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Abstract

In this thesis I make some contributions to the development of machine learning in
a setting of ordinal distance information. A setting of ordinal distance information or
ordinal data for short refers to the following scenario: The objects of interest are elements
of a set X that is equipped with a dissimilarity function ¢ : X x X — R, which quantifies
how dissimilar two objects are. However, when given a data set D C X for which we
want to solve a machine learning problem, we cannot evaluate ¢ itself. Instead, we only
get to see binary answers to some comparisons of dissimilarity values such as

W(A, B) < 4(C, D),

where A, B,C,D € D. Such a scenario has attracted interest in machine learning in
recent years. It is in contrast to a scenario in which ¢ can directly be evaluated and
actual dissimilarity values (A, B) € R are observed. The latter scenario is “standard”
in machine learning and is referred to as a setting of cardinal distance information.

My contributions are both on the theoretical and on the applied side. After the
introductory Chapter 1, I present a result stating the asymptotic uniqueness of ordinal
embeddings in Chapter 2. Constructing an ordinal embedding is the main approach to
machine learning in a setting of ordinal distance information. The idea is to map the
objects of the data set D to points in a Euclidean space R? such that the points preserve
the given ordinal data as well as possible (with respect to the Euclidean interpoint
distances). I show that for Euclidean data sets, which permit perfect ordinal embeddings,
the points are uniquely determined up to a similarity transformation and small individual
offsets that uniformly go to zero as the size of the data set goes to infinity. My result
is the first of this kind in the literature and proves a long-standing claim dating back
to the 1960s. In Chapter 3, I introduce two estimators for the intrinsic dimension of a
data set that are based on only ordinal distance information. Although dimensionality
estimation is a well-studied problem with a long history, all previous estimators from
the literature are based on cardinal distance information. In Chapter 4 and Chapter 5,
I provide algorithms for various machine learning problems in a setting of ordinal distance
information. My algorithms do not construct an ordinal embedding of the data set,
which would mean to transform the given ordinal data back to a “standard” cardinal
setting. They rather directly make use of the ordinal data. In doing so, they avoid some
of the drawbacks of an ordinal embedding approach. The algorithms that I propose in
Chapter 4 are based on estimating the lens depth function or the k-relative neighborhood
graph from ordinal distance information and are designed for specific machine learning
problems. My algorithms of Chapter 5 yield positive-semidefinite kernel matrices on the
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data set D and hence allow to apply any kernel method to D. They are the first generic
means for solving machine learning problems in a setting of ordinal distance information
in the literature that is different from the ordinal embedding approach.



Zusammenfassung

In dieser Dissertation présentiere ich Beitrage zur (Weiter-)Entwicklung des maschi-
nellen Lernens in einem Setting ordinaler Abstandsinformation. Ein Setting ordina-
ler Abstandsinformation oder kurz ordinaler Daten bezeichnet folgendes Szenario: Die
Objekte von Interesse sind Elemente einer Menge X', die mit einer Abstandsfunktion
t: X x X — R versehen ist, welche die Unéhnlichkeit zweier Objekte quantifiziert. Wenn
wir ein Problem des maschinellen Lernens fiir eine Datenmenge D C X 16sen wollen,
kénnen wir jedoch ¢ nicht unmittelbar auswerten. Stattdessen beobachten wir lediglich
bindre Antworten auf Vergleiche von Abstinden wie etwa

(A, B) ; 1(C, D),

wobei A, B,C, D € D. Ein solches Szenario ist in den letzten Jahren auf zunehmendes
Interesse im maschinellen Lernen gestofen. Es steht einem Szenario, in welchem ¢ unmit-
telbar ausgewertet werden kann und tatséchliche Abstandswerte (A, B) € R beobachtet
werden, gegeniiber. Letzteres Szenario ist ein ,,standardméfiges“ im maschinellen Lernen
und wird als ein Setting kardinaler Abstandsinformation bezeichnet.

Meine Beitréige liegen sowohl im theoretischen als auch im angewandten Bereich.
Nach dem einfithrenden Kapitel 1 préasentiere ich in Kapitel 2 ein Resultat iiber die asym-
ptotische Eindeutigkeit ordinaler Einbettungen. Eine ordinale Einbettung zu konstruie-
ren ist die iibliche Herangehensweise an maschinelles Lernen in einem Setting ordinaler
Abstandsinformation. Die Idee dabei ist, die Objekte der Datenmenge D auf Punkte in
einem euklidischen Raum R? so abzubilden, dass die Punkte die gegebenen ordinalen
Daten bestméglich widerspiegeln (beziiglich der euklidischen Punktabsténde). Ich zei-
ge, dass fiir euklidische Datenmengen, welche perfekte ordinale Einbettungen erlauben,
die Punkte eindeutig bestimmt sind, bis auf eine Ahnlichkeitsabbildung und kleine in-
dividuelle Verschiebungen, die gleichméflig gegen null streben, wihrend die Grofle der
Datenmenge gegen unendlich strebt. Mein Resultat ist das erste dieser Art in der Lite-
ratur und beweist eine seit Langem bestehende Vermutung, die bis in die 1960er-Jahre
zuriickreicht. In Kapitel 3 fithre ich zwei Schétzer fiir die intrinsische Dimension einer
Datenmenge ein, die ausschliefllich ordinale Abstandsinformation verwenden. Obwohl
Dimensions-Schétzung ein gut untersuchtes Problem mit einer langen Geschichte ist,
basieren alle bisherigen Dimensions-Schétzer in der Literatur auf kardinaler Abstands-
information. In Kapitel 4 und Kapitel 5 présentiere ich Algorithmen fiir verschiedene
Probleme des maschinellen Lernens in einem Setting ordinaler Abstandsinformation.
Meine Algorithmen konstruieren keine ordinale Einbettung der Datenmenge—was be-
deuten wiirde, die gegebenen ordinalen Daten in ein ,standardméfliges“ Setting kardina-
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ler Abstandsinformation zuriickzutransformieren. Stattdessen arbeiten sie direkt auf den
ordinalen Daten und vermeiden dadurch einige der Nachteile, die mit dem Konstruieren
einer ordinalen Einbettung einhergehen. Die Algorithmen, die ich in Kapitel 4 vorschlage,
beruhen darauf, die sogenannte Linsen-Tiefenfunktion beziehungsweise den k-relativen
Nachbarschaftsgraphen basierend auf ordinaler Abstandsinformation zu schitzen, und
16sen spezifische Probleme des maschinellen Lernens. Die Algorithmen aus Kapitel 5
liefern positiv semidefinite Kernmatrizen auf der Datenmenge D und erlauben daher
eine beliebige Kernmethode auf D anzuwenden. Sie sind die erste allgemeine Methode
um Probleme des maschinellen Lernens in einem Setting ordinaler Abstandsinformation
zu 16sen in der Literatur, die nicht aus dem Konstruieren einer ordinalen Einbettung
besteht.
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Chapter 1

Introduction

Assessing similarity between objects is an inherent part of many machine learning prob-
lems, be it in an unsupervised task like clustering, in which similar objects should be
grouped together, or in a supervised task like classification, where many algorithms are
based on the assumption that similar inputs tend to produce similar outputs. In a typical
machine learning setting one commonly assumes to be given a data set D of objects to-
gether with a dissimilarity function ¢ quantifying how “close” objects are to each other.
In recent years, however, a whole new branch of the machine learning literature has
emerged that relaxes this scenario. Instead of being able to evaluate the dissimilarity
function ¢ itself, we only get to see binary answers to some comparisons of dissimilarity
values such as

W(A, B) < (C, D),

where A, B,C, D € D. We refer to any collection of answers to such dissimilarity com-
parisons as ordinal distance information or ordinal data as opposed to cardinal distance
information comprising actual dissimilarity values ¢(4, B) € R. Note that, in general,
the ordinal data is the only knowledge that we have about the data set D. In particular,
we do not have any feature representations of the objects whatsoever.

In this thesis we make some contributions to the development of machine learning
in a setting of ordinal distance information, both on the theoretical and on the applied
side. We will summarize our results in Section 1.5 of this introduction. Before we want
to provide some motivation for studying ordinal data in Section 1.1. We make some
general assumptions on the dissimilarity function ¢ as well as introduce some general
notation in Section 1.2. In Section 1.3 and Section 1.4, respectively, we review two
important aspects of ordinal distance information that are relevant to understand our
results: distinguishing ordinal data regarding to which kind of ordinal relationships
it is composed of and ordinal embedding. Throughout this introductory chapter we
keep the discussion on a somewhat informal level. In subsequent chapters we will be
mathematically precise and rigorous.
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Figure 1.1: One reason for our interest in ordinal data: it is easier for humans to declare that
the first two paintings are more similar to each other than the third and the fourth painting are
than to provide numerical (dis-)similarity scores.!

1.1 Motivation for studying ordinal data

Besides theoretical interest, there are several real-life motivations for studying machine
learning tasks in a setting of ordinal distance information:

e Human-based computation / crowdsourcing: In complex tasks, such as estimating the
value of a car shown in an image or clustering biographies of celebrities, it can be hard
to come up with a meaningful dissimilarity function that can be evaluated automat-
ically, while humans often have a good sense of which objects should be considered
(dis-)similar. It is then natural to incorporate the human expertise into the machine
learning process. As it is a general phenomenon that humans are significantly bet-
ter at comparing stimuli than at identifying a single one (Stewart et al., 2005), it is
widely believed and accepted that humans are also better and more reliable in assess-
ing dissimilarity on a relative scale (“Painting A is more similar to painting B than
painting C' is to painting D”) than on an absolute one (“The similarity between A
and B is 0.8 and the similarity between C' and D is 0.3”). This is illustrated by an
example in Figure 1.1. For this reason, ordinal questions are often used when humans
are involved in gathering distance information. In addition to obtaining more robust
results, this also has the advantage that one does not need to align people’s different
assessment scales.

e There are scenarios in which ordinal distance information is readily available, but
the underlying dissimilarity function is completely in the dark. Schultz and Joachims
(2003) provide the example of search-engine query logs: if a user clicks on two search
results, say A and B, but not on a third result C, then A and B can be assumed to
be semantically more similar than A and C, or B and C, are.

e There are several applications where similarity values between objects are computed
on a regular basis, but it is clear to the practitioner that these values only reflect a
rough picture and should be considered informative only on an ordinal scale level. In
this case, providing the numerical similarity scores to a machine learning algorithm
can offer the problem that the algorithm interprets them stronger than they are meant
to be. For example, discarding the actual values of signal strength measurements and
only keeping their order can help to reduce the influence of measurement errors and
thus bring some benefit in sensor localization (Liu et al., 2004, Xiao et al., 2006).

The pictures were found on Wikimedia Commons and are in the public domain.



1.2 General assumptions on the dissimilarity function .
and some general notation

By a dissimilarity function ¢ on some set X we mean a function ¢ : X x X — R measuring
dissimilarity between elements of X in the sense that a higher value of « means that two
elements are more dissimilar—or, equivalently, less similar—to each other. We use the
terms dissimilarity and distance synonymously. The minimal assumptions that we make
on ¢ are the following:

o Uz,y) 20, zyeX
o (z,y) =u(y,z), x,y€ X (thatis ¢ is symmetric).

Note that we neither assume ¢ to be positive definite, that is ¢(x,y) = 0 if and only
if z =y, x,y € X, nor to satisfy the triangle inequality c(z,y) < u(x,2) + 1(2,9),
x,y,z € X. In particular, (X,¢) is not necessarily a metric space. In Chapter 2 and
Chapter 3, however, we actually only deal with X C R? and ¢ being the Fuclidean metric,
which we also refer to as Fuclidean distance. The Euclidean metric is induced by the
FEuclidean norm. We write the Euclidean norm as || - || or || - ||g« if we want to emphasize
the dimension of the space on which it is defined. The corresponding Euclidean inner
product is written as (-,-) or (-,-)ga. Recall that, for a,b € R%,

<CL, b>Rd = Zai . bi,

=1

lallre =

and the Euclidean distance between a and b is ||a—bl|. If d = 1, |ja—b|| equals |a—b|. For
z € R4 and r > 0 the open ball with center z and radius r is U,(z) = {x € R?: ||z — 2| <
r} and the closed ball is B.(z) = {x € R?: ||z — z|| < r}, which we alternatively write
as B(z,r) whenever we want to stress the dependence on r.

We refer to the elements of X as points, to a finite subset D C X as a data set, and
to the elements of D as objects or data points, or also simply points, or sample points if
D is obtained by sampling from some probability space.

1.3 Ordinal data and its different types

In a setting of ordinal distance information we do not have access to ¢ for evaluating
dissimilarities between arbitrary objects directly. Instead, we only get to see a collection
of binary answers to some dissimilarity comparisons

J(A, B) < (C, D). (1.1)

Note that we always assume the existence of a fixed dissimilarity function ¢ based on
which (1.1) is evaluated. As in a “standard” cardinal setting, the success of all our
attempts to do machine learning will crucially depend on the meaningfulness of ¢, that is
on whether ¢ captures the relevant properties of the data. However, the meaningfulness
of ¢ is not what we are concerned with in this thesis.
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Ordinal distance information appearing in practice is likely to be contaminated by
noise, meaning that it comprises incorrect answers. This can result in inconsistencies
in the ordinal data. For example, one could observe both an answer claiming that
(A, B) < 1(A,C) and a contradicting answer claiming that ¢(A, B) > (4, C), or the
three inconsistent answers (A, B) < t(A,C), 1(A,C) < «(B,C), and «(B,C) < (A, B),
where the contradiction is not immediately obvious. Many theoretical results (in par-
ticular regarding ordinal embedding—see the next section) are only established in the
noise-free case, but any practical algorithm for ordinal data has to be be able to cope
with noise.

While (1.1) is the most general form of a dissimilarity comparison, in practice one
often deals with ordinal data comprising only answers to comparisons of a restricted
form. For example, in scenarios of human-based computation and crowdsourcing it is
particularly popular to show three objects A, B, and C' at a time and to ask whether
(A, B) < (A, C)oru(A,B) > 1(A,C), that is, compared to (1.1), A equals D and serves
as an anchor point. This gives rise to distinguishing between different types of ordinal
data apart from the very general type comprising answers to arbitrary comparisons (1.1):

e Answers to dissimilarity comparisons

WA, B) < (A, C) (1.2)

are usually referred to as similarity triplets. Sometimes they are also referred to as
pairwise comparisons (since B and C' are compared regarding their distance from A),
but we consider this term to be misleading due to its omnipresence in ranking. In the
context of human-based computation and crowdsourcing, similarity triplets are usually
preferred over ordinal data in its general form since it is assumed that answering (1.2)
is even simpler than answering (1.1) for humans. For this reason, in the machine
learning literature on ordinal distance information there is particular interest in this
type of ordinal data (Jamieson and Nowak, 2011, Tamuz et al., 2011, van der Maaten
and Weinberger, 2012, Wilber et al., 2014, Amid and Ukkonen, 2015, Heim et al.,
2015, Amid et al., 2016, Jain et al., 2016, Haghiri et al., 2017). In this thesis, we are
dealing with similarity triplets in Chapter 5.

e Another well-known and interesting type of ordinal distance information is the directed,
but unweighted k-nearest neighbor graph, where k € N is a parameter. Throughout
this thesis we will use the notation “k-NN” as abbreviation for the term “k-nearest
neighbor” whenever it is convenient. A directed, but unweighted k-NN graph on a
data set D encodes knowledge about memberships to the sets of k£ nearest neighbors
of data points: it has a directed, unweighted edge from an object A to an object B if
and only if B is among the k nearest neighbors of A, that is B is among the k objects
of D\ {A} for which the distance from A is smallest. This graph provides the ordinal
dissimilarity relationships

(V,N) < (V,0)

for objects V', N, and O such that N is adjacent to V in the graph, but O is not.
In the machine learning literature on ordinal data the directed, but unweighted k-NN
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graph has been studied in Shaw and Jebara (2009), von Luxburg and Alamgir (2013),
Terada and von Luxburg (2014), and, as a special case, in Hashimoto et al. (2015).
In this thesis we will find it in Chapter 3. There we study the problem of estimating
the intrinsic dimension of a data set from this type of ordinal distance information.

e Information about the outlier or about the most central object in a triple of objects:
A further type of ordinal distance information are collections of statements

Object A is the outlier within the triple of objects (A, B,C), ()

where (A, B,C) can be any triple of pairwise distinct objects in the data set D and
object A being outlier within the triple of objects (A, B, C') means that

(u(B,C) < (A, B)) N («(B,C) < u(A,0)).

Hence each statement of the kind (H) is equivalent to two similarity triplets. This type
of ordinal data has been studied in Heikinheimo and Ukkonen (2013) and Ukkonen
et al. (2015). In Chapter 4 we examine a closely related type, namely collections of
statements of the form

Object A is the most central object within the triple of objects (A, B,C) (%)
with the meaning that
(L(A,B) <u(B,0)) A («(A,C)<uB,0)).

Statements of the kind (BH) or (x) can easily be collected via crowdsourcing. We will
illustrate this by an example in Section 4.1.

So far we ignored the possibility of equal dissimilarity values ¢(A, B) = «(C, D). We
could consider variants of the listed types of ordinal data in which we allow for addi-
tional information on ties in dissimilarity comparisons. However, such a distinction is
mainly relevant for theoretical considerations, in particular on ordinal embedding (see
the next section). It hardly plays a role in practice: if we cannot access ¢ directly, it
seems unlikely that we can observe precise equality of two dissimilarity values. Hence,
at this point and in the practical parts of this thesis we omit the possibility of equal
dissimilarity values.

The different types of ordinal data differ in their information content. We use this
term informally and define it implicitly by referring to the following fact: given the
(correct) answers to all possible dissimilarity comparisons of the form (1.1) for a data
set D (there are O(|D|*) of them), we are also given all similarity triplets for D (there
are O(|D|?) of them), from which we can readily build the k&-NN graph on D or deduce
all statements of the form (B) or (x) (there are O(|D|?) different statements for each
form). In general, the converses are not true, meaning that one cannot infer the answers
to all dissimilarity comparisons (1.1) given all similarity triplets, for example. It is not
clear how to quantify information content and how much is lost or gained in going from
one type of ordinal data to another. Neither is it clear how the information content
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of ordinal data of a particular type reduces as the number of answered dissimilarity
comparisons decreases. It seems plausible to expect that this highly depends on the
structural properties of the dissimilarity function ¢ and the underlying set X.

In any case, we have to hope that abundant ordinal data comprises redundant an-
swers. By abundant ordinal data we mean ordinal data comprising the answers to all
possible dissimilarity comparisons according to the type of ordinal data under consid-
eration. Collecting and handling abundant ordinal data is prohibitive in practice due
to the large number of possible dissimilarity comparisons. Ideally, only a small subset
of the answers to all possible comparisons contains already the bulk of valuable infor-
mation. This gives rise to distinguishing between a batch setting and an active setting
in the study of algorithms for ordinal distance information: while in a batch setting we
are given the ordinal data a priori, in an active setting we are allowed to query ordinal
relationships, trying to do it in such a way as to exploit redundancy and to maximize
information content per query (Jamieson and Nowak, 2011, Tamuz et al., 2011). Our
algorithms that we present in Chapter 4 and Chapter 5 are designed for the general
batch setting, but some of them could be combined with simple heuristics in order to
obtain active versions (compare with Section 4.6).

1.4 Ordinal embedding

One general approach to deal with ordinal distance information is to construct an ordinal
embedding of the data set D, that is to map data points to points in a Euclidean space R?
such that the embedding (with respect to the Euclidean metric) preserves the given
ordinal data “as well as possible”. The dimension d of the space of the embedding is
usually fixed a priori. We refer not only to the output of this procedure but also to
the procedure itself as ordinal embedding. It is a way of transforming ordinal distance
information back to a “standard” cardinal setting: once D is represented by points in R?,
we can apply any machine learning algorithm designed for vector-valued data.

We illustrate the ordinal embedding approach with an example in Figure 1.2. In this
example D consists of eight people, shown in the upper left part of the figure. We are
provided with answers to ten dissimilarity comparisons of the general form (1.1) for these
eight people, which are given in the upper right part. Two out of the ten comparisons
are actually of the restricted form (1.2). Based on the provided answers we constructed
an ordinal embedding of D in R? and used it for clustering D. The ordinal embedding is
shown in the lower left part of the figure. It is a perfect ordinal embedding, that is it cor-
rectly reflects all the given ordinal constraints. The lower right part shows the clustering
result in form of a dendrogram. It was obtained by applying single-linkage clustering
(e.g., Manning et al., 2008, Chapter 17) based on Euclidean interpoint distances to the
ordinal embedding and looks quite reasonable: Lisa and Will, both of them having grey
hair and wearing glasses, are the first ones to be merged to one cluster, followed by Herb
and Phil, who share an eye-catching beard.

Our definition of an ordinal embedding as a Euclidean point configuration that pre-
serves the given ordinal data “as well as possible” is only informal. In the literature
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t(Pete, Tom) < ¢(Pete, Lisa)

Lisa Pete Tom Herb «(Herb, Phil) < ¢(Tom, Will)
//4.\ = ﬁ - t(Pete, Tom) < ¢(Ann, Mary)

‘ C@ 54.;. d ¢(Lisa, Mary) < ¢(Lisa, Tom)

¢(Will, Phil) < ¢(Pete, Ann)

¢(Lisa, Tom) < ¢(Ann, Herb)

will Mary Phil ¢(Lisa, Ann) < +(Will, Pete)

L7 ' O v @ﬁl - t(Ann, Mary) < ¢(Tom, Will)
~ (Lisa, Will) < ¢(Mary, Herb)

t(Pete, Tom) < ¢(Lisa, Ann)

@
G

Figure 1.2: An illustration of the ordinal embedding approach. Top left: The data set D
consists of eight nice-looking people. Top right: Ordinal data for D. Bottom left: An ordinal
embedding of D in R2. Bottom right: Dendrogram obtained by applying single-linkage clustering
to the ordinal embedding.?

there appear various more restricted or more formal definitions that are appropriate for
the respective purpose (see below). Often, ordinal embedding is used as a synonym for
ordinal multidimensional scaling (ordinal MDS; also known as non-metric MDS). Ordi-
nal MDS has a long history in the psychometric community dating back to the 1960s
(Shepard, 1962a,b, Kruskal, 1964a,b) and is a variant of the more famous metric multidi-
mensional scaling (see the monograph Borg and Groenen, 2005, about both ordinal and
metric MDS as well as further variants and Chapter 2 of Young, 1987, about the history

of MDS). Generally speaking, given n objects o1, ..., 0, and dissimilarity values ¢(0;, 0;)
for some pairs (0;,0;), multidimensional scaling aims at finding points p1,...,p, € R
such that

f(u(0i, 05)) =~ Upi; ps) (1.3)

2The images were found on openclipart.org and are in the public domain.
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for all given dissimilarity values and the approximation is “optimal” regarding the choice
of points p, . .., p, and of a function f : [0,00) — [0, 00) out of a given function class. In
principle, i could be any dissimilarity function on R%, but most often only the Euclidean
metric is considered and so do we in this thesis: from now on (p;,p;) = ||pi — p;l|. In
metric MDS, the function class from which f can be chosen is given by a parametric
model, for example, all affine functions with non-negative slope f(z) = a-x+ b governed
by parameters a,b € R, a > 0, or consists of only a single function, for example, f(z) = x.
In ordinal MDS, f is only restricted to be within the class of (either weakly or strictly)
increasing functions. Optimality is measured by a so-called stress function. This could
be the stress-1 function introduced by Kruskal (1964a) and given as

Z(i,j): 1(04,05) is given [f(L(Oi’Oj)) - le _ij]2
Z(i,j): 1(04,05) is given ”pl _ijZ

01 :Ul(plv'”apn?f) =

In this expression the numerator of the fraction quantifies the deviations in the ap-
proximations (1.3). The denominator serves the purpose of normalization such that
o1(p1y..-ysDny f) = o1(c-p1y...,c-pp,c- f), ¢ # 0, and prevents the degenerate point
configuration p; = po = ... = p,. Other stress functions are designed on a similar
basis. Solving the MDS problem now consists of minimizing the stress function under
consideration.

The difference between ordinal embedding according to our informal definition and
ordinal MDS is the presence of actual dissimilarity values ¢(0;, 05) in the latter—although
they influence the problem only regarding their ordinal relationships. Clearly, from the
dissimilarity values ¢(0;, 0;) we can readily derive ordinal distance information, but given
ordinal data we can only find dissimilarity values representing this ordinal data if the
ordinal data is indeed consistent with a dissimilarity function (compare with Section 1.3).
Even if we deal with consistent ordinal data, by representing this data by numerical
dissimilarity values we might introduce new ordinal relationships that ordinal MDS takes
into account. For example, t(A, B) < (A, C) and «(E, F) < «(E, Q) could be represented
by setting t(A,B) = 1, «(A,C) = 2, «(E,F) = 3, «(E,G) = 4, but this suggests that
1(A,C) < (E, F). Hence one may consider ordinal embedding a generalization of ordinal
MDS, and for that reason Agarwal et al. (2007) have named their algorithm for ordinal
embedding generalized non-metric multidimensional scaling (GNMDS). GNMDS has
not been the first algorithm for ordinal embedding (Johnson, 1973, introduced a kind
of stress function assuming the presence of dissimilarity values that can actually be
fed with arbitrary ordinal data, whether consistent or inconsistent with a dissimilarity
function), but it seems that Agarwal et al. (2007) have been the first to point out the
subtly more general character of their algorithm. Essentially, GNMDS tries to find a
point configuration such that every given ordinal relationship ¢(0s,0;) < t(0y,0j) is
ideally reflected by |lp; — p;||* + 1 < |lp# — pj||* and the average distortion 1 + |p; —
pill®> = llpir — pjr||* of not ideally reflected relationships is minimal. The purpose of
requiring squared interpoint distances to differ by at least one for satisfactorily reflecting
t(0;,05) < t(oy,04) is to prevent the degenerate embedding p1 = p2 = ... = py.

In recent years, a number of algorithms for ordinal embedding, all of them pretty
similar in spirit to GNMDS, have been published in the machine learning community
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(Shaw and Jebara, 2009, Tamuz et al., 2011, van der Maaten and Weinberger, 2012,
Terada and von Luxburg, 2014, Amid and Ukkonen, 2015, Heim et al., 2015, Amid
et al., 2016, Jain et al., 2016). The method by Shaw and Jebara (2009) only works for
ordinal data in the form of a directed, but unweighted k-nearest neighbor graph. The
algorithms by Tamuz et al. (2011), van der Maaten and Weinberger (2012), Amid and
Ukkonen (2015), Amid et al. (2016), and Jain et al. (2016) are designed for similarity
triplets (compare with Section 1.3). The method by Amid and Ukkonen (2015) actually
produces a number of ordinal embeddings at the same time, each corresponding to a
different dissimilarity function ¢ based on which a distance comparison (1.2) might have
been evaluated. This corresponds to a generalization of the setup that we consider in
this thesis. In Heim et al. (2015), GNMDS and one of the algorithms by van der Maaten
and Weinberger (2012) are adapted from the batch setting to an online setting, in which
similarity triplets are observed in a sequential way (other than in an active setting with-
out the possibility of choosing which dissimilarity comparisons are evaluated). Although
offering a seemingly appealing way to deal with machine learning problems in a setting of
ordinal distance information, we argue in Chapter 4 that all these algorithms come with
a number of shortcomings (e.g., a very high running time) and that there is a need for
algorithms that try to solve machine learning problems based on ordinal data directly,
without constructing an ordinal embedding as an intermediate step.

There has also been made significant progress in the theory of ordinal embedding
in recent years. In our way of speaking, some of the results are actually rather on
ordinal MDS since they assume noise-free ordinal data comprising answers to all pos-
sible dissimilarity comparisons (1.1), which allows to specify the original dissimilarity
values ¢(0;,05) up to a monotone transformation.

Bilu and Linial (2005) consider data sets comprising n objects such that ¢(0;,0;) =0
if and only if 4 = j and all other pairwise dissimilarity values are distinct, that is

[’(Oivoj)#[/(oi'aoj/)a Z<],’L/<j/,(23£’bl)\/(j7éj,) (14)
They define an ordinal embedding p1, ..., p, of such a data set by requiring
Vi<ji' <j' o, 05) <ilopop) & pi = pjll < llpi — pyll- (1.5)

Bilu and Linial show that for any data set there exists an ordinal embedding according
to this definition if the dimension d of the space of the embedding is just large enough.
However, it does not have to be larger than the size of the data set, that is there is always
a feasible dimension d < n — 1. They claim that this ezistence result has already been
folklore. Actually, it also holds if we drop the assumption (1.4). An ordinal embedding
according to (1.5) then necessarily satisfies

Vi <ji' <j'c woiy05) = wlop o) & pi —pill = llpy — il

Bilu and Linial also prove that almost every data set (in a certain-well defined sense)
requires the embedding dimension d to be almost as large as n, that is d € Q(n).

A main contribution of this thesis is to establish the first uniqueness result for or-
dinal embedding. Its formulation is rather involved and will be presented in detail in
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Figure 1.3: An illustration of Shepard’s conjecture, which claims that the possible amount of
deforming an ordinal embedding decreases as the number of objects in the data set increases.
See the running text for an explanation.

Chapter 2. Here we just want to sketch its general idea. We define an ordinal embedding
similarly to Bilu and Linial (2005) by requiring

Vi<ji' <j o ioi,05) < ulop0p) = pi = pill <llpe —pyll- (1.6)

Observe that such an ordinal embedding is never uniquely determined: Given one ordinal
embedding, we can simply construct another one by mapping every point p; to p; = f(p;),
where f is an arbitrary similarity transformation on R? (a similarity transformation is
some composition of rescaling, translation, rotation, and reflection and preserves all
pairwise distances up to a constant multiple). Also, we could simply shift every point
of the given ordinal embedding to a slightly different location p; = p; + &; (g; € R? with
|le; || sufficiently small) and py, .. ., p, would still satisfy (1.6). However, Shepard (1962b,
1966) observed that these two kinds of transformations might be the only reasons for
ambiguity. Even more, he claimed and experimentally confirmed that for the second kind
the largest possible value of max;—1 ., ||€;|| gets smaller the larger n gets. We illustrate
this by an example in Figure 1.3: It shows two data sets consisting of four points (left
plot) and eight points (right plot), respectively, as well as further point configurations
along with each data set. In the left plot, we can see an ordinal embedding of the
data set satisfying (1.6) (with ¢ equaling || - ||g2). The ordinal embedding resembles the
data set, but still there is some noticeable difference. In the right plot, we can see an
ordinal embedding that almost perfectly coincides with the data set and another point
configuration that is only slightly different (and more similar to the data set than the
ordinal embedding to the corresponding data set in the left plot). However, this point
configuration is not an ordinal embedding of the data set since it does not reflect some
of the data set’s ordinal relationships, that is (1.6) does not hold. In Chapter 2 we
provide a mathematical formalization of Shepard’s claim and prove that, under some
assumptions, it is indeed true. These results have been published in Kleindessner and
von Luxburg (2014).

Ordinal embeddings defined as in (1.5) or (1.6) are required to preserve all ordinal
relationships of the general form (1.1). It is natural and also of practical interest to ad-
dress existence and uniqueness of ordinal embeddings that are required to preserve only
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some ordinal relationships or ordinal data of a different type (compare with Section 1.3).
For example, it is known that deciding whether there exists an ordinal embedding of a
data set D into the real line R that preserves all statements of a given collection of state-
ments (x) about D (allowed to be noisy) is NP-complete (Opatrny, 1979). Regarding
uniqueness, we actually show in Chapter 2 that Shepard’s conjecture also holds true if
we relax the requirement of an ordinal embedding to preserve all ordinal relationships
in a certain way. Our results have further been generalized by Arias-Castro (2015). We
will summarize his generalizations in detail in Section 2.5 of Chapter 2, but essentially
he shows asymptotic uniqueness of ordinal embedding based on similarity triplets, the
directed, but unweighted k-NN graph with some additional ordinal relationships, and
in a so-called landmark design. The asymptotic uniqueness of ordinal embedding based
on the directed, but unweighted k-NN graph has also been outlined in Terada and von
Luxburg (2014). In Chapter 4 we conjecture the uniqueness property to hold for ordinal
embedding based on statements of the kind (%) too, as long as the intrinsic dimension
of the data set is greater than one.

Jamieson and Nowak (2011) consider ordinal embeddings that are required to pre-
serve all similarity triplets for a data set. Assuming the existence of an ordinal embedding
in R?, they study the question of how large a subset of all similarity triplets has to be
such that an embedding preserving the triplets in the subset automatically preserves all
similarity triplets. Jamieson and Nowak show that the subset has to contain at least
Q(dnlogn) many similarity triplets. If the subset can be chosen adaptively, this lower
bound is conjectured to be tight, whereas Q(n?) many similarity triplets are needed if the
subset is chosen uniformly at random and it should be proper with probability greater
than 1/2. The work of Jamieson and Nowak (2011) is concerned with ordinal embeddings
exactly preserving all similarity triplets, other than the one by Jain et al. (2016). In the
framework of empirical risk minimization, Jain et al. consider the problem of learning
an embedding that can be used to predict the answers to dissimilarity comparisons (1.2).
Under a certain noise model, they show that w(dnlogn) many similarity triplets, chosen
uniformly at random, are sufficient for learning an embedding that has almost the same
risk of predicting an incorrect answer as the original data set with high probability.

1.5 Overview of the results

Now we want to give a short summary of the results covered in the following chapters:

e Chapter 2: This chapter is purely theoretical. We formalize Shepard’s claim about
the uniqueness of ordinal embeddings (see Section 1.4) using the notion of isotonic
functions. These functions transform one point configuration into another one such
that all ordinal relationships of the general type (1.1) are preserved (we also consider
some variants). Shepard’s claim can be reformulated as stating that any isotonic
function can be approximated by a similarity transformation and that the quality of
the approximation is better the larger the number of points. This involves comparing
approximation qualities for functions defined on different sets of points, and we deal
with it as follows: We consider a sequence of points x1, z2, 23, ... € R¢ and a sequence
of isotonic functions 1, 2, @3, ... such that ¢, is defined on z1,x92,...,z,. Under
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some assumptions on the sequence of points and assuming that all functions ¢, map
to the same bounded ball U,.(0) C R?, we can prove that there exists a sequence of
similarity transformations Sy, So, S3, ... mapping R? to R? such that

max llon(zi) — Sp(zi)|| =0 as n — oo.
i=1,...,n

We also prove that an isotonic function defined on infinitely many points (satisfying
some assumptions) actually is a similarity transformation. Both results have been
published in Kleindessner and von Luxburg (2014).

Our results not only prove Shepard’s long-standing claim, but also yield an important
and positive insight for doing machine learning in a setting of ordinal distance infor-
mation. We have shown that at least for a Fuclidean data set (meaning the data set
consists of points in R? and ¢ equals the Euclidean metric) with known intrinsic di-
mension d abundant ordinal data of the type (1.1) asymptotically contains all cardinal
distance information up to rescaling. This gives hope that for such a data set we might
not loose much information in going from cardinal to ordinal distance information. We
may hope that, in principle, we are able to solve any machine learning problem that
we can solve in a “standard” cardinal setting also when given only ordinal data. It is
not clear though how to recover the interpoint distances algorithmically. Neither is it
clear whether machine learning problems in a setting of ordinal distance information
come with a significant increase in computational complexity compared to a cardinal
setting. Our results can also serve as theoretical justification for the ordinal embed-
ding approach to machine learning problems based on ordinal data, which consists of
constructing an ordinal embedding and solving the problem on the embedding. They
guarantee that two perfect ordinal embeddings based on abundant ordinal data of
the type (1.1) cannot be significantly different. Hence, for data sets that permit such
perfect ordinal embeddings the final output of the embedding approach should not
depend on the ordinal embedding at hand.

Chapter 3: In the third chapter we deal with estimating the intrinsic dimension of
a Euclidean data set when only given its directed, but unweighted k-nearest neighbor
graph. This chapter is based on Kleindessner and von Luxburg (2015). We provide
two estimators: a naive one and a more elaborate one that clearly outperforms the
former. We can prove both estimators to be statistically consistent, and so this chapter
is interesting from both a theoretical and a practical point of view. The consistency
result is particularly appealing when combining it with the result of Chapter 2: we do
no longer need to assume the intrinsic dimension of a Euclidean data set to be known
when claiming that “we might not loose much information in going from cardinal to
ordinal distance information”.

Chapter 4: This chapter is rather practical. We present algorithms for the machine
learning problems of medoid estimation, outlier identification, classification, and clus-
tering when the only given information about a data set D is a collection of statements
of the kind (%) (compare with Section 1.3). Our algorithms are direct methods, that is
they do not construct an ordinal embedding of D as an intermediate step, and hence
avoid some of the drawbacks inherent to such an embedding approach. Our algorithms



13

are simple, are much faster than an ordinal embedding approach, and can easily and
highly efficiently be parallelized. They are based on the insight that statements of the
kind (%) are intimately related to two well-known tools from multivariate statistics
and computer vision, respectively: the lens depth function and the k-relative neigh-
borhood graph. In a number of experiments we demonstrate the usefulness of our
proposed methods. The contributions of Chapter 4 can also be found in Kleindessner
and von Luxburg (2017).

e Chapter 5: The last chapter is practical too. We present two data-dependent kernel
functions defined on a data set D that can be computed from an arbitrary collection of
similarity triplets for the objects in D. Unlike the algorithms proposed in Chapter 4,
which are designed for specific tasks, these kernel functions provide a generic means
for solving machine learning problems based on ordinal distance information since
they can be used to apply any kernel method to D. They avoid some of the draw-
backs inherent to an embedding approach. In several experiments we demonstrate the
meaningfulness of our kernel functions and study their performance when combined
with a kernel method. This chapter is based on Kleindessner and von Luxburg (2016).

1.6 List of publications
As indicated in the previous section, this thesis is based on the following papers:

e M. Kleindessner and U. von Luxburg. Uniqueness of ordinal embedding. In M. F.
Balcan, V. Feldman, and C. Szepesvari, editors, Proceedings of The 27th Conference
on Learning Theory (COLT), pages 40-67, 2014. FINALIST BEST STUDENT PAPER
AWARD.

e M. Kleindessner and U. von Luxburg. Dimensionality estimation without distances.
In G. Lebanon and S. V. N. Vishwanathan, editors, Proceedings of the FEighteenth
International Conference on Artificial Intelligence and Statistics (AISTATS), pages
471-479, 2015.

e M. Kleindessner and U. von Luxburg. Lens depth function and k-relative neighbor-
hood graph: versatile tools for ordinal data analysis. Journal of Machine Learning
Research, 18(58):1-52, 2017.

e M. Kleindessner and U. von Luxburg. Kernel functions based on triplet similarity
comparisons. Preprint to be found on arXiv (1607.08456 [stat.ML]), 2016.
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Chapter 2

Asymptotic uniqueness of ordinal
embeddings

Given all ordinal relationships of the type (1.1) for some data set D comprising n objects,
Shepard (1962b, 1966) claimed and experimentally confirmed that “as n increases, the
ordinal data is found to determine a spatial representation of the objects more and more
nearly to within a general similarity transformation” (compare with Section 1.4; the
quote is taken from the abstract of Shepard, 1966). In his seminal papers, Shepard
also provided considerations about infinite point sets filling up convex regions of R? as
supporting evidence, and further simulation experiments have confirmed his claim as
well (Young, 1970, Sherman, 1972). It seems that Shepard’s claim has become folklore
then (see Section 2.2 of Borg and Groenen, 2005, as well as Section 4.13.2 of Dattorro,
2005, and page 3 of Jamieson and Nowak, 2011). However, it had never been proved,
neither had it been properly formalized.

In this chapter we provide a formalization of Shepard’s claim assuming D to be
Fuclidean. We subsequently prove the claim to indeed be true. We also pick up on
Shepard’s considerations of infinite data sets and end up with a more general result
compared to what is known from the literature. All our proofs are elementary in the
sense that we do not apply any heavy mathematical machinery. However, details are
delicate and require a careful treatment. Inspired by our work, Arias-Castro (2015) has
generalized our results in various ways. We will summarize his results in Section 2.5.

