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2017





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstracts
Pablo Arrighi, Alejandro Dı́az-Caro and Benoı̂t Valiron

Towards a quantum Curry-Howard correspondence . . . . . . . . . . . . . . . 3

Jean-Louis Giavitto
Sharing (musical) time between machines and humans: simultaneity, succession
and duration in real-time computer-human musical interaction . . . . . . . . . 3
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René Gazzari
Calculus of Natural Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 271

Gilles Dowek
Decidable logics, the axiom rule, and (non) cut-elimination . . . . . . . . . . . 297

Peter Schroeder-Heister
The problem of semantic completeness in proof-theoretic semantics . . . . . . . 315

Paolo Pistone
On propositional variables: the atomic and the parametric view . . . . . . . . . 327

iv



Contents

Michele Abrusci
Methodological remarks on completeness theorems and incompleteness
theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Mitsuhiro Okada
A hint to answer the question “What is logic?” — “Proof-formation precedes
proposition-rule formation” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Thomas Seiller
Why complexity theorists should care about philosophy . . . . . . . . . . . . . 381

Alberto Naibo
Representing inferences and proofs: the case of harmony and conservativity . . 395

Andrzej Indrzejczak
Hypothetical Reasoning in the setting of Sequent Calculi . . . . . . . . . . . . 413

Nils Kürbis
Intuitionist Bilateralism: Negations, Implications and some Observations and
Problems about Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Luiz Carlos Pereira and Ricardo O. Rodrı́guez
Ecumenism: a new perspective on the relation between logics . . . . . . . . . . 439

Mattia Petrolo
Normality beyond logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

v





Preface

The project Beyond Logic is devoted to what hypothetical reasoning is all about when we
go beyond the realm of “pure” logic into the world where logic is applied. As such extralogical
areas we have chosen philosophy of science as an application within philosophy, informatics as
an application within the formal sciences, and law as an application within the field of social
interaction. The aim of the conference was to allow philosophers, logicians and computer
scientists to present their work in connection with these three areas.

The conference took place 22–27 May, 2017 in Cerisy-la-Salle at the Centre Culturel Interna-
tional de Cerisy. The proceedings collect abstracts, slides and papers of the presentations given,
as well as a contribution from a speaker who was unable to attend.

The conference and its proceedings were supported by the French-German ANR-DFG
project “Beyond Logic: Hypothetical Reasoning in Philosophy of Science, Informatics, and
Law”, ANR-14-FRAL-0002-01, DFG grant Schr 275/17-1.

We would like to thank Jean-Baptiste Joinet and Alberto Naibo who co-organized the
conference, and Edith Heurgon and her team of the Cerisy Centre who made our conference a
very enjoyable event.

Jean Fichot
Thomas Piecha

Back row, left to right:Myriam Quatrini, Michele Abrusci, Paolo Pistone, Nils Kürbis,
Mattia Petrolo, T.P., Andrzej Indrzejczak, Peter Schoeder-Heister, N.N., Alberto Naibo,
Jean-Louis Giavitto, René Gazzari, Gilles Dowek, Jean-Baptiste Joinet, Thomas Seiller

Front row, left to right:Mitsuhiro Okada, Jean Fichot, Shahid Rahman, Edith Heurgon,
Maël Pégny, Florian Steinberger, Luiz Carlos Pereira, Enrico Moriconi, David Binder
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Abstracts

Towards a quantum Curry-Howard correspondence

Pablo Arrighi, Alejandro Dı́az-Caro and Benoı̂t Valiron
Aix-Marseille Université · Universidad Nacional de Quilmes · Université Paris-Sud

The linear-algebraic ë-calculus extends the ë-calculus by allowing for arbitrary linear combina-
tions of terms. We introduce a type system that accounts for this: it is able to statically describe
the linear combinations of terms that will be obtained when reducing the programs. This gives
rise to an original type theory where types, in the same way as terms, can be superposed into
linear combinations. We prove that the resulting typed ë-calculus is strongly normalizing and
features weak subject reduction. We show how to naturally encode matrices and vectors in this
typed calculus. This is a step towards the program of having a fuzzy / quantum / quantified logic
to arise from a Curry-Howard correspondence.

This presentation is based on https://arxiv.org/abs/1308.1138, published in Information and
Computation 254(1): 105–139 (2017).

Sharing (musical) time between machines and humans:
simultaneity, succession and duration in real-time

computer-human musical interaction

Jean-Louis Giavitto
CNRS IRCAM UPMC

The functional approach to AI has focused on the ability to provide a computer the cognitive
capabilities usually attributed to humans: translating a text, recognizing an object in an image,
playing chess, planning a route, etc. Even if perception and actions have been largely considered,
cognitive capabilities related to the apprehension and the organization of time have been
less studied. Music is a prime area to address these issues. In all written forms of music,
the act of music composition is a choreography of events and expectations in time to allow
sophisticated continuous interactions among musicians. This powerful effect is the result of
intrinsic combination of strong language formalisms (for authoring music) and performance
mechanisms that allow synchrony, real-time coordination of actions and robustness of expected
results in ensemble music.

Bringing such capabilities to computers and providing them with the ability to take part in
musical interactions with human musicians is an excellent workbench to investigate and to test,
from an experimental viewpoint, several temporal notions.

This presentation focuses on the various temporal notions put at work in the Antescofo system.
This system couples a listening module and a domain specific programming language. It is used
by music composers, and more generally by interactive multimedia designers, to specify and
to implement augmented scores, i.e., temporal scenarios where electronic musical processes are
computed and scheduled in tight interaction with a live musician performance1.

Interaction scenarios are expressed at a symbolic level through the specification of musical

1Used in the mixed music piece produced at IRCAM, Antescofo has gained a wide audience attracting composers in
contemporary music such as Pierre Boulez, Philippe Manoury, Marco Stroppa or Emmanuel Nunes which have used
the system for the creation of new musical mixed pieces and for their performances by the Los Angeles Philharmonic
Orchestra, the Berliner Philharmoniker, the Orchestre de Radio France, etc.Videos of actual performances and additional
informations are available on the project web site http://repmus.ircam.fr/antescofo.
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time in the score (musical events like notes and beats in relative tempi) and the management
of the physical time of the performance (with relationships like succession, delay, duration,
velocity of the occurrence of the events on stage). During the performance, human performers
“implement” the instrumental part of the augmented score, while the language runtime evaluates
the electronic part with the help of the information provided by a listening module, to control
and synchronize the electronic actions with the musical environment.

These two main phases of the usual workflow of written music, composition and performance,
relies on two different notion of time reminiscent of the distinction pointed by John McTaggart [7]:
the B-series of the “deferred time” specified in the score during the authoring phase and the
A-series of the real-time relationships occurring on stage during the performance when a score is
interpreted.
Succession and simultaneity are the two forms of the perception of the interval in music [9].

It is also two of the three relationships classically used to analyze time and the basis of event-
driven, or reactive, systems in computer science. But Antescofo is also a timed system [4] tacking
into account the relationships of delay and duration in the score. As acknowledged by many
philosophers [8], duration is irreducible to succession and simultaneity: it cannot be abstracted by
two instantaneous events starting and ending the duration. This leads to the notions of striated
and smooth time exemplified by Pierre Boulez in music [3] but also to the notion of inner tempo,
drawing near to the concept of duration developed by Henry Bergson [2, 9].

The timing relationships (duration, succession, simultaneity) between events denoted in
the score are relative (to each others), virtual (the timing relationships expressed at the level of
the score will be instantiated during the performance) and undetermined (several performances
comply with the same score). During live performance of a music score, musicians instantiate
the high-level processes denoted in the score by musical gestures. At this point, the durations
and delays become physical time (measurable in second). Nevertheless, events with the same
relative duration in a score (and in different positions) do not necessarily lead to the same
duration during the execution and vice versa. Their value depends highly on the performance,
individual performers and musical interpretation strategies such as stylistic features that are
neither determined nor easily formalizable: the tempi, accelerations, rubato, etc. are personal
choices that will vary in every performance. The notion of internal tempo may appear problematic
for at least two reasons: first, it leads directly to the questionable notion of “speed of time” and
secondly, it calls for an actual measurement in order to relate continuously the different and
subjective time frames. We will explain how Antescofo faces these two problems in an effective
way.

Time is a resource and programmers organize it in programs through the figures of succession,
simultaneity and duration. This analytical grid remains however limited because computers
increasingly interact with us and our experienced time. Our perception of the duration, our sense
of the passing of time, must be taken into account to achieve a fluid and seamless interaction
between human and machines. Antescofo achievements show that this goal is not out of reach.
But then, the computer scientist has to confront other dimensions of time as movement, memory,
expectation, passage, anticipation, emergence . . .

References
[1] Matthew Bennett, Michael F. Schatz, Heidi Rockwood and Kurt Wiesenfeld. Huygens’s

clocks. Proceedings: Mathematics, Physical and Engineering Sciences, pages 563–579, 2002.
[2] Henri Bergson. Time and free will: An essay on the immediate data of consciousness. Courier

Dover Publications, 2001.
[3] Pierre Boulez. Penser la musique aujourd’hui /Boulez on Music Today. Paris Gonthier

1963 / Harvard University Press 1971, 1963 (trans. S. Bradshaw and R. Rodney).
[4] Hermann Kopetz. Event-triggered versus time-triggered real-time systems. In Proceedings of
the International Workshop on Operating Systems of the 90s and Beyond, volume 563, pages
87–101, Dagstuhl Castle, Germany, July 8–12 1991, Springer.

4



Abstracts

[5] Edward W. Large and Mari Riess Jones. The dynamics of attending: How people track
time-varying events. Psychological Review 106(1): 119–159 (1999).

[6] Tim Maudlin. Remarks on the passing of time. In Proceedings of the Aristotelian Society,
volume 102, pages 259–274. JSTOR (2002).

[7] John Ellis McTaggart. The unreality of time.Mind 17: 456–476 (1908).
[8] Lluis Vila. Formal theories of time and temporal incidence. Foundations of Artificial Intelli-
gence 1: 1–24 (2005).

[9] Bernd Alois Zimmermann. Intervall und Zeit: Aufsätze und Schriften zum Werk, volume
6361. Mainz, Schott, 1974.

Useless old machines?
On the interest of analog computation today

Maël Pégny
Paris 1 Panthéon-Sorbonne IHPST

In this programmatic presentation, I explore the interest of the history of analog computation
for an integrated History and Philosophy of Science approach. In particular, I examine the
1940–1970 debate on the comparative merits of analog and digital computers, with a particular
question in mind: what role did computation theory play in this debate? By reviewing the current
historical literature, I show how tricky it will be to actually solve that question, because computer
scientists of that era were trying to formulate computability and complexity arguments without
having all the necessary theoretical tools. Understanding the history of analog computation
and its demise will demand an integration of considerations coming from the foundations of
computability and computational complexity, and the use of analog computers in simulation.

From proofs/programs to natural language dialogues modelling

Myriam Quatrini
Université de la Méditerranée

The logical theory due to J.-Y. Girard, called Ludics, which is also presented as a theory
of interaction, is a relevant frame for modelling natural language dialogues and especially
argumentative dialogues. We will introduce this theory, focusing on the features which enable
a proof theoretical modelling of controversies. We will discuss the potential applications by
illustrating the modelling on an example of legal debate.
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Unfolding parallel reasoning in Islamic jurisprudence

Shahid Rahman and Muhammad Iqbal
Université Lille, CNRS, UMR 8163

One of the epistemological results emerging from this initial study is that the different forms
of co-relational inference, known in the Islamic jurisprudence as qiyās, represent an innovative
and sophisticated form of reasoning that not only provides new epistemological insights into
legal reasoning in general but also furnishes a fine-grained pattern for parallel reasoning which
can be deployed in a wide range of problem-solving contexts and does not seem to reduce to
the standard forms of analogical argumentation studied in contemporary philosophy of science.
In the present paper we will only discuss the case of so-called co-relational inferences of the
occasioning factor.

On the normativity of logic

Florian Steinberger
Birkbeck University of London

Logic, the tradition has it, is normative for reasoning. Famously, the tradition was challenged
by Gilbert Harman who argued that there is no straightforward connection between logical
consequence and norms of reasoning. A number of authors (including John MacFarlane and
Hartry Field) have sought to rehabilitate the traditional view of the normative status of logic
against Harman. In this paper, I argue that the debate as a whole is marred by a failure of the
disputing parties to distinguish three different types of normative assessment, and hence three
distinct ways in which the question of the normativity of logic might be understood. Logical
principles might be thought to provide first-personal directives to the reasoning agent, they
might be thought to serve as third-personal evaluative standards, or they might underwrite our
third-personal appraisals of others whereby we attribute praise and blame. I characterize the
three normative functions in general terms. I then show how a failure to appreciate this three-fold
distinction has impeded progress since it has led the participants in the debate to talk past one
another. Moreover, I show how the distinction paves the way for a more fruitful engagement
with the issue.
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Popper’s notion of duality and his theory of negations

Thomas Piecha
University of Tübingen

We discuss Karl Popper’s theory of deductive logic that he developed in the late 1940s, focusing
on his treatment of different kinds of negation. In his approach, logic is a meta-linguistic theory
of deducibility relations that are based on certain purely structural rules. Logical constants are
then characterized in terms of deducibility relations. Characterizations of this kind are also
called inferential definitions by Popper.

An explanation of Popper’s treatment of negation needs to take his conception of duality
into account. We analyze his conception and give a formal definition of duality that agrees with
Popper’s use of the notion in propositional logic, extending into the treatment of several kinds
of negation, as well as into the domain of modal logic. This wide applicability is only possible
because his notion of duality does not depend on truth functions but is based on deducibility,
and it illustrates the importance of Popper’s notion of duality as a structuring principle in various
areas of logic.

In this talk we present some of his ideas and results, and we will show how they correspond
to later developments in logic.

From Popper’s Decomposition of Logical Notion to Lakatos’s
Decomposition of the Notion of Proof

Enrico Moriconi
University of Pisa

Popper’s logical enquiries of the late 40s are experiencing a renewed interest from many scholars,
focusing on different subjects. His intention was to reverse Tarski’s order of priority – in his
1936 paper “On the notion of logically following” – taking the notion of “derivability”, or
“deducibility”, or “logical consequence”, as primitive, and trying to show that those signs are
logical or formative which can be defined with the help of that primitive concept. This approach
considers logic a metalinguistic enterprise, which can be applied to any language in which we can
identify statements. Devising logical notions, consequently, becomes a matter strictly linked to
discussing principles of rational discussion. This is the origin of (e.g.) the detection of different
notions of negation, and of the study of their possible coexistence, on the one hand; on the other
hand, of the necessity, stressed by Lakatos, to supplement Popper’s approach by paying due
attention to the fact that the validity of an intuitive inference depends also on the translation we
adopt to translate inferences from ordinary language into the logical language.
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Popper and the role of inference rules in logic

David Binder
University of Tübingen

K. R. Popper published in the 1940’s a series of articles on deductive logic [4–9]. A discussion
of his philosophical ideas, the construction of his logical theory and its problems can be found in
[10, 11, 1]. A critical edition of his articles is currently being prepared by Peter Schroeder-Heister,
Thomas Piecha and David Binder. This new edition will contain revised versions of the published
articles, selected correspondence, contemporary reviews, unpublished material and individual
introductions for the articles. This is a short outline of Popper’s involvement in formal logic.

Vienna. Popper probably first got in contact with logic and the foundations of mathematics
by enrolling in a course of Hans Hahn in 1922 in which Principia Mathematica was part of the
curriculum. He soon got in contact with members of the Vienna circle, among them Gödel and
Carnap, and in 1934 he met Tarski who had a profound influence on Popper’s views on logic.
We do know about the impression that Tarski’s analysis of truth made on him, and in a letter
written in 1943 he calls himself a “disciple of Tarski” and mentions that he helped Tarski in the
translation of “Über den Begriff der logischen Folgerung” into German.2 There is little written
testimony about his views on formal logic during the Vienna years, due to the lack of publications
on formal logic and the poor archival situation regarding the time before his departure to New
Zealand.

Christchurch. In 1937 Popper had to flee from Austria and found employment as a lecturer
at the University of Canterbury in Christchurch, New Zealand. Part of his teaching duties was a
course in logic for philosophers. He was not content with the available logic textbooks suitable
for philosophers and planned to write a logic textbook in ∼1937/38. The three people whom
Popper discussed logical problems with during his time in Christchurch are, as far as we can see,
John Findlay, Henry George Forder and Rudolf Carnap. The evidence for Findlay, who taught
at the University of Otago at the time, is rather slim and rests on (1) handwritten remarks on a
paper that is likely to be an early version of [2], and (2) the fact that Popper discussed that article
with Paul Bernays in 1946. With Forder, a professor of mathematics at Auckland University
College, on the other hand, the situation is clear since there is an extensive correspondence
from February 1943 to July 1945 (23 letters in total). They discuss university politics but also
problems in the philosophy of mathematics, logic and quantum physics. It is in these letters that
Popper mentions for the fist time his conception of logic as a “meta-propositional calculus”;
a particular interpretation of the inequations of boolean algebra. The contact with Carnap is
through exchange of letters, averaging about three letters per year. Every time Carnap finishes
another book, Introduction to Semantics in 1942 and Formalization of Logic in 1943, he sends a
copy to Popper who replies with questions and sometimes long sheets of comments. Carnap is
certainly, together with Tarski, the one person who inspired most of the logical investigations
Popper undertook during that time. Remarks in letters and published and unpublished articles
show that it is through reading Carnap that he found the problems that he tried to solve.

In 1943 Popper writes a series of articles on boolean algebra, at least one of which he
intended to publish in the Journal of Symbolic Logic.3 They are called “Extensionality in a
Rudimentary Boolean Algebra”, “An Elementary Problem of Boolean Algebra”, “Completeness
and Extensionality of a Rudimentary Boolean Algebra”, “Postulates for Boolean Algebra” and
“Simply Independent Postulates for Boolean Algebra”. Forder supported Popper by proofreading
his typoscripts and by lending him articles that were not available in Christchurch, most
importantly Huntington’s [3] on which much of the development in Popper’s articles is based.

London. In 1946 Popper gets a position at the London School of Economics and moves
back to Europe. For reasons that are still opaque, he met with Bernays in Zürich in December

2Letter from Popper to H. G. Forder, May 7th 1943. Karl-Popper-Sammlung (KPS) 296, 15.
3In the LATEX-version that we work with, these articles take up about 100 pages. They are from KPS 12,3; 12,4; 12,5;

16,13.
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1946. During discussions, Bernays proposed to publish an article together with Popper who
eagerly accepted and set himself to work in the first months of 1947. He finished the article,
entitled “On Systems of Rules of Inference” by March 3rd and sent a copy of the manuscript to
Bernays4. The reason why the article never got published is unclear, but it seems that Bernays was
not in full agreement with Popper regarding some of the arguments of the article. The content of
this article is already quite close to the content of [4] and [5], but contains significant material
that was omitted in those later articles. Among other things, it contains an explicit comparison
with Tarski’s system [12] and a criterion for the “purity” of inference rules.5

Popper wrote on the distinction between derivation and demonstration in three unpublished
drafts, written some time between the completion of “On Systems of Rules of Inference” and the
writing of [5]. One of them is untitled; the other two are called “Derivation and Demonstration in
Propositional and Functional Logic” and “The Propositional and Functional Logic of Derivation
and Demonstration”6. They contain material which would later be incorporated in section 8:
“Derivation and Demonstration”, of [5]. He draws the distinction between demonstrational logic,
exemplified by the systems of Russell–Whitehead, Hilbert–Ackermann and Hilbert–Bernays, and
derivational logic, to which only Gentzen has come close with his system of natural deduction.
In these drafts Popper formulates an idea much more radically than in his published articles: the
logic of derivation should be primary and the logic of demonstration should be introduced via a
definition of demonstrability as a second step.

The reception of Popper’s articles was rather negative, partly due to the fact that they
contained errors, pointed out in the reviews, and partly due to the fact that some passages
could easily lead to misunderstanding7. But not all reception was negative; William Kneale
and Brouwer responded positively. Brouwer had presented three of Popper’s articles to the
Koninklijke Nederlandse Akademie van Wetenschappen and spoke very warmly about Popper’s
articles on logic. The overall cold reception greatly discouraged Popper from pursuing further
publications in logic. Regrettably so, since they do contain interesting philosophical ideas that are
not affected by the technical blunders. Even though Popper did not publish anything substantial
on formal logic for the rest of his life, he continued to work on logical problems as diverse as the
philosophy of logic of Boole, the quantum logic of von Neumann and, especially around 1950,
on the different concepts of implication.
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Dynamic of informational time and space, objects and
propositions: an Husserlian reading of Church and Gentzen

Jean-Baptiste Joinet
Université Jean Moulin Lyon 3

The thirties of last century are in one hand years in which the Proof Theory (Hilbert, Gentzen)
re-centered Logic around the spatial and temporal inscription of reasoning (this with several
respects: temporality and spatiality of the representation of argumentations, of heuristic, of
analytisation of proofs), in the other hands years during which a new science emerged, the theory
of the transformation of information a.k.a Informatics or Computing theory (Church, Turing).
In my talk, I will evaluate in which sense one can read those scientific programmes (Computing
Theory and Proof Theory) and their dialogue around a common question (Sense in time and
space) as a relevant contribution to the Husserlian project to complete modern Formal Logic by
a Transcendental Logic.
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The Calculus of Natural Calculations

René Gazzari
University of Tübingen

Gentzen discusses two formal calculi in his renowned paper “Untersuchungen über das logische
Schließen”. Before defining the Sequent Calculus, a technically convenient tool for proving his
Hauptsatz, Gentzen first introduces the so called Calculus of Natural Deduction. Gentzen’s reason
to introduce Natural Deduction is its close relationship to informal mathematical reasoning. In
Gentzen’s own words:

We wish to set up a formalism that reflects as accurately as possible the actual logical
reasoning involved in mathematical proofs. ([1], p. 74)

The calculus lends itself in particular to the formalization of mathematical proofs.
([1], p. 80)

Such natural calculi minimise the inevitable gap between informal argumentations and their
formalisations. This minimality may justify to carry over the notions defined with respect to
formal derivations and the results obtained from their investigations to the realm of informal
argumentations. This way, we may obtain formally justified answers to philosophical questions
about the properties of informal proofs.

With respect to argumentations involving only statements, Gentzen’s Calculus of Natural
Deduction is, indeed, pretty close to the argumentations found in mathematics. But mathemati-
cians do not only argue; they also calculate within their proofs. Usually, such calculations are
formalised with the help of axioms and rules dealing with equality statements. From a technical
point of view, this approach is perfect. But it is not a very natural approach.

In our talk, we present an alternative and more natural approach of formalising informal
calculations: we extend the Calculus of Natural Deduction by some term inference rules (which
may be understood as elimination and introduction rules for equality statements). These term
inference rules allow the syntactical manipulation of the terms of a formal language (within
a derivation) in the very same way as the mathematicians calculate with informal objects (as
numbers and sets) in their informal proofs. After introducing the Calculus of Natural Calculations
we provide some basic proof theoretic results about this calculus, in particular, we briefly discuss
its completeness and the problem of normalisation. Finally, we consider some further extensions
of this calculus aiming towards a uniform formal frame for the natural formalisation of informal
mathematical reasoning in all of its aspects.

References
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Company, 1969.
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Logiques décidables, règle axiome et
(non) élimination des coupures

Gilles Dowek
Inria ENS Paris-Saclay

(travail commun avec Ying Jiang)

Nous proposons une modification de la notion de coupure, telle que la propriété d’élimination des
coupures implique la décidabilité de la logique. Pour les logiques indécidables (telle la logique des
prédicats), la volonté d’éliminer les coupures “autant que possible” nous mène de la déduction
naturelle au calcul des séquents de Gentzen, du calcul des séquents de Gentzen à celui de Kleene
et de celui de Kleene à celui de Vorob’ev–Hudelmaier–Dyckhoff–Negri.

The problem of semantic completeness
in proof-theoretic semantics

Peter Schroeder-Heister
University of Tübingen

Various options for the definition of proof-theoretic validity and their respective problems are
discussed. It is shown that intuitionistic logic is not complete with respect to any of these options.
Only a weak version of completeness can be established: Every valid rule which has the form of an
elimination inference, is derivable in intuitionistic logic. If Prawitz’s completeness conjecture of
1971 is understood in the sense of this weak version of completeness, then it is correct, otherwise
it cannot be upheld.
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On propositional variables: the atomic and the parametric view

Paolo Pistone
Università degli Studi Roma Tre

What consequences are we entitled to draw from a proof that p→ p (where p is a propositional
variable)? The standard answer,coming from model-theory, is that every interpretation [p] ofpwill
obey the truth-table of implication. However, when considering proof-theoretic interpretations,
quite different answers might be found in (quite different) literatures. In Prawitz’s and Dummett’s
proof-theoretical interpretation a proof of p→ p warrants that a canonical argument for the
interpreted statement can be found for a special class of interpretations only, i.e. those associating
with propositional variables so-called atomic bases, i.e. sets of atomic inferential rules. Indeed, in
this approach, if every interpretation were admitted, a vicious circle would result in the definition.
This apparent limitation is grounded in the view (we call it the atomic view) that proof conditions
must be explained in a hierarchical way, with simple (atomic) propositions grounding complex
ones. Such limitations do not appear in the proof-theoretic interpretations of polymorphism
(i.e. of second order quantification): by defining the interpretation in a relational frame one
can express the fact that a variable p figures as a parameter in the proof, and hence that it
can be replaced by any interpretation, yielding a canonical argument in a uniform way. This
parametric view does not demand for a hierarchical explanation of logical consequence, but takes
propositional variables as free parameters in the proofs. I will argue that the latter view, far from
concerning second order logic only, provides a perspicuous picture of proofs in propositional
logic. Indeed, parametricity expresses a naturality condition (in the sense of category theory)
for proofs which, on the one side, provides significant information concerning the identity of
proofs and, on the other side, allows to characterize correct proofs by purely semantical means,
yielding several completeness results for intuitionistic propositional logic, a problematic issue in
the atomic view.

Methodological remarks on completeness theorems and
incompleteness theorems

Michele Abrusci
Università degli Studi Roma Tre

Completeness and incompleteness theorem as answers to a general philosophical question applied
to specific formats.
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Some hints to answer the question “What is logic?”

Mitsuhiro Okada
Keio University

In my opinion, “What is logic?” is an oldest and newest question in logic, and it would be also
an important question, among many others, for us to go ‘beyond logic’. In this talk, I would
challenge to clarify why this question is not so easy to answer. In the course of the discussion we
take a slight look at some of our recent works and results on some topics of logical inferences,
including those on diagrammatic logical reasoning, behavioral experimental study of logical
inferences, forcing-Fitting model construction for informatics applications, consideration of
the relationship between the traditional logics and linear logic, consideration of relationship
between decision making and logical inferences, then, we also touch some of our recent works
on re-consideration of logic with some classical works in the early 20th century, such as those of
Husserl, Peirce, Hilbert, Wittgenstein.

Why complexity theorists should care about philosophy

Thomas Seiller
University of Copenhagen

Theoretical computer science was somehow born almost a hundred years ago when logicians asked
themselves the question: “What is a computable function?”. This question, purely theoretical,
was answered before the first computer was designed, in the form of the Church-Turing thesis:
a computable function is one that can be defined in one of the following equivalent models:
recursive functions, Turing machines, or lambda-calculus. The apparition of actual computing
devices however made it clear from the start that another question made more sense for practical
purposes, namely: “What is an efficiently computable function?”. This question was tackled by
three different works in the span of a single year, marking the birth of computational complexity.
Nowadays, computational complexity is an established field: many methods and results have
been obtained, and the number of complexity classes grows every year. However, a number of
basic open problems remain unanswered, in particular concerning classification of complexity
classes. Even worse than that, a number of results – called barriers – show that no known method
will succeed in producing a new separation result, i.e. show that two classes (e.g. P and NP, or
L and P) are disjoint. From a purely theoretical point of view, this lack of methods might be
explained by a historic tradition of viewing programs as functions. Once this misconception is
identified, it points to a lack of adequate foundations for the theory of computation. Fortunately,
some recent technical developments may provide a solution to this problem.
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Representing inferences and proofs:
the case of harmony and conservativity

Alberto Naibo
Paris 1 Panthéon-Sorbonne

Traditionally, proof-theoretic semantics focuses on the study of logical theories from a general
point of view, rather than on specific mathematical theories. Yet, when mathematical theories
are analyzed, they seem to behave quite differently from purely logical theories. A well-known
example has been given by Prawitz (1994): adding a set of inferentially harmonious rules to
arithmetic does not always guarantee to obtain a theory which is a conservative extension of
arithmetic itself. This means that outside logic the nice correspondence between harmony and
conservativity (advocated for example by Dummett 1991) seems to be broken. However, as it has
been pointed out by Sundholm (1998), this is not necessarily a consequence due to the passage
from a logical setting to a mathematical one. It could depend also on the way in which proofs
are represented. In particular, if proofs are seen as composed by rules which act on judgments
involving proof-objects, rather than on rules which act on propositions, then the aforementioned
correspondence can in fact be re-established. An analysis of this phenomenon is proposed. In
particular, two different ways of representing proof-objects are taken into consideration: the
Church-style presentation and the Curry-style presentation. It is then shown that a crucial
difference can be obtained by choosing the first rather than the second.

References

Dummett, M. (1991). The Logical Basis of Metaphysics. London: Duckworth.
Prawitz, D. (1994). Review of ‘The Logical Basis of Metaphysics’ by Michael Dummett.Mind,
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Hypothetical Reasoning in the setting of Sequent Calculi

Andrzej Indrzejczak
University of Łódź

We consider different ways of representing hypothetical reasoning in the framework of sequent
calculi (SC). The basic approaches, not necessarily dependent on the features of specific proof
systems, were already considered by Schroeder-Heister. It seems that a deeper analysis of special
features of SC leads to further distinctions. We are going to focus on various factors that have
an impact on the ways in which hypothetical reasoning may be formally conducted in SC. The
most important ones are connected with different interpretations of the notion of sequent and
with different kinds of deducibility relation induced by SC. In particular, we will show that
hypotheses may be expressed not only by special sequents but also by special rules. This issue is
strongly connected with the problem of possible ways of formalizing theories in the framework
of SC and with expressing definitions by means of specific rules. We will state a general theorem
on possible ways of transforming sequents into rules and focus on the problem of their good
proof-theoretical behaviour.
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Intuitionist Bilateralism

Nils Kürbis
King’s College London

There is widespread agreement that in a proof-theoretic approach to the meanings of the logical
constants, where the rules governing them are required to be in harmony, intuitionist logic is the
correct logic if the meanings of sentences are specified in terms of the conditions for their correct as-
sertibility, while classical logic is the correct logic on a bilaterlist account, where meanings are in ad-
dition specified in terms of deniability conditions. There are two arguments to this effect, a formal
one, due to Ian Rumfitt, and an informal one, due to Huw Price. I’ll present an intuitionist bilateral
logic that shows Rumfitt’s claim that on a bilateralist account only the rules for classical logic are
harmonious. The rules of the intuitionist system satisfy all of Rumfitt’s requirements on bilateral
logics, in particular, they are in harmony. I will then show how this system of intuitionist bilateral
logic matches with the principles Price adduces for his argument. This exhibits clearly where Price’s
argument fails and that his conclusion that a bilateralist account must validate double negation
elimination does not follow. It even looks as if intuitionist logic is preferable for Price’s account.

Ecumenism: a new perspective on the relation between logics

Luiz Carlos Pereira
PUC-Rio

(joint work with Ricardo Oscar Rodrı́guez, Universidad de Buenos Aires)

Eclecticism is not a position available to an intuitionist mathematician/logician of “faith”. The
classical mathematician/logician may even consider the intuitionist position quite interesting,
since constructive proofs, although usually longer, are more informative than indirect classical
proofs, since they have an algorithmic nature and satisfy interesting informative properties such
as the disjunction property and the property of the existential quantifier. To the intuitionist
mathematician/logician however, there seems to be no alternative but to revise and revoke the
universal validity of certain classical principles of reasoning; for the intuitionist, mathematics
must be constructed exclusively on constructively valid forms of argument. From the point of
view of the classical mathematician, the intuitionist proposition, if taken seriously, would imply
a mutilation of the mathematical corpus; for the intuitionist it is simply the only correct way
of doing mathematics. (We cannot lose what we do not have!) In 2015 Dag Prawitz proposed
the idea of an ecumenical system, a codification where the classical and the intuitionist could
coexist “in peace”. The main idea behind this codification is that the classical and the intuitionist
share the constants for conjunction and negation, but each have their own disjunction and
implication. Similar ideas were present in Dowek (2015) and Krauss (1992), but without Prawitz’
philosophical motivations. The aims of the present paper are: (1) to investigate the proof theory
for Prawitz’ Ecumenical system, (2) to propose a truth-theoretical semantics for which Prawitz’
system is sound and complete, (3) to compare Prawitz’ system with other ecumenical approaches,
and (4) to propose a generalization of the ecumenical idea.
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Normality beyond logic

Mattia Petrolo
Paris 1 Panthéon-Sorbonne

(joint work with Paolo Pistone)

How should one characterize reductions and their associated normal forms once one steps
outside the realm of “standard” systems of natural deduction? On which criteria it is possible to
rely in order to provide such a characterization? We address these questions in a framework in
which they become particularly pressing, namely the proof-theoretic analysis of paradoxes.

Deductive Systems and Categories in Logic and Beyond

Kosta Došen
Faculty of Philosophy, University of Belgrade and Mathematical Institute, Belgrade

[unable to attend]

In the investigation of deductions, conceived as hypothetical proofs, one reaches naturally the
notion of deductive system, which is a special kind of directed graph, with loops and possibly
multiple arrows between objects, i.e. vertices. Deductive systems have identity arrows and
the arrows are closed under composition. Arrows correspond to deductions and objects to
propositions. Categories are deductive systems that satisfy the associative law for composition
and the unit laws concerning composition with identity arrows. These notions are very general
and are not rectricted to logic. They occur throughout mathematics and mathematizable areas of
thought.

The introduction of the notions of deductive system and category can be motivated by
identifying an object with the set of arrows having it as source or, alternatively, as target.
Proof-theoretically, this means identifying a proposition with the set of deductions having it
as conclusion or, alternatively, as premise. In intuitionism on finds something similar when a
proposition is identified with the set a proofs of it, but usually without taking care that these
proofs be hypothetical. The introduction of the notion of deductive system is motivated by
a generalization of an elementary aspect of Stone’s Representation of distributive lattices in
sets, involving preorders, while the introduction of the notion of category is motivated by a
generalization of the representation of monoids involved in Cayley’s representation of groups
(see [1] and [2], Section 1.9).
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Towards a
Quantum Curry-Howard correspondence

Pablo Arrighi
Aix-Marseille Université

CANA team, LIF laboratory

Alejandro Díaz-Caro∗, Benoît Valiron

BeyondLogic

Cerisy-la-Salle, May 2017
∗ Slides' and principal author

A proof-as-programs approach to quantum logic
Motivation

Curry-Howard correspondence
Intuitionistic logics ⇐⇒ Typed λ-calculus

hypotheses free variables
implication elimination (modus ponens) application

implication introduction abstraction

A proof is a program
(the formula it proves is a type for the program)

Goal: To find a quantum Curry-Howard correspondence

Between what?
I A quantum λ-calculus (quantum control/quantum data)
I Any logic, even if we need to define it!

Computational quantum logic
We want a logic such that its proofs are quantum programs

1 / 30

P. Arrighi et al.: Towards a quantum Curry-Howard correspondence
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A physics free introduction to quantum computing
Quantum vs. Classic, side by side

I Classic computing Bit: 0, 1
Quantum computing Qubit: Normalised vector from

C2 = Span{|0〉, |1〉} = {α|0〉+ β|1〉, α, β ∈ C}

where |0〉 =
(

0
1

)
and |1〉 =

(
1
0

)

I CC 2-bits system: one of 00, 01, 10, 00
QC 2-qubits system: C2 ⊗ C2 = Span{|00〉, |01〉, |10〉, |11〉}

where |xy〉 = |x〉 ⊗ |y〉

I CC Reading data: No problem
QC Measuring the system: Measurement of α|0〉+ β|1〉 returns a
bit, and the system collapses to

I |0〉 if 0 was measured, with probability p0 = |α|2
I |1〉 if 1 was measured, with probability p1 = |β|2.

3 / 30

A physics free introduction to quantum computing
Quantum vs. Classic, side by side (cont.)

I Classic computing computation: Logic gates {NOT, AND, etc...}
Quantum computing operations: Unitary matrices (U†U = I )

Example:

H =
1√
2

(
1 1
1 −1

) H|0〉 =
1√
2

(|0〉+ |1〉)

H|1〉 =
1√
2

(|0〉 − |1〉)
We can also combine them:
(H ⊗ I ) = Apply H to the first qubit, and identity to the second

I No-cloning theorem “There is no universal cloning machine”
i.e. @U s.t. U|φψ〉 = |ψψ〉 for an arbitrary qubit |ψ〉

I Entanglement n-qubit 6= ⊗
i |ψi 〉 e.g. 1√

2
|00〉+ 1√

2
|11〉

Consequence: Measuring the first qubit... both collapse!

4 / 30
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Untyped algebraic extensions to λ-calculus
Two origins:
I Alg [Vaux’09] (from Linear Logic)
I Lineal [Arrighi,Dowek’08] (for Quantum computing)

Equivalent formalisms [Díaz-Caro,Perdrix,Tasson,Valiron’10]

t, r ::= v | tr | t + r | α.t | 0 α ∈ (S,+,×), a ring
v ::= x | λx .t

β-reduction: (λx .t)v→ t[x := v]

“Algebraic” reductions:
α.t + β.t → (α + β).t,

α.β.t → (α× β).t,
t(r1 + r2) → tr1 + tr2,
(t1 + t2)r → t1r + t2r,

. . .
(oriented version of the axioms of

vectorial spaces)

Vectorial space of values

B = { vars. and abs. }
Space of values ::= Span(B)

12 / 30

Language & semantics
Con�uence

Future works
Extras

A minimal language. . . and its semantics.

Higher-order computation

t ::= x |λx.t | (t t) |
λx.t b −→ t[b/x] (∗) (B)

(*) b an abstraction or a variable.

Linear algebra.

t+ t |α.t | 0
1.u −→ u, 0.u −→ 0, α.0 −→ 0,
u+0 −→ u, α.(β.u) −→ α×β.u,
α.(u+ v) −→ α.u+ α.v (E )

u+ u −→ (1+ 1).u
α.u+ u −→ (α+ 1).u
α.u+ β.u −→ (α+ β).u (F )

t (u+ v) −→ (t u) + (t v)
(u+ v) t −→ (u t) + (v t)
tα.u −→ α.(t u)
α.u t −→ α.(u t)
0u −→ 0, u0 −→ 0 (A)

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.

P. Arrighi et al.: Towards a quantum Curry-Howard correspondence
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Language & semantics
Con�uence

Future works
Extras

Linearity

. . . is a matter for con�uence!

λx.(x x)(u+ v) 6−→∗ uu+ u v + v u+ v v

↓
λx.(x x)u+ λx.(x x)v −→ uu+ v v

The restriction forbids the above banch.

Is it now con�uent?

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.

Language & semantics
Con�uence

Future works
Extras

Higher-order

Fixed points, quantum control, black-box algos. . .

Higher-order usually means

λx.tλy.u −→ t[λy.u/x]

Hence base vectors are

- abstractions (i.e. terms of the form λy.u);
- variables (by some kind of recurrence).

Machine description interpretation, LISP quotes. . .

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.
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Language & semantics
Con�uence

Future works
Extras

Encodings
Related works
Terms rewrite systems
Cleaning vectors
Scalar rewrite system
Computational complex numbers

Encoding booleans

true ≡ λx .λy .x

false ≡ λx .λy .y

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.

Language & semantics
Con�uence

Future works
Extras

Encodings
Related works
Terms rewrite systems
Cleaning vectors
Scalar rewrite system
Computational complex numbers

Encoding the Not gate

Not ≡ λy .
(
(y ∗ false) ∗ true

)

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.
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Language & semantics
Con�uence

Future works
Extras

Encodings
Related works
Terms rewrite systems
Cleaning vectors
Scalar rewrite system
Computational complex numbers

Encoding the Phase gate

Phase ≡ λy .

(((
y ∗ λx .(e i π4 .true)

)
∗ λx .false

)
∗_
)

where _ stands for dead code.

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.

Language & semantics
Con�uence

Future works
Extras

Encodings
Related works
Terms rewrite systems
Cleaning vectors
Scalar rewrite system
Computational complex numbers

Running the Phase gate

Phase ∗ true yields

λy .

(((
y ∗ λx .(e i π4 .true)

)
∗ λx .false

)
∗_
)
∗ true

((
true ∗ λx .(e i π4 .true)

)
∗ λx .false

)
∗_

((
(λx .λy .x) ∗ λx .(e i π4 .true)

)
∗ λx .false

)
∗_

(
λx .λx .(e i

π
4 .true) ∗ λx .false

)
∗_

λx .(e i
π
4 .true) ∗_

e i
π
4 .true

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.
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Language & semantics
Con�uence

Future works
Extras

Encodings
Related works
Terms rewrite systems
Cleaning vectors
Scalar rewrite system
Computational complex numbers

Encoding the Hadamard gate

Hadamard ≡ λy .

(((
y ∗ λx .(false− true)

)
∗ λx .(false+ true)

)
∗_
)

where _ stands for dead code.

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.
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Language & semantics
Con�uence

Future works
Extras

Encodings
Related works
Terms rewrite systems
Cleaning vectors
Scalar rewrite system
Computational complex numbers

Encoding tensors

⊗ ≡ λx .λy .λf .
(
(f ∗ x) ∗ y

)

π1 ≡ λx .λy .x

π2 ≡ λx .λy .y
⊗

≡ λf .λg .λx .

((
⊗ ∗
(
f ∗ (π1 ∗ x)

))
∗
(
g ∗ (π2 ∗ x)

))

E.g. H⊗2 ≡
(
(
⊗

Hadamard) ∗Hadamard
)

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.

Language & semantics
Con�uence

Future works
Extras

Encodings
Related works
Terms rewrite systems
Cleaning vectors
Scalar rewrite system
Computational complex numbers

Encoding the CNOT gate

Cnot ≡

λx .

((
⊗ ∗(π1 ∗ x)

)
∗
((

(π1 ∗ x) ∗
(
Not ∗ (π2 ∗ x)

))
∗ (π2 ∗ x)

))
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Language & semantics
Con�uence

Future works
Extras

Encodings
Related works
Terms rewrite systems
Cleaning vectors
Scalar rewrite system
Computational complex numbers

Expressing Deutsch's algorithm parametrically

Deutsch ≡

λf .

(
H⊗2 ∗

(
f ∗
(
H⊗2 ∗

(
(⊗false) ∗ true

)))
)

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.

The Scalar Type System [Arrighi,Díaz-Caro’09]

A polymorphic type system tracking scalars:
Γ ` M : T

Γ ` α.M : α.T
I Barycentric restrictions
I Characterises the “amount” of terms

The Additive Type System [Díaz-Caro,Petit’10]

A polymorphic type system with sums:

Γ ` M : T Γ ` N : R

Γ ` M + N : T + R

I Sums ∼ Assoc., comm. pairs
I distributive w.r.t. application

Can we combine them?

5 / 15
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Typed Lineal : λvec (or the Vectorial System)
[Arrighi,Díaz-Caro,Valiron’12–13]

T ,R ::= U | X | α.T | T + R
U ::= X | U → T | ∀X.U | ∀X.U

T + R ≡ R + T
T + (R + S) ≡ (T + R) + S

1.T ≡ T
α.(β.T ) ≡ (α× β).T

α.T + α.R ≡ α.(T + R)
α.T + β.T ≡ (α + β).T

Most important property of λvec

` t :
∑

i αi .Ti ⇒ t→∗ ∑i αi .ri
t→∗ ∑i αi .ri ⇒ ` t :

∑
i αi .Ti + 0.R

where ` ri : Ti

A type system capturing the “vectorial” structure of terms
. . . able to type matrices and vectors
. . . able to check for probability distributions
. . . or whatever application needing the structure of the vector

14 / 30

Typing rules

ax
Γ, x : U ` x : U

Γ ` M : T
0I

Γ ` 0 : 0.T

Γ ` M : T
αI

Γ ` α.M : α.T

Γ ` M :
n∑

i=1

αi .∀~X .(U → Ti ) Γ ` N :
m∑

j=1

βi .Vj ∀Vj ,∃~Wj/U[~Wj/~X ]=Vj

→E

Γ ` (M)N :
n∑

i=1

m∑

j=1

αi × βi .Ti [ ~Wj/~X ]

Γ, x : U ` M : T
→I

Γ ` λx .M : U → T

Γ ` M : T Γ ` N : R
+I

Γ ` M + N : T + R

Γ ` M : U X /∈FV (Γ)
∀I

Γ ` M : ∀X .U

Γ ` M : ∀X .U
∀E

Γ ` M : U[V /X ]

9 / 15
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Language & semantics
Con�uence

Future works
Extras

In�nity

Untyped λ-calculus + linear algebra ⇒ ∞

Yb ≡ λx.(b+ (x x))λx.(b+ (x x))

Yb −→ b+ Yb

But whoever says in�nity says trouble says... inde�nite forms.

These are again a matter for con�uence!

Yb− Yb −→ b+ Yb− Yb −→ b

↓∗
0

High school teacher says we must restrict (F ) to �nite vectors.

But who are they?
Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.

Language & semantics
Con�uence

Future works
Extras

Hiding inde�nite forms

We restrict (F ) to u normal.

Now

Yb− Yb 6−→ 0

But

λx.(x y − x y)λy.Yb −→∗ 0

↓∗
Yb− Yb

Pablo Arrighi, Gilles Dowek Linear-algebraic λ-calculus: higher-order and con�uence.
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Confluence and Strong normalisation

In the original untyped setting: “confluence by restrictions”:

YB = (λx .(B + (x)x))λx .(B + (x)x)

YB → B + YB → B + B + YB → . . .

YB + (−1).YB −→ (1− 1).YB −→∗ 0
↓

B + YB + (−1).YB

↓∗
B

Solution in the untyped setting:
α.M + β.M → (α + β).M
only if M is closed-normal

In the typed setting: Strong normalisation solves the problem

11 / 15

Theorem (Strong normalisation)
Γ ` M : T ⇒ M strongly normalising.

Proof.
Reducibility candidates method.

Main difficulty: Show that

{Mi}i strongly normalizing⇒
∑

i

αi .Mi strongly normalizing

Done by using a measurement on terms decreasing on algebraic
rewrites.

12 / 15
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Theorem (Confluence)

∀M / Γ ` M : T M →∗ N1
M →∗ N2

⇒ ∃L such that N1 →∗ L
N2 →∗ L

Proof.

1) local confluence: M → N1
M → N2

⇒ ∃L such that N1 →∗ L
N2 →∗ L

I Algebraic fragment: Coq proof
I Beta-reduction: Straightforward extension
I Commutation: Induction

2) Local confluence + Strong normalisation ⇒ Confluence [TeReSe’03]

13 / 15

(α + β).T v α.T + β.T ′ if ∃M / Γ ` M : T and Γ ` M : T ′

(and its contextual closure)

Theorem (A weak subject reduction)
If Γ ` M : T and M →R N, then

I if R is not a factorisation rule: Γ ` N : T
I if R is a factorisation rule: ∃S v T / Γ ` N : S

How weak?

Let M → N,
Subject reduction

Γ ` M : T ⇒ Γ ` N : T
Subtyping

Γ ` M : T ⇒ Γ ` N : S , but S ≤ T , so Γ ` N : T
Our theorem

Γ ` M : T ⇒ Γ ` N : S , and S v T

10 / 15
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The factorisation rule problem

Γ ` M : T Γ ` M : T ′
======================
Γ ` α.M + β.M : α.T + β.T ′

I However, α.M + β.M → (α + β).M
I In general α.T + β.T ′ 6= (α + β).T 6= (α + β).T ′

(and since we are working in System F, there is no principal types neither)

7 / 15
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Example: Typing vectors and matrices

`
|0〉︷ ︸︸ ︷

λx .λy .x :

T︷ ︸︸ ︷
∀XY.X→ Y → X H|0〉 →

|+〉︷ ︸︸ ︷
1√
2

(|0〉+ |1〉) :

�︷ ︸︸ ︷
1√
2

(T + F)

` λx .λy .y︸ ︷︷ ︸
|1〉

: ∀XY.X→ Y → Y︸ ︷︷ ︸
F

H|1〉 → 1√
2

(|0〉 − |1〉)
︸ ︷︷ ︸

|−〉

:
1√
2

(T− F)

︸ ︷︷ ︸
�

` λx . {x [|+〉] [|−〉]}︸ ︷︷ ︸
H

: ∀X.([�]→ [�]→ [X])→ X

` H( 1√
2
(|0〉+ |1〉)) : 1√

2
(�+�) ≡ T

In general


0
...
1
...
0




:= λx1 . . . λxn.xi


 c1 c2 . . . cn


 = λx .{x [c1][c2] . . . [cn]}

∀X.([C1]→ [C2]→ · · · → [Cn]→ [X])→ X

∀X1 · · ·Xn.X1 → · · · → Xn → Xi
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Contributions

I Scalar ∪ Additive (�AC, distributive pairs�)

⇒ linear-combination of types

I Strong normalisation

⇒ Con�uence without restrictions

I Weak SR, types tell you

⇒ �how much weight of terms of a given type� there will be in the

normal form

I Types as matrices and vectors

⇒ ��nite-dimensional linear algebra abstraction interpretation of

computable linear operators�

Open

I Simplify

⇒ Church-style polymorphism, or just intersection types instead

I Interprete, understand as a proof theory

⇒ Superpositions of hypotheses: −→I for X

1 / 2

Annex
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Not one zero... a lot of them

Γ ` λx .x : U → U

Γ ` M : R Γ ` −M : −R

Γ ` M −M : 0

Γ ` λx .x + M −M : U → U Γ ` B : U

Γ ` (λx .x + M −M)B : U

However, (λx .x + M −M)B → (λx .x)B + (M)B − (M)B

We need to keep track of the zeros... where they came from!

Instead of a type 0, we have 0.R and T + 0.R 6≡ T

7 / 16

Extra: Example of arrow elimination

Γ ` B1 :V1
Γ ` B2 :V2

⇒Γ ` β1.B1+β2.B2 : β1.V1 + β2.V2
U[W1/X ] = V1
U[W2/X ] = V2

Γ ` λx1.M1 : ∀X .(U → T1)
Γ ` λx2.M2 : ∀X .(U → T2)

⇒
Γ ` (α1.λx1.M1)+(α2.λx2.M2) : (α1.∀X .(U → T1)) + (α2.∀X .(U → T2))

Γ ` N + H : α1.∀X .(U → T1) + α2.∀X .(U → T2)
Γ ` M +O : β1.V1 + β2.V2 →E

Γ ` (N + H)(M +O) :
2∑

i=1

2∑

j=1

αi × βj .Ti [Wj/X ]

(N + H)(M +O)→∗ (N)M + (N)O + (H)M + (H)O
e.g.
(H)M = (α2.λx2.M2)β1.B1 →∗

(α2 × β1).(λx2.M2)B1

Γ ` λx2.M2 : V1→T2[W1/X ] Γ ` B1 : V1 →E
Γ ` (λx2.M2)B1 : T2[W1/X ]

P. Arrighi et al.: Towards a quantum Curry-Howard correspondence
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Jean-Louis Giavitto 

Sharing (musical) time 
between machines and humans: 

simultaneity, succession and duration in 
real-time man-machine musical interaction  

http://repmus.ircam.fr/giavitto
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Computer music as an experimental enquiry in 
temporal concepts 

•  Music makes time audible, and its form and continuity 
sensible (S. Langer)

•  But, if music is the paradigmatic “art of time”,�
for which kind of time is music an art?

•  Real musical time is only a place of exchange and coincidence 
between an infinite number of different times. (Gérard Grisey, Tempus 
Ex Machina: A Composer’s reflections on musical time. Contemporary Music Review,1987)

•  Test the relevance and the effectiveness of temporal 
notions in musical applications

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
 2

J.-L. Giavitto: Sharing (musical) time between machines and humans
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Is a computer able to…  

•  play chess
•  check logical reasoning
•  find a path from A to B in a city
•  …
•  recognize a smiling face
•  walk on two legs
•  …
•  play music together with human performers ? 
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Cyber-temporal systems: 
 computing time in real-time 

•  from: physical entities�
monitored by algorithms

•  to: temporal relationships�
sensed and organized by algorithms

•  example: interactive music systems�
    Antescofo

•  notionS of TIME:
•  multiple times: deferred time, real-time
•  multiple models of time: event-driven, time-driven
•  multiple scales: from audio (0.02 ms) to control (hours)  
•  time programmability: time is a denotable entity

cyber-
physical 
systems

cyber-
temporal 
systems
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An example of cyber-temporal systems : 
 Automatic Accompaniment in Antescofo 

Concerto pour main gauche, Ravel. 
Performer: Jacques Comby�
Orchestra: recording Orchestre de Paris synchronized with Antescofo in real-time
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A long way from 1983 (~35th anniversary for score following) 

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
 6

http://repmus.ircam.fr/antescofo/videos 
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Real-time synchronization
of electronic actions 
with the musicians performance

listen
recognize

react

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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Dealing with wide ranges of interpretation and errors 

J.-L. Giavitto: Sharing (musical) time between machines and humans

44



Je
an

-L
ou

is 
Gi

av
itto

, C
NR

S 
—

 U
M

RS
 9

91
2 

ST
M

S,
 IR

CA
M

, U
PM

C 
- S

or
bo

nn
e-

Un
ive

rsi
té

s

gia

vit
to

@
irc

am
.fr,

 h
ttp

://
re

pm
us

.irc
am

.fr
/g

iav
itto



Tesla ou l’effet d’étrangeté  
Julia Blondeau (2014) 
alto: Christophe Desjardins, real-time electronic: Antescofo 
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ODEI 
(performance Les Nuits Sonores, Lyon, 2014) 
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Outlines 

Interactive Music Systems as 
interpreters (computer meaning of 
« interpretation »)

•  time in a score
•  score as program, performance as 

execution !?
•  the interpretation problem

Times in Antescofo

•  time in computer programing 
languages

•  events and duration
•  from triggers to synchronization 

strategy
•  time-time diagrams
•  tempo extraction
•  temporal scope

•  Beyond chronometric time 
–  why multiple times ?
–  fungible or incomparable times ?
–  time and causality ?

Some other artistic applications
•  the Polyrhytmic Machine
•  Marco Stroppa’s Totem
•  open score by Jason Freeman
•  gesture-following by José-Miguel 

Fernandez

Final remarks
•  from functions to interactions 

through processes
•  sharing our time with machines

11
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MULTIPLE  TIMES 

•  event and duration 
•  continuous and discrete time 

•  building time together 
•  deferred and real time 

12
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A Score 

•  instantaneous events�
(e.g. the onset of a note)

•  events that last�
(duration of a note)

•  continuous change of parameter (movement, gesture)
–  frequency
–  ambitus
–  sound localization
–  etc.

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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Organizing time together (and in a distributed way) 

waiting an event

waiting a duration

Stockhausen, Gruppen

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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“hors temps” (deferred time) 

15

When a composer write a score, 
usually: 

•  his « flow of time » is not the « flow 
of time » which is written 

•  The « written time » is “spatialized”: 
every instants are accessible on the 
same level 

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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16

Vi Hart  
http://vihart.com/
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Lee Westwood & Sama Mara (www.musicalforms.com) 
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THE SCORE AS A PROGRAM 
AND THE  
PERFORMANCE AS PROGRAM EXECUTION? 

18Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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Confronting scores and programs ?  

Score Program 
music composition program spécification 

interpretation execution 
a score / its denotation an expression / its evaluation 

composer programmer 
one (multiple) performer(s) one (many distributed) 

computer(s) 
… … 

•  Score ≠ Program 
•  G. Mazzola : a « frozen gesture », « unfrozen is not heating » 
•  T. Adorno: solid state of the score vs. the liquid state of the performance 

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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Author (composer)

« read » « eval » « print »

interactive scenario
open score, virtual 

score…

interactive piece �
 mixed music, �

time-art, �
… 

Analysis

Synthesis, �
rendering

Acquisition Production

Perception Action

Musicans�
(& audience)

write

interact

Authoring time:
•  composition
•  computing “time”�

(as in computing “integers”)

authoring interaction :
•  performance
•  computing in real-time

Authoring time in real-time
(improvisation, live coding)

reader
parsing

writer
pretty-printing

A “Language Approach” to IMS 
Je

an
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The Antescofo aproach (to mixed music) 

•  An augmented score is a real-time program
–  the composer is a programmer that specifies bith human and electronic parts
–  program evaluation is done jointly by <musician | machine>
–  the composer specifies the synchronization between human and electronic parts

•  The listening machine provides the inputs to the machine�
    <musician | listening & recognition | strongly timed program>

•  BUT music interpretation is not program evaluation
the gap between the score and its implementation is intentional

•  Time is a first class entity in the DSL
–  time is not an operational property (e.g., a quality of service or a performance metric)
–  handling of events and duration
–  chronometric and relational time
–  computing dynamic timelines

22Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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Shrinking and stretching"
the score into a performance


23Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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Times in Antescofo 

•  multiple time(s) 
•  tempo extraction 

•  from triggers to synchronization 
•  the interpretation problem 

•  time-time diagrams 

 

Daniel Firmin, 2011
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MULTIPLE TIMES 
times in Antescofo 

25Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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SIMULTANEITY 
HARMONY, POLYPHONY 

& 
SUCCESSION 

MELODY 

writing 
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temporized 
systems

synchronous 
languages

Instant and Duration: Simultaneity, Succession & Permanence 

from/tobefore/afterwhile, during

permanencesuccessionsimultaneity

instant duration

process algebra

  

succession!

non-simultaneity non-permanence

simultaneity!

non-permanence

non-succession

permanence !

non-succession

non-simultaneity

its not simultaneous to 
something

and 
its not before, nor after

è so, its lasts

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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Can we deal with instants only? 
è duration as a set of contiguous instants

•  evenemential-time 
versus

•  the fluxion: continuous passage of time
–  going twice faster
–  finishing together
–  accelerando
–  rubato
–  tempo
–  etc…

28Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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Can duration be reduced to instant? 
(in temporal logic) 

on


off


t 

p1 


p2 


time


doing real analysis and topology
or

making instant and duration�
primitive notions
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30

From one global time 
to multiple, relational, distributed times 

•  a shared global time: one external objective master clock

–  events inhabit time
–  newtonian time, a priori fungible unit
–  a shared prescriptiion �

(which can be only partially known)

•  multiple times: co-dependant clocks

–  events build time�
(Bluedorn: epochal time is defined by events)

–  leibnizian, relational time
–  Examples :

•  score: multiple temporal layers
•  relationships score / performance
•  co-construction during the performance

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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Example of relational (event-specified) time  
 Roman notions of summer hours and winter hours 

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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FROM TRIGGER TO SYNCHRONIZATION 
times in Antescofo 
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The Multiples Times of Temporal Scenarios 
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Notice the difference…  
from trigger (event alignment)
to synchronization (full timeline event + duration alignment) �
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Writing music = filling a timeline 

-Louis Giavitto, IRCAM – CNRS – INRIA MuTAnt
 35

Loop 2 { a }

a a a a a a 
2

score 
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performing = progressing on the timeline 

36

a a a a a a 
2.213 s. 1.934 s.

“variable speed” = deformation (stretching and shrinking) of the   
  temporal relationships between score and performance 

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université


J.-L. Giavitto: Sharing (musical) time between machines and humans

58



Je
an

-L
ou

is 
Gi

av
itto

, C
NR

S 
—

 U
M

RS
 9

91
2 

ST
M

S,
 IR

CA
M

, U
PM

C 
- S

or
bo

nn
e-

Un
ive

rsi
té

s

gia

vit
to

@
irc

am
.fr,

 h
ttp

://
re

pm
us

.irc
am

.fr
/g

iav
itto



performing = progression on the timeline 
                          relatively to another timeline 

37

the reference timeline 

the synchronized timeline 

temporal scope 
= 

reference 
+ 

synchronisation strategy 
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Striated time and smooth time 

György Ligeti Lontano (1967) Bernard Hermann, Psycho (1960) 
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Tackling the interpretation problem in mixed music 

  

actual
musical 

performance

whole mixed performance

musical 
events

synchronizations

perform
listen

execute

schedule

augmented score


actual
electronic

performance
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TIME-TIME DIAGRAM 
synchronizing timeline in Antescofo 
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Time-time diagrams 

BPM 60

TRILL (A4 B4) 1.0

NOTE 0 1.0

BPM 85

TRILL ((C5 E5) (D5 
F5)) 2.0


time in seconds 

be
at

s i
n 

sc
or

e 
musical event 

tempo 

position in!
the score 

as!
 a function 
of physical 

time
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Time-time diagrams 

actual date of arrival (early event)


time in seconds


be
at

s 
in

 s
co

re



(potential) position in 
the score as a 
function of physical 
time , given by the

score


(actual) event’s position in the score with 
the associated estimated tempo, as 
performed by the musician


forecasted date of arrival considering the last available tempo


actual date of arrival (late event)


p 

t’ t 

p’ 
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actual date of arrival (early event)


time in seconds


be
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in
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forecasted date of arrival


actual date of arrival (late event)


p 

t’ t 

p’ 
tight, conservative —interpolation


actual position in a 
sequence of actions as a 
function of physical time,!
with tight strategy


José Echeveste 
PhD, Defended 2015 

Time-time diagrams 
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Dynamic Target 

J.-L. Giavitto: Sharing (musical) time between machines and humans
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aligning (aka synchronizing) timelines 

a temporal scope 
(temporal coordinate system):
Ø shared events
Ø an estimation of the �

fluxion of time (tempo)
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46

TEMPO EXTRACTION 
(Large’s algorithm) 

times in Antescofo 
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Tempo inference and odd sympathy 
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Antescofo

listening machine

eventspeed

tempo
(speed of advancement/physical time)

reactive + timed
machine




J.-L. Giavitto: Sharing (musical) time between machines and humans
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•  time transformations are for Antescofo �
what changes of coordinates are for postscript…

•  BUT 

–  time is only spent in real-time

–  time is evenmential and durative

–  time is causal �
(I don’t know the transformation in the future)

–  the transformation comes from the environment �
(synchronization)

–  transformations are not necessarily newtonian �
(when human is in-the-loop  position ≠∫tempo)

Temporal Scope 
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Julia Blondeau  
Phrasé 
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Notation et nécessités du symbole
Dimensions temporelles et écriture de l’électroniqueNotation et expressivité

 Dans cet exemple, on veut décrire un contrepoint 
entre l’alto et l’électronique dans lequel la partie 
électronique fluctue temporellement autour de la partie 
d’alto puis converge vers le « la » joué en écrasé de l’alto. 

