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1 Introduction

Cancer is one of the leading causes of death world-wide, and the most common
cause of death in Germany after cardiovascular diseases [1]. Aside from surgery
and chemotherapy, radiotherapy (RT) has emerged as an established mode of
treatment in oncology over the course of the 20th century. It is estimated that 50%
of all cancer patients would benefit from RT, either as a stand-alone treatment
or in combination with surgery and chemotherapy [2]. In short, the aim of RT is
to apply ionizing radiation to the tumor, while at the same time minimizing dose
to the surrounding tissue and organs to prevent side effects.
The foundation of RT was laid by W.C. Röntgen with the discovery of the

X-rays in 1895 [3]. Researchers at the time quickly realized the huge potential of
this discovery for medical diagnostics and therapy, with treatment of benign and
malignant lesions starting before the end of the 19th century [4].
From there, radiotherapy advanced continuously to the treatment modalities

we know today. The benefit of fractionated treatment to healthy tissue was first
suggested in 1919 [5, 6], and in the 1920’s, irradiation from multiple directions,
called "Kreuzfeuerbestrahlung" (cross-fire irradiation) was established, a precur-
sor of modern conformal radiotherapy [7]. After the second world war, betatrons
and linear accelerators (linac) became available for irradiation with photon ener-
gies in the MeV range [8,9], allowing for the treatment of tumors in deeper body
regions, and reducing side effects to the skin due to their decreased surface dose.
Through the invention of better imaging modalities in recent decades, such

as computed tomography (CT) and positron emission tomography (PET) [10],
the ability to acquire precise 3D images to locate and distinguish tumor tissue
from surrounding healthy tissue has improved. Meanwhile the development of
advanced radiation delivery techniques such as intensity modulated RT (IMRT)
or volumetric modulated arc therapy (VMAT) [11–13], has enabled oncologists
to precisely deliver dose to the designated tumor area.
However, not all patients can be cured using state-of-the-art combination ther-

apies including RT, chemotherapy and surgery. In head-and-neck cancer, about
50% of all treated patients suffer from local failures, with similar results being
observed for other tumor entities [14]. With the currently clinically used method
for tumor classification, which includes tumor location, stage and histology, it
is not possible to predict which patients will be cured and who will suffer from
a recurrence. Therefore, researchers aim to find additional ways to classify tu-
mors and thus further individualize therapy to increase cure rates and long-term
survival. Such approaches include gene signatures [15], the so-called radiomics,
which aims to derive prognostic features from radiological imaging data [16], or
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1 Introduction

functional imaging, an approach to visualize functional and metabolic properties
of the tumor tissue [17,18].
One of the most heavily investigated biological changes frequently observed in

tumors is hypoxia [19, 20], which differs among tumours of the same entity and
even within the same tumor. Hypoxia is associated with decreased radiosensitiv-
ity [21], therefore, it is not surprising that the presence of hypoxia has been linked
to poor prognosis for treatment outcome [22]. However, hypoxia is difficult to
assess, and the current gold standard are invasive oxygen probes, which measure
only small parts of the tumor. Research and diagnostics would greatly benefit
from a non-invasive method to assess hypoxia in 3D and with high resolution.
However, no such method has been clinically established until now. Current

research focuses on PET using radiolabelled nitroimidazole-based tracers as the
most promising approach [23]. Originally developed as radiosensitizers [24], these
compounds form a highly reactive product during intracellular reduction and bind
quickly to cellular macromolecules in the absence of oxygen, thereby accumulating
in hypoxic tissue. Labelling with the β+-emitter 18F allows for their detection
via PET [25]. The oldest and most widely used nitroimidazole tracer is 18F-
Fluoromisonidazole (FMISO) [26].
Beyond its use as a potential prognostic tool [18, 27], it is anticipated that

the information gained from hypoxia PET can be used to make RT adjustments
to counteract hypoxia-induced radioresistance. Approaches include breathing of
high oxygen content gas such as carbogen [28], the use of radiosensitizers [29], or
targeted radiation dose escalation to hypoxic areas, a process referred to as "dose
painting" [30, 31]. The goal of dose painting is to escalate the dose to hypoxic
subvolumes to counteract hypoxia-induced radioresistance, thus achieving a ho-
mogeneous effectiveness of RT over the entire tumor volume. With the modern
treatment modalities, dose painting is technically feasible and easy to implement
in the clinic once its benefits for the patient have been conclusively shown in
clinical trials [32].
However, the effectiveness of hypoxia dose painting is highly dependent on

the reliability of hypoxia PET imaging [23]. Still, many factors that have an
impact on hypoxia PET imaging are not yet fully understood. Some studies
have concluded that static images prior to therapy might be sufficient to predict
outcome [33], while others observed no such correlation [18]. Other studies use
dynamic imaging approaches to predict outcome [27], as it is unclear whether
static imaging is sufficient to correctly assess tumor hypoxia. There are many
factors that can impact the quality of hypoxia imaging, such as variations in
perfusion, acute hypoxia, or renal clearance of the tracer, whose impact remains
poorly understood. Also, many new hypoxia tracers have been developed in recent
years, and pre-clinical studies assessing their properties have been inconclusive
[34–37].
Investigation of many of the problems mentioned above is difficult in exper-

imental setup, as they often contain too many uncertainties to safely attribute
observed changes to one single variable.
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Here, mathematical models simulating the physical and chemical aspects of
tracer accumulation offer another approach to gain additional insight. Such mod-
els allow for the quantification of each variable’s impact on image signal, which
can help advance our understanding of PET image formation and makes them a
useful additional tool for the planning of clinical and pre-clinical studies and the
evaluation of imaging protocols.
In the past, several mathematical models for the simulation of tissue oxygen

distributions and resulting PET tracer accumulation have been published. These
models commonly employ a two-step approach. In the first step, tissue oxygena-
tion is simulated, which serves as an input for a subsequent simulation of PET
tracer accumulation. First presented by Kelly and Brady [38], similar approaches
have been presented by Mönnich et al [39–41], Dalah et al [42, 43], Bowen et
al [44], and Warren and Partridge [45]. However, a thorough validation as well
as a three-dimensional simulation of PET tracer retention on actual tumor vas-
culature is still lacking.
In this work, we develop and validate a simulation tool based on the work by

Mönnich et al [39–41]. The simulations are carried out on realistic tumor vascula-
ture and can be used as a tool to estimate the impact of individual parameters on
PET signal. Additionally, the model is extended to three dimensions and a thor-
ough experimental validation is performed to demonstrate the reliability of the
simulation as a tool to evaluate imaging scenarios, which has not been performed
for any of the published models so far. An application of the model is shown
in the last part of this thesis. Here, multiple nitromimidazole-based tracers are
compared to determine the impact of their pharmacokinetic properties on image
contrast.
The goal of this thesis is to provide a robust 3D simulation model that can

predict spatial and temporal hypoxia tracer accumulation with satisfying accu-
racy to support planning of clinical and pre-clinical studies and assess dedicated
imaging protocols.
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2 Objectives and outline of this thesis

This thesis consists of three parts, each of which dealing with the simulation
of nitroimidazole PET tracers on realistic tumor vessel maps. All studies were
performed in squamous cell carcinomas of the head and neck (HNSCC) tumor
xenografts, but the methodology may easily be extended to other tumor entities
as well. The following sections provide an overview of the performed studies.

• Part I (Chapter 4) In this part, a first step towards experimental valida-
tion of the simulation approach was taken. Until this point, neither oxygen
nor hypoxia tracer simulation studies had been published that provided a
validation beyond demonstrating plausibility. For this study, immunofluo-
rescence images from nine different HNSCC cell lines were used as vessel
maps to simulate two-dimensional (2D) FMISO accumulation. The model
was set to include only functional vessels as determined by perfusion stain-
ing, and optimize the parameter M0, the maximum oxygen consumption.
The simulation results were compared to pimonidazole stainings consist-
ing of microscopic sections of HNSCC tumors to determine correlation, and
optimized parameters were analysed for cell line specific differences. The
objective was to demonstrate the general validity of the method, and its ap-
plicability to a number of cell lines, before attempting a full 3D validation.
At the same time, the numerical solution approach to the model was altered
to accomodate for a future three-dimensional (3D) expansion of the model.

• Part II (Chapter 5) Here, the model was extended to 3D and a more
thorough validation of the model was performed by validating both the
spatial location of simulated FMISO accumulation as well as the simulated
TACs, which extends the previous study. The objective was to provide
a full validation of the model, thus confirming the validity of conclusions
drawn from simulations in the past. For this, 2D and 3D simulations on
vessel maps derived from HNSCC xenograft tumors were performed, and
sensitivity and specificity of the approaches were determined by comparing
the results to pimonidazole stainings. Simulated activities were compared
to FMISO PET activities measured in the same tumor, as a validation of
simulated overall activity.

• Part III (Chapter 6) deals with the impact of tracer diffusion and clear-
ance on image quality. The motivation of this study was to evaluate how
FMISO compares to the newly developed tracers [18F]fluoroazomycinara-
binoside (FAZA) and [18F]flortanidazole (HX4), and which pharmakokinet-
ical properties had the largest impact on image quality. These tracers had

4



originially been developed to provide better image contrast than FMISO,
however, preclinical data investigating that claim was sparse and inconclu-
sive (cf. Section 4.1). Thus, blood input data for each of the three tracers
was determined from clinical dynamic PET scans, and the model previously
developed by Mönnich et al was adjusted to account for the differences in
clearance and diffusion, and to allow for a 3D expansion.
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3 Scientific background

3.1 Tumor hypoxia and radiotherapy

3.1.1 Tumor vasculature and the causes of hypoxia

A functional vascular system is essential for the function of the body, as it is the
main pathway to supply cells with nutrients and oxygen, and remove waste prod-
ucts and carbon dioxide. With very few exceptions, such as cartilage, all tissues in
the human body rely on an intricate network of capillaries to exchange substances
needed for their proper metabolic function. In this regard, solid tumors are no
exception. They form a functional blood supply through angiogenesis, which is
the growth of new blood vessel branches from the host vascular network [46].
However, the dedifferentiation and rapid growth of tumor cells result in a rather
chaotic organization of tumor vasculature. This results in leaky, irregularly per-
fused blood vessels with frequent blind endings and irregular intervessel distances,
which lead to a decrease of oxygen supply [23, 47]. Once the supply of oxygen
falls below the oxygen demands of the tumor, hypoxia is the consequence [48].

3.1.2 Types of hypoxia

If intervessel distances increase beyond 200-400 µm, regions far away from the
blood vessel are no longer adequately supplied with oxygen, leading to the for-
mation of chronic, diffusion-limited hypoxia. Typically, a blood vessel can supply
cells as far away as 100-200 µm from the vessel [49]. However, as blood oxygen
content drops with increasing vessel length and due to the unorganized nature
of tumor vasculature, hypoxic areas may be located closer to the vessel. This
type of hypoxia has been known and described since the early 20th century in
the Krogh cylinder model, which describes the oxygen supply along cylindrical
vessels [50, 51], and later confirmed by Thomlinson and Gray in the 1950’s [52].
An example of chronic hypoxia in vivo is shown in Figure 3.1.
Another type of hypoxia is more acute in nature. It is caused by transient

perfusion changes in the blood vessels, leading to an acute reduction or even
cease of blood flow in affected vessels [53, 54]. In acutely hypoxic tissue, the
level of vessel perfusion may differ, and does not always result in a complete
shutdown. Instead, only blood cells may be restricted from passing through the
vessel, while plasma flow will be maintained, leaving the cells deprived of oxygen,
but not of other nutrients [55]. The latter will lead to hypoxia, but not necessarily
to necrosis, as tumor cells are often able to generate energy from non-oxidative
breakdown of glucose through lactate acid fermentaion, and maintain a high

6



3.1 Tumor hypoxia and radiotherapy

Figure 3.1: Chronic hypoxia in a HNSCC xenograft, as stained with pimonidazole. Col-
ors indicate blood vessels (red, CD31), perfusion (blue, Hoechst) and hy-
poxia (green, pimonidazole). Note the distance of hypoxia from the perfused
vessels.

level of cellular function. Though both types of hypoxia will lead to an increase
in radioresistance, it is argued that acute hypoxia is the more dangerous type of
the two, as acutely hypoxic cells are more likely to recover from radiation-induced
cellular damage [56,57].

3.1.3 Radiobiological effects of hypoxia

Since the 1950’s, the impact of hypoxia on cell survival after radiotherapy has been
investigated [21, 52], and it was found that the presence of hypoxia signifcantly
decreases radiosensitivity. It was shown that the dose to hypoxic cells has to be
increased by a factor of two to three to achieve the same level of damage observed
in normoxic cells [21,58].
There are several mechanisms that favor the survival of hypoxic cells under

radiotherapy. For one, oxygen is important to fix radiation-induced damage to
macromolecules in the cell. Ionizing radiation leads to the formation of free radi-
cals, which ultimately cause tissue damage. These radicals, mostly hydroxyl free
radicals, will interact with macromolecules in the cell, including DNA, resulting
in DNA-derived free radicals. In the presence of oxygen, these radicals will react
quickly with oxygen and then react further to produce a stable chemical change
in the DNA molecule, frequently resulting in DNA strand breaks. In the absence
of oxygen, however, the target is quickly reduced to its original form, effectively
repairing the DNA damage [59–61].
There are also indications that hypoxia favors the survival of cancer cells with

more aggressive phenotypes. It leads to the activation of the HIF pathway, a cell
signalling cascade modulating cellular responses to hypoxia. The HIF pathway
has been associated with the expression of markers related to cancer stem cell
maintenance [62, 63]. Cancer stem cells have an improved capability for DNA
repair, making them more likely to survive an exposure to ionizing radiation and

7



3 Scientific background

a likely cause for therapy failures [61].
In addition, hypoxia seems to favor the survival of apoptosis-resistant clones, as

p53-deficient cells show a decreased rate of hypoxia-induced apoptosis compared
to their non-mutated counterparts [64]. p53 is a protein involved in the induction
of apoptosis following irreparable DNA damage.

3.1.4 Assessment of hypoxia and perfusion status using
immunofluorescence

Due to its impact on radiation sensitivity, hypoxia has been a focus of radiobi-
ological research during the last decades. The most common approaches for the
detection of hypoxia on biological samples involve the use of antibodies. Mon-
oclonal and polyclonal antibodies are a common method to detect and quantify
the presence of biological marker proteins and molecules in experiments such as
Western Blots, fluorescence assorted cell sorting, immunohistochemistry, and im-
munofluorescence (IF) microscopy. As IF microscopy was used for the detection
of hypoxia on tumor xenografts in this study, the method is described in more
detail.

Figure 3.2: The principle of immunofluorescence. The primary antibody binds specif-
ically to the antigen (1), while the secondary antibody carrying the fluo-
rophore binds to the heavy chain of the primary antibody (2). The flu-
orophore can then be excited and its emission photon detected using a
fluorescence microscope.

The principle of the method is outlined in Figure 3.2. Samples, usually derived
from cell culture or tisse samples, are fixed on a slide. First, the sample is incu-
bated in a reagent containing an antibody that selectively binds to the selected
marker molecule [65]. In the case of hypoxia, this can be an exogeneous marker
such as pimonidazole [66], or endogeneous markers, such as the HIF-upregulated
proteins CAIX and GLUT-1 [67, 68]. For the staining of blood vessel, surface

8



3.1 Tumor hypoxia and radiotherapy

proteins specifically expressed on endothelial cells, such as CD31 [69] or podoca-
lyxin [70], are commonly used as marker proteins. Primary antibodies are either
monoclonal, e.g. binding to one specific surface structure (epitope) of the tar-
get protein, or polyclonal, e.g. binding to multiple epitopes of the same protein.
While monoclonal antibodies are usually derived from one single, immortalized
cell line in cell culture, polyclonal antibodies are harvested from the serum of
exposed animals, and are therefore the product of multiple B-cell clones.
In the second step, the slide is incubated with a reagent containing polyclonal

antibodies against the primary antibody. As each secondary antibody is conju-
gated (labeled) with a fluorophore, the secondary antibody can be detected as the
fluorophore will emit photons of a specific wavelength if excited in a fluorescence
microscope. Since multiple secondary antibodies bind to each primary antibody,
a signal amplification is achieved that increases the sensitivity of immunofluores-
cence microscopy [65].
Conjugated compounds include fluorescein isothiocyanata (FITC) with an ex-

citation wavelength of 495 nm and an emmision wavelength of approximately 519
nm. Tetramethylrhodamine (TRITC) is another fluorophore, with an excitation
maximum of 557 nm and an emission wavelength of 576 nm. The combination of
primary antibodies from different species and secondary antibodies with labels of
different wavelength can be used to visualize multiple markers on the same slide.
In our study, pimonidazole was used as a marker of hypoxia. It is an ex-

ogenenous marker that has to be applied prior to immunofluorescence stain-
ing. As a nitroimidazole, it has the same binding reaction as FMISO and other
nitroimidazole-based tracers, and has been shown to correlate well with FMISO,
FAZA and HX4, as well as endogeneous markers of hypoxa such as CAIX [34].
Perfusion status of the vessels can be assessed through injection of Hoechst

33342. Hoechst 33342 is an organic substance that intercalates with DNA, re-
sulting in staining of the nuclei. If it is injected shortly before tumor excision,
only nuclei adjacent to perfused vessels will be stained. The molecule itself is
excitable at 355 nm, and emits photons of 465 nm wavelength. Therefore, it does
not need antibodies for its detection via fluorescence microscopy.