2.1 Setup, definitions, and notation for Chapter 2
We start with the definition of the two central notions in this chapter, ordinal embeddings
and isotonic functions. We will see below that these two notions are intimately related.

Note that we define ordinal embeddings only for Euclidean data sets.

Definition 2.1 (Ordinal embedding). Consider two data sets Y, = {y1,...,yn} C R?
and Z, = {z1,...,2,} CRY. Z, is an ordinal embedding of Y, if for all1 < i,j, k,1 <n,

Ny — yill < llyk — will = llzi — 2]l < llz — 2| (2.1)

15
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Z,, is a weak ordinal embedding of Y, if (2.1) holds for all 1 < i, j,k,l <n withi=k.
Z, 1is a strong ordinal embedding of Y, if (2.1) holds for all 1 < i,5,k,l < n and
additionally |ly; — y;ll = llyx — uill = llzi — 2|l = llzx — 2| for all 1 <, j,k, 1 < n.

Definition 2.2 (Isotonic functions). Let § # Q C R? and f : Q@ — R? be an arbitrary
function. f is a similarity if there is A > 0 such that for all z,y € Q we have ||f(x) —
f@)|l = Az —yl||. f is isotonic or an isotony if for all x,y,z,w € Q,

lz =yl <z = wl = lf(z) = FWI <[[f(z) = fw)]].

f is weakly isotonic if this property only holds for x,y, z,w €  with x = z. f is strongly
isotonic if it is isotonic and additionally satisfies ||z —y|| = ||z —w|| = || f(z) — f(y)]| =
If(2) = f(w)| for all x,y,z,w € Q.

We say that f is locally a similarity / (weakly / strongly) isotonic if for each point
x € (Q there exists a neighborhood U(x) in S such that fl|y ) has the corresponding
property. If we want to emphasize that a function f : Q — R? has a property not only
locally but on all of 2, we sometimes say that f is globally a similarity / (weakly /
strongly) isotonic.

Let us mention some obvious but important observations. Similarities f : R? — R?
are nothing else than the well-known similarity transformations given by f(z) = A\Oz+b
for some orthogonal matrix O € R and an offset b € R?. For general §, they are
simply given by the restrictions of similarity transformations to 2 (see Lemma 2.14 in
Section 2.6.1). We have

similarity = strongly isotonic = isotonic = weakly isotonic,

but for general €2 none of the converses are true. Any weakly isotonic function is injective.
If f is a similarity or a strong isotony, so is f~! : £(€) — RY, but this does not necessarily
hold for isotonies. A composition of similarities / (weak / strong) isotonies is again a
similarity / (weak / strong) isotony.

Obviously, 21, ..., 2y, is a (weak / strong) ordinal embedding of y1, ..., y, if and only
if the mapping f : {y1,...,yn} — {21,...,2n} given by f(y;) = z;, i = 1,...,n, is
(weakly / strongly) isotonic. Shepard’s claim can thus be reformulated as stating that
any isotonic function between two finite point sets can be approximated by a similarity
and that the approximation gets better the larger the number of points. In this chapter
we deal with the general question of approximating (weakly / strongly) isotonic functions
by similarities. Let us mention that it is well-known that any strongly isotonic function
f : R — R? defined on the full domain R? actually is a similarity transformation. One
can see this by exploiting properties of sphere-preserving mappings in Euclidean geome-
try (see McKemie and Viiséld, 1999, and also the argumentation in Shepard, 1966), by
an elegant argument related to positive definite functions (Schoenberg, 1938), and also
by the Beckman-Quarles theorem (Beckman and Quarles, Jr., 1953).

We conclude this section with introducing some notation for the rest of Chapter 2.
For any non-empty subset ) # A C R? we denote its linear hull by [A] = {37 | Na;
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n € N,a; € A, \; € R} and its affine hull by H(A) = {37, Mia; : n € Nya; € A\ €
R, A =1} For g = (g1,..-,94),9 = (gs---,9}) €R% by g < ¢ we mean g; < g/
for i = 1,...,d. For a vector-valued function f : X — R? and j = 1,...,d we write f’
for the jth component of f. For two functions f : X; — R% and ¢ : Xo — R% and an
arbitrary subset X C X; N Xy we denote the supremum norm between f and g on X by
1f = glloo(x) = supzex I f(7) — g(x)||. At some points we will speak of a cross-polytope.
By this we mean the image T'(C') of the d-dimensional standard cross-polytope C, which
is given by the convex hull of all permutations of (£1/0/0/.../0) € R? under some
similarity transformation 7.

2.2 Main results

In this section we present our main results. All proofs are deferred to the subsequent
sections. Our key question is to what extent we can approximate isotonic functions by
similarities. We distinguish the cases of isotonic functions defined on a finite set of points
and isotonic functions defined on an infinite domain.

Our first result concerns the more interesting finite case. Essentially it is Shepard’s
claim: We consider D,, = {x1,...,z,} C R? and an isotonic mapping ¢, : D, — R%.
Recall that ¢, (Dy) = {¥n(21), ..., ¢n(zy)} is an ordinal embedding of D,,. Under some
assumptions, we prove that ¢, can be approximated by a similarity transformation up
to arbitrary precision as n — oo.

Theorem 2.3 (Isotonic on a finite set implies approximate similarity).

1. Global Version: Let K = B,(z) C R? be a closed and bounded ball (for some arbitrary
r >0, z € R?). Let (z,)nen be a sequence of points x, € K such that {x, : n € N}
is dense in K. Let 0 < R < oo and (¢n)neN be a sequence of isotonic functions
On : {x1,..., 20} — Ug(0) C R Then there exists a sequence (Sy)nen of similarity
transformations Sy, : R — R¢ such that

190 = Pnllso({er,many) — 0 as n— oo (2.2)

2. Local Version: More generally, let K = Ule K; CR? be a finite union of closed and
bounded balls such that Ule K? is connected. Let (xn)neN be a sequence of points
xn € K such that {x,, : n € N} is dense in K. Let 0 < R < oo and (¢n)nen be a
sequence of functions o, : {x1,...,2,} — Ur(0) C R? such that

Vie{l,....k}: Onlfar,. 200k, 8 isotonic.

Then there exists a sequence (Sy)nen of similarity transformations Sy, : R* — R? such
that (2.2) holds.

Our proofs show that we can replace the set K in Part 1 of Theorem 2.3 by a cross-
polytope or any closed and convex set that is a superset of a cross-polytope and a subset
of the smallest ball containing the cross-polytope. Consequently, we can replace K in
Part 2 by any finite union of such sets if we additionally assume that all these sets satisfy
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K, C Kilo We will also see that in the one-dimensional case d = 1 the statements hold
true if we only assume the functions ¢, to be weakly isotonic.

Note that the assumption that all functions ¢,, map to the same bounded ball Ug(0)
is necessary. Otherwise the configurations of the image points could be blown up by a
larger and larger constant such that the approximation error [|S, — ¥ulloo({z1,....0n}) WaS
prevented from converging.

Our second result deals with the less surprising infinite case. It is known that any
strongly isotonic function f : R — R? actually is a similarity (see Section 2.1). We show
that this holds true for only locally isotonic functions defined on more general infinite
domains.

Theorem 2.4 (Isotonic on a dense set implies similarity). Let ) # G C R? be open and
connected and @ C G be a dense subset. Let f : Q — R% be a locally isotonic function.
Then there exists a unique extension of f to a similarity transformation F : R — RY.

2.3 Proof of Theorem 2.3 (the finite case)

2.3.1 Cased=1

The case d = 1 is particularly simple. Our first lemma shows that any weakly isotonic
function f: Q — R (for arbitrary () # Q C R) is either strictly increasing or decreasing.

Lemma 2.5 (Weakly isotonic functions are monotonic). Let ) #Q CR and f: Q@ — R
be a weakly isotonic function. Then f is either strictly increasing or strictly decreasing.

Proof If f was neither strictly increasing nor decreasing, there would be x < y < z €
such that either (f(z) < f(5)) A (f(1) > £(2)) or (f(z) > f()) A (F(y) < f(2)) would
hold. However, for z < y < z we have |z —y| < |z — 2| and |z — y| < |z — x|. Since
f is weakly isotonic, it follows that |f(z) — f(y)| < |f(z) — f(2)| and |f(2) — f(y)] <
|f(2) = f(x)| and hence either f(x) < f(y) < f(z) or f(2) < f(y) < f(z). u

The following lemma is the main step of the proof of Theorem 2.3 in the one-
dimensional case. It considers points that approximate a grid, and proves that this
property remains intact after an isotonic mapping. See Figure 2.1 for an illustration.

Lemma 2.6 (Weakly isotonic maps approximately preserve a grid). Let N € N. For
some e1 < 1/22N*t! set g, = 1281, 2 <k < N, and § = 1/2. For k € {1,...,N}
and i € {1,3,...,2F — 1} set xp; = /2% and let y,l”, Yy ; be arbitrary elements of
(g — ek — 0,2k —€) and (T + €k, T + €k +0), reispectzzvely. Let ¢ : {0,1} U {y,Tz :
m € {l,r},k < N,i € {1,3,...,28 —1}} — [0,1] be a weakly isotonic function with
©(0) =0 and p(1) = 1. Then it holds that

it — eyis)| < ov: ME {l,r},k < N,ie{1,3,...,28 -1} (2.3)
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el
—

Figure 2.1: The idea of Lemma 2.6 is to place points in small intervals close to the grid
points i/2" (yj, ; on the left side, ;. ; on the right side) in such a way that the ordinal constraints
between all these points are sufficient to determine the grid cells they belong to, independent of
their exact location within the intervals.

Proof (details can be found in Section 2.6.2) By induction over N we prove
; oN=kj 1 N—k; . 2N=kj oN=kj 11
(p(yk,z) € 9N ' 9N ’ (p(yk,z) S 9N 9N )

forall 1 <k < N, i€ {1,3,...,2F — 1}, which immediately implies (2.3). The basis
is clear (see Figure 2.1(a)): Due to ¢(0) = 0 and (1) = 1, ¢ is strictly increasing by
Lemma 2.5 and hence 0 = ¢(0) < (3} 1) < @(yf 1) < (1) = 1. Since [y} ;—0| < [y} ;1]
and ¢ is weakly isotonic, we have |gp(y§1) —(0)| < |g0(yl11) —¢(1)] and thus can conclude
that w(yivl) € (0,1/2). In the same way we obtain ¢(yj ;) € (1/2,1). We demonstrate
the inductive step by proving that the statement also holds for N = 2 (see Figure 2.1(b)):
We already know that ¢(y} ;) € (0,1/2) and o(yi1) € (1/2,1). Furthermore, due to ¢
being strictly increasing, we have 0 < Lp(yé,l) < p(ys1) < ga(ylu) < (Y1) < SO(yl273> <
¢(y53) < 1. The choice of (ex)1<k<n and § guarantees that |yl21 -0 < ]yél — ylll\ and
v —yi a1l < ly5 0] leading to |p(yh 1) —0| < l(yh 1) —@(¥i 1)l and |o(ys 1) —@(yi 1) <
|(y31) —0|. This yields 2(y5,) < @(yi,) < 1/2and 1/2 < o(yf ;) < 2¢(y5,) and thus
o(yh1) € (0,1/4) and @(y5,), ¢(yi1) € (1/4,1/2). In the same way we can show that
S

P(yh5) € (3/4,1) and @(uh ), oy} 1) € (1/2,3/4). =

Now it is straightforward to prove Theorem 2.3 for the case d = 1. Proposition 2.7
contains Part 1 of Theorem 2.3 and shows that in the one-dimensional case its assertion
holds true if we only assume the functions ¢,, to be weakly isotonic. The proof of Part 2
is the same as for the case d > 2, which follows later on.

Proposition 2.7 (Part 1 of Theorem 2.3 for d = 1). Let I = [a,b] (for some —oo <
a <b< oo)and let (xn)nen be a sequence of points x, € I such that {z, : n € N}
is dense in I. Let 0 < R < 00 and (pn)nen be a sequence of weakly isotonic func-
tions op, : {x1,...,xn} = [~ R, R]. Then there exists a sequence (Sy)nen of similarity
transformations Sy, : R — R with (2.2).

Proof By appropriately rescaling the domain and the image of ¢,, we may assume that
I =0,1] and that ¢, maps to [0,1] with ¢,(0) =0, ¢,(1) = 1. We use Lemma 2.6 in
order to show that ¢, for large values of n can be approximated by the identity, that
is for all £ > 0 there exists Ng € N such that [|id —¢nlloc({ay,....zn}) < € for all n > No.
Choose N € N such that 1/2V=2 < . Since {z,, : n € N} is dense in I, there exists
Ny € N such that each of the intervals (zy; —er —0, ki —€x) or (Tg,i+€k, Tp i +ex+0) as
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defined in Lemma 2.6 (for the chosen N) contains at least one element of {z1,...,zn,}.
Ifn> Ny, y € {x1,...,2,}, and y is in one of the intervals, we immediately obtain
ly — on(y)| < 1/2N < € according to (2.3). If y is not in one of the intervals, there
exist two elements 7,4 of {r1,...,2xn,} With # < y < 2 and | — #| < 2/2" that are
in an interval. Using the monotonicity of ¢, we conclude that |y —,(y)| < 4/2Y <c. R

2.3.2 Case d>?2

The case d > 2 is harder to deal with. Our basic idea is to show that an isotonic mapping
©n : {x1,..., 25} — R% up to some rescaling, is an (n)-nearisometry, that is ,, satisfies

lz =yl —e(n) <llen(@) —enll < llz =yl +e(n), =y efr,... z}. (24)

Then, by a theorem of Alestalo et al. (2001), ¢, can be approximated by an isometry
up to an error depending essentially only on £(n) and going to zero as (n) — 0.

For proving that ¢, is an e(n)-nearisometry we observe the following: since ¢, is
isotonic, it is sufficient to prove (2.4) only for some pairs z,y such that ||z — y|| is
roughly uniformly distributed in [0, diam{z1,...,x,}]. Hence, we would like to consider
points close to a straight line segment with length equaling diam{z,...,x,} and argue
in a way similar to Lemma 2.6 that their relative positions along the line segment are
almost preserved by an isotonic mapping. The problem is that, in general, there is
no guarantee that the points are still close to a straight line segment after applying
an isotony. However, assuming that there are points located close to the vertices of a
cross-polytope and that these are “fixed” points (this is Assumption (#) in the following
lemma), we can show that this is the case and Lemma 2.6 can be generalized in the
following sense. For the sake of understanding and simple presentation, here we just
provide a compressed version of the lemma (see also Figure 2.2 for an explanation).
A detailed version can be found in Section 2.6.3.

Lemma 2.8 (Under Assumption (#) isotonic maps preserve an approximately straight
line segment). Let d > 2. Let N € N such that

T4 +1 a
o= (M) () <z

be fized. Let U, Uy, U, Uy, s=1,....d, and UL, UL, Uf . j€42,...,d} 1<k <
N,i € {1,3,...,2F — 1}, be open balls with some certain properties (see Section 2.6.3
for details). Let XH X, € R, s = 1,...,d, be arbitrary elements of U} and U,
respectively, ziz € R? be an arbitrary element of Ug’i, and yij’i, Yri € RY be arbitrary
elements ofU,lm. and Uy ;, respectively. Let ¢ (X x7,.. .,X;',Xd_}u{zid k< N,i€e
{1,3,....28 =1}, je{2,....d}} U{y? :me{l,r},k < N,ie{1,3,...,28 - 1}} - R?
be an isotonic function and assume that

=

e(XH eUS, oX,)ely, s=1,...d (#)

S
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-3 +3
PP, -+ _
¢ X el f: o~ (XD < o — (X))
p(X3) € Uy
(v
25, € UZ 22 U2 _
XD “Q 2,1 11 € Ui e o o(XF) € Ur
© o, 9,0
X, el -2 Yia €Ul 3 )(IJr c U]Jr p > P2 <
L/lZI el 51 / ( 1/0>
w(X7) el

@ ~

X, €Uy o(Xy) €Uy

Figure 2.2: Explanation of Lemma 2.8 for d = 2. We consider an isotonic mapping ¢ defined
on the following point set (left sketch): (i) X", X;, X", X, are located in small balls around
the vertices of a cross-polytope and assumed to be “fixed” under ¢ (this is Assumption (f)).
(ii) The points yfw-, Yi; approximate a grid on the line segment between X~ and X similarly
as in Lemma 2.6 and are closer to X, than to X, . (iii) The points Z]%z are close to the points
yfc ; and y ;, but are closer to X5 than to X, . Since ¢ is isotonic, the points @(yfm-), o(yp,;) are
closer to (X, ) than to »(X,") and hence ¢ (yfm), ©*(yr ;) < p, whereas for the points ¢(z} ;)
it is the other way round such that ¢ (z,“) > —p (right sketch). However, yi; (m € {l,r})
and zj ; are close to each other and so are @(y}:’z) and ¢(27 ;). We can conclude that all points
¢(yi;) are close to the first coordinate axis. This allows us to estimate the location of ¢(y;";)
along similar lines as in Lemma 2.6.

Set 'y( 1) v(1) = a1 and (0) = a1 + GG (w + p) (where Gy is the radius of the
balls U1 ,Ul and p a small number depending on size and location of the balls US‘“, ﬁs_,
s=2,...,d), and define for2 <k < N andi € {1,3,...,2% —1} the positive expression
V(=14 i/2571) recursively by

’y< 1+2k'1>:;<’y< 1+2k })—i—’y( 1+;:}>+(d—1)(w+2p)>.

Let N* < N such that N*-2N" < m. Then we have
o — o (wi)|| < v(@ri) +w+ (d = 1)(w+p) < 3dvw, me{l,r}, (2.5)

where:ck’i:—l—i—%%l,for all1 <k < N* andic{1,3,...,2F —1}.

Proof We prove that for all 1 <k < N* and i € {1,3,...,2F — 1}

O(Wri) € (i — V(¥hy) — w, T +¥(h)) X (=

k. p—
P(Uki) € (@ri = V(@) Thi +v(@hi) +w) X (=p =
It is elementary to show that v(zx;) < 3(d —1)V3w, 1 < k < N and because of
y}m € (Th; — w, Th;) X (—w,O)d_l,yzﬂ (xm,xm + w) (—w,0)4~ thls immediately
yields (2.5). '

All points yf”,y};i,zii lie in the convex hull of the points Xf“,Xf,...,Xj,Xg.
Since ¢ is isotonic and satisfies Assumption (f), it is guaranteed that

l r

oWk e Wha) (21,) € [3,3]% (2.6)
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We can prove <pj(y§m~), goj(yzj) € (—p—w,p),j€{2,...,d}, as follows: Let j be fixed.
Form € {l,r}, ke {1,...,N},ic {1,3,...,2F — 1} we have lyps — X571l < ||y£’?z—Xj+||
and HziZ — XfH < Hz,]” - XJ_H Since ¢ is isotonic, ip follows that [|o(yi;) — o(X; )]l <
lo@is) — w3 and [lo(2) — o(XHI < () — 9(X7)l. Making use of ()
and (2.6) it is not difficult to show that ¢’ (yz4) < p and gpj(zl“) > —p (see the right
side of Figure 2.2). The distance between any two points zk i z,c2 i, 18 larger than the

distance between any two points Zk:,i’ y,“- (or Zk:,i’ Ykis respectively), that is for m € {l,r},
ke{l,...,N},ie{1,3,...,2F — 1} it holds that

I, — vl < min{Hu—vH utve { A k<Njie {173,...,2’c - 1}}} (2.7)
Let m € {l,r}, ko < N, ig € {1,3,...,2% — 1} be arbitrary and write r = Hgo(zioﬂ.o) -
©(Yre ;o) |l Due to (2.7) and ¢ being isotonic, all points gp(zil) are located at distance
larger than r to each other. It follows that the intersection of two balls (whether open or
closed) with radius /2 and centers gp(zihil) and ‘:0(2%2,1‘2)7 respectively, is empty. Recall
(2.6). Due to (#) and ¢ being isotonic we clearly have r < 3. Hence, with each point
gp(zk ) at least a fraction of 1/2% of the volume of the ball Uy jo(p(2, J ) is contained in
[—3,3]¢ too. We can infer that

1 = r\d
(2N_1) dr(%—l— )(2) §6da

or equivalently » < w. Hence, we have |<pj(zi0’i0)—<pj(y£”0’io)| < ||<p(zi07i0)—<p(yzg7io)|| <w
and finally obtain ¢’ (y}co,io), ' (Urpio) € (=P —w,p).
It remains to prove that for 1 <k < N* and i € {1,3,...,2% — 1},

' (Yhi) € (T — V(Ths) — wyThi + (T

) kﬂ/ ) )
e (y :

) (2.8)
) € (@ri — Y(Thi), Thi + v(Ths) +w)

l
k
r
k

)

Similar to (2.7), we also have

ki = vl < min{Jlu =l suve { s k<Nie{1s,.. -1},

and with the same argument as above we obtain ¢! (3 ) — ¢(yr ;)| < w. Now, (2.8)
can be shown by induction over k similarly to the proof of Lemma 2.6. |

The following lemma shows that the Assumption (), which says that points close to
the vertices of a cross-polytope are mapped approximately to themselves, can be taken
as satisfied if the isotonic function acts on sufficiently many points. See Figure 2.3 for
an explanation. Again, here we just provide a compressed version of the lemma and the
detailed version is in Section 2.6.3.
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€3.1/-1/1) € U (Eaf(l/—l/n)

o> T

O 0" A

zZ3 .

z1 € Us((—1 + 7/0/0))

=T .-’-.'"
Zy zi
B S v

@, 0’0

Figure 2.3: Explanation of Lemma 2.9 (the figure shows the setting of Lemma 2.9 for d = 3). We
consider an isotonic map ¢ defined on the following point set: (i) A and B are opposite vertices

of a cross-polytope. (ii) The points e, el, are located in small balls around the vertices of

s,v1 Ys,v

hypercubes placed around the remaining vertices of the cross-polytope (these remaining vertices
are slightly shifted towards the center). (iii) Numerous points z; are located in small balls which
are placed equidistantly between A and B. This yields ordinal constraints that are sufficient to
show that all points e;,, el are “fixed” under ¢ up to some similarity transformation.

5,V V8,V

Lemma 2.9 (Assumption (f) can be taken as satisfied). Let d > 2. Let N' € N such

that
1
r¢+4+1)\* 1
w' =32 ( y ) y
2 N’

is sufficiently small and v’ <1 and n,d,e > 0 be appropriately chosen real numbers (see
Section 2.6.3 for details). Define points A,B € R and Z7,ZF € R%, s € {2,...,d}, by

A= (-1/0/.../0), B=(1/0/.../0), Zy =(0/—1'/0/0/...),
z5 = (0/r"/0/0/...), Zy =(0/0/—1"/0/...), ZF =(0/0/r"/0/...), and so forth.

For s € {2,...,d} and v € {-1,1}¢ set B, = Z7 +n, Ef, = ZF +nv and let
€ €ay € R? be arbitrary elements of U.(Eg,) and U.(E,), respectively. For i €
{1,...,2N" — 1} let z; € R? be an arbitrary element of Us((—1 + 7/0/.../0)). Let
¢ :{A,B}U{e; el :s€{2,...,d},ve {1,139 U{w;:i=1,...,2N' —1} — R? be
an isotonic function with ||p(A) — @(B)| = 2. Then there exist a constant C depending
only on d and an isometry S : R® — R% such that

[A=S(e(A)] < CVAW),  [IB=5(@B)) < CVAW),
125" = S(p(eg)ll < CVAW), me{—+}se{2,....d},

where v = (1/1/1/.../1) and A(W') only depends on w' and d and satisfies A(w') — 0
as w' — 0.

3 (\JIsW
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Proof By composing an isometry with ¢, we may assume that ¢(A) = A and p(B) = B.
It is straightforward to see that (we set xg = A and zon' = B)

max{[|[A — 21|, | B — zanr—a |} < min{[lz; -yl : 5 # j* €{0,2,4,...,2N"}}

and p(z;) € [-2,2]%, i = 0,...,2N’. With an argument similar to the one subsequent
to (2.7) in the proof of Lemma 2.8 we can show that [|¢(A) — ¢(z1)]] < «'/2 and
llo(B) —@(xan/—1)|| < w'/2. Since ¢ is isotonic, this implies that ||¢(u1) —@(ug)|| < w'/2
for all points uy, ug in the domain of ¢ with ||u; —uz|| < ||A—=z1]| and ||¢(u1) —@(ua)| >
2 —w'/2 for all points uy,us in the domain of ¢ with |Jug — uz|| > ||A — xon/_1]|-

The parameters 7,4, and ¢ are chosen in such a way that [[e,, — e, || < [[A — 21|
for any m € {—,+}, s € {2,...,d}, and for all vy, vy € {—1,1}%. Furthermore, we have
A = @anra|l < lleg, — eg 4l for any s € {2,...,d} and for all v,0 € {-1, 1}¢ with v
equaling © except that vs = +1, ¥ = —1. Using this and the assumption of ¢ being
isotonic, we can show that

2_wl<||p:__ps_||§27 8217"'7d>
lps —poll =" <llpd —poll <llps —pyll+o', s#s€{l,....d}, (2.9)
lps —pgll =o' <llpy —pyll <llps —pyll+o', s#s€{l,....d},

where pi” = @(B), p; = ¢(A4), and pi = ¢(el,), p; = ¢(e;,) for s = 2,....d. For

example, let us prove that ||p; —p; || — ' < |lpy —p5 || < llp] — Py || + s Elementary
calculations show that [|A —e5 || < [[A — e, || and [[A — €5 || < [[A — ez, || with v¢ =

(—=1/=1/.../=1). Weinfer |[p; —p || < [lpy —p3 || and [lpy —p(es0)[| < [T —@(eg,0)l]
and thus obtain
T = p3 || < llpT — (e o)l + [le(eze) — 3 | < Pt — @leqne)ll + llp(es,e) — P3|l
<oy —p2 |+ 1Py = @leq o)l + lpese) —pa || < llpy —pa || +w'.
Using that o’ < 1 and [[p7 — p, || <2 due to [lef, —e; || < [|A = BJ|, we can infer
from (2.9) that
[(pf —psph —pa) <100, s#s €{l,....d}. (2.10)

Furthermore, we can show that ||(pf + p;) — (ph + p,)|, s # s’ € {1,...,d}, is small
provided ' is small, that is

20w’ + 8158 (44)d-1

2 —w — i%‘f"l, (4d)d-1

2
) , s#s e{l,...,d}.
(2.11)

(o +p5) — (pF +p)II” < d(

In order to show (2.11), we first apply the Gram-Schmidt process to the vectors (pf —py ),
s = 1,...,d, that is we define an orthonormal basis of R% comprising basis vectors

g1, .., 9a defined by gf = p{ — 1, 91 = g7/lg}l|, and

s

1 *

_ _ g

ge =5 —p3) =) 0F — 05,9595, gszi”giu, s=2,...,d.
1 S

<.
Il
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Making use of (2.10) it is elementary to show that g1, ..., gq are indeed well-defined and
that for s=1,...,d

2 10dw’
—w'dd -1

10dw’
4d — 1

ps —ps

(4d)?1  and =
Ds Ds

gs — (4d)d—1

(2.12)

g5 — (P —p5)|| <

We now can write (pf + p;) — (p;b +p,) as

d
(pd +p5) = (F +13) =D A +p5) — 0F +15):95)9;-
7j=1

Using (2.9) and (2.12) we can upper bound the magnitude of the Fourier coefficients by

N 20w’ + 8104w (4q)d-1

+ - o
+p5) — (05 +3), 95| < ,
(05 +p5) = (g + 20, 95| < S——— 1047 (1)1

which immediately yields (2.11).

Now, setting Z; = A, Z{ = B, we consider the map f : {Zl_,Zf“,...,Zd_,Zj} —
{pl_,pf, .. ,p;,p(‘;} given by f(ZI") = pI* for m € {—,+}, s € {1,...,d}. Using (2.10)
and (2.11) it is straightforward to show that f is a 2,/A(w’)-nearisometry, that is it
holds for all z,y € {Z;, Z;",....Z;,Z]} that

[z = yll =2V AW) < [f(z) = Il < llz =yl +2v/A

where

2
1 [ 20w’ + 8104w (4q)d-1 20w’ 4 8104 (4)d-1
Aw) = Sa (2R OO ) g PR O
2—w — 4d_1(4d) —w - 4d_1(4d)
According to Alestalo et al. (2001), Theorem 3.3, there exists a constant C’ (depend-
ing only on d—we can choose it independently of N’, the parameters r’',7,d, e, and
the precise locations of e, ef,, and z;) and an isometry 7 : R — R such that

S, U7 78,V
IT(z)— f(z)|| <2C"\JAW), z €{Z],Z],...,Z;,Z]}. Weset S =T"' and C = 2C’,
and the assertion of Lemma 2.9 follows immediately. |

Now we can prove Theorem 2.3 for the case d > 2.

Proof of Part 1 of Theorem 2.3: By Lemma 2.16 (see Section 2.6.1) it is sufficient
to prove that for every g > 0 there exists N () € N such that for all n > N(gg) there

-----

In a nutshell, the basic idea for proving this is the following: Assume K is a ball with
diameter only slightly larger than two and containing all the balls of Lemma 2.8. If n € N
is sufficiently large, in each of these balls there is an element of {z1,...,z,}. Assume for
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the moment that ¢,, satisfies Assumption (f) of Lemma 2.8. Then we obtain from (2.5)
an estimate for the expression ||on(z) — ¢n(y)|| for roughly uniformly distributed values
of |z —y| in [0,2] = [0,diam{xy,...,zy}]. Since ¢, is isotonic, this gives an estimate
for ||on(z) — @n(y)| for all x,y € {x1,...,2z,} that is sufficient to show that ¢, is an
e-nearisometry for some small €. Hence, we can uniformly approximate ¢, by an isom-
etry according to Alestalo et al. (2001). It remains to be argued why Assumption (f) of
Lemma 2.8 indeed can be taken as satisfied. However, this is the statement of Lemma 2.9.

In detail, the main steps of the proof are as follows:

1. By composing the functions ¢,, with a similarity transformation we may assume that
K = B1(0).

2. e Denote by C the constant from Theorem 2.2 in Alestalo et al. (2001), which only
depends on d. Choose N* € N sufficiently large and £ > 0 sufficiently small such

that
~ 6 B
4]%(7\/5}3;:T + 7€ < eg

e Choose N € N and the parameters o, & € RY, pu > 0, (ex)1<k<n, and (0k)1<p<n
in Lemma 2.8 such that all assumptions of Lemma 2.8 (see the detailed version in
Section 2.6.3) are satisfied for any choice of the parameters r,7 € R? with 1/2 <
ri=17; <1,i=1,...,d, and with N* as chosen above, and such that w = w(N)
satisfies 3dy/w < €.

e Choose N’ € N such that the expression C'y/A(w') from Lemma 2.9 satisfies
CyAW') < min;—y,_46G. Choose the parameters 1/,7,d,6 > 0 in Lemma 2.9

such that all assumptions of Lemma 2.9 (see the detailed version in Section 2.6.3)
are satisfied and such that nvd+e < min;—q . 4c;. Choose r,7 € R? in Lemma 2.8

asr=7r=1/r"/r").../"").
e Let 7 > 0 such that 52~ < 2];;*3 and 0 < 7" < ¥ such that

221
uA +up
UHUAUBI< 2>§K
2

holds for all (ua,up) € Up((=14%/0/0/.../0)) x Ux((1—=5/0/0/.../0)). Using
a continuity argument it is easy to see that such 7 actually exists.

e Let ryin > 0 be the minimal radius of the finitely many open balls defined in
Lemma 2.8 and Lemma 2.9 with the specified parameters. Choose 0 < v <
min{7’, 7gin £}, Since {x, : n € N} is dense in K and K is compact, there exists

No € N such that

Vye K :U,(y) N{x1,...,xn,} # 0. (2.13)

We set N(eg) = Ny and consider ¢; : {x1,...,2;} = Ur(0) for [ > N(eg).
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3. We can choose points x4,zp € {z1,...,7} with 4 € U ((—1+ 5/0/0/.../0))
and 25 € U ((1 — 5/0/0/.../0)), respectively. Let T : R — R? be a similarity
transformation satisfying T'(x4) = (—1/0/0/.../0) and T'(zp) = (1/0/0/.../0).
For its scale factor N(T') = || T(xa) — T(zB)||/||xa — z5|| we have

2 2 2 2N 43

1 —— < XNT 2. 2.14
<2—7‘+27"< ()<2—T—2’7'/<2—27‘< N~ < ( )

Due to Ujjy, —ap)/2((ra +25)/2) € K we have U (0) C T'(K).

4. We have Us,(a) N {T(21),...,T(x;)} # 0 for any a € T(K) due to T~ (U, (a)) =
UﬁQV(T_l(a)) ) U%u (T~Y(a)) = U,(T~*(a)) and (2.13). In particular, U,_. (a) N
{T(x1),...,T(x;)} # 0 for a € T(K), and because of U;(0) C T(K) in every open

ball defined in Lemma 2.8 and Lemma 2.9 with the specified parameters there is an
element of {T'(x1),...,T(x;)}.

5. Let U : R* — R? be a similarity transformation with ||U(g;(z4)) — U(gi(zB))| = 2.
For its scale factor \(U) we have

1U(er(z4)) = Uler(zp))ll 1

2
M= oGn) —aes) 28R

(2.15)

6. We consider the isotonic function U o ¢; 0o T~ : {T'(21),...,T(2;)} — R In every
open ball defined in Lemma 2.9 there is an element of {T'(x1),...,T(x;)}. We denote
these elements as in Lemma 2.9 (A =T(x4),B =T(xp)). According to Lemma 2.9
there exists an isometry S : R — R? such that

IIA—S(UOsmoT_1 NI <CvA ’<5617 IB=S(UowoT Y(B))l <ai,
12 = S(UopoT™! eep))ll SCVAW) <as, me{—,+}s€{2,...,d}.

7. We consider the isotonic function S o U o ¢, o T~ : {T(:pl) ., T(z))} = RL In
every open ball of Lemma 2.8 there is an element of {T(xl) ., T(x;)}. We denote
these elements as in Lemma 2.8 (X; = A = T(z4),X; = B = T(zp),X; =
ey, Xs =e;,). DuetonVd+e < mini—y . qa; wehave e, € Uy (m;ﬁ me {—,+},

s €12,. d} and according to the previous step Assumptlon (#) of Lemma 2.8 is
satisﬁed. Hence,

Iy — SoUognoT My < 3dvw < &
for k < N*,iec{1,3,...,2F =1} and m € {l,r}.

8. We show that f = SoUop, 0T lisa (W% + 75) -nearisometry, that is f satisfies

ool = (e +7) < 1@ ~ F < o —all + (g +72) 210
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for all z,y € {T(x1),...,T(2;)}. For elements z,y with [z —y| < (2N —2)/2N" 1
it is straightforward to prove the even tighter estimate

o= ol = (gremr +22) <@ = FWI < e =l + (grmg +22) (207

by approximating [z — y|| by || — || with elements 2,5 € {yi; : m € {l,r}, k <
N*i€{1,3,...,2" —1}} and using that f is isotonic.

For elements x,y with (2" — 2)/28" 71 < ||z —y|| < diam T(K) set 2/ = z+ (y — x)
and y = 2+ 2(y—=). Since K is assumed to be convex, so is T(K) and hence 2’,y €
T(K). Let % € Ugjy(2") N {T(x1),...,T(x1)} and y* € Uzya(y') N {T(x1),...,T(21)}
(such elements exist according to Step 4). We can approximate ||z —y|| = ||z — 2| +
2" =3[ + 1y =yl by |2 — x|+ ||z* —y°|| + [|y* — y|| where each summand is smaller
than (2V° —2)/2V" =1 Using (2.17) and diam T(K) = 2)\(T) < (2" +3)/2N" 1
according to (2.14), it is not hard to show (2.16).

9. We have diam({T'(z1),...,T(x;)}) > 2 because of A,B € {T(x1),...,T(x;)}. Ac-
cording to Alestalo et al. (2001), Theorem 2.2, there exists an isometry S’ : RY — R?
such that

HS/ —SoUop,o TilHoo({T(ml),...,T(ml)}) SCN' ~diam({T'(z1),...,T(x)})-

/| 6 ~
W‘F'?&

Making use of (2.15) and diam({T(x1),...,T(z;)}) = MT) - diam({z1,...,z;}) < 4
according to (2.14), this implies that

1~ 6
-1 -1 3
[0 087 08 0T = pulloo(tan,..p) < 3y 4CY et + 78

~ 6 B
<R4C W+7€<60.

Proof of Part 2 of Theorem 2.3: Since UleKf is assumed to be connected, we can
write K as K = U K! with K! € {Ky,...,K}} and such that K/° N K/ ,°#0,i=
1,..., k' —1. Hence, w.l.o.g. we may assume that K = U¥_, K; such that K? NKY ., #0,
i=1,...,k—1.

For every i € {1,...,k} it holds that {z, : n € N} N K; is dense in K; because of
K; C K?, and hence there exists a sequence (S?),en of similarity transformations such
that

1S5 = @nlgan....onynii oo ,.an i) — 0- (2.18)
We prove that

155 = @nl{ay,...anin(r0. 0k ) loo({or,entnkiv.ur,y = 0, G=1,...,k  (2.19)
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by induction over j. The basis is clear. For the inductive step assume that (2.19) holds
for some j < k. We have to infer that it also holds for j + 1. So let € > 0 be arbitrary.

Since K7 N K7 | # (), we can choose N € N such that {®1,..., 05} contains d + 1
affinely independent points in K; N Kj;11. Denote these points by w1, ua, ..., uzr1. Any
point u € R? can be written as u = Zflill Ai(u)u; for some unique coefficients \;(u) € R
with Zf;“ll Ai(u) = 1. Since K is bounded, there exists C' > 0 such that |\;(u)| < C,
ue K,1€{l,...,d+ 1}. Choose € > 0 such that 2(d + 1)Cé + € < . Choose N; € N
such that

155 = @nl{ay, .o dn(K10.. 0k ) loo({or, e Nk UK, ) < & 1> NI,

which is possible because of the induction hypothesis. Choose No € N such that

which is possible due to (2.18). For n > max{N, Ny, Ny} and = € {z1,...,2,} N (K3 U
...UKj41) we then have:

e If z € K U...UKj, then clearly ||S}(z) — pn(z)|| < € <e.

o Ifz € Kjyy, then [[S}(2)—gn ()|l < |Sh(2) =S5 (@)|+]157 (@) —@n(@)]| < [|1Sh(z)—
SiT ()| + & Since 2 = S5 Ny with SN =1 and [N < C,i=1,...,d+1,
we have

d+1 d+1

1Sn (@) = S5 @)l = || D AeSn(us) = D AiSi ™ (wi)
=1 =1

d+1 ‘
< Dl Sh(u) = 557 (wi)l
i=1

< L) — S9tLcu).
@0 o 15hm) S5 w0

Since |57 (us) — Si ™ (wi)| < 1153 (us) = @n(ua)ll + llon(us) — S5 (ws)|| < 2¢ for i €
{1,...,d + 1}, this yields ||S}(x) — pn(z)]| < 2(d+1)CE+E < e.

2.4 Proof of Theorem 2.4 (the infinite case)

The proof of Theorem 2.4 consists of a number of steps, which we formulate as separate
lemmas and propositions.