 L’écriture est ici assez simple puisque les durées et 
rythmes sont exprimées de façon identique, en valeurs 
relatives et toutes égales. C’est la modulation du tempo qui 
rend ici le geste malléable, tout en étant lié en permanence 
au tempo de l’interprète (variable $RT_TEMPO). 

 Pour les dynamiques, le même principe est employé 
grâce à l’utilisation d’une variable commune à toutes les 
notes ($ampexplo) envoyées au moteur de synthèse. On 
peut ainsi écrire directement une courbe comme on écrirait 
un crescendo sur un partition au lieu d’écrire une valeur 
d’amplitude pour chaque note.
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Notation et nécessités du symbole
Dimensions temporelles et écriture de l’électroniqueNotation et expressivité

 Dans cet exemple, on veut décrire un contrepoint 
entre l’alto et l’électronique dans lequel la partie 
électronique fluctue temporellement autour de la partie 
d’alto puis converge vers le « la » joué en écrasé de l’alto. 

 L’écriture est ici assez simple puisque les durées et 
rythmes sont exprimées de façon identique, en valeurs 
relatives et toutes égales. C’est la modulation du tempo qui 
rend ici le geste malléable, tout en étant lié en permanence 
au tempo de l’interprète (variable $RT_TEMPO). 

 Pour les dynamiques, le même principe est employé 
grâce à l’utilisation d’une variable commune à toutes les 
notes ($ampexplo) envoyées au moteur de synthèse. On 
peut ainsi écrire directement une courbe comme on écrirait 
un crescendo sur un partition au lieu d’écrire une valeur 
d’amplitude pour chaque note.

�

  

����������	
����


�

������

�����#

��


�

��

�

�����$

��

����������	
����


�

�!


�

�

"�

����������	
����


�

!�

�

�

�

�

	

�

�� �

�

���

�

�

�� ��

�

��

��

#�$$��

�

��

��!	

��
�

�

� � � �

	

�

�

�

	

�

�

�

�

	

� � �

�

��

�

��

�

�

�

��

�

�� �

���

��

��

�

�

��

��

��

��

� � � � �

�

�

� �

� �

	

��

��

�

�

�
�

��

�
� � � � � � � � � � �

�

���

��
�

�

�

	

�

��

���,����

�

��

���

�

�

�

�

�

�

�

�

�

�

	

���

�

�

������
�

�
�

�

�

	

��

�

�

�

	

�

�

�

�

����

��

�
�

�

��

� � �

��

�

	

�

�

�

�

�

�

�

�

������


�������

	

�

�

�� ��

�

��

��

	

�

�

�

� � �

�� �

�

�

�

�

��

�

��

	

��

�

�

�

�

�

�

�

�

�� ��

�

�

�����$

'���(�%����������

�

��

�
� �

� �

�

	

� ��

� � � � �

� � � � �

�

� � � �

� �

��

��� �

�

�

� ���

��

��

�

	

��
��

�

�

�

�

�

�

�

� �

�

��

�

��

�� � �

��

�

�

�

�

�

�

�� ��
� �

� �

��

��

�

�

��
��

��

�

��
��

�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

� �

�

�

�
�
�
�

�
�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

��

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�� ��

��

��

� ��

��
�

�
�� ��

��

�

�

��

��

��

��

�

�

��

��

��

�

�

�

��

��

��

�

�

�

��

��

��

�

�

�

��

��

��

�

�

�

��

��

��

�

��

�

�

�

��

��

��

��

��

�

�

�

��

�

�

�

��

��

�

�� �� ��
�

��
� � �� ��� � ���� � � � �� �

�
� �
�

� �
�

� �
�

� �
�

� �
�

� �
� 


�� �
�




�

�



� �
�




�

�



� �
�




�

�



� �
�



�




� �
�




�

�



� �
�




�

�



�




�

�

�

�

�

��

�

�

�
��

�� �

��

�

�� � � � � � � � � ���

�
�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�

�
��

�

��

�

�
�

�

	

�

	

�

�

�
�

��

�

�

��

�

��
��

� ��

� ��

��

�

��

��

�

��

��
�

��
�

��

��

��

��

��

�

�

��
��

��

��
��

��

��

��
�
��

�
��

�

��

��
�

��

��

��

�
��

��

��

��

��
��

��

��

��
��

�
�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�
�

�
�

� �

� �

�




�

��
















�

�

��

�

�

�
�

�

� �

�

� �

�

� ��

�

��
��

�

��

�

��

��
��

��

�

��
�

�
�
�
�

�� �

�




�

�

�

�


�


��

�

�

�

�

�

� �

�

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�




�� ��

��



� �

�

�

�

�

�

�


�

� �







�

�

�
��
�




��

�

�

�




�

�




�


�

� �




�




� �




�


�

� �




�




� �




�

� �

�




�
�

�




�

�

�




�
� �

�

�

�

�

��

�

�� � �

��

�

��

�

�

��
�

�

�

�

�
�

�

�

��

�

�

�

��

�

�

�

��

�

�

� �

��

� �

� �

�

�
�
�

�

�

� �

�

��

�

�

�

��

�

�

�

�

�

�

�

�
� �

�
� � �

��
�
�

� � �
�

�

� �

�

��

�

��

�

��

�

�

�

�

��

��

�

�

��
��

��

�

��

��

�

��

��
�

��
��

�
�

�
�

��

� �

�
��

� �

#

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université


J.-L. Giavitto: Sharing (musical) time between machines and humans

65



Je
an

-L
ou

is 
Gi

av
itto

, C
NR

S 
—

 U
M

RS
 9

91
2 

ST
M

S,
 IR

CA
M

, U
PM

C 
- S

or
bo

nn
e-

Un
ive

rsi
té

s

gia

vit
to

@
irc

am
.fr,

 h
ttp

://
re

pm
us

.irc
am

.fr
/g

iav
itto



Christopher Trapani
real-time rythmic canon à la Nancarow
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Christopher Trapani �
real-time rythmic canon à la Nancarow �
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José-Miguel Fernandez 
gesture-driven synthesis 

53

Hypersphère, Jose Miguel Fernandez,  
séance de travail IRCAM 26/2/16 

GeKiPe (Gest Kinect Percussion),  
Philippe Spiesser (percu),  
Alexander Vert (composition),  
Jose Miguel Fernandez (RIM) 

OSC or setvar
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Videos at http://repmus.ircam.fr/antescofo/videos 
Towards	Greater	Public	
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FINAL REMARKS 
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BEYOND CHRONOMETRIC TIME 
(IN  MUSIC) 
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time in seconds
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p 
p’ 

FUNGIBLE TIMES 
OR 

INCOMPARABLE TIMES ? 

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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One second per second 

$ € 
Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université


J.-L. Giavitto: Sharing (musical) time between machines and humans

69



Je
an

-L
ou

is 
Gi

av
itto

, C
NR

S 
—

 U
M

RS
 9

91
2 

ST
M

S,
 IR

CA
M

, U
PM

C 
- S

or
bo

nn
e-

Un
ive

rsi
té

s

gia

vit
to

@
irc

am
.fr,

 h
ttp

://
re

pm
us

.irc
am

.fr
/g

iav
itto



Subordination of the objective time to the 
subjective ones and  not the reverse ! 

•  shared events are not enough: �
duration is not reducible to instants
–  halving a duration
–  accelerando
–  phrasé (ex. rubato)

•  the “conversion rate” changes in time and is known “after”. The 
conversion rate is established with the weaving of time itself. 
–  A-series et B-series, 
–  “out of time” (“deferred time”) of the composition�

versus the real-time of the performance

•  Subjective time is useful: the score refers to this subjective time, 
not to physical time in second

•  In fine, it enables a effective musical interaction between the 
performer and the computer

Cerisy may 2017 / Jean-Louis Giavitto, CNRS — UMRS STMS, IRCAM, UPMC, Sorbonne-Université
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THE PASSING OF TIME AND CAUSALITY 

60
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The passing of time: causality & duration 

time 
(lasting takes time) 

dependencies 
(causation à succession) 

a	

b	

logical 
instant 

logical 
instant 

 

delay 
expiration 

« time-triggered »

« event-
triggered »
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The passing of time: causality & duration 

time 
(lasting takes time) 

dependencies 
(causation à succession) 

logical 
instant 

logical 
instant 

 

delay 
expiration 

« time-triggered »

« event-
triggered »
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Arshia Cont,  Philippe Cuvillier,�
José Echeveste,  Jean-Louis Giavitto
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App in beta test 
go http://www.antescofo.com 

Antescofo – Forum IRCAM,16 mars 2017 / Jean-Louis Giavitto, CNRS & IRCAM
 64

wide range of users,�
from beginners to advanced 
students and professionals 
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http://repmus.ircam.fr/giavitto
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Arshia Cont !
PhD students!
J. Blondeau, P. Cuvillier,  J. Echeveste, C. Poncelet

Scientific Collaborations!
•  SIERRA & PARKAS (ENS), FLOWERS & POSET (Bordeaux), Inria Chile, 
•  GRAME (Lyon) ... 
•  and many more: UC Berkeley, UCSD, Salzburg U., Twente U., …

Composers (and their assistants !)!
P. Manoury, M. Stroppa, J. Freeman, C. Trapani, J.-M. Fernandez, J. Blondeau, G. Nouno, �
Y. Maresz, O. Neuwirth, L. Morciano, … T. Goepfer, G. Beller, G. Lorieux... and many more

Credits 
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The Digital Age and Its History

We hear ad nauseam that we live in a “digital age”.
The claim that we live in a digital age is based on the following technical
aspects (among others):

1 Digital computers replaced analog computation.
2 Numerical simulations replace experiment and modeling.
3 Analog signal is replaced and/or converted into numerical signal.
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Analog computing: contemporary approach

Before they became completely dominant, digital computers co-existed
with another model of computation, analog computation (1940-1970).

In contemporary terms, analog computation is usually defined as
“computation with continuous parameters” (time, space, or the state of the
processor).

In more intuitive terms, analog computation is a computational model with
a different data representation: data is encoded into the continuous
variables of a physical system, processed by the system dynamics, and
retrieved by measurement.
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Analog computation as a non-effective model

Why do analog computers belong to a different class than the many
variants of digital computation?

Effective computation is an old-fashioned term for an idealized view of
pen-and-paper computation, the type of computation practiced by a human
computer following the instructions of an algorithm. Digital computers are,
at a certain level of abstraction, an automatization of effective
computation.

Analog computing was a non-effective model of computation. For
instance, an analog integrator can perform integration in one step, an
utterly impossible operation for effective computation.
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Illustration: a ball-and-cylinder mechanical integrator
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Historical Relevance of Analog Computing

Analog computing was used in major computing applications, for instance :

Hydrology and oil reservoirs simulation.
Nuclear reactors design.
Power networks simulation.
Car design.
Aircraft and guided missiles design and simulation (Ceruzzi, 1989, “the
midwife of computer science”).
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Philosophical points of interest

Numerical simulation has become the topic of a virtual industry in
philosophy of science (Hartmann, Humphreys, Morrisson, Frigg...).

The digital vs analog debate has been relatively ignored in philosophy, and
has been mainly a topic for historians (machines and models of
computation).

An Integrated HPS approach should show that analog computation is
actually a topic of philosophical relevance.
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On the interest of old useless machines

Interest in alternatives, non-effective models of computation has
experienced a regain in interest, mainly because of quantum computing.

What is the point of studying outdated computational models?

Theoretical (theory of computation): foundations enriched by the
study of non-standard models of computation.
Analog computing is important for the understanding of simulation
and modeling.
Theory and practice: what was the role of computation theory in
the analog vs digital debate?
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Particular point of interest: computation theory and practice

Question: what is the relation between theory and practice in the theory of
computation (computability and complexity)?

The analog vs digital debate is the main exemple of a genuine historical
debate between two deeply different computational models: quantum
computers are not running yet!

It is obvious that theoretical arguments cannot be the only arguments:
money, training, and organizational constraints always talk in concrete
applications.

A priori, computation theory should have played a role in that debate:
interesting for both history and foundations of the discipline.
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M. Pégny: Useless old machines?

79



Introduction Understanding analogy: modeling and computing The digital vs analog debate Conclusion

Outline

1 Meaning and use of analog computing

2 The digital vs analog debate
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Two definitions of analog computation

To understand the analog vs digital debate, we have to understand how
analog computers were used.

Basic problem raised by the recent historical and philosophical literature:
analog computing was not primarily understood as computation with
continuous parameters.

Charles Care, James Small, Cameron Beebe, Bernd Uldmann all defend
that the practice of analog computing is not about a different data
representation, but also about models based on analogy: discrete models
can also be analog models.
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Basic principles of analog simulation

Analog “computing” was primarily used by engineers and experimental
scientists for modeling and simulation.

Basic idea: In order to facilitate the study of (behavior of) a target-system
S , or “target”, use (the behavior of) an analog system Sa, also known as
“the source”.

The nature of the analogy depends on the nature of the desired
knowledge (behavior of interest, desired accuracy of predictions...) and
the optimized costs (energy, time, storage space, money, amount of
material, organizational planning, exhausting or fastidious work, safety
and/or environmental hazards...).
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Two types of analogy

Material analogy: target system S and analog system Sa abide to
the same (relevant) physical laws.
Ex: scale models. The system bridge + wind and wood bridge model
+ wind obeys the same relevant laws of hydrodynamics.
Formal analogy: S and Sa obey similar equations, even if the
physical laws are different.
Ex: harmonic oscillator in electrodynamics and mechanics.
Spring-mass oscillator and RLC circuit.

Rise in generalization: the use of mathematical analogy allows to treat a
class of systems ruled by analog equations, not just systems ruled by the
same physical laws. You can switch from a problem to another by a
modification of parameters.
As C. Care has demonstrated, “analog models” in this sense were extremely
common in the 20-30s.
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From formal analogy to computation

Instead of using the formal analogy to study a target-system, let’s use a
system to compute the solution of a class of equations.

We are not aiming anymore at physical knowledge on the target-system S ,
but at mathematical knowledge on a class of equations: the analog
system Sa has become an analog computer (ex. of that evolution: MIT
Network Analyser).

“General purpose analog computer” (vs digital general purpose
computer): a computer which can solve any differential equation that an
analog computer can solve.
The notion of an “analog computer” = late 30s-40s. Work on general
purpose analog computers like the famous Differential Analyzer, and their
comparison with the new digital computer. But the original meaning of
“analog models” remained in use.
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Continuity and modeling

From a historical point of view, “analog model” denotes both continuous
models of computation and experimental devices set up for the study of
some system through a theoretical analogy.

There is no competition between “two definitions” of analog model: these
are two orthogonal dimensions necessary to describe both historical and
contemporary practice.

While general arithmetical computation and equation solving was quickly
digitalized, the more lasting analog models were used by scientists and
engineers for modelization purposes.
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Advantages of analog computation

The advantages of analog computation was often not conceived in terms of
computational performances, but in terms of modeling use:

Efficient tool for vizualisation;
Interactive work with the source allowing to develop an intuitive
“feeling” and “insight” for the behavior of the target;
Analogy between the dynamics of the source and the behavior of the
target.

Ex: based on the formal analogy between “electric current” and
“hydrodynamic flow”, electric analog models were intensively used in
hydrology, oil reservoirs simulation, and aircraft wing design.
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Moniac as a vizualisation tool for money flow in Keynesian
Economics
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Contemporary relevance of analog modeling

Analogy modeling is far more being eliminated from contemporary research
practice:

(material analogy) Engineering: Millau Viaduct (2004),
Olympiastadion, München (1972);
(formal analogy) Analog hydrodynamical model for black holes
(2010s).

Whatever its epistemological value, numerical simulation has not been
substituted for all other forms of modeling: analog modeling is alive and
well.
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Millau Viaduct: use of a wood model for study of wind
resistance
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Olympiastadion: use of soap bubbles to minimize roof
surface
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Historical context

From the early 50s on, the claim that the digital model would ultimately
replace analog computers became pervasive.

Analog computers were still built and used for about 30 years, sometimes in
an hybrid setting.

Proponents of the analog argued for the complementarity of the two
models.
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Suming up the main arguments

Main arguments:

Quantitative: speed (real-time analog computation) against precision
(numerical precision vs measurements limits);
Universality: digital computation is a genuine general purpose model:
it can compute every computable function;
Qualitative:

Analog model: interactivity, development of a “feeling” for the
target-system;
Digital model: ease of programming with the new levels of abstraction.
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Lack of a theoretical framework: computability

Proponents of digital computation said that they had a truly general
purpose computer (CT thesis):

TM machines were understood as a model of digital computers only in
the late 50s-early 60s.
Having a general purpose computer is not necessarily a master
argument on its own. Some special purpose applications do not need
universality.
The argument is false (Bournez and alii, 2010): one can have a
Turing universal general purpose computer.
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Lack of a theoretical framework: computational complexity
II

It was difficult to make a theoretical comparison of complexity
performances between the two models for several reasons:

Computational Complexity theory was still in its infancy when most of
the competition took place (NP-complete problems: early 1970s).
Rigorous definition of complexity measures for analog computation is
extremely recent (Amaury Pauly’s dissertation, 2015).
The comparison involved the comparison of different resources on
different computational models: real-time computation does not grow
with the size of the input but the number of elements does.
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Difficulty with practical computational arguments

Definition of comparative speed was difficult. One operation was not
enough, but the combinaison of operations necessary to carry out different
problems could be complex and vary from device to device: task-to-task
comparison.

Growth in computing elements made the computational set-up more and
more difficult, and the ability to draw an intuition out of it was weakened.
That’s why a digital interface to automatically set-up the computer was
sometimes created, defeating the initial mottos of analog computers:
interaction between quantitative and qualitative aspects.
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M. Pégny: Useless old machines?

87



Introduction Understanding analogy: modeling and computing The digital vs analog debate Conclusion

Other arguments in favor of analog computers

Arguments rooted in the context of use were very important in the actual
historical debate:

Analog computers were powerful tools of vizualisation and
modelization. Good understanding could trump numerical precision
(Small, 18).
Artificiality introduced in your simulation by the discretization process.
A purely computational process does not give us a peak into the
dynamics of your target system.
Aircraft design general-purpose vs special-purpose (UK):
general-purpose will be cheaper to buy and maintain vs a special
purpose computer neednot be shared.
Weighting of the cost of training against the actual advantages
brought by numerical simulation.
Ease of programming (conception and modularization of the
simulation).
Realiability, size, economical costs, no need for data conversion when
interacting with analog signals.
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Decisive arguments

Many partisans of analog computing were trained in the culture of
engineering design, and they were not so sensitive to general theoretical
arguments (Small, 248). They explicitly argued that the debate could not
be solved by a general, theoretical argument, but by a case-by-case
examination: decision based on the context of use.

According to Care’s account, they were partly right! Context-sensitive
arguments were decisive in the final victory of the digital model:

Digitalization of data;
Development of good vizualisation tools;
Sound numerical simulations algorithms (DFT) and programming
languages.

The development of a good digital environment for numerical simulation
was another factor in the ultimate triumph of digital computing.
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A complete story?

The story we told shows a debate where computation theory did not, and
could not play a decisive role.

Is the story complete? Care and Small’s accounts are based mainly on the
British and American cases, and arguments should be studied in all details.
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Theory and practice: a long road ahead

Computability and complexity type arguments played a decisive role in that
debate, but alongside more context-sensitive arguments.

Future direction: rewrite the history of that debate from our current
theoretical perspective.
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A perfect correspondance
Not only between objects.
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Logic as a model of calculus
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Logic Formulas Proofs Cut Cut Elimination

The main object of Proof Theory moved
From formulas
To proofs
Even more, to the cut elimination and to the properties by
means of which cut elimination may provide a “good”
model of calculus.
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Recent developments of Proof Theory in a nutshell
A few words on Ludics

A crucial step in this evolution: Linear Logic (Girard
1985)

A step further towards new objects in Proof Theory
Refinement of Formulas:

A ∧ B becomes either A ⊗ B, or A&B,
According to the identification/juxtaposition of contexts.

A new expression of Proofs:
- Proof nets,
- Hypersequentialised sequent calculus.

The formulation of a program: (GoI)
the expression of proofs giving an account of the dynamics of cut
elimination.
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Recent developments of Proof Theory in a nutshell
A few words on Ludics

Ludics (Girard 2001)

A logical theory :
a result/step towards the expression of proofs giving an account of the
cut elimination dynamics

Obtained via an “ontological” reverse:

Usually Formulas → Proofs → Cut
and cut elimination

In Ludics Behaviours ← Designs ← Interaction
Interaction process
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Recent developments of Proof Theory in a nutshell
A few words on Ludics

Towards an abstraction of Proofs

By means of the properties that Linear Logic makes explicit:
Polarity
To prove ⊢ Γ,A&B, you have to prove ⊢ Γ,A and to prove ⊢ Γ,B.
There is no choice, no commitment. The rule and the connective are
said negative.
To prove ⊢ Γ,A⊗ B, you have to prove ⊢ ∆,A and to prove ⊢ Σ,B.
You have to separate the context in two parts. The rule and the
connective are said positive.

Focalisation
Roughly speaking: if a formula is provable, it has a focalized proof, i.e.
alternated sequence of positive and negative steps, decomposing in
only one big step a formula until its subformas on opposite polarity.

Myriam Quatrini From proofs/programs to natural language dialogues modelling

Ludics, a logical theory arising in the proofs/programs context
A modelling of natural language dialogue in Ludics

Recent developments of Proof Theory in a nutshell
A few words on Ludics

Towards an abstraction of Proofs as Designs

Then, only cut-free, focalized proofs,

And a radical addition:
Daimon rule (†).

†
⊢ N11

N1 ⊢

∅
⊢ N22

∅
⊢ N23

N2 ⊢
⊢ N

N11 ⊢ N2

⊢ N1,N2

N ⊢

Therefore: cut-free, focalized proof-like objects
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Recent developments of Proof Theory in a nutshell
A few words on Ludics

Instead of Proofs: Designs as supports of interaction

We keep only what is relevant
for cut elimination/proof search.

†
⊢ N11

¬N11 ⊢

∅
⊢ N22

∅
⊢ N23

¬(N22&N23) ⊢
⊢ (¬¬N11)⊗ (N22&N23) →

†
⊢ L11

L1 ⊢

∅
⊢ L22

∅
⊢ L23

L2 ⊢
⊢ L

Instead of formulas, their addresses:

L instead of N = N1 ⊗ N2

L1 instead of N1 = ¬N11, . . .
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Recent developments of Proof Theory in a nutshell
A few words on Ludics

Instead of Proofs: Designs as supports of interaction

We keep only what is relevant
for cut elimination/proof search.

†
⊢ N11

¬N11 ⊢

∅
⊢ N22

∅
⊢ N23

¬(N22&N23) ⊢
⊢ (¬¬N11)⊗ (N22&N23) →

†
⊢ L11

L1 ⊢

∅
⊢ L22

∅
⊢ L23

L2 ⊢
⊢ L

Instead of rules, actions:
(+, L, {1, 2}) means that you decompose the formula N1 ⊗ N2 in its two
subformulas
(−, L1, {1}) means that you decompose the formula N1 in its subformula N11
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Recent developments of Proof Theory in a nutshell
A few words on Ludics

Instead of Proofs: Designs as supports of interaction

We keep only what is relevant
for cut elimination/proof search.

†
⊢ N11

¬N11 ⊢

∅
⊢ N22

∅
⊢ N23

¬(N22&N23) ⊢
⊢ (¬¬N11)⊗ (N22&N23) →

†
⊢ L11

L1 ⊢

∅
⊢ L22

∅
⊢ L23

L2 ⊢
⊢ L

A special action † to stop the interaction/to give up a proof
search
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Recent developments of Proof Theory in a nutshell
A few words on Ludics

Two modes of interaction

The open case: (the usual one) a process towards a
result obtained once a calculus is done.

...
⊢ L

...
L ⊢ R

⊢ R

The closed case: a process going through two sequences
of actions, as long as they are dual each other.

...
⊢ L

...
L ⊢

⊢

Interaction between two designs is said convergent when it ends on †.
Then, the designs are said orthogonal.
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Recent developments of Proof Theory in a nutshell
A few words on Ludics

Features of Ludics

Ludics is a theory of interaction (according to two modes) :

- The closed mode enables to retrieve the concepts of
Game Theory: designs are strategies

- The open mode enables to retrieve the Computation
Theory: designs are λ-terms, closed sets of designs are
types.

Ludics is a logical theory :
Designs are proofs, closed sets of designs are formulas.
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Recent developments of Proof Theory in a nutshell
A few words on Ludics

One retrieves logical concepts as non primitive ones

One retrieves formulas amongs sets of designs: the set which are
closed with respect to the biorthogonality., called behaviours. :
A = A⊥⊥.

A good design belongs to the interpretation of a formula iff it is the
interpretation of a proof.

One retrieves the notion of valid formula: a formula is true when its
associated behaviour contains a good design.

→ It is possible to define new connectives.
→ Amongs the justifications of an assertion, some are proofs, some are not.
→ The logical form may be refined by new justification.
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Ludics, a logical theory arising in the proofs/programs context
A modelling of natural language dialogue in Ludics

Dialogue surface
Cognitive Bases
Tools for argumentation

The dialogue modelling in Ludics

is done in two steps (corresponding to the two modes of
interaction).

Dialogues surface: the flow of interventions between two
protagonists,
One design representing the dialogue for each protagonist

Cognitive Bases Objects enabling to describe how
interventions are built, how they are received, how they are
recorded, how calculi are done
One set of designs for each protagonist
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Dialogue surface
Cognitive Bases
Tools for argumentation

Dialogue as an interaction between two strategies

A dialogue is the interaction between two designs, one for each
protagonist. Where:

The actions(dialogue acts) are the primitive elements of
interventions,relying interventions to previous ones,
opening discussion threads.

A dialogue act is positive for the locutor who produces it
and negative for the locutor who receives it.
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Dialogue surface
Cognitive Bases
Tools for argumentation

An example: the one developt by H. Prakken, a juridic
debate between plaintiff and defendant

I1
I2

I3

....
L31⊢

....
L32⊢

....
L33⊢

....
L34⊢

⊢L2

L1⊢
⊢L0

....
⊢L31 ,L32 ,L33 ,L34

L2⊢
⊢L1

L0⊢
Plaintiff Defendant

I1 : I claim that defendant owes me 500 euro.
I2: I dispute plaintiff’s claim.
I3 : Defendant owes me 500 euro by r1 since we conclude a valid sales contract,

I delivered but defendant did not pay.
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Dialogue surface
Cognitive Bases
Tools for argumentation

The fourth intervention

I4: I concede that plaintiff delivered and I did not pay, but I
dispute that we have valid contract.

I4

L31⊢

....
⊢L43

L32⊢
⊢L42

∅

L33⊢
⊢L41

∅

L34⊢
⊢L2

L1⊢
⊢L0

....
L43

⊢L31

⊢L31 ,L32

L42⊢L31 ,L32
∅

⊢L31 ,L32 ,L34

L41⊢L31 ,L32 ,L34
∅

⊢L31 ,L32 ,L33 ,L34

L2⊢
⊢L1

L0⊢
Plaintiff Defendant
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Dialogue surface
Cognitive Bases
Tools for argumentation

Principles for accounting for a juridic debate

Principles
1 An account of the juridic debate as controverse between

only two parties.
The interventions due to the Judge occur as intervention of
one of the two parties, according to the turn of speech.

2 The sentence: both interacting designs are completed,
- still open branches are closed
- the last concession has to be followed by a daimon,
making explicit who is the looser.

By this way, we account for:
- the distribution of the burden to prove,
- the sentence.
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Dialogue surface
Cognitive Bases
Tools for argumentation

La sentence

Before

L16⊢....
L51⊢
π1

L′
91
⊢

....
⊢J10 ,J11 ,J12

π2

⊢L0

⊢L16,L′
91

ω....
L0⊢

Plaintiff Defendant

It is the defendant’s turn. Two loci are available:

L′91
(his signature is not valid)

L16 (his illness)

After

J4⊢ †

L16⊢....
L51⊢
π1

⊢J41
∅

L′
91
⊢

....
⊢J10 ,J11 ,J12

π2

⊢L0

⊢L16
∅

J41⊢L16

⊢L16,L′
91

ω....
L0⊢

Plaintiff Defendant

I am convinced by plaintiff’s evidence that
defendant’s signature under the contract is authentic.
Yet I cannot grant plaintiff’s claim
since the fact that defendant looked normal during the
negotiations is insufficient to conclude that defendant’s
insanity could not be known to plaintiff: he might have known
if he had checked the court’s register.
Therefore I deny plaintiff his claim.

Myriam Quatrini From proofs/programs to natural language dialogues modelling

M. Quatrini: From proofs/programs to natural language dialogues modelling

103



Ludics, a logical theory arising in the proofs/programs context
A modelling of natural language dialogue in Ludics

Dialogue surface
Cognitive Bases
Tools for argumentation

Second part of the modelling

For accounting for the context of the dialogue:

A cognitive base for each locutor

in which designs are:
- associated with his knowledges, his commitments, his
inferential calculi . . .
- updated after each intervention.
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Dialogue surface
Cognitive Bases
Tools for argumentation

Focus on intervention I3

Example
I3 : Defendant owes me 500 euro by r1 since we conclude a
valid sales contract, I delivered but defendant did not pay.

In the unfolding dialogue:
Dr1

...
L31 ⊢

Dval−contrat

...
L32 ⊢

Ddel

...
L33 ⊢

Dnot−pay

...
L34 ⊢

⊢ L2

In plaintiff’s base, some designs
Dr1 , Dval−contrat , Ddel and Dnot−pay ,

on which rests his argumentation.
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Dialogue surface
Cognitive Bases
Tools for argumentation

Designs in Plaintiff’s cognitive base

∅
⊢ Lsign

L?sign ⊢
⊢ Lval−contrat

∅
⊢ LPay

∅
LDel ⊢, LPay

⊢ L?Del , LPay
∅

Lsign ⊢ L?Del , LPay

⊢ L?sign, L?Del , LPay

Lval−contrat ⊢ L?Del , LPay

⊢ L?val−cont , L?Del , LPay

LCont−and−Del ⊢ LPay

making explicit the contract validity the expression of the law r1

which rests on a signature conditions entailing the obligation to pay
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Dialogue surface
Cognitive Bases
Tools for argumentation

Interactions in Plaintiff’s base

∅
⊢ Lsign

L?sign ⊢
⊢ Lval−contrat

L?Cont ⊢

∅
⊢ LDel

L?Det ⊢
⊢ LCont−and−Del and

∅
⊢ LPay

∅
LDel ⊢, LPay

⊢ L?Del , LPay
∅

Lsign ⊢ L?Del , LPay

⊢ L?sign, L?Del , LPay

Lval−contrat ⊢ L?Del , LPay

⊢ L?Cont , L?Del , LPay

LCont−and−Del ⊢ LPay

The interaction gives as result:
∅

⊢ LPay , Defendant has to pay.
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Dialogue surface
Cognitive Bases
Tools for argumentation

And not in Defendant’s base

The contract validity is negated, by means of a first
argument: the signature, then a second one: defendant
insanity.
Even if the validity of the signature is finally conceded, the
calculus of plaintiff can not be done
The contract validity has not only a sub-formula but two
sub-formulas: the validity of signature and the sanity of
contractants.
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Dialogue surface
Cognitive Bases
Tools for argumentation

Correction of Plaintiff’s design

The contract validity has not only a sub-formulas but two
sub-formulas: the validity of signature and the sanity of
contractants.

∅
⊢ Lsign

L?sign ⊢

∅
⊢ Lsanity

L?san ⊢
⊢ Lval−contrat instead of

∅
⊢ Lsign

L?sign ⊢
⊢ Lval−contrat
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Dialogue surface
Cognitive Bases
Tools for argumentation

Summary

In this formal frame we may retrieve several manifestations
of the logical dimension of natural language.

Via the closed mode:
- the notion of proposition: a sentence which may be true
or false;
- the notion of argument;
- a BHK semantics of utterances as set of their
justifications
Via the open mode;
- the notion of modus ponens, logical inference,
- updating (algorithmic dimension of Logic).
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Dialogue surface
Cognitive Bases
Tools for argumentation

Summary

By separating dialogue surface and cognitive bases, we succed
in departing several levels: logical, argumentative, rhetorical.

The utterances occur at the dialogue surface via
addresses. The explicitation as proposition is not
necessarily the same in both cognitive bases.
The inferences are done in cognitive bases. Their
implications are imposed to all, only once the designs,
supports of interaction are shared.
Therefore, it is possible to unfold controversies and to
observe which branches either are closed or are still
open, and therefore to account precisely for the nature of
divergences.

Myriam Quatrini From proofs/programs to natural language dialogues modelling

M. Quatrini: From proofs/programs to natural language dialogues modelling

107



Ludics, a logical theory arising in the proofs/programs context
A modelling of natural language dialogue in Ludics

Dialogue surface
Cognitive Bases
Tools for argumentation

Thank you for your attention !
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Abstract: One of the epistemological results emerging from this initial study is that the 

different forms of co-relational inference, known in the Islamic jurisprudence as qiyās, 

represent an innovative and sophisticated form of reasoning that not only provides new 

epistemological insights into legal reasoning in general but also furnishes a fine-grained 

pattern for parallel reasoning which can be deployed in a wide range of problem-solving 

contexts and does not seem to reduce to the standard forms of analogical argumentation 

studied in contemporary philosophy of science. In the present paper we will only discuss the 

case of so-called co-relational inferences of the occasioning factor.  

 

 

I Introduction  

 

Uṣūl al-fiqh (أصول الفقه), that is, Islamic Legal Theory, is deeply rooted in the notion of 

rational knowledge and understanding. Indeed, uṣūl al-fiqh constitutes the body of knowledge 

and methods of reasoning that Islamic jurists – led by the aim of delving into God's intended 

norms for human conduct – deploy in order to provide solutions to legal problems based on 

the juridical understanding of the sources. According to uṣūl al-fiqh, legal knowledge is 

achieved by rational endeavour, the intellectual effort of human being: this is what is meant 

when the term ijtihād (اجتهاد), endeavour of the intellect, is attached to fiqh. Let us quote the 

beautiful paragraph on ijtihād by Wael B. Hallaq in his landmark work A History of Islamic 

Legal Theories (1997, p. 117). 

 
In his Mustaṣfā Ghazali depicts the science of legal theory in terms of a tree cultivated by man. The fruits of the 

tree represent the legal rules that constitute the purpose behind planting the tree; the stem and the branches are the 

textual materials that enable the tree to bear the fruits and to sustain them. But in order for the tree to be 

cultivated, and to bring it to bear fruits, human agency must play a role. […]. We shall now turn to the 

“cultivator,” the human agent whose creative legal reasoning is directed toward producing the fruit, the legal 

norm. The jurist (faqīh) or jurisconsult (muftī) who is capable of practising such legal reasoning is known as the 

mujtahid, he who exercises his utmost effort in extracting a rule from the subject matter of revelation while 

following the principles and procedures established in legal theory. The process of this reasoning is known as 

ijtihād, the effort itself.  
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One of the most remarkable features of the practice of ijtihād is that it presupposes that fiqh is 

dynamic in nature. Indeed, since the ultimate purpose of such a kind of rational endeavour is 

to achieve decisions for new circumstances or cases not already established by the juridical 

sources, the diverse processes conceived within Islamic jurisprudence were aimed at 

providing tools able to deal with the evolution of the practice of fiqh. This dynamic feature 

animates Walter Edward Young’s (2017) main thesis as developed in his book The 

Dialectical Forge: Juridical Disputation and the Evolution of Islamic Law.
1
 In fact the main 

claim underlying the work of Young is that the dynamic nature of fiqh is put into action by 

both the dialectical understanding and the dialectical practice of legal reasoning. The 

following lines of Young (2017, p.1) set out the motivations for the development of a 

dialectical framework such as the one we are aiming at in the present paper.
 2

 
 

The primary title of this monograph is “The Dialectical Forge,” and its individual terms provide a suitable 

launching point for discussing the current project as a whole. As for the first, the most common Arabic terms for 

“dialectic” are jadal and munāẓara, both denoting formal disputation between scholars in a given domain, with 

regard to a specific thesis. When one encounters the term “dialectical” in the present work, one should think 

foremost of procedure-guided debate and the logic inherent to this species of discourse. A dialectical confrontation 

occurs between two scholars, in question and answer format, with the ultimate aims of either proving a thesis, or 

destroying it and supplanting it with another. A proponent-respondent introduces and attempts to defend a thesis; a 

questioner-objector seeks (destructively) to test and undermine that thesis, and (constructively) to supplant it with a 

counter-thesis. Through progressive rounds of question and response the questioner endeavours to gain concession 

to premises which invalidate the proponent’s thesis, justify its dismantling, and provide the logical basis from 

which a counter-thesis necessarily flows.  

Ultimately, and most importantly, a truly dialectical exchange—though drawing energy from a sober spirit of 

competition—must nevertheless be guided by a cooperative ethic wherein truth is paramount and forever trumps 

the emotional motivations of disputants to “win” the debate. This truth-seeking code demands sincere avoidance of 

fallacies; it views with abhorrence contrariness and self-contradiction. This alone distinguishes dialectic from 

sophistical or eristic argument, and, in conjunction with its dialogical format, from persuasive argument and 

rhetoric. And to repeat: dialectic is formal—it is an ordered enterprise, with norms and rules, and with a mutually-

committed aim of advancing knowledge. 

  

According to this perspective, the practice of ijtihād takes the form of an interrogative enquiry 

where the intertwining of giving and asking for reasons features the notion of meaning that 

grounds legal rationality.
3
 More precisely, the conception of legal reasoning developed by 

Islamic jurisprudence is that it is a combination of deductive moves with hermeneutic and 

heuristic ones deployed in an epistemic frame. Let us once more quote Hallaq (1997, p. 82):  

 
Armed with the knowledge of hermeneutical principles, legal epistemology and the governing rules of consensus, 

the mujtahid is ready to undertake the task of inferring rules. Inferring rules presupposes expert knowledge in 

hermeneutics because the language of the texts requires what may be called verification; namely, establishing, to 

the best of one’s ability, the meaning of a particular text as well as its relationship to other texts that bear upon a 

particular case in the law. For this relationship, as we have seen, may be one of particularization, corroboration or 

abrogation. Before embarking on inferential reasoning, the mujtahid must thus verify the meaning of the text he 

employs, and must ascertain that it was not abrogated by another text. Knowledge of the principles of consensus as 

well as of cases subject to the sanctioning authority of this instrument is required to ensure that the mujtahid’s 

reasoning does not lead him to results contrary to the established consensus in his school. This knowledge is also 

required in order to ensure that no case that has already been sanctioned by consensus is reopened for an 

alternative rule.  

                                                           
1 Young (2017, pp. 21-32) acknowledges and discusses his debt to the work of Hallaq in many sections of the book.  
2 Also relevant are the following lines of Hallaq (1997, pp. 136-137), quoted by Young (2017, p. 25):  

In one sense, dialectic constituted the final stage in the process of legal reasoning, in which two conflicting opinions on a 

case of law were set against each other in the course of a disciplined session of argumentation with the purpose of 

establishing the truthfulness of one of them. The aim of this exercise, among other things, was to reduce disagreement 

(ikhtilāf) among legists by demonstrating that one opinion was more acceptable or more valid than another. Minimizing 

differences of opinion on a particular legal question was of the utmost importance, the implication being that truth is one, 

and for each case there exists only one true solution. 
3 See too Hallaq (1987a,b, 2004, 2009a,b). Another early study that stressed this point is Larry Miller’s (1984) PHD thesis of 

1984 on the development of dialectic in Islam. Hassan Tahiri (2008, pp. 183-225) discusses the crucial role of  dialectical 

reasoning for astronomy and for the development of sciences in general – Tahiri (2014, 2015, 2016).  
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In fact, the dissatisfaction with the efficiency of the standard post-Aristotelian notion of 

syllogism in jurisprudence led to an ambitious dialectical frame for argumentation by 

parallelisms (including exemplification, symmetry and analogy) which should offer a new 

unifying approach to epistemology and logic for the practice of ijtihād.
4
 The finest outcome 

of this approach to legal reasoning within fiqh is the notion of qiyās (قياس), known as co-

relational inference (Young, 2017).
5
 

 

The aim of co-relational inferences is to provide a rational ground for the application of a 

juridical ruling to a given case not yet considered by the original juridical sources. It proceeds 

by combining heuristic (and/or hermeneutic) moves with logical inferences. The simplest 

form follows the following pattern: 

 

In order to establish if a given juridical ruling applies or not to a given case, we look 

for a case we already know that falls under that ruling – the so-called source-case. 

Then we search for the property or set of properties upon which the application of the 

ruling to the source-case is grounded. If that grounding property (or set of them) is 

known, we ponder if it can also be asserted of the new case under consideration. In the 

case of an affirmative answer, it is inferred that the new case also falls under the 

juridical ruling at stake, and so the range of its application is extended.  

 

Complications arrive when the grounds behind a given juridical ruling are not explicitly 

known or even not known at all. In such a case, other devices are put into action. The latter 

situation, as discussed in the next sections, yields a system of different forms of qiyās that are 

hierarchically organized in relation to their epistemic strength. 

 

More generally, one interesting way to look at the contribution of the inception of the juridical 

notion of qiyās is to compare it with the emergence of European Civil-Law (not Common 

Law). Indeed, European Civil Law emerged as a system of general norms or rules that were 

thought to generalize the repertory of cases recorded mainly by Roman-Law. The idea of 

qiyās can be seen as providing an epistemological instrument to stablish those general norms 

behind the cases recorded by the sources and the tradition. The dynamics triggered by 

implementing such instrument “forges” the general norms that structure Islamic Law.  

 

 

According to our view, the dialogical conception of Per Martin-Löf's Constructive Type 

Theory provides both a natural understanding and a fine-grained instrument to stress three of 

the hallmarks of this form of reasoning:
 6

  

 

(a) the interaction of heuristic and epistemological processes with logical steps,  

(b) the dialectical dynamics underlying the meaning-explanation of the terms 

involved,
7
 

                                                           
4 Cf. Ibn Taymiyya against the Greek Logicians, edited and translated by Hallaq (1993).  
5 Cf. Young (2017, pp. 10). The term has quite often a broader meaning encompassing legal reasoning in general. However, 

Young's choice for its translation renders a narrower sense that stems from al-Shīrāzī's approach. It seems that Young’s 

translation is based on the one by David Weiss (1998). 
6 In fact there is ongoing work on deploying the dialogical setting in order to reconstruct logical traditions in ancient 

philosophy (see Castelnérac/Marion (2009), Marion/Rückert (2015) and medieval logical theories (C. Dutilh Novaes (2007), 

Popek (2012)).  
7 The term meaning-explanation stems from Martin-Löf's CTT (see Appendix I). It refers to a way of providing meaning to 

an expression by setting out rules that determine what needs to be knownn in order to make and assertion involving that 

expression.  
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(c) the unfolding of parallel reasoning as similarity in action.  

 

Our study is focused on Abū Isḥāq al-Shīrāzī
8
’s classification of qiyās as discussed in his 

Mulakhkhaṣ fi’l-Jadal (Epitome on Dialectical Disputation). Let us point out that, though our 

paper is grounded on confrontation with the original textual sources, we deploy the thorough 

studies of these texts (and others) by Hallaq (1987a,b, 1997, 2004, 2009a,b) and Young 

(2017).  

Furthermore, we are not claiming (yet) that the framework we propose in the present paper is 

either a literal description or a complete formalization of the jadal-disputation-form in which 

the qiyās is carried out. Our study provides a dialectical meaning-explanation of the main 

notion of co-relational inference relevant for the development of al-Shīrāzī’s system of qiyās. 

In other words, what we are aiming at is to set out a kind of interactive language game that 

makes apparent the dialectical meaning of the main notions involved in these forms of 

reasoning.   

 

Actually,  

 since all of the steps prescribed by our dialogical framework are based on moves 

involved in al-Shīrāzī’s dialectical conception of qiyās al-‘illa , we think that our 

proposal can be further developed into a system for actual juridical disputation that 

provides a full reconstruction of jadal (جدل) as deployed in uṣūl al-fiqh. 
9
.  

 

Thus, on the one hand our reconstruction might provide researchers on the Arabic tradition 

with some instruments for epistemological analysis, and on the other, we hope to motivate 

epistemologists and researchers in argumentation theory to explore the rich and thought-

provoking texts produced by this tradition. Indeed, one of the main epistemological results 

emerging from this initial study is that the different forms of qiyās as developed in the context 

of fiqh represent an innovative approach that not only provides new epistemological insights 

into legal reasoning in general but also furnishes a fine-grained pattern for parallel 

reasoning
10

 that can be deployed in a wide range of problem-solving contexts where degrees 

of evidence and inferences by drawing parallelisms are relevant. 

 
 

II. A Dialectical Genealogy of Abū Isḥāq al-Shīrāzī’s System of Qiyās 

In the classical studies on juridical argumentation or jadal  by Abū al-Ḥusayn al-Baṣrī 

(436H/1044 CE) in his Kitāb al-Qiyās al-Sharʿī (Book of Correlational Inference Consonant 

to God’s Law, edited 1964) and by Abū Isḥāq al-Shīrāzī (393-476 H/1003-1083 CE) in his 

Mulakhkhaṣ fi’l-Jadal (Epitome on Dialectical Disputation), recorded, commented and 

worked out by Young (2017, chapter 4.3), we can find the following description of the qiyās: 

 

 The aim of a qiyās, in its more general form, is to provide a rational ground to the 

ascription of some juridical ruling or ḥukm (حكم) such as (forbidden, allowed, 

                                                           
8 Actually, al-Shīrāzī, who was a follower of the Shāfiʿī school of jurisprudence, endorsed the mistrust of the Shāfiʿī-s in 

relation to what they considered subjective features of istiḥsān and maṣlaḥa. Indeed, although he accepted that the extension 

of the scope of a juridical ruling is necessary, he was convinced that extensions should result from a rational process such as 

the one deployed by a qiyās. 
9 It is also worth mentioning that, to the best of our knowledge, there is no systematic study yet comparing the theory of 

juridical argumentation as developed within the Islamic tradition with the dialectical form of medieval disputations known as 

Obligationes. Such a study, that will fill up some flagrant gaps in the history of the development of rational argumentation, is 

certainly due. 
10 We have borrowed the term parallel reasoning from Bartha (2010). 
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obligatory) to a given case not yet considered by the sources acknowledged by uṣūl al-

fiqh (for short, juridical sources).
11

  

In fact, in this context, a qiyās involves bringing forward a case to which, according to the 

claim of the thesis, a particular ḥukm applies. The point is to ground this claim by relating it to 

an already juristically acknowledged application of such a ruling. Accordingly, the grounding 

is carried out in two main steps (involving two alternative developments): 

1. It starts by bringing forward a case, known as al-aṣl or the root-case (الأصل), which the 

juridical sources have already established falls under the scope of the same juridical 

ruling as the one claimed to apply to the new case, called al-far‘ (الفرع), the branch-

case.
12

  

 

2.1 (First alternative). It proceeds by the assumptions that the property (waṣf) determining 

the ground or occasioning factor (‘illa) for the ruling of the root-case can be found,
13

 

and this property also applies to the branch-case. Moreover, the proceeding assumes 

that the relevant property is to be found either by inspecting the sources or by 

epistemological considerations.  

 

2.2 (Second alternative). It proceeds by finding some way to relate the branch-case to the 

root-case in absence of knowledge of the occasioning factor by developing a parallel 

reasoning based on some kind of similarity and it includes three cases: 

2.2.1 both the root-case and the branch-case share some other juridical ruling,  

2.2.2 in the absence of the similarities between the root-case and the branch case, it 

can nevertheless be established that there is some parallelism between a pair of 

source-cases and a pair of branch-cases such that if some particular juridical 

ruling applies to the pair of source-cases, it also applies to the pair of branch-

cases, 

2.2.3 both the root-case and the branch-case share some properties. 

 

The second of the alternatives to step two is called qiyās al-dalāla ( الدلالة قياس ) or correlational 

inference of indication, also known as qiyās al-shabah (قياس الشبه), and also as correlational 

inference of resemblance  – though it might be perhaps useful to restrict the term qiyās al-

                                                           
11 In general the term ḥukm refers to norm or ruling. In the context of the qiyās it indicates the ruling of the aṣl which the 

proponent seeks to transfer to the far‘ - see Young (2016, p. 610).  
12 The Arabic terminology makes use of the botanic metaphor of, respectively, root and branch in order to express the 

relation between the case established by the juridical sources, al-aṣl, and the case under consideration, al-far‘. The idea is not 

that the far‘ is a subcase of the aṣl, but that the ruling claimed to apply to the far‘ is rooted on that of the aṣl.  
13The term ‘illa is also translated into as effective cause, operative cause, ratio legis and ratio decidenci. Some of these 

translations do not seem to bear the causal significance of the term. The term ‘illa is derived from ancient Syriac, where it 

means a “fault” or “blame” constituting the cause for returning articles or property. The term penetrated from Syriac into the 

lexicon of rational thought even before Aristotelianism penetrated Arabic culture (we owe the remark on the etymology of  

term ‘illa to David Joseph (2010, 2014). 

In a general context, a distinction is drawn between providing a ground (‘illa) and providing a factual cause or reason 

(sabab): while grounding is a rational endeavour, providing a sabab might be limited to an empirical task. It seems to be 

related to St. Thomas’ (Summa Theologiae I.2.2c:) distinction between propter quid and quia  that stems from Aristotle’s 

distinction in Posterior Analytics I.13) (for a discussion in the context of CTT see Granström (2011), p. 157). In the context 

of the qiyās the notion of sabab seems to allude to the justification underlying the choice of one specific occasioning factor. 

This use is witnessed by al-Shīrāzī's denomination of the second subtype of qiyās al-‘illa as qiyās plainly evident by reported 

reason (al-wāḍiḥ bi’l-sabab).That is, those qiyās where the ‘illa is not found in the naṣṣ but specified on the basis of some 

reason stemming from a specific historical background of naṣṣ reported by the Companion of the Prophet. In fact we should 

also mention the notion ḥikma that stands for the underlying higher purpose of the ‘illa. Moreover, the notion of ḥikma 

underlies the doctrine of rational juridical preference or istiḥsān, and the theory of public welfare or maṣlaḥa mentioned 

before. However, this notion does not seem to play a role in the inferential processes deployed by the use of a qiyās.  
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shabah for the last form of qiyās al-dalāla.
14 Qiyās al-dalāla based on the resemblance of the 

branch-case to the root-case in relation to a set of properties is considered to be the weakest, 

epistemically speaking, and is very close to what is known in other traditions as analogical 

argumentation by similarity or agreement. By contrast, the qiyās based on the resemblance of 

the branch-case to the root-case in relation to a set of juridical rulings is considered to be 

epistemically the strongest form of inference of the type al-dalāla. The form of inference-

form of qiyās al-dalāla based on double parallelisms constitutes a generalization and a deeply 

innovative approach to what is known as proportionality-based analogical reasoning.
15 In 

relation to its epistemic strength it is placed between the former two. 

 

 وهذا .الشرع في عليها الحكم علق التي العلة رغي الشبه من بضرب الأصل على الفرع يحمل أن فهو الدلالة قياس وأما
16أضرب ثلاثة على وهو بالأصول بالاستدلال إلا صحته تعرف لا القياس من ضرب

. 

 
“As for Qiyās al-Dalāla, it is that one that link the branch-case with the source-case by way of a type of 

resemblance other than the occasioning factor upon which the ruling is made contingent in God’s Law. The validity 

of this type of correlational inference is not known except by way of drawing indication from the authoritative 

source-cases; and it is [also] of three types17.” 

 

Al-Shīrāzī calls the first alternative to the second step qiyās al-‘illa (co-relational inference of 

the occasioning factor) – that provides the subject of our paper – and distinguishes three main 

cases classified by the strength of the evidence for the ‘illa:  

 

(i): the evidence for the determination of the ‘illa stems from the authoritative texts 

(naṣṣ) of the Qur’ān and prophetic tradition (al-jalī bi’l-naṣṣ), or from a consensus of 

the jurists (al-jalī bi’l-ijmā‘)  

(ii): it stems from some hermeneutical process of the texts (al-wāḍiḥ bi’l-nuṭq) or it is 

based upon some historical background reported by the Companion of the Prophet (al-

wāḍiḥ bi’l-sabab)  

(iii) the ‘illa is specified by positing some suitable hypothesis (al-khafī).
18

. The latter 

has some relation to Aristotle’s argument from example (paradeigma) described in 

the Rhetoric (1402b15) and the Prior Analytics (Pr. An. 69a1).  

 

 ثلاثة على وذلك الشرع في عليها الحكم علق التي بالعلة الأصل على الفرع يحمل أن فهو العلة قياس فأما
19وخفي وواضح جلي أضرب

. 

 
 “As for Qiyās al-ʿIlla, it is that one link the branch-case with the source-case by way of the occasioning 

factor upon which the ruling is made contingent in God’s Law; and that is according to three types: al-jalī 

(clearly-disclosed), al-wāḍiḥ (plainly-evident), and al-khafī (latent).”
 20

 

                                                           
14 See al-Shīrāzī, Mulakhkhaṣ, fi’l-Jadal, p. 5. 
15 Cf. Cellucci (2013, pp. 340-41). Moreover, it seems to be very close to Bartha's (2010) own model.  
16 See al-Shīrāzī, Mulakhkhaṣ fi’l-Jadal, pp. 5 
17 Cf. Young (2017, pp. 115). 
18See al-Shīrāzī, Mulakhkhaṣ, fi’l-Jadal, p. 5, cf. Young (2017, 113-114). Al-Baṣrī distinguishes a positive inferential process 

(Qiyās al-Ṭard, correlational inference of co-presence), covered by the description above, from a negative one (Qiyās al-

ʿAks, correlational inference of the opposite). The result of the negative one is to deny that some designated juridical ruling 

that applies to the root case also applies to the branch-case, on the grounds that the occasioning factor does not apply to the 

branch-case – see al-Baṣrī, Muʿtamad, Ḥamīd Allāh ed., vol. 2, pp. 697-699.; and K. al-Qiyās al-Sharʿī, pp. 1031-3 (trans. of 

the latter in Hallaq (1987a), quoted by Young (2017, p. 109)). 
19 See al-Shīrāzī, Mulakhkhaṣ fi’l-Jadal, p. 5. 
20 Cf. Young (2017, p. 109). 
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Remarks:  

 One way to express the rationale behind Al-Shīrāzī's typology (not shared by all of the 

other authors) is that he conceives qiyās as a system of parallel reasoning that deploys 

arguments by 

a) exemplification (of a general law): qiyās al-‘illa. 

b) symmetry between structures (established by either chains of rulings or pairs of 

parallel rulings) (the two first forms of qiyās al-dalāla).  

c) resemblance between the root-case and the branch-case (qiyās al-shabah) 

 

 Some paragraphs of Al-Shīrāzī's Al-Lumaʿ fī Uṣūl al-Fiqh seem to support a three-fold 

rather than a two-fold classification – the three-fold classification comes close to the 

triad a, b, c.
21

 However the Mulakhkhaṣṣ and the Ma’ūna provide solid textual 

evidence of a two –fold classification, where b and c are both included in a general 

category of qiyās where the occasioning factor is not present. 
22

  

 

 Qiyās constitutes a system of juridical reasoning that is in the middle of two other 

(sometimes contested) forms of rational juridical change deployed in fiqh
.
called, 

respectively, the doctrine of rational juridical preference or istiḥsān (استحسان), that 

might produce the withdrawal of a conclusion achieved by a qiyās-procedure, and the 

theory of public welfare or maṣlaḥa (مصلحة), that can trigger the production of a new 

juridical ruling. Indeed, while the use of a qiyās might extend the scope of application 

of a particular juridical ruling, it does not actually refute the ruling or the occasioning 

factor that the juridical source explicitly declares as the ground for that ruling. The 

changes possible by the use of qiyās are, in some sense, of a more logical and 

semantic nature.  

 

 

Before delving into the structure of qiyās al-‘illa, let us motivate the underlying dialectical 

processes with the help of an informal diagram. The diagram presents the most general form 

of the qiyās al-‘illa, without (for the moment) drawing a distinction between subdivisions 

inside each type of co-relational inference.  

 

 

Qiyās al-‘Illa23 

(schema 1) 

 
  (2) The property P is the factor occasioning the juridical ruling H 

  

  (3) P applies to the branch-case f    

   ----------------------------------------------------------------------------------- 

   The juridical ruling H applies to the branch-case  

   (it follows from 2 and 3)  

 

 

(1.2) P applies to the root-case  

 

 

                                                           
21 See al-Shīrāzī (2003, pp. 99-101)  and al-Shīrāzī (1995, pp. 204-210). 
22 See Al-Shīrāzī (1987, pp. 36-38) 
23 The diagram has been adapted from Bartha’s (2010, p. 36) figure for Aristotle’s reasoning by paradeigma.  

f

< 

a

< 

a

< 
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(1.1) The juridical ruling H applies to the root-case   

 

The point of the al-‘illa-form of co-relational inference is to find a general law and a property, 

shared by both the branch and the source-case, which allows the inference of the ruling we are 

looking to ground. It is not really a case of analogy by resemblance, but a kind of what is 

nowadays called deductive parallel reasoning, since it combines some kind of symmetric 

reasoning with inferential moves. Notice that neither 1.1. nor 1.2 are premises for the last 

inferential step. Indeed, steps 1.1 and 1.2 have the heuristic role of leading to the required 

general rule, and these steps are moves carried out within a dialectical structure. In order to 

extract from the diagram the underlying jadal-structure, we need to read the arrows as 

dialectical actions or argumentative moves, whereby the first action (the arrow right of the 

diagram) amounts to the heuristic move of finding a suitable root-case, then the short arrow 

from 1.1 to 1.2 indicates the result of finding out the property that provides the occasioning 

factor specific to the ruling of the root-case, and the last arrow stresses the core of the process, 

namely: to learn from the ruling of the root-case that it instantiates a general juridical norm. 

Once this has been achieved, a simple logical mechanism leads us to the conclusion sought.   

 

Now, before delving into the dialectical structure, let us motivate the use of a notation 

inspired by Constructive Type Theory. In fact, we only deploy very basic features of the 

CTT-framework; a deep and thorough development is still due.  

 

 

III. Motivating the Deployment of a CTT-Framework 
 

The expressive power of Per Martin Löf’s Constructive Type Theory
24

 allows the 

following features underlying the qiyās to be expressed at the object language level:  
 

 The stress on assertions (or judgements) rather than on propositional sentences. The 

dialectical process underlying co-relational inferences is triggered by both an assertion 

concerning the identification of the factor occasioning the relevant ruling and the 

process of the justification of such an assertion. In the specialized literature these 

assertions are called ta’līl (affirmation of the relevance of a particular property for the 

determination of the ‘illa), or more generally ithbāt (affirmation). 

 The intensional rather than extensional understanding of the sets underlying the 

semantics of the qiyās.  

 The deployment of hypothetical judgements. This dovetails with the qiyās-notion of 

dependence of a given juridical ruling on a particular occasioning factor.  

 The restrictive form of the substitution rules. 
 

In the present paper the last point will be left out since it relates to co-relational inferences by 

indication, which will not be discussed here.  

 

Certainly, other formal reconstructions are possible, and in particular, we might not need an 

intensional framework in order to deal with changing extensions. However,  

 

1. the deployment of intensional frameworks seems to be a natural approach in historical 

contexts,
 25

  

                                                           
24 See Appendix I. For a systematic presentation of CTT see Martin-Löf (1984, 1996), Nordström/ Petersson/Smith (1990, 

2000), Ranta (1994), Granström (2011). For philosophical and historical insights into CTT see Ranta (1988), Primiero 

(2008), Sundholm (2009, 2012). 
25 See for example, Marion/Rückert (2015) and Martin-Löf (2012). 
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2. CTT provides a solid theory for the deployment of intensionally grounded sets:  

3. CTT seems to match well with dialectical approaches to meaning and normative 

approaches to logic, such as the dialogical one. This is particularly so in a CTT-

framework where non-mathematical propositions are understood as language-games, 

as suggested by Ranta (1994, pp. 55-57).  

 

 

The main idea to be developed in sections III.1 and III.2 is that the relevance of a given 

property P (conceived as a set) for the correspondent juridical ruling H(x) is displayed by 

explaining the meaning of the latter as being defined over that set. In this context the factor 

occasioning the ruling of some particular case under scrutiny obtains as the application to this 

case of a method that provides the justification of applying the ruling to every instance of P 

(and dually, the justification of applying ~H(x), given instances of ~P). 

 

 

III. The Dialectical Framework 

 

 In order to provide meaning explanations to the basic notions al-Shīrāzī’s System of 

qiyās we deployed CTT, but al-Shīrāzī’s approach is a dialectical framework. Thus, we need 

now to motivate the interface of CTT with a dialectical framework. We will develop this 

motivation in two main steps, namely 

 

(1) by a (brief) discussion of the interface epistemic-assumption, formal rule and the 

notion of epistemic strength 

(2) by the distinction of play and strategic level and the notion of winning and losing 

within the dialectical framework underlying the system of qiyās al-‘illa 

…. 

 

A Dialogical Framework for Co-Relational Inferences of the Occasioning Factor 

 
 

 We will not be able to present here the full-formalization of the dialogical framework for qiyās al-‘Illa. However, 

the following presentation should provide the reader the means to follow how to develop a dialogue for this kind of qiyās. 