3.1.5 Consequences for radiotherapy

Not surprisingly, the radiobiological effects induced by hypoxia adversely affect
RT treatment efficacy in solid tumors. This has been shown in a number of
clinical studies, both for two larger studies that measured tumor oxygen content
directly through oxygen probes [22, 71], as well as a number of smaller studies
applying PET imaging approaches [17, 18, 33, 72, 73]. Here, hypoxia resulted in
higher rates of loco-regional recurrences, distant metastases and cancer-related
deaths.
Several approaches to counteract hypoxia-induced radioresistance have been

investigated. In the 1970’s, several studies have used high-oxygen content gas
breathing to increase tumor oxygenation during radiotherapy [74, 75]. Later, ra-
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3 Scientific background

diosensitizers such as nimorazole gained more attention, and combined treatments
were also investigated [28]. A meta-analysis of these methods revealed that there
is clinical evidence that patients with hypoxic tumors benefit from these modi-
fications, resulting in significantly better treatment outcome with no increase of
radiation-induced side effects [76].
An escalation of dose to hypoxic tumors or tumor subvolumes is discussed as

an alternative approach to fight hypoxia-induced radioresistance. Several ap-
proaches of dose painting have been suggested. The most simple approach is
to homogeneously increase the prescibed dose to tumors in which a significant
amount of hypoxia has been detected [23]. While this approach is straightfor-
ward and easy to apply without placing high demands on the hypoxia imaging
modality, it carries the risk of increased side effects due to the higher dose on
surrounding normal tissue.
Two alternative approaches include escalating dose exclusively to hypoxic sub-

volumes, either homogeneously (dose paiting by contours) or adjusted propor-
tionally to the severity of hypoxia detected in each subvolume (dose painting by
numbers). Planning studies showed that these approaches are technically feasible
thanks to the introduction of IMRT treatment in the clinical routine [30, 31, 77].
However, they both depend on thoroughly validated spatially highly resolved im-
ages of hypoxia. As imaging modalities for the detection of hypoxia are still
under clinical evaluation, hypoxia-based dose painting has yet to be clinically
established.

3.2 Positron emission tomography (PET)

3.2.1 Principles of PET imaging

Positron emission tomography is a functional imaging modality in nuclear medicine.
It uses substances labeled with β+ emitters (tracers) that accumulate if certain
metabolic conditions are met. Imaging is done by detection of coinciding photon
pairs generated by positron annihilation.
Positron-emitting radioisotopes used for PET imaging include 11C, 13N, 18F,

15O, 68Ga and 64Cu, with half-lifes ranging from a few minutes to several hours.
β+-decay occures in nuclei with a high proton number. The mass of the nucleus
will not change, but the charge is decreased by one, as described in the following
equation:

A
ZX −−→ A

Z–1Y+ e+ + νe

The neutrino will leave the patient’s body with no relevant interaction and thus
plays no further role in tomography. The positron will quickly annihilate with an
electron in its vicinity, resulting in the formation of two photons with the energy
of 511 keV each. The photons will be emitted in an angle of approximately 180◦.
Their specific energy and the precise angle as well as their coinciding detection
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within a few nanoseconds can be used to reconstruct a line of response (LOR) on
which the annihilation event occured.
In PET scanners, this principle is exploited to reconstruct 3D images of the

distribution of annihilation events in the body. The scanner contains rings of
scintillator crystals and photomultipliers which detect annihilation radiation. The
number of possible LORs that can be distinguished is determined by the number
of detector panels. The number of incidents on each LOR is directly proportional
to the amount of tracer molecules. Image reconstruction such as filtered back
projection or iterative approaches such as Maximum Likelihood - Expectation
Maximization can be used to obtain an image of tracer distribution in the patient’s
body [78].
Compared to other medical imaging modalities, PET images have a poor reso-

lution, with a geometric resolution of roughly 4-6 mm in clinical scanners. Even
in modern scanners, a much higher resolution cannot be achieved for a number
of physical and technical limitations inherent to PET imaging [79]. They include
the limited number and finite size of detector panels, scattering of photons and
residual impulse of the electron-positron pair resulting in emission angles different
from 180◦, and multiple coincidences at the same time, resulting in the assign-
ment of wrong LORs. Also, the number of counts is inherently restricted, as
only a small fraction of emitted photons is detected as true coincidences and the
amount of injected tracer is limited due to its toxicity for the patient.
In the past, PET has been combined with other anatomical and functional

imaging modalities. One of them is PET/CT [80, 81]. The approach allows to
perform functional PET imaging while acquiring precise, high resolution anatom-
ical information without repositioning of the patient. The additional advantage
for radiotherapy is the information on electron density included in the CT scan,
which is important for treatment planning. The functional imaging can help in
more precise target delineation and early detection of hypoxia [82].
In recent years, systems combining PET and magnetic resonance imaging (MRI),

so-called PET/MR scanners, have become commercially available. With this
imaging modality, the functional information derived from a PET scan can be
acquired together with anatomical as well as functional MR sequences, such as
diffusion-weighted MRI [83]. However, electron density for RT treatment plan-
ning and attenuation correction cannot be directly deduced from MR scans. This
can be overcome either through generation of pseudo-CTs from MR images, which
is a subject of on-going research [84, 85], or through deformable registration of a
separate CT scan on the MR image [86].

3.2.2 Applications of PET imaging in oncology besides hypoxia imaging

The introduction of PET imaging into the clinical routine has helped to improve
cancer treatment in radiotherapy, far beyond the possible detection of hypoxia.
PET images can be used for tumor staging, detection of metastasis, tumor de-
lineation and monitoring of treatment success, often with higher sensitivity and
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specificity than CT and MRI alone [87]. The most commonly used radioisotope
for PET tracers is 18F, as its half life of 109 min is long enough for the tracer to be
transported over short distances, which allows PET scans to take place outside
of radiopharmacies, but short enough to have a relatively high activity, reducing
the amount of tracer that needs to be injected to achieve enough PET detector
counts for image reconstruction in a given time frame.
A number of PET tracers have been developed for a variety of indications, often

specifically for tumor entities of selected organs. Here, the most commonly used
tracers and their indications are described briefly.
The most widely used tracer for clinical oncology is 18F-Fluorodesoxyglucose

(FDG). It enters cells through the glucose transport proteins in the cell mem-
brane, where it is phosphorylated by hexokinase in the first step of glycolysis
analogous to D-glucose. The phosphorylated FDG can no longer leave the cells.
High uptake of FDG indicates high metabolic activity, which is frequently ob-
served in tumor cells, but also organs such as the brain [87, 88]. FDG PET has
proven useful in the contouring of tumor volume for RT, where its inclusion led to
superior treatment outcomes compared to CT and MRI based contours [89, 90].
Additionally, it has been used for tumor staging in the search for lymph node and
distant metastatases for a variaty of tumor entities, including HNSCC [90, 91].
Dose escalation on FDG imaging similar to hypoxia dose painting is also a target
of on-going research [92]. As glucose uptake can also be increased in hypoxic
regions due to the Pasteur effect [23], correlation with the hypoxia tracer FMISO
has been observed in some patients [93].

18F-FET and FDOPA are a possible substitute for FDG in areas where FDG
uptake is difficult to interprete as they show a physiologically high glucose up-
take, such as the brain. As a derivative of the amino acid tyrosine (FET), or
phenylalanine (FDOPA), these tracers show high uptake in neoplasms but low
uptake in healthy brain tissue, resulting in a better signal-to-background ratio
than FDG. They have recently become clinically established for neuro-oncological
indications [94].

18F-FLT as a proliferation marker for highly-proliferating tumors such as lym-
phoma, where it is used for the monitoring of treatment success. Chemically
similar to the DNA component thymidine, it will be incorporated into DNA dur-
ing replication, thus accumulating in cells undergoing proliferation. High activity
in FLT scans indicates high proliferation activity, which is often associated with
cancer growth [95].
[18F]fluciclovine is a PET tracer specifically designed for the detection of prostate

cancer recurrences, and has shown a higher sensitivity than CT in clinical stud-
ies [96]. It is a derivative of the amino-acid Leucine.

3.2.3 PET imaging for the detection of hypoxia

As PET is currently the most promising approach under evaluation for the non-
invasive imaging of hypoxia, a number of different hypoxia tracers have been
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developed in the last years. Most of these PET tracers are chemical derivates of
nitroimidazole labeled with 18F, which were originally developed as radiosensitiz-
ers [24]. These molecules are defined by their nitro-group, which is responsible
for the retention of the molecule in hypoxic cells, and a variable residual, denoted
as R–NO2. The residuals are lipophilic and allow for free diffusion in tissue. The
nitro group can be reduced in a multi-step reduction to an amino group NH2 by
nitroreductases in living cells. Two of these intermediate steps are shown below:

R–NO2
+ e–−−−⇀↽−−−+O2

R–NO2
–• + 3 e–−−−→ R–NHOH

These intermediate products are highly reactive and will bind to macromolecules,
effectively trapping the tracer inside the cell. In the presence of oxygen, the first
step is reversible, and the reactive intermediate product will be quickly oxidized.
The molecule will remain in its original cell and retain its ability to diffuse freely
[23].
There are many nitroimidazole-based tracers under clinical and preclinical in-

vestigations. In this work, we investigated three of them more closely: FMISO,
FAZA and HX4. Their chemical structures are shown in Figure 3.3.

Figure 3.3: Nitroimidazole-based hypoxa PET tracers from left to right: FMISO, FAZA
and HX4.

The oldest and best-evaluated hypoxia tracer is 18F-FMISO. It is highly lipo-
philic, which allows for fast diffusion in tissue, but at the same time limits the
elimination of unbound tracer from the tissue, resulting in a poor image con-
trast [97]. FMISO has been used in several clinical studies, where its usefulness
for prognosis was demonstrated. Two strategies for image interpretation have
been suggested: while some studies rely on static imaging 2-4 h after tracer ad-
ministration [18,33,73], other studies rely on the analysis of time activity curves
(TACs) [27]. For these scans, a dynamic scan is performed for the first 30 min,
followed by static scans 2 and 4 h post injection (p.i.). While static scans require
less scanning time, making the procedure easier for staff and patient, the inclu-
sion of the perfusion information obtained from the early phases of the dynamic
scans allows for differentiation of tissue areas that would be very similar in late
static images, and possibly increase the prognostic value.
As a result of its poor image contrast, attempts have been made to develop

tracers which have a lower background signal due to faster clearance from the
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blood. One of them is FAZA. Like FMISO, it has undergone clinical evaluation by
correlating its accumulation to treatment outcome, showing that increased FAZA
uptake in static PET scans 2 h p.i. prior to RT indicates a poor prognosis [72].
While FAZA seems to have an increased clearance compared to FMISO, no clinical
evaluation of image contrast compared to FMISO exists, and pre-clinical studies
are inconclusive [36, 37,98,99].
More recently, HX4 has been developed. With its high clearance, it yields

superior image contrast in patients when compared to FMISO [35, 100]. Unlike
FMISO, a large portion of HX4 is excreted through the kidney, resulting in faster
elimination of unbound tracer than through the hepatic route alone [99]. As of
now, no study linking HX4 uptake to treatment outcome has been published.
Other nitroimidazole-based tracers include 18F-EF3, 18F-EF5, and 18F-FETNIM.

Their imaging characteristics are similar to FMISO, and none of them has been
shown to be superior to FMISO in animal experiments, even though it seems that
in some cases, less unwanted metabolites are formed in the body [23].
Very recently, another nitroimidazole based tracer,18F-FAZDR, has been pre-

sented. Its investigation is on-going, but it performed better than FAZA in a
preclinical imaging study [101].
In contrast to the tracers mentioned above, 64Cu-ATSM is not a derivate of

nitroimidazole. Its binding mechanism under hypoxic conditions is not completely
understood, and it is not certain whether hypoxia is the only metabolic process
affecting its retention [23]. Recently, more doubt has been cast on Cu-ATSM as
a specific marker of hypoxia, as correlation with the endogeneous hypoxia marker
CAIX has been poor compared to nitroimidazole-based markers [34].
An inherent problem of hypoxia PET imaging is its low resolution. The voxel

size is often larger than microscopic hypoxic areas, so many small hypoxic volumes
will be missed if their volume percentage in the voxel is too small. Additionally,
as the volume imaged in one voxel can be very heterogeneous, the resulting PET
signal may be difficult to interpret. Further investigation and a better under-
standing of hypoxia tracer retention dynamics is needed before these imaging
modalities can be rountinly established in the clinic.

3.3 Principles of diffusion

3.3.1 Overview

Diffusion describes the net movement of particles from places of high concentra-
tions to regions of low concentrations, i.e. the movement of particles along a con-
centration gradient. As opposed to the active transport through cell membranes
in biological systems, diffusion at constant temperatures is a passive process, as
it occurs without additional energy supply. Diffusion is caused by the thermic
movement of particles, which has first been observed by Robert Brown [102].
He noticed that small particles such as pollen moved in irregular patterns when
suspended in fluids. In the early 20th century, Einstein and Perrin presented ev-
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idence that the movement Brown observed was caused by the thermic motion of
water molecules which collided with the suspended particles, resulting in random
movements of these particles [103,104].
While the movement of an individual particle is random, Brownian motion

can lead to a net flux in one direction. This occurs when the likelihood of a
particle moving in one direction is higher than a particle moving in the opposite
direction. This is the case when a concentration gradient is present. Here, net flux
of particles along the concentration gradient will continue until a homogeneous
particle distribution is reached, resulting in an increase of entropy and finally,
thermodynamic equilibrium.
Even before the underlying mechanisms of diffusion were known, the laws de-

scribing diffusion processes were investigated. Thomas Graham was among the
first to investigate diffusion systematically. He could show that the diffusion rate
was proportional to the differences in concentration between two regions and that
its speed was proportional to temperature [105]. However, it was Adolf Fick, a
German mathematician and physiologist, who finally discovered the laws guiding
diffusion [106]. These laws are therefore known as Fick’s laws. These laws are
summarized in the following two subsections. A more detailed description on how
they are derived can be found in reference [107].

3.3.2 Diffusion in steady-state systems: Fick’s first law of diffusion

Fick’s first law describes the diffusive flux of particles going from regions of high
concentration to regions of low concentrations, stating that its magnitude is pro-
portional to the concentration gradient. In order for Fick’s first law to be ap-
plicable, the concentration gradient must remain constant over time, assuming a
steady state of particle distribution. For a gradient along one spatial dimension,
this law can be described as follows:

j = −D · dc
dx

(3.1)

Here, j is the flux density, e.g. the number of particles passing through an area A
orthogonal to the flux direction in a given time interval dt, and D is the diffusion
coefficent. This diffusion coefficient is dependent on particle size, viscosity of the
solution, absolute temperature and particle charge. For freely diffusing, spherical
particles in fluids with a low Reynolds number, the Stokes-Einstein equation can
be used to determine the diffusion coefficient D:

D = kB · T
6π · η · r (3.2)

where kB is the Boltzmann constant, T is the absolute temperature, η is the
viscosity, and r the particle radius. This relation is known as the Stokes-Einstein
equation.
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3.3.3 Diffusion in non-stationary systems: Fick’s second law of diffusion

Unlike Fick’s first law, Fick’s second law is applicable in situations where no
steady-state can be assumed. Therefore, particle concentration in these systems
must be described not only a function of space, but also as a function of time.
Under the assumption of mass conservation, Fick’s second law can be derived
from Fick’s first law 3.1:

∂c

∂t
= −∂j

∂x
(3.3)

For a constant diffusion coefficient D and a one-dimensional concentration gra-
dient, this results in the following equation:

∂c

∂t
= D

∂2c

∂x2 (3.4)

The solution of Fick’s second law is highly dependent on the choice of initial
and boundary conditions. Depending on the chosen conditions, the equation can
be solved analytically or numerically.
The three-dimensional case can be described as follows:

∂c

∂t
= D∇2c (3.5)

Commonly, this equation is solved numerically. The approached used in this thesis
will be described in detail in section 3.4.3. Fick’s second law is also known as the
diffusion equation. As Fick himself already realized, the laws guiding diffusion
and heat conduction are essentially identical, making the diffusion equation an
equivalent of the heat equation.

3.4 Biophysical modelling of tumor hypoxia and hypoxia
tracer accumulation

3.4.1 Overview

In this thesis, the accumulation of FMISO in tumors was mathematically simu-
lated based on the tumor microvasculature. The most common approach is to
divide the simulation into two steps. First, a steady-state oxygen diffusion and
consumption is modeled. The oxygen distribution simulated in the first step is
used as an input to calculate tracer binding rates, which is followed by a simula-
tion of tracer diffusion and retention.
First introduced by Kelly and Brady [38], a similar approach of FMISO simu-

lations was used in a number of later studies [39–41, 43, 45]. Additionally, many
models to describe oxygen distribution have been published, both in 2D [108,109],
and more recently also in 3D [70, 110–112]. Frequently, artificial 2D vessel maps
have been used for these simulations, particularly in the older studies [38,43]. The
use of 2D vessel maps derived from tumor microsections was first introduced by
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Mönnich et al [39]. In the last years, several 3D simulations of oxygen have been
published [70,110–112]. With one exception [110], all these models use 3D vascu-
lar maps derived from tumor vasculature. Only one 3D simulation of FMISO has
been published so far, which uses artificial vessel maps [45]. All simulations are
solved numerically, using finite difference [38] and finite element methods [39], or
convolution-based approches [45, 70, 112]. In the following section, the methods
used in this work for the simulations of oxygen and tracer distributions will be de-
scribed in more detail. The generation of vessel maps and the numerical methods
are discussed, as well as the choice of parameters. While a continuation of their
work, many of methods presented here differ from those introduced by Mönnich
et al, such as the inclusion of perfusion status for the vessel map generation and
the extension of the model to three dimensions.

3.4.2 Generation of tumor vessel maps

Generation of 2D vessel maps from HNSCC tumor microsections

In part III of this thesis, vessel maps from Mönnich et al were used. Their
generation is outlined in [113]. Microsections from HNSCC tumor xeongrafts
were labelled for blood vessels using immunofluorescence against the endothelial
marker 9F1, and scanned with a resolution of 2.67 µm, as described previously
[114,115].
Gray-scale images of the vasculature were bilaterally filtered to reduce noise and

preserve edges. Images were then thresholded to create binary images. Thresh-
old values were determined according to the background noise level in avascular
regions.
These vessel maps are not suitable for validation as they did not exclude un-

perfused vessels due to a missing perfusion staining. However, these vessel maps
showed highly heterogeneous levels of perfusion, ranging from densely perfused
tissue to virtually avascular regions, which was an advantage in the setup of the
study presented in part III.

