class of infinitely divisible

distributions, Kalemanova et al. (2007) utilize Normal Inverse Gaussian distributions (NIG)

whereas Moosbrucker (2006b) installs Variance Gamma distributions (VG). Both articles

linked the parameters by means of the distribution’s stability under convolution property

which indicates that the sum of two identically distributed random variables follows the

same distribution function as the individual variables. While it has some implementation

advantages, this simplification effectively implicates that one factor is entirely determined by

the other. Eberlein et al. (2008) also use NIG and VG, but do not connect the parameters

by means of some stability criteria. Nimmanunta et al. (2008) use Meixner distributions

in a copula-based model as well as a structural credit model. Since none of these studies

explicitly analyze the fitting properties of a mixed factor model approach, we apply several

infinitely divisible semi-heavy-tailed distributions and a heavy-tailed distribution both in a

mixed and in a straight setting.

Our study is related to that of Albrecher et al. (2007) in the sense that we are also interested

in unifying the above-mentioned approaches. However, besides the fact that we use different

distribution functions and allow for mixed factor assumptions, a period of time is analyzed

rather than one point in time within the calibration study.

Our research question can thus be summarized as follows: What is the actual effect on

theoretical tranche prices when introducing probability distributions that allow for skewness

and kurtosis? Moreover, we are interested in the question whether factor models based

on a mix of infinitely divisible distributions are able to represent real market conditions?

Thus, in the proceeding we analyze new types of mixed factor models and thereby fill in

a gap of scarce empirical evidence about the fitting properties of credit risk models. In

particular, we consider 16 different setups of mixed factor models, 12 of which are pure

mixed models in a sense that they assume different probability distributions for the individual

components of the factor model. To our knowledge, only the factor model based on Student’s

t-distributed parameters has been described in literature before. All other model setups are

new specifications.

Within the empirical section of this chapter, we do not only state deviations of the mixed

factor models from market prices but also use two reference models to classify the perfor-

43 We use the term ’Gaussian factor model’ and ’Normal factor model’ as synonyms in the following.
44 Within this paper, we follow market conventions and use the terms ’spread’, ’price’ and ’quote’ as synonyms.
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mance: While all of the above-mentioned literature has in common that it stays within

the classical factor model setup with its fixed correlation structure. Andersen and Sidenius

(2004) introduced a different approach by allowing correlation to switch between regimes.

For comparison purposes, we also implement this model to produce benchmark values from

another class of models. Afterwards, we use the data to conduct two-tailed Wilcoxon-signed

rank tests in order to analyze whether or not a model setup produces significantly different

results compared to the reference model.

The remainder of this chapter proceeds as follows: Section 2 briefly introduces the theoretical

basics needed to price synthetic CDO. While the algorithms used to numerically evaluate

(cumulative) density functions and their inverse are presented in Section 3, the distribution

functions we use in our framework and the impact of changing the underlying distributions

are discussed in Section 4. A calibration study based on the tranched iTraxx Europe from

2006 to 2011 is performed in Section 5 and Section 6 concludes. An appendix is provided

afterwards.

5.2 Modeling synthetic collateralized debt obligations

Synthetic collateralized debt obligations are complex instruments which convert an under-

lying pool of credit default swaps (CDS) through a special purpose vehicle into a tranched

security. Each tranche has an attachment point K1 and a detachment point K2. Hereby,

losses below the attachment point and above the detachment point are not to be borne by

an investor holding a particular tranche.

An investor selling protection on a tranche (protection seller) receives payments from the

protection buyer periodically. As soon as cumulative losses of the reference pool exceed the

attachment point K1, the protection buyer is compensated by the protection seller up to

the point where cumulative losses exceed K2. Obviously the contract is two-sided: From the

protection seller’s point of view, there is an incoming cash flow consisting of spread payments

c(K1,K2) (premium leg, PL) and an outgoing cash flow depending on losses (default leg,

DL). Starting with the incoming cash flow, the premium leg reads as

PL =

n∑
i=1

c(K1,K2) ·N ·∆ti (1− E[LK1,K2
ti

])D(0, ti) +N · Up,

where LK1,K2
ti

denotes the loss of tranche [K1,K2], N is the notional, Up indicates an upfront

payment which is intended to reduce counterparty credit risk the protection seller is exposed

to and D(0, ti) is a discounting factor.
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Within the chapter’s framework, the default leg is defined as

DL =

∫ T

0
N ·D(0, t) dLK1,K2

t

≈
n∑
i=1

(E[LK1,K2
ti

]− E[LK1,K2
ti−1

])N ·D(0, ti). (5.1)

With this kind of default leg, it is assumed that default payments are made solely at times

of spread payments. This simplification can be relaxed by including an accrual on default.

However, given the chapter’s purpose of comparing different model setups, we stay within

the version of formula (5.1).

In case of zero upfront, the fair price of a tranche is defined as the spread payment

c(K1,K2) =

∑n
i=1

[
E[LK1,K2

ti
]− E[LK1,K2

ti−1
]
]
D(0, ti)∑n

i=1

[
1− E[LK1,K2

ti
]
]
D(0, ti) ∆ti

, (5.2)

equalizing the premium leg and the default leg. In case of a nonzero upfront, spread payments

are fixed at a certain level and the variable Up is determined by

Up =

n∑
i=1

(E[LK1,K2
ti

]− E[LK1,K2
ti−1

])D(0, ti)−
n∑
i=1

c(K1,K2) ∆ti (1− E[LK1,K2
ti

])D(0, ti).

(5.3)

The critical unknown in equations (5.2) and (5.3) are the expected values E[LK1,K2
ti

] over

time. An intuitive way to think of the expected loss is to treat it as a call spread option

written on the underlying portfolio losses. Therefore, it can be expressed by

E[LK1,K2
ti

] =
1

K2 −K1

{∫ 1

K1

(u−K1)dξ(t, u)−
∫ 1

K2

(u−K2)dξ(t, u)

}
=

1

K2 −K1

∫ K1

K2

(u−K1)dξ(t, u) + 1− ξ(t,K2) (5.4)

where ξ(t, x) describes the continuous portfolio loss distribution. Equation (5.4) outlines

that the challenge in modeling synthetic CDO contracts is to describe ξ(t, x) in accordance

with market data.

To be able to deduce a portfolio loss distribution, we first have to cope with dependence.

Therefore, it has to be clarified how the portfolio’s single CDS behave on an individual basis,

and, in addition, how they interact with other entities. More precisely, we are interested in

the interaction of default times τi of the items within the credit pool. First, marginal distri-

butions qi(t) = P[τi ≤ t] deal with the behavior of a single entity and can be bootstrapped

either from an associated CDS quote or from a portfolio index level. Second, supposing an

underlying portfolio of P = {1, . . . , N} different CDS, a homogeneous one-factor model

Xi = aY +
√

1− a2εi ∀i ∈ P (5.5)
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can be used to connect a system-wide factor Y with an idiosyncratic factor εi by means of

variable a which is associated to linear dependence in this context.45 Thus, a homogeneous

one-factor model assumes a flat correlation structure with identical entries within the corre-

lation matrix.46 Within this setting, a reference entity Xi defaults when crossing or touching

a lower barrier Bi. Therefore, the individual probability of default is given by

qi(t) = P [Xi ≤ Bi(t)] = FX [Bi(t)]. (5.6)

For equation (5.6) to hold, it must be true that Bi(t) = F−1
X [qi(t)]. Since we assume a

homogeneous case, the threshold Bi(t) is the same for all titles within the portfolio, i.e.,

Bi(t) = B(t) = F−1
X [q(t)].

While the standard model is defined by standard normally distributed factors Y and εi,

we analyze more flexible distributions with zero mean and unit variance but varying higher

moments. A portfolio loss formula, however, can be achieved even without assuming specific

distribution functions in equation (5.5): Conditioning on factor Y , the components of vector

Xi are independent from each other. Therefore, it is true that

P[Xi ≤ B|Y = y] = P[ay +
√

1− a2εi ≤ B|Y = y]

= P
[
εi ≤

B − ay√
1− a2

|Y = y
]

= Fε

[
B(t)− ay√

1− a2

]
.

Due to conditional independence, the conditional portfolio loss distribution follows a binomial

distribution:

P[L = k|Y = y] =

(
N

k

)
Fε

[
B(t)− ay√

1− a2

]k(
1− Fε

[
B(t)− ay√

1− a2

])N−k
. (5.7)

When integrating equation (5.7), we obtain the unconditional loss distribution (5.8) and

cumulative loss distribution (5.9), respectively, for an underlying pool consisting of exactly

N different CDS:

P[L = k] =

∫
R

(
N

k

)
Fε

[
B(t)− au√

1− a2

]k(
1− Fε

[
B(t)− au√

1− a2

])N−k
dFY (u) (5.8)

P[L ≤ k] =

∫
R

bNxc∑
k=0

(
N

k

)
Fε

[
B(t)− au√

1− a2

]k(
1− Fε

[
B(t)− au√

1− a2

])N−k
dFY (u) (5.9)

45 The correlation coefficient describing linear dependence is defined by Corr(Xi, Xj) = a2.
46 For a different approach see e.g. Hager and Schöbel (2006). Within this publication, the authors use an

evolutionary algorithms to fit the individual entries of the correlation matrix to a given implied correlation
structure.
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Following Vasicek (1987), as N →∞ the limit of the portfolio loss distribution comes down

to

ξ(t, x) =

∫ 1

0
1{0≤s≤x} dFY

(√
1− a2F−1

ε (s)−B(t)

a

)
= −

∫ x

0
dFY

(
B(t)−

√
1− a2F−1

ε (s)

a

)
= 1− FY

(
B(t)−

√
1− a2F−1

ε (x)

a

)
, (5.10)

where s = Fε

(
B(t)−ax√

1−a2

)
. At first sight, approximating a finite portfolio by means of an

infinite portfolio may seem like a radical simplification. However, it is quite remarkable how

close the approximation gets for a portfolio size starting at 100 titles (Schönbucher, 2003).