 

The dialogical approach to logic is not a specific logical system but rather a framework rooted on a rule-based 

approach to meaning in which different logics can be developed, combined and compared. More precisely, in a dialogue two 

parties argue about a thesis respecting certain fixed rules. The player that states the thesis is called Proponent (P), his rival, 

who contests the thesis is called Opponent (O). Dialogues are designed in such a way that each of the plays end after a finite 

number of moves with one player winning, while the other loses. Actions or moves in a dialogue are often understood as 

speech-acts involving declarative utterances or posits and interrogative utterances or requests. The point is that the rules of 

the dialogue do not operate on expressions or sentences isolated from the act of uttering them. The rules are divided into 

particle rules or rules for logical constants (Partikelregeln) and structural rules (Rahmenregeln). Particle rules provide an 

abstract description of how the game can proceed locally: they specify the way a formula can be challenged and defended 

according to its main logical constant. In this way the particle rules govern the local level of meaning. Strictly speaking, the 

expressions occurring in the table above are not actual moves because they feature formula schemata and the players are not 

specified. Moreover, these rules are indifferent to any particular situations that might occur during the game. For these 

reasons we say that the description provided by the particle rules is abstract. The structural rules determine the development 

of a dialogue game.26 

 

 

                                                           
26 The main original papers are collected in Lorenzen/Lorenz (1978) – see too Lorenz (2010a,b), Felscher (1985), Krabbe 

(2006). For an account of recent developments see Rahman/Keiff (2005), Keiff (2009), Rahman/Tulenheimo (2009), Rückert 

(2011), Clerbout (2014a, b). The most recent work links dialogical logic and Constructive Type Theory (see, 

Clerbout/Rahman (2015)), Rahman/Clerbout/Redmond (2017). 
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AII.1 Local meaning of the logical constants 

 

It is presupposed in standard dialogical systems that the players use well-formed formulas. The well formation can 

be checked at will, but only with the usual meta reasoning by which the formula is checked to indeed observe the definition 

of a wff. We want to enrich the system by first allowing players to enquire on the status of expressions and in particular to 

ask if a certain expression is a proposition. We thus start with dialogical rules explaining the formation of propositions. These 

rules are local rules which we are added to the particle rules giving the local meaning of logical constants.  

 

Moreover, we extend the first-order language assumed in standard dialogical logic with two labels O and P, standing for the 

players of the game, and the two symbols ‘!’ and ‘?’. When the identity of the player does not matter, we use variables X or Y 

(with X≠Y).  

 

A move M is an expression of the form ‘X-e’, where e is one of the forms specified by the particle rules.  

 

Local meaning: Formation 

 

Posit Challenge Defence 

 Y  ?F1 X  : pro 

X  AB : prop Or  

 Y  ?F X  B : prop 

 Y  ?F1 X  A : prop 

X  AB: prop Or  

 Y  ?F X  B : prop 

 Y  ?F1 X   : prop 

X  AB : prop Or  

 Y  ?F X  B : prop 

X   A : prop Y  ?F X   : prop 

 Y  ?F1 X  A : set 

X  (x : A) (x) : prop Or  

 Y  ?F X  B(x) : prop (x : A) 

 Y ?1 X  A : set 

X  (x : A) B(x) : prop Or  

 Y  ?F X  B(x): prop (x : A) 

 

Because of our deployment expressions coming from Constructive-Type Theory the language contains expressions such as 

the following (further expressions are provided in the section on terminology in the main text) 

 

X ! a : A  Player X claims that a instantiates B / Player X claims that a provides a local reason for B. 

 

X b.Ya : B(a) Player X claims that b provides a local reason for a being B given that the antagonist Y claims 

that a provides a local reason for A, and given that B(x) : prop (x : A). 

 

X b.Ya : B Player X claims that b provides a local reason for B given that the antagonist Y claims that a 

provides a local reason for A, and given that AB. 

Similarly  

X b : B(Xa) Player X claims that b provides a local reason for a being B given that it is himself (X) who 

claims that a provides a local reason for A, and given that B(x) : prop (x : A).  

 

The canonical argumentation form of a local reason as determined by the rules of synthesis is given by the triple 

 

   Posit by X Challenge by Y  Defence by X 

 

This yields the following table  

 

 Canonical argumentation form: Rules of Synthesis of the Local Reasoning 
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Posit Challenge Defence 

 Y  ?L  X  p1 : A 

X  ! (x : A)x Or Respectively 

 Y ?R  

 
X  p2 : BX

p1 

 Y  ?L  X  p1 : A 

X  ! {x : A | B(x)} Or Respectively 

 Y ?R  

 
X p2 : BX

p1 

 Y  ?L  X  !  p1 : A 

X ! AB Or respectively 

 Y  ?R  

 

X  p2 : B 

X ! (x : A)B(x) Y p1 : A X  p2.Y
p1 : B(Yp1) 

X ! AB 

 

Y  p1 : A X  p2.Y
p1 : B 

X !  A 

 

Y  p1 : A


 

_ 

 

  X  p1 : A

X  ! AB Y ? Or 

  X p2 : B 

 
We add too rules for the operators F and V adapted to the purposes of our present paper.  

The operator F27 

 

In uttering the formula FA the argumentation partner X claims that he can find a counterexample during a play where the 

antagonist Y asserts A.  

The antagonist Y challenges FA by asserting that A can be challenged successfully. Thus, the challenge of Y compels Y to 

open a sub-play where he (Y) utters A.  

 

 Challenge Defence 

X ! FA Y ?F  

 Sub-play D1 Sub-playD1 

  

Y ! A 

Y must play under the 

restriction of the Socratic-

Rule in the sub-play 

 

 

 

X ?A(he challenges A) 

 

 

 

In uttering the formula VA the argumentation partner X claims that he can win a play where he (X) asserts A.  

The antagonist Y responds by challenging X to open a sub-play where he (X) defends A.  

                                                           
27 Cf. Rahman/Rückert (2001, pp. 113-116). The main difference of the present formulation of F is that here it is the defender 

of the operator and not the challenger who must play under the copy-cat rule. The changes is due to the fact that in the 

context of the present paper the assertion of FA occurrs only as a challenge to a previous move of the Proponent.  
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 Challenge Defence 

X: VA Y: ?V  

 Sub-play D1 Sub-play D1 

  

Y ?A(he challenges A) 

Y must play under the restriction 

of the Socratic Rule 

 

 

X ! A 

 

 

 

 

Special Local Rules for Qiyās al-‘Illa 

 

Expressions  "p" in "p : A " stand for either some branch-case far‘ or some root-case aṣl 

 

Posit Challenge Defence 

 

X  ṭardH(P) : (x : P)H(x) 

 

Notation for a posit without specified reason 

X  ! (x : P)H(x) 

 

Y p : P 

 

X ‘illaH(P)+.p : H(p) 

X  ‘aksH(P) : (x : ~P)~H(x) 

 

Notation for a posit without specified reason 

X  ! (x : ~P)~H(x) 

Y p : ~P  X ‘illaH(P)-.p : ~H(p) 

X  ta’thīrH(P): (x : P)H(x)  (x : ~P)~H(x) 

 

 

Notation for a posit without specified reason 

X  ! (x : P)H(x)  (x : ~P)~H(x) 

Y p : P 

or 

Y p : ~P 

X ‘illaH(P)+.p : H(p) 

respectively 

X ‘illaH(P)-.p : ~H(p) 

X  ! A (or p : A)


X  ~A (or p’ : ~A)
(it can also be the case that one explicitly displays 

the local reason but the other not) 

Y ! tanāquḍ
 

 

The antagonist 

Indicates the contradiction 

X ! I concede 

 

 

  

 

Qiyās al-‘Illa also require the following moves prescribed by the development rules specific to the dialectical framework 

underlying this form of qiyās  

 

Requests 

Our framework for qiyās al-‘Illa includes moves by the means of which players can request the contender to endorse some 

particular assertion. the general form of a request  and the positive response is the following 

 

XA

Y A 

 

If the request has a form that indicates sources, must be endorsed by the respondent 

 

XpS : A X ! AS?

Y  pS : A Y ! AS 

 

This general form of the request might trigger a different form of answer if it involves the endorsement of a particular 

occasioning factor. In such a case, the following responses are possible 

 
X ! illaH(P)+.aṣl : HS(aṣl)? 
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Y Cooperative criticism Y Destructive Criticism  Y  ! muṭālaba  Y  ! (x : P)H(x)  (x : ~P)~H(x) 

Asking for Justification  Endorsing the request by asserting the 

efficiency of the property P 

 

Which of the options are available is determined by the rules prescribing the overall development of a play for qiyās al-‘Illa. 

We proceed to describe the development of the first three responses, the development of the fourth one (the conjunction of 

universals) has been already described above 

 
Muṭālaba 

This move presupposes that player X requested the contender to endorse that the property P occasions the ruling of the root-case 

That is, it presupposes the following request 

 

X ! illaH(P)+.aṣl : HS(aṣl)? 
Y  ! muṭālaba 

X must be able to bring forward arguments showing that the property satisfies ṭard (! (x : P)H(x)), ‘aks ((x : ~P)~H(x)), and 

ta’thīr (! (x : P)H(x)  (x : ~P)~H(x)) 

 

 
Mu‘āraḍa or cooperative criticism 

 

This move presupposes that the Proponent requested the Opponent to endorses that the property P occasions the ruling of the root-

case 
That is, the deployment of cooperative criticism presupposes the following request 

P ! illaH(P)+.aṣl : HS(aṣl)? 

1. The Opponent refuses to endorse the requested assertion and starts by asserting that that the relevant factor for the root-case 

at stake is the property P* rather than P – however, the Opponent believes that the main thesis is correct though it was poorly 

defended 

O  ! V illa H(P*)+.aṣl : HS(aṣl). 

2. If the assertion of the Opponent is rooted in the sources, the Proponent must accept it and the play will continue from step 5. 

If it is not based on the sources the Proponent responds by challenging the Opponent to open a sub-play where the latter 

must defend his thesis. 
P  ! muṭālaba 

3. In the sub-play, before providing the required justification, the Opponent might first choose to force the Proponent to accept 

that there is there is a root-case that contradicts the Proponent's choice of P as relevant for the juridical ruling at stake. 

Driving the Proponent to contradiction is carried out by means of the following steps: 

Start of a sub-play 

O searches for a new root-case to which P. applies.  

 O  aṣl* : P? 

 P  ! aṣl* : P 

O forces P to agree that according to the presupposition P has the efficiency required for producing the ruling 

O  ! (x : P)H(x)  (x : ~P)~H(x)? 

P  ! (x : P)H(x)  (x : ~P)~H(x) 

O forces then P to contradict himself in relation to the applicability of the ruling to the new-root case 

O  ! aṣl* : P (The Opponent challenges the ṭard- component of P’s last assertion.  

P  ! : illa H(P*)+.aṣl* : HS(aṣl*) (The Opponent responds by conceding that the ruling applies to the new root-case) 

O  !  ~HS(aṣl*)?  

P  ! ~HS(aṣl*) 

O  ! tanāquḍ HS(aṣl*) (the Opponent indicates that P just contradicted himself by asserting both that the ruling applies 

and not to the new root-case) 
P  ! I concede 

The Opponent starts now his constructive contribution by displaying the efficiency of a new property. Herewith he 

answers to the request of justification 
 

P concedes and this ends the sub-play 

4. The Proponent accepts the suggestion and making use of the fact that the new property applies to the branch-case he will 
proceed that this will lead to the justification of the thesis. 

5. The tree displaying the winning strategy will delete the unsuccessful attempts and also the justification of the sub-play.  

 
Destructive Criticisms  

 

This move also presupposes that the Proponent requested the Opponent to endorses that the property P occasions the ruling 

of the root-case 

That is, the deployment of cooperative criticisms presupposes the following request 

P ! illaH(P)+.aṣl : HS(aṣl)? 

However; different to cooperative criticism the Opponent aims to refute the main thesis. We will be more succinct in the 

description since after the description of the cooperative criticism and after the examples in the main text, the development is 

quite straightforward.  

O ! F (x : P) H(x) (qalb‘) 

The Opponent is committed to a sub-play where he brings forward a root-case of which it is recorded that an 
opposite ruling to the claimed ruling applies. Hence the root-case is presented as a counterexample to the 
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Proponent's claim that every P falls under the ruling H and in particular to the claim that this ruling applies to the 

branch-case.  

O ! F (x : P) H(x), given aṣl* : P, HS*(aṣl*), and ~ ( H(aṣl*)  H*(aṣl*)) (naqḍ) 

The Opponent is committed to a sub-play where he brings forward a root-case of which it is recorded that a 
different ruling to the claimed ruling applies and both rulings are incompatible. Hence the root-case is presented 

as a counterexample to the Proponent's assertion that every P falls under the ruling H and in particular to the 

claim that this ruling applies to the branch-case. 

O ! F (x : { x : P | B(x)}) H(x) (kasr) 

The Opponent is committed to a sub-play where he brings forward a root-case which instantiates a subset of P 

and of which it is recorded that the claimed ruling does not apply. Hence the root-case is presented as a 

counterexample to the Proponent's assertion that every P falls under the ruling H and in particular to the claim 

that this ruling applies to the branch-case. 

 

O ! F (x : P) H(x) (fasād al-waḍ‘) 

The Opponent is committed to a sub-play where he brings forward a root-case of which it is recorded in the 

sources that a property assumed in the thesis to apply to the branch-case occasions in fact, the opposite ruling to 
the one posited by the Proponent. In other words, the Opponent brings forward an ‘illa that destroys the thesis.  

 

O ! F ! (x : P)H(x)  (x : ~P)~H(x)  (‘adam al-ta’thīr) 

The Opponent is committed to a sub-play where he brings forward a root-case which constitutes a 

counterexample to the efficiency of the proposed property asserted by the Proponent. 

 

AI.2.2 Global meaning  

 

As mentioned above global meaning is defined by means of structural rules that determine the general development of 

the plays, by specifying who starts, what are the allowed moves and in which order, when does a play end and who wins. The 

structural rules include the following rule on elementary expressions, i.e., expressions of one of the forms a: B, a : B(c), A, B:  

 

 P may not utter an elementary expression unless O uttered it first. Elementary expressions cannot be challenged. 

 

This, rule is one of the most salient characteristics of dialogical logic. As discussed by Marion / Rückert (2016), it can be 

traced back to Aristotle’s reconstruction of the Platonic Dialectics: the main idea is that, when an elementary expression is 

challenged then, from the purely argumentative point of view – that is, without making use of an authority beyond the moves 

brought forward during an argumentative interaction-, the only possible response is to appeal to the concessions of the 

challenger:  

 

my grounds for the proposition you are asking for are exactly the same as the ones you bring forward when you 

conceded the same proposition.28 

 

In previous literature on dialogical logic this rule has been called the copy-cat rule or Socratic rule. Now, if the ultimate 

grounds of a dialogical thesis are elementary propositions and if this is implemented by the use of the copy-cat rule, then the 

development of a dialogue is in this sense necessarily asymmetric. Indeed, if both contenders were restricted by the copy-cat 

rule no elementary proposition can ever be uttered. Thus, we implement the copy-cat rule by designing one player, called the 

Proponent, whose utterances of elementary propositions are, restricted by this rule. It is the win of the Proponent that 

provides the dialogical notion of validity. More precisely, in the dialogical approach validity is defined via the notion of 

winning strategy, where winning strategy for X means that for any choice of moves by Y, X has at least one possible move at 

his disposal such that he (X) wins:  

 

Validity (definition):A proposition is valid in a certain dialogical system iff P has a winning strategy for this 

formula. 

 

In present context we will deploy a variant of the formal-rules. Before providing the structural rules let us precise the 

following notions:  

 

Play: A play is a legal sequence of moves, i.e., a sequence of moves which observes the game rules. Particle rules are 

not the only rules which must be observed in this respect. In fact, it can be said that the second kind of rules, namely, the 

structural rules are the ones giving the precise conditions under which a given sequence is a play.  

 

Dialogical game: The dialogical game for , written D(), is the set of all plays with  being the thesis (see the Starting 

rule below).  

 

The structural rules are the following:29 
 

 

                                                           
28 Cf. Rahman/Clerbout/Keiff (2009) and in Rahman/Keiff (2010).  
29 For a formal formulation see Clerbout (2014a,b) 
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SR0 (Starting rule). Any dialogue starts with the Opponent positing initial concessions, if any, and the 

Proponent positing the thesis. After that the players each choose a positive integer called repetition rank. 

 

 The repetition rank of a player bounds the number of challenges he can play in reaction to a same move. 

 

SR1i (Classical game-playing rule). Players move alternately. After the repetition ranks have been chosen, 

each move is a challenge or a defence in reaction to a previous move and in accordance with the particle 

rules. 

 

SR1ii (Intuitionistic game-playing rule). Players move alternately. After the repetition ranks have been 

chosen, each move is a challenge or a defence in reaction to a previous move and in accordance with the 

particle rules.  

Players can answer only against the last non-answered challenge by the adversary.30 

 

SR2 (Socratic- rule). 

The following rule only applies to elementary posits (of the form a : A, or ! A) covered neither the rules for 

requests stemming from the sources described above nor by the prescriptions involving the development rule 

for qiyās al-‘illa  

 
Modified Copy-cat rule 1. O’s elementary posits (of the form a : A, or ! A) . However, O can challenge 

a P-elementary move iff he (O) did not posit the same elementary posit before. The challenge and 

correspondent defence is ruled by the following table. Once P answered the challenge on this posit is not 

any more available.  

 

Posit Challenge Defence 

P ! a : A 

(for elementary A) 
O ? P sic (n) 

(P indicates that O posited a : A 

at move n) 

 

 

SR3 (The overall development of a dialogue for qiyās al-‘illa). We describe this rule below 

 

The following structural rule requires some additional terminology: 

 

 Terminal play: A play is called terminal when it cannot be extended by further moves in compliance 

with the rules.  

 

 X-terminal: We say it is X-terminal when the last move in the play is an X-move. 

 
 

SR4 (Winning rule). Player X wins the play ζ only if it is X-terminal. 

 

Strategy: A strategy for player X in D() is a function which assigns an X-move M to every non terminal play ζ 

having a Y-move as last member such that extending ζ with M results in a play.  

 

X-winning-strategy: An X-strategy is winning if playing according to it leads to X-terminal play no matter how Y 

moves. 

 

Winning-strategy resulting from a cooperative move: Winning strategies constituted by plays where cooperative 

moves took place, will disregard the unsuccessful attempts and also the justification of the sub-play. More precisely 

it will proceed as if the Proponent has chosen the property resulting from the sub-play. Accordingly the winning 

strategy will include moves where the Proponent rather than the Opponent asserted the efficiency of the right 

property 

 

 

The overall development of a dialogue for qiyās al-‘illa 

 

1. A dialogical play starts with the Proponent claiming that some specific legal ruling applies to a certain branch-case.  

 

                                                           
30 This last clause is known as the Last Duty First condition, and is the clause making dialogical games suitable for 

Intuitionistic Logic, hence the name of this rule. 
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P ! H(far‘) 

 

2. After agreement on the finiteness of the argument to be developed, the Opponent will launch a challenge to the assertion by 

asking for justification. 

O  Why?  

 

The Proponent’s aim is to develop an argument in such a way that if forces the Opponent to concede the justification of the 
challenged assertion. In other words P will try to obtain (see step 13) 

 

! ‘illa H(P*)+(far‘) : H(far‘) 

 

3. In order to develop his argument, the Proponent will start by choosing (to the best of his juridical knowledge) a suitable root-case 

from the sources for which the ruling at stake has been applied. The move consists in the Proponent forcing the Opponent to 

acknowledge this fact.  

 

4. Since the evidence comes from the sources the Opponent is forced to concede it.  

 
Steps 4 and 5 yield : 

P  HS(aṣl)? 

O  ! HS(aṣl) 

 

5. Once conceded, the Proponent will start by choosing (to the best of his juridical and epistemological knowledge) a suitable 
property (that should lead to the relevant occasioning factor). The move consists in the Proponent forcing the Opponent to 

acknowledge that the root-case instantiates that property. – recall (section III.2.1) that we adopt here al-Baṣrī's and al-Shīrāzī's 

practice of keeping only those plays where the Opponent responds positively to this form of request.  
 

P  aṣl : P? 

O  ! aṣl : P 

 

Once the Opponent concedes both that the ruling and the selected property apply to the root-case, the Proponent will ask the Opponent 
to concede that the property just selected is the one that constitutes the relevant occasioning factor.31 The request can carry out 

indicating to the sources or not.  

P  ‘illaS-H(P)+.aṣl : H (aṣl)? 

P  ‘illaH(P)+.aṣl : H(aṣl)?  

 

6. If the ‘illa has been determined by the sources the Opponent must accept by endorsing the efficiency of the property (thus, the 

Opponent must assert the universal ! (x : P)H(x)  (x : ~P)~H(x)). Otherwise he might ask for justification (muṭālaba), 

cooperate in the justification or strongly reject it.  

 

7. If the Opponent asks for a justification, the Proponent will switch to the development of a dialogue of the form qiyās al-‘illa al-
khafī) and will develop an argument towards establishing its efficiency. In other words, the Proponent must be able to bring 

forward arguments showing that the property satisfies ṭard (! (x : P)H(x)), ‘aks ((x : ~P)~H(x)), and ta’thīr (! (x : P)H(x)  

(x : ~P)~H(x))  

 
8. If he does not succeed, the play stops unless the Opponent decides to cooperate as described in the next step. 

 

9. The Opponent might react by deciding to cooperate by first proposing a more precise formulation of the property advanced or by 
proposing a new property for the constitution of the occasioning factor.32 This will trigger a sub-play where the Opponent will 

defend the choice of an alternative property following the procedure prescribed for a mu‘āraḍa-move or constructive criticism. 

Once the sub-play ended, the play proceeds to step 12. A mu‘āraḍa-move assumes (1) that the choice of the root-case and the 
choice of ruling are relevant for the thesis , despite the fact that the Proponent chooses the wrong property for determining the 

occasioning factor (2) that the branch-case instantiates the "right" (newly proposed property). 

 
The launching of a constructive criticism will be indicated with the following notation 

! V illa H(P*)+ .aṣl : H(aṣl) 

 

10. The Opponent might also react by strongly rejecting the Proponent's proposal. We distinguish two cases that we call (1) 

Destruction of the thesis. The main target of this form objection is the thesis rather than only objecting against to the Proponent 

proposal for determining the ‘illa. In such a case it is he, the Opponent, who has to bring forward a counterexample from the 

sources. This will trigger a sub-play where the Opponent develops his counter argumentation, following the prescriptions for one 

of the forms of destructive criticism, namely: qalb‘ (reversal), naqḍ (inconsistency), or kasr (breaking apart). (2) Destruction of 

the ‘illa. The counter-argument involves bringing forward objections against the proposed waṣf proposed as determining the ‘illa, 

following the prescriptions for attacks of the forms fasād al-waḍ‘ (invalidity of occasioned status) or ‘adam al-ta’thīr (lack of 

efficiency). If the Opponent succeeds the play stops.   

                                                           
31 In the context of jadal this move is called “ta’līl” by the means of which the Proponent asserts that a given property 

determines the factor occasioning the relevant ruling – see Young (pp. 568, nn. 24-25, p. 624).  
32 This counterattack of the Opponent is a muʿāraḍa move, extensively discussed by Miller (1985, pp. 33-39) and by Young 

(2017, pp. 151), who calls it constructive criticism. It is opposed to the destructive criticism or naqḍ displayed in the 

following step. 
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11. If the Opponent concedes that the property determines the occasioning factor for the ruling of the root-case, the Proponent will 

ask the Opponent to acknowledge that this exemplifies a general law binding the ruling with the relevant property.33  
 

12. If the Opponent concedes that the property does determine the occasioning factor for the ruling of the root-case, the Proponent 

will ask the Opponent to acknowledge that the property also applies to the branch-case . – recall (section III.2.1) that we adopt 

here al-Baṣrī's and al-Shīrāzī's practice of keeping only those plays where the Opponent responds positively to this form of 

request. If the property does not apply, though it determines the occasioning factor, then it is the main thesis that should be 

rejected. In other words, if the Opponent refuses to concede that the branch-case instantiates the relevant property a kind of strong 

rejection results.   

 

The request and answer will be expressed by means of the following notation: 

P  far‘ : P? (or P*) 

O  far‘ : P (or P*) 

 

13. After the Opponent concedes that the property does apply to the branch case, and since the Opponent also concedes that the 

property is the one that characterizes the relevant occasioning factor, the Proponent will ask the Opponent to acknowledge that the 

branch-case falls under the ruling at stake. This move forces the Opponent to concede the challenged thesis. In fact the play will 

end (if successful) by the Proponent indicating that the Opponent has finished by conceding the thesis under scrutiny. For short, a 

play that ends by bringing the Opponent to silence (ifḥām), is a play a won by the Proponent. Otherwise it is a play won by the 

antagonist – i.e. the Proponent accepts the objections of the Opponent (ilzām). A play ends if there are no more moves allowed.  

The final moves of a successful play have the following form 

P  far‘ : P (challenging the universal that expresses the ṭard -condition) 

O  ‘illaH(P)+(far‘) : H(far‘) 

P ‘illaH(P)+(far‘) : H(far‘) ( answer to the request for justification of the thesis) 

 

(or involving the alternative property P* ) 

 
  

                                                           
33 Recall our remark in section III.1.1 concerning the fact that identifying an occasioning factor amounts characterizing it as a 

general law. 
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Global Reasons, Applications and the Constitution of Strategies:  

While building the core of a winning P-strategy play objects are linked not only to the local meaning of expressions, but 

also to their justification. This cannot be achieved while considering single plays—nor non-winning strategies. Consider 

for example the case of a P-conjunction such that the Proponent claims that it has a (winning) strategic object for it. 

Single plays cannot provide a way to check if a conjunction is justified: this would require P to win the play for the two 

conjuncts. However, if the repetition rank chosen by the Opponent is 1, then in no single play can P bring forward the 

strategic object for the whole conjunction. It is only within the tree that displays the winning-strategy that both plays can 

be brought together as two branches with a common root. . Indeed, if we think of the tree as developed through the 

plays, the root of the tree will not explicitly display the information gathered while developing the plays. When a play 

starts it is just a posit. Only at the end of the construction-process of the relevant plays P will be able to have the 

knowledge required to assert the thesis. Similarly, in the case of a disjunction, we will able to display the strategic 

object correspondent to the choice that yielded the canonical argumentation form of the strategic object, only after the 

choices involving the defence have been made. More generally:  

 

 The assertion of the thesis that makes explicit the reaason resulting from the plays is a recapitulation of the 

result achieved after running the relevant plays, after P's initial posit of that thesis. This is, what the canonical 

argumentation form of a reason is at the strategic level, and this is what renders the dialogical formulation of a 

canonical proof-object. We call those reasons that constitute a winning strategy global reasons. 

 

In the case of material implication (and universal quantification) a winning P-strategy literally displays the procedure by 

which the Proponent chooses the local reason for the consequent depending on the local reason chosen by the Opponent 

for the antecedent. What the canonical argumentation form of a global reason does is to make explicit the relevant 

choice-dependence by means of a recapitulation of the thesis.  

This corresponds to the general description of proof-objects for material implications and universally quantified 

formulas in CTT: a method which, given a proof-object for the antecedent, yields a proof-object for the consequent. The 

dialogical interpretation of this functional dependence amounts rendering the canonical argumentation form of a global 

reason for P ! ABas P  p(x)⟦Ox : A⟧ : AB that expresses that if P is looking to make his claim legitimate he must be 

able to assert the consequent for any reason that the Opponent brings forward for backing his (the Opponent’s) own 

assertion of the antecedent. Thus, the global reason for the material implication AB is the “strategic-object” p(x)⟦O x :A 

⟧ – in CTT it corresponds to the lambda-abstract of the local reason for the consequent, namely the lambda-abstract of 

the function p(x) : B. 

 

Let us express all this in the form of a table:  
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Canonical argumentation form and global reasons within winning strategies for P 

Strategic objects as Recapitulation  

 

Posit Challenge Defence Recapitulation 

 O ?L  P   p1 : A  

P ! (x : A)B(x) Or Respectively P  < p1, p2> : (x : A)x 

 O ?R  

 
P  p2 : Bp1  

P ! (x : A)x O  p1  : A  P  p2.O
p1 : (Op1) P  p(x)⟦O x : A⟧ : (x : A)x

 

 

Notice that the CTT-notation 

(x)p(x) : (x : A)x


does not make explicit that the 
the arguments of p(x) are chosen 

by O.

 

P  ! (x : P)H(x) O p1 : P P  ṭardH(P.Op1 : H(Op1) P ṭardH(P)(x)⟦O x : P⟧ : (x : P)Hx 

P  ! (x : ~P)~H(x) O p1 : ~P P  ‘aksH(P).Op1 : ~H(Op1) P ‘aksH(P)(x)⟦O x : ~P⟧ : (x : ~P)~Hx 

 

Notice that the canonical form of a global reasoning has been defined only for P. There is not general reason to do so; 

however we proceeded in this way since we are after a notion of winning strategy that corresponds to that of a CTT-

demonstration, and these strategies have being identified as those where P wins. In fact the table above is the dialogical 

analogue to the introduction rules in CTT. Dialogically speaking those rules display the duties required by P’s own 

assertions – we will come back to this issue later on.  
 

Now, we also need to specify the global-reason that provides the legitimation of the (Proponent’s) thesis, when it is the 

Opponent who made the choice: a winning-strategy for P should also include those cases where it is the contender who 

brought forward some assertion. In our context, the dialectical meaning of the notion of occasioning factor, is that the 

Proponent justifies his thesis relying on the endorsements of the Opponent. In particular, if the Opponent endorses the 

efficiency of the property P in relation to the ruling H , and also concedes that the branch-case instantiates P; then the 

Proponent can legitimate his thesis by claiming that the reason endorsed by the Opponent provides the occasioning factor that 

justifies his thesis.  

Posit Challenge Defence Application 

 

O  ṭardH(P) : (x : P)H(x) 

 

Notation for a posit without specified 
reason 

O  ! (x : P)H(x) 

 

P p : P 

(provided O endorses this 

assertion)  

O ‘illaH(P)+.p : H(p) P ‘illaH(P)+⟦Ox : P⟧. O p : P: H(p) 

 

Where “‘illaH(P)+⟦Ox : P⟧. O p : P” 

stands for the application 

 

“‘illaH(P)(ṭardH(P)(x)⟦Ox : P⟧). O p : P” 

O  ‘aksH(P) : (x : ~P)~H(x) 

 

Notation for a posit without specified 
reason 

O  ! (x : ~P)~H(x) 

P p : ~P  
(provided O endorses this 

assertion) 

O ‘illaH(P)-.p : ~H(p) P ‘illaH(P)-⟦O x : ~P⟧.O p : ~P : ~H(p) 

 

Where “‘‘illaH(P)-⟦O x : ~P⟧.O p : ~P” 

stands for the application 
 

“‘illaH(P)(‘aks H(P)(x)⟦Ox : ~P⟧). O p : P” 
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EXAMPLES 

 

Development of a play for quiyas-al-‘illa l-‘Ill 

P  ! The ruling H applies to the branch-case 

O  ! Why? 

P  Don't the Sources record that the ruling H applies to the root-case?  

O ! Yes they do 

P Doesn't the root-case instantiate the property P? 

O  ! Yes it does 

 

 

P  Given your previous assertions,    P  Given your previous assertions, 

and the evidence from the sources    you must concede that the property P 

you must concede that the property P    has the efficiency to determine the 

has the efficiency to determine the     occasioning factor for the ruling H. Don’t' you? 

occasioning factor for the ruling H. Don’t' you? 

 

O  ! Indeed. Everything case that  
instantiates the property occasions  

the ruling on that case 

 

 

O  ! Why should I? justify? O constructive criticism  O Destructive Criticisms 

 
P  ! the presence of the ruling 

 is due to the presence of  

the occasioning factor and  
the absence of the ruling  

is due to its absence (ta‘thīr) 

 

 

 
O  ! Am convinced now. Every case that instantiates the property 

occasions the ruling on that case 

 
 

 

P Doesn't the branch-case instantiate the property P? 

O  ! Yes it does 

P  ! Accordingly the ruling also applies to the branch case. Doesn't it? 

O  ! Yes it does 

P  ! This answer justifies the thesis 
 

 
Terminological Conventions and Strategy Procedure:  

 

We slightly changed the usual notation of the dialogical framework and added some further indications specific to the 

qiyās. More precisely 

 

 General Notational Devices: 

1. Proponent’s moves are numbered with even numbers starting from 0. Those, moves are recorded at the outmost 

right column. 

2. Opponent’s moves are numbered with odd numbers starting from 0. Those, moves are recorded at the outmost left 

column. 

3. The inner columns record the form (challenge or defence) of response and the line to which the move responds. So, 

while " ? 0 " indicates that the corresponding move is a challenge (by the Opponent) to line 0 of the Proponent; " ! 3 

"  indicates that corresponding move is a defence of a challenge launched by the Opponent in move 3. 

4. Formal expression with preceding exclamation mark such as ! ‘HS(aṣl) indicates the assertion that there is some 

(not yet specified) occasioning factor for the fact that, according to the sources the ruling H, applies to the root-

case. Similar applies to expression such as ! H(far‘).  

5. Formal expressions without preceding exclamation mark such as illaH(P)+. far‘ : H(far‘) by the Proponent indicate 

that the justification for the application of the ruling to the branch-case follows from applying that branch-case to 

the universal (x : P)H(x) conceded by the Opponent. The point of the Proponent is that he will try during the play 

to force the Opponent to provide the missing justification for the thesis. In other words, the Proponent will try to 

motivate the passage from ! H(far‘) to illaH(P)+. far‘ : H(far‘).  
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6. For the sake of notational simplicity we did not include the moves related to the repetition rank..  

 

 

 Specific addenda to qiyās: 

The dialectical framework for qiyās al-‘illa deploys not only the usual challenges and defences but also requests. With 

a request a player brings forward an assertion and asks the contender to endorse it.  

The notation deployed for a request has the form "¿ 1, ! 2" ( that reads: the Proponent responds to move 1 of the 

Opponent by requesting him to endorse assertion brought forward in move 2.)  

Sometimes a request formulated in move k responds to move n of the antagonist X, given a previous move m of X, this 

request will be indicated with the notation "¿ n (m), ! k" 

 

Before endorsing the requested assertion brought forward with move m the requested contender might ask for 

justification of this request. This response will be indicated with the notation "? m ¿".  

 

 

Example of a qiyās al-‘illa (al-jalī bi’l-naṣṣ) 

 

The importance of this form of this qiyās al-‘illa, despite its simplicity, is that it has the canonical form of a qiyās al-‘illa. 

Moreover, it is related to Aristotle’s reasoning by exemplification or paradigmatic inference (cf. Aristotle, Pr. An. 69a1, 

Bartha (2010), pp. 36-40), though, as pointed out before (III.1.1), it is not to be understood as involving one-step induction.34  

 

O P 

  responses responses  

Reading (without permission) the 

mail of someone else is forbidden 

 

! H(far‘)  

0 

1 Why? 

 

 

? 0 

(challenges 

move 0) 

¿ 1, ! 2  

(responds to 

1 with the  

request of 

endorsing 2) 

Entering (without permission) into a 

house of someone else is forbidden by 

the Quran, isn’t it?
 35

 

 

HS(aṣl)?  

2  

3 Yes 

 

 

 

! HS(aṣl)  

! 2 

(responds to the 

request of move 

2) 

¿ 3, ! 4  

 

Does entering (without permission) 

into a house of someone else violate 

privacy. Don’t you agree? 

 

aṣl : P?  

4  

5 I do. 

 

 

 

! aṣl : P  

! 4 

 

¿ 5 (3), ! 6 Given 3 and 5, and the evidence from 

the sources you must concede that 

violation of privacy has the efficiency 

to determine the ‘illa of that ḥukm. 

Don’t' you? 

 

‘illaS-H(P)+.aṣl : H (aṣl)?  

6 

7  I see. I endorse it since it 

comes from the sources 

the assertion 

 

 

 

! (x : P)H(x)  (x : 

~P)~H(x) 

! 6 ¿ 7, ! 8 Does reading (without permission) the 

mail of someone else violate the 

privacy of that person? 

 

far‘ : P? 

8 

9 Yes, it does   

 

 

 

 

 

! 8 ? 7 So, since reading (without 

permission) the mail of someone else 

violates the privacy of that person, it 

instantiates the antecedent of the ṭard 

-component of your assertion linking 

privacy-violation and interdiction. 

10 

                                                           
34 It might be argued that Aristotle's notion does not involve one-step induction either. 
35In fact this interdiction is explicitly sanctioned in the Quran: 

  ياَأيَُّهاَ الَّذِينَ ءَامَنوُا لاتَدَْخُلوُا بيُوُتاً غَيْرَ بيُوُتكُِمْ حَتَّى تسَْتأَنْسُِوا وَتسَُلِّمُوا عَلىَ أهَْلهِاَ

(O believers! Do not enter houses other than your own until you have sought permission and said greetings of peace 

to the occupants) [Q.S. 24: 27].  
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far‘ : P You should now assert the 

consequent. Right? 

 

far‘ : P 

11 

 

 

 

 

 

 

Indeed, I endorse this 

interdiction to the branch-

case too  
 

 

‘illaS-H(P)+. far‘ : H(far‘) 

 

! 12 ! 1 So, this provides the justification for 

the thesis you were asking for with 

your first move: the branch-case falls 

under the ruling because it instantiates 

the property you just endorsed as 

constituting the occasioning factor. 

 

‘illaS-H(P)+. far‘ : H(far‘) 

  

12 

 ifḥām     

 

 
Examples of qiyās al-‘illa al-khafī 

 

The following example is a reconstruction that follows closely al-Shīrāzī’s (1987,  p. 112) refutation of Ḥanafī’s analysis of 

the argument on the purity status of beasts of prey. As pointed out by Young (2017, p. 159) al-Shīrāzī himself thought that 

the argument should be developed following a fasād al-waḍ‘ (invalidity of the occasioned status) –move.36 Indeed, al-Shīrāzī 

sees the argument as indicating that the main thesis is fundamentally false since it assumes that beasts of prey are impure, but 

there is direct evidence from the sources contradicting this. Thus, according to al-Shīrāzī we do not need to be involved in a 

discussion about the suitability or not of the property chosen by the Proponent. Our take on the example corresponds rather to 

Miller’s (1984, p. 119) presentation of qalb or destructive criticism by reversal. Moreover, it corresponds to a particular form 

of qalb called reversal and oppositeness (al-qalb‘ wa’l-‘aks) – see Young (2017, pp. 166-167) . We made the choice to 

reconstruct the qalb-version of this argument since it provides the chance to display the deployment of a sub-play while 

developing a destructive criticism. 

 

 

On beasts of prey, impure saliva and the deployment of qalb‘ 

 

O P 

    The saliva of the beast of prey qualify as 

impure (najāsa)  

 

! H(far‘) 

0 

1 Why? 

 

 

? 0 ¿ 1, ! 2  

 

Does the saliva of pigs qualify as impure 

(najāsa)?  

 

HS (aṣl)?  

2 

3 Yes I do 

 

 

! HS (aṣl) 

! 2 ¿ 3, ! 2 Does the saliva of pigs come from an 

animal that has canine teeth (dhū nābin)? 

 

 

aṣl* : P?37 

4 

5 Yes they do 

 

! aṣl* : P  

! 4 ¿ 5 (3), ! 6 Given 3 and 5 it seems plausible to 

conclude that the saliva of animals with 

canines has the required efficiency for 

determining the relevant ‘illa for its 

impurity. Don’t you agree? 

 

‘illaH(P)+.aṣl : HS(aṣl) ? 

6 

7 

 

 

 

 

 

 

qalbʿ ! 

Do not agree! I have a 

counterexample  

! F (x : P)H(x) 

 

START OF THE SUB-PLAY 

----------------------------------------- 

? 6] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

START OF THE SUB-PLAY 

---------------------------------------------- 

 

 

 

 

 

 

 

                                                           
36 Different to Young’s (2017, p. 159) analysis, Miller (1984, p. 119) concludes that al-Shīrāzī’ presentation suggests that 

both forms of destructive criticism, namely qalb and fasād al-waḍ‘, are indistinguishable.   
37 For the sake of simplicity we do not reflect in our formalization the mereological relation between animals and their saliva.  
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? 7 I rather endorse the following: It is true 

that impurity applies to any saliva of an 

animal possessing canines  

 

! (x : P) Hx) 

8 

 

 

9 Cats possess canine teeth. Thus, 

according to your characterization 

of P (saliva of animals possessing 

canines), their saliva is impure.  

 

! cat-saliva : P 

? 8  ! 9 Indeed I have to concede this 
 

 

 
 

‘illaH(P)+. cat-saliva : H(cat-saliva) 

10 

11 We know (from the sources) that 

the saliva of cats is not impure. Do 

you see this?  

 

 ~HS(cat-saliva)?. 

¿ 10, ! 11 ! 11 I must. It comes from the sources 

 

 

 

! ~HS(cat-saliva) 

12 

13 tanāquḍ !  

You asserted before that according 

to your view on the occasioning 

factor, it follows that the saliva of 

cats is impure. You contradict 

yourself!38  

 

Therefore possessing canine teeth 

is not the occasioning factor of 

saliva’s impurity. 

 

! H(cat-saliva)  

 

 

? 12  I concede.  

 

 

 

 

 

 

 

 

 

 

 

 

 

14 

15 Moreover, cats are beasts of prey. 

So, their saliva is the saliva of a 

beast of prey. Furthermore, the 

saliva of a beast of prey is a case 

of the saliva of animals with 

canines. Right?39 

 

far‘ : P ? 

¿ 14, ! 15  Yes, it is 

 

far‘ : P 

 

16 

17 So you must also concede that 

their saliva is impure neither? 

 

~HS(far‘) ? 

¿ 16, ! 17  Indeed. 

 

‘illaH(P)+. far‘: ~HS(far‘) 

 

18 

19 tanāquḍ ! This contradicts your 

main thesis.  

 

! HS(far‘) 

? 18  I give up 

 

 

ilzām. 

 

 

 

What the Opponent is doing is displaying a winning strategy for a claim that denies that P determines the relevant 

occasioning factor. Notice that it is stronger than the rejection of endorsing a claim. The opponent is changing the roles and 

defending that he has a winning strategy in order to reject P as determining occasioning factor. This move a switch of roles 

pointed out by scholars as Hallaq (1985) and Young (2017).  

 

The following example is one that has received very much attention in the specialized literature.  

 

 

The Wine-example 

 

O P 

                                                           
38 The player that brings up the expression tanāquḍ,  accuses the antagonist of self-contradiction – for a thorough discussion 

on this notion see Young (2017, pp. 537-543).  
39 In order to focus on the main argumentation thread we did not include (formally)  the moves that lead from saliva of 

animals of prey  to saliva of the cats.  
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    (Consuming) Date-wine (nabīdh) is 

forbidden (ḥarām)40. 

 

! H(far‘) 

0 

1 Why? 

 

 

 

? 0 ¿ 1, ! 2 Isn't drinking grape-wine (khamr) 

forbidden by the Quran? 41 

 

HS(aṣl)?  

2  

3 Yes, it is forbidden. 

 

 

! HS(aṣl)   

! 2 ¿ 3, ! 4 Isn't grape-wine a drink made of fruit-

juice which contains euphoric intensity 

(shiddat muṭriba)? 

 

aṣl : P?  

4  

5 Yes  

 

 

 

 

! aṣl : P  

! 4 ¿ 3, (5), ! 6 So, according to your moves 3 and 5, the 

presence of euphoric intensity occasions 

the proscription of consuming grape-

wine. Right? 

 

‘illaH(P)+.aṣl : HS(aṣl)? 

6 

7 muṭālaba !  

 

Justify !  

? 6 ! 7 ‘aks: Before the occurrence of the 

euphoric intensity, the lawfulness of 

consuming a drink made of fruit-juice is 

the object of consensus. 

! (x : ~P)~H(x) 

 

‘ṭard: After the euphoric intensity occurs 

[i.e., when it becomes wine] and nothing 

else occurs the proscription of 

consuming a drink made of fruit-juice is 

object of consensus. 

(ratification of) ‘aks: When the euphoric 

intensity of a drink made of fruit-juice 

falls away [i.e., when it becomes 

vinegar] and nothing else falls away it is 

object of consensus that it should not be 

forbidden. 

! (x : P)H(x) 

 

ta’thīr: Therefore, the presence of the 

ḥukm is due to the presence of the ‘illa, 

and the absence of the ḥukm is due to its 

absence 

! (x : P)H(x)  (x : ~P)~H(x) 

 

8 

9 Given these arguments I concede 

your previous request 

 

! (x : P)H(x)  (x : ~P)~H(x) 

! 6 (8) ¿ 9, ! 10 Isn't nabīdh a drink made of fruit-juice 

which contains ‘euphoric intensity’?  

 

far‘: P? 

10 

11 Yes, I agree 

 

far‘: P 

! 10 ? 9  If it is the case that date-wine contains 

euphoric intensity, and, given 9,  

should not this lead to its interdiction? 

 

far‘: P 

12 

13 Indeed, the presence of euphoric 

intensity should occasion its 

interdiction.  

 

 

! 10 

 

! 1 So, this provides the justification for the 

thesis you were asking for with your first 

move: the branch-case falls under the 

ruling because it instantiates the property 

you just endorsed as constituting the 

14 

                                                           
40 The original text deploys the word ḥarām. This notion, the opposite of ḥalāl, refers (in this context) to the interdiction of 

consuming certain food.  
41 It is sanctioned in the Quran that wine is ḥarām (forbidden [to be consumed]) :  

نْ عَمَلِ ا لشَّيْطاَنِ فاَجْتنَبِوُهُ لعََلَّكُمْ تفُْلحُِونَ ياَ أيَُّهاَ الَّذِينَ آمَنوُا إنَِّمَا الْخَمْرُ وَالْمَيْسِرُ وَالْأنَصَابُ وَالْأزَْلَامُ رِجْسٌ مِّ   

(O you believe! Wine, gambling, altars and divining arrows are filth, made up by Satan. Therefore, refrain from it, so 

that you may be succesful). [Q.S: 5: 90] 
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‘illaH(P)+. far‘: HS(far‘)  occasioning factor. 

 

‘illaH(P)+. far‘: HS(far‘) 

 

 ifḥām     

 

 

 

The Wine-example and the deployment of mu‘āraḍa 

 

As already mentioned mu‘āraḍa-moves assume a cooperative attitude of the challenger. In the following example, 

we assume that the original argument in favour of choosing the property of being a drink made of pressed fruit-juice as 

relevant for the determining the relevant example misses one of those conditions, namely co-presence (the counterexample is 

vinegar). 

At the end we will sketch the winning strategy, which, as discussed in section III.2.2, only keeps the result of the cooperation.  

 

 

O P 

    (Consuming) Date-wine is forbidden. 42. 

 

! H(far‘) 

0 

1 Why? 

 

 

 

? 0 ¿ 1, ! 2 Isn't drinking grape-wine forbidden by 

the Quran? 43 

 

HS(aṣl)?  

2  

3 Yes, it is ḥarām. 

 

 

! HS(aṣl)   

! 2 ¿ 3, ! 4 Isn't grape-wine made of pressed fruit-

juice  

 

aṣl : P?  

4  

5 Yes  

 

 

 

 

aṣl : P  

! 4 ¿ 3, (5), ! 

6 

So, according to your moves 3 and 5, the 

proscription of consuming grape-wine is 

caused by the fact that it is made of 

pressed fruit-juice. Right? 

 

‘illaH(P)+.aṣl : HS(aṣl) ? 

6 

7 I am not convinced. I rather think 

that the relevant property is 

containing euphoric intensity (P*) 

 

! V illa H(P*)+.aṣl : HS(aṣl). 

? 6 ? 7 muṭālaba !  

 

Justify ! 

 

 

 

8 

 START OF THE SUB-PLAY 

----------------------------------------- 

  START OF THE SUB-PLAY 

----------------------------------------- 

 

9 Vinegar is made of pressed juice-

fruit. Isn’t it? 

 

aṣl* : P? 

¿ 8, ! 9  Indeed. 

 

aṣl* : P 

10 

11 Given 6 

you must agree that being a 

pressed-juice is efficient property 

for sanctioning them as ḥarām. 

Right? 

 

(x : P)H(x)  (x : ~P)~H(x)? 

¿ 6, ! 10  Yes 

 

 

 

! (x : P)H(x)  (x : ~P)~H(x) 

12 

13 But, given that you just agreed that 

vinegar is made of pressed-juice, 

12  Indeed 

 

14 

                                                           
42 The original text deploys the word ḥarām. This notion, the opposite of ḥalāl, refers (in this context) to the interdiction of 

consuming certain food.  
43 It is sanctioned in the Quran that wine is ḥarām (forbidden [to be consumed]) :  

نْ عَمَلِ الشَّيْطاَنِ فاَجْتنَِ ياَ أيَُّ بوُهُ لعََلَّكُمْ تفُْلحُِونَ هاَ الَّذِينَ آمَنوُا إنَِّمَا الْخَمْرُ وَالْمَيْسِرُ وَالْأنَصَابُ وَالْأزَْلَامُ رِجْسٌ مِّ   

(O you believe! Wine, gambling, altars and divining arrows are filth, made up by Satan. Therefore, refrain from it, so 

that you may be successful). [Q.S: 5: 90] 

S. Rahman & M. Iqbal: Unfolding parallel reasoning in Islamic jurisprudence

133



26 

(according to the ṭard -component 

of your assertion) it should be 

ḥarām 

 

! aṣl* : P 

 

 

‘illaH(P)+.aṣl* : H(aṣl*) 

15 But its consumption is not 

forbidden. Isn’t it? 

 

! ~HS(aṣl*)? 

¿ 14, ! 15  Yes it is not ḥarām 

 

 

! ~HS (aṣl*) 

16 

17 tanāquḍ ! You contradict yourself 

 

! H(aṣl*) 

? 16  I concede !  18 

19 Herewith my argument for the 

relevance of P* 

 

‘aks: Before the occurrence of the 

euphoric intensity, the lawfulness 

of consuming a drink made of 

fruit-juice is the object of 

consensus. 

! (x : ~P*)~H(x) 

 

‘ṭard: After the euphoric intensity 

occurs [i.e., when it becomes wine] 

and nothing else occurs the 

proscription of consuming a drink 

made of fruit-juice is object of 

consensus. 

(ratification of) ‘aks: When the 

euphoric intensity of a drink made 

of fruit-juice falls away [i.e., when 

it becomes vinegar] and nothing 

else falls away it is object of 

consensus that it should not be 

forbidden. 

! (x : P*)H(x) 

 

ta’thīr: Therefore, the presence of 

the ḥukm is due to the presence of 

the ‘illa, and the absence of the 

ḥukm is due to its absence 

‘illa H(P*) : (x : P*)H(x)  (x : 

~P*)~H(x) 

 

! 8    

 END OF THE SUB-PLAY 

----------------------------------------- 

  END OF THE SUB-PLAY 

----------------------------------------- 

 

21 Yes, it does.  

 

 

far‘: P* 

! 20 ¿ 19, ! 

20 

Doesn't nabīdh contains euphoric 

intensity?  

 

far‘: P*? 

20 

23  Indeed ! 

 

 

 

 

‘illa H(P*)+.far‘ : H(far‘) 

! 23 ? 19 If it is the case that date-wine contains 

euphoric intensity, and, given 19,  

should not this lead to its interdiction? 

 

 

far‘: P* 

22 

   ! 1 So, this provides the justification for the 

thesis you were asking for with your first 

move: the branch-case falls under the 

ruling because it instantiates the property 

you just helped to identify as the one 

determining the occasioning factor. 

 

‘illa H(P*)+.far‘ : H(far‘) 

24 

 ifḥām 
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This yields the following tree displaying the winning-strategy, which is (essentially) the same as the one of the 

previous example – the only difference with the strategy for the previous example is that the tree of the latter will 

include the moves justifying the determination of the occasioning factor. The point is that the strategy deletes the 

unsuccessful attempts: 

 

0. P ! H(far‘) 

1. O ! Why [?0] 

2. P ! HS(aṣl)? 

3. O ! HS(aṣl) 

4. P aṣl : P*? 

5. O aṣl : P* 

6. P ‘illa H(P*)+.aṣl : HS(aṣl)? 

7. O ! (x : P*)H(x)  (x : ~P*)~H(x) 

8. P far‘ : P*? 

9. O far‘ : P* 

10. P far‘ : P* [?7] 

11. O ‘illa H(P*)+.far‘ : H(far‘) 

12. P ‘illa H(P*)+.far‘ : H(far‘) (!1. answer to the request of justification in the second 

move) 
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1 

 Those different forms of co-relational 
inference, known in the Islamic jurisprudence 
as Qiyās or co-relational inferences represent 
an innovative and sophisticated form of parallel 
reasoning developed in Islamic jurisprudence 

 

 They claimed to be proud of the inception of an 
approach different to the Greek Tradition: a 
system of reasoning with content, (proper of 
the juridical reasoning?) that combines 
heuristical; epistemological and logical steps.   
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Young (2017, p.1) set out the motivations for the development of a dialectical 

framework such as the one we are aiming at in the present paper. 

  

The primary title of this monograph is “The Dialectical Forge,” and its individual terms provide a 

suitable launching point for discussing the current project as a whole. As for the first, the most 

common Arabic terms for “dialectic” are jadaland munāẓara, both denoting formal disputation 

between scholars in a given domain, with regard to a specific thesis. When one encounters the term 

“dialectical” in the present work, one should think foremost of procedure-guided debate and the logic 

inherent to this species of discourse. A dialectical confrontation occurs between two scholars, in 

question and answer format, with the ultimate aims of either proving a thesis, or destroying it and 

supplanting it with another. A proponent-respondent introduces and attempts to defend a thesis; a 

questioner-objector seeks (destructively) to test and undermine that thesis, and (constructively) to 

supplant it with a counter-thesis. Through progressive rounds of question and response the questioner 

endeavours to gain concession to premises which invalidate the proponent’s thesis, justify its 

dismantling, and provide the logical basis from which a counter-thesis necessarily flows.  

Ultimately, and most importantly, a truly dialectical exchange—though drawing energy from a sober 

spirit of competition—must nevertheless be guided by a cooperative ethic wherein truth is paramount 

and forever trumps the emotional motivations of disputants to “win” the debate. This truth-seeking 

code demands sincere avoidance of fallacies; it views with abhorrence contrariness and self-

contradiction. This alone distinguishes dialectic from sophistical or eristic argument, and, in 

conjunction with its dialogical format, from persuasive argument and rhetoric. And to repeat: 

dialectic is formal—it is an ordered enterprise, with norms and rules, and with a mutually-committed 

aim of advancing knowledge. 

 3 

 A dialectical framework + a CTT-inferential 
system arethe right instrument to stress three 
of the most salient features of this form of 
inference:  

 

1) the interaction of heuristic with logical steps 

2) the dynamics underlying the meaning-
explanation of the terms involved.  

3) the unfolding of parallel reasoning as similarity 
in action.  

 
4 
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The Motivations behind the inception of  

Co-relational inferences 

 

• The universality of Law and the needs of a new 

contextualization instrument 

 

• Co-relational inferences and the origins of Civil-Law: 

Ratio Legis within the « dialectical forge ».  

 

• The difference between the Ratio Legis, Concomitance of 

pairs of Rulings, Resemblance 

 

• Different to Common Law! It is not about induction 
5 

Open texture of the meaning of normative 
statements. 

  

The notion of co-relational inference suggests 
that every form of parallel reasoning that shares 
the formal structure of the qiyās presupposes that 
the concept of meaning involved is open to 
contextual changes. 

This strongly suggests that the whole process 
deployed is intrinsically dialectic. 

 

6 
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The Play Level of Dialogica Logic 
 Epistemic assumptions for formal and Material 

Dialogues: specific copy-cat rules: definitional 

equalities  

These notions offer a good way to understand what the 

dialectical meaning in correlational inferences is about 

 

 The play-level and cooperative moves 

The notion of « Geltung » and strategy as recapitulation of 

the optimal moves 

The possibility to make the process of the play-level 

explicit 

7 

The simplest form follows the following pattern: 
 

 In order to establish if a given juridical ruling applies or not to a 
given case, we look for a case we already know that falls under that 
ruling – the so-called source-case.  

  

 Then we search for the property or set of properties– called the 
occasioning factor -upon which the application of the ruling to the 
source-case is grounded.  

  

 If that grounding properties are known we ponder if they can also be 
asserted of the new case under consideration. 

  

  In the case of affirmative answer it is inferred that the new case also 
falls under the specific juridical ruling at stake and so the range of its 
application is extended.  

 

8 
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 Complications arrive when the grounds behind a given 

juridical ruling are not explicitly known or even not 

known at all. 

 

 The we appeal to parallel reasoning and/or similarity 

 

While finding the Ration Legis is close to the Eurpean 

Law reasoning, similarity is closer to Comon-Law 

reasoning by precedent cases.  

9 

 Our study is focused on AbūIsḥāqal-Shīrāzī’s (393–

476/1003–1083) classification of qiyās as discussed in 

his Mulakhkhaṣfi’l-Jadal (Epitome on Dialectical 

Disputation). 

 

 Walter Young (2017): The Dialectical Forge. 

Dordrecht: Springer 

 

10 
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Exemplification,  

Symmetry, and  

Resemblance.  
 

11 

(2) The property P is the factor occasioning the 

juridical ruling H 

(3) P applies to the branch-case f 

The juridical ruling H applies to the branch-case 

(1.2) P applies to the root-case 

(1.1) The juridical ruling H applies to the root-case 

(it follows from 2 and 3)  

f 

a 

a 

Qiyās al-‘Illa 

12 
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 Notice that the root-case and the branch-case do 

not need 

to be similar.  

 The point is that the root-case is brought forward 

as exemplifying a general law under which the 

branch-case will be subsumed 

13 

O P 
responses responses Reading (without permission) the mail of 

someone else is forbidden 

! H(far‘)  

0 

1 Why? ? 0 

(challenges 

move 0) 

¿ 1, ! 2  

(responds 

to 1 with 

the  

request of 

endorsing 

2) 

Entering (without permission) into a 

house of someone else is forbidden by the 

Quran, isn’t it?  

HS(aṣl)?  

2  

3 Yes 

! HS(aṣl)  

! 2 

(responds 

to the 

request of 

move 2) 

¿ 3, ! 4  Does entering (without permission) into a 

house of someone else violate privacy. 

Don’t you agree? 

aṣl : P?  

4  

5 I do. 

! aṣl : P  

! 4 ¿ 5 (3), ! 6 Given 3 and 5, and the evidence from the 

sources you must concede that violation 

of privacy has the efficiency to determine 

the ‘illa of that ḥukm. Don’t' you? 

‘illaS-P+.aṣl : H (aṣl)?  

6 

------Continue on the next page------ 

Example of a qiyās al-‘illa (al-jalī bi’l-naṣṣ) 

14 
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O P 
7  I see. I endorse it since it comes from the 

sources the assertion 

! (x : P)H(x)  (x : ~P)~H(x) 

! 6 ¿ 7, ! 

8 

Does reading (without permission) the mail of 

someone else violate the privacy of that 

person? 

far‘ : P? 

8 

9 Yes, it does   

far‘ : P 

! 8 ? 7 So, since reading (without permission) the 

mail of someone else violates the privacy of 

that person, it instantiates the antecedent of the 

ṭard -component of your assertion linking 

privacy-violation and interdiction. You should 

now assert the consequent. Right? 

far‘ : P 

10 

11 Indeed, I endorse this interdiction to the 

branch-case too  

‘illaS-H(P)+. far‘ : H(far‘) 

! 12 ! 1 So, this provides the justification for the thesis 

you were asking for with your first move: the 

branch-case falls under the ruling because it 

instantiates the property you just endorsed as 

constituting the occasioning factor. 

‘illaS-H(P)+. far‘ : H(far‘) 

  

12 

ifḥām 

15 

(3)  H(a3)                          H(a1)        (1) 

 

(2) H(a2) 

‘illaj(a) (the occasioning factor is missing) 

H(f) (Thesis)  (0) 

(4) H(a1 or a1) 

H(f or a3) 

 

(5) 

Notation:  

f =: branch-case: modern form of divorce for foreigners 

a1 =: simile to the branch-case: old form of divorce for 

foreigners 

a2 =: root-case: ancient form of divorce for nationals 

a3 = : root-case: modern form of divorce for nationals 
H(x) =: x is legally valid  

Qiyās al-dalāla II  

(Because of 5 the thesis can be plausibly inferred from 2) 16 
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O P 

Thesis: the modern form of divorce as applied to 

foreigners is legally valid  

0 

1 Why? 0 1 Is the modern form as applied to foreigners  

legally valid? 

2 

3 Yes it does 3 Does the ancient form of divorce apply to 

nationals? 

4 

5 Yes it does 5 Is the modern form of divorce as applied to 

nationals legally valid? 

 

6 

7 Yes it does  1, 

5 

So , if a forms of divorce is either ancient or 

modern it does apply to nationals. Isn’t it ? 

8 

9 Indeed 7 Can't we assert by parallel reasoning that similar 

applies for foreigners? 

 

10 

11 It seems plausibile 11 Thus, there seem to be reasonable grounds for 

assertin that the modern form of divorce as 

applied to foreigner is also legally valid.  

 

12 

Qiyās al-dalāla II  

17 

Motivating the use of a CTT-framework 
 

Per Martin Löf’s Constructive Type Theory allows the following 
features underlying the qiyāst o be expressed at the object language level:   

 

 The stress on assertions (or judgements) rather than on propositional sentences. 
The dialectical process underlying co-relational inferences is triggered by both 
an assertion concerning the identification of the factor occasioning the 
relevant ruling and the process of the justification of such an assertion. In 
the specialized literature these assertions are called ta’līl (affirmation of the 
relevance of a particular property for the determination of the ‘illa), or more 
generally ithbāt (affirmation). 

 The intensional rather than extensional understanding of the sets underlying 
the semantics of the qiyās.  

 The deployment of hypothetical judgements. This dovetails with the qiyās-
notion of dependence of a given juridical ruling on a particular occasioning 
factor.  

 The restrictive form of the substitution rules. 
 