Generation of 2D perfused vessel maps

In part I, a method was used to include additional information on vessel perfusion
status. The images used for this part of the work were kindly provided by the
OncoRay Center, Dresden.
The method is shown in Figure 3.4. Sections from HNSCC tumor xenografts

were immunofluorescently labelled for endothelial marker CD31 and hypoxia
marker pimonidazole. Hoechst 33342 had been applied prior to tumor excision.
Images were scanned at a resolution of 1.02 µm and stained with hematoxylin
and eosine (HE). The HE stainings were used to draw masks including only vital
tumor tisse. The methodology is described in detail by Yaromina et al [69].
For the generation of the vessel maps, we used the information contained in

the CD31 and Hoechst image to include only perfused vessels. The vital tissue
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Figure 3.4: Inclusion of perfusion status to the final vessel map: (1) Raw fluorescence
images of endothelial marker CD31 and perfusion marker Hoechst 33342 are
cut to contain only vital tumor tissue (2). (3) A histogram-based thresh-
olding is performed to obtain binary images of vasculature and perfusion.
(4) All vessels located outside of perfused areas are excluded.

mask was applied to include only vital tissue and both images were thresholded
to obtain binary images of vascularization and perfusion status. The thresh-
old was determined based on the histogram shape of the background signal. A
morphological opening filter was applied to reduce noise. For Hoechst images,
a morphological closing operation was performed to include areas outside of the
nuclei, as nuclei are the only cellular structures that retain Hoechst. The pro-
cessed images were then multiplied in a pixel-by-pixel fashion to obtain a vessel
map that contains only vessels inside perfused areas.

Generation of 3D perfused vessel maps

Although the methodology is similar to generating a 2D vessel map, obtaining
3D vascular structures is far more challenging. There are two methods that can
potentially be used for this.
The first approach is confocal microscopy. Confocal microscopy allows to focus

on one z-plane of the sample while excluding light from other planes of the sample.
By changing the focal plane, samples can be scanned in the z-direction, resulting
in a 3D image stack of the sample [116]. This method is very appealing for a
number of reasons: It yields a highly-resolved, perfectly registered 3D image stack,
is very time-efficient due to automatisation and requires no further cutting of the
sample. This method has been used by Grimes et al [112] for the generation of
3D vessel maps, with excellent results. However, it comes with one major pitfall:
the depth from which signal can be detected is limited, both due to sperical
abberations, absorption of photons and diffusion limitations of the antibodies in
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the tissue. While samples with thicknesses of over 100 µm can now be easily
imaged [117], samples with a thickness of over 1 mm cannot be imaged with
this method. However, oxygen in tissue can easly diffuse over 100 µm, making
it advisable to use thicker samples to avoid edge effects. Additionally, the PET
voxel size of the validation scans we used was 0.7 × 0.7 × 0.8 mm3, using vessel
maps of at least that size and a large fraction of the tumor is recommended to
make results comparable.
The approach used in this work is tedious and time consuming. Snap-frozen

tumor xenografts injected with pimonidazole and Hoechst 33342 prior to excision
are cut into sections of 10 µm each, with a total of 120 sections per tumor, and
stained and imaged as described above. After scanning, images are manually
registered, first rigidly and then deformably. This is necessary to reduce defor-
mations introduced during the cutting and fixation process of each section. Then
a mask is drawn based on HE and fluorescence signal and thresholding of CD31
and Hoechst images is performed as described above. The so reconstructed 3D
vessel map is a close representation of the real tumor vasculature. This approach
has the disadvantage of introducing cutting artefacts to the final map and is more
time consuming. However, it allowed for the reconstruction of relatively large tu-
mor volumes of 3x3x1.2 mm3, which can be reasonably compared against PET
time activity curves obtained from the same tumor.

3.4.3 Numerical methods for the simulation of reaction-diffusion processes

The diffusion of oxygen and tracers can be analytically solved in simple geometries
according to the diffusion equation. Assuming the diffusion coefficent D to be
constant, this equation reduces to the following linear differential equation:

∂c(r, t)
∂t

= D∇2c(r, t). (3.6)

Effectively a form of Fick’s second law of diffusion, it describes the diffusion of a
substance with a concentration c(r, t) along a concentration gradient over a time
t, depending on location r =

√∑n
i=1 x

2
i , with n being the number of dimensions.

This equation can still be solved analytically. However, as the model has to take
oxygen consumption and tracer binding into account, each voxel simultaneously
has to act as a source and sink, Eq. 3.6 changes to:

∂c(r, t)
∂t

= D∇2c(r, t)−R(c(r, t)). (3.7)

with R being a consumption factor dependent on substance concentration. Here,
a numerical approach to solve the problem is necessary.
The work presented here is a continuation of the work performed by Mönnich

et al [39–41]. It applied a 2D finite element method (FEM) approach for the so-
lution of this parabolic partial differential equation (PDE), and was implemented
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in MATLAB. However, for the extension of the model to 3D, an increase of com-
putational efficiency was necessary, which was done by changing the numerical
method to a kernel-based approach.
The approach we chose is outlined in Lagerlöf et al [70], where the authors

describe an oxygen-simulation model implemented in 3D. Their method employs
Green’s function, a description of how a δ-function propagates in space. For
the diffusion equation, Green’s function is Gaussian, the fundamental solution of
the diffusion equation. For an n-dimensional problem, the solution kernel is as
follows:

c(r, t) = k · t−
n
2 · e r2

4D·t . (3.8)

It describes the concentration at time t and at a distance r =
√∑n

i=1 x
2
i from a

point source, where D is the diffusion coefficient, and k is a normalization factor
meeting the following condition:∫ ∞

0
c(r, t)dr ≡ 1. (3.9)

With this approach, each voxel is treated as a source of oxygen, with its strength
depending on local oxygen partial pressure (pO2). Convolution with the Gaussian
kernel will spread the oxygen over neighboring voxels without changing the total
amount of oxygen present. The underlying assumption of this approach is that
the pixels can be regarded as point sources. Resolutions ranged from 5-10 µm.
As this is much smaller than the distance from hypoxic regions, this was judged
to be a valid assumption [45,70].
The convolution was applied using the built-in MATLAB function imfilter, as

it was faster than a 3D fast fourier transform and subsequent multiplication in
the fourier space. Additionally, a Gaussian filter is separable, meaning that a 3D
filter can be replaced by filtering each dimension with a onedimensional filter.
This approach further reduces computation time.
Pure diffusion out of a blood vessel at any time point t and number of di-

mensions n can be modeled in a single convolution step using the appropriate
kernel. However, in this case, the model is run repeatedly with small time steps
∆t. Between each step, the substance concentration c was reset inside the blood
vessels to model continuous substance supply through the blood. The approach
is visualized in Figure 3.5. Additionally, between each step, substance reaction
(comsumption for oxygen and irreversible binding for tracers) can be substracted
from the concentration of free diffusible substance c. Unlike previous models,
the model does not include boundary conditions at the blood vessel walls. At
the edges of the vessel maps, the map was mirrored, effectively resulting in a
Neumann boundary condition as the concentration gradient is set to 0.

3.4.4 Modelling of oxygen transport and consumption

The reaction-diffusion equation used for the modelling of this simulation has been
described above in Eq. 3.7. Here, P is the local oxygen partial pressure. Typi-
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Figure 3.5: Modelling diffusion and substance supply of a blood vessel through iterative
filtering with Gaussian kernel and subsequent resetting of concentration
within blood vessels.

cally, as oxygen diffuses freely through cellular membranes, a constant diffusion
coefficient DO2 for both intra- and extracellular space is assumed. With a con-
sumption term M(P ), the reaction-diffusion model for oxygen is described as:

∂P

∂t
= DO2∇2P −M(P ). (3.10)

The cellular oxygen consumption rate M(P ) is a non-linear function of oxygen
partial pressure in tissue. It is typically modelled as a Michaelis-Menten ki-
netic [118], which is the common model used to describe substance-dependence
of biochemical processes involving enzymes [119]. For the consumption of oxygen,
the equation is described as:

M(P ) = M0P

P + P0
. (3.11)

Here,M0 is the maximum oxygen consumption rate, meaning that for high values
of oxgen partial pressure P , the function will asymptotically approach M0. Half-
maximal consumption rate is reached at an oxygen content of P0. The function
is plotted in Figure 3.6 below, and the simulated oxygen distribution for a single
blood vessel with a diameter of 50 µm is shown in Figure 3.7.

3.4.5 Modelling tracer transport and consumption

Similarly, modeling of tracer diffusion and irreversible tracer binding can be per-
formed using the same reaction-diffusion equation given in Eq. 3.7. Here, the
tracer diffusion coefficient DT is also assumed to be constant in tissue, as ni-
troimidazoles are lipophilic organic substances that can pass cell membranes quite
easily. However, these diffusion coefficients are different for each tracer. Their
determination is described below in Section 3.4.7. The second term is the irre-
versible binding of free tracer. The reaction-diffusion equation for tracer binding
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Figure 3.6: Michaelis-Menten kinetic of oxygen consumption with M0 of 15 mmHg/s
and P0 of 2.0 mmHg. Courtesy of D. Mönnich, University Hospital Tübin-
gen

Figure 3.7: A simple vessel maps containing a blood vessel with a diameter of 50 µm,
and the resulting simulated oxygen distribution on the right. The color map
indicates pO2 ranging from 0 mmHg (blue) to 40 mmHg(red)

is expressed as two coupled partial differential equations:

∂Cf

∂t
= DT∇2Cf −

∂Cb

∂t
(3.12)

with Cf as the concentration of free tracer and Cb being the concentration of
bound tracer. As the tracer binding rate is a function of local oxygen partial
pressure, it can also be referred as:

∂Cb

∂t
= K(P )Cf . (3.13)

This equation shows that tracer binding at a specific location is directly propor-
tional to the concentration of free tracer at that location. The reaction rate K(P )
includes two multiplicative effects, F1(P ) and F2(P ):

K(P ) = F1(P ) · F2(P ). (3.14)
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This model of tracer binding has been developed and described in detail by Mön-
nich et al [39]. The first effect, F1(P ) models the increasing binding rate of
nitroimidazole tracers with decreasing oxygen partial pressure:

F1(P ) = KmaxP1

P + P1
. (3.15)

Similar to a Michaelis-Menten kinetic, Kmax is the maximum binding rate, while
the half-maximum binding rate is reached at an oxygen partial pressure of P1.
However, reduction of nitroimidazole-based tracers can take place only in vital
cells as it is dependent on a functional cellular metabolism. Therefore, tracer up-
take will be lowered in regions where hypoxia is severe enough to induce necrosis.
The second effect, F2(P ), models this relationship. It is close to 1 for high oxygen
partial pressure, but drops to 0 for a specified value P2:

F2(P ) = ( P

P + P2
)k. (3.16)

The parameter k determines the step width at P2.
F1(P ), F2(P ) and the resulting K(P ) are shown in Figure 3.8 below. As in the

Figure 3.8: F1(P ), F2(P ) and the resulting K(P ), with parameter values of Kmax =
1.7× 10−4 s−1, P1 = 1.5 mmHg, P2 = 0.1 mmHg, and k = 0.3. Courtesy of
D. Mönnich, University Hospital Tübingen

oxygen simulation, free tracer is supplied via the blood vessels. But in contrast
to the oxygen simulation, where the blood vessels are reset to a constant value,
the tracer concentration changes over time as the tracer is washed in and later
cleared from the blood stream. The amount of free tracer concentration inside
the blood vessels (Civ) is modelled according to the following function:

Civ(t) = A1e
−t
τ1 + A2e

−t
τ2 . (3.17)
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This equation is a sum of two exponential functions. The first part with time
constant τ1 describes the wash-in, e.g. the tracer distribution in the body imme-
diately after injection. This is followed by a slow wash-out with time constant τ2,
caused by the tracer elimination through excretory pathways. A1, A2, τ1 and τ2
are fit parameters that were determined from dynamic hypoxia PET scans. The
fitting approach and results are outlined in Section 3.4.7. A simulation result for
the same vessel at imaging times of 5, 30, 60, and 90 min is shown in Figure 3.7
is shown in Figure 3.7.

Figure 3.9: Simulation results of FMISO accumulation for imaging times of 5 min,
30 min, 60 min and 80 min (from left to right). Colors indicate activity
concentrations ranging from 0 (black) to 500 kBq/ml (white).

3.4.6 Limitations and simplifications of the method

This simulation model works with a number of assumptions and simplifications
which might not always model reality accurately. Here, we will briefly discuss
some of these limitations and how they may impact the simulation results.
One assumption is that the diffusion coefficient D is homogeneous in tissue,

and that the tracer will diffuse freely in extra- and intracellular space. While it is
true that lipophilic compounds such as FMISO can easily pass through cellular
membranes, effectively resulting in a rather homogeneous diffusion coefficient,
this assumption might not hold true for more hydrophilic tracers such as FAZA.
Moreover, the studies by Pruijn et al [120,121] showed that diffusion coefficients
for pharmaceutical compounds can differ drastically between different cell lines,
which might be a result of varying cell size and density. As tumor tissue is often
heterogeneous, it is likely that the diffusion coefficient for hypoxia PET tracers
will show large variations within one tumor sample.
As described above, the use of Green’s function for the simulation of diffusion

processes assumes that each pixel can be regarded as a point source. Therefore,
the resolution of the simulation is critical and should be as high as possible to
approximate this assumption. It is critical that the diffusion kernel used for each
iteration is large compared to the pixel size of the simulated tissue. Therefore,
we used pixel sizes of no more than 5 µm for the oxygen simulations and 10
µm for the tracer simulations. These resolutions present a compromise between
simulation accuracy and computational efficiency, and are in line with or even
smaller than resolutions used in previously published studies [45, 70]. A higher
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resolution for the oxygen simulations was recommended due to the smaller time
steps ∆t of 10 ms used for this step of the simulation, as opposed to ∆t of 1 s for
the tracer simulations.
Another simplification is the assumption of a homogeneous blood pO2. In

reality, oxygen content in the blood vessel is highly variable, ranging from about
100 mmHg for arterial blood to about 30 mmHg for venous blood. The value of 40
mmHg is the approximate value observed in tumor capillaries and has been used
in previous publications [39, 108, 122]. However, blood vessel content can differ
from this average value for individual vessels, which in turn affects the resulting
oxygen distribution in tissue. The only means we had to counteract this effect was
to exclude dysfunctional vessels based on Hoechst perfusion stainings as described
above, effectively assigning them a pO2 of 0 mmHg. Unfortunately, there is no
realiable method to determine blood oxygen content in capillaries after tumor
excision. Therefore, we had to rely on the homogeneous value of 40 mmHg as an
approximation.

3.4.7 Parameter values

Many of the parameters that were used in ths study are equivalent to those used
by Mönnich et al [39]. Throughout the course of this study, some parameters
were changed, either due to the study design or because new experimental, more
reliable parameter values were published in the meantime. In the following sec-
tions, we will outline which parameters stayed constant throughout this work,
and which changes were made to the model and why.

Parameters of oxygen transport and consumption

Table 3.1: Table of oxygen parameters that were used for all simulations

Symbol Meaning Value Reference

PRBC Typical pO2 in erythrocytes 40 mmHg [122]
DO2 O2 diffusion coefficient 2 × 10−9 m2/s [123]

The parameters in Table 3.1 were used for all simulations. Taken from Mönnich
et al [39], they are based on experimental measurements made in other studies.
For the preliminary 2D validation presented in part I, parameter M0 was opti-

mized over its entire literature range for optimum correlation of simulation results
with pimonidazole stainings. As shown in the results section of part I, it is de-
pendent on the investigated cell line and by far the most powerful parameter.
In part I, P0 was also changed to the only available in vivo value at the time,

obtained from sea urchin eggs, while the previous standard value was an optimum
value derived from oxygen simulations. Lately, a new experimental study using
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Table 3.2: Standard parameters and literature ranges for maximum oxygen consump-
tion rate M0 and Michaelis-Menten coefficient P0

Symbol Meaning Standard Reference Literature range References

M0 (mmHg/s) Max. O2 15 [108] 2.7 - 11.1 (in vivo) [124]
comsumption rate 8.6-33.5 (in vitro) [123,125]

P0 (mmHg) Michaelis-Menten 2.0 [118] 0.5-2.5 (in silico) [108,118]
coefficient 4.8(in vitro) [126]

cancer cell spheroids has confirmed that the standard Michaelis-Menten coefficient
is within the range of their experimental data [45]. Its impact on the simulation
results is much smaller than for M0.
In parts II and III, the standard values listed in Table 3.2 were used.

Parameters of tracer diffusion and retention

Table 3.3: Table of tracer parameters taken from Mönnich et al. [39] that were used for
all simulations

Symbol Meaning Value Reference

P1 pO2 inhibiting binding by 50% (0.8 − 1.5) mmHg [127]
Kmax Max. binding rate (anoxia) 1.7 × 10−4 s−1 Optimised
P2 pO2 inducing 50% necrosis 0.1 mmHg Simulated pO2

120 µm from vessels
k Determines step width at P2 0.3 Optimised

While Mönnich et al [39] used a published diffusion coefficient for misonidazole
[128] to model FMISO diffusion, the approach in this work is different. Pruijn
et al [120, 121] developed a model to predict the diffusion coefficent of organic
substances through multicellular membranes based on their partition coefficent
and their molecular weight. We used their model to estimate tracer diffusion
coefficients on the respective tracers’ chemical properties.
These input values were taken from the PubChem database or published lit-

erature values, except for the partition coefficient of FAZA, where published lit-
erature values varied by several orders of magnitude [36, 37, 98, 129]. Instead,
the partition coefficient for FAZA was determined using the simulation softwares
XLOGP3, ALOGPS 2.1, Molinspiration and LogKow [130–132], and taking the
average over these simulation results as suggested in [133]. The input for this
prediction and the result is listed in Table 3.4 below.
The maximum binding rate of FMISO, Kmax, was first established by Mönnich

et al through optimization. Lately, a new value has been experimentally estab-
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Table 3.4

Symbol Meaning FMISO FAZA HX4 References

M Molecular weight 189.14 247.18 269.22 PubChem database
P Partition coefficient 0.41 0.30 0.2 [100,134–136]
DT (×10−11 m2/s Diffusion coefficient 7.90 2.99 3.55 [120,121]

lished from data obtained in cell spheroids [45]. Therefore, the parameter value
was changed accordingly from 1.7× 10−4 s−1 to 4.4× 10−4 s−1 for part II of this
work.