Lemma 2.10 (Isotonic implies continuous). Let § # Q C R% and f : Q — R? be a locally
isotonic function. Then f is continuous. If we additionally assume € to be a set with at
least one limit point that is contained in it and f to be globally isotonic, then f is even
uniformly continuous.
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Proof Since continuity is a local property, for the first part of the lemma it suffices
to show that for any point z €  there is a neigborhood U(x) in € such that f|i ()
is continuous. Hence, w.l.o.g. we may assume f to be globally isotonic. The key
observation is that if f was discontinuous at one point, the distance between different
points in f(£2) would be bounded from below by a positive constant: Assume there was
xg € € such that f was discontinuous at xg, that is

>0 Vi>0 FxeQ:|lzg—zl|<d A |[f(zo) — f(z)]| >e.
Since f is isotonic, this implies
Ve #yeQ:|f(x) - flyll =e (2.20)

In case that € is uncountable, this immediately contradicts the separability of R?. In
general, a compactness argument leads to a contradiction: Let r» > 0 such that there exist
#,7 € Q satisfying ||Z—g|| > 2r and a closed ball B,.(2) C R? such that B,.(2)N{ contains
infinitely many points. Note that such r > 0 surely exists since xg is a limit point. For all
x,y € B,(2)N we have |lz—y[| < 2r < ||Z—§| and hence || f(z)—=f(y)Il <If(Z)—f(@)I-
It follows that f(B.(2) N Q) is bounded and f(B,(3) N Q) is compact in R?. Consider
the family of open balls U.(f(z)), = € B,(2) N Q, which covers f(B,(2) N ). As a con-
sequence, there exist x1,...,x, € By(2) N such that U.(f(z1)),...,U(f(xp)) cover
f(Br(2) N Q). Hence, if x € B, (2)NQ, we have f(x) € U-(f(x;)) for some i € {1,...,n}.
Choosing = € (B,(2) N Q)\{z1,...,z,} yields a contradiction to (2.20).

In order to prove the second claim, let xy € 2 be a limit point of 2 and let € > 0 be
arbitrary. We already know that f is continuous, and hence there exists & > 0 such that
Il f(z)—f(z0)]| < eforall z € Q with ||[z—xo|| <. Let 2’ € Qwith 0 < ||2'—zo]| = <0
(since x¢ is a limit point, there is such a point ). For all z,y € Q with ||z —y|| < 0" we
have ||z — y|| < ||z’ — zo|| and hence || f(z) — f(y)I| < [If(z') = f(zo)ll <e. u

The next lemma shows that if © C R? is a ball and f : Q@ — R? is weakly isotonic,
then f is even strongly isotonic, at least on a slightly smaller ball.

Lemma 2.11 (Weakly isotonic implies strongly isotonic on balls). Let Q = U.(z) C R?
for some arbitrary € > 0 and z € R?. Let f : Q — R be weakly isotonic. Then f\Us/4(Z)
18 strongly isotonic.

Proof Let z # y,v # w € U, 4(z) with ||z —y|| < [|[v—w|| be arbitrary. In order to prove
that f|y, ,(») 1s isotonic, we have to show that || f(z) — f(y)|| < [|If(v) — f(w)]. We first

consider the case that ||[w —y| < ||z — y||. Let r € R? with ||r|| = 1 and (r,w — y) =0,
that is r is orthogonal to w — y. For o € R set

u(a) =y + (Hy _2 wll _ a) 7”5 : zH + Br

for some fixed \/||$ —ylI* - M <p< \/||w —vl]?2 — M. It is easy to check that
u(0) € Q and that ||z —y|| < |ly — «(0)| and ||u(0) — w| < ||w — v||. Clearly, u(«x)
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continuously depends on «a, and hence there also exists some small og > 0 such that
u(ag) € Qand [z —y| < |ly — u(ao)| and [[u(an) — w|| < [w —v]|. However, for o > 0
we have [Ju(a) — y|| < |Ju(e) — w| and hence

|z —yll < lly —ulao)|l < [lu(ao) — wl| < [lw —v].
Since f is weakly isotonic on €2, this implies that

1 (@) = FWIl < 1£(y) = fw(ao))l] < || f(ulao)) = fw)l| <[ f(w) = fv)]l

Now assume that ||z —y|| < ||lw—yl||. It is easy to see that we can choose a finite sequence
of pairs of points (z;,¥;)i=1,..n such that all these points are located on the line segment
connecting y and w and such that the following holds:

|z =yl < llz1 — v, 21—yl < [lz —yl|,
zi1 = yi—1ll < [l — will, lzi = yio1ll < lwic1 —wiall, 1=2,...,n,
|20 — ynll < lw -2, [y — w|| < |lyn — zal|-

With the same argument as above we can show that

1 (@) = FI < 1f @) = Foll < - < F(@n) = Flyn)ll < [[f(w) = f(0)]]-

We use continuity of f[y_ e (compare with Lemma 2.10) in order to show that it
is even strongly isotonic: Let x # y,v # w € U./y(2) with ||z —y| = [Jlv — w|]. We
can choose sequences x,, — x and ¥, — ¥y such that all points x,,y, are located in the
interior of the line segment connecting x and y. It follows that ||z, — yn|| < |[v —w|| and
hence || f(zn) — f(yn)|| < [[f(2) = f(w)]|. Taking the limit n — oo yields || f(z) — f(y)| <
| f(v) = f(w)||. Similarly, we can show that ||f(v) — f(w)| < || f(z) — f(y)|| and hence
1 (@) = f@)ll = [[f(v) = f(w)]l =

The following proposition already shows that for functions defined on an open and
connected set all the properties that we defined in Definition 2.2 are equivalent. The
key ingredient in the proof is that the midpoint of a line segment between two points
is mapped by a strong isotony to the midpoint of the line segment between the corre-
sponding image points.

Proposition 2.12 (Weakly isotonic implies similarity). Let § # Q C R? be open and
connected and f : Q — R% be a locally weakly isotonic function. Then f is globally a
stmalarity.

Proof (details can be found in Section 2.6.2) First, we consider a globally strongly
isotonic function f : Q = B,.(2) — R? where r > 0 and z € R? are arbitrary. This allows
us to define a function y : [0, diam Q] — [0, diam f(Q)] by u(||lz —y||) = ||f(z) — f(¥)]l
for all z,y € Q2. In order to show that f is a similarity, we have to show that p is linear.
By showing that the midpoint of a line segment between two points in 2 is mapped
by f to the midpoint of the line segment between the corresponding image points, we
iteratively obtain ,u(% diam Q) = % diam f(Q), i € N, j € {0,...,2} (see Section 2.6.2
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for details). According to Lemma 2.10, f is continuous and so is p, implying that
p(t) =t - (diam f(2)/ diam ).

Now assume that € is open and connected and f : © — R? is a locally weakly isotonic
function. According to Lemma 2.11, f is locally strongly isotonic. Hence, given z € )
we can choose e(x) > 0 such that Be(,)(z) € Q@ and that flp, () @ Be)(®) — RY is
globally strongly isotonic. It follows from the above that f]| Be(a (@) is a similarity and

f: Q — R?is locally a similarity. According to Lemma 2.15 (see Section 2.6.1), f is
even globally a similarity. |

Finally, the following lemma states that a continuous extension of an isotonic map-
ping is isotonic too.

Lemma 2.13 (Continuous extension inherits isotony). Let () # Q C R? such that K = Q
is convex. Let f: Q — R% be isotonic and F : K — R? be a continuous extension of f.
Then F' is isotonic.

Proof We have to show that ||F(z) — F(y)|| < ||F(v) — F(w)]| for all z,y,v,w € K
with ||z — y|| < |[v — w]||. Approximating x,y,v, and w by appropriate sequences in €2
and using that f = F|q is isotonic and F' is continuous, this is straightforward. |

We have collected all ingredients to prove Theorem 2.4.

Proof of Theorem 2.4: We first consider the case that f is globally isotonic and
Q = G is convex. Since f is uniformly continuous according to Lemma 2.10, there exists
a unique continuous extension F of f to Q. By Lemma 2.13, F is isotonic. According
to Proposition 2.12, F|¢ is even a similarity. By Lemma 2.14 (see Section 2.6.1), F|¢
can be uniquely extended to a similarity transformation F : R? — R,

In the general case, for z € G let e(z) > 0 such that B.(,)(z) € G and flony, ., (2)

is isotonic. Since Q N U,(y)(z) = B.(y)(7), the above shows that for x € G there exists
a similarity F, : R? — RY such that F1-|QQUE(I)($) = f|QmUs(z)($). If z #y e G with
Ue(z)(®) N Uz (y) # 0, the similarities F, and F, have to coincide on Q N Us(z) for
Us(z) C U.(z)(2) N Uqy(y) and according to Lemma 2.14 they coincide on R%. Using
that G is path-connected, we can even show that F,, = F), for all z,y € G similarly to the
proof of Lemma 2.15 (see Section 2.6.1). Hence, setting F' = Fy, for an arbitrary zp € G
yields an extension of f to a similarity transformation. It follows from Lemma 2.14 that
this extension is unique. u

2.5 Discussion

In this chapter we have formalized Shepard’s long-standing conjecture using the notion
of isotonic functions and established the asymptotic uniqueness of ordinal embeddings
for Euclidean data sets, upon knowledge of all ordinal constraints |[A — B|| < ||C — D|.
We have also shown the uniqueness property to hold true if only ordinal constraints



2.5. DISCUSSION 33

involving points within one of several small overlapping regions have to be preserved
(Part 2 of Theorem 2.3).

Our results give rise to a number of follow-up questions: For the case d = 1 we
have proved the uniqueness property to hold upon knowledge of only similarity triplets,
that is ordinal constraints of the form ||A — B|| < ||A — C|| (Proposition 2.7). Is this
also possible for the case d > 27 Can we further reduce the number of ordinal con-
straints that are required to be preserved and still guarantee asymptotically unique
ordinal embeddings? More generally, which types of ordinal data (compare with Sec-
tion 1.3) require which number of corresponding constraints for the uniqueness property
to hold? Our proofs are based on considering special point configurations for which
we can explicitly show that all point coordinates are determined by the ordinal con-
straints ||A — B|| < ||C — D|| up to a similarity transformation and small perturbations.
In doing so, we make use of several constraints involving four different points, and
it is not clear how we could adapt our proofs if these constraints were not available.
Another question is whether we can provide convergence rates in (2.2). It would be
desirable to upper bound the approximation error ||Sn — ¢nlloo(fas,....z,}) I terms of
a quantity that describes how well the points x1,...,z, approximate or “fill up” K,
for example, in terms of the Hausdorff distance dy(K,{z1,...,z,}) between K and
{z1,...,2,}. For the case d = 1 we can use Lemma 2.6 to derive an upper bound
150 — enllso{zr,zny) € Odn(K,{z1,. .. , 2, 1)/ (1) for arbitrarily fixed e > 0. For
the case d > 2, using Lemma 2.8 and Lemma 2.9, in principle we should be able to
derive an error bound too, but here the interdependencies of the parameters are much
more involved, and we were not able to resolve them. We also suspect that any bound
derived in this way would be rather weak. A further interesting question is whether our
results hold true if we consider Euclidean data sets in R% and ordinal embeddings in R
for d > d (in general, ordinal embeddings defined via (2.1) will not exist for d’ < d).
Finally, we could ask about the uniqueness of ordinal embeddings when dealing with
non-Euclidean data sets that do not permit perfect ordinal embeddings or when given
ordinal distance information that is contaminated by noise. Here it is less clear how to
formalize the problem since an ordinal embedding cannot preserve all given constraints.

Motivated by our work and partially building up on it, Arias-Castro (2015) has
generalized our results and answered some of the addressed questions. He defines an
isotonic function f : Q — R? for arbitrary () # Q C R? by requiring that

[z =yl < llz = wl = f(z) = FW) <[If(2) = Fw)l, 29,20 e,

and a weakly isotonic function by requiring that this property holds for all z,y, z, w € Q
with 2 = z. These definitions differ from ours (compare with Definition 2.2) regarding the
weak instead of a strict inequality on the right-hand side of the implication. The weak in-
equality implies that the set of (weakly) isotonic functions is closed under pointwise con-
vergence. This allows Arias-Castro to establish Part 1 of our Theorem 2.3 only assuming
the functions ¢, to be weakly isotonic and for more general sets K, for example, bounded,
open, and connected sets with a boundary of bounded curvature. His arguments are
simpler than ours and rely on the diagonal argument in the proof of the Arzela—Ascoli
theorem to show pointwise convergence of a subsequence of (¢p)nen. Furthermore,
Arias-Castro proves that ||Sy — ¥nlloc(fa1,....2n}) € O(du(K, {21, ..., 7,})) if one assumes



34 CHAPTER 2. ASYMPTOTIC UNIQUENESS OF ORDINAL EMBEDDINGS

the functions ¢, to be isotonic and [[Sy — ¢nlloo(fa1,....2n}) € O(du (K, {z1, ... ,xn })V/?) if
one only assumes them to be weakly isotonic. The proofs of these assertions look similar
to our proofs. In particular, Arias-Castro makes use of the results by Alestalo et al.
(2001) too, but he mainly builds on regular simplexes instead of cross-polytopes as we
do. Arias-Castro leaves it as an open problem whether the rates that he provided are
tight. For isotonic functions and in the one-dimensional case d = 1 we can show with
a simple example that the provided rate is tight up to constants: Consider K = [0, 1]
and for n € N the point set xg,...,z,—1 given by x; =i/n, i =0,...,n — 1. The func-
tion ¢, that maps every point to itself except for z,,_1, which is mapped to 1 —1/n?, is
isotonic, and it is not difficult to see that the best approximating similarity transforma-
tion satisfies ||.Sn — ¢nlloo(far,....zn}) € 2(du(K,{21,...,2,})). In his paper, Arias-Castro
also proves (2.2) to hold (providing convergence rates as well) for functions ¢, that are
isotonic on {z1,...,2,} N U,, (z;) for every i = 1,...,n and additionally satisfy, for
all 1 <i,5,k, 1 <n,

i = ajll < rn <low —will = llo(z) — @) < lleer) = elell,

assuming that r, > 0 is chosen reasonably. According to Arias-Castro this corresponds
to ordinal embeddings of directed, but unweighted k-nearest neighbor graphs that addi-
tionally preserve all ordinal relationships ||A— B|| < ||C' — D|| among a vertex’s k-nearest
neighbors. In this context we want to mention that the asymptotic uniqueness of ordinal
embeddings of directed, but unweighted k-nearest neighbor graphs (without any addi-
tional ordinal relationships) has been outlined in Terada and von Luxburg (2014) as well.
Finally, Arias-Castro shows (2.2) to hold in a so-called landmark design. This means
that there is a subset L C {x,, : n € N} of landmark points, which is assumed to be dense

in K, and the functions ¢,, are only assumed to be weakly isotonic on {z1,...,z,}NL and
to preserve ordinal relationships of the form ||z; — ;|| < ||a; — x| for 1 < 4,5,k < n and
xj,x € L. Assuming the functions ¢, to be isotonic on {x1,...,z,} N L, Arias-Castro

even proves that ||Sn, — ¥nlloo({1,...0n}) € Odu(I, {71, .., 20} N L)).

2.6 Additional lemmas, some proof details, and detailed
versions of Lemma 2.8 and Lemma 2.9

In this section we collect some additional lemmas, the details of the proofs of Lemma 2.6
and Proposition 2.12, and the detailed versions of Lemma 2.8 and Lemma 2.9.

2.6.1 Additional lemmas

Lemma 2.14 (Extending a similarity). Let ) # Q C R? and f : Q — R? be a similarity.
Then there exists an affine and surjective similarity F : RY — R? (i.e., F is a similarity

transformation) such that F(x) = f(x), x € Q. The function F is uniquely determined
by f if and only if H(Q) = R<.

Proof Let A > 0 such that [|f(z) — f(y)[| = Allz — y||, z,y € Q. We may assume that
A = 1 since otherwise we can set f = (1/A)f and F' = A\F if F' is an extension of f. In
the following we distinguish three cases:
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e 0eQand f(0)=0
This implies that ||f(x)| = ||z||, z € ©, and because of

1F @7 = 2(f (), f(«)) + I F ()P = [1f (@) = £

= llz = /| = JJ2|* - 2(z, ) + ||2"|]”

we can conclude that (f(z), f(2')) = (z,2'), z,2" € Q.
Let z1,...,z, € Q form a basis of [Q2]. If z € Q and z = > | ¢;x;, then

= ||f(@)|I* -2 <f(w)7 Zcz'f(wz)> +

2 2

n

Hf(x) - cif(w) > cif(a)

i=1 i=1 i=1
n n n
= ch”? _ 22@ (x, ;) + Z Zcicj@:i, $j>
i=1 i=1 j=1
n n n n n n
= Z Z CiCj (Q?i, xj) —2 Z Z Cz'cj<e73i; xj> + Z Z CiCj <$ia $j>
i=1 j=1 i=1 j=1 i=1 j=1

=0,

hence f(xz) =>"" ¢;if(z;). Thus, by setting
f'(@) = Zéz‘f(xi) for = Z ¢z € [Q
=1 i=1

we can define a linear map f’ from [Q] to R? which coincides with f on Q. Obviously,
f'is a linear isometry from [Q] onto f/([Q2]). If [2] # R?, we can choose an orthonormal
basis of [Q]* and one of f/([Q])*. These comprise the same number of basis vectors
since [©2] and f/([©2]) have the same dimension. Let f” be a linear mapping from [Q]+
to f'([Q])* that maps the orthonormal basis of [Q]* onto the one of f/([Q])*. Then
f" is a linear isometry from [Q]+ onto f/([Q])* and F = f' @ f” is a linear isometry
from R? onto R? that is an extension of f.

Regarding uniqueness: Clearly, if [Q] # R?, we can choose different orthonormal
bases of [QT and f/([Q])*, respectively, or different mappings between them. On the
other hand, if [2] = R?, any linear extension of f to R? is uniquely determined by
f(z1),..., f(xy). Since 0 € Q, we have H(2) = [?], and because of f(0) = 0, any
affine extension of f is linear.

o 0€Q,but f(0)#£0

Define f': Q — R? by f/(z) = f(z) — f(0), z € Q. We can apply the previous case to
f" and obtain a linear and isometric extension F” of f’. Setting F' = F' + f(0) gives
the desired extension of f. Obviously, F' is uniquely determined if and only if F’ is
uniquely determined. As we have seen, this is the case if and only if H(Q2) = RY.

e 0 ¢ Q (in fact, one could deal with the second case in the same way as with this case,
and so one could merge them into one case “0 ¢ €2, or 0 € Q, but f(0) #0”)
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Let 2/ € Q be fixed. Set @ = Q — 2/ and define f' : Q' — R by f/(z — 2') =
f(z) — f(2'), x € Q. Then it holds that 0 € ', f/(0) = 0, and f’ is isometric on .
Let F' : R — R? be the linear and isometric extension of f’ according to the first
case. Define F : R? — R? by F(z) = F'(z) — F'(2') + f(2'). Since

F(x)=F'(z) - F'(2)+ f(2') = Fl(x —2') + f(2') = f'(x — 2') + f(2)
= f(z) - f(&') + f(2) = f(x)

for x € Q, this yields an affine, surjective, and isometric extension of f to R%. In order
to prove the assertion concerning uniqueness of F' it suffices to note that H(Q) = R?
if and only if ['] = R? and that F is unique if and only if F” is unique.

Lemma 2.15 (Locally a similarity implies globally a similarity). Let ® # Q C R? be open
and connected and f : Q — R be locally a similarity. Then f is globally a similarity.

Proof For z € Q we can choose ¢, > 0 and A, > 0 such that U, (z) C Q and

1f(w) = FIl = Asllu =l Vu, v € Ue, (2)

since () is open and f is locally a similarity. Fix an arbitrary element zo € 2 and
consider the mapping f ‘Uszo (o) * Ueyy (T0) — R¢, which is a similarity. According to
Lemma 2.14 there exists a unique extension Fj, : R? — R?, which is a similarity. We
show that f = F, |q.

Let y # xo be an arbitrary element of Q. Since any open and connected subset of R
is path-connected (e.g., Sutherland, 1975, Proposition 6.4.2), there exists a continuous
path ¢ : [0,1] — Q with ¢(0) = zo and ¢(1) = y. Its image ([0, 1]) is compact. Hence,
we can choose x1,...,2, € ¢([0,1]) with x,, = y such that ¢(]0,1]) is covered by the
open balls Uaxi (), 1=0,...,n. W.Lo.g. we may assume that

Vi=1,...,n 3w; € p([0,1]) CQ:w; € Ue,,  (zi-1) NUe, (i)

We prove by induction that fly. (2, = Fuolo., () for ¢ = 0,...,n. This implies
f(y) = Fy,(y), and since y € Q was chosen arbitrazrily, we can conclude that f = Fy |q.

The basis (¢ = 0) is clear by construction of F,. For the inductive step from i—1 to 4
let € > 0 such that Us(w;) C Ue,,  (wi—1) NUe, (x;). Note that it immediately follows
that Az, = Az According to Lemma 2.14 there exists a unique extension of f[y, (., to
a similarity defined on R? (which is obviously given by F,). There also exists a unique
extension of f |U5xi (z;)- However, these extensions have to coincide, and hence we have

f|U52i (z;) = Fxo‘Uszi (z:)- n

Lemma 2.16 (A diagonal argument). Let X be an arbitrary non-empty set and (An)nen,
A, C X, be a sequence of non-empty subsets of X. Let (¢n)neN be a sequence of functions
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©n @ Ay — R Assume that for every € > 0 there exists N(g) € N such that for all
1 > N(¢) there is a function S(l,¢) : X — R? with

o1 = S €)ooy < &
Then there exists a sequence of functions (Sp)neN, Sn : X — R%, with
ln — Snlloo(a,) =0 asn — oo,
where every Sy, equals a function S(l,,ey).

Proof We can choose a strictly decreasing sequence of positive reals (e, ),en converging
to zero and a strictly increasing sequence of natural numbers (N,,)nen such that for every
I > N, there is a function S(I,&,) : X — R? with [l¢; — S(I,e5)|lco(a,) < €n- Let g9 >0
and lp > N(g9) be arbitrary. Set Sy = S(lp,e0) for k < Ny and Sy = S(k,e,) for
N, <k < Nypy1. In order to show that ||¢, — Sn”oo(An) — 0, let § > 0 be arbitrary. Let
no € N such that ,, < d. If m > N,,,, then we have N < m < Nj; for some n > ny,
and it holds that

[om — Smlloo(am) = llom = S(m, ) lloo(Am) < €7 < Eny < 6.

2.6.2 Proof details

Proof of Lemma 2.6: We want to prove Lemma 2.6 in the following slightly more
general form:

Let N € N and (er)i<k<n, (0k)i1<k<n be finite sequences of positive real numbers
satisfying (for all 1 < k < N such that an expression makes sense)

1111

(2.21)

Forke{l,...,N}andic {1,3,...,2F -1} set T = i/2F and let yfm-, Yy, ; be arbitrary
elements of (xy; — €k — Ok, T — €k) and (Tp; + €k, Tii + €k + Ok), réspec;fively.

Let ¢ : {0,1} U{y™ : m € {l,r},k < N,i € {1,3,...,28 —1}} — [0,1] be a
weakly isotonic function7 with p(0) = 0 and p(1) = 1. Then it holds for k < N and
i€ {1,3,...,2F =1} that

oN—kj _ 1 oN—k; oN—kj oN-kj 4 q
1
so(yk,z) € ( 9N ' 9N > ) 90(1112,1) € ( N oN > ) (222)

and hence

m m 1 .
it — e(yis)| < ov: ME {l,r},k < N,ie{1,3,...,2" —1}. (2.23)
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Due to (2.21) we have

: oN=kj 1 2Nk . oN=ki oN=kj 11
Yk © 9N » 9N v Uk © 9N 9N ’

and thus (2.23) follows from (2.22). We prove (2.22) by induction over N. Note that ¢
is strictly increasing due to ¢(0) = 0 and ¢(1) = 1 according to Lemma 2.5.

For the basis let N = 1. Then we have ylLl € (0,1/2) and yi; € (1/2,1) implying
that |0 — ylLl\ <|1- ylll\ and [0 —y7 | > [1—yi,|. Since ¢ is weakly isotonic, ¢(0) = 0,
and (1) = 1, it follows that [0 —(y} 1)| < [1—@(yi,)| and [0 —(y]1)| > [1 - @] ,)|
and hence @(ylm) € (0,1/2) and ¢(y7,) € (1/2,1).

Assume that the statement holds for NV and we want to infer that it also holds for
N + 1. If the assumptions of the lemma are satisfied for N + 1, (ex)1<k<n, (Ok)1<k<n
and 80|{0,1}u{y;".:me{l,r},ng,z‘e{1,3,...,2k—1}} satisfy the assumptions with IV, and hence the

induction hypothesis yields for £ < N and i € {1,3,...,2% — 1}
; oN=kj 1 oN—k; . oN=kj oN=kj 11
e(Ur) € v v | Pk €| o TN :

First, consider y§V+1,1 and yj ;- Due to (2.21) we have

1
oNaT TEN+HL HONt < 5y —en 0N

and hence
! !
0 <yni11 <Unt11 <Yni <YNn1-
We have
) 1
Y11 — 0] < oNTT ~ EN+1
and

I ! 1 1
’yN,l _yN+1,1’ > N —eN — 0N — ON+T —EN41 | = SNTT +EN+1 —EN — ON-

Because of ey + 0y < 2en41 according to (2.21), this yields

! ! !
lyn+11 — Ol < lyn1 — Uns1als

which implies that

! ! !
lo(Ynt1.1) = Ol < le(yn1) — e(Yni1.1)]
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and

! !
20(Yn+1.1) < e(Yn 1)

respectively. Due to the induction hypothesis we finally obtain

l 1, 11 1
e(Unt11) < §<P(ZIN,1) < 59N — N+1
and hence
1
1
e(Unt11) € <0; 2N+1> .
We have
: 1
lYn+1,10 — 0] > ONFT TEN+1
and

o 1 1 1
|yN,1—yN+1,1|<2W+€N+5N— W“‘&":N_A,_l :W+5N—5N+1+5N
implying that (due to (2.21))

lyn1 = Ynti1l < |Yng11 — Ol

It follows that

1 1
oNF1 < 5@(9?\1,1) < p(Ynt1,1)-
Because of
!
Yni11 < YN1>
we have
1 2
l
eUnt11) <pyni) < oN = 5NF1
and hence

. 12
e(Unt11) € ONT1 9NF1 ) -

‘We also obtain
. 1 2
e(Yn,1) € ONF17 oNF1 | -

In the same manner one can show (2.22) for yé\H—l ON+1_1> y7]"\,+1 on+1_q and Yoy -
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Now, let i € {3,5,...,2¥*!1 —3} be arbitrary. Consider the reduced fractions 21,\7—4}1 =
Jband SR = J2 with 1 <k ko < Nand jy € {1,3,..., 20 =1}, jp € {1,3,...,2k2 —

2k1

1}. Due to (2.21) we have

l T l r ! T
Ykigi < Ykrgi <YN+1Li YN+ < Ykajo < Ykaojo-
We have to show (2.22) for Ykyirs yﬁVH’i, Yny1,; and yimz. We have
! ! ) 1—1 1
|yk1,j1 - yN—i—l,z" < oN+1 —EN+1 — oN+1 — &€k — 5’61 - oN+1 —EN41 T €k +5k1
and
. . 1+1 )
|yl<:2,j2 - yN+1,i| > oN+1 €ky — 514:2 T \oN+1 T EN+1 ) = oN+1 €ky T EN41 — 5k2'

Since 0, + Ok, + €ky + €k, < 26n+1 according to (2.21), this yields

’ykl’jl N yN-&-l,i’ < ‘yk2,j2 “ YN+t
and hence
! 1 l )
oWk 1) — PUNT1L < 10Uy o) — PWUN10)]-

Using the induction hypothesis we can conclude that

¢ (Uhy i) + 2 Why 1) 1 (i—i—l i — 1) i

l _
SD(yN+l,i) < 9 9 \ 9N+1 + oN+1 | 7 9N+1°

The induction hypothesis also yields

i—1
PWhi i) > onF1

and hence we have
- 1—1 ) ! 7—1 7
O(Yry 1) € ONT1’ 9NTT ) (Y1) € ONT1 9NFT ) -
We have

1 1—1 1
Yy i — YN41al > oNFT TEN+1 T <2N+1 t ek T 5k1> = ONF1 T ENHL T €k Oki 5

1+1 ) 1
Yhajs — YN+1, < oNi1 T ekt Oky — <2N+1 + €N+1> = 5NTT  EN+L T Eky T Oks

and hence (due to (2.21))

Yk io — UN41i] < |Yky gy — UNt14l-

In the same manner as above we can conclude that

(Y1) € _t i+l (gt ) e _t i+l
PUUN+1 9N+1’ 9N+1 )’ PYks,j2 9N+1’ 9N+1 |
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Remark 2.17.

o The assumptions (2.21) on the sequences (ex)1<p<n and (0x)1<k<n are equivalent to
er >0, 0 >0, 6k > a1, €k + 0k < €gr1, and ey + 06y +en—1 + In-1 < 1/2N.

o Sequences (ei)i1<k<n and (0r)1<k<n Satisfying these assumptions always exist. For
example, we can choose € = £12F1 and 5, = e1/2 with g1 < 1/22]\“rl as in Sec-
tion 2.3.

Proof of Proposition 2.12: Here we want to prove the statement for the case that
Q = B,(2) is a closed and bounded ball (for some arbitrary r > 0, z € R%) and f : Q — R¢
is globally strongly isotonic. How to derive the general result from this special case is
shown in Section 2.4.

Consider the set f(€2). Since f is continuous according to Lemma 2.10 and Q is
compact, so is f(€). In particular, f(€2) is bounded, that is diam f(2) < co. We can
define a function p : [0, diam ] — [0, diam f(€2)] as follows:

Vo,y € Q:|[f(x) = FW)ll = plllz —yl)).

Since f is strongly isotonic, p is indeed well-defined. Note that p is defined on the
whole interval [0, diam 2] since 2 naturally contains a line segment of length diam 2. In
order to show that f is a similarity, we have to show that p is linear, that is u(t) = At,
t € [0, diam ], for some A > 0.

It follows from f being strongly isotonic that pu is strictly increasing. Obviously, we
have 1(0) = 0. Due to the compactness of 2 and f(€) and f being strongly isotonic, we
can conclude that p(diam Q) = diam f(2).

Choose points xg and yp on the boundary of 2 with ||z¢—yp|| = diam 2 (consequently,
xo and yo are elements of a straight line going through z). We can write u(t) as

u(t) = Hf(xo) ~ 4 (= +tw>' te 0 diam)

1yo — ol

This shows that u is continuous.

Let m = (xo + y0)/2 be the midpoint of the line segment between xy and yo (in fact,
m = z). We want to show that f(m) = (f(zo) + f(y0))/2. If d = 1, this immediately
follows from f being strongly isotonic. If d > 2, set rg = xg — yo and let R = [rg] be
the linear hull of ry. Let {e1,...,e4—1} be an orthonormal basis of Rt. We can choose
€ > 0 such that all points pj =m+ee; and p;, =m—ce;,i=1,...,d—1, are elements
of 2 (in fact, we can choose any ¢ < r). Set pj = xo and p; = yo.
Now we have

lm—pf | =m-p;ll, i=0,....d—1,
and

lpf —pf = lpf —pill, i#jed{0,....d—1},
Ip; = pill =llp; —pi |l i#j€f0,....d—1}.
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Since f is strongly isotonic, it follows that

1f(m) = f) = 11f(m) = flo ), i=0,...,d—1,

and

1f () = FEON =11 )) = Fo)ll, i#5€{0,....,d=1},
1f ;) = FeD = 11f;) = f)l, i#5€{0,...,d—1}.

This implies that

fo) + 1)

S = 100 50m) = () = s, PPN o e

and
foH) + 1))
2

L
(100 = 100, 5650) = (1) = 1) LI i e qona-ay,

(2.25)

(102 = 160 16D = {56) = 160, ). itie -1y

We show that under the conditions (2.25) the point f(m) = (f(pg) + f(py))/2 =
(f(zo) + f(y0))/2 is the unique solution to (2.24):

1. f(m) = (f(p§)+f(py))/2is asolution to (2.24): Set j =0 andleti € {1,...,d—1}
be arbitrary in (2.25). Add the first line in (2.25) to the second and divide by two.
Hence, f(m) = (f(pg) + f(py))/2 is a solution to (2.24) for i = 1,...,d — 1 and
obviously also for i = 0.

2. There is a unique solution to (2.24): (2.24) is a linear system involving d equations
for the d unknown coordinates of f(m). It suffices to show that the vectors f(p;") —
f(p;),i=0,...,d—1, are linearly independent. Subtracting the two lines of (2.25)
yields

(FG) = FD) FG7) = F(57)) =0, i #j €{0,....d—1}.

We see that the vectors (f(p;) — f(p; ), i =0,...,d—1, even form an orthogonal
system.

Hence, we have f(m) = (f(x0) + f(yo))/2 and can conclude that p(diamQ/2) =
diam f(€2)/2.

By repeating this procedure (once starting with zo = xo, yo = m, once starting with
xo =m, Yo = Yo), we see that

1diamQ zldiame and p §diamQ :§diame
#\1 1 1 1
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and iteratively obtain
H (; diamﬂ) = %diamf(ﬂ), ieN,je{0,...,2').

Note that 2 being a ball allows us to find a proper € in each iteration step. Since p is
continuous, this shows

~ diam f(Q)
=t =g

2.6.3 Detailed versions of Lemma 2.8 and Lemma 2.9

Lemma 2.8. Letd > 2. Let N € N such that

1 1
ré+1))\° 1 \d 1
=24 2 —
“ < o2 ) (2N—1) S3d-1)

be fired. Let r,7,a,& € R, let u > 0 and let (ex)1<k<n, (6k)1<k<n be real sequences
such that (for all 1 < k < N such that an expression makes sense)

r,7 >0, a,a>0, e >0, 0 >0,
a<r, a<tr, Ekt1 > €k, Oky1 < Og,
rr =11 =1, 51<M7 0 <eq,
rp<1l, 7 <1, j=2,....d, ai + 01 +dp < €1, (2.26)
] < Ww, maxXg— 1, d0~53<27 4€N+4(51+d,u,<2i1\7,
O‘J(TJ+3\/7)

p=MaXj=y 4~ % 5 w, Eky1 > € + 201 +dp+ aq,

4,u7°j—4ozj\/1—|—( —1 —4rjaj—4rj51—4aj61—aj2~>0, j=2,...,d,

and such that all the balls U,lc’i, U,;i and Ug’i, which we define below, lie in the convex

hull of the points Xf,Xf, ey X:lr, X, defined in the next paragraph.
Define the points mt,m;,m$,m; €RY, s=1,...,d, by
m1 = (r1/0/0/0/...), my = (=r1/0/0/0/...),
it = (1/0/0/0] ). iy = (-#1/0/0/0/ ...
= (0/r2/0/0/...), my = (0/ =r2/0/0/...),
my = (0/72/0/0/...), my = (0/ —72/0/0/...), and so forth.

Let X}, X7 €RY, s =1,...,d, be arbitrary elements of Uy, (m7) and U, (m7), respec-
tively.
Forke{l,...,N},ic{1,3,...,28 — 1}, and j € {2,...,d} set

7 .
thi =1+ g 0= (ks —p/ /= I/ A /=) ) —p) ERY,
jth entry

Ui = (zhi—en/ —n/ .../ — ) €RY, up; = (xhi+en/ —n/.../ —p) €RY
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and define the open balls
Ulgz = U6k(0‘li,i)a Ullm' = Uy, (Uim)v Ui = Us, (U};z)

Let zii be an arbitrary element of Ugi and yf“-, Y, be arbitrary elements of U,l“- and
U,’;i, respectively.

Let o : {X{", X7,... . X], X7 }u{s], k< Nie{L,3,....2"~1},j€{2,....d}}U
{yg, :me{l,rh,k < N,ie{l,3,.. 28 —1}} = R? be an isotonic function and assume
that

p(XS) €Va(m]), @(X7)€Us, (), s=1,....d. (%)

Set v(—1) = (1) = &1 and v(0) = a1 + %(w + p), and define for k € {2,...,N}
and i € {1,3,...,2%F — 1} the positive expression y(—1 +i/2¥1) recursively by

7(—1—1—2;1) :é(v <—1+i2k_}> +fy<—1+i2,ﬂ> +(d—1)(w+2p)>.

Let N* < N such that N* - 2N <

1
5@ D (wrptan Then we have

P(Whi) € (Tri — V(@) — w, i + Y(@R)) X (—p —w, p) 7,

ey i) € (@ni — (@), Tri + V(@) +w) X (—p —w, p)*!

and hence

lwits = o (i) || < ¥(@ra) +w + (d = 1)(w + p) < 3dvw, m e {l,r},

forall1 <k < N* andic {1,3,...,2F —1}.

Remark 2.18. Using a continuity argument, it is straightforward to see that for any
N €N there exist r,7, o, & € R, a constant . > 0, and sequences (er)1<k<nN, (Ok)1<k<n
satisfying (2.26) and having the property that all the balls U,lw., Ug.ir and U,gl lie in
the convex hull of X1+,X1_, e ,Xj,Xd_ for any choice of these points within the balls
Ua,(mT) and Uy, (my ), respectively.

Lemma 2.9. Let d > 2. Let N’ € N such that

and all denominators of fractions in

’ o 2 / —
o1 (20w + 815 (4d) /i 20w’ + 830 (4d) ! ,
AlW) = 7d T lod a1 | t2vd T 10dw g qva1 T O
2 — w — 10 (4) 2 — w — 108 (4)
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are larger than one be fized. Let v’ <1 and n,0,& > 0 be real numbers such that

P> P s1- VAR VI > Vi VAW, antbe<t,

1
Vd=1Dm+ 0 +n)2+e<l,  V24+np/d+e<?, 0 < g
IN' — 1 1

2(r' 4+ 1) — 2 > N~ o 5+2n\/&+25<ﬁ,

V(=02 + (=0 —mr')2 + (d = 2)12 + 26 < /(14 1) + (=00 — mr’)? + (d — 2)n?
foro,m e {—1,+1},

V(=1 =002+ (" = )2+ (d = 2)n% + 22 < /(=1 =02+ (' +1)? + (d — 2)n?
forv e {—1,+1},

d—2
(r'+n(@—0))2+ (" —2n)2+ 2772(”’“ — )2 +4e <
k=1

U

2
(F" 0@ —0))*+ (" +20)% + )_1*(ve —vp)?

b

=1
for 0,0 v, v, € {~=1,+1} (k=1,...,d—2).
(2.27)

Define points A,B € R and Z7,Z+ €¢RY, s € {2,...,d}, by
A=(-1/0/.../0), B=(1)0/.../0), Zy =(0/ —+0/0/...),
z3 = (0/r"'/0/0/...), Zy =(0/0/—+"/0/...), ZF =(0/0/r"/0/...), and so forth.

For s € {2,...,d} and v € {-1,1}¢ set E;,, = Z7 +nv, Ef, = Z7 + nv and
let e, ed, € R? be arbitrary elements of U.(Eg,) and U.(E],), respectively. For
i€{l,...,2N" =1} let z; € R? be an arbitrary element of Us((—1+ +/0/.../0)).

Let ¢ : {A, BYU{eg,.ef, :s€{2,....d},v e {-1,1}} U{a;:i=1,...,2N' =1} —
R? be an isotonic function with ||p(A) — ¢(B)|| = 2. Then there exist a constant C
depending only on d and an isometry S : R — R% such that

1A= S(p(A)]l < CVAW),  [IB=5(e(B))ll < CVAW),
125" = S(p(eg)ll < CVAW), me{—+}se{2,....d},
where v = (1/1/1/.../1).

Remark 2.19. Using a continuity argument, it is straightforward to see that for any
N’ € N there exist real numbers ' < 1 and n,d0,e > 0 satisfying (2.27). Note that these
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assumptions imply that all the balls U-(Eg,,), U-(E,) and Us((—=1 + 7/0/.../0)) are
contained in U1(0). In fact, we can choose 1,0, > 0 so small that (2.27) is satisfied and
all these balls are contained in the d-dimensional standard cross-polytope. This is the
main argument that we require in order to replace the set K in Part 1 of Theorem 2.3 by
a cross-polytope or any closed and convex set that is a superset of a cross-polytope and
a subset of the smallest ball containing the cross-polytope as remarked in Section 2.2.