In the present paper the last point will be left out since it relates to co-
relational inferences by indication, which will not be discussed here.  
18 
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b : A       A true 

  

can be read as 

  

b is an element of the set A   A has an element 

b is a proof of the proposition A  A is true 

b fulfils the expectation A   A is fulfilled 

b is a solution to the problem A  A has a solution 

  

The four basic forms of categorical judgements in CTT are  

  

A : set 

A = B : set 

A : prop 

A = B : prop 
 

19 

Four basic forms of hypothetical judgements with one assumption:  

  

  

B(x) : set (x : A) 

B(x)  = C(x) : set (x : A) 

b(x) : B(x) (x : A) 

b(x)  = c(x) : B(x) (x : A) 

  

We read the first as “B(x) is a set under the assumption x : A”. Similar 

remarks apply to the other three forms of hypothetical judgement. Let 

us consider the more precise meaning explanations of these forms of 

judgement. 

  

A judgement of the form B(x) : set (x : A) means that 

  

B(a/x) : set whenever a : A, and 

B(a/x) = B(a'/x) : set whenever a = a' : A. 20 
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 Let us consider that   

     

   B(x) : prop ( x : A)  

  

underlies the formation of our example on emails. This yields 

  

 “B(x) (being forbidden), renders a proposition once the free-variable x 
is substituted 

 by 

some element a of the set A of cases of violating privacy.” 

 

If “a” stands for “entering in someone else’s house without permission” 
we obtain  

B(a)  

That is, “entering in someone else’s house without permission is 
forbidden” 

 21 

Identifying the relevant set 

In relation to the main step, let us start by pointing out 

that Islamic jurisprudents identified three general 

conditions to be met by the waṣf occasioning a ruling:  

  

 Efficiency (ta’thīr). 

 Co-extensiveness (ṭard) – the presence of the 

propertywhen the judgment is present. 

 Co-exclusiveness (‘aks) – the absence of the 

property when the judgment is absent. 

 

22 
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Over the set Privacy-Violation we can then define the juridical 
ruling Hukm(x) (or for short H(x)), that expresses a juridical 

ruling relevant to cases of Privacy-Violation: 

  

H(x) :prop (x : Privacy-Violation),  

 

This displays the relations of content linking ruling and 

property, but we need to be more explicit. What we need is to 

make it apparent that Privacy-Violation has the efficiency 

(ta’thīr) required to occasion the relevant juridical ruling.  

 

 

23 

Let us then analyze 

  

Privacy-Violation occasions the juridical ruling 
sanctioning its proscription (given the efficiency of 
Privacy-Violation in relation to that proscription) 

 

as the construction 

 

Cases of Privacy-Violation (P) occasion the interdiction 
H (given the efficiency of P in relation to H) 

 

Furthermore, if the property P is efficient in relation to the 
ruling H, then there a method that provides the justification of 
applying the ruling to every instance of P (and dually, the 
justification of applying ~H(x), given instances of ~P).  

 
24 
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In such a context the occasioning factor ‘illaP is conceived as 

the application of the method to a particular case: each 

particular instance of Privacy-Violation provides the factor 

occasioning the proscription of that instance. E.g. entering into 

the house of someone else without permission, an instance of 

Privacy-Violation, provides the ‘illa occasioning the 

proscription of such an action. In other words 

 

 the occasioning factor (‘illaP) in relation to a juridical 
ruling H(x) defined over the set P is the application of 

the function from all instances of P into the set of 

instances of H(x).  

 

25 

Establishing that a given ruling applies to the branch-case of 

the thesis involves two main steps 

 

1) recognizing that the root-case is an application of the 
function that takes us from every instance of P to a 

suitable instance of H(x) (and dually, the application 

takes every instance of ~P to the negation of the ruling) 

– that is, the function that verifies the universal norm 
Every P falls under the ruling H(and its dual), 

2) recognizing that this general norm also applies to the 

branch-case.  

 

26 
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 The point is that the construction underlying the 

meaning of application of the ruling to the root-case is, 

to put it in Bartha's terms (2010, p. 109), precursor to 

a generalization. However, the idea is quite different 

from what is nowadays called one-step induction – see 

e.g. Bartha (2010, pp. 36-40). Indeed, identifying the 

occasioning factor for the root-case under 

consideration amounts grasping it as exemplifying (the 

application of) a general law: this is what the notion of 

causality in uṣūl al-fiqh comes down to.  

 

27 

We could deploy  

  

H(x) :prop ({ x : Drinks | Toxic(x)}) 

(subset-separation: the set of those elements of the set of 

drinks that are toxic)  

  

instead of the simpler 

  

H(x) :prop (x : ToxicDrinks) 

(the set of toxic drinks) 

  

However, for the sake of perspicuity, and despite the fact that this 

will lead us to the somewhat awkward formulation instantiating the 

property, we will deploy the second, simpler notation.  

 
28 
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Recall 

 

1) Efficiency (ta’thīr). 

2) Co-extensiveness (ṭard) – the presence of the 

property when the judgment is present. 

3) Co-exclusiveness (‘aks) – the absence of the property 

when the judgment is absent. 

 

29 

Let the expression x :P, stand for a set of drinks x that are 
toxic, and likewise ~Pfor non-toxic drinks. 

Let the expression H(x) stand for the juridical ruling that the 
consumption of x is forbidden. Similar paraphrase admits the 
negation ~H(x).  

  

If we spell out the precise formulation of the property as determined 
by ṭard and ‘aks, the point is that  

  

ṭard: If x is a toxic drink then its consumption is forbidden. 

‘aks: If x is not a toxic drink  then its consumption is not 
forbidden. 

We deploy here the expression set toxic drinks for simplicity. 
As discussed in the last sections, the set at stake is rather the 
set of all those substances of which the property of having 
euphoric intensity sapplies.  

 30 
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This yield the general norm:  

  

(x :P)H(x) (x :~P)~H(x) 

  

That reads: The consumption of toxic drinks is forbidden and 

the consumption of non-toxic drinks is not. Notice that the 

formation of each side of the conjunction still presupposes the 

dependence of the ruling upon the property: 

  

H(x) :prop  (x : P) 

~H(x) :prop  (x : ~P) 

31 

Accordingly, the formation of the conjunction underlying the 
efficiency of the property P in relation to the ruling H is 

structured as follows: 

  

   ṭard(x) : H(x)  (x : P) 

  

ta’thīrP 

  

   ‘aks(x) : ~H(x)  (x : ~P) 

 

32 
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Furthermore, the efficiency of the property P for our example is the pair 

  

ta’thīrP =df<ṭardP, ‘aksP> : (x :P)H(x) (x :~P)~H(x) 

  

According to this analysis the occasioning factor is the following pair of 
applications: 

  

Given ta’thīrP : (x :P)H(x) (x :~P)~H(x) 

And a :P, a* :~P, we obtain 

  

the left component of the evidence for the co-extensiveness of P 
provides the factor that occasions the application of the ruling 
H(x) to a :P – we express this with the abbreviated notation 
illaH(P)+.a : H(a);and  

  

the right component of the evidence for the co-exclusiveness of 
~P provides the factor that occasions the application of the ruling 
~H(x) to a* :~P, we express this with the abbreviated notation 
illaH(P)-.a*: ~H(a)). 

 
33 

 

 

Martin-Löf's lecture on the truth of 

empirical propositions 

34 

 In the standard, or pure, formulation a member of a set S is a program 
which when executed yields a canonical member of S.  

 In the new definition a member of a set is an `empirical quantity', i.e. 
something that is determined by *experiment* rather than calculation to 
belong to S. Canonical objects are defined as before. Thus we have for 
instance the set bool and the set N.   

 An empirical quantity X : bool is a new kind of non-canonical element. In 
general the value of an element a : A is some canonical element of A. 
For instance, the value of 2+2 is ssss(0), say. We are used to thinking of 
the values of elements of A as being determined by calculation; an 
empirical quantity is a non-canonical element whose value is 
determined by "experiment".  

 

   

S. Rahman & M. Iqbal: Unfolding parallel reasoning in Islamic jurisprudence

155



 
   

 

35 

 From Formal to Material Dialogues 

 The Formal rule (Copy-cat) is not formal:  
The implicit standard view on the formal rule 

P ! A  

O why?  

P ipse dixisti (you already asserted it: Copy-Cat!) 

The explicit view on the formal rule: Local Reasons (the 
interactive corrspondent to a  « cause » or « truth-
maker ») 

P  a : A  

O why?  

Given O ! c : A&B 

P   a = Left&(c) : A 

 
 

Material Dialogues 

36 

 Material Dialogues 

 The copy-cat strategy is defined explicity for each 
elementary proposition . Analagous the constitution of 
a type 

Example 

P ! 1 : ℕ    P ! n : ℕ 

  

O ? ≡df 1 O ! s(0) : ℕ  O ? ≡df n O ! 
s(….(s(s(0)) : ℕ 

-------------------------------  -------------------------------------------- 

P ! 1 ≡df s(0) : ℕ     P ! n ≡df s(….(s(s(0)) : ℕ   
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37 

 Back to our cases: Define X “empirical quantity of 

containing some substance”, X : bool. Then if 1 

then “Euphoric Intensity”, if 0 , then it does not be 

considered to be element of Euphoric Intensity. 

 

 Material Dialogue: {yese, noe}: Bool 

 Euphoric Intensity(xe) (xe : Bool) 

 Socratic Rule: P is allowed to assert date-wine 

has Euphoric Intensity if O asserted Euphoric 

Intensity(yese) (, given  yese : Bool) 

 

38 

Posit Challenge 

  

Defence Strategic object 

  

X ! Bool 

  

Synthesis of Boolean 

  

Y ? Bool  

X ! : yes : 

Bool 

  

X ! : no :  

Bool 

  

P ! : yes : Bool  

  

P ! : no :  Bool 

(dial version of 

introduction rules) 

  

  

X ! p : C(c) [c : Bool] 

  

 Analysis of Boolean 

 

  

 

Y ? cBool
  

 

Y ? …/LBool
  

  

  

Y ? cBool
  

Y ? …/RBool
  

  

  

X ! p1 : C( 

LBool) 

 X ! p1 : 

C(yes ) 

 

  

X ! p2 : 

C(RBool) 

X ! p2 : C(no) 

  

 

  

  

  

  

  

  

P ! (c,  p1 | p2) : C(c 

/ yes | c / no) 

 

(dial version of 

elimination rules) 

  

With equality 

  

P ! (yes / LBool,  p1 | 

p2) = p1 : C(yes) 

  

P ! (no / RBool,  p1 | 

p2) = p2 : C(no) 
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Special Local Rules for Qiyās al-‘Illa 
Expressions  "p" in "p : P " stand for either some branch-case far‘ or some root-case aṣl 

 Posit Challenge Defence 

 

X  ṭardH(P) : (x : P)H(x) 

Notation for a posit without specified 

reason 

X  ! (x : P)H(x) 

 

Y p : P 

X ‘illaH(P)+.p : H(p) 

X  ‘aksH(P) : (x : ~P)~H(x) 

Notation for a posit without specified 

reason 

X  ! (x : ~P)~H(x) 

Y p : ~P    X ‘illaH(P)-.p : ~H(p) 

X  ta’thīrH(P) : (x : P)H(x)  (x : 

~P)~H(x) 

Notation for a posit without specified 

reason 

X  ! (x : P)H(x)  (x : ~P)~H(x) 

Y p : P 

or 

Y p : ~P 

X ‘illaH(P)+.p : H(p) 

respectively 

X ‘illaH(P)-.p : ~H(p) 

X  f 

... 

X  ~f 

(one of them might not explicitly 

display 

The local reason) 

Y ! tanāquḍ f 

The antagonist 

Indicates the contradiction 

X ! I concede 

  

39 

 

 

In uttering the formula F the argumentation partner X claims that he can find a 

counterexample during a play where the antagonist Y asserts .  

The antagonist Y challenges F by asserting that  can be challenged successfully. Thus, the 

challenge of Y compels Y to open a sub-play where he (Y) utters . 

 

Challenge Defence 

X ! F 

Y ? F 

Sub-play D1 Sub-playD1 

 
Y !  

Y must play under the restriction 
of the Socratic-Rule in the sub-

play 

 
X ? (he challenges ) 

40 
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In uttering the formula V the argumentation partner X claims that he can win a 

play where he (X) asserts .  

The antagonist Y responds by challenging X to open a sub-play where he (X) 

defends . 

Challenge Defence 

X !  V 

Y ?V 

Sub-play D1 Sub-play D1 

 
Y ? (he challenges ) 

Y must play under the restriction 
of the Socratic Rule 

 
X !  

41 

42 

 These operators require “global reasons” as 

justification. 

What justifies these operators is winning the 

subplay 

 

Reason in the more usual way  
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P  ! The ruling H applies to the branch-case 

O  ! Why? 
P  Don't the Sources record that the ruling H applies to the root-case?  

O ! Yes they do 
P Doesn't the root-case instantiate the property P? 

O  ! Yes it does 

 

P  Given your previous assertions, and the 

evidence from the sources you must concede that 
the property P  has the efficiency to determine the  

occasioning factor for the ruling H. Don’t' you? 

 

P  Given your previous assertions, you 
must concede that the property P has the 

efficiency to determine the occasioning 
factor for the ruling H. Don’t' you? 

O  ! Indeed. Everything case that  

instantiates the property occasions  

the ruling on that case 

O  ! Why should I? justify? O  Constructive criticism O  ! Destructive criticism 

P  ! the presence of the ruling  is due 

to the presence of  the occasioning 

factor and  the absence of the ruling 

is due to its absence (ta‘thīr) 

O  ! Am convinced now. Every case that instantiates the 

property occasions the ruling on that case 

P Doesn't the branch-case instantiate the property P? 

O  ! Yes it does 

P  ! Accordingly the ruling also applies to the branch case. Doesn't it? 

O  ! Yes it does 

P  ! This answer justifies the thesis 

 

Development of  

a play for  

qiyās al-‘illa 

43 

P ! H(far‘) 

O  Why? 

 
 

 
P HS(aṣl)? 

O !  HS(aṣl) 

P aṣl : P? 

O  aṣl : P 

 

 
 

 
P ‘illa H(P). aṣl : HS(aṣl)? 

O ! muṭālaba 

P ! (x : P) H(x) (ṭard) 

P ! (x : ~P)~H(x) (’aks) 

P ! (x:P)H(x)(x: ~P)~H(x) (ta‘thīr) 

 

P ! ‘illaS-H(P).aṣl : HS(aṣl) 

O Destructive 

 

 

O ! (x : P)H(x)  (x : ~P)~H(x) 

P  far‘: P? (or P*) 

O   far‘: P (or P*) 

P  far‘: P 

O  ‘illaH(P )+.far‘ : H(far‘) 

 

 

 

 

 

 Qalb  Naqḍ   Kasr   Fasād al-Waḍ‘  ‘Adam      

   al-Ta’thīr 

 

 

O Constructive (mu’āraḍa) 
O  V illaH(P*)(aṣl) : HS(aṣl) 

 

 

 

 

P ‘illa H(P )+.far‘ : H(far‘) 

Development of  

a play for  

qiyās al-‘illa 

44 
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O P 
(Consuming) Date-wine is forbidden. 
! H(far‘) 

0 

1 Why? ? 0 ¿ 1, ! 2 Isn't drinking grape-wine forbidden by the 

Quran?  

HS(aṣl)?  

2  

3 Yes, it is ḥarām. 
! HS(aṣl)   

! 2 ¿ 3, ! 4 Isn't grape-wine made of pressed fruit-juice  
aṣl : P?  

4  

5 Yes  
aṣl : P  

! 4 ¿ 3, 

(5), ! 6 
So, according to your moves 3 and 5, the 

proscription of consuming grape-wine is 

caused by the fact that it is made of pressed 

fruit-juice. Right? 

‘illaH(P)+.aṣl : HS(aṣl) ? 

6 

7 I am not convinced. I rather think that the 

relevant property is containing euphoric 
intensity (P*) 

! V illaH(P*)+.aṣl : HS(aṣl). 

? 6 ? 7 muṭālaba !  

Justify ! 
8 

START OF THE SUB-PLAY START OF THE SUB-PLAY 

9 Vinegar is made of pressed juice-fruit. Isn’t it? 
aṣl* : P? 

¿ 8, ! 9 Indeed. 
aṣl* : P 

10 

11 Given 6 you must agree that being a pressed-

juice is efficient property for sanctioning them 

as ḥarām. Right? 
(x : P)H(x)  (x : ~P)~H(x)? 

¿ 6, ! 

10 

Yes 
! (x : P)H(x)  (x : ~P)~H(x) 

12 

------Continue on the next page------ 

The Dialague Example of Mu‘āraḍa 

45 

O P 
13 But, given that you just agreed that vinegar is 

made of pressed-juice, (according to the ṭard-

component of your assertion) it should be ḥarām 
! aṣl* : P 

12 Indeed 
‘illaP+.aṣl* : H(aṣl*) 

14 

15 But its consumption is not forbidden. Isn’t it? 
! ~HS(aṣl*)? 

¿ 14,  

! 15 

Yes it is not ḥarām 
! ~HS (aṣl*) 

16 

17 tanāquḍ ! You contradict yourself 
! H(aṣl*) 

? 16 I concede !  18 

19 Herewith my argument for the relevance of P* 

‘aks: Before the occurrence of the euphoric 

intensity, the lawfulness of consuming a drink made 

of fruit-juice is the object of consensus. 
! (x : ~P*)~H(x) 

‘ṭard: After the euphoric intensity occurs [i.e., when 

it becomes wine] and nothing else occurs the 

proscription of consuming a drink made of fruit-

juice is object of consensus. 

(ratification of) ‘aks: When the euphoric intensity 

of a drink made of fruit-juice falls away [i.e., when 

it becomes vinegar] and nothing else falls away it is 

object of consensus that it should not be forbidden. 
! (x : P*)H(x) 

ta’thīr: Therefore, the presence of the ḥukm is due 

to the presence of the ‘illa, and the absence of the 

ḥukm is due to its absence 
‘illaP* : (x : P*)H(x)  (x : ~P*)~H(x) 

! 8 

END OF THE SUB-PLAY END OF THE SUB-PLAY 

------Continue on the next page------ 
46 
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O P 
21 Yes, it does.  

far‘: P* 
! 20 ¿ 19, 

! 20 

Doesn't nabīdh contains euphoric intensity?  
far‘: P*? 

20 

23  Indeed ! 

‘illaH(P*)+. far‘ : H(far‘) 
! 23 ? 19 If it is the case that date-wine contains 

euphoric intensity, and, given 19,  

should not this lead to its interdiction? 
far‘: P* 

22 

! 1 So, this provides the justification for the thesis 

you were asking for with your first move: the 

branch-case falls under the ruling because it 

instantiates the property you just helped to 

identify as the one determining the 

occasioning factor. 

‘illaH(P*)+. far‘ : H(far‘) 

24 

ifḥām 

47 

P ! H(far‘) 

O ! Why [?0] 
P ! HS(aṣl)? 

O ! HS(aṣl) 

P aṣl : P*? 

O aṣl : P* 

P ‘illaH(P*)+.aṣl : HS(aṣl)? 

O ! (x : P*)H(x)  (x : ~P*)~H(x) 

P far‘ : P*? 

O far‘ : P* 

P far‘ : P* [?7] 

O ‘illaH(P*)+.far‘ : H(far‘) 

P ‘illaH(P*)+.far‘ : H(far‘)  

(!1. answer to the request of justification 

in the second move) 
 

 

 

Mu‘āraḍa 

48 
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O ! F (x : P) H(x) (qalb, reversal) 

The Opponent is committed to a sub-play where he brings 

forward a root-case of which it is recorded that an opposite 

ruling to the claimed ruling applies. Hence the root-case is 

presented as a counterexample to the Proponent's claim that 
every P falls under the ruling H and in particular to the 

claim that this ruling applies to the branch-case.  

THESIS: Saliva of beasts of prey (far‘) is impure (H). 

CLAIM: Having canine teeth determines the ‘illa. 

COUNTEREXAMPLE: The saliva of cats which are beasts of 

prey with canine teeth is not impure. 

Qalb 

49 

O ! F (x : P) H(x), given aṣl* : P, HS*(aṣl*), and ~ ( H(aṣl*)  

H*(aṣl*)) (naqḍ, inconsistency) 

 The Opponent is committed to a sub-play where he brings 

forward a root-case of which it is recorded that a different ruling 

to the claimed ruling applies and both rulings are incompatible. 

Hence the root-case is presented as a counterexample to the 
Proponent's assertion that every P falls under the ruling H and in 

particular to the claim that this ruling applies to the branch-case. 

 THESIS: Killing (far‘) should be punished with jail (H). CLAIM: 

Having commited homicide determines the ‘illa. 

 COUNTEREXAMPLE: Some forms of homicide do neither lead to 

jail nor to be set free but to the obligation of carrying out certain 

specific social services. 

Naqḍ 

50 
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O ! F (x : { x : P | B(x)}) H(x) (kasr, breaking appart) 

The Opponent is committed to a sub-play where he brings 
forward a root-case which instantiates a subset of P and of which 
it is recorded that the claimed ruling does not apply. Hence the 
root-case is presented as a counterexample to the Proponent's 
assertion that every P falls under the ruling H and in particular to 
the claim that this ruling applies to the branch-case. 

THESIS: Interdiction (H) of transaction of goods that the buyer 
did not have direct access to the goods before the contract was 
closed (far‘). CLAIM: Establishing a contract with someone in 
such a way that the beneficiary has no access to the object of the 
contract, determines the ‘illa. 

COUNTEREXAMPLE: Contract-on houses closed by internet are 
not (always) forbidden. 

Kasr 

51 

O ! F (x : P) H(x) (fasād al-waḍ‘, invalidation of the ‘illa) 

The Opponent is committed to a sub-play where he brings 

forward a root-case of which it is recorded in the sources 

that a property assumed in the thesis to apply to the branch-

case occasions in fact, the opposite ruling to the one posited 

by the Proponent. In other words, the Opponent brings 

forward an ‘illa that destroys the thesis.  

THESIS: Modern forms of divorce (far‘) do not apply to 
foreigners (H). CLAIM: Being foreigner determines the ‘illa. 

COUNTEREXAMPLE: Modern forms of divorce apply to 

foreigners or nationals..  

Fasād al-Waḍ‘ 

52 
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O ! F ! (x : P)H(x)  (x : ~P)~H(x)  (‘adam al-ta’thīr, lack of 

efficiency) 

The Opponent is committed to a sub-play where he brings 

forward a root-case which constitutes a counterexample to 

the efficiency of the proposed property asserted by the 

Proponent. 

THESIS: Interdiction of the consumption (of wine (far‘). 

CLAIM: Presence of euphoric intensity and having red-

colour, determines the ‘illa 

COUNTEREXAMPLE: White wine is forbidden, despite the 

fact that it is not red. 

‘Adam al-Ta’thīr 

53 

Conclusion 
 Parallel Argumentation, which shapes meaning 

by symmetry, highlights one particular form of that 
plural act of collective understanding we call 
reasoning.   

 All in all argumentation is nothing-more and 
nothing-less than a collaborative enquiry into 
the ways of building up those symmetries that 
ground rationality and harmony within 
inquisitive interaction. 

  By building these symmetries we provide 
meaning to our actions, meaning which is 
deployed in our actions' internal coordination with 
the actions of others. 
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On the normativity of logic

Florian Steinberger
Birkbeck/MCMP

May 23, 2017

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 1 / 24

Is logic normative for reasoning?

Three-way ambiguity.

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 2 / 24
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Background

Harman: there is no ‘significant way in which logic is specially
[normatively] relevant to reasoning’ (Change in view, MIT Press,1986,
p. 20)

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 3 / 24

The implication principle

Logical implication principle (IMP):
if S ’s beliefs logically imply A, then S ought to believe A.

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 4 / 24
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Harman’s objections

Objection from Belief Revision

Objection from Clutter Avoidance

Objection from Excessive Demands

Objection from Preface Paradox

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 5 / 24

Task: Formulate a bridge principle

If A1, . . . ,An |= C , then N(α(A1), . . . , α(An), β(C )).

If γ(A1, . . . ,An |= C ), then N(α(A1), . . . , α(An), β(C )).

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 6 / 24
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MacFarlane’s taxonomy

Bridge principles may differ in the deontic operator they deploy: Does
the normative constraint take the form of an ought (o), a permission
(p) or merely of having (defeasible) reasons (r)?

What is the polarity of the normative claim? Is it a positive
obligation/permission/reason to believe a certain proposition given
one’s belief in a number of premises (+)? Or rather is it a negative
obligation/permission/reason not to disbelieve (-)?

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 7 / 24

MacFarlane’s taxonomy

Different bridge principles result from giving the deontic operator
different scope. Let O stand generically for one of the above deontic
operators. Given that the consequent of a bridge principle will
typically itself take the form of a conditional, the operator can take

I narrow scope with respect to the consequent (C) (P ⊃ O(Q));
I wide scope (W) O(P ⊃ Q);
I or it can govern both the antecedent and the consequent of the

conditional (B) (O(P) ⊃ O(Q)).

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 8 / 24
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Examples

(Co+) If A1, . . . ,An |= C , then S ought to believe C , if S believes
the Ai .

(Wo-) If A1, . . . ,An |= C , then S ought to (not disbelieve C , if S
believes the Ai ).

(Co+K ) If S knows that (A1, . . . ,An |= C ), then S ought to believe
C , if S believes the Ai .

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 9 / 24

Evaluating bridge principles

We now evaluate bridge principles in terms of how well they perform
against our criteria.

Our criteria: Immunity to the objections + Strictness and Priority. . .

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 10 / 24
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Strictness Test

The Strictness Test: At least when it comes to ordinary, readily
recognizable logical implications leading to conclusions that the agent
has reason to consider, there is something amiss about an agent who
endorses the premises but fails to believe the conclusion.

Seems to tell against defeasible principles.

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 11 / 24

Priority Question

The Priority Question: ‘we seek logical knowledge so that we will
know how we ought to revise our beliefs: not just how we will be
obligated to revise them when we acquire this logical knowledge, but
how we are obligated to revise them even now, in our state of
ignorance’ (MacFarlane, ‘In what sense (if any) is logic normative for
thought?’, Manuscript, 2004, p. 12).

Seems to tell against attitudinally restricted principles.

Set of desiderata is inconsistent.
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Positions

Harman denies that any BP is up to the job.

MacFarlane argues for Wo- and Wr+.

Streumer (‘Reasons and entailment,’ Erkenntnis, 66, 2007) goes in for
Wr-.

Field (‘What is the normative role of logic?,’ Proceedings of the
Aristotelian Society, 83, 2009) proposes a quantitative principle:

(DB) If A1, . . . ,An |= C , then S ’s degrees of belief ought to be such
that: cr(C ) ≥ cr(A1) + cr(A2) + · · ·+ cr(An)− (n − 1).

If u(A) = 1− cr(A)

(DB’) If A1, . . . ,An |= C , then S ’s degrees of belief ought to be such
that: u(C ) ≤ u(A1) + u(A2) + · · ·+ u(An).

If the uncertainty of each premise is at most ε, then if the argument
has at least 1/ε premises, the conclusion will be maximally uncertain.

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 13 / 24

Distinguishing normative roles. . .

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 14 / 24
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Norms

(N) If C , then S ought to/may/has reason to Φ.

(AU) If Φing is the action (among the actions available to S) that
maximizes net happiness, then S ought to Φ.

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 15 / 24

Misgivings

Unhelpful

Provides no guidance.

Unfair

Does not support attributions of praise or blame.

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 16 / 24
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Evaluations

Provides a standard against which to evaluate a state or act.

Evaluates an agent’s doxastic state (or part of it) or act from a
third-person perspective.

The state or act (not the agent) is being evaluated.

Does not support attributions of praise or blame.

‘Ought’; not ‘can’-implying.

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 17 / 24

Directives

Provides guidance in first-personal doxastic deliberation.

Guiding principles must be ‘followable’.

Deontic modals are ‘deliberative’.

‘Can’-implying
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Appraisals

Third-personal assessments of the agent.

Do deal in attributions of praise and blame, etc.

Hold agents accountable; hence, presupposes sensitivity to the agent’s
epistemic situation.

Varying degrees of idealization: the sliding scale.

Deliberative deontic modals. Subjective/objective deontic modals.

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 19 / 24

(Directive) If in S ’s best estimation A1, . . . ,An |= C , then
N1(α(A1), . . . , α(An), β(C )).

(Evaluation) If A1, . . . ,An |= C , then N2(α(A1), . . . , α(An), β(C )).

(Appraisal) If S can reasonably be expected to believe that
A1, . . . ,An |= C , then N3(α(A1), . . . , α(An), β(C ))
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Upshot

Is logic normative for reasoning? ⇒ Does logic provide
guiding/evaluative/appraising norms for reasoning?

I Does logic provide evaluative norms reasoning?
I Does logic provide directive norms for reasoning?
I Does logic provide appraising norms for reasoning?

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 21 / 24

Talking past one another

Harman: Directives

Field: Evaluations

MacFarlane: Appraisals?

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 22 / 24
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Field: is explicit that his principle plays an evaluative role.

MacFarlane: Logical implications have normative force even when the
agent is incapable of being aware of them (Priority).

Weight he gives to the Excessive Demands worry suggests that
appraisals play a role.

Attitudinal principles are all factive.

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 23 / 24

Upshot

Directives Evaluations Appraisals

Objection from Belief Revision X X X
Clutter Avoidance X X*

Excessive Demands X X*

Preface Paradox X X X
Strictness Test X! X X!

Priority Question X X*

Florian Steinberger Birkbeck/MCMP Normativity of logic May 23, 2017 24 / 24
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Popper’s notion of duality and his theory of negations

Thomas Piecha
(University of Tübingen)

Joint work with David Binder

Beyond Logic, Cerisy-la-Salle, 22–27May 2017

Karl Popper’s articles on logic, 1940s

– 1943. ‘Are contradictions embracing?’,Mind, 52, 47–50.

– 1947a. ‘Logic without assumptions’, Proc. of the Arist. Soc., 47, 251–292.

– 1947b. ‘New foundations for logic’,Mind, 56, 193–235.

– 1947c. ‘Functional logic without axioms or primitive rules of inference’,
Koninklijke Nederlandse Akademie vanWetenschappen, 50, 1214–1224.

– 1948a. ‘On the theory of deduction, part I. Derivation and its
generalizations’, K. Nederlandse Akad. vanWetenschappen, 51, 173–183.

– 1948b. ‘On the theory of deduction, part II. The definitions of classical
and intuitionist negation’, K. Nederlandse Akad. v. W., 51, 322–331.

– 1949. ‘The trivialization of mathematical logic’, in: E. W. Beth, H. J. Pos
and J. H. A. Hollak, eds., Proceedings of the Tenth International Congress
of Philosophy, vol. 1, Amsterdam: North-Holland, pp. 722–727.
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Literature

Contemporary (1948, 1949) reviews by:

– Ackermann

– Beth

– Curry

– Hasenjaeger

– Kleene

– McKinsey

Detailed investigations:

– Lejewski (1974)

– Schroeder-Heister (1984, 2006)

Unpublished theses:

– K. J. Cohen (1953)

– B. Brooke-Wavell (1958)

– J. M. Dunn (1963)

Critical edition of Popper’s works on logic

Currently prepared by David Binder, Peter Schroeder-Heister and T. P.

To be ready for publication this year (Springer Trends in Logic)

Comprises:

– Popper’s published works on logic

– unpublished material: talks, lecture notes etc.

– correspondence:
Bernays, Brouwer, Carnap, Church, Kleene, Kneale, . . .
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Interesting from historical and systematic points of view

For example:

– tonk-like connective

– dual-intuitionistic logic

– non-conservative language extensions

– Peirce’s rule

– different kinds of negation

– bi-intuitionistic logic

– analysis of logicality; minimal and subminimal negation not logical

– inferentialist approach to logic

“Ultimately, we shall propose a definition [of validity of an
inference] whichmakes use only of the ideas of absolute validity
and of an inferential definition, and which no longer refers to
truth.”

(Popper; talk 5. 5. 1947 Aristotelian Society, London)

In this talk

Popper’s

– framework

– general theory of derivation

– special theory of derivation

– notion of duality

– theory of negations

See
David Binder & T. P., ‘Popper’s Notion of Duality and His Theory of Negations’,
History and Philosophy of Logic 38(2), 2017, 154–189

– exposition of Popper’s theory

– elaboration of some results that were only sketched by Popper
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Popper’s framework

Pairs of object language L and deducibility relation on L
Deducibility relation characterized by axioms: basis

No specific object language

Elements a, b, c, . . . ∈ L are statements

Deducibility: a1, . . . , an/b “b can be deduced from {a1, . . . , an}”

Symbolic metalanguage:

Symbol → ↔ &
∨

(a) (∃a)
Meaning if-then if and only if and or for all a there is an a

Absolute and conditional rules of derivation

Atomic metalinguistic formulas

a1, . . . , an/b

are also called absolute rules of derivation

Metalinguistic formulas

a1, . . . , an/b → c1, . . . , cm/d

(and iterations thereof) are also called conditional rules of derivation or just
rules of derivation

Not rules of a proof system

But metalinguistic statements about deducibility
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Characterization of deducibility “/” by a basis

A basis is a complete axiomatization of deducibility:

– Generalized reflexivity principle (Rg)

– Generalized transitivity principle (Tg)

a1, . . . , an/ai (1 ≤ i ≤ n) (Rg)




a1, . . . , an/b1

& a1, . . . , an/b2
...

...
& a1, . . . , an/bm





→ (b1, . . . , bm/c → a1, . . . , an/c) (Tg)

(Tg) is schematic: instances depending onm

Basis is formulated in the metalanguage

Complete w.r.t. absolute validity (valid independent of logical form;
structural inferences only)

Popper also considered alternative bases

The general theory of derivation

No reference to logical signs of object language

Studies

– properties of statements and

– relations between statements

definable by deducibility alone

Examples:

– mutual deducibility

– demonstrability

– refutability

– relative demonstrability
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Mutual deducibility “//”

Definition:
a//b ↔ (a/b & b/a) (D//)

Two mutually deducible statements a and b have the same logical force

Equivalence classes induced by // are logical forces

Mutually deducible statements are also called logically equivalent

(D//): substitutivity principle for logical equivalence

Alternative definition:

a//b ↔ (c)(a/c ↔ b/c) (D//′)

Lemma

In the presence of (Tg) and (Rg), (D//) is equivalent to (D//′).

Complementarity and demonstrability

Complementarity:

⊢ a1, . . . , an ↔ (b)(c)((a1/c & . . . & an/c) → b/c) (D⊢1)

Intuitively: At least one of the statements a1, . . . , an has to be true, i.e. taken
together they exhaust all possible states of affairs

For n = 1 we get demonstrability:

⊢ a ↔ (b)(c)(a/c → b/c) (D⊢1′)

From (D⊢1′):
⊢ a ↔ (b)(b/a)

by instantiating c by a and by using basic rules

A demonstrable statement follows from any statement
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Contradictoriness and refutability

Contradictoriness:

∠

a1, . . . , an ↔ (b)(c)((b/a1 & . . . & b/an) → b/c) (D

∠

)

Intuitively: A sequence of statements a1, . . . , an is contradictory if its
members cannot be true together

For n = 1 we get refutability:

∠

a ↔ (b)(c)(b/a → b/c) (D

∠′)

Intuitively: A statement is refutable if it is false no matter the state of affairs

From (D

∠′): ∠

a ↔ (c)(a/c)

by substituting a for b and by using basic rules

Definition of a self-contradictory statement, i.e. of a refutable statement

From such a statement any other statement follows

Relative demonstrability

Definition:

a1, . . . , an ⊢ b1, . . . , bm ↔ (c)((b1/c & . . . & bm/c) → a1, . . . , an/c)
(D⊢2)

For technical reasons, we use:

Definition

Relative demonstrability a1, . . . , an ⊢ b1, . . . , bm is defined by

a1, . . . , an ⊢ b1, . . . , bm ↔
(c)(d1) . . . (dk)((b1, d1, . . . , dk/c & . . . & bm, d1, . . . , dk/c) →

a1, . . . , an, d1, . . . , dk/c) (D⊢3)

Additional context statements d1, . . . , dk for 0 ≤ l ≤ k

Definition (D⊢3) is more general than (D⊢2)
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Relative demonstrability, properties

Lemma

The concept of relative demonstrability contains, as special cases, the concepts
of complementarity, demonstrability, contradictoriness and refutability.

Lemma

For all a1, . . . , an, b: a1, . . . , an/b ↔ a1, . . . , an ⊢ b.

Lemma

The following structural rules hold for a1, . . . , an ⊢ b1, . . . , bm:

(i) Weakening left/right, exchange left/right, contraction left/right

(ii) If there are i, j (for 1 ≤ i ≤ n and 1 ≤ j ≤ m) such that ai = bj, then
a1, . . . , an ⊢ b1, . . . , bm.

(iii) a1, . . . , an ⊢ b1, . . . , bm, c →
(c, a1, . . . , an ⊢ b1, . . . , bm → a1, . . . , an ⊢ b1, . . . , bm) (Cut)

Relative demonstrability and Gentzen’s sequents

For object languages containing conjunction ∧ and disjunction ∨ one can
show:

a1, . . . , an ⊢ b1, . . . , bm ↔ a1 ∧ . . . ∧ an ⊢ b1 ∨ . . . ∨ bm

Concept of relative demonstrability gives an interpretation of Gentzen’s
sequents

However: object languages need not have conjunction or disjunction
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The special theory of derivation

Special theory: definitions of logical constants

Relations between logically complex statements and their components

Object languages L not specified syntactically:
Logical connectives cannot be introduced by saying that for any two
statements a and b in L there exists a statement having some specific
syntactic form, say a ∧ b

Instead:
Logical constants have to be characterized in terms of deducibility “/”

Popper calls such definitions inferential definitions

A sign of an object language L is a logical constant iff it can be defined by an
inferential definition

Inferential definitions of logical constants

Definitions of logical constants ◦ have the form:

a//a1 ◦ a2 ↔ R(a, a1, a2) (D◦)

R(a, a1, a2): metalinguistic formula containing

– the statements a, a1, a2 (among others)

– the deducibility relation /

– or the defined relations ⊢ and

∠

Inferential, since ◦ defined in terms of deducibility

To simplify, we consider
R(a1 ◦ a2, a1, a2) (C◦)

This is the characterizing rule (C◦), which corresponds to the definition (D◦)
Problem: E.g. ∧ /∈ L.
We read a∧ b as εcR∧(c, a, b): a∧ b just picks one element, if it exists, of the
equivalence class defined by the inferential definition of ∧
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Popper’s definitional criterion of logicality

Does any rule R characterize a logical constant?

On the one hand: no restrictions on R
Popper (1947) considers the following definition for opponent (opp):

a//opp(b) ↔ (c)(b/a & a/c) (Dopp)

(c)(b/opp(b) & opp(b)/c) (Copp)

This obviously trivializes any system, since it implies (c)(b/c)

But this does not lead Popper to reject (Dopp) as a definition

Historical: tonk-like connective, considered before Prior (1960)

Popper’s definitional criterion of logicality

On the other hand: uniqueness condition

Popper considers fully characterizing rules:

Definition

A rule R(c, a1, . . . , an) is fully characterizing iff

(R(a, a1, . . . , an) & R(b, a1, . . . , an)) → a//b.

In other words:
R is fully characterizing a statement c iff R characterizes c up to mutual
deducibility (i.e. if c is unique).

Fully characterizing rules are exactly those rules that satisfy uniqueness

Criterion: existence of fully characterizing rules distinguishes logical
constants from non-logical constants

In 1948: definitions of logical constants that emphasize duality
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Popper’s notion of duality

Popper makes frequent use of duality, without making his notion of duality
explicit

Duality applied also for non-classical logics, including modal logic

Our explanation:
An inferential definition is dual to another inferential definition, if it results
from exchanging all statements on the left side of ⊢ with the statements on
its right side, i.e. by transforming

a1, . . . , an ⊢ b1, . . . , bm

into
b1, . . . , bm ⊢ a1, . . . , an

For binary connectives: also swap the arguments to produce its dual

Popper’s notion of duality

Definition

Let ⋆ be a unary connective and ◦ a binary connective.
The duality function δ is defined by the following clauses:

aδ =df a

(⋆ a)δ =df ⋆δ aδ

(a ◦ b)δ =df b
δ ◦δ aδ

(Γ ⊢ Π)δ =df Π
δ ⊢ Γδ.

(Γ,Π lists of statements; Γδ means that δ is applied to each member of Γ)

No clauses for / and //

But: no restriction of δ, since / can always be replaced by ⊢
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Example: conjunction and disjunction

Definition for conjunction (∧):

a//b ∧ c ↔ (d)(a ⊢ d ↔ b, c ⊢ d) (D∧)

b ∧ c ⊢ d ↔ b, c ⊢ d (C∧)

Apply δ to the characterizing rule (C∧):

d ⊢ c ∧δ b ↔ d ⊢ b, c (C∧)δ

which is equivalent to Popper’s definition of disjunction (∨):

a//b ∨ c ↔ (d)(d ⊢ a ↔ d ⊢ b, c) (D∨)

d ⊢ b ∨ c ↔ d ⊢ b, c (C∨)

Lemma

The following rules for conjunction and disjunction hold:

(1) a ∧ b/a (4) a/a ∨ b
(2) a ∧ b/b (5) b/a ∨ b
(3) a, b/a ∧ b (6) (c)((a/c & b/c) → a ∨ b/c)

Example: logicality of conjunction and disjunction

Lemma

Conjunction and disjunction are logical constants, i.e. their rules are fully
characterizing.

Proof.

For conjunction we have to show

((d)(a1 ⊢ d ↔ b, c ⊢ d) & (d)(a2 ⊢ d ↔ b, c ⊢ d)) → a1//a2

Assuming the antecedent, we substitute a2 for d in both conjuncts:

a1 ⊢ a2 ↔ b, c ⊢ a2

a2 ⊢ a2 ↔ b, c ⊢ a2

By (Rg) we obtain b, c ⊢ a2 from the second, and with b, c ⊢ a2 we obtain
a1 ⊢ a2 from the first.
Likewise for a2 ⊢ a1. The proof for disjunction is similar.
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Popper’s theory of negations

Popper considered several different kinds of negation

Several definitions for classical negation (¬k), e.g.:

a//¬k b ↔ (a, b ⊢ & ⊢ a, b) (D¬k1)

a//¬k b ↔ (c)(d)(d, a ⊢ c ↔ d ⊢ b, c) (D¬k2)

with the characterizing rules:

¬k b, b ⊢ & ⊢ ¬k b, b (C¬k1)

(c)(d)(d, ¬k b ⊢ c ↔ d ⊢ b, c) (C¬k2)

(D¬k1): classical negation of b is a statement which is complementary and
contradictory to b
(D¬k2) is similar to the rules in classical sequent calculus

Lemma

The definitions (D¬k1) and (D¬k2) are equivalent.

Intuitionistic and dual-intuitionistic logic

Intuitionistic negation (¬i):

a//¬i b ↔ (c)(c ⊢ a ↔ c, b ⊢) (D¬i)

c ⊢ ¬i b ↔ c, b ⊢ (C¬i)

If we dualize (D¬i), we get

a//¬i
δ b ↔ (c)(a ⊢ c ↔ ⊢ c, b) (D¬i)δ

Identical to Popper’s definition for dual-intuitionistic negation (¬m):

a//¬m b ↔ (c)(a ⊢ c ↔ ⊢ c, b) (D¬m)

¬m b ⊢ c ↔ ⊢ c, b (C¬m)

Lemma

Intuitionistic negation¬i and dual-intuitionistic negation¬m are logical
constants, i.e. their rules are fully characterizing.
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Non-conservative language extensions

Theorem

In the presence of ¬k we have

¬k a//¬i a, ¬k a//¬m a ¬i a//¬m a

In other words, the three negations¬k,¬i and¬m collapse (i.e. they become
synonymous).

Popper also considers the more general situation:

– two logical functions S1 and S2

– introduced by sets of primitive rules R1 and R2, respectively

– such that R2 ⊂ R1

If both S1 and S2 are definable, and S1 is given, then one can show that S1
and S2 are equivalent

Popper’s treatment of conservativeness

Throws some light on his logical approach in general

Schroeder-Heister (2006) argues:

– Popper does not use conservativeness as a criterion for accepting
characterizing rules

– From a semantic theory we expect that the introduction of a new
constant is always a conservative extension

– Thus Popper is not aiming at a semantic justification of logical theories

– Popper’s theory is rather a means to metalinguistically describe logical
theories
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Bi-intuitionistic logic

Theorem

If a logic contains for any statement a also its intuitionistic negation¬i a and its
dual-intuitionistic negation¬m a, then these two negations do not (necessarily)
collapse, i.e. we do not have¬i a//¬m a.

Proof.

By construction of logic L1 with this property.
(Proof sketched by Popper (1948), worked out by D. B. and T. P.)

Popper (1948): there exists a bi-intuitionistic logic

This logic L1 may not be very interesting in itself

But: first example of a bi-intuitionistic logic to be found in the literature

Shows that already Popper had the idea of combining different logics

Six further kinds of negation

Negation Characterizing rule Dual negation

¬j a, b ⊢ ¬j c → a, c ⊢ ¬j b ¬dj

¬dj ¬dj c ⊢ a, b → ¬dj b ⊢ a, c ¬j

¬l a, ¬l b ⊢ c → a, ¬l c ⊢ b ¬dl

¬dl c ⊢ a, ¬dl b → b ⊢ a, ¬dl c ¬l

¬n a, b ⊢ c → a, ¬n c ⊢ ¬n b ¬dn

¬dn c ⊢ a, b → ¬dn b ⊢ a, ¬dn c ¬n

¬k a, ¬k b ⊢ c ↔ a ⊢ b, c ¬k

¬i a ⊢ ¬i b ↔ a, b ⊢ ¬i

¬m ¬m a ⊢ b ↔ ⊢ a, b ¬m

¬n: subminimal negation (cf. Dunn 1999)
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Relations between negations

Solid arrows: negation satisfies rules of other negation
Dashed arrows: satisfaction by transitivity
Dotted lines: duality

¬k

¬i ¬m

¬l ¬dl

¬j ¬dj

¬n ¬dn

(Several relations indicated by Popper, worked out by D. B. and T. P.)

Which negations are logical constants?

Theorem

None of the rules for¬j,¬dj,¬l,¬dl,¬n and¬dn are fully characterizing.

Interesting:

– minimal negation ¬j and

– subminimal negation ¬n

are not logical constants

Overall, interesting approach
Abstraction from object languages that presuppose logical constants

Instead: discussion of logical constants in structural terms
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INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

Lakatos’s masterpiece, Proofs and Refutations, say P&R,
constitutes a wonderful exploration of how mathematics
evolves. The central theme of Lakatos’ dissertation is a
criticism of the concept of formal proof, which is an argument
executed according to the rules of a precisely specified
mechanism. His aim is to give some real sense to the claim
that regimenting proofs in order to clarify their assumptions and
the procedural rules involved –the process which formalization
idealizes– is just one phase in the complex process that leads
to the growth of mathematical knowledge.

INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

INJECTING TRUTH AND MEANING

P&R can be seen as a renewal of the classical debate
between analytical and axiomatic, or synthetic, procedures. In
fact, it is framed within a broad context where the refusal of the
latter kind of procedures is linked to a strong criticism of the
formalistic school of mathematical philosophy.

In the Euclidean Axiomatics injection of truth and meaning
are given at the outset by means of definitions (which state
which kind of entities we will dwell upon) and postulates
(whose truth, guaranted by intuitive evidence, is
propagated to any other assertion).
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INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

INJECTING TRUTH AND MEANING II

In Hilbertian Axiomatic Formal Systems both questions are
displaced at the very end of the construction.
As regards the question of truth, it has been, so to speak,
ignored and replaced by the requirement of consistency.
As regards the question of meaning, it has been
postponed to the formulation of the axioms: for instance,
what it means to be an Euclidean point (or line or plane) is
something which is (implicitly) fixed by the axioms.

INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

INJECTING TRUTH AND MEANING III

Lakatos intends to occupy a land between the Euclidean and
the Hilbertian perspectives: truth and meaning are injected in
the course of the inquiry, without any hope to reach an ultimate
point. Both notions have a tentative, conjectural nature.

As regards truth: during the dialogue, after pupil Gamma
has reminded that the very term “polyedron” has been
stretched to the point that
it does not figure in the theorem anymore, pupil Kappa adds

because of concept-stretching, refutability means
refutation. So you slide on to the infinite slope,
refuting each theorem and replacing it by a more
“rigorous” one, by one whose falsehood has not
been “exposed” yet! But you never get out of
falsehood (p. 99).
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INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

INJECTING TRUTH AND MEANING IV

As regards meaning: if one tries to stop the previous
“infinite slope” by exploiting monster-barring definitions,
and so try to keep away counterexamples generated by
concept-stretching, pupil Kappa warns that

you will slide on to another infinite slope: you will
be forced to admit of each “particular linguistic
form” of your true theorem that it was not precise
enough, and you will be forced to incorporate in it
more and more “rigorous” definitions couched in
terms whose vagueness has not been exposed
yet! But you never get out of vagueness (p. 100).

INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

QUASI-EMPIRICAL THEORIES

In opposition to both kinds of perspectives, Lakatos proposed
to assimilate mathematical theories to general scientific
theories. In the Introduction to P&R Lakatos argues that he will
challenge mathematical formalism elaborating

the point that informal, quasi-empirical, mathematics
does not grow through a monotonous increase in the
number of indubitably established theorems but
through the incessant improvement of guesses by
speculation and criticism, by the logic of proofs and
refutations.
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(QUASI-)TECHNICAL NOTIONS

There are a few (quasi-)technical terms one has to get
acquainted with in order to understand Lakatos’s proposal.

1 Central for Lakatos’ philosophy of mathematics is his
characterization of the concept of mathematical proof,
which occurs near the beginning of the text:

Teacher: I propose to retain the time-honoured
technical term ’proof’ for a thought-experiment
–or ‘quasi-experiment’– which suggests a
decomposition of the original conjecture into
subconjectures or lemmas, thus embedding it in a
possibly quite distant body of knowledge (p. 9).
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QUASI-TECHNICAL NOTIONS II

2 After “proof”, we remind the notion of proof analysis,
which means the production of what we might normally call
the “proof”: the list of “lemmas” into which the proof
(thought-experiment) was decomposed. We are doing
proof analysis when we study the precise conditions under
which the moves taken in the proof can be made, or are
correct.

3 An important role is played by the notions of local
counterexample and global counterexample. Global
counterexamples show that some universal statement is
false, but in a way that does not require any reference to
the proof of that statement. A local counterexample, by
contrast, is a property not of a statement but of a proof of
the statement. Thus the definition of a local
counterexample refers both to a statement and to a proof
of it, regarded as a sequence of other statements.
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QUASI-TECHNICAL NOTIONS III

4 The goal of the development of a proof, like that of Euler’s
formula, is a rigorous theorem, which Lakatos calls the
principle of retransmission of falsity, meaning that all
global counterexamples must become (also) local. Falsity
must be retransmitted from naive conjecture to lemmata.
That is, any counterexample to the theorem should be a
counterexample to some step in the proof-analysis of the
theorem:

Lambda: A proof-analysis is ’rigorous’ or ’valid’
and the corresponding mathematical theorem
true if, and only if, there is no ’third-type’
counterexample to it (p. 47).

(We remind that the third-type counterexamples are those
that are global – they refute the theorem at hand – but not
local – they do not falsify any step of the proof.)
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QUASI-TECHNICAL NOTIONS IV

5 The last notion to consider is the principle of the
retransmission of truth, a notion which pertains to the
case of counterexamples which are both local and global.
The hollow cube, for instance, that is a cube with a cube
shaped hole in it, is a counterexample which is both global
(since V − E + F = 16− 24 + 12 = 4), and local (since it
cannot be stretched flat on the blackboard having had a
face removed). To treat this type of counterexamples the
faulty lemma is made up a condition of the original
conjecture, restricting in this way its range of applicability.
The proof is left unchanged, and just like with the question
of the convexity, in this case too we have no assurance that
even some polyhedron which does not satisfy the lemma is
still an Eulerian polyhedron. .
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COMMENTS

It is tempting to see the last two notions as very kin to,
respectively, the soundness and the semantic completeness of
a (formal) theory, the means to impede the overgeneration and
undergeneration of mathematical truths.
However, because of the peculiarities of Lakatos’s perspective,
this is a temptation we must resist. The evolution of the initial
“proof” sketch, or thought-experiment, results from interactions
with various kinds of counterexamples. At each stage we
examine the proposed counterexamples evaluating the reasons
for the possible inadequacy of the proof, where such an
examination may provide hints as to how modify both the steps
and the notions involved in the proof.
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AN OPEN FRAMEWORK

Not necessarily this procedure produces a convergent
sequence of proofs flowing into a definite, ultimate proof,
least of all in a definite proof of the original conjecture. And
the possibility to abandon the original conjecture cannot be
excluded.
P&R takes into account various ways of coping with
counterexamples. It would be however a serious mistake
to search for the correct method. The correct perspective
is precisely given by the interplay of different methods to
face different kinds of counterexamples; i.e., the interplay
between generation and evaluation of counterexamples.
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AN OPEN FRAMEWORK II

What is worth to stress is that both generation and
evaulation are driven by the proof.
As student Beta admits, the logic of conjectures and
refutations has no starting point (naive conjectures are
preceded by many ’pre-naive’ conjectures and refutations),
but the logic of proofs and refutations has: it starts with the
first naive conjecture to be followed by a
thought-experiment (p. 74).
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DISTANCING POPPER?

According to a largely shared opinion, Lakatos modified
Popper’s critical falsificationism with regard to two core aspects.

He extends falsificationism also to mathematics (to which
Popper himself did not venture to apply his ideas)
proposing to consider also the latter as quasi-empirical.
Mathematical theorems are not irrefutably true statements,
but conjectures: one cannot know that a theorem will not
be refuted.
Refutation does not entail immediate rejection -as it was
the case in Popper’s Darwinistic account. He deploys
instead a battery of strategic moves in order to cope with
cropping out counterexamples.
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DISTANCING POPPER? II

The previous characterization contains significant portions of
truth, of course, but I don’t feel satisfied that it offers a very
balanced view of things, and I think that Popper’s logical and
epistemological papers of the late ’40s can help us in better set
the relationship between Popper’s falsificationism and Lakatos’s
fallibilism.
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POPPER [1946]

Interesting suggestions are already present in Popper [1946]:
In this paper Popper wonders why ought we avoid those
breaches of the rules of logic that we call “fallacies” if not
because we are interested in formulating or deriving
statements which are true, that is to say, which are true
descriptions of facts?
We undertake the “meta-linguistic” task of detecting the
rules of inference of the language we are investigating
aiming at formalising all those inferences which we
intuitively know how to draw; much as we know that it is
impossible to build a single calculus able to formalise all
valid intuitive rules of inference.
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POPPER [1946] II

Turning to the question: Why are the logical calculi – which
may contain arithmetic – applicable to reality? , he notes

In so far as a calculus is applied to reality, it loses
the character of a logical calculus and becomes a
descriptive theory which may be empirically
refutable; and in so far it is treated as irrefutable,
i.e., as a system of logically true formulae, rather
than a descriptive scientific theory, is not applied
to reality (p. 54).
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POPPER [1946] III

Commenting on this point, he discriminates “apparent” from
“real” applications, considering proposition “2 + 2 = 4”.

If applied to apples, such proposition is considered
irrefutable and logically true, but it does not describe any
fact involving apples – any more than the statement “All
apples are apples” does. Application is only apparent: by
uttering that proposition we do not describe any reality, but
only assert that a certain way of describing reality is
equivalent to another way.
Otherwise, the sentence “2 + 2 = 4” may be taken to mean
that, if somebody has put two apples in a certain basket,
and then again two, and has not taken any apples out of
the basket, there will be four in it. In this interpretation the
symbol “+” stands for a physical manipulation, and
consequently we cannot be sure whether that sentence
remains universally true.
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POPPER [1946] III

Very easily Popper provides examples of models in which
“2 + 2 = 4” is not applicable (rabbits, drops,. . . ), and to
criticism based on the convinction that the equation “2 + 2
= 4” only applies to objects to which nothing happens, he
replies that then that equation does not hold for “reality”
(for in “reality” something happens all the time).
And concludes maintaining that

whenever we are doubtful whether or not our
statements deal with the real world, we can
decide it by asking ourselves whether or not we
are ready to accept an empirical refutation. If we
are determined, on principle, to defend our
statements in the face of refutations [. . . ], then we
are not speaking about reality. Only if we are
ready to accept refutations do we speak about
reality (p. 56).
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POPPER ON “PROOF”

Pertinent to the previous remarks is the following passage,
quoted by Bar-Am in [2009], which reveals much about the
character of the course in logic and scientific method Popper
taught at LSE from 1946 to 1969:

The idea that science “proves” is wrong. The word
“proves” is being misunderstood. In the sense of
“prove” discussed above science has “proved” very
little. Look at the changes in science in the last 2,000
years. If on important points science can change its
teaching so much in the course of time, the proof, if it
occurs at all in science must be comparatively rare
. . . it marked a kind of false idea in science, an idea of
science in which science cannot change, only grow.
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METHODOLOGICAL ISSUES

Popper’s idea is to consider a number of languages and
translations from one of these languages into the others.
The presupposition is that we master, or have competence,
of the languages involved.
We remind that for Popper Logic is a metalinguistic
enterprise. A distinctive feature of his approach, compared
with now usual approaches, is that no assumption is made
about the form or syntactic structure of the
(object-)language, say L. L could also be a formally
defined language, but nothing excludes its being a natural
language.
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METHODOLOGICAL ISSUES II

The theory of inference that we are going to present will be
able to be applied to any language in which we can identify
statements, whatever their logical structure or lack of
structure may be; that is to say, expressions of which we
might reasonably say that they are true or that they are
false.
Popper starts by focusing on the problem of giving a
satisfactory definition of “valid deductive inference”, where
“deducibility” is the only undefined notion employed, as far
as propositional and modal logic are concerned.
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METHODOLOGICAL ISSUES III

Popper’s method, closely related to subsequent Lakatos’s
viewpoint, is the following:

we shall propose a definition, criticize it, and
replace it by a better one, and repeat this
procedure ([1947a], p. 251).

(It is opportune to notice that [1947a] is Popper’s paper
Lakatos mainly refers to.)
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METHODOLOGICAL ISSUES IV

Popper presents a model consisting of an articulated
structure given by inferential relations, which is to be laid
on any L, and aims at characterizing the meaning of
logical compounds in the form of answers to questions like:
“what does it mean for L to have an operation which has
the inferential force of a negation, conjunction, . . . ?”.
This calls to mind the model of language which Quine was
going to present shortly after (in 1951, with Two Dogmas of
Empiricism): the model of an articulated structure, with
some sentences lying at the periphery, where experience
impinges, and others at varying levels within the interior.
However, whereas Quine’s proposal was driven by general
meaning-theoretical issues, Popper just aimed at
characterizing the meaning of logical notions.
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METHODOLOGICAL ISSUES V

We collect here some notions which will be soon useful. Let’s
consider two languages, say L1 and L2:

1 A translation of L1 into L2 such that every complete
statement of the former is co-ordinated with one complete
and meaningful statement of the latter is called an
interpretation.

2 If the interpretaion preserves re-occurrences of statements
then it is called a statement-preserving interpretation.

3 In the case in which with every different statement of L1 a
different statement of L2 is coordinated, Popper speaks of
a strictly statement-preserving interpretation.

4 In case a translation preserves the meaning of the
statements of L1, it is called a proper translation.
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METHODOLOGICAL ISSUES VI

5 Assuming given the distinction between the formative
signs and the descriptive signs of the languages we are
considering, a form-preserving interpretation is now
defined as an interpretation which

preserves the meaning of all the formative signs,
preserves recurrence of those groups of descriptive
expressions which, in a proper translation, would fill the
spaces between the translated formative signs.

6 Two statements a1 and a2, not necessarily belonging to the
same language, have the same logical form if, and only if,
there exist two form-preserving interpretations such that a1
interprets a2 and vice versa.

7 Then, the logical form of the statement a1 is defined as the
class of statements (of any number of languages) which
have the same logical form as a1.
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METHODOLOGICAL ISSUES VII

8 The logical skeleton of a statement is obtained simply by
eliminating all descriptive signs, and indicating, at the
same time, recurrences of descriptive signs, by some
method or other. Two statements a1 and a2, sharing the
same “logical skeleton”, belong to the same language.

9 Assuming given the distinction between the formative
signs and the descriptive signs of the language, the notion
of “logical skeleton” admits a direct definition, i.e. without
passing through the idea of interpretation. On the other
hand, and under the same assumption, the idea of a
logical form is more general, and gives us the means of
constructing a theory of language – or of languages –
without tying us down to any particular language.
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METHODOLOGICAL ISSUES VIII

Tackling the notion of a valid (deductive) inference, Popper
tries various proposals:

(D1) An inference is valid iff every possible state of
affairs which renders all the premises true also renders the

conclusion true.
A reformulation of (D1) is obtained by exploiting the notion
of counter-example:
(D1’) An inference is valid iff no counter-example of it

exists
Problems: “state of affairs”? “possible state of affairs”?
does “possible” mean “logically possible”?
A second proposal uses the notion of “logical skeleton”:

(D2) An inference is valid iff every inference with the
same logical skeleton whose premises are all true has a

true conclusion.
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METHODOLOGICAL ISSUES VI

Another possibility is that we use the notion of “logical
form” defined with the help of the term “form-preserving
interpretation”:

(D3) An inference is valid iff every form-preserving
interpretation of it whose premises are all true has a true

conclusion.