In principle, equation (5.10) could be used in combination with equations (5.4) and (5.2) or

(5.3) to price specific tranches. But due to the fact that evaluating the inverse distribution

F−1
ε from (5.10) in the integral of (5.4) is numerically slow, we follow Kalemanova et al.

(2007) and rewrite the integral
∫K1

K2
(u−K1)dξ(t, u) in (5.4) to

∫ K1

K2

(u−K1)dξ(t, u) =

√
1− a2

a

∫ F−1
ε (K2)

F−1
ε (K1)

(Fε(u)−K1) fY

(
B(t)−

√
1− a2 u

a

)
du.

(5.11)

Now, inverse distributions only have to be evaluated in the integration limits. Nonetheless,

there are at least two facts that can exacerbate the calculation of (5.11). First, it may be

the case that there is no known version of FY and Fε, respectively, or second, the inverse

distribution F−1
X – i.e., the inverse distribution of the sum of two random variables – needed

to calculate B(t) is not known. However, both problems can be solved by using the concepts

of characteristic functions rather than distribution functions.

5.3 Approximation algorithm

Characteristic functions are defined as Fourier transforms of density functions. Since they

represent a mere transformation from real to imaginary space, characteristic functions con-

tain exactly the same information compared to their real valued counterpart. The back and

forth transformation constitute a transform pair:

ϕ(u) =

∫
R
eiuxf(x)dx (5.12)

f(x) =
1

2π

∫
R
e−iuxϕ(u)du. (5.13)

Besides this relation between characteristic functions and their according density functions,

there is also a direct connection between characteristic functions and cumulative density
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functions given by Gil-Pelaez’s version of the inversion theorem (Gil-Pelaez, 1951):

F (x) =
1

2
− 1

π

∫ ∞
0

eiuxϕ(−u)− e−iuxϕ(u)

2iu
.

Due to the fact that ϕ is hermitian47, the above inversion formula can also be written as:

F (x) =
1

2
− 1

π

∫ ∞
0
I
{
ϕ(u)

e−iux

u

}
du, (5.14)

where i =
√
−1 and I {·} describes the imaginary part of a complex number. Equations

(5.13) and (5.14) could be used to solve the first problem mentioned when there is no known

closed form version of FY or Fε. With (5.13) and (5.14), one possibility is to use numerical in-

tegration methods to obtain either the density function f or the cumulative density function

F . In both cases, some implementations do exist based on the fast Fourier transform (FFT)

algorithm (see e.g. Scherer et al., 2009). However, we use a Fourier cosine series approxima-

tion (COS) developed by Fang and Oosterlee (2008) for evaluation of equation (5.13). One

advantage of this approximation is that, compared to direct integration of (5.13) or (5.14),

COS is able to calculate distribution values for a whole vector x simultaneously. It shares

this feature with an FFT implementation. On a given level of accuracy, however, COS out-

performs FFT density approximation methods in the calculation of small to moderate-sized

vectors since it is not subject to the Nyquist relation. In addition, we use a series representa-

tion for cumulative density functions which simplifies the calculation of inverse distributions

that are otherwise rather cumbersome.

Generally speaking, the COS method utilizes the fact that a Fourier series can approximate a

periodic function up to an arbitrary level of accuracy. By truncating the density function at

an appropriate level, it can be considered as being quasi-periodic and the full set of Fourier

series analysis can be applied. A short derivation of the cosine series used can be found in

the following. For a broader overview, we refer to Tolstov (1976) as well as to Section 2.2.2.

A partial Fourier cosine series on [a, b] is defined by a complete orthogonal set en(x) and its

Fourier coefficients an by the series expansion

f(x) =

N−1∑
n=0

δnanen(x), (5.15)

where δn is 0.5 for n = 0 and 1 otherwise and the orthogonal set is specified by en(x) ={
cos
(
nπ x−ab−a

)}
n∈N

. The Fourier coefficients an are to be calculated as the inner product48

of the function f and en divided by the squared norm49 of en (Tolstov, 1976, p. 43):

an =
〈f, en〉
‖en‖2

=
2

b− a 〈f, en〉 . (5.16)

47 A function f is considered being hermitian if its complex conjugate is equal to the function itself evaluated
with opposite sign: f(x) = f(−x)

48 The inner product of two continuous functions f and g is defined as 〈f, g〉 =
∫ b
a
f(x)g(x)dx.

49 The norm of a function f is ‖f‖ =
√
〈f, f〉.
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Inserting (5.16) in (5.15) yields

f(x) =
2

b− a
N−1∑
n=0

δn 〈f, en〉 en(x).

Since the characteristic function can be written as ϕ(u) =
〈
eiux, f

〉
R it follows that

R
{
e−in

π
b−aϕ

(
nπ

b− a

)}
= R

{〈
e−in

π
b−a (a−x), f

〉
R

}
≈ 〈f, en〉 ,

which, in turn, implies that the Fourier cosine series representation of a density function f

reads as

f(x) =
2

b− a
N−1∑
n=0

δnR
{
e−in

π
b−aϕ

(
nπ

b− a

)}
en(x)

=
2

b− aR
{
N−1∑
n=0

δne
−in π

b−aϕ

(
nπ

b− a

)
cos

(
nπ

x− a
b− a

)}
, (5.17)

where R{·} describes the real part of a complex number. Cumulative distribution functions

can be described by means of integration:

F (x) =
2

b− a

∫
R
R
{
N−1∑
n=0

δne
−in π

b−aϕ

(
nπ

b− a

)
cos

(
nπ

x− a
b− a

)}
dx (5.18)

=
2

b− a(x− a) +R
{
N−1∑
n=1

δn
2

πn
ϕ

(
nπ

b− a

)
einπ

−a
b−a sin

(
nπ

x− a
b− a

)}
. (5.19)

With these relations, semi-analytic approximation equations for density functions as well as

cumulative density functions are available.

As for any approximation method based on series representation, convergence is a matter of

interest. However, since we work with distributions within the class of infinitely continuous

functions (C∞[a, b] ∈ R) we note that the approximation shows geometric convergence, while

algebraic convergence is reached for densities with a discontinuity in the function itself or in

one of its derivatives (Fang and Oosterlee, 2008).

After having outlined our approximation scheme for both f in (5.17) and F in (5.19), evalu-

ation of the inverse function needs to be clarified. More precisely, based on equation (5.11),

the inverse distribution function of the sum of two random variables needs to be imple-

mented. Some distribution functions are stable under convolution, meaning that the sum

of two identically distributed random variables follows the same distribution function as the

individual variables. This, however, is not always the case. Moreover, when the sum does

not consist of identically distributed random variables, we most often do not know which

probability law the resulting random variable obeys. For this issue, it is useful to notice that

the characteristic function of the sum of two independent random variables is defined by the

product of the respective characteristic functions of each random variable. Taking the factor
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loadings into account as well, we get the following relation:

ϕX(u) = ϕY (au) ϕε(
√

1− a2u). (5.20)

With that in mind, we are still not able to calculate inverse distributions, but we know

the respective characteristic function and, in consequence, also the (cumulative) density

function by means of (5.17) and (5.19). Since inverse distribution values F−1(q) can be

calculated by solving F (x) − q = 0 for x, equation (5.19) and its derivative (5.17) could be

used in a Newton-Raphson root searching algorithm. Even though this method is fast, the

disadvantage of depending heavily on initial values made us use a more robust root finding

procedure. Matlab’s built-in routine fzero combines a robust bisection with a secant method

yielding sufficient accuracy and speed.

5.4 Distribution families and factor model behavior

Since we are working with infinitely divisible distributions F on R, the most general starting

point to describe the characteristic function is through the Lévy-Khintchine formula

ϕ(u) = eψ(u)

ψ(u) = iuµ− 1

2
σ2u2 +

∫
R

(eiux − 1− iux1|x|<1) ν(dx), (5.21)

where µ ∈ R, σ > 0 and ν being a Lévy measure following the usual conditions ν({0}) = 0

and
∫
R(1 ∧ |x|2)ν(dx) <∞. To more directly connect this rather technical statement about

Lévy measures to the present problem, we note that the existence of higher moments, which

will become an essential ingredient in our analysis, depends on the integrability of ν(dx). Sato

(2005) shows that the nth moment of a random variable only exists if
∫
|x|≥1 |x|

n ν(dx) <∞.

Formula (5.21) can be understood as a decomposition of the probability law into three

individual parts. First, a deterministic drift part µ, second, a volatility parameter σ and,

third, a Poisson part that introduces non-Normal behavior.

The distributions used in the following calibration analysis are representatives of one of two

broader distribution families: the family of generalized tempered stable distributions (GTS)

(see e.g., Koponen 1995; Rosinski 2007) and the family of generalized hyperbolic distributions

(GH) (see e.g. Barndorff-Nielsen, 1977). At least in the former case, taking a closer look at

the Lévy density ν(x), which defines the Lévy measure ν(dx) by means of ν(dx) = ν(x)dx,

leads to an intuition for the behavior of the distribution:

GTS(c−, c+, α−, α+, λ−, λ+)

νGTS(dx) =

(
c−

|x|1+α−
e−λ

−|x|1x<0 +
c+

|x|1+α+ e
−λ+|x|1x>0

)
dx, (5.22)
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with c− > 0, c+ > 0, α− < 2, α+ < 2, λ− > 0, and λ+ > 0. Equation (5.22) shows

the classical structure of a stable distribution. However, to yield finite moments, the Lévy

measure is tempered, or, to be more precise, the tails of the Lévy measure are exponentially

damped by the factor e−λ
∓|x| (Cont and Tankov, 2004, p. 110). With that in mind, λ+

and λ− have to be interpreted as parameters regulating the decay rate of the positive and

negative side of the Lévy density ν(x) and therefore controlling the tail behavior of the

resulting probability distribution. A combination of equations (5.21) and (5.22) defines

the generating triplet (µ, σ, νGTS) of the distribution family and leads to the associated

characteristic exponent:

ψGTS(u) = iuµ− 1

2
σ2u2+Γ(−α+)λα

+

+ c+

{(
1− iu

λ+

)α+

− 1 +
iuα+

λ+

}
+

Γ(−α−)λα
−
− c−

{(
1− iu

λ−

)α−
− 1 +

iuα−

λ−

}
, ∀ α± < 2 \ {0, 1}.