Determining blood input functions for FMISO, FAZA and HX4

For part III, blood input functions were determined from clinical dynamic hypoxia
PET scans using the respective tracers (FMISO: n = 10, FAZA: n = 3, HX4:
n = 5). For each scan, a region of interest (ROI) with a size of six voxels inside
the heart or a major blood vessel was determined. Patients were 57-71 years old
and suffered from HNSCC (FMISO, FAZA) or non-small cell lung cancer (HX4).
For the FMISO and FAZA groups, imaging was performed at the University

Hospital Tübingen in a GE Advance Scanner (GE Medical Systems, Milwaukee,
WI, USA), with a slice thickness of 4.25 mm and a pixel spacing of 4.3 mm.
Reconstruction was performed using OSEM 2D with four iterations and eight
subsets, and a scatter correction (convolution subtraction) was applied.
HX4 patients were imaged at MAASTRO Clinic, Maastricht, The Netherlands

in a Philips Gemini TF 64 PET/CT scanner (Philips Healthcare, Best, The
Netherlands). The axial field of view was set to 18 cm, with a slice thickness
of 4 mm and a spatial resolution of approximately 5 mm full-width at half max-
imum (FWHM). Image reconstruction was performed using a 3D ordered-subset
iterative time-of-flight reconstruction technique (BLOB-OS-TF) with three itera-
tions and 33 subsets. Attenuation correction and scatter correction (SS-SIMUL)
were performed.
From these images, tracer concentration in the blood ROI was determined at

20-45 time points over a period of 4 hours post-injection (p.i.). These values were
fitted to Eq. 3.17. The average input function (AIF) was determined by taking
the average over all scans from the same patient group for each parameter. The
results are listed in Table 3.5 below.
For part II, the input function was determined by fitting the average input

function (Eq. 3.17) to activity from well-perfused muscular tissue. This was
done as a substitute because the heart was outside of the field of view, and the
activity in well-perfused tissue with excellent arterial blood supply is expected to
closely follow the arterial blood activity.
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Table 3.5: Average input functions for FMISO, FAZA and HX4 as determined from
clinical PET scans

Tracer A1 (kBq/ml) τ1 (×10−3 s−1) A2 (kBq/ml) τ2 (×10−5 s−1)

FMISO 18.11 ± 7.08 2.0 ± 0.71 10.92 ± 2.49 1.90 ± 1.55
FAZA 13.10 ± 4.50 1.30 ± 0.60 13.1 ± 3.70 4.27 ± 1.51
HX4 33.55 ± 12.81 3.10 ± 0.94 12.31 ± 3.27 11.78 ± 5.75

3.4.8 Validation

Validation of such a model is extremely difficult, and very few validation attempts
have been made in the past. One of them was performed by Mönnich et al and
is outlined in [39,113]. They could show that accumulation of simulated FMISO
uptake roughly matches the accumulation of pimonidazole stainings and that
simulated median oxygen partial pressure and oxygen distribution is similar to
the oxygen content of HNSCC observed in vivo [113, 123, 137]. Furthermore,
simulated TACs using this model agreed with those observed in clinical PET
scans.
Additionally, another approach presented by Bowen et al [44], which is based on

electrochemical modelling of FMISO binding reactions, demonstrated that their
simulated oxygen histograms agree with measurements of oxygen content using
invasive probes.
However, for a full validation of the model, it is necessary to verify that the

results agree both microscopically and macroscopically, meaning that the model
must be able to simulate spatial tracer activity on the microscopic cellular level
as well as time-activity curves and retention dynamics observed in macroscopic
PET scans, preferably for the same vascular model. Data for such a validation
is difficult and time-consuming to obtain, and has therefore not been attempted
until now.

Microscopic validation using pimonidazole stainings

Pimonidazole is a nitroimidazole-based marker of hypoxia. Therefore, it shows
similar biochemical properties and the same binding reaction as clinically studied
hypoxia PET tracers. In experiments, it could be shown that it correlates well
with FMISO, FAZA and HX4 as well as endogeneous markers of hypoxia [34,67,
68, 138]. We therefore chose pimonidazole as a gold-standard validation for the
microscopic distribution of hypoxia tracers.
In part I, we validated the simulation results by downsampling the resolution of

both simulation and pimonidazole staining results to 50×50 µm2 and determining
Pearson correlation coefficent R and the resulting coefficent of determination R2.
The choice of parameters was considered optimal for maximum R2. Only vital
tumor tissue was included in the analysis.
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In part II, the approach was altered. Pimonidazole images were manually
contured to obtain binary images of the tumor distinguishing between hypoxia-
positive and negative regions. For the simulations, a fixed threshold was set
which was set to be half-way between minimum and maximum activity. Simu-
lation performance was evaluated by determining sensitivity and specificity, as
well as how far away false-positive voxels were placed from true-positive regions
(distance-to-agreement (DTA)). Again, only vital tumor tissue was included in
the analysis.

Macroscopic validation against PET measurements of the same tumor sample

For the macroscopic validation, experimental TACs obtained from a small ani-
mal PET (Bruker, Ettlingen, Germany) were used. A 90 min dynamic FMISO
PET/MR scan was performed on tumor-bearing female nude mice (NMRI nu/nu,
Charles River Laboratories) carrying HNSCC tumor xenografts (FaDu). Animals
were injected with pimonidazole (Hypoxyprobe, Burlington, USA) and Hoechst
33342 (Sigma Aldrich, Deisenhofen, Germany) 1 h and 1 min before tumor ex-
cision, respectively. After excision, tumors were snap-frozen and used for vessel
map reconstruction as described in Section 3.4.2. This way, we were able to
obtain vessel maps for which an FMISO PET scan was available.

Figure 3.10: Filtering of two point sources (blue and green) located at 1mm and 2mm on
the x-axis with a Gaussian filter used to approximate the blurring induced
by the point-spread function of the PET scanner. σ was set to 300 µm,
resulting in a resolution of approximately 1mm (red).

PET time-activity curves were determined inside a ROI drawn to include the
entire tumor. Corresponding activities were simulated on the generated vessel
map. However, these results are not directly comparable, as the point-spread
function (PSF) of the scanner will result in a convolution of raw PET signal with
said PSF. In order to make simulation and PET scans comparable, a convolution
of the simulation results with the scanner PSF is necessary.
Unfortunately, the scanner PSF is not known, and likely to change over the

field of view. It is influenced by a number of physical and technical aspects,
such as the range of the emitted β+ particles, the number and size of detector
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elements and the size and distance of the imaged object to the center of the field
of view [79]. We therefore had to approximate the PSF using a Gaussian function
with a standard deviation σ of 300 µm and FWHM of 720 µm based on what we
knew about voxel size (0.7× 0.7× 0.8 mm) and resolution (approximately 1-1.2
mm). This folding kernel is shown in Figure 3.10.
The assumption for the convolution of the simulation results was that surround-

ing tissue had normoxic activity taken from the input function to avoid folding
with empty space. In Figure 3.11, the impact of the convolution on raw simulated
signal is shown. One can clearly see that overall activity is decreased and spread
more smoothly due to the signal contribution of normoxic areas outside of the
tumor. In the figure, connective tissue and necrotic areas were removed using
the tissue mask generated from HE stainings for better visibility. In this case,
simulated signal from necrotic areas was not removed from the simulation results
as there was no way to eliminate it from the PET scan. Due to an application
error during one of the PET scans, a functional TAC was available for only one
tumor.

Figure 3.11: 3D simulation results for an HNSCC xenograft tumor (FaDu) before and
after filtering with a Gaussian point-spread function (σ = 300µm) used to
imitate the blur caused by the PET scanner. This tumor was part of the
study presented in part II.
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Abstract

Purpose. To compare a dedicated simulation model for hypoxia PET against
tumor microsections stained for different parameters of the tumor microenvi-
ronment. The model can readily be adapted to a variety of conditions, such
as different human head and neck squamous cell carcinoma (HNSCC) xenograft
tumors.
Material and methods. Nine different HNSCC tumor models were trans-
planted subcutaneously into nude mice. Tumors were excised and immunofloures-
cently labeled with pimonidazole, Hoechst 33342, and CD31, providing informa-
tion on hypoxia, perfusion, and vessel distribution, respectively. Hoechst and
CD31 images were used to generate maps of perfused blood vessels on which tis-
sue oxygenation and the accumulation of the hypoxia tracer FMISO were mathe-
matically simulated. The model includes a Michaelis–Menten relation to describe
the oxygen consumption inside tissue. The maximum oxygen consumption rate
M0 was chosen as the parameter for a tumor-specific optimization as it strongly
influences tracer distribution. M0 was optimized on each tumor slice to reach
optimum correlations between FMISO concentration 4 h postinjection and pi-
monidazole staining intensity.
Results. After optimization, high pixel-based correlations up to R2 = 0.85
were found for individual tissue sections. Experimental pimonidazole images and
FMISO simulations showed good visual agreement, confirming the validity of the
approach. Median correlations per tumor model varied significantly (p < 0.05),
with R2 ranging from 0.20 to 0.54. The optimum maximum oxygen consumption
rate M0 differed significantly (p < 0.05) between tumor models, ranging from 2.4
to 5.2 mm Hg/s.
Conclusions. It is feasible to simulate FMISO distributions that match the
pimonidazole retention patterns observed in vivo. Good agreement was obtained
for multiple tumor models by optimizing the oxygen consumption rate, M0, whose
optimum value differed significantly between tumor models.
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4.1 Introduction

As tumor cell hypoxia reduces radiation sensitivity compared to normoxic cells
[21], it is a negative prognostic factor in anticancer treatment approaches includ-
ing radiotherapy (RT) [22, 23]. Therefore, its identification and quantification is
a subject of on-going research, as it is a requirement for future individualized
RT adjustments aimed at counteracting hypoxiainduced radioresistance. This is
important to help increase local tumor control and hopefully survival in patients
with highly hypoxic tumors. Possible treatment approaches include increasing
tissue oxygenation during therapy by breathing high oxygen content gas [76] the
administration of radiosensitizers that selectively target hypoxic cells [140], or
escalating the delivered radiation dose to the GTV [23, 141] or hypoxic parts of
the tumor. This last approach is often referred to as dose painting [142]. Due
to the high-precision RT techniques developed in recent years, such an approach
could easily be implemented in clinical practice as soon as its benefits for the
patients are conclusively shown [31,143].
All these methods, however, require a quantification of hypoxia prior to treat-

ment, as research indicates that patients with hypoxic tumors may benefit the
most from these treatment modifications. Particularly for dose painting,a precise
3D spatial quantification of hypoxia is necessary for individualized RT treat-
ment planning. The gold-standard for measuring hypoxia, the oxygen probe,
is invasive and does not give 3D images of O2 distribution [23]. A noninva-
sive alternative is the use of dedicated tracers for positron emission tomogra-
phy (PET) which accumulate specifically in hypoxic tissue areas,and have the
potential to provide a spatially resolved surrogate image of tissue oxygenation.
Possible tracers include [18F]-fluoromisonidazole (FMISO) [18, 144, 145], [18F]-
fluoroazomycinarabinoside (FAZA) [72, 146], and [18F]-flortanidazole (HX4) [35,
136], which are [18F]-labeled nitroimidazole compounds, and 64Cu(-II)-diacetyl-
bis(N4- methylthiosemicarbazone (Cu-ATSM) [147].
Up to now, many factors influencing hypoxia tracer retention and binding dy-

namics remain poorly understood, making it difficult to directly deduce oxygen
content from hypoxia PET images. In simulations, it may be possible to ana-
lyze the impact of a specific parameter on the final image quality by selectively
varying tracer- and tissue-specific parameters, which can be a useful tool to help
with interpreting the results of clinical and preclinical imaging studies. Therefore,
simulations can be used as one possible tool to study the effects of acute hypoxia,
perfusion, and tracer clearance, as well as their consequences on important image
features.
Any simulation tool used to study hypoxia PET imaging requires two steps: a

simulation of oxygen distribution in tissue, which then serves as input for simula-
tion of oxygen-dependent tracer retention. Usually, the approaches for simulating
oxygen and tracer distribution are very similar as they are both based on a reac-
tion–diffusion model. Several approaches have been proposed to simulate oxygen
and/or tracer distribution in cancerous tissue. These were performed on ves-
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sel maps that are either based on tumor sections [39, 40, 70] or artificial vessel
maps [38,43,110] and results as well as comparisons have been published for sev-
eral tracers: FMISO [39,42,44,148], FAZA [148], HX4 [148], and CuATSM [43,44].
While some of these models reproduce observations made in preclinical or clin-
ical experiments, such as matching shapes of tracer time activity curves [39] or
similar oxygen distribution histograms [44], a thorough experimental validation
by directly comparing the simulation results to hypoxia stainings has not been
performed yet.
To make simulation results a more reliable tool for interpreting experimental

results, a thorough experimental validation is necessary to confirm that the sim-
ulation is capable of reproducing results seen in vivo. The goal of this study is to
take an important step toward validation of a simulation model for nitroimidazole-
based tracers against experimental data based on immunoflourescence images of
microsections from a variety of HNSCC tumor models. Particularly the influence
of the various parameters on the robustness of the simulation and the correlation
with the experimental data were investigated in this study. Furthermore, inter
cell line differences in hypoxia PET tracer retention were investigated.

4.2 Material and Methods

4.2.1 Tumor microsections

A total of n = 73 tumors from nine different HNSCC tumor models were used,
as listed in Table 4.1. The experimental procedures to obtain the tumor mi-
crosections have previously been described in detail [69]. Briefly, tumors were
transplanted into the right hind-leg of anaesthesized NMRI nude mice. One
hour before tumor excision, animals were injected with the hypoxia marker pi-
monidazole, followed by the perfusion marker Hoechst 33342 1 min before tumor
excision. After excision, tumors were shock frozen in liquid nitrogen and stored
at -80 ◦C. Five to seven consecutive sections from the tumor centre with an inter-
section distance of about 200 µm were cut and stained with pimonidazole and
CD31 antibodies. Antibody binding was detected by immunofluorescence [69]
using FITC-conjugated and TRITC-conjugated polyclonal secondary antibodies,
respectively. For this, tumor sections were scanned for Hoechst 33342, FITC,
and TRITC fluorescence signals with a Zeiss Axioplan 2 fluorescence microscope
equipped with a monochrome digital camera (AxioCamMRm, Carl Zeiss, Jena,
Germany) and a motorized scanning stage (Maerzhaeuser,Wetzlar, Germany),
using the objective with a ten-fold magnification. For the scanning process and
subsequent image analysis, the KS300 image analysis software, version 3 (Kontron
Elektronik, Eching, Germany), was used.
After immunofluorescence scanning, the sections were stained with haema-

toxylin and eosin (HE). Based on these stainings, viable tumor area was manually
delineated excluding mouse epidermis and surrounding stroma, cutting and pro-
cessing artifacts as well as nonviable tumor regions defined by morphological
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criteria from the HE stainings.

Table 4.1: HNSCC cell lines analyzed in this study together with the number of tumors
and available slices per cell line.

Cell line Number of tumors Number of tumor sections in total

CAL-33 8 34
FaDu 10 47
SAS 6 24
UT-SCC-14 10 55
UT-SCC-5 5 23
UT-SCC-8 8 26
UT-SCC-15 8 32
UT-SCC-45 9 33
HSC-4 9 35

4.2.2 Generation of vessel maps

Immunofluorescence images of CD31 and Hoechst 33342 staining were automat-
ically thresholded based on their histogram shape to generate preliminary blood
vessel and perfusion maps. The resulting binary images were postprocessed with
a morphological closing operation to reduce noise. Blood vessels outside per-
fused or viable tumor areas were excluded from the final vessel map. As the
inter-section distance of 200 µm was too large to generate 3D vessel maps, all
simulations were carried out in 2D.

4.2.3 Simulation of oxygen consumption, diffusion and PET tracer binding

Simulations were performed using a previously described model [39, 148] which
will be briefly introduced here. Further details are outlined in the Appendix.
Vessel maps generated in the previously described step were used as input

for simulation of steady-state oxygen distributions. This was modeled by a reac-
tion–diffusion equation, where oxygen consumption was described as a Michaelis–
Menten relationship,

∂P

∂t
= DO2∇2P − M0 · P

P + P0
(4.1)

where P is the local oxygen partial pressure, P0 is the Michaelis–Menten coeffi-
cient of oxygen consumption, DO2 is the diffusion coefficient of oxygen in tumor
tissue, and M0 is the maximum oxygen consumption rate.
Briefly, the resulting oxygenation map was used to calculate local cell viability

and tracer affinity for each pixel. This information is included in function K(P ),
the oxygen dependent tracer binding rate. All in all, the simulation of tracer
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distribution followed similar reaction–diffusion dynamics,

∂Cf

∂t
= DT∇2Cf −K(P ) · Cf (4.2)

with
K(P ) = KmaxP1

P + P1
· ( P

P + P2
)k (4.3)

Here, Cf denotes the concentration of free, i.e., unbound tracer, and DT the
diffusion coefficient of FMISO.
K(P ) defines the net tracer binding rate, which is a product of tracer binding,

increasing with lower oxygen partial pressure, and cell vitality, as tracer binding
takes place only in vital cells. Kmax is the maximum binding rate under anoxia,
P1 represents the oxygen partial pressure at which tracer binding is half-maximal,
and P2 gives the partial pressure at which 50% of cells are necrotic.
Simulations cover a time period of 4 h p.i. with a spatial resolution of 10 µm

and a temporal resolution of 1 s. Cf changes over time as the supply of free tracer
in the blood varies during this 4 h duration. Blood activity was defined by an
average blood input function as determined from ten clinical FMISO PET data
sets.26
All simulation steps were implemented in MATLAB R2009b. Further simula-

tion details and parameters are outlined in the Appendix (Table 4.3).

4.2.4 Optimization of simulation parameters

Simulations were performed with different values of the parameters M0, P0, and
P1. The range of the respective parameters was chosen according to experimental
values found in previously published experimental studies (Table 4.2). Addition-
ally, the blood oxygen content was varied over a range between 30 and 50 mmHg.
Image resolution was decreased to a pixel size of 40 × 40 µm2 for both the sim-
ulation and the pimonidazole image and the correlation between the two was
determined. For this, simulation results were compared to pimonidazole staining
by means of the coefficient of determination R2, the square of the Pearson corre-
lation coefficient, for assessing pixel-wise correlation. The objective was to find
the M0 leading to the highest R2 for each section.
During a preliminary analysis, the sensitivity of the simulation to variations

in each parameter was assessed by repeating simulations over the entire range of
values given in the literature and determining correlation between experimental
data for four randomly chosen sections. The parameter with the highest impact
on correlation was chosen for subsequent optimization using a slightly extended
parameter range for all tumor sections in order to achieve optimal correlation for
each section.
The mean values of the optimized parameters over all sections for each cell line

were compared using a Wilcoxon rank-sum test in MATLAB R2009b. P-values
equal to or lower than 0.05 were considered significant.
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Table 4.2: Overview of three model parameters M0 (max. oxygen consumption rate),
P0 (Michaelis–Menten constant), and P1 (pO2 for half max. tracer affinity)
with the previous default settings [39] and experimental values found in the
literature.