An intrinsic limit of (D2) is given by its referring to other
arguments of the same logical skeleton as the argument in
question and thereby confines its reference to other
arguments belonging to the same language. (D2),
moreover, is conditioned by the possible poverty in
descriptive signs of the given L: an invalid inference would
appear as valid from the point of view of (D2), simply
because no counterexample exists within L.
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METHODOLOGICAL ISSUES VII

By its referring to all form-preserving interpretations, and
therefore to an unspecified number of different languages,
viz., to all those into which the formative signs can be
properly translated, (D3) warrants that the validity or
otherwise of an inference or rule of inference is
independent of the language in which it is formulated.
The problem with (D3) is that it is based on the distinction
between formative and descriptive signs. A distinction that
only “interpretation” and “statement-preserving
interpretation” do not presuppose.
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METHODOLOGICAL ISSUES VIII

Popper proposes to start from a number of inferences
which are valid whatever the logical form of the statements
involved. Since they are valid indipendently of the
distinction “formative/descriptive”, they are called
absolutely valid.
Having a certain system of absolutely valid rules at our
disposal, it is possible to define the logical force or import
of the various formative signs in terms of deducibility: this
is called an inferential definition. Formative signs are
characterized as those signs which can be given an
inferential definition.
The following definition is proposed:

(D4) An inference is absolutely valid if, and only if,
every statement-preserving interpretation whose premises

are true has a true conclusion.
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METHODOLOGICAL ISSUES IX

Absolute validity does no longer depend on the distinction
between formative and descriptive signs. Popper admits
that it depends on the distinction between statements and
non-statements. But he emphasizes that whereas the
former distinction affects the very central problem, validity,
the latter can’t affect the decision as to the validity or
invalidity. It can only affect the question whether a certain
sequence of expressions is an inference (valid or invalid) or
no inference at all.
We can not yet define, for instance, what we mean when
we say: “a is the negation of b”. But we do posses the
means of defining what we mean when we say:
“a has the same (logical) force as a negation of b whatever

the logical form of a and b may be”
And this is what Popper gets now ready to do.
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LOGICAL ISSUES

His program is to characterize the notion of deducibility
through a certain system of absolutely valid rules, and
then, without any link to any particular language ([1947], p.
260), he proceeds to provide definitions of logical
compounds just in terms of the metalinguistically
characterized deducibility relation.
At the metalinguistic level, Popper adopts the following
symbolic notations:

→ ↔ & ∨ (a) (∃a)

INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

LOGICAL ISSUES II

To express the assertion: “From the statements a1, . . . ,an,
the statement b can be derived” Popper uses the notation

a1, . . . ,an/b

noting that,
1 the symbols a, b, c, . . . , are variables, and their values are

statements. Since we are at the metalinguistic level, names
of statements (and not the statements themselves) may be
substituted for the variables, which can be described as
variable names of statements; and

2 although we may operate with as many premises as we
like, we draw only one conclusion at a time.
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LOGICAL ISSUES III

Popper first attempts to determine the notion of deducibility
by laying down a few very simple primitive rules for it,
called a Basis. Basis I consists of
a Generalised Principle of Reflexivity, referred to by (RG):

a1, . . . ,an/ai (1 ≤ i ≤ n)
and a Generalized Principle of Transitivity, referred to by
(TG):

(a1, . . . ,an/b1)

...
(a1, . . . ,an/bm)

(b1, . . . ,bm/c → a1, . . . ,an/c)
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LOGICAL ISSUES IV

In a preliminary way, it is to be reminded that the
introduction of compound statements starts by assuming
postulates which assure, for every (pair of) statement(s),
say a (and b), the existence of the corresponding
compound statement. The function of postulates, which do
not really form a part of Popper’s theory of inference, is
solely to indicate explicitly that the application of the theory
is limited, if we wish to operate with certain compounds, to
languages which contain these compounds.
If a and b are mutually deducible, we write

a//b
We may also define in a obvious way “//” on the basis of “/”:

(D//) a//b if, and only if, a/b & b/a.
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NEGATION

We focus on “negation”: in [1947] the following definition is
first given

(4.6) ¬a,b/¬c ↔ c,b/a.
It is interesting to note that (4.6) characterizes negation by
means of the rule of contraposition in which the left to right
direction ¬a/¬c → c/a is an intuitionistically invalid form.
In other words, (4.6) amounts in effect only to a principle
underlying the classical theory of “indirect reduction”.
Popper notes that (4.6) is not completely satisfying since
two negations occur on the left at the same time. Being the
one somehow linked to the other, cannot always be
eliminated alone.

INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

NEGATION II

Much more satisfying is considered the following definition:
(D 5.6) a//¬b ↔ (a1)(b1)(a,a1/b →

(a,a1/b1 & a1,b1/b)).
Popper notes that the last occurrence of “b1” could be
omitted. It is added only to make obvious the simmetry
between the laws of contradiction and excluded middle.
We think, however, that (5.6) combines in a somewhat
cumbersome way a form of Peirce rule – if ¬b,a1/b then b
follows from each a1,b1 – together with the law of
contradiction: from ¬b,a1 follows each b1.
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NEGATION III

In an interesting way classical negation is compared with
the intuitionistic one in the following two definitions, which
contain one only occurrence of a quantifier, and are
therefore not quite suitably related to (D 5.6):

(D 5.6c)
a//¬cb ↔ (b1)(a,b/b1 & (a,b1/b → b1/b))

(D 5.6i)
a//¬ib ↔ (b1)(a,b/b1 & (b,b1/a → b1/a))
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NEGATION IV

Seen from the point of view of sequent calculus, both rules
contain an instance of “ex falso quodlibet”,
(b1)(¬c,ib,b/b1), together with an application of the rules
of negation (respectively: Peirce’s rule and self-denial) and
contraction:

¬cb,b1 ` b
¬cb,¬cb,b1 `
¬cb,b1 `

b1 ` ¬c¬cb

b ` b
` b,¬cb
¬c¬cb ` b

b1 ` b

b,b1 ` ¬ib
¬i¬ib,b,b1 `

b ` b
¬ib,b `

b ` ¬i¬ib
b,b,b1 `
b,b1 `

b1 ` ¬ib
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NEGATION V

This provides a first exemplification of the decomposition of
logical notions we refer to in the title.
In [1947a, p. 284] the same definition (5.6c) is taken as the
starting point for further developing the analysis. In fact,
Popper defines the “exclusiveness” (or “contradictoriness”)
of a couple of statements [a⊥b], and their “exhaustiveness”
(or “logical disjunctness”) [a>b] (both notions can be
extended to any number n ≤ 2 of statements).

(7.5)
a⊥b ↔ (c)(d)(c/a → (c/b → c/d))

(7.6)
a>b ↔ (c)(d)(a/c → (b/c → d/c))
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NEGATION VI

The Exclusiveness of a and b expresses the impossibility
of their coexistence: if a statement c allows us to infer both
a and b, then c allows us to infer any statement d ; that is,
any c capable to separately infer two exclusive sentences
plays the role of “falsum”: c ≡ ⊥. A pair of exclusive
sentences is the weakest “sentence” capable to infer any
other sentence of the language.
The Exhaustiveness of a and b expresses the fact that a
and b fill any possibility: if a statement c can be inferred
from both a and b, then c can be inferred from any
statement d ; that is, any statement which can be
separately obtained from two exhaustive statements plays
the role of “verum”: c ≡ >. A pair of exhaustive sentences
is the strongest “sentence” capable to be inferred from any
other sentence of the language.
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NEGATION VII

By means of definitions (7.5) and (7.6), Popper defines the
notion of complementarity of statements a and b:
(7.7) a// the complement of b ↔ ((a⊥b)&(a>b))
If a and b are exhaustive as well as exclusive, then a// the
complement of b; that is, that a is the complement of b
means that a and b cannot coexist whereas they cover any
possibility. In a sense, “complement” and “negation” are
equivalent notions:

[a//¬b & c// the complement of b]→ (a//c)
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NEGATION VIII

The two components of the notion of “complementarity”
(and, through the equivalence, of the notion of “negation”)
focus on different features of the group of the “identity
rules”: exclusiveness looks at the “. . . `” perspective,
whereas exhaustiveness looks at the “` . . .” direction.
This analysis is already available in definition (7.2) of
[1947a]

(7.2) a//the negation of b if, and only if,
(c)(a,b/c & (a, c/b → c/b)).

according to which “negation” has two components: the
former exhibits (a variant of) the “. . . `” perspective, the
latter expresses the content of the Peirce’s rule, and is a
variant of the “` . . .” perspective.
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NEGATION IX

Deepening the previous decomposition, in [1948a] Popper
reminds that

The intuitionistic negation of b is the weakest of
those statements which are strong enough to
contradict b (my emphasis)

meaning that, together with b, it is capable to infer any c.
Thus, a is equivalent to the intuitionistic negation of b,
a//¬ib, if and only if

(c)(c/a ↔ (d)(e)((d/c & d/b) → d/e).
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NEGATION X

Popper comments in [1948a] stressing that intuitionistic
negation is characterized by contradictoriness, or
exclusiveness, alone. This fact could induce the idea that
an analogous link could exist between classical negation
and complementarity, or exhaustiveness, again alone.
This is an idea we must abandon: it would mean that a is
equivalent to the classical negation of b, a//¬cb, if and
only if

(c)(c/a↔ (d)(e)((a/d & b/d → e/d))
where we have dropped the part (c)(a,b/c), the “principle
of contradiction”.
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NEGATION XI

Thus, the idea to be adandoned is that “excluded middle”
alone could be enough to characterize classical negation,
meaning that any c which can be inferred from both a
statement and its classical negation, can be inferred from
any statement. In other words, this is evidence for the
mutual independence of the two components of (classical)
negation.
Pursuing this idea, Popper gets a different (from both
classical and intuitionistic) notion of negation, say ¬mb,
which is called the “minimum definable negation of b”:

(D 4.2) a//¬mb ↔ (c)(a/c ↔
(d)(e)((b/e & c/e)→ d/e)
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NEGATION XII

Popper comments on (D 4.2) saying that ¬mb is the
strongest of those statements which are weak enough to
be complements of b. The right hand side of (D 4.2)
means that a statement c can be inferred from ¬mb iff it is
complementary to b.
Deconstructing and reassembling logical notions,
specifically negation, Popper has been able to draw
attention to a “new” logic, which is now called dual
intuitionism, and which is characterized by the “minimum
definable negation”, and which can have at most one
formula on the left of the sequent arrow.
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NEGATION XIII

Continuing to dwell upon the various notions, Popper notes
that besides taking care to use different names, there is no
need to make sure that our system of definitions, and
hence the language object whose inferential relations we
are dealing with, is consistent.
This is most probably a teaching which is part of A. Tarski’s
legacy. I mean, of his claim regarding the inconsistency of
natural languages. Popper makes the example of the
notion of “opponent” (we refer to [1947a]):

(7.8) a// opp (b) if, and only if, (c)(b/a & a/c).
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NEGATION XV

Popper emphasizes that, as a consequence of definition
(7.8), every language which has a sign for “opponent of b”
– analogous to the sign for “negation of b” – will be
inconsistent. But this need not lead us to abandon (7.8); it
only means that no consistent language will have a sign for
“opponent of b”.
Popper’s definition of “opponent of b” seems to contain
already the idea of Prior’s connective “tonk”, and in fact
Prior cites Popper’s paper (even though just with regard to
the clarification of the notion of “analytically valid inference”
provided by Popper in [1947a]).
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NEGATION XVI

However, Popper doesn’t feel obliged to raise barriers
around the notion of “opponent”. We can say that
“opponent” is a(n ante litteram) generalization of “tonk”; in
the sense that we get “tonk” when the (c) in the definition
of “opp b” is particularized to b. In this way, in fact, we have
that “a tonk b” is the opponent of a; in fact, by the same
rules governing “tonk” it holds:

(a/a tonk b & a tonk b/b).
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NEGATION XVII

Reflecting on opp(b), and with respect to the inferential
definitions provided by Popper for the logical compounds of
a given object language L, it is reasonable to wonder if any
set of rules gives rise to a definition of a logical constant or
not.
The question is very near to the one people working in
proof-theoretic semantics had to face after “tonk” came to
the fore: is every “inferential definition” to be allowed?
Popper’s answer seems to be “yes”, and this would teach
us that his system seems not include any harmony
requirement, since the transitivity rule used by Belnap to
overcome “tonk” is part of Basis I.
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NEGATION XVIII

As D. Binder and T. Piecha say in [2017],
there is one condition that Popper seems to
consider to be essential for any definition of a
logical constant, namely uniqueness:[. . . ] fully
characterizing rules are exactly those rules that
satisfy uniqueness.[. . . ] It is the existence of fully
characterizing rules that distinguishes logical
constants from non-logical constants, and it is this
criterion of logicality that leads Popper to reject,
for example, minimal negation as a logical
constant. (pp. 167-168)
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I think that attending Popper’s courses and seminars was a true
“training ground” for most of his students, Imre Lakatos
included.

It is difficult not to see a deep link between Popper’s playing
with the logical notions and Lakatos’s perspective, in which
the starting point is got by adapting a somehow devised
“proof-sketch” to new problems waiting for a solution.
The evolution of the initial proof results from interactions
with various kinds of counterexamples which immediately
start to crop up, leading to arguments over the meaning of
terms involved in the definitions as they are put forward, so
that various definitions of polyhedron, polygon, edge, area,
vertex, . . . , are provided.
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CONCEPT-STRETCHING

At p. 93 pupil Pi notes that it is impossible to keep
refutations and proofs on the one hand and changes in the
conceptual, taxonomical, linguistic framework on the other.
Facing a counterexample, one can choice to disregard it
because involving notions not belonging to his language
L1, or to accept the counterxample passing by
concept-stretching to a new language L2, . . .
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CONCEPT-STRETCHING II

Commenting on this point, pupil Gamma foresees the
possibility of inconsistent languages:

we may have two statements that are consistent
in L1, but we switch to L2 in which they are
inconsistent. Or, we may have two statements
that are inconsistent in L1, but we switch in L2 in
which they are consistent. [. . . ] The growth of
knowledge cannot be modeled in any given
language. (My emphasis)
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CONCEPT-STRETCHING II

The skeptic component of Lakatos’s attitude surfaces in
the claim that no single language can model the growth of
knowledge, and that there is no hope that the mechanism
of refutational success, i.e. “concept-stretching”, could
peter out. This same attitude is the source of some of his
most brilliant insights.
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CONCEPT-STRETCHING II

As pupil Kappa explicitly spells it out:
For any proposition there is always some
sufficiently narrow interpretation of its terms, such
that it turns out true, and some sufficiently wide
interpretation such that it turns out false. Which
interpretation is intended and which unintended
depends of course on our intentions. [. . . ]
Concept-stretching will refute any statement, and
will leave no true statement whatsoever (p. 99).
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I SHALL STRETCH “STRETCHING”

The last notion to be submitted to “stretching” is that very
same notion, and it is intruiguing to compare the last
assertion with the following quotation from Wittgenstein
(Philosophical Investigations, § 201):

[. . . ] no course of action could be determined by
a rule, because every course of action can be
made out to accord with a rule.

The thread of skepticism is then followed until touching the
arithmetical (as for instance, addition) and logical (as for
instance, the universal quantifier) notions.
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I SHALL STRETCH “STRETCHING” II

Answering to pupil Gamma, who hopes to reach a point
where the meanings of the terms will be so crystal clear
that there will be one single interpretation, as it is the case
with 2 + 2 = 4, pupil Kappa shows that it is possible to
stretch also this proposition by stretching the meaning of
“addition”. To this aim it is envisaged a generalized notion
of addition which could be called addition as package. The
usual addition is recovered from that as the very special
case of packing where the weight of the covering material
is zero.
Of course, it is also in this case compelling the closeness
with themes from Kripke’s Wittgenstein on Rules and
Private Language of 1982, especially with the
mathematical example Kripke gives to support his
interpretation of the rule-following paradox.
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I SHALL STRETCH “STRETCHING” III

From our point of view, beyond looking forward, it is also
interesting to look backward: it is in fact immediate to think
to Popper [1946], where we encountered an analogous
variation on the operation of addition, but of course
absolutely lacking any skeptic trace.
Popper’s speculation on the applicability of logic and
arithmetic to reality was, so to speak, the breach through
which Lakatos could insert his quasi-empirical proposal
skepticism colored.
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I SHALL STRETCH “STRETCHING” III

Arguing about the cylinder, and wondering which kind of
counterexample to the “Cauchy proof” it is, pupil Gamma
claims that the falsity of “there is a diagonal of the circle
that does not create a new face” entails the truth of “all
diagonals of the circle create a new face” (p. 44).
Lakatos emphasizes that in this way the universal
quantifier underwent a modest stretching, consisting in
removing the existential import from its meaning, so that it
no longer applies only to non-empty classes. This was an
important event, since it draws attention on the possibility
that also logical notions experience some shifts of
meaning.
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BEING CAUTIOUS

Lakatos’s insight, in this case, seems to foreshadow
Etchemendy [1990], where the existential quantifier was
included among the variable expressions, identifying its
satisfaction domain with all subcollections of the universe.
As a result of this one gets that the sentence ∃x∃y(x 6= y)
would be logically true iff every subcollection of the
universe contained at least two elements. This last
statement, however, is of course false (there are the
singletons). Thus, rightly, we get that ∃x∃y(x 6= y) isn’t
logically true.
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BEING CAUTIOUS II

Lakatos, however, does not follow that line of thought: pupil
Theta says that concept-stretching has to stop at the point
where it opens the way to irrationalism, and concludes:

We may have to find out which are those terms
whose meaning can be stretched only at the cost
of destroying the basic principles of rationality (p.
103).

And Lakatos notes that the most interesting results in this
direction were Popper’s papers of the late 40s from which it
follows that “one cannot give up further logical constants
without giving up some basic principles of rational
discussion” (p. 104).
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... BUT STILL CRITICAL

In a footnote at p. 123, Lakatos observes that an
unsatisfactory trait of Popper’s treatment of logical form is
the unsufficient attention devoted to the important problem
of translatory definitions.
The limit of Popper’s idea is to search for a definition of
valid inference depending only on the list of formative
signs.

[V]alidity of an intuitive inference depends also on
translation of the inference from ordinary (or
arithmetical, geometrical, etc.) language into the
logical language: it depends on the translation we
adopt.
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... BUT STILL CRITICAL II

To overcome Tarski’s puzzle in the final part of his 1936
paper “On the notion of logically following”, Popper tried to
reverse Tarski’s order of priority, taking the notion of
“derivability” as primitive, and showing that those signs are
logical, or formative, which can be defined with the help of
that primitive concept.
To find the correct order of prioriy is one problem, which
Lakatos doesn’t appreciate so much.
The case of Euler’s Conjecture –which was of the form “All
A’s [polyhedrons] are B’s [Eulerian]”– is in fact evidence
that assessing logical validity does not hinge only on the
list of formative signs – in this case “all” and “implication” –.
The example of the cylinder showed that deforming “A”
entailed also a deformation of logical terms.
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THANKS

FOR YOUR ATTENTION

INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

REFERENCES

N. Bar-Am [2009], “Proof versus Sound Inference”, in Z.
Parusniková, R.S. Cohen, eds., Rethinking Popper,
Springer.
D. Binder, T. Piecha [2017], “Popper’s Notion of Duality and
His Theory of Negation”, in History and Philosophy of
Logic, 38, No. 2, 154-189.
J. Etchemendy [1990], The Concept of Logical
Consequence, Cambridge.
I. Lakatos [1976], Proofs and Refutations, Cambridge Univ.
Press.
I. Lakatos [1978], The Methodology of Scientific Research
Programmes: Philosophical Papers, vol. I, Cambridge
Univ. Press.

E. Moriconi: From Popper’s Decomposition of Logical Notion to . . .

229



INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

REFERENCES II

I. Lakatos [1978a], Mathematics, Science and
Epistemology: Philosophical Papers, vol. II, Cambridge
Univ. Press.
G. Polya [1962], Mathematical Discovery, John Wiley and
Sons, New York.
K. R. Popper [1943], “Are contradictions Embracing?”,
Mind, 52, 47-50.
K. R. Popper [1946], “Why are the Calculuses of Logic and
Arithmetic Applicable to Reality?”, in Logic and Reality,
Arist. Soc. Supp.,Vol. XX, 40-60.

INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

REFERENCES III

K. R. Popper [1947], “New Foundations for Logic”, Mind,
56, 193-235 (Corrections and additions in Mind, 57 (1948),
69-70).
K. R. Popper [1947a], “Logic without Assumptions”,
Proceedings of the Aristotelian Society, 47, 251-292.
K. R. Popper [1947b], “Functional Logic without Axioms or
Primitive Rules of Inference”, Kon. Ned. Akademie van
Wetenschappen, Proc. of the Sect. of Sciences,50,
1214-1224.
K. R. Popper [1948], “On the Theory of Deduction, Part I.
Derivation and its Generalizations.”, Kon. Ned. Akademie
van Wetenschappen, Proc. of the Sect. of Sciences, 51,
173-183.

E. Moriconi: From Popper’s Decomposition of Logical Notion to . . .

230



INTRODUCTION THE LOGIC OF P&R POPPER COMES INTO PLAY REMARKS ON POPPER’S LOGICAL ENQUIRIES BACK TO LAKATOS REFERENCES

REFERENCES IV

K. R. Popper [1948a], “On the Theory of Deduction, Part II.
The Definitions of Classical and Intuitionistic Negation”,
Kon. Ned. Akademie van Wetenschappen, Proc. of the
Sect. of Sciences, 51, 322-331.
K. R. Popper [1949], “The trivialization of Mathematical
Logic”, in E. W. Beth et al., Proc. of the Tenth Int.
Congress of Philosophy, Volume I, Amsterdam,
North-Holland, 722-727.
P. Schroeder-Heister [1984], “Popper’s Theory of
Deductive Inference and the Concept of a Logical
Constant”, in History and Philosophy of Logic, 5, 79-110.
P. Schroeder-Heister [2006], “Popper’s Structuralistic
Theory of Logic”, in D. Miller et al., eds., Karl Popper: A
Centenary Assessment. Vol. III. Science, Aldershot:
Ashgate, pp. 17-36.

E. Moriconi: From Popper’s Decomposition of Logical Notion to . . .

231
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An early proponent of natural deduction?

Replies to my critics

For my main intention was to simplify logic by developing what has been
called by others

”
natural deduction“. I suppose that as an effort to build

up a simple system of natural deduction (a commonsense logic, as it
were), my papers were just a failure.
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Overview

1 Biography
Vienna
Christchurch
London

2 Articles
Boolean Algebra
On Derivation and Proof
On Systems of Rules of Inference (1946/7)
A Note on the Classical Conditional
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Biography Vienna

Vienna years

Studies calculus and natural numbers under Hans Hahn in 1922. The
course ends with Principia Mathematica.

Reads Carnap’s Logical Syntax in August 1934.

Met Tarski and other Polish logicians at Prague conference in 1934
and befriends Tarski.

Axiome, Definitionen und Postulate der Geometrie (1928)

It is to be hoped that in the near future a commonly accepted symbolic
language will be established at least in logic. Not everyone who is not
especially concerned with logic can be burdened with a new symbolic
language for every new logistic work. Therefore I have obviously not used
the

”
logical calculus“, even though the subject lent itself to it.
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Biography Christchurch

Christchurch

Popper arrives in March 1937 in Christchurch for a position of
lecturer at Canterbury College.

He teaches 2 courses in logic, and 1 in ethics, history of philosophy
and introduction to philosophy.

He planned to write a logic textbook ∼ 1937/8

David Binder Popper on Logic 5 / 49

Biography Christchurch

John Niemeyer Findlay

J. N. Findlay (1903-1987) was a South-African philosopher who taught at
the University of Otago, Dunedin, from 1931 to 1945. Teacher of A.N.
Prior.

Popper probably collaborated with John Findlay on a paper on
Gödelian sentences.

Thought about applying for Findlay’s chair after Findlay left.

Discussed the Gödel article with Bernays in 1946.
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Biography Christchurch

Henry George Forder

H.G. Forder (1889-1981) was a New Zealand mathematician working
mainly on geometry at Auckland University College.

Extensive correspondence from 1943 to 1946.

They discuss logic, foundations of mathematics and quantum physics.

Forder helps Popper with his articles on boolean algebra.
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Biography Christchurch

Henry George Forder

Letter to H.G. Forder, May 7th 1943

”
You describe yourself as a disciple of Hilbert, emphasizing the

undoubtedly profound advance made by Hilbert beyond Principia
Mathematica. I agree with your judgement. I may perhaps describe myself
as a disciple of my friend Tarski whose methods, I believe, carry him nearly
as far beyond Hilbert (in the direction indicated by you, i.e. towards the

’
inhaltlich‘, i.e.

’
purporting‘ or

’
contentual‘ or

’
designational‘ or

’
denoting

function of a formal calculus‘) as Hilbert has gone beyond Russell.“

David Binder Popper on Logic 8 / 49

D. Binder: Popper and the Role of Inference Rules in Logic

236



Biography Christchurch

Rudolf Carnap

Rudolf Carnap (1891-1970) fled in 1935 and taught at the University of
Chicago from 1936 to 1952.

Carnap sends Popper his books
”
Introduction to Semantics (1942)“

and
”
Formalization of Logic (1943)“.

Popper replies to Carnap with remarks and comments on Carnap’s
books.
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Biography London

London

Popper arrives in London in 1946 and publishes soon after the following
articles:

Logic without Assumptions (1947)

New Foundations for Logic (1947)

Functional Logic without Axioms or Primitive Rules of Inference
(1947)

On the Theory of Deduction 1 & 2 (1948)

The Trivialization of Mathematical Logic (1949)
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Biography London

Paul Bernays

P. Bernays (1888-1977) teaches at the ETH Zurich.

Bernays and Popper meet in Zürich in December 1946 and discuss
the possibility of publishing an article on logic together.

Popper borrows copies of articles of Church, Hertz, Gentzen,
Glivenko, Tarski and Jaskowski from Bernays.

Popper writes an article with contributions from both him and
Bernays. The finished article

”
On Systems of Rules of Inference“

never gets published.
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Biography London

L.E.J. Brouwer

The nature of the relationship between Popper and Brouwer is discussed
neither in the biography of van Dalen nor in that of Hacohen.

Meeting and discussions in July 1947.

Popper publishes 2 articles through Brouwer (Functional Logic
without Axioms or Primitive Rules of Inference, On the theory of
Deduction I& II).

Brouwer repeatedly meets with Popper in London in the following
years.
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Biography London

Hacohen: Popper. 1902-1945 The formative years.

He heard first in 1920 about Brouwer and intuitionist mathematics.
Brouwer seemed to him to challenge mathematical rationality:

”
I was

stunned, found it irritating and depressing, but could do nothing with it.“.
On Hahn’s authority he trusted the Principia,

”
and looked at Weyl and

Brouwer with suspicion“.
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Biography London

Luitzen E. J. Brouwer

Dedication of
”
Int. Betrachtungen über den Formalismus“

To Karl Popper. In friendship and remembrance of meetings in Holland
and England and of discussions on important subjects.

Dedication of
”
Consciousness, philosophy and mathematics“

To Karl Popper In friendship and high esteem. 5.II.1949

Letter from Brouwer to Popper, January 19th 1948

The more I read and think your paper over, the more I get impressed by its
importance
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Biography London

In 1948 Brouwer writes a letter of recommendation for Popper.

Brouwer to Harold Jeffreys, May 11th 1948

(iii) Mathematical logic, where Popper plays a prominent part in the
complete renewal this science is undergoing just now. In particular his
papers on derivation and negation which appeared about the end of 1947,
I think will be consulted and quoted during a generation.

David Binder Popper on Logic 15 / 49

Articles Boolean Algebra

Boolean Algebra
(1943)
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Articles Boolean Algebra

Boolean Algebra (∼1943)

In 1943 Popper writes a series of articles on boolean algebra:

Extensionality in a Rudimentary Boolean Algebra

An Elementary Problem of Boolean Algebra

Completeness and Extensionality of a Rudimentary Boolean Algebra

Postulates for Boolean Algebra

Simply Independent Postulates for Boolean Algebra

We will discuss
”
Extensionality in a Rudimentary Boolean Algebra“.

David Binder Popper on Logic 17 / 49

Articles Boolean Algebra

Dating

Letter to Carl Hempel, July 5th, 1943

”
I hope to have something ready for the

’
Journal‘ in about three or four

months.“

Letter to H.G. Forder, July 21st 1943

I am just about to finish a paper on Boolean Algebra and extensionality. In
this paper, I discuss some problems of

”
=“ in a purely technical manner. I

should be extremely grateful if you would go through this paper of mine
before I send it to the

”
Journal“.

Letter to H.G. Forder, August 11th 1943

[...] I want to take a look at them before finishing my paper on

”
Extensionality in a Rudimentary Boolean Algebra“.

David Binder Popper on Logic 18 / 49
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Articles Boolean Algebra

Equality and Identity

Popper distinguishes two different relations of
”
sameness“:

Equality (denoted =)

Identity (denoted ≡)

Identity is the stronger of the two relations. Both equality and identity are
equivalence relations, but only for identity does the following rule of
inference hold:

x ≡ y φ(x)
(Subst)

φ(y)

David Binder Popper on Logic 19 / 49

Articles Boolean Algebra

Admissibility of (Subst)

The question referred to in the title of the paper is:

Admissibility of (Subst)

Given a formal calculus of equality, e.g. a suitable formalization of Boolean
Algebra, under what circumstances is the (Subst) rule admissible.

Popper takes the admissibility of (Subst) to be a criterion for the
extensionality of a system. (He does not use this terminology).

David Binder Popper on Logic 20 / 49
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Articles Boolean Algebra

Relevance for his logic

These technical investigations informed his definitions of the logical
constants, i.e.:

a ∧ b ` c ↔ a, b ` c (1)

or
d , a ∧ b ` c ↔ d , a, b ` c (2)

They also qualify a statement in a letter to Quine.

David Binder Popper on Logic 21 / 49

Articles Boolean Algebra

The inception of his
”
metalinguistic calculus“?

Letter to H.G. Forder, May 7th 1943

Regarding your question
”
Is there a formal logic of deduction where

instead of p ⊃ q we have
’
from p we can prove q‘“, my reply is

”
yes“. [...]

we can even interpret the Boolean Algebra as such a system:Interpret the
variables of the Boolean Algebra as variable names of sentences; interpret

”
a + b“ as the descriptive name of the disjunction of the sentences

designated by
”
a“ and and by

”
b“;[...] then every Boolean theorem of the

form
”
. . .⊂ —“ can be interpreted as

”
from . . . follows —“.[...] This is a

problem in which I have been much interested in connection with my
probability theory. I call this interpretation of the Boolean algebra the

”
meta-propositional calculus“, or the

”
calculus of propositional names“.
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Articles Boolean Algebra

Boolean Algebra (∼1943)

Letter to Rudolf Carnap, July 5th, 1943

”
I received the

’
Formalization of Logic‘ last week.“ [...]

”
In §§26 ff. you

define a calculus which is, in a certain sense, logically stronger than PC.
But it is not richer in theorems. The idea that any

’
addition‘ to, or

’
strengthening‘ of the calculus must lead to additional theorems is, of
course, shown by you to be an unwarranted prejudice. It is this
deep-rooted prejudice which has led us all to believe that, since the PC is
complete regarding theorems, it is impossible to strengthen it further.“ [...]

”
What is needed is perhaps a more detailed comparison of the various

senses of
’
completeness‘ than the one on p. 99.“

David Binder Popper on Logic 23 / 49

Articles On Derivation and Proof

On Derivation and Proof
(1947)

David Binder Popper on Logic 24 / 49
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Articles On Derivation and Proof

Articles

After writing
”
On Systems of Rules of Inference“ (cp. next section)

Popper becomes interested in the difference between derivation and
demonstration.There exist three drafts of articles he intended to write.

Derivation and Demonstration in Propositional and Functional Logic

The Propositional and Functional Logic of Derivation and of
Demonstration

〈Untitled manuscript〉

David Binder Popper on Logic 25 / 49

Articles On Derivation and Proof

Dating

Letter to Bernays, December 1946 – February 1947

I have continued working, mainly on
”
Derivation versus Demonstration (or

Proof)“, and have obtained some really interesting results: — I believe
that you will admit, when you hear them, that the distinction is indeed
quite important. But that enquiry presupposes the one on deducibility.

David Binder Popper on Logic 26 / 49
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Articles On Derivation and Proof

The distinction between derivation and demonstration

Untitled manuscript

The relation between derivation and demonstration has been interpreted,
ever since Aristotle, as one between genus and species; that is to say,
demonstration has always been interpreted as a kind of derivation.
[. . . ]The present paper attempts to show that this view is misleading, and
that it prevents us from a clear understanding of derivation as well as
demonstration; that is to say, from an understanding of logic. According to
the theory here to be developed, demonstration is a procedure of which
derivation is always a part — the most conspicuous part — but never the
whole; a demonstration always contains a derivation [. . . ], but it never is a
derivation.

David Binder Popper on Logic 27 / 49

Articles On Derivation and Proof

Rules of Demonstration

Consider a derivation in the system of PM:

` φ (1)

` φ ⊃ ψ (2)

` ψ (MP 1,2)

Modus ponens appears here not as a derivation rule, but as a rule of
demonstration or rule of proof.
In linear notation Popper would write this rule of proof as:

(` φ & ` φ ⊃ ψ)⇒` ψ

David Binder Popper on Logic 28 / 49

D. Binder: Popper and the Role of Inference Rules in Logic

246



Articles On Derivation and Proof

Rules of Derivation

Modus ponens as a derivation rule is symbolized by Popper variably as:

φ, φ ⊃ ψ/ψ φ, φ ⊃ ψ → ψ φ φ ⊃ ψ
ψ

Only the first version appears in published articles, the other versions
appear in his notes and drafts.

David Binder Popper on Logic 29 / 49

Articles On Derivation and Proof

Rules of Demonstration and Refutation

Popper considered rules of demonstration and refutation explicitly. E.g.:

φ

ψ

φ

¬ψ
a φ

φ

ψ

¬φ
ψ

` ¬¬ψ
The left rule is a rule of refutation containing the two derivations φ/ψ and
φ/¬ψ.

Untitled manuscript

[. . . ]demonstration is a procedure of which derivation is always a part —
the most conspicuous part — but never the whole; a demonstration always
contains a derivation [. . . ], but it never is a derivation.
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Articles On Derivation and Proof

The Separation of Derivation and Demonstration

Derivation and Demonstration in Propositional and Functional Logic

Logic is (a) the theory of deduction and derivation, (b) the system of
L-true (logically demonstrable, or

”
asserted“) propositions.If we look at it

mainly as (b), then we obtain (a) as a by-product. For each L-true
conditional yields, together with the modus ponendo ponens, a valid rule
of derivation[. . . ].But if (a) is our aim — and for the logician, rather the
more important of the two aims —, then it is not clear why we should
reach it by the roundabout way via (b). Why should we not develop the
system of valid rules of derivations in a more direct fashion, that is to say,
independently of the development of the L-true propositions (including
those which are

”
primitive“)?

David Binder Popper on Logic 31 / 49

Articles On Derivation and Proof

The Separation of Derivation and Demonstration

The Propositional and Functional Logic of Derivation and of
Demonstration

We thus operate with two connected, but precisely distinct systems — the
system of derivation rules, and the system of demonstrable statements. Or,
in other words, we make a clear distinction between the logic of derivation
and the logic of demonstration, and we develop the former independently
from the latter.

Ibid.

Gentzen [. . . ] does not keep the system of derivations distinct from that of
demonstration; on the contrary, he operates without any clear distinction
between them, with rules which, in our system, are clearly distinguished
into rules of derivation and rules of demonstration.
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Articles On Derivation and Proof

The Separation of Derivation and Demonstration

The Propositional and Functional Logic of Derivation and of
Demonstration

We shall not make use of absolute derivation rules such as those used by
Carnap, which state that certain statements or formulae are derivable
without premises [. . . ]; we do not consider these as

”
genuine“ rules of

derivation, but rather as a different way of formulating axiom schemata,
and it is our aim to avoid all axioms, however formulated: this is precisely
why we confine ourselves to

”
genuine“ assuming derivation rules [. . . ].

This makes him more radical than Gentzen, who has no qualms
introducing an axiom into NI in order to turn it into NK.

David Binder Popper on Logic 33 / 49

Articles On Systems of Rules of Inference (1946/7)

On Systems of Rules of Inference
(1946/47)

David Binder Popper on Logic 34 / 49
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Articles On Systems of Rules of Inference (1946/7)

On Systems of Rules of Inference

Endnote of
”
On Systems of Rules of Inference“

Meeting in Zürich in December 1946, the authors found that, starting
from very different questions, they had constructed, independently, very
similar theories which they decided to publish conjointly.

Letter to P. Bernays, December 1946 – February 1947

You probably remember our discussion, and your kind [...] suggestion, to
publish a small article on

”
Deducibility“ together.

Letter to P. Bernays, March 3rd 1947

Here is the article.[...] I propose to call the article:
”
On Systems of Rules

of Inference.“ The title is not very good, but so far I couldn’t think of a
better one.

David Binder Popper on Logic 35 / 49

Articles On Systems of Rules of Inference (1946/7)

Why was the article never published?

Letter from Bernays, May 12th 1947

Your articles were naturally of great interest to me. It is just that with
regards to the general tendency of the observations, I did not find such an
unanimity with my own attitudes as I had expected after our discussions
which we had here.
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Articles On Systems of Rules of Inference (1946/7)

Separation of Logical Constants

On Systems of Rules of Inference

We propose to characterize the logical properties of compound statements
by the method of laying down, for each separately, primitive rules of
inference. (Each of these rules determines the deductive power, as it were,
of the compound that occurs in it.)

This requires more than merely the fact that only one logical constant
appears in an inference rule. Logical constants have to be characterized by
a set of rules strong enough to deduce any valid formula which contains
only that logical constant. (Cp. Peirce’s law).

David Binder Popper on Logic 37 / 49

Articles On Systems of Rules of Inference (1946/7)

The rules of Implication

The set of rules for implication therefore contains a version of Peirce’s
rule.

a1, . . . , an/b1 ⊃ b2 ↔ a1, . . . , an, b1/b2

a1, . . . an, b1 ⊃ b2/b1 → a1, . . . an/b1

On Systems of Rules of Inference

(Each of these rules determines the deductive power, as it were, of the
compound that occurs in it.)

David Binder Popper on Logic 38 / 49
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Articles On Systems of Rules of Inference (1946/7)

Completeness of Rules

On Systems of Rules of Inference

Every valid rule of inference R which can be expressed in our system can
be obtained in it by employing [. . . ] merely those primitive rules which
refer to the compounds occurring in R.
In order to make each of the primitive rules (or group of rules which
introduce one of the various compounds) complete in this sense, we have
to make the system redundant.

David Binder Popper on Logic 39 / 49

Articles On Systems of Rules of Inference (1946/7)

A pure system of derivation

On Systems of Rules of Inference

But a purely derivational logic can be monistic. It can ignore the logically
true statements; but it allows us, after we have build up an independent
pure logic of derivation, to introduce later the logic of demonstration, or of
the logiclly true statements, by simply adding a definition of
demonstrablity [. . . ].

David Binder Popper on Logic 40 / 49

D. Binder: Popper and the Role of Inference Rules in Logic

252



Articles On Systems of Rules of Inference (1946/7)

Pure Rules of Derivation

On Systems of Rules of Inference

A rule of inference is called
”
pure“ if and only if we can construct, in some

object language L containing non-tautological statements [. . . ] an example
which satisfies the rule (in a non-vacuous way if the rule is conditional),
and which, moreover, satisfies the requirement that all statements of the
example, whether compounds or components, are non-logical.

This excludes a/b ⊃ b but also (a/b & ¬a/b)→ c/b.

David Binder Popper on Logic 41 / 49

Articles A Note on the Classical Conditional

A Note on the Classical Conditional
(1952)

David Binder Popper on Logic 42 / 49
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Articles A Note on the Classical Conditional

A Note on the Classical Conditional

Instead of justifying the inference rules of implication by means of an
explanation in terms of truth, Popper tries to establish the truth table
using inference rules.

David Binder Popper on Logic 43 / 49

Articles A Note on the Classical Conditional

A note on the Classical Conditional

There are two rules which appear to be acceptable to the most sensitive
analysts of the conditional, (1) the so called deduction-theorem and (2)
the modus ponendo ponens

(1) If a/b, then ` a ⊃ b (2) a, a ⊃ b/b

Ibid.

It is the contention of this note that [. . . ] these two rules suffice for the
derivation of the truth-table characterization of the classical conditional
from that of classical negation.

David Binder Popper on Logic 44 / 49
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Articles A Note on the Classical Conditional

The derivation of Line II

Popper establishes the second line of the following truth table of the
conditional in the following way:

Line a b a ⊃ b

I T T T
II T F F
III F T T
IV F F T

Using a, a ⊃ b/b and assuming b to be false, either a or a ⊃ b have to be
false, hence if a is true then a ⊃ b is false.

David Binder Popper on Logic 45 / 49

Articles A Note on the Classical Conditional

Intuitionist Implication

A Note on the Classical Conditional

While contending that the truth table of the classical conditional does not,
upon closer inspection, conflict with the usages of an

”
ordinary

language“,[. . . ], I am very ready to admit with the Intuitionists (Brouwer,
Heyting) that

”
ordinary language“ usages involve us into difficulties when

problems of infinity are involved, and that we may have to sacrifice
classical negation, with its characteristic truth table [. . . ].

David Binder Popper on Logic 46 / 49
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Articles A Note on the Classical Conditional

Conclusion

David Binder Popper on Logic 47 / 49

Articles A Note on the Classical Conditional

Conclusion

Popper used technical investigations in formal logic for genuine
philosophical ends. E.g. the analysis of the difference between equality
and identity, or between derivation and demonstration.

He concerned himself with the important and fundamental problems
in logic: logicality, weaker notions of negation and different concepts
of implication: classical, intuitionistic and strict.

He finds the formulations of logic based on axioms/primitive
propositions unsatisfactory and tries to formulate logic in such a way
that derivation is primary and demonstration secondary.
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Articles A Note on the Classical Conditional

Popper on Logic

Springer, Trends in Logic
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articles
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Reviews
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Husserl’s programme : to complete formal logic by a transcendental logic

I For Husserl, the objects and judgments of formal logic are only an
idealization, an abstraction from the rational process (clarification,
distinction, bringing signification to consciousness up to evidence) :

I human reasoning only exists in time, as a process directed toward a target
I along that process the targeted objects and judgments (noèma) are not real :

not stable, not identical.
I only the acts of consciousness composing the intentional process of thought

itself (the noèsis) are real.
I To found and explain Logic, need to relate formal logic (idealized, artificial)

to (real) reasoning, thus need to complete Formal logic by a theory of the
events of the rational process.

I Such a theory aims to catch the objective part of the subjective rational
process (so pretends to differ from psychology),

I How to reach this aim ? Which methodology ?

J.-B. Joinet: From the dynamic of informational time and space to . . .
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Husserl’s methodology

I 1929 : Husserl, Formal logic and Transcendental logic
I Phenomenological method :

I Suspension of our belief to the reality of objects and beings that appear to us
(they are not independent to the only thing which is real : the rational process
itself)

I Investigate the objective part of the rational process namely the possibility
conditions (transcendentalism) of the transformations of
concepts/objects/propositions along the rational process

I Classical objections against husserlian phenomenology (as well as
Intuitionism) : by focusing his idealism on consciousness, Husserl fails in his
pretension to avoid psychology.

I To overcome that critic : concentrate on the minimal fact that the noèsis is
an informational process, hence investigate the possibility conditions for a
pure transformation of information to generate meaning.

Methodological alternatives toward the transcendental programme

In parallel (and almost simultaneously) to Husserl, two theoretical propositions put
processuality on the center of the logical stage (without any resort to
consciousness processuality) :

I A. Church : attempt to rebuild logic from pure processuality
(lambda-calculus).

I G. Gentzen : focus on the process of “analytization“ of proofs (normalization,
cut-elimination)

J.-B. Joinet: From the dynamic of informational time and space to . . .
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I A theory of pure informational time :
I Church’s Lambda-calculus (+/-1930 . . .)

I Logical antinomies and the crisis of the set theoretical ontology
I Refound ontology in space and time, starting from the notion of Function
I A theory of Functional action presupposes a theory of informational processes

I “My” reading of Lambda-calculus :
I an axiomatic for pure informational events
I a transcendental approach of logical, mathematical ontology/semantics
I a personal philosophical reading . . .

Criteria for the success of an ontological theory

1. Permanence

2. Separation (of individuals)

3. Variety of rôles (personalities, characters)

Jean-Baptiste Joinet Cerisy, 24/05/2017 6 / 25
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Classical objections against the project itself toward
Ontology (F.Wolff)

I Heraclitean objection.

I Being and becoming (Being is but a fiction).
I In order to face this objection : becoming left open the possibility of invariants.

I Phenomenist objection.

I We only know what appears to us (appearances cannot be overcome)
I In order to face this objection : transcendentalism (possibility conditions of

invariants appearance)

I Nominalist objection.

I Unreasonable (arbitrary) power of langage.
I In order to face this objection : refounding langage upon a proto-linguistical

instance (actional efficiency of signs).

Jean-Baptiste Joinet Cerisy, 24/05/2017 7 / 25

Toward a logico-mathematical ontology founded on time
and space

1. Church approach of ontology targets the satisfaction of the three criteria
(Permanence, Separation of individuals, Variety of rôles) and the overcoming
the the three objections :
1.1 In order to overcome the heraclitean objection keeping satisfying the three

criteria :
1.1.1 Start from processuality itself, trying to identifying their invariants
1.1.2 Observe, beyond the identifications induced by forgetting the variance, which

actions survive separated
1.1.3 Among them, identify rôles (characters)

1.2 Nominalist objection will be overcome :
1.2.1 informational actions are proto-linguistical, before any signification

(existentialism)
1.2.2 but they will authorize the occasional emergence of signification

1.3 Phenomenist objection will be overcome :
1.3.1 trace back up to possibility conditions of signifiant informational processes
1.3.2 point of departure : elementary informational events, purely spatio-temporal

Jean-Baptiste Joinet Cerisy, 24/05/2017 8 / 25
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What is Lambda calculus ?

I Explained to a mathematician ?

An attempt to refound Logic from the notion of function (after antinomies in
Cantorian/Fregean Logic)

I Explained to a computer scientist ?

A programming language

I Explained to a philosopher ?

A theoretical proposition to found the logical-mathematical ontology upon :
I the idea of process
I from a given approach of the idea of elementary informational events
I which satisfies the three criteria (permanence, separation of individuals, variety

of rôles)
I and avoid the three objections (heraclitean, phenoménist, nominalist).

Jean-Baptiste Joinet Cerisy, 24/05/2017 9 / 25

Process and Events

Church introduces espace and time, as such, in Logic :

I Informational processes (transformation of information) :

I not through an external “treatment”

I but as an internal transformation

I Space and Time : events

Jean-Baptiste Joinet Cerisy, 24/05/2017 10 / 25
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Events

Notion of event :
I Events and Space : events are always situated, they occur somewhere

(abstract space versus concrete space)
I Events and Time : relative time versus absolute time

A. N. Whitehead, An Enquiry Concerning The Principles Of Natural Knowledge,
Cambridge UP, Cambridge, 1919, p. 64.

« The essence of an object does not depend on its relations, which are
external to its being. [. . .] its self-identity is not wholly dependent on its
relations. But an event is just what it it, and is just how it is related ;
and it is nothing else.
Thus objects lacks the fixedness of relations which events possess, and
then space and time could never be a direct expression of their essential
relations [though fixedness is essential for events relations]. »

Jean-Baptiste Joinet Cerisy, 24/05/2017 11 / 25

Church’s approach of the notion of event

I Questions about the notion of event and Church’s answers :

1. What will we consider as an elementary informational event ? Church’s
answer : the arrival of an information in a place (variable), i.e. substitution.

2. How to describe a complex situation (context) where the event occurs ?

I How to explicit that, in a given place, an information can be involved in
multiple contexts ? Church’s answer : By multiplying the occurrences of the
same variable (each one being merged into a context).

I So, a same information can be involved with diferents rôles.
I Which “rôles” will we consider ? Church’s answer : agent/patient =

function/argument. Notation : (t)u where t in function position and u in
argument position.

I A lambda-calculus term (a “lambda-term”) : a topologically complex
representation of a given situation (context) in which some events may
become (each event being then multiply involved and with differentiated
rôles).

I A first example of a lambda-calculus term : (x)(y)x

Jean-Baptiste Joinet Cerisy, 24/05/2017 12 / 25
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Definition of lambda-calcul

1. Static (definition of lambda-terms)
I variables : x , y , z . . .
I application : (t)u (term t is applied to term u)
I abstraction : λx t (the function which, to x , associes the term t)

An example :
(λxλy (y)(y)x)λz z

2. Dynamic (definition of β-reduction)

. . . (λx t)u . . .  . . . t[u/x ] . . .

3. The space in which events occur is an abstract space (η-equivalence) :
I for bound variables : the name of places does’nt matter, only the difference of

places does.
I for free variables : different names cannot be identified (postulates about

space : avoid ubiquity and avoid the possibility of two individuals staying
simultaneously in the same place)

Jean-Baptiste Joinet Cerisy, 24/05/2017 13 / 25

Recording the criteria for an ontology

1. Permanence

2. Separation of individuals

3. Variety of rôles (Personalities, Characters)

Jean-Baptiste Joinet Cerisy, 24/05/2017 14 / 25
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1. Permanence

I Individuals in time

I A simple example : arithmetical elementary computation

I Equivalence beyond transformations

I Confluence (Church-Rosser)
I The arithmetical example is too simple : in lambda-calculus the ‘individuals”

targeted are (more generally) generic actors (they perform generic actions :
algorithms)

Jean-Baptiste Joinet Cerisy, 24/05/2017 15 / 25

2. Separation of individuals

I External separability : computational consistency (identification “forced” by
the dynamic is not too strong).

I External separability : computational consistency (identification “forced” by
the dynamic is not too strong).

I in particular, distinct places remain distinct : space is space

I space is infinite : an infinite number of places

I Internal separability (Böhm’s theorem)

Jean-Baptiste Joinet Cerisy, 24/05/2017 16 / 25
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3. Variety of rôles (Personalities, characters)

”Tell me how you act, I will tell who you are”.

Various possible points of view on action : a description of any behavior may be
more or less complete/partial and be made at various scales (depending on the
“screen” chosen to measure the effects of the behavior) . . .

I “Character” : idea of a particular behavior. For example :
I Identity : λx x
I Iterators : λxλf (f )(f )(f )x
I Auto-applicator : λx (x)x

I Effects upon the “extensional screen” (the set of normal terms = results,
outputs)

I Common behavior ( homogenous reaction to “tests” from a given set of
tests) : notion of types (+/- formulas, propositions)

Jean-Baptiste Joinet Cerisy, 24/05/2017 17 / 25

Other possible axiomatizations of time and space of
processes

Today : beyond Church

1. New rôles : beyond function and argument (interaction versus action)
2. Non determinism
3. Extensions : Entanglement (Pablo Arrighi’s talk), control
4. Decomposition of the “elementary” events (Linear Logic).

A decomposition of substitution, i.e. of events happening :
I Refined rôles (agent/patient) : multiplicative/additive
I Aspectual distinction : perfective (accomplished) / imperfective

I Non linear effects
I Stratification (unvisible without the linear magnifying glasses) : a some given

instant, an event happens at a given level.
I Along time, informations may change of layer etc

Conclusion on objects (individuals) :
I transcendental approach
I plurality of axiomatics, plurality of ontologies

Jean-Baptiste Joinet Cerisy, 24/05/2017 18 / 25
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SECOND PART.
GENTZEN : FROM OBJECTS TO JUDGMENTS

(Next time ?)

Jean-Baptiste Joinet Cerisy, 24/05/2017 19 / 25

DEUXIÈME PARTIE : DES OBJETS AUX JUGEMENTS

Jean-Baptiste Joinet Cerisy, 24/05/2017 20 / 25
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Logique transcendantale : des objets aux jugements

I Hilbert
I Théorie de la démonstration
I Les démonstrations/preuves comme textes

I Gentzen (+/-1930)
I Les preuves dans le temps
I Les différents états d’une preuve
I L’évidence selon Gentzen : la vérité directement visible.
I notion de preuve analytique (preuve où tout énoncé présent s’obtient comme

sous-énoncé de l’énoncé prouvé),
I en d’autres termes (moins linguistiques) :

I une preuve où ne figure aucun concept qui ne vienne du problème résolu (où
tout concept présent s’obtient en analysant le problème résolu) ;

I une preuve sans abstraction extrinsèque : les justifications du théorème (i.e.
l’argumentation) correspond directement à ce qui se voit dans l’énoncé prouvé.

Jean-Baptiste Joinet Cerisy, 24/05/2017 21 / 25

L’évidentiatation selon Gentzen :

I analytiser une preuve = la transformer en une preuve analytique (du même
théorème)

I l’évidentiation = le processus d’analytisation des preuves.

Resultat fondamental de Gentzen : toute preuve en logique du premier ordre peut
être convertie en une preuve analytique (du même théorème). Gentzen :

I définit un processus de transformation des preuves,
I démontre que ce processus termine toujours,
I et qu’il se termine en produisant une preuve analytique (de même conclusion).

Dans la littérature logique, la dénomination usuelle de ce processus d’évidentiation
diffère selon les systèmes de représentation de preuves considérés :

I “normalisation des preuves" en Deduction naturelle
I “élimination des coupures” en Calcul des séquents
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Évidence hors de la logique du premier ordre ?

En dehors de la logique du premier ordre :
I nous perdons la “prédicativité” (Poincaré), en sorte qu’analytique ne peut

conserver le même sens.
I l’analytisabilité des preuves n’est plus garantie.
I mais tentatives récentes pour dégager une notion plus subtile d’evidence : la

généricité (cf. Paolo Pistone)

Processus d’évidentiation et processus informationnel

I 1969 : “Correspondance Preuves-Programmes" (Curry-Howard)
I L’évidentiation n’est qu’un cas particulier de processus informationnel
I Expliquer la logique à partir de l’espace-temps
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Motivation

1 Gentzen: I intended first to set up a formal system which comes as close as
possible to actual reasoning. The result was a ’calculus of natural deduction’.
(The Collected Papers of Gerhard Gentzen, p. 68)

The technically convenient Sequent Calculus is introduced only after Natural
Deduction.

2 relevance: The advantage of such natural calculi:

safety: The inevitable gap between informal reasoning and its formalisation is
minimised. We obtain safety about the formalisation.
philosophy: Formal investigation of informal properties of proofs is
philosophically justified. We may investigate natural reasoning (in contrast to
technically convenient reasoning).
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Motivation

1 Natural Deduction: Is pretty close to informal argumentations with respect
to reasoning with statements.

2 reality: But mathematicians do not only argue with statements, they also
calculate in proofs with mathematical objects.
Standard formalisation of calculation via equality statements is not natural.

3 Natural Calculation: Omit the standard rules for equality statements and
introduce term rules which allow to calculate with terms.
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Calculations in Proofs

Informal Mathematical Reasoning with Terms

1 calculation: t1
(Justification)

= t2
(Justification)

= t3
(Justification)

= . . . tn
2 evaluation: By the transitivity of equality, we conclude t1 = tn.

Example: induction step for proving n + 0 = 0 + n
1 announcement: We have to show S(n) + 0 = 0 + S(n).

2 calculation:

S(n) + 0
(x+0=x)

= S(n)
(x+0=x)

= S(n + 0)
(IH)
= S(0 + n)

(x+S(y)=S(x+y))
= 0 + S(n)

3 evaluation: By transitivity of equality, S(n) + 0 = 0 + S(n).
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Calculations in Proofs

Informal Mathematical Reasoning with Terms

1 calculation: t1
(Justification)

= t2
(Justification)

= t3
(Justification)

= t4

2 evaluation: By the transitivity of equality, we conclude t1 = t4.

Usual Formalisation (Natural Deduction)

Reason
t1 = t2

Reason
t2 = t3

t1 = t3

Reason
t3 = t4

t1 = t4
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Calculations in Proofs

Informal Mathematical Reasoning with Terms

1 calculation: t1
(Justification)

= t2
(Justification)

= t3
(Justification)

= t4

2 evaluation: By the transitivity of equality, we conclude t1 = t4.

Alternative Formalisation (Natural Deduction)

Reason
t1 = t2

Reason
t2 = t3

Reason
t3 = t4

t2 = t4

t1 = t4
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Calculations in Proofs

Informal Mathematical Reasoning with Terms

1 calculation: t1
(Justification)

= t2
(Justification)

= t3
(Justification)

= t4

2 evaluation: By the transitivity of equality, we conclude t1 = t4.

Intended Formalisation - Calculation
t1 Justification

(=)
t2 Justification

(=)
t3 Justification

(=)
t4
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Calculations in Proofs

Informal Mathematical Reasoning with Terms

1 calculation: t1
(Justification)

= t2
(Justification)

= t3
(Justification)

= t4

2 evaluation: By the transitivity of equality, we conclude t1 = t4.

Intended Formalisation - Evaluation

[t1]1 Justification
(=)

t2 Justification
(=)

t3 Justification
(=)

t4
(1)

t1 = t4
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Analysis: Natural Aspects

1 manipulation of terms: Calculations with terms and not only argumentations
with formulae.

2 no redundant statements: No explicit formulation of redundant statements
as t1 = t3 or t2 = t4.

3 linearity & extendability: Preservation of the linear character of calculations
and of the possibility to extend calculations.

4 evaluation of calculations: The argumentation step of evaluating the
calculation (concluding that t1 = t4) is explicitly formalised.
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Formal Introduction of Natural Calculations

The calculus of Natural Calculations is an extension of Natural Deduction:

with the usual rules for connectives and quantifiers
(for classical as well as for intuitionistic logic)

without the standard rules for identity

new rules for the treatment of terms
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New Rules - Atomic Derivation, Equality Statements

1 new atomic derivation: Every term t is a derivation.

2 justified calculation (positive ; negative): (Elimination of =)

r(t) t = s
(E=)

r(s)
;

s = t r(t)
(E=)

r(s)

Substitution of some occurrences of t in r .

The equations are called direct justification of the inference step, the subtrees
above justification.

3 evaluation: (Introduction of =)

[t]

s
(I=)

t = s
The discharge of t is mandatory.
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Remarks

1 discharging terms: We discharge the upmost term in a calculation to
indicate that the calculation is finished and the result is used.

2 negative rules: We formulated negative rules to reflect the symmetry of
equality.

3 substructural rules: We allow the substructural manipulation of terms.

4 left side labelling: We label the calculation steps on the left side. This allows
to distinguish them easily from traditional inference steps.
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New Rules - Auxiliary Calculations

Some more rules needed:

4 auxiliary calculation - term (positive ; negative):

r(t)

[t]

s
(Atrm)

r(s)

;

[s]

t r(t)
(Atrm)

r(s)

Substitution of some occurrences of t in r .

5 auxiliary calculation - formula (positive ; negative):

φ(t)

[t]

s
(Afml)

φ(s)

;

[s]

t φ(t)
(Afml)

φ(s)

Substitution of some occurrences of t in r .

The side calculations are called justification of the inference step.
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An Example

We illustrate the Calculus of Natural Calculations by an example:

Addition with 0 is commutative in Peano Arithmetics (PA).

Formally: PA ` ∀x .x + 0 = 0 + x

We focus on the formal calculations; the partial derivations are simplified.

René Gazzari, elbron@gmx.net Natural Calculations June 11, 2017 14 / 52

R. Gazzari: Calculus of Natural Calculations

277



Example: Commutativity of Addition with 0 in PA

Statement: A1,A2, IS ` ∀x : x + 0 = 0 + x

Proof by induction on x.

Infer φ(0) l 0 + 0 = 0 + 0.

[0 + 0]
(I=)

0 + 0 = 0 + 0

Assume IH l φ(x) l x + 0 = 0 + x ; infer φ(S(x)) l S(x) + 0 = 0 + S(x):

A2

A1

[S(x) + 0] A1
(E=)

S(x)
(E=)

S(x + 0) IH
(E=)

S(0 + x)
(E=)

0 + S(x)
(I=)

S(x) + 0 = 0 + S(x)

A1 : ∀x . x + 0 = x ; A2 : ∀xy . x + S(y) = S(x + y)
IS = induction schema
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Example: Commutativity of Addition with 0 in PA

Statement: A1,A2, IS ` ∀x : x + 0 = 0 + x

We have:

A1,A2 ` φ(0)

A1,A2, φ(x) ` φ(S(x))

By an application of induction schema, we easily obtain:

PA ` ∀x .x + 0 = 0 + x

A1 : ∀x . x + 0 = x ; A2 : ∀xy . x + S(y) = S(x + y)
IS = induction schema
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Improved Substitution

Before discussing the properties of Natural Calculations, we investigate the
notation of substitution:

1 The disadvantage of the traditional notation.

2 Introduction of nominal forms and of a general substitution function.

3 Improved notation of substitution via elimination forms.
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Traditional Substitution

1 traditional notation: We used the traditional notation r(t) / r(s) and
φ(t) / φ(s) for substitution. (marking t / replacing t by s)

2 problems: There are some drawbacks as there is no syntactic entity
reflecting the position of the involved terms:

Dependence on the order of reading.
If we replace different occurrences of t twice by s in r , we obtain r(s) 6l r(s).
We have to understand informal restrictions on the occurrences (as some
occurrences of t, all (free) occurrences of t, exactly one occurrence of t, etc.)

3 improvement: We improve the notation of substitution with the help of
nominal forms. (Idea due to Schütte.)
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Introduction of Nominal Forms

Nominal forms are a generalisation of terms and formulae:

1 nominal symbols: The alphabet is extended by countable many nominal
symbols ∗k (k ∈ ω). ∗ abbreviates ∗0.

2 nominal terms: Term generation is extended by a new rule:

∗k is atomic nominal term.

Metavariables: t, s etc.

Example: ∗5 + (∗7 + 6), S(∗), 5 + x

3 nominal formulae: Generated according to the usual rules, but with respect
to nominal terms.

Metavariables: A, B etc.

Caveat: ∀ ∗ .A is not a nominal formula. (As ∗ represents here variables and
not arbitrary terms.)
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General Substitution Function

We define a general substitution function with respect to nominal terms and
nominal formulae:

1 nominal terms: t[t0, . . . tn] is the result of the simultaneous replacement of
all ∗k by tk in t. (recursive definition)

Example: ∗1 + (∗1 + ∗2)[5, ∗] l ∗+ (∗+ ∗2), S(∗)[5 + ∗] l S(5 + ∗),
5 + x [∗1 + ∗2] l 5 + x

2 nominal formulae: A[t0, . . . tn] is the result of the simultaneous replacement
of all ∗k by tk in A. (recursive definition)

In the second argument, we still have a sequence of nominal terms!
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Elimination Form

An elimination form is the result of eliminating some occurrences of a term in a
term or formula and replacing them by suitable nominal symbols.