(5.23)

When σ = 0 in (5.23), we are dealing with a purely non-Gaussian law (Sato, 2005, p. 38).

Within this class of GTS distributions, we are interested in two subclasses. A particularly

well-known distribution was introduced into finance by Carr et al. (2002). The characteristic

exponent of this so-called CGMY distribution can be derived from (5.23) by setting c− =

c+ = C, α+ = α− = Y , λ− = G, and λ+ = M :

ψCGMY (u) = iuµ+ Γ(−Y )C
[
(M − iu)Y −MY + (G− iu)Y −GY

]
. (5.24)

The CGMY distribution is a generalization of a distribution function previously defined by

Madan and Seneta (1990) that is called Variance Gamma (VG). By means of the gamma

function’s property

Γ(−Y ) =
1

Y
Γ(1− Y )

on the one hand and l’Hospital’s rule on the other hand, the characteristic exponent can be

retrieved as the limiting case of (5.24) for Y → 0:

ψV G(u) = iuµ+ C ln

[
MG

(M − iu)(G− iu)

]
. (5.25)

Equation (5.25) is only one way of defining a VG distribution. Since a representation as

limiting case of a GH distribution makes normalization50 more convenient, we get back to

the VG distribution in the following.

As for generalized hyperbolic distributions, the Lévy measure does not have a form as intu-

itive as in (5.22) which is mainly based on the fact that it contains Bessel functions of the

50 We normalize the probability distribution of factors Y and εi in equation (5.5) to zero mean and unit
volatility to preserve the interpretation of parameter a as a measure of correlation.
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first kind, Jλ(x), and the second kind, Yλ(x), in the integrand (Prause, 1999, see e.g.):

GH(λ, α, β, δ)

νGH(dx) =


eβx

|x|

( ∫∞
0

exp(−
√

2y+α2|x|)
π2y(J2

λ(δ
√

2y)+Y 2
λ (δ
√

2y))
dy + λe−α|x|

)
dx, λ ≥ 0

eβx

|x|

( ∫∞
0

exp(−
√

2y+α2|x|)
π2y(J2

−λ(δ
√

2y)+Y 2
−λ(δ

√
2y))

dy
)
dx λ < 0

,

with

δ ≥ 0, |β| < α if λ > 0

δ > 0, |β| < α if λ = 0

δ > 0, |β| ≤ α if λ < 0.

In contrast to GTS distributions, GH distributions have a known density representation.

However, these representations still include Bessel functions which are slow to evaluate.

Contrary to density functions, characteristic functions of subclasses do not rely on these

special functions.

Barndorff-Nielsen (1977) includes both, an expression for the probability density function as

well as the characteristic function of GH distributions:

ϕGH(u) = eiuµ
(

α2 − β2

α2 − (β + iu)2

)λ
2 Kλ

(
δ
√
α2 − (β + iu)2

)
Kλ(δ

√
α2 − β2)

, (5.26)

with Kλ(x) being the modified Bessel function of the second kind. However, these Bessel

functions are only present within the general expression of the characteristic function. As

before, we are interested in particular subclasses rather than in the broader probability

distribution family itself. Thus, in the following, we extract from the general version in

(5.26) the Normal distribution, the Normal Inverse Gaussian distribution as well as the

Variance Gamma and the Student’s t-distribution as special cases:

Whereas the Normal distribution is obtained as a limiting case for δ →∞ and δ
α → σ2

ψNormal(u) = iuµ− 1

2
u2σ2,

the Normal Inverse Gaussian distribution is specified by λ = −1
2 :

ψNIG(u) = iuµ− δ
(√

α2 − (β + iu)2 −
√
α2 − β2

)
. (5.27)
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Tranche [%]

Eq Me1 Me2 Me3 Se1 Se2

Attachment 0 3 6 9 12 22
Detachment 3 6 9 12 22 100

Table 5.1: Attachment and detachment points in percentage of cumulated losses. Attachment
and detachment points are hereby chosen in accordance with standard iTraxx Europe
tranches.

As mentioned before, the VG distribution can also be expressed in terms of the GH family51

with λ = σ2

ν , α =
√

2
ν + θ2

σ4 , β = θ
σ2 and δ → 0:

ψV G(u) = iuµ− 1

ν
log

(
1− iuθν +

1

2
σ2ν2

)
. (5.28)

Finally, the Student’s t-distribution can be obtained from GH distributions by λ = −ν
2 ,

α = β = 0 and δ =
√
ν (Prause, 1999, p. 4). Using this parametrization as well as the

asymptotic equality Kλ(ω) = Γ(λ) 2λ−1ω−λ, Hurst (1995) proved the following analytic

form of the characteristic function:

ϕSt−t(u) =
K 1

2
ν (
√
ν |u|) (

√
ν |u|)

1
2
ν

Γ
(

1
2ν
)

2
1
2
ν−1

.

This completes the portfolio of distribution functions {CGMY, VG, NIG, St.t} that are used

in our analysis. Since the CGMY distribution has one degree of freedom in excess compared

to VG and NIG, we enhance VG and NIG distributions by means of a Brownian part within

the calibration study (see equation (5.32) in Section 5.5). In addition to an equal number of

parameters, standardization becomes more convenient thereby.

However, before turning to actual market data, we give an intuition of what it means to

change the underlying distributional assumption. In essence, we focus on the effect of dis-

tributional changes on individual tranche behavior and, thereby, combine concepts from

Section 2 with elements from Sections 3 and 4. To study these tranche effects, attachment

and detachment pairs as shown in Table 5.1 have to be defined. The values within the table

are, hereby, not chosen by random choice but according to contracts written on the iTraxx

Europe index.

Effect of skewness and kurtosis on correlation smiles

To point to the core of the theoretical problem, we start the analysis with a phenomenon

known as implied correlation smile: A standard factor model assumes a flat correlation

structure, meaning that every tranche is priced under the assumption of a fixed correlation

51 Differences in the final representation of the VG characteristic function are rooted in the starting points:
In case we interpret a VG process or law as a time changed Brownian motion, a representation as in (5.28)
is the result. Starting with the definition of a VG process as the difference of two independent gamma
processes, equation (5.25) occurs (see e.g. Madan et al., 1998, p. 83). However, both representations
contain the same information and can be transferred into one another.
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Figure 5.1: Embedded implied correlation smile of mixed models and density functions used in the
model setup.

value. However, the correlation parameter varies across tranches when calibrating each

tranche individually to market quotes counteracting the assumption made by a factor model.

Since, in general, optimization yields higher parameter values for equity and senior tranches

than for mezzanine tranches, the typical smile structure also known from implied volatilities

in option markets occurs. We will come back to this point using actual market data, but for

now, theoretical prices produced by a double NIG52 model are used to study the nature of

default dependence in more detail.

By construction, Figure 5.1 presents a flat correlation structure within the double NIG

model at a correlation level of a2 = 0.36. Using optimization to fit a Normal factor model,

the smile-shape described above occurs.53 The fact that the double NIG model produces

reference prices with an embedded smile can be referred to the density functions used within

the factor model setup. Within the double NIG model, factors Y and εi follow a non-Gaussian

behavior and, as a result, the convolution Xi of the two random variables is non-Gaussian

(and non NIG) as well. To illustrate this, densities are also plotted in Figure 5.1. Judging

from the figure, it seems that mixed factor models are able to cope with smile structures

but require higher levels of linear dependence compared to a Normal factor model. This

observation of lower normal implied correlations can also be found in Eberlein et al. (2008)

and Moosbrucker (2006a) amongst others.

Effect of skewness and kurtosis on probabilities of (joint) default

Senior tranches are protected by subordinated equity and mezzanine tranches. Therefore,

they only bear losses when many credit events occur which, in turn, only happens given

a high individual probability of default or a strong dependence on default. Because the

ability to create strong dependence structures is crucial especially for the pricing of senior

tranches, we concentrate on these tranches first before coming back to the whole tranche

structure. As mentioned above, the probability mass attached to senior tranches using the

Gaussian is too low. Figure 5.1 illustrates this for the second (super) senior tranche Se2. To

52 We use the term ’double’ to indicate that both factors follow a distribution stated afterwards (NIG in this
case).

53 Since the second (super) senior tranche Se2 is not traded actively, it is marked by different coloring.
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reproduce the theoretical price, a correlation of almost 0.7 is needed. Therefore, in order

to fit high senior tranche prices, the model must be capable of allocating a high probability

to conjoint defaults, which, according to the existence of the correlation smile, cannot be

done with linear dependence alone. However, the fact that market prices for senior tranches

can reach very high levels became obvious in 2008. Within the market turmoil, prices for

the first senior tranche of the iTraxx Europe widened from 2 bps (01/31/2007) to over 127

bps (11/25/2008). Thus, market participants evaluated the risk of conjoint defaults as being

underestimated and allocated a higher probability mass to the before-mentioned tail events.