Parameter Previous default settings Reference Experimental values References

M0 (mmHg/s) 15(in vitro) [123] 2.7-11.1 (in vivo) [124]
8.6-33.5 (in vitro) [123]

P0 (mmHg) 2.0 (in silico) [118] 0.5-2.5 (in silico) [108,118]
4.8 (in vitro) [126]

P1 (mmHg) 1.5 (in vitro) [127] 0.8 - 1.5 (in vitro) [127]

4.3 Results

Figure 4.1 shows the impact of the four investigated parameters maximum oxygen
consumptionM0, Michaelis–Menten constant P0, pO2 at 50% of maximum tracer
affinity P1, and blood oxygen content on correlation with experimental data for
four randomly selected sections of different tumor models. For each graph, one
parameter was changed while the others were kept at their default settings (cf.,
Table 4.2). All parameter changes have an impact on observed correlations, the
largest effect being observed for M0. Changes in blood oxygen content did not
compensate for changes inM0 (cf., Fig. 1). Thus,M0 was subsequently optimized
in the following simulations for all available tissue sections.
Figure 4.2 shows the changes of R2 for different time points post injection.

Tumor-to-background ratio increases with simulation time, as does R2 between
simulation and staining. R2 shows a steep increase at early simulation time points
between 0.5 and 3 h postinjection. At 4 h p.i., which is the typical time point of
clinical static FMISO imaging, a close-to-optimal value for R2 is achieved.
Representative examples for experimental pimonidazole staining and simulated

FMISO binding are given in Fig. 4.3, including a large variation of resulting cor-
relation coefficients, ranging from R2 = 0.2–0.8. The examples show that despite
low R2, a good visual agreement between experimental staining and simulation
may be observed. This observation is due to the high gradients observed in some
experimentally stained tumors which could not entirely be reproduced by the
simulation and hence led to a low correlation coefficient.
A summary of the optimization results is given in Fig. 4.4, which shows box

plots for maximum oxygen consumptionM0 and the correspondingR2 for each cell
line. Simulated medianM0 ranged from 2.2 to 4.5 mm Hg/s, which is at the lower
end of the literature range (2.7–11.7 mm Hg/s). Observed median correlations
ranged from 0.20 to 0.54. Differences in median between tumor models tested
significant both for M0 and R2 for most models (cf., Tables 4.4 and 4.5). The
mean variance of M0 for sections taken from the same tumor implant was 30.3%
(range 15.6%–47.5%) lower than the variance of all sections of the same tumor
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4 Correlation of 2D FMISO simulations with pimonidazole stainings

Figure 4.1: Impact of maximum oxygen consumption M0, Michaelis–Menten constant
P0, the pO2 for half-maximum tracer affinity (P1), and blood oxygena-
tion on correlation (R2) between simulation and experimental pimonida-
zole staining. Results are shown for four randomly selected slices of four
different cell lines.

model.

4.4 Discussion

In this study, we have assessed a method for simulating the spatial accumula-
tion and retention of FMISO in tumor tissue. Our findings reveal that hypoxia
tracer distributions several hours p.i. can be simulated on a microscopic scale
with reasonable accuracy, as our comparison of simulation results and experi-
mental pimonidazole stainings revealed significant correlations. Even in cases
of low correlation coefficients, a good visual agreement between simulation and
experimental staining for hypoxia was observed.
However, the method is subject to a number of limitations. In this study, all

simulations were carried out in 2D. Therefore, only radial diffusion was accounted
for in the model, neglecting diffusion in out-of-plane direction. Nevertheless, the
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4.4 Discussion

Figure 4.2: Simulation results and changes of correlation (R2) between pimonidazole
stainings and optimized simulation over the simulated time course of 4 h
p.i.

model can easily be expanded to 3D simulation. Realistic 3D reconstructions
of tumor vasculature with a high spatial resolution of 20–30 µm are an essen-
tial prerequisite to perform the respective simulations in 3D. However, previous
publications have shown that simulations in 2D are a valid approximation, with
results comparable to a full 3D simulation [110].
Additionally, the input functions used for the simulations reflect clinical FMISO

imaging, as they were derived from patient blood activities. The experimental
data were collected in mice using pimonidazole, which show different clearance
and diffusion properties that might affect comparability [148, 149]. Particularly,
pimonidazole shows a faster clearance than clinically used nitroimidazole tracers
such as FMISO or FAZA, which was one of the reasons why a simulation time
of 4 h was chosen for final comparison. However, the finding that R2 reaches a
stable optimum after approximately 4 h p.i. further corroborated this decision.
The simulations were carried out assuming that the maximum oxygen consump-

tion M0 is homogeneous over the entire tissue section. The fact that considerable
differences in optimized M0 were observed between different sections of the same
tumor indicates that this might not be the case, suggesting that the optimizedM0
value is probably an average value of M0 over one tumor slice. Also, variations
in blood oxygen partial pressure were neglected aside from excluding unperfused
vessels. Furthermore, optimization of oxygen partial pressure for each individual
blood vessel was not feasible as the introduction of too many degrees of freedom
would render the parameter optimization unstable.
While good visual agreement and correlations were obtained for staining pat-

terns, validating the overall simulation approach, verification in terms of sim-
ulating absolute PET activities could not be realized as the experimental data
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4 Correlation of 2D FMISO simulations with pimonidazole stainings

Figure 4.3: Representative pimonidazole stainings showing various levels of pixel-based
correlation (coefficient of determination, R2) with their corresponding sim-
ulations.

lack the necessary information. A small-animal PET acquisition prior to tumor
excision could be a potential approach to quantify tracer activity experimentally.
Preliminary data revealed that the selection of the maximum oxygen consump-

tion rate M0 is critical for the accuracy of the simulation. The improved corre-
lation between simulation and experimental data was indeed a result of M0 op-
timization, as similar correlations could not be achieved by increasing the blood
oxygenation or altering tracer binding parameters. The same was true for the
Michaelis–Menten constant P0, which was shown to be a robust parameter after
optimization of M0 over a large part of its literature range. After optimization,
the simulation results were robust to changes in the other parameters, usually
affecting R2 by less than 5% over the literature range once the simulation was
optimized for M0, rendering optimization of other parameters unnecessary.
The observed correlation varied greatly between tumor sections for several rea-

sons. For one, largely normoxic tumors with a few severely hypoxic spots tended
to give poorer correlations due to the steep gradients at the edges of these spots,
an example of which is shown in Fig. 4.3. In these cases, good visual agreement
was still observed. In other cases of low R2, little to no visual correlation could
be observed. This was usually caused by faulty vessel maps, which seemed to be
caused by the animal being sacrificed before the perfusion marker had reached
all areas of the tumor. This resulted in too many blood vessels being excluded
from the final vessel map. A resimulation including vessels generally resulted
in a higher R2. Nonetheless, these tumor sections were excluded from the final
analysis.
Optimum M0 values as well as the coefficient of determination R2 were cell-

line dependent, with differences in median testing significant for a majority of
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4.5 Conclusion

Figure 4.4: Observed distributions of (a) optimized M0 and (b) resulting coefficient of
determination (R2) for all tumor sections of each cell line after optimization
for M0. The red stars indicate outliers

the cell lines. The optimized M0 values covered the entire literature range for in
vivo data, however, the majority of results were at the lower end of the literature
range. This might be due to the different cell lines used in this study, as well as
the fact that literature only provided three in vivo values for maximum oxygen
consumption, [123, 124] so the actual range might be even larger. Also, the 2D
simulation method might lead to an underestimation of tissue oxygenation as
blood vessels outside of the 2D plane are not considered. Sections from the same
tumor showed a smaller variance in M0 compared to the sections of all tumors of
the same cell line pooled together, a possible indication that intertumor variance
is greater than intratumor variance.

4.5 Conclusion

In this study a model for the simulation of FMISO distributions in tumor tissue
was shown to provide similar hypoxia PET tracer binding patterns as experimen-
tal pimonidazole stainings observed in vivo. Furthermore it could be shown that
a tumor model dependent optimized value for maximum oxygen consumptionM0
of the tumor is necessary in order to achieve good agreement between simulation
and experimental findings.

Declaration of interest: None of the authors have any conflict of interest related
to this work.
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4 Correlation of 2D FMISO simulations with pimonidazole stainings

4.6 Appendices

Appendix A: Simulation model

Simulations were carried out following the method described in Ref. [39], with
a few minor changes. The diffusion term of the reaction diffusion Eq. 4.1 was
modeled using a Gaussian fundamental solution,

GO2(x, y, t) = kO2 · t−1 · e
x2+y2
4DO2 ·t (4.4)

with DO2 being the diffusion coefficient of oxygen in tissue and kO2 a normaliza-
tion factor meeting the following criterium:∫ ∞

0

∫ ∞
0

GO2(x, y, t)dxdy = 1 (4.5)

The model was iteratively repeated with time steps of 0.01 s as proposed in
Ref. [70]. After each step, oxygen consumption was subtracted and the oxygen
content of the blood vessels was reset to 40 mm Hg. The simulation was continued
until a steady state was reached, which was defined as a change of less than 0.1%
between two iterations.
For the simulation of tracer distribution and uptake, a similar approach was

chosen, once again applying a Gaussian fundamental solution to Eq. 4.2,

GT (x, y, t) = kT · t−1 · e
x2+y2
4DT ·t (4.6)

with time steps of 1 s. A small correction was included to account for the
source–sink behavior of the blood vessels. We used smaller time steps (0.1 s)
to calculate a tracer diffusion kernel only for the region around a blood vessel
with the size of 1 pixel and a tracer concentration of 1 kBq/ml for a time of 1
s. A “source-map” was then created by convolving the vessel map with the ker-
nel above, effectively approximating a Dirichlet boundary condition. After each
iteration, the concentration gradient between input function and each pixel was
calculated and then multiplied with the previously created source-map, and this
value was added to the total activity in each pixel.

Appendix B: Blood activity curves

Blood activity curves from ten clinical PET data sets were used to generate the
input function. The change of tracer concentration of six voxels in the heart or
a major blood vessel was determined over a time period of 4 h p.i. The results
were fitted to the following function:

A(t) = A1e
−t
τ1 + A2e

−t
τ2 (4.7)

where τ1 is the tracer distribution in the blood stream immediately after injection,
and τ2 the clearance rate. After the fit, the average was taken over all patients
for each parameter to obtain the final parameters for the average input function.
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4.6 Appendices

Appendix C: Simulation parameters

Table 4.3: A list of the parameters used for the simulation.

Meaning Value References

DO2 O2 diffusion coefficient 2 × 10−9 m2/s [123]
M Molecular weight (FMISO) 189.14 Pubchem database
DT FMISO diffusion coefficient 7.90 [120,121]

(×10−11 m27s)
P FMISO partition coefficient 0.41 [135]
P1 pO2 inhibiting binding by 50% 0.8 - 1.5 mmHg [39]
Kmax Maximumg binding rate 1.7 × 10−4s−1 [39]

(anoxia)
P2 pO2 inducing 50% necrosis 0.1mmHg [39]
k Determines step width at P2 0.3 [39]

Appendix D: Significance levels for differences in M0 and R2
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5 Three-dimensional simulation of [18F]FMISO diffusion and retention

Abstract

We developed a three-dimensional (3D) mathematical model of [18F]FMISO tracer
diffusion and retention based on realistic 3D microscopic tumour architecture and
evaluated the simulation performance with experimental data. Furthermore, this
study aims at comparing the performance of this 3D simulation results with
widely used two-dimensional approaches. For this, PET/MR imaging using the
hypoxia tracer [18F]FMISO was acquired on two FADu xengraft tumours, before
they were excised and histologically analyzed. Information on hypoxia, perfusion
and vessel distribution was obtained by immunofluorescence labelling. Images
were rigidly registered, manually adjusted and thresholded to generate 3D per-
fused vessel maps. Tissue oxygenation and resulting [18F]FMISO diffusion and re-
tention was mathematically simulated in 3D and 2D. Simulated [18F]FMISO dis-
tribution was subsequently compared pimonidazole staining and simulated time-
activity curves to preclinically measured PET data. [18F]FMISO hypoxic frac-
tions (HF) simulated in 3D were comparable to pimonidazole HF with 0.35±0.11
vs. 0.37± 0.07 (p = n.s.) for tumour 1 and 0.28± 0.03 vs. 0.30± 0.03 (p = n.s.)
for tumour 2. Simulations in 2D resulted in comparable HFs for tumour 1 with
0.34±0.05, but significantly different results for tumour 2 (0.24±0.04, p = 0.001).
Sensitivity and specificity were about 50% and 15% higher in 3D than in 2D sim-
ulations, respectively. Visually, similar spatial [18F]FMISO distribution patterns
as in pimonidazole staining were observed in 3D simulations only. Compared to
dynamic PET measurements of the same tumour, both simulations showed sim-
ilar overall activities (mean difference 3D: 8.3%, 2D: 17.9%). Consequently, we
conclude that realistic 3D vascular models accounting for out-of-plane diffusion
must be used to obtain more reliable tracer accumulation patterns when studying
the complex image formation processes during hypoxia imaging.
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5.1 Introduction

5.1 Introduction

Tumour hypoxia is known to increase radioresistance of tumour cells, and con-
sequently, negatively affect the prognosis after radiotherapy [21, 22]. Beyond its
use as a prognostic factor, assessing and quantifying tumour hypoxia has be-
come a target in the on-going efforts for individualized radiotherapy strategies
to help improve treatment outcome. Aside from methods aiming to increase tu-
mour oxygenation [76] or administration of radiosensitizers to counteract hypoxia-
induced radioresistance [140, 150] better treatment outcomes might be achieved
by selectively escalating delivered dose to hypoxic sub-volumes of the tumour, an
approach referred to as “dose painting” [31,151]. With the establishment of high-
precision imaging modalities and radiotherapy delivery techniques in the clinical
routine, implementation of dose painting during treatment delivery is techni-
cally and clinically feasible, and therefore a subject of on-going clinical studies
attempting to assess its benefits on treatment outcome [92].
Hypoxia dose painting in particular requires a precise, 3D spatial quantification

of hypoxia in order to make the necessary treatment adjustments. Invasive tech-
niques, such as polarographic or optical oxygen sensing probes, are considered
the gold-standard for measuring hypoxia, but do not provide 3D resolution [23].
Positron-emission tomography (PET) using radiolabelled nitroimidazoles as a
non-invasive alternative has been the subject of intensive research over the past
years, both for quantification of hypoxia and for prediction of radiotherapy out-
come [18,27,72,73]. Along with the well-established and widely used tracer [18F]-
Fluoromisonidazole ([18F]FMISO) [18, 144, 145, 152], other nitroimidazole-based
tracers have been developed and used in clinical and preclinical studies, such
as [18F]-Fluoroazomycinarabinoside ([18F]FAZA) [72, 153], and [18F]HX4 [100].
These tracers show the similar binding properties as [18F]FMISO, while different
pharmacokinetic properties are modified to achieve faster clearance and higher
image contrast.
However, the exact quantitative relationship between signal formation in hy-

poxia PET imaging and microscopic tumour oxygenation is not yet fully under-
stood [154], making it difficult to deduce oxygen content directly from the image
signal. A better understanding of the exact dynamics of tracer diffusion and re-
tention may improve interpretation of the image information and thus enhance
potential therapeutic benefits. In this concept, mathematical modelling tech-
niques are used to provide additional insights, as they allow quantification of the
individual parameters’ impact on image signal, such as tracer clearance, diffusion,
and perfusion variations leading to acute hypoxia. These simulation studies are
a valuable additional tool for the planning of pre-clinical and clinical studies, as
well as for the evaluation of imaging protocols.
Several models for simulation of tissue oxygenation or hypoxia PET tracer ac-

cumulation have been presented in the past. While the algorithms differ, usually
they have a similar approach, which was first presented in 2006 by Kelly and
Brady [38]. In a first step, oxygen distribution in tissue is simulated. If a simula-
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5 Three-dimensional simulation of [18F]FMISO diffusion and retention

tion of PET tracer is included, the oxygen distribution is then used to determine
local tracer binding rates. As both processes are described by a reaction-diffusion
equation, they are usually treated numerically using similar approaches. The ex-
act numerical methods differ between implementations, using finite difference and
finite-element methods [39,40,108,155], Green’s function or the heat kernel [70].
However, a thorough validation is necessary for any of these simulation models

in order to be utilized as a clinical and practical research tool. Unfortunately,
evidence of actual validation is sparse. Bowen et al showed that simulated oxy-
gen histograms agree well with measurements of tissue oxygenation using Ep-
pendorf probes [44]. The [18F]FMISO simulation model proposed by Mönnich
itet al generated time activity curves (TACs) comparable to those found in clin-
ical PET images [39]. Lately, we demonstrated that high correlation between
2D-simulated hypoxia tracer uptake and in vivo uptake of the chemically sim-
ilar substance pimonidazole can be achieved if oxygen consumption parameters
are optimized [139]. However, a thorough validation both against immunoflu-
orescence staining or autoradiography on a microscopic level as well as against
measured PET activities on the macroscopic level is still missing. Also, the im-
pact of missing out-of-plane diffusion on oxygen distribution in the 2D model is
still unclear. While some studies suggest that 2D and 3D models give comparable
results on artificial vessel maps [45,110], other studies indicate that this might not
be the case for realistic vessel distributions [112]. To our knowledge, no 3D model
of tracer diffusion-retention dynamics based on realistic vascular information has
been published so far.
The goal of this study is to develop a 3D mathematical model to simulate

oxygen distribution, [18F]FMISO diffusion and accumulation on realistic 3D vessel
maps and to evaluate its accuracy, both by direct comparison of [18F]FMISO
accumulation patterns to pimonidazole immunofluorescence staining as well as
by comparing simulated activities to experimentally measured [18F]FMISO PET
time activity curves in the same tumour. Additionally, the method’s performance
will be compared to that of widely used 2D approaches.