Chapter 3

Dimensionality estimation from
the directed, but unweighted
k-nearest neighbor graph

In the previous chapter we have proved Shepard’s conjecture. It implies that for a Eu-
clidean data set with known intrinsic dimension abundant ordinal data of the type (1.1)
asymptotically contains all cardinal distance information up to rescaling. It is natural
to wonder whether knowing the intrinsic dimension is really necessary or whether the
dimension of the data set can be inferred from the ordinal distance information. In this
chapter, we show that estimating the intrinsic dimension from ordinal data is indeed
possible and that not even all ordinal constraints ||A — B|| < ||C' — D|| are required, but
that the directed, but unweighted k-nearest neighbor graph on the data set is sufficient.
We provide two estimators, a naive one and a more elaborate one. Both estimators are
shown to be statistically consistent when assuming that data points are sampled from a
probability space satisfying certain regularity assumptions. However, further theoretical
and experimental evidence shows that the elaborate estimator is highly superior and
should be preferred in practice.

3.1 Setup and notation for Chapter 3

In a setting of cardinal distance information dimensionality estimation is a well-studied
problem. There were many publications already around the time of the development
of multidimensional scaling (Shepard and Carroll, 1966, Trunk, 1968, Bennett, 1969,
Fukunaga and Olsen, 1971, Chen and Andrews, 1974, Pettis et al., 1979, Grassberger
and Procaccia, 1983) and it has gained renewed attention after the invention of manifold
learning algorithms like Isomap (Tenenbaum et al., 2000) or Locally Linear Embedding
(Roweis and Saul, 2000) (Camastra and Vinciarelli, 2002, Kégl, 2002, Costa and Hero,
2004, Levina and Bickel, 2004, Costa et al., 2005, Hein and Audibert, 2005, Farahmand
et al., 2007, Sricharan et al., 2010, Eriksson and Crovella, 2012, Ceruti et al., 2014).
A recent survey about these and further methods is provided in Camastra and Staiano
(2016). Most of these methods are formulated in the following general setup: Let X’ C R?

47
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be a low-dimensional set, f a continuous probability density function on X/, and ¢ : X" —
M C RP a smooth embedding of X’ in a high-dimensional space. Points 27, ...,z € X’
are drawn from f. They are embedded into the observation space RP via ¢ and possibly
disturbed by noise 7; € R”, resulting in the data set D = {z1,...,x,} with z; = p(z}) +
ni, ¢ = 1,...,n. The task is to infer the intrinsic dimension d, where all the existing

methods assume to be given coordinates (z},...,zP) or distance values |z; — x;||gp.
We consider the same setup, but instead of assuming to observe coordinates or distance
values, we assume to be only given the directed, but unweighted k£-NN graph on D for
some k < n and constructed with respect to || - [[gp. We refer to this k-NN graph on D
as (G. Recall from Section 1.3 that GG encodes knowledge about memberships to the sets
of k nearest neighbors of data points. It has the vertex set V' = {1,...,n} ~ D and a
directed, unweighted edge from 4 to j if and only if x; is among the k nearest sample
points to z; with respect to || - |[gp. We denote an edge from i to j by i — j.

Note that although the problem of dimensionality estimation in the described setup
is mathematically well-defined, it comes along with an inherent problem in practice (re-
gardless of whether we can observe coordinates, distances, or the k-NN graph on D):
The data set D “looks” different at different scales, on the one hand due to the presence
of noise, on the other hand due to the curvature of the manifold M. For example, if
the data points lie in a small e-tube around a one-dimensional sphere in R?, we will only
be able to identify the one-dimensionality of D if we look at it on a proper scale. If we
“zoom in too closely”, say we consider an e-ball of the data set, it will appear to have
dimension 2. If we “zoom out very far”, then D will even look like a single point and
thus may be considered as zero-dimensional. In our case, the scale at which we look
at D is controlled by the parameter k: the larger k, the more we “zoom out”.

In the following, we denote by Bgsp(i,r) the closed ball with center i € V and
radius r > 0 in the graph G with respect to the directed shortest path distance dgp,
that is Bsp(i,7) = {j € V : dsp(4,7) < r}. By A\g we denote the d-dimensional Lebesgue
measure and by 75 = A\g(B1(0)) the volume of the d-dimensional unit ball. For X C R?
we denote its topological boundary by 9(X).

3.2 Our estimators

In this section we describe two strategies that yield an estimate of the intrinsic dimen-
sion d based on the directed, but unweighted k-NN graph G on the data set D. Both
methods have in common that they estimate quantities related to d locally around sample
points and then combine these local estimates to one global estimate for d.

3.2.1 Estimator based on doubling property

Recall the doubling property of the Lebesgue measure A\g: for any z € R and r > 0
we have \g(B(z,2r)) = 29)\g(B(z,r)). Consequently, we can determine the dimension d
from the volumes of two balls with radius r and 2r, respectively, by

d = —logy(Xa(B(x, 7))/ Aa(B(z, 2r))).
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Figure 3.1: The idea behind our estimators Epp and Ecap. Left: Epp is based on the fact
that points z; with j € Bgp(i,1) (green + red) approximately fill B(z;,7) and points x; with
j € Bsp(i,2) (green + red + blue) approximately fill B(x;,2r). Right: Ecap makes use of the
following observation: if x;, (in purple) is a point sitting at the boundary of B(z;,r), points x;
with j € Bsp(i,1) N Bsp(jo, 1) (green 4+ purple + magenta) fill two disjoint spherical caps with
height /2 of the balls with radius 7.

This is the property that we are exploiting in our first naive estimator. To carry it
over to the finite sample setting, fix any sample point x; that is sufficiently far from the
boundary of M and consider Bgp(i,1) and Bgp(i,2). If the sample size n is large enough
and k is relatively small, points x; with j € Bgp(4,2) lie in such a small neighborhood
of 2; on M that we can actually think of M as flat and identify it with R%. Here we do
not take the noise into account. Then, as we will prove in Section 3.3, the balls Bgp(i, 1)
and Bsp(i,2) in G approximately correspond to balls B(z;,7) and B(w;,2r) in RY, for
some small radius r. This is illustrated on the left side of Figure 3.1: in green we
see the point z;, in red points x; with j € Bgp(i,1), and in blue points x; with j €
Bsp(i,2) \ Bsp(i,1). On the small balls B(z;,r) and B(z;,2r) we can consider the
density function f as roughly constant and obtain

k+1 _ [Bsp(3,1)] _ n f(z) Aa(B(zi,r)) _ 1

- |Bsp(i,2)|  |Bsp(i,2)] — n f(xi) Aa(B(zi, 2r)) — 2¢°

Lpp(i) :

Hence, an estimate of d is given by —logy Lpp(i). However, in order to obtain a more
robust estimator we average over Lpp(i) for various vertices 1 € A C V. With

Lpp(A) == ’;’ > Lpp(i)
€A

this leads to our first dimension estimator
EDP(A) = - 10g2 LDP(A).

By construction, Fpp resembles classical dimension estimators exploiting the dou-
bling property of the Lebesgue measure (e.g., the method by Grassberger and Procaccia,
1983). However, while all the existing methods explicitly use distance values, we make
use of the fact that neighborhood balls of ¢ in G approximately correspond to neighbor-
hood balls of z; in R? (see Section 3.3 for details).
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Figure 3.2: The functions T'(d) = 1/2% and S. The latter is more well-behaved in terms of
inversion.

3.2.2 Estimator based on spherical caps

Our second estimator relies on a different geometric idea: Fix z,y € R? with ||z —y||ge =
and consider the set B(z,7)NB(y,r). This set is the union of two congruent and disjoint
(except for their shared base) spherical caps with height r/2 of a ball with radius r. An
illustration is shown on the right side of Figure 3.1 (dark grey area). According to Li
(2011), the volume of such a cap is given by

1 4, [(d+11
277d7"IZ( 92 52>a

where I(a,b) is the regularized incomplete beta function. Consequently,

Aa(B(z,r) N B(y,r)) d+1 1Y\
Xa(B(z,1)) : <2’2> == 5(d), (3.1)

which is a quantity injectively depending on d > 0. A plot of the function S can be seen
in Figure 3.2. Hence, the dimension d can be retrieved by inverting S. This cannot be
done analytically, but can easily be solved numerically.

Our goal is now to follow this idea in the finite sample setting. As in the previous
section when deriving our estimator Epp, we fix a sample point x; and replace B(z;,r)
by Bsp(i,1). We need to find a vertex jg such that zj, sits on the boundary of B(z;,r)
and then consider |Bgp(i,1) N Bsp(jo,1)| = nf(zi)Aq(B(xs,r) N B(xj,,r)). Because
|Bsp(4,1) N Bsp(j,1)| tends to decrease as the distance between x; and x; increases,
we can find such a vertex jp as the minimizer of the term |Bgsp(i,1) N Bsp(j,1)| over
vertices j that are connected to ¢. This leads to

in ey |Bsp(i,1) N Bep(d, 1
LCAP(Z) = mln]EV. —)J | 213_'(_11 ) SP(] )‘ ~ S(d)

An estimate for d is then given by S~!(Lcap(i)). In Section 3.3 we will show that this
intuitive derivation is indeed correct. As in the previous section, we make the estimator
more robust by averaging over Lcap(i) for various vertices 1 € A C V. With

1 ,
Leap(4) == A > Leapl(i)
€A
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Figure 3.3: Explanation for the bias of Epp: the union of the small balls approximates the
large ball, but ignores a substantial part close to its boundary (shaded area).

our second dimension estimator is given by

Ecap(A4) := S (Lcapr(4)).

3.2.3 First comparison of Epp and Ecap

A closer look at the construction of our two estimators Epp and Ecap reveals two
reasons why Ecap might perform better than Epp. This theoretical finding will later
be confirmed by our experiments in Section 3.4.

The rationale of Epp is to find an expression Lpp that approximates T'(d) := 1/2%,
whereas in Ecap we find an expression Lcap that approximates S(d) as given in (3.1). In
both cases, the final estimate is obtained by inverting 7" or S, respectively, to retrieve d.
Inverting a function h is easy and robust in areas where the function is reasonably steep,
but is difficult in areas where it is flat. In flat areas of h, small deviations in h(x) can
lead to large deviations in 2 = h~!(h(x)). Now consider the plot of the functions T
and S in Figure 3.2. It is plain to see that S has a much larger range where it is
well-behaved (say, from d = 1 to 20) than T (say, from d = 1 to 8). Consequently,
in the range of d = 9 to d = 20 the estimator Ecap is still rather robust against
deviations of Laap(A) from S(d), while small deviations of Lpp(A) from 1/2% lead to
large deviations of Epp(A) = —logy(Lpp(A)) from d. This is the first observation that
suggests an advantage of Ecap over Epp.

Our second insight is that Epp might systematically underestimate the true di-
mension, in particular if the true dimension is high. The estimator Epp is based on
approximating B(xz;,2r) by Bsp(i,2). However, as Figure 3.3 shows, there is a bias in
this approximation: Bgp(4,2) is the union of Bgp(i,1) and balls Bgp(j, 1) for vertices j
with ¢ — j. Hence, Bgp(i,2) actually corresponds to points in the union of B(z;,r) and
balls B(x;,r). In the limit, as n and k go to infinity, this union approximates B(z;, 2r)
up to arbitrary precision (compare with Section 3.3), but if n and k are not too large,
this union is only a poor approximation of B(x;,2r), just filling it partially and ignoring
a substantial part close to the boundary of B(x;,2r). As a consequence, we systemati-
cally underestimate Aq(B(z;,2r)) and thus underestimate d. This effect is increased if d
is high because of the fact that in high-dimensional spaces almost all of the volume of a
ball is concentrated in a thin shell close to the ball’s boundary.
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3.2.4 Implementation of our estimators

There is no closed form for the inverse of the function S as given in (3.1). If one is
merely interested in an integer estimate of d, the simplest possibility is to set Ecap(A)
to d* = argmingey, [S(d) — Lcap(A)|. In case one rather wants to have a real-valued
estimate, the simplest way is to create a fine-meshed lookup table of argument-value
pairs of S, which can be reused every time one wants to apply Ecap-

Assuming that G is given by its unsorted adjacency lists, both Lpp(i) and Lcap(7)
can be implemented with O(k?logk) time, where the implementation requires O(k?)
and O(k), respectively, auxiliary space. This can be done by sorting the union of the
adjacency lists of vertex ¢ and of vertices connected to ¢ or sorting each of these adja-
cency lists in order to compute |Bgsp(4,2)| or minjev:i—; |Bsp(4,1) N Bsp(4,1)|. Hence,
assuming that the inversion of S as addressed in the previous paragraph can be done in
constant time and space, the computation of Epp(A) or Ecap(A) can be performed in
O(|A] k?logk) time and O(]A| + k?) or O(JA| + k) space. If G is given by its adjacency
matrix J with J;; = 1if i — j and 0 otherwise, it is usually faster to make use of the
following observations, in particular when |A| is large (e.g., A =V):

(J-J),; >0 je€ Bsp(i,2), (J-J7),; = [Bsp(i, 1) N Bsp (4, 1)] -
Here, J is the matrix J with the diagonal entries set to 1. Note that both J and J are
sparse matrices with k and k + 1, respectively, non-zero entries per row.

As we will prove in the next section, both our estimators are statistically consistent
for any prespecified choice of A C {1,...,n}. However, the variance of Epp(A) or
Ecap(A) decreases as the size of A increases, and so we suggest to choose |A| as large
as one can afford due to computational reasons. Our experiments of Section 3.4 show
that the variance of Ecap(A) decreases even almost like 1/|A|. This is the rate that one
would expect (after a linearization of the function S) if the local statistics Loap (i) were
independent among i € V. The variance of Epp(A) decreases more slowly. Apparently,
the local statistics Lpp (i) for i € V' are more correlated than the local statistics Loap ().
This is not surprising given that Lpp (i) is based on a larger neighborhood of the sample
pOiIlt ZT; than LCAP (’L)

3.3 Consistency

In this section we prove that both our estimators Epp(A) and Ecap(A), for any pre-
specified A C {1,...,n}, converge in probability to the true dimension d as n — oo,
assuming k = k(n) is chosen reasonably. By prespecified A C {1,...,n} we mean that A
is chosen without any information about the data set D or the graph G. We only con-
sider the case of a flat manifold M (i.e., ¢ is a global isometry) and when there is no
noise (compare with Section 3.1). This is the relevant case for combining our results
of this chapter with those of Chapter 2. It allows us to drop the assumption of known
intrinsic dimension in our result that for a Euclidean data set abundant ordinal data
asymptotically contains all cardinal distance information up to rescaling. In this case,
we simply consider X C R?, a sample D = {z1,...,2,} C X drawn from a probability
density function f on X, and the directed, but unweighted k-NN graph on D constructed
with respect to || - [|ga. We make the following regularity assumptions:
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Assumptions 3.1 (Regularity assumptions on X and f).

1. The domain X C R% is compact and has boundary of measure zero, that is

Aa(0X) = 0. (3.2)

2. The boundary of the domain X is regular in the sense that there exist constants
a, g0 > 0 such that

M(B(z,e) N X) > a- M\(B(x,e)), x€X,e<ep. (3.3)

3. The density function f : X — R is lower and upper bounded by fmin > 0 and
fmaz < 00, respectively, that is

0 < fmin < f(2) < fingz < 00, x€X. (3.4)

4. The density function f is Lipschitz continuous with constant L > 0, that is

[f(@) = fl < Lz —yll, =yeX. (3.5)

Under these assumptions we have the following theorem.

Theorem 3.2 (Consistency of Epp and Ecap). Let D = {z1,...,2,} C X CR? be an
i.4.d. sample from the probability density function f on X and G be the directed, but
unweighted k-NN graph on D with respect to ||-||ga. Let the Assumptions 3.1 on X and f
hold. Given G as input, both Epp(A) and Ecap(A), for any prespecified A C {1,...,n},
converge in probability to the true dimension d as n — oo if k = k(n) satisfies k € o(n),
logn € o(k), and there exists k' = k'(n) with k' € o(k) and logn € o(k').

The growth conditions on k are the ones to be expected for random k-NN graphs
(compare with von Luxburg et al., 2014, Section 4). There are several ways of choosing
k and k' in order to satisfy them. For example, we could choose k = (logn)!*™
k' = (logn)+7/2 for some 7 > 0.

and

By the continuous mapping theorem (e.g., van der Vaart, 1998, Theorem 2.3) it
is sufficient to prove convergence in probability of Lpp(A) and Lceap(A) to 1/2% and
S(d), respectively, since —log, and S~! are continuous functions on Rsq and (0,5(0)),
respectively. The convergence of Lpp(A) or Leap(A) follows from the convergence of
Lpp(i) or Leap(i) for every i € {1,...,n}. Instead of showing convergence of Lpp(7)
we can show convergence of 1/Lpp (i) since x +— 1/x is continuous on R-g.

Convergence in probability of random variables U, to a constant U € R can be
established by proving that

e(6,n)U — g(6,n) < U, < E(6,n)U + G(4,n) (3.6)

holds with probability at least Pr(d,n) for all 0 < 6 < Jp and n > N(J), where
e(6,n), E(6,n) — 1, g(0,n),G(0,n) — 0 as n — oo, § — 0, and Pr(d,n) - 1 as n — oo
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(for fixed §). We obtain an inequality of the type (3.6) for 1/Lpp(i) and Lcap(i) in a
number of steps, which we formulate as separate propositions and lemmas. A central
role will be played by the k-NN radius of x; € D given by

k(%) = max{||z; — x| : i = j in G}.

Furthermore, we will repeatedly encounter a quantity uy,, given by

y B ( k’ >1/d
B\ -1ma)

Note that the conditions on k imply that uy, — 0 as n — oo. All following statements
hold for n € N sufficiently large and ¢ > 0 sufficiently small. The constants c1,...,cg
in Propositions 3.3 and 3.5 and Lemmas 3.8 and 3.11 depend on d, A\g(X), &, finin, and L.

We start by showing that for all sample points z; € D sufficiently distant to the
boundary of X the A-NN radius 7, (z;) is concentrated.
Proposition 3.3 (ry,(z;) is concentrated). There exist c1,ca > 0 such that we have
Ry (x4,6) < rpp(xi) < Rip(i,0) (3.7)

for all z; € D sufficiently distant to OX with probability at least 1 — 2n exp(—c16%k),
where

B 1 o Ukn
a0 = 5 T e (/= DY) Fa T
Rg,n(%ﬁ) = 1 i

(1—08)(1— ca(k/(n — 1))1/d)  f(x;)l/d"

Proof This can be shown by standard concentration arguments. For example, our
proof is very similar to the one of Part 1 of Proposition 30 in von Luxburg et al. (2014).
It uses the Angluin-Valiant-Inequality (Angluin and Valiant, 1979, Proposition 2.4):

Let Z be a binomially distributed random variable and 0 < 8 < 1. Denote by E(Z)

the expectation of Z. Then we have:

1. Pr(Z > (14 B)E(Z)) < exp (—%2 E(Z))
2. Pr(Z < (1-B)E(2)) < exp (-5 E(2))

Set Apn(x;) = Luk,n/(f(a:i)l/dfmm). We fix a sample point z; with distance larger
than
Uk n
fla)t?
from the boundary of X. Then the closed ball B = B(x;,d’(z;)) is fully contained in X.
For y € B we have due to (3.5)

d'(z;) == (1+8)" VA1 + A (7))~

Uk,n

) = S)1 < s =yl < Lol < 15
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and hence
Uk n f(ajl) Lukﬂl _ . .
P2 1@ = D > o) = = ()0 M)

Let Zp be a random variable given as the number of points in B if n — 1 points are
drawn i.i.d. from f. Note that Zp is binomially distributed. We obtain an upper and a
lower bound for its expectation E(Zp) as follows:

B(Zp) = (n— 1) /B F@)de < (n— 1) f(21)(1 + Apn(2:)Aa(B)

= (n =~ D@+ M) (@2)! =
and similarly we obtain
B > T
We have
Pr (rgp(2:) < d'(z;)) = Pr(Zp > k) = Pr <ZB > km) < Pr(Zp > E(Zp)(1 +9)),

and it follows from the Angluin-Valiant-Inequality that

5? 52 k1= Apn(m)
N < a(r:)) < _ < R AT .
Pr (repn(z;) < d'(z;)) <exp < 3 E(ZB)> < exp ( STH51T )\k,n(l‘i)>

It follows because of (3.4) that for n sufficiently large and ¢§ sufficiently small we have

1 Uk,n
T (%) < : 7 = B (i, 6)
(1+8) (14— (b (n = D)1 S

with probability at most exp(—d2k/6).

Analogously, we can prove that

1 UL —
T (i) > : " =i Rpn(x:,9)

(1-4) (1 — e (K (0~ 1))1/d> fla)t/

with probability at most exp(—62k/6) for every xz; with distance larger than

" L — N\ — Uk,n
a"(2;) 1= (1= 6) 741 = A (i)~ )



56 CHAPTER 3. DIMENSIONALITY ESTIMATION

from the boundary of X. Note that we have

L a. (3.8)

Lukn _l/d Uk n
d(z;) < a'(z;) < (1—0)" M4 <1— 7 ) 7

fmin1+1/d fminl/d

Applying a union bound to both events 7y, (x;) < Ry ,,(xi,0) and ry (i) > Rin(2i,0)
and all z; with distance larger than a from the boundary of X yields the statement. W

Note that Ry ,(xi,0), Rgn(zi,6) — 0 as n — oo under the conditions on k. This
convergence is uniform over z; due to (3.4).

The next lemma shows that for nearby sample points z; and z; the k-NN radii
k() and 745 (2;) will not be too different.

Lemma 3.4 (Locally 7y, varies only slightly). Assume the event considered in Propo-
sition 3.3 holds. Then we have for a sample point z; € D sufficiently distant to 0X and
ally € DN B(xs, R p(4,9))
d
P (y) 2 Ry (i, 0) = agn(G)us 1, (3.9)
- d
P (y) < Rin(23,0) + ain (@ 17, (3.10)

where ak,n(é) > 0 converges to a positive constant as n — oo, § — 0, assuming the
conditions on k hold.

Proof The lemma follows from the Lipschitz continuity of f. We have

1 Uk.n 2
(1= 0)(1 = ca(k/(n— 1))1/d) " f(z;)/d < P “Ukn

R (i, 0) =

for n sufficiently large and § sufficiently small due to the conditions on k and (3.4). If
2; has distance larger than a—+2fin "/ Yy, ,, from OX (with a defined in (3.8)), it holds
that any y € DN B(xi, Ryn(z4,0)) has distance larger than a from dX and hence

Ry (4,0) <7rn(y) < Rien(y,0), y € DN B(x, Ry p(wi, 0)).

In order to prove (3.9) and (3.10) it suffices to show that |Rj ,(7;,0) — Ry, (y,0)| <
ak,n(é)ukl:fl/d and | Ry, (24,8) — Rin(y,0)| < ak’n(é)uk%:l/d, respectively. We can write
Ry, (2:,8) = m - f(z;)""" and By ,,(y,6) = m - f(y) /" with m = (1 +6)~'(1 +
ea(k/(n = 1)V "y, and Ryn(i,6) = m' - f(2:)”"* and Repn(y,0) = m’ - f(y)~*
with m’ = (1 —0) 71 (1 — ca(k/(n — 1))V "Ly .

We have

Due to (3.4) and (3.5) we have

‘ fly) = f(x)
f(xi)

< LHy_le < Lﬁk,n(iﬁi,é) < 2Luk,n _.
fmin fmm fminlJrl/d
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and hence f(y) = f(x;)(1 4+ b) with |b| < B < 1 for n sufficiently large. It follows that

1 1 _ (1+b)td -1 _ 1 Bl/d
Flaa)Vd f)Va] | fla) VU + o)V 7 fo (1~ B)Vd
and
m Bl/d m’ Bl/d
Bl 0) = Bunlw 0 < 0 s gy < i — myue
= — m/ Bl/d
’Rk,n(‘rza(s) - Rk,n(ya(s)‘ < fmml/d (1 — B)l/d'
We have
m' BV 1 1 o,  \¢
<
fminl/d (1 - B)l/d N fminl/d (1 - 5)(1 - CQ(k/(n - 1))1/d) <fmin1+1/d>
- 2L11Lk,n e w /A
fmin +1/d "
= apn(O)u,
where ay, ,(6) > 0 converges to a positive constant as n — oo and § — 0. |
Due to the growth conditions on k and (3.4) we have ak,n(é)uk}zl/d € o( By, ,,(z4,9))

and ak,n(é)ukl:fl/d € o(Ryn(7;,0)) as n — oo uniformly with respect to z;.

The next proposition is classical. It states that with high probability in every small
ball in X there is at least one sample point, provided n is large enough.

Proposition 3.5 (Dense sampling lemma). There exist c3,cq > 0 such that for any
0 < vy <eg we have

VeeX Jz, €D |o—zx| <~ (3.11)
with probability at least 1 — c3y~% exp(—cayin).

Proof Our proof essentially coincides with the one of the sampling lemma in the
supplementary material of Tenenbaum et al. (2000). It is based on a simple covering
argument: We begin by covering X’ with a finite family of balls of radius /2. We choose
the sequence of centers p1,p2,... in X in such a way that

j
pi+1 & | By (o).

=1

When this is no longer possible, we are done. The smaller balls B, /4(p;) are all disjoint
since no two pg and p;, k # [, are within distance /2 of each other. Hence we have

number of chosen centers - « - \g <B% (pj)> < Aa(X),
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where we made use of (3.3), and the number of chosen centers is bounded by
Ad(X)

na(})’a

In particular, this shows that our procedure of choosing centers p; stops after a finite

number of steps. Afterwards, every r € X belongs to some ball B; := B, /5(p;j). We will

show that with probability at least 1 — ndzd((ﬁi)d exp(— fminama(/2)%n) every ball B;

number of chosen centers < (3.12)

contains at least one sample point z;. Since the diameter of B; is +, this implies (3.11).
We have

Pr (no ball Bj is empty) = 1 — Pr (some ball B; is empty) > 1 — Z Pr (Bj is empty)
J

Pr (B; is empty) = (1 _ /B f(x)dx>n - (1 o (;)d)n
< exp (—fmmand (g)dn> .

772?512)2)& - exp <_fmi”a77d (;)dn) .

and

Because of (3.12) it follows that

Pr (no ball Bj is empty) > 1 —

We will need the two following simple inequalities.

Lemma 3.6 (Elementary inequalities). Let a,b € R with a > b > 0 and d € N. There
exists a constant C(d) depending only on d such that

(a+b)? < al+ C(d)a®1b, (3.13)
(a—b)? > a? — C(d)a®b. (3.14)
Proof Set C(d) = Z;l:l (;l) =29 — 1. We have
< /4 o 1 /d o
(a+b)?=>" ( .>adﬂbﬂ =a'+) ( .>adﬂbf < a? + C(d)a® b
5 J : J
7=0 7j=1

and
(a—b)?= jz; <d> a?=I(=b) > a? — ; (j) a7y > a? — C(d)a® 'b.
|

The next lemmas are specific to Lpp(i) and Lcap(i), respectively. The following
one shows that Bgp(i,2) indeed corresponds to the Euclidean ball B(z;, 21y ,,(x;)) as we
have claimed in Section 3.2.1. Recall that i — j in G if and only if ||x; — x| < rg ().
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Lemma 3.7 (Geometric argument for Lpp(i): Bsp(i,2) approximates B(x;, 2ry »(x;)).
Assume the events considered in Proposition 3.3 and Proposition 3.5 (with ~y replaced by
€kn) hold. Then we have for a sample point x; € D sufficiently distant to OX and all
xj € D the following implications:

d .o
|zi — 2|l < 2Ry, (2i,6) — akm(é)uk:}:l/ —2en, = dsp(i,j) <2, (3.15)
|25 — 24l| > 2Rin (4, 0) + apn(@)uy ' = dsp(i,§) > 2. (3.16)
Proof Assume that |z; — ;|| < 2Ry ,,(z;,0) — akyn(é)ukl:lrl/d — 2¢kn. In particular, we

have Ry ,(7i,0) > exp. If [|2; — xj|| < Ry, (74,0), either j equals i or z; is connected
to z; according to (3.7) and hence dsp(7,j) < 1. If ||z; — x4]| > Ry, (%,0), consider
the point 2 on the line segment from x; to x; such that [|x; — 2|| = Ry ,,(7,0) — €gn-
Due to the assumption that (3.11) holds (with v replaced by ¢ ,,) there exists a sample
point ; € D with ||z — 2| < €. Then

i =l < llzi = 2] + |2 = @l] < By (3, 6)

and hence z; is connected to z; according to (3.7). Similarly,

g — il < lla; = 2l + llz = 1l < Byn(ai 8) = an (G

such that z; is connected to z; because of z; € B(z;, Rgn(xi,d)) and (3.9). It follows
that dgp(i,7) < 2.

If ||z — ]| > 2Rpn(zi,9) —{—ak,n((s)uk%:l/d, then (3.7) and (3.10) immediately imply
that dgp(i,7) > 2. |

Now we show that 1/Lpp(i) is concentrated around 2%, given that (3.15) and (3.16)
hold.

Lemma 3.8 (1/Lpp(i) is concentrated). There exist functions e(d,n), E(d,n), g(d,n),
G(6,n) with e(d,n), E(6,n) — 1, g(6,n),G(d,n) = 0 as n — 00,5 — 0 and c5 > 0 such
that both probabilities

Pr (LDp(z’)_1 < e(8,n)2¢ — g(6,n) | &; € D sufficiently distant to dX, (3.15) holds) ,

(3.17)
Pr (LDP(Z')_1 > E(6,n)2¢ 4+ G(6,n) | z; € D sufficiently distant to dX, (3.16) holds)

(3.18)
are upper bounded by 2exp(—c562k) for every i € {1,...,n}, assuming that ey, €

o(Ry, (i, 6)) uniformly with respect to x; and (3.15) or (3.16) holds with probability
at least 1/2 for every x; € D sufficiently distant to OX.

Proof We set
2 Uk n,
(1=0)(1 = ca(k/(n = 1)) f,..,1/4

+ apn(8)u, (3.19)

a =
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and

d

- _ n—1 _ L a uk:,n
eOm) =0 =057 (1 Fin >”d<1+5>d<1+@<k/<n—1>>1/d>d’

™
—_

d
_ u
E(ajn):(1+5)n <1+ L d) Nd p] hn Tdyd’
k+1 fmin (1 —8)4(1 — ea(k/(n — 1))1/d)
9(57 n) =
(1- 5)71 -1 - L . 14C(d)29 frnae ak,n(é)ukﬁ_l/d + 2€k7nuk(,i7:1
EAT fuin ) eV (L4 0) 710 ea(k/ (0 = 1) V)T
1
_ d+1/d
(1 + 5)” ! 1+ L a UdC(d)Qd 1fmax akv”(é)uk,n
k+1 Fmin Fonin "V (1= 68)41(1 — co(k/(n — 1))V/d)d=1"

where C(d) = Z;l:l (;l) is the constant from Lemma 3.6. It is straightforward to see
that e(d,n), E(6,n) — 1, g(d,n),G(0,n) — 0 as n — oo, & — 0 under the conditions
on k and the assumption on €. The proof of this lemma is very similar to the one of
Proposition 3.3. We only show the bound for (3.18), the bound for (3.17) can be shown
analogously.

We fix a sample point x; with distance larger than 5 fmm_l/ dukm from the boundary
of X. In particular, x; satisfies the requirements for being “sufficiently distant” to 0X
in the propositions and lemmas above. For n sufficiently large and § sufficiently small
we have a < 5fmm_1/duk,n and the closed ball B = B(x;, 2Ry (i, 6) + akm(&)ukl;l/d)
is fully contained in X. Let Zp be a random variable given as the number of pointé in B
if n — 1 points are drawn i.i.d. from f. Similarly as in the proof of Proposition 3.3 we

obtain
L) sz s (1),

min min

7)< flao) (1 T

for all y € B, and

E(Z5) < (n — 1)f(z) (1 -
(3.13)

< =) (145

(2" Rin (@i, )" + C(d)2* R (i, ) ag (O 7).

— d
a) na (2R (i, 8) + ar (B )

mwn

E(Zg) > (n —1)f(x;) <1 _ L a) 142 Ry, (24, 6) %

We have (k+1)E(6,n)2% + (k+1)G(6,n) —1 > (1+ ) E(Zp) and E(Zp) > k/2 for n
sufficiently large and ¢ sufficiently small. It follows from the Angluin-Valiant-Inequality
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(see the proof of Proposition 3.3) that

Pr(Lpp(i)~' > E(6,1n)2¢ + G(,n) | (3.16) holds) =

B 2
- <’2Pi1)’ > E(6,1)2° + G(d,n) | {z; €D:j € Bsp(i,2)} C B

< 2Pr (’BZPW > E(6,n)2% + G(6,n) and {z; € D: j € Bsp(i,2)} C B)
< 2Pr(Zp > (k+1)E(5,n)2% + (k + 1)G(6,n) — 1)

<2Pr(Zp > (1+6)E(Zp))

< 2exp (—E (Zp )

S QGXP <_56> )

assuming that (3.16) holds with probability at least 1/2. [ ]

We want to proceed similarly for Lcap(i). We need a generic statement about the
intersection of two balls in R?.

Proposition 3.9 (Intersection of two balls). Consider two balls B(M,r) and B(N, s)
in R® with centers M # N € R? and radii r > s > 0, respectively. For their intersection
B(M,r) N B(N,s) it holds that

B(N, s) if ||M—NJ<r-—s,
C(M/I“,T‘*)\,N)UC(N,S,S*||M*N”+>\,M)

B(M,r)N B(N,s) = if m—s<|[M~—NJ|<7r+s,
{Mari2ht o IM-N|=r+s,
O i [M—N[|>r+s,

where A = §||M — N|| + & Hﬁ_?\’\\ > 0 and C(z,r, h,w) denotes a spherical cap of a ball

B(z,r) with height h (0 < h < 2r) and apex on the half-line from z to w. In the second
case, that is if r — s < ||M — N|| < r + s, the two spherical caps are disjoint except for
their shared base.

Proof
e Assume that |M — N|| <r —s. For z € B(N,s) it holds that
le = M| <z =N[+|[N-M[|<s+r—s=r
and hence x € B(M,r). This implies that B(M,r) N B(N,s) = B(N, s).

e Assume that r —s < [|[M — N|| < r + s. We first show that points in the intersection
of the boundaries of the two balls, that is on both of the two spheres described by the
equations ||z — M||?> = r2 and ||z — N||?> = s2, respectively, lie on an affine hyperplane
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that is orthogonal to the line connecting M and N: points = (x1,...,14) € R? in
this intersection satisfy

(:Bl — M1)2 + ...+ (.%'d — Md)2 = 7'2,
(x1 = N1)* + .+ (2a — Na)* = &7,
and by subtracting the second equation from the first one we obtain

r? —s® — || M| + | N]?

xl(Nl—Ml)-f-...—l-l’d(Nd—Md): B

(3.20)

This hyperplane divides R? into two halfspaces, to which we refer as upper halfspace
and lower halfspace using the vector N — M for orientation.

It is not difficult to see that the hyperplane described by (3.20) intersects the line
connecting M and N in the point
N-M

P=M+\—" |
IN — M|

where A\ = 1[|M — N|| + élly\ff_?\fll > 0. It follows that the intersection of the closed
upper halfspace with B(M,r) is given by C(M,r,r — A\, N) and the intersection of
the closed lower halfspace with B(N,s) is given by C(N,s,s — ||M — N| + X\, M).
Clearly, these two spherical caps are disjoint except for their shared base. It remains
to show that C'(M,r,r— X, N) is fully contained in B(N, s) and that C(N, s, s— || M —
N|+ A M) is fully contained in B(M,r): If u € C(M,r,r — X\, N), we can write u as
u =P+ UHN M” + h, where v > 0 and the vector h is orthogonal to N — M. Since

u € B(M,r), we have
lu — M||> = (A+v)* + ||1]|* < 2,
and it follows that

A4
Ju= NP = (-1
N ]

=||N = M|* = 2(A+0)[IN = M| + (A +v)* + ||n||?
<||N = M|]? = 2)\|N — M|| + r*
=N = M|? =[N = M|* = (r* = s*) +1° = s*.

2
)HN—MW+MW

This shows that C'(M,r,r — A, N) C B(N, s). Similarly, we can show that C(V,s, s —
IM — N|| + A, M) € B(M,).

Assume that [|[M — N|| = r + s. It is straightforward to see that M + r”J\N4 %” €

B(M,r)N B(N,s). On the other hand, assume that x € B(M,r) N B(N, s). We have
IM = N[ <[IM—z|+|z—N[|<r+s=|M-N|=|M-z+z-N|, (321)

implying that ||M — z| =7 and ||z — N| = s. Since R? equipped with the Euclidean
norm is strictly convex, (3.21) also implies that there exists ¢ > 0 such that M —z =

c¢(x — N). Tt is easy to see that v = M + TH]]\V/[ %H
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e Assume that ||M — N|| > r + s. Assume that = was an element of B(M,r) N B(N,s).
Then we would have ||z — M| < r and ||z — N|| < s, which yields the contradiction

M = N|| <|[M =zl +[lz = N[ <r+s.

The following Lemmas 3.10 and 3.11 are similar to Lemmas 3.7 and 3.8, respectively.

Lemma 3.10 (Geometric argument for Loap(i): Bsp(i,1) N Bsp(jo, 1) approximates
union of spherical caps). Assume the event considered in Proposition 3.3 holds. Then
we have for a sample point x; € D sufficiently distant to 0X and all j € {1,...,n}
with © — j the following implications:

s — jll < apn(O)u, V" = Blai, R)N B(x;,T) = B(x;,T), (3.22)

|z — 24l > ak,n(5)uk?:1/d = B(z;, R) N B(z;,T) 2
C(%’I, h(flf“ xj)v x]) U C(wjazu h('ru .’L']), xl)7
(3.23)

where h(x;,zj) =T — $|lz; — x| and we abbreviate

R =Ry ,(7,0), IT'=R- ak,n(é)ukﬁl/d'

As in Proposition 3.9, C(z,r, h,w) denotes a spherical cap of a ball B(z,r) with height h
(0 < h < 2r) and apex on the half-line from z to w. In (3.23) the two spherical caps are
disjoint except for their shared base.

Furthermore, additionally assuming that the event considered in Proposition 3.5
with v replaced by ey holds and ey, € o(Ry,(i,0)) uniformly with respect to x;,
there exists a sample point x; with ¢ — | such that

B(ZCZ,R) N B(.TZ,T) - C(xi,T, h,x;) U C(xl,T, h,x;), (3.24)
where h =T — 3(R — 2ey,,) and we abbreviate
R=TRun(r:,0), T=R+ap.(8)u "

Proof If i — j, we have ||z; — z;|| < Rpn(;,0) according to (3.7). For n sufficiently
large and ¢ sufficiently small it holds that

Rin(wi,0) < 2Ry, (24, 8) — 2ap,0(0)u, T/ = 2T

for all x; sufficiently distant to 0X', and the implications (3.22) and (3.23) immediately
follow from B(z;, R) N B(z;,T) 2 B(z;, T) N B(z;,T) and Proposition 3.9.

Assuming that ey, € o(Ry, ,(74,0)) uniformly with respect to z; we have 2e;,, < R
for n sufficiently large. Let z € R? be any point with ||z; — 2| = R — &5,,. Due to the
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assumption that (3.11) holds (with v replaced by €y, ,,) there exists a sample point z; € D
with ||z — 27]| < g4 It follows that

R —2ep, <||z; — 2] <R, (3.25)

and according to (3.7) we have i — [. Because of B(z;, R) N B(x;,T) C B(x;,T) N

B(z;,T), (3.24) immediately follows from Proposition 3.9 and (3.25). [ |

Lemma 3.11 (Lcap(4) is concentrated). There exist functions €'(d,n), E'(6,n), ¢'(d,n),
G'(6,n) with €'(6,n), E'(6,n) — 1, ¢'(6,n),G'(6,n) = 0 as n — o0, — 0 and cg > 0
such that the probabilities

Pr (Leap(i) < €'(6,n)S(d) — ¢'(6,n) | z; € D sufficiently distant to X, the event
considered in Proposition 3.3 holds, Vj € {1,...,n} with i — j the

implications (3.22) and (3.23) hold),
(3.26)

Pr (Leap(i) > E'(6,n)S(d) + G'(6,n) | z; € D sufficiently distant to dX, the event
considered in Proposition 3.8 holds, 3x; € D with i — | and (3.24))
(3.27)

are upper bounded by 2k exp(—ced?k) and 2exp(—cgd?k), respectively, for every i €
{1,...,n}, assuming that ey, € o(RBy, ,(7:,9)) uniformly with respect to x; and the prob-
ability of the event considered in Proposition 3.3 is larger than 1/2.