In this context, the measure of tail dependence is often used to analyze the probability of

extreme (tail) events. Especially the lower tail dependence (see e.g. Albrecher et al., 2007,

p. 272)

lim
x→−∞

P [Xi ≤ x|Xj ≤ x] (5.29)

is of interest for our research. However, we do not use the limit in (5.29) but rather the

following conditional probability:

λ(q) = P
[
Xi ≤ F−1

X (q)|Xj ≤ F−1
X (q)

]
. (5.30)

Since in a one-factor model framework the inverse distribution function F−1
X (q) describes the

default threshold of each entity, equation (5.30) measures the probability of item i defaulting

given the fact that item j has already defaulted. The higher the above conditional probability

of default gets for a given model, the wider the spread for the most senior tranche.

Keeping in mind the structure of the random variable Xi from (5.5) and using conditional

independence results in a formula for the conditional probability that can be solved numer-

ically:

λ(q) =
1

q

∫
R

{
Fε

(
F−1
X (q)− au√

1− a2

)}2

dFY (u). (5.31)

In a first step we focus on the interaction of higher moments and the conditional probability

of default given in (5.31). Afterwards, we focus on tranche prices rather than probabili-

ties. We use double NIG factor models as well as a Normal factor model to conduct our

analysis. While the first NIG factor model is based on symmetric but semi-heavy-tailed dis-

tributions (Y ∼ NIG(2, 0)), the second model builds upon negatively skewed distributions

(Y ∼ NIG(
√

3 + 2
√

6,−1)). Hereby, parameter values are chosen in a way that kurtosis

(κ = 3.75) stays the same while skewness assumes negative values (s = −0.43). In a third

model, we do not fix kurtosis but add skewness to the kurtosis level of the symmetric double

NIG model (Y ∼ NIG(2,−1)). Here, kurtosis and skewness assume values of κ = 5.67 and

s = −1. Up to this point, factor εi is kept symmetric and follows a NIG(2,0) distribution.

Based on distributional assumptions from above, we compare conditional probabilities of

default λ connected to different levels of individual probabilities of default q. The left part
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Figure 5.2: Conditional probability of default for Gaussian and double NIG factor models. Corre-
lation factor a2 = 0.35, individual probability of default q ∈ (0, 0.2].

of Figure 5.2 illustrates a scenario where even a mild level of excess kurtosis has a positive

impact on the level of λ compared to probabilities generated by a Gaussian model. Taking

q = 0.05 as an example, the conditional probability of default is higher by a value of 92 bps.

Differences in probabilities created by asymmetric models are even higher and reach values

of 393 bps and 878 bps, as shown in the right part of Figure 5.2. Even though kurtosis values

are the same for the two blue curves, conditional probability of default values are not. This

indicates the importance of non-symmetric distribution functions.

A more direct connection to model-intern pricing behavior is the interaction between linear

and non-linear parts of the dependence structure. Thus, we need to focus on correlation,

skewness and kurtosis combined. To approach this issue, we compare conditional probability

of default parameters λ(q) for a given individual default probability q̄ = 0.05 and varying

distribution and correlation parameters. Thus, we cut the functions from Figure 5.2 in a

single point and expand that point on the correlation line. The effect of skewness and kurtosis

are shown in more detail in Figure 5.3. To visualize different aspects, one of the two factor

distributions is kept symmetric while the other one assumes skewness. In the upper part of

the figure, the firm specific factor εi follows a symmetric NIG(2,0) distribution. In the lower

part, the market wide factor Y is treated equivalently.

Introducing zero skewness but excess kurtosis in the distribution of factor Y yields higher

conditional probabilities of default. The increased kurtosis, however, is subdivided into the

left and right tail of the distribution. A more direct effect in terms of conditional default

probabilities can be achieved through the left tail alone. When increasing negative skewness,

probabilities λ increase faster compared to the scenario before. The opposite procedure,

increasing positive skewness, increases the probability of survival. Factor εi behaves differ-

ently. Increasing negative skewness of this factor directly lowers conditional probabilities of

default and inverse statements can be formulated for positive skewness. The reason for this

can be visualized best in a bivariate distribution plot. In contrast to Figure 5.3, we do not

directly aim at default scenarios in Figure 5.4. As a result, the whole spectrum becomes

observable: areas where both random variables Xi and Xj survive (above and right to the
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Figure 5.3: Tail dependence for Gaussian and double NIG models with varying correlation param-
eters. Parameters: αi ∈ [0, 3], βi ∈ [−1.5, 0], and βj ∈ [0.5, 1.5].

dashed red lines), areas where only one title survives (below or left to the dashed red lines),

as well as regions where both default (below and left to the dashed red lines).

Increasing left skewness of factor Y leads to a higher probability of conjoint default. The

bivariate distribution is therefore stretched to the lower left. Factor εi, in contrast to the

economic wide factor Y , deals with firm specific behavior. Increasing the negative skewness

of εi yields a higher probability mass in the area of individual default but not in the region

of conjoint default.

The probability of individual default is an exogenous variable that moves the default barriers

(dashed red lines) in Figure 5.4. Likewise, positive skewness of fεi increases individual

probability of survival. However, the probability of conjoint default and dependent default

respectively also increase. As a result, a combination of a negatively skewed factor Y and

a positively skewed factor εi allocates the most probability mass into the area of conjoint

defaults.

Increasing the probability of conjoint defaults through skewness or kurtosis is a valid instru-

ment for increasing super senior tranche prices compared to a Gaussian scenario. The effect

on the other tranches, however, is not that clear. Hence, we expand our analysis to tranche

spreads themselves.

Effect of skewness and kurtosis on tranche prices
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Figure 5.4: Bivariate distribution functions created by different NIG factor models based on a cor-
relation of a2 = 0.35.
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In a pure Gaussian approach, the only possibility for producing a similar behavior of higher

senior tranche prices is to raise correlation which, in turn, directly lowers equity payments.54

This must not be the case for asymmetric or fat-tailed models. Tranche prices cNIG pro-

duced by a double NIG model55 are used in Table 5.2 to calculate markups of the form

M = cNIG
cGaussian

. The respective Gaussian tranche prices56 are reported in the table indicated

by s = 0 and κ = 3. Since we use a Gaussian model for standardization, or more precisely

a model built only on linear dependence, the following effects are based solely on non-linear

dependence structures.

s κ Eq Me1 Me2 Me3 Se1 Se2 λ(q)

co
rr

.
a

2
=

0
.1

5

0 3 51.01 467.54 138.54 44.53 6.40 0.01 8.8

0 4 1.09 0.83 0.76 0.90 1.57 15.65 8.7
0 5 1.13 0.73 0.65 0.85 1.89 34.97 8.8
0 6 1.16 0.66 0.58 0.82 2.11 55.32 9.1
0 7 1.18 0.61 0.54 0.80 2.28 75.48 9.4
0 8 1.19 0.56 0.51 0.79 2.42 94.99 9.7
0 9 1.20 0.53 0.48 0.78 2.54 113.68 10.1

co
rr

.
a

2
=

0
.3

5 0 3 31.77 468.66 238.45 135.53 50.38 1.17 12.3

0 4 1.14 0.84 0.79 0.82 0.99 2.79 17.7
0 5 1.21 0.74 0.68 0.73 0.97 3.89 18.9
0 6 1.26 0.67 0.61 0.67 0.96 4.75 20.0
0 7 1.29 0.61 0.56 0.63 0.96 5.45 20.9
0 8 1.31 0.57 0.52 0.60 0.95 6.03 21.8
0 9 1.33 0.54 0.49 0.58 0.94 6.54 22.5

co
rr

.
a

2
=

0
.5

5 0 3 16.67 404.13 255.42 177.11 94.15 5.34 27.6

0 4 1.18 0.85 0.82 0.84 0.92 1.87 30.9
0 5 1.28 0.76 0.72 0.75 0.88 2.23 33.0
0 6 1.35 0.69 0.66 0.69 0.84 2.48 34.6
0 7 1.41 0.64 0.61 0.65 0.82 2.67 35.8
0 8 1.45 0.60 0.57 0.62 0.80 2.82 36.8
0 9 1.48 0.57 0.55 0.59 0.79 2.94 37.6

Table 5.2: Markups of heavy-tailed models as ratio of model price and Gaussian reference price.
Dependent probabilities of default λ(q = 0.05) are given in percentages.

In Table 5.2, kurtosis is increased while still keeping distributions symmetric. As indicated

above, we observe a decreasing equity upfront payment when increasing correlation. How-

ever, for a given correlation value, higher values of kurtosis yield higher markups for the

equity tranche. That is, introducing kurtosis counteracts declining equity prices when rais-

ing correlation. The most pronounced markups in terms of kurtosis alone can be found for

the most senior tranche (Se2). Especially for low correlation values, markups are substantial.

The same applies for the first senior tranche (Se1), but only on lower levels of markups and

54 Correlation measures joint behavior. Thus, higher correlation indicates a higher probability of joint defaults
but also a higher probability of joint survival.

55 We consult the NIG distribution as one example of a distribution function that is able to produce skewness
and kurtosis. We could have used other distributions as well, the results are quite robust in the way
conclusions can be drawn from it.

56 Prices for equity tranches are quoted in percentage upfront with fixed 500 bps running spread. Prices for
higher tranches are in basis points without upfront payments. As an immediate reaction to the market
meltdown, higher tranches begun to trade with an upfront as well. For the analysis at this point of the
paper, we, however, abstract from this convention.
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Figure 5.5: Markups of heavy-tailed and asymmetric models as ratio of model price and Gaussian
reference price. Parameters: sY = −1, ..., 1, κY = 5.67, sε = 0, κε = 3.75, a2 =
0.15, ..., 0.75.

low correlation parameters. This observation can be related to the question whether implied

normal correlation tends to be lower. The Normal factor model prices equity tranches too

high and senior tranches too low. Using more flexible models to change skewness and kurto-

sis yields markups in the equity tranche. In order to counteract these markups, correlation

needs to be increased, which, in turn, also increases the absolute level of senior tranches. In

other words, keeping equity prices on a certain level and simultaneously increasing senior

tranche prices is not possible with correlation alone. However, the combination of increasing

correlation and varying higher moments creates markups in the equity tranche that neutral-

ize the effect of correlation on this tranche and raises prices of the first senior tranche (mainly

due to higher correlation) and the second senior tranche (mainly due to a higher dependent

probability of default). When concentrating on mezzanine tranches, an actual markdown is

given.