5.2 Material and Methods

An overview of the workflow and analysis strategies used in this study includ-
ing data preparation, pre-processing and subsequent simulation is presented in
Figure 5.1. Briefly, fluorescence images of consecutive tumour sections of 10 µm
thickness are obtained to gain information on vessel distribution, perfusion and
hypoxia. Images are registered, masks are drawn to distinguish vital tumour from
mouse stroma and necrosis, and vessel maps are generated based on the vascular-
ization and perfusion immunofluorescent signals. 2D vessel maps of consecutive
sections are then combined to form 3D vessel maps based on actual tumour ves-
sel architecture. These can be used as input to simulate oxygen distribution and
subsequently, [18F]FMISO diffusion and retention (Figure 5.1).
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5.2 Material and Methods

Figure 5.1: Overview of the simulation method. After PET imaging, tumour sections
were labelled for endothelial marker CD31, perfusion marker Hoechst 33342
and hypoxia marker pimonidazole. Information obtained from the CD31
and Hoechst 33342 were used to reconstruct 3D models of vascular archi-
tecture, on which oxygenation and FMISO accumulation was simulated.

5.2.1 PET/MR imaging, immunofluorescence microscopy

The animal facilities and all experiments were approved according to the in-
stitutional guidelines and the German animal welfare regulations. 4-6-week-old
immune-deficient female nude mice (NMRI nu/nu, Charles River Laboratories,
Wilmington, USA) received a 4 Gy total body irradiation to further suppress
the residual immune system 2 to 5 days prior to tumour cell injection into the
hind leg. The injected tumour cells belonged to the cell line FaDu, a tumour
model for human squamous cell carcinomas of the head and neck (HNSCC) [69].
4-6 weeks after cell-injection simultaneous PET/MR imaging was performed on
a 7T scanner (Bruker, Ettlingen, Germany) with technical specifications similar
to the PET-insert described in [156]. The imaging protocol included a 90 min
dynamic [18F]FMISO PET acquisition, anatomical T2-weighted and diffusion-
weighted (DW) magnetic resonance imaging (MRI) as well as dynamic contrast
enhanced (DCE) MRI. Animals were anesthetized with 1.5% isoflurane (Abbott,
Wiesbaden, Germany) evaporated in breathing air at a flow of 0.5 L/min, and
body temperature was maintained at 37 ◦C. After imaging, the hypoxia marker
pimonidazole (Hypoxyprobe, Burlington, USA; 0.1 mg/g body weight, dissolved
at 10 mg/ml in 0.9% NaCl, i.p.) was injected 1h prior to tumour excision as well
as the perfusion marker Hoechst 33342 (Sigma Aldrich, Deisenhofen, Germany;
15 mg/kg body weight, dissolved in 0.05 ml PBS, i.v.) 1 min before tumour
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excision. Tumours were snap frozen in liquid nitrogen and stored at -80 ◦C until
cutting.
For immunofluorescence labelling, 120 serial sections with a thickness of 10 µm

each were cut from the tumour centre. Immunofluorescence labelling following the
protocol outlined in Yaromina et al [69] was performed. Sections were air-dried
at room temperature for 30 min, fixed in 4 ◦C acetone for 10 min and rehydrated
in phosphate-buffered saline (PBS). Subsequently they were incubated over night
with both antibodies at 4 ◦C, namely a rabbit polyclonal antibody against pi-
monidazole (1:2500, Hypoxyprobe, Burlington, USA) and a monoclonal rat anti-
mouse CD31 antibody (1:500, BD Biosciences, Franklin Lakes, USA). Washing in
PBS was followed by incubation with combined application of TRITC-conjugated
anti-rat IgG and FITC-conjugated anti-rabbit IgG polyclonal antibodies (Di-
anova, Hamburg, Germany) for 1 h at room temperature. After this, slides were
washed in PBS and mounted in DAKO fluorescent mounting medium (DAKO,
Glostrup, Denmark). Tumour sections were then scanned on a Zeiss Axiovert flu-
orescene microscope (ZEISS, Jena, Germany) using a motorized stage, signal was
acquired with amonochrome digital camera (AxioCamMRm, Carl Zeiss, Jena,
Germany; motorized scanning stage, Maerzhaeuser, Wetzlar, Germany, 400_ EC
Plan Neofluar) using Axiovision 4.9.2 software to detect Hoechst 33342, FITC,
and TRITC fluoresence signals, under an objective with a 10x magnification. The
available data for each tumour is summarized in Table 5.1.

Table 5.1: Available experimental data for both analyzed tumours

Tumour 1 Tumour 2

Tumour model FaDu (HNSCC) FaDu (HNSCC)
Tumour diameter (mm) 15 3
No. of sections (10 µm) 120 120
CD31 staining yes yes
Pimonidazole staining yes yes
Hoechst yes yes
Percentage of tumour volume ∼ 1.5% ∼ 30%
included in the 3D vessel map
Dynamic [18F]FMISO PET No (error during acquisition) yes

5.2.2 Generation of tissue masks, registration and reconstruction of vessel
maps

After fluorescence scanning, each section was stained with haematoxylin and eosin
(HE) to delineate viable tumour tissue and exclude mouse stroma and necrotic
areas. Rigid registration of fluorescence images was performed, and manual ad-
justments were made using Adobe Photoshop (Adobe Systems Incorporated, San
Jose, USA) where necessary to reduce the impact of distortions due the cutting
process.
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Immunofluorescence images of CD31 were automatically segmented by thresh-
olding based on their histogram shape to generate preliminary blood vessel maps.
Post-processing with a morphological closing operation was performed to reduce
noise. Hoechst 33342 images were segmented using a similar approach, but au-
tomatically suggested thresholds were adjusted according to visual appearance if
necessary. Post-processing of Hoechst images included also a morphological clos-
ing operation followed by a dilation to expand perfusion-positive areas beyond
the stained cell nuclei. Blood vessels from the processed CD31 images that were
found to be outside of perfused areas were excluded from the final vessel maps.
Combination of these 2D vessel maps resulted in 3D vessel maps with a total size
of 3× 3× 1.2 mm3 for each tumour.

5.2.3 Simulation

3D simulations of oxygen distribution and [18F]FMISO diffusion and uptake were
implemented in MATLAB 2009b (Mathworks, Natick, USA), using the approach
outlined by Mönnich et al [39]. The simulation is implemented in a two-step
process: First, a steady-state oxygen distribution is simulated where diffusive
transport of oxygen is in equilibrium with cellular oxygen consumption, with a
resolution of 5 µm. Secondly, [18F]FMISO diffusion and retention is modelled
based on blood input functions derived from PET scans and binding rates calcu-
lated as a function of the previously simulated local oxygen concentrations with
a resolution of 10 µm. A detailed description of the simulation method includ-
ing highlighting of adjustments in the 3D simulations compared to the earlier
published 2D approach is given in the supplementary material.

5.2.4 Comparison of simulation results with experimental data

For comparison of microscopic [18F]FMISO simulation to pimonidazole staining,
ten sections of each tumour were randomly chosen and pimonidazole-positive
tumour areas were manually delineated to distinguish hypoxic from normoxic
areas. These binary images were used as gold-standard and compared to thresh-
olded simulation results to determine overlap, sensitivity and specificity as well as
mean distance to agreement (DTA) to pimonidazole-positive areas of 2D and 3D
simulations. The threshold for the simulated [18F]FMISO images was set to the
mean value of maximum and minimum simulated activity, with activity including
signal from bound and unbound tracer. DTA was defined as the mean distance
of false-positive simulated voxels to the nearest pimonidazole-positive voxel. Pix-
els/voxels less than 150 µm away from the tumour edge were excluded to avoid
effects caused by the lack of vessel information outside the tumour boundaries.
Results were tested for significance using a t-test for paired samples.
Average activity over the entire tumour was determined from a dynamic PET

scan of the tumour over 90 minutes post-injection (p.i.) taken right before excision
and compared to simulations over the same duration. To make simulation results
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comparable, the simulated images were processed to account for partial volume
effects due to the lower spatial resolution of the PET scanner. In a first step, the
activity in the stroma surrounding the tumour was set to that of the blood input
function at the given time point. Simulated signal from necrotic areas was not
excluded for sake of comparability as there was no way to exclude it from the
PET measurement. The images were filtered with a Gaussian filter (σ = 300 µm,
FWHM: 0.72mm) approximating the blur expected to occur in a PET scanner
with a resolution of about 1 mm and a voxel size of 0.7x0.7x0.8 mm3. Then the
average activity in the tumour was determined for all 21 simulated time points
and compared to the measured PET data.

5.3 Results

Figure 5.2: Changes in oxygen distributions and the resulting histogram on a represen-
tative sample. The small images show the simulated oxygen distributions
for the 2D and 3D vessel map, respectively, with oxygen levels ranging from
40 mmHg (red) to 0 mmHg (dark blue).

The comparison of full 3D simulations of steady-state oxygen-distribution to
2D simulations revealed that due to the lack of out-of-plane diffusion, the 2D
scenario resulted in steeper oxygen gradients. This led to an overestimation of
the extent of severely hypoxic regions, as shown by the oxygen histogram in Figure
5.2. 45.5% and 26.7% of the analyzed tumour volume presented an oxygen partial
pressure (pO2) of less than 1 mmHg for 2D and 3D, respectively.
The consequences resulting from these changes in the pO2 distribution for the

simulated [18F]FMISO distributions are presented in Figure 5.3, showing the ex-
perimental pimonidazole staining, the 2D and 3D simulations, in addition to the
resulting overlaps for the same section, with a sensitivity of 0.56 and specificity
of 0.79 for the section shown. Visually, the 3D simulation shows better agree-
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Figure 5.3: Representative comparison of an experimental pimonidazole staining
(white: high retention, dark red: low retention), with the simulated
[18F]FMISO accumulation (white: high simulated FMISO activity, dark
red: low simulated activity) and the resulting overlay: normoxic (blue),
pimonidazole-positive (staining, red), [18F]FMISO-positive (simulation,
green), and hypoxic in simulation and staining (yellow).

ment between [18F]FMISO and pimonidazole hypoxic fractions compared to the
2D simulation. While the 2D simulation leads to only overlap between simu-
lated and pimonidazole-hypoxic fractions, the 3D model results in accumulation
patterns similar to those observed on the pimonidazole staining.
Figure 5.4 shows the median hypoxic fractions measured via pimonidazole stain-

ing, in 2D and 3D simulations, respectively, for all analyzed tumour sections.
Hypoxic fractions from the pimonidazole stainings agreed well with 3D simu-
lated hypoxic fractions, non-significant differences for both tumours, which were
0.37 ± 0.07 vs. 0.35 ± 0.11 and 0.30 ± 0.03 vs. 0.28 ± 0.03 for tumour 1 and
2, respectively. For the 2D simulation, a significant difference between hypoxic
fraction was found for tumour 2 with a simulated hypoxic fraction of 0.24± 0.04
(p = 0.001, Figure 5.4a), whereas tumour 1 shared comparable hypoxic fractions
in the 2D model as well.
The 3D simulation also consistently performed much better in terms of sen-

sitivity and specificity. This was shown for both performance measures and in
both tumours (Figure 5.4b,c). Mean sensitivity for both tumours was 0.55 for
the 3D and 0.36 for the 2D approach (p < 0.001), while the mean specificity was
0.68 and 0.76 for 2D and 3D, respectively (p < 0.001).
Also, mean DTA was much lower for the 3D simulation. The mean distance of
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Figure 5.4: Results for hypoxic fraction (a), sensitivity (b), specificity (c) and mean
distance to agreement for false-positive voxels (d). Three asterisks indicate
a significance level of p < 0.001.

a false-positive voxel to hypoxic areas (as defined by pimonidazole) was 22 µm,
as compared to 42 µm for the 2D simulation (p < 0.001, Figure 5.4d).
When the average simulated time activity curve over all sections in 2D and

3D was compared to the dynamic [18F]FMISO PET in the tumour, both simu-
lations gave activities and slopes close to the measured PET activities. The 3D
approach performed better with respect to the measured PET activity, yielding a
mean error of 8.2± 13.7%, when compared to the 2D simulation with an average
deviation of 17.9± 15.4% was observed (Figure 5.5). Results showed a mismatch
in the early wash-in phase, where the simulations did not adequately model the
perfusion peak observed in the PET scan. However, the accuracy was improved
during the retention phase, with average errors of 3.0% and 13.4% between 35
and 90 min p.i., for 3D and 2D simulations, respectively.

5.4 Discussion

The results shown here support the approach that [18F]FMISO retention patterns
similar to those observed in vivo can be simulated based on reaction-diffusion
equations. The simulation results shown here were performed on realistic 3D
vascular maps using established literature values. The model presented here is
easy to implement and can be run on commonly available desktop PCs with a
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Figure 5.5: Activity concentration in tumour measured in the PET system dynamically
over 90 min p.i., compared to simulated activities in the 3 × 3 × 1.2 mm2

tumour area for the 2D and 3D simulation approach.

computation time of about 2 min for a 2D 3× 3 mm2 section and about 4h for a
3× 3× 1.2 mm3 3D vascular map.
The main cause for the different accumulation patterns in the two simulation

approaches lies in the out-of-plane diffusion, whose inclusion results in a more
homogeneous distribution of oxygen in the 3D model, while it is not taken into
account in the 2D model (cf. Figure 5.6). Changes in oxygen distribution caused
by including out-of-plane diffusion into the model affects the tracer binding rate
(Equation 5.4). The differences in the resulting tracer binding rates comparing
2D to 3D simulation are shown in Figure 5.6a. The figure visualizes the change in
binding rates caused by the extension of the model to three dimensions, normal-
ized to the maximum binding rate. The figure demonstrates that the inclusion
of out-of-plane diffusion in the 3D model effectively results in [18F]FMISO accu-
mulation in a larger distance to the blood vessels. These findings agree well with
simulations performed by Grimes et al [112], who found that when simulating on
realistic vessel distributions, 2D approximations are generally inadequate repre-
sentations of 3D oxygen distribution, as they tend to overestimate hypoxia and
anoxia. In the past, studies have suggested that 2D simulations of oxygenation
and [18F]FMISO accumulation might give realistic results, but these studies had
been performed on artificial vessel maps with perpendicular vessels, and only
histogram shape was compared [45,110].
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Figure 5.6: Changes in [18F]FMISO binding rate (a), and observed [18F]FMISO tracer
retention (b) after extension of the model to 3D, in percent of the max-
imum binding rate and maximum tracer retention, respectively. A linear
correlation between the changes in binding rate and [18F]FMISO retention
is observed (c).

The observed differences in terms of spatial oxygen distribution results in lower
binding rates in the 3D model in close proximity to perfused areas, and higher
binding rates with increasing distance from the blood vessels, as the percentage
of vital hypoxic cells is still high enough for tracer binding to occur (Figure 5.6a).
The quantitative changes in tracer binding rate closely mirror the differences seen
in the simulated tracer uptake for 2D and 3D (Figure 5.6b, changes are plotted
as percent of maximum uptake). Consequently, a high linear correlation between
differences in binding rate and changes in tracer uptake is observed (R = 0.983,
Figure 5.6c). This indicates that the differences in simulated oxygen distribution
are the main cause for the observed differences in tracer distribution. A diffusion
limitation of [18F]FMISO binding over the 90 min simulation time is another,
though minor, contributing cause in regions far away from the blood vessels.
However, the quality of 3D models is highly dependent on the quality of the
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vessel maps. Inadequate spatial registration of consecutive sections may result in
non-overlapping vessels in z-direction. As a consequence, the contribution of out-
of-plane diffusion is strongly overestimated, which leads to an underestimation of
hypoxia and [18F]FMISO accumulation.
Aside from its higher sensitivity and specificity, the DTA is another measure

that indicates that the 3D simulation is better capable of reproducing in vivo
pimonidazole patterns than the 2D model. In the 3D model, many false-positive
voxels are located closely to pimonidazole-positive regions, with an average dis-
tance of 22 µm. About 25% of false-positive voxels are located directly adjacent
to pimonidazole positive areas. Similar results were observed for the distance of
false-negative voxels to [18F]FMISO-positive simulated voxels (data not shown).
In a previous publication, we had observed good correlations between 2D sim-

ulations and pimonidazole staining [139] . However, these simulations had been
optimized by adjusting the maximum oxygen consumption, with optimum values
ranging below the standard value of 15 mmHg/s, therefore compensating for the
overestimation of anoxia observed in 2D under standard conditions. As we have
shown here, these low values are the result of an inherent systematic shift of 2D
simulations. The value of 15 mmHg/s used here is in perfect agreement with
commonly used literature values [38,40,108].

5.5 Conclusion

We demonstrate that simulating [18F]FMISO diffusion and retention on three-
dimensional realistic vessel maps using established parameter values is feasible
and yields results comparable to those observed in vivo. Comparison with 2D
simulation approaches revealed that two-dimensional models are not adequate
due to their missing out-of-plane diffusion, performing worse with respect to sen-
sitivity and specificity. Both the [18F]FMISO time-activity curves simulated with
the 2D and 3D approach agreed well with the experimental PET measurement
performed in the same tumour, with the 3D method yielding slightly superior
results.
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5.7 Appendices

Simulation of steady-state oxygen distributions

Oxygen in tissue was modelled by a reaction-diffusion equation of oxygen diffusion
along the concentration gradient and cellular oxygen consumption, the latter
being described by a Michaelis-Menten relationship:

∂P

∂t
= DO2∇2P − M0 · P

P + P0
(5.1)

With P as the local oxygen partial pressure, P0 as the Michaelis-Menten coef-
ficient of oxygen consumption, DO2 as the oxygen diffusion coefficient in tissue,
andM0 being the maximum oxygen consumption rate. While Mönnich et al used
a finite elements approach to solve this partial differential equation [39], we used
the Gaussian fundamental solution outlined in Lagerlöf et al [70], as this approach
is computationally more efficient and easy to implement both in 2D and 3D:

GO2(x, y, z, t) = kO2 · t
−n

2 · e
x2+y2+z2

4DO2 ·t (5.2)

Here,DO2 is the same diffusion coefficient as above, n is the number of simulated
dimensions and kO2 is a normalization factor meeting the following condition:∫ ∞

0

∫ ∞
0

∫ ∞
0

GO2(x, y, t)dxdydz = 1 (5.3)

The assumption of the Gaussian fundamental solution is that the initial distribu-
tion at t = 0 can approximatively be described as a δ-function. As each voxel on
the vessel map is regarded as a separate source of a size of 5×5×10 µm3 , which
is much small compared to the distance of hypoxic regions from the vessels. The
diffusion at any point in time can be determined by convolving the initial oxygen
distribution with the diffusion kernel from Equation 5.6. For simulations in 2D,
dimension z is set to zero.