Proof According to Li (2011), the volume A\g(C(z, 7, h,w)) of a spherical cap of a ball
B(z,r) C R? with height h is given by (independently of the location of the apex)

\ (C( L )) %ndrdlzrhgﬂ (%7 %) if 0<h<r, (3.28)

z,r hyw)) = r )
d nar® — %ndrdIQTh_hg (%, %) if r<h<2r
2rhoh?

I.(a,b) for 0 < x < 1 and a,b > 0 denotes the regularized incomplete beta function,
which is given by

1 x
I(a,b) = 1 —t)Pt dt
(@b) = o | A=t
where B(a,b) > 0 denotes the beta function. Note that I.(a,b) as a function of x is
monotonically increasing with Iy(a,b) = 0 and I;(a,b) = 1, and recall that S(d) =
I3/4((d+1)/2,1/2). We have 0 < S(d) <1 for d > 0. For —3/4 <z < 1/4 we set

1 max{%7%+$}
F@) = sras /2172 /min{g,z+m}

We have F(x) > 0, F(0) =0, F(x) > 0as z — 0, and F(x1) < F(z2) for 0 < 21 <
xo < 1/4 and F(x1) > F(x9) for —3/4 < x1 < x9 < 0.

t(d+1)/271(1 - t)fl/Z dt.
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We set

_ a (14 0)%(1+ ca(k/(n — 1)V/)?
t(d,n) =1— 4fmax1/dak,n(6)uk,n - (1-06)2(1 — co(k/(n — 1))1/55)27

1/d fmaxl/dgk n
T(,n) = fmaxl/dak,n(é)ukn + ui’_i_
' k,n

fmaxl/d

(==t : =)
Fnin /4 N (L= 0)(1 = ca(k/(n = 1))V9) (14 6)(1+ co(k/(n — 1))1/9)

and
/ . n—2 L ukc,ln
) =00 (1 ) W e
[ e O A Uy
R e (s ) Kl rer v e e
/ . n—2 L ukc,ln
o) =0 =0 5 (1= 7o) i i
|:F(t(5, n)) + Mc(d)ak,n(d)uk%d} )
Gl = ot Bom) [F (T(6,m)) + ]%cwm,n(é)u;ﬂ ,

where C'(d) = Z;l:l (‘;) as in Lemma 3.6 and a is defined in (3.19). It is straightforward
to see that ¢/'(d,n), E'(6,n) — 1, ¢'(0,n),G'(0,n) — 0 as n — 00,6 — 0 under the con-

ditions on k and the assumption on &y, ;.

As in the proof of Lemma 3.8 we fix a sample point z; with diﬁance larger than
5 fmmfl/ dukm from the boundary of X. Then for every z in B(z;, R) the closed ball

B(z,T) is fully contained in B = B(w;, 2Ry, n(2;,6) + akjn((S)ukl:l/d) C X, where we use
the notation introduced in Lemma 3.10. From the proof of Lemma 3.8 we obtain

L
f min

<) (1) Wz s (1-7a) )

— a
fmin
for all y € B.

We begin with showing the upper bound for (3.27). We have

Pr (Lcap(i) > E'(6,n)S(d) + G'(8,n) | the event considered in Proposition 3.3 holds,
Jz; € D with i — [ and (3.24))
< Pr (|Bsp(i, 1) N Bsp(l,1)|/(k 4+ 1) > E'(6,n)S(d) + G'(d,n) | the event
considered in Proposition 3.3 holds, 3z; € D with ¢ — [ and (3.24)) .



66 CHAPTER 3. DIMENSIONALITY ESTIMATION

After fixing a sample point x; with ||z; — ;|| < R, i — [, and (3.24) we obtain

Pr(|Bsp(i,1) N Bsp(l,1)| > (k + 1)E'(6,n)S(d) + (k + 1)G'(6,n) | the event
considered in Proposition 3.3 holds)
< 2Pr (|Bsp(i,1) N Bsp(l,1)] > (k+1)E'(6,n)S(d) + (k + 1)G' (6, n) and
Tk,n(xi) < Ea Tk,n(xl) < T) )

where we assume that the probability of the event considered in Proposition 3.3 is larger
than 1/2.

Let Z¢ be a random variable given as the number of points in C = C(z;, T, h, ;) U
C(x,T,h,z;) C B if n — 2 points are drawn i.i.d. from f. We have

Pr (|Bsp(i, 1) N Bsp(l, 1)| > (k: + 1)E’((5, n)S(d) + (k‘ + 1)G/(5, ’I’L) and
T (i) < R, rpn(z) <T)
< Pr(Ze > (k+1)E'(6,n)S(d) + (k+ 1)G'(6,n) — 2).

Note that h =T — (R — 2e,,) < T. Due to (3.28) and (3.29) we have
L _\ =+ d+1 1
E(Zc) < (n—2)f(zi) (1 + Foim a) nal’ 172732/“@%”*5%@ (2’ 2)
~ (=27 (14

72
L _ —d
a T
fmin ) '1d
(3.13)

< =2 (14 ;) wa [+ COR

min

T _ R o — E2
S(d)+F<(T R)/4;2R b ’”‘)]

d—1

ak,n(5) kl:l/d}

o i
Sk ((T )1+ By k)]
T
and
E(Ze) > (n - 2)f () (1— _— >1ndT 5(d).

It is straightforward to see that (k4 1)E'(0,n)S(d) + (k+1)G'(6,n) —2 > (14+6) E(Z¢)
and E(Z¢) > S(d)k/4 for n sufficiently large and ¢ sufficiently small, and from here the
proof is analogous to the one of Lemma 3.8.

We now show the upper bound for (3.26). We have

Pr (Leap(i) < €'(6,n)S(d) — ¢'(6,n) | the event considered in Proposition 3.3 holds,
Vje{l,...,n} with i — j the implications (3.22) and (3.23) hold)

k
< Z (|Bsp(i,1) N Bsp(i(m),1)|/(k + 1) < €'(5,n)S(d) — ¢g'(6,n) | the event

considered in Proposition 3.3 holds, Vj € {1,...,n} withi — j
the implications (3.22) and (3.23) hold),
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where z;(,,) denotes the m-th nearest neighbor of z;. We have

Pr (|Bsp(i,1) N Bsp(i(m),1)|/(k+1) < €'(6,n)S(d) — ¢'(5,n) | the event considered
in Proposition 3.3 holds, Vj with ¢ — j the implications (3.22) and (3.23) hold)
< 2Pr (|Bsp(i,1) N Bgp(i(m),1)|/(k + 1) < €'(6,n)S(d) — ¢'(6,n) and
Trn (%) > B, Thn (Zigmy) = L | |27 — 2m)ll < R, the implications (3.22)
and (3.23) hold for ; and ; = 2;(,)) ,

where we assume that the probability of the event considered in Proposition 3.3 is larger
than 1/2.

After fixing a sample point x;(,,) with ||z; — ;)| < R and such that the implica-
tions (3.22) and (3.23) hold for z; and x; = x;(,,) we obtain

+1) < e’(é n)S(d) — ¢'(§,n) and
) = R v (@in)) = T)
< Pr(Zc < (k+1)€(6,n)S(d) — (k + 1)g'(6,n)),

where Z¢ is a random variable given as the number of points in

o I B@imy T 2 = wigm | < arn(B)ugs ",
Cl@i, L, i, Tigm) ), Tigm)) U C (@i(m), Ly M2, Tigm) ), i) otherwise

if n — 2 points are drawn i.i.d. from f. Recall from Lemma 3.10 that in the second case
the two spherical caps are disjoint except for their shared base and note that C' C B. It is
elementary to show that in both cases (1—-0) E(Z¢) > (k+1)e’'(6,n)S(d)— (k+1)g'(6,n)
and E(Z¢) > S(d)k/4 for n sufficiently large and ¢ sufficiently small (in the second

case we have to distinguish the two cases akyn(d)u,::l/d < ||zi = 2yl < T and T <

|5 — (|| < R). Similarly as in the proof of Proposition 3.3 or Lemma 3.8 we obtain

2
Pdaxg%+namnwwy4k+n¢@n»g@m<_ﬂ€5k>7

which implies that (3.26) is upper bounded by 2k exp(—S(d)§%k/8). [ ]

Now we can prove Theorem 3.2.

Proof of Theorem 3.2: We begin with showing convergence of Lpp(i) and Lcap(7)
for every prespecified i € {1,...,n}. We choose ey, = (k'/n)'/? for some k' = k'(n)
satisfying k' € o(k) and logn € o(k’). In particular, this implies e, € o(Ry,,(2i,0))
as n — oo uniformly with respect to x; due to (3.4). In all the statements above, the
assumption of the sample point z; € D being “sufficiently distant” to 0X is satisfied
whenever z; has distance larger than 5 fmm_l/ duk’n from 0X. This quantity tends to 0 as
n — 0o. Due to (3.2) and a probability measure being continuous from above, it follows
that there exists b(n) with b(n) — 0 as n — oo such that the probability of x; being not
sufficiently distant to X is upper bounded by b(n). Applying a simple union bound, we
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see that with probability at least 1 — 2n exp(—c16%k) — c3(n/k') exp(—csk’) — b(n) both
the events of Proposition 3.3 and Proposition 3.5 (with ~ replaced by ¢ ,,) hold and z;
is sufficiently distant to 0X. It follows from Lemma 3.8 that

Pr (e(a, n)2% — g(6,n) < Lpp(i)~! < E(3,n)2¢ + G(5, n)) >
1 — 4dexp(—c56%k) — dnexp(—c10%k) — 203% exp(—cqk’) — 2b(n).
Similarly, it follows from Lemma 3.11 that
Pr(e'(6,n)S(d) — ¢'(8,n) < Leap(i) < E'(6,n)S(d) + G'(0,n)) >

1 — 4k exp(—cgd%k) — 4nexp(—c16%k) — 203? exp(—cqk’) — 2b(n).
Both expressions on the right-hand side tend to 1 as n — oo for fixed §, which shows that
1/Lpp(i) converges in probability to 2¢ and Lcap(i) converges in probability to S(d).
Since x ~ 1/z is continuous on R, it follows that Lpp(i) converges to 1/2%.

It remains to show that the averaged statistics Lpp(A) and Lcap(A), for any pre-
specified A C {1,...,n}, converge in probability to 1/2¢ and S(d), respectively. We only
prove the claim for Lpp(A). Proving the claim for Loap(A) works in the same way.

We have 0 < Lpp(i) = |Bsp (4, 1)|/\Bsp(z 2)| <1, and this implies that Lpp(i) does
not only converge in probability to 1/2¢, but also in quadratic mean (e.g., Hajek, 2015,
Proposition 2.7). In particular, the expectation of Lpp(i) converges to 1/2¢ and its
variance tends to zero, that is

. 1 .
E(Lpp (i) — 5d Var(Lpp(i)) — 0 as n — oc.

The distribution of LDp( /) is the same for every i€{l,...,n}, and it follows that

1
E(Lpp(A =1l ZE Lpp(i =l ZE Lpp(1)) = B(Lpp(1) = 5
€A €A
VaI‘(LDp(A)) S W ZV&I‘ LDP Z \/Var LDP \/Var LDP( ))
i€A i#jEA

|A|2 ZVar Lpp(1 Z v/ Var(Lpp(1))y/Var(Lpp(1))

ieA i#jeA
= Var(Lpp(1)) — 0.

This implies that Lpp(A) converges in quadratic mean to 1/2% and hence also in prob-
ability (e.g., Hajek, 2015, Proposition 2.7). [ |

3.4 Experiments

In this section we present a number of experiments to evaluate our estimators. In
particular, these experiments confirm our finding of Section 3.2.3 that Ecap performs
better than Epp and should be preferred in practice.
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3.4.1 A first comparison with estimators from the literature

To get a first impression, we compared our estimators Epp(V) and Ecap(V) to three
standard estimators from the literature, all of them relying on cardinal distance infor-
mation: The recent estimator MLE of Levina and Bickel (2004), which seems to be state
of the art, and two widely used classical estimators: the correlation dimension-estimator
CorrDim (Grassberger and Procaccia, 1983) and the estimator RegDim. MLE is the
average of estimators my for several values of k& € N, where 1y in turn is the average
of local maximum likelihood estimators 7y (z;) that estimate the intrinsic dimension of
the data set around a data point x; based on the distances between x; and its k nearest
neighbors. CorrDim estimates the dimension by regressing log C,. on log r over a suitable
range of r > 0, where

crzn(j_l)z S 1 {flzi — ajlljp < 7}

i=1 j=i+1

is the normalized number of pairs of data points with distance not more than r from
each other. Similarly, RegDim works by regressing log Ry on log k, where

n

1
Ry = — n\Lq
k nirk,(w)

=1

is the average k-NN radius of the data points. This is a slightly simplified version of
the algorithm suggested by Pettis et al. (1979). Since MLE, CorrDim, and RegDim
(and also Epp) yield real-valued estimates of the intrinsic dimension, we implemented
Ecap as to provide a real-valued estimate too. To this end we used a lookup table of
argument-value pairs of S with mesh width 0.01 (compare with Section 3.2.4).

For several artificial and real data sets, Table 3.1 shows the estimated dimensions
for the various estimators. All considered estimators require to set some parameters: a
single parameter k for Epp and Ecap and two parameters ki, ko for MLE, CorrDim,
and RegDim. For MLE these parameters determine the range for averaging over my
and for CorrDim and RegDim the range for regressing (for CorrDim the range is given
as [Tky,---,Tky), Where r; denotes the i-th smallest entry in the distance matrix of the
data set). For all experiments except (9) we set the parameters for MLE and RegDim
as k1 = 10, ko = 20 and for CorrDim as k1 = 10, ko = 100 like Levina and Bickel (2004),
who also performed the experiments (2), (8), and (9). In experiment (9), like Levina and
Bickel, we changed the parameters for CorrDim to k; = 500, ko = 1000 since the original
choice leads to the obviously wrong result of an estimated dimension of 19.7. For Epp
and Ecap we simply set k = 15 if the size of the data set is less than or equal to 1000
and k = 20 otherwise (in which case the size of the data set is 5000 or slightly greater).

For the artificial data sets the interpretation of the results is straightforward. The
naive estimator Epp (V') only gives reasonable results for the experiments (1) and (2),
where the dimension of the data set is small. It is highly biased in the higher-dimensional
cases. This confirms our arguments of Section 3.2.3. The estimator Fcap(V) performs
comparably to the estimators MLE, CorrDim, and RegDim. This is quite surprising,
given that Ecap (V') only gets the directed, but unweighted k-NN graph on a data set as
input, whereas MLE, CorrDim, and RegDim get to see cardinal distance information.



Table 3.1: Estimated dimensions for several data sets. n denotes the size of the data set and d its true dimension.

Our estimators
(k-NN graph)

Standard estimators
(distance values)

n Distribution / Data set d Ecapr(V) Epp(V) MLE CorrDim RegDim
Artificial data sets (results averaged over 100 runs, £S7'D)
(1) || 1000 | uniform on a helix in R? 1/ 1.00 (£0.05) | 0.88 (£0.01) || 1.00 (£0.01) | 1.00 (£0.11) | 0.99 (£0.01)
(2) || 1000 | Swiss roll in R? 2 || 2.14 (£0.05) | 1.44 (£0.01) || 1.94 (£0.02) | 1.99 (£0.23) | 1.87 (£0.04)
(3) || 1000 | N5(0,1) 5 || 5.33 (£0.07) | 2.47 (£0.01) || 5.00 (£0.04) | 4.91 (£0.56) | 4.86 (£0.05)
(4) || 1000 | uniform on sphere S7 C R® 7 || 5.88 (£0.06) | 2.82 (+0.01) || 6.53 (+0.07) | 6.85 (£0.66) | 6.23 (+0.09)
(5) || 5000 | uniform on sphere S7 C R® 7 || 6.85 (£0.03) | 3.21 (£0.00) || 6.72 (+0.03) | 6.95 (£0.98) | 6.46 (+0.04)
(6) || 1000 |uniform on [0, 1]'2 12| 7.74 (£0.08) | 3.04 (£0.01) || 9.32 (£0.10) |10.66 (£1.18)| 8.78 (£0.10)
(7) || 5000 | uniform on [0, 1]'2 12| 9.24 (£0.04) | 3.50 (£0.00) || 9.76 (£0.05) [10.83 (£1.49) | 9.26 (£0.05)
Real data sets (D = dimension of observation space)
(8) || 698 |Isomap faces, D = 4096 = 64> ? 3.04 1.73 3.99 3.53 4.22
(9) || 481 |Hands, D = 245760 ? 1.27 0.95 2.88 3.92 2.56
(10) || 7141 | MNIST digit 3, D = 784 = 282 | ? 8.92 3.21 15.95 14.17 14.75
(11) || 6824 | MNIST digit 4, D = 784 = 282 | ? 8.13 3.07 14.44 9.54 13.16
(12) || 6313 | MNIST digit 5, D = 784 = 282 | ? 8.40 3.12 15.55 18 14.28
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Figure 3.4: The estimates from iy, Epp(V), and Ecap(V) as a function of k for 1000 points
from a uniform distribution on the hypersphere S? C R?® (left) and for 2000 points from a 7-
dim Gaussian N7(0,7) (right). The curves show the average over 100 runs of the experiment
together with the minimum and the maximum of the 100 runs. The solid black lines show the
true dimension.

For the real data sets the interpretation is not so obvious since the true intrinsic
dimensions are unknown. Although the Isomap faces data set, consisting of images of
the face of a sculpture observed under different pose and lighting conditions, is usually
considered to be 3-dimensional, Levina and Bickel (2004) argue that its dimension should
be higher because of the fact that we only deal with 2-dimensional projections of the
face. Similarly, according to Levina and Bickel the intrinsic dimension of the Hands
data set, which is a sequence of snapshots of a hand moving along a one-dimensional
curve, should be higher than one. In any case, the results of Ecap(V) do not seem to be
unreasonable, in particular if one additionally compares them to the results obtained by
Hein and Audibert (2005). In their experiments, Hein and Audibert provide a dimension
estimate of three for the Isomap faces data set and estimates of 14, 13, and 12 for the
sets of MNIST digits 3, 4, and 5, respectively.

3.4.2 Our estimators in detail

We performed experiments to investigate in artificial data sets how our estimators behave
with respect to the choice of the parameter k, the sample size n, the true intrinsic
dimension d, the presence of noise, and the size of A. As competitor we chose the
state-of-the-art estimator m;. Note that m; is also based on the k nearest neighbors of
data points, but explicitly uses distance values. Because our estimators do not get any
cardinal distance information, we cannot expect Epp and Ecap to perform as well as
my, but consider the latter as a benchmark. In their paper, Levina and Bickel (2004)
suggest to average over my for a range of k (yielding the estimator MLE) in order to
reduce the risk of choosing a bad value for it. In principle, this could also be done with
our estimators, but in our setting this would require additional ordinal data as input,
and so we do not want to pursue this idea any further.

Dependence on k

Figure 3.4 shows the estimates obtained from the estimators 7y, Epp(V'), and Ecap(V)
as a function of the parameter k. In the experiment shown in the left plot the data set
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Table 3.2: Estimated dimensions for n points from a 7-dim Gaussian N7(0,I) (average over 10
data sets, £ST'D). R denotes a random choice (without replacement) of 10 vertices.

; | Ecar(R) | Epp(R) }

n=5-10%, k=500 |6.77 (£0.19)|4.36 (+£0.01)
n=>5-10° k= 1000|7.58 (£0.12)|5.01 (40.01)
n=>5-10% k = 25006.99 (£+0.13)|4.90 (£0.02)
n=>5-105 k=3000|7.77 (£0.11) | 5.48 (40.01)
n=>5-105 k=8000|7.44 (£0.14)|5.41 (+0.01)
n=5-107, k = 5000|7.95 (£0.20) | 5.84 (+0.02)]

consists of 1000 points sampled from a uniform distribution on the hypersphere S? C R3.
We can see that my performs best and yields a perfect estimate for all values of k£ in
the range of consideration. Our estimators perform well and yield a correct result after
rounding for a broad range of k too. The right plot deals with 2000 points from a 7-
dimensional Gaussian N7(0, ). In this higher-dimensional case the situation is different:
while Ecap(V) still performs reasonably and yields a correct result, at least for a not
too small range of k, Epp(V) constantly underestimates the dimension. This confirms
our findings of Section 3.2.3.

Dependence on the sample size n

As we have proved in Section 3.3, both Ecap and Epp converge to the true dimension of
the data set as n — oo if k£ is chosen appropriately. In Table 3.2 we show the estimates
from Ecap(R) and Epp(R) for increasing sample size n in the case of data points that
are sampled from a 7-dimensional Gaussian N7(0, ). Here R denotes a random subset
of V' containing 10 vertices chosen uniformly at random without replacement. We can
see that for Epp the convergence is painfully slow. Even for n = 5- 107 sample points
it still underestimates the dimension. Ecap needs a lot fewer sample points in order
to give a valuable result as we have seen already in the previous experiment. However,
in Table 3.2 Ecap has a tendency to slightly “overshoot”, which is a consequence of a
suboptimal choice of k.

Bias with respect to the true dimension

The left plot of Figure 3.5 shows the estimates from the estimators 7y, Epp(V), and
Ecap(V) as a function of the true dimension d when the data set consists of 5000 points
from a d-dimensional Gaussian Ny(0,). The parameter k was set to 20. We can see
that as the true dimension d increases, the property of underestimating the dimension
of Epp is shared by Ecap and even by 1y (although to a much slighter extent).
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Figure 3.5: Left: The estimates from 7hy, Epp(V), and Fcap(V) as a function of the true
dimension d (solid black line) for 5000 points from a d-dim Gaussian Ng4(0,7). Right: The
estimates as a function of the noise level o for 5000 points from U(0,1)* x Ng(0,01). In both
experiments k was set to 20.

Noisy data

In the right plot of Figure 3.5 we can see the estimated dimensions as a function of the
noise level o for 5000 points drawn from U(0,1)* x Ng(0,01). Here U(0,1) denotes a
uniform distribution on the unit interval. As in the previous experiment, k was set to 20.
When o is small, the last six components of the data points can be considered as noise
and the dimension of the data set should be four. As o increases, the noise level gets
so high that the data set actually should be considered as 10-dimensional. Finally, the
role of the “true data” and the noise gets inverted, the first four components of the data
points are dominated by the six last ones and considered as noise, hence the dimension
should be 6. This behavior is reflected by the estimates from all three estimators under
consideration. However, again the performance of Epp(V) is very poor, completely
failing to correctly determine either of the various dimensions.

Variance depending on |A|

Finally, we study the variance of our estimators depending on the size of A. In this
experiment we consider data sets consisting of 1000 points drawn from a uniform distri-
bution on the hypersphere S? C R3, but similar observations hold for other data sets as
well. We set k = 15. Figure 3.6 shows box plots of 10000 realizations of Epp(A) (1st
plot) or Ecap(A) (2nd plot) with |A| = 10, |A| = 50, or |A| = 1000 (i.e., A = V). For
every realization we created a new data set and A was chosen uniformly at random with-
out replacement (when |A| = 10 or |A| = 50). We see that the estimates are the more
concentrated the larger the size of A as expected. The third plot of Figure 3.6 shows
the squared coefficient of variation CV? of 10000 realizations of Epp(A) and Ecap(A),
respectively, as a function of |A|. The squared coefficient of variation is the ratio of the
variance to the squared mean. For the whole range of |A|, CV? is smaller for Epp(A)
than for Fcap(A). However, recall that Fpp(A) has a larger bias (this can also be seen
from the box plots). The variance of Ecap(A) decreases almost like 1/|A| over the whole
range of |A| as if the local statistics Lcap(i) were independent among ¢ € V. For small
values of |A| this may be expected since then it is likely that most sample points x;
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Figure 3.6: 1st & 2nd plot: Box plots of 10000 realizations of Epp(A) and Ecap(A), respec-
tively, for various values of |A|. 3rd plot: The squared coefficient of variation of 10000 realizations
of Epp(A) and FEcap(A), respectively, as a function of |A|. The green curves are proportional
to 1/|A|. The considered data sets consist of 1000 points from a uniform distribution on the
hypersphere S2 C R3, and we set k = 15.

and x; with 4,5 € A are far apart, in which case Lcap(i) and Leap(j) are effectively
independent. The same argument is true for Epp(A), but compared to Lcap(i) and
Lcap(j), x; and x; have to be further apart in order that Lpp(i) and Lpp(j) are ef-
fectively independent since these statistics are based on larger neighborhoods. For this
reason the variance of Ecap(A) decreases like 1/]A| only in a range of very small values
of |A|, but does not significantly decline anymore in a range of large values.

3.5 Discussion

In this chapter we have introduced two estimators for the intrinsic dimension of a data
set that require only the directed, but unweighted k-nearest neighbor graph on the data
set as input. In fact, for producing an estimate of the intrinsic dimension locally around
a data point x; we do not need the whole graph, but knowledge of the k nearest neighbors
of z; and these neighbors’ neighbors is sufficient. Although dimensionality estimation is
a well-studied problem with a long history, all existing methods require cardinal distance
information about the data set as input. Our estimators Epp and Ecap are the first
ones that are based on only ordinal data. Under some mild regularity assumptions, we
have proved that both our estimators are statistically consistent, that is they converge
in probability to the true dimension as the number of data points, which are assumed
to be sampled from some probability space, tends to infinity. In combination with our
results of Chapter 2 our consistency result allows us to claim that abundant ordinal
data of the type (1.1) about a Euclidean data set asymptotically contains all cardinal
distance information up to rescaling, even when the intrinsic dimension of the data set is
unknown. We provided theoretical evidence that our estimator Ecap might be superior
to our estimator Epp, and this finding has been clearly confirmed by our experiments.
There is an obvious follow-up question to our work. It is similar to one of the
questions raised in Section 2.5 when we discussed our results about the asymptotic
uniqueness of ordinal embeddings: do we really need knowledge of the k nearest neighbors
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of some of the data points to be able to estimate the dimension of a data set, or would
other types of ordinal data (with less information content—compare with Section 1.3)
suffice as well? More generally, which types of ordinal data require which number of
corresponding ordinal constraints such that we can come up with a consistent estimator
based on only these constraints? Providing a strategy for reliably estimating the intrinsic
dimension of a data set based on whatever ordinal distance information is available
would be valuable for working with ordinal data in practice: when following an ordinal
embedding approach (compare with Section 1.4) one has to choose the dimension of the
space of the embedding, and one cannot expect the ordinal embedding to accurately
represent a data set if the embedding dimension is chosen smaller than the intrinsic
dimension of the data set. If the data points do not lie on a manifold, but rather “fill
up” one or more regions of a Kuclidean space, the intrinsic dimension might even be the
optimal choice for the embedding dimension. Note that existing strategies for choosing
the dimension of the space of an ordinal embedding are only heuristic. They consist
of computing ordinal embeddings for various dimensions d. Then one can consider
the curve that shows the values of the stress function at the computed embeddings
over d and the final dimension is chosen by looking for an elbow in this curve (Kruskal,
1964a). Alternatively, one can choose the dimension of the ordinal embedding that best
reflects a part of the ordinal data that was kept as a validation set (van der Maaten and
Weinberger, 2012).
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Chapter 4

Lens depth function and k-relative
neighborhood graph: versatile
tools for ordinal data analysis

Up to now, the main approach to solve a machine learning problem in a setting of ordinal
distance information is to construct an ordinal embedding of the data set (compare with
Section 1.4) and to solve the problem on the embedding using an algorithm for vector-
valued data. However, such a two-step approach comes with a number of drawbacks in
practice:

e All existing methods for ordinal embedding are based on numerical optimization.
Their objective functions are not convex with respect to the points of the embedding,
and hence optimizing with respect to the points directly involves the risk of finding
only a suboptimal solution. In this case, the optimization process usually starts from
a random initialization of the embedding and the ordinal embedding algorithm is non-
deterministic. Some objective functions (e.g., the ones in the algorithms by Agarwal
et al., 2007, Shaw and Jebara, 2009, or in one of the two algorithms proposed by van der
Maaten and Weinberger, 2012) can be rephrased as convex functions of the Gram
matrix of the embedding. This usually leads to a semidefinite program with trace
regularization for the Gram matrix, from which the ordinal embedding is obtained via
a singular value decomposition. Trace regularization is used as an approximation for
the matrix rank in order to obtain a low-rank Gram matrix, and this again involves
the risk of finding only a suboptimal solution.

e Regardless whether optimizing with respect to the points or the Gram matrix of the
ordinal embedding, the considered optimization problems are expensive. For none of
the existing ordinal embedding algorithms theoretical bounds for their complexity are
available in the literature, but it is widely known that they are rather slow and not
appropriate when dealing with large data sets and/or many ordinal constraints. We
will also see this in the experiments of this chapter in Section 4.5.

e All ordinal embedding algorithms require to set parameters (besides the usual param-
eters required for numerical optimization): Most importantly, one has to choose the

77
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dimension of the space of the embedding—or a weight factor for the trace regular-
ization of the Gram matrix that governs the dimension. The existing strategies for
choosing the embedding dimension come without any theoretical guarantees (compare
with Section 3.5). A bad choice might have severe implications, but this has not been
seriously studied yet. Some algorithms (e.g., the one by Tamuz et al., 2011) require to
choose additional model parameters, for which the consequences of a bad choice are
not known either.

All these are strong arguments for aiming to solve machine learning problems in a setting
of ordinal distance information directly, that is without constructing an ordinal embed-
ding as an intermediate step. This is also in accordance with Vapnik’s main principle for
solving problems using a restricted amount of information, which says: “when solving
a given problem, try to avoid solving a more general problem as an intermediate step”
(Vapnik, 1998, Section 1.9).

In this chapter we propose algorithms for the problems of medoid estimation, outlier
identification, classification, and clustering when given only a collection of statements of
the kind () (compare with Section 1.3) for a data set. Our algorithms do not construct
an ordinal embedding as an intermediate step. They rather use the ordinal data to
estimate the lens depth function and the k-relative neighborhood graph on the data set.
These objects come from multivariate statistics and computer vision, respectively, and
have been successfully used in machine learning before. Our algorithms are simple, are
much faster than an ordinal embedding approach and avoid some of its other drawbacks,
and can easily and highly efficiently be parallelized.

4.1 Setup for Chapter 4 and a closer look at statements of
the kind ()

We assume to be given an arbitrary collection S of statements of the kind (x) for some
data set D. Recall from Section 1.3 that a statement of the kind () reads as

Object A is the most central object within the triple of objects (A, B, C), (%)
where (A, B, () is a triple of pairwise distinct objects in D, and that this means that
(«(A,B) <uB,C)) N («(A,C)<uB,0)). (4.1)

For simplicity, in this chapter we assume that there are no ties in the total order of all
dissimilarities between distinct objects in D, and hence there is always a unique most
central object within a triple of objects. From (4.1) we see that the most central data
point within a triple of data points is the data point opposite to the longest side in the
triangle spanned by the three data points. An illustration of this can be seen on the left
side of Figure 4.1. Since (4.1) is equivalent to

(t(A, B) + 1(A,C)) < (B, A) + 1(B,C)) A ((A, B) + (A, C)) < (u(C, A) + (C, B)),

object A being the most central object within (A, B,C) is equivalent to A being the
medoid of {A, B,C} (see Section 4.2.1 if you want to recall the definition of a medoid).
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Figure 4.1: Illustration of the meaning of statement (x). Left: We have (A, B) < «(A,C) <
t(B,C), and hence A is the most central data point within (A4, B, C). Right: Within the three
cars shown at the top, the off-road vehicle shown at the bottom a second time is the most central
or best representative one.!

Intuitively, we can find the most central object within a triple by looking for the best
representative of the triple. This allows us to easily collect statements of the kind (%)
via crowdsourcing. Consider the example of a triple of cars consisting of a sports car,
a fire truck, and an off-road vehicle shown on the right side of Figure 4.1: Obviously,
the sports car and the fire truck are rather different, but the off-road vehicle is not so
different from either of them. Hence, the off-road vehicle can most likely be taken for a
representative of the three cars and is the most central object within the triple.

At this point we do not make any assumptions on how S is related to the set of
all statements, that is the set of statements informing about the most central object
within every possible triple (e.g., sampled uniformly at random). However, we need to
make some assumptions if we want to provide a theoretical justification for our proposed
algorithms (compare with Section 4.2). Statements might be repeatedly present in S.
More importantly, we allow S to be noisy and inconsistent (compare with Section 1.3).

4.2 Lens depth function and k-relative neighborhood graph
and motivation for our algorithms

Ordinal distance information of the kind () has the attractive property that it is inti-
mately related to the lens depth function and the k-relative neighborhood graph. In this
section we introduce the lens depth function and the k-relative neighborhood graph. We
discuss the relationship to ordinal data of the kind (x) and explain how we can exploit
this relationship in order to devise algorithms for medoid estimation, outlier identifi-
cation, classification, and clustering that only require a collection of statements (x) as
input. This section only serves for providing intuitions and motivations. We will formally
present our algorithms in the subsequent Section 4.3 and provide further background on
the lens depth function and the k-relative neighborhood graph as well as references in
Section 4.4.

The most important geometric object in the following is the lens spanned by two
points z;, z; € X. Consider an open ball of radius ¢(z;, ;) centered at z;, and similarly

!The pictures of the cars were found on Wikimedia Commons and have been explicitly released into
the public domain by their authors.
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Figure 4.2: Illustration of Lens(z;, ;) in case of the Euclidean plane. The lens is shown in
grey.

an open ball of the same radius centered at ;. The lens spanned by x; and x; consists
of all those points of X that are located in the intersection of these two balls. Formally,

Lens(x;,xj) = {x € X 1 o(z,2;) < twj,zj)} N {z € X vz, zj) < o(xg,xj)}
= {z € X : max{u(z, z;), Lz, 2;)} < o(x,25)}.

An illustration of Lens(x;,x;) in case of the Euclidean plane, that is X = R? and ¢
equaling the Euclidean metric, can be seen in Figure 4.2. The key insight for us are the
following equivalences:

x € Lens(x;, xj) &
Wz, x;) < oz, z;) and oz, xj) < o(x;, x5) & (4.2)

x is the most central point within (z, z;, x;)

In particular, if we had knowledge of all ordinal relationships of type (%) for a data
set D C X, we could check for any data point z;, and any two data points x;, x; whether
x), is contained in Lens(z;, x;) or not.

4.2.1 Lens depth function

The lens depth function (Liu and Modarres, 2011) is an instance of a statistical depth
function. These functions are a widely known tool in multivariate statistics. They
have been designed to measure centrality with respect to point clouds or probability
distributions. We will provide more information about statistical depth functions in
general, including references, in Section 4.4.2.

What makes the lens depth function special for us is that it does not rely on Euclidean
structures or numeric distance values. This is in contrast to all other depth functions
from the literature. Given a data set D = {x1,...,2,} C X, the lens depth function
LD(-;D): X — Ng is defined as

LD(x;D) = ‘ {(xi,xj) : 24,25 € D,i < j,x € Lens(x;,xj)} ‘

To understand its meaning, consider a set of data points in the Euclidean plane. A point
located at the “heart of the set” will lie in the lenses of many pairs of data points. Thus
the lens depth function will attain a high value at this point, indicating its high central-
ity. In contrast, points at the boundary of the point cloud will lie in only a few lenses
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Figure 4.3: Left: The pink point at the center is contained in almost every lens spanned by
any of two data points while the orange one located at the bottom right edge of the point set is
not contained in a single lens. Right: Heat map of the lens depth function for a data set of 18
points (in red) in the unit square of the Euclidean plane.

and will have a low lens depth value, indicating their low centrality. See the left side of
Figure 4.3 for an illustration. The right side of Figure 4.3 shows a heat map of the lens
depth function for a data set consisting of 18 points in the Euclidean plane.

Making use of (4.2) we can see immediately how easily the lens depth function can be
evaluated based on statements of the kind (). Given all statements of the kind (x) for
a data set D = {x1,...,2,}, that is one statement for every unordered triple (x;,x;, y)
of distinct objects in D, we can immediately evaluate LD(xy; D) for any t € {1,...,n}.
It simply holds that

LD(x¢; D) = number of statements comprising z; as most central data point. (4.3)

We note that LD(z; D) as given in (4.3) can be considered, up to a normalizing con-
stant of 1/ (”;1), as probability of the fixed data point z; being the most central data
point in a triple comprising z; and two data points drawn uniformly at random without
replacement from D \ {z;}. This insight gives us a handle for the realistic situation
that we are not given all statements of the kind (%), but only an arbitrary collection S
of statements, some of them possibly being incorrect. Namely, we can still estimate
LD(z; D) by estimating the probability of the described event by its relative frequency:

number of statements in & that comprise x; as most central data point

LD(x; D) ~ : .
(24 D) number of statements in S that comprise z;

(4.4)

This estimate will be reasonable whenever statements in S comprising x; appear to be
sampled approximately uniformly at random from the set of all statements that com-
prise z;, the number of statements in § comprising x; is large enough, and the proportion
of incorrect statements is sufficiently small. Note that if we assume S to be sampled
uniformly at random from the set of all statements, this will imply that for every x; € D
statements in & comprising x; are a uniform sample from the set of all statements that
comprise ;.

We now want to explain how we can use our insights to devise algorithms for the
machine learning problems of medoid estimation, outlier identification, and classification
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when only given a collection of statements of the kind (x) for a data set (the algorithms
are formally stated in Section 4.3). The basic principle is that we replace the true lens
depth function with its estimate according to (4.4) in the following existing approaches
to these problems (see Section 4.4.2 for further information and references):

e Medoid estimation (cf. Algorithm 1 in Section 4.3): A medoid Oygp of a
data set D is a most central object in the sense that it has minimal total distance to
all other objects, that is it minimizes

1(0)= Y 1(0,0:), O€D. (4.5)
0;eD

Since the lens depth function provides a measure of centrality too, even though in a
different sense, a maximizer of the lens depth function (restricted to D) is a natural
candidate for an estimate of a medoid.

e Outlier identification (cf. Algorithm 2 in Section 4.3): An outlier in a data
set D is “an observation . . . which appears to be inconsistent with the remainder
of that set of data” (Barnett and Lewis, 1978, Chapter 1). Points with a low lens
depth value are non-central points according to the lens depth function and thus are
natural candidates for outliers. We will see in the experiments in Section 4.5.1 that
this approach works well for data sets with a uni-modal structure, but can fail in
multi-modal cases.

e Classification (cf. Algorithm 3 in Section 4.3): The simplest approach to
classification based on the lens depth function is to assign a test point to that class in
which it is a more central point: For each of the classes we can compute a separate
lens depth function and evaluate a test point’s corresponding depth value. The test
point is then classified as belonging to the class that gives rise to the highest lens
depth value. However, it has been found that such a maz-depth approach has some
severe limitations (compare with Section 4.4.2).

To overcome these limitations, we use a feature-based approach. We consider the
data-dependent feature map

z +— (LD(x;Classy), LD(z; Classs), ..., LD(z;Classk)) € RE, ze X, (4.6)

and then apply an out-of-the-box classification algorithm to the K-dimensional rep-
resentation of the data set.

4.2.2 k-relative neighborhood graph

We now use the lenses spanned by two data points in order to define the k-relative
neighborhood graph (k-RNG). In our language, for a data set D = {z1,...,z,} C X
and a parameter kK € N the k-RNG on D is the graph with vertex set D in which two
distinct vertices x; and x; are connected by an undirected edge if and only if the lens
spanned by these points contains fewer than k& data points from D:

xi~x; & |Lens(zi,x;) ND| < k (4.7)
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Figure 4.4: The RNG (left), the 3-RNG (middle), and the symmetric 5-NN graph (right) on 80
points from a mixture of two Gaussians in the Euclidean plane. Note that as opposed to k-NN
graphs, k-relative neighborhood graphs tend to have more connections between points from the
different mixture components. In fact, a k-RNG is always connected (see Section 4.4.3). This
may be desirable in some situations, but undesirable in others.