To also incorporate non symmetric model setups, we fix kurtosis at κ = 5.67 and vary

skewness from negative to positive s ∈ [−1; 1]. Even though kurtosis levels are constant, the

model behaves quite differently to positive and negative skewness related to its distributions.

Since interpretations are more involved for the skewed models, Figure 5.5 and 5.6 visualize

and expand Table 5.2.

In Figure 5.5, the distribution function of the firm specific factor εi is kept symmetric while

the distribution function of factor Y varies. Given a fixed kurtosis level, the equity tranche

undergoes markups. Markdowns are only present for high correlation and negative skewness.

Both senior tranches are priced higher compared to Gaussian model prices especially for low

to medium correlation and negatively skewed distributions. In terms of equity and senior
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Figure 5.6: Markups of heavy-tailed and asymmetric models as ratio of model price and Gaussian
reference price. Parameters: sY = 0, κY = 3.75, sε = −1, ..., 1, κε = 5.67, a2 =
0.15, ..., 0.75.

tranches, effects from non-linear dependence are most pronounced on different ends of the

correlation spectrum. Mezzanine tranches are generally marked down. There are, however,

(s, κ, a2) combinations where an actual markup is present which is not the case for symmetric

models.

A change of perspective from factor Y to factor εi also changes the influence on tranche

prices (see Figure 5.6). The model’s sensitivity to changes in skewness can be described

as inversely related to changes described for factor Y . As in the case of varying shapes of

the distribution function fY , the highest markups for senior tranches are present in a low

correlation environment. While at higher states of correlation linear dependence is more

important for these tranches, non-linear dependence is crucial given low to medium states of

correlation. The equity tranche is marked up the most. Again, the inverse structure plays

a central role. Where a positively skewed system-wide factor distribution has yielded the

highest markups before, negative skewness produces this outcome for the firm specific factor

εi.

Robustness checks showed that changing kurtosis to different fixed levels does not change

the overall pattern but only the height of the surface. Of course, Figures 5.5 and 5.6 are

only special cases. An infinity of combinations can be used to create different markup and

markdown patterns making mixed models much more flexible than their Gaussian counter-

parts. Since our analysis so far has used theoretical model parameters, in the next section,

a calibration study brings the models to real world data.
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Gross Notional Net Notional Contracts
(billion USD) (billion USD)

Index Tranched Total 2,543 453 39,833
iTraxx Tranched Total 1,040 204 14,571
iTraxx Europe S9 489 42 7,559
iTraxx Europe S15 14 3 312

Table 5.3: Outstanding positions of index tranches as of May 27, 2011. Source: Depository Trust
and Clearing Corporation’s (DTCC) Trade Information Warehouse.

5.5 Calibration

In order to gain some insight into the fitting performance of our model setups, we turn

towards iTraxx Europe tranches. This standardized portfolio contains the 125 most liquid

investment grade CDS and is rolled into a new series every March 20 and September 20.

Every new series is labeled with sequential numbers. As an example, starting in September

2006, the 125 most liquid CDS are composed into the iTraxx Europe Series 6. This index was

on-the-run until March 2007 where it was rolled over into Series 7. The old series, however,

does not disappear. As long as a market exists, trading continues.

Maturities range from 3 to 5, 7 and 10-year contracts; in addition, recovery rates (R) are

assumed to be 40 percent. It can be argued that the assumption of R = 0.4 has been

adjusted within the financial crisis (Ascheberg et al., 2013). However, since a new market

standard has not developed yet, we keep the assumption unchanged during the calibration

study. Since the focus here is on comparing different model setups, this seems noncritical

as long as all models are specified in the same way regarding R. Tranche attachment and

detachment points are also standardized as shown in Table 5.1.

The dataset we use for our calibration study is provided by Creditex Group Inc. and Markit

Group Limited.57 It is composed of tranche quotes for 5-year contracts. To provide an

overview, parts of the dataset are stated in Appendix 5.B. Starting in September 2006,

monthly quotes are available through June 2007 and bimonthly spreads are available from

that date. In terms of iTraxx series counts, that translates to the following: We start with

Series 6 and move on to Series 7, Series 8 and Series 9. By the time the iTraxx index was

rolled over to Series 10, the market for tranched iTraxx products kept the Series 9 portfolio

as the most liquid one, as can be seen in Table 5.3.

Even though Series 15 was on-the-run at the end of the dataset’s time period, there were

more outstanding contracts based on Series 9 than on all other iTraxx Series combined. Even

until the end of 2012, Series 9 stayed the top tranched iTraxx portfolio in terms of gross58

and net59 notional. These numbers can be interpreted in at least two ways. On the one hand,

it could be argued that Series 9 tranches are the most liquid products within this market.

But, at the same time, the overall liquidity must be questioned. It seems reasonable that

57 The dataset can be viewed on the webpage http://www.creditfixings.com/CreditEventAuctions/itraxx.jsp
58 Sum of protection bought (and sold) on a per-trade basis.
59 Sum of protection bought (and sold) aggregated on counterparty entities.
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Series 9 contracts were outstanding since netting them would have resulted in high losses at

that point in time. Nevertheless, in terms of marking-to-market necessity, Series 9 tranche

quotes were the most important ones. Therefore, we also use Series 9 prices from March

2008 onwards until May 2011 at which point our dataset ends.

Since we anticipate the model to fit market quotes nicely in pre-crisis times and lose perfor-

mance during the more recent market situation in times of crisis, we split the dataset in two

parts. While the first part contains Series 6 to Series 9, the second part includes data from

the Series 9 portfolio, which was not rolled. That is, we interpret the event of not rolling-over

to Series 10 as an indicator of major market distortion. Further, we use Euribor rates to

calculate discounting factors D(0, t). However, several robustness tests showed that results

are rather insensitive concerning the choice of risk-free rates. This kind of insensitivity has

been stated in literature before (see e.g. Longstaff and Rajan, 2008, p. 537). With respect

to the determination of the individual probabilities of default, we use a reduced form model

with an intensity parameter that follows an Inverse Gaussian Ornstein-Uhlenbeck process as

recommended in Schoutens and Cariboni (2009).

Reference models

Before analyzing mixed factor models, the reference models are introduced: Figure 5.7 ex-

emplifies portfolio loss distributions generated by three different models. Next to the double

NIG factor model, which again serves as a representative model for the class of mixed models,

Figure 5.7 also introduces two reference models that are used in the following. As a natural

choice of benchmark, the Gaussian factor model is used. However, due to the fact that every

distribution function presented in the beginning of the last section includes the normal dis-

tribution as a limiting case, they can be expected to fit market data more closely. Therefore,

the Normal factor model can be seen as a lower bound of precision. The second reference

model stems from a slightly different line of research. Andersen and Sidenius (2004) intro-

duced an approach called ’random factor loadings’ (RFL). Within their setup, parameters Y

and εi are still distributed normally but correlation is allowed to switch between regimes. In

the version we use here, there are two states the model is allowed to switch between, a low

correlation environment aL and a high correlation environment aH . In addition, a threshold

θ separates the regimes.

While the shape of a Normal factor model’s portfolio loss distribution is determined solely

by its correlation coefficient, the RFL and the double NIG models offer additional degrees of

freedom. In case of RFL models, the regime switching nature produces loss distributions with

at least one point of discontinuity or kink60. As for the double NIG model, a smooth portfolio

loss distribution results. In contrast to an RFL model, the flexibility of this approach comes

from higher moments61.

60 Depending on the number of different states the model can switch in between.
61 In our example, the skewness tuple is defined by {sY , sε} = {−1.33, 0.05} and the kurtosis tuple by
{κY , κε} = {6.3, 3.12}.
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Figure 5.7: Portfolio loss distributions for Gaussian (a = 0.35), RFL (aH = 0.5, aL = 0.2, θ = 0)
and double NIG (a = 0.35, α1/2 = 5, β1 = −4, β2 = 0.4). Individual probability of
default q = 0.05.

To derive implicit distribution parameters θ̂ from market quotes, we minimize the sum of

squared tranche deviations (TD) using non-linear least square methods as well as a simplex

search algorithm. While for the first part Matlab’s lsqnonlin routine is used, the second

part is implemented via Matlab’s fminsearch in combination with fminsearchbnd62. Thus

the minimization problem reads as:

θ̂ = arg min
θ

5∑
n=1

(
cn(θ)− cmarket

n

)2
= arg min

θ

5∑
n=1

TD(n)2.

Minimizing the sum of squared deviations implicitly stresses the importance of the first loss

tranches. An economic reasoning for this particular choice can be found in the fact that

the equity tranche carries the highest risk and should therefore be priced with a maximum

level of precision (for similar arguments see Eberlein et al., 2008). A different approach of

defining an objective function would be to use percentage deviations.

Figure 5.8 shows cumulative absolute tranche errors
∑5

n=1 |TD(n)| produced by the two

reference models through time. The before-mentioned split in the dataset is marked by a

dashed vertical line. With the beginning of the global financial crisis in mid-2007, absolute

deviations produced by the Normal factor model start to increase sharply. As economic

conditions became even more serious in 2008, this trend continues until pricing errors reach

a maximum deviation of about 31 percentage points absolute deviation from market to model

prices cumulated over all five tranches in May 2010. Even when considering only the first

part of the dataset (left to the dashed vertical line), median cumulative absolute tranche

deviations reach 59 bps.63 While the equity tranche is priced with a relatively high level of

precision – at least in the first part of the dataset – the first mezzanine tranche is usually

the one with the highest deviation from market quotes when using the Normal factor model.