1 standard terms: A nominal term t is an elimination form of a term t, if
there is a sequence t0, . . . tn such that t[t0, . . . tn] l t.
(We assume that ∗0, . . . ∗n all occur in t.)
We say that the terms t0, . . . tn are eliminated in t.

2 example: ∗+ ∗ is an elimination form of 0 + 0, but not of 0 + 1; the term 0
is eliminated.
∗0 + ∗1 is an elimination form of 0 + 0 in which 0 and 0 are eliminated; but
also of 0 + 1 with 0 and 1 eliminated.

3 standard formulae: analogously
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Remarks (Elimination Form)

1 purpose: The purpose of elimination forms is to represent the position of
occurrences of terms in terms or formulae.

2 advantage: There is a syntactic entity corresponding with the intended
substitution. Different occurrences are represented by different elimination
forms.

3 restrictions: In particular, we can explicitly formulate the restrictions on a
substitution.

some occurrences of t: arbitrary elimination form, in which t is eliminated
(the only nominal symbol is ∗, occurs at least once).
all (free) occurrences of t: as before, but no (free) occurrences of t in the
elimination form.
exactly one occurrence of t: as before, but there occurs only one nominal
symbol in the elimination form.
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Improved Rules

We illustrate the formulation of the rules with the help of nominal forms.

1 formal notation: justified calculation (positive ; negative)

r[t] t = s
(E=)

r[s]
;

s = t r[t]
(E=)

r[s]

r is a proper, unary nominal term.

2 characterisation: We may calculate from a term r to a term r ′, if there is a
proper nominal term r such that r[t] l r and r[s] l r ′.
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Structural Results

Some proof theoretical results about Natural Calculations

Introduction of calculations and dual calculations.

Redundancy of negative auxiliary calculations.

Variants of calculations and the linearisation of calculations.
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Useful Terminology

A calculation C is a derivation starting with the introduction of a term and
consisting of some calculation steps; together with their direct justifications
(equality statements or auxiliary calculations); ends with a term.

 Useful to investigate the new possibilities of the calculus without considering
the proof trees (of formulae) allowing to infer the direct justifications.

result: The result Res(C) of a calculation C is the equality statement t = s
such that t is the primary term and s is the final term in the calculation.

 In an evaluation step, we discharge the primary term t and introduce the
result of the calculation.
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Calculations in Derivations

calculation in a derivation: We can identify a calculation inside an arbitrary
derivation.

D0 . . .Dn−1

C
F

remaining derivation: Due to the side conditions of the introduction of the
universal quantifier, F alone is, in general, not a derivation. (Dependence on
the subderivations!)

independence of calculations: C is independent of the subderivations.

same justification: If C′ has the same direct justifications (or less) and the
same result as C, then we may exchange them without loss.
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Dual Calculations

dual calculation: A dual calculation Cd of a calculation C begins with the
final term of C, calculates in the inverse direction, and uses the same direct
justifications.

proposition: Every calculation has a dual calculation; the result of the
calculation is inverted.

proof: Calculate bottom up and switch the positions of the justifications.
For example:

r[t] t = s

r[s]
 t = s r[s]

r[t]

observation: We use the same nominal term r for characterising the
calculation steps (independent of the order of reading).
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Consequence (Dual Calculations)

consequence: Negative auxiliary calculations (term and formulae) are
redundant.

proof: Exchange negative auxiliary calculation steps with positive calculation
steps using the dual side calculation. For example:

[s]

C
t r[t]

(Atrm)
r[s]

 
r[t]

[t]

Cd

s
(Atrm)

r[s]

termination: While transforming C into Cd , the positions of justifications
switch, but nevertheless strong normalisation and confluence.

attention: we still need negative justified calculations and positive auxiliary
calculations!
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Variants of Calculations

t-variant: If t is a proper unary nominal term, then t(C) is a calculation
using the same side calculations and direct justifications, but in which all
terms t in the main path are replaced by t[t].

proposition: Every t-variant of a calculation C is a calculation; if t = s is
the result of C, then t[t] = t[s] is the result of t(C).

proof: We have to check each calculation step. For example:

r[t] t = s
(E=)

r[s]
 t[r[t]] t = s

(E=)
t[r[s]]

 

t[r][t] t = s
(E=)

t[r][s]
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Linear Calculations

consequence: We may transform every calculation into a linear calculation
(without auxiliary calculations with respect to terms).

proof: It is sufficient to investigate positive auxiliary steps (term), as
negative auxiliary steps are already eliminated.

r[t]

[t]

C
s

(Atrm)
r[s]

 
r[t]

r(C)

r[s]

attention: we still need positive auxiliary calculations for formulae, but again
these may be linear.
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Proof Theoretical Results

Presupposing that every calculation is linear, we easily prove some standard proof
theoretical results:

Completeness: The calculus of Natural Calculations is sound and complete
with respect to classical and intuitionistic logic.

Normalisation: We may extend the normalisation results provided by Pravitz.
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Soundness

soundness of calculations: The result of every linear calculation is provable
with the help of standard identity rules under the assumption of the direct
justifications.

proof: By induction over the length of the calculation.

n = 0:

t0  t0 = t0

n + 1:
t0

r[s0] s0 = s1

r[s1]

 
(IH)

t0 = r[s0] s0 = s1

t0 = r[s1]

With tn l r[s0], and tn+1 l r[s1].
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Soundness

soundness: The calculus of Natural Calculations is sound with respect to
classical and intuitionistic logic.

proof: Replace every linear calculation by a standard derivation; in the case
of auxiliary calculations for formulae, we obtain this way the standard rule of
subsitutivity (with respect to formulae).

remark: The proof does not depend on the rules for formulae; therefore, with
respect to classical and intuitionistic logic.
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Completeness

completeness: The calculus of Natural Calculations is complete with respect
to classical and intuitinistic logic.

proof: Every usual identity rule of Natural Deduction may be transformed
into a proof schema using the rules of Natural Calculations.
For example:

t = s
s = t  

t = s [s]

t
s = t
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Maximal Formulae

maximal formulae: An occurrence of an equality statement, which is
introduced in the last inference step and eliminated in the next inference
step, is a new kind of maximal formula. They may be eliminated trivially.

schematically: The positive case:

r[t]

[t]

s
(I )

t = s
(E)

r[s]

 r[t]

[t]

s

r[s]

linearisation: After eliminating the maximal formula, we have to linearise the
calculation.
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Auxiliary Calculation - Formulae

We investigate auxiliary calculations for formulae.

hidden cuts: An auxiliary calculation may hide a standard cut: introduction
rule  Auxiliary calculation  elimination rule.

movability: The auxiliary calculation for formulae may be moved in the
derivation almost freely. Thus, we may eliminate the hidden cuts.

standard normalisation: The standard normalisation procedures may be
applied to the subtrees consisting only of formulae.
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Auxiliary Calculation - Formulae

Towards normalisation:

intended position: We can move auxiliary calculations between elimination
and introduction parts.

atomic application: We even may restrict auxiliary calculations to atomic
formulae and avoid equations.

not substructural: As we may use t-variants of the side calculations, we may
restrict auxiliary calculations to affect only whole terms.

subsequent applications: We may merge subsequent side calculations with
respect to the same term into one side calculation.

independent calculations: If P is n-ary predicate symbol, then n side
calculations (at most) are sufficient, affecting the n terms of P(t0, . . . tn−1).
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Normalisation

calculations:

The direct justifications are atomic conclusion of an elimination part of a
derivation.
The result is the upmost atomic formula of an introduction part of a
derivation.
Alternatively, the calculation is integrated in the upmost formula of an
introduction part.

schematically:

E0
∨ . . . En−1

∨
(t) (s)

t = s
∧
I

;

E
∨

P(t)

E0
∨ . . . En−1

∨
(t) (s)∨

P(s)
∧
I
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Subatomic Normalisation

inside calculations: The inner structure of calculations needs an own
investigation with respect to normalisation.

linearity: We already have proved that we can linearise any calculation.

other properties: Are there other nice structural results to be achieved?
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Subatomic Normalisation

problem: There is no previously given order of the calculation steps in a
calculation, as the order depends on what we want to calculate and which
justifications we have.

example:

If we have a = f (c) and f (c) = b, we may calculate that a = b and the
complex term is in the middle of calculations.
If we have that a = f (b) and a = f (c) we may calculate that f (b) = f (c) and
the simple term is in the middle of calculation.
If we want to calculate b = a and f (c) = f (b), respectively, we have to use
the dual calculations in which the order of the terms is inverted.
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Subatomic Normalisation

problem: The order of independent calculations may be exchanged.

example:

(1 + 2) + (3 + 4)

3 + (3 + 4)

3 + 7

⇐⇒
(1 + 2) + (3 + 4)

(1 + 2) + 7

3 + 7
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Subatomic Normalisation

result: Circular calculations may be eliminated. Thus, if a term t occurs
twice in a calculation, we may eliminate the calculation steps between them.

loss of confluence: If we calculate from a to b, back to a and then again to
b, we may chose which steps to eliminate. But the two calculations from a to
b may be different.
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More Calculations

shed light on further natural extensions of the calculus
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Excursus: Reflection of Properties

The properties of identity are reflected by our term rules:

reflexive: Immediate introduction of the equality.

symmetry: Positive and negative calculation steps.

transitivity: Extendability of calculations.

congruence (compatibility with function symbols): Arbitrary substructural
manipulation of terms in calculation steps.

Can we formalise other properties and thereby introduce rules for other relation
symbols?
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Smaller-Than Relation

smaller than: Assuming arithmetic with the relation symbols ≤ and < we
may allow positive, substructural “smaller-than”-calculations.

example:

[x + x ] x ≤ x + x
(≤)

x + (x + x) x + x = 2x
(=)

x + 2x 2x < 2x + 1
(<)

x + (2x + 1)
(I ≤)

x + x ≤ 2x + 1
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Technical Comments

elimination rules: We extend the calculus with new elimination rules with
respect to new binary relation symbols.

introduction rules: Different introduction rules for all relevant relation
symbols.

example: In a calculus with =, < and ≤:

Introduce =, if all calculation steps are =-calculations.
Introduce <, if at least one <-calculation step was done.
Introduce ≤ after arbitrary calculations.

truly global rules: Introduction rules depend on all calculation steps, not only
on the upmost premise and the conclusion!
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More Complications

calculating with integers: If we deal with integers (in contrast to natural
numbers), then we have to introduce negative and positive positions in a
term (via nominal forms) and adapt the calculation rules:

1 Positive calculation steps only with respect to positive positions in a term.
2 Negative calculation steps with respect to negative positions in a term.

example:
2

5− 3 5 < 6
6− 3

3

;
2 < 3

2

5− 3
5− 2

3

René Gazzari, elbron@gmx.net Natural Calculations June 11, 2017 47 / 52

More Complications

inequality: If we allow 6=-calculation steps, then the introduction rule for 6=
demands that only one such calculation step is done (arbitrary
=-calculations).

non-sense calculations: Non-sense calculations are possible (more than one
6=-step), but no suitable introduction rules for them.
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Non-Standard Calculations

side conditions: calculations presupposing ∈-transitivity:

[t] t ∈ s
(∈)

s s ∈ r
(∈)

r ∈ − trans(r)

t ∈ r

circular calculations: circular calculation schema:
[a] a ⊆ b

b b ⊆ c
c c ⊆ a

a
a = c

philosophical example: calculations presupposing side conditions:
[Adam] B(Adam, Bertram)

Bertram B(Bertram, Caesar)

Caesar Adam 6= Caesar

B(Adam, Caesar)
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Integration of Meta Argumentations

bridge rules: integration of meta argumentations via the following brigde
rules:

[φ0], . . . [φn−1]

ψ

φ0, . . . φn−1 ⇒ ψ

;
φ0 . . . φn−1

~φ⇒ ψ

ψ

sequent calculus: Further extension of Natural Deduction by the sequent
calculus rules appears as a natural extension for dealing with meta
statements.

more rules: More meta logical rules possible as in case of calculations.

René Gazzari, elbron@gmx.net Natural Calculations June 11, 2017 50 / 52

R. Gazzari: Calculus of Natural Calculations

295



Conclusion

1 Natural Calculation: We have seen an extension of Natural Deduction
allowing to calculate with terms and providing a natural formalisation of
argumentations dealing with equalities.

2 structural results: We have seen some proof theoretical results: completeness
with respect to classical and intuitionistic logic, normalisation on the level of
formulae. Additionally: problems of normalisation on the subatomic level.

3 more calculations: We have seen that the presented framework is able to
formalise even more kinds of calculations and argumentation schemata found
in every day mathematics.
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Last Slide

Thank You!
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Decidable logics, the axiom rule,
and (non) cut-elimination

Gilles Dowek
(joint work with Ying Jiang)

Two kinds of logics

Undecidable and decidable ones

The axiom rule (hypothetical deduction) makes the difference

But introduction rule, automaton, Curry-(de Bruijn)-Howard
correspondence, cut, cut elimination common concepts
If apropriately generalized
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I. Introduction rules and automata, in general

Introduction rule

Given a well-founded order ≺

s1 ... sn
s ′

an introduction rule if s1 ≺ s ′, ..., sn ≺ s ′
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Examples

even(x)
odd(a(x))

A B ∧-intro
A ∧ B

A ∧ B ∧-elim
A

Automaton

A (finite in conclusions) inference system containing introduction
rules only

Provability decidable: finite search space
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An example

even(x)
odd(a(x))

odd(x)
even(a(x)) even(ε)

odd
a−−−→ even even

a−−−→ odd even final

odd(a(a(a(ε)))) provable
even(a(a(a(ε)))) not provable in even

An example

even(x)
odd(a(x))

odd(x)
even(a(x)) even(ε)

odd
a−−−→ even even

a−−−→ odd even final

odd(a(a(a(ε)))) provable: aaa recognized in odd
even(a(a(a(ε)))) not provable: aaa not recognized in even
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II. The Curry-(de Bruijn)-Howard correspondence, in general

How to represent a finite state automaton?

odd
a−−−→ even even

a−−−→ odd even final

even(x)
odd(a(x))

odd(x)
even(a(x)) even(ε)

even a
odd

odd a
even

ε
even
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Proofs labeled with propositions, rules names, and both

even
odd
even
odd

ε
a
a
a

ε
even

a
odd

a
even

a
odd

proof-checking conclusion
still decidable still computable (*)

(*) determinism: otherwise being a conclusion decidable

A linear notation for proofs labeled with propositions

ε
a
a
a

a(a(a(ε)))
Proof-term
Being a conclusion decidable: a(a(a(ε))) : odd decidable

The set of pairs π : A such that π has type A is a linear
representation of a proof of A decidable
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Why?

Transform each rule
s1 ... sn

f
s ′

into
π1 : s1 ... πn : sn
f (π1, ..., πn) : s ′

A automaton that proves exactly the pairs π : A such that π is a
linear representation of a proof of A

This automaton: type-checking algorithm of the inference system

Inductively defined set: projection of a decidable set

An example

even a
odd

odd a
even

ε
even

x : even
a(x) : odd

x : odd
a(x) : even ε : even

even(x)
odd(a(x))

odd(x)
even(a(x)) even(ε)
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Another example

A ∧ B
fstA

A ∧ B
sndB

A⇒ B A app
B

c
P ∧ (P ⇒ Q)

π : A ∧ B
fst(π) : A

π : A ∧ B
snd(π) : B

π1 : A⇒ B π2 : A
app(π1, π2) : B c : P ∧ (P ⇒ Q)

c
P ∧ (P ⇒ Q)

snd
P ⇒ Q

c
P ∧ (P ⇒ Q)

fst
P app

Q

app(snd(c), fst(c)) : Q

Curry-(de Bruijn)-Howard correspondence

(minus trivial details about bound variables specific to Natural
deduction)

III. Cuts, in general
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(General) cuts

...
R1 (intro) ...

s1

...
Rn (intro)

sn R ′ (non-intro)
s ′

π cut-free: no cuts in π

An inference system has the cut-elimination property if every proof
can be transformed into a cut-free proof

A theorem

A cut-free proof contains introduction rules only

Induction over proof structure

π1

s1 ...
πn
sn

R ′
s ′

π1, ..., πn: introduction rules only
π1, ..., πn end with introduction rules
R ′: introduction rule
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A corollary

In an inference system that has the cut-elimination property
provability is decidable

Drop the non-introduction rules, preserving provability

An automaton

IV. Finite domain logic
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Finite domain logic

Natural deduction tailored to prove the propositions valid in a
given finite model M

I a constant for each element in the model (and no other
function symbols)

I A⇒ B abbreviation for ¬A ∨ B

I negation pushed to atomic propositions (using de Morgan’s
laws)

I ∀-intro and ∃-elim rules replaced by enumeration rules
(ω-rules?)

Γ ` (c1/x)A ... Γ ` (cn/x)A ∀-intro
Γ ` ∀x A

Γ ` ∃x A Γ, (c1/x)A ` C ... Γ, (cn/x)A ` C ∃-elim
Γ ` C

I atom rule

atom if L ∈ P
Γ ` L

P finite set containing P or ¬P, for each closed atomic P

I no rules for implication and negation
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axiomΓ,A ` A

atom if L ∈ PΓ ` L

>-introΓ ` >
Γ ` ⊥ ⊥-elimΓ ` A

Γ ` A Γ ` B ∧-introΓ ` A ∧ B
Γ ` A ∧ B ∧-elimΓ ` A
Γ ` A ∧ B ∧-elimΓ ` B

Γ ` A ∨-introΓ ` A ∨ B
Γ ` A ∨ B Γ,A ` C Γ,B ` C ∨-elimΓ ` C

Γ ` B ∨-introΓ ` A ∨ B

Γ ` (c1/x)A ... Γ ` (cn/x)A ∀-introΓ ` ∀x A
Γ ` ∀x A ∀-elimΓ ` (ci/x)A

Γ ` (ci/x)A ∃-introΓ ` ∃x A
Γ ` ∃x A Γ, (c1/x)A ` C ... Γ, (cn/x)A ` C ∃-elimΓ ` C

Cut elimination

Business as usual
Drop all the elimination rules
An automaton

Drop the axiom rule (context always empty)
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An automaton

atom if L ∈ P` L

>-intro` >
` A ` B ∧-intro` A ∧ B

` A ∨-intro` A ∨ B

` B ∨-intro` A ∨ B

` (c1/x)A ... ` (cn/x)A ∀-intro` ∀x A

` (ci/x)A ∃-intro` ∃x A

Proof search or model checking?

Proving implication

Additive rules
` B

` A⇒ B

A `
` A⇒ B

instead of the multiplicative

A ` B
` A⇒ B

How do you know that “if the Sun shines, then the Sun shines”?
(a different proof every talk)
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V. Natural deduction

Natural deduction (for Predicate logic)

Undecidable

Can it have the cut elimination property?

No

G. Dowek: Decidable logics, the axiom rule, and (non) cut-elimination

310



Natural deduction (for Predicate logic)

Introduction rules: ⇒-intro, ∀-intro, ∧-intro... and axiom

axiom
Γ,A ` A

Non-introduction rules: ⇒-elim, ∀-elim, ∧-elim...

axiom
P ∧ Q ` P ∧ Q ∧-elim
P ∧ Q ` P

is a (general) cut but not a (specific) cut

VI. Saturating inference systems (and attempting to do so)
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When an inference system does not have the
cut-elimination property

R(a(x))
R(x)

Q(a(b(x)))
Q(a(x))
P(x)

R(a(b(ε)))
Q(a(b(a(b(ε)))))
P(b(a(b(ε))))

Transform it in such a way it does

Saturation
Add the derived rule

R(x)
P(b(x))

The proof

R(a(b(ε)))
Q(a(b(a(b(ε)))))
P(b(a(b(ε))))

then reduces to

R(a(b(ε)))
P(b(a(b(ε))))

Cut elimination −→ drop the non introduction rules −→
automaton −→ decidability
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Attempting to saturate Natural deduction

axiom
P ∧ Q ` P ∧ Q ∧-elim
P ∧ Q ` P

Add the derived rule

Γ,A ∧ B ` A

would generate an infinite number of rules
Instead

Γ,A ` D
Γ,A ∧ B ` D

(Gentzen style) sequent calculus

Attempting to saturate Natural deduction

Sequent calculus still has an non-introduction rule: contraction
Saturation: Kleene style sequent calculus

Still non-introduction rules
Saturation: Vorob’ev-Hudelmaier-Dyckhoff-Negri style sequent
calculus

Still non-introduction rules...

First steps of a hierarchy of sequent calculi
Each proves the decidability of a larger fragment of Predicate logic

G. Dowek: Decidable logics, the axiom rule, and (non) cut-elimination

313



The axiom rule

Not needed in finite domain logic

Comes from the will to reason generically on elements of an infinite
domain

∀x (P(x)⇒ P(x))

Introduces non-eliminable cuts (elimination rules, etc.) and
undecidability

Attempting to eliminate these cuts yields a hierarchy of sequent
calculi

Decidability: a weakness or a strength?

Introduction rule, automaton, Curry-(de Bruijn)-Howard
correspondence, cuts, cut elimination (appropriately generalized):
broad notions that apply both to undecidable and decidable logics
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The problem of semantic completeness

in proof-theoretic semantics

(joint work with Thomas Piecha)

Peter Schroeder-Heister

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Cerisy 25.5.2017 – p. 1

Proof-theoretic semantics

• Semantics of proofs

• Semantics in terms of proofs

There must be elementary proofs in terms of which proofs
in general are interpreted.

These are normally proof steps, which generate canonical
proofs.

Cerisy 25.5.2017 – p. 2
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Two conceptions of proof-theoretic semantics

• The standard unidirectional approach

• Model natural deduction

• Introduction rules primary

• Implication transformational: transmission view
Thus not elementary, but reductive

• Labelled as x : A⊢ t : B

• The bidirectional approach

• Model sequent calculus

• Both right and left introduction rules primary
(actually: either right or left)

• Implication basic
Thus elementary, and thus fundamental

• Labelled as f : (A⊢B)

Cerisy 25.5.2017 – p. 3

Standard proof-theoretic semantics

Here I deal with the first conception, following Prawitz who
is strongly in favour of it. This corresponds to almost all of
the intuitionistic tradition.

Idea: Definition of validity, but not of formulas, but of proofs

Semantic question: Do the valid proofs generate all and
perhaps exactly the valid formulas of intuitionistic first-order
logic?

This is a sort of Tarski-style semantical approach.

Instead of structures and models: Atomic systems S, which

are sets of atomic rules of the form
A1, . . . , An

B
.
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Definition: S-Validity of proofs

(0) Every closed proof in S is S-valid.

(I) A closed canonical proof is S-valid, if its immediate
subproof is S-valid.

(II) A closed noncanonical proof is S-valid, if it reduces to
a S-valid canonical proof.

(III) An open proof
A1 . . . An

D
B

is S-valid, if for every S
′ ≥ S

and for every list of closed S
′
-valid proofs

Di

Ai

(1 ≤ i ≤ n), the proof

D1 Dn

A1 . . . An

D
B

is S
′
-valid.

Cerisy 25.5.2017 – p. 5

Prawitz’s completeness conjecture of 1971

A1, . . . , An ⊢ IB iff for every S there is an S-valid proof of B
from A1, . . . , An.

According to Prawitz, there is a strong intuition behind this
idea.

This intuition is based on the fact that one cannot imagine
stronger elimination rules than the standard ones, which
are valid.

Claim: This conjecture is false.

Cerisy 25.5.2017 – p. 6
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What makes one skeptical?

Validity of consequences and thus of rules sounds like
admissibility.

A rule
A

B
is admissible if every closed proof of A can be

transformed into a closed proof of B.

Now we know that in intuitionistic logic, admissibility does
not coincide with derivability.

Cerisy 25.5.2017 – p. 7

Admissibility vs. derivability in intuitionistic logic

In the purely implicational fragment of intuitionistic logic,
admissibility coincides with validity (Mints).

However, if negation and disjunction are present, then there
are admissible, but non-derivable rules. The most
prominent (and simplest) example is Harrop’s rule:

¬A→(B∨C)

(¬A→B)∨ (¬A→C)

A related example is Mints’s rule

(A→B)→ (A∨C)

((A→B)→A)∨ ((A→B)→C)

Crucial: Mixture of implication and disjunction in one rule.

Cerisy 25.5.2017 – p. 8
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Claim: Harrop’s rule can be validated

under very weak and plausible conditions.

¬A→(B∨C)

(¬A→B)∨ (¬A→C)

Cerisy 25.5.2017 – p. 9

Basic principles of validity semantics

Rather than dealing with full validity semantics, we deal with
certain conditions that hold for validity semantics.

Our result therefore extends to all semantics which satisfy
these conditions.

(∧) |=S A∧B iff |=S A and |=S B

(∨) |=S A∨B iff |=S A or |=S B

(→) |=S A→B iff A |=S B

(|=) Γ |= A iff for all S: if |=S Γ then |=S A

(|=S) If Γ |= A and Γ, A |=S B then Γ |=S B

Cerisy 25.5.2017 – p. 10
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The generalized disjunction property

GDP ( ‖– ): If Γ ‖– A∨B, where ∨ does not occur positively in

Γ, then either Γ ‖– A or Γ ‖– B.

Lemma. If GDP (|=S) for every S, then Harrop’s rule is valid
under substitution.

Therefore, if we can prove the general disjunction property

for |=S, we have refuted Prawitz’s completeness conjecture.

Cerisy 25.5.2017 – p. 11

Eliminating disjunctions from negated formulas

• ¬(A∨B) ⊣⊢ ¬A∧¬B

• ¬(A∧B) ⊣⊢ ¬(¬¬A∧¬¬B)

• ¬(A→B) ⊣⊢ ¬¬A∧¬B

This gives us the following:

¬A |=S B∨C

=⇒ A
′ |=S B∨C for disjunction-free A

′

=⇒ A
′ |=S B or A

′ |=S C by GDP (|=S)

=⇒ ¬A |=S B or ¬A |=S C

Cerisy 25.5.2017 – p. 12
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Proving the generalized disjunction property

(Conditionalisation) For every S there is a set of

disjunction-free formulas S
∗

such that for all Γ and A:

Γ |=S A iff Γ, S
∗ |= A.

Conditionalisation is equivalent to the monotonicity of |=S

with respect to S.

Lemma. Suppose Prawitz’s completeness conjecture is

true. Then Conditionalisation implies GDP (|=S) for every S.

Final result: Suppose Prawitz’s completeness conjecture is

true. Then GDP (|=S) for every S.

Therefore we have refuted Prawitz’s completeness
conjecture under the supposition that Prawitz’s
completeness conjecture is true, which means that we have
refuted it outright.

Cerisy 25.5.2017 – p. 13

Remarks

• One might challenge the assumption of monotonicity of

|=S with respect to S.

• However, there is no convincing alternative semantics.

• Moreover, this means challenging the generalized
disjunction property which one probably would like to
have in any case.

• We do have completeness for the purely implicational
fragment. We even have completeness for formulas, in
which disjunction occurs only positively.

• In any case the mixing of implication and disjunction in
one and the same formula is essential.

Cerisy 25.5.2017 – p. 14
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The intuition about elimination rules

Intuition: The standard elimination rules are the strongest
elimination rules one can think of, given the standard
introduction rules.

This is no objection to the result obtained:

• The counterexample (Harrop’s rule) is not an
elimination rule. It rather contains two constants
(implication and disjunction) within a single rule.

• It is the interaction of logical constants which produces
the negative result.

Cerisy 25.5.2017 – p. 15

The standard elimination rules are the strongest
valid elimination rules

Result: Every elimination rule, which is valid, is derivable
using the standard elimination rules.

Cerisy 25.5.2017 – p. 16
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General form of introduction and elimination rules

General form of introduction rules:

Σi1

Ai1 . . .

Σiℓ

Aiℓ

c

also written as
Γi

c
(0 ≤ i ≤ n)

General form of elimination rules:

c

Πji Πjk

Bj1 . . . Bjk

Bj

also written as
c

∆j

(0 ≤ j ≤ m)

The canonical elimination rule for c is

c

Γ1 Γk

C . . . C
C

Cerisy 25.5.2017 – p. 17

General form of introduction and elimination rules

General form of introduction rules:

Σi1

Ai1 . . .

Σiℓ

Aiℓ

c

also written as
Γi

c
(0 ≤ i ≤ n)

General form of elimination rules:

c

Πji Πjk

Bj1 . . . Bjk

Bj

also written as
c

∆j

(0 ≤ j ≤ m)

That
c

∆j

satisfies the reduction criterion means Γi ⊢∆j for

every i. Thus, by using the canonical elimination rule for c,
we can derive ∆j from c.

Cerisy 25.5.2017 – p. 18
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The maximality result

Theorem. Any valid rule, which has the form of an

elimination rule, namely the form
c

∆
, is derivable using the

canonical elimination rule.

The proof uses the following structural completeness result:

Every structurally valid rule is structurally derivable, (i.e.,
derivable without using rules for logical constants).

(This is essentially a variant of the completeness for the
implicational fragment.)

Cerisy 25.5.2017 – p. 19

Proof of the maximality result

Proof. Suppose
c

∆
is valid. As the introduction rules

Γi

c
for c

are trivially valid, we obtain that
Γi

∆
is valid for every i, since

the composition of valid rules is valid. Then by structural

completeness,
Γi

∆
is derivable for every i, which means that

the reduction criterion is met for the elimination rule
c

∆
. This

means that
c

∆
is derivable (by structural means) from the

canonical elimination rule for c.

Cerisy 25.5.2017 – p. 20
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Summary of restricted completeness

• Let c be a connective, for which introduction rules as
well as the canonical elimination rule are given. Then

any valid rule of the form
c

... . . . ...

. . .
is derivable.

• Suppose c,Γ⊢q is a valid consequence, where Γ

does not contain any logical constant. Then this
consequence is derivable (since it represents an
elimination inference).

• In other words: Every structural statement that we can
infer validly from c, can be derived from c.

• This can be viewed as a restricted form of
completeness: We have completeness for the valid
structural consequences of c (but not for every
statement in which c might be involved).

Cerisy 25.5.2017 – p. 21

Global summary

• Prawitz completeness conjecture is false.

• However, there is some restricted form of
completeness.

What Is To be Done?

• Is there any weaker validity concept that would render
intuitionistic logic complete?

• What is the logic characterized by the given concept of
validity?

• Should one give up and leave standard uni-directional
semantics in favour of a bi-directional one?
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On propositional variables:
the atomic and the parametric view

Paolo Pistone

Beyond Logic 2017

Cerisy, May 22-27, 2017
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What is a proof of p → p?

Constructive proof-theory: intuitionistic logic, BHK , realizability, . . .
Two active traditions in proof theory:

Atomist semantics

Kreisel 1961, Gabbay 1976
Prawitz’s proof-theoretic validity
(1971)
Dummett’s “justification of logical
laws” (1991)
Proof-theoretic semantics
(Schroeder-Heister, Piecha,
Sandqvist, . . . )

Parametric semantics

Girard’s reducibility candidates
(1971)
Parametric polymorphism
(Reynolds, Strachey,
Plotkin,...early 80’s)
Functorial semantics (Bainbridge,
Scott, Scedrov, ... early 90’s)
(Bi)fibrational semantics
(Hermida, Ghani, Reddy, ... last
10 years)

3 / 20
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Motivations

Compositionality + non circularity ⇒ Molecularity

If the intuitionistic explanations of the logical constants and, more generally, of the
meanings of mathematical statements are to be considered as constituting a coherent
theory of meaning for the language of mathematics, then the notion of proof which is
appealed to must be such that we can fully grasp the concept of a proof of any
constituent of a given sentence in advance of grasping that of a proof of that sentence.
(Dummett 1977)

Compositionality demands that the relation of dependence imposes upon the sentences
of the language a hierarchical structure deviating only slightly from being a partial order.
(Dummett 1991)

5 / 20

Proof-theoretic semantics

Sequent-based semantics

Typically, Kripke models:

w 
 A ∧ B if w 
 A ∧ w 
 B

w 
 A ∨ B if w 
 A ∨ w 
 B

w 
 A→ B if ∀w ′ ≥ w (w ′ 
 A⇒
w ′ 
 B)

Soundness: `LJ A ⇒ 
 A

Completeness 
 A ⇒ `LJ A

Kripke structures ' Heyting Algebras

Proof-based semantics

Typically, BHK/Realizability:

u 
 A ∧ B if u = (u1, u2) with
u1 
 A ∧ u2 
 B

u 
 A1 ∨ A2 if u = (i , ui ) with
ui 
 Ai , i = 1, 2

u 
 A→ B if ∀v (v 
 A⇒ uv 
 B)

Soundness: D
A
⇒ D− 
 A

Completeness u 
 A ⇒ u = D− for

some D
A

BHK/Realizability ' CCC categories
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Atomist semantics: first attempt

Atomic base: S = {. . . , p1, . . . , pn ` p , . . . } ⇒ (S,⊆) poset

Every S ∈ S defines a Kripke struc-
ture(MS ,⊆):

S 
 p if `S p

S 
 A ∧ B if S 
 A ∧ S 
 B

S 
 A ∨ B if S 
 A ∨ S 
 B

S 
 A→ B if ∀S ′ ⊇ S (S ′ 
 A⇒
S ′ 
 B)

A is valid if ∅ 
 A (i.e. if all S 
 A by
monotonicity)

Actually a unique structure (S,⊆).

Every upwards closed s ⊆ ℘(S) defines a
realizability interpretation

a 
s p if a ∈ S(p)

u 
s A ∧ B if u  (u1, u2), with
u1 
s A ∧ u2 
s B

u 
s A1 ∨ A2 if u  (i , ui ) with
ui 
s Ai , i = 1, 2

u 
s A→ B if ∀v (v 
s′ A⇒
u(v) 
s′ B)

D
A

is valid if D− 
∅ A (i.e. if all S 
 A
by monotonicity)

Actually a unique model (S,⊆).
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A dualist semantics
Atoms p, q, r correspond to sets of indistin-
guishable tokens.

Remark: if f 
S p → A and a, b 
S p,
then f (a) and f (b) are the same up to per-
mutation.

Non-atomic formulas correspond to sets of
possibly distinct proofs.

Example: F1, F2 
 (A ∨ A) → (A ∨ A),
where

F1 =
λu.caseu(λx1.λx2.in1x1)(λx1.λx2.in2x2)
F2 =
λu.caseu(λx1.λx2.in2x2)(λx1.λx2.in1x1)

Atomic test?

t 
 A→ C ⇒ t[B/p] 
 A[B/p]→ C for any B

For any B, AT[B] 
 A[B/X ]→ C .

In the language of Fat, does AT 
 ∀X (A→ C )?
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F2 =
λu.caseu(λx1.λx2.in2x2)(λx1.λx2.in1x1)

Atomic test?

AT[X ](f A→C
1 , f A→C

2 , xA[X/p]) =

{
f1(x) if X is atomic
f2(x) otherwise

For any B, AT[B] 
 A[B/X ]→ C .

In the language of Fat, does AT 
 ∀X (A→ C )?
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Atomic test?

[
n
A]
D1

C

[
n
A]
D2

C Atest, n
A→ C

D

A[q/p]

D1

C [q/p]

if B = q is atomic

D

A[B/p]

D2

C [B/p]

if B is not atomic
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Incompleteness

Theorem[Gabbay 1976] Validity is not com-
plete


 (p → A ∨ B)→ (p → A) ∨ (p → B)

Idea of the proof. There exists a minimum
extension satisfying p. If S ` p → A ∨ B,
take S ∪ {` p} ⊇ S . It satisfies either A or
B and is contained in any S ′ ⊇ S satisfying
p.

Corollary Validity is not substitution-closed

Proof. 1 (C ∨ D → A ∨ B) → (C ∨ D →
A) ∨ (C ∨ D → B)
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Incompleteness

Theorem[Gabbay 1976] Validity is not com-
plete


 (p → A ∨ B)→ (p → A) ∨ (p → B)

Idea of the proof. There exists a minimum
extension satisfying p. If S ` p → A ∨ B,
take S ∪ {` p} ⊇ S . It satisfies either A or
B and is contained in any S ′ ⊇ S satisfying
p.

Corollary Validity is not substitution-closed

Proof. 1 (C ∨ D → A ∨ B) → (C ∨ D →
A) ∨ (C ∨ D → B)

Theorem Validity is not complete.

GAB 
 (p → A∨B)→ (p → A)∨ (p → B)

GAB(u, f , g) ={
λx .case(u(x), f , g) if u(a) (1, u1(a))

λx .case(u(x), f , g) if u(a) (2, u2(a))

If u 
S p → A ∨ B, then u is “constant”
on p: if u(a)  (i , u′(a)), then u(x)  
(i , u′(x)).

Corollary Validity is not substitution-closed.

Proof. Take D = (A ∨ A)→ (A ∨ A); then
GAB 1 (D → A ∨ B) → (D → A) ∨ (D →
B).

10 / 20

Schematic validity

� A if for any formulas ~B, 
 A[~B/~p].

Compatible with molecularism?
(Goldfarb 2006)

Theorem [Goldfarb 2006] Schematic valid-
ity is complete.

Idea of the proof. If A is not derivable, de-
fine an instance and a countermodel start-
ing from a Kripke countermodel.

Might be incomplete?

Idea: construct an incorrect realizer of the
(valid) formula

(p → A ∨ B)→
(
(p → A) ∨ (p →

B)
)
∨
(
p → A ∨ B

)

P := λu.AT
(
in1(GAB(u)), in2(u)

)
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Motivations I

If we reject the belief that it is necessary to run through individual cases and rather make
it clear to ourselves that the complete verification of a statement means nothing more
than its logical validity for an arbitrary property, we will come to the conclusion that
impredicative definitions are logically admissible. (Carnap 1983)

From proof theory

Extend BHK to second order

[...] everything works as if the rule of
universal abstraction (which forms
functions defined for every type) were so
uniform that it operates without any
information at all about its arguments.
(GLT 1989)

From computer science

Describe polymorphic programs

Map(f , L) = “list of all f (a), for a in L”,
where
f : α→ β, L : List[α]

Map : List[α]→ List[β], for all α, β (Stra-
chey 1967)

Intuitively, a parametric polymorphic
function is one that behaves the same way
for all types [...] (Reynolds 1983)

13 / 20

Motivations II

t 
 ∀XA iff for any B, tB 
 A[B/X ]

Parameterization 1: schematic validity is
circular!

Focus on formulas with parameters

Parameterization 2:

(Girard 1971, Harper&Mitchell 1999)
Non-uniform programs are
paradoxical!

J[X ] =

{
u if X = σ

v otherwise

similarly, System F + AT will produce
paradoxes (while Fat + AT doesn’t?)
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Motivations II

t 
 ∀XA iff for any B, CB , tB 
 A[C/X ]

Parameterization 1: schematic validity is
circular!

Proof theory:

“u 
 A under interpretation η”
(Girard/Krivine) (assignment of sets
of proofs to variables)
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Motivations II

a proof of ∀XA is a function from Cs to proofs of A[C/X ]

Parameterization 1: schematic validity is
circular!

Proof theory:
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Intuition 1: natural transformations

θX : X → X
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Intuition 1: natural transformations

θX : X → X

A
θA //

f
��

A

f
��

B
θB

// B

b = f (a) ⇒ θB(b) = f (θA(a))

=

θA

θB
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Intuition 1: natural transformations

θX : X → X ∧ X

A
θA //

f
��

A ∧ A

f ×f
��

B
θB

// B ∧ B

b = f (a) ⇒ θB(b) = (f × f )(θA(a))

=

θA θA

θB

f × f
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Intuition 1: natural transformations

θX : X → X ∧ X

A
θA //

f
��

A ∧ A

f ×f
��

B
θB

// B ∧ B

b = f (a) ⇒ θB(b) = (f × f )(θA(a))

Intuitively, a functor F [~X ] is a way to
denote a formula F [~A] “uniformly” for
any choice of ~A.

Intuitively, a natural transformation
F [~X ]

θX→ G [~X ] is a way to transform a
proof of F [~A] into a proof of G [~A]

“uniformly” for any choice of ~A.

15 / 20

Intuition 2: binary relations

θA and θB should be indistinguishable: no binary relation R ⊆ A× B and aRb such that
θA(a)RθB(b) fails.

Base level: JAKη0 is an object (under inter-
pretation η):

u ∈ JA ∧ BK0 if u = (u1, u2) with
u1 ∈ JAK0, u2 ∈ JBK0

u ∈ JA1 ∨ A2K0 if u = (i , ui ) with
ui ∈ JAi K0

u ∈ JA→ BK0 if
∀v(v ∈ JAK0 ⇒ u(v) ∈ JBK0

Relational level: JAKr is a relation over
JAKη10 and JAKη20 :

(u, v) ∈ JA ∧ BKr if
u = (u1, u2), v = (v1, v2) with
(u1, v1) ∈ JAKr , (u2, v2) ∈ JBKr

(u, v) ∈ JA1 ∨ A2Kr if u = (i , ui ),
v = (i , vi ) with (ui , vi ) ∈ JAi Kr

(u, v) ∈ JA→ BKr if ∀w , z((w , z) ∈
JAKr ⇒ (u(w), v(z)) ∈ JBKr

Parametric semantics: u ∈ JAK0 is parametric if (u, u) ∈ JAKr

16 / 20
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Functorial proof-theoretic semantics

naturality bin. parametricity

fibered nat. transformations

dinaturality

1 a formula A[~X ] is a way to denote an
object JAK0 “uniformly” in ~X

2 a proof of A[~X ]→ B[~X ] is a way to
transform a proof of A[~X ] into a
proof of B[~X ] “uniformly” in ~X .

1 a formula A[~X ] is a way to denote a
relation JAKr “uniformly” in ~X

2 a proof of A[~X ]→ B[~X ] is a way to
transform related proofs of A[~X ] (i.e.
elements of JAKr ) into related proofs
B[~X ] (i.e. elements of
JBKr )“uniformly” in ~X .

17 / 20

The abstraction theorem and its inverse

Theorem[Reynolds 1984] Every derivation in LJ2 is parametric.

Remark: no parametric family (A + B)X θX−→ AX + BX

Theorem[Π1-completeness] For A a Π1 formula, if u is a parametric realizer of A, then
NF (u) exists and is the translation of an intuitionistic derivation of A.

18 / 20
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Incompatible foundations?

What is a proof of p → p?

A simple proof because p must be sim-
ple

validity for closed formulas
inductive structure of formulas
schematicity makes sense
(required?)
non-parametricity makes sense

A simple proof because p can be com-
plex

validity for formulas with
parameters
inductive structure of functors
(formulas with parameters)
ignorance about p
parametricity

19 / 20

Thank you
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Methodological remarks
on completeness and incompleteness theorems

V. Michele Abrusci
Università Roma Tre, Roma, Italy

Workshop Beyond Logic, Cerisy-La-Salle, May 25th, 2017

1

Introduction, 1

The first methodological remark is the following one: completeness and
incompleteness theorems - stated in mathematical logic during last century
- may be considered as answers given to a general philosophical question
when the concepts occurring in the question receive a particular format i.e.
a rigorous definition satisfying some natural conditions.

My talk contains

• the presentation of a general philosophical question,

• the presentation of completeness and incompleteness as answers to
this question (under the use of particular formats for the involved con-
cepts).

2
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Introduction, 2

During my talk I will expose other methodological remarks which I think are
relevant from a philosophical point of view. Some of these methodological
remarks have been inspired by

• the developments of proof theory and linear logic

• the discussions during the meetings of LIGC (including the Cerisy
meeting in 2006)

• the recent stimulating Girard’s books on logic.

The aim of this talk is to contribute to the understanding of main theorems
of mathematical logic.

3

Section 1. A general philosophical question

4
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A general philosophical question, 1: presuppositions

Presuppositions of the question (these presuppositions are also at the ba-
sis of logical investigations):

• a (naive) notion of proposition, a sentence which may be accepted or
rejected,

• a (naive) notion of proof of a proposition A, something that allows to
accept the proposition A, and so the (naive) notion of provablity of a
proposition A i.e. there is a proof of A,

• a (naive) notion of refutation of a proposition A, somethin that allows
to reject the propostion A, and so the (naive) notion of refutability of a
proposition A i.e. there is a refutation of A.

5

A general philosophical question, 2: formulation

The general philosophical question is about provability and refutability of
propositions:

Question: Is it true that ”For every proposition A, either A is provable or A
is refutable”?

i.e. is by using a modern terminology : it is true that there a duality between
proability and refutability of propositions?

The question may be reformulated in several equivalent ways.

6
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A general philosophical question, 3: other formulations

Some examples of equivalent reformulations of the question:

• is it true that ”For every proposition A, if A is unprovable then A is
refutable”? i.e is it true that, when there is no proof of a proposition A,
there is a refutation of A? i.e. is it true that there is a refutation of A
when there is a lack of proofs of A?

• is it true that ”For every proposition A, if A is irrefutable, then A is prov-
able”? i.e. is it true that, when there is no refutation of a proposition
A, there is a proof of A? i.e. is it true that there is a proof of A when
there is a lack of refutations of A?

7

A general philosophical question, 4: format of concepts

In order to solve this general philosophical question, we need to define -
in a rigorous way - the concepts involved in the question, i.e. we need to
specify a format F (i.e. a rigorous definition) of the following concepts:

• the concept of proposition, i.e. a format F of propositions,

• the concept of proof, i.e. a format F of proofs (of the propositions in
the format F ),

• the concept of refutation, i.e. a format F of refutations (of the proposi-
tions in the format F ).

8
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A general philosophical question, 5: application to a format

A format of propositions, proofs and refutations does not need to be the
format of all the possible propositions, proofs and refutations; a format
may concern only a class of propositions, proofs, refutations.

When we give a format F of propositions, proofs and refutations, the gen-
eral philosophical question may be applied to the format F , as follows:

It is true that, for every proposition A in the format F , either A is provable
by means of proofs in the format F or A is refutable by means of refutations
in the format F?

Every format F must satisfy a general condition in order to be accepted.

9

A general philosophical question, 6: condition to accept a format

The condition to be satisfied in order to accept a format F is the following:

no proposition in the format F may be both provable by means of proofs in
the format F and refutable by means of refutations in the format F ,

i.e. no proposition in the format F has both a proof in the format F and a
refutation in the format F .

This condition express the non-contradiction principle, and means that we
are considering propositions, proofs and refutations independently from
the time, i.e. in a single instant or (if you prefer) constant along all the
development of the time, i.e. we are accepting one of the main features of
classical logic.

10
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A general philosophical question, 7: other formulations of the condi-
tion on the formats

The condition to be satisfied in order to accept a format F may be for-
mulated as follows: for every proposition A in the format F , either A is
unprovable in the format F or A is irrefutable in the format F (whereas the
general philosophical question applied to the format F is: It is true that, for
every proposition A in the format F either A is provable in the format F or
A is refutable in the format F? ) i.e.

• for every proposition A in the format F , if A is provable in the format
F then A is irrefutable in the format F ,

• for every proposition A in the format F , if A is refutable in the format
F then A is unprovable in the format F .

11

A general philosophical question, 8: positive and negative statements

First remark:

• provability in a format F , and refutability in a format F , are existential
statements, i.e. (as well explained by investigations in proof-theory
and in particular in linear logic) are positive statements, i.e. these
statements are proved in a non-reversible way;

• unprovability in a format F , and irrefutability in a format F , are univer-
sal statements, i.e. (as well explained by investigations in proof theory
and in particular in linear logic) are negative statements, i.e. these
statements are proved in a reversible way.

12
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A general philosophical question, 9: truth and falsehood

Another remark:

• the provability of a proposition A (in a format F ) and the irrefutability
of A (in the format F ) are two ways to state that A is true, the first one
is a positive way, the other one is a negative way (A is true since A

wins against every refutation, i.e. A is true since A cannot be refuted);

• the refutability of a proposition A (in a format F ) and the unprovability
of A (in the format F ) are two ways to state that A is false, the first one
is a positive way, the other one is a negative way (A is false since A

cannot be proved).

13

A general philosophical question, 10: positive and negative

So, given a format F of propositions, proofs and refutations, we get two
ways to define truth (provability and irrefutability in the format F ) and two
ways to define falsehood (refutability and unprovability in the format F ).

Of course, we know that - when a concept may be defined both in a positive
way (existential statement) and in a negative way (universal statement):

• it is trivial that the positive definition implies the negative one,

• the inverse implication it is not trivial - and is in some cases false.

Example: negative and positive definition of infinite set (the fact that pos-
itive definition implies the negative definition is trivial, whereas we need
Choice Axiom to state that the negative definition implies the positive one).

14
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A general philosophical question, 11: completeness theorems

The positive answer to the general philosophical question, applied to a
format F of propositions, proofs and refutations:

• is the proof that in the format F the negative definition of truth (ir-
refutability in the format F ) implies the positive definition of truth (prov-
ability in the format F ) i.e that in the format F the negative definition
of falsehood implies the positive definition of falsehood ;

• establishes a theorem stating the equivalence between provability and
irrefutability in the format F - i.e. between a positive definition of truth
and a negative one: this kind of theorem is called completeness theo-
rem for the format F .

15

A general philosophical question, 12: incompleteness theorems

The negative answer to the general philosophical question, applied to a
format F of propositions, proofs and refutations:

• is the proof that in the format F there is a proposition A s.t. A is
both irrefutable and unprovable, i.e. the negative definition of truth
(irrefutablity) does not implies positive definition of truth (provability)
and the negative definition of falsehood does not imply the positive
definition of falsehood;

• establishes a theorem stating the failure of the equivalence between
provability and irrefutability in the format F : this kind of theorem is
called incompleteness theorem for the format F .

16
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A general philosophical question, 13: negation

When a format F of propositions, proofs and refutations is closed under
negation , i.e. when for every proposition A in the format F also the propo-
sition ¬A is in the format F and every refutation of A is a proof of ¬A, then
refutability of a proposition A is equivalent to the provability of ¬A, so that:

• a completeness theorem states that for every proposition A in the for-
mat F , either there is a proof of A in the fromat F or there is a proof
of ¬A in the format F ,

• an incompleteness theorem states that there is a proposition A in the
the format F s.t. both A and ¬A are unprovable in the format F .

17

Section 2. Some formats for the general philosophical question

18
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Some formats for the general philosophical question

I will present well-known completeness and incompleteness theorems:

• completeness theorem for the first-order logic, and Π1-completeness
theorem,

• incompleteness theorem for (extensions) of first-order Peano Arith-
metic,

• Σ1-incompleteness theorem and incompleteness theorem for second-
order logic,

as answers to the general philosophical question applied to some formats.
19

Completeness theorem for first-order logic, 1: preliminaries - formu-
las and propositions

Usually, in first-order logic one deals with first-order formulas; but first-
order formulas - even if they are closed formulas - are not propositions
since the value of a (closed) first-order formula depends on the value of
propositional letters, individual symbols, predicate symbols, function sym-
bols ... and depends firstly on the choice of a non-empty set X where we
find these values. So, given a (closed) first-order formula B, it is better
to consider a variable for sets X and all the propositional letters, individ-
ual symbols, predicate symbols and function symbols occurring in B as
variables occurring in B.

A (closed) first-order formula B becomes a proposition when we put before
B one quantifier (universal or existential) for each variable occurring in
B: this proposition is a second-order proposition and a logical proposition
(since it contains logical concepts only).

20
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Completeness theorem for first-order logic, 2: preliminaries - Π1 and
Σ1 propositions

Let B be a closed first order formula:

• by ∀(B) we denote the universal closure of B (i.e. before B there
is an universal quantifier froreach variable occurring in B): intuitively,
the logical proposition ∀(B) says that B is true for every value of its
variables, i.e. that B is a first-order tautology ;

• by ∃(B) we denote the existential closure of B (i.e. before B there
is an existential quantifier for each variable occurring in B): intuitively,
the logical proposition ∃(B) says that B is true for some value of its
variables, i.e. that B is a first-order satisfiable formula.

21

Completeness theorem for first-order logic, 3: the format (proposi-
tions and proofs)

The format of first-order logic is the the following format for the concepts
involved in the general philosophical problem.

• Propositions: the logical propositions belonging to Π1, i.e. the propo-
sitions of the form ∀(B) where B is a closed first-order formula (inside
a well-defined first-order language).

• Proof of a proposition ∀(B): a logical derivation of B inside a well-
defined calculus for first-order classical logic (Hilbert’s system, or Se-
quent Calculus, or Natural Deduction calculus, ...). Remark that (since
∀ is a negative operator, i.e. with reversible rules) a proof of a closed
first-order formula B gives the proof of ∀(B) and viceversa; so B is
provable in first-order logic iff ∀(B) is provable in second order logic.

22
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Completeness theorem for first-order logic, 4: the format (refuta-
tions)

• Refutation of a proposition ∀(B): values for the variables occurring in
B s.t. B becomes false, i.e. countermodels of B, i.e. models of ¬B,
inside a well defined semantics for first-order classical logic (Tarski
semantics). Remark that, when there is a countermodel of a closed
first-order formula B, then we discovery that ∃(¬B) is true i.e. that
∀(B) is false.

Remark that this format is not closed under negation (the negation of a
proposition ∀(B) belonging to Π1 is the proposition ∃(¬B) not belong-
ing to Π1), and that in this format proofs are defined in a syntactical way
whereas refutations are defined in a semantical way.

23

Completeness theorem for first-order logic, 5: the format satisfies the
condition

Soundness theorem of first-order logic says that (w.r. to a given well de-
fined calculus and a given well-defined semantics): for every closed first-
order formula B, either B is logically underivable or B has no counter-
model, i.e. if B is logically derivable then B is a logical tautology

This statement is equivalent to the following one: for every proposition
∀(B) belonging to Π1, either B is logically underivable or B has no coun-
termodel i.e.

for every proposition ∀(B) belonging to Π1, either ∀(B) is unprovable in
the format for first-order logic or ∀(B) is irrefutable in the format for first-
order logic

i.e. it says that the format for first-order logic satisfies the condition.
24
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Completeness theorem for first-order logic, 6: positive answer to the
general philosophical problem applied to the format

As we know, completeness theorem for first-order logic says that (w.r. to a
given well-defined calculus and a given well-defined semantics): For every
first-order formula B, either B is logically derivable or B has a counter-
model, i.e. if B is a tautology then B is logically derivable . This statement
is equivalent to the following one: for every proposition ∀(B) belonging to
Π1, either B is logically derivable or B has a countermodel i.e.

for every proposition ∀(B) belonging to Π1, either ∀(B) is provable in the
format for first-order logic or ∀(B) is refutable in the format for first-order
logic

i.e. it gives the positive answer to the general philosophical question, ap-
plied to the format for first-order logic.

25

Completeness theorem for first-order logic, 7: Π1-completeness

Completeness theorem for first-order logic may be reformulated as Π1-
completeness theorem:

for every proposition ∀(B) belonging to Π1, if ∀(B) is true (i.e. if B has no
countermodel) then ∀(B) is provable in the format for first-order logic

and therefore we get (by soundness theorem) that

for every proposition ∀(B) belonging to Π1, ∀(B) is true iff ∀(B) is prov-
able in the format for first-order logic .

26
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Completeness theorem for first-order logic, 8: refinements

As we remarked above, the format for first-order logic deals with a syn-
tactical notion of proof and a sematical notion of refutation; and this in
agreement with the paradigm traditionally adopted in logic and in philos-
ophy of logic (during last century): proofs are always syntactical objects,
refutations belong always to semantics. But, we know that a very important
improvement of completeness theorem for first-order logic (due to Schutte,
and based on sequent calculus) leads to revise this paradigm:

For every first-order formula B, there is a syntactical object s.t. either this
object is a logical derivation of B or this object gives at least a counter-
model of B.

We will show below other formats where refutations are of syntactical na-
ture.

27

Incompleteness theorem for first-order Peano Arithmetic, 1: the for-
mat

Let us consider the following format of propositions, proofs and refutations:

• Propositions: a proposition is a closed formula of the language of first-
order Peano Arithmetic,

• Proofs: a proof of a closed formula A of the language of first order
Peano Arithmetic is a derivation of A from Peano Axioms

• Refutations: a refutation of a closed formula A of the language of first-
order Peano Aritmetic is the fact that A is false in the standard model
for Peano Axioms.

28
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Incompleteness theorem for first-order Peano Arithmetic, 2: negative
answer to the general philosophical question applied to the format

Of course, this format satisfies the condition on the formats, under the
hypothesis that Peano Axioms are consistent (so that there are models of
Peano Axiom): indeed, every closed formula derivable from Peano Axioms
is true in the standard model for Peano Axioms.

(First) incompleteness theorem for first-order Peano Arithmetic states (un-
der the hypothesis that Peano Axions are consistent): There are closed
formulas A in the language of first-order Peano Arithmetic, such that A is
not derivable from Peano Axioms and A is true in the standard model for
Peano Axioms

This statement is clearly the negative answer to the general philosophical
question applied to the format above considered.

29

Incompleteness theorem for first-order Peano Arithmetic, 3: lack of
proofs, lack of refutations

As we remarked in the first part of the talk, an incompleteness theorem
may be considered as a theorem saying that in the format there is a lack
of proofs (for some trrefutable propositions), or as a theorem saying that in
the format there is a lack of refutations (for unprovable propositions). This
holds also for first.order Peano Arithmetic.

The reaction to this lack of proofs has been to get a completeness theorem
by a considerable extension of the format of proofs, i.e. by taking as proofs
of a closed formula of first-order Peano Aritmetic a derivation of the formula
inside ω-logic (with a constructive ω-rule).

The reaction may be also to get a completeness theorem by a considerable
extension of the format of refutations ... (not simply by using non-standard
models for Peano Aritmetic).

30
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Incompleteness theorem for first-order Peano Arithmetic, 4: another
format

Let us consider the following format where both proofs and refutations are
syntactical objects (indeed, the format used implicitly by Gödel in its proof):

• Propositions: closed formulas of the language of first-order Peano
Arithmetic,

• Proofs: proofs of a closed formula A of the language of first order
Peano Arithmetic are the derivations of A from Peano Axioms,

• Refutations: refutations of a closed formula A of the language of first-
order Peano Aritmetic are the derivations of ¬A from Peano Axioms.

31

Incompleteness theorem for first-order Peano Arithmetic, 5: another
formulation

This format satisfies the condition on the formats, from the hypothesis that
Peano Axioms are consistent (i.e. underv the hypothesis that it is impossi-
ble to prove both A and ¬A from Peano Axioms).

We may formulate (first) incompleteness theorem for first-order Peano Arith-
metic (under the hypothesis that Peano Axioms are consistent) as a nega-
tive answer to the general philosophical question applied to this format:

There are closed formulas A in the language of first-order Peano Arith-
metic, such that A is not derivable from Peano Axioms and ¬A is not
derivable from Peano Axioms.

in this sense, we may say that incompleteness theorem for first-order Peano
Aritmetics is independent from semantical considerations.

32
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Σ1-incompleteness theorem and incompleteness theorem of second-
order logic, 1: the format

Let us consider an arbitrary consistent system T for second-order logic.
With respect to T , we may define the following T -format of propositions,
proofs and refutations (where propositions are logical propositions, and
both proofs and refutations are syntactical objects):

• Propositions: the logical propositions belonging to Π1, i.e. of the form
∀(B) where B is a closed first-order formula.

• Proof of a proposition ∀(B): a derivation of B inside T

• Refutation of a proposition ∀(B): a derivation of ∃(¬B) inside T .

33

Σ1-incompleteness theorem and incompleteness theorem of second-
order logic, 2: remarks

Every T -format satisfies the condition on the formats, under the hypothesis
that T is consistent: indeed, if there is a proof of ∀(B) and a refutation of
∀(B), then there is a derivation in T of B (so that also a derivation in T of
∀(B) ) and a derivation in T of ∃(¬B), i.e. a contradiction.

Remark that - in a T -format - refutations are derivations in T of propositions
belonging to Σ1.

As a consequence of Completeness Theorem for first-order logic, we get
(as we explained above) the Π1-completeness theorem; as a consequence
of Incompleteness Theorem for Peano Arithmetic, one obtains the Σ1-
incompleteness theorem stating: There is no consistent system T s.t. ev-
ery true proposition belonging to Σ1 is derivable from T .

34
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Σ1-incompleteness theorem and incompleteness theorem of second-
order logic, 3: remarks

As a consequence of Σ1-incompleteness theorem, we get immediately an
Incompleteness Theorem for second-order logic: There is no consistent
system T s.t. every true logical proposition is derivable from T .

Σ1-incompleteness theorem may be formulated as a negative answer to
the general philosophical question applied to the T -format, for any consis-
tent system T of second-order logic.

Indeed, Σ1-incompleteness theorem says that, if T is a consistent system
for second-order logic, then there are first-order formulas ¬B such that
∃(¬B) is true but ∃(¬B) is not derivable in T .

35

Σ1-incompleteness theorem and incompleteness theorem of second-
order logic, 4: a negative answer to the general philosophical ques-
tion, applied to the format

Now, the statement ∃(¬B) is true is equivalent to the statement B ha a
countermodel and so (by Completeness Theorem for first-order logic) to
the statement B is not derivable in T .

Therefore, we may reformulate Σ1-incompleteness theorem as follows: if
T is a consistent system for second-order logic, then there are first-order
formulas B such that B is not derivable in T and ∃(¬B) is not derivable in
T , i.e.:

if T is a consistent system for second-order logic, then in the T -format there
are propositions ∀(B) s.t. ∀(B) is unprovable and ∀(B) is unprovable.

36
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Σ1-incompleteness theorem and incompleteness theorem of second-
order logic, 5: lack of proofs, lack of refutations

Remark that Σ1-incompleteness theorem says that, for every consistent
system T of second-order logic, we have a lack of proofs and a lack of
refutations in the T -format.

In particular, in every consistent system of second-order logic:

• when ∃(¬B) is not derivable, one cannot say that there is a derivation
of ∀(B) i.e. a derivation of the first-order formula B;

• when ∀(B) is not derivable (i.e. when B is not derivable), one cannot
say that there is a derivation of ∃(¬B).

37

Σ1-incompleteness theorem and incompleteness theorem of second-
order logic, 6: a consequence for first-order logic

Question: is it possible to have a completeness theorem for first-order
logic, with respect to the following format where both proofs and refuta-
tions are syntactical objects?

The format:

• Propositions: the logical propositions belonging to Π1, i.e. of the form
∀(B) where B is a closed first-order formula (inside a well-defined
first-order language).