The rationale behind this definition is that two data points may be considered close to
each other whenever the lens spanned by them contains only a few data points. The
k-relative neighborhood graph is best known when k£ = 1. In this form it is simply called
relative neighborhood graph (RNG) and has already been introduced in Toussaint (1980).
The general k-RNG seems to appear in Chang et al. (1992) for the first time. Examples
for a data set in the Euclidean plane can be seen in Figure 4.4. For comparison, we also
show the symmetric k-NN graph (for £ = 5), which is more popular in machine learning.
In that graph two vertices are connected by an undirected edge whenever one of them is
among the k closest data points to the other one (with respect to the distance function ¢).

Given all statements of the kind (x) for a data set D, it is straightforward to build
the true k-RNG on D similarly to the exact evaluation of the lens depth function (4.3).
We will discuss how to build an estimate of the k-RNG on D when given only an
arbitrary collection of statements, some of them possibly being incorrect, and a problem
involved shortly. Before, let us explain how k-relative neighborhood graphs can be used
for classification and clustering. Again, these ideas are not new, but have already been
discussed in the literature (see Section 4.4.3). As with the true lens depth function,
in our algorithms presented in Section 4.3 we simply replace the true k-RNG with its
estimate.

e Classification (cf. Algorithm 4 in Section 4.3): Given a set of labeled points
and an additional test point that we want to classify, we can construct the k-RNG on
the union of the set of labeled points and the singleton of the test point and take a
majority vote of the test point’s neighbors in the graph. Actually, there is no need
to construct the whole graph. We just have to find the test point’s neighbors in the
graph. Note that the basic principle is the same as for the well-known k-NN classifier
(e.g., Shalev-Shwartz and Ben-David, 2014, Chapter 19), replacing the directed k-NN
graph by the k-RNG.

e Clustering (cf. Algorithm 5 in Section 4.3): As we can do with the symmetric
k-NN graph, it is straightforward to apply spectral clustering (see, e.g., von Luxburg,
2007, for a comprehensive introduction) to the k&-RNG on a data set D. We propose
two versions: one is to simply work with an estimate of the ordinary unweighted
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k-RNG, the other one is to use an estimate of a k-RNG in which an edge between
connected vertices z; and x; is weighted by

ex _i . |L€ns(xi,;pj) N D|2
p < 02 (ID] — 2)? ) (4.8)

for a scaling parameter o > 0.

The problem of estimating the .-RNG from noisy ordinal data

The key insight for estimating the k-RNG on a data set D based on ordinal distance
information of type (x) is similar to the one for estimating the lens depth function: the
characterization (4.7) is equivalent to two distinct, fixed data points z; and x; being
connected in the k-RNG if and only if the probability of a data point drawn uniformly
at random from D \ {z;,z;} lying in Lens(x;,x;) is smaller than k/(|D| — 2). Given a
collection S of statements of the kind (x), this probability can be estimated by

Vi(xi, xj) = M (4.9)
where
N(zj, ;) = number of statements in S comprising both z; and z; and
another data point as most central data point, (4.10)

D(x;,x;) = number of statements in S comprising both z; and x;.

Thus our strategy to estimate the k--RNG on D is the following: we connect two data
points z; and x; with ¢ # j by an undirected edge if and only if

k
Dl -2

V(J)l', Qj‘j) < (4.11)
If all statements in S are correct and, for every x; and x; with 7 # j, there are suffi-
ciently many statements in S that comprise both z; and x; and these statements appear
to be sampled approximately uniformly at random from the set of all statements that
comprise x; and x;, we can expect our estimate of the k-RNG to be reasonable.

However, incorrect statements in S create a problem for our strategy. Usually, we
are interested in a k-RNG for a small value of the parameter k, aiming at connecting
only data points that are close to each other. Consequently, according to (4.11), in
order that the data points x; and x; are connected in our estimate of the k-RNG, the
estimated probability V' (z;,z;) has to be small. However, in case of erroneous ordinal
data comprising sufficiently many incorrect statements, there will always be statements
wrongly indicating that there are some data points in Lens(z;,z;) that in fact are not,
and thus V' (z;, z;) will always be somewhat large. Hence, many of the edges of the true
k-RNG on D will not be present in our estimate.

To make this formal, consider the following simple noise model: Statements of
the kind (%) are incorrect, independently of each other, with some fixed probabil-
ity errorprob. In an incorrect statement the two data points that in fact are not most
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central appear to be most central with probability 1/2 each. Assume S to be sampled
uniformly at random from all statements. Denote by p = p(z;,z;) the probability that
a data point drawn uniformly at random from D \ {xz;, x;} lies in Lens(z;, x;), that is
p = |Lens(z;,2;) N D|/(|D| — 2). Denote by p = p(x;,x;) the probability that the fol-
lowing experiment yields a positive result: A data point is drawn uniformly at random
from D\ {z;,z;}. Independently, a Bernoulli trial with a probability of success equal-
ing errorprob is performed. If the Bernoulli trial fails, the experiment yields a positive
result if and only if the drawn data point falls into Lens(z;, ;). If the Bernoulli trial
succeeds, the experiment yields a positive result if and only if the data point does not
fall into Lens(x;,x;) and another Bernoulli trial, with a probability of success of one
half and performed independently, succeeds. It is clear that under the considered model,
V(xs,x;) as given in (4.9) and (4.10) is an estimate of p rather than of p. Assuming that
errorprob is less than 2/3, we can relate p and p via

1
p=p- (1 —errorprob) 4+ (1 —p) - errorprob - 2’ (4.12)
or equivalently
S|
— = - errorprob
p="2"2 prov. (4.13)
1—35- errorprob

The probability p is obtained from p by applying an affine transformation and vice versa.
It follows from (4.12) that our strategy yields an estimate of the k¥’-RNG with

L k— 3 -errorprob- (|D| —2)
N 1— % - errorprob

(4.14)

rather than of the intended k-RNG. In particular, we have k' < k for k < $(|D|—2) and
k' <0 for k < 1-errorprob- (|D| — 2). This means that whenever k < %(|D| — 2), our
strategy produces an estimate containing fewer edges than we would like to have, and if
k< % -errorprob - (|D| — 2), it even produces an estimate of an empty graph, that is a
graph without any edges at all.

These findings might seem worse than they actually are: using our estimated graph
for classification or clustering, we do not care whether we work with the estimate of
a k'-RNG instead of a k-RNG, but only whether our classification or clustering result
is useful. However, we have to bear them in mind when choosing the parameter k
in our algorithms: Using cross-validation for choosing k for Algorithm 4 (classification
by means of a majority vote of neighbors in the graph), we may only use Leave-one-out
cross-validation variants since we have to ensure roughly the same size of the training set
during cross-validation and the training set in the ultimate classification task. Otherwise,
a value of k£ that is optimal during cross-validation will not be optimal in the ultimate
classification problem since k&’ depends on |D| as stated in (4.14). Applying Algorithm 5
(spectral clustering on the estimated k-RNG), we have to choose k so large that the
constructed graph is connected. This is not only required by some versions of spectral
clustering, but also indicates that the graph is indeed an estimate of a true &-RNG with
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k" > 1 rather than of an empty graph. If we know the value of errorprob, or have at
least an estimate of it, we can correct for the bias of our strategy. In order to estimate
the k-RNG on a data set D for the intended value of k, according to (4.13), two data
points x; and x; with ¢ # j should be connected if and only if

V(z,x;) — 1 b k
(x; x]?)) 5 €rTOrpro ’ (4.15)
1 — 5 -errorprob |D| — 2

which equals (4.11) if errorprob = 0. Note that although the left-hand side of equa-
tion (4.15) is an unbiased estimator of p(x;, ;) for every ; and x; with ¢ # j (assuming S
to be sampled uniformly at random from all statements), due to the thresholding step in
(4.15) our estimation strategy is still not an unbiased estimator of the intended k-RNG.

4.3 Algorithms for medoid estimation, outlier identifica-
tion, classification, and clustering

In this section we formally state our algorithms for the problems of medoid estimation,
outlier identification, classification, and clustering when the only available information
about a data set D is a collection S of statements of the kind (). Furthermore, we
discuss running times, space requirements, and some implementation aspects.

4.3.1 Medoid estimation

The following Algorithm 1 returns as output an estimate of a medoid of D as motivated
in Section 4.2.1. The estimate is given by an object that maximizes the estimated lens
depth function on D. By setting the estimated lens depth value LD(O) to zero for
objects O that do not appear in any statement in S, which means that we do not have
any information about O, we ensure that such an object is never returned as output.

Algorithm 1 Estimating a medoid

Input: a collection S of statements of the kind (x) for some data set D

Output: an estimate of a medoid of D
1: for every object O in D compute

number of statements comprising O as most central object

LD(0) :=

number of statements comprising O

> if the denominator equals zero, set LD(O) = 0
2: return an object O for which LD(O) is maximal

If we assume that every object in D can be identified by a unique index from
{1,...,|D|} and, given a statement in S, the indices of the three objects involved can
be accessed in constant time, then Algorithm 1 can be implemented with O(|D| + |S|)
time and O(|D|) space in addition to storing S. This can be done by going through
S only once and updating counters for the three objects found in a statement. If the
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objects in D are not indexed by 1,...,|D|, we can use minimal perfect hashing in order
to first create such an indexing. This requires about O(|D|) time and space (Hagerup
and Tholey, 2001, Botelho et al., 2007), so the overall requirements remain unaffected
by this additional step. An important feature of Algorithm 1 is that it can easily be
parallelized by partitioning S into several subsets that may be processed independently.
Since one usually may expect that |S| > |D|, such a parallelization has almost ideal
speedup, that is doubling the number of processing elements leads to almost only half
of the running time.

4.3.2 Identifying outlier candidates

By means of the following Algorithm 2 we can identify outliers in D given as input only
a collection S of statements of the kind (x). Outlier candidates are data points with low
estimated lens depth values LD(O). By setting LD(O) to zero for objects O that do
not appear in any statement we guarantee that such objects are identified as outliers.

Algorithm 2 Identifying outlier candididates

Input: a collection S of statements of the kind (x) for some data set D

Output: a subset of D containing objects that are outlier candidates
1: for every object O in D compute

number of statements comprising O as most central object

LD(0O) =
(0) number of statements comprising O
> if the denominator equals zero, set LD(O) =0

2: identify objects with exceptionally small values of LD(O)

3: return the set of identified objects

The only difference between Algorithm 2 and Algorithm 1 is that instead of returning
the object with the highest value of LD(O) as estimate of a medoid we return objects
with exceptionally small values as outlier candidates. The running time of Algorithm 2
depends on the identification strategy in Step 2, but if one simply identifies ¢ objects with
smallest values (1 < ¢ < |DJ), then Algorithm 2 can be implemented with O(|D| + |S|)
time and O(|D]) space in addition to storing & analogously to Algorithm 1. Here we
make use of the fact that the selection of the c-th smallest value in an array of length |D|
can be done in O(|D|) time and space (Blum et al., 1973). Just as for Algorithm 1, the
first step of Algorithm 2 can easily be parallelized.

4.3.3 Classification

We propose two different algorithms for dealing with K-class classification in a data
set D consisting of a subset £ of labeled objects and a subset U/ of unlabeled objects
when given no more information than the class labels for the objects in £ and a collec-
tion S of statements of the kind () for D. Our goal is to predict a class label for every
object in U.
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Our first proposed algorithm, Algorithm 3, is based on the lens depth function and
has been motivated in Section 4.2.1. It consists of computing a feature embedding of D
into [0,1]% C RE| in which each feature corresponds to the estimated lens depth value
with respect to one class, and subsequently applying a classification algorithm that is
suitable for K-class classification on RX to this embedding.

Algorithm 3 K-class classification I

Input: a collection S of statements of the kind (%) for some data set D comprising a
set L of labeled objects and a set U of unlabeled objects; a class label for every
labeled object in £ according to its membership in one of K classes (referred to as
Classy,...,Classk)

> note that we have D = L U U and £ = Class; U Classy U ... U Classg

Output: an inferred class label for every unlabeled object in U
1: for every object O in D and i € {1,..., K} compute
N¢;(0) := number of statements comprising O and two labeled objects from Class;

with O as most central object

D¢;(O) := number of statements comprising O and two labeled objects from Class;

LD, (0) == gggg;

> if D¢, (O) equals zero, set LD¢,(O) =0
2: train an arbitrary classifier (suitable for K-class classification on RX) with training
data
{(LD¢,(0y), LDc,(0y), ..., LDc,. (O))) : Oy € L} € RE,

where the label of (LD¢, (O;), LDc,(Oy), ..., LDc, (Oy)) equals the label of O
3: return as inferred class label of every unlabeled object O, € U the label predicted
by the classifier applied to (LD¢, (Oy), LDc,(Oy), ..., LD¢, (0y)) € RE

Assuming that the number of classes K is bounded by a constant, the first step of
Algorithm 3 requires O(|D| + |S|) operations and O(|D|) space in addition to storing S
and its implementation is similar to the one of Algorithm 1. As before, this step can
easily and highly efficiently be parallelized (assuming that |S| > |D|). The time and
space complexities of the remaining steps depend on the generic classifier that is used.

Our second proposed algorithm, Algorithm 4 (see page 89), is based on the k-RNG
and has been motivated in Section 4.2.2. It is an instance-based learning method like the
well-known k-NN classifier: There is no explicit training phase involved. An unlabeled
object is readily classified by assigning the label that is most frequently encountered
among the neighbors of the unlabeled object in the estimated k-RNG.

Assuming that the number of classes K is bounded by a constant, Algorithm 4 can
be implemented with O(|D|+|U|-|L|+]|S|) = O(|U|-|L|+]|S]) time and O(|D|+|U|-|L]) =
O(|U]-|L]) space in addition to storing S. Here we have to assign to each labeled object
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Algorithm 4 K-class classification II

Input: a collection S of statements of the kind (x) for some data set D comprising a
set L of labeled objects and a set U of unlabeled objects; a class label for every
labeled object in £ according to its membership in one of K classes (referred to as
Classi,...,Classk); an integer parameter k

> note that we have D = £L U U and £ = Class; U Classs U ... U Classg

Output: an inferred class label for every unlabeled object in U

1: for every unlabeled object O, € U and every labeled object O; € L compute

N(Oy, Oy) := number of statements comprising both O, and O; and another
labeled object as most central object

D(Oy, O;) := number of statements comprising both O, and O; and another

labeled object

N(Oy, Op)

V(Ou,Ol) = D(O Ol)

> if D(Oy, O;) equals zero, set V (O, O;) = 0o
2: return as inferred class label of every unlabeled object O, € U the majority vote
(ties broken randomly) of the labels of those objects O; € L that satisfy

k
£l =1

V(Ou,Ol) <

a unique identifier in {1,...,|£|} and to each unlabeled object a unique identifier in
{1,..., U]} that can be looked up in constant time. This allows us to increment a value
of N(Oy, Oy) or D(Oy, O) for (O, 0;) € U x L stored in an array of size |U| x |£| within
constant time. Once the objects are indexed by 1,...,|D| (compare with Section 4.3.1),
we can easily assign such identifiers in O(|D|) time and space. Again, it is straightforward
to parallelize Algorithm 4 by partitioning S.

4.3.4 Clustering

Our proposed Algorithm 5 (see page 90) for clustering a data set D when only given a
collection S of statements of the kind (x) as input consists of estimating a ~-RNG on D
and applying spectral clustering to the estimate. Note that some versions of spectral
clustering require the underlying similarity graph not to contain isolated vertices. A true
kE-RNG never contains isolated vertices since a k-RNG is always connected (compare with
Section 4.4.3), but if k is chosen too small, an estimated k-RNG might contain isolated
vertices (compare with Section 4.2.2).

The first step of Algorithm 5 can be implemented with O(|D|? + |S|) time and
O(|D|?) space in addition to storing S. It can be parallelized in the same way as the
corresponding parts of the previous algorithms. However, here we achieve almost ideal
speedup only in case |S| > |D|%. The second step can be implemented with O(|D|?)
time and O(|D|?) space. The complexity of Step 3 is the one of spectral clustering



90 CHAPTER 4. LENS DEPTH AND K-RNG AS VERSATILE TOOLS

Algorithm 5 Clustering

Input: a collection S of statements of the kind (%) for some data set D = {O1,...,0,};
an integer parameter k; number [ of clusters to construct; a parameter ¢ > 0 in case
of weighted version

Output: a hard clustering Cy,...,C; C D withC; UCy U ... UC; =D

1: for every pair (O;, O;) of objects in D compute

N(O;,0O;) := number of statements comprising both O; and O;
and another object as most central object

D(0;, O;) := number of statements comprising both O; and O;

N(0;, 0j)

00 = 50.0,)

> if D(0;,0;5) = 0, set V(0;,05) = oo (in particular, V(0;,0;) = oo for i =
1,...,n)
2: let W = (wjj)i,j=1,..n be a (n,n)-matrix and either set

> unweighted version

{1 it V(0;,0;) < k/(|D| - 2)
Wij:
0 else

or

2
V(04,0))

Wi =l i V(0,0;) <k/(D] - 2)

else

> weighted version

3: apply spectral clustering to W with [ as input parameter for the number of clusters
4: return clusters C1, ..., C; according to the clusters produced in Step 3

after the construction of a similarity graph. Its costs are dominated by the complexity
of eigenvector computations and are commonly stated to be in general in O(n3) =
O(|DP?) regarding time and O(n?) = O(|D|?) regarding space for an arbitrary number
of clusters [, unless approximations are applied (Yan et al., 2009, Li et al., 2011). In
many cases the estimate of the k-RNG constructed by Algorithm 5 might be sparse
(compare with Section 4.4.3), and then the eigenvector computations can be done much
more efficiently (Bai et al., 2000). However, in the worst case the overall running time
of Algorithm 5 can be up to O(|D]> + |S|). The overall space requirements are O(|D|?)
in addition to storing S.

4.4 Related work and further background

In this section we present related work and further background on statistical depth
functions and k-relative neighborhood graphs.
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4.4.1 Related work: algorithms based on ordinal data of type (H)

In the machine learning literature on ordinal distance information we are the first that
consider statements of the kind (x). However, these statements are closely related to
statements of the kind (H) (compare with Section 1.3), which read as

Object A is the outlier within the triple of objects (A, B, C). ()

In contrast to a statement of the kind (%), which informs about the most central object
within a triple of objects, a statement of the kind (H) informs about the least central
object. Heikinheimo and Ukkonen (2013) have proposed strategies based on statements
of the kind (H) that are very similar in spirit to our proposed Algorithms 1 and 2. Their
algorithm for estimating a medoid of a data set works as follows: for every fixed data
point they estimate the probability that the data point is the outlier within a triple of
three data points containing the fixed data point and two data points chosen uniformly
at random from the remaining ones and then return a data point with minimal estimated
probability as estimate for a medoid. Similarly, they suggest to find outliers by looking
for data points for which the estimated probability of being the outlier within a triple
is exceptionally high. The only difference compared to our Algorithms 1 and 2 is that
Heikinheimo and Ukkonen estimate the probability of being an outlier within a triple
while we estimate the probability of being a most central object, and that they are
looking for points with a low estimated probability when we are looking for points with
a high estimated probability and vice versa. However, the conceptual problem with their
approach is that the function that it is based on,

F(x; P) =1 — Probability(z is the outlier within the triple of points (z, X,Y")),
(4.16)

where ©z € X, P is a probability distribution on X, and X,Y are independent X-
valued random variables distributed according to P, is not a valid statistical depth
function. It does not satisfy one of the most crucial properties of statistical depth
functions, namely maximality at the center for symmetric distributions on R? (see the
following Section 4.4.2). As a consequence, there are data sets for which the approach
by Heikinheimo and Ukkonen always fails to return a true medoid, even though given
access to the correct statements of the kind (H) for all triples of data points. We will
see in the experiments in Section 4.5.1 that our Algorithm 1 consistently achieves better
results in recovering a true medoid of a data set compared to the method by Heikinheimo
and Ukkonen.

4.4.2 Lens depth function and statistical depth functions in general

Statistical depth functions (see, e.g., Serfling, 2006, Cascos, 2009, Mosler, 2013, or the
introduction of the dissertation of Van Bever, 2013, for basic reviews) have been devel-
oped to generalize the concept of the univariate median to multivariate distributions.
To this end, a depth function is supposed to measure the centrality of all points z € R?
with respect to a probability distribution, in the sense that the depth value at x is high
if  resides in the “middle” of the distribution and that it is lower the more distant from
the mass of the distribution x is located.
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Figure 4.5: Illustration of the halfspace depth function. Mesh plots of the density and the
halfspace depth function of a product of two Beta(2,4)-distributions (top row) and a mixture of
two Gaussians (bottom row), respectively.

The first statistical depth function has been proposed by Tukey (1974). Given a
probability distribution P on R?, the seminal halfspace depth function HD maps every
point z € R? to the smallest probability of a closed halfspace containing z, that is

HD(@:P)= inf P({yeR": (uy—a) = 0}),

where S%! = {u € R? : |jul| = 1} denotes the unit sphere in R?. The intuition
behind this definition is simplest to understand in case of an absolutely continuous
distribution P: in this case HD(x; P) < 1/2, 2 € R?, and in order for a point z to
be considered central with respect to P it should hold that any hyperplane passing
through « splits R? into two halfspaces of almost equal probability 1 /2. Hence, points x
are considered more central the higher their halfspace depth value H D(x; P) is, and any
point maximizing HD(-; P) is called a Tukey median. Figure 4.5 shows examples of the
halfspace depth function for two absolutely continuous distributions on R%. Note that a
depth function can resemble the density function of the underlying distribution only in
case of a unimodal distribution—as a measure of global centrality depth functions are
intended to be unimodal. We will take this up again in Section 4.5.1 and Section 4.6.

For a univariate and continuous distribution any ordinary median is also a Tukey
median. In addition, the halfspace depth function H D satisfies a number of desirable
properties:

1. Affine invariance: H D considered as a function in both z and P is invariant under
affine transformations.

2. Maximality at the center: for a (halfspace) symmetric distribution the center of
symmetry is a Tukey median.
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3. Monotonicity with respect to the deepest point: if there is a unique Tukey me-
dian p, HD(x; P) decreases as x moves away along a ray from pu.

4. Vanishing at infinity: HD(x; P) — 0 as ||z| — oo.

Even though there is not a unique definition of a statistical depth function, these
or closely related properties are typically requested for a function to qualify as depth
function. Beside Tukey’s halfspace depth, prominent examples of depth functions are
simplicial depth (Liu, 1988, 1990), majority depth, projection depth, or Mahalanobis
depth (Liu, 1992, Zuo and Serfling, 2000). To the best of our knowledge, the lens depth
function (Liu and Modarres, 2011) is the only statistical depth function from the litera-
ture that can be evaluated given only ordinal distance information about a data set in
an arbitrary set X, which is equipped with an arbitrary dissimilarity function :. Note
once more that the function F' defined in (4.16), which the approach by Heikinheimo
and Ukkonen (2013) is based on, is provably not a statistical depth function. It does not
satisfy the property of maximality at the center for symmetric distributions. Indeed, as
Heikinheimo and Ukkonen observe, in case of a symmetric bimodal distribution in one
dimension with the two modes sufficiently far apart, the center of symmetry is in fact a
minimizer of F'.

We provide some references related to our Algorithms 2 and 3: The idea of considering
data points with a small depth value as outliers has been thoroughly studied in the
setting of a contamination model in Chen et al. (2009) and Dang and Serfling (2010).
In particular, they deal with the question of determining what a small depth value is.

The simple max-depth approach to binary classification outlined in Section 4.2.1 has
already been proposed by Liu (1990), using simplicial depth instead of the lens depth
function. It has been theoretically studied in Ghosh and Chaudhuri (2005). Ghosh and
Chaudhuri proved that the max-depth approach is consistent, that is it asymptotically
achieves Bayes risk, for equally probable and elliptically symmetric classes that only
differ in location when using one of several depth functions and dealing with general
K-class problems. Working not too well when these assumptions are not satisfied, the
max-depth approach has been refined by Li et al. (2012) by allowing for more general
classifiers on the DD-plot, thus overcoming some of its original limitations. The DD-plot
(depth vs. depth plot; introduced by Liu et al., 1999) is the image of the data under the
feature map = +— (DF(x;Classy), DF(x;Classz)) € R?, where DF denotes the depth
function under consideration. Interestingly, Li et al. again only consider the 2-class
case and propose a one-vs-one approach for the general case, which is different from our
strategy of simply considering

x +— (DF(z;Classy), DF (x; Classs), . .., DF(z; Classg)) € RX

as feature map and subsequently performing classification on R¥.

We conclude this section with some comments about the lens depth function. An
early version of the lens depth function has already been mentioned, but not seriously
studied, by Lawrence (1996, Section 2.3) and by Bartoszynski et al. (1997). The main
reference is Liu and Modarres (2011), where the lens depth function has been defined
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and systematically investigated. However, after reading the proofs in detail, we found
that there is still an important gap. Liu and Modarres (2011) claim that the lens
depth function satisfies the property of maximality at the center for centrally symmetric
distributions on R? (Theorem 6 in their paper). However, there is an error in their
proof. It is not true that, conditioning on X7, the probability of X5 falling into a region
such that t € Lens(X1, X2) holds decreases as t € R moves away from the center for
all values of X7, and hence the monotonicity of the integral is not guaranteed. The
same mistake appears in Elmore et al. (2006) and in Section 2.5 of Yang (2014) when
showing the property for the spherical depth function and the S-skeleton depth function,
respectively. So it has not yet been established that the lens depth function satisfies this
essential property of statistical depth functions. We were not able to fix the proof, but
we still believe that the statement is correct. At least, unlike for the function F' defined
in (4.16), we have not been able to construct any example of a symmetric distribution
for which the lens depth function does not attain its maximum at the center.

4.4.3 k-relative neighborhood graph

The k-RNG belongs to the class of proximity graphs. In a graph belonging to this class
two vertices are connected if they are in some sense close to each other (see Jarom-
czyk and Toussaint, 1992, for a basic survey or Bose et al., 2012, for a more recent
paper). Beside the k-RNG, Gabriel graphs (Gabriel and Sokal, 1969) and k-NN graphs
are prominent examples of proximity graphs.

The 1-RNG, which is simply known as RNG, has been used in a wide range of ap-
plications (see Toussaint, 2014, for a review and detailed references). Most interesting
for us are its use in classification and clustering as related to our Algorithms 4 and 5,
respectively: Instance-based classification based on the RNG neighborhood, that is in-
ferring a point’s label by taking a majority vote of the point’s neighbors in the RNG,
has been empirically shown to be competitive with the k-NN classifier in Sdnchez et al.
(1997a) and Toussaint and Berzan (2012). Instance-based classification based on the
RNG neighborhood has also been used for prototype selection for the 1-NN classifier
(Toussaint et al., 1984, Sénchez et al., 1997b). The RNG has been used for spectral
clustering in Correa and Lindstrom (2012) with a strategy of assigning locally adapted
edge weights. Our experiments in Section 4.5.1 show that such a strategy is dispensable
and that using the k-RNG weighted as in (4.8), or also unweighted, yields reasonable
results as well.

We have mentioned in Section 4.2.2 and Section 4.3.4 that a true k~-RNG (not an
estimated one) is always connected. This follows from the fact that the RNG on a data
set D contains the minimal spanning tree on D as a subgraph. By minimal spanning
tree we mean the minimal spanning tree of the complete graph on D in which an edge is
weighted with the distance between two points. A proof of this property for data points
in the Euclidean plane, which readily generalizes to data sets in arbitrary semimetric
spaces, can be found in Toussaint (1980). The RNG is guaranteed to be sparse for
data sets in the 2-dimensional or 3-dimensional Euclidean space, but it can be dense
in higher-dimensional spaces or if ¢+ is induced by the l-norm or the maximum norm
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(Jaromczyk and Toussaint, 1992). There is a large literature on the question how to
efficiently compute a k-RNG on a data set, mainly for data sets in R? or R?® (see the
references in Toussaint, 2014), and how to approzimate the RNG by a graph that is
easier to compute (Andrade and de Figueiredo, 2001). We are not aware of any work
that deals with estimating the k-RNG as we have done in Section 4.2.2.

4.5 Experiments

We performed several experiments for examining the performance of our proposed Al-
gorithms 1 to 5 and compared them to ordinal embedding approaches. In case of Al-
gorithm 1 and Algorithm 2 we also made a comparison with the methods proposed by
Heikinheimo and Ukkonen (2013) explained in Section 4.4.1. We found that our algo-
rithms yield reasonable and useful results, but that for small data sets the embedding
approaches tend to be superior in terms of error rates. However, our algorithms are
highly superior in terms of computing time (even without making use of their poten-
tial of simple and efficient parallelization). The full strength of our algorithms lies in
the regime where the ordinal embedding algorithms break down due to computational
complexity, but our algorithms still yield useful results.

Recall that an ordinal embedding approach consists of first constructing an ordinal
embedding of a data set D based on the given ordinal data and then solving the problem
on the embedding by applying a standard algorithm. For example, in the case of medoid
estimation a medoid of an ordinal embedding is computed and the corresponding object
is returned as an estimate of a medoid of D. For constructing an ordinal embedding we
tried several algorithms: the GNMDS (generalized non-metric multidimensional scal-
ing) algorithm by Agarwal et al. (2007), the SOE (soft ordinal embedding) algorithm
by Terada and von Luxburg (2014), and the STE (stochastic triplet embedding) and
t-STE (t-distributed stochastic triplet embedding) algorithms by van der Maaten and
Weinberger (2012). The GNMDS algorithm and the SOE algorithm can take answers
to arbitrary dissimilarity comparisons of the general form (1.1) as input, while the STE
and t-STE algorithms are designed only for similarity triplets, that is answers to com-
parisons (1.2). The ordinal data that we gave to the embedding algorithms were all the
similarity triplets obtained via (4.1) from a collection of statements of the kind (x) that
we provided as input to one of our algorithms. We used the MATLAB implementations
of GNMDS, STE, and t-STE provided by van der Maaten and Weinberger (2012) and
the R implementation of SOE provided by Terada and von Luxburg (2014). We set all
parameters except the dimension of the space of the embedding to the provided default
parameters (for all algorithms the default dimension is two). Note that all algorithms
try to iteratively minimize an objective function that measures the amount of violated
ordinal relationships, and in doing so their results depend on a random initialization of
the ordinal embedding.

We start with presenting experiments using synthetically generated statements of
the kind (%) in Section 4.5.1. In Section 4.5.2 we deal with real data consisting of 60
images of cars and statements of the kind (%) that we collected via crowdsourcing.
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4.5.1 Synthetically generated statements of the kind (x)

In the following, except the plots in Figures 4.9 and 4.10, in which outliers have to be
identified by visual inspection, and one plot in Figure 4.6, which provides a visualization
of available statements per data point, all plots of this section show results averaged
over 100 runs of an experiment.

We primarily study the performance of the considered methods with respect to the
number of provided input statements, but also with respect to the amount of noise
in the provided ordinal data. We consider two different noise models: Noise model I
(with parameter 0 < errorprob < 1) equals the one described in Section 4.2.2, that is
a statement of the kind (%) is incorrect, independently of other statements, with some
fixed error probability errorprob. In an incorrect statement the two data points that
are not most central appear to be most central with probability 1/2 each. In Noise
model IT (with parameter noiseparam > 0) we distort the dissimilarity values ¢(A, B),
which then induces a distortion of statements. Concretely, we add Gaussian noise with
mean zero and standard deviation noiseparam - SD, where SD denotes the standard
deviation of all true dissimilarity values (A, B), A # B € D, independently to each
dissimilarity value ¢(A, B). For choosing input statements we essentially consider two
sampling strategies: The first one, referred to as “Uniform sampling”, is to choose input
statements uniformly at random without replacement from the set of all statements, that
is the set of statements for all triples of data points, which were generated according
to the noise model under consideration. When applying this sampling strategy and
studying performance as a function of the number of input statements, the rightmost
measurement in a plot corresponds to the case that all statements are provided as input.
In the experiment presented in Figure 4.8 the provided statements are chosen uniformly
at random with replacement from the set of all statements, but there the set of all
statements is so large that in fact this does not make any difference. In these plots
the rightmost measurement corresponds to a number of input statements of less than
one permil of the number of all statements. In order to illustrate our claim that our
algorithms require statements to be sampled only approximately uniformly with respect
to a fixed data point (Algorithms 1 to 3), or a fixed pair of data points (Algorithm 4 and
Algorithm 5), we also consider a second sampling strategy, referred to as “Sampling I1”.
When sampling according to this strategy, we partition the data set into ten groups. For
each group we form a set consisting of all statements, generated according to the noise
model under consideration, that comprise at least one data point from the corresponding
group. We then sample with replacement by selecting one of the ten sets according to
probabilities p; = i%/ Z}gl 42,4 =1,...,10, and choosing a statement from the selected
set uniformly at random.

When comparing Algorithm 1 or Algorithm 2 to the corresponding methods by Heik-
inheimo and Ukkonen (2013), their methods are given a collection of statements of the
kind () as input that contains as many statements as the input to our algorithm and
is created in a completely analogous way.
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Medoid estimation

We measure performance of a method for medoid estimation by the relative error in the
objective I (given in (4.5)), which is given by

I(estimated medoid) — I(true medoid)

relative error =
I(true medoid)

(4.17)

Figure 4.6 shows in the first two rows the relative error of Algorithm 1, the method
by Heikinheimo and Ukkonen (2013), and the ordinal embedding approach, using the
various embedding algorithms, as a function of the number of provided input statements
and as a function of errorprob (Noise model I) for 100 points from a 2-dimensional
Gaussian N2(0, I3) and ¢ being the Euclidean metric. Obviously, the embedding ap-
proach outperforms Algorithm 1 and the method by Heikinheimo and Ukkonen when
dealing only with correct statements, that is errorprob = 0, and embedding into the
true dimension (1st row, 1st plot). However, it is not superior over Algorithm 1 any-
more when errorprob = 0.3 and the dimension of the embedding is chosen as five (2nd
row, 1st plot). Algorithm 1 consistently outperforms the method by Heikinheimo and
Ukkonen. All methods show a similar behavior with respect to errorprob (2nd row, 2nd
& 3rd plot). Interestingly, the strongest incline in the error does not occur until the
transition from errorprob = 0.6 to errorprob = 0.7. The bottom row of Figure 4.6 also
shows the relative error of the various methods as a function of the number of provided
input statements, but here input statements were sampled according to the strategy
Sampling II. Compared to the strategy of sampling statements uniformly at random
without replacement from the set of all statements, Algorithm 1 performs slightly worse,
but we consider the difference to be negligible. The last plot of the bottom row shows
the difference in the two sampling strategies: while in the uniform case, for all data
points there is almost the same number of input statements comprising the data point,
when sampling according to Sampling II there are data points for which this number
is twice as large as for others (the plot is based on a total of 4500 input statements
corresponding to the third measurement in the first and second plot of the bottom row).

The biggest advantage of Algorithm 1 (in fact of all our proposed algorithms) com-
pared to an ordinal embedding approach becomes obvious from the plots in the third
and fourth row of Figure 4.6, which show the running times of the experiments shown in
the plots in the two top rows: For a fixed size |D| of the data set, like the running times
of our proposed algorithms and the method by Heikinheimo and Ukkonen, the running
time of the embedding approach with any of the considered embedding algorithms also
grows linearly with the number |S| of input statements (indicated by the orange curves).
However, in practice Algorithm 1 and the method by Heikinheimo and Ukkonen are
vastly superior in terms of running time compared to the embedding approach, even
without making use of their potential of simple and highly efficient parallelization. For
example, when all statements are provided as input, errorprob = 0, and the embedding
dimension is chosen as two, the running time of the embedding approach is between 10
seconds (when using the SOE algorithm) and 141 seconds (when using the t-STE algo-
rithm), while Algorithm 1 or the method by Heikinheimo and Ukkonen only run for 0.01
seconds (3rd row, 1st plot). Note that the running times of Algorithm 1 and the method
by Heikinheimo and Ukkonen are independent of errorprob and, of course, of the choice
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Figure 4.6: Medoid estimation — 100 points from a 2-dim Gaussian N5(0,1;) with
Euclidean metric. Relative error (4.17) and running time as a function of the number of
provided statements of the kind (%) or of the kind (HH) and as a function of errorprob for Algo-
rithm 1, for the method by Heikinheimo and Ukkonen, and for the embedding approach using
the various embedding methods.
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Figure 4.7: Medoid estimation — 100 points from a 20-dim Gaussian Ny (0, Izg) with
Euclidean metric. Relative error (4.17) as a function of the number of provided statements of
the kind (%) or of the kind (H) for Algorithm 1, for the method by Heikinheimo and Ukkonen,
and for the embedding approach using the various embedding methods.

of a dimension of the space of the embedding. The running times of the embedding
algorithms tend to increase with the embedding dimension (e.g., differences between the
first and the third plot in the third row). The running time of the SOE algorithm also
increases with errorprob (4th row, 2nd & 3rd plot). For the GNMDS algorithm this
holds for errorprob > 0.1. The running times of the STE and t-STE algorithms vary
non-monotonically with errorprob. All experiments shown in Figure 4.6 were performed
in MATLAB R2015a on a MacBook Pro with 2.6 GHz Intel Core i7 and 8 GB 1600 MHz
DDR3. Within MATLAB we invoked R 3.2.2 for computing the SOE embedding. In
order to make a fair comparison we did not use MEX files in the implementation of
Algorithm 1 or the method by Heikinheimo and Ukkonen.

Figure 4.7 shows similar experiments as Figure 4.6, but this time we deal with 100
points from a 20-dimensional Gaussian Nog(0, I20). The distance function ¢ still equals
the Euclidean metric. In this high-dimensional case the embedding approach cannot be
considered superior anymore. In fact, when errorprob = 0.3 and the number of input
statements is small, Algorithm 1 performs best (2nd plot). We omit to show plots of
the relative error as a function of errorprob since they look very similar to the ones
in Figure 4.6. Time measurements show that the differences in running times between
the embedding approach and Algorithm 1 or the method by Heikinheimo and Ukkonen
are even more severe compared to Figure 4.6, as to be expected because of the high
embedding dimension (plots omitted).