62 Downloadable at Matlab Central File Exchange http://www.mathworks.com/matlabcentral/fileexchange
/8277-fminsearchbnd.

63 Judging from Figure 5.8 and keeping in mind the small sample size, it should be mentioned that the median
is a more adequate measure of the average than the arithmetic mean. In the following, median expectations
are abbreviated by ME(·).
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Figure 5.8: Cumulative absolute tranche mispricing of reference models.

Due to the fact that we do not calibrate to single tranches but to all of them simultaneously,

the correlation parameter backed out from minimization typically differs most from implied

mezzanine correlation values based on tranche-specific optimization. Therefore, the Normal

factor model is not able to adequately reproduce the dependence structure with only one

degree of freedom. This is one reason why market participants do not use a Normal factor

model the way we implement it here. Typically, traders use the Gaussian factor model to

quote implied correlations of individual tranches. Here, another analogy to option markets

and the use of the Black-Scholes model appears.

The second reference model, RFL, shows a much better performance. Not only median

cumulative absolute tranche deviations are lower but, moreover, the RFL model is also able

to price the first mezzanine tranche quite accurately. It should be mentioned, however, that

in some cases the better fit of the RFL model is based on suspicious implied parameter sets

where the upper correlation parameter ā hits the limit of 100 percent.

Mixed factor models: Cumulative deviations

The situation presented above is supposed to serve as a starting point from which the per-

formance of alternative distributional assumptions is tested. To ensure that any differences

in calibration performance between GH and GTS distributions are not due to the difference

in free parameters, we enhance the NIG and VG characteristic function with a Brownian

term. Now, as indicated in Section 5.4, the new characteristic exponents read as

ψ∗i (u) = −1

2
u2σ2 + ψi(u) i = NIG,VG. (5.32)

To distinguish (5.32) from (5.27) and (5.28), we label the new enhanced versions NIGJD and

VGJD in dependence on the fact that a stochastic process built out of these distributions is

no longer a pure jump process but a jump diffusion process. Procedures to standardize the

distribution functions to zero mean and unit volatility are outlined in Appendix 5.A.

We consider 16 different mixed model setups, 12 of which are pure mixed models in the sense

that they assume different distributions for factor Y and εi, respectively. To our knowledge,

only the double t factor model has been described in literature before. All other models are
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Figure 5.9: Cumulative absolute tranche mispricing of mixed models.

TD1 [bps] TD2 [bps]

FY \ Fε CGMY VGJD NIGJD St.t CGMY VGJD NIGJD St.t

CGMY −9.5*** −9.1*** −9.1*** −9.0*** 68.0 68.4 −0.7 72.0*
VGJD −9.4*** −10.0*** −9.2** −6.1* 31.8 26.3 43.0 50.9*
NIGJD −9.5*** −9.9*** −9.1** 3.4 88.5* 85.4* 101.7* 108.9**
St.t −9.7*** −9.9*** −8.6** −7.4** 108.4* 111.8** 124.3** 185.8**

Table 5.4: Median of cumulative absolute deviations produced by mixed models less deviations
based on the RFL model. ***/**/* indicate significance at the 1%-/5%-/10%-level.

new specifications. The double NIG model has been used by Kalemanova et al. (2007) and

Eberlein et al. (2008). However, our model differs from the first publication in not linking

the parameters of the two factors. In addition, by enhancing the characteristic function with

a Brownian part, we enlarge the set of feasible parameter combinations compared to both

publications mentioned. The same arguments hold for the double VG model introduced by

Moosbrucker (2006a) and Eberlein et al. (2008).

Figure 5.9 shows tranche deviations of all 16 models aggregated by time steps. There are four

different states observable, two in each of the samples’ halves. The horizontal dashed lines

mark average values of tranche deviations to visualize the different states. Within the graph,

state one is magnified since deviations are quite small. The period from 2006 until the end

of 2007 can be labeled as calm market conditions with the beginning of the financial crisis

at the end. In the second state tranche deviations jumped for the first time. Another jump

occurred due to such events as the Lehman bankruptcy, the AIG bailout and the rejection

of the bank bailout plan which afterwards led to the so-called Troubled Asset Relief Plan.

These events are encompassed in state three. On top, the European sovereign crisis took

place mainly in state four.

Figure 5.9 does not address model combinations but only displays ranges of tranche devi-

ations. Thus, Table 5.4 outlines the combinations of distribution functions that are used

and shows differences between the respective mixed models and the RFL model in terms of

median values vi,j = ME
(∑5

i |TD(i, t)|mix −
∑5

i |TD(i, t)|RFL

)
.
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Since a comparison to the RFL model based on eyeballing average values is inconclusive, we

use two-tailed Wilcoxon-signed rank tests to answer the question whether or not a model

setup produces significant different results than RFL does. In particular, the alternative hy-

pothesis states that the data consisting of tranche deviations produced by mixed models less

tranche deviations produced by the RFL model stems from a distribution with a median un-

equal to zero. In period TD1, most of the mixed models outperform the RFL model on a level

of significance of one percent. In period TD2, the results are different: Besides in cases where

factor Y follows a CGMY or VGJD distribution, the reference model is able to cope signifi-

cantly better with the new market conditions. In addition to a comparison to the RFL model,

we also compare mixed models with one another. Table 5.5 summarizes median values of

cumulative deviations produced by mixed models ME
(∑5

i |TD(i, t)|mix −
∑5

i |TD(i, t)|mix

)
.

Based on the Wilcoxon-signed rank test, models built up by the factor distribution’s combi-

nation {CGMY, CGMY}, {CGMY, VGJD}, and {VGJD, VGJD} are especially suitable in

period TD1. Considering period TD2, a combination of {VGJD, VGJD} distributions for

factor Y and εi, respectively, outperform almost all other mixed models.
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TD1 [bps] TD2 [bps]

FY Fε Eq Me1 Me2 Me3 Se Eq Me1 Me2 Me3 Se

Normal Normal 4.9 41.6 7.4 2.8 2.2 144.8 433.8 300.5 273.3 119.6
RFL 0.0 1.2 5.8 0.8 3.7 27.6 81.5 17.0 107.9 39.8

CGMY CGMY 0.1 0.7 1.5 1.7 2.2 3.4 8.9 28.9 101.1 83.4
CGMY VGJD 0.1 0.2 1.6 1.6 2.3 3.9 7.4 35.6 101.2 81.3
CGMY NIGJD 0.1 0.8 1.8 2.1 2.4 2.0 12.6 44.6 102.5 81.9
CGMY St.t 0.1 0.6 2.2 2.7 2.7 2.9 20.1 31.1 101.9 80.6
VGJD CGMY 0.0 1.0 2.8 2.5 2.4 3.3 14.5 23.8 96.7 75.6
VGJD VGJD 0.0 1.2 2.1 1.3 2.0 1.9 7.5 23.3 101.6 72.7
VGJD NIGJD 0.2 1.2 4.1 3.4 2.8 1.5 11.6 34.1 98.5 72.2
VGJD St.t 0.2 0.6 4.9 4.4 3.2 3.7 18.1 40.4 97.2 77.0
NIGJD CGMY 0.0 1.2 3.2 2.8 2.4 1.7 20.4 35.7 103.4 71.5
NIGJD VGJD 0.0 1.4 2.6 1.9 2.1 3.9 19.5 33.8 107.0 77.3
NIGJD NIGJD 0.1 1.1 3.9 3.4 2.8 2.9 11.9 39.8 100.9 79.4
NIGJD St.t 0.1 0.9 7.0 5.9 3.6 3.0 24.9 70.3 104.8 82.8
St.t CGMY 0.1 1.1 3.6 2.9 2.4 2.9 48.1 32.6 99.2 74.8
St.t VGJD 0.0 1.2 2.8 2.5 2.1 3.4 48.3 27.1 100.8 73.9
St.t NIGJD 0.0 1.3 4.2 3.7 2.9 1.4 49.3 67.3 94.3 78.7
St.t St.t 0.2 0.7 5.2 4.7 3.1 4.1 15.2 93.9 106.5 83.0

Table 5.6: Median absolute deviation ME (|TD(i, t)|) in periods TD1 and TD2.

Mixed factor models: Tranche deviations

To analyze in more detail whether or not there are differences in terms of the models’ ability

to price individual tranches, we change the perspective from cumulative absolute values to

tranche based absolute values in Table 5.6. In terms of the reference models, as mentioned

before, the Normal factor model misprices the first mezzanine tranche most. In contrast, the

RFL model is able to reproduce the market structure more accurately.

In terms of results for mixed models, Table 5.6 should be read in combination with Table

5.7. While the former gives an impression of the absolute level of tranche based deviations

from market prices, the latter table analyzes which tranches are priced significantly better

than by means of the RFL model.64

Considering period TD1 first, tranches Me1, Me2 and Se exhibit significant lower deviations

using mixed models. In the case of Me3, the RFL model shows better performance for some

models. In most cases, however, a positive but non-significant median is observable for Me3.

Both RFL and mixed models are able to fit the equity tranche with less than one basis point

pricing error precision. In period TD2, performances of RFL and mixed models converge.