Appendix B: Simulation of hypoxia tracer diffusion and uptake

The diffusion and retention of [18F]FMISO was simulated by numerically solving
a reaction-diffusion equation similar to the one in the previous step [39].

∂Cf

∂t
= DT∇2Cf −K(P ) · Cf (5.4)

with
K(P ) = KmaxP1

P + P1
· ( P

P + P2
)k (5.5)

Here, Cf is the concentration of freely diffusing, unbound tracer. K(P ) is the
net tracer binding rate as calculated from the previously simulated steady-state
oxygen distribution and cell viability. Here, Kmax is the maximum binding rate
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under anoxia, P1 gives the oxygen partial pressure at which tracer binding is
half-maximal, and P2 represents the partial pressure at which 50% of cells are
necrotic. The parameter k determines the step width of the cell vitality function
at P2. As nitroimidazoles are transported in the tissue predominantly by diffusion,
the fundamental solution was also applied here, adjusted for the tracer diffusion
coefficient DT , with time steps of 1 s:

GT (x, y, z, t) = kT · t−
−n

2 · e
x2+y2+z2

4DT ·t (5.6)
The method has been used in previous publications [139,148] and gives results

comparable to the computationally less efficient finite-element method previously
used by Mönnich et al [39]. Computation times for each simulation step are about
two minutes for 2D and three hours for the entire 3D 3×3×1.2 mm3 vessel maps
on an ordinary desktop PC (Fujitsu Esprimo P910, Intel Core i7-3770, 16 GB
RAM).

Appendix C: Blood activity curves

Blood input functions determined from the [18F]FMISO PET scans were used as
input for the second simulation step. As the heart was outside of the field of view
in both PET scans, the activity in well-perfused tissue was used, as it is expected
to closely follow the blood activity. Specifically, the activity was determined at
65 different time points between 0 and 90 min post-injection (p.i.) by taking the
average activity over a ROI in muscle tissue. The following function was fitted
to the determined data:

A(t) = A1e
−t
τ1 + A2e

−t
τ2 (5.7)

with four open parameters A1, A2, τ1, and τ1. For tumour 2, an error oc-
curred during the [18F]FMISO PET acquisition, resulting in injection of another
[18F]FMISO bolus 40 min pi.i., resulting in unfittable data. Its activities were
therefore excluded from the analysis. Instead, a population-based blood input
function using the same fitting function was determined from the activities in
the left ventricle from a previous series of experiments. However, a comparison
between PET measurement and simulated activities was not possible.

Appendix D: Parameters

Parameters used for oxygen and [18F]FMISO simulations are established param-
eters used in previous publications. They are listed in Table 5.2 and 5.3.
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Table 5.2: Simulation parameters used for calculation of the steady state oxygen dis-
tribution. Bold font indicates the value chosen for this simulation out of a
range of value

Symbol Meaning Value Reference

Pie Intraerythrocyte pO2 in tumours 40 mmHg [39,108]
DO2 O2 diffusion coefficient 2 × 10−9 m2/s [123]
M0 Maximum O2 consumption 15 mmHg/s [39,108]

rate
P0 Michaelis-Menten 2.0 - 2.5 mmHg [39,108]

coefficient of oxygen
consumption

t Time used to calculate 0.01 s [70]
Gaussian kernel

Table 5.3: Simulation parameters used for hypoxia PET tracer uptake and diffusion
simulation. Bold font indicates the value chosen this simulation out of a
range of values

Symbol Meaning Value Reference

M Molecular weight (FMISO) 189.14 Pubchem
DT FMISO diffusion coefficient 7.90 × 1011 m2/s [148] from [121] and [120]

(×10−11 m2/s)
P1 pO2 inhibiting binding by 50% 0.8 - 1.5 mmHg [39]
Kmax Maximumg binding rate 4.4 × 10−4s−1 [45]

(anoxia)
P2 pO2 inducing 50% necrosis 0.1mmHg [39]
k Determines step width at P2 0.3 [39]
t Time step used to calculate 0.01 s [70]

Gaussian kernel
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Abstract

Objective. To investigate the effect of hypoxia tracer properties on positron
emission tomography (PET) image quality for three tracers [18F]-fluoromisonidazole
(FMISO), [18F]-fluoroazomycinarabinoside (FAZA) and [18F]-flortanidazole (HX4),
using mathematical simulations based on microscopic tumor tissue sections.
Material and methods. Oxygen distribution and tracer binding was math-
ematically simulated on immunohistochemically stained cross-sections of tumor
xenografts. Tracer diffusion properties were determined based on available liter-
ature. Blood activity and clearance over a four-hour period post-injection (p.i.)
were derived from clinical dynamic PET scans of patients suffering from head and
neck or bronchial cancer. Simulations were performed both for average patient
blood activities and for individual patients, and image contrast between normoxic
and hypoxic tissue areas was determined over this four-hour period p.i.
Results. On average, HX4 showed a six-fold higher clearance than FMISO
and an almost three-fold higher clearance than FAZA based on the clinical PET
data. The absolute variation in clearance was significantly higher for HX4 than
for FMISO (standard deviations of 5.75 × 10−5 s−1 vs. 1.55 × 10−5 s−1). The
absolute tracer activity in these scans at four hours p.i. was highest for FMISO
and lowest for HX4. Simulated contrast at four hours p.i. was highest for HX4
(2.39), while FMISO and FAZA were comparable (1.67 and 1.75, respectively).
Variations in contrast of 7–11% were observed for each tracer depending on the
vascularization patterns of the chosen tissue. Higher variations in clearance for
HX4 resulted in an increased inter-patient variance in simulated contrast at four
hours p.i.
Conclusions. In line with recent experimental and clinical data, the results
suggest that HX4 is a promising new tracer that provides high image contrast
four hours p.i., though inter-patient variance can be very high. Nevertheless, the
widely used tracer FMISO provides a robust and reproducible signal four hours
p.i., but with a lower contrast. The simulations revealed tracer clearance to be
the key factor in determining image contrast.
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6.1 Introduction

Tumor cell hypoxia causes radiation resistance compared to normoxic cells result-
ing in a negative impact on outcome of anticancer treatments, including radio-
therapy [22]. Assessment of presence, quantity and localization of hypoxia prior
to and during treatment has been a subject of ongoing research [143]. These
studies do not only investigate its value as a prognostic factor, but also as a pre-
dictive factor for allowing for patient stratification and treatment adjustments
that could potentially overcome hypoxia-induced radioresistance. These modifi-
cations include treatment approaches, such as increasing the oxygen supply to
tumor cells, e.g. through hyperbaric oxygen or carbogen breathing, or adminis-
tering hypoxic cell radiosensitizers, such as nimorazole [23]. Another frequently
suggested option is escalating delivered radiation dose specifically to hypoxic sub-
volumes inside the tumor, a process referred to as dose painting. The establish-
ment of intensity-modulated radiotherapy and other high-precision radiotherapy
techniques in routine clinical practice has made such an approach technically
feasible [143].
However, there is no clinically validated gold standard to non-invasively identify

tumor hypoxia at present [23]. Frequently, dedicated tracers for positron emission
tomography (PET) that accumulate specifically in hypoxic tissue volumes are
used for non-invasive hypoxia imaging. In contrast to most invasive methods,
hypoxia PET imaging provides a spatially resolved quantitative image of tissue
oxygenation [138].
Many of the hypoxia-related PET tracers are [18F]-labeled nitroimidazole com-

pounds, including [18F]-fluoromisonidazole (FMISO), which has been used in
many clinical and pre-clinical studies [18,144]. Due to the low signal-to-background
ratios of FMISO PET, alternative hypoxia tracers have been proposed. One of
them, [18F]-fluoroazomycinarabinoside (FAZA), is a focus of current research due
to its higher clearance and has found its way into clinical trials [72, 146]. The
tracer [18F]-flortanidazole, commonly referred to as HX4, is also a nitroimidazole
compound. Similar to FAZA, it is more water-soluble than FMISO [136], and a
first study in 12 head and neck squamous cell carcinoma (HNSCC) patients has
shown better tumor-to-muscle ratio in HNSCC tumors compared to FMISO [35].
Attempts to quantify and compare the imaging properties for these tracers

are ongoing, and several of them have been compared in preclinical and clinical
studies [34–36]. However, the results of these studies are non-conclusive, and
further investigations are warranted before deciding for the optimal tracer and to
facilitate comparative analyses from studies using different tracers.
In addition to pre-clinical and clinical studies, mathematical simulations have

been used as a more theoretical approach to investigate the imaging properties of
hypoxia PET tracers under a variety of conditions [39]. For simulating oxygen and
tracer distributions in the tumor microenvironment, several approaches have been
used. These included methods using Green’s function, finite difference and finite
element methods [39,108], or the heat kernel [70], carried out in two-dimensional
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(2D) [39,108] or 3D [70,110].
The hypothesis of this study is that the imaging characteristics of hypoxia PET

tracers vary according to their respective physical and chemical properties and
can therefore be studied based on mathematical simulations. Major goal was
to investigate the imaging properties of the tracers FMISO, FAZA, and HX4 by
mathematically simulating their diffusion-retention properties on the basis of 2D
models of tumor vasculature. Using this method, the interdependence between
clearance, diffusion and image contrast was investigated.

6.2 Material and Methods

Dedicated hypoxia PET tracers are bound to cells depending on the local oxygen
concentration. Therefore, to simulate hypoxia PET signals, a two-step process
is used: 1) Simulation of the diffusive oxygen supply from blood vessels that is
in equilibrium with cellular oxygen consumption (steady state); and 2) modeling
of tracer diffusion and retention depending on its specific diffusion and clearance
properties as well as the previously simulated oxygen distributions. In this work, a
mathematical model has been used which has been described in detail before [39].
A brief description of the model is given here.

6.2.1 Simulation of steady-state oxygen distribution

Oxygen distribution is described as the steady-state of oxygen diffusion and con-
sumption, which can be modeled by a reaction diffusion equation [13], where
oxygen consumption was modeled by a Michaelis-Menten relationship:

∂P

∂t
= DO2∇2P − M0 · P

P + P0
(6.1)

where P is the local oxygen partial pressure, P0 is the Michaelis-Menten coefficient
of oxygen consumption, DO2 is the diffusion coefficient and M0 is maximum oxy-
gen consumption rate. This diffusion problem can be solved by using a Gaussian
fundamental solution [70]:

GO2(x, y, t) = kO2 · t−1 · e
x2+y2
4DO2 ·t (6.2)

where DO2 is the diffusion coefficient and kO2 is a normalization factor chosen in
a way that ∫ ∞

0

∫ ∞
0

GO2(x, y, t)dxdy ≡ 1 (6.3)

Using the fundamental solution of the diffusion equation assumes that the initial
distribution at t = 0 can be described as a δ-function. As each pixel on the vessel
map was regarded as a separate oxygen source of a size of approximately 2.5×2.5
µm2 and thus much smaller than the distance of hypoxic regions from the vessels,
this was judged to be a valid approximation [70]. Therefore, if the initial pO2
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distribution is known, pure diffusion at any point in time can be determined by
convolving the initial oxygen distribution with the diffusion kernel.
However, since the oxygen consumption is a function of oxygen partial pressure,

the model was run repeatedly with time steps of 10 ms, as proposed in a previous
study [70]. Oxygenation was calculated iteratively for each pixel, taking into
account the local oxygen consumption. Within blood vessels, the initial value of
P = 40 mmHg was kept constant. The simulation was repeated until a steady
state was reached, i.e. a change of less than 0.1% between two iterations was
used as a convergence criterion.
Our simulations were carried out in 2D, therefore, the following equations are

specific for 2D, but the model can easily be extended to perform 3D simulations
[70].

6.2.2 Simulation of hypoxia tracer distribution and uptake

Similar to the oxygen distribution, the distribution and uptake of hypoxia PET
tracers was simulated by a numerical solution of the respective reaction-diffusion
equation [39], where Cf is the concentration of free tracer and K(P ) accounts for
tracer binding depending on oxygen levels and cell viability:

∂Cf

∂t
= DT∇2Cf −K(P )Cf (6.4)

Nitroimidazoles are transported through tumor tissue solely by diffusion. There-
fore, the fundamental solution of the diffusion equation was also applied here to
create a convolution kernel analogous to the oxygenation model, with time steps
of 1 second:

GT (x, y, t) = kT · t−1 · e
x2+y2
4DT ·t (6.5)

The method gave 2D results comparable to the well established but computa-
tionally more expensive finite element method that was used in [39].

6.2.3 Blood activity curves

The blood activity curves that were used as input functions for the simulations
were derived from clinical dynamic PET images (FMISO: n= 10, FAZA: n = 3,
HX4: n = 5).
FMISO and FAZA scans were acquired in a GE Advance scanner (GE Medical

Systems, Milwaukee, WI, USA). Images were acquired in dynamic acquisition
mode with a slice thickness of 4.25 mm, and a pixel spacing of 4.3 mm. Recon-
struction was performed using OSEM 2D with four iterations and eight subsets.
A scatter correction (convolution subtraction) was applied. The FMISO group
included 10 patients aged 57–71 years, including seven men and three women,
while the FAZA group consisted of three men aged 58–66 years, both suffering
from HNSCC.
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For HX4, five non-small cell lung cancer (NSCLC) patients were imaged in a
Philips Gemini TF 64 PET/CT scanner (Philips Healthcare, Best, The Nether-
lands). The imaging parameters were set to an axial field of view of 18 cm,
slice thickness of 4 mm, in plane pixel spacing of 4 mm, and a spatial resolution
of approximately 5 mm FWHM. CT-based attenuation correction and scatter
correction (SS-SIMUL) were performed. Image reconstruction was performed
using 3D ordered-subset iterative time-of-flight reconstruction technique (BLOB-
OS-TF) using three iterations and 33 subsets. The field-of-view for computed
tomography (CT) and PET imaging was positioned on the primary tumor. The
five patients imaged with HX4 were aged between 59 and 71 years.
From each scan, the tracer concentration in the blood was determined at 20–45

time points over a period of four hours post-injection (p.i.). Blood activity for a
given time point was determined by averaging over the activity of six voxels in
the heart or a major blood vessel for each patient. This was followed by fitting
to the following function to the data:

A(t) = A1e
−t
τ1 + A2e

−t
τ2 (6.6)

For each parameter, the average was taken over all patients of the same group
to derive an average input function (AIP) for all three tracers individually. For
the calculations of the standard deviation, the 95% confidence interval of each fit
was taken into account.

6.2.4 Parameters

The oxygen and hypoxia PET tracer model parameters used for these simulations
were derived from previous publications and are listed in Table 6.1.
Tracer diffusion coefficients were calculated as average of the two formulas

presented by Pruijn et al. [120], which estimate the diffusion coefficient of tira-
pazamine analogs through multicellular layers based on their partition coefficient
and molecular structure.
Partition coefficients were taken from literature, except for FAZA, for which

published values varied by several orders of magnitude [36,37]. Therefore, we used
the simulation softwares XLOGP3, ALOGPS 2.1, Molinspiration and LogKow
and took the average of the simulated values as suggested in [133].
The parameter P1, the pO2 at which the FMISO binding rate is half-maximal,

was taken from [39] and [127]. For FAZA and HX4, the same parameter was used
as their uptake follows the same binding mechanism [23,146].

6.2.5 Simulation details

All simulation steps were implemented in MATLAB R2009b.
Simulations were carried out on vessel maps derived from tumor xenografts

which were immunohistochemically stained for CD31, a marker of endothelial
tissue. Tissue sections were obtained as described before [138]. Based on this,
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Table 6.1: Simulation parameters used for calculation of the steady state oxygen and
tracer distribution. Bold font indicates the value chosen for this simulation
out of a range of values.

Symbol Meaning Value

Pie Intraerythrocyte pO2 in tumors 40 mmHg [39,108]
DO2 O2 diffusion coefficient 2 × 10−9 m2/s [39]
MO Maximum O2 consumption rate 15 mmHg/s [39, 108]
PO Michaelis-Menten coefficient of oxygen (2.0 − 2.5) mmHg [39,108]

consumption

FMISO FAZA HX4
M Molecular weight 189.14 247.18 269.22
DT Tracer diffusion coefficient [·10−11m2/s] 7.90 2.99 3.55 [120]
P Partition coefficient 0.41 0.30 0.20 [100,136]
P1 pO2 inhibiting binding by 50% (0.8 − 1.5) mmHg [39,127,146]

simulations of oxygen distributions and tracer diffusion-retention over a period
of four hours p.i. were performed for six different vessel maps.
Vessel maps were divided into 1 × 1 mm2 subsections. For each of those, the

median pO2 (mpO2) and tracer activity was determined. Sections with an mpO2
of 35 ± 0.2 mmHg and 2.5 ± 0.2 mmHg were chosen to represent normoxic and
hypoxic tissue areas, respectively. Their mean tracer activities at different time
points p.i. were then used to generate normoxic and hypoxic time activity curves
(TACs). Image contrast (K(t)) was defined as the ratio between the mean signal
in hypoxic tissue (Shyp) and normoxic tissue (Snorm).

K(t) = Shyp(t)
Snorm(t) (6.7)

TACs and contrast results were compared using a Wilcoxon rank-sum test for
median and a Levene test for variance using MATLAB R2009b. p-values equal
or lower than 0.05 were considered significant.

6.3 Results

6.3.1 Blood activities

For all three investigated hypoxia PET tracers, the average fit parameters for
the input functions are listed in Table 6.2. HX4 has the highest clearance rate
(τ2,HX4 = 11.8 ·10−5s−1), followed by FAZA (τ2,F AZA = 4.3 ·10−5s−1) and FMISO
(τ2,F MISO = 1.9 · 10−5s−1). Clearance is significantly different for all tracers.
τ1, the tracer wash-in, was significantly higher for HX4 than for FMISO (p =
0.037). HX4 also showed the highest inter-patient variation in clearance, which
was significantly higher than for FMISO (p = 0.047). All other parameters were
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not significantly different. The resulting AIPs with the respective 95% confidence
intervals are presented in Figure 6.1.

Table 6.2: Average fit parameters for blood activity of the three tracers and their stan-
dard deviation.