Finally, we applied Algorithm 1 and the method by Heikinheimo and Ukkonen to
a large network with the dissimilarity function ¢ equaling the shortest-path-distance.
In this context, a medoid is usually referred to as a “most central point with respect
to the closeness centrality measure” (Freeman, 1978). Our data set consists of 8638
vertices, which form the largest connected component of a collaboration network with
9877 vertices that represent authors of papers submitted to arXiv in the High Energy
Physics - Theory category and with two vertices being connected if the authors co-
authored at least one paper (Leskovec et al., 2007). Comparing against the embedding
methods as in the previous experiments on this large data set would have taken several
months (considering various numbers of input statements and averaging over 100 runs),
so we only compared against GNMDS (embedding dimension chosen to equal two) for a
small number of input statements. The first and the second plot of Figure 4.8 show the
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Figure 4.8: Medoid estimation — 8638 vertices in a collaboration network with
shortest-path-distance. 1st & 2nd plot: Relative error (4.17) as a function of the number
of provided statements of the kind (%) or of the kind (H) for Algorithm 1, for the method by
Heikinheimo and Ukkonen, and for the embedding approach using GNMDS (for the first three
measurements). Average over 100 runs together with the minimum and the maximum of the 100
runs. 3rd plot: The corresponding running times with fitted linear functions.

relative error of Algorithm 1 and the method by Heikinheimo and Ukkonen as a function
of the number of provided statements of the kind (x) or of the kind (H). The number of
provided statements varies between 10* and 8- 107. The latter is less than one permil of
the number of all statements, which is (86338) ~ 10", This number is so large that the set
of all statements does by no means fit into the main memory of a single machine. The
plots also show the relative error of the embedding approach using the GNMDS algorithm
for 10000, 27144, and 73680 input statements. As in the previous experiments, the shown
error is the average over 100 runs of the experiment, but here the data set is fixed and the
only sort of randomness comes from the input statements (and the random initialization
of the ordinal embedding in case of GNMDS). In addition to the average error the plots
show the minimum and maximum error of the 100 runs for illustrating the variance
in the methods. In both the cases of errorprob = 0 (1st plot) and errorprob = 0.3
(2nd plot), when the number of input statements is small, Algorithm 1 outperforms
the method by Heikinheimo and Ukkonen. Both methods outperform the embedding
approach, which might have difficulties due to the data set being non-Euclidean or might
struggle with a too small embedding dimension. For comparison, a strategy of choosing
a data point uniformly at random as medoid estimate incurs a relative error of 0.47
in expectation. Even when given only 10000 input statements, when errorprob = 0,
the error of Algorithm 1 is only about one half of this. The variance seems to be
similar for both Algorithm 1 and the method by Heikinheimo and Ukkonen and seems
to be significantly larger for the embedding approach. As expected, it decreases as
the number of input statements increases. In case of errorprob = 0, we also applied
GNMDS to the data set providing 10857670 statements as input (corresponding to the
eighth measurement in the plots): averaging over 10 runs we obtained an average relative
error of 0.28 (which is more than six times larger than the error of Algorithm 1 or the
method by Heikinheimo and Ukkonen), where computation took 2.84 hours on average.
The third plot of Figure 4.8 shows the running times of Algorithm 1 and the method
by Heikinheimo and Ukkonen as a function of the number of input statements. Both
methods have the same running time, which is linear in the number of input statements.
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Figure 4.9: Outlier identification — 100 points from a 2-dim Gaussian N;(0, I5) and
three outliers added by hand with Euclidean metric. Data set and sorted values of LD(O)
as needed for Algorithm 2 (left; in blue) and of estimated probabilities as needed for the method
by Heikinheimo and Ukkonen (right; in red).

The plot does not show the running times of GNMDS at the first three measurements.
These were 110, 860, and 879 seconds in case of errorprob = 0 and 92, 848, and 898
seconds in case of errorprob = 0.3.

Outlier identification

We started with testing Algorithm 2 and the corresponding method by Heikinheimo
and Ukkonen (2013) by applying them to two visualizable data sets containing some
obvious outliers. Both of the Figures 4.9 and 4.10 show a scatterplot of the points of
a data set D in the FEuclidean plane with the “regular” points in black and the outliers
in color. For assessing the performance of the two considered methods we plotted the
sorted values of LD(O), O € D, as needed for Algorithm 2 as well as the sorted values
of estimated probabilities of being an outlier within a triple of objects as needed for
the method by Heikinheimo and Ukkonen (compare with Section 4.4.1). Both methods
were provided with the same number of statements as input, either of the kind (x) or
of the kind (H). Both Figure 4.9 and Figure 4.10 provide several such plots, varying
with the number of input statements as well as with the error probability errorprob (we
generated statements according to Noise model I). In all the plots, values belonging to
outliers have the same color as the corresponding outlier in the scatterplot. The methods
are successful if these colored values appear at the very end of the sorted values, either
at the lower end for Algorithm 2 or at the upper end for the method by Heikinheimo
and Ukkonen, and there is a (preferably large) gap between the colored values and the
remaining ones since then it is easy to correctly identify the outliers. There are inlay
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Figure 4.10: Outlier identification — 200 points from a Two-moons data set and four
outliers added by hand with Euclidean metric. Data set and sorted values of LD(O) as
needed for Algorithm 2 (left; in blue) and of estimated probabilities as needed for the method
by Heikinheimo and Ukkonen (right; in red).

plots showing the bottom or top ten values for more precise inspection. Note that there is
no averaging involved in creating these plots and they may change with every run of the
experiment since they depend on the random data set, the random choice of statements
that are provided as input, and the random occurrence of incorrect statements.

In Figure 4.9 the data set consists of 100 points that were drawn from a 2-dimensional
Gaussian N2 (0, I2) and three outliers added by hand. The dissimilarity function ¢ equals
the Euclidean metric. We can see that for both methods the values corresponding to
the outliers appear at the right place when given all correct statements as input (top
row). However, when given only 25 percent of all statements and errorprob = 0.3, for
Algorithm 2 the estimated lens depth value of the pink outlier ranks only sixth smallest,
and thus this outlier might not be identified (bottom left). Furthermore, even in the
previous situation it might not be possible to correctly infer the number of outliers based
on the plot corresponding to Algorithm 2 due to the lack of a clear gap, whereas in both
situations this can easily be done for the method by Heikinheimo and Ukkonen. We
made similar observations for smaller numbers of provided input statements and other
values of errorprob too (plots omitted).

In Figure 4.10 the data set consists of 200 points from a Two-moons data set and four
outliers added by hand. Again, ¢ equals the Euclidean metric. Both methods correctly
identify the three outliers located quite far apart from the bulk of the data points, and
the gap between their values and values belonging to the “regular” data points is large
enough to be easily spotted. However, both methods fail to identify the outlier located in-
between the two moons (yellow point). The estimated lens depth values or probabilities
indicate that this outlier might be the unique medoid—which is indeed the case. For
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Figure 4.11: Outlier identification — 500 points from the subset of USPS digits 6
and ten outlier digits with Euclidean metric. Number of correctly ranked outliers as a
function of the number of provided statements of the kind (%) or of the kind (H) for Algorithm 2
and for the method by Heikinheimo and Ukkonen.

Algorithm 2 this has to be expected and stresses the inherent property of the lens depth
function, and statistical depth functions in general, of globally measuring centrality. In
doing so, it ignores multimodal aspects of the data (compare with Section 4.4.2 and
Section 4.6) and cannot be used for identifying outliers that are globally seen at the
heart of a data set. At least for the data set of Figure 4.10 this also holds for the
function F' defined in (4.16), which the method by Heikinheimo and Ukkonen is based
on. However, for the function F' this behavior is not systematic as the example of a
symmetric bimodal distribution in one dimension as mentioned in Section 4.4.2 shows.

In the last experiment of this section we study Algorithm 2 and the method by
Heikinheimo and Ukkonen by using them for outlier identification in a data set consisting
of USPS digits. The data set consists of 500 digits chosen uniformly at random from
digits 6 and ten outlier digits chosen uniformly at random from the remaining digits.
The dissimilarity function ¢ equals the Fuclidean metric. We assess the performance
of Algorithm 2 and the method by Heikinheimo and Ukkonen by counting how many
of the ten outliers are among the ten digits ranked lowest or highest according to the
values of LD(O) and estimated probabilities, respectively. Figure 4.11 shows these
numbers as a function of the number of provided input statements in case of uniform
sampling and statements generated according to Noise model I (1st row) and in case
of Sampling IT and statements generated according to Noise model II (2nd row), for
errorprob = 0 / noiseparam = 1 (1st plot), errorprob = 0.1 / noiseparam = 1.5 (2nd
plot), and errorprob = 0.3 / noiseparam = 2 (3rd plot). We can see that the method
by Heikinheimo and Ukkonen performs slightly better in the setting of the first row and
that the performance of both methods is essentially the same in the setting of the second



104 CHAPTER 4. LENS DEPTH AND K-RNG AS VERSATILE TOOLS

row. Most often, the methods can identify three to five outliers, which we consider to
be not bad, but not good either. Choosing another digit than 6 for defining the bulk of
“regular” points leads to similar results (plots omitted).

To sum up the insights from the experiments shown in Figures 4.9 to 4.11, we may
conclude that both Algorithm 2 and the method by Heikinheimo and Ukkonen are
capable of identifying outliers located lonely and far apart from the bulk of a data
set, but should be used with some care in general. The method by Heikinheimo and
Ukkonen seems to be superior—which is not very surprising since statements of the
kind (B) readily inform about outliers within triples of data points. It produces larger
and thus easier to spot gaps than Algorithm 2, but is less understood theoretically.

Classification

We compared Algorithms 3 and 4 to an ordinal embedding approach that consists of
embedding a data set D comprising a set L of labeled data points and a set U of unla-
beled data points into R? using the given ordinal distance information and applying a
classification algorithm to the embedding. Note that this approach is semi-supervised
since it makes use of answers to dissimilarity comparisons involving data points of U
for constructing the embedding of D. Algorithm 3, in contrast, only uses ordinal dis-
tance information involving data points of £ for approximately evaluating the feature
map (4.6) on £ and hence is a supervised technique as long as the classifier on top is.
Algorithm 4 is a supervised instance-based learning method. Algorithm 3 as well as
the embedding approach require an ordinary classifier on top, that is a classifier ap-
propriate for real-valued feature vectors. For simplicity, in the experiments presented
here we either used the k-NN classifier or the SVM (support vector machine) algorithm
with the standard linear kernel (e.g., Cristianini and Shawe-Taylor, 2000). Both these
classification algorithms require to set parameters, which we did by means of 10-fold
cross-validation: the parameter k for the k-NN classifier was chosen from the range
1,3,5,7,11,15,23 and the regularization parameter for the SVM algorithm was cho-
sen from 0.01,0.05,0.1,0.5,1, 5,10, 50, 100, 500, 1000. The ordinal embedding algorithms
produce embeddings on an arbitrary scale. Before applying the classification algorithms,
we rescaled the produced ordinal embeddings to have diameter 2. The feature embedding
constructed by Algorithm 3 always resides in [0, 1]% for a K-class classification problem
and no rescaling was done here. Algorithm 4 requires to set the parameter k describing
which k-RNG it is based on, but this is more subtle: As we have seen in Section 4.2.2,
when input statements are incorrect with some error probability errorprob > 0 (Noise
model I), then our estimation strategy does not estimate the k-RNG anymore, but rather
a k'-RNG with k' = k/(k, errorprob, |D|) depending on the size of the data set as given
in (4.14). We thus have to choose the range of possible values for the parameter k in
Algorithm 4 depending on |D|. Furthermore, we cannot use 10-fold cross-validation for
choosing the best value within this range since, roughly speaking, this would lead to
choosing the best parameter for a data set of size of only 90 percent of |D|. Instead, we
used a non-exhaustive variant of leave-one-out cross-validation: we randomly selected
a single training point as validation set and repeated this procedure for 20 times, and
finally chose the parameter that showed the best performance on average.

We measure performance of Algorithms 3 and 4 and the embedding approach by
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Figure 4.12: Classification — 100 labeled and 40 unlabeled points from a mixture
of two equally probable 2-dim Gaussians N»(0, 1) and Nz((3,0)7, 1) with Euclidean
metric. SVM algorithm with linear kernel on top of Algorithm 3 as well as on the
embedding approach. 0-1 loss (4.18) as a function of the number of provided statements of
the kind (x) and as a function of errorprob / noiseparam for Algorithm 3, for Algorithm 4, and
for the embedding approach using the various embedding methods.

considering their incurred 0-1 loss given by

0-1 loss = 1 Z 1{predicted label(O) # true label(O)}. (4.18)

Ul o

Figure 4.12 shows the results for a data set consisting of 100 labeled and 40 unla-
beled points from a mixture of two equally probable 2-dimensional Gaussians N(0, I2)
and N2((3,0)7,I3) and ¢ being the Euclidean metric. True class labels of the points
correspond to which Gaussian they come from. On top of Algorithm 3 as well as on the
embedding methods we used the SVM algorithm with the linear kernel. The parameter k
for Algorithm 4 was chosen from the range 1,2,3,5,7,15,25,45,70. The dimension of
the space of the ordinal embedding was chosen to equal the true dimension two, but we
observed similar results when we chose it as five instead (plots omitted). The ordinal
embedding approach outperforms both Algorithm 3 and Algorithm 4, but their results
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Figure 4.13: Classification — 300 labeled and 500 unlabeled USPS digits with Eu-
clidean metric. k-NN classifier on top of Algorithm 3. 0-1 loss (4.18) as a function of
the number of provided statements of the kind (x) for Algorithms 3 and 4.

appear to be acceptable too. Interestingly, other than for Algorithm 4 and the embed-
ding approach, the 0-1 loss incurred by Algorithm 3 studied as a function of errorprob
(Ist & 3rd row, 3rd plot) increases only up to errorprob = 0.7 and then drops again,
finally yielding almost the same result for errorprob =1 as for errorprob = 0. In hind-
sight, this is not surprising: If errorprob = 1, and thus every statement is incorrect, and
the two possibilities of an incorrect statement are equally likely, as it is the case under
Noise model I, then Algorithm 3 approximately evaluates the feature map

1 1 1 1 1 1
T (2 - ELD(CC; Classy), 5 ELD(I‘; Classa), ..., 5 §LD(x; ClassK)> e RK.

This feature map coincides with the original one given in (4.6) up to a similarity trans-
formation and hence gives rise to the same classification results.

In Figure 4.13 we study the performance of Algorithms 3 and 4 when used for clas-
sifying USPS digits. We deal with 800 digits chosen uniformly at random from the set
of all USPS digits and randomly split into 300 labeled and 500 unlabeled data points.
The dissimilarity function ¢ equals the Euclidean metric. We chose input statements
uniformly at random without replacement from the set of all statements, which we gen-
erated according to Noise model I (1st row) or Noise model II (2nd row). On top of
Algorithm 3 we used the k-NN classifier. The parameter k for Algorithm 4 was cho-
sen from 1,2,3,5,7,15,25,45,70,100, 150, 230,350. For small values of errorprob or
noiseparam we consider the results of our proposed algorithms to be satisfactory and
useful. Note that in this 10-class classification problem a strategy of random guessing
would yield a 0-1 loss of about 0.9. Not surprisingly, we obtained slightly better results
when the ratio between labeled and unlabeled data points was chosen as 400/400 instead
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Figure 4.14: Clustering — 100 points from a uniform distribution on two equally

sized moons in R? with Euclidean metric. Purity (4.19) as a function of the number of
provided statements of the kind () for Algorithm 5 in its weighted and unweighted version and
for the embedding approach using the various embedding methods.

of 300/500 and slightly worse results when it was chosen as 200/600 (plots omitted).

Clustering

In this section we study the performance of Algorithm 5, both in its weighted and in its
unweighted version, and compare it to an embedding approach in which we apply spectral
clustering to a symmetric k-NN graph on an ordinal embedding of a data set D. The
edges of this k-NN graph are weighted by Gaussian weights exp(—||u; —u;[|?/0?), where
u; and u; are connected points of the embedding, which is rescaled to have diameter 2,
and o > 0 is a scaling parameter. For assessing the quality of a clustering we measure its
purity. Purity (e.g., Manning et al., 2008, Chapter 16) is a widely used external criterion
for assessing clustering quality, that is a measure of accordance between an inferred
clustering and a known ground truth partitioning of the data set D. If D consists of L
different classes C', ..., Cr, that we would like to recover and the clustering C comprises
K different clusters Uy, ..., Uk, then the purity of C is given by

K
. . 1
purity(C) = purity(C; D) = D E  max |Ur N Cyl. (4.19)
k=1 77

We always have K/|D| < purity(C) < 1, and a high value indicates a good clustering.
In the experiments presented in this section, we always provided Algorithm 5 and the
ordinal embedding approach with the correct number L of clusters as input. Both in
Algorithm 5 and in the embedding approach we use the normalized version of spectral
clustering as stated in von Luxburg (2007) and invented by Shi and Malik (2000).
Figure 4.14 shows the purity of the clusterings produced by Algorithm 5 and the
embedding approach when applied to a data set consisting of 100 points from a uniform
distribution on two equally sized moons in R?. The two moons correspond to a ground
truth partitioning into two classes. The dissimilarity function ¢ equals the Euclidean
metric. The curves shown here are the results obtained by a particular choice of input
parameters k and o: within a reasonably large range of parameter configurations this
choice of parameters yielded the best performance on average with respect to the number
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Figure 4.15: Clustering — 600 USPS digits with Euclidean metric. Purity (4.19) as a
function of the number of provided statements of the kind (x) for Algorithm 5 in its weighted and
unweighted version. The light blue curve and the bronze curve show the purity of the clusterings
obtained by applying spectral clustering to the true weighted and unweighted k-RNG on the
data set.

of input statements. We study the sensitivity of Algorithm 5 with respect to the param-
eters in another experiment (shown in Figure 4.15). The embedding approach clearly
outperforms Algorithm 5 if errorprob = 0 (1st plot), where three of the considered em-
bedding algorithms achieve significantly higher purity values over the whole range of the
number of input statements. However, given the numerous advantages common to all
our proposed algorithms compared to an ordinal embedding approach, we consider the
performance of Algorithm 5 to be acceptable. For comparison, a random clustering in
which data points are randomly assigned to one of two clusters independently of each
other with probability one half has an average purity of 0.54. If errorprob = 0.3, the
embedding approach is superior to Algorithm 5 only if the number of input statements
is large. Interestingly, there is almost no difference in the performance of the weighted
and the unweighted version of Algorithm 5.

The experiment shown in Figure 4.15 deals with a data set D consisting of 600
digits chosen uniformly at random from the set of all USPS digits and ¢ being the
Euclidean metric. We assume a ground truth partitioning of D into ten classes according
to the digits’ values. For various parameter configurations the plots show the purity of
the clusterings produced by the weighted (in blue) and unweighted (in red) version of
Algorithm 5 as a function of the number of input statements. The plots also show the
purity of the clusterings obtained when applying spectral clustering to the true weighted
(in light blue) and unweighted (in bronze) k-RNG on D. Note that these two curves
only vary with the number of input statements because of random effects in the K-
means step of spectral clustering. Although it might look odd at a first glance that the
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Figure 4.16: Car data set. We collected ordinal distance information of the kind (%) for this
data set via an online survey. The framed triple in the first row was used as a test case: T_ALL
and T_ALL_REDUCED comprise only statements provided by participants that chose the off-road
vehicle as the most central car in this triple.?

purity achieved by Algorithm 5 is not monotonic with respect to the number of input
statements, we can see that the purity is always between 0.67 and 0.7 for a wide range
of values of k and o when errorprob = 0 (1st row; 2nd row, 1st plot). For comparison,
a random clustering in which data points are randomly assigned to one of ten clusters
independently of each other with probability one-tenth has an average purity of 0.19.
A clustering obtained by applying spectral clustering to a symmetric k-NN graph with
Gaussian edge weights exp(—t(zi,zj)?/0?) on D (the true data set—not an ordinal
embedding) has an average purity of not higher than 0.75, even for a good choice of
k and 0. When errorprob = 0.3, Algorithm 5 completely fails for small values of k
(2nd row, 2nd plot) as has to be expected because of our findings in Section 4.2.2. For k
sufficiently large it finally yields the same purity values as when errorprob = 0 (2nd row,
3rd plot). In fact, this is true already for £ = 100 and a wide range of values of o (plots
omitted). Again, both in the case of errorprob = 0 and in the case of errorprob = 0.3,
there is almost no difference in the performance of the weighted and the unweighted
version of Algorithm 5.

4.5.2 Crowdsourced statements of the kind (x)

We set up an online survey for collecting ordinal distance information of the kind (x) for
60 images of cars, shown in Figure 4.16. All images were found on Wikimedia Commons
(https://commons.wikimedia.org) and have been explicitly released into the public
domain by their authors. We refer to the set of these images as the car data set. We
instructed participants of the survey to determine the most central object within a
triple of three shown images according to how they perceive dissimilarity between cars.

2All pictures were found on Wikimedia Commons and have been explicitly released into the public
domain by their authors.
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Table 4.1: Characteristic values of ALL, ALL_REDUCED, T_ALL, and T_ALL_REDUCED.

‘ ALL ‘ ALL_REDUCED ‘ T_ALL ‘ T_ALL_REDUCED

Number of statements 7097 6338 6757 6056
Number of statements in percent | 20.74* 18.52 19.75% 17.70
of number of triples [(%) = 34220]

Average number of statements in | 354.85 316.90 337.85 302.80
which a car appears

Minimum number of statements in 307 286 292 269
which a car appears

Maximum number of statements 503 347 478 333
in which a car appears

Median response time per shown | 4.02 4.15

triple (in seconds)

* Note that ALL and T_ALL contain repeatedly present and contradicting statements.

We explicitly stated that they should not judge differences between the pictures, like
perspective, lighting conditions, or background. Every participant was shown triples of
cars in random order (more precisely, triples shown to a participant were drawn uniformly
at random without replacement from the set of all possible triples). Also the order of cars
within a triple, that is whether a car’s image appeared to the left, in the middle, or to
the right, was random. One complete round of the survey consisted of 50 shown triples,
but we encouraged participants to contribute more than one round, possibly at a later
time. There was no possibility of skipping triples, that is even if a participant had no
idea which car might be the most central one in a triple, he/she had to make a choice—or
quit the current round of the survey. Within the first ten triples every participant was
shown a test case triple (shown within a frame in Figure 4.16), consisting of an off-road
vehicle, a sports car, and a fire truck. We believe the off-road vehicle to be the obvious
most central car in this triple and used this test case for checking whether a participant
might have got the task of choosing a most central object correctly. The survey
was online for about two months and the link to the survey was distributed among
colleagues and friends. We took no account of rounds of the survey that were quitted
before 30 triples (of the fifty per round) were shown. In doing so, we ended up with 146
rounds (some of them not fully completed) and a total of 7097 statements. It is hard
to guess how many different people contributed to these 146 rounds, but assuming an
average of three to four rounds per person, which seems to be reasonable according to
personal feedback, their number should be around 40. In only 7 out of the 146 rounds
the off-road vehicle was not chosen as most central car in the test case triple. We refer
to the collection of all 7097 statements as the collection ALL and to its subcollection
comprising 6757 statements gathered in the 139 rounds in which the off-road vehicle
was chosen as most central car in the test case triple as the collection T_ALL. From
ALL and T_ALL we derived two more collections of statements of the kind (%) for the
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Car data set: Ordinary cars: Sports cars: Off-road/SUV:

Figure 4.17: The estimated medoids for the car data set and the subclasses of ordinary cars,
sports cars, and off-road/sport utility vehicles when working with the statements in ALL or
T_ALL.

car data set as follows: ALL_REDUCED is obtained from ALL by replacing all statements
dealing with the same triple of cars by just one statement about this triple, with the
most central car being that car that is most often the most central car in the statements
to be replaced. T_ALL_REDUCED is derived from T_ALL analogously. The characteristic
values of the four collections ALL, ALL_REDUCED, T_ALL, and T_ALL_REDUCED are
summarized in Table 4.1.

We applied Algorithms 1 to 5 to the car data set and the statements in ALL,
ALL_REDUCED, T_ALL, or T_ALL_REDUCED. In doing so, we assumed a partitioning of
the car data set into four subclasses: ordinary cars, sports cars, off-road/sport utility
vehicles, and outliers. We considered the fire truck, the motortruck, the tractor, and the
antique car as outliers. Looking at Figure 4.16, there should be no doubts about the
other classes.

Medoid estimation

We applied Algorithm 1 to the car data set as well as to the three classes of ordinary cars,
sports cars, and off-road /sport utility vehicles in order to estimate a medoid within these
subclasses and the statements in ALL, ALL_REDUCED, T_ALL, or T_ALL_REDUCED. The
estimated medoids obtained when working with ALL or T_ALL coincide and are shown
in Figure 4.17. The estimated medoids obtained when working with ALL_REDUCED or
T_ALL_REDUCED differ from these only for the whole car data set and the subclass of
off-road/sport utility vehicles. Note that for estimating a medoid of a subset of a data
set we consider only statements comprising three objects of the subset. For example,
when estimating a medoid of the subclass of sports cars based on the statements in ALL,
we effectively work with 89 out of the 7097 statements in ALL.

It is interesting to study an ordinal embedding of the car data set. Figure 4.18 shows
such an embedding into the two-dimensional plane, which we computed with the SOE
algorithm based on the statements in T_ALL. We cannot only see a grouping of the cars
according to the subclasses (compare with the section on clustering below) and the outer
positioning of the outliers (compare with the following section on outlier identification),
but also that our medoid estimates are located quite at the center of the corresponding
subclasses (with the exception of the subclass of off-road/sport utility vehicles). This
confirms the plausibility of our estimates. Note that we observe slightly different em-
beddings depending on the random initialization in the SOE algorithm. Also, it is not
useful to compare the medoid estimates of Algorithm 1 with estimates based on an
ordinal embedding since the latter change with every run of the embedding algorithm.
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Figure 4.18: An ordinal embedding of the car data set based on the statements in T_ALL.

Outlier identification

We applied Algorithm 2 to the car data set and the statements in ALL, ALL_REDUCED,
T_ALL, and T_ALL_REDUCED, respectively. For all of the four collections of statements
we obtained very similar results. Figure 4.19 shows a plot of the sorted values LD(O)
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Figure 4.19: The sorted values LD(O) (O in car data set) as well as the eight cars with smallest
values (increasingly ordered) when working with the statements in T_ALL.

(for O being an element of the car data set) as well as the eight cars with smallest
values when working with T_ALL. Looking at the plot it might be reasonable to assume
that there are at least four outliers. Indeed, the Formula One car, the fire truck, the
motortruck, and the tractor, which appear rather odd in the car data set, are ranked
lowest. Also the other cars shown in Figure 4.19 are quite out of character for the car
data set. In the ordinal embedding shown in Figure 4.18 all these cars are located far
outside. These findings support our claim that Algorithm 2 might be useful for outlier
identification when given only ordinal distance information of the kind (x).

Classification

For setting up a classification problem on the car data set we removed the four outliers
(the fire truck, the motortruck, the tractor, and the antique car) and assigned a label to
the remaining cars according to which of the three classes of ordinary cars, sports cars,
or off-road/sport utility vehicles they belong to. By removing from the collections ALL,
ALL_REDUCED, T_ALL, and T_ALL_REDUCED all statements that comprise one or more
outliers, we obtained collections of statements of the kind (x) for these 56 labeled cars.
A bit sloppy, from now on till the end of Section 4.5.2, by ALL, ALL_REDUCED, T_ALL,
and T_ALL_REDUCED we mean these newly created, reduced collections. Their sizes are
given in Table 4.2.

We randomly selected 16 cars that we used as test points, that is we ignored their
labels and predicted them by applying Algorithms 3 and 4 and an embedding approach
based on the label information of the remaining 40 labeled cars and the ordinal dis-
tance information in ALL, ALL_REDUCED, T_ALL, or T_ALL_REDUCED. In Table 4.3
we report the average 0-1 loss (see equation (4.18) for its definition) and its standard
deviation, where the average is over hundred random selections of test points, for the
considered methods and various classification algorithms on top of Algorithm 3 or the
embedding approach. We chose the dimension of the space of the embedding as two.
As classifiers on top we used both the k-NN classifier and the SVM algorithm, the lat-
ter with the linear as well as with the Gaussian kernel. Since we are dealing with a
3-class classification problem, we combined the SVM algorithm with a one-vs-all strat-
egy. We chose the parameter k for the k-NN classifier and the regularization param-
eter for the SVM algorithm by means of 10-fold cross-validation from 1,3,5,7,11,15
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Table 4.2: Number of statements after removing the fire truck, the motortruck, the tractor,
and the antique car from the car data set.

‘ ALL ‘ ALL_REDUCED ‘ T_ALL ‘ T_ALL_REDUCED

Number of statements 5624 5121 5349 4886

Number of statements in percent | 20.29* 18.47 19.30* 17.63
of number of triples (%) = 27720]

* ALL and T_ALL contain repeatedly present and contradicting statements.

Table 4.3: Average 0-1 loss (+ standard deviation) when predicting labels for a randomly
chosen subset of 16 cars (average over 100 choices).

‘ ALL ‘ ALL_REDUCED ‘ T_ALL ‘ T_ALL_REDUCED ‘
Alg. 3 with k-NN 0.19 (£ 0.11) | 0.23 (£ 0.12) | 0.16 (£ 0.10) |  0.17 (£0.10)
Alg. 3 with SVM linear 0.17 (£ 0.09) | 0.16 (£ 0.09) | 0.13 (£ 0.07) | 0.16 (& 0.08)
Alg. 3 with SVM Gauss | 0.17 (& 0.10) | 0.18 (& 0.10) | 0.14 (& 0.10) | 0.16 (& 0.09)
Algorithm 4 | 0.15( 0.09) [ 0.18 (£ 0.10) [0.13 (£0.09) | 0.13 (+0.09) |
GNMDS with k-NN 0.05 (£ 0.05) | 0.05 (£ 0.05) | 0.04 (£ 0.04) 0.04 (£0.04)
GNMDS with SVM linear | 0.07 (£ 0.07) | 0.06 (£ 0.06) | 0.07 (£ 0.07) | 0.04 (& 0.05)
GNMDS with SVM Gauss | 0.05 (£ 0.06) | 0.04 (£ 0.05) | 0.04 (£ 0.05) | 0.04 (& 0.05)
SOE with k-NN 0.06 (& 0.05) | 0.07 (& 0.05) | 0.06 (& 0.06) | 0.07 (0.06)
SOE with SVM linear 0.10 (& 0.08) | 0.12 (& 0.09) | 0.11 (& 0.08) | 0.10 (& 0.09)
SOE with SVM Gauss 0.05 (& 0.07) | 0.07 (& 0.08) | 0.05 (+ 0.05) | 0.07 (+ 0.06)
STE with k-NN 0.05 (£ 0.04) | 0.03 (£ 0.04) | 0.05 (£ 0.04) | 0.04 (£ 0.04)
STE with SVM linear 0.07 (£ 0.08) | 0.06 (& 0.06) | 0.08 (& 0.07) | 0.06 (& 0.06)
STE with SVM Gauss 0.05 (£ 0.05) | 0.03 (£ 0.05) | 0.04 (& 0.05) | 0.04 (& 0.05)
t-STE with k-NN 0.09 (£ 0.07) | 0.10 (£ 0.07) | 0.06 (£ 0.06) | 0.08 (£ 0.07)
t-STE with SVM linear | 0.12 (£ 0.09) | 0.15 (£ 0.11) | 0.11 (£ 0.09) | 0.13 (£ 0.09)
t-STE with SVM Gauss | 0.09 (£ 0.08) | 0.08 (£ 0.08) | 0.07 (£ 0.06) | 0.08 (£ 0.08)

and 0.01,0.05,0.1,0.5, 1,5, 10, 50, 100, 500, 1000, respectively. When using the SVM al-
gorithm with the Gaussian kernel, we chose the kernel bandwidth ¢ by means of 10-
fold cross-validation from 0.01,0.05,0.1,0.5,1,5. The parameter k for Algorithm 4 was
chosen from 1,2,3,5,7,10,15 by means of a non-exhaustive variant of leave-one-out
cross-validation as explained in Section 4.5.1. Clearly, the ordinal embedding approach
outperforms Algorithms 3 and 4. However, one should judge the performance of our
algorithms with regards to their great simplicity compared to the embedding approach.
In doing so, we consider the 0-1 loss incurred by Algorithms 3 or 4 to be acceptable.
As one might expect, working with T_ALL or T_ALL_REDUCED leads to a slightly lower
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Table 4.4: Average purity (+ standard deviation) of clusterings produced by the various meth-
ods when clustering the 56 cars from the classes of ordinary cars, sports cars, and off-road /sport
utility vehicles into three clusters (average over 100 runs).

‘ ALL ‘ ALL_REDUCED ‘ T_ALL T_ALL_REDUCED ‘

Alg. 5w., k=5,0=0.5 0.82 0.82 0.86 0.88

Alg. 5w., k=5,0=3 0.84 0.82 0.86 0.86

Alg. 5w., k=10,0=0.5 0.91 0.84 0.95 0.93

Alg. 5w., k=10,0=3 0.84 0.91 0.86 0.89

Alg. 5unw., k=5 0.84 0.82 0.84 0.88

Alg. 5unw., k=10 0.84 0.84 0.86 0.89

GNMDS, k=5,0=0.5 0.79 (£ 0.12) | 0.83 (£ 0.12) | 0.78 (£ 0.15) 0.80 (£ 0.15)
GNMDS, k=5,0=3 0.78 (£ 0.12) | 0.84 (£ 0.11) | 0.76 (£ 0.14) 0.83 (£ 0.15)
GNMDS, k=10, =0.5 |0.83 (£ 0.11) | 0.92 (£ 0.03) | 0.93 (£ 0.04) 0.89 (+ 0.13)
GNMDS, k=10, 0 =3 0.78 (£ 0.12) | 0.88 (+ 0.09) | 0.92 (£ 0.06) 0.95 (£ 0.03)
SOE, k=5,0=0.5 0.87 (£ 0.01) | 0.87 (+ 0.04) | 0.82 (& 0.08) 0.79 (£ 0.10)
SOE, k=5,0=3 0.82 (+ 0.09) | 0.83 (+ 0.11) | 0.75 (+ 0.10) 0.73 (+ 0.10)
SOE, k=10, 0 = 0.5 0.90 (& 0.04) | 0.90 (+ 0.03) | 0.91 (& 0.04) 0.90 (& 0.03)
SOE, k=10,0 =3 0.93 (£ 0.03) | 0.93 (£ 0.03) | 0.91 (£ 0.05) 0.89 (& 0.08)
STE, k=5,0=0.5 0.75 (£ 0.11) | 0.73 (£ 0.11) | 0.74 (£ 0.10) 0.73 (£ 0.11)
STE, k=5,0=3 0.75 (£ 0.12) | 0.76 (£ 0.11) | 0.74 (£ 0.10) 0.76 (£ 0.11)
STE, k=10, 0 =0.5 0.90 (£ 0.04) | 0.87 (£ 0.01) | 0.90 (£ 0.03) 0.88 (£ 0.01)
STE, k=10,0 =3 0.90 (£ 0.04) | 0.87 (£ 0.01) | 0.77 (£ 0.14) 0.88 (£ 0.01)
t-STE, k=5, 0 =0.5 0.87 (£ 0.02) | 0.87 (£ 0.02) | 0.86 (£ 0.04) 0.88 (& 0.05)
t-STE, k=5,0 =3 0.85 (£ 0.08) | 0.89 (£ 0.03) | 0.76 (£ 0.12) 0.79 (£ 0.12)
t-STE, k =10,0 =0.5 0.92 (£ 0.03) | 0.92 (£ 0.03) | 0.92 (£ 0.04) 0.91 (£ 0.04)
t-STE, k£ =10,0 =3 0.94 (£ 0.03) | 0.94 (+ 0.02) |0.92 (£ 0.04) 0.91 (+ 0.06)

misclassification rate than working with ALL or ALL_REDUCED.

Clustering

Like in the previous section on classification we removed the four outliers from the car
data set. We then used Algorithm 5 and an ordinal embedding approach for clustering
the remaining 56 cars into three clusters, aiming to recover the cars’ grouping into classes
of ordinary cars, sports cars, and off-road/sport utility vehicles. In the embedding ap-
proach we applied spectral clustering to a symmetric k-NN graph with Gaussian edge
weights on an ordinal embedding of the data set as we did in Section 4.5.1. Table 4.4
shows the average purity (see equation (4.19) for its definition) of the clusterings pro-
duced by the considered methods with respect to our assumed ground truth partitioning.
The average is over 100 runs of the experiment. Note that clusterings produced by Algo-
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rithm 5 and obtained in different runs only differ due to random effects in the K-means
step of spectral clustering, while the clusterings produced by the embedding approach
also differ due to the random initialization in the embedding methods. For this reason,
standard deviations of the purity values achieved by the embedding approach are much
larger than those of the purity values achieved by Algorithm 5 (which are on the order
of machine epsilon) and are shown in Table 4.4 too. All methods perform nearly equally
well, with the unweighted version of Algorithm 5 slightly inferior compared to the other
methods when their parameters are chosen optimally. At least for Algorithm 5 working
with the statements in T_ALL or T_ALL_REDUCED yields better results than working
with the statements in ALL or ALL_REDUCED, but this does not seem to be the case for
the ordinal embedding approach.

4.6 Discussion

In this chapter we have proposed algorithms for the problems of medoid estimation,
outlier identification, classification, and clustering when given only a collection of state-
ments of the kind (x). We have shown that ordinal distance information of this type
is intimately related to the lens depth function and the k-relative neighborhood graph.
These relationships have not been discussed in the machine learning literature before.
They allow us to make use of existing approaches to the considered problems based on
depth functions and the k-RNG. Our algorithms are direct methods, that is they do not
construct an ordinal embedding of the data set as an intermediate step. Hence, they
avoid some of the drawbacks of an ordinal embedding approach that we discussed at the
beginning of this chapter. In particular, our algorithms are deterministic and do not
require to choose a dimension for the space of an embedding. Most important, as we
have seen in the experiments of Section 4.5.1, our algorithms run faster by several orders
of magnitude compared to an embedding approach, even without making use of their
potential of simple and highly efficient parallelization. We believe that this makes our
algorithms an useful alternative to the embedding approach and that they are applicable
in situations in which ordinal embedding algorithms are not.
Our work inspires two main follow-up questions, which we discuss separately:

e A more local point of view: The problems studied in this chapter are global problems
in the sense that they look at a data set as a whole. In contrast, local problems
like density estimation or nearest neighbor search look at single data points and their
neighborhoods with respect to the dissimilarity function ¢, thus spotting only frag-
ments of the data set. The tools used in this chapter, the lens depth function and the
k-RNG, are global in their nature too. Indeed, as we have seen in Section 4.5.1, the
lens depth function cannot detect outliers sitting in-between several modes of a data
set since such outliers are globally seen at the heart of the data.

It is interesting to consider local problems in a setting of ordinal distance information.
A concept that becomes attractive then is that of local depth functions: Agostinelli
and Romanazzi (2008, 2011) introduced a notion of localized simplicial depth, which
can easily be transferred to the lens depth function and is then given by

LDyocar(z; 7, P) = Probability(x € Lens(X,Y) AN (X, Y) <7T), z€X, (4.20)
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where X and Y are independent X-valued random variables distributed according to
a probability distribution P and 7 > 0 is a parameter. Agostinelli and Romanazzi
have shown (theoretically for one-dimensional and empirically for multidimensional
Euclidean data) that for 7 tending to zero their local version of simplicial depth is
closely related to the density function of the underlying distribution and that maxi-
mizing the local simplicial depth function provides reasonable estimates of the distri-
bution’s modes. We believe that such a connection also holds for the local lens depth
function (4.20)—mnote that in one dimension the lens depth function coincides with
the simplicial depth function. Unfortunately, unlike for the ordinary lens depth func-
tion, the local lens depth function cannot be evaluated with respect to an empirical
distribution of a data set D given only ordinal distance information of the kind (%)
for D. Even if we replace the event “4(X,Y’) < 7” by the event “/(X,Y) is among the
smallest 7 distances between data points in D”, it is not clear at all how to evaluate
or estimate (4.20). One solution would be to allow for additional ordinal distance
information of the general type (1.1) like Ukkonen et al. (2015) do when studying the
problem of density estimation based on statements of the kind (H), but this seems to
be a rather unattractive way out. We have tried several heuristics for approximately
evaluating a general comparison (1.1) given only statements of the kind (%), like

Probability(z € Lens(X,Y) | y € Lens(X,Y)) = f(u(z,y))

for a monotonically decreasing function f : Rar — [0, 1], which would be useful since
we can easily estimate the probability on the left side. However, none of them was
promising. They all suffer from the same problem, namely that the number of data
points in Lens(X,Y’) can be small for two completely different reasons: either +(X,Y)
is small, or «(X,Y) is large, but Lens(X,Y’) is located in an area of low probability.
Unfortunately, there is no obvious way for distinguishing between these two reasons.

This raises the question whether density estimation or solving any other local problem
is possible at all given only ordinal distance information of the kind (x). Indeed, the
answer is negative for intrinsically one-dimensional data sets: Consider data points
z1,...,%, on the real line and assume ¢ to be the Euclidean metric. Then the ordinal
distance information consisting of all statements of the kind (x) only depends on the
order of the data points: given any three data points, the most central one is always
given by the data point sitting in the middle, and any order-preserving transformation
of the data points will give rise to exactly the same ordinal distance information. For
this reason it is impossible to estimate any local property of an underlying distribution,
and ordinal distance information of the kind (x) comes along with a substantial loss
in information content compared to similarity triplets, that is answers to dissimilarity
comparisons (1.2): while, under some assumptions on the data points, all similarity
triplets asymptotically uniquely determine the actual positions of the points on the real
line up to a similarity transformation (compare with Proposition 2.7), all statements
of the kind (%) only determine the ranking of the data points up to inversion. However,
such a loss in information content does not seem to occur when dealing with Euclidean
data sets of higher intrinsic dimension. In this case we conjecture the uniqueness
property as discussed in Section 1.4 to hold for ordinal embedding based on statements
of the kind (x). We formulate the conjecture analogously to Theorem 2.3 and use the



118 CHAPTER 4. LENS DEPTH AND K-RNG AS VERSATILE TOOLS

characterization (4.1) of a statement of the kind ().