None of the mixed models is able to outperform RFL significantly on a basis of cumulated

average deviations (see Table 5.4). When focusing on individual tranche levels, differences

in behavior become observable. During times of severe crisis, mixed models seem to be able

to reproduce tranches Eq as well as Me1 more adequately. High levels of significance are

reached for the equity tranche. For the first mezzanine tranche, this is only true for some of

the mixed models. Given the overall poor fit in period TD2, mixed models based on {CGMY,

64 Differences in values between Tables 5.4 and 5.7 are due to the fact that, in contrast to an arithmetic mean,
the difference of two median values does not equal the median of the respective differences.
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TD1 [bps] TD2 [bps]

FY Fε Eq Me1 Me2 Me3 Se Eq Me1 Me2 Me3 Se

CGMY CGMY 0.0 −0.8*** −4.6*** 0.9 −2.8*** −21.8***−10.2 25.7 48.4 45.8***
CGMY VGJD 0.1 −0.8*** −4.8*** 0.7 −2.4*** −23.3***−18.9* 24.5 45.8 46.4***
CGMY NIGJD 0.1 −0.8*** −4.6*** 1.1 −2.3*** −24.4*** −7.5 39.7 48.2 34.5***
CGMY St.t 0.1 −0.6*** −4.4*** 2.1 −2.6*** −25.9*** −8.6 28.6 48.8 46.7***
VGJD CGMY 0.0 −0.6*** −4.6*** 1.5 −2.6*** −17.1***−13.7** 0.3 37.9 41.1***
VGJD VGJD 0.0 −0.3** −5.1*** 0.7 −3.0*** −18.0***−19.7*** 20.8 35.9 32.9***
VGJD NIGJD 0.1 −0.1* −4.5*** 2.6 −2.3*** −11.2***−12.8** 21.3* 42.0 32.6***
VGJD St.t 0.1 −0.9*** −2.7*** 3.8**−2.2*** −20.8*** −8.4 27.9 45.1 35.6***
NIGJD CGMY 0.0 −0.2** −3.5*** 2.1 −2.6*** −13.9*** −1.0 25.4 46.2* 32.1***
NIGJD VGJD 0.0 −0.3 −4.2*** 1.1 −2.9*** −8.4** −9.6 14.2 47.0 32.4***
NIGJD NIGJD 0.0 −0.1 −4.7*** 2.6 −2.3*** −19.7*** −3.2 30.6 51.2* 38.6***
NIGJD St.t 0.1 −0.7** −2.2* 5.2**−2.1** −20.5*** −4.5 57.5** 51.3* 44.7***
St.t CGMY 0.0 −0.2*** −4.5*** 2.1 −2.7*** −14.2*** 3.6 22.5 50.6* 41.5***
St.t VGJD 0.0 −0.3* −4.2*** 1.4 −2.8*** −7.0*** −1.0 4.2 49.4* 31.9***
St.t NIGJD 0.0 −0.1 −3.6*** 3.1* −2.3*** −23.0*** 15.1 65.1 52.0* 43.1***
St.t St.t 0.1**−0.8** −2.2** 4.0* −2.3*** −22.8*** −5.1 65.1** 79.9** 49.7***

Table 5.7: Median absolute model differences ME (|TD(i, t)|mix − |TD(i, t)|RFL) in periods TD1 and
TD2. ***/**/* indicate significance at the 1%-/5%-/10%-level.

VGJD} as well as on {VGJD, CGMY}, {VGJD, VGJD} and {VGJD, NIGJD} distributions

have to be highlighted in this context. However, due to its ability to produce a discontinuous

portfolio loss distribution, RFL is able to price higher tranches more accurately within this

period of time.

Mixed factor models: Case study

After having analyzed the models on an aggregate level, we conclude this section with a

treatment of selected points in time. We consider four events in this case study: The first

date, September 29, 2006, marks the beginning of our dataset and acts as representative

of calm market conditions. A second point in time is September 28, 2007. Former rumors

of an upcoming crisis came true at least as soon as the interbank lending market became

illiquid. Therefore, this second date marks the beginning of the financial crisis. Right before

the third date, September 30, 2008, the investment bank Lehman Brothers filed for Chapter

11 bankruptcy on September 15 (Reuters 2008). Earlier that month, the Federal Housing

Finance Agency announced the federal takeover of Freddie Mac and Fannie Mae. These

events had a global impact and therefore also moved the iTraxx Europe and its tranches.

The fourth date, May 27, 2010, brings the event itself right into Europe since on April 23,

2010, the Greek government requested an EU/IMF bailout (Reuters 2010).

We choose to consider only these mixed model setups that showed superior performance

compared to RFL and compared to other mixed models. In addition to tranche deviations,

skewness and kurtosis of the convoluted distribution FX as well as conditional probability

of default according to formula (5.31) are presented in Table 5.8. At least given the first

two dates, the mixed models chosen are able to fit market quotes almost perfectly. This

also reflects a general observation within our dataset: a mixed factor model is able to fit

market quotes extremely accurate when market conditions are regular as well as at the
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FY Fε Eq Me1 Me2 Me3 Se
∑
| · | s κ λ

0
9
/
2
9
/
0
6 Normal Normal 5.5 47.8 2.5 −4.5 −3.5 63.8 0 3 5.4

RFL 0.3 1.7 −4.7 6.4 6.8 19.9 7.0
VGJD CGMY 0.0 0.7 −0.2 0.6 1.1 2.6 −1.2 10.0 9.6
VGJD VGJD 0.0 −1.0 −2.1 −0.8 0.6 4.6 −1.1 8.6 10.3
VGJD NIGJD 0.0 −1.7 0.2 1.4 1.8 5.2 −1.1 11.9 9.5

0
9
/
2
8
/
0
7 Normal Normal 9.0 119.2 36.1 5.1 −8.9 178.2 0 3 4.0

RFL 0.0 0.7 −10.9 1.5 9.6 22.7 15.4
VGJD CGMY 0.0 0.1 −0.2 0.0 0.7 1.1 −1.3 7.7 21.0
VGJD VGJD 0.0 0.1 −0.3 0.0 0.6 1.1 −1.1 7.4 20.9
VGJD NIGJD −0.1 −1.0 2.6 2.4 2.6 8.7 −1.6 16.1 21.3

0
9
/
3
0
/
0
8 Normal Normal −46.2 319.5 230.0 212.6 115.8 924.2 0 3 16.7

RFL −4.5 60.8 −33.3 −14.4 58.2 171.3 42.4
VGJD CGMY 2.5 0.3 −23.8 39.5 62.5 128.6 −2.2 15.9 44.7
VGJD VGJD 1.1 7.5 −20.4 40.7 62.2 131.9 −2.1 15.1 44.6
VGJD NIGJD 0.0 −3.4 −34.1 31.2 58.8 127.6 −0.2 15.9 46.3

0
5
/
2
7
/
1
0 Normal Normal −175.1 559.5 −155.8 1131.7 482.5 2504.7 0 3 19.1

RFL 81.9 −81.1 −118.9 296.1 143.0 721.0 44.5
VGJD CGMY 7.0 −94.1 −76.4 483.0 211.5 872.0 3.4 34.0 45.7
VGJD VGJD 18.1 −88.0 14.7 560.2 234.6 915.6 −1.3 11.6 43.6
VGJD NIGJD 0.9 −58.9 −126.1 434.6 189.4 809.9 5.8 56.1 46.7

Table 5.8: Deviations from market prices (cModel − cMarket) on different dates and belonging third
and fourth moments of convoluted distributions FX .

beginning of the financial crisis. Even in a scenario of an upcoming crisis, the model is able

to reproduce market prices. However, in a crisis as severe as the financial crisis, market

conditions (especially market illiquidity) are not to be captured within a mixed factor model

framework at a satisfying level of accuracy. The same is true for the reference models though.

In terms of implied correlations, Figure 5.10 illustrates correlation structures with respect

to each tranche. The good fit of the first two dates hereby translates into an almost flat

correlation pattern. The Normal factor model, in comparison, creates the smile structure

mentioned before with a correlation level well below the one of mixed factor models. We

discussed this effect in Section 5.4 where we state that, given a higher correlation, mixed

models are able to counteract decreasing equity prices while increasing senior tranche prices.

As a result, mixed factor models provide markups and markdowns in each tranche at a given

correlation level to fit market prices.

Performances of all models considered in this case study worsen when we switch over to

dates three and four. Implied correlations of the mixed models become unstable. Especially

higher tranches such as Me3 and Se1 face large deviations. In contrast to the flat correlation

structure from before, implied correlations form a downward sloping function first and even

lose structure on date four. One explanation is that, on the technical side, we use the sum of

squared deviations in our optimization procedure and, therefore, put more weight on lower

and thus more risky tranches compared to, e.g., implementing the sum of relative deviations.

Within the course of the financial crisis, a reevaluation of risk occurred and especially high

level tranches were to be found underpriced within the market conditions given in that

particular period. As a result, prices of these tranches increased disproportionately high.
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Figure 5.10: Implied correlation on different dates.

The focus of the minimization routine, however, is still on the first tranches. Table 5.8 shows

that tranches Eq and Me1 are priced accurately by mixed models on date three. Given the

high level of skewness and kurtosis to match these tranches, implied correlation is too high

for more senior tranches to be priced close to market quotes.