A1 (kBq/ml) τ1 (×10−3 s−1) A2 (kBq/ml) τ2 (×10−5 s−1)

FMISO 18.11 ± 7.08 2.0 ± 0.71 10.92 ± 2.49 1.90 ± 1.55
FAZA 13.10 ± 4.50 1.30 ± 0.60 13.1 ± 3.70 4.27 ± 1.51
HX4 33.55 ± 12.81 3.10 ± 0.94 12.31 ± 3.27 11.78 ± 5.75

Figure 6.1: Average input function (AIP) for FMISO, FAZA and HX4 over an interval
of 4 h post-injection (p.i.). At 4 h p.i., FMISO shows the highest blood
activity, followed by FAZA and HX4, reflecting their respective clearance
rates (Parameter τ2). Shaded areas indicate the respective 95% confidence
intervals.

6.3.2 Hypoxia contrast for AIPs

Figure 6.2 shows the simulated distributions for FMISO, FAZA and HX4 at two
and four hours p.i. for the same xenograft tumor section.
Tracer retention in viable hypoxic tissue areas is already distinguishable at

two hours p.i. for all tracers. The distribution patterns for FMISO and FAZA
appear almost identical. In contrast, for HX4, the background activity is lower
due to the fast tracer clearance. Consequently, less HX4 is retained than FMISO
and FAZA, because less unbound HX4 was available during the uptake period.
At four hours p.i.,the tracer wash-out caused a decrease in background signal,
which is more pronounced for faster clearing tracers. Meanwhile, tracer binding
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in hypoxic cells continued. This leads to a net increase of signal in viable hypoxic
areas for FMISO, due to the larger supply of free tracer in the blood, and a
constant signal for the faster-clearing tracer HX4.

Figure 6.2: Representative simulated activity distributions using average input func-
tions for FMISO, FAZA and HX4 on the same tissue section 2 and 4 h
post-injection. Vessels are highlighted in white.

The simulated contrast K(t) of the image signal between hypoxic and normoxic
tissue over time is shown in Figure 6.3. For the first hour p.i., there is little
difference in contrast which may be due to a low overall effect of the difference in
diffusivity of the tracer. For all tracers, contrast continues to increase over time.
A faster increase can be observed for tracers with a higher clearance rate, due to
a faster elimination of free tracer and a resulting decrease of background signal.
In comparison to FMISO, HX4 and FAZA show an image contrast four hours
p.i. that is 43% and 3% higher, respectively. Variations in the vascularization
patterns of tissue sections with the same median pO2 can affect overall tracer
retention in that section. This leads to a standard deviation for contrast at four
hours p.i., which is smallest for FMISO (6.9%) and largest for HX4 (11.4%).

6.3.3 Patient-specific input functions

Furthermore, the influence of variations between patient-specific input functions
on the resulting contrast four hours p.i. was investigated. Each input function
results in a different simulated contrast. Contrast distributions for each tracer
are shown in Figure 6.4.
HX4 shows the highest median contrast (2.08, range 1.87–2.73) over all patients,

followed by FAZA (1.64, range 1.60–1.70) and FMISO (1.58, range 1.54–1.64),
reflecting the clearance behavior of each tracer. The differences for the median
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Figure 6.3: Simulated hypoxia (2.5± 0.2 mmHg) to normoxia (35± 0.2 mmHg) image
contrast for the three tracers over an interval of 4 h post-injection. Error
bars reflect variations due to different vascularization patterns in tissue
sections with identical median oxygen partial pressure.

contrasts tested significant for FMISO and HX4 (p = 0.001), as well as FAZA
and HX4 (p = 0.036), but not for FMISO and FAZA (p = 0.161).
Of all tracers, HX4 showed the largest absolute contrast range, which was

significantly larger than for FMISO (p = 0.025). This reflects a larger inter-
patient variation of clearance observed for HX4 which may be due to differences in
renal and hepatic clearance between patients. Other significant range differences
were not observed.

6.4 Discussion

In this study, we compared three nitroimidazole-based hypoxia PET tracers,
which show similar binding properties in hypoxic cells but differ in their dif-
fusion and clearance characteristics. We could show that both parameters have
an impact on final image contrast. Based on blood input functions from clin-
ical dynamic PET data, HX4 shows the highest clearance, followed by FAZA
and FMISO. This corresponds well to previous clinical and preclinical studies,
in which it was found that HX4 has a higher clearance than FMISO, which ul-
timately leads to higher image contrast [35, 100, 136]. Chen et al. [35] reported
that image contrast for HX4 1.5 hours p.i. is the same as for FMISO two hours
p.i.. This finding was corroborated by our simulations based on average patient
input functions as shown in Figure 6.3.
Tracer uptake in hypoxic cell culture is the same for FMISO and FAZA, sug-

gesting equal nitroreductase affinity for both tracers, which was one of the work-
ing assumptions for the simulations. Comparisons between FMISO and FAZA
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Figure 6.4: Boxplots representing the distributions of contrast 4 h post-injection. Con-
trast was simulated individually for each patient. The asterisk indicates
significant differences in variation.

based on patient data are currently not available. However, overall activity is
lower for FAZA than for FMISO in pre-clinical studies, indicating that mech-
anisms other than enzyme activity, such as tracer clearance and diffusion, are
responsible for this observation [34, 36, 99]. The well established hypoxia tracer
FAZA has been argued to show better imaging properties than FMISO due to
its higher hydrophilicity and increased clearance, although results from earlier
pre-clinical studies directly comparing the two tracers regarding better contrast
behavior remain non-conclusive [36,37].
Recently, two preclinical studies have been published that directly compared

the imaging properties of the three tracers in the same tumor. Carlin et al. [34]
showed a clear superiority of FMISO to HX4 and FAZA in murine models 90
minutes p.i. both in terms of contrast and SUV . Another study by Peeters et
al. [99] conducted in rats three hours p.i. found HX4 to be the superior tracer
with respect to image contrast, followed by FAZA and FMISO, which is in good
agreement with our simulation study. HX4 also showed a faster elimination from
the blood as well as lower overall activities and larger ranges compared to FMISO,
and the TACs shown in the publication are similar to the simulated activities we
observed.
Additionally, the study by Carlin et al. [34] showed good correlation between

pimonidazole and all three hypoxia PET tracers, indicating that they accumulate
in roughly the same areas and at similar levels of hypoxia, which agrees well with
our assumption that the parameter P1, which defines the pO2 inhibiting tracer
binding by 50%, is roughly the same for all three tracers.
In the simulations presented here, contrast four hours p.i. between FMISO and

FAZA showed differences of only a few percent despite the fact that FAZA has a
significantly higher clearance. When actual patient input functions were used, no
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significant difference in contrast four hours p.i. was observed. The lower diffusion
coefficient of FAZA leads to a decrease in tracer binding that largely negates the
positive influence of its higher clearance rate. The simulations showed that a
higher clearance rate leads to lower absolute activities for both FAZA and HX4.
Moreover, HX4 showed both the highest clearance and the largest contrast, but
also the lowest absolute activity, both in normoxic and hypoxic tissue areas.
This has a negative impact on the signal-to-noise ratio (SNR), particularly since
hypoxia PET inherently suffers from a low SNR. One option to improve SNR
could be to increase the injected activity, however, this would lead to a higher
radiation dose to the patient. Another option could be to prolong acquisition
time [100]. Diffusion coefficients were calculated using a previously published
model. Our value for FMISO was reasonably close to the experimental value for
the related compound misonidazole (D05.5 · 10−11 m2/s) [39]. Consequently, it
was assumed that the approach is valid for FAZA and HX4 as well. However,
diffusion can vary significantly between different tumor types and even throughout
a tumor volume [120]. Nonetheless, the simulation model is insensitive to changes
in diffusion coefficient, with activity changes of less than 5% at two hours p.i. for
variations of 50% in the diffusion coefficient. Therefore, any errors caused by
the modeling of partition coefficients and, based on this, the diffusion coefficient,
should have a negligible impact on the simulation results.
Regarding the use of parameters derived from literature, there is a large range

of values particularly for the parameters used for the simulation of oxygen dis-
tribution. Most of this variation is likely to be caused by variation between cell
lines. We found that while changes in these parameters sometimes have a visible
impact on tracer retention and image contrast, they affect all tracers equally.
This ultimately leads to no change in the ranking of tracers regarding image
contrast and image contrast variation. Even though the simulations shown here
were performed in 2D only, the method can easily be extended to 3D, and has
originally been developed for this purpose [70]. Previous publications have shown
that oxygen distributions do not strongly depend on whether simulations have
been carried out in 2D or 3D [110]. This suggests that 2D comparison of hypoxia
PET tracer simulations are an adequate and computationally far less expensive
approximation. Two sources of signal uncertainties were investigated: variations
of vascular patterns in tissue areas with approximately the same median pO2,
and variations of blood activity curves between patients. Changes in the vascular
pattern introduced absolute signal changes of 5–8%, which can lead to contrast
variations of 7–11%. HX4 showed the highest susceptibility to these contrast
changes, but the overall differences between tracers were too small to justify a
preference for one tracer over the others. More relevant for clinical application
is the inter-patient variability of clearance. FMISO is eliminated mostly through
the entero-hepatic pathway, while HX4 and FAZA are also cleared via renal ex-
cretion [157]. HX4 clearance and, to a lesser extent, FAZA clearance is therefore
also dependent on patient kidney function, and may hence affect the suitability
for patients treated with (concurrent) nephrotoxic systemic agents. This adds
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variability to the total rate at which the tracer is cleared from the system, result-
ing in larger absolute ranges of clearance rates. Consequently, the final contrast
four hours p.i. between hypoxic and normoxic tissue areas varies much more for
HX4 than for FMISO. This can be of concern for clinical imaging since the large
differences between patients make it difficult to find a reliable threshold value to
define tumor hypoxia.
Acquisition modes and patient collectives varied between institutions. This

might affect the PET scans used for the determination of blood input functions.
Only blood activity was determined from the scans, which should be mostly un-
affected by patient gender or the type of tumor. Test runs showed that changes
in relative signal which may result from different acquisition modes have no im-
pact on the simulated contrast. Nonetheless, an impact on the results cannot be
completely ruled out. Also, the number of patients in this study is rather small,
particularly for FAZA and HX4. Therefore, a preclinical or even clinical vali-
dation of the simulation results by conducting PET imaging of all three tracers
in the same test subject would be required to fully validate the results of this
simulation study.

6.5 Conclusion

According to the simulations in this study, HX4 showed the highest clearance
and image contrast and the lowest background signal, followed by FAZA and
FMISO, but also the largest variance between patients, both in clearance and
contrast. Differences in vascularization patterns are an additional source of signal
variance, causing an uncertainty of 7–11%. HX4 is a promising tracer providing
PET images with a higher contrast than FAZA and FMISO, whereas FMISO is
a very reproducible hypoxia tracer, however with a lower image contrast. The
results agree well with previously published preclinical data, showing that tracer
clearance is the key factor in determining image contrast.
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Concluding discussion

Hypoxia imaging using nitroimidazole-based tracers such as FMISO is currently
the most promising approach under investigation for the non-invasive, 3D-resolved
detection of hypoxia in tumors. Nonetheless, the exact biochemical and pharma-
cokinetical processes resulting in the final image are complex and as of now, not
thoroughly understood. In this thesis, the problem is approached on a micro-
scopic scale, using a simulation tool that models tracer diffusion and retention
on realistic tumor vessel maps in two- and three-dimensional tumor models. The
model has been validated and used for the investigation of the impact that clear-
ance and diffusion of various tracers have on resulting image contrast. In the
following section, conclusions from the performed studies are summarized and
their limitations and potential are discussed in more detail.

In part I, a first step towards validation is taken. The goal was to achieve good cor-
relation between simulated FMISO retention and experimental parameter stain-
ings by optimizing the parameter M0, representing maximum oxygen consump-
tion. The study showed that good correlation between FMISO simulation and
pimonidazole staining can be achieved in many cases if an optimal M0 is chosen.
An additional finding was that the optimal M0 differed significantly between cell
lines, which is in good agreement with published literature [45, 123]. Also, we
observed that correlation results improved if only vessels that were positive for
perfusion marker Hoechst 33342 were included in the vessel map. In summary,
this study showed that the simulation method can yield results close to those
observed in vivo, which was a prerequisite to attempt a 3D validation.
A major shortcoming of this study was that most optimized values forM0 were

at the lower end of the literature range. Median optimized results for M0 were
located between 2.1-4.6 mmHg/s for the studied cell lines, while the literature
range contained values ranging from 2.7-33.5 mmHg/s. The reason for this lies
in the 2D simulation approach. As it does not include out-of-plane contributions
to oxygen distribution, the total amount of hypoxia is over-estimated, an effect
which has been corroborated by another study [112]. Therefore, optimization
of maximum oxygen consumption rate for highest agreement with pimonidazole
leads to an underestimation of M0 in the 2D scenario.

A full 3D validation was performed in part II. Here, two xenograft tumors which
had been imaged using preclinical FMISO PET were cut in 120 consecutive sec-
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tions used to reconstruct the 3D vessel architecture and pimonidazole accumula-
tion. Simulated and stained hypoxic fractions were compared for both tumors.
Also, sensitivity and specificity were determined along with the mean distance
to agreement for wrongly classified voxels. The results showed that the 3D sim-
ulation consistently fared better for all quality measures. The results revealed
that the reason for the poorer performance of the 2D simulation was due to its
underestimation of tissue oxygenation caused by missing out-of-plane diffusion.
Simulated activity was confirmed using the preclinical PET imaging data, which
was available for one tumor, showing good agreement for both simulation ap-
proaches.
These results are encouraging and suggest a high reliability of results produced

by the 3D simulation approach. Being able to simulate tracer TACs on ves-
sel maps that provide information on microscopic structure offers the chance to
match TAC shape of subvolumes to certain histological features. This can be a
promising approach to help interprete clinical PET images and may ultimately
help improve imaging protocols. For this purpose, studying a higher number of
tumors for additional verification is advisable.

An application of the simulation model is presented in part III. Here, three
nitroimidazole-based tracers, FMISO, FAZA and HX4, were compared. Many
tracers for the detection of hypoxia have been developed in the last decades
in an attempt to improve image contrast, which is relatively low for the old-
est tracer FMISO [23]. Therefore, attempts have been made to develop faster-
clearing tracers to reduce background activity, leading to a higher signal-to-noise
ratio [72, 100].
Blood activity curves for the simulation time of 4 h p.i. were obtained from clin-

ical PET scans and revealed HX4 to be the fastest-clearing tracer. Consequently,
it showed the highest contrast at 4 h p.i. due to its low level of background activ-
ity. However, it also showed the highest variation of clearance between patients,
which is probably a result of varying patient kidney function. This results in a
highly variable image contrast, which makes the selection of a fixed threshold to
define hypoxia from static images questionable. The impact of tracer diffusion
on image quality was negligible.
Despite being published before the validation studies, the conclusions drawn

from the tracer comparison in part III are not invalid. The simulation used the
same standard values as in part II, with the exception of Kmax, for which an
experimental literature value has been published only very recently [45].
The first major difference is the use of vessel maps. While the validation studies

used vessel maps built to reflect actual perfusion status as closely as possible
by removing unperfused vessels, this was not the case in part III. Here, one
needs to keep in mind that while it is necessary for validation to reconstruct the
tumor vasculature of a specific tumor as realistically as possible to reproduce
pimonidazole patterns observed in that tumor, this is not necessary for tracer
comparison. Here, the goal was to study the impact of tracer pharmacokinetics
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on image contrast, for which the exact vessel architecture is secondary, as long
as the same architecture is used for all tracers.
Figure 7.1 shows the impact of clearance on contrast for 2D and 3D simulations.

The two curves are very similar. The clearance values chosen for these simulations
are close to those observed for FAZA and HX4. As tissue areas with a pre-defined
pO2 rather than predefined tissue areas are compared, the error introduced to
the oxygen distribution due to lacking out-of-plane diffusion has no impact on
the results. Therefore, only tracer-intrinsic properties are compared, and tracer
diffusion and retention is mostly independent on the mode of simulation chosen
(Figure 5.6). Therefore, the conclusions drawn in part III are not invalidated by
being based on 2D simulations only. Recently, a new value has been published

Figure 7.1: Graphs showing the impact of clearance on contrast between normoxic (30
mmHg) and hypoxic (2.5 mmHg) tissue sections, simulated in 2D (left) and
3D (right). The clearance rates are approximately equal to the clearance
observed for FAZA (double FMISO clearance

and HX4 (sixfold FMISO clearance).

for the parameter Kmax, which gives the maximum tracer retention rate. The
results presented in part III were obtained using the old value. This means that
the results presented here likely underestimate overall retained activity, and the
resulting contrast for each tracer. However, as this parameter change affects all
tracers equally, the main observations, e.g. increased clearance resulting in higher
image contrast, still hold true.
Whether a full 3D simulation on realistic vascular models is necessary or if

a 2D simulation and/or artificial vessel maps will suffice, depends on the study
goal. If the oxygen distribution plays a key role in the study design, such as
for the investigation of the effects of acute hypoxia, a realistic 3D model is the
better choice. However, if the problem under investigation is a tracer-intrinsic
property that is mostly independent of the tumor vasculature, such as studying
the impact of tracer clearance, 2D simulations, even on artificial vessel maps, will

76



be a sufficient and time-efficient alternative.

Outlook

PET imaging using nitroimidazole-based tracers like FMISO has been validated
as a non-invasive method for hypoxia imaging in human tumors. In combination
with other imaging modalities, such as PET/CT for treatment planning, there
is great potential for it to become established as a foundation for biologically
adaptive therapy approaches such as dose painting.
In combined PET/MRI systems, the information obtained from FMISO PET

can be complemented with functional MR sequences, such as diffusion-weighted
MRI. The combination of multiple functional imaging techniques offers a lot of
promise for further stratification of patient subgroups and a greater individual-
ization of cancer treatment.
There is a lot of future potential for the simulation tool presented here. Simu-

lations can offer the missing link between microscopic oxygenation levels and the
resulting macroscopic hypoxia PET image. The available information on simu-
lated activity and microscopic tissue phenotype can be used to better understand
PET image formation. The impact of changing tracer properties on the shape of
TACs can be simulated, which can help develop dynamic imaging protocols for
tracers beside FMISO in addition to clinical studies. The simulation model can
be used in the planning phase of clinical and preclinical studies for study design
and an estimatation of the results to be expected.
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