Conjecture 4.1 (Uniqueness property for ordinal embedding based on statements
of the kind (x)). Let d > 2 and K = B,(z) C R? be a closed and bounded ball (for
some arbitrary r > 0, z € R?). Let (2p)nen be a sequence of points x, € K such
that {x,, : n € N} is dense in K. Let 0 < R < 0o and (gn)neNn be a sequence of
functions @p, : {x1,. .., 25} — Ur(0) C R? with the property that for alln € N and for
alli,j,k € {1,...,n},

(i =l < g = zell) A (i = 2ell <l — 2l)) =
(lpn(@:) = en(@li<llen(@5) = en(@) ) Alenlz) — onl@r)| < lons) — ea@pll)-

Then there exists a sequence (Sp)nen of similarity transformations Sy, : R? — R? such
that

1Sn = nlloo(fzr,zny) = 0 as n — oo.

Support for this conjecture comes from a large number of experiments similar to the
one shown in Figure 1.3. Hence, there is hope: if Conjecture 4.1 holds, when dealing
with Euclidean data sets of intrinsic dimension greater than one, in principle it should
be possible to solve any local problem that is solvable in a “standard” setting of
cardinal distance information also in a setting of ordinal distance information of the
kind (%). However, it remains an open problem how to solve a local problem in practice
except for an embedding approach.

o Active setting: Algorithms 1 to 5 are designed for a batch setting, that is they can
deal with arbitrary collections of statements of the kind (*) that are gathered before
the application of the algorithm and are provided as input all at once. We might
also be interested in algorithms in an active setting, in which we can actively query
statements for intentionally chosen triples of objects. In such a scenario an algorithm
for a machine learning task should interact with the process of querying statements
and adaptively choose triples of objects for which statements are to be queried in
such a way that the task at hand is solved as fast, accurately, cheaply, ... as possible.
For the problems of medoid estimation or outlier identification it is easy to modify
Algorithm 1 and Algorithm 2 in order to derive adaptive versions: Starting with rough
estimates of values LD(O) for every object O in the data set D, one could immediately
rule out some objects with very small (or high) estimated values. Subsequently, only
the estimates of the values of the remaining objects are improved by querying further
statements only for them. This strategy has been suggested by Heikinheimo and
Ukkonen (2013) for their method for medoid estimation. It is interesting whether such
a strategy comes with any guarantees, whether there might be better alternatives (of
course, this depends on what one wants to achieve), or whether similar approaches
apply to Algorithms 3 to 5.



Chapter 5

Kernel functions based on
similarity triplets

We have argued at the beginning of Chapter 4 that the main approach to machine
learning problems based on ordinal distance information, which consists of constructing
an ordinal embedding of the data set and solving the problem on the embedding, has a
number of drawbacks. We suggested to aim at solving problems directly, that is without
constructing an ordinal embedding as an intermediate step. The main contribution of
Chapter 4 is that we then proposed algorithms that meet this requirement. Each of
these algorithms is designed for a specific machine learning problem.

In this chapter, we follow up on the idea of solving problems based on ordinal data
directly. We propose two ways of defining a data-dependent kernel function on a data set
when given only an arbitrary collection of similarity triplets (compare with Section 1.3).
Such a kernel function can subsequently be used to apply any kernel method to the data
set. Hence, our proposed kernel functions provide a generic alternative to the ordinal
embedding approach, that is they can be used to solve a variety of problems. Like the al-
gorithms of Chapter 4, the methods presented in this chapter are appealingly simple and
avoid some of the drawbacks of an ordinal embedding approach. In particular, we ob-
serve our kernel functions to run significantly faster than well-known ordinal embedding
algorithms.

5.1 Setup and notation for Chapter 5
We deal with a data set D = {x1,...,z,} comprising n indexed objects and a collection S

of similarity triplets for D. Recall from Section 1.3 that similarity triplets are answers
to dissimilarity comparisons of the restricted form (1.2), that is

?
L(A,B) < (A, Q).
To simplify presentation, we assume that for all triples of distinct objects x;, x;, x) € D
either ¢(x;, x;) < o(x;, xx) or vy, xj) > v(x;, xy) is true. However, we allow S to contain

incorrect similarity triplets. We assume similarity triplets in S to be encoded by ordered

119
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triples: an ordered triple of distinct objects (x;, 2, 1) € S is interpreted as (x4, z;) <
t(xi, ). We refer to x; as the anchor object in the similarity triplet (z;, z;, z).

Our proposed kernel functions can deal with an arbitrary collection § of similarity
triplets, and we do not make any assumptions on how & is related to the set of all
similarity triplets for D, that is the set of answers to all possible dissimilarity compar-
isons (1.2). In Section 5.2.6, however, we will discuss a strategy for choosing comparisons
that should be evaluated for creating S in case one can choose them. This strategy dras-
tically increases the meaningfulness of our kernel functions relative to the size of S.

5.2 Our kernel functions

We present two ways of defining a data-dependent kernel function on D when only given a
collection S of similarity triplets for D. Our proposed kernel functions measure similarity
between two objects in D by comparing to which extent the two objects give rise to
resembling similarity triplets. The hope is that this quantifies the relative difference in
the locations of the two objects in D. We provide a geometric interpretation of our kernel
functions that supports this hope in Section 5.2.5. Our experiments in Section 5.2.5 and
Section 5.3 show that the similarity scores defined by our kernel functions are meaningful
for a range of both artificial and real data sets.

For the moment assume that contradicting triples (x;, z;, zx) and (z;, zx, z;) cannot
be present in S at the same time. We will discuss how to deal with the general case in
Section 5.2.3.

5.2.1 Kernel function &,

Our first kernel function is based on the following idea: We fix two objects z, and zp of D.
In order to compute a similarity score between x, and x; we would like to rank all objects
in D with respect to their distance from z, and also rank them with respect to their
distance from z3, and take a similarity score between these two rankings as similarity
score between x, and xp. One possibility to measure similarity between rankings is given
by the famous Kendall tau correlation coefficient (Kendall, 1938), which is also known
as Kendall’'s 7: for two rankings of n items, Kendall’s 7 between the two rankings
is the fraction of concordant pairs of items minus the fraction of discordant pairs of
items. Here, a pair of two items i1 and iy is concordant if i; < iy or iy > 49 according
to both rankings, and discordant if it satisfies i1 < 49 according to one and i1 > 49
according to the other ranking. Formally, a ranking is represented by a permutation
o:{l,...,n} = {1,...,n} such that o(i) # o(j), i # j, and o(i) = m means that
item ¢ is ranked at the m-th position. Given two rankings o; and o2, the number of
concordant pairs equals

felor,02) =Y [Hon(i) < 01()}L{o2(0) < 02(j)}

1<j
+ Yo (i) > 01(5)}1{o2(i) > 02(5)}],
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Figure 5.1: Illustration of the idea behind our kernel function k. In order to compute a
similarity score between z; (in red) and zs (in blue) we would like to rank all objects with
respect to their distance from z; and also with respect to their distance from x5 and compute
Kendall’s 7 between the two rankings. In this example, the objects would rank as 1 < x3 < x5 <
Ty <25 < Tg < x7 and Ty < 3 < g < 1 < 5 < x4 < X7, respectively. Kendall’s 7 between
these two rankings is 1/3, and this would be the similarity score between x; and x5. For
comparison, the similarity score between x; and z7 (in green) would be —5/7, and between x4
and z7 it would be —3/7.

the number of discordant pairs equals

fa(o1,02) = Z [1{o1(i) < 01(j)}1{02(i) > 02(j)}

+ Yo (i) > 01(5)}1{o2(i) < 02(5)}],

and Kendall’s 7 between o1 and o9 is given by

felor,02) — fa(o1,02)
(2)

It has been established only recently that Kendall’s 7 is actually a kernel function on
the set of total rankings (Jiao and Vert, 2015). Consequently, by measuring similarity
between the two rankings of objects (one with respect to their distance from z, and one
with respect to their distance from xp) with Kendall’s 7 we would not only compute a
similarity score between x, and x, but would even end up with a kernel function on D
since the following holds: for any mapping h : D — Z and kernel function k£ : Zx Z — R,
the composition ko (h,h) : D x D — R is a kernel function. This idea is illustrated with
an example of a data set comprising seven points in the Euclidean plane in Figure 5.1.

’T(O’l,O'Q) =

In our situation, the problem is that in most cases S will contain only a small fraction
of all similarity triplets and also that some of the triplets in & may be incorrect. This
will not allow us to rank all objects with respect to their distance from any fixed object
based on the similarity triplets in S. We therefore have to adapt the procedure. For
doing so we consider a feature map that corresponds to the kernel function &, that we
just described. By a feature map corresponding to a kernel function & : D x D — R we
mean a mapping ® : D — R? for some d € N such that

k(xi,m5) = (D(2:), ®(x5))pa = P(zs)" - B(x;).

It is easy to see from the above formulas (also compare with Jiao and Vert, 2015) that a

feature map corresponding to the described kernel function k; is given by ®5_ : D — R(3)
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with
1
n
(3)
In our situation, where we are only given & and will not be able to evaluate ®j_ in

most cases, we have to replace ®;_ by an approximation: up to a normalizing factor, we
simply replace an entry in ®;_(z,) by zero if we cannot evaluate it based on the triplets

Oy (z4) = . <1{L(ZL‘Q,ZE¢) < Uxa,x5)} — H{e(xq, 25) > L(ma,ajj)}>

1<i<j<n

in §. More precisely, we consider the feature map @5, : D — R(:) given by

1
O, (24) = '
b 0) V@i, zj, o) €S i = wall

(5.1)
<1{(xa,xi,xj) €S}t —Y(xq,zj,2;) € S}>
1<i<j<n
and define our first proposed kernel function k1 : D x D — R by
ki (i, ) = @, (23)" - @, (). (5.2)

Note that the scaling factor in the definition of ®j, , ensuring that the feature embedding
lies on the unit sphere, is crucial whenever the number of similarity triplets in which an
object appears as anchor object is not approximately constant over the different objects.
For ease of exposition we have assumed that every object in D appears at least once
as an anchor object in a similarity triplet in S. In the unlikely case that z, does not
appear at least once as an anchor object, meaning that we do not have any information
for ranking the objects in D with respect to their distance from xz, at all, we simply set
Oy, (z4) to zero, which is consistent with (5.1) under the convention “0/0=0".

5.2.2 Kernel function k,

Our second kernel function is based on a similar idea, however, now we do not con-
sider x, and x; as anchor objects when measuring their similarity, but rather compare
whether they rank similarly with respect to their distances from the various other ob-
jects. Concretely, up to normalization, we would like to count the number of pairs of
objects (zj, ;) € D x D for which the comparisons

? ?
Uzi, xq) < t(xg, i) and  o(xs,xp) < ez, z5) (5.3)

yield the same result and subtract the number of pairs for which these comparisons yield
different results. See Figure 5.2 for an illustration of this idea.

Adapted to our situation of being only given S it corresponds to considering the
feature map @y, : D — = given by

1
N \/|{(a:i,mj,xk) €S x; =2,V T = Ta}

<1{($i,$a,l’j) €St —Y(zj,xj,zq) € 8}>

(I)k2 (xtl)

(5.4)

1<ij<n
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Figure 5.2: Illustration of the idea behind our kernel function k. In order to compute a
similarity score between x; (in red) and z3 (in blue) we would like to check for every pair of
objects (z;,x;) whether the distance comparisons ¢(z;, 1) ; t(xi, x;) and (x5, x2) ; uxg, xj)
yield the same result or not. Here, we have 32 pairs for which they yield the same result (e.g.,
(x3,x7) is one such a pair) and 17 pairs for which they do not (e.g., (z3,25)). We would assign
772.(32 — 17) = 15/49 as similarity score between x; and z3. The similarity score between x;
and z7 (in green) would be 3/49, and between x5 and x7 it would be 1/49.

and defining our second proposed kernel function k3 : D x D — R by
ko (i, 25) = Py (20)T - @iy (). (5.5)

The scaling factor in the definition of ®, is crucial whenever there are objects that
appear (not as anchor object) in more similarity triplets than others. Again, we apply
the convention “0/0=0" whenever we encounter a denominator equaling zero in (5.4).

5.2.3 Contradicting similarity triplets and combining k; with £,

If S contains contradicting triples (x;, 2, ) and (z;, 1, x;) and there might be triples
that are present repeatedly, we can alter the definition of ®i, or ®j, as follows: if
#{(zq, 2, z;) € S} denotes the number of how often the triple (x4, z;, z;) appears in S,
we set

B () = Tt

where

Dy, (a) = <#{(xa,x,;,xj) €S+ #{(xa,wj,l'i) €S}

The definition of ®, can be revised in an analogous way. In doing so, we incorporate a
simple estimate of the likelihood of a triple being correct.

#{ (x4, i, xj) € S} — #{(2q, xj’%) € S}) .
1<i<j<n

We can combine ki with ko in order to obtain another kernel functions: for parame-
ters u1, po > 0 we define k"2 : D x D — R as

kéll,ﬂ2 — lel +:U'2k2'

A corresponding feature map is given by <I>k§1,m . D — R with

D, p1n0 (I ) = (m (I)kl CBCL))
K @ V2 Opy(z4) )
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There are further possibilities for building up new kernel functions from existing ones.
For example, one could also consider the kernel functions k; - ko or exp(k;), i = 1,2 (e.g.,
Hofmann et al., 2008).

5.2.4 Reducing diagonal dominance

If the number |S| of given similarity triplets is small, our kernel functions suffer from
a problem that is shared by many other kernel functions defined on complex data: the
feature maps ®;, and Pz, map the objects in D to sparse vectors, that is almost all
of their entries are zero. As a consequence, two different feature vectors @y, (z,) and
Oy, () appear to be almost orthogonal and the similarity score k;(xg, xp) is much smaller
than the self-similarity scores k;(xq,x4) or k;(xp, p). This phenomenon, usually referred
to as diagonal dominance of the kernel function, has been observed to pose difficulties
for the kernel methods using the kernel function, and several ways have been proposed
for dealing with it (Schélkopf et al., 2002, Greene and Cunningham, 2006). In all our
experiments we deal with diagonal dominance in the following simple way: Let k denote
a kernel function and K the kernel matrix on D, that is K = (k(x;, :Bj))ﬁjzl, which would
be the input to a kernel method. Then we replace K by K — Apinl, where I € R™*"
denotes the identity matrix and Apj, is the smallest eigenvalue of K. Note that Ay, > 0
and that it is the largest number that we can subtract from the diagonal of K such that
the resulting matrix is still positive semi-definite.

5.2.5 Geometric intuition

Intuitively, our kernel functions measure similarity between z, and x; by quantifying to
which extent x, and x; can be expected to be located in the same region of D: Think of D
as being a subset of R? and ¢ being the Euclidean metric. A similarity triplet ¢(zq,2;) <
t(xq,x;) then tells us that z, resides in the halfspace defined by the hyperplane that is
perpendicular to the line segment connecting z; and x; and goes through the segment’s
midpoint. If there is also a similarity triplet ¢(xp, x;) < ¢(2p, ), o and xp thus are
located in the same halfspace (assuming the correctness of the similarity triplets), and
this is reflected by a higher value of ki (x4, zp). Similarly, a similarity triplet ¢(x;, z4) <
t(x;,x;) tells us that z, is located in a ball with radius ¢(z;, ;) centered at z;, and
the value of ko(zq4, ) is higher if there is a similarity triplet ¢(z;, 2p) < (s, x;) telling
us that xp is located in this ball too and it is smaller if there is a similarity triplet
t(xi, ) < o(x;,xp) telling us that xy is not located in this ball.

The similarity scores between z, and x; defined by k1 and k2 do not only depend on
t(xq,xp), but rather on the locations of x, and z; within D and on how the points in D
are spread in the space since this affects how the various hyperplanes or balls are related
to each other. Consider the example illustrated in Figure 5.3: Let ¢(z3,x,) = 1 implying
that «(zi, zit1) = ©(1/n), 3 <i < n, and v(x1,z2) > (w2, zn) > t(x1, Tyn) > t(x2,23) >
t(z1,23) > 1 be arbitrarily large. Although x; and zo are located at the maximal
distance to each other, they satisfy ¢(z1,2;) < ¢(z1,2;) and (22, ;) < t(xe,x;) for all
3 <i < j <n, and hence both z1 and x2 are jointly located in all the halfspaces obtained
from these similarity triplets. Note that these halfspaces can be arranged as a sequence
of increasing subsets. It is easy to see that we end up with ky(z1,z2) — 1 as n — oo,
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{y : d(yvmn) < d(y7$2)}
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Figure 5.3: The kernel function k; measures similarity between two objects essentially by
counting in how many of the halfspaces that are obtained from distance comparisons the two
objects reside at the same time. The outcome does not only depend on the distance between the
two objects, but also on their location within the data set: although z; and x5 are located far
apart from each other, the kernel function k; considers them to be very similar. See the running
text for details.

assuming k; is computed based on all similarity triplets, all of which are correct. On the
other hand, the distance between x3 and x,, is much smaller, but there are many points
in between them and the hyperplanes obtained from the distance comparisons (1.2) with
these points separate x3 and x,,. We end up with k1 (x3,x,) = —1 as n — oo. Depending
on the task at hand, this may be desirable or not.

Let us examine the meaningfulness of our kernel functions by calculating them on
four visualizable data sets. The first three data sets consist of 400 points in R? and there
¢t equals the Euclidean metric. The fourth one consists of the vertices of an undirected
graph from a stochastic block model and there ¢ equals the shortest path distance. We
computed the kernel functions ki, ko, and ké’l based on 10% of all similarity triplets
(chosen uniformly at random without replacement from the set of all similarity triplets),
all of which were correct. The results are shown in Figure 5.4. The first plot of a row
shows the data set. The second plot shows the negated distance matrix on the data set.
Next, we can see the kernel matrices. The last plot of a row shows the similarity scores
(encoded by color) based on k; between one fixed point (shown as a black cross) and the
other points in the data set. Clearly, the kernel matrices reflect the block structures of
the distance matrices. Also, the similarity scores are the smaller the larger the distances
from the fixed points are. A situation like in the example of Figure 5.3 does not occur.

5.2.6 Landmark design

Our kernel functions are designed as to extract information from an arbitrary collection S
of similarity triplets. However, by construction, a single similarity triplet is useless, what
matters is the concurrent presence of two triplets: ki(z,,z3) is only affected by pairs of
similarity triplets answering

? ?
Uxg, i) < t(xq, ;) and o(xp, x;) < t(xp, xj),

while ky(z4,xp) is only affected by pairs of similarity triplets answering (5.3). Hence,
when we can choose which dissimilarity comparisons of the form (1.2) are evaluated for
creating S (e.g., in a crowdsourcing scenario), we should aim at maximizing the number
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neg. distance similarity
matrix scores

400 points

Figure 5.4: Kernel matrices for four data sets consisting of 400 points based on 10% of all
similarity triplets. The first, the second, and the third data set consist of points in R? and there
¢ equals the Euclidean metric. The fourth data set consists of the vertices of an undirected graph
and there ¢ equals the shortest path distance. 1st plot: The data points. 2nd plot: The negated
distance matrix. 3rd / 4th / 5th plot: The kernel matrix corresponding to ki / ko / ki''. 6th
plot: Similarity scores (encoded by color) based on k; between a fixed point (shown as a black
cross) and the other points.

of appropriate pairs of similarity triplets. This can easily be achieved by means of a
landmark design inspired from so-called landmark multidimensional scaling (de Silva
and Tenenbaum, 2004): for a small subset of landmark objects £ C D only comparisons
of the form (when working with k)

?
txi, ) < o(xs, xg)

or of the form (when working with ks)

?
Uz, xi) < o(x), zp)

with z; € D and z;,x, € £ are evaluated. The landmark objects can be chosen either

randomly or, if available, based on additional knowledge about D and the task at hand.

5.2.7 Computational complexity
General §

A naive implementation of our kernel functions explicitly computes the feature vectors
Oy, (x;) or Py, (x;), i = 1,...,n, and subsequently calculates the kernel matrix K by
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means of (5.2) or (5.5). In doing so, we store the feature vectors in the feature matrix
Oy, (D) = (g, (2:))1y € RE)*™ or &) (D) = (D4, (2:))%, € R®*". Proceeding this
way is straightforward and simple, requiring to go through S only once, but comes
with a computational cost of O(|S| + n?) operations. Note that the number of different
distance comparisons of the form (1.2) is O(n?) and hence one might expect that |S| €
O(n3) and O(|S| + n?) = O(n*). By performing (5.2) or (5.5) in terms of matrix
multiplication ®, (D) - &, (D) or &, (D)T - &4, (D) and applying Strassen’s algorithm
(Higham, 1990) instead of standard matrix multiplication one can slightly reduce the
number of operations to O(|S| + n38!), but still this is infeasible for any somewhat
large data set. Currently, it is not clear to us whether it is really necessary to explicitly
compute the feature vectors @y, (x;) or ®p,(x;) or one can do better than the naive
implementation. Nevertheless, as we will see in the experiments in Section 5.3, even
with the naive implementation computing our kernel functions takes significantly less
time than computing an ordinal embedding.

Landmark design

If we know that S contains only dissimilarity comparisons involving landmark objects as

explained in Section 5.2.6, we can adapt the feature matrices such that ®, (D) € R(3)xn
or &,(D) € RICPxn 1 doing so, we reduce the number of required operations to
O(|S| + min{|£|?, n}1e2(7/3)| £]2n?), which is O(|S| + |£|*2n?) if |£|? < n. Note that
in this case the number of different possible distance comparisons is O(|£|*n) and hence
one might expect that |S| € O(|L]?n).

In both cases, whenever the number of given similarity triplets |S| is small compared to
the number of all different distance comparisons under consideration, the feature matrix
Oy, (D) or Py, (D) is sparse with only O(|S|) non-zero entries and methods for sparse ma-
trix multiplication decrease computational complexity (Gustavson, 1978, Kaplan et al.,
2006).

5.3 Experiments

We performed several experiments in order to study the meaningfulness of our kernel
functions and to make a performance comparison with an ordinal embedding approach.
Our experiments confirm what we have already seen in Figure 5.4: our kernel functions
are meaningful and can capture the structure of a data set when given sufficiently many
(correct) similarity triplets. We find that, in general, they require a higher number
of similarity triplets than an ordinal embedding approach, but in a landmark design
our kernel functions can compete with an embedding approach regarding the required
number of triplets. In any case, like our algorithms of Chapter 4, our kernel functions
run significantly faster than ordinal embedding algorithms.

We first present experiments with synthetically generated similarity triplets, in which
we systematically study the performance of our kernel functions in clustering tasks. After
that we demonstrate the meaningfulness of our kernel functions by applying them to the
car data set introduced in Section 4.5.2 with crowdsourced similarity triplets.
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5.3.1 Synthetically generated similarity triplets

We studied our kernel functions when used in order to apply kernel K-means clustering
(Dhillon et al., 2004) to subsets of USPS digits 1, 2, or 3 and compared our approach to
an ordinal embedding approach. The ordinal embedding approach consists of clustering
the data set through clustering an ordinal embedding of it. We tried the GNMDS
(Agarwal et al., 2007), the CKL (Tamuz et al., 2011), and the t-STE (van der Maaten
and Weinberger, 2012) algorithms in the MATLAB implementation provided by van der
Maaten and Weinberger (2012) for constructing an ordinal embedding, and we used the
ordinary K-means algorithm (e.g., Shalev-Shwartz and Ben-David, 2014, Section 22.2)
for clustering an embedding. We set all parameters of the embedding algorithms except
the dimension of the space of the embedding to the provided default parameters as we did
in the experiments of Section 4.5. The parameter p of the CKL algorithm, which does not
come with a default, was set to 0.1 since we observed good results with this value. Note
that in the unsupervised clustering tasks that we are considering there is no immediate
way of performing cross-validation for choosing parameters. We always provided the
correct number of clusters, that is three, as input and set the number of replicates in
K-means and kernel K-means to five and the maximum number of iterations to 100. For
assessing the quality of a clustering we computed its purity (compare with Section 4.5.1
and see (4.19) for its definition) with respect to the ground truth class labels of the digits.
For comparison, all plots showing purity values also show the purity of the clustering
that was obtained by applying ordinary K-means to the original point set (which was, of
course, not known to either our kernel functions or the embedding algorithms). They also
show the purity of a random clustering in which data points were randomly assigned to
one of three clusters independently of each other with probability 1/3. All computations
were performed in MATLAB R2016a on a MacBook Pro with 2.9 GHz Intel Core i7 and
8 GB 1600 MHz DDR3. In order to make a fair comparison of running times we did not
use MEX files or sparse matrix operations in the implementation of our kernel functions.
All plots show results averaged over 10 runs of an experiment.

We first considered the scenario of a general collection & of similarity triplets and
then looked at a landmark design (compare with Section 5.2.6). In both cases we chose
input similarity triplets uniformly at random without replacement from the set of an-
swers to all possible distance comparisons under consideration, where the dissimilarity
function ¢ always equaled the Euclidean metric and answers were incorrect with some
error probability 0 < errorprob < 1 independently of each other. This noise model is
similar to Noise model I in the experiments of Section 4.5.1.

General S

Figure 5.5 shows in the first row the purity of the clusterings produced by kernel K-
means based on k1, ko, or k;’l, and ordinary K-means applied to the output of the various
ordinal embedding algorithms for 400 points chosen uniformly at random from USPS
digits 1, 2, or 3. In the first and the second plot we can study the purity as a function of
the number of input similarity triplets, in the third plot as a function of errorprob. For
the embedding approach, the dimension of the space of the embedding was always set to
five. This choice gave better results than a choice of two and similar results as a choice of
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Figure 5.5: General S — 400 points from USPS digits 1, 2, or 3 with Euclidean
metric. First row: Purity as a function of the number of input similarity triplets (I1st &
2nd plot) and as a function of errorprob (3rd plot) for kernel K-means based on one of our
kernel functions and for ordinary K-means applied to the ordinal embedding of one of the three
embedding methods and to the original point set (brown line). The cyan line shows the purity
of a random clustering as a lower baseline. Second row: Corresponding running times in seconds
for computing k1 and ko and the ordinal embeddings.

ten (plots omitted). The second row of Figure 5.5 shows the running time for computing
our kernel functions or the ordinal embeddings corresponding to the plots in the first
row. The ordinal embedding approach clearly outperforms our kernel functions in terms
of the number of similarity triplets that are required for producing a reasonable result
(1st row, 1st & 2nd plot). Our kernel functions are also more sensitive to noise in the
similarity triplets (1st row, 3rd plot). Interestingly, our kernel functions yield high purity
values for errorprob > 0.7. In hindsight, this is not surprising: if errorprob = 1 and
thus every similarity triplet is incorrect, we simply end up with the feature map —®y,
when +®;, is the feature map corresponding to one of our kernel functions based on only
correct triplets, and hence with the same kernel function as for errorprob = 0. Clearly,
our kernel functions are highly superior regarding running time (2nd row).

Landmark design

We studied the performance of our kernel functions in a landmark design, in which
we consider only similarity triplets that are answers to special dissimilarity compar-
isons (1.2). The aim of a landmark design is to increase the meaningfulness of our kernel
functions relative to the number of input triplets (compare with Section 5.2.6). We com-
pared to the ordinal embedding approach in two scenarios: In one case, the embedding
algorithms were provided the same similarity triplets as input as our kernel functions.
In the other case, they were provided a same number of similarity triplets chosen uni-
formly at random with replacement from all triplets, that is answers to comparisons (1.2)
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Figure 5.6: Landmark design for k&, — 1000 points from USPS digits 1, 2, or 3 with
Euclidean metric. First and second plot of a row: Purity as a function of the number of input
similarity triplets for kernel K-means based on k; and for ordinary K-means applied to the
ordinal embedding of one of the three embedding methods and to the original point set (brown
line). The ordinal embedding algorithms were provided either the same input triplets as k;
(curves with round markers) or a same number of randomly chosen triplets (square markers). The
cyan line shows the purity of a random clustering as a lower baseline. Third plot: Corresponding
running times in seconds for computing k7 and the ordinal embeddings.

without any restriction, and incorrect with the same error probability errorprob.

Figure 5.6 shows the results in the landmark design for k; when clustering 1000
data points that were chosen uniformly at random from USPS digits 1, 2, or 3 (as in
the experiments of Figure 5.5, but with a larger number of data points). The results
for ko were slightly worse (plots omitted). From the 1000 data points we chose 15
landmark objects uniformly at random. We set the dimension of the space of the ordinal
embeddings to two (1st row) or ten (2nd row). The first and the second plot of a row
show the purity values of the various clusterings as a function of the number of input
similarity triplets in case of errorprob = 0 and errorprob = 0.3, respectively. The third
plot of a row shows the corresponding running times for computing &y and the ordinal
embeddings in case of errorprob = 0. Based on the achieved purity values no method
can be considered superior. The GNMDS algorithm apparently cannot deal properly
with the landmark triplets. All methods require a higher number of input similarity
triplets in case of errorprob = 0.3 than in case of errorprob = 0. Note that the ranges
for the number of input triplets in Figure 5.6 are much smaller than those in Figure 5.5,
although here the number of data points is more than twice as large as there. This
shows that our kernel functions highly benefit from a landmark design. Just as it is
the case for a general collection S of similarity triplets, our approach is highly superior
regarding running time. For example, in case of errorprob = 0 and 20000 input triplets,
the computation of k; took 0.5 seconds while the fastest embedding algorithm (GNMDS
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Table 5.1: Characteristic values of ALL, ALL_REDUCED, T_ALL, and T_ALL_REDUCED.

‘ ALL ‘ ALL_REDUCED ‘ T_ALL ‘ T_ALL_REDUCED

Number of similarity triplets 14194 12676 13514 12112
Number of unique similarity triplets | 13152 12676 12502 12112
Number of unique similarity triplets | 0.13 0.12 0.12 0.12

in percent of all similarity triplets
60 - (%) = 102660]

Number of contradicting pairs of | 242 0 198 0
similarity triplets (in the sets of
unique similarity triplets)

with random input triplets) ran for 7 seconds when the embedding dimension equaled
two. When the embedding dimension equaled ten, for random input triplets, a local
optimum was found much faster in the optimization underlying GNMDS (running time
of one second), but it ran for 18 seconds when provided with the landmark triplets. Even
more striking, the CKL algorithm and the t-STE algorithm ran for 33 and more than
80 seconds, respectively, in case of errorprob = 0, 20000 input similarity triplets, and
the embedding dimension equaling ten.

5.3.2 Crowdsourced similarity triplets

We applied our kernel functions to the car data set introduced in Section 4.5.2. For the
car data set we do not have similarity triplets in the first place, but statements of the
kind (%) (compare with Section 1.3 or Section 4.1), from which we can derive similarity
triplets via (4.1).  We derived a collection of similarity triplets from each of the four
collections ALL, ALL_REDUCED, T_ALL, and T_ALL_REDUCED of statements, and in this
chapter we use the names ALL, ALL_REDUCED, T_ALL, or T_ALL_REDUCED to refer to
the corresponding collection of similarity triplets. The numbers of (unique) similarity
triplets in each collection and of contradicting pairs of triplets are provided in Table 5.1.

We used our kernel functions to apply kernel PCA (Schélkopf et al., 1999) to the car
data set. Figure 5.7 shows the projection of the data set onto the first two kernel prin-
cipal components when working with the kernel function ko and the similarity triplets
in T_ALL. We obtained a similar result when using k; or k?l,’l or one of the collections
ALL, ALL_REDUCED, or T_ALL_REDUCED instead (figures omitted). The figure looks
quite reasonable, with the cars obviously arranged in groups according to the subclasses
of sports cars (top left), ordinary cars (middle right), and off-road/sport utility vehicles
(bottom left). Also within the subclasses there is some reasonable structure. For ex-
ample, the race-like sports cars are located near to each other and close to the Formula
One car and the red cars at the top are strikingly close. All outliers according to our
definition in Section 4.5.2 are located in the very left bottom part of the figure. The
computation of k; or ko on the car data set based on the similarity triplets in any of
the four collections took about 0.05 seconds, whereas the computation of the ordinal
embedding shown in Figure 4.18 took 3.7 seconds.
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Figure 5.7: Kernel PCA on the car data set. Projection onto the first two principal components
when using the kernel function ko based on the similarity triplets in T_ALL.

We also used our kernel functions to apply kernel K-means clustering to the car
data set: after removing the four outliers, we wanted to recover the 56 remaining cars’
grouping into ordinary cars, sports cars, and off-road/sport utility vehicles like we did
in Section 4.5.2. Now one can proceed in two ways: One can either compute our kernel
functions on the whole car data set, based on all similarity triplets in one of the collections
ALL, ALL_REDUCED, T_ALL, or T_ALL_REDUCED, and restrict them to the 56 cars under
consideration. Or one can compute our kernel functions only on the 56 cars, based only
on similarity triplets comprising three of these cars and none of the removed outliers.
For the sake of completeness we performed the experiment in both ways and present
both results. The numbers of (unique) similarity triplets in each of the collections ALL,
ALL_REDUCED, T_ALL, or T_ALL_REDUCED and of contradicting pairs of triplets after
removing all triplets comprising an outlier as required for the second way are provided in
Table 5.2. Table 5.3 shows the average purity (see equation (4.19) for its definition) of the
various clusterings with respect to our assumed ground truth partitioning into ordinary
cars, sports cars, and off-road/sport utility vehicles. The average is over 100 runs of the
experiment. The clusterings obtained in different runs only differ due to the random
initializations in kernel K-means. We set the number of replicates in kernel K-means to
five and the maximum number of iterations to 100 like we did before, and we provided
the correct number of clusters as input. Our first approach, that is computing the kernel
function on the whole car data set and restricting it to the 56 cars under consideration,
yielded marginally higher purity values than the other approach. The kernel function ko
consistently achieved better results than the kernel function ki. As expected, working
with the similarity triplets in T_ALL or T_ALL_REDUCED led to higher purity values
than working with the similarity triplets in ALL or ALL_REDUCED. Overall, the results
are comparable to the ones that we obtained in Section 4.5.2 (compare with Table 4.4).
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Table 5.2: Characteristic values of ALL, ALL_REDUCED, T_ALL, and T_ALL_REDUCED after
removing the fire truck, the motortruck, the tractor, and the antique car from the car data set.

‘ ALL ‘ ALL_REDUCED ‘ T_ALL ‘ T_ALL_REDUCED

Number of similarity triplets 11248 10242 10698 9772
Number of unique similarity triplets | 10642 10242 10106 9772
Number of unique similarity triplets | 0.13 0.12 0.12 0.12

in percent of all similarity triplets
56 - (%) = 83160]

Number of contradicting pairs of | 203 0 170 0
similarity triplets (in the sets of
unique similarity triplets)

Table 5.3: Average purity (+ standard deviation) of clusterings obtained from kernel K-means
using k1, ks, or k?l)’l when clustering the 56 cars from the classes of ordinary cars, sports cars, and
off-road/sport utility vehicles into three clusters (average over 100 runs). A kernel function k
“restricted to 56 cars” (2nd to 4th row) means that we computed & on the whole car data
set (comprising 60 cars), using all available similarity triplets in one of the collections ALL,
ALL_REDUCED, T_ALL, or T_ALL_REDUCED, and restricted it to the 56 cars under consideration.
A kernel function k£ “only on 56 cars” (5th to 7th row) means that we computed & only on the
56 cars, using only similarity triplets comprising three of these cars.

’ ‘ ALL ‘ ALL_REDUCED ‘ T_ALL ‘ T_ALL_REDUCED ‘
ky restricted to 56 cars | 0.77 (£ 0.08) | 0.76 (+ 0.07) | 0.80 (£ 0.08) | 0.80 (& 0.07)
ko restricted to 56 cars 0.90 (£ 0.03) | 0.89 (£ 0.03) | 0.91 (£ 0.03) 0.89 (& 0.03)
ks restricted to 56 cars | 0.87 (& 0.08) | 0.86 (& 0.09) | 0.91 (£ 0.03) | 0.90 (£ 0.05)
k1 only on 56 cars 0.77 (4 0.08) | 0.74 (+ 0.07) | 0.81 (+ 0.07) | 0.79 (+ 0.07)
k2 only on 56 cars 0.89 (4 0.04) | 0.88 (& 0.05) | 0.89 (& 0.04) | 0.88 (& 0.04)
k3! only on 56 cars 0.86 (£ 0.08) | 0.85 (£ 0.08) | 0.89 (£ 0.06) | 0.87 (% 0.07)

5.4 Discussion

In this chapter we have proposed data-dependent kernel functions that can be evaluated
when given only an arbitrary collection of similarity triplets for a data set D. They can
be used to apply any kernel method to D and hence provide a generic alternative to
the ordinal embedding approach. Other than ordinal embedding algorithms our kernel
functions are deterministic and we observed them to run significantly faster. Like for
the algorithms that we proposed in Chapter 4, we believe that our kernel functions are
applicable in situations in which ordinal embedding algorithms are not. A weakness of
our kernel functions compared to an ordinal embedding approach is that, in general,
they require a higher number of similarity triplets in order to produce a reasonable
result. This comes from the fact that the value of our kernel functions at a pair of data
points is affected only by appropriate pairs of similarity triplets. A means to increase the
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fraction of appropriate pairs in a collection S of similarity triplets, and thus to decrease
the number of required input triplets, is a landmark design. In a landmark design, only
dissimilarity comparisons (1.2) involving landmark objects are evaluated for creating S.
Our experiments showed that in a landmark design our kernel functions can compete
with an ordinal embedding approach in terms of the required number of triplets.

Our work, which currently lacks a profound theoretical analysis, raises a number of
questions: It would be nice to relate our kernel functions in some way to the underlying
dissimilarity function ¢, assuming our kernel functions are computed based on all sim-
ilarity triplets, all of which are correct. For general data sets this will not be possible
as our example presented in Section 5.2.5 shows. However, will this be possible if one
makes strong assumptions on the data points (e.g., Euclidean data points sampled from
a uniform distribution)? Another question is: how many similarity triplets are neces-
sary, and how many incorrect ones are allowed, such that our kernel functions based on
the given triplets are “close” to our kernel functions based on all similarity triplets, all
of which are correct? In a landmark design, we would like to know what the optimal
number of landmark objects is. How should we choose the landmark objects if additional
knowledge about D is available? We suspect that the answers to the latter questions
strongly depend on the task at hand. An obvious question concerns the implementation
of our kernel functions. Currently, we have to explicitly compute the feature vectors
Dy, (x;) or @, (z;), i = 1,...,n, for computing the kernel matrix on D = {x1,...,2,}.
As explained in Section 5.2.7, this leads to a high computational overhead that we would
like to avoid. It is not clear to us whether it is really necessary to explicitly compute
the feature vectors @y, (z;) or ®y, (z;) or whether one can do better, for example, when
assuming that the collection S of input similarity triplets comes in form of a matrix
where each row corresponds to one triplet and the triplets are ordered in a specific way.

We hope that our work inspires future work: Our kernel functions are based on the
idea of measuring similarity between two objects in D by comparing to which extent
the two objects give rise to resembling similarity triplets. We came up with two ways of
specifying what “resembling” similarity triplets are (corresponding to k; and kg, respec-
tively). However, there might be further possibilities, and this could result in another
kernel functions based on similarity triplets. It is also natural to ask whether one can
adapt our approach to other types of ordinal data (compare with Section 1.3). For ex-
ample, how can we define meaningful kernel functions when given an arbitrary collection
of answers to general dissimilarity comparisons of the form (1.1)7
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