5.6 Conclusion

In this paper, we present new extensions to the one-factor Gaussian copula. A focus is

placed on mixing distributions that are part of either one of two broader distribution fam-

ilies: generalized tempered stable and generalized hyperbolic distributions. Since we deal

with probability distributions that are not stable under convolution, we use an algorithm

based on their respective characteristic functions to deal with convolution issues. In essence,

we analyze the impact of skewness and kurtosis of the factors’ distribution on tranche prices

based on theoretical values as well as real market conditions. For the latter part, we use

iTraxx Europe tranche quotes from 2006 to 2011 within a calibration study to elaborate

fitting properties of mixed models compared to different reference models. Mixed factor

models are able to provide markups on equity and senior tranches while simultaneously

marking down mezzanine tranches compared to a Gaussian factor model. This feature en-

ables mixed models to fit market data very well, at least when the market itself is not in

a state of severe crisis. The calibration study shows that before the financial crisis until

mid-2007, mixed models are able to almost flatten out a phenomenon known as correlation

smile. Especially factor models based on Variance Gamma distributions that are extended

by a Brownian part show a good fitting performance. However, when market conditions

grow more severe, mixed models also lose fitting performance. Nevertheless, mixed factor
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models can be used to accurately reproduce a wide range of stylized facts from empirical

portfolio loss distributions while still remaining intuitive.
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Appendix: Yet Another Factor

Model

5.A Standardizing distribution functions

As indicated in Section 5.2, the distributions used for the two factors in equation (5.5) have

to be standardized to zero mean and unit variance. The cumulant generating function

cn =
1

in
∂nψ(u)

∂un

∣∣∣
u=0

=

0 n = 1

1 n = 2
(5.33)

can be used to assure the above criteria for the expected value (c1 = 0) and variance (c2 = 1).

Therefore, the knowledge of the characteristic exponent ψ(u) is used to standardize the

distribution functions with the help of its derivatives. In the case of this paper’s infinitely

divisible distributions, extended versions of NIG and VG distributions as well as the CGMY

distribution are of interest. Considering the extended NIG distribution first yields to the

following conditions:

µ =
−δβ

α2 − β2
, (5.34)

δ̄ = min

(
δ,

(α2 − β2)
3
2

α2

)
, (5.35)

σ2 = 1− δ̄α2

(α2 − β2)
3
2

. (5.36)

The extended VG distribution standardization can be achieved by means of:

µ = −θ, (5.37)

σ̄V G =
√

min
(
σ2
V G, 1− νθ2

)
, (5.38)

σ2 = 1− σ2
V G − νθ2. (5.39)

The min(·) function in both the NIG and VG standardization guarantees that δ and σV G,

respectively, are free parameters in the optimization routine as long as the non-enhanced

distributions exhibit c2 < 1. In that case, the Brownian part yields unit variance. In the
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case of c2 > 1, the Brownian part becomes zero, and δ or σV G are restricted to assure c2 = 1.

In addition, CGMY distributions are standardized given the following relations:

µ = −CY Γ(−Y )
(
GY−1 −MY−1

)
(5.40)

C =
[
Y Γ(−Y )(GY−2 +MY−2)(Y − 1)

]−1
. (5.41)

Standardizing the Student’s t-distribution to zero mean and unit variance implies taking

the limit ν →∞, which, in turn, implicates convergence to a standard Normal distribution.

Thus, for a double t model, a scaled version of the one-factor model in (5.5)

Xi = zY aY + zε
√

1− a2εi (5.42)

is introduced by Hull and White (2004) instead. To allow for mixes, the scaling factors z1

and z2 for each factor k = Y, ε have to be defined as

zk =


√

νk−2
νk

if Student’s t-distributed

1 otherwise.
(5.43)

As we do not restrict the parameter ν to be integer valued, our implementation is related to

the fractional degrees of freedom copula model of Wang et al. (2009). Apart from the fact

that the tail-heaviness is allowed to vary continuously, another advantage is that, while still

demanding a finite variance66, ν is no longer restricted to a minimum value of three but is

allowed to reach down to ν > 2, which increases the heaviest tail decay rate possible.

66 The variance of a Student’s t-distributed random variable X is given by V[X] = ν
ν−2

.
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5.B Dataset

Date Eq Me1 Me2 Me3 Se
(500) (0) (0) (0) (0)

January 31, 2007 10.34 % 41.59 11.95 5.60 2.00
March 01, 2007 9.98 % 46.17 12.88 5.77 2.16
March 30, 2007 11.23 % 57.75 14.28 6.24 2.58
April 30, 2007 9.94 % 49.82 12.45 5.53 2.54
May 31, 2007 6.33 % 39.90 10.33 4.39 1.93
June 29, 2007 11.75 % 62.05 16.29 7.48 3.10
July 31, 2007 30.23 % 227.08 90.50 49.60 26.70
September 28, 2007 19.13 % 91.96 37.17 24.04 15.04
November 30, 2007 25.75 % 161.42 85.50 62.00 36.00
January 31, 2008 30.98 % 316.90 212.40 140.00 73.60
March 31, 2008 40.28 % 483.50 310.00 216.40 109.50
May 30, 2008 34.03 % 300.92 188.92 126.96 61.63
July 31, 2008 31.48 % 355.70 220.00 140.70 69.80
September 30, 2008 46.92 % 672.06 387.93 208.02 96.83
November 25, 2008 64.03 % 1175.83 600.56 325.00 127.33
January 30, 2009 64.28 % 1185.63 606.69 315.63 97.13

Eq Me1 Me2 Me3 Se
(500) (500) (500) (0) (0)

March 31, 2009 66.83 % 31.23 % 11.53 % 418.80 155.00
May 28, 2009 53.13 % 13.75 % −0.11 % 242.13 99.38
July 31, 2009 38.63 % 2.75 % −7.52 % 143.33 65.17
September 30, 2009 36.81 % 2.83 % −6.95 % 147.75 58.75
November 30, 2009 36.27 % −0.73 % −7.80 % 134.81 54.31
January 29, 2010 28.81 % −4.00 % −10.48 % 104.83 41.33

Eq Me1 Me2 Me3 Se
(500) (300) (100) (100) (100)

March 31, 2010 27.03 % −4.18 −3.99 94.01 37.13

Eq Me1 Me2 Me3 Se
(500) (500) (500) (100) (100)

May 27, 2010 41.39 % 7.43 % 3.45 % 189.75 77.30
July 30, 2010 35.14 % 4.70 % −0.38 % 143.85 59.75
September 30, 2010 27.71 % −1.56 % −2.90 % 111.00 50.50

Eq Me1 Me2 Me3 Se
(500) (500) (300) (100) (100)

November 30, 2010 29.80 % 0.08 % −2.29 % 106.50 49.67
January 31, 2011 22.17 % −3.77 % −3.66 % 69.13 30.06
March 31, 2011 20.18 % −3.75 % −4.02 % 53.13 22.88
May 31, 2011 22.27 % −3.56 % −3.69 % 57.00 22.38

Table 5.9: iTraxx Europe tranche prices on which the calibration study is partially based on. Up-
front payments are indicated in brackets below the label of the respective tranche. The
table head is repeated every time a change in how the individual tranches are quoted
occurred.





Chapter 6

Conclusion

Over the last decades, the financial world has evolved to a higher level of technical inte-

gration and automatization. A large portion of daily trading is executed by autonomously

acting computer systems. In such an environment, the importance of thoroughly imple-

mented models and knowledge of their capabilities in terms of accuracy and speed is crucial.

Simultaneously, the complexity of financial markets as well as the complexity of the financial

contracts that are traded in these markets stand in contrast to many valuation methods

that have been used in the past. The combination of market complexity on the one hand

and a demand for real time evaluation on the other hand, defines the need for robust and

flexible models which meet the requirements that are connected to the task of pricing and

risk monitoring.

In general, this thesis contemplates the potential of series expansion methods in various

ways. It is written with the scope of delivering insight into new numerical methods as well

as extending present methods that can be used within a widespread area of applications.

Thus, besides interested readers from academia, especially quantitative analysts and model

developers of financial institutions are a potential audience.

Recently, instead of relying on closed-form solutions, the usage of numerical methods come

to the fore and become more popular. Within this development, our focus of attention

is dedicated to derivatives. The contribution of the thesis at hand is three-folded: First,

we presented and analyzed a new method to price European options that are written on a

single underlying asset by introducing Gabor series methods into option pricing in Chapter

3. The resulting procedure shows to be a very robust pricing tool with a special strength

in calculating short-term contracts. Since European options are heavily considered when

determining input parameters of stochastic processes implicitly from traded contracts, the

Gabor method is predestinated to be used within a calibration routine handling short term

contracts.

Second, we dedicate Chapter 4 to multi-asset derivatives. Multi-asset contracts are notori-

ously hard to deal with in case the user demands both, advanced stochastic processes and

fast evaluation. Compared to single underlying derivatives, these multi-asset exotic options
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are studied to a much lower degree. We focused on European multi-asset options as well

as on discrete barrier multi-asset options. To the best of our knowledge, the valuation of

multi-asset barrier options in terms of multi-dimensional Fourier series methods has not been

addressed in literature before. The method provides a fast and flexible alternative to Monte

Carlo simulations which are used predominantly. This fact and the knowledge drawn from

comparing different types of Fourier series is important for quantitative modelers providing

pricing frameworks for market maker as well as traders of such exotic options.

Third, as recent events in the market for credit risk have shown, there is a need for further

research in methods to evaluate credit derivatives. Therefore, in Chapter 5, we focused on

extending the standard Gaussian factor model to price synthetic collateralized debt obliga-

tions. The new models are able to cope with a wide range of market conditions. However,

given a crisis as severe as the financial crisis of 2008, questions, such as market liquidity, that

are outside the scope of pure modeling overlay the approximation quality. Nevertheless, the

models presented are flexible instruments to price synthetic collateralized debt obligations

while still staying in the intuitive framework of a factor model.
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Amin, K. (1993). Jump Diffusion Option Valuation in Discrete Time. Journal of Fi-

nance 48 (5), 1833–1863.

Andersen, L. and J. Sidenius (2004). Extensions to the Gaussian Copula: Random Recovery

and Random Factor Loadings. Journal of Credit Risk 1 (1), 29–70.

Ascheberg, M., B. Bick, and H. Kraft (2013). Hedging Structured Credit Products During

the Credit Crisis: A Horse Race of 10 Models. Journal of Banking and Finance 37,

1687–1705.
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Options on Lévy Driven Assets. ESAIM: Mathematical Modelling and Numerical Analysis-
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