• Proof of a proposition ∀(B): a logical derivation of B inside a well-
defined calculus for first-order classical logic (Hilbert’s system, or Se-
quent Calculus, or Natural Deduction calculus, ...).

38
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Σ1-incompleteness theorem and incompleteness theorem of second-
order logic, 7: a consequence for first-order logic

• Refutation of a proposition ∀(B): a logical derivation of FALSE from
instances of B inside the same calculus.

The answer is NOT, as a consequence of Σ1-incompleteness theorem.

Indeed, in this format a proposition ∀(B) is refutable iff ∃(¬B) is derivable
... (Details are omitted...).

39

Thank you for your attention!
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A hint to answer the question “What is logic?”
—

“Proof-formation precedes proposition-rule formation”

Mitsuhiro Okada
Department of Philosophy, Keio University

Preliminary version, from a talk at the Cerisy Meeting May 2017

Abstract

We critically discuss the contemporary notions of “formal logical language”
and of “formal proof”, and we remind ourselves that “formal proof” misses (or
veils) some important points regarding what is logic. Instead of the traditional
notions, formal language and formal proofs, as the central, we emphasize
importance of the notion of “proof-formation”, which determines (decides
or commits to) rules and propositions. This would provide us with a different
view of logic that “proof-formation precedes proposition-rule formation”.

Russellian signs veil the important forms of proof as it were to
the point of unrecognizability, as when a human form is wrapped
up in a lot of cloth.

—Wittgenstein, Remarks on the Foundations of Mathematics

Introduction

What is logic? This is, in our opinion, one of the oldest and of the newest important
questions in logic. We would like to point out that it is not so easy to answer
this question. To answer the question “what is logic?” would involve various
different issues. For example: Is logic related to the way of our thinking or
independent of it? Does it give certification of our argumentation? Is logic classified
by deduction, induction and abduction as Peirce did? If so, why deduction, or the
logical consequence relation, has been considered important among the three by
the “logicians”? How can we understand cultural differences of logic, e.g. in the
historical contexts of Aristotle, logics in the European and Islamic worlds and of
Indian-East Asian logics? How about differences of logic studies among different
academic communities, such as philosophy, mathematics, computer science, AI,
psychology, neuro-science, and others?

M. Okada: A hint to answer the question “What is logic?”

367



Although there are many issues to be discussed to answer the question, we here
take only one topic: “proofs precede propositions”. We would like to sketch our
view of “proof formation”, in contrast to the 20th century view of “formal proofs”.
In our opinion, the discussion on this topic could provide us with a hint to answer
the question “what is logic?”, from a standpoint of philosophy of proofs. We would
like to remark that the 20th century notions of “formal logical language” and
“formal proof” may miss (or veil) some important points regarding what is logic.
In particular, the formal proofs are defined by means of the formal proposition
and rules which are pre-defined, (and semantics of proofs depends on semantics of
propositions or on semantics of rules). We challenge to emphasize different views,
especially, the view that “proof-formation precedes proposition-rule formation”.
This view would help, in our opinion, remove the veil of fixed formal language and
formal proofs from logic, and help us reveal what is logic.

1 “From propositions to proofs” or “from proofs to propositions”?
Formal-proofs vs proof-forms

We introduce our view that the “proof formation” comes first and the proof
formation activity determines which rules of logic we follow. For simplicity of the
argument we mainly consider only limited alternatives of logical grammar rules.
For simplicity we consider classical, intuitionistic and sub-structural (linear) logical
rules as possible alternatives of the rules below.

The notion of modern logic depends on the notions of formal logical language
and of formal proof. The typical formality here consists of the inductive rules-based
generative rules, in fact “formal logical propositions” are inductively generated by
inductive rules (which may be called grammar in the generative linguistic sense).
Then the closed set of formal-proofs is given by a fixed set of generative rules, which
are called logical inferences and axioms (with or without another generative set of
extra-logical, e.g., mathematical, axioms). From this point of view the basic logical
expressions are inductive structures, or more precisely those of inductive data-types.
This modern notion of formal proofs presumes that “propositions precedes proofs”.
(The semantic characterization of logical consequence relation has more or less the
same steps, from interpretations of propositions to the soundness-completeness
properties of inductively defined “provability”.)

We would like to express limitations of the notion of formal proofs based on
formal universal language and pre-fixed rules and formal propositions.

Brouwer and his intuitionist school claim that the proof constructions are not
closed by any fixed language nor fixed rules. In this sense, we share some claims
with them. However, we do not go into the issues of mental constructions of proof.
We rather keep ourselves our language-game based situational externalist position.
The formal proofs presume fixed rules for proving, but the proof-formations could
proceed the decisions as to which rules, for example, either classical or intuitionist or
other rules at each step of proof-formation, in our view. Rules and norms could be
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revised in the next step of proof-formation. The revisability/modifiability of rules is,
in our opinion, an important nature of proof-formation in general. (For example, a
commitment to a new proof formation of 30× 30 = 900 may be a commitment to
a new rule and new concept, e.g., use of exponentiation in our ordinary life, rather
than multiplication. This is not canceling the multiplication rules, but connecting
new exponentiation rules to multiplication rules and to counting: in this way
the network of norms is revised. We do not enter this topic in detail though.)
A new proof formation is to commit to a new rule; how to calculate is changed
(e.g., from “how one should do with multiplication” to “how one should do with
exponentiation”). A new calculation rule is taken even for the name result. A new
commitment to a rule may be forming a concept of exponentiation. Possibility of
revisions of rules would be a requirement for proof formation.

The following is a sort of simplest example from dialogical/game-form proof
formation. Our emphasis here is that proof-game-formation does not presume
logical rules/grammar fixed. This standpoint is shared with Girard’s Ludics. Ludics
does not presume pre-fixed formation of proposition nor rules for proof-formations.
This is also shared with our standpoint that “proof-formation precedes proposition-
formation” which is contrasted to the modern notion of “formal proof” which
presupposes “proposition-formations precedes formal proof-formation”.

I would say that there are cases in which the logical rules are not pre-fixed
before the proof-formation activities. Here, a proof formation has the aim to not
to loose the debate against the opponent.

Let’s consider “A or not A”, or say “God exists or God does not exists”. A
dialogue of the debate between the opponent and proponent could be seen as a game
semantics way, but now the logical rules, or the norms to follow, are determined
only with the game-playing, which is different from the fixed rule game.

– The opponent asks me: would you defend “God exists” or “God does not
exist”?

– I respond: I defend “God exists”. And I ask the opponent which she/he
defends.

– Opponent responds: I defend “God does not exists”.

– I say: I change my mind and I defend “God does not exist”.

When this changing my mind is allowed, at this moment it is a commitment to take
the classical logic rule, and if the opponent also agrees to this commitment, the two
claim the same, and I do not loose the debate (usually). (If the opponent forms the
third proof of Thomas Aquinas, I can do the same.) When changing my mind is
not allowed, one needs to keep the intuitionistic logical rules at the moment.

Why should I not say: in the proof I have won through to a decision?

The proof places this decision in a system of decisions.
(Wittgenstein, RFM III-28)
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Je simule les questions et réponses de l’Opposant

A ` A
Je réponds à l’Opposant avec l’autre choix “A”

A `
L’Opposant contre-attaque

` non-A
Je réponds

Lequel défendez-vous, A ou non-A ?
L’Opposant pose la question

Dieu existe ou il n’existe pas
` A ou non-A

Je défendrai

In fact, starting assumptions and rules are revised depending on the situation
in the dispute, or on the situation in rational reasoning, but still we form a proof:
This formation activity is not a “formal proof” of a fixed logical grammar/rules in
the traditional sense, which is not revisable. The issue would be the choice of logical
grammar, in the similar way to the grammar choice in the case of realist/anti-realist
issues of the case of Dummett, but revisability, at any time during a proof formation,
of the underlying grammar rule is important for us (which is different from the case
of Dummett). (Revision of the defense statement from “God exists” to “God does
not exist” has changed the meaning of the statement that was the starting statement
of this dispute, namely the meaning of “God exists or God does not exist”. The
statement of the meaning is keeping revised as the meaning of the statement is in
fact the proof being revised and formed. Here, we have used the word “meaning”
naively; more strictly speaking, this is the change of concept-formation, if we stick
to Wittgenstein’s wordings.)

Although we do not show enough textual evidence in this (version of the)
paper, our view is closely related to Wittgenstein’s view of mathematical proofs in
his RFM. Wittgenstein often emphasizes that proving is a decision of rule and
a commitment to a norm, and proving is a concept formation and networking
of norms. (The view that proving is a networking to form a new concept will be
also mentioned when we discuss Husserl later.) Here he restricts his attention to
the “mathematical” propositions. He considers a proof of, say, 5 + 3 = 8, and
tells us how to calculate this is a “proof”.1 and calculation in different ways are
different proofs. There is no mathematical proposition without proof. There are

1Would one say that someone understood the proposition “563 + 437 = 1000” if he did not know
how it can be proved? Can one deny that it is a sign of understanding a proposition if a man knows how
it could be proved?

Wittgenstein: Each proof proves not merely the truth of the proposition proved, but also that it can be
proved “in this way”.

The interrogator: But, this latter can also be proved in another way, and in doing so.
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no two proofs for one single mathematical proposition because each proof is a
mathematical proposition. The ending proposition (theorem) can be deleted from
a proof unless the proof still “shows” how to calculate and how to apply. This is
exactly the case when the theorem (ending proposition) is algebraic such as the
distributive law or the commutative law of arithmetic. A proof makes formation
which is referred to paradigm, model and patterns. Wittgenstein keeps a strikingly
coherent view of arithmetical proposition-calculation-proof fromTractatus through
the mid period to the late period (although the mathematical propositions is called
the pseudo-propositions in Tractatus).2

To make sense of these “proof-formation” games, there is a “frame” for all
possible moves, which makes sense for the decision of the next move. (Spending
time on a boat on the sea makes no sense for a mountain-climbing activity game.)
A natural candidate of this basic frame to make sense of proof-formation games
would be some framework of restricted use of natural deduction or syllogism or
quantificational logic, which we discuss in the next Section, partly.

Proof-formation sets/revises a network of norms in various ways in our opinion.
(In contrast to this, the traditional “formal-proofs” have no relations to norms
and norm-revisions, although they might have some connection to formal truth
and formal satisfaction.)

Although I do not enter this in detail in this paper and leave this in the
subsequent papers, non-prefixed logical grammars are chosen, say at every step,
during proof formations and we could keep pure proof formation for practical
reasoning, too. Many philosophers think practical reasoning is not directly related
to the notions of formal logical consequence, hence formal proof. Something wrong
here is the traditional notion of “formal-proof”. Then, we could capture rational
and practical reasoning by the proof-formation activities, without considering
a domain of practical logical reasoning independent of the basic logical proof
formation activities.

Wittgenstein: Yes, but the proof proves this in a particular way and in doing so proves that it can be
demonstrated in this way. (RFM III 59)
A proof is a mathematical entity which cannot be replaced by any other.
The new proof shows (or makes) a new connection. (But in that case is there not a mathematical
proposition saying that this connection exists?) (RFM III 60)
The mathematical Must is only another expression of the fact that mathematics forms concepts.
Mathematics forms a network of norms. (RFM VII 67)

2Wittgenstein’s view on proofs is strikingly coherent from the early work, Tractatus, to the later
work. Although the connection of the argument here to that of The Big Typescript [Marion-Okada
2017] is both explained here, it will be provided by the author in a subsequent paper.
Here, we only point out the following. Committing a proof (namely how to calculate) is the

commitment to norm.

I go through the proof and say “Yes, this is how it has to be; I must fix the use of my
language in this way.” (RFM III 30)
A mathematical proof moulds our language. (RFM III 71)
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The following is usually considered a “practical” reasoning, or practical Modus
Ponens in practical reasoning (which has been often claimed “not captured by
formal logical inferences”) as to how one should act.

(1) I desire that my tooth decay is cured.

(2) If I desire that my tooth decay is cured, it is necessary that I have a dentist
appointment.

(3) I should have a dentist appointment.

I would say that this is just another proof-forming of proof-based logic with the
usual Modus Ponens formation. We do not need propositional attitude forms or
deontic modality to form proof.

(1) I have a dentist appointment.

(2) If I have a dentist appointment, then my tooth decay is cured.

(3) My tooth decay is cured.

My forming this proof ismy decision and commitment to curing my tooth decay.
There may be a different proof formation, with tooth-extraction or medication.
Commitment to a different proof would show how to calculate it, namely, how to
proceed it, i.e., how to do with the tooth. Commitment to this proof sets a norm
which I should follow. I should follow this procedure which I have accepted as a
proof formation. By accepting the proof, I form a proof networking with practical
life, and you commit yourself with (1) to determining this is the proof. Now, I know
what means “I cure my tooth decay”. This means this proof. I might have had a
desire or expectation that my tooth is cured. But, the exact desire and expectation
is clearer only after a proof is formed where the norm is set and connected to our
practical life as to what I should do. The (my) proof determines the norm and I
commit myself to go to a dentist. This norm is the norm of what to do, but also the
norm of what “to go to a dentist” means, etc.

This is forming the “inferential networking” of “my curing a tooth decay” to
others. When a proof-network is forming as above, one has the commitment as to
what one proves and the proof is very often the matter of her/his matter of decision.
And it set the norm regarding going to dentist and makes her/him know/believe
what means going to a dentist at the same time. When she/he commits to the proof,
she/he finds another

Here, one could say that the classical logical implication does not fit for (2) above.
It is not the classical logical implication. Intuitionistic implication would serve
better? No, neither fits (note that there is no difference as the grammar between the
intuitionisticModus Ponens and the classical.) In fact, it is linear logical implication
involved which expresses a state-change. The state of having a dentist appointment
changes to the state of the tooth decay being cured. This is also understood as the
resource-sensitive implication. The state of having an appointment is consumed

M. Okada: A hint to answer the question “What is logic?”

372



to generate the tooth’s being cured. We do not discuss these implicit linear logical
proof formations in it further. (we shall discuss this elsewhere), but what we would
like to say here is that the so called practical reasoning or practical rationality about
what one should act, can be considered based of non-practical proof-formation
with revising rules/grammars from classical to intuitionistic to linear and others.
Normativity comes with one’s commitments with proof formation (of normal
proof in the sense of logic).

Remark on the flexible choices between classical-intuitionistic-l logical rules
implicit in the controversy in cognitive psychology of logical inferences, and the
relation to our view. Although the main controversy has been about mental process
models of logical proving, there is an important reading of this psychological
modeling issues from the point of view of the logical grammar choices in our
context.

There has been the central controversy of cognitive psychology of logical infer-
ences since 1970s, between the Mental Model and Mental Logic. This controversy
was the cognitive psychological version of the foundational Semantics-vs-Syntax
debate as well as the Classical Logic vs Intuitionistic Logic debate several decades
before in logic, as pointed out in [Grialou-Okada 2003]. The Mental Logic process
model takes an intuitionistic natural deduction proof-formation process model
as the basic process model. Braine claims that the natural deduction inference
process is “natural” as Gentzen claims. (It was claimed in both introductions of
their papers!). Gentzen’s notions of normal proof and of normalizations work
properly (with the subformula property) not for classical proofs but intuitionistic
proofs. So, Gentzen rather suddenly moves from the topic of natural deduction
proof formations to sequent calculus in order to introduce the notion of normal
proof formation of classical logic. But, it is important to see the implicit difference
between the natural deduction “proof-formation” which is essentially claimed
to be the rules of our logical thinking and the sequent calculus which is (rather
artificial as thinking rules, or just formation for counter-examples) formalism of
“formal-proof” system. Although Gentzen does not explain explicitly the notions
of normal proof and of normalization with “natural” deduction because he is
in a hurry to move to sequent calculus formal proofs in the paper, it is much
more clear that Gentzen knows the normal form theorem and normalization
theorem of intuitionistic proofs perfectly. (It is given explicitly by Prawitz much
later by reading Gentzen.) Gentzen’s normal proof formation of natural deduction
or natural rules of thinking is a striking claim and example of non-formal but
proof-formation properly with modern logic. This intuitionistic proof-formation
of natural deduction could be considered a basis of normal and normative proof
formation (especially if we take the standpoint that deductive proof-formations
are related to practical-normative reasoning, as briefly discussed above). This
could be a basis but, as I claimed above, the proof formation is not determined by
fixed universal rules, neither intuitionistic nor classical, for example. Depending
on the situation, refutational-proof formation is introduced, or double-negation
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is eliminated, while in other situations it is forbidden, not allowed. Some other
restrictions could be set, e.g. some substructural rule restrictions (in the case of
state-transition style logical implications, for example).

TheMental Logic School of cognitive psychology of logical inference and proof
took that natural deduction proof processes are the basis of our deductive mental
processes. It is also in harmony with the above setting of non-deterministic formal
language. First of all, this is a mental process model of logical thinking, and not
fixed formal language and formal proofs. Second, no determination of choice of
logical rules because although intuitionistic natural deduction rules are the basic
frame, de Morgan equivalent rules are allowed to be taken as rules when needed.
Third, proof-formations are within a small range of logical complexity because the
process model is concerned with our real-feasible mental processes.

2 Proof-formations as graphic network formations

To see how the proof formation is different from “formal-proofs” of formal
logical-linguistic language, one direction of our examinations could be that of
diagrammatic-graphic proof formations or proof-network formation.

Peirce, independently of Frege, formulated first order (quantified) predicate
logic. The propositions and proofs are represented by his diagrammatic-graphic
system, called Existential graphs (E-graphs). One can see the representation system
of E-graphs for representing quantified first order logical formulas are defined
“inductively” too, as usual inductively defined linguistic formulas. But, the nature
of “inductivity” is different from the purely formal-linguistic ones. The formation
of graphs for simple formulas indeed have visual assistance of the logical relations
of the formulas. In this sense, this line of diagrammatic representation system
of first order is the same line as those of his previous work on diagrammatic
representation system of syllogisms, such as Euler diagrammatic systems. The
underlying idea is that logical representations and deductive proof operations of
ordinary life are restricted, and the diagrammatic versions of logic are of effective use.
On the other hand, Existential-graph representations of quantified formulas and
E-graph-based deductions seems not realistic when the formulas and deductions
are complicated; for example, too many edges in a complicated way to visually
understand them. For (an extreme) example, consider when one would like to do
some metamathematics such as consistency proof of fist order Peano Arithmetic or
model theoretic completeness proof or even soundness proof of first order logic,
choosing Peirce’s E.

It does not mean the demerit nor defect of Existential-graphs or graphic
representations and operations of proof formations in first order logic. On the
contrary, we would count this difficulty as a big merit. The graphic representations
unveil the formal idealism of formal-language and formal proofs; they show, more
closely than symbolic-linguistic representations, what are logical representations
(e.g. infinite applicability of formal rules). The graphic-diagrammatic proofs would
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reveal what is logic in our real situations of representation of propositions and
operational procedures of inferring with them.

Independently of Existential-graph construction-manipulation processes, Peirce
also strongly emphasizes the necessary or indispensable role of diagrams in proofs.
For example, diagrammatic proofs with auxiliary lines in Euclidian geometry. As
Tarski later formulated Euclidian geometry in the first order predicate logic, one
can develop Euclidean proofs as “formal-proofs”. But, based on Peirce’s view
this line of proof-developments inside the formal language would not capture
geometrical proof formations (in his notation, “theorematic” deductive proof
procedure).

The syllogistic reasoning and its slight modification is known to cover a quite
large part of our logical inference with ordinary language. This suggests that the
ideal generalization to the first order predicate logic language is too general for
our own logical reasoning. Here, for the use of the syllogistic part of logic, it is
important to see how diagrammatic inference is still important in comparison
with ideal linguistic syllogism. A recent examination of ours shows that it is easier
for the subjects to infer with Euler diagrammatic and Venn diagrammatic than
with purely linguistic tasks, and that among the two major diagrammatic logics,
it is easier with Euler than with Venn (see [Mineshima-Sato-Takemura-Okada
2014]; Euler diagram has more inferential features while Venn is model-checking
or classical semantics. We shall discuss this elsewhere further). The essence of
syllogistic proof formation is not dealing with circles, but edge-manipulation of the
underlying (forest) graphs (see [Mineshima-Okada-Takemura, 2012]). In this sense,
proof-formation in our ordinary life is a manifold formation, which we introduce
in this Section.

We cannot presume easily that professional mathematical working proof forma-
tion activities can be captured by “formal language” as a making “formal proofs”,
either. The usual mathematical activities have rather shallow depths of logical
complexity, namely shallow nested depth of, e.g. quantifier-alternatives or nested
depth of logical implications, even though they have rich depths of mathematical
complexity. It is simply because one cannot use formally-logical complex expres-
sions in ordinary life and in mathematical communications. When some complex
logical expressions are required, a new tool such as diagrammatic proof-formation
grammar rules are formed with concept formations. Diagrammatic representations
and proof formations are essential as the grammar of category theory. We shall
discuss this elsewhere.

There are radical, or I would say revolutionary movements of reconsideration
of proof formation of logic. One of the representatives of such is linear logic and its
various versions, all initiated by Jean-Yves Girard. In our context of this Section, I
would remind the readers that one of the main underlying ideas of linear logic, when
Girard published his first paper on linear logic, was exactly the anti-inductive notion
of logic that is the notion of proofnet, a graphic characterization of proof-formation
of logic.
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Even the linguistic proof can be seen as a picture or proof-picture. Wittgenstein,
in the writing already discussed in the previous Section, referred to proof-pictures.
For example, he expressed it as follows.

The proof must be our model, our picture, of how these [arithmetical]
operations have a result.

The ‘proved proposition’ expresses what is to be read off from the
proof-picture. (RFM III 25)

We would propose to read Husserl’s notion of manifold in his universal arith-
metic as a relational graphic proof network formation where each edge is a proof
step.

Characterizing the real number theory, Hilbert applied his axiomatic method
to arithmetic in 1900, where Hilbert listed axioms including the continuity axioms,
while Husserl (in 1901) deleted the continuity axioms and changed the way of
algebraic equational rules of Hilbert to term-rewrite rules. (See [Okada 2013],
[Hartimo-Okada 2016].)

While Hilbert’s continuity axiom (completeness axiom) requires the maximum
model of the axioms, The definiteness criterion which Husserl imposes requires
that the rewrite rules are convergent (confluent and terminating, so that any term
is reduced to a unique irreducible form). Hence, the underlying idea is the same
as (Knuth–Bendix) completion. Hilbert’s completeness axiom requires that the
model is the maximum model, while Husserl’s definiteness criterion implicitly
produces the minimum model (although the notions of model or semantics are
not in Husserl). For example, in his 1901 manuscripts in which he discussed his
universal arithmetic most intensively, Husserl’s manifold is concept-formation
in the sense that the relational networking of proofs makes the “concepts” (or
significative intentions) of it, and is clearer (fulfilled) in the definite manifold.
(see [Okada 2013]). Both Hilbertian completion to the maximum (from the view
outside the proving grammar), and Husserlian completion to the minimum within
the proving grammar are very much graphic or spatial, in our opinion, although
this issue should be discussed further. Husserl’s definiteness requirement of the
possible proof-path graph (manifold) is purely graph-theoretic.

He considers the whole possible equational inference move-relations as a
manifold, by a relational graphic view. No terms or equational propositions are
pre-assumed as terms or propositions, but those are only positions/locations or
relational edges of this possible proof-formations (open) graph, called manifold
(in Husserl’s sense). This may be understood as one example of “proof-formation
precedes propositions”.

Each object, formally considered, is the mere locus/position [Stelle]
in the network of relations [Relationsgewebe], i.e., in the relational
form, where objects can be situated; and the relational form must
be so rigid – it must be formally differentiated to the last degree –
that it unambiguously [eindeutig] determines each locus/position in
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relation to the other loci/positions. If indeterminacies still remain here,
then there would also be the possibility of formally characterizing the
network of relations further. (1901, Hu XII 475, transl. by D. Willard)

His manifold is not just a set-theoretic model structure (which can denote
extensional relations of eachoperator term); a possible proof is a process networking
terms and connecting to other proofs. A concept expressed by a term is more
clarified with the networking. When a new term is entered in the proof formations,
the rules are extended and connected to the already networked manifold with the
requirement of definiteness. He keeps this basic standpoint of manifold until FTL
(1929)3.

We would propose a dynamic reading of Husserl’s notion of definite proof
(of his 1901 manuscripts). When the constructor terms are pre-given before any
proof-formation, he calls suchmanifold “constructible manifold” or “mathematical
manifold”. But for our discussion, a general (not constructible) manifold would
be more interesting than constructor-based manifold, where the proof-formation
steps re-set rules which should follow, such as Knuth–Bendix completion, to get
normal terms, which serve as a standard/norm. It is also the case that Husserl
converts Hilbert’s algebraic equational rules to his calculable rewrite rules for
his definite proof formations, namely convergent rewrite proofs. He seems to
assume this type of completion partly. He expresses the normal (in his terminology,
irreducible) terms as the standard (Etalons); in the case of constructor-based
manifold, the standards are already pre-fixed (as the number series). In the case of
non-constructible manifold, proof formations and standards are formed together,
whichwould fit our proof formation discussed in this paper. It is also noted that both
Husserl in 1901 and Knuth–Bendix in 1969 emphasize the static pre-procedures of
completion. However, Husserl works on non-prefixed formal languages, and the
main aim of the definite manifold theory of Husserl is to set universal arithmetic,
which is linguistically open and extendable. New terms of new concepts are to be
networked my means of proof-network formation, and the new concepts located
by the new network become clear when the graphic structure of the network is
transformed by the choice of rules (completion).

The irreducible terms are normal and standard terms and serve as the value
field; they are the field of the standard model for the extensional interpretation
of (universal) arithmetic. We would like to emphasize that the Husserlian proof-
network and rewrite proof-network are the network of proof-formations and cannot
be captured by model theory or value/denotation-based semantics. Note that the
reverse direction is obvious; from the proof-formation network, one could have a
standard semantic interpretation by “projection to the normal terms”.4

3E. Husserl: Formale und transzendentale Logik. Versuch einer Kritik der logischen Vernunft, Niemeyer,
Halle 1929.

4In this version, we had no space to present another aspect of our semantics implicit in the proofs.
We can, for example, set up sound-complete semantics to the formal proofs (e.g. from [Okada 1997] to
[Okada-Takemura 2004, 2007]) and can induce the usual model-theoretic soundness and completeness
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3 Concluding remark

We considered some aspects of “proof-formation”, in contrast to formal proofs
with fixed formal language and fixed formal logical rules. We emphasized that proof
formation involved norm formation and rule-decisions. Viewing proof formation
as graphic-diagrammatic network formation would be helpful in considering a
non-formal notion of proofs. We pointed out that our view of our proof-formation
had some common basis with some writings of Wittgenstein, and also would be
related to some of Husserl and Peirce. We stated our view of proof-formation as
“proof-formation precedes proposition-rule formation”. We believe that this view
would help remove the veil of pre-fixed formal language and formal proofs from
logic and help us reveal what is logic.
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Computational Complexity

Once upon a time, people asked (and answered) the following question:

What is a computable function?

That’s all good in theory, but once first computers were built and in use, people
realised there was another important question, namely:

What is an *efficiently* computable function?

I.e. what if we wanted the answer to be produced within our lifetimes (well,
quicker than that really if the result is to be used somehow).

This somehow marked the birth of computational complexity: three papers
addressed this question within a year.
(Cobham 1965; Hartmanis and Stearns 1965; Edmonds 1965)

And now let’s fastforward.
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Complexity Theory, Today (well, in 2006)
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Source: Complexity Zoo; https://complexityzoo.uwaterloo.ca/Complexity_Zoo
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Complexity Theory, Today

A number of separation results were obtained, most of them in the 70s. But
a lot of questions remain open. For instance: we know L ( PSPACE, but we
don’t know which of these inclusions are strict: L ⊂ P ⊂ NP ⊂ PSPACE.

In fact, the three more important results are negative results (called
barriers) showing that known proof methods for separation of complexity
classes are inefficient w.r.t. currently open problems. They are:
relativisation (1975), natural proofs (1995), and algebrization (2008).

Thus: no proof methods for (new) separation results exist today.
(Proviso) One research program (but one only) is considered as viable for
obtaining new results: Mulmuley’s Geometric Complexity Theory (GCT).
However, according to Mulmuley, if GCT produces results, it will not be
during our lifetimes (and maybe not our childrens’ lifetime either*), since it
requires the development of much involved new techniques in algebraic
geometry.
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Barriers in Computational Complexity.

Morally, there are two barriers (here for P vs. NP):
Relativization/Algebrization: Proof methods that are oblivious to the
use/disuse of oracles are ineffective.

Ï There exists oracles A ,B such that:

PTIMEA ∼ 6= NPTIMEA

PTIMEB = NPTIMEB∼

Natural Proofs: Proof methods expressible as (Constructible, Large)
predicates on boolean functions are ineffective.

Ï A natural proof of PTIME 6= NPTIME implies that no pseudo-random
generators (in P) have exponential hardness.

Conclusion: Lack of proof methods for separation. But why?
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Barriers as Guidelines
State of the Art in Complexity (Separation Problem): Barriers.

Relativization/Algebrization: Proof methods that are oblivious to the
use/disuse of oracles are ineffective.

Ï Separation proof methods should depend on the computational principles
allowed in the model.

Natural Proofs: Proof methods expressible as (Constructible) predicates
on boolean functions are ineffective.

Ï Separation proof methods should not “quotient” the set of programs too much.
(by definition, complexity classes are predicates on boolean functions)

Conclusion: Lack of proof methods for separation.

Thus arguably due to the following:
(Note Moschovakis already argues along these lines, but does not discuss barriers)

“What is a computable function?”

“What is a program/algorithm?”
Solved (at least for nat→ nat);

Not Solved (Attempts exist though)
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Digression: How to overcome barriers

Mulmuley’s program breaks Largness, i.e. it aims at developing techniques
to prove lower bounds for a specific problem, i.e. the techniques are
problem-dependent. (Mainly, GCT works with the determinant vs
permanent problem in arbitrary characteristic and advocates for the use of
techniques from algebraic geometry.)

I want to break constructivity. (keeping the possibility of breaking
largeness as well).
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A more general issue
P.J. Denning, in The Field of Programmers Myth, Comm. ACM 47 (7), 2004:

We are captured by a historic tradition that sees programs as
mathematical functions [...].

The notion of computable functions is a very bad measure of the
expressivity of a model of computation. E.g. Neil Jones’ Life without cons.

More generally, complexity is a bad measure of the expressivity. Somehow,
it is erroneous to think that characterising a specific class of functions, e.g.
Ptime, means we understood something about complexity.

This functional point of view can explain why we are not able to generalise
the notion of complexity to higher-order functions / concurrent computation.
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Better foundations

Hypothesis: Current lack of proof methods for separation is due to a lack of
adequate mathematical foundations.

Suppose there exists adequate mathematical foundations.
I.e. (this is objectively very fuzzy) for every computation C there exists a
mathematical object ‖C ‖ with ‖·‖ injective.

Claim
There are no barriers for the set of proof techniques based on such foundations.

The argument is simple. Injectivity implies that if all such proof methods
can be shown ineffective, it amounts to prove that separation is
undecidable.
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Better foundations

Hypothesis: Current lack of proof methods for separation is due to a lack of
adequate mathematical foundations.

Suppose there exists adequate mathematical foundations.
I.e. (this is objectively very fuzzy) for every computation C there exists a
mathematical object ‖C ‖ with ‖·‖ injective, up to some trivial equivalences
(e.g. renaming of control states).

Claim
There are no barriers for the set of proof techniques based on such foundations.

The argument is simple. (Quasi-)injectivity implies that if all such proof
methods can be shown ineffective, it amounts to prove that separation is
undecidable.
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What is a computation/algorithm?

Several proposals.

Turing

Kolmogorov

Gandy

Moschovakis

Gurevich.
An ASM is a sequence of "updates" to be applied on a model of first-order logic over a fixed

signature. An update is defined as either (1) a generalised assignment f (s1, . . . ,sn) := t, where f
is any function symbol and the si and t are arbitrary terms, or (2) a conditional if C then P or

if C then P else Q, where C is a propositional combination of equalities between terms and

P,Q are sequences of updates, or (3) a parallel composition of sequences of update.

T. Seiller (DIKU) Why complexity theorists should care about philosophy May 25th, 2017 11 / 26

Critic of Gurevich approach

Gurevich.
An ASM is a sequence of "updates" to be applied on a model of first-order logic over a fixed

signature. An update is defined as either (1) a generalised assignment f (s1, . . . ,sn) := t, where f
is any function symbol and the si and t are arbitrary terms, or (2) a conditional if C then P or

if C then P else Q, where C is a propositional combination of equalities between terms and

P,Q are sequences of updates, or (3) a parallel composition of sequences of update.

From a point of view of capturing the notion of computation: arguably
satisfying for sequential, probabilistic computation, but it is unclear if it
generalises well to, e.g., cellular automata, continuous time.

From the point of view of our project: ad-hoc objects, not based on
well-founded mathematical theory. In fact, ASM may be described as
generalised pseudo-code.
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What is a computation/program/algorithm?

From a philosophical point of view, very few work tackle this question (at least,
I could not find many). It is even more actual, with the development of new
models of computation (e.g. quantum, biological).
As a starting point for the reflexion, let us consider the following questions:

Is the universe just a big computation?

If I let a rock fall from the top of a tower, is this a computation? If not, why?

What about if I let a rock fall from the same tower, but depending on the
initial height it activates a number n of mechanical apparatus that release
a number m of balls? (e.g. the rock activates levers every meter, with the
lever at height k releasing 2k+1 balls)

What about a similar experiment where flowing water activates some mill
equipped with a similar apparatus? (Is this a computation on streams?)

Fix a mass to a spring, let go, and write down the oscillations. Is this a
computation?
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Where I stand

It seems important to distinguish between several different notions.

Distinguish between experiments and a computation.
Ï Differ in their intention: test the theory vs. use the theory to (locally) predict

the outcome.

Distinguish between a computation and a program.
Ï Differ in their abstraction: mechanical processes / Electric signals vs. some

flow of information.
Ï A program is somehow distinguished from its physical realisation – the

computation. I.e. one can run a program several times, producing several
computations. However, it is bound to a model of computation (i.e. turing
machines, automata, etc.).

Distinguish between a program and an algorithm.
Ï An algorithm is an abstraction of programs, free of models of computation.

E.g. Sieve of Eratosthenes.
Ï Very difficult task, which we will not consider here.

cf. Blass, Derschowitz, Gurevich When are two algorithms the same?.
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What is a program?

Informal Definition
A program is a dynamical process possibly involving
exchange/duplication/erasure/modification of information.

This principle underlies a number of work.

[Complexity] Implicit Computational Complexity.
Size-change termination (Lee, Jones, Ben-Amram), mwp-polynomials (Jones,
Kristiansen), Loop peeling (Moyen, Rubiano, Seiller).

[Semantics] Dynamic Semantics
Geometry of Interaction (Girard), Game Semantics
(Abramsky/Jagadeesan/Malacaria, Hyland/Ong), Interaction Graphs (Seiller).

[Compilation] Compilation techniques.
Work by U. Schöpp (cf. Habilitation thesis), Loop peeling (Moyen, Rubiano, Seiller)

[VLSI design] Synthesis methods for VLSI design.
Geometry of Synthesis programme (Ghica).
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What is a program?

Informal Definition
A program is a dynamical process possibly involving
exchange/duplication/erasure/modification of information.

In fact a formalisation of this idea, Girard’s Geometry of interaction, was
intended as a proposal for mathematical foundations.

This paper is the main piece in a general program of mathematisation
of algorithmics, called geometry of interaction. We would like to define
independently of any concrete machine, any extant language, the
mathematical notion of an algorithm (maybe with some proviso, e.g.
deterministic algorithms), so that it would be possible to establish
general results which hold once for all.

Girard, Geometry of Interaction II (1988)
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What is a program?

Informal Definition
A program is a dynamical process possibly involving
exchange/duplication/erasure/modification of information.

At first (technically) limited to sequential, deterministic, computation (may
explain why it was somehow forgotten/discarded);

New approach – Interaction Graphs – bypasses these limitations and
allows for modelling many aspects of computation. Technically, we replace
operators (i.e. bounded linear operators acting on Hilbert spaces) by
graphings, obtaining a model which is both more general and more
tractable.
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What’s a graphing?

Pick a directed graph.

Replace vertices by measurable sets, e.g. intervals on the real line.

Decide how (i.e. which element of m) the edges map sources to targets.

[0,1] [1,2] [3,4] [4,5]

x 7→ 5−x

x 7→ (x−1)2 +2

The parameters of the construction:

A measure space (X,B,µ);

A monoid m of measurable maps X →X – called a microcosm;

A monoid Ω;

A type of graphing (e.g. deterministic, probabilistic);

A measurable map g :Ω→RÊ0 ∪ {∞}.
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Models of computation and logic

Logic Lambda-calculus Interaction Graphs

Proofs Terms Winning Graphings
"Pararoofs" "Paraterms" Graphings

Cut rule Application Feedback
Normalisation Reduction Execution
cut-elimination β-rule Compute paths

"Proofness" Orthogonality Orthogonality
Correctness criterion t⊥E(·) iff E(t) SN Complicated measurement

Formulas Types "Conducts"
Proofs(A⊥) = Tests(A) Realisability constr. C=T⊥, (iff C=C⊥⊥)
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Hierarchies of models

Theorem (Seiller, APAL 2017)

For every monoid of measurable maps m (and every monoid Ω , and every
measurable map g :Ω→RÊ0 ∪ {∞} ), the set of m-graphings defines a

non-degenerate model of Multiplicative-Additive Linear Logic .

AT LEAST!

Quantitative Aspects
(e.g. probabilities, effects)Complexity Constraints

Geometric Measurement
(Ihara/Ruelle Zeta Functions)

Constraints on Graphings
(e.g. deterministic: (partial) measured dynamical systems,

probabilistic: (discrete time) Markov processes)
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Hierarchies of models

Theorem (Seiller, APAL 2017)

For every monoid of measurable maps m (and every monoid Ω , and every
measurable map g :Ω→RÊ0 ∪ {∞} ), the set of m-graphings defines a

non-degenerate model of Multiplicative-Additive Linear Logic .

All Geometry of Interaction constructions are recovered as specific cases
Operators in C* / von Neumann algebras (1989,1990,2011)

Unification/Resolution clauses / Prefix Rewriting (1995,2016)

Complexity Constraints
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Microcosms: Geometric Aspect of Complexity

We can define microcosms
m1 ⊂m2 ⊂ ·· · ⊂m∞ ⊂ n⊂ p

in order to obtain the following characterisations (as the type nat→ nbool).

Microcosm Mdet
m Mndet

m M
prob
m Logic Machines

m1 REG REG REG STOC MALL 2-way Automata (2FA)
...

...
...

...
...

...
...

mk Dk Nk CONk Pk (. . . ) k-heads 2FA
...

...
...

...
...

...
...

m∞ L NL CONL PL (. . . ) multihead-head 2FA (2MHFA)

n P P P PP (. . . ) 2MHFA + Pushdown Stack

Refines and generalises both:

a series of characterisations of complexity classes (e.g. L, P) with operators
(with Aubert) and logic programs (with Aubert, Bagnol and Pistone);

an independent result where I relate the expressivity of GoI models with a
classification of inclusions of maximal abelian sub-algebras:

`∞(X)⊆ `∞(X)om
(⊆B(`2(X))

)
[Feldman-Moore 1977]
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Microcosms: Geometric Aspect of Complexity

We can define microcosms
m1 ⊂m2 ⊂ ·· · ⊂m∞ ⊂ n⊂ p

in order to obtain the following characterisations (as the type nat→ nbool).

Microcosm Mdet
m Mndet

m M
prob
m Logic Machines

m1 REG REG REG STOC MALL 2-way Automata (2FA)
...

...
...

...
...

...
...

mk Dk Nk CONk Pk (. . . ) k-heads 2FA
...

...
...

...
...

...
...

m∞ L NL CONL PL (. . . ) multihead-head 2FA (2MHFA)

n P P P PP (. . . ) 2MHFA + Pushdown Stack

Only known correspondence between infinite hierarchies of mathematical
objects and complexity classes.

Indicates a strong connection between geometry and complexity: cf.
microcosms generalise group actions, use of (generalised) Zeta functions,
(homotopy) equivalence between microcosms implies equality of the classes.
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A Geometric Theory of Complexity

Microcosm Mdet
m Mndet

m M
prob
m Logic Machines

m1 REG REG REG STOC MALL 2-way Automata (2FA)
...

...
...

...
...

...
...

mk Dk Nk CONk Pk (. . . ) k-heads 2FA
...

...
...

...
...

...
...

m∞ L NL CONL PL (. . . ) multihead-head 2FA (2MHFA)

n P P P PP (. . . ) 2MHFA + Pushdown Stack

Conjecture
(Equivalence classes of) microcosms correspond to complexity constraints.

Conjecture
m≡ n⇔ Pred(m)= Pred(n)
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A Geometric Theory of Complexity

Microcosm Mdet
m Mndet

m M
prob
m Logic Machines

m1 REG REG REG STOC MALL 2-way Automata (2FA)
...

...
...

...
...

...
...

mk Dk Nk CONk Pk (. . . ) k-heads 2FA
...

...
...

...
...

...
...

m∞ L NL CONL PL (. . . ) multihead-head 2FA (2MHFA)

n P P P PP (. . . ) 2MHFA + Pushdown Stack

Conjecture
m≡ n⇔ Pred(m)= Pred(n)

Enable (co)homological invariants to prove separation , e.g. `(2)-Betti numbers:

Pred(m)= Pred(n)⇒m≡ n⇒P (m)'P (n)
!⇒`(2)(P (m))= `(2)(P (n))

(P (m)= {(x,y) | ∃h ∈m,h(x)= y} is a measurable preorder)
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Summary

Understand the first part as a manifesto to start a collaborative reflexion
on the question: "What is a program", in the same way researchers once
tackled the question "What is a computable function?".

The second part is my own proposition for an answer. I believe it is a (first
step towards a) satisfying solution, but I expect you to challenge it.

The last part shows (well, very quickly mentions) how this proposition
reveals some geometric nature of computation/complexity which could be
exploited for developing separation methods.

In particular, the approach defines the complexity of a program
intrinsically (i.e. as an equivalence class of group/monoid actions/acts), i.e.
a definition which is not based on an arbitrary input/output behaviour.

While I insisted on complexity issues, the whole framework comes from
logic, and raises numerous questions as to which logical systems arise from
these abstract models of computation.

Although very abstract, this is related to an automatic optimisation tool
(prototype) in the LLVM compiler [Moyen, Rubiano and Seiller 2017].
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Inferentialist semantics

I Inferentialist semantics are inspired by the ‘meaning-as-use’ paradigm:
the meaning of a linguistic expression is fixed by its use.

I Two crucial aspects of the use of a linguistic expression can be singled out
(Dummett 1991, p. 103):
i) introductory use, answering to the question ‘When should I use it?’;
i) eliminative use, answering to the question ‘What can I do with it?’.

I When priority is given to the first aspect, a verificationist theory of
meaning is obtained. When priority is given to the second aspect, a
pragmatist theory of meaning is obtained.

I We will focus here on the verificationist account.
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Harmony

I According to the verificationist approach, in order to be meaningful, an
expression ∗ has to satisfy a condition of harmony between its
introduction and elimination rules, such that

Whatever can be drawn from the conclusion of the elimination
rules for ∗ should not exceed what can already be drawn from the
premisses of the introduction rules for ∗.

I When introduction and elimination rules are expressed in terms of
natural deduction rules, the harmony condition corresponds to Prawitz’s
inversion principle, consisting in the possibility eliminating local peaks of
the form ∗I/∗E , for a given expression ∗ (Dummett 1991, p. 248).

I The harmony condition fits particularly well with expressions
corresponding to propositional connectives.
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Harmony: Example (conjunction)

I Consider the (usual) rules for conjunction (∧):

A1 A2 ∧I

A1 ∧A2

A1 ∧A2 ∧Ei
(i ∈ {1, 2})

Ai

I They are harmonious since local peaks of the form ∧I/∧Ei can be
eliminated:

D1

A1

D2

A2 ∧I

A1 ∧A2 ∧Ei
Ai

;
Di

Ai

I The same holds for standard intuitionistic connectives.
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Harmony: Counterexample (tonk)

I Consider the rules for the tonk operator (Prior 1960):

A1 tonkI
A1 tonkA2

A1 tonkA2 tonkE
A2

I They are not harmonious since local peaks of the form tonkI/tonkE
cannot be eliminated:

D
A1 tonkI

A1 tonkA2 tonkE
A2

; ?
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Harmony: Counterexample (classical negation)

I Consider the rule for classical negation (Prawitz 1965, p. 21):

[A]n.

...
⊥ ¬I (n.)¬A

¬A A ¬E⊥
¬¬A ¬¬E

A

I They are not harmonious since local peaks of the form ¬I/¬¬E cannot be
eliminated:

[¬A](n.)

D
⊥ ¬I¬¬A ¬¬E (n.)
A

; ?

I From the verificationist point of view, classical logic has to be rejected
(logical revisionism).
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Conservativity
I Another way of rejecting the tonk operator consists in adopting a

conservativity argument, (somehow) inspired by Belnap (1962):
adding tonk to the set of standard logical connectives leads to a
non-conservative extension of the initial system.

I The idea is that an expression is not meaningful – in the sense that its
use leads to linguistic misunderstandings – when the rules that govern it
affect the use of other expressions.

I Consider the fragment-language L = {→} of (positive) minimal logic M.
By adding tonk to it, we obtain a new system Mt such that

`Mt P , while 0M P

for any atom P .

I The same argument could be applied for rejecting classical logic:
classical logic is not a conservative extension of minimal logic M
(resp. intuitionistic logic).

7 / 23

Conservativity
I Differently from harmony, conservativity is not a local condition (applying

to a single expression at a time), but a global one (applying to a set of
expressions at a time).

I Moreover, conservativity is not an absolute notion, but a relative one,
depending on the choice of the base theory.

I Consider the language L = {tonk} and the theory T defined by the rules
for tonk. By adding → to L we obtain a theory T→ which is not a
conservative extension of T:

`T→ P , while 0T P

for any atom P .
Should then we reject → and keep tonk?

I If no conditions are imposed on the choice of the base theory, then
conservativity condition could be used in an arbitrary way.

I Belnap (1962, p.132) fixes the base theory by choosing a system
exclusively composed by structural rules (identity, weakening,
contraction, permutation, transitivity).
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Does harmony imply conservativity?
I Another possibility could be to choose the base theory as composed by a

set of (locally) harmonious rules.

I Under this assumption, Dummett (1973a, p. 397) advances the claim that
harmony implies conservativity:

[...] it is plain that the requirement of consonance [i.e. harmony]
may be expressed as the demand that the addition of [a] given
expression to the language yields a conservative extension of it.
(cf. also Dummett 1973b, p. 221)

I More precisely, Dummett’s claim can be rephrased as follows:
(1) Let T be a theory formed by a set of harmonious rules for a language L.
(2) Suppose to add to L a new expression ∗ governed by harmonious rules.
(3) The theory T ∗ obtained by adding to T the rules for ∗ is a conservative

extension of T .

I Is Dummett’s claim correct?
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A negative answer

I Prawitz (1994, p. 374) gives a negative answer:
[Dummett’s claim] can hardly be correct [...] because from
Gödel’s incompleteness theorem we know that the addition to
arithmetic of higher order concepts may lead to an enriched
system that is not a conservative extension of the original one in
spite of the fact that some of these concepts are governed by
rules that must be said to satisfy the requirement of harmony.
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Reconstruction of Prawitz’s argument (1)
I A natural interpretation of Prawitz’s statement is to consider (first-order)

HA as the base theory and extending it with rules for second-order
quantifiers.

The hypothesis of Dummett’s claim are satisfied:
(1) As a system of rules, HA is harmonious:

(i) Either the rules do not create new local peaks, e.g.

s(x) = s(y)
P4x = y

(ii) or they create local peaks that can be eliminated, e.g.

Γ
...

A(0)

∆, [A(x)](n.)

...
A(s(x))

Ind (n.)
A(t)

where t is a numeral, and x /∈ FV (∆).
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Reconstruction of Prawitz’s argument (1)
I A natural interpretation of Prawitz’s statement is to consider (first-order)

HA as the base theory and extending it with rules for second-order
quantifiers.

The hypothesis of Dummett’s claim are satisfied:
(1) As a system of rules, HA is harmonious:

(i) Either the rules do not create new local peaks, e.g.

s(x) = s(y)
P4x = y

(ii) or they create local peaks that can be eliminated, e.g.

Γ
D1

A(0)

∆, [A(x)](n.)

D2

A(s(x))
Ind (n.)

A(0)

;

Γ
D1

A(0)
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I A natural interpretation of Prawitz’s statement is to consider (first-order)

HA as the base theory and extending it with rules for second-order
quantifiers.

The hypothesis of Dummett’s claim are satisfied:
(1) As a system of rules, HA is harmonious:

(i) Either the rules do not create new local peaks, e.g.

s(x) = s(y)
P4x = y

(ii) or they create local peaks that can be eliminated, e.g.

D1

Nt NI2
Ns(t)

Γ
D2

A(0)

∆, [A(x)](n.)

D3

A(s(x))
NE (n.)

A(s(t))

;

D1

Nt

Γ
D2

A(0)

∆, [A(x)](n.)

D3

A(s(x))
NE (n.)

A(t)

D3[t/x]

A(s(t))
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Reconstruction of Prawitz’s argument (2)

(2) The rules for second-order quantifiers are (locally) harmonious.
Consider the rules for the second-order universal quantification:

Γ
...

A[Y n/Xn]
∀2I (Y n /∈ FV (Γ))∀XnA

∀XnA ∀2E
A[Tn/Xn]

where Tn ≡ x̂1 . . . x̂n.C(x1, . . . , xn), for a certain formula C.
These rules satisfy the inversion principle:

Γ
D

A[Y n/Xn]
∀2I∀XnA ∀2E

A[Tn/Xn]

;

Γ[Tn/Xn]

D[Tn/Xn]

A[Tn/Xn]

I A predicative version is obtained by imposing a condition on C, that is,
to be a first-order formula.

12 / 23

Reconstruction of Prawitz’s argument (3)

The conclusion of Dummett’s claim is not satisfied:

(3) Adding second-order quantifiers to HA leads to a system HA∗, such that
`HA∗ Cons(HA) ≡ ¬ProvHA(p0 = 1q), while 0HA Cons(HA).

I In fact, in order to obtain such a result, it is not necessary to make appeal
to full second-order logic: a predicative version of the comprehension
principle is already sufficient.

I This allows one to meet the constructivistic requirements of
verificationism, i.e. the possibility of establishing an effective procedure
for constructing canonical proofs of second-order quantified propositions.

13 / 23
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Reconstruction of Prawitz’s argument (3)

I Given (i) a comprehension principle restricted to arithmetical formulas,
and (ii) restricting the application of Ind to Π1

1 formulas, it is possible to
define a truth predicate T, such that

(T ) T(pAq)↔ A, for all A ∈ L(HA);

(S) st(n) ∧ ProvHA(n)→ T(n).

I With ⊥ ≡ (0 = 1), we obtain

X
st(p⊥q) [ProvHA(p⊥q)](n.)

∧I
st(p⊥q) ∧ ProvHA(p⊥q)

(T )

st(p⊥q) ∧ ProvHA(p⊥q)→ T(p⊥q) →E
T(p⊥q)

(S)

T(p⊥q)↔ ⊥ ∧E
T(p⊥q)→ ⊥ →E⊥

(n.)
¬ProvHA(p⊥q)

(see Takeuti 1987, ch. 3, § 18)

14 / 23

Possible objections?

I Is Prawitz’s argument a definitive one?

I The argument concerns a mathematical theory. By restricting the
analysis exclusively to logical theories and logical connectives, Dummett’s
claim could still be valid (cf. Dummett 1991, p. 215 ff.).

I However, according to Sundholm (1998), there is another way to face
Prawitz’s argument.

I The interest of this proposal is that it involves an analysis of inferences
and proofs which does not reduce to the notion of formal derivation.

15 / 23
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A change of perspective
I Conservativity deals with theorems, not propositions (formulas).

I A theorem corresponds to a (correct) judgment of the form

Proposition︷︸︸︷
A is true︸ ︷︷ ︸
Judgment

(1)

and the inferential steps applied in order to demonstrate a theorem act on
judgments rather propositions.

I From the point of view of a verificationist theory, what guarantees the
truth of a proposition is a proof of it.

I In this way, (1) becomes

Proof(A) exists (2)

I Yet, this judgement corresponds to an incomplete communication (or,
following Weyl’s terminology, to a partial judgment), waiting for the
exhibition of a witness.

16 / 23

The Curry-Howard correspondence
I By adopting the point of view of the Curry-Howard correspondence, we

have that:
(i) propositions correspond to types (or set) of objects, so that (2) means

that the type A is inhabited;
(ii) proofs correspond to constructions (or programs) expressed by λ-terms.

I Hence, an explicit reading of (2) can be given:

Proof-object︷︸︸︷
t :

Type︷︸︸︷
A︸ ︷︷ ︸

Judgment

(3)

I λ-terms of type A are objects which keep track of the rules used for
proving A.

I The Curry-Howard correspondence can be seen as a way for giving a
precise formulation of the BHK interpretation, establishing then a
verificationist semantics.

17 / 23
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The Curry-Howard correspondence
I Inference rules give construction conditions for proof-objects; in

particular, introduction rules fix the conditions for obtaining canonical
proof-objects of given propositions. E.g.

I All steps of a proof of A can be explicitly built-in a λ-term:
in particular, the type of discharged assumptions is indicated, and the
Λ-abstraction can bind it (Church-style presentation).

I Thus, given a judgment
t : A

by an inspection of the way in which t has been constructed, it could be
verified whether the judgment is correct or not (type checking).
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t : B →I (n.)
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D2
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D2

u : A
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Sundholm’s argument
I Consider a system HAP for (first-order) Heyting arithmetic, where rules

are decorated with proof-terms.
I The language of HAP is composed by two parts:

1) the language of propositions: first-order (arithmetical) formulas;∗

2) the language of proof-objects: λ-terms built with operations
corresponding to first-order (arithmetical) rules.

I Extending HAP with rules for second-order quantifiers (as previously
done), we obtain a system HA∗P , such that

`HA∗P t : Cons(HA) (4)

while 0HAP
t : Cons(HA).

I Since the term t keeps track of the use of second-order quantifiers for
proving Cons(HAP ), it will contain operators like Λ and { }. Hence,
the expression t : Cons(HA) belongs to the language of HA∗P , and not to
the language of HAP .

I HA∗P is a conservative extension of HAP .
∗This corresponds to the language of HA.

19 / 23

Non-conservativity again?
I The way in which we presented typed λ-terms considers their type as

already (partially) built-in. This is the way in which we usually conceive
functions, that is, with the types of their inputs (and outputs) explicitly
declared.

I However, there is another way of presenting typed λ-terms, i.e.
by taking them pure and assigning them a type afterwards (Curry-style
presentation).

I Instead of (λx : A.t), we have (λx.t). By suppressing the type
information the action of the Λ operator (in the proof-term) becomes
harmless: it can thus be dropped together with the { } operator.

I The rules for second-order quantifiers become
Γ
...

t : A[Y n/Xn]
∀2I (Xn /∈ FV (Γ))

t : ∀XnA
t : ∀XnA ∀2E

t : A[Tn/Xn]

I Extending HAP with these rules, we obtain a system which demonstrates
t : Cons(HA), but where both t and Cons(HA) belong to the language
of HAP . The non-conservativity phenonemon is thus recreated!

20 / 23
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Meaningful vs formal rules

I Can we consider the previous argument as a genuine objection to
Sundholm’s position?

I In fact, no. The Curry-style rules for second order quantifiers do not
allow one to express the meaning conditions for these quantifiers:

(i) they do not allow one to express what is a canonical proof-object for a
proposition ∀XnA;

(ii) they do not allow one to define an evaluation step (at the level of
proof-objects) corresponding to the elimination of the local peak ∀2

I/∀2
E .

I The Curry-style rules for second order quantifiers are simply formal rules,
acting on purely syntactical expressions devoided of any meaning (in
other words, λ-terms à la Curry are just a formal way of representing
computational functions, but cannot be considered as genuine
proof-objects).

21 / 23

Conclusions

I This leads us to the following conclusions:

• Sundholm’s argument is not a vindication of Dummett’s claim obtained
by trivializing it, i.e. by showing that every extension of a given theory
T can be rendered conservative by adding proof-objects to the language
and by decorating derivations with these proof-objects.

• On the contrary, his position consists in claiming that the notion of
conservative extension makes sense only in the case of formal, non
interpreted, deduction systems, where rules act only on partial (non
explicit) judgments.

• Thus, when a theory of meaning like verificationism is under
consideration, harmony seems to be a more suitable condition rather than
conservativity.

22 / 23
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Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi

Introduction

Different approaches to hypothetical reasoning (Schroeder-Heister
[2016]:

1 Placeholder view.
1 elimination by discharge;
2 elimination by substitution.

2 No-assumption view.

3 Bidirectional view.
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Introduction

What matters in the framework of sequent calculi:

Different interpretations of the notion of a sequent.

Different kinds of deducibility relation induced by SC:

on formulae (Scott’s consequence; metalogical reading of ⇒);
on sequents (Gentzen’s consequence; trivialization of ⇒).

Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi

Introduction

Placeholder view

In SC we are forced to treat differently both variants:

1 Elimination by discharge.

2 Elimination by substitution.
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Introduction

Placeholder view – elimination by discharge

Hypotheses in SC are expressed by axioms of the form ϕ⇒ ϕ
which naturally correspond to arbitrary assumptions in ND.

Based on the interpretation of ⇒ as ` where endsequent Γ⇒ ϕ
expresses the fact that ϕ is derived from open assumptions Γ.

Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi

Introduction

Placeholder view – elimination by substitution

This approach may be expressed in two different ways:

1 Hypotheses are additional topsequents ⇒ ϕ.

2 Hypotheses are added as a context to antecedents of (all or
some) topsequents.

Note that the approach with ⇒ ϕ as additional topsequent also
may express the no-assumption view. Also the reading of ⇒ as →
(Gentzen 34) is of this kind.
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Placeholder view

Elimination by substitution – hypotheses as additional topsequents
⇒ ϕ.

We have two proofs (one with hypothesis ϕ) and we compose
them:

. . . ⇒ ϕ . . .

D1

Γ⇒ ∆

D2
⇒ ϕ

D2
. . . ⇒ ϕ . . .

D1

Γ⇒ ∆

Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi

Placeholder view

Elimination by substitution – hypotheses added as a context to
antecedents of (all or some) topsequents.

we must also find proofs of hypotheses, then we can eliminate
them by cut from the antecedent of endsequent.

D1
⇒ ϕ

. . . ϕ, ψ ⇒ ψ . . .

D2

ϕ, Γ⇒ ∆
(Cut)

Γ⇒ ∆

Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi
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Placeholder view

Some comments:

Both approaches synatactically equivalent to two ways of
formalizing theories in SC.

In both variants ⇒ still interpreted as `. apparently the second is
worse since it explicitly applies cut. But if this solution is applied
to formalization of theories, as in Gentzen [36], then we save cut
elimination (all assumptions = axioms are intact in the
endsequent). On the other hand in the first variant it seems that
cut is not necessary but it is not true. Consider two assumptions:
⇒ ϕ,⇒ ϕ→ ψ (the same as in the simple treatment of theories –
Girard).

Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi

Placeholder view

Some comments:

Note that if we take `⊆ PFin(Seq)× Seq, then ϕ⇒ ϕ cannot be
interpreted as hypotheses since they express trivial validities.

Assumptions may be expressed by other topsequents (again in
particular by ⇒ ϕ but also by other ones; again we interpret ⇒ as
→)

or by rules.
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Sequents versus rules

But what sequents? what rules?

ad sequents: of particular interest are ground sequents (Gentzen
36) built from atoms. Generalised cut elimination holds.

ad rules. One particular nice solution is due to Negri and von Plato
(cut elimination and generalised subformula property hold) but
other are also possible.

How many?

Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi

Sequents versus rules

Rule-maker theorem – Indrzejczak [2013]

For any sequent Γ⇒ ∆ with Γ = {ϕ1, ..., ϕk} and
∆ = {ψ1, ..., ψn}, k ≥ 0, n ≥ 0 there is 2k+n − 1 equivalent rules
captured by the general schema:

Π1,⇒ Σ1, ϕ1, ..., Πi ⇒ Σi , ϕi ψ1,Πi+1 ⇒ Σi+1, ..., ψj ,Πi+j ⇒ Σi+j

Γ−i ,Π1, ...,Πi ,Πi+1, ...,Πi+j ⇒ Σ1, ...,Σi ,Σi+1, ...,Σi+j∆
−j

where Γ−i = Γ− {ϕ1, ..., ϕi} and ∆−j = ∆− {ψ1, ..., ψj} for
0 ≤ i ≤ k , 0 ≤ j ≤ n.
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Sequents versus rules

Rule-maker theorem – special case

If k = n = 1 we have the following equivalents:

1 ϕ⇒ ψ

2 ψ, Γ⇒ ∆ / ϕ, Γ⇒ ∆

3 Γ⇒ ∆, ϕ / Γ⇒ ∆, ψ

4 Γ⇒ ∆, ϕ; ψ, Γ′ ⇒ ∆′ / Γ, Γ′ ⇒ ∆,∆′

Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi

Sequents versus rules

Rule-maker theorem – special case

for k = 2, n = 1 we have:

1 ϕ,ψ ⇒ χ

2 χ, Γ⇒ ∆ / ϕ, ψ, Γ⇒ ∆

3 Γ⇒ ∆, ϕ / ψ, Γ⇒ ∆, χ

4 Γ⇒ ∆, ψ / ϕ, Γ⇒ ∆, χ

5 Γ⇒ ∆, ϕ; Γ′ ⇒ ∆′, ψ / Γ, Γ′ ⇒ ∆,∆′, χ
6 Γ⇒ ∆, ϕ; χ, Γ′ ⇒ ∆′ / ψ, Γ, Γ′ ⇒ ∆,∆′

7 Γ⇒ ∆, ψ; χ, Γ′ ⇒ ∆′ / ϕ, Γ, Γ′ ⇒ ∆,∆′

8 Γ⇒ ∆, ϕ; Γ′ ⇒ ∆′, ψ; χ,Π⇒ Σ / Γ, Γ′,Π⇒ ∆,∆′,Σ
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Sequents versus rules

Negri and von Plato approach.

variant 2 (for k = n = 1 and k = 2, n = 1) – antecedent active
only in contraction-preserving form, i.e:

1 ψ,ϕ, Γ⇒ ∆ / ϕ, Γ⇒ ∆

2 χ, ϕ, ψ, Γ⇒ ∆ / ϕ, ψ, Γ⇒ ∆

Advantages: Cut admissibility holds when added to system G3 via
Dragalin-style proof.

Disadvantages: Many preliminaries required (h-p admissibility of
structural rules and invertibility of rules).

Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi

Sequents versus rules

Our preferred solution.

variant 3 (for k = n = 1) and 5 (for k = 2, n = 1) – succedent
active only in pure form, i.e:

1 Γ⇒ ∆, ϕ / Γ⇒ ∆, ψ

2 Γ⇒ ∆, ϕ; Γ′ ⇒ ∆′, ψ / Γ, Γ′ ⇒ ∆,∆′, χ

Advantages: Cut admissibility holds via Ciabattoni, Metcalfe,
Montagna-style proof. More natural. No specific form of SC
needed. No preliminaries needed.
Disadvantages: Worse branching factor.
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Sequents versus rules

Our preferred solution.

variant 3 (for k = n = 1) and 5 (for k = 2, n = 1) – succedent
active only in pure form, i.e:

1 Γ⇒ ∆, ϕ / Γ⇒ ∆, ψ

2 Γ⇒ ∆, ϕ; Γ′ ⇒ ∆′, ψ / Γ, Γ′ ⇒ ∆,∆′, χ

Advantages: Cut admissibility holds via Ciabattoni, Metcalfe,
Montagna-style proof. More natural. No specific form of SC
needed. No preliminaries needed.
Disadvantages: Worse branching factor.
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Sequents versus rules

Our preferred solution – cut elimination.

The proof of cut elimination is based on two lemmata:

Lemma (Right reduction)

Let D1 ` Γ⇒ ∆, ϕ and D2 ` ϕk ,Π⇒ Σ with dD1, dD2 < dϕ,
and ϕ principal in Γ⇒ ∆, ϕ, then we can construct a proof D
such that D ` Γk ,Π⇒ ∆k ,Σ and dD < dϕ.

Lemma (Left reduction)

Let D1 ` Γ⇒ ∆, ϕk and D2 ` ϕ,Π⇒ Σ with dD1, dD2 < dϕ,
then we can construct a proof D such that D ` Γ,Πk ⇒ ∆,Σk

and dD < dϕ.

Since all additional rules have active formulae on the right only
then the Right reduction lemma goes without any changes.
We need only additional work for the Left reduction lemma.
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Sequents versus rules

What with quantified statements?

One may easily obtain rules for the class of universal implications
of the form:

∀x1 . . . xk(ϕ1 ∧ · · · ∧ ϕn → ψ1 ∨ · · · ∨ ψm),

where all ϕ’s and ψ’s are atomic formulae.

To each such universal implication, the general schema of SC rule
in our favourite form will be:

Γ⇒ ∆, ϕ1 . . . Γ⇒ ∆, ϕn

Γ⇒ ∆, ψ1, . . . , ψm

Andrzej Indrzejczak Hypothetical Reasoning in the setting of Sequent Calculi

Sequents versus rules

What with quantified statements?

This result may be strenghtened to the class of basic geometric
formulae of the form:

∀x1 . . . xk
(
ϕ1 ∧ · · · ∧ ϕn → ∃y1 . . . yl(ψ1 ∨ · · · ∨ ψm)

)
,

where k > 1, l , n,m > 0, ϕ’s are atomic formulae and ψ’s are
either atomic formulae or finite conjunctions of atoms.
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Sequents versus rules

Rules for basic geometric formulae – Braüner [2009]

for every

∀x1 . . . xk
(
ϕ1 ∧ · · · ∧ ϕn → ∃y1 . . . yl(ψ1 ∨ · · · ∨ ψm)

)
,

there corresponds a rule of the following form:

Γ⇒ ∆, ϕ1 . . . Γ⇒ ∆, ϕn Ψ1, Γ⇒ ∆ . . . Ψm, Γ⇒ ∆

Γ⇒ ∆

where no variables of y1, . . . , yl occur in Γ, ∆, ϕ1, . . . , ϕn, and for
each i = 1, . . .m: Ψi is a set of atoms that form conjunction ψi .
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Sequents versus rules

Rules for basic geometric formulae – Negri and von Plato

for every

∀x1 . . . xk
(
ϕ1 ∧ · · · ∧ ϕn → ∃y1 . . . yl(ψ1 ∨ · · · ∨ ψm)

)
,

there corresponds a rule of the following form:

ϕ1 . . . ϕn,Ψ1, Γ⇒ ∆ . . . ϕ1 . . . ϕn,Ψm, Γ⇒ ∆

ϕ1 . . . ϕn, Γ⇒ ∆

where no variables of y1, . . . , yl occur in Γ, ∆, ϕ1, . . . , ϕn, and for
each i = 1, . . .m: Ψi is a set of atoms that form conjunction ψi .
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Sequents versus rules

Rules for basic geometric formulae

For our preferred format of rules things are harder. Of course we
can use rules of the form:

Γ⇒ ∆, ϕ1 . . . Γ⇒ ∆, ϕn

Γ⇒ ∆, ψ1, . . . , ψm

but this time ψ-s may be not atomic and the Right reduction
lemma fails in such a case. Fortunatelly we may transform every
Braüner’s rule into finite set of rules of the form:

Γ⇒ ∆, ϕ1 . . . Γ⇒ ∆, ϕn

Γ⇒ ∆, ψ1, . . . , ψm

where for each i ≤ m, ψi is a selected (atomic) element of Ψi , for
every combination of these atoms.
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Sequents versus rules

Rules for basic geometric formulae

For example, a rule:

Γ⇒ ∆, ϕ ψ1, ψ2, Γ⇒ ∆ ψ3, ψ4, Γ⇒ ∆

Γ⇒ ∆

is equivalent to 4 rules of the form:

Γ⇒ ∆, ϕ

Γ⇒ ∆, ψi , ψk

where i = 1 or i = 2 and k = 3 or k = 4.
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Case Study – Identity

Some solutions:

Takeuti:

⇒ x = x x = y , ϕ(x)⇒ ϕ[x//y ]

Negri, von Plato:

x = x , Γ⇒ ∆
Γ⇒ ∆

ϕ[x//y ], ϕ(x), x = y , Γ⇒ ∆
ϕ(x), x = y , Γ⇒ ∆

ϕ is atomic.
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Case Study – Identity

Our preferred solution:

(1⇒=) ⇒ x = x

(2⇒=)
Γ⇒ ∆, ϕ(x) Γ⇒ ∆, x = y

Γ⇒ ∆, ϕ[x//y ]

ϕ is atomic.
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Case Study – Identity

How to get rid with (1⇒=)?

A sequent:

∀x(x = τ → ϕ)⇒ ϕ[x/τ ], where x is not free in τ

is equivalent to ⇒ x = x

(after Kalish and Montague ND rules for =).
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Case Study – Identity

How to get rid with (1⇒=)?

A sequent:

∀x(x = τ → ϕ)⇒ ϕ[x/τ ], where x is not free in τ

is equivalent to:

1 ϕ[x/τ ], Γ⇒ ∆ / ∀x(x = τ → ϕ), Γ⇒ ∆

2 Γ⇒ ∆, ∀x(x = τ → ϕ) / Γ⇒ ∆, ϕ[x/τ ]

3 Γ⇒ ∆, ∀x(x = τ → ϕ); ϕ[x/τ ], Γ′ ⇒ ∆′ / Γ, Γ′ ⇒ ∆,∆′

Moreover, variant 2 may be improved:

x = τ, Γ⇒ ∆, ϕ
Γ⇒ ∆, ϕ[x/τ ]

where x is not free in τ, Γ,∆.
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Intuitionist Bilateralism: Negations,
Implications and some Observations and

Problems about Hypotheses

Nils Kürbis

Cerisy-la-Salle 26 May 2017

1 Harmony: Negation, Implication and Hypotheses

In standard systems of natural deduction, the rules for intuitionist negation are in
harmony. The grounds for and consequences of asserting ¬A balance each other:

i
A
Π
⊥¬I : i¬A

¬A A¬E: ⊥
⊥⊥E:
B

By applying ¬E, we only get out of an assertion of ¬A what is required for an
application of ¬I: a deduction of ⊥ from A. Everything follows from ⊥, so it has
no grounds for its assertion: ⊥E is harmonious with the lack of an introduction
rule for ⊥.

The rules for classical negation are not in harmony, as we need to add, e.g., one
of the following:

i¬A
Π
⊥

i
A

¬¬A
A

i
A
Π
C

i¬A
Ξ
C

i
C A ∨ ¬A

This creates a misbalance between the consequences of asserting ¬¬A and the
grounds for asserting it: we get more out of ¬¬A than we put in.1

There are axioms and rules involving neither ⊥ nor ¬ that also have the effect
of resulting in classical logic when added to intuitionist logic, such as Peirce’s Law

1Each of these four classical negation rules has its champion. Gentzen (1934): 190 opts for the
fourth, later Gentzen (1936): 515 opts for the second, Prawitz (1965): 20 chooses the first, Tennant
(1978) the third. Kürbis (2015) discusses intuitionist and classical negation from the perspective of a
theory of meaning in Dummett’s sense.
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` ((A ⊃ B) ⊃ A) ⊃ A, ` A ∨ (A ⊃ B), or ` (A ⊃ B) ∨ (B ⊃ C ).2 Putting these
axioms into rule form eliminates the appeal to disjunction:

i
A ⊃ B

Π
A

i
A

i
A
Π
C

i
A ⊃ B

Σ
C

i
C

i
A ⊃ B

Π
D

i
B ⊃ C

Σ
D

i
D

If we define ¬A as A ⊃ ⊥, then the misbalance in the classical rules is one between
the grounds and the consequences of assertions of formulas of the form A ⊃ B :
the classical rules allow us to get more out of some assertions of the form A ⊃ B
than we put into them, given the introduction rule for ⊃. The problematic classical
rules for negation and implication have in common that they introduce additional
options for the discharge of hypotheses.

The canonical ground for the assertion of A ⊃ B is that under assumption A, I
can derive B . A derivation of B from A allows discharge of A and derivation of
A ⊃ B . In their antecedents, conditionals contain information about the discharge
of assumptions. Peirce’s Rule can be understood in the following way: if A can be
derived under the assumption thatA can be discharged, that is ifA is the premises of
some deduction, where any B will do as the conclusion, then infer A and discharge
the assumption that it can be discharged. More pithily: If A can be derived under
the assumption that it can be discharged, then A is true regardless.3 The other
two rules allow for analogous interpretations: if C can be derived from A and the
assumption that A can be discharged, then C is true regardless; ifD can be derived
on the assumption that B can be concluded and that B can be discharged, then D
is true regardless.

We could say that the difference between classical and intuitionist logic is located
in the notion of discharge of hypotheses. This raises a question: harmony is a relation
between the grounds and consequences of formulas. Grounds and consequences
are complementary notions, related by the notion of harmony. Harmony of rules
for a connective ∗ is a relation between ∗I and ∗E. What the characteristically
classical rules add to the harmonious intuitionist ones are further options for the
discharge of hypotheses with ∗ as main operator. It is this wider notion of discharge
that is captured by the classical conditional and principles such as Peirce’s Rule.
The intuitionist logician recognises only two ways of manipulating formulas with a
main operator ∗ in deductions for which harmony is salient. There are, however,
at least three ways: introduction, elimination and discharge of formulas with ∗
as main operator. This observation opens up a path that allows the classicist
to resist the charge that classical principles governing ⊃ such as Peirce’s rule
upset the harmony that holds between its introduction and elimination rules: to
demand an extension of the notion of harmony such that it relates not only the
introduction and elimination rules for a connective ∗, but also rules allowing the

2Another option is ` (A ⊃ (B ∨ C )) ⊃ ((A ⊃ B) ∨ C ).
3This reading of Peirce’s Rule was suggested to me by Wilfried Meyer-Viol in conversation.
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discharge of formulas with ∗ as main operator with a suitable complementary way
of manipulating formulas in deductions. Can we extend the notion of harmony in
such a way that it lets us specify something harmonious to rules such as Peirce’s
Law? The question is whether there is such a notion: what might it be that stands
discharge of formulas as introduction stands to elimination? This requires a fourth
way of manipulation formulas in deductions. One that immediately comes to mind
is the making of assumptions. I leave it as an open question for further research
whether the notion of harmony can be fruitfully extended in the way suggested
here.

2 Classical Bilateralism

In bilateral logic we find a wholesale revision of what it is that is assumed and
manipulated by rules of inference in deductions: rules apply to speech acts –
assertions and denials – rather than propositions. In a bilateralist system of natural
deduction, motivated by Price (1983) (see also Price (1990) and Price (2016)) and
formalised by Rumfitt (2000), the meanings of the logical constants are specified in
terms of two primitive speech acts, assertion and denial. Now the situation appears
to be reversed: the rules for classical negation are in harmony, and the misbalance
occurs between the grounds for and consequences of denying negated formulas in
intuitionist bilateral logic.

Rules of bilateral logics apply to signed formulas: asserted formulas are signed
by +, denied ones by −. Lower case Greek letters range over signed formulas. α∗

designates the conjugate of α, the result of ‘reversing’ its sign from + to−, and from
− to +. Rumfitt’s system contains rules that specify primitively, for each connective,
the grounds for asserting/denying any complex formulas and the consequences of
asserting/denying them. Call the following list of rules AD:

+&I : + A + B
+ A&B

+&E: + A&B
+ A

+ A&B
+ B

−&I : − A
− A&B

− B
− A&B −&E: − A&B

i− A
Π
φ

i− B
Σ
φ

i
φ

+∨I : + A
+ A ∨ B

+ B
+ A ∨ B +∨E:

+ A ∨ B

i
+ A
Π
φ

i
+ B
Σ
φ

i
φ

Nils Kürbis: Intuitionist Bilateralism

431



−∨I : − A − B
− A ∨ B −∨E: − A ∨ B

− A
− A ∨ B
− B

+⊃I :

i
+ A
Π
+ B

i
+ A ⊃ B

+⊃E: + A ⊃ B + A
+ B

−⊃I : + A − B
− A ⊃ B −⊃E: − A ⊃ B

+ A
− A ⊃ B
− B

+¬I : − A
+ ¬A +¬E: + ¬A

− A

−¬I : + A
− ¬A −¬E: − ¬A

+ A

The four rules for negation evidently exhibit some kind of harmony. An intuitionist
must reject −¬E. This creates a misbalance between the grounds for denying ¬A
as specified by −¬I and the consequences of denying it: we get less out of denying
¬A than we put in.

Gibbard (2002) points out that AD is constructive logic with strong negation:
double negation elimination and DeMorgan’s Laws hold, but the laws of excluded
middle and non-contradiction do not. Rumfitt (2002) responds thatAD is intended
to be supplemented by a form of reductio he names after Timothy Smiley:

Smiley: If Γ, α ` â and Γ, α ` â∗, then Γ ` α∗

Adding Smiley to AD gives a system of classical bilateral logic which I call B.
Notice that, in line with observations of the previous section, what needs to

be added to AD in a formalisation of classical bilateral logic is once more a rule
that allows further options for the discharge of hypotheses. Classical logic requires
a stronger notion of discharge than AD, constructive logic with strong negation,
allows. So once more, we can locate the difference between the two systems in a
difference of the rules for the discharge of hypotheses.

Alternatively to adding Smiley,Rumfitt can appeal to a notion of incompatibility
between the speech acts assertion and denial, registered by⊥, and add the following
two rules to AD:

Non-Contradiction: From α, α∗, infer ⊥
Reductio: If Γ, α ` ⊥, then Γ ` α∗

Adding these two rules to AD gives a system essentially equivalent to B.
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3 Intuitionist Bilateralism

Rumfitt claims that bilateralism is superior to unilateralism, the usual approach
to natural deduction, as it allows us to justify classical and rule out intuitionist
logic. In bilateral logic, classical negation is governed by harmonious rules, while
intuitionist negation is not governed by harmonious rules. Closer inspection of the
resources for formulating rules of inference provided by the bilateral framework
shows, however, that the claim does not stand.

It is undeniable that dropping −¬E or weakening it somehow while keeping
−¬I creates a misbalance. However, if we weaken both rules we can formulate
intuitionistically acceptable, harmonious rules for the denials of negated formulas.
To formalise Int-B, an intuitionist system of bilateral logic, we adopt the assertive
rules of AD, change the rejective rules for &, ⊃ and ¬, restrict Smiley and add a
version of ex contradictione quodlibet:

ReductioInt : If Γ,+ A ` â and Γ,+ A ` â∗, then Γ ` − A
ex contradictione quodlibet: α, α∗ ` â
(more economically, + A,− A ` + B suffices)

−&IInt :

i
+A
Π
−B

i− A&B

−&EInt : − A&B + A
− B

−⊃IInt : − B

i− A
Π
α

i− A
Ξ
α∗

i− A ⊃ B

−⊃EInt : − A ⊃ B − A
â

− A ⊃ B
− B

−¬IInt :

i− A
Π
α

i− A
Ξ
α∗

i− ¬A

−¬EInt : − ¬A − A
â

α and â can be restricted to atomic signed formulas in any rule. The rules exhibit
harmony in Dummett’s and Prawitz’ sense: grounds and consequences of rejected
formulas balance each other, and we can prove a normalisation theorem. They are
also harmonious in Tennant’s sense, approved by Rumfitt, where ‘an introduction
rule I is in harmonywith an elimination ruleE when (a)E’s major premiss expresses
the weakest proposition that can be eliminated when usingE, with I taken as given,
and (b) I ’s conclusion expresses the strongest proposition that can be introduced
using I , with E taken as given.’ (Rumfitt (2000): 790) Hence the claim that the
negation rules of a bilateral intuitionist logic cannot be harmonious is incorrect.
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Int-B shares all the meaning-theoretically relevant properties of B and meets all
formal requirements Rumfitt imposes on satisfactory systems of bilateral logic. (See
Kürbis (2016) for details.) Thus, just asB according to Rumfitt, Int-B specifies the
senses of the connectives bilaterally. This time, however, that sense is intuitionist.
There is nothing specifically classicist about bilateralism.
Reductiomay display a symmetry that ReductioInt + ex contradictione quodlibet

does not display. This is no objection. According to Rumfitt,Reductio is a structural
rule and not subject to considerations of harmony. It holds by stipulation: ‘as a
matter of simple definition, then, quite independently of the soundness of double
negation elimination, the double conjugate α∗∗ is strictly identical with α itself.’
(Rumfitt (2000): 804) The intuitionist can adopt an analogous attitude.

Bilateralism fails where unilateralism succeeds. On Dummett’s and Prawitz’
unilateralist account, classical logic is anomalous, but intuitionist logic is not, and
so classical logic is ruled out by proof-theoretic considerations. On the bilateral
account, intuitionist logic is not anomalous, hence not ruled out by proof-theoretic
considerations. As a consequences, the methodological complications introduced
by bilateralism cannot be justified by claiming that their introduction allows us to
meet a well-known Dummettian challenge.

Adding the other half of Smiley to Int-B gives a system equivalent to B. Thus
it looks as if on the bilateral account, whether a logic is classical or intuitionist
depends on which version reductio is adopted. Looking back to the discussion
of the different roles of discharge of hypotheses in classical and intuitionist logic,
Smiley allows additional cases of discharge of assumptions of the form − A that
ReductioInt does not allow. That lack of options for the discharge of denied formulas
may give the impression of some kind of misbalance. Once more, however, harmony
as it stands has nothing to say about what it is that might balance discharge of
assumptions, and so an independent argument would be needed to establish that
something is amiss about ReductioInt .

An extended notion of harmony that also applies to the discharge of hypotheses
might get the classical bilateralist on the way to addressing the issue of how to
exclude Int-B. But we don’t know until it’s on the table.

Even if we had an argument for excluding ReductioInt , whether it is based on
an extended account of harmony or not, this would not yet show that there is
something wrong with constructive logic with strong negation, if we do not add
Smiley to AD, or an intuitionist version thereof, should anyone want it, if we drop
ReductioInt and ex contradictione quodlibet from Int-B. There is a more general
question whether there are principled reasons for deciding between these options
from the bilateralist perspective. So far, no one has given any.

4 A Problem about the Status of Hypotheses in Bilateral Logic

The formal framework of bilateral logic has no advantage over the ordinary
approach to proof-theory when it comes to the question whether we should adopt
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classical or intuitionist logic. In this section I will argue that it may in fact have
disadvantages.

In bilateral logic, the premises, discharged assumptions and conclusions of rules
of inference are supposed to be asserted or denied formulas. Many, and Rumfitt
amongst them, accept the view that speech acts cannot be embedded in other
speech acts. Thus, the formulas in Rumfitt’s system cannot be understood as being
prefixed by ‘It is assertible that’ and ‘It is deniable that’, as these are sentential
operators that can be embedded.

Assertion and denial are activities. Ordinary proof-theory is normally under-
stood not to be about activities but about propositions. Ordinary proof-theory is
concerned with such activities only in a derivative sense. If I have asserted that
A, and there is a deduction of B from A, then I can assert B , should assert B , or,
failing that, retract my assertion of A or of some other proposition I asserted and
that the deduction of B depends on. But deductions can equally be carried out
independently of any assertions, even if, when all assumptions are discharged, we
reach a propositions we should accept and assert as true.

How are we to understand the +’s and −’s of Rumfitt’s logic? They cannot
mean that some assertions or denials have actually been made. This is irrelevant
for logic. Maybe no one ever asserted that he is being deceived by a most powerful
and evil demon, but nevertheless we may assume that proposition and see what
consequences it has. The making of assumptions is essential to logic. What is it to
make an assumption in Rumfitt’s system? Rumfitt often paraphrases + A as ‘It
is correctly assertible that’ and − A as ‘It is correctly deniable that A’. Although
Rumfitt accepts ‘that whenever it is correct to assert a sentence, that sentence is true;
and that whenever it is correct to deny a sentence, that sentence is false’ (Rumfitt
(2002): 314), he does not accept the converses. ‘To say that it is (objectively) correct
to assert (or to deny) a sentence A is to say that knowledge is (tenselessly) available
which, were a speaker to apprehend it, would warrant him in asserting (or in
denying) A’ (Rumfitt (2002): 313) Thus to assume that it is correctly assertible
that A is a stronger assumption than the assumption that A is true, and equally
to assume that it is correctly deniable that A is a stronger assumption than the
assumption that A is false. To assume that A is correctly assertible is to assume
that something about our epistemic state in addition to the mere truth of A, and to
assume that A is correctly deniable is to assume something about our epistemic
state in addition to the mere falsehood of A. The problem now is that in Rumfitt’s
bilateral system, all formulas are prefaced with + or −. Thus it would appear
that all assumptions in the system correspond to the stronger assumptions about
our epistemic status, and nothing corresponds to the weaker assumptions of the
mere truth or falsity of a formula. But it is those latter assumptions that logic is
concerned with.

Weiss (2017) argues that Rumfitt’s system does not allow him to draw a
distinction between the truth and the assertibility of a sentence. That distinction,
however, turns out to be crucial not only to Rumfitt’s classicist allegiance, but to
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the entire bilateralist approach, on the basis of which the classicist allegiance was
supposed to be justified. A core tenet of Rumfitt’s approach is that denial and
assertion conditions are independent of each other in the sense that they cannot
be derived from each other: in a bilateralist theory of meaning that the denial
and assertion conditions of a sentence must be stipulated independently. Weiss
argues that as a consequence of there being no viable distinction between truth
and assertibility in the system, ‘denial conditions follow from failure of assertion
conditions, or, more strictly, from assertion that assertion conditions fail’. Weiss
appeals to very plausible principles governing the operators ‘It is assertible that’
and ‘It is deniable that’:

(A.1) From + A infer + (It is assertible that A)

(A.2) From + (It is assertible that A) infer + A

(D.1) From − A infer + (It is deniable that A)

(D.2) From + (It is deniable that A) infer − A

Weiss argues as follows. Suppose + (It is not assertible that A). If − ¬A, then,
by −¬E, + A, so by (A.1), + (It is assertible that A). Hence + ¬A by Smi-
ley, and so − A, by +¬E. Hence from (A.1), which encapsulates the lack of
a distinction between truth and assertibility in Rumfitt’s account, it follows that
+ (It is not assertible that A) entails − A.

Rumfitt should accept (A.2), as he accepts that if a sentence is assertible, then it
is true, and (A.2) is the only possibility to express this in his logic. Rumfitt should
also accept (D.2), as he accepts that if a sentence is deniable, then it is false, so its
negation is true, and (D.2) is the only possibility to express this in his logic. Rumfitt
wants to reject (A.1), as he accepts that there may be sentences that are true but
not assertible, and reject (D.1), as he accepts that there are sentences that are false
but not deniable. But, as Weiss points out, he can hardly do either of them, as his
logic does not allow him to reason from sentences, but only from sentences that
are asserted or denied.

It is possible to back up Weiss’s account by the following observation. Pre-
sumably it is inconsistent to assert A and deny that it is assertible that A, and it
is inconsistent to deny A and deny that it is deniable that A. We should expect to
have:

+ A − (It is assertible that A)
⊥

− A − (It is deniable that A)
⊥

(A.1) and (D.1) now follow by Reductio. Thus we can prove Weiss’s principles on
the basis of what may be considered even simpler ones.

To draw the discussion to a close, there is something even worse for bilateralism
than what has already been said. There lurks a danger for the coherence of
Rumfitt’s entire framework. It is essential to rules such as +⊃I and reductio that
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their application allows the discharge of assumptions. Wemay wonder what it could
mean to discharge a speech act? Is it like making an assertion that is no longer
needed, like having informed someone yesterday that it looks like it is raining and
it is best to take an umbrella, or an assertion that is retracted, like having informed
someone yesterday when it looked like it was going to rain that it will be best to
take an umbrella today, but now the sun is shining? If an assertion has been made,
it is not possible to make it “unhappen”. Assertions are activities that have effects
external to any reasoning we might do on the basis of them that cannot be made
undone. Making an assumption and discharging it in no way commits a reasoner
to the proposition nor any consequences that the making of the assumption might
have, apart from what follows by an application of a rule that discharges it. That’s
the point of making an assumption. But it is worse than that. What does it mean
to assume + A and − A? It is plausible that making an assumption is a particular
speech act, as argued by Dummett (1981): 309ff. + A and − A are supposed to
represent speech acts. Rumfitt accepts that speech acts cannot be embedded in
other speech acts. But then it is meaningless to assume + A or − A.
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Ecletism

Ecletism is not a position available to an intuitionist
mathematician/logician “of faith”. The classical
mathematician/logician may even consider the intuitionist
position quite interesting, since constructive proofs, although
usually longer, are more informative than indirect classical
proofs, since they have an algorithmic nature and satisfy
interesting informative properties such as the disjunction
property and the property of the existential quantifier.
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Ecletism

To the intuitionist mathematician/logician, however, there
seems to be no alternative but to revise and revoke the
universal validity of certain classical principles of reasoning; for
the intuitionist, mathematics must be constructed exclusively
on constructively valid forms of argument. From the point of
view of the classical mathematician, the intuitionist position, if
taken seriously, means a mutilation of the mathematical
corpus; for the intuitionist it is simply the only correct way of
doing mathematics. (we cannot lose what we do not have!).
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Revisionism in Logic

A possible way of disqualifying the conflict between classical
and intuitionistic logic is to seek to extend to the domains of
logic and mathematics a nihilistic view usually associated to
“value nihilism”. Just as in the case of basic moral values and
principles, we could not argue for or against basic logical rules
and principles.
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Revisionism in Logic

Once an option is made for basic rules and principles, we can
rightly discuss what follows and what belongs to the system
determined by our basic choices, but the basis itself cannot be
justified or criticized. An immediate consequence of this
nihilistic position is that in accepting it, we must give up the
possibility of rationally discussing the logical choices we make.
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Revisionism in Logic
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Revisionism in Logic

Another standard form of disqualifying the conflict between the classical
logic and the intuitionistic standpoint is based on the somewhat
reasonable idea that the litigants are talking about distinct things (or
speaking di↵erent things), and that if they are talking about di↵erent
things, there is not “the same thing” - a rule or a principle - on which
they diverge and dispute.

According to this position, it is as if the participants of the conflict spoke
di↵erent languages and did not realize it.
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A problem for revisionism in Logic

An easy argument (Quine, 1970):

1 If the deviant/revisionist logician does not accept the general validity
of a classical principle of reasoning, then he gives new meanings to
the concepts used in the formulation of the principle.

2 If the deviant logician gives new meanings to the concepts used in
the formulation of the principle, then the deviant logician and the
classical logician are not talking about the same thing (principle).

3 If they are are talking about di↵erent things, they cannot disagree!!!
4 The deviant logician does not accept the general validity of the

principle.

Thus, they do not disagree!!!!
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It is for no other reason that the participants (of the conflict) seek a
common ground, a common minimal language, where discussion and
conflict may occur.

1 A common ground
2 The finite
3 The decidable
4 Translations
5 Fragments
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The Ecumenical approach

Pereira and Rodriguez Ecumenism : a new perspective on the relation between logics

L. C. Pereira & R. O. Rodrı́guez: Ecumenism, on the relation between logics

443



The ecumenical view
Prawitz 2015
Dowek 2015
Krauss 1992
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An alternative is to use the idea of Hilbert and Poincaré that axioms and
deduction rules define the meaning of the symbols of the language and it
is then possible to explain that some judge the proposition (P _¬P ) true
and others do not because they do not assign the same meaning to the
symbols _, ¬, etc.
(Dowek [2015])
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The need to distinguish several meanings of a common word is usual in
mathematics. For instance the proposition “there exists a number x such
that 2x = 1” is true or false depending on whether the word “number”
means “natural number” or “real number”. Even for logical connectives,
the word “or’ has to be disambiguated into inclusive and exclusive.
(Dowek [2015])
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Taking this idea seriously, we should not say that the proposition
(P _ ¬P ) has a classical proof but no constructive proof, but we should
say that the proposition (P _c ¬cP ) has a proof and the proposition
(P _ ¬P ) does not, that is we should introduce two symbols for each
connective and quantifier, for instance a symbol _ for the constructive
disjunction and a symbol _c for the classical one, instead of introducing
two judgments: “has a classical proof” and “has a constructive proof’
(Dowek [2015])
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Dag Prawitz seems to agree with Quine when he says:

”When the classical and intuitionistic codifications attach di↵erent
meanings to a constant, we need to use di↵erent symbols, and I shall use
a subscript c for the classical meaning and i for the intuitionistic. The
classical and intuitionistic constants can then have a peaceful coexistence
in a language that contains both.”
(Prawitz [2015])
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What’s Prawitz’ main idea?

The same meaning explanation for classical logic
and intuitionistic logic.

But this does not seem possible!

Gentzen’s introduction rule for disjunction (and for implication
and the existential quantifier) is too strong! It cannot give the
meaning of classical disjunction.
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Solution: di↵erent introduction rules for classical
disjunction

Interesting: two disjunctions, but the same idea of

meaning explanation.
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The Ecumenical logic
(Propositional Part)

Ec
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The language of Ec is defined as follow:
Alphabet

1 Propositional letters: p, q, r, ...
2 logical constants: ?, ^, ¬, _i, _c, !i and !c.
3 Auxiliary signs: (, ) .

The grammar of Ec is the usual.
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The Natural Deduction Ecumenical system

NEc
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The Natural Deduction system NEc defined by
Prawitz has the following rules of inference:

1 The rules for ^, ¬ and for the intuitionistic operators are the usual
Gentzen-Prawitz introduction and elimination for these operators.

2 The intuitionistic absurd rule:

?
A

3 The rules for classical disjunction and classical implication are
defined as follows:
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[A] [¬B]

⇧1

? !c-Int
A !c B

A !c B A ¬B !c-Elim?
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[¬A] [¬B]

⇧1

? _c-Int
A _c B

A _c B ¬A ¬B _c-Elim?
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A brief remark on classical implication and negation

(1) Classical implication: Contrary to what we could expect from any
reasonable concept of conditional judgements (hypothetical judgement),
the operator !c does not satisfy modus ponens. This is due to the fact
that the introduction rule for !c is weaker than the introduction for !i,
since the classical logician is allowed to assert (A !c B) in cases where
the intuitionistic logician is not. It is interesting to observe that the
general validity of modus ponens for !c would not depend solely on the
meaning of !c, but would also depend on a concept of negation that is
not determined by the introduction rule for negation. The classical
implication !c clearly satisfies a weak form of modus ponens: {A, (A
!c B)} ` ¬¬B.
(2) Negation: It would be natural to ask why the system has just one
negation, given that it has two negations and the ?. The point is that
(A !i ?) is equivalent to (A !c ?), both classically and
intuitionistically. In a more general sense, one could also say that there is
just one way to assert a negated proposition: assume the proposition and
show that this assumption leads to a contradiction.
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Some interesting theorems
1 `NEc (A !i B) )i (A !c B)
2 `NEc (A ^B) ,i ¬(¬A _c ¬B)
3 `NEc (A ^B) ,i ¬(A !c ¬B)
4 `NEc ¬(¬A ^ ¬B) ,i (A _c B)
5 `NEc ¬(A ^ ¬B) ,i (A !c B)

Definition

A formula B is called classical if and only if its main operator is classical
(we sometimes indicate that B is classical with the notation B

c)

Some more interesting theorems
1 `NEc (A !c B

c) !i (A !i B
c)

2 {A, (A !c B
c)} `NEc B

c}
Interesting remark: The system NEc does not satisfy the
deduction theorem!
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Lot’s of things to be done!

1
Proof theory

2
Truth-theoretical semantics.
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Proof Theory
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Reductions

The reductions for the intuitionistic operators are
the usual Prawitz’ reductions.
The reductions for the classical operators are
defined below:
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[A] [¬B]

⇧1

?
A !c B

⇧2

A

⇧3

¬B
?

Reduces to:

⇧2

[A]

⇧3

[¬B]

⇧1

?
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[¬A] [¬B]

⇧1

?
A _c B

⇧2

¬A
⇧3

¬B
?

Reduces to:

⇧2

[¬A]

⇧3

[¬B]

⇧1

?
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Problem for normalization: inductive measures!

Solution: new measures of complexity!

Pereira and Rodriguez Ecumenism : a new perspective on the relation between logics

In the case of the new reductions we immediately see that through the
elimination of a maximum formula, new maximum formulas of the same
degree may be produced, and because of this the usual normalization
strategy does not work anymore. An easy way to solve this di�cult is
through the modification of the usual definition of the degree of a
formula as the number of occurrences logical operators in the formula.

It is clear that in the case of classical disjunction and classical implication
there are some hidden negations, and that any definition of the
complexity of a formula must take this point in consideration. The new
measure of complexity of a formula A will be called the ecumenical
degree of A, ed(A), and is defined as follows:
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E-degree

1 ed(�) = 0
2 ed(¬A) = ed(A) + 1
3 ed(A 2 B) = ed(A) + ed(B) + 1, if 2 is ^ or an intuitionistic

operator.
4 ed(A _c B) = ed(A) + ed(B) + 4
5 ed(A !c B) = ed(A) + ed(B) + 3
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The Normalization Theorem
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The main definitions are standard.

Definition

A formula A in a derivation ⇧ is a maximum formula if and only if:

1
A is the conclusion of an application of an ↵-introduction rule and
at the same time the major premisse of an ↵-elimination rule in ⇧.
or

2
A is the conclusion of an application of the ?-rule and at the same
time the major premisse of an elimination rule in ⇧.
or

3
A is the conclusion of an application of the _i-elimination rule and
at the same time the major premisse of an elimination rule in ⇧.

Definition

The ecumenical degree of a derivation ⇧, ed[⇧] is defined as the max{
ed[A] s. t. A is a maximum formula in ⇧ }.
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Definition

A derivation ⇧ is called critical i↵
1 ⇧ ends with an elimination rule ↵;
2 The major premiss of ↵ is a maximum formula;
3 For every proper sub-derivation ⇧0 of ⇧, ed[⇧0]  ed[⇧].
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Lemma

Let ⇧1 / A and A/⇧2 be two derivations in NEc such that d(⇧1) = n1
and d(⇧2) = n2. Then, d(⇧1/[A]/⇧2) = max(d[A], n1, n2).

Lemma

Let ⇧ be a critical derivation of � `NEc A. Then, ⇧ reduces to a
derivation ⇧0 of � ✓ � `NEc A such that d(⇧0) < d(⇧).

Lemma

Let ⇧ be a derivation of � `NEc A. Then, ⇧ reduces to a derivation ⇧0

of � ✓ � `NEc A such that d(⇧0) < d(⇧).

Proof.

Directly from the previous lemma using induction on the length of ⇧.
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Theorem

Let ⇧ be a derivation of � `NEc A. Then, ⇧ reduces to a normal
derivation ⇧0 of � ✓ � `NEc A.
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The sequent calculus LEc

The sequent calculus LEc for Prawitz’ ecumenical logic is defined in the
standard way. Sequents are expressions of the form � ) � where � and
� are multiset of formulas.
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�1 : Innitial sequents are expressions of the form A ) A,
where A is an atomic formula.

�2 : The structural rules, the rules for ^, ¬, and the rules for
the intuitionistic operators are the structural rules and the
rules for these operators in LJ.

�3 : The rules for !c and _c are as follows:

�,A,¬B )
�)A!cB

: )!c

�,¬A,¬B )
�) A_cB

: ) _c

�)A � )¬B
�,�,A!cB ) : !c)

�)¬A � )¬B
�,�,A_cB ) : _c )
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Cut-elimination for LEc

The proof of the cut-elimination theorem for LEc follows the standard
Gentzen strategy:

G1 We replace the cut-rule by the mix-rule (as in the case of Gentzen’s
proof)

G2 We prove the following main lemma:
Let ⇧ be a derivation of � ) � in LEc, such that ⇧ ends with an
application of the mix-rule and that this is the only application of
the mix-rule in ⇧. Then, ⇧ can be transformed into a mix-free
derivation ⇧0 of � ) �.

Proof.

The proof of this main lemma is carried out by induction on the pair
< n,m >, where n is the degree of the mix-formula and n is its
Gentzen-rank.

G3 We then prove the main result:

Pereira and Rodriguez Ecumenism : a new perspective on the relation between logics

Cut-elimination for LEc

Theorem

The system LEc satisfies cut-elimination.

Proof.

The result now follows directly by induction on the number of cuts
occurring in a derivation and the lemma above.
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Kripke semantics for Ec

Pereira and Rodriguez Ecumenism : a new perspective on the relation between logics

Definition

An ecumenical intuitionistic Kripke model is a pair hF , ei where
F = hW,, i is an intuitionistic Kripke frame and e is a intuitionistic
valuation, i.e., e is a mapping associating with each propositional variable
p and element of U, where U is the set of all uppersets of hW,i, i.e.
all sets U ✓ W such that if ! 2 U and !  ⌫ then also ⌫ 2 U.
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Let M = hF , ei be an ecumenical Kripke model and ! 2 W . By
induction in the construction of a formula ' we define the relation
(M,!) |= ' as follows:

(M,!) |= p i↵ ! 2 e(p);
(M, ⌫) 6|= ?
(M,!) |= ¬ i↵ for all ⌫ 2 W such that !  ⌫ : (M, ⌫) 6|=  

(M,!) |= ' ^  i↵ (M,!) |= ' and (M,!) |=  ;
(M,!) |= ' _i  i↵ (M,!) |= ' or (M,!) |=  ;
(M,!) |= ' _c  i↵ (M,!) |= ¬(¬' ^ ¬ );
(M,!) |= '!  i↵ 8 ⌫ 2 W s. t. !  ⌫ : (M, ⌫) |= ' ) (M, ⌫) |=  );

(M,!) |= '!c  i↵ (M,!) |= ¬(' ^ ¬ );
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Soundness

Theorem (Soundness)

� `NEc A =) � |=Ec A

Proof.

The proof of soundness is carried out, as usual, by induction on the
length of a derivation ⇧ of � `NEc A. We shall consider just one of the
possible cases, the other cases being treated in a similar way.
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Soundness

1. The last rule applied in ⇧ is _c � int. The derivation ⇧ is:

[¬A] [¬B]

�
?

A _c B
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Soundness

By inductive hypothesis, we know that {�,¬A,¬B} |=E ?, i.e., that
there is no world ! such that (M,!) |=E � [ {¬A} [ {¬B}. Assume
now that � 6|=E (A _c B), which is equivalent to say, by definition, that
� 6|=E ¬(¬A ^ ¬B). According to the definition of semantical
consequence, � 6|=E ¬(¬A ^ ¬B) if and only if there exists a world ⌫
such that (M, ⌫) |=E � and (M, ⌫) |=E (¬A ^ ¬B). But, this leads to a
contradiction, because (M, ⌫) |=E � [ {¬A} [ {¬B}.
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Completeness

In order to prove the completeness theorem for the calculus NEc, we
shall define a translation Pr from the language of Ec into the language of
intuitionistic propositional logic.

1
Pr['] = ', if ' is a propositional variable.

2
Pr[?] = ?

3
Pr[¬A] = ¬Pr[A]

4
Pr[(A ^B)] = (Pr[A] ^ Pr[B]).

5
Pr[(A _i B)] = (Pr[A] _i Pr[B]).

6
Pr[(A !i B)] = (Pr[A] !i Pr[B]).

7
Pr[(A _c B)] = ¬(¬Pr[A] ^ ¬Pr[B]).

8
Pr[(A !c B)] = ¬(Pr[A] ^ ¬Pr[B]).

Pereira and Rodriguez Ecumenism : a new perspective on the relation between logics

Completeness

Lemma

� `NEic A if and only Pr[�] `Ip Pr[A], where `Ip is the usual
derivability relation in the propositional fragment of Prawitz’ natural
deduction intuitionistic system I.

Proof.

From left to right: By induction over the length of the derivation ⇧ of
� `NEic A . We shall only consider the case where the last rule applied
in ⇧ is !c-introduction, the other cases being treated in a similar way.
Let ⇧ be the following derivation in NEc:

[A] [¬B] �

⇧
?

A !c B
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Completeness

We can construct the following derivation:

[(Pr[A] ^ ¬Pr[B])]

Pr[A]

[(Pr[A] ^ ¬Pr[B])]

¬Pr[B]

Pr[¬B] Pr[�]

Pr[⇧]

?
¬(Pr[A] ^ ¬Pr[B])

A !c B

Pereira and Rodriguez Ecumenism : a new perspective on the relation between logics

Completeness

In other to prove the other direction, we shall prove an auxiliary lemma:

Lemma

`NEc A $i Pr[A])

Proof.

By induction on the ecumenical degree of A.
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Completeness

Lemma

� ✏Ec A if and only Pr[�] ✏Ip Pr[A], where ✏Ip is the usual consequence
relation in the propositional intuitionistic logic.

Proof.

Directly from the previous lemma and soundness.

Pereira and Rodriguez Ecumenism : a new perspective on the relation between logics

Completeness

Theorem

Let � ✏Ec A. Then � `NEc A

Proof.

Assume that � ✏Ec A. By the previous lemma, Pr[�] ✏Ip Pr[A] . By the
completeness of the system Ip, we have Pr[�] `Ip Pr[A]. The result now
follows directly from the auxiliary lemma.
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Related work

The idea of using di↵erent signs for the di↵erent meanings attached to
intuitionistic and classical operators is not new, it was used by P. Krauss
in 1992. The same idea was used again in 2015 by Gilles Dowek. Both
Krauss and Dowek have classical versions for ^ and 8. It is interesting to
observe that [1] ^c does not satisfy (in general) projections and is not
idempotent and that [2] 8c does not (in general) satisfy universal
instantiation. The main motivation of both Krauss and Dowek was to
explore the possibility of hybrid readings of axioms of mathematical
theories. The example discussed by Krauss is the axiom of choice and the
example discussed by Dowek is also taken from set theory. The whole
point is, in Dowek’s own words, to consider that ”which mathematical
results have a classical formulation that can be proved from the axioms
of constructive set theory or constructive type theory and which require a
classical formulation of these axioms and a classical notion of entailment
remais to be investigated”.

Pereira and Rodriguez Ecumenism : a new perspective on the relation between logics

Future work

1 We have just indicated the way to obtain a normalization for NEc.
Clearly there are lots of things to be done with respect to the proof
theory of NEc. We know that we do not have as a corollary of
normalization the sub-formula principle in its usual form. But can we
have a weak sub-formula principle based on the intended meaning of
the classical operators? Can we have confluence? Strong
Normalization?

2 It would be interesting to explore the intended meaning of the
classical operators in order to obtain a Curry-Howard type of result.

3 As we mentioned above, an interesting application of ecumenical
systems is related to the analysis of mathematical results that
depend on ecumenical readings of axioms (see Krauss and Dowek).
It would certainly be interesting to pursue the investigation of other
axiomatic theories. .

4 We are also planning to define a sequent calculus and a tableaux
system for the Ecumenical modal logic S4.
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How should one characterize reductions and their associated normal forms
once one steps outside the realm of “standard” systems of natural deduction ?

On which criteria it is possible to rely in order to provide such a
characterization ?

Present framework: the proof-theoretic analysis of paradoxes.
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Redundancies in Natural Deduction

Natural deduction has the following introduction and elimination rules for
implication

[A]n

B → I , n
A → B

A → B A → E
B

Negation is defined as implication of absurdity

¬A =def A → ⊥

The application in a derivation of an introduction rule followed immediately by
an application of the corresponding elimination rule constitutes a redundancy.

Redundancies can be eliminated by a →-reduction.

[A]n

D
B → I , n

A → B
D′

A → E
B

;→

D′

[A]

D
B

5 / 36

Prawitz on paradoxes (I)

Prawitz [1965] considered a system for naive set theory by extending minimal
logic with an introduction and elimination rule for formulas of the form
t ∈ {x : A} for set-theoretical comprehension

A[t/x ]
∈ I

t ∈ {x : A}
t ∈ {x : A}

∈ E
A[t/x ]

An application of ∈ I immediately followed by ∈ E constitutes a redundancy
which can be eliminated by a ∈-reduction

D
A[t/x ]

t ∈ {x : A}
A[t/x ]

;∈
D

A[t/x ]

Take λ to be r ∈ r , where r is the Russell term {x : x /∈ x}.

An application of ∈ E allows one to pass from ¬λ to λ; an application of ∈ I
allows one to pass from λ to ¬λ.
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Prawitz on paradoxes (II)

Russell’s paradox has the form of the following derivation of absurdity

[λ]n
∈ E¬λ [λ]n

→ E⊥ → I , n¬λ

[λ]m
∈ E¬λ [λ]m

→ E⊥ → I ,m¬λ ∈ I
λ → E⊥

By applying an implication reduction ;→, one obtains the following

[λ]n
∈ E¬λ [λ]n

→ E⊥ → I , n¬λ ∈ I
λ ∈ E¬λ

[λ]m
∈ E¬λ [λ]m

→ E⊥ → I ,m¬λ ∈ I
λ → E⊥

By applying an ∈ reduction ;∈, one obtains the first derivation.
All possible reduction sequences loop.

7 / 36

Tennant on paradoxes

Tennant [1982] considered a wide range of examples and showed that all
prominent mathematical and logical paradoxes follow this pattern. The steps
playing the role of ∈ I and ∈ E are called id est inferences, as they result from
extra-logical principles.

He conjectures that the reduction loops are the distinguishing feature of these
paradoxes and proposes the test of non-terminating reduction sequences as the
criterion for paradoxicality.

[...] enumerate proofs of absurdity; start normalizing those that are
not in normal form; and check to see whether the reduction
sequences ever enter loops, or manifest any other conclusive evidence
that they will not terminate. As soon as a reduction sequence does
enter a loop, or manifest such evidence, one can check off the proof
concerned as a ‘paradoxical’ proof.

Tennant [1995] broadens the test to non-terminating reduction sequences,
which covers paradoxes such as Yablo’s.
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Paradoxes vs inconsistencies

Tennant [1982] distinguishes between the derivation of ⊥ generated with the
rules of λ, and other derivations of ⊥, such as

A ∧ ¬A
A

A ∧ ¬A
¬A

⊥
which is already normal.

Whereas a derivation of ⊥ with a looping reduction sequence shows that the
sentences involved in its id est inferences are paradoxical, a normalizable open
derivation of ⊥ shows the inconsistency of its assumptions.

1 Non-normalizing derivations of ⊥ (if no undischarged assumptions, then a pure
paradox);

2 Normal derivations of ⊥ (the conclusion depends always on at least one open
assumption).

9 / 36

Challenges to Tennant’s view

1 Looping is not a necessary condition: von Plato [2000] / Rogerson [2007] (a
normal paradox in classical logic).

2 Looping is not a sufficient condition: Schroeder-Heister/Tranchini [2016] (on
Ekman’s paradox). One must require:

that reduction does not trivializes identity of proof;
id est inferences provide an isomorphism between λ and ¬λ.

But...

1 Rogerson’s counterexample only works in the ∨,∃-free fragment of (classical)
natural deduction (SH/Tranchini [2016]);

2 The isomorphism criterion presupposes that any paradox has the form of a
Russell-like antinomy.
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An amended criterion

Following Tennant [2016], Russell’s paradox... is not a paradox!

[...] rules need to be parallelized, in order to enable the construction
of a normal disproof for Russell’s ’Paradox’, thereby depriving it of
the status of a genuine paradox.

On the other hand

[...] the Liar Paradox remains genuinely paradoxical according to our
current modification of my earlier proof-theoretic test - unlike
Russell’s Paradox.

The upshot: a neat distinction between set-theoretic and semantical paradoxes.
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Kreisel/Takeuti’s trick

Kreisel-Takeuti [1974]: a simple technique to swallow cuts in sequents of the
form Γ,∀X (X → X ) ` ∆:

Γ,∀X (X → X ) ` A,∆ Γ′,A ` ∆′
cut

Γ, Γ′,∀X (X → X ) ` ∆,∆′

reduces to

Γ,∀X (X → X ) ` A,∆ Γ′,A ` ∆′
L →

Γ, Γ′,∀X (X → X ),A → A ` ∆,∆′
∀L

Γ, Γ′,∀X (X → X ),∀X (X → X ) ` ∆,∆′
C

Γ, Γ′,∀X (X → X ) ` ∆,∆′

13 / 36

In natural deduction

In a ND setting, KT’s trick allows to normalize derivations with ad hoc open
assumptions:

[A]n

...

B → I , n
A → B

...

A → E
B

...

is transformed into

[A → A]m

...

A
→ E

A

...

B

...
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Back to paradoxes (I)

Tennant’s account retains two essential features of a paradoxical derivation. A
paradox is a closed derivation D of the absurdity (⊥), such that:

(i) D employs id est rules;

(ii) D has no normal form.

Condition (ii) is a straightforward consequence of the fact that Tennant
characterizes a paradox as a derivation of absurdity whose reduction sequence
does not terminate.

Thus, following Tennant, the lack of a normal form is a necessary condition for
paradoxicality.
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Back to paradoxes (II)

Because of (ii), a paradox contains at least one redundancy.

Since all derivations in standard natural deduction without id est inferences
have a normal form, the reduction of this redundancy must produce a
derivation containing a redundancy which introduces and immediately
eliminates a formula λ whose behavior is determined by the id est inferences in
(i).

Under Tennant’s hypotheses, a paradoxical derivation D, possibly after some
standard reductions, can be depicted as follows:

...
λI

λ
λE

. . .
... . .
.

⊥
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Paradoxes in normal form (I)

Idea: by exploiting KT technique, a normal paradoxical derivation can be
constructed.

The critical redundancy formed by the id est rules can be blocked by
introducing a new assumption of the form λ→ λ, a trivially valid formula.
The new configuration is the following:

[λ→ λ]n

...
λI

λ
→ E

λ
λE

. . .
... . .
.

⊥ → I , n
(λ→ λ) → ⊥

By discharging such an assumption at the end of the derivation via a
→-introduction rule, one obtains a closed derivation in normal form of a
formula which is false in every interpretation (i.e. a contradiction).

17 / 36

Paradoxes in normal form (II)

This technique can be applied uniformly to all the paradoxes analyzed by
Tennant, both for derivations with standard and general (or parallelized) rules.

In particular, it can be applied uniformly both to semantical and mathematical
paradoxes, blurring the distinction between these two groups.

This shows that there is a problem with Tennant’s condition (ii): the lack of
normal form cannot be considered as a necessary condition for characterizing a
paradox.
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An objection (I)

The argument just presented does not go through when a more general notion
of redundancy is considered.

Tennant (1995) proposes adding, to the reductions eliminating redundancies

[...] other abbreviatory procedures σ, which have the general form of
‘shrinking’, to a single occurrence of A, any logically circular
segments of branches (within the proof) of the form shown below to
the left:

A
B1

...
Bn

A

⇒σ A

One thereby identifies the top occurrence of A with the bottom
occurrence of A, and gets rid of the intervening occurrences of
B1, ...,Bn, that form the filling of this unwanted sandwich.

19 / 36

An objection (II)

Under this stronger notion of reduction, the new derivation schema is not in
normal form.

Tennant’s reduction can be applied to the subderivation of hypothesis and
conclusion λ, reproducing the original derivation schema and causing the
paradoxical derivation to enter a loop.

Hence, Tennant’s proof theoretic test would be satisfied also in this case.
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A possible reply

Tennant’s reduction raise a question about

what constitutes a normal form beyond the standard logical systems;

what are the criteria for extending the reduction procedures.

The objection just presented overlooks an important property of proofs.

If reduction procedures are taken to eliminate inessential or redundant parts in
the proof, it is natural to require that the identity of proof relation must be
invariant with respect to them.

If two proofs can be reduced to the same proof by eliminating their
redundancies, then those two proofs should be regarded as identical.

It is a remarkable and well-known fact that the identity of proof relation arising
from standard reductions in intuitionistic logic is not trivial, that is, it does not
identify all proofs.

21 / 36

Trivialization of identity of proofs
The identity of proof arising from Tennant’s general reduction (also in the
intuitionistic case) is trivial: Tennant’s general reduction forces the
identification of all derivations.

... g

B → A

... f
A → B

... p

A
B

A

;
... p

A

I.e. g(f (p)) = p, for all f and p.
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Trivialization of identity of proofs
The identity of proof arising from Tennant’s general reduction (also in the
intuitionistic case) is trivial: Tennant’s general reduction forces the
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B → A

... f
A → B

... p

A
B

A

;
... p

A

I.e. g(f (p)) = p, for all f and p.
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Trivialization of identity of proofs
The identity of proof arising from Tennant’s general reduction (also in the
intuitionistic case) is trivial: Tennant’s general reduction forces the
identification of all derivations.

... g

B → A

... f
A → B

... p

A
B

A

;
... p

A

I.e. g(f (p)) = p, for all f and p.

[A]n
n

A → A

... u1

A
A → A

... u2

A
A

A

... u1

A
↗

↘
... u2

A
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Trivialization of identity of proofs
The identity of proof arising from Tennant’s general reduction (also in the
intuitionistic case) is trivial: Tennant’s general reduction forces the
identification of all derivations.

... g

B → A

... f
A → B

... p

A
B

A

;
... p

A

I.e. g(f (p)) = p, for all f and p.

Thus, the portions of proofs which are eliminated by this procedure are not
inessential nor redundant.
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Trivialization of identity of proofs
The identity of proof arising from Tennant’s general reduction (also in the
intuitionistic case) is trivial: Tennant’s general reduction forces the
identification of all derivations.

... g

B → A

... f
A → B

... p

A
B

A

;
... p

A

I.e. g(f (p)) = p, for all f and p.

Thus, the portions of proofs which are eliminated by this procedure are not
inessential nor redundant.

Accepting the general reduction would preclude the very possibility of a proof
theoretic analysis of paradoxes.
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Normalization

Add to usual natural deduction a new formula λ and

either assume that every derivation has an open assumption [¬λ → ¬λ]n;
or take ¬λ → ¬λ as an axiom

Then, given usual rules for λ:

¬λ
λI

λ
λ

λE¬λ

we can define an ad hoc reduction designed to block the detours on the
formula ¬λ:

...
¬λ

λI
λ

λE¬λ
...

;
[¬λ→ ¬λ]

...
¬λ

→ E¬λ
...

23 / 36

Normalizing Russell’s paradox

[λ]n
λE¬λ [λ]n

→ E⊥ → I , n¬λ

[λ]m
λE¬λ [λ]m

→ E⊥ → I ,m¬λ
λI

λ → E⊥
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Normalizing Russell’s paradox

[λ]n
λE¬λ [λ]n

→ E⊥ → I , n¬λ

[λ]m
λE¬λ [λ]m

→ E⊥ → I ,m¬λ
λI

λ → E⊥ → I , p
(¬λ→ ¬λ) → ⊥
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Normalizing Russell’s paradox

[¬λ→ ¬λ]p

[λ]n
λE¬λ [λ]n

→ E⊥ → I , n¬λ
→ E¬λ

[λ]m
λE¬λ [λ]m

→ E⊥ → I ,m¬λ
λI

λ → E⊥
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Normalizing Russell’s paradox

[¬λ→ ¬λ]p

[λ]n
λE¬λ [λ]n

→ E⊥ → I , n¬λ
→ E¬λ

[λ]m
λE¬λ [λ]m

→ E⊥ → I ,m¬λ
λI

λ → E⊥ → I , p
(¬λ→ ¬λ) → ⊥
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An analysis of the Liar with GER

Given I/GE rules for the truth predicate T :

φ
TITφ Tφ

[φ]n

...
θ

TE , n
θ

and their associated reduction procedure

...
φ

Tφ

[φ]n

...
θ

θ

;

...
φ

...
θ

26 / 36

An analysis of the Liar with GER

The new I/GE id est rules for λ become

[Tλ]n

...
⊥ λI , n
λ

λ

[¬Tλ]n

...
θ λE , n

θ

we can define an ad hoc reduction designed to block the detours on the
formula ¬Tλ:

[Tλ]n

...
⊥
λ

[¬Tλ]n

...
θ

θ

;KT

[¬Tλ→ ¬Tλ]

[Tλ]n

...
⊥ n¬Tλ

[¬Tλ]m

...
θ →E(gen),m

θ
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Normalizing the Liar

[Tλ]o
[λ]n

[¬Tλ]m [Tλ]o →E⊥
λE ,m⊥

TE , n⊥ λI , o
λ

[¬Tλ]p
λ TITλ →E⊥ λE , p⊥

28 / 36

Normalizing the Liar

Π

↖

[Tλ]o
[λ]n

[¬Tλ]m [Tλ]o →E⊥
λE ,m⊥

TE , n⊥ λI , o
λ

[¬Tλ]p
λ TITλ →E⊥ λE , p⊥
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Normalizing the Liar

[¬Tλ → ¬Tλ]

[Tλ]o
[λ]n

[¬Tλ]m [Tλ]o →E⊥
λE ,m⊥

TE , n⊥ →I , o¬Tλ

[¬Tλ]p
Π

TI
Tλ →E⊥ →E(gen), p⊥

30 / 36

Evaluating the amended criterion

The schema for the generalized KT reduction is

...
¬λ

λI
λ

λE¬λ
...
⊥

;

[λ→ λ]

...
λ

[λ]n

...
⊥ → E (gen), n⊥

It is not possible to apply the generalized reduction ;σ to this derivation
schema: the two derivations of λ are unrelated.

Hence

Tennant’s amended test fails;
This version of the paradox is immune to the objection on generalized reduction;
The distinction between semantic and mathematical paradoxes is blurred.
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Properties of the KT reduction

The system NJ + {A → A|A formula} is strongly normalizing in linear time with the following
reduction:

[A]n

...

B → I , n
A → B

...

A → E
B

...

;

A → A

...

A → E
A

...

B

...

From the Curry-Howard point of view, this corresponds to adding new
constants kA : A → A with the reduction rule

(λxA.tB)uA ; tB [(kA)uA/x ]

This modification is ad hoc but is innocuous in the following sense:

from a logical point of view, we just add some valid formulas as axioms, hence
consistency is preserved;
from a computational point of view, we add a reduction which does not violate
normalization nor computational consistency:identity of proofs is not trivialized.
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Taking stock

We have shown that Tennant’s account faces a dilemma:
1 either one denies that the closed normal derivation obtained by the construction

just presented is a genuine paradox,
2 or one must acknowledge that there is a problem with Tennant’s

characterization of paradoxes.

(1) seems difficult to maintain: the conclusion (λ→ λ) → ⊥ of the new
derivation schema is intuitionistically (and classically) equivalent to the
absurdity.
We conclude that the lack of normal form cannot be considered as a necessary
condition for characterizing a paradox.

An objection to the fact that the new derivation schema can be considered in
normal form led us to consider a general problem about the criteria for defining
normal forms and reductions beyond standard logical systems.

We investigated the KT reduction both for standard and GE rules.
We showed that such a reduction avoids loops but still does not trivialize the
identity of proof relation.
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Solving the paradox? (I)

One can wonder whether these normal paradoxes can be ruled out by
considerations in terms of proof theoretic validity (Prawitz [1971])

One must consider

either validity for open derivations: in this case one enters into a loop in the
justification procedure, as the reduction always produces new open assumptions
to be closed...hence one cannot prove its validity.

or validity for derivations containing axioms: one looses introduction property
but the paradox becomes valid!

Hence it seems that considerations in terms of validity do not help solving this
issue.
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Solving the paradox? (II)

Restrict identity axioms to atomic formulas (PSH).

Issue of “naturality”: A → A where A has n atoms, a trivial proof would take

(almost) n steps.

Following the criterion put forward in Schroeder-Heister/Tranchini [2016], our

“paradoxes in normal form” are not genuine paradoxes (the isomorphism condition is

not satisfied).

If looping is all that matters in order to characterize a paradox, a pathological
example can be produced. Therefore some other property (e.g. isomorphism)
must be invoked in order to reject our example and characterize genuine
paradoxes.

The isomorphism condition presupposes that the id-est inferences have a very specific

form: the (unique) premiss of the introduction rule must be the conclusion of the

elimination rule.

These normal paradoxes seem a “stable anomaly” in the proof-theoretic analysis of

paradoxes